1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
4 *
5 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
6 * Copyright (C) 2006 David Brownell (convert to new framework)
7 */
8
9 /*
10 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
11 * That defined the register interface now provided by all PCs, some
12 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
13 * integrate an MC146818 clone in their southbridge, and boards use
14 * that instead of discrete clones like the DS12887 or M48T86. There
15 * are also clones that connect using the LPC bus.
16 *
17 * That register API is also used directly by various other drivers
18 * (notably for integrated NVRAM), infrastructure (x86 has code to
19 * bypass the RTC framework, directly reading the RTC during boot
20 * and updating minutes/seconds for systems using NTP synch) and
21 * utilities (like userspace 'hwclock', if no /dev node exists).
22 *
23 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
24 * interrupts disabled, holding the global rtc_lock, to exclude those
25 * other drivers and utilities on correctly configured systems.
26 */
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/spinlock.h>
35 #include <linux/platform_device.h>
36 #include <linux/log2.h>
37 #include <linux/pm.h>
38 #include <linux/of.h>
39 #include <linux/of_platform.h>
40 #ifdef CONFIG_X86
41 #include <asm/i8259.h>
42 #include <asm/processor.h>
43 #include <linux/dmi.h>
44 #endif
45
46 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
47 #include <linux/mc146818rtc.h>
48
49 #ifdef CONFIG_ACPI
50 /*
51 * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
52 *
53 * If cleared, ACPI SCI is only used to wake up the system from suspend
54 *
55 * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
56 */
57
58 static bool use_acpi_alarm;
59 module_param(use_acpi_alarm, bool, 0444);
60
cmos_use_acpi_alarm(void)61 static inline int cmos_use_acpi_alarm(void)
62 {
63 return use_acpi_alarm;
64 }
65 #else /* !CONFIG_ACPI */
66
cmos_use_acpi_alarm(void)67 static inline int cmos_use_acpi_alarm(void)
68 {
69 return 0;
70 }
71 #endif
72
73 struct cmos_rtc {
74 struct rtc_device *rtc;
75 struct device *dev;
76 int irq;
77 struct resource *iomem;
78 time64_t alarm_expires;
79
80 void (*wake_on)(struct device *);
81 void (*wake_off)(struct device *);
82
83 u8 enabled_wake;
84 u8 suspend_ctrl;
85
86 /* newer hardware extends the original register set */
87 u8 day_alrm;
88 u8 mon_alrm;
89 u8 century;
90
91 struct rtc_wkalrm saved_wkalrm;
92 };
93
94 /* both platform and pnp busses use negative numbers for invalid irqs */
95 #define is_valid_irq(n) ((n) > 0)
96
97 static const char driver_name[] = "rtc_cmos";
98
99 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
100 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
101 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
102 */
103 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
104
is_intr(u8 rtc_intr)105 static inline int is_intr(u8 rtc_intr)
106 {
107 if (!(rtc_intr & RTC_IRQF))
108 return 0;
109 return rtc_intr & RTC_IRQMASK;
110 }
111
112 /*----------------------------------------------------------------*/
113
114 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
115 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
116 * used in a broken "legacy replacement" mode. The breakage includes
117 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
118 * other (better) use.
119 *
120 * When that broken mode is in use, platform glue provides a partial
121 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
122 * want to use HPET for anything except those IRQs though...
123 */
124 #ifdef CONFIG_HPET_EMULATE_RTC
125 #include <asm/hpet.h>
126 #else
127
is_hpet_enabled(void)128 static inline int is_hpet_enabled(void)
129 {
130 return 0;
131 }
132
hpet_mask_rtc_irq_bit(unsigned long mask)133 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
134 {
135 return 0;
136 }
137
hpet_set_rtc_irq_bit(unsigned long mask)138 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
139 {
140 return 0;
141 }
142
143 static inline int
hpet_set_alarm_time(unsigned char hrs,unsigned char min,unsigned char sec)144 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
145 {
146 return 0;
147 }
148
hpet_set_periodic_freq(unsigned long freq)149 static inline int hpet_set_periodic_freq(unsigned long freq)
150 {
151 return 0;
152 }
153
hpet_rtc_timer_init(void)154 static inline int hpet_rtc_timer_init(void)
155 {
156 return 0;
157 }
158
159 extern irq_handler_t hpet_rtc_interrupt;
160
hpet_register_irq_handler(irq_handler_t handler)161 static inline int hpet_register_irq_handler(irq_handler_t handler)
162 {
163 return 0;
164 }
165
hpet_unregister_irq_handler(irq_handler_t handler)166 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
167 {
168 return 0;
169 }
170
171 #endif
172
173 /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
use_hpet_alarm(void)174 static inline int use_hpet_alarm(void)
175 {
176 return is_hpet_enabled() && !cmos_use_acpi_alarm();
177 }
178
179 /*----------------------------------------------------------------*/
180
181 #ifdef RTC_PORT
182
183 /* Most newer x86 systems have two register banks, the first used
184 * for RTC and NVRAM and the second only for NVRAM. Caller must
185 * own rtc_lock ... and we won't worry about access during NMI.
186 */
187 #define can_bank2 true
188
cmos_read_bank2(unsigned char addr)189 static inline unsigned char cmos_read_bank2(unsigned char addr)
190 {
191 outb(addr, RTC_PORT(2));
192 return inb(RTC_PORT(3));
193 }
194
cmos_write_bank2(unsigned char val,unsigned char addr)195 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
196 {
197 outb(addr, RTC_PORT(2));
198 outb(val, RTC_PORT(3));
199 }
200
201 #else
202
203 #define can_bank2 false
204
cmos_read_bank2(unsigned char addr)205 static inline unsigned char cmos_read_bank2(unsigned char addr)
206 {
207 return 0;
208 }
209
cmos_write_bank2(unsigned char val,unsigned char addr)210 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
211 {
212 }
213
214 #endif
215
216 /*----------------------------------------------------------------*/
217
cmos_read_time(struct device * dev,struct rtc_time * t)218 static int cmos_read_time(struct device *dev, struct rtc_time *t)
219 {
220 int ret;
221
222 /*
223 * If pm_trace abused the RTC for storage, set the timespec to 0,
224 * which tells the caller that this RTC value is unusable.
225 */
226 if (!pm_trace_rtc_valid())
227 return -EIO;
228
229 ret = mc146818_get_time(t, 1000);
230 if (ret < 0) {
231 dev_err_ratelimited(dev, "unable to read current time\n");
232 return ret;
233 }
234
235 return 0;
236 }
237
cmos_set_time(struct device * dev,struct rtc_time * t)238 static int cmos_set_time(struct device *dev, struct rtc_time *t)
239 {
240 /* NOTE: this ignores the issue whereby updating the seconds
241 * takes effect exactly 500ms after we write the register.
