xref: /linux/drivers/rtc/rtc-cmos.c (revision 4b424a3f7d91c4c694a36ecb30b978e30689cdae)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
4  *
5  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
6  * Copyright (C) 2006 David Brownell (convert to new framework)
7  */
8 
9 /*
10  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
11  * That defined the register interface now provided by all PCs, some
12  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
13  * integrate an MC146818 clone in their southbridge, and boards use
14  * that instead of discrete clones like the DS12887 or M48T86.  There
15  * are also clones that connect using the LPC bus.
16  *
17  * That register API is also used directly by various other drivers
18  * (notably for integrated NVRAM), infrastructure (x86 has code to
19  * bypass the RTC framework, directly reading the RTC during boot
20  * and updating minutes/seconds for systems using NTP synch) and
21  * utilities (like userspace 'hwclock', if no /dev node exists).
22  *
23  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
24  * interrupts disabled, holding the global rtc_lock, to exclude those
25  * other drivers and utilities on correctly configured systems.
26  */
27 
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/spinlock.h>
35 #include <linux/platform_device.h>
36 #include <linux/log2.h>
37 #include <linux/pm.h>
38 #include <linux/of.h>
39 #include <linux/of_platform.h>
40 #ifdef CONFIG_X86
41 #include <asm/i8259.h>
42 #include <asm/processor.h>
43 #include <linux/dmi.h>
44 #endif
45 
46 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
47 #include <linux/mc146818rtc.h>
48 
49 #ifdef CONFIG_ACPI
50 /*
51  * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
52  *
53  * If cleared, ACPI SCI is only used to wake up the system from suspend
54  *
55  * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
56  */
57 
58 static bool use_acpi_alarm;
59 module_param(use_acpi_alarm, bool, 0444);
60 
cmos_use_acpi_alarm(void)61 static inline int cmos_use_acpi_alarm(void)
62 {
63 	return use_acpi_alarm;
64 }
65 #else /* !CONFIG_ACPI */
66 
cmos_use_acpi_alarm(void)67 static inline int cmos_use_acpi_alarm(void)
68 {
69 	return 0;
70 }
71 #endif
72 
73 struct cmos_rtc {
74 	struct rtc_device	*rtc;
75 	struct device		*dev;
76 	int			irq;
77 	struct resource		*iomem;
78 	time64_t		alarm_expires;
79 
80 	void			(*wake_on)(struct device *);
81 	void			(*wake_off)(struct device *);
82 
83 	u8			enabled_wake;
84 	u8			suspend_ctrl;
85 
86 	/* newer hardware extends the original register set */
87 	u8			day_alrm;
88 	u8			mon_alrm;
89 	u8			century;
90 
91 	struct rtc_wkalrm	saved_wkalrm;
92 };
93 
94 /* both platform and pnp busses use negative numbers for invalid irqs */
95 #define is_valid_irq(n)		((n) > 0)
96 
97 static const char driver_name[] = "rtc_cmos";
98 
99 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
100  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
101  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
102  */
103 #define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
104 
is_intr(u8 rtc_intr)105 static inline int is_intr(u8 rtc_intr)
106 {
107 	if (!(rtc_intr & RTC_IRQF))
108 		return 0;
109 	return rtc_intr & RTC_IRQMASK;
110 }
111 
112 /*----------------------------------------------------------------*/
113 
114 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
115  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
116  * used in a broken "legacy replacement" mode.  The breakage includes
117  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
118  * other (better) use.
119  *
120  * When that broken mode is in use, platform glue provides a partial
121  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
122  * want to use HPET for anything except those IRQs though...
123  */
124 #ifdef CONFIG_HPET_EMULATE_RTC
125 #include <asm/hpet.h>
126 #else
127 
is_hpet_enabled(void)128 static inline int is_hpet_enabled(void)
129 {
130 	return 0;
131 }
132 
hpet_mask_rtc_irq_bit(unsigned long mask)133 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
134 {
135 	return 0;
136 }
137 
hpet_set_rtc_irq_bit(unsigned long mask)138 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
139 {
140 	return 0;
141 }
142 
143 static inline int
hpet_set_alarm_time(unsigned char hrs,unsigned char min,unsigned char sec)144 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
145 {
146 	return 0;
147 }
148 
hpet_set_periodic_freq(unsigned long freq)149 static inline int hpet_set_periodic_freq(unsigned long freq)
150 {
151 	return 0;
152 }
153 
hpet_rtc_timer_init(void)154 static inline int hpet_rtc_timer_init(void)
155 {
156 	return 0;
157 }
158 
159 extern irq_handler_t hpet_rtc_interrupt;
160 
hpet_register_irq_handler(irq_handler_t handler)161 static inline int hpet_register_irq_handler(irq_handler_t handler)
162 {
163 	return 0;
164 }
165 
hpet_unregister_irq_handler(irq_handler_t handler)166 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
167 {
168 	return 0;
169 }
170 
171 #endif
172 
173 /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
use_hpet_alarm(void)174 static inline int use_hpet_alarm(void)
175 {
176 	return is_hpet_enabled() && !cmos_use_acpi_alarm();
177 }
178 
179 /*----------------------------------------------------------------*/
180 
181 #ifdef RTC_PORT
182 
183 /* Most newer x86 systems have two register banks, the first used
184  * for RTC and NVRAM and the second only for NVRAM.  Caller must
185  * own rtc_lock ... and we won't worry about access during NMI.
186  */
187 #define can_bank2	true
188 
cmos_read_bank2(unsigned char addr)189 static inline unsigned char cmos_read_bank2(unsigned char addr)
190 {
191 	outb(addr, RTC_PORT(2));
192 	return inb(RTC_PORT(3));
193 }
194 
cmos_write_bank2(unsigned char val,unsigned char addr)195 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
196 {
197 	outb(addr, RTC_PORT(2));
198 	outb(val, RTC_PORT(3));
199 }
200 
201 #else
202 
203 #define can_bank2	false
204 
cmos_read_bank2(unsigned char addr)205 static inline unsigned char cmos_read_bank2(unsigned char addr)
206 {
207 	return 0;
208 }
209 
cmos_write_bank2(unsigned char val,unsigned char addr)210 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
211 {
212 }
213 
214 #endif
215 
216 /*----------------------------------------------------------------*/
217 
cmos_read_time(struct device * dev,struct rtc_time * t)218 static int cmos_read_time(struct device *dev, struct rtc_time *t)
219 {
220 	int ret;
221 
222 	/*
223 	 * If pm_trace abused the RTC for storage, set the timespec to 0,
224 	 * which tells the caller that this RTC value is unusable.
225 	 */
226 	if (!pm_trace_rtc_valid())
227 		return -EIO;
228 
229 	ret = mc146818_get_time(t, 1000);
230 	if (ret < 0) {
231 		dev_err_ratelimited(dev, "unable to read current time\n");
232 		return ret;
233 	}
234 
235 	return 0;
236 }
237 
cmos_set_time(struct device * dev,struct rtc_time * t)238 static int cmos_set_time(struct device *dev, struct rtc_time *t)
239 {
240 	/* NOTE: this ignores the issue whereby updating the seconds
241 	 * takes effect exactly 500ms after we write the register.
