1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/slab.h>
3 #include <linux/file.h>
4 #include <linux/fdtable.h>
5 #include <linux/freezer.h>
6 #include <linux/mm.h>
7 #include <linux/stat.h>
8 #include <linux/fcntl.h>
9 #include <linux/swap.h>
10 #include <linux/ctype.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/pagemap.h>
14 #include <linux/perf_event.h>
15 #include <linux/highmem.h>
16 #include <linux/spinlock.h>
17 #include <linux/key.h>
18 #include <linux/personality.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/sort.h>
22 #include <linux/sched/coredump.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/utsname.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/module.h>
28 #include <linux/namei.h>
29 #include <linux/mount.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/tsacct_kern.h>
33 #include <linux/cn_proc.h>
34 #include <linux/audit.h>
35 #include <linux/kmod.h>
36 #include <linux/fsnotify.h>
37 #include <linux/fs_struct.h>
38 #include <linux/pipe_fs_i.h>
39 #include <linux/oom.h>
40 #include <linux/compat.h>
41 #include <linux/fs.h>
42 #include <linux/path.h>
43 #include <linux/timekeeping.h>
44 #include <linux/sysctl.h>
45 #include <linux/elf.h>
46 #include <linux/pidfs.h>
47 #include <linux/net.h>
48 #include <linux/socket.h>
49 #include <net/af_unix.h>
50 #include <net/net_namespace.h>
51 #include <net/sock.h>
52 #include <uapi/linux/pidfd.h>
53 #include <uapi/linux/un.h>
54 #include <uapi/linux/coredump.h>
55
56 #include <linux/uaccess.h>
57 #include <asm/mmu_context.h>
58 #include <asm/tlb.h>
59 #include <asm/exec.h>
60
61 #include <trace/events/task.h>
62 #include "internal.h"
63
64 #include <trace/events/sched.h>
65
66 static bool dump_vma_snapshot(struct coredump_params *cprm);
67 static void free_vma_snapshot(struct coredump_params *cprm);
68
69 #define CORE_FILE_NOTE_SIZE_DEFAULT (4*1024*1024)
70 /* Define a reasonable max cap */
71 #define CORE_FILE_NOTE_SIZE_MAX (16*1024*1024)
72 /*
73 * File descriptor number for the pidfd for the thread-group leader of
74 * the coredumping task installed into the usermode helper's file
75 * descriptor table.
76 */
77 #define COREDUMP_PIDFD_NUMBER 3
78
79 static int core_uses_pid;
80 static unsigned int core_pipe_limit;
81 static unsigned int core_sort_vma;
82 static char core_pattern[CORENAME_MAX_SIZE] = "core";
83 static int core_name_size = CORENAME_MAX_SIZE;
84 unsigned int core_file_note_size_limit = CORE_FILE_NOTE_SIZE_DEFAULT;
85 static atomic_t core_pipe_count = ATOMIC_INIT(0);
86
87 enum coredump_type_t {
88 COREDUMP_FILE = 1,
89 COREDUMP_PIPE = 2,
90 COREDUMP_SOCK = 3,
91 COREDUMP_SOCK_REQ = 4,
92 };
93
94 struct core_name {
95 char *corename;
96 int used, size;
97 unsigned int core_pipe_limit;
98 bool core_dumped;
99 enum coredump_type_t core_type;
100 u64 mask;
101 };
102
expand_corename(struct core_name * cn,int size)103 static int expand_corename(struct core_name *cn, int size)
104 {
105 char *corename;
106
107 size = kmalloc_size_roundup(size);
108 corename = krealloc(cn->corename, size, GFP_KERNEL);
109
110 if (!corename)
111 return -ENOMEM;
112
113 if (size > core_name_size) /* racy but harmless */
114 core_name_size = size;
115
116 cn->size = size;
117 cn->corename = corename;
118 return 0;
119 }
120
cn_vprintf(struct core_name * cn,const char * fmt,va_list arg)121 static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
122 va_list arg)
123 {
124 int free, need;
125 va_list arg_copy;
126
127 again:
128 free = cn->size - cn->used;
129
130 va_copy(arg_copy, arg);
131 need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
132 va_end(arg_copy);
133
134 if (need < free) {
135 cn->used += need;
136 return 0;
137 }
138
139 if (!expand_corename(cn, cn->size + need - free + 1))
140 goto again;
141
142 return -ENOMEM;
143 }
144
cn_printf(struct core_name * cn,const char * fmt,...)145 static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
146 {
147 va_list arg;
148 int ret;
149
150 va_start(arg, fmt);
151 ret = cn_vprintf(cn, fmt, arg);
152 va_end(arg);
153
154 return ret;
155 }
156
157 static __printf(2, 3)
cn_esc_printf(struct core_name * cn,const char * fmt,...)158 int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
159 {
160 int cur = cn->used;
161 va_list arg;
162 int ret;
163
164 va_start(arg, fmt);
165 ret = cn_vprintf(cn, fmt, arg);
166 va_end(arg);
167
168 if (ret == 0) {
169 /*
170 * Ensure that this coredump name component can't cause the
171 * resulting corefile path to consist of a ".." or ".".
172 */
173 if ((cn->used - cur == 1 && cn->corename[cur] == '.') ||
174 (cn->used - cur == 2 && cn->corename[cur] == '.'
175 && cn->corename[cur+1] == '.'))
176 cn->corename[cur] = '!';
177
178 /*
179 * Empty names are fishy and could be used to create a "//" in a
180 * corefile name, causing the coredump to happen one directory
181 * level too high. Enforce that all components of the core
182 * pattern are at least one character long.
183 */
184 if (cn->used == cur)
185 ret = cn_printf(cn, "!");
186 }
187
188 for (; cur < cn->used; ++cur) {
189 if (cn->corename[cur] == '/')
190 cn->corename[cur] = '!';
191 }
192 return ret;
193 }
194
cn_print_exe_file(struct core_name * cn,bool name_only)195 static int cn_print_exe_file(struct core_name *cn, bool name_only)
196 {
197 struct file *exe_file;
198 char *pathbuf, *path, *ptr;
199 int ret;
200
201 exe_file = get_mm_exe_file(current->mm);
202 if (!exe_file)
203 return cn_esc_printf(cn, "%s (path unknown)", current->comm);
204
205 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
206 if (!pathbuf) {
207 ret = -ENOMEM;
208 goto put_exe_file;
209 }
210
211 path = file_path(exe_file, pathbuf, PATH_MAX);
212 if (IS_ERR(path)) {
213 ret = PTR_ERR(path);
214 goto free_buf;
215 }
216
217 if (name_only) {
218 ptr = strrchr(path, '/');
219 if (ptr)
220 path = ptr + 1;
221 }
222 ret = cn_esc_printf(cn, "%s", path);
223
224 free_buf:
225 kfree(pathbuf);
226 put_exe_file:
227 fput(exe_file);
228 return ret;
229 }
230
231 /*
232 * coredump_parse will inspect the pattern parameter, and output a name
233 * into corename, which must have space for at least CORENAME_MAX_SIZE
234 * bytes plus one byte for the zero terminator.
