xref: /linux/drivers/rtc/rtc-cmos.c (revision 2a9f04bde07a35530d53b71628cdc950dac86eab)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
4  *
5  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
6  * Copyright (C) 2006 David Brownell (convert to new framework)
7  */
8 
9 /*
10  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
11  * That defined the register interface now provided by all PCs, some
12  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
13  * integrate an MC146818 clone in their southbridge, and boards use
14  * that instead of discrete clones like the DS12887 or M48T86.  There
15  * are also clones that connect using the LPC bus.
16  *
17  * That register API is also used directly by various other drivers
18  * (notably for integrated NVRAM), infrastructure (x86 has code to
19  * bypass the RTC framework, directly reading the RTC during boot
20  * and updating minutes/seconds for systems using NTP synch) and
21  * utilities (like userspace 'hwclock', if no /dev node exists).
22  *
23  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
24  * interrupts disabled, holding the global rtc_lock, to exclude those
25  * other drivers and utilities on correctly configured systems.
26  */
27 
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/spinlock.h>
35 #include <linux/platform_device.h>
36 #include <linux/log2.h>
37 #include <linux/pm.h>
38 #include <linux/of.h>
39 #include <linux/of_platform.h>
40 #ifdef CONFIG_X86
41 #include <asm/i8259.h>
42 #include <asm/processor.h>
43 #include <linux/dmi.h>
44 #endif
45 
46 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
47 #include <linux/mc146818rtc.h>
48 
49 #ifdef CONFIG_ACPI
50 /*
51  * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
52  *
53  * If cleared, ACPI SCI is only used to wake up the system from suspend
54  *
55  * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
56  */
57 
58 static bool use_acpi_alarm;
59 module_param(use_acpi_alarm, bool, 0444);
60 
cmos_use_acpi_alarm(void)61 static inline int cmos_use_acpi_alarm(void)
62 {
63 	return use_acpi_alarm;
64 }
65 #else /* !CONFIG_ACPI */
66 
cmos_use_acpi_alarm(void)67 static inline int cmos_use_acpi_alarm(void)
68 {
69 	return 0;
70 }
71 #endif
72 
73 struct cmos_rtc {
74 	struct rtc_device	*rtc;
75 	struct device		*dev;
76 	int			irq;
77 	struct resource		*iomem;
78 	time64_t		alarm_expires;
79 
80 	void			(*wake_on)(struct device *);
81 	void			(*wake_off)(struct device *);
82 
83 	u8			enabled_wake;
84 	u8			suspend_ctrl;
85 
86 	/* newer hardware extends the original register set */
87 	u8			day_alrm;
88 	u8			mon_alrm;
89 	u8			century;
90 
91 	struct rtc_wkalrm	saved_wkalrm;
92 };
93 
94 /* both platform and pnp busses use negative numbers for invalid irqs */
95 #define is_valid_irq(n)		((n) > 0)
96 
97 static const char driver_name[] = "rtc_cmos";
98 
99 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
100  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
101  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
102  */
103 #define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
104 
is_intr(u8 rtc_intr)105 static inline int is_intr(u8 rtc_intr)
106 {
107 	if (!(rtc_intr & RTC_IRQF))
108 		return 0;
109 	return rtc_intr & RTC_IRQMASK;
110 }
111 
112 /*----------------------------------------------------------------*/
113 
114 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
115  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
116  * used in a broken "legacy replacement" mode.  The breakage includes
117  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
118  * other (better) use.
119  *
120  * When that broken mode is in use, platform glue provides a partial
121  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
122  * want to use HPET for anything except those IRQs though...
123  */
124 #ifdef CONFIG_HPET_EMULATE_RTC
125 #include <asm/hpet.h>
126 #else
127 
is_hpet_enabled(void)128 static inline int is_hpet_enabled(void)
129 {
130 	return 0;
131 }
132 
hpet_mask_rtc_irq_bit(unsigned long mask)133 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
134 {
135 	return 0;
136 }
137 
hpet_set_rtc_irq_bit(unsigned long mask)138 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
139 {
140 	return 0;
141 }
142 
143 static inline int
hpet_set_alarm_time(unsigned char hrs,unsigned char min,unsigned char sec)144 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
145 {
146 	return 0;
147 }
148 
hpet_set_periodic_freq(unsigned long freq)149 static inline int hpet_set_periodic_freq(unsigned long freq)
150 {
151 	return 0;
152 }
153 
hpet_rtc_timer_init(void)154 static inline int hpet_rtc_timer_init(void)
155 {
156 	return 0;
157 }
158 
159 extern irq_handler_t hpet_rtc_interrupt;
160 
hpet_register_irq_handler(irq_handler_t handler)161 static inline int hpet_register_irq_handler(irq_handler_t handler)
162 {
163 	return 0;
164 }
165 
hpet_unregister_irq_handler(irq_handler_t handler)166 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
167 {
168 	return 0;
169 }
170 
171 #endif
172 
173 /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
use_hpet_alarm(void)174 static inline int use_hpet_alarm(void)
175 {
176 	return is_hpet_enabled() && !cmos_use_acpi_alarm();
177 }
178 
179 /*----------------------------------------------------------------*/
180 
181 #ifdef RTC_PORT
182 
183 /* Most newer x86 systems have two register banks, the first used
184  * for RTC and NVRAM and the second only for NVRAM.  Caller must
185  * own rtc_lock ... and we won't worry about access during NMI.
186  */
187 #define can_bank2	true
188 
cmos_read_bank2(unsigned char addr)189 static inline unsigned char cmos_read_bank2(unsigned char addr)
190 {
191 	outb(addr, RTC_PORT(2));
192 	return inb(RTC_PORT(3));
193 }
194 
cmos_write_bank2(unsigned char val,unsigned char addr)195 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
196 {
197 	outb(addr, RTC_PORT(2));
198 	outb(val, RTC_PORT(3));
199 }
200 
201 #else
202 
203 #define can_bank2	false
204 
cmos_read_bank2(unsigned char addr)205 static inline unsigned char cmos_read_bank2(unsigned char addr)
206 {
207 	return 0;
208 }
209 
cmos_write_bank2(unsigned char val,unsigned char addr)210 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
211 {
212 }
213 
214 #endif
215 
216 /*----------------------------------------------------------------*/
217 
cmos_read_time(struct device * dev,struct rtc_time * t)218 static int cmos_read_time(struct device *dev, struct rtc_time *t)
219 {
220 	int ret;
221 
222 	/*
223 	 * If pm_trace abused the RTC for storage, set the timespec to 0,
224 	 * which tells the caller that this RTC value is unusable.
225 	 */
226 	if (!pm_trace_rtc_valid())
227 		return -EIO;
228 
229 	ret = mc146818_get_time(t, 1000);
230 	if (ret < 0) {
231 		dev_err_ratelimited(dev, "unable to read current time\n");
232 		return ret;
233 	}
234 
235 	return 0;
236 }
237 
cmos_set_time(struct device * dev,struct rtc_time * t)238 static int cmos_set_time(struct device *dev, struct rtc_time *t)
239 {
240 	/* NOTE: this ignores the issue whereby updating the seconds
241 	 * takes effect exactly 500ms after we write the register.