242 	 * (Also queueing and other delays before we get this far.)
243 	 */
244 	return mc146818_set_time(t);
245 }
246 
247 struct cmos_read_alarm_callback_param {
248 	struct cmos_rtc *cmos;
249 	struct rtc_time *time;
250 	unsigned char	rtc_control;
251 };
252 
cmos_read_alarm_callback(unsigned char __always_unused seconds,void * param_in)253 static void cmos_read_alarm_callback(unsigned char __always_unused seconds,
254 				     void *param_in)
255 {
256 	struct cmos_read_alarm_callback_param *p =
257 		(struct cmos_read_alarm_callback_param *)param_in;
258 	struct rtc_time *time = p->time;
259 
260 	time->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
261 	time->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
262 	time->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
263 
264 	if (p->cmos->day_alrm) {
265 		/* ignore upper bits on readback per ACPI spec */
266 		time->tm_mday = CMOS_READ(p->cmos->day_alrm) & 0x3f;
267 		if (!time->tm_mday)
268 			time->tm_mday = -1;
269 
270 		if (p->cmos->mon_alrm) {
271 			time->tm_mon = CMOS_READ(p->cmos->mon_alrm);
272 			if (!time->tm_mon)
273 				time->tm_mon = -1;
274 		}
275 	}
276 
277 	p->rtc_control = CMOS_READ(RTC_CONTROL);
278 }
279 
cmos_read_alarm(struct device * dev,struct rtc_wkalrm * t)280 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
281 {
282 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
283 	struct cmos_read_alarm_callback_param p = {
284 		.cmos = cmos,
285 		.time = &t->time,
286 	};
287 
288 	/* This not only a rtc_op, but also called directly */
289 	if (!is_valid_irq(cmos->irq))
290 		return -ETIMEDOUT;
291 
292 	/* Basic alarms only support hour, minute, and seconds fields.
293 	 * Some also support day and month, for alarms up to a year in
294 	 * the future.
295 	 */
296 
297 	/* Some Intel chipsets disconnect the alarm registers when the clock
298 	 * update is in progress - during this time reads return bogus values
299 	 * and writes may fail silently. See for example "7th Generation Intel®
300 	 * Processor Family I/O for U/Y Platforms [...] Datasheet", section
301 	 * 27.7.1
302 	 *
303 	 * Use the mc146818_avoid_UIP() function to avoid this.
304 	 */
305 	if (!mc146818_avoid_UIP(cmos_read_alarm_callback, 10, &p))
306 		return -EIO;
307 
308 	if (!(p.rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
309 		if (((unsigned)t->time.tm_sec) < 0x60)
310 			t->time.tm_sec = bcd2bin(t->time.tm_sec);
311 		else
312 			t->time.tm_sec = -1;
313 		if (((unsigned)t->time.tm_min) < 0x60)
314 			t->time.tm_min = bcd2bin(t->time.tm_min);
315 		else
316 			t->time.tm_min = -1;
317 		if (((unsigned)t->time.tm_hour) < 0x24)
318 			t->time.tm_hour = bcd2bin(t->time.tm_hour);
319 		else
320 			t->time.tm_hour = -1;
321 
322 		if (cmos->day_alrm) {
323 			if (((unsigned)t->time.tm_mday) <= 0x31)
324 				t->time.tm_mday = bcd2bin(t->time.tm_mday);
325 			else
326 				t->time.tm_mday = -1;
327 
328 			if (cmos->mon_alrm) {
329 				if (((unsigned)t->time.tm_mon) <= 0x12)
330 					t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
331 				else
332 					t->time.tm_mon = -1;
333 			}
334 		}
335 	}
336 
337 	t->enabled = !!(p.rtc_control & RTC_AIE);
338 	t->pending = 0;
339 
340 	return 0;
341 }
342 
cmos_checkintr(struct cmos_rtc * cmos,unsigned char rtc_control)343 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
344 {
345 	unsigned char	rtc_intr;
346 
347 	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
348 	 * allegedly some older rtcs need that to handle irqs properly
349 	 */
350 	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
351 
352 	if (use_hpet_alarm())
353 		return;
354 
355 	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
356 	if (is_intr(rtc_intr))
357 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
358 }
359 
cmos_irq_enable(struct cmos_rtc * cmos,unsigned char mask)360 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
361 {
362 	unsigned char	rtc_control;
363 
364 	/* flush any pending IRQ status, notably for update irqs,
365 	 * before we enable new IRQs
366 	 */
367 	rtc_control = CMOS_READ(RTC_CONTROL);
368 	cmos_checkintr(cmos, rtc_control);
369 
370 	rtc_control |= mask;
371 	CMOS_WRITE(rtc_control, RTC_CONTROL);
372 	if (use_hpet_alarm())
373 		hpet_set_rtc_irq_bit(mask);
374 
375 	if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
376 		if (cmos->wake_on)
377 			cmos->wake_on(cmos->dev);
378 	}
379 
380 	cmos_checkintr(cmos, rtc_control);
381 }
382 
cmos_irq_disable(struct cmos_rtc * cmos,unsigned char mask)383 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
384 {
385 	unsigned char	rtc_control;
386 
387 	rtc_control = CMOS_READ(RTC_CONTROL);
388 	rtc_control &= ~mask;
389 	CMOS_WRITE(rtc_control, RTC_CONTROL);
390 	if (use_hpet_alarm())
391 		hpet_mask_rtc_irq_bit(mask);
392 
393 	if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
394 		if (cmos->wake_off)
395 			cmos->wake_off(cmos->dev);
396 	}
397 
398 	cmos_checkintr(cmos, rtc_control);
399 }
400 
cmos_validate_alarm(struct device * dev,struct rtc_wkalrm * t)401 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
402 {
403 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
404 	struct rtc_time now;
405 
406 	cmos_read_time(dev, &now);
407 
408 	if (!cmos->day_alrm) {
409 		time64_t t_max_date;
410 		time64_t t_alrm;
411 
412 		t_max_date = rtc_tm_to_time64(&now);
413 		t_max_date += 24 * 60 * 60 - 1;
414 		t_alrm = rtc_tm_to_time64(&t->time);
415 		if (t_alrm > t_max_date) {
416 			dev_err(dev,
417 				"Alarms can be up to one day in the future\n");
418 			return -EINVAL;
419 		}
420 	} else if (!cmos->mon_alrm) {
421 		struct rtc_time max_date = now;
422 		time64_t t_max_date;
423 		time64_t t_alrm;
424 		int max_mday;
425 
426 		if (max_date.tm_mon == 11) {
427 			max_date.tm_mon = 0;
428 			max_date.tm_year += 1;
429 		} else {
430 			max_date.tm_mon += 1;
431 		}
432 		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
433 		if (max_date.tm_mday > max_mday)
434 			max_date.tm_mday = max_mday;
435 
436 		t_max_date = rtc_tm_to_time64(&max_date);