235 */
coredump_parse(struct core_name * cn,struct coredump_params * cprm,size_t ** argv,int * argc)236 static bool coredump_parse(struct core_name *cn, struct coredump_params *cprm,
237 size_t **argv, int *argc)
238 {
239 const struct cred *cred = current_cred();
240 const char *pat_ptr = core_pattern;
241 bool was_space = false;
242 int pid_in_pattern = 0;
243 int err = 0;
244
245 cn->mask = COREDUMP_KERNEL;
246 if (core_pipe_limit)
247 cn->mask |= COREDUMP_WAIT;
248 cn->used = 0;
249 cn->corename = NULL;
250 cn->core_pipe_limit = 0;
251 cn->core_dumped = false;
252 if (*pat_ptr == '|')
253 cn->core_type = COREDUMP_PIPE;
254 else if (*pat_ptr == '@')
255 cn->core_type = COREDUMP_SOCK;
256 else
257 cn->core_type = COREDUMP_FILE;
258 if (expand_corename(cn, core_name_size))
259 return false;
260 cn->corename[0] = '\0';
261
262 switch (cn->core_type) {
263 case COREDUMP_PIPE: {
264 int argvs = sizeof(core_pattern) / 2;
265 (*argv) = kmalloc_array(argvs, sizeof(**argv), GFP_KERNEL);
266 if (!(*argv))
267 return false;
268 (*argv)[(*argc)++] = 0;
269 ++pat_ptr;
270 if (!(*pat_ptr))
271 return false;
272 break;
273 }
274 case COREDUMP_SOCK: {
275 /* skip the @ */
276 pat_ptr++;
277 if (!(*pat_ptr))
278 return false;
279 if (*pat_ptr == '@') {
280 pat_ptr++;
281 if (!(*pat_ptr))
282 return false;
283
284 cn->core_type = COREDUMP_SOCK_REQ;
285 }
286
287 err = cn_printf(cn, "%s", pat_ptr);
288 if (err)
289 return false;
290
291 /* Require absolute paths. */
292 if (cn->corename[0] != '/')
293 return false;
294
295 /*
296 * Ensure we can uses spaces to indicate additional
297 * parameters in the future.
298 */
299 if (strchr(cn->corename, ' ')) {
300 coredump_report_failure("Coredump socket may not %s contain spaces", cn->corename);
301 return false;
302 }
303
304 /* Must not contain ".." in the path. */
305 if (name_contains_dotdot(cn->corename)) {
306 coredump_report_failure("Coredump socket may not %s contain '..' spaces", cn->corename);
307 return false;
308 }
309
310 if (strlen(cn->corename) >= UNIX_PATH_MAX) {
311 coredump_report_failure("Coredump socket path %s too long", cn->corename);
312 return false;
313 }
314
315 /*
316 * Currently no need to parse any other options.
317 * Relevant information can be retrieved from the peer
318 * pidfd retrievable via SO_PEERPIDFD by the receiver or
319 * via /proc/<pid>, using the SO_PEERPIDFD to guard
320 * against pid recycling when opening /proc/<pid>.
321 */
322 return true;
323 }
324 case COREDUMP_FILE:
325 break;
326 default:
327 WARN_ON_ONCE(true);
328 return false;
329 }
330
331 /* Repeat as long as we have more pattern to process and more output
332 space */
333 while (*pat_ptr) {
334 /*
335 * Split on spaces before doing template expansion so that
336 * %e and %E don't get split if they have spaces in them
337 */
338 if (cn->core_type == COREDUMP_PIPE) {
339 if (isspace(*pat_ptr)) {
340 if (cn->used != 0)
341 was_space = true;
342 pat_ptr++;
343 continue;
344 } else if (was_space) {
345 was_space = false;
346 err = cn_printf(cn, "%c", '\0');
347 if (err)
348 return err;
349 (*argv)[(*argc)++] = cn->used;
350 }
351 }
352 if (*pat_ptr != '%') {
353 err = cn_printf(cn, "%c", *pat_ptr++);
354 } else {
355 switch (*++pat_ptr) {
356 /* single % at the end, drop that */
357 case 0:
358 goto out;
359 /* Double percent, output one percent */
360 case '%':
361 err = cn_printf(cn, "%c", '%');
362 break;
363 /* pid */
364 case 'p':
365 pid_in_pattern = 1;
366 err = cn_printf(cn, "%d",
367 task_tgid_vnr(current));
368 break;
369 /* global pid */
370 case 'P':
371 err = cn_printf(cn, "%d",
372 task_tgid_nr(current));
373 break;
374 case 'i':
375 err = cn_printf(cn, "%d",
376 task_pid_vnr(current));
377 break;
378 case 'I':
379 err = cn_printf(cn, "%d",
380 task_pid_nr(current));
381 break;
382 /* uid */
383 case 'u':
384 err = cn_printf(cn, "%u",
385 from_kuid(&init_user_ns,
386 cred->uid));
387 break;
388 /* gid */
389 case 'g':
390 err = cn_printf(cn, "%u",
391 from_kgid(&init_user_ns,
392 cred->gid));
393 break;
394 case 'd':
395 err = cn_printf(cn, "%d",
396 __get_dumpable(cprm->mm_flags));
397 break;
398 /* signal that caused the coredump */
399 case 's':
400 err = cn_printf(cn, "%d",
401 cprm->siginfo->si_signo);
402 break;
403 /* UNIX time of coredump */
404 case 't': {
405 time64_t time;
406
407 time = ktime_get_real_seconds();
408 err = cn_printf(cn, "%lld", time);
409 break;
410 }
411 /* hostname */
412 case 'h':
413 down_read(&uts_sem);
414 err = cn_esc_printf(cn, "%s",
415 utsname()->nodename);
416 up_read(&uts_sem);
417 break;
418 /* executable, could be changed by prctl PR_SET_NAME etc */
419 case 'e':
420 err = cn_esc_printf(cn, "%s", current->comm);
421 break;
422 /* file name of executable */
423 case 'f':
424 err = cn_print_exe_file(cn, true);
425 break;
426 case 'E':
427 err = cn_print_exe_file(cn, false);
428 break;
429 /* core limit size */
430 case 'c':
431 err = cn_printf(cn, "%lu",
432 rlimit(RLIMIT_CORE));
433 break;
434 /* CPU the task ran on */
435 case 'C':
436 err = cn_printf(cn, "%d", cprm->cpu);
437 break;
438 /* pidfd number */
439 case 'F': {
440 /*
441 * Installing a pidfd only makes sense if
442 * we actually spawn a usermode helper.
443 */
444 if (cn->core_type != COREDUMP_PIPE)
445 break;
446
447 /*
448 * Note that we'll install a pidfd for the
449 * thread-group leader. We know that task
450 * linkage hasn't been removed yet and even if
451 * this @current isn't the actual thread-group
452 * leader we know that the thread-group leader
453 * cannot be reaped until @current has exited.
454 */
455 cprm->pid = task_tgid(current);
456 err = cn_printf(cn, "%d", COREDUMP_PIDFD_NUMBER);
457 break;
458 }
459 default:
460 break;
461 }
462 ++pat_ptr;
463 }
464
465 if (err)
466 return false;
467 }
468
469 out:
470 /* Backward compatibility with core_uses_pid:
471 *
472 * If core_pattern does not include a %p (as is the default)
473 * and core_uses_pid is set, then .%pid will be appended to
474 * the filename. Do not do this for piped commands. */
475 if (cn->core_type == COREDUMP_FILE && !pid_in_pattern && core_uses_pid)
476 return cn_printf(cn, ".%d", task_tgid_vnr(current)) == 0;
477
478 return true;
479 }
480
zap_process(struct signal_struct * signal,int exit_code)481 static int zap_process(struct signal_struct *signal, int exit_code)
482 {
483 struct task_struct *t;
484 int nr = 0;
485
486 signal->flags = SIGNAL_GROUP_EXIT;
487 signal->group_exit_code = exit_code;
488 signal->group_stop_count = 0;
489
490 __for_each_thread(signal, t) {
491 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
492 if (t != current && !(t->flags & PF_POSTCOREDUMP)) {
493 sigaddset(&t->pending.signal, SIGKILL);
494 signal_wake_up(t, 1);
495 nr++;
496 }
497 }
498
499 return nr;
500 }
501
zap_threads(struct task_struct * tsk,struct core_state * core_state,int exit_code)502 static int zap_threads(struct task_struct *tsk,
503 struct core_state *core_state, int exit_code)
504 {
505 struct signal_struct *signal = tsk->signal;
506 int nr = -EAGAIN;
507
508 spin_lock_irq(&tsk->sighand->siglock);
509 if (!(signal->flags & SIGNAL_GROUP_EXIT) && !signal->group_exec_task) {
510 /* Allow SIGKILL, see prepare_signal() */
511 signal->core_state = core_state;
512 nr = zap_process(signal, exit_code);
513 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
514 tsk->flags |= PF_DUMPCORE;
515 atomic_set(&core_state->nr_threads, nr);
516 }
517 spin_unlock_irq(&tsk->sighand->siglock);
518 return nr;
519 }
520
coredump_wait(int exit_code,struct core_state * core_state)521 static int coredump_wait(int exit_code, struct core_state *core_state)
522 {
523 struct task_struct *tsk = current;
524 int core_waiters = -EBUSY;
525
526 init_completion(&core_state->startup);
527 core_state->dumper.task = tsk;
528 core_state->dumper.next = NULL;
529
530 core_waiters = zap_threads(tsk, core_state, exit_code);
531 if (core_waiters > 0) {
532 struct core_thread *ptr;
533
534 wait_for_completion_state(&core_state->startup,
535 TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
536 /*
537 * Wait for all the threads to become inactive, so that
538 * all the thread context (extended register state, like
539 * fpu etc) gets copied to the memory.