242 	 * (Also queueing and other delays before we get this far.)
243 	 */
244 	return mc146818_set_time(t);
245 }
246 
247 struct cmos_read_alarm_callback_param {
248 	struct cmos_rtc *cmos;
249 	struct rtc_time *time;
250 	unsigned char	rtc_control;
251 };
252 
cmos_read_alarm_callback(unsigned char __always_unused seconds,void * param_in)253 static void cmos_read_alarm_callback(unsigned char __always_unused seconds,
254 				     void *param_in)
255 {
256 	struct cmos_read_alarm_callback_param *p =
257 		(struct cmos_read_alarm_callback_param *)param_in;
258 	struct rtc_time *time = p->time;
259 
260 	time->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
261 	time->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
262 	time->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
263 
264 	if (p->cmos->day_alrm) {
265 		/* ignore upper bits on readback per ACPI spec */
266 		time->tm_mday = CMOS_READ(p->cmos->day_alrm) & 0x3f;
267 		if (!time->tm_mday)
268 			time->tm_mday = -1;
269 
270 		if (p->cmos->mon_alrm) {
271 			time->tm_mon = CMOS_READ(p->cmos->mon_alrm);
272 			if (!time->tm_mon)
273 				time->tm_mon = -1;
274 		}
275 	}
276 
277 	p->rtc_control = CMOS_READ(RTC_CONTROL);
278 }
279 
cmos_read_alarm(struct device * dev,struct rtc_wkalrm * t)280 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
281 {
282 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
283 	struct cmos_read_alarm_callback_param p = {
284 		.cmos = cmos,
285 		.time = &t->time,
286 	};
287 
288 	/* This not only a rtc_op, but also called directly */
289 	if (!is_valid_irq(cmos->irq))
290 		return -ETIMEDOUT;
291 
292 	/* Basic alarms only support hour, minute, and seconds fields.
293 	 * Some also support day and month, for alarms up to a year in
294 	 * the future.
295 	 */
296 
297 	/* Some Intel chipsets disconnect the alarm registers when the clock
298 	 * update is in progress - during this time reads return bogus values
299 	 * and writes may fail silently. See for example "7th Generation Intel®
300 	 * Processor Family I/O for U/Y Platforms [...] Datasheet", section
301 	 * 27.7.1
302 	 *
303 	 * Use the mc146818_avoid_UIP() function to avoid this.
304 	 */
305 	if (!mc146818_avoid_UIP(cmos_read_alarm_callback, 10, &p))
306 		return -EIO;
307 
308 	if (!(p.rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
309 		if (((unsigned)t->time.tm_sec) < 0x60)
310 			t->time.tm_sec = bcd2bin(t->time.tm_sec);
311 		else
312 			t->time.tm_sec = -1;
313 		if (((unsigned)t->time.tm_min) < 0x60)
314 			t->time.tm_min = bcd2bin(t->time.tm_min);
315 		else
316 			t->time.tm_min = -1;
317 		if (((unsigned)t->time.tm_hour) < 0x24)
318 			t->time.tm_hour = bcd2bin(t->time.tm_hour);
319 		else
320 			t->time.tm_hour = -1;
321 
322 		if (cmos->day_alrm) {
323 			if (((unsigned)t->time.tm_mday) <= 0x31)
324 				t->time.tm_mday = bcd2bin(t->time.tm_mday);
325 			else
326 				t->time.tm_mday = -1;
327 
328 			if (cmos->mon_alrm) {
329 				if (((unsigned)t->time.tm_mon) <= 0x12)
330 					t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
331 				else
332 					t->time.tm_mon = -1;
333 			}
334 		}
335 	}
336 
337 	t->enabled = !!(p.rtc_control & RTC_AIE);
338 	t->pending = 0;
339 
340 	return 0;
341 }
342 
cmos_checkintr(struct cmos_rtc * cmos,unsigned char rtc_control)343 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
344 {
345 	unsigned char	rtc_intr;
346 
347 	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
348 	 * allegedly some older rtcs need that to handle irqs properly
349 	 */
350 	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
351 
352 	if (use_hpet_alarm())
353 		return;
354 
355 	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
356 	if (is_intr(rtc_intr))
357 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
358 }
359 
cmos_irq_enable(struct cmos_rtc * cmos,unsigned char mask)360 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
361 {
362 	unsigned char	rtc_control;
363 
364 	/* flush any pending IRQ status, notably for update irqs,
365 	 * before we enable new IRQs
366 	 */
367 	rtc_control = CMOS_READ(RTC_CONTROL);
368 	cmos_checkintr(cmos, rtc_control);
369 
370 	rtc_control |= mask;
371 	CMOS_WRITE(rtc_control, RTC_CONTROL);
372 	if (use_hpet_alarm())
373 		hpet_set_rtc_irq_bit(mask);
374 
375 	if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
376 		if (cmos->wake_on)
377 			cmos->wake_on(cmos->dev);
378 	}
379 
380 	cmos_checkintr(cmos, rtc_control);
381 }
382 
cmos_irq_disable(struct cmos_rtc * cmos,unsigned char mask)383 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
384 {
385 	unsigned char	rtc_control;
386 
387 	rtc_control = CMOS_READ(RTC_CONTROL);
388 	rtc_control &= ~mask;
389 	CMOS_WRITE(rtc_control, RTC_CONTROL);
390 	if (use_hpet_alarm())
391 		hpet_mask_rtc_irq_bit(mask);
392 
393 	if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
394 		if (cmos->wake_off)
395 			cmos->wake_off(cmos->dev);
396 	}
397 
398 	cmos_checkintr(cmos, rtc_control);
399 }
400 
cmos_validate_alarm(struct device * dev,struct rtc_wkalrm * t)401 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
402 {
403 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
404 	struct rtc_time now;
405 
406 	cmos_read_time(dev, &now);
407 
408 	if (!cmos->day_alrm) {
409 		time64_t t_max_date;
410 		time64_t t_alrm;
411 
412 		t_max_date = rtc_tm_to_time64(&now);
413 		t_max_date += 24 * 60 * 60 - 1;
414 		t_alrm = rtc_tm_to_time64(&t->time);
415 		if (t_alrm > t_max_date) {
416 			dev_err(dev,
417 				"Alarms can be up to one day in the future\n");
418 			return -EINVAL;
419 		}
420 	} else if (!cmos->mon_alrm) {
421 		struct rtc_time max_date = now;
422 		time64_t t_max_date;
423 		time64_t t_alrm;
424 		int max_mday;
425 
426 		if (max_date.tm_mon == 11) {
427 			max_date.tm_mon = 0;
428 			max_date.tm_year += 1;
429 		} else {
430 			max_date.tm_mon += 1;
431 		}
432 		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
433 		if (max_date.tm_mday > max_mday)
434 			max_date.tm_mday = max_mday;
435 
436 		t_max_date = rtc_tm_to_time64(&max_date);