437 		t_max_date -= 1;
438 		t_alrm = rtc_tm_to_time64(&t->time);
439 		if (t_alrm > t_max_date) {
440 			dev_err(dev,
441 				"Alarms can be up to one month in the future\n");
442 			return -EINVAL;
443 		}
444 	} else {
445 		struct rtc_time max_date = now;
446 		time64_t t_max_date;
447 		time64_t t_alrm;
448 		int max_mday;
449 
450 		max_date.tm_year += 1;
451 		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
452 		if (max_date.tm_mday > max_mday)
453 			max_date.tm_mday = max_mday;
454 
455 		t_max_date = rtc_tm_to_time64(&max_date);
456 		t_max_date -= 1;
457 		t_alrm = rtc_tm_to_time64(&t->time);
458 		if (t_alrm > t_max_date) {
459 			dev_err(dev,
460 				"Alarms can be up to one year in the future\n");
461 			return -EINVAL;
462 		}
463 	}
464 
465 	return 0;
466 }
467 
468 struct cmos_set_alarm_callback_param {
469 	struct cmos_rtc *cmos;
470 	unsigned char mon, mday, hrs, min, sec;
471 	struct rtc_wkalrm *t;
472 };
473 
474 /* Note: this function may be executed by mc146818_avoid_UIP() more then
475  *	 once
476  */
cmos_set_alarm_callback(unsigned char __always_unused seconds,void * param_in)477 static void cmos_set_alarm_callback(unsigned char __always_unused seconds,
478 				    void *param_in)
479 {
480 	struct cmos_set_alarm_callback_param *p =
481 		(struct cmos_set_alarm_callback_param *)param_in;
482 
483 	/* next rtc irq must not be from previous alarm setting */
484 	cmos_irq_disable(p->cmos, RTC_AIE);
485 
486 	/* update alarm */
487 	CMOS_WRITE(p->hrs, RTC_HOURS_ALARM);
488 	CMOS_WRITE(p->min, RTC_MINUTES_ALARM);
489 	CMOS_WRITE(p->sec, RTC_SECONDS_ALARM);
490 
491 	/* the system may support an "enhanced" alarm */
492 	if (p->cmos->day_alrm) {
493 		CMOS_WRITE(p->mday, p->cmos->day_alrm);
494 		if (p->cmos->mon_alrm)
495 			CMOS_WRITE(p->mon, p->cmos->mon_alrm);
496 	}
497 
498 	if (use_hpet_alarm()) {
499 		/*
500 		 * FIXME the HPET alarm glue currently ignores day_alrm
501 		 * and mon_alrm ...
502 		 */
503 		hpet_set_alarm_time(p->t->time.tm_hour, p->t->time.tm_min,
504 				    p->t->time.tm_sec);
505 	}
506 
507 	if (p->t->enabled)
508 		cmos_irq_enable(p->cmos, RTC_AIE);
509 }
510 
cmos_set_alarm(struct device * dev,struct rtc_wkalrm * t)511 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
512 {
513 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
514 	struct cmos_set_alarm_callback_param p = {
515 		.cmos = cmos,
516 		.t = t
517 	};
518 	unsigned char rtc_control;
519 	int ret;
520 
521 	/* This not only a rtc_op, but also called directly */
522 	if (!is_valid_irq(cmos->irq))
523 		return -EIO;
524 
525 	ret = cmos_validate_alarm(dev, t);
526 	if (ret < 0)
527 		return ret;
528 
529 	p.mon = t->time.tm_mon + 1;
530 	p.mday = t->time.tm_mday;
531 	p.hrs = t->time.tm_hour;
532 	p.min = t->time.tm_min;
533 	p.sec = t->time.tm_sec;
534 
535 	spin_lock_irq(&rtc_lock);
536 	rtc_control = CMOS_READ(RTC_CONTROL);
537 	spin_unlock_irq(&rtc_lock);
538 
539 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
540 		/* Writing 0xff means "don't care" or "match all".  */
541 		p.mon = (p.mon <= 12) ? bin2bcd(p.mon) : 0xff;
542 		p.mday = (p.mday >= 1 && p.mday <= 31) ? bin2bcd(p.mday) : 0xff;
543 		p.hrs = (p.hrs < 24) ? bin2bcd(p.hrs) : 0xff;
544 		p.min = (p.min < 60) ? bin2bcd(p.min) : 0xff;
545 		p.sec = (p.sec < 60) ? bin2bcd(p.sec) : 0xff;
546 	}
547 
548 	/*
549 	 * Some Intel chipsets disconnect the alarm registers when the clock
550 	 * update is in progress - during this time writes fail silently.
551 	 *
552 	 * Use mc146818_avoid_UIP() to avoid this.
553 	 */
554 	if (!mc146818_avoid_UIP(cmos_set_alarm_callback, 10, &p))
555 		return -ETIMEDOUT;
556 
557 	cmos->alarm_expires = rtc_tm_to_time64(&t->time);
558 
559 	return 0;
560 }
561 
cmos_alarm_irq_enable(struct device * dev,unsigned int enabled)562 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
563 {
564 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
565 	unsigned long	flags;
566 
567 	spin_lock_irqsave(&rtc_lock, flags);
568 
569 	if (enabled)
570 		cmos_irq_enable(cmos, RTC_AIE);
571 	else
572 		cmos_irq_disable(cmos, RTC_AIE);
573 
574 	spin_unlock_irqrestore(&rtc_lock, flags);
575 	return 0;
576 }
577 
578 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
579 
cmos_procfs(struct device * dev,struct seq_file * seq)580 static int cmos_procfs(struct device *dev, struct seq_file *seq)
581 {
582 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
583 	unsigned char	rtc_control, valid;
584 
585 	spin_lock_irq(&rtc_lock);
586 	rtc_control = CMOS_READ(RTC_CONTROL);
587 	valid = CMOS_READ(RTC_VALID);
588 	spin_unlock_irq(&rtc_lock);
589 
590 	/* NOTE:  at least ICH6 reports battery status using a different
591 	 * (non-RTC) bit; and SQWE is ignored on many current systems.
592 	 */
593 	seq_printf(seq,
594 		   "periodic_IRQ\t: %s\n"
595 		   "update_IRQ\t: %s\n"
596 		   "HPET_emulated\t: %s\n"
597 		   // "square_wave\t: %s\n"
598 		   "BCD\t\t: %s\n"
599 		   "DST_enable\t: %s\n"
600 		   "periodic_freq\t: %d\n"
601 		   "batt_status\t: %s\n",
602 		   (rtc_control & RTC_PIE) ? "yes" : "no",
603 		   (rtc_control & RTC_UIE) ? "yes" : "no",
604 		   use_hpet_alarm() ? "yes" : "no",
605 		   // (rtc_control & RTC_SQWE) ? "yes" : "no",
606 		   (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
607 		   (rtc_control & RTC_DST_EN) ? "yes" : "no",
608 		   cmos->rtc->irq_freq,
609 		   (valid & RTC_VRT) ? "okay" : "dead");
610 
611 	return 0;
612 }
613 
614 #else
615 #define	cmos_procfs	NULL
616 #endif
617 
618 static const struct rtc_class_ops cmos_rtc_ops = {
619 	.read_time		= cmos_read_time,
620 	.set_time		= cmos_set_time,
621 	.read_alarm		= cmos_read_alarm,
622 	.set_alarm		= cmos_set_alarm,
623 	.proc			= cmos_procfs,
624 	.alarm_irq_enable	= cmos_alarm_irq_enable,
625 };
626 
627 /*----------------------------------------------------------------*/
628 
629 /*
630  * All these chips have at least 64 bytes of address space, shared by
631  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
632  * by boot firmware.  Modern chips have 128 or 256 bytes.