242 * (Also queueing and other delays before we get this far.)
243 */
244 return mc146818_set_time(t);
245 }
246
247 struct cmos_read_alarm_callback_param {
248 struct cmos_rtc *cmos;
249 struct rtc_time *time;
250 unsigned char rtc_control;
251 };
252
cmos_read_alarm_callback(unsigned char __always_unused seconds,void * param_in)253 static void cmos_read_alarm_callback(unsigned char __always_unused seconds,
254 void *param_in)
255 {
256 struct cmos_read_alarm_callback_param *p =
257 (struct cmos_read_alarm_callback_param *)param_in;
258 struct rtc_time *time = p->time;
259
260 time->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
261 time->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
262 time->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
263
264 if (p->cmos->day_alrm) {
265 /* ignore upper bits on readback per ACPI spec */
266 time->tm_mday = CMOS_READ(p->cmos->day_alrm) & 0x3f;
267 if (!time->tm_mday)
268 time->tm_mday = -1;
269
270 if (p->cmos->mon_alrm) {
271 time->tm_mon = CMOS_READ(p->cmos->mon_alrm);
272 if (!time->tm_mon)
273 time->tm_mon = -1;
274 }
275 }
276
277 p->rtc_control = CMOS_READ(RTC_CONTROL);
278 }
279
cmos_read_alarm(struct device * dev,struct rtc_wkalrm * t)280 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
281 {
282 struct cmos_rtc *cmos = dev_get_drvdata(dev);
283 struct cmos_read_alarm_callback_param p = {
284 .cmos = cmos,
285 .time = &t->time,
286 };
287
288 /* This not only a rtc_op, but also called directly */
289 if (!is_valid_irq(cmos->irq))
290 return -ETIMEDOUT;
291
292 /* Basic alarms only support hour, minute, and seconds fields.
293 * Some also support day and month, for alarms up to a year in
294 * the future.
295 */
296
297 /* Some Intel chipsets disconnect the alarm registers when the clock
298 * update is in progress - during this time reads return bogus values
299 * and writes may fail silently. See for example "7th Generation Intel®
300 * Processor Family I/O for U/Y Platforms [...] Datasheet", section
301 * 27.7.1
302 *
303 * Use the mc146818_avoid_UIP() function to avoid this.
304 */
305 if (!mc146818_avoid_UIP(cmos_read_alarm_callback, 10, &p))
306 return -EIO;
307
308 if (!(p.rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
309 if (((unsigned)t->time.tm_sec) < 0x60)
310 t->time.tm_sec = bcd2bin(t->time.tm_sec);
311 else
312 t->time.tm_sec = -1;
313 if (((unsigned)t->time.tm_min) < 0x60)
314 t->time.tm_min = bcd2bin(t->time.tm_min);
315 else
316 t->time.tm_min = -1;
317 if (((unsigned)t->time.tm_hour) < 0x24)
318 t->time.tm_hour = bcd2bin(t->time.tm_hour);
319 else
320 t->time.tm_hour = -1;
321
322 if (cmos->day_alrm) {
323 if (((unsigned)t->time.tm_mday) <= 0x31)
324 t->time.tm_mday = bcd2bin(t->time.tm_mday);
325 else
326 t->time.tm_mday = -1;
327
328 if (cmos->mon_alrm) {
329 if (((unsigned)t->time.tm_mon) <= 0x12)
330 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
331 else
332 t->time.tm_mon = -1;
333 }
334 }
335 }
336
337 t->enabled = !!(p.rtc_control & RTC_AIE);
338 t->pending = 0;
339
340 return 0;
341 }
342
cmos_checkintr(struct cmos_rtc * cmos,unsigned char rtc_control)343 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
344 {
345 unsigned char rtc_intr;
346
347 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
348 * allegedly some older rtcs need that to handle irqs properly
349 */
350 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
351
352 if (use_hpet_alarm())
353 return;
354
355 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
356 if (is_intr(rtc_intr))
357 rtc_update_irq(cmos->rtc, 1, rtc_intr);
358 }
359
cmos_irq_enable(struct cmos_rtc * cmos,unsigned char mask)360 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
361 {
362 unsigned char rtc_control;
363
364 /* flush any pending IRQ status, notably for update irqs,
365 * before we enable new IRQs
366 */
367 rtc_control = CMOS_READ(RTC_CONTROL);
368 cmos_checkintr(cmos, rtc_control);
369
370 rtc_control |= mask;
371 CMOS_WRITE(rtc_control, RTC_CONTROL);
372 if (use_hpet_alarm())
373 hpet_set_rtc_irq_bit(mask);
374
375 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
376 if (cmos->wake_on)
377 cmos->wake_on(cmos->dev);
378 }
379
380 cmos_checkintr(cmos, rtc_control);
381 }
382
cmos_irq_disable(struct cmos_rtc * cmos,unsigned char mask)383 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
384 {
385 unsigned char rtc_control;
386
387 rtc_control = CMOS_READ(RTC_CONTROL);
388 rtc_control &= ~mask;
389 CMOS_WRITE(rtc_control, RTC_CONTROL);
390 if (use_hpet_alarm())
391 hpet_mask_rtc_irq_bit(mask);
392
393 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
394 if (cmos->wake_off)
395 cmos->wake_off(cmos->dev);
396 }
397
398 cmos_checkintr(cmos, rtc_control);
399 }
400
cmos_validate_alarm(struct device * dev,struct rtc_wkalrm * t)401 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
402 {
403 struct cmos_rtc *cmos = dev_get_drvdata(dev);
404 struct rtc_time now;
405
406 cmos_read_time(dev, &now);
407
408 if (!cmos->day_alrm) {
409 time64_t t_max_date;
410 time64_t t_alrm;
411
412 t_max_date = rtc_tm_to_time64(&now);
413 t_max_date += 24 * 60 * 60 - 1;
414 t_alrm = rtc_tm_to_time64(&t->time);
415 if (t_alrm > t_max_date) {
416 dev_err(dev,
417 "Alarms can be up to one day in the future\n");
418 return -EINVAL;
419 }
420 } else if (!cmos->mon_alrm) {
421 struct rtc_time max_date = now;
422 time64_t t_max_date;
423 time64_t t_alrm;
424 int max_mday;
425
426 if (max_date.tm_mon == 11) {
427 max_date.tm_mon = 0;
428 max_date.tm_year += 1;
429 } else {
430 max_date.tm_mon += 1;
431 }
432 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
433 if (max_date.tm_mday > max_mday)
434 max_date.tm_mday = max_mday;
435
436 t_max_date = rtc_tm_to_time64(&max_date);