540 */
541 ptr = core_state->dumper.next;
542 while (ptr != NULL) {
543 wait_task_inactive(ptr->task, TASK_ANY);
544 ptr = ptr->next;
545 }
546 }
547
548 return core_waiters;
549 }
550
coredump_finish(bool core_dumped)551 static void coredump_finish(bool core_dumped)
552 {
553 struct core_thread *curr, *next;
554 struct task_struct *task;
555
556 spin_lock_irq(¤t->sighand->siglock);
557 if (core_dumped && !__fatal_signal_pending(current))
558 current->signal->group_exit_code |= 0x80;
559 next = current->signal->core_state->dumper.next;
560 current->signal->core_state = NULL;
561 spin_unlock_irq(¤t->sighand->siglock);
562
563 while ((curr = next) != NULL) {
564 next = curr->next;
565 task = curr->task;
566 /*
567 * see coredump_task_exit(), curr->task must not see
568 * ->task == NULL before we read ->next.
569 */
570 smp_mb();
571 curr->task = NULL;
572 wake_up_process(task);
573 }
574 }
575
dump_interrupted(void)576 static bool dump_interrupted(void)
577 {
578 /*
579 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
580 * can do try_to_freeze() and check __fatal_signal_pending(),
581 * but then we need to teach dump_write() to restart and clear
582 * TIF_SIGPENDING.
583 */
584 return fatal_signal_pending(current) || freezing(current);
585 }
586
wait_for_dump_helpers(struct file * file)587 static void wait_for_dump_helpers(struct file *file)
588 {
589 struct pipe_inode_info *pipe = file->private_data;
590
591 pipe_lock(pipe);
592 pipe->readers++;
593 pipe->writers--;
594 wake_up_interruptible_sync(&pipe->rd_wait);
595 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
596 pipe_unlock(pipe);
597
598 /*
599 * We actually want wait_event_freezable() but then we need
600 * to clear TIF_SIGPENDING and improve dump_interrupted().
601 */
602 wait_event_interruptible(pipe->rd_wait, pipe->readers == 1);
603
604 pipe_lock(pipe);
605 pipe->readers--;
606 pipe->writers++;
607 pipe_unlock(pipe);
608 }
609
610 /*
611 * umh_coredump_setup
612 * helper function to customize the process used
613 * to collect the core in userspace. Specifically
614 * it sets up a pipe and installs it as fd 0 (stdin)
615 * for the process. Returns 0 on success, or
616 * PTR_ERR on failure.
617 * Note that it also sets the core limit to 1. This
618 * is a special value that we use to trap recursive
619 * core dumps
620 */
umh_coredump_setup(struct subprocess_info * info,struct cred * new)621 static int umh_coredump_setup(struct subprocess_info *info, struct cred *new)
622 {
623 struct file *files[2];
624 struct coredump_params *cp = (struct coredump_params *)info->data;
625 int err;
626
627 if (cp->pid) {
628 struct file *pidfs_file __free(fput) = NULL;
629
630 pidfs_file = pidfs_alloc_file(cp->pid, 0);
631 if (IS_ERR(pidfs_file))
632 return PTR_ERR(pidfs_file);
633
634 pidfs_coredump(cp);
635
636 /*
637 * Usermode helpers are childen of either
638 * system_unbound_wq or of kthreadd. So we know that
639 * we're starting off with a clean file descriptor
640 * table. So we should always be able to use
641 * COREDUMP_PIDFD_NUMBER as our file descriptor value.
642 */
643 err = replace_fd(COREDUMP_PIDFD_NUMBER, pidfs_file, 0);
644 if (err < 0)
645 return err;
646 }
647
648 err = create_pipe_files(files, 0);
649 if (err)
650 return err;
651
652 cp->file = files[1];
653
654 err = replace_fd(0, files[0], 0);
655 fput(files[0]);
656 if (err < 0)
657 return err;
658
659 /* and disallow core files too */
660 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
661
662 return 0;
663 }
664
665 #ifdef CONFIG_UNIX
coredump_sock_connect(struct core_name * cn,struct coredump_params * cprm)666 static bool coredump_sock_connect(struct core_name *cn, struct coredump_params *cprm)
667 {
668 struct file *file __free(fput) = NULL;
669 struct sockaddr_un addr = {
670 .sun_family = AF_UNIX,
671 };
672 ssize_t addr_len;
673 int retval;
674 struct socket *socket;
675
676 addr_len = strscpy(addr.sun_path, cn->corename);
677 if (addr_len < 0)
678 return false;
679 addr_len += offsetof(struct sockaddr_un, sun_path) + 1;
680
681 /*
682 * It is possible that the userspace process which is supposed
683 * to handle the coredump and is listening on the AF_UNIX socket
684 * coredumps. Userspace should just mark itself non dumpable.
685 */
686
687 retval = sock_create_kern(&init_net, AF_UNIX, SOCK_STREAM, 0, &socket);
688 if (retval < 0)
689 return false;
690
691 file = sock_alloc_file(socket, 0, NULL);
692 if (IS_ERR(file))
693 return false;
694
695 /*
696 * Set the thread-group leader pid which is used for the peer
697 * credentials during connect() below. Then immediately register
698 * it in pidfs...
699 */
700 cprm->pid = task_tgid(current);
701 retval = pidfs_register_pid(cprm->pid);
702 if (retval)
703 return false;
704
705 /*
706 * ... and set the coredump information so userspace has it
707 * available after connect()...