633  */
634 
635 #define NVRAM_OFFSET	(RTC_REG_D + 1)
636 
cmos_nvram_read(void * priv,unsigned int off,void * val,size_t count)637 static int cmos_nvram_read(void *priv, unsigned int off, void *val,
638 			   size_t count)
639 {
640 	unsigned char *buf = val;
641 
642 	off += NVRAM_OFFSET;
643 	for (; count; count--, off++, buf++) {
644 		guard(spinlock_irq)(&rtc_lock);
645 		if (off < 128)
646 			*buf = CMOS_READ(off);
647 		else if (can_bank2)
648 			*buf = cmos_read_bank2(off);
649 		else
650 			return -EIO;
651 	}
652 
653 	return 0;
654 }
655 
cmos_nvram_write(void * priv,unsigned int off,void * val,size_t count)656 static int cmos_nvram_write(void *priv, unsigned int off, void *val,
657 			    size_t count)
658 {
659 	struct cmos_rtc	*cmos = priv;
660 	unsigned char	*buf = val;
661 
662 	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
663 	 * checksum on part of the NVRAM data.  That's currently ignored
664 	 * here.  If userspace is smart enough to know what fields of
665 	 * NVRAM to update, updating checksums is also part of its job.
666 	 */
667 	off += NVRAM_OFFSET;
668 	for (; count; count--, off++, buf++) {
669 		/* don't trash RTC registers */
670 		if (off == cmos->day_alrm
671 				|| off == cmos->mon_alrm
672 				|| off == cmos->century)
673 			continue;
674 
675 		guard(spinlock_irq)(&rtc_lock);
676 		if (off < 128)
677 			CMOS_WRITE(*buf, off);
678 		else if (can_bank2)
679 			cmos_write_bank2(*buf, off);
680 		else
681 			return -EIO;
682 	}
683 
684 	return 0;
685 }
686 
687 /*----------------------------------------------------------------*/
688 
689 static struct cmos_rtc	cmos_rtc;
690 
cmos_interrupt(int irq,void * p)691 static irqreturn_t cmos_interrupt(int irq, void *p)
692 {
693 	u8		irqstat;
694 	u8		rtc_control;
695 	unsigned long	flags;
696 
697 	/* We cannot use spin_lock() here, as cmos_interrupt() is also called
698 	 * in a non-irq context.
699 	 */
700 	spin_lock_irqsave(&rtc_lock, flags);
701 
702 	/* When the HPET interrupt handler calls us, the interrupt
703 	 * status is passed as arg1 instead of the irq number.  But
704 	 * always clear irq status, even when HPET is in the way.
705 	 *
706 	 * Note that HPET and RTC are almost certainly out of phase,
707 	 * giving different IRQ status ...
708 	 */
709 	irqstat = CMOS_READ(RTC_INTR_FLAGS);
710 	rtc_control = CMOS_READ(RTC_CONTROL);
711 	if (use_hpet_alarm())
712 		irqstat = (unsigned long)irq & 0xF0;
713 
714 	/* If we were suspended, RTC_CONTROL may not be accurate since the
715 	 * bios may have cleared it.
716 	 */
717 	if (!cmos_rtc.suspend_ctrl)
718 		irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
719 	else
720 		irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
721 
722 	/* All Linux RTC alarms should be treated as if they were oneshot.
723 	 * Similar code may be needed in system wakeup paths, in case the
724 	 * alarm woke the system.
725 	 */
726 	if (irqstat & RTC_AIE) {
727 		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
728 		rtc_control &= ~RTC_AIE;
729 		CMOS_WRITE(rtc_control, RTC_CONTROL);
730 		if (use_hpet_alarm())
731 			hpet_mask_rtc_irq_bit(RTC_AIE);
732 		CMOS_READ(RTC_INTR_FLAGS);
733 	}
734 	spin_unlock_irqrestore(&rtc_lock, flags);
735 
736 	if (is_intr(irqstat)) {
737 		rtc_update_irq(p, 1, irqstat);
738 		return IRQ_HANDLED;
739 	} else
740 		return IRQ_NONE;
741 }
742 
743 #ifdef	CONFIG_ACPI
744 
745 #include <linux/acpi.h>
746 
rtc_handler(void * context)747 static u32 rtc_handler(void *context)
748 {
749 	struct device *dev = context;
750 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
751 	unsigned char rtc_control = 0;
752 	unsigned char rtc_intr;
753 	unsigned long flags;
754 
755 
756 	/*
757 	 * Always update rtc irq when ACPI is used as RTC Alarm.
758 	 * Or else, ACPI SCI is enabled during suspend/resume only,
759 	 * update rtc irq in that case.
760 	 */
761 	if (cmos_use_acpi_alarm())
762 		cmos_interrupt(0, (void *)cmos->rtc);
763 	else {
764 		/* Fix me: can we use cmos_interrupt() here as well? */
765 		spin_lock_irqsave(&rtc_lock, flags);
766 		if (cmos_rtc.suspend_ctrl)
767 			rtc_control = CMOS_READ(RTC_CONTROL);
768 		if (rtc_control & RTC_AIE) {
769 			cmos_rtc.suspend_ctrl &= ~RTC_AIE;
770 			CMOS_WRITE(rtc_control, RTC_CONTROL);
771 			rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
772 			rtc_update_irq(cmos->rtc, 1, rtc_intr);
773 		}
774 		spin_unlock_irqrestore(&rtc_lock, flags);
775 	}
776 
777 	pm_wakeup_hard_event(dev);
778 	acpi_clear_event(ACPI_EVENT_RTC);
779 	acpi_disable_event(ACPI_EVENT_RTC, 0);
780 	return ACPI_INTERRUPT_HANDLED;
781 }
782 
acpi_rtc_event_setup(struct device * dev)783 static void acpi_rtc_event_setup(struct device *dev)
784 {
785 	if (acpi_disabled)
786 		return;
787 
788 	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
789 	/*
790 	 * After the RTC handler is installed, the Fixed_RTC event should
791 	 * be disabled. Only when the RTC alarm is set will it be enabled.