437 		t_max_date -= 1;
438 		t_alrm = rtc_tm_to_time64(&t->time);
439 		if (t_alrm > t_max_date) {
440 			dev_err(dev,
441 				"Alarms can be up to one month in the future\n");
442 			return -EINVAL;
443 		}
444 	} else {
445 		struct rtc_time max_date = now;
446 		time64_t t_max_date;
447 		time64_t t_alrm;
448 		int max_mday;
449 
450 		max_date.tm_year += 1;
451 		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
452 		if (max_date.tm_mday > max_mday)
453 			max_date.tm_mday = max_mday;
454 
455 		t_max_date = rtc_tm_to_time64(&max_date);
456 		t_max_date -= 1;
457 		t_alrm = rtc_tm_to_time64(&t->time);
458 		if (t_alrm > t_max_date) {
459 			dev_err(dev,
460 				"Alarms can be up to one year in the future\n");
461 			return -EINVAL;
462 		}
463 	}
464 
465 	return 0;
466 }
467 
468 struct cmos_set_alarm_callback_param {
469 	struct cmos_rtc *cmos;
470 	unsigned char mon, mday, hrs, min, sec;
471 	struct rtc_wkalrm *t;
472 };
473 
474 /* Note: this function may be executed by mc146818_avoid_UIP() more then
475  *	 once
476  */
cmos_set_alarm_callback(unsigned char __always_unused seconds,void * param_in)477 static void cmos_set_alarm_callback(unsigned char __always_unused seconds,
478 				    void *param_in)
479 {
480 	struct cmos_set_alarm_callback_param *p =
481 		(struct cmos_set_alarm_callback_param *)param_in;
482 
483 	/* next rtc irq must not be from previous alarm setting */
484 	cmos_irq_disable(p->cmos, RTC_AIE);
485 
486 	/* update alarm */
487 	CMOS_WRITE(p->hrs, RTC_HOURS_ALARM);
488 	CMOS_WRITE(p->min, RTC_MINUTES_ALARM);
489 	CMOS_WRITE(p->sec, RTC_SECONDS_ALARM);
490 
491 	/* the system may support an "enhanced" alarm */
492 	if (p->cmos->day_alrm) {
493 		CMOS_WRITE(p->mday, p->cmos->day_alrm);
494 		if (p->cmos->mon_alrm)
495 			CMOS_WRITE(p->mon, p->cmos->mon_alrm);
496 	}
497 
498 	if (use_hpet_alarm()) {
499 		/*
500 		 * FIXME the HPET alarm glue currently ignores day_alrm
501 		 * and mon_alrm ...
502 		 */
503 		hpet_set_alarm_time(p->t->time.tm_hour, p->t->time.tm_min,
504 				    p->t->time.tm_sec);
505 	}
506 
507 	if (p->t->enabled)
508 		cmos_irq_enable(p->cmos, RTC_AIE);
509 }
510 
cmos_set_alarm(struct device * dev,struct rtc_wkalrm * t)511 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
512 {
513 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
514 	struct cmos_set_alarm_callback_param p = {
515 		.cmos = cmos,
516 		.t = t
517 	};
518 	unsigned char rtc_control;
519 	int ret;
520 
521 	/* This not only a rtc_op, but also called directly */
522 	if (!is_valid_irq(cmos->irq))
523 		return -EIO;
524 
525 	ret = cmos_validate_alarm(dev, t);
526 	if (ret < 0)
527 		return ret;
528 
529 	p.mon = t->time.tm_mon + 1;
530 	p.mday = t->time.tm_mday;
531 	p.hrs = t->time.tm_hour;
532 	p.min = t->time.tm_min;
533 	p.sec = t->time.tm_sec;
534 
535 	spin_lock_irq(&rtc_lock);
536 	rtc_control = CMOS_READ(RTC_CONTROL);
537 	spin_unlock_irq(&rtc_lock);
538 
539 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
540 		/* Writing 0xff means "don't care" or "match all".  */
541 		p.mon = (p.mon <= 12) ? bin2bcd(p.mon) : 0xff;
542 		p.mday = (p.mday >= 1 && p.mday <= 31) ? bin2bcd(p.mday) : 0xff;
543 		p.hrs = (p.hrs < 24) ? bin2bcd(p.hrs) : 0xff;
544 		p.min = (p.min < 60) ? bin2bcd(p.min) : 0xff;
545 		p.sec = (p.sec < 60) ? bin2bcd(p.sec) : 0xff;
546 	}
547 
548 	/*
549 	 * Some Intel chipsets disconnect the alarm registers when the clock
550 	 * update is in progress - during this time writes fail silently.
551 	 *
552 	 * Use mc146818_avoid_UIP() to avoid this.
553 	 */
554 	if (!mc146818_avoid_UIP(cmos_set_alarm_callback, 10, &p))
555 		return -ETIMEDOUT;
556 
557 	cmos->alarm_expires = rtc_tm_to_time64(&t->time);
558 
559 	return 0;
560 }
561 
cmos_alarm_irq_enable(struct device * dev,unsigned int enabled)562 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
563 {
564 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
565 	unsigned long	flags;
566 
567 	spin_lock_irqsave(&rtc_lock, flags);
568 
569 	if (enabled)
570 		cmos_irq_enable(cmos, RTC_AIE);
571 	else
572 		cmos_irq_disable(cmos, RTC_AIE);
573 
574 	spin_unlock_irqrestore(&rtc_lock, flags);
575 	return 0;
576 }
577 
578 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
579 
cmos_procfs(struct device * dev,struct seq_file * seq)580 static int cmos_procfs(struct device *dev, struct seq_file *seq)
581 {
582 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
583 	unsigned char	rtc_control, valid;
584 
585 	spin_lock_irq(&rtc_lock);
586 	rtc_control = CMOS_READ(RTC_CONTROL);
587 	valid = CMOS_READ(RTC_VALID);
588 	spin_unlock_irq(&rtc_lock);
589 
590 	/* NOTE:  at least ICH6 reports battery status using a different
591 	 * (non-RTC) bit; and SQWE is ignored on many current systems.
592 	 */
593 	seq_printf(seq,
594 		   "periodic_IRQ\t: %s\n"
595 		   "update_IRQ\t: %s\n"
596 		   "HPET_emulated\t: %s\n"
597 		   // "square_wave\t: %s\n"
598 		   "BCD\t\t: %s\n"
599 		   "DST_enable\t: %s\n"
600 		   "periodic_freq\t: %d\n"
601 		   "batt_status\t: %s\n",
602 		   (rtc_control & RTC_PIE) ? "yes" : "no",
603 		   (rtc_control & RTC_UIE) ? "yes" : "no",
604 		   use_hpet_alarm() ? "yes" : "no",
605 		   // (rtc_control & RTC_SQWE) ? "yes" : "no",
606 		   (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
607 		   (rtc_control & RTC_DST_EN) ? "yes" : "no",
608 		   cmos->rtc->irq_freq,
609 		   (valid & RTC_VRT) ? "okay" : "dead");
610 
611 	return 0;
612 }
613 
614 #else
615 #define	cmos_procfs	NULL
616 #endif
617 
618 static const struct rtc_class_ops cmos_rtc_ops = {
619 	.read_time		= cmos_read_time,
620 	.set_time		= cmos_set_time,
621 	.read_alarm		= cmos_read_alarm,
622 	.set_alarm		= cmos_set_alarm,
623 	.proc			= cmos_procfs,
624 	.alarm_irq_enable	= cmos_alarm_irq_enable,
625 };
626 
627 /*----------------------------------------------------------------*/
628 
629 /*
630  * All these chips have at least 64 bytes of address space, shared by
631  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
632  * by boot firmware.  Modern chips have 128 or 256 bytes.