708 */
709 pidfs_coredump(cprm);
710
711 retval = kernel_connect(socket, (struct sockaddr *)(&addr), addr_len,
712 O_NONBLOCK | SOCK_COREDUMP);
713
714 if (retval) {
715 if (retval == -EAGAIN)
716 coredump_report_failure("Coredump socket %s receive queue full", addr.sun_path);
717 else
718 coredump_report_failure("Coredump socket connection %s failed %d", addr.sun_path, retval);
719 return false;
720 }
721
722 /* ... and validate that @sk_peer_pid matches @cprm.pid. */
723 if (WARN_ON_ONCE(unix_peer(socket->sk)->sk_peer_pid != cprm->pid))
724 return false;
725
726 cprm->limit = RLIM_INFINITY;
727 cprm->file = no_free_ptr(file);
728
729 return true;
730 }
731
coredump_sock_recv(struct file * file,struct coredump_ack * ack,size_t size,int flags)732 static inline bool coredump_sock_recv(struct file *file, struct coredump_ack *ack, size_t size, int flags)
733 {
734 struct msghdr msg = {};
735 struct kvec iov = { .iov_base = ack, .iov_len = size };
736 ssize_t ret;
737
738 memset(ack, 0, size);
739 ret = kernel_recvmsg(sock_from_file(file), &msg, &iov, 1, size, flags);
740 return ret == size;
741 }
742
coredump_sock_send(struct file * file,struct coredump_req * req)743 static inline bool coredump_sock_send(struct file *file, struct coredump_req *req)
744 {
745 struct msghdr msg = { .msg_flags = MSG_NOSIGNAL };
746 struct kvec iov = { .iov_base = req, .iov_len = sizeof(*req) };
747 ssize_t ret;
748
749 ret = kernel_sendmsg(sock_from_file(file), &msg, &iov, 1, sizeof(*req));
750 return ret == sizeof(*req);
751 }
752
753 static_assert(sizeof(enum coredump_mark) == sizeof(__u32));
754
coredump_sock_mark(struct file * file,enum coredump_mark mark)755 static inline bool coredump_sock_mark(struct file *file, enum coredump_mark mark)
756 {
757 struct msghdr msg = { .msg_flags = MSG_NOSIGNAL };
758 struct kvec iov = { .iov_base = &mark, .iov_len = sizeof(mark) };
759 ssize_t ret;
760
761 ret = kernel_sendmsg(sock_from_file(file), &msg, &iov, 1, sizeof(mark));
762 return ret == sizeof(mark);
763 }
764
coredump_sock_wait(struct file * file)765 static inline void coredump_sock_wait(struct file *file)
766 {
767 ssize_t n;
768
769 /*
770 * We use a simple read to wait for the coredump processing to
771 * finish. Either the socket is closed or we get sent unexpected
772 * data. In both cases, we're done.
773 */
774 n = __kernel_read(file, &(char){ 0 }, 1, NULL);
775 if (n > 0)
776 coredump_report_failure("Coredump socket had unexpected data");
777 else if (n < 0)
778 coredump_report_failure("Coredump socket failed");
779 }
780
coredump_sock_shutdown(struct file * file)781 static inline void coredump_sock_shutdown(struct file *file)
782 {
783 struct socket *socket;
784
785 socket = sock_from_file(file);
786 if (!socket)
787 return;
788
789 /* Let userspace know we're done processing the coredump. */
790 kernel_sock_shutdown(socket, SHUT_WR);
791 }
792
coredump_sock_request(struct core_name * cn,struct coredump_params * cprm)793 static bool coredump_sock_request(struct core_name *cn, struct coredump_params *cprm)
794 {
795 struct coredump_req req = {
796 .size = sizeof(struct coredump_req),
797 .mask = COREDUMP_KERNEL | COREDUMP_USERSPACE |
798 COREDUMP_REJECT | COREDUMP_WAIT,
799 .size_ack = sizeof(struct coredump_ack),
800 };
801 struct coredump_ack ack = {};
802 ssize_t usize;
803
804 if (cn->core_type != COREDUMP_SOCK_REQ)
805 return true;
806
807 /* Let userspace know what we support. */
808 if (!coredump_sock_send(cprm->file, &req))
809 return false;
810
811 /* Peek the size of the coredump_ack. */
812 if (!coredump_sock_recv(cprm->file, &ack, sizeof(ack.size),
813 MSG_PEEK | MSG_WAITALL))
814 return false;
815
816 /* Refuse unknown coredump_ack sizes. */
817 usize = ack.size;
818 if (usize < COREDUMP_ACK_SIZE_VER0) {
819 coredump_sock_mark(cprm->file, COREDUMP_MARK_MINSIZE);
820 return false;
821 }
822
823 if (usize > sizeof(ack)) {
824 coredump_sock_mark(cprm->file, COREDUMP_MARK_MAXSIZE);
825 return false;
826 }
827
828 /* Now retrieve the coredump_ack. */
829 if (!coredump_sock_recv(cprm->file, &ack, usize, MSG_WAITALL))
830 return false;
831 if (ack.size != usize)
832 return false;
833
834 /* Refuse unknown coredump_ack flags. */
835 if (ack.mask & ~req.mask) {
836 coredump_sock_mark(cprm->file, COREDUMP_MARK_UNSUPPORTED);
837 return false;
838 }
839
840 /* Refuse mutually exclusive options. */
841 if (hweight64(ack.mask & (COREDUMP_USERSPACE | COREDUMP_KERNEL |
842 COREDUMP_REJECT)) != 1) {
843 coredump_sock_mark(cprm->file, COREDUMP_MARK_CONFLICTING);
844 return false;
845 }
846
847 if (ack.spare) {
848 coredump_sock_mark(cprm->file, COREDUMP_MARK_UNSUPPORTED);
849 return false;
850 }
851
852 cn->mask = ack.mask;
853 return coredump_sock_mark(cprm->file, COREDUMP_MARK_REQACK);
854 }
855
coredump_socket(struct core_name * cn,struct coredump_params * cprm)856 static bool coredump_socket(struct core_name *cn, struct coredump_params *cprm)
857 {
858 if (!coredump_sock_connect(cn, cprm))
859 return false;
860
861 return coredump_sock_request(cn, cprm);
862 }
863 #else
coredump_sock_wait(struct file * file)864 static inline void coredump_sock_wait(struct file *file) { }
coredump_sock_shutdown(struct file * file)865 static inline void coredump_sock_shutdown(struct file *file) { }
coredump_socket(struct core_name * cn,struct coredump_params * cprm)866 static inline bool coredump_socket(struct core_name *cn, struct coredump_params *cprm) { return false; }
867 #endif
868
869 /* cprm->mm_flags contains a stable snapshot of dumpability flags. */
coredump_force_suid_safe(const struct coredump_params * cprm)870 static inline bool coredump_force_suid_safe(const struct coredump_params *cprm)
871 {
872 /* Require nonrelative corefile path and be extra careful. */
873 return __get_dumpable(cprm->mm_flags) == SUID_DUMP_ROOT;
874 }
875
coredump_file(struct core_name * cn,struct coredump_params * cprm,const struct linux_binfmt * binfmt)876 static bool coredump_file(struct core_name *cn, struct coredump_params *cprm,
877 const struct linux_binfmt *binfmt)
878 {
879 struct mnt_idmap *idmap;
880 struct inode *inode;
881 struct file *file __free(fput) = NULL;
882 int open_flags = O_CREAT | O_WRONLY | O_NOFOLLOW | O_LARGEFILE | O_EXCL;
883
884 if (cprm->limit < binfmt->min_coredump)
885 return false;
886
887 if (coredump_force_suid_safe(cprm) && cn->corename[0] != '/') {
888 coredump_report_failure("this process can only dump core to a fully qualified path, skipping core dump");
889 return false;
890 }
891
892 /*
893 * Unlink the file if it exists unless this is a SUID
894 * binary - in that case, we're running around with root
895 * privs and don't want to unlink another user's coredump.
896 */
897 if (!coredump_force_suid_safe(cprm)) {
898 /*
899 * If it doesn't exist, that's fine. If there's some
900 * other problem, we'll catch it at the filp_open().
901 */
902 do_unlinkat(AT_FDCWD, getname_kernel(cn->corename));
903 }
904
905 /*
906 * There is a race between unlinking and creating the
907 * file, but if that causes an EEXIST here, that's
908 * fine - another process raced with us while creating
909 * the corefile, and the other process won. To userspace,
910 * what matters is that at least one of the two processes
911 * writes its coredump successfully, not which one.
912 */
913 if (coredump_force_suid_safe(cprm)) {
914 /*
915 * Using user namespaces, normal user tasks can change
916 * their current->fs->root to point to arbitrary
917 * directories. Since the intention of the "only dump
918 * with a fully qualified path" rule is to control where
919 * coredumps may be placed using root privileges,
920 * current->fs->root must not be used. Instead, use the
921 * root directory of init_task.