792 	 */
793 	acpi_clear_event(ACPI_EVENT_RTC);
794 	acpi_disable_event(ACPI_EVENT_RTC, 0);
795 }
796 
acpi_rtc_event_cleanup(void)797 static void acpi_rtc_event_cleanup(void)
798 {
799 	if (acpi_disabled)
800 		return;
801 
802 	acpi_remove_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler);
803 }
804 
rtc_wake_on(struct device * dev)805 static void rtc_wake_on(struct device *dev)
806 {
807 	acpi_clear_event(ACPI_EVENT_RTC);
808 	acpi_enable_event(ACPI_EVENT_RTC, 0);
809 }
810 
rtc_wake_off(struct device * dev)811 static void rtc_wake_off(struct device *dev)
812 {
813 	acpi_disable_event(ACPI_EVENT_RTC, 0);
814 }
815 
816 #ifdef CONFIG_X86
use_acpi_alarm_quirks(void)817 static void use_acpi_alarm_quirks(void)
818 {
819 	switch (boot_cpu_data.x86_vendor) {
820 	case X86_VENDOR_INTEL:
821 		if (dmi_get_bios_year() < 2015)
822 			return;
823 		break;
824 	case X86_VENDOR_AMD:
825 	case X86_VENDOR_HYGON:
826 		if (dmi_get_bios_year() < 2021)
827 			return;
828 		break;
829 	default:
830 		return;
831 	}
832 	if (!is_hpet_enabled())
833 		return;
834 
835 	use_acpi_alarm = true;
836 }
837 #else
use_acpi_alarm_quirks(void)838 static inline void use_acpi_alarm_quirks(void) { }
839 #endif
840 
acpi_cmos_wake_setup(struct device * dev)841 static void acpi_cmos_wake_setup(struct device *dev)
842 {
843 	if (acpi_disabled)
844 		return;
845 
846 	use_acpi_alarm_quirks();
847 
848 	cmos_rtc.wake_on = rtc_wake_on;
849 	cmos_rtc.wake_off = rtc_wake_off;
850 
851 	/* ACPI tables bug workaround. */
852 	if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
853 		dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
854 			acpi_gbl_FADT.month_alarm);
855 		acpi_gbl_FADT.month_alarm = 0;
856 	}
857 
858 	cmos_rtc.day_alrm = acpi_gbl_FADT.day_alarm;
859 	cmos_rtc.mon_alrm = acpi_gbl_FADT.month_alarm;
860 	cmos_rtc.century = acpi_gbl_FADT.century;
861 
862 	if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
863 		dev_info(dev, "RTC can wake from S4\n");
864 
865 	/* RTC always wakes from S1/S2/S3, and often S4/STD */
866 	device_init_wakeup(dev, true);
867 }
868 
cmos_check_acpi_rtc_status(struct device * dev,unsigned char * rtc_control)869 static void cmos_check_acpi_rtc_status(struct device *dev,
870 					      unsigned char *rtc_control)
871 {
872 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
873 	acpi_event_status rtc_status;
874 	acpi_status status;
875 
876 	if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
877 		return;
878 
879 	status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
880 	if (ACPI_FAILURE(status)) {
881 		dev_err(dev, "Could not get RTC status\n");
882 	} else if (rtc_status & ACPI_EVENT_FLAG_SET) {
883 		unsigned char mask;
884 		*rtc_control &= ~RTC_AIE;
885 		CMOS_WRITE(*rtc_control, RTC_CONTROL);
886 		mask = CMOS_READ(RTC_INTR_FLAGS);
887 		rtc_update_irq(cmos->rtc, 1, mask);
888 	}
889 }
890 
891 #else /* !CONFIG_ACPI */
892 
acpi_rtc_event_setup(struct device * dev)893 static inline void acpi_rtc_event_setup(struct device *dev)
894 {
895 }
896 
acpi_rtc_event_cleanup(void)897 static inline void acpi_rtc_event_cleanup(void)
898 {
899 }
900 
acpi_cmos_wake_setup(struct device * dev)901 static inline void acpi_cmos_wake_setup(struct device *dev)
902 {
903 }
904 
cmos_check_acpi_rtc_status(struct device * dev,unsigned char * rtc_control)905 static inline void cmos_check_acpi_rtc_status(struct device *dev,
906 					      unsigned char *rtc_control)
907 {
908 }
909 #endif /* CONFIG_ACPI */
910 
911 #ifdef	CONFIG_PNP
912 #define	INITSECTION
913 
914 #else
915 #define	INITSECTION	__init
916 #endif
917 
918 #define SECS_PER_DAY	(24 * 60 * 60)
919 #define SECS_PER_MONTH	(28 * SECS_PER_DAY)
920 #define SECS_PER_YEAR	(365 * SECS_PER_DAY)
921 
922 static int INITSECTION
cmos_do_probe(struct device * dev,struct resource * ports,int rtc_irq)923 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
924 {
925 	struct cmos_rtc_board_info	*info = dev_get_platdata(dev);
926 	int				retval = 0;
927 	unsigned char			rtc_control;
928 	unsigned			address_space;
929 	u32				flags = 0;
930 	struct nvmem_config nvmem_cfg = {
931 		.name = "cmos_nvram",
932 		.word_size = 1,
933 		.stride = 1,
934 		.reg_read = cmos_nvram_read,
935 		.reg_write = cmos_nvram_write,
936 		.priv = &cmos_rtc,
937 	};
938 
939 	/* there can be only one ... */
940 	if (cmos_rtc.dev)
941 		return -EBUSY;
942 
943 	if (!ports)
944 		return -ENODEV;
945 
946 	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
947 	 *
948 	 * REVISIT non-x86 systems may instead use memory space resources
949 	 * (needing ioremap etc), not i/o space resources like this ...
950 	 */
951 	if (RTC_IOMAPPED)
952 		ports = request_region(ports->start, resource_size(ports),
953 				       driver_name);
954 	else
955 		ports = request_mem_region(ports->start, resource_size(ports),
956 					   driver_name);
957 	if (!ports) {
958 		dev_dbg(dev, "i/o registers already in use\n");
959 		return -EBUSY;
960 	}
961 
962 	cmos_rtc.irq = rtc_irq;
963 	cmos_rtc.iomem = ports;
964 
965 	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
966 	 * driver did, but don't reject unknown configs.   Old hardware
967 	 * won't address 128 bytes.  Newer chips have multiple banks,
968 	 * though they may not be listed in one I/O resource.
969 	 */
970 #if	defined(CONFIG_ATARI)
971 	address_space = 64;
972 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
973 			|| defined(__sparc__) || defined(__mips__) \
974 			|| defined(__powerpc__)
975 	address_space = 128;
976 #else
977 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
978 	address_space = 128;
979 #endif
980 	if (can_bank2 && ports->end > (ports->start + 1))
981 		address_space = 256;
982 
983 	/* For ACPI systems extension info comes from the FADT.  On others,
984 	 * board specific setup provides it as appropriate.  Systems where
985 	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
986 	 * some almost-clones) can provide hooks to make that behave.
987 	 *
988 	 * Note that ACPI doesn't preclude putting these registers into
989 	 * "extended" areas of the chip, including some that we won't yet
990 	 * expect CMOS_READ and friends to handle.