437 t_max_date -= 1;
438 t_alrm = rtc_tm_to_time64(&t->time);
439 if (t_alrm > t_max_date) {
440 dev_err(dev,
441 "Alarms can be up to one month in the future\n");
442 return -EINVAL;
443 }
444 } else {
445 struct rtc_time max_date = now;
446 time64_t t_max_date;
447 time64_t t_alrm;
448 int max_mday;
449
450 max_date.tm_year += 1;
451 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
452 if (max_date.tm_mday > max_mday)
453 max_date.tm_mday = max_mday;
454
455 t_max_date = rtc_tm_to_time64(&max_date);
456 t_max_date -= 1;
457 t_alrm = rtc_tm_to_time64(&t->time);
458 if (t_alrm > t_max_date) {
459 dev_err(dev,
460 "Alarms can be up to one year in the future\n");
461 return -EINVAL;
462 }
463 }
464
465 return 0;
466 }
467
468 struct cmos_set_alarm_callback_param {
469 struct cmos_rtc *cmos;
470 unsigned char mon, mday, hrs, min, sec;
471 struct rtc_wkalrm *t;
472 };
473
474 /* Note: this function may be executed by mc146818_avoid_UIP() more then
475 * once
476 */
cmos_set_alarm_callback(unsigned char __always_unused seconds,void * param_in)477 static void cmos_set_alarm_callback(unsigned char __always_unused seconds,
478 void *param_in)
479 {
480 struct cmos_set_alarm_callback_param *p =
481 (struct cmos_set_alarm_callback_param *)param_in;
482
483 /* next rtc irq must not be from previous alarm setting */
484 cmos_irq_disable(p->cmos, RTC_AIE);
485
486 /* update alarm */
487 CMOS_WRITE(p->hrs, RTC_HOURS_ALARM);
488 CMOS_WRITE(p->min, RTC_MINUTES_ALARM);
489 CMOS_WRITE(p->sec, RTC_SECONDS_ALARM);
490
491 /* the system may support an "enhanced" alarm */
492 if (p->cmos->day_alrm) {
493 CMOS_WRITE(p->mday, p->cmos->day_alrm);
494 if (p->cmos->mon_alrm)
495 CMOS_WRITE(p->mon, p->cmos->mon_alrm);
496 }
497
498 if (use_hpet_alarm()) {
499 /*
500 * FIXME the HPET alarm glue currently ignores day_alrm
501 * and mon_alrm ...
502 */
503 hpet_set_alarm_time(p->t->time.tm_hour, p->t->time.tm_min,
504 p->t->time.tm_sec);
505 }
506
507 if (p->t->enabled)
508 cmos_irq_enable(p->cmos, RTC_AIE);
509 }
510
cmos_set_alarm(struct device * dev,struct rtc_wkalrm * t)511 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
512 {
513 struct cmos_rtc *cmos = dev_get_drvdata(dev);
514 struct cmos_set_alarm_callback_param p = {
515 .cmos = cmos,
516 .t = t
517 };
518 unsigned char rtc_control;
519 int ret;
520
521 /* This not only a rtc_op, but also called directly */
522 if (!is_valid_irq(cmos->irq))
523 return -EIO;
524
525 ret = cmos_validate_alarm(dev, t);
526 if (ret < 0)
527 return ret;
528
529 p.mon = t->time.tm_mon + 1;
530 p.mday = t->time.tm_mday;
531 p.hrs = t->time.tm_hour;
532 p.min = t->time.tm_min;
533 p.sec = t->time.tm_sec;
534
535 spin_lock_irq(&rtc_lock);
536 rtc_control = CMOS_READ(RTC_CONTROL);
537 spin_unlock_irq(&rtc_lock);
538
539 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
540 /* Writing 0xff means "don't care" or "match all". */
541 p.mon = (p.mon <= 12) ? bin2bcd(p.mon) : 0xff;
542 p.mday = (p.mday >= 1 && p.mday <= 31) ? bin2bcd(p.mday) : 0xff;
543 p.hrs = (p.hrs < 24) ? bin2bcd(p.hrs) : 0xff;
544 p.min = (p.min < 60) ? bin2bcd(p.min) : 0xff;
545 p.sec = (p.sec < 60) ? bin2bcd(p.sec) : 0xff;
546 }
547
548 /*
549 * Some Intel chipsets disconnect the alarm registers when the clock
550 * update is in progress - during this time writes fail silently.
551 *
552 * Use mc146818_avoid_UIP() to avoid this.
553 */
554 if (!mc146818_avoid_UIP(cmos_set_alarm_callback, 10, &p))
555 return -ETIMEDOUT;
556
557 cmos->alarm_expires = rtc_tm_to_time64(&t->time);
558
559 return 0;
560 }
561
cmos_alarm_irq_enable(struct device * dev,unsigned int enabled)562 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
563 {
564 struct cmos_rtc *cmos = dev_get_drvdata(dev);
565 unsigned long flags;
566
567 spin_lock_irqsave(&rtc_lock, flags);
568
569 if (enabled)
570 cmos_irq_enable(cmos, RTC_AIE);
571 else
572 cmos_irq_disable(cmos, RTC_AIE);
573
574 spin_unlock_irqrestore(&rtc_lock, flags);
575 return 0;
576 }
577
578 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
579
cmos_procfs(struct device * dev,struct seq_file * seq)580 static int cmos_procfs(struct device *dev, struct seq_file *seq)
581 {
582 struct cmos_rtc *cmos = dev_get_drvdata(dev);
583 unsigned char rtc_control, valid;
584
585 spin_lock_irq(&rtc_lock);
586 rtc_control = CMOS_READ(RTC_CONTROL);
587 valid = CMOS_READ(RTC_VALID);
588 spin_unlock_irq(&rtc_lock);
589
590 /* NOTE: at least ICH6 reports battery status using a different
591 * (non-RTC) bit; and SQWE is ignored on many current systems.
592 */
593 seq_printf(seq,
594 "periodic_IRQ\t: %s\n"
595 "update_IRQ\t: %s\n"
596 "HPET_emulated\t: %s\n"
597 // "square_wave\t: %s\n"
598 "BCD\t\t: %s\n"
599 "DST_enable\t: %s\n"
600 "periodic_freq\t: %d\n"
601 "batt_status\t: %s\n",
602 (rtc_control & RTC_PIE) ? "yes" : "no",
603 (rtc_control & RTC_UIE) ? "yes" : "no",
604 use_hpet_alarm() ? "yes" : "no",
605 // (rtc_control & RTC_SQWE) ? "yes" : "no",
606 (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
607 (rtc_control & RTC_DST_EN) ? "yes" : "no",
608 cmos->rtc->irq_freq,
609 (valid & RTC_VRT) ? "okay" : "dead");
610
611 return 0;
612 }
613
614 #else
615 #define cmos_procfs NULL
616 #endif
617
618 static const struct rtc_class_ops cmos_rtc_ops = {
619 .read_time = cmos_read_time,
620 .set_time = cmos_set_time,
621 .read_alarm = cmos_read_alarm,
622 .set_alarm = cmos_set_alarm,
623 .proc = cmos_procfs,
624 .alarm_irq_enable = cmos_alarm_irq_enable,
625 };
626
627 /*----------------------------------------------------------------*/
628
629 /*
630 * All these chips have at least 64 bytes of address space, shared by
631 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
632 * by boot firmware. Modern chips have 128 or 256 bytes.