922 */
923 struct path root;
924
925 task_lock(&init_task);
926 get_fs_root(init_task.fs, &root);
927 task_unlock(&init_task);
928 file = file_open_root(&root, cn->corename, open_flags, 0600);
929 path_put(&root);
930 } else {
931 file = filp_open(cn->corename, open_flags, 0600);
932 }
933 if (IS_ERR(file))
934 return false;
935
936 inode = file_inode(file);
937 if (inode->i_nlink > 1)
938 return false;
939 if (d_unhashed(file->f_path.dentry))
940 return false;
941 /*
942 * AK: actually i see no reason to not allow this for named
943 * pipes etc, but keep the previous behaviour for now.
944 */
945 if (!S_ISREG(inode->i_mode))
946 return false;
947 /*
948 * Don't dump core if the filesystem changed owner or mode
949 * of the file during file creation. This is an issue when
950 * a process dumps core while its cwd is e.g. on a vfat
951 * filesystem.
952 */
953 idmap = file_mnt_idmap(file);
954 if (!vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), current_fsuid())) {
955 coredump_report_failure("Core dump to %s aborted: cannot preserve file owner", cn->corename);
956 return false;
957 }
958 if ((inode->i_mode & 0677) != 0600) {
959 coredump_report_failure("Core dump to %s aborted: cannot preserve file permissions", cn->corename);
960 return false;
961 }
962 if (!(file->f_mode & FMODE_CAN_WRITE))
963 return false;
964 if (do_truncate(idmap, file->f_path.dentry, 0, 0, file))
965 return false;
966
967 cprm->file = no_free_ptr(file);
968 return true;
969 }
970
coredump_pipe(struct core_name * cn,struct coredump_params * cprm,size_t * argv,int argc)971 static bool coredump_pipe(struct core_name *cn, struct coredump_params *cprm,
972 size_t *argv, int argc)
973 {
974 int argi;
975 char **helper_argv __free(kfree) = NULL;
976 struct subprocess_info *sub_info;
977
978 if (cprm->limit == 1) {
979 /* See umh_coredump_setup() which sets RLIMIT_CORE = 1.
980 *
981 * Normally core limits are irrelevant to pipes, since
982 * we're not writing to the file system, but we use
983 * cprm.limit of 1 here as a special value, this is a
984 * consistent way to catch recursive crashes.
985 * We can still crash if the core_pattern binary sets
986 * RLIM_CORE = !1, but it runs as root, and can do
987 * lots of stupid things.
988 *
989 * Note that we use task_tgid_vnr here to grab the pid
990 * of the process group leader. That way we get the
991 * right pid if a thread in a multi-threaded
992 * core_pattern process dies.
993 */
994 coredump_report_failure("RLIMIT_CORE is set to 1, aborting core");
995 return false;
996 }
997 cprm->limit = RLIM_INFINITY;
998
999 cn->core_pipe_limit = atomic_inc_return(&core_pipe_count);
1000 if (core_pipe_limit && (core_pipe_limit < cn->core_pipe_limit)) {
1001 coredump_report_failure("over core_pipe_limit, skipping core dump");
1002 return false;
1003 }
1004
1005 helper_argv = kmalloc_array(argc + 1, sizeof(*helper_argv), GFP_KERNEL);
1006 if (!helper_argv) {
1007 coredump_report_failure("%s failed to allocate memory", __func__);
1008 return false;
1009 }
1010 for (argi = 0; argi < argc; argi++)
1011 helper_argv[argi] = cn->corename + argv[argi];
1012 helper_argv[argi] = NULL;
1013
1014 sub_info = call_usermodehelper_setup(helper_argv[0], helper_argv, NULL,
1015 GFP_KERNEL, umh_coredump_setup,
1016 NULL, cprm);
1017 if (!sub_info)
1018 return false;
1019
1020 if (call_usermodehelper_exec(sub_info, UMH_WAIT_EXEC)) {
1021 coredump_report_failure("|%s pipe failed", cn->corename);
1022 return false;
1023 }
1024
1025 /*
1026 * umh disabled with CONFIG_STATIC_USERMODEHELPER_PATH="" would
1027 * have this set to NULL.
1028 */
1029 if (!cprm->file) {
1030 coredump_report_failure("Core dump to |%s disabled", cn->corename);
1031 return false;
1032 }
1033
1034 return true;
1035 }
1036
coredump_write(struct core_name * cn,struct coredump_params * cprm,struct linux_binfmt * binfmt)1037 static bool coredump_write(struct core_name *cn,
1038 struct coredump_params *cprm,
1039 struct linux_binfmt *binfmt)
1040 {
1041
1042 if (dump_interrupted())
1043 return true;
1044
1045 if (!dump_vma_snapshot(cprm))
1046 return false;
1047
1048 file_start_write(cprm->file);
1049 cn->core_dumped = binfmt->core_dump(cprm);
1050 /*
1051 * Ensures that file size is big enough to contain the current
1052 * file postion. This prevents gdb from complaining about
1053 * a truncated file if the last "write" to the file was
1054 * dump_skip.
1055 */
1056 if (cprm->to_skip) {
1057 cprm->to_skip--;
1058 dump_emit(cprm, "", 1);
1059 }
1060 file_end_write(cprm->file);
1061 free_vma_snapshot(cprm);
1062 return true;
1063 }
1064
coredump_cleanup(struct core_name * cn,struct coredump_params * cprm)1065 static void coredump_cleanup(struct core_name *cn, struct coredump_params *cprm)
1066 {
1067 if (cprm->file)
1068 filp_close(cprm->file, NULL);
1069 if (cn->core_pipe_limit) {
1070 VFS_WARN_ON_ONCE(cn->core_type != COREDUMP_PIPE);
1071 atomic_dec(&core_pipe_count);
1072 }
1073 kfree(cn->corename);
1074 coredump_finish(cn->core_dumped);
1075 }
1076
coredump_skip(const struct coredump_params * cprm,const struct linux_binfmt * binfmt)1077 static inline bool coredump_skip(const struct coredump_params *cprm,
1078 const struct linux_binfmt *binfmt)
1079 {
1080 if (!binfmt)
1081 return true;
1082 if (!binfmt->core_dump)
1083 return true;
1084 if (!__get_dumpable(cprm->mm_flags))
1085 return true;
1086 return false;
1087 }
1088
vfs_coredump(const kernel_siginfo_t * siginfo)1089 void vfs_coredump(const kernel_siginfo_t *siginfo)
1090 {
1091 struct cred *cred __free(put_cred) = NULL;
1092 size_t *argv __free(kfree) = NULL;
1093 struct core_state core_state;
1094 struct core_name cn;
1095 struct mm_struct *mm = current->mm;
1096 struct linux_binfmt *binfmt = mm->binfmt;
1097 const struct cred *old_cred;
1098 int argc = 0;
1099 struct coredump_params cprm = {
1100 .siginfo = siginfo,
1101 .limit = rlimit(RLIMIT_CORE),
1102 /*
1103 * We must use the same mm->flags while dumping core to avoid
1104 * inconsistency of bit flags, since this flag is not protected
1105 * by any locks.
1106 */
1107 .mm_flags = mm->flags,
1108 .vma_meta = NULL,
1109 .cpu = raw_smp_processor_id(),
1110 };
1111
1112 audit_core_dumps(siginfo->si_signo);
1113
1114 if (coredump_skip(&cprm, binfmt))
1115 return;
1116
1117 cred = prepare_creds();
1118 if (!cred)
1119 return;
1120 /*
1121 * We cannot trust fsuid as being the "true" uid of the process
1122 * nor do we know its entire history. We only know it was tainted
1123 * so we dump it as root in mode 2, and only into a controlled
1124 * environment (pipe handler or fully qualified path).