991 	 */
992 	if (info) {
993 		if (info->flags)
994 			flags = info->flags;
995 		if (info->address_space)
996 			address_space = info->address_space;
997 
998 		cmos_rtc.day_alrm = info->rtc_day_alarm;
999 		cmos_rtc.mon_alrm = info->rtc_mon_alarm;
1000 		cmos_rtc.century = info->rtc_century;
1001 
1002 		if (info->wake_on && info->wake_off) {
1003 			cmos_rtc.wake_on = info->wake_on;
1004 			cmos_rtc.wake_off = info->wake_off;
1005 		}
1006 	} else {
1007 		acpi_cmos_wake_setup(dev);
1008 	}
1009 
1010 	if (cmos_rtc.day_alrm >= 128)
1011 		cmos_rtc.day_alrm = 0;
1012 
1013 	if (cmos_rtc.mon_alrm >= 128)
1014 		cmos_rtc.mon_alrm = 0;
1015 
1016 	if (cmos_rtc.century >= 128)
1017 		cmos_rtc.century = 0;
1018 
1019 	cmos_rtc.dev = dev;
1020 	dev_set_drvdata(dev, &cmos_rtc);
1021 
1022 	cmos_rtc.rtc = devm_rtc_allocate_device(dev);
1023 	if (IS_ERR(cmos_rtc.rtc)) {
1024 		retval = PTR_ERR(cmos_rtc.rtc);
1025 		goto cleanup0;
1026 	}
1027 
1028 	if (cmos_rtc.mon_alrm)
1029 		cmos_rtc.rtc->alarm_offset_max = SECS_PER_YEAR - 1;
1030 	else if (cmos_rtc.day_alrm)
1031 		cmos_rtc.rtc->alarm_offset_max = SECS_PER_MONTH - 1;
1032 	else
1033 		cmos_rtc.rtc->alarm_offset_max = SECS_PER_DAY - 1;
1034 
1035 	rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
1036 
1037 	if (!mc146818_does_rtc_work()) {
1038 		dev_warn(dev, "broken or not accessible\n");
1039 		retval = -ENXIO;
1040 		goto cleanup1;
1041 	}
1042 
1043 	spin_lock_irq(&rtc_lock);
1044 
1045 	if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
1046 		/* force periodic irq to CMOS reset default of 1024Hz;
1047 		 *
1048 		 * REVISIT it's been reported that at least one x86_64 ALI
1049 		 * mobo doesn't use 32KHz here ... for portability we might
1050 		 * need to do something about other clock frequencies.
1051 		 */
1052 		cmos_rtc.rtc->irq_freq = 1024;
1053 		if (use_hpet_alarm())
1054 			hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
1055 		CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
1056 	}
1057 
1058 	/* disable irqs */
1059 	if (is_valid_irq(rtc_irq))
1060 		cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
1061 
1062 	rtc_control = CMOS_READ(RTC_CONTROL);
1063 
1064 	spin_unlock_irq(&rtc_lock);
1065 
1066 	if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
1067 		dev_warn(dev, "only 24-hr supported\n");
1068 		retval = -ENXIO;
1069 		goto cleanup1;
1070 	}
1071 
1072 	if (use_hpet_alarm())
1073 		hpet_rtc_timer_init();
1074 
1075 	if (is_valid_irq(rtc_irq)) {
1076 		irq_handler_t rtc_cmos_int_handler;
1077 
1078 		if (use_hpet_alarm()) {
1079 			rtc_cmos_int_handler = hpet_rtc_interrupt;
1080 			retval = hpet_register_irq_handler(cmos_interrupt);
1081 			if (retval) {
1082 				hpet_mask_rtc_irq_bit(RTC_IRQMASK);
1083 				dev_warn(dev, "hpet_register_irq_handler "
1084 						" failed in rtc_init().");
1085 				goto cleanup1;
1086 			}
1087 		} else
1088 			rtc_cmos_int_handler = cmos_interrupt;
1089 
1090 		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
1091 				0, dev_name(&cmos_rtc.rtc->dev),
1092 				cmos_rtc.rtc);
1093 		if (retval < 0) {
1094 			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
1095 			goto cleanup1;
1096 		}
1097 	} else {
1098 		clear_bit(RTC_FEATURE_ALARM, cmos_rtc.rtc->features);
1099 	}
1100 
1101 	cmos_rtc.rtc->ops = &cmos_rtc_ops;
1102 
1103 	retval = devm_rtc_register_device(cmos_rtc.rtc);
1104 	if (retval)
1105 		goto cleanup2;
1106 
1107 	/* Set the sync offset for the periodic 11min update correct */
1108 	cmos_rtc.rtc->set_offset_nsec = NSEC_PER_SEC / 2;
1109 
1110 	/* export at least the first block of NVRAM */
1111 	nvmem_cfg.size = address_space - NVRAM_OFFSET;
1112 	devm_rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg);
1113 
1114 	/*
1115 	 * Everything has gone well so far, so by default register a handler for
1116 	 * the ACPI RTC fixed event.
1117 	 */
1118 	if (!info)
1119 		acpi_rtc_event_setup(dev);
1120 
1121 	dev_info(dev, "%s%s, %d bytes nvram%s\n",
1122 		 !is_valid_irq(rtc_irq) ? "no alarms" :
1123 		 cmos_rtc.mon_alrm ? "alarms up to one year" :
1124 		 cmos_rtc.day_alrm ? "alarms up to one month" :
1125 		 "alarms up to one day",
1126 		 cmos_rtc.century ? ", y3k" : "",
1127 		 nvmem_cfg.size,
1128 		 use_hpet_alarm() ? ", hpet irqs" : "");
1129 
1130 	return 0;
1131 
1132 cleanup2:
1133 	if (is_valid_irq(rtc_irq))
1134 		free_irq(rtc_irq, cmos_rtc.rtc);
1135 cleanup1:
1136 	cmos_rtc.dev = NULL;
1137 cleanup0:
1138 	if (RTC_IOMAPPED)
1139 		release_region(ports->start, resource_size(ports));
1140 	else
1141 		release_mem_region(ports->start, resource_size(ports));
1142 	return retval;
1143 }
1144 
cmos_do_shutdown(int rtc_irq)1145 static void cmos_do_shutdown(int rtc_irq)
1146 {
1147 	spin_lock_irq(&rtc_lock);
1148 	if (is_valid_irq(rtc_irq))
1149 		cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
1150 	spin_unlock_irq(&rtc_lock);
1151 }
1152 
cmos_do_remove(struct device * dev)1153 static void cmos_do_remove(struct device *dev)
1154 {
1155 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1156 	struct resource *ports;
1157 
1158 	cmos_do_shutdown(cmos->irq);
1159 
1160 	if (is_valid_irq(cmos->irq)) {
1161 		free_irq(cmos->irq, cmos->rtc);
1162 		if (use_hpet_alarm())
1163 			hpet_unregister_irq_handler(cmos_interrupt);
1164 	}
1165 
1166 	if (!dev_get_platdata(dev))
1167 		acpi_rtc_event_cleanup();
1168 
1169 	cmos->rtc = NULL;
1170 
1171 	ports = cmos->iomem;
1172 	if (RTC_IOMAPPED)
1173 		release_region(ports->start, resource_size(ports));
1174 	else
1175 		release_mem_region(ports->start, resource_size(ports));
1176 	cmos->iomem = NULL;
1177 
1178 	cmos->dev = NULL;
1179 }
1180 
cmos_aie_poweroff(struct device * dev)1181 static int cmos_aie_poweroff(struct device *dev)
1182 {
1183 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1184 	struct rtc_time now;
1185 	time64_t t_now;
1186 	int retval = 0;
1187 	unsigned char rtc_control;
1188 
1189 	if (!cmos->alarm_expires)
1190 		return -EINVAL;
1191 
1192 	spin_lock_irq(&rtc_lock);
1193 	rtc_control = CMOS_READ(RTC_CONTROL);
1194 	spin_unlock_irq(&rtc_lock);
1195 
1196 	/* We only care about the situation where AIE is disabled. */
1197 	if (rtc_control & RTC_AIE)
1198 		return -EBUSY;
1199 
1200 	cmos_read_time(dev, &now);
1201 	t_now = rtc_tm_to_time64(&now);
1202 
1203 	/*
1204 	 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
1205 	 * automatically right after shutdown on some buggy boxes.