633 */
634
635 #define NVRAM_OFFSET (RTC_REG_D + 1)
636
cmos_nvram_read(void * priv,unsigned int off,void * val,size_t count)637 static int cmos_nvram_read(void *priv, unsigned int off, void *val,
638 size_t count)
639 {
640 unsigned char *buf = val;
641
642 off += NVRAM_OFFSET;
643 for (; count; count--, off++, buf++) {
644 guard(spinlock_irq)(&rtc_lock);
645 if (off < 128)
646 *buf = CMOS_READ(off);
647 else if (can_bank2)
648 *buf = cmos_read_bank2(off);
649 else
650 return -EIO;
651 }
652
653 return 0;
654 }
655
cmos_nvram_write(void * priv,unsigned int off,void * val,size_t count)656 static int cmos_nvram_write(void *priv, unsigned int off, void *val,
657 size_t count)
658 {
659 struct cmos_rtc *cmos = priv;
660 unsigned char *buf = val;
661
662 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
663 * checksum on part of the NVRAM data. That's currently ignored
664 * here. If userspace is smart enough to know what fields of
665 * NVRAM to update, updating checksums is also part of its job.
666 */
667 off += NVRAM_OFFSET;
668 for (; count; count--, off++, buf++) {
669 /* don't trash RTC registers */
670 if (off == cmos->day_alrm
671 || off == cmos->mon_alrm
672 || off == cmos->century)
673 continue;
674
675 guard(spinlock_irq)(&rtc_lock);
676 if (off < 128)
677 CMOS_WRITE(*buf, off);
678 else if (can_bank2)
679 cmos_write_bank2(*buf, off);
680 else
681 return -EIO;
682 }
683
684 return 0;
685 }
686
687 /*----------------------------------------------------------------*/
688
689 static struct cmos_rtc cmos_rtc;
690
cmos_interrupt(int irq,void * p)691 static irqreturn_t cmos_interrupt(int irq, void *p)
692 {
693 u8 irqstat;
694 u8 rtc_control;
695 unsigned long flags;
696
697 /* We cannot use spin_lock() here, as cmos_interrupt() is also called
698 * in a non-irq context.
699 */
700 spin_lock_irqsave(&rtc_lock, flags);
701
702 /* When the HPET interrupt handler calls us, the interrupt
703 * status is passed as arg1 instead of the irq number. But
704 * always clear irq status, even when HPET is in the way.
705 *
706 * Note that HPET and RTC are almost certainly out of phase,
707 * giving different IRQ status ...
708 */
709 irqstat = CMOS_READ(RTC_INTR_FLAGS);
710 rtc_control = CMOS_READ(RTC_CONTROL);
711 if (use_hpet_alarm())
712 irqstat = (unsigned long)irq & 0xF0;
713
714 /* If we were suspended, RTC_CONTROL may not be accurate since the
715 * bios may have cleared it.
716 */
717 if (!cmos_rtc.suspend_ctrl)
718 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
719 else
720 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
721
722 /* All Linux RTC alarms should be treated as if they were oneshot.
723 * Similar code may be needed in system wakeup paths, in case the
724 * alarm woke the system.
725 */
726 if (irqstat & RTC_AIE) {
727 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
728 rtc_control &= ~RTC_AIE;
729 CMOS_WRITE(rtc_control, RTC_CONTROL);
730 if (use_hpet_alarm())
731 hpet_mask_rtc_irq_bit(RTC_AIE);
732 CMOS_READ(RTC_INTR_FLAGS);
733 }
734 spin_unlock_irqrestore(&rtc_lock, flags);
735
736 if (is_intr(irqstat)) {
737 rtc_update_irq(p, 1, irqstat);
738 return IRQ_HANDLED;
739 } else
740 return IRQ_NONE;
741 }
742
743 #ifdef CONFIG_ACPI
744
745 #include <linux/acpi.h>
746
rtc_handler(void * context)747 static u32 rtc_handler(void *context)
748 {
749 struct device *dev = context;
750 struct cmos_rtc *cmos = dev_get_drvdata(dev);
751 unsigned char rtc_control = 0;
752 unsigned char rtc_intr;
753 unsigned long flags;
754
755
756 /*
757 * Always update rtc irq when ACPI is used as RTC Alarm.
758 * Or else, ACPI SCI is enabled during suspend/resume only,
759 * update rtc irq in that case.
760 */
761 if (cmos_use_acpi_alarm())
762 cmos_interrupt(0, (void *)cmos->rtc);
763 else {
764 /* Fix me: can we use cmos_interrupt() here as well? */
765 spin_lock_irqsave(&rtc_lock, flags);
766 if (cmos_rtc.suspend_ctrl)
767 rtc_control = CMOS_READ(RTC_CONTROL);
768 if (rtc_control & RTC_AIE) {
769 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
770 CMOS_WRITE(rtc_control, RTC_CONTROL);
771 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
772 rtc_update_irq(cmos->rtc, 1, rtc_intr);
773 }
774 spin_unlock_irqrestore(&rtc_lock, flags);
775 }
776
777 pm_wakeup_hard_event(dev);
778 acpi_clear_event(ACPI_EVENT_RTC);
779 acpi_disable_event(ACPI_EVENT_RTC, 0);
780 return ACPI_INTERRUPT_HANDLED;
781 }
782
acpi_rtc_event_setup(struct device * dev)783 static void acpi_rtc_event_setup(struct device *dev)
784 {
785 if (acpi_disabled)
786 return;
787
788 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
789 /*
790 * After the RTC handler is installed, the Fixed_RTC event should
791 * be disabled. Only when the RTC alarm is set will it be enabled.