633  */
634 
635 #define NVRAM_OFFSET	(RTC_REG_D + 1)
636 
cmos_nvram_read(void * priv,unsigned int off,void * val,size_t count)637 static int cmos_nvram_read(void *priv, unsigned int off, void *val,
638 			   size_t count)
639 {
640 	unsigned char *buf = val;
641 
642 	off += NVRAM_OFFSET;
643 	for (; count; count--, off++, buf++) {
644 		guard(spinlock_irq)(&rtc_lock);
645 		if (off < 128)
646 			*buf = CMOS_READ(off);
647 		else if (can_bank2)
648 			*buf = cmos_read_bank2(off);
649 		else
650 			return -EIO;
651 	}
652 
653 	return 0;
654 }
655 
cmos_nvram_write(void * priv,unsigned int off,void * val,size_t count)656 static int cmos_nvram_write(void *priv, unsigned int off, void *val,
657 			    size_t count)
658 {
659 	struct cmos_rtc	*cmos = priv;
660 	unsigned char	*buf = val;
661 
662 	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
663 	 * checksum on part of the NVRAM data.  That's currently ignored
664 	 * here.  If userspace is smart enough to know what fields of
665 	 * NVRAM to update, updating checksums is also part of its job.
666 	 */
667 	off += NVRAM_OFFSET;
668 	for (; count; count--, off++, buf++) {
669 		/* don't trash RTC registers */
670 		if (off == cmos->day_alrm
671 				|| off == cmos->mon_alrm
672 				|| off == cmos->century)
673 			continue;
674 
675 		guard(spinlock_irq)(&rtc_lock);
676 		if (off < 128)
677 			CMOS_WRITE(*buf, off);
678 		else if (can_bank2)
679 			cmos_write_bank2(*buf, off);
680 		else
681 			return -EIO;
682 	}
683 
684 	return 0;
685 }
686 
687 /*----------------------------------------------------------------*/
688 
689 static struct cmos_rtc	cmos_rtc;
690 
cmos_interrupt(int irq,void * p)691 static irqreturn_t cmos_interrupt(int irq, void *p)
692 {
693 	u8		irqstat;
694 	u8		rtc_control;
695 
696 	spin_lock(&rtc_lock);
697 
698 	/* When the HPET interrupt handler calls us, the interrupt
699 	 * status is passed as arg1 instead of the irq number.  But
700 	 * always clear irq status, even when HPET is in the way.
701 	 *
702 	 * Note that HPET and RTC are almost certainly out of phase,
703 	 * giving different IRQ status ...
704 	 */
705 	irqstat = CMOS_READ(RTC_INTR_FLAGS);
706 	rtc_control = CMOS_READ(RTC_CONTROL);
707 	if (use_hpet_alarm())
708 		irqstat = (unsigned long)irq & 0xF0;
709 
710 	/* If we were suspended, RTC_CONTROL may not be accurate since the
711 	 * bios may have cleared it.
712 	 */
713 	if (!cmos_rtc.suspend_ctrl)
714 		irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
715 	else
716 		irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
717 
718 	/* All Linux RTC alarms should be treated as if they were oneshot.
719 	 * Similar code may be needed in system wakeup paths, in case the
720 	 * alarm woke the system.
721 	 */
722 	if (irqstat & RTC_AIE) {
723 		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
724 		rtc_control &= ~RTC_AIE;
725 		CMOS_WRITE(rtc_control, RTC_CONTROL);
726 		if (use_hpet_alarm())
727 			hpet_mask_rtc_irq_bit(RTC_AIE);
728 		CMOS_READ(RTC_INTR_FLAGS);
729 	}
730 	spin_unlock(&rtc_lock);
731 
732 	if (is_intr(irqstat)) {
733 		rtc_update_irq(p, 1, irqstat);
734 		return IRQ_HANDLED;
735 	} else
736 		return IRQ_NONE;
737 }
738 
739 #ifdef	CONFIG_ACPI
740 
741 #include <linux/acpi.h>
742 
rtc_handler(void * context)743 static u32 rtc_handler(void *context)
744 {
745 	struct device *dev = context;
746 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
747 	unsigned char rtc_control = 0;
748 	unsigned char rtc_intr;
749 	unsigned long flags;
750 
751 
752 	/*
753 	 * Always update rtc irq when ACPI is used as RTC Alarm.
754 	 * Or else, ACPI SCI is enabled during suspend/resume only,
755 	 * update rtc irq in that case.
756 	 */
757 	if (cmos_use_acpi_alarm())
758 		cmos_interrupt(0, (void *)cmos->rtc);
759 	else {
760 		/* Fix me: can we use cmos_interrupt() here as well? */
761 		spin_lock_irqsave(&rtc_lock, flags);
762 		if (cmos_rtc.suspend_ctrl)
763 			rtc_control = CMOS_READ(RTC_CONTROL);
764 		if (rtc_control & RTC_AIE) {
765 			cmos_rtc.suspend_ctrl &= ~RTC_AIE;
766 			CMOS_WRITE(rtc_control, RTC_CONTROL);
767 			rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
768 			rtc_update_irq(cmos->rtc, 1, rtc_intr);
769 		}
770 		spin_unlock_irqrestore(&rtc_lock, flags);
771 	}
772 
773 	pm_wakeup_hard_event(dev);
774 	acpi_clear_event(ACPI_EVENT_RTC);
775 	acpi_disable_event(ACPI_EVENT_RTC, 0);
776 	return ACPI_INTERRUPT_HANDLED;
777 }
778 
acpi_rtc_event_setup(struct device * dev)779 static void acpi_rtc_event_setup(struct device *dev)
780 {
781 	if (acpi_disabled)
782 		return;
783 
784 	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
785 	/*
786 	 * After the RTC handler is installed, the Fixed_RTC event should
787 	 * be disabled. Only when the RTC alarm is set will it be enabled.