1206 	 * This automatic rebooting issue won't happen when the alarm
1207 	 * time is larger than now+1 seconds.
1208 	 *
1209 	 * If the alarm time is equal to now+1 seconds, the issue can be
1210 	 * prevented by cancelling the alarm.
1211 	 */
1212 	if (cmos->alarm_expires == t_now + 1) {
1213 		struct rtc_wkalrm alarm;
1214 
1215 		/* Cancel the AIE timer by configuring the past time. */
1216 		rtc_time64_to_tm(t_now - 1, &alarm.time);
1217 		alarm.enabled = 0;
1218 		retval = cmos_set_alarm(dev, &alarm);
1219 	} else if (cmos->alarm_expires > t_now + 1) {
1220 		retval = -EBUSY;
1221 	}
1222 
1223 	return retval;
1224 }
1225 
cmos_suspend(struct device * dev)1226 static int cmos_suspend(struct device *dev)
1227 {
1228 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1229 	unsigned char	tmp;
1230 
1231 	/* only the alarm might be a wakeup event source */
1232 	spin_lock_irq(&rtc_lock);
1233 	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
1234 	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
1235 		unsigned char	mask;
1236 
1237 		if (device_may_wakeup(dev))
1238 			mask = RTC_IRQMASK & ~RTC_AIE;
1239 		else
1240 			mask = RTC_IRQMASK;
1241 		tmp &= ~mask;
1242 		CMOS_WRITE(tmp, RTC_CONTROL);
1243 		if (use_hpet_alarm())
1244 			hpet_mask_rtc_irq_bit(mask);
1245 		cmos_checkintr(cmos, tmp);
1246 	}
1247 	spin_unlock_irq(&rtc_lock);
1248 
1249 	if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
1250 		cmos->enabled_wake = 1;
1251 		if (cmos->wake_on)
1252 			cmos->wake_on(dev);
1253 		else
1254 			enable_irq_wake(cmos->irq);
1255 	}
1256 
1257 	memset(&cmos->saved_wkalrm, 0, sizeof(struct rtc_wkalrm));
1258 	cmos_read_alarm(dev, &cmos->saved_wkalrm);
1259 
1260 	dev_dbg(dev, "suspend%s, ctrl %02x\n",
1261 			(tmp & RTC_AIE) ? ", alarm may wake" : "",
1262 			tmp);
1263 
1264 	return 0;
1265 }
1266 
1267 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1268  * after a detour through G3 "mechanical off", although the ACPI spec
1269  * says wakeup should only work from G1/S4 "hibernate".  To most users,
1270  * distinctions between S4 and S5 are pointless.  So when the hardware
1271  * allows, don't draw that distinction.
1272  */
cmos_poweroff(struct device * dev)1273 static inline int cmos_poweroff(struct device *dev)
1274 {
1275 	if (!IS_ENABLED(CONFIG_PM))
1276 		return -ENOSYS;
1277 
1278 	return cmos_suspend(dev);
1279 }
1280 
cmos_check_wkalrm(struct device * dev)1281 static void cmos_check_wkalrm(struct device *dev)
1282 {
1283 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
1284 	struct rtc_wkalrm current_alarm;
1285 	time64_t t_now;
1286 	time64_t t_current_expires;
1287 	time64_t t_saved_expires;
1288 	struct rtc_time now;
1289 
1290 	/* Check if we have RTC Alarm armed */
1291 	if (!(cmos->suspend_ctrl & RTC_AIE))
1292 		return;
1293 
1294 	cmos_read_time(dev, &now);
1295 	t_now = rtc_tm_to_time64(&now);
1296 
1297 	/*
1298 	 * ACPI RTC wake event is cleared after resume from STR,
1299 	 * ACK the rtc irq here
1300 	 */
1301 	if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
1302 		cmos_interrupt(0, (void *)cmos->rtc);
1303 		return;
1304 	}
1305 
1306 	memset(&current_alarm, 0, sizeof(struct rtc_wkalrm));
1307 	cmos_read_alarm(dev, &current_alarm);
1308 	t_current_expires = rtc_tm_to_time64(&current_alarm.time);
1309 	t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1310 	if (t_current_expires != t_saved_expires ||
1311 	    cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1312 		cmos_set_alarm(dev, &cmos->saved_wkalrm);
1313 	}
1314 }
1315 
cmos_resume(struct device * dev)1316 static int __maybe_unused cmos_resume(struct device *dev)
1317 {
1318 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1319 	unsigned char tmp;
1320 
1321 	if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
1322 		if (cmos->wake_off)
1323 			cmos->wake_off(dev);
1324 		else
1325 			disable_irq_wake(cmos->irq);
1326 		cmos->enabled_wake = 0;
1327 	}
1328 
1329 	/* The BIOS might have changed the alarm, restore it */
1330 	cmos_check_wkalrm(dev);
1331 
1332 	spin_lock_irq(&rtc_lock);
1333 	tmp = cmos->suspend_ctrl;
1334 	cmos->suspend_ctrl = 0;
1335 	/* re-enable any irqs previously active */
1336 	if (tmp & RTC_IRQMASK) {
1337 		unsigned char	mask;
1338 
1339 		if (device_may_wakeup(dev) && use_hpet_alarm())
1340 			hpet_rtc_timer_init();
1341 
1342 		do {
1343 			CMOS_WRITE(tmp, RTC_CONTROL);
1344 			if (use_hpet_alarm())
1345 				hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1346 
1347 			mask = CMOS_READ(RTC_INTR_FLAGS);
1348 			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1349 			if (!use_hpet_alarm() || !is_intr(mask))
1350 				break;
1351 
1352 			/* force one-shot behavior if HPET blocked
1353 			 * the wake alarm's irq
1354 			 */
1355 			rtc_update_irq(cmos->rtc, 1, mask);
1356 			tmp &= ~RTC_AIE;
1357 			hpet_mask_rtc_irq_bit(RTC_AIE);
1358 		} while (mask & RTC_AIE);
1359 
1360 		if (tmp & RTC_AIE)
1361 			cmos_check_acpi_rtc_status(dev, &tmp);
1362 	}
1363 	spin_unlock_irq(&rtc_lock);
1364 
1365 	dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1366 
1367 	return 0;
1368 }
1369 
1370 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1371 
1372 /*----------------------------------------------------------------*/
1373 
1374 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1375  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1376  * probably list them in similar PNPBIOS tables; so PNP is more common.