1125 */
1126 if (coredump_force_suid_safe(&cprm))
1127 cred->fsuid = GLOBAL_ROOT_UID;
1128
1129 if (coredump_wait(siginfo->si_signo, &core_state) < 0)
1130 return;
1131
1132 old_cred = override_creds(cred);
1133
1134 if (!coredump_parse(&cn, &cprm, &argv, &argc)) {
1135 coredump_report_failure("format_corename failed, aborting core");
1136 goto close_fail;
1137 }
1138
1139 switch (cn.core_type) {
1140 case COREDUMP_FILE:
1141 if (!coredump_file(&cn, &cprm, binfmt))
1142 goto close_fail;
1143 break;
1144 case COREDUMP_PIPE:
1145 if (!coredump_pipe(&cn, &cprm, argv, argc))
1146 goto close_fail;
1147 break;
1148 case COREDUMP_SOCK_REQ:
1149 fallthrough;
1150 case COREDUMP_SOCK:
1151 if (!coredump_socket(&cn, &cprm))
1152 goto close_fail;
1153 break;
1154 default:
1155 WARN_ON_ONCE(true);
1156 goto close_fail;
1157 }
1158
1159 /* Don't even generate the coredump. */
1160 if (cn.mask & COREDUMP_REJECT)
1161 goto close_fail;
1162
1163 /* get us an unshared descriptor table; almost always a no-op */
1164 /* The cell spufs coredump code reads the file descriptor tables */
1165 if (unshare_files())
1166 goto close_fail;
1167
1168 if ((cn.mask & COREDUMP_KERNEL) && !coredump_write(&cn, &cprm, binfmt))
1169 goto close_fail;
1170
1171 coredump_sock_shutdown(cprm.file);
1172
1173 /* Let the parent know that a coredump was generated. */
1174 if (cn.mask & COREDUMP_USERSPACE)
1175 cn.core_dumped = true;
1176
1177 /*
1178 * When core_pipe_limit is set we wait for the coredump server
1179 * or usermodehelper to finish before exiting so it can e.g.,
1180 * inspect /proc/<pid>.
1181 */
1182 if (cn.mask & COREDUMP_WAIT) {
1183 switch (cn.core_type) {
1184 case COREDUMP_PIPE:
1185 wait_for_dump_helpers(cprm.file);
1186 break;
1187 case COREDUMP_SOCK_REQ:
1188 fallthrough;
1189 case COREDUMP_SOCK:
1190 coredump_sock_wait(cprm.file);
1191 break;
1192 default:
1193 break;
1194 }
1195 }
1196
1197 close_fail:
1198 coredump_cleanup(&cn, &cprm);
1199 revert_creds(old_cred);
1200 return;
1201 }
1202
1203 /*
1204 * Core dumping helper functions. These are the only things you should
1205 * do on a core-file: use only these functions to write out all the
1206 * necessary info.
1207 */
__dump_emit(struct coredump_params * cprm,const void * addr,int nr)1208 static int __dump_emit(struct coredump_params *cprm, const void *addr, int nr)
1209 {
1210 struct file *file = cprm->file;
1211 loff_t pos = file->f_pos;
1212 ssize_t n;
1213
1214 if (cprm->written + nr > cprm->limit)
1215 return 0;
1216 if (dump_interrupted())
1217 return 0;
1218 n = __kernel_write(file, addr, nr, &pos);
1219 if (n != nr)
1220 return 0;
1221 file->f_pos = pos;
1222 cprm->written += n;
1223 cprm->pos += n;
1224
1225 return 1;
1226 }
1227
__dump_skip(struct coredump_params * cprm,size_t nr)1228 static int __dump_skip(struct coredump_params *cprm, size_t nr)
1229 {
1230 static char zeroes[PAGE_SIZE];
1231 struct file *file = cprm->file;
1232
1233 if (file->f_mode & FMODE_LSEEK) {
1234 if (dump_interrupted() || vfs_llseek(file, nr, SEEK_CUR) < 0)
1235 return 0;
1236 cprm->pos += nr;
1237 return 1;
1238 }
1239
1240 while (nr > PAGE_SIZE) {
1241 if (!__dump_emit(cprm, zeroes, PAGE_SIZE))
1242 return 0;
1243 nr -= PAGE_SIZE;
1244 }
1245
1246 return __dump_emit(cprm, zeroes, nr);
1247 }
1248
dump_emit(struct coredump_params * cprm,const void * addr,int nr)1249 int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
1250 {
1251 if (cprm->to_skip) {
1252 if (!__dump_skip(cprm, cprm->to_skip))
1253 return 0;
1254 cprm->to_skip = 0;
1255 }
1256 return __dump_emit(cprm, addr, nr);
1257 }
1258 EXPORT_SYMBOL(dump_emit);
1259
dump_skip_to(struct coredump_params * cprm,unsigned long pos)1260 void dump_skip_to(struct coredump_params *cprm, unsigned long pos)
1261 {
1262 cprm->to_skip = pos - cprm->pos;
1263 }
1264 EXPORT_SYMBOL(dump_skip_to);
1265
dump_skip(struct coredump_params * cprm,size_t nr)1266 void dump_skip(struct coredump_params *cprm, size_t nr)
1267 {
1268 cprm->to_skip += nr;
1269 }
1270 EXPORT_SYMBOL(dump_skip);
1271
1272 #ifdef CONFIG_ELF_CORE
dump_emit_page(struct coredump_params * cprm,struct page * page)1273 static int dump_emit_page(struct coredump_params *cprm, struct page *page)
1274 {
1275 struct bio_vec bvec;
1276 struct iov_iter iter;
1277 struct file *file = cprm->file;
1278 loff_t pos;
1279 ssize_t n;
1280
1281 if (!page)
1282 return 0;
1283
1284 if (cprm->to_skip) {
1285 if (!__dump_skip(cprm, cprm->to_skip))
1286 return 0;
1287 cprm->to_skip = 0;
1288 }
1289 if (cprm->written + PAGE_SIZE > cprm->limit)
1290 return 0;
1291 if (dump_interrupted())
1292 return 0;
1293 pos = file->f_pos;
1294 bvec_set_page(&bvec, page, PAGE_SIZE, 0);
1295 iov_iter_bvec(&iter, ITER_SOURCE, &bvec, 1, PAGE_SIZE);
1296 n = __kernel_write_iter(cprm->file, &iter, &pos);
1297 if (n != PAGE_SIZE)
1298 return 0;
1299 file->f_pos = pos;
1300 cprm->written += PAGE_SIZE;
1301 cprm->pos += PAGE_SIZE;
1302
1303 return 1;
1304 }
1305
1306 /*
1307 * If we might get machine checks from kernel accesses during the
1308 * core dump, let's get those errors early rather than during the
1309 * IO. This is not performance-critical enough to warrant having
1310 * all the machine check logic in the iovec paths.
1311 */
1312 #ifdef copy_mc_to_kernel
1313
1314 #define dump_page_alloc() alloc_page(GFP_KERNEL)
1315 #define dump_page_free(x) __free_page(x)
dump_page_copy(struct page * src,struct page * dst)1316 static struct page *dump_page_copy(struct page *src, struct page *dst)
1317 {
1318 void *buf = kmap_local_page(src);
1319 size_t left = copy_mc_to_kernel(page_address(dst), buf, PAGE_SIZE);
1320 kunmap_local(buf);
1321 return left ? NULL : dst;
1322 }
1323
1324 #else
1325
1326 /* We just want to return non-NULL; it's never used. */
1327 #define dump_page_alloc() ERR_PTR(-EINVAL)
1328 #define dump_page_free(x) ((void)(x))
dump_page_copy(struct page * src,struct page * dst)1329 static inline struct page *dump_page_copy(struct page *src, struct page *dst)
1330 {
1331 return src;
1332 }
1333 #endif
1334
dump_user_range(struct coredump_params * cprm,unsigned long start,unsigned long len)1335 int dump_user_range(struct coredump_params *cprm, unsigned long start,
1336 unsigned long len)
1337 {
1338 unsigned long addr;
1339 struct page *dump_page;
1340 int locked, ret;
1341
1342 dump_page = dump_page_alloc();
1343 if (!dump_page)
1344 return 0;
1345
1346 ret = 0;
1347 locked = 0;
1348 for (addr = start; addr < start + len; addr += PAGE_SIZE) {
1349 struct page *page;
1350
1351 if (!locked) {
1352 if (mmap_read_lock_killable(current->mm))
1353 goto out;
1354 locked = 1;
1355 }
1356
1357 /*
1358 * To avoid having to allocate page tables for virtual address
1359 * ranges that have never been used yet, and also to make it
1360 * easy to generate sparse core files, use a helper that returns
1361 * NULL when encountering an empty page table entry that would
1362 * otherwise have been filled with the zero page.