788 	 */
789 	acpi_clear_event(ACPI_EVENT_RTC);
790 	acpi_disable_event(ACPI_EVENT_RTC, 0);
791 }
792 
acpi_rtc_event_cleanup(void)793 static void acpi_rtc_event_cleanup(void)
794 {
795 	if (acpi_disabled)
796 		return;
797 
798 	acpi_remove_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler);
799 }
800 
rtc_wake_on(struct device * dev)801 static void rtc_wake_on(struct device *dev)
802 {
803 	acpi_clear_event(ACPI_EVENT_RTC);
804 	acpi_enable_event(ACPI_EVENT_RTC, 0);
805 }
806 
rtc_wake_off(struct device * dev)807 static void rtc_wake_off(struct device *dev)
808 {
809 	acpi_disable_event(ACPI_EVENT_RTC, 0);
810 }
811 
812 #ifdef CONFIG_X86
use_acpi_alarm_quirks(void)813 static void use_acpi_alarm_quirks(void)
814 {
815 	switch (boot_cpu_data.x86_vendor) {
816 	case X86_VENDOR_INTEL:
817 		if (dmi_get_bios_year() < 2015)
818 			return;
819 		break;
820 	case X86_VENDOR_AMD:
821 	case X86_VENDOR_HYGON:
822 		if (dmi_get_bios_year() < 2021)
823 			return;
824 		break;
825 	default:
826 		return;
827 	}
828 	if (!is_hpet_enabled())
829 		return;
830 
831 	use_acpi_alarm = true;
832 }
833 #else
use_acpi_alarm_quirks(void)834 static inline void use_acpi_alarm_quirks(void) { }
835 #endif
836 
acpi_cmos_wake_setup(struct device * dev)837 static void acpi_cmos_wake_setup(struct device *dev)
838 {
839 	if (acpi_disabled)
840 		return;
841 
842 	use_acpi_alarm_quirks();
843 
844 	cmos_rtc.wake_on = rtc_wake_on;
845 	cmos_rtc.wake_off = rtc_wake_off;
846 
847 	/* ACPI tables bug workaround. */
848 	if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
849 		dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
850 			acpi_gbl_FADT.month_alarm);
851 		acpi_gbl_FADT.month_alarm = 0;
852 	}
853 
854 	cmos_rtc.day_alrm = acpi_gbl_FADT.day_alarm;
855 	cmos_rtc.mon_alrm = acpi_gbl_FADT.month_alarm;
856 	cmos_rtc.century = acpi_gbl_FADT.century;
857 
858 	if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
859 		dev_info(dev, "RTC can wake from S4\n");
860 
861 	/* RTC always wakes from S1/S2/S3, and often S4/STD */
862 	device_init_wakeup(dev, true);
863 }
864 
cmos_check_acpi_rtc_status(struct device * dev,unsigned char * rtc_control)865 static void cmos_check_acpi_rtc_status(struct device *dev,
866 					      unsigned char *rtc_control)
867 {
868 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
869 	acpi_event_status rtc_status;
870 	acpi_status status;
871 
872 	if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
873 		return;
874 
875 	status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
876 	if (ACPI_FAILURE(status)) {
877 		dev_err(dev, "Could not get RTC status\n");
878 	} else if (rtc_status & ACPI_EVENT_FLAG_SET) {
879 		unsigned char mask;
880 		*rtc_control &= ~RTC_AIE;
881 		CMOS_WRITE(*rtc_control, RTC_CONTROL);
882 		mask = CMOS_READ(RTC_INTR_FLAGS);
883 		rtc_update_irq(cmos->rtc, 1, mask);
884 	}
885 }
886 
887 #else /* !CONFIG_ACPI */
888 
acpi_rtc_event_setup(struct device * dev)889 static inline void acpi_rtc_event_setup(struct device *dev)
890 {
891 }
892 
acpi_rtc_event_cleanup(void)893 static inline void acpi_rtc_event_cleanup(void)
894 {
895 }
896 
acpi_cmos_wake_setup(struct device * dev)897 static inline void acpi_cmos_wake_setup(struct device *dev)
898 {
899 }
900 
cmos_check_acpi_rtc_status(struct device * dev,unsigned char * rtc_control)901 static inline void cmos_check_acpi_rtc_status(struct device *dev,
902 					      unsigned char *rtc_control)
903 {
904 }
905 #endif /* CONFIG_ACPI */
906 
907 #ifdef	CONFIG_PNP
908 #define	INITSECTION
909 
910 #else
911 #define	INITSECTION	__init
912 #endif
913 
914 #define SECS_PER_DAY	(24 * 60 * 60)
915 #define SECS_PER_MONTH	(28 * SECS_PER_DAY)
916 #define SECS_PER_YEAR	(365 * SECS_PER_DAY)
917 
918 static int INITSECTION
cmos_do_probe(struct device * dev,struct resource * ports,int rtc_irq)919 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
920 {
921 	struct cmos_rtc_board_info	*info = dev_get_platdata(dev);
922 	int				retval = 0;
923 	unsigned char			rtc_control;
924 	unsigned			address_space;
925 	u32				flags = 0;
926 	struct nvmem_config nvmem_cfg = {
927 		.name = "cmos_nvram",
928 		.word_size = 1,
929 		.stride = 1,
930 		.reg_read = cmos_nvram_read,
931 		.reg_write = cmos_nvram_write,
932 		.priv = &cmos_rtc,
933 	};
934 
935 	/* there can be only one ... */
936 	if (cmos_rtc.dev)
937 		return -EBUSY;
938 
939 	if (!ports)
940 		return -ENODEV;
941 
942 	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
943 	 *
944 	 * REVISIT non-x86 systems may instead use memory space resources
945 	 * (needing ioremap etc), not i/o space resources like this ...
946 	 */
947 	if (RTC_IOMAPPED)
948 		ports = request_region(ports->start, resource_size(ports),
949 				       driver_name);
950 	else
951 		ports = request_mem_region(ports->start, resource_size(ports),
952 					   driver_name);
953 	if (!ports) {
954 		dev_dbg(dev, "i/o registers already in use\n");
955 		return -EBUSY;
956 	}
957 
958 	cmos_rtc.irq = rtc_irq;
959 	cmos_rtc.iomem = ports;
960 
961 	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
962 	 * driver did, but don't reject unknown configs.   Old hardware
963 	 * won't address 128 bytes.  Newer chips have multiple banks,
964 	 * though they may not be listed in one I/O resource.
965 	 */
966 #if	defined(CONFIG_ATARI)
967 	address_space = 64;
968 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
969 			|| defined(__sparc__) || defined(__mips__) \
970 			|| defined(__powerpc__)
971 	address_space = 128;
972 #else
973 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
974 	address_space = 128;
975 #endif
976 	if (can_bank2 && ports->end > (ports->start + 1))
977 		address_space = 256;
978 
979 	/* For ACPI systems extension info comes from the FADT.  On others,
980 	 * board specific setup provides it as appropriate.  Systems where
981 	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
982 	 * some almost-clones) can provide hooks to make that behave.
983 	 *
984 	 * Note that ACPI doesn't preclude putting these registers into
985 	 * "extended" areas of the chip, including some that we won't yet
986 	 * expect CMOS_READ and friends to handle.