792 */
793 acpi_clear_event(ACPI_EVENT_RTC);
794 acpi_disable_event(ACPI_EVENT_RTC, 0);
795 }
796
acpi_rtc_event_cleanup(void)797 static void acpi_rtc_event_cleanup(void)
798 {
799 if (acpi_disabled)
800 return;
801
802 acpi_remove_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler);
803 }
804
rtc_wake_on(struct device * dev)805 static void rtc_wake_on(struct device *dev)
806 {
807 acpi_clear_event(ACPI_EVENT_RTC);
808 acpi_enable_event(ACPI_EVENT_RTC, 0);
809 }
810
rtc_wake_off(struct device * dev)811 static void rtc_wake_off(struct device *dev)
812 {
813 acpi_disable_event(ACPI_EVENT_RTC, 0);
814 }
815
816 #ifdef CONFIG_X86
use_acpi_alarm_quirks(void)817 static void use_acpi_alarm_quirks(void)
818 {
819 switch (boot_cpu_data.x86_vendor) {
820 case X86_VENDOR_INTEL:
821 if (dmi_get_bios_year() < 2015)
822 return;
823 break;
824 case X86_VENDOR_AMD:
825 case X86_VENDOR_HYGON:
826 if (dmi_get_bios_year() < 2021)
827 return;
828 break;
829 default:
830 return;
831 }
832 if (!is_hpet_enabled())
833 return;
834
835 use_acpi_alarm = true;
836 }
837 #else
use_acpi_alarm_quirks(void)838 static inline void use_acpi_alarm_quirks(void) { }
839 #endif
840
acpi_cmos_wake_setup(struct device * dev)841 static void acpi_cmos_wake_setup(struct device *dev)
842 {
843 if (acpi_disabled)
844 return;
845
846 use_acpi_alarm_quirks();
847
848 cmos_rtc.wake_on = rtc_wake_on;
849 cmos_rtc.wake_off = rtc_wake_off;
850
851 /* ACPI tables bug workaround. */
852 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
853 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
854 acpi_gbl_FADT.month_alarm);
855 acpi_gbl_FADT.month_alarm = 0;
856 }
857
858 cmos_rtc.day_alrm = acpi_gbl_FADT.day_alarm;
859 cmos_rtc.mon_alrm = acpi_gbl_FADT.month_alarm;
860 cmos_rtc.century = acpi_gbl_FADT.century;
861
862 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
863 dev_info(dev, "RTC can wake from S4\n");
864
865 /* RTC always wakes from S1/S2/S3, and often S4/STD */
866 device_init_wakeup(dev, true);
867 }
868
cmos_check_acpi_rtc_status(struct device * dev,unsigned char * rtc_control)869 static void cmos_check_acpi_rtc_status(struct device *dev,
870 unsigned char *rtc_control)
871 {
872 struct cmos_rtc *cmos = dev_get_drvdata(dev);
873 acpi_event_status rtc_status;
874 acpi_status status;
875
876 if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
877 return;
878
879 status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
880 if (ACPI_FAILURE(status)) {
881 dev_err(dev, "Could not get RTC status\n");
882 } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
883 unsigned char mask;
884 *rtc_control &= ~RTC_AIE;
885 CMOS_WRITE(*rtc_control, RTC_CONTROL);
886 mask = CMOS_READ(RTC_INTR_FLAGS);
887 rtc_update_irq(cmos->rtc, 1, mask);
888 }
889 }
890
891 #else /* !CONFIG_ACPI */
892
acpi_rtc_event_setup(struct device * dev)893 static inline void acpi_rtc_event_setup(struct device *dev)
894 {
895 }
896
acpi_rtc_event_cleanup(void)897 static inline void acpi_rtc_event_cleanup(void)
898 {
899 }
900
acpi_cmos_wake_setup(struct device * dev)901 static inline void acpi_cmos_wake_setup(struct device *dev)
902 {
903 }
904
cmos_check_acpi_rtc_status(struct device * dev,unsigned char * rtc_control)905 static inline void cmos_check_acpi_rtc_status(struct device *dev,
906 unsigned char *rtc_control)
907 {
908 }
909 #endif /* CONFIG_ACPI */
910
911 #ifdef CONFIG_PNP
912 #define INITSECTION
913
914 #else
915 #define INITSECTION __init
916 #endif
917
918 #define SECS_PER_DAY (24 * 60 * 60)
919 #define SECS_PER_MONTH (28 * SECS_PER_DAY)
920 #define SECS_PER_YEAR (365 * SECS_PER_DAY)
921
922 static int INITSECTION
cmos_do_probe(struct device * dev,struct resource * ports,int rtc_irq)923 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
924 {
925 struct cmos_rtc_board_info *info = dev_get_platdata(dev);
926 int retval = 0;
927 unsigned char rtc_control;
928 unsigned address_space;
929 u32 flags = 0;
930 struct nvmem_config nvmem_cfg = {
931 .name = "cmos_nvram",
932 .word_size = 1,
933 .stride = 1,
934 .reg_read = cmos_nvram_read,
935 .reg_write = cmos_nvram_write,
936 .priv = &cmos_rtc,
937 };
938
939 /* there can be only one ... */
940 if (cmos_rtc.dev)
941 return -EBUSY;
942
943 if (!ports)
944 return -ENODEV;
945
946 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
947 *
948 * REVISIT non-x86 systems may instead use memory space resources
949 * (needing ioremap etc), not i/o space resources like this ...
950 */
951 if (RTC_IOMAPPED)
952 ports = request_region(ports->start, resource_size(ports),
953 driver_name);
954 else
955 ports = request_mem_region(ports->start, resource_size(ports),
956 driver_name);
957 if (!ports) {
958 dev_dbg(dev, "i/o registers already in use\n");
959 return -EBUSY;
960 }
961
962 cmos_rtc.irq = rtc_irq;
963 cmos_rtc.iomem = ports;
964
965 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
966 * driver did, but don't reject unknown configs. Old hardware
967 * won't address 128 bytes. Newer chips have multiple banks,
968 * though they may not be listed in one I/O resource.
969 */
970 #if defined(CONFIG_ATARI)
971 address_space = 64;
972 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
973 || defined(__sparc__) || defined(__mips__) \
974 || defined(__powerpc__)
975 address_space = 128;
976 #else
977 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
978 address_space = 128;
979 #endif
980 if (can_bank2 && ports->end > (ports->start + 1))
981 address_space = 256;
982
983 /* For ACPI systems extension info comes from the FADT. On others,
984 * board specific setup provides it as appropriate. Systems where
985 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
986 * some almost-clones) can provide hooks to make that behave.
987 *
988 * Note that ACPI doesn't preclude putting these registers into
989 * "extended" areas of the chip, including some that we won't yet
990 * expect CMOS_READ and friends to handle.