1363 */
1364 page = get_dump_page(addr, &locked);
1365 if (page) {
1366 if (locked) {
1367 mmap_read_unlock(current->mm);
1368 locked = 0;
1369 }
1370 int stop = !dump_emit_page(cprm, dump_page_copy(page, dump_page));
1371 put_page(page);
1372 if (stop)
1373 goto out;
1374 } else {
1375 dump_skip(cprm, PAGE_SIZE);
1376 }
1377
1378 if (dump_interrupted())
1379 goto out;
1380
1381 if (!need_resched())
1382 continue;
1383 if (locked) {
1384 mmap_read_unlock(current->mm);
1385 locked = 0;
1386 }
1387 cond_resched();
1388 }
1389 ret = 1;
1390 out:
1391 if (locked)
1392 mmap_read_unlock(current->mm);
1393
1394 dump_page_free(dump_page);
1395 return ret;
1396 }
1397 #endif
1398
dump_align(struct coredump_params * cprm,int align)1399 int dump_align(struct coredump_params *cprm, int align)
1400 {
1401 unsigned mod = (cprm->pos + cprm->to_skip) & (align - 1);
1402 if (align & (align - 1))
1403 return 0;
1404 if (mod)
1405 cprm->to_skip += align - mod;
1406 return 1;
1407 }
1408 EXPORT_SYMBOL(dump_align);
1409
1410 #ifdef CONFIG_SYSCTL
1411
validate_coredump_safety(void)1412 void validate_coredump_safety(void)
1413 {
1414 if (suid_dumpable == SUID_DUMP_ROOT &&
1415 core_pattern[0] != '/' && core_pattern[0] != '|' && core_pattern[0] != '@') {
1416
1417 coredump_report_failure("Unsafe core_pattern used with fs.suid_dumpable=2: "
1418 "pipe handler or fully qualified core dump path required. "
1419 "Set kernel.core_pattern before fs.suid_dumpable.");
1420 }
1421 }
1422
check_coredump_socket(void)1423 static inline bool check_coredump_socket(void)
1424 {
1425 const char *p;
1426
1427 if (core_pattern[0] != '@')
1428 return true;
1429
1430 /*
1431 * Coredump socket must be located in the initial mount
1432 * namespace. Don't give the impression that anything else is
1433 * supported right now.
1434 */
1435 if (current->nsproxy->mnt_ns != init_task.nsproxy->mnt_ns)
1436 return false;
1437
1438 /* Must be an absolute path... */
1439 if (core_pattern[1] != '/') {
1440 /* ... or the socket request protocol... */
1441 if (core_pattern[1] != '@')
1442 return false;
1443 /* ... and if so must be an absolute path. */
1444 if (core_pattern[2] != '/')
1445 return false;
1446 p = &core_pattern[2];
1447 } else {
1448 p = &core_pattern[1];
1449 }
1450
1451 /* The path obviously cannot exceed UNIX_PATH_MAX. */
1452 if (strlen(p) >= UNIX_PATH_MAX)
1453 return false;
1454
1455 /* Must not contain ".." in the path. */
1456 if (name_contains_dotdot(core_pattern))
1457 return false;
1458
1459 return true;
1460 }
1461
proc_dostring_coredump(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1462 static int proc_dostring_coredump(const struct ctl_table *table, int write,
1463 void *buffer, size_t *lenp, loff_t *ppos)
1464 {
1465 int error;
1466 ssize_t retval;
1467 char old_core_pattern[CORENAME_MAX_SIZE];
1468
1469 retval = strscpy(old_core_pattern, core_pattern, CORENAME_MAX_SIZE);
1470
1471 error = proc_dostring(table, write, buffer, lenp, ppos);
1472 if (error)
1473 return error;
1474 if (!check_coredump_socket()) {
1475 strscpy(core_pattern, old_core_pattern, retval + 1);
1476 return -EINVAL;
1477 }
1478
1479 validate_coredump_safety();
1480 return error;
1481 }
1482
1483 static const unsigned int core_file_note_size_min = CORE_FILE_NOTE_SIZE_DEFAULT;
1484 static const unsigned int core_file_note_size_max = CORE_FILE_NOTE_SIZE_MAX;
1485 static char core_modes[] = {
1486 "file\npipe"
1487 #ifdef CONFIG_UNIX
1488 "\nsocket"
1489 #endif
1490 };
1491
1492 static const struct ctl_table coredump_sysctls[] = {
1493 {
1494 .procname = "core_uses_pid",
1495 .data = &core_uses_pid,
1496 .maxlen = sizeof(int),
1497 .mode = 0644,
1498 .proc_handler = proc_dointvec,
1499 },
1500 {
1501 .procname = "core_pattern",
1502 .data = core_pattern,
1503 .maxlen = CORENAME_MAX_SIZE,
1504 .mode = 0644,
1505 .proc_handler = proc_dostring_coredump,
1506 },
1507 {
1508 .procname = "core_pipe_limit",
1509 .data = &core_pipe_limit,
1510 .maxlen = sizeof(unsigned int),
1511 .mode = 0644,
1512 .proc_handler = proc_dointvec_minmax,
1513 .extra1 = SYSCTL_ZERO,
1514 .extra2 = SYSCTL_INT_MAX,
1515 },
1516 {
1517 .procname = "core_file_note_size_limit",
1518 .data = &core_file_note_size_limit,
1519 .maxlen = sizeof(unsigned int),
1520 .mode = 0644,
1521 .proc_handler = proc_douintvec_minmax,
1522 .extra1 = (unsigned int *)&core_file_note_size_min,
1523 .extra2 = (unsigned int *)&core_file_note_size_max,
1524 },
1525 {
1526 .procname = "core_sort_vma",
1527 .data = &core_sort_vma,
1528 .maxlen = sizeof(int),
1529 .mode = 0644,
1530 .proc_handler = proc_douintvec_minmax,
1531 .extra1 = SYSCTL_ZERO,
1532 .extra2 = SYSCTL_ONE,
1533 },
1534 {
1535 .procname = "core_modes",
1536 .data = core_modes,
1537 .maxlen = sizeof(core_modes) - 1,
1538 .mode = 0444,
1539 .proc_handler = proc_dostring,
1540 },
1541 };
1542
init_fs_coredump_sysctls(void)1543 static int __init init_fs_coredump_sysctls(void)
1544 {
1545 register_sysctl_init("kernel", coredump_sysctls);
1546 return 0;
1547 }
1548 fs_initcall(init_fs_coredump_sysctls);
1549 #endif /* CONFIG_SYSCTL */
1550
1551 /*
1552 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1553 * that are useful for post-mortem analysis are included in every core dump.