987 	 */
988 	if (info) {
989 		if (info->flags)
990 			flags = info->flags;
991 		if (info->address_space)
992 			address_space = info->address_space;
993 
994 		cmos_rtc.day_alrm = info->rtc_day_alarm;
995 		cmos_rtc.mon_alrm = info->rtc_mon_alarm;
996 		cmos_rtc.century = info->rtc_century;
997 
998 		if (info->wake_on && info->wake_off) {
999 			cmos_rtc.wake_on = info->wake_on;
1000 			cmos_rtc.wake_off = info->wake_off;
1001 		}
1002 	} else {
1003 		acpi_cmos_wake_setup(dev);
1004 	}
1005 
1006 	if (cmos_rtc.day_alrm >= 128)
1007 		cmos_rtc.day_alrm = 0;
1008 
1009 	if (cmos_rtc.mon_alrm >= 128)
1010 		cmos_rtc.mon_alrm = 0;
1011 
1012 	if (cmos_rtc.century >= 128)
1013 		cmos_rtc.century = 0;
1014 
1015 	cmos_rtc.dev = dev;
1016 	dev_set_drvdata(dev, &cmos_rtc);
1017 
1018 	cmos_rtc.rtc = devm_rtc_allocate_device(dev);
1019 	if (IS_ERR(cmos_rtc.rtc)) {
1020 		retval = PTR_ERR(cmos_rtc.rtc);
1021 		goto cleanup0;
1022 	}
1023 
1024 	if (cmos_rtc.mon_alrm)
1025 		cmos_rtc.rtc->alarm_offset_max = SECS_PER_YEAR - 1;
1026 	else if (cmos_rtc.day_alrm)
1027 		cmos_rtc.rtc->alarm_offset_max = SECS_PER_MONTH - 1;
1028 	else
1029 		cmos_rtc.rtc->alarm_offset_max = SECS_PER_DAY - 1;
1030 
1031 	rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
1032 
1033 	if (!mc146818_does_rtc_work()) {
1034 		dev_warn(dev, "broken or not accessible\n");
1035 		retval = -ENXIO;
1036 		goto cleanup1;
1037 	}
1038 
1039 	spin_lock_irq(&rtc_lock);
1040 
1041 	if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
1042 		/* force periodic irq to CMOS reset default of 1024Hz;
1043 		 *
1044 		 * REVISIT it's been reported that at least one x86_64 ALI
1045 		 * mobo doesn't use 32KHz here ... for portability we might
1046 		 * need to do something about other clock frequencies.
1047 		 */
1048 		cmos_rtc.rtc->irq_freq = 1024;
1049 		if (use_hpet_alarm())
1050 			hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
1051 		CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
1052 	}
1053 
1054 	/* disable irqs */
1055 	if (is_valid_irq(rtc_irq))
1056 		cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
1057 
1058 	rtc_control = CMOS_READ(RTC_CONTROL);
1059 
1060 	spin_unlock_irq(&rtc_lock);
1061 
1062 	if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
1063 		dev_warn(dev, "only 24-hr supported\n");
1064 		retval = -ENXIO;
1065 		goto cleanup1;
1066 	}
1067 
1068 	if (use_hpet_alarm())
1069 		hpet_rtc_timer_init();
1070 
1071 	if (is_valid_irq(rtc_irq)) {
1072 		irq_handler_t rtc_cmos_int_handler;
1073 
1074 		if (use_hpet_alarm()) {
1075 			rtc_cmos_int_handler = hpet_rtc_interrupt;
1076 			retval = hpet_register_irq_handler(cmos_interrupt);
1077 			if (retval) {
1078 				hpet_mask_rtc_irq_bit(RTC_IRQMASK);
1079 				dev_warn(dev, "hpet_register_irq_handler "
1080 						" failed in rtc_init().");
1081 				goto cleanup1;
1082 			}
1083 		} else
1084 			rtc_cmos_int_handler = cmos_interrupt;
1085 
1086 		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
1087 				0, dev_name(&cmos_rtc.rtc->dev),
1088 				cmos_rtc.rtc);
1089 		if (retval < 0) {
1090 			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
1091 			goto cleanup1;
1092 		}
1093 	} else {
1094 		clear_bit(RTC_FEATURE_ALARM, cmos_rtc.rtc->features);
1095 	}
1096 
1097 	cmos_rtc.rtc->ops = &cmos_rtc_ops;
1098 
1099 	retval = devm_rtc_register_device(cmos_rtc.rtc);
1100 	if (retval)
1101 		goto cleanup2;
1102 
1103 	/* Set the sync offset for the periodic 11min update correct */
1104 	cmos_rtc.rtc->set_offset_nsec = NSEC_PER_SEC / 2;
1105 
1106 	/* export at least the first block of NVRAM */
1107 	nvmem_cfg.size = address_space - NVRAM_OFFSET;
1108 	devm_rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg);
1109 
1110 	/*
1111 	 * Everything has gone well so far, so by default register a handler for
1112 	 * the ACPI RTC fixed event.
1113 	 */
1114 	if (!info)
1115 		acpi_rtc_event_setup(dev);
1116 
1117 	dev_info(dev, "%s%s, %d bytes nvram%s\n",
1118 		 !is_valid_irq(rtc_irq) ? "no alarms" :
1119 		 cmos_rtc.mon_alrm ? "alarms up to one year" :
1120 		 cmos_rtc.day_alrm ? "alarms up to one month" :
1121 		 "alarms up to one day",
1122 		 cmos_rtc.century ? ", y3k" : "",
1123 		 nvmem_cfg.size,
1124 		 use_hpet_alarm() ? ", hpet irqs" : "");
1125 
1126 	return 0;
1127 
1128 cleanup2:
1129 	if (is_valid_irq(rtc_irq))
1130 		free_irq(rtc_irq, cmos_rtc.rtc);
1131 cleanup1:
1132 	cmos_rtc.dev = NULL;
1133 cleanup0:
1134 	if (RTC_IOMAPPED)
1135 		release_region(ports->start, resource_size(ports));
1136 	else
1137 		release_mem_region(ports->start, resource_size(ports));
1138 	return retval;
1139 }
1140 
cmos_do_shutdown(int rtc_irq)1141 static void cmos_do_shutdown(int rtc_irq)
1142 {
1143 	spin_lock_irq(&rtc_lock);
1144 	if (is_valid_irq(rtc_irq))
1145 		cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
1146 	spin_unlock_irq(&rtc_lock);
1147 }
1148 
cmos_do_remove(struct device * dev)1149 static void cmos_do_remove(struct device *dev)
1150 {
1151 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1152 	struct resource *ports;
1153 
1154 	cmos_do_shutdown(cmos->irq);
1155 
1156 	if (is_valid_irq(cmos->irq)) {
1157 		free_irq(cmos->irq, cmos->rtc);
1158 		if (use_hpet_alarm())
1159 			hpet_unregister_irq_handler(cmos_interrupt);
1160 	}
1161 
1162 	if (!dev_get_platdata(dev))
1163 		acpi_rtc_event_cleanup();
1164 
1165 	cmos->rtc = NULL;
1166 
1167 	ports = cmos->iomem;
1168 	if (RTC_IOMAPPED)
1169 		release_region(ports->start, resource_size(ports));
1170 	else
1171 		release_mem_region(ports->start, resource_size(ports));
1172 	cmos->iomem = NULL;
1173 
1174 	cmos->dev = NULL;
1175 }
1176 
cmos_aie_poweroff(struct device * dev)1177 static int cmos_aie_poweroff(struct device *dev)
1178 {
1179 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1180 	struct rtc_time now;
1181 	time64_t t_now;
1182 	int retval = 0;
1183 	unsigned char rtc_control;
1184 
1185 	if (!cmos->alarm_expires)
1186 		return -EINVAL;
1187 
1188 	spin_lock_irq(&rtc_lock);
1189 	rtc_control = CMOS_READ(RTC_CONTROL);
1190 	spin_unlock_irq(&rtc_lock);
1191 
1192 	/* We only care about the situation where AIE is disabled. */
1193 	if (rtc_control & RTC_AIE)
1194 		return -EBUSY;
1195 
1196 	cmos_read_time(dev, &now);
1197 	t_now = rtc_tm_to_time64(&now);
1198 
1199 	/*
1200 	 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
1201 	 * automatically right after shutdown on some buggy boxes.