991 */
992 if (info) {
993 if (info->flags)
994 flags = info->flags;
995 if (info->address_space)
996 address_space = info->address_space;
997
998 cmos_rtc.day_alrm = info->rtc_day_alarm;
999 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
1000 cmos_rtc.century = info->rtc_century;
1001
1002 if (info->wake_on && info->wake_off) {
1003 cmos_rtc.wake_on = info->wake_on;
1004 cmos_rtc.wake_off = info->wake_off;
1005 }
1006 } else {
1007 acpi_cmos_wake_setup(dev);
1008 }
1009
1010 if (cmos_rtc.day_alrm >= 128)
1011 cmos_rtc.day_alrm = 0;
1012
1013 if (cmos_rtc.mon_alrm >= 128)
1014 cmos_rtc.mon_alrm = 0;
1015
1016 if (cmos_rtc.century >= 128)
1017 cmos_rtc.century = 0;
1018
1019 cmos_rtc.dev = dev;
1020 dev_set_drvdata(dev, &cmos_rtc);
1021
1022 cmos_rtc.rtc = devm_rtc_allocate_device(dev);
1023 if (IS_ERR(cmos_rtc.rtc)) {
1024 retval = PTR_ERR(cmos_rtc.rtc);
1025 goto cleanup0;
1026 }
1027
1028 if (cmos_rtc.mon_alrm)
1029 cmos_rtc.rtc->alarm_offset_max = SECS_PER_YEAR - 1;
1030 else if (cmos_rtc.day_alrm)
1031 cmos_rtc.rtc->alarm_offset_max = SECS_PER_MONTH - 1;
1032 else
1033 cmos_rtc.rtc->alarm_offset_max = SECS_PER_DAY - 1;
1034
1035 rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
1036
1037 if (!mc146818_does_rtc_work()) {
1038 dev_warn(dev, "broken or not accessible\n");
1039 retval = -ENXIO;
1040 goto cleanup1;
1041 }
1042
1043 spin_lock_irq(&rtc_lock);
1044
1045 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
1046 /* force periodic irq to CMOS reset default of 1024Hz;
1047 *
1048 * REVISIT it's been reported that at least one x86_64 ALI
1049 * mobo doesn't use 32KHz here ... for portability we might
1050 * need to do something about other clock frequencies.
1051 */
1052 cmos_rtc.rtc->irq_freq = 1024;
1053 if (use_hpet_alarm())
1054 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
1055 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
1056 }
1057
1058 /* disable irqs */
1059 if (is_valid_irq(rtc_irq))
1060 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
1061
1062 rtc_control = CMOS_READ(RTC_CONTROL);
1063
1064 spin_unlock_irq(&rtc_lock);
1065
1066 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
1067 dev_warn(dev, "only 24-hr supported\n");
1068 retval = -ENXIO;
1069 goto cleanup1;
1070 }
1071
1072 if (use_hpet_alarm())
1073 hpet_rtc_timer_init();
1074
1075 if (is_valid_irq(rtc_irq)) {
1076 irq_handler_t rtc_cmos_int_handler;
1077
1078 if (use_hpet_alarm()) {
1079 rtc_cmos_int_handler = hpet_rtc_interrupt;
1080 retval = hpet_register_irq_handler(cmos_interrupt);
1081 if (retval) {
1082 hpet_mask_rtc_irq_bit(RTC_IRQMASK);
1083 dev_warn(dev, "hpet_register_irq_handler "
1084 " failed in rtc_init().");
1085 goto cleanup1;
1086 }
1087 } else
1088 rtc_cmos_int_handler = cmos_interrupt;
1089
1090 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
1091 0, dev_name(&cmos_rtc.rtc->dev),
1092 cmos_rtc.rtc);
1093 if (retval < 0) {
1094 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
1095 goto cleanup1;
1096 }
1097 } else {
1098 clear_bit(RTC_FEATURE_ALARM, cmos_rtc.rtc->features);
1099 }
1100
1101 cmos_rtc.rtc->ops = &cmos_rtc_ops;
1102
1103 retval = devm_rtc_register_device(cmos_rtc.rtc);
1104 if (retval)
1105 goto cleanup2;
1106
1107 /* Set the sync offset for the periodic 11min update correct */
1108 cmos_rtc.rtc->set_offset_nsec = NSEC_PER_SEC / 2;
1109
1110 /* export at least the first block of NVRAM */
1111 nvmem_cfg.size = address_space - NVRAM_OFFSET;
1112 devm_rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg);
1113
1114 /*
1115 * Everything has gone well so far, so by default register a handler for
1116 * the ACPI RTC fixed event.
1117 */
1118 if (!info)
1119 acpi_rtc_event_setup(dev);
1120
1121 dev_info(dev, "%s%s, %d bytes nvram%s\n",
1122 !is_valid_irq(rtc_irq) ? "no alarms" :
1123 cmos_rtc.mon_alrm ? "alarms up to one year" :
1124 cmos_rtc.day_alrm ? "alarms up to one month" :
1125 "alarms up to one day",
1126 cmos_rtc.century ? ", y3k" : "",
1127 nvmem_cfg.size,
1128 use_hpet_alarm() ? ", hpet irqs" : "");
1129
1130 return 0;
1131
1132 cleanup2:
1133 if (is_valid_irq(rtc_irq))
1134 free_irq(rtc_irq, cmos_rtc.rtc);
1135 cleanup1:
1136 cmos_rtc.dev = NULL;
1137 cleanup0:
1138 if (RTC_IOMAPPED)
1139 release_region(ports->start, resource_size(ports));
1140 else
1141 release_mem_region(ports->start, resource_size(ports));
1142 return retval;
1143 }
1144
cmos_do_shutdown(int rtc_irq)1145 static void cmos_do_shutdown(int rtc_irq)
1146 {
1147 spin_lock_irq(&rtc_lock);
1148 if (is_valid_irq(rtc_irq))
1149 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
1150 spin_unlock_irq(&rtc_lock);
1151 }
1152
cmos_do_remove(struct device * dev)1153 static void cmos_do_remove(struct device *dev)
1154 {
1155 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1156 struct resource *ports;
1157
1158 cmos_do_shutdown(cmos->irq);
1159
1160 if (is_valid_irq(cmos->irq)) {
1161 free_irq(cmos->irq, cmos->rtc);
1162 if (use_hpet_alarm())
1163 hpet_unregister_irq_handler(cmos_interrupt);
1164 }
1165
1166 if (!dev_get_platdata(dev))
1167 acpi_rtc_event_cleanup();
1168
1169 cmos->rtc = NULL;
1170
1171 ports = cmos->iomem;
1172 if (RTC_IOMAPPED)
1173 release_region(ports->start, resource_size(ports));
1174 else
1175 release_mem_region(ports->start, resource_size(ports));
1176 cmos->iomem = NULL;
1177
1178 cmos->dev = NULL;
1179 }
1180
cmos_aie_poweroff(struct device * dev)1181 static int cmos_aie_poweroff(struct device *dev)
1182 {
1183 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1184 struct rtc_time now;
1185 time64_t t_now;
1186 int retval = 0;
1187 unsigned char rtc_control;
1188
1189 if (!cmos->alarm_expires)
1190 return -EINVAL;
1191
1192 spin_lock_irq(&rtc_lock);
1193 rtc_control = CMOS_READ(RTC_CONTROL);
1194 spin_unlock_irq(&rtc_lock);
1195
1196 /* We only care about the situation where AIE is disabled. */
1197 if (rtc_control & RTC_AIE)
1198 return -EBUSY;
1199
1200 cmos_read_time(dev, &now);
1201 t_now = rtc_tm_to_time64(&now);
1202
1203 /*
1204 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
1205 * automatically right after shutdown on some buggy boxes.