1554 * In that way we ensure that the core dump is fully interpretable later
1555 * without matching up the same kernel and hardware config to see what PC values
1556 * meant. These special mappings include - vDSO, vsyscall, and other
1557 * architecture specific mappings
1558 */
always_dump_vma(struct vm_area_struct * vma)1559 static bool always_dump_vma(struct vm_area_struct *vma)
1560 {
1561 /* Any vsyscall mappings? */
1562 if (vma == get_gate_vma(vma->vm_mm))
1563 return true;
1564
1565 /*
1566 * Assume that all vmas with a .name op should always be dumped.
1567 * If this changes, a new vm_ops field can easily be added.
1568 */
1569 if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1570 return true;
1571
1572 /*
1573 * arch_vma_name() returns non-NULL for special architecture mappings,
1574 * such as vDSO sections.
1575 */
1576 if (arch_vma_name(vma))
1577 return true;
1578
1579 return false;
1580 }
1581
1582 #define DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER 1
1583
1584 /*
1585 * Decide how much of @vma's contents should be included in a core dump.
1586 */
vma_dump_size(struct vm_area_struct * vma,unsigned long mm_flags)1587 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1588 unsigned long mm_flags)
1589 {
1590 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1591
1592 /* always dump the vdso and vsyscall sections */
1593 if (always_dump_vma(vma))
1594 goto whole;
1595
1596 if (vma->vm_flags & VM_DONTDUMP)
1597 return 0;
1598
1599 /* support for DAX */
1600 if (vma_is_dax(vma)) {
1601 if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1602 goto whole;
1603 if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1604 goto whole;
1605 return 0;
1606 }
1607
1608 /* Hugetlb memory check */
1609 if (is_vm_hugetlb_page(vma)) {
1610 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1611 goto whole;
1612 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1613 goto whole;
1614 return 0;
1615 }
1616
1617 /* Do not dump I/O mapped devices or special mappings */
1618 if (vma->vm_flags & VM_IO)
1619 return 0;
1620
1621 /* By default, dump shared memory if mapped from an anonymous file. */
1622 if (vma->vm_flags & VM_SHARED) {
1623 if (file_inode(vma->vm_file)->i_nlink == 0 ?
1624 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1625 goto whole;
1626 return 0;
1627 }
1628
1629 /* Dump segments that have been written to. */
1630 if ((!IS_ENABLED(CONFIG_MMU) || vma->anon_vma) && FILTER(ANON_PRIVATE))
1631 goto whole;
1632 if (vma->vm_file == NULL)
1633 return 0;
1634
1635 if (FILTER(MAPPED_PRIVATE))
1636 goto whole;
1637
1638 /*
1639 * If this is the beginning of an executable file mapping,
1640 * dump the first page to aid in determining what was mapped here.
1641 */
1642 if (FILTER(ELF_HEADERS) &&
1643 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1644 if ((READ_ONCE(file_inode(vma->vm_file)->i_mode) & 0111) != 0)
1645 return PAGE_SIZE;
1646
1647 /*
1648 * ELF libraries aren't always executable.
1649 * We'll want to check whether the mapping starts with the ELF
1650 * magic, but not now - we're holding the mmap lock,
1651 * so copy_from_user() doesn't work here.
1652 * Use a placeholder instead, and fix it up later in
1653 * dump_vma_snapshot().
1654 */
1655 return DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER;
1656 }
1657
1658 #undef FILTER
1659
1660 return 0;
1661
1662 whole:
1663 return vma->vm_end - vma->vm_start;
1664 }
1665
1666 /*
1667 * Helper function for iterating across a vma list. It ensures that the caller
1668 * will visit `gate_vma' prior to terminating the search.
1669 */
coredump_next_vma(struct vma_iterator * vmi,struct vm_area_struct * vma,struct vm_area_struct * gate_vma)1670 static struct vm_area_struct *coredump_next_vma(struct vma_iterator *vmi,
1671 struct vm_area_struct *vma,
1672 struct vm_area_struct *gate_vma)
1673 {
1674 if (gate_vma && (vma == gate_vma))
1675 return NULL;
1676
1677 vma = vma_next(vmi);
1678 if (vma)
1679 return vma;
1680 return gate_vma;
1681 }
1682
free_vma_snapshot(struct coredump_params * cprm)1683 static void free_vma_snapshot(struct coredump_params *cprm)
1684 {
1685 if (cprm->vma_meta) {
1686 int i;
1687 for (i = 0; i < cprm->vma_count; i++) {
1688 struct file *file = cprm->vma_meta[i].file;
1689 if (file)
1690 fput(file);
1691 }
1692 kvfree(cprm->vma_meta);
1693 cprm->vma_meta = NULL;
1694 }
1695 }
1696
cmp_vma_size(const void * vma_meta_lhs_ptr,const void * vma_meta_rhs_ptr)1697 static int cmp_vma_size(const void *vma_meta_lhs_ptr, const void *vma_meta_rhs_ptr)
1698 {
1699 const struct core_vma_metadata *vma_meta_lhs = vma_meta_lhs_ptr;
1700 const struct core_vma_metadata *vma_meta_rhs = vma_meta_rhs_ptr;
1701
1702 if (vma_meta_lhs->dump_size < vma_meta_rhs->dump_size)
1703 return -1;
1704 if (vma_meta_lhs->dump_size > vma_meta_rhs->dump_size)
1705 return 1;
1706 return 0;
1707 }
1708
1709 /*
1710 * Under the mmap_lock, take a snapshot of relevant information about the task's
1711 * VMAs.
1712 */
dump_vma_snapshot(struct coredump_params * cprm)1713 static bool dump_vma_snapshot(struct coredump_params *cprm)
1714 {
1715 struct vm_area_struct *gate_vma, *vma = NULL;
1716 struct mm_struct *mm = current->mm;
1717 VMA_ITERATOR(vmi, mm, 0);
1718 int i = 0;
1719
1720 /*
1721 * Once the stack expansion code is fixed to not change VMA bounds
1722 * under mmap_lock in read mode, this can be changed to take the
1723 * mmap_lock in read mode.
1724 */
1725 if (mmap_write_lock_killable(mm))
1726 return false;
1727
1728 cprm->vma_data_size = 0;
1729 gate_vma = get_gate_vma(mm);
1730 cprm->vma_count = mm->map_count + (gate_vma ? 1 : 0);
1731
1732 cprm->vma_meta = kvmalloc_array(cprm->vma_count, sizeof(*cprm->vma_meta), GFP_KERNEL);
1733 if (!cprm->vma_meta) {
1734 mmap_write_unlock(mm);
1735 return false;
1736 }
1737
1738 while ((vma = coredump_next_vma(&vmi, vma, gate_vma)) != NULL) {
1739 struct core_vma_metadata *m = cprm->vma_meta + i;
1740
1741 m->start = vma->vm_start;
1742 m->end = vma->vm_end;
1743 m->flags = vma->vm_flags;
1744 m->dump_size = vma_dump_size(vma, cprm->mm_flags);
1745 m->pgoff = vma->vm_pgoff;
1746 m->file = vma->vm_file;
1747 if (m->file)
1748 get_file(m->file);
1749 i++;
1750 }
1751
1752 mmap_write_unlock(mm);
1753
1754 for (i = 0; i < cprm->vma_count; i++) {
1755 struct core_vma_metadata *m = cprm->vma_meta + i;
1756
1757 if (m->dump_size == DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER) {
1758 char elfmag[SELFMAG];
1759
1760 if (copy_from_user(elfmag, (void __user *)m->start, SELFMAG) ||
1761 memcmp(elfmag, ELFMAG, SELFMAG) != 0) {
1762 m->dump_size = 0;
1763 } else {
1764 m->dump_size = PAGE_SIZE;
1765 }
1766 }
1767
1768 cprm->vma_data_size += m->dump_size;
1769 }
1770
1771 if (core_sort_vma)
1772 sort(cprm->vma_meta, cprm->vma_count, sizeof(*cprm->vma_meta),
1773 cmp_vma_size, NULL);
1774
1775 return true;
1776 }
1777