1202 	 * This automatic rebooting issue won't happen when the alarm
1203 	 * time is larger than now+1 seconds.
1204 	 *
1205 	 * If the alarm time is equal to now+1 seconds, the issue can be
1206 	 * prevented by cancelling the alarm.
1207 	 */
1208 	if (cmos->alarm_expires == t_now + 1) {
1209 		struct rtc_wkalrm alarm;
1210 
1211 		/* Cancel the AIE timer by configuring the past time. */
1212 		rtc_time64_to_tm(t_now - 1, &alarm.time);
1213 		alarm.enabled = 0;
1214 		retval = cmos_set_alarm(dev, &alarm);
1215 	} else if (cmos->alarm_expires > t_now + 1) {
1216 		retval = -EBUSY;
1217 	}
1218 
1219 	return retval;
1220 }
1221 
cmos_suspend(struct device * dev)1222 static int cmos_suspend(struct device *dev)
1223 {
1224 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1225 	unsigned char	tmp;
1226 
1227 	/* only the alarm might be a wakeup event source */
1228 	spin_lock_irq(&rtc_lock);
1229 	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
1230 	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
1231 		unsigned char	mask;
1232 
1233 		if (device_may_wakeup(dev))
1234 			mask = RTC_IRQMASK & ~RTC_AIE;
1235 		else
1236 			mask = RTC_IRQMASK;
1237 		tmp &= ~mask;
1238 		CMOS_WRITE(tmp, RTC_CONTROL);
1239 		if (use_hpet_alarm())
1240 			hpet_mask_rtc_irq_bit(mask);
1241 		cmos_checkintr(cmos, tmp);
1242 	}
1243 	spin_unlock_irq(&rtc_lock);
1244 
1245 	if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
1246 		cmos->enabled_wake = 1;
1247 		if (cmos->wake_on)
1248 			cmos->wake_on(dev);
1249 		else
1250 			enable_irq_wake(cmos->irq);
1251 	}
1252 
1253 	memset(&cmos->saved_wkalrm, 0, sizeof(struct rtc_wkalrm));
1254 	cmos_read_alarm(dev, &cmos->saved_wkalrm);
1255 
1256 	dev_dbg(dev, "suspend%s, ctrl %02x\n",
1257 			(tmp & RTC_AIE) ? ", alarm may wake" : "",
1258 			tmp);
1259 
1260 	return 0;
1261 }
1262 
1263 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1264  * after a detour through G3 "mechanical off", although the ACPI spec
1265  * says wakeup should only work from G1/S4 "hibernate".  To most users,
1266  * distinctions between S4 and S5 are pointless.  So when the hardware
1267  * allows, don't draw that distinction.
1268  */
cmos_poweroff(struct device * dev)1269 static inline int cmos_poweroff(struct device *dev)
1270 {
1271 	if (!IS_ENABLED(CONFIG_PM))
1272 		return -ENOSYS;
1273 
1274 	return cmos_suspend(dev);
1275 }
1276 
cmos_check_wkalrm(struct device * dev)1277 static void cmos_check_wkalrm(struct device *dev)
1278 {
1279 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
1280 	struct rtc_wkalrm current_alarm;
1281 	time64_t t_now;
1282 	time64_t t_current_expires;
1283 	time64_t t_saved_expires;
1284 	struct rtc_time now;
1285 
1286 	/* Check if we have RTC Alarm armed */
1287 	if (!(cmos->suspend_ctrl & RTC_AIE))
1288 		return;
1289 
1290 	cmos_read_time(dev, &now);
1291 	t_now = rtc_tm_to_time64(&now);
1292 
1293 	/*
1294 	 * ACPI RTC wake event is cleared after resume from STR,
1295 	 * ACK the rtc irq here
1296 	 */
1297 	if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
1298 		local_irq_disable();
1299 		cmos_interrupt(0, (void *)cmos->rtc);
1300 		local_irq_enable();
1301 		return;
1302 	}
1303 
1304 	memset(&current_alarm, 0, sizeof(struct rtc_wkalrm));
1305 	cmos_read_alarm(dev, &current_alarm);
1306 	t_current_expires = rtc_tm_to_time64(&current_alarm.time);
1307 	t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1308 	if (t_current_expires != t_saved_expires ||
1309 	    cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1310 		cmos_set_alarm(dev, &cmos->saved_wkalrm);
1311 	}
1312 }
1313 
cmos_resume(struct device * dev)1314 static int __maybe_unused cmos_resume(struct device *dev)
1315 {
1316 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1317 	unsigned char tmp;
1318 
1319 	if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
1320 		if (cmos->wake_off)
1321 			cmos->wake_off(dev);
1322 		else
1323 			disable_irq_wake(cmos->irq);
1324 		cmos->enabled_wake = 0;
1325 	}
1326 
1327 	/* The BIOS might have changed the alarm, restore it */
1328 	cmos_check_wkalrm(dev);
1329 
1330 	spin_lock_irq(&rtc_lock);
1331 	tmp = cmos->suspend_ctrl;
1332 	cmos->suspend_ctrl = 0;
1333 	/* re-enable any irqs previously active */
1334 	if (tmp & RTC_IRQMASK) {
1335 		unsigned char	mask;
1336 
1337 		if (device_may_wakeup(dev) && use_hpet_alarm())
1338 			hpet_rtc_timer_init();
1339 
1340 		do {
1341 			CMOS_WRITE(tmp, RTC_CONTROL);
1342 			if (use_hpet_alarm())
1343 				hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1344 
1345 			mask = CMOS_READ(RTC_INTR_FLAGS);
1346 			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1347 			if (!use_hpet_alarm() || !is_intr(mask))
1348 				break;
1349 
1350 			/* force one-shot behavior if HPET blocked
1351 			 * the wake alarm's irq
1352 			 */
1353 			rtc_update_irq(cmos->rtc, 1, mask);
1354 			tmp &= ~RTC_AIE;
1355 			hpet_mask_rtc_irq_bit(RTC_AIE);
1356 		} while (mask & RTC_AIE);
1357 
1358 		if (tmp & RTC_AIE)
1359 			cmos_check_acpi_rtc_status(dev, &tmp);
1360 	}
1361 	spin_unlock_irq(&rtc_lock);
1362 
1363 	dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1364 
1365 	return 0;
1366 }
1367 
1368 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1369 
1370 /*----------------------------------------------------------------*/
1371 
1372 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1373  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1374  * probably list them in similar PNPBIOS tables; so PNP is more common.