1206 * This automatic rebooting issue won't happen when the alarm
1207 * time is larger than now+1 seconds.
1208 *
1209 * If the alarm time is equal to now+1 seconds, the issue can be
1210 * prevented by cancelling the alarm.
1211 */
1212 if (cmos->alarm_expires == t_now + 1) {
1213 struct rtc_wkalrm alarm;
1214
1215 /* Cancel the AIE timer by configuring the past time. */
1216 rtc_time64_to_tm(t_now - 1, &alarm.time);
1217 alarm.enabled = 0;
1218 retval = cmos_set_alarm(dev, &alarm);
1219 } else if (cmos->alarm_expires > t_now + 1) {
1220 retval = -EBUSY;
1221 }
1222
1223 return retval;
1224 }
1225
cmos_suspend(struct device * dev)1226 static int cmos_suspend(struct device *dev)
1227 {
1228 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1229 unsigned char tmp;
1230
1231 /* only the alarm might be a wakeup event source */
1232 spin_lock_irq(&rtc_lock);
1233 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
1234 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
1235 unsigned char mask;
1236
1237 if (device_may_wakeup(dev))
1238 mask = RTC_IRQMASK & ~RTC_AIE;
1239 else
1240 mask = RTC_IRQMASK;
1241 tmp &= ~mask;
1242 CMOS_WRITE(tmp, RTC_CONTROL);
1243 if (use_hpet_alarm())
1244 hpet_mask_rtc_irq_bit(mask);
1245 cmos_checkintr(cmos, tmp);
1246 }
1247 spin_unlock_irq(&rtc_lock);
1248
1249 if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
1250 cmos->enabled_wake = 1;
1251 if (cmos->wake_on)
1252 cmos->wake_on(dev);
1253 else
1254 enable_irq_wake(cmos->irq);
1255 }
1256
1257 memset(&cmos->saved_wkalrm, 0, sizeof(struct rtc_wkalrm));
1258 cmos_read_alarm(dev, &cmos->saved_wkalrm);
1259
1260 dev_dbg(dev, "suspend%s, ctrl %02x\n",
1261 (tmp & RTC_AIE) ? ", alarm may wake" : "",
1262 tmp);
1263
1264 return 0;
1265 }
1266
1267 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1268 * after a detour through G3 "mechanical off", although the ACPI spec
1269 * says wakeup should only work from G1/S4 "hibernate". To most users,
1270 * distinctions between S4 and S5 are pointless. So when the hardware
1271 * allows, don't draw that distinction.
1272 */
cmos_poweroff(struct device * dev)1273 static inline int cmos_poweroff(struct device *dev)
1274 {
1275 if (!IS_ENABLED(CONFIG_PM))
1276 return -ENOSYS;
1277
1278 return cmos_suspend(dev);
1279 }
1280
cmos_check_wkalrm(struct device * dev)1281 static void cmos_check_wkalrm(struct device *dev)
1282 {
1283 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1284 struct rtc_wkalrm current_alarm;
1285 time64_t t_now;
1286 time64_t t_current_expires;
1287 time64_t t_saved_expires;
1288 struct rtc_time now;
1289
1290 /* Check if we have RTC Alarm armed */
1291 if (!(cmos->suspend_ctrl & RTC_AIE))
1292 return;
1293
1294 cmos_read_time(dev, &now);
1295 t_now = rtc_tm_to_time64(&now);
1296
1297 /*
1298 * ACPI RTC wake event is cleared after resume from STR,
1299 * ACK the rtc irq here
1300 */
1301 if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
1302 cmos_interrupt(0, (void *)cmos->rtc);
1303 return;
1304 }
1305
1306 memset(¤t_alarm, 0, sizeof(struct rtc_wkalrm));
1307 cmos_read_alarm(dev, ¤t_alarm);
1308 t_current_expires = rtc_tm_to_time64(¤t_alarm.time);
1309 t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1310 if (t_current_expires != t_saved_expires ||
1311 cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1312 cmos_set_alarm(dev, &cmos->saved_wkalrm);
1313 }
1314 }
1315
cmos_resume(struct device * dev)1316 static int __maybe_unused cmos_resume(struct device *dev)
1317 {
1318 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1319 unsigned char tmp;
1320
1321 if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
1322 if (cmos->wake_off)
1323 cmos->wake_off(dev);
1324 else
1325 disable_irq_wake(cmos->irq);
1326 cmos->enabled_wake = 0;
1327 }
1328
1329 /* The BIOS might have changed the alarm, restore it */
1330 cmos_check_wkalrm(dev);
1331
1332 spin_lock_irq(&rtc_lock);
1333 tmp = cmos->suspend_ctrl;
1334 cmos->suspend_ctrl = 0;
1335 /* re-enable any irqs previously active */
1336 if (tmp & RTC_IRQMASK) {
1337 unsigned char mask;
1338
1339 if (device_may_wakeup(dev) && use_hpet_alarm())
1340 hpet_rtc_timer_init();
1341
1342 do {
1343 CMOS_WRITE(tmp, RTC_CONTROL);
1344 if (use_hpet_alarm())
1345 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1346
1347 mask = CMOS_READ(RTC_INTR_FLAGS);
1348 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1349 if (!use_hpet_alarm() || !is_intr(mask))
1350 break;
1351
1352 /* force one-shot behavior if HPET blocked
1353 * the wake alarm's irq
1354 */
1355 rtc_update_irq(cmos->rtc, 1, mask);
1356 tmp &= ~RTC_AIE;
1357 hpet_mask_rtc_irq_bit(RTC_AIE);
1358 } while (mask & RTC_AIE);
1359
1360 if (tmp & RTC_AIE)
1361 cmos_check_acpi_rtc_status(dev, &tmp);
1362 }
1363 spin_unlock_irq(&rtc_lock);
1364
1365 dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1366
1367 return 0;
1368 }
1369
1370 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1371
1372 /*----------------------------------------------------------------*/
1373
1374 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1375 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1376 * probably list them in similar PNPBIOS tables; so PNP is more common.