1377  *
1378  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
1379  * predate even PNPBIOS should set up platform_bus devices.
1380  */
1381 
1382 #ifdef	CONFIG_PNP
1383 
1384 #include <linux/pnp.h>
1385 
cmos_pnp_probe(struct pnp_dev * pnp,const struct pnp_device_id * id)1386 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1387 {
1388 	int irq;
1389 
1390 	if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1391 		irq = 0;
1392 #ifdef CONFIG_X86
1393 		/* Some machines contain a PNP entry for the RTC, but
1394 		 * don't define the IRQ. It should always be safe to
1395 		 * hardcode it on systems with a legacy PIC.
1396 		 */
1397 		if (nr_legacy_irqs())
1398 			irq = RTC_IRQ;
1399 #endif
1400 	} else {
1401 		irq = pnp_irq(pnp, 0);
1402 	}
1403 
1404 	return cmos_do_probe(&pnp->dev, pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1405 }
1406 
cmos_pnp_remove(struct pnp_dev * pnp)1407 static void cmos_pnp_remove(struct pnp_dev *pnp)
1408 {
1409 	cmos_do_remove(&pnp->dev);
1410 }
1411 
cmos_pnp_shutdown(struct pnp_dev * pnp)1412 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1413 {
1414 	struct device *dev = &pnp->dev;
1415 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1416 
1417 	if (system_state == SYSTEM_POWER_OFF) {
1418 		int retval = cmos_poweroff(dev);
1419 
1420 		if (cmos_aie_poweroff(dev) < 0 && !retval)
1421 			return;
1422 	}
1423 
1424 	cmos_do_shutdown(cmos->irq);
1425 }
1426 
1427 static const struct pnp_device_id rtc_ids[] = {
1428 	{ .id = "PNP0b00", },
1429 	{ .id = "PNP0b01", },
1430 	{ .id = "PNP0b02", },
1431 	{ },
1432 };
1433 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1434 
1435 static struct pnp_driver cmos_pnp_driver = {
1436 	.name		= driver_name,
1437 	.id_table	= rtc_ids,
1438 	.probe		= cmos_pnp_probe,
1439 	.remove		= cmos_pnp_remove,
1440 	.shutdown	= cmos_pnp_shutdown,
1441 
1442 	/* flag ensures resume() gets called, and stops syslog spam */
1443 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1444 	.driver		= {
1445 			.pm = &cmos_pm_ops,
1446 	},
1447 };
1448 
1449 #endif	/* CONFIG_PNP */
1450 
1451 #ifdef CONFIG_OF
1452 static const struct of_device_id of_cmos_match[] = {
1453 	{
1454 		.compatible = "motorola,mc146818",
1455 	},
1456 	{ },
1457 };
1458 MODULE_DEVICE_TABLE(of, of_cmos_match);
1459 
cmos_of_init(struct platform_device * pdev)1460 static __init void cmos_of_init(struct platform_device *pdev)
1461 {
1462 	struct device_node *node = pdev->dev.of_node;
1463 	const __be32 *val;
1464 
1465 	if (!node)
1466 		return;
1467 
1468 	val = of_get_property(node, "ctrl-reg", NULL);
1469 	if (val)
1470 		CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1471 
1472 	val = of_get_property(node, "freq-reg", NULL);
1473 	if (val)
1474 		CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1475 }
1476 #else
cmos_of_init(struct platform_device * pdev)1477 static inline void cmos_of_init(struct platform_device *pdev) {}
1478 #endif
1479 /*----------------------------------------------------------------*/
1480 
1481 /* Platform setup should have set up an RTC device, when PNP is
1482  * unavailable ... this could happen even on (older) PCs.
1483  */
1484 
cmos_platform_probe(struct platform_device * pdev)1485 static int __init cmos_platform_probe(struct platform_device *pdev)
1486 {
1487 	struct resource *resource;
1488 	int irq;
1489 
1490 	cmos_of_init(pdev);
1491 
1492 	if (RTC_IOMAPPED)
1493 		resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1494 	else
1495 		resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1496 	irq = platform_get_irq(pdev, 0);
1497 	if (irq < 0)
1498 		irq = -1;
1499 
1500 	return cmos_do_probe(&pdev->dev, resource, irq);
1501 }
1502 
cmos_platform_remove(struct platform_device * pdev)1503 static void cmos_platform_remove(struct platform_device *pdev)
1504 {
1505 	cmos_do_remove(&pdev->dev);
1506 }
1507 
cmos_platform_shutdown(struct platform_device * pdev)1508 static void cmos_platform_shutdown(struct platform_device *pdev)
1509 {
1510 	struct device *dev = &pdev->dev;
1511 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1512 
1513 	if (system_state == SYSTEM_POWER_OFF) {
1514 		int retval = cmos_poweroff(dev);
1515 
1516 		if (cmos_aie_poweroff(dev) < 0 && !retval)
1517 			return;
1518 	}
1519 
1520 	cmos_do_shutdown(cmos->irq);
1521 }
1522 
1523 /* work with hotplug and coldplug */
1524 MODULE_ALIAS("platform:rtc_cmos");
1525 
1526 static struct platform_driver cmos_platform_driver = {
1527 	.remove		= cmos_platform_remove,
1528 	.shutdown	= cmos_platform_shutdown,
1529 	.driver = {
1530 		.name		= driver_name,
1531 		.pm		= &cmos_pm_ops,
1532 		.of_match_table = of_match_ptr(of_cmos_match),
1533 	}
1534 };
1535 
1536 #ifdef CONFIG_PNP
1537 static bool pnp_driver_registered;
1538 #endif
1539 static bool platform_driver_registered;
1540 
cmos_init(void)1541 static int __init cmos_init(void)
1542 {
1543 	int retval = 0;
1544 
1545 #ifdef	CONFIG_PNP
1546 	retval = pnp_register_driver(&cmos_pnp_driver);
1547 	if (retval == 0)
1548 		pnp_driver_registered = true;
1549 #endif
1550 
1551 	if (!cmos_rtc.dev) {
1552 		retval = platform_driver_probe(&cmos_platform_driver,
1553 					       cmos_platform_probe);
1554 		if (retval == 0)
1555 			platform_driver_registered = true;
1556 	}
1557 
1558 	if (retval == 0)
1559 		return 0;
1560 
1561 #ifdef	CONFIG_PNP
1562 	if (pnp_driver_registered)
1563 		pnp_unregister_driver(&cmos_pnp_driver);
1564 #endif
1565 	return retval;
1566 }
1567 module_init(cmos_init);
1568 
cmos_exit(void)1569 static void __exit cmos_exit(void)
1570 {
1571 #ifdef	CONFIG_PNP
1572 	if (pnp_driver_registered)
1573 		pnp_unregister_driver(&cmos_pnp_driver);
1574 #endif
1575 	if (platform_driver_registered)
1576 		platform_driver_unregister(&cmos_platform_driver);
1577 }
1578 module_exit(cmos_exit);
1579 
1580 
1581 MODULE_AUTHOR("David Brownell");
1582 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1583 MODULE_LICENSE("GPL");
1584