1375  *
1376  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
1377  * predate even PNPBIOS should set up platform_bus devices.
1378  */
1379 
1380 #ifdef	CONFIG_PNP
1381 
1382 #include <linux/pnp.h>
1383 
cmos_pnp_probe(struct pnp_dev * pnp,const struct pnp_device_id * id)1384 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1385 {
1386 	int irq;
1387 
1388 	if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1389 		irq = 0;
1390 #ifdef CONFIG_X86
1391 		/* Some machines contain a PNP entry for the RTC, but
1392 		 * don't define the IRQ. It should always be safe to
1393 		 * hardcode it on systems with a legacy PIC.
1394 		 */
1395 		if (nr_legacy_irqs())
1396 			irq = RTC_IRQ;
1397 #endif
1398 	} else {
1399 		irq = pnp_irq(pnp, 0);
1400 	}
1401 
1402 	return cmos_do_probe(&pnp->dev, pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1403 }
1404 
cmos_pnp_remove(struct pnp_dev * pnp)1405 static void cmos_pnp_remove(struct pnp_dev *pnp)
1406 {
1407 	cmos_do_remove(&pnp->dev);
1408 }
1409 
cmos_pnp_shutdown(struct pnp_dev * pnp)1410 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1411 {
1412 	struct device *dev = &pnp->dev;
1413 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1414 
1415 	if (system_state == SYSTEM_POWER_OFF) {
1416 		int retval = cmos_poweroff(dev);
1417 
1418 		if (cmos_aie_poweroff(dev) < 0 && !retval)
1419 			return;
1420 	}
1421 
1422 	cmos_do_shutdown(cmos->irq);
1423 }
1424 
1425 static const struct pnp_device_id rtc_ids[] = {
1426 	{ .id = "PNP0b00", },
1427 	{ .id = "PNP0b01", },
1428 	{ .id = "PNP0b02", },
1429 	{ },
1430 };
1431 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1432 
1433 static struct pnp_driver cmos_pnp_driver = {
1434 	.name		= driver_name,
1435 	.id_table	= rtc_ids,
1436 	.probe		= cmos_pnp_probe,
1437 	.remove		= cmos_pnp_remove,
1438 	.shutdown	= cmos_pnp_shutdown,
1439 
1440 	/* flag ensures resume() gets called, and stops syslog spam */
1441 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1442 	.driver		= {
1443 			.pm = &cmos_pm_ops,
1444 	},
1445 };
1446 
1447 #endif	/* CONFIG_PNP */
1448 
1449 #ifdef CONFIG_OF
1450 static const struct of_device_id of_cmos_match[] = {
1451 	{
1452 		.compatible = "motorola,mc146818",
1453 	},
1454 	{ },
1455 };
1456 MODULE_DEVICE_TABLE(of, of_cmos_match);
1457 
cmos_of_init(struct platform_device * pdev)1458 static __init void cmos_of_init(struct platform_device *pdev)
1459 {
1460 	struct device_node *node = pdev->dev.of_node;
1461 	const __be32 *val;
1462 
1463 	if (!node)
1464 		return;
1465 
1466 	val = of_get_property(node, "ctrl-reg", NULL);
1467 	if (val)
1468 		CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1469 
1470 	val = of_get_property(node, "freq-reg", NULL);
1471 	if (val)
1472 		CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1473 }
1474 #else
cmos_of_init(struct platform_device * pdev)1475 static inline void cmos_of_init(struct platform_device *pdev) {}
1476 #endif
1477 /*----------------------------------------------------------------*/
1478 
1479 /* Platform setup should have set up an RTC device, when PNP is
1480  * unavailable ... this could happen even on (older) PCs.
1481  */
1482 
cmos_platform_probe(struct platform_device * pdev)1483 static int __init cmos_platform_probe(struct platform_device *pdev)
1484 {
1485 	struct resource *resource;
1486 	int irq;
1487 
1488 	cmos_of_init(pdev);
1489 
1490 	if (RTC_IOMAPPED)
1491 		resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1492 	else
1493 		resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1494 	irq = platform_get_irq(pdev, 0);
1495 	if (irq < 0)
1496 		irq = -1;
1497 
1498 	return cmos_do_probe(&pdev->dev, resource, irq);
1499 }
1500 
cmos_platform_remove(struct platform_device * pdev)1501 static void cmos_platform_remove(struct platform_device *pdev)
1502 {
1503 	cmos_do_remove(&pdev->dev);
1504 }
1505 
cmos_platform_shutdown(struct platform_device * pdev)1506 static void cmos_platform_shutdown(struct platform_device *pdev)
1507 {
1508 	struct device *dev = &pdev->dev;
1509 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1510 
1511 	if (system_state == SYSTEM_POWER_OFF) {
1512 		int retval = cmos_poweroff(dev);
1513 
1514 		if (cmos_aie_poweroff(dev) < 0 && !retval)
1515 			return;
1516 	}
1517 
1518 	cmos_do_shutdown(cmos->irq);
1519 }
1520 
1521 /* work with hotplug and coldplug */
1522 MODULE_ALIAS("platform:rtc_cmos");
1523 
1524 static struct platform_driver cmos_platform_driver = {
1525 	.remove		= cmos_platform_remove,
1526 	.shutdown	= cmos_platform_shutdown,
1527 	.driver = {
1528 		.name		= driver_name,
1529 		.pm		= &cmos_pm_ops,
1530 		.of_match_table = of_match_ptr(of_cmos_match),
1531 	}
1532 };
1533 
1534 #ifdef CONFIG_PNP
1535 static bool pnp_driver_registered;
1536 #endif
1537 static bool platform_driver_registered;
1538 
cmos_init(void)1539 static int __init cmos_init(void)
1540 {
1541 	int retval = 0;
1542 
1543 #ifdef	CONFIG_PNP
1544 	retval = pnp_register_driver(&cmos_pnp_driver);
1545 	if (retval == 0)
1546 		pnp_driver_registered = true;
1547 #endif
1548 
1549 	if (!cmos_rtc.dev) {
1550 		retval = platform_driver_probe(&cmos_platform_driver,
1551 					       cmos_platform_probe);
1552 		if (retval == 0)
1553 			platform_driver_registered = true;
1554 	}
1555 
1556 	if (retval == 0)
1557 		return 0;
1558 
1559 #ifdef	CONFIG_PNP
1560 	if (pnp_driver_registered)
1561 		pnp_unregister_driver(&cmos_pnp_driver);
1562 #endif
1563 	return retval;
1564 }
1565 module_init(cmos_init);
1566 
cmos_exit(void)1567 static void __exit cmos_exit(void)
1568 {
1569 #ifdef	CONFIG_PNP
1570 	if (pnp_driver_registered)
1571 		pnp_unregister_driver(&cmos_pnp_driver);
1572 #endif
1573 	if (platform_driver_registered)
1574 		platform_driver_unregister(&cmos_platform_driver);
1575 }
1576 module_exit(cmos_exit);
1577 
1578 
1579 MODULE_AUTHOR("David Brownell");
1580 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1581 MODULE_LICENSE("GPL");
1582