1377 *
1378 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
1379 * predate even PNPBIOS should set up platform_bus devices.
1380 */
1381
1382 #ifdef CONFIG_PNP
1383
1384 #include <linux/pnp.h>
1385
cmos_pnp_probe(struct pnp_dev * pnp,const struct pnp_device_id * id)1386 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1387 {
1388 int irq;
1389
1390 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1391 irq = 0;
1392 #ifdef CONFIG_X86
1393 /* Some machines contain a PNP entry for the RTC, but
1394 * don't define the IRQ. It should always be safe to
1395 * hardcode it on systems with a legacy PIC.
1396 */
1397 if (nr_legacy_irqs())
1398 irq = RTC_IRQ;
1399 #endif
1400 } else {
1401 irq = pnp_irq(pnp, 0);
1402 }
1403
1404 return cmos_do_probe(&pnp->dev, pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1405 }
1406
cmos_pnp_remove(struct pnp_dev * pnp)1407 static void cmos_pnp_remove(struct pnp_dev *pnp)
1408 {
1409 cmos_do_remove(&pnp->dev);
1410 }
1411
cmos_pnp_shutdown(struct pnp_dev * pnp)1412 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1413 {
1414 struct device *dev = &pnp->dev;
1415 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1416
1417 if (system_state == SYSTEM_POWER_OFF) {
1418 int retval = cmos_poweroff(dev);
1419
1420 if (cmos_aie_poweroff(dev) < 0 && !retval)
1421 return;
1422 }
1423
1424 cmos_do_shutdown(cmos->irq);
1425 }
1426
1427 static const struct pnp_device_id rtc_ids[] = {
1428 { .id = "PNP0b00", },
1429 { .id = "PNP0b01", },
1430 { .id = "PNP0b02", },
1431 { },
1432 };
1433 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1434
1435 static struct pnp_driver cmos_pnp_driver = {
1436 .name = driver_name,
1437 .id_table = rtc_ids,
1438 .probe = cmos_pnp_probe,
1439 .remove = cmos_pnp_remove,
1440 .shutdown = cmos_pnp_shutdown,
1441
1442 /* flag ensures resume() gets called, and stops syslog spam */
1443 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1444 .driver = {
1445 .pm = &cmos_pm_ops,
1446 },
1447 };
1448
1449 #endif /* CONFIG_PNP */
1450
1451 #ifdef CONFIG_OF
1452 static const struct of_device_id of_cmos_match[] = {
1453 {
1454 .compatible = "motorola,mc146818",
1455 },
1456 { },
1457 };
1458 MODULE_DEVICE_TABLE(of, of_cmos_match);
1459
cmos_of_init(struct platform_device * pdev)1460 static __init void cmos_of_init(struct platform_device *pdev)
1461 {
1462 struct device_node *node = pdev->dev.of_node;
1463 const __be32 *val;
1464
1465 if (!node)
1466 return;
1467
1468 val = of_get_property(node, "ctrl-reg", NULL);
1469 if (val)
1470 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1471
1472 val = of_get_property(node, "freq-reg", NULL);
1473 if (val)
1474 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1475 }
1476 #else
cmos_of_init(struct platform_device * pdev)1477 static inline void cmos_of_init(struct platform_device *pdev) {}
1478 #endif
1479 /*----------------------------------------------------------------*/
1480
1481 /* Platform setup should have set up an RTC device, when PNP is
1482 * unavailable ... this could happen even on (older) PCs.
1483 */
1484
cmos_platform_probe(struct platform_device * pdev)1485 static int __init cmos_platform_probe(struct platform_device *pdev)
1486 {
1487 struct resource *resource;
1488 int irq;
1489
1490 cmos_of_init(pdev);
1491
1492 if (RTC_IOMAPPED)
1493 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1494 else
1495 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1496 irq = platform_get_irq(pdev, 0);
1497 if (irq < 0)
1498 irq = -1;
1499
1500 return cmos_do_probe(&pdev->dev, resource, irq);
1501 }
1502
cmos_platform_remove(struct platform_device * pdev)1503 static void cmos_platform_remove(struct platform_device *pdev)
1504 {
1505 cmos_do_remove(&pdev->dev);
1506 }
1507
cmos_platform_shutdown(struct platform_device * pdev)1508 static void cmos_platform_shutdown(struct platform_device *pdev)
1509 {
1510 struct device *dev = &pdev->dev;
1511 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1512
1513 if (system_state == SYSTEM_POWER_OFF) {
1514 int retval = cmos_poweroff(dev);
1515
1516 if (cmos_aie_poweroff(dev) < 0 && !retval)
1517 return;
1518 }
1519
1520 cmos_do_shutdown(cmos->irq);
1521 }
1522
1523 /* work with hotplug and coldplug */
1524 MODULE_ALIAS("platform:rtc_cmos");
1525
1526 static struct platform_driver cmos_platform_driver = {
1527 .remove = cmos_platform_remove,
1528 .shutdown = cmos_platform_shutdown,
1529 .driver = {
1530 .name = driver_name,
1531 .pm = &cmos_pm_ops,
1532 .of_match_table = of_match_ptr(of_cmos_match),
1533 }
1534 };
1535
1536 #ifdef CONFIG_PNP
1537 static bool pnp_driver_registered;
1538 #endif
1539 static bool platform_driver_registered;
1540
cmos_init(void)1541 static int __init cmos_init(void)
1542 {
1543 int retval = 0;
1544
1545 #ifdef CONFIG_PNP
1546 retval = pnp_register_driver(&cmos_pnp_driver);
1547 if (retval == 0)
1548 pnp_driver_registered = true;
1549 #endif
1550
1551 if (!cmos_rtc.dev) {
1552 retval = platform_driver_probe(&cmos_platform_driver,
1553 cmos_platform_probe);
1554 if (retval == 0)
1555 platform_driver_registered = true;
1556 }
1557
1558 if (retval == 0)
1559 return 0;
1560
1561 #ifdef CONFIG_PNP
1562 if (pnp_driver_registered)
1563 pnp_unregister_driver(&cmos_pnp_driver);
1564 #endif
1565 return retval;
1566 }
1567 module_init(cmos_init);
1568
cmos_exit(void)1569 static void __exit cmos_exit(void)
1570 {
1571 #ifdef CONFIG_PNP
1572 if (pnp_driver_registered)
1573 pnp_unregister_driver(&cmos_pnp_driver);
1574 #endif
1575 if (platform_driver_registered)
1576 platform_driver_unregister(&cmos_platform_driver);
1577 }
1578 module_exit(cmos_exit);
1579
1580
1581 MODULE_AUTHOR("David Brownell");
1582 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1583 MODULE_LICENSE("GPL");
1584