xref: /linux/drivers/acpi/nfit/core.c (revision 447d2d272e4e0c7cd9dfc6aeeadad9d70b3fb1ef)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
4   */
5  #include <linux/list_sort.h>
6  #include <linux/libnvdimm.h>
7  #include <linux/module.h>
8  #include <linux/nospec.h>
9  #include <linux/mutex.h>
10  #include <linux/ndctl.h>
11  #include <linux/sysfs.h>
12  #include <linux/delay.h>
13  #include <linux/list.h>
14  #include <linux/acpi.h>
15  #include <linux/sort.h>
16  #include <linux/io.h>
17  #include <linux/nd.h>
18  #include <asm/cacheflush.h>
19  #include <acpi/nfit.h>
20  #include "intel.h"
21  #include "nfit.h"
22  
23  /*
24   * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
25   * irrelevant.
26   */
27  #include <linux/io-64-nonatomic-hi-lo.h>
28  
29  static bool force_enable_dimms;
30  module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR);
31  MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status");
32  
33  static bool disable_vendor_specific;
34  module_param(disable_vendor_specific, bool, S_IRUGO);
35  MODULE_PARM_DESC(disable_vendor_specific,
36  		"Limit commands to the publicly specified set");
37  
38  static unsigned long override_dsm_mask;
39  module_param(override_dsm_mask, ulong, S_IRUGO);
40  MODULE_PARM_DESC(override_dsm_mask, "Bitmask of allowed NVDIMM DSM functions");
41  
42  static int default_dsm_family = -1;
43  module_param(default_dsm_family, int, S_IRUGO);
44  MODULE_PARM_DESC(default_dsm_family,
45  		"Try this DSM type first when identifying NVDIMM family");
46  
47  static bool no_init_ars;
48  module_param(no_init_ars, bool, 0644);
49  MODULE_PARM_DESC(no_init_ars, "Skip ARS run at nfit init time");
50  
51  static bool force_labels;
52  module_param(force_labels, bool, 0444);
53  MODULE_PARM_DESC(force_labels, "Opt-in to labels despite missing methods");
54  
55  LIST_HEAD(acpi_descs);
56  DEFINE_MUTEX(acpi_desc_lock);
57  
58  static struct workqueue_struct *nfit_wq;
59  
60  struct nfit_table_prev {
61  	struct list_head spas;
62  	struct list_head memdevs;
63  	struct list_head dcrs;
64  	struct list_head bdws;
65  	struct list_head idts;
66  	struct list_head flushes;
67  };
68  
69  static guid_t nfit_uuid[NFIT_UUID_MAX];
70  
to_nfit_uuid(enum nfit_uuids id)71  const guid_t *to_nfit_uuid(enum nfit_uuids id)
72  {
73  	return &nfit_uuid[id];
74  }
75  EXPORT_SYMBOL(to_nfit_uuid);
76  
to_nfit_bus_uuid(int family)77  static const guid_t *to_nfit_bus_uuid(int family)
78  {
79  	if (WARN_ONCE(family == NVDIMM_BUS_FAMILY_NFIT,
80  			"only secondary bus families can be translated\n"))
81  		return NULL;
82  	/*
83  	 * The index of bus UUIDs starts immediately following the last
84  	 * NVDIMM/leaf family.
85  	 */
86  	return to_nfit_uuid(family + NVDIMM_FAMILY_MAX);
87  }
88  
to_acpi_dev(struct acpi_nfit_desc * acpi_desc)89  static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc)
90  {
91  	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
92  
93  	/*
94  	 * If provider == 'ACPI.NFIT' we can assume 'dev' is a struct
95  	 * acpi_device.
96  	 */
97  	if (!nd_desc->provider_name
98  			|| strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0)
99  		return NULL;
100  
101  	return to_acpi_device(acpi_desc->dev);
102  }
103  
xlat_bus_status(void * buf,unsigned int cmd,u32 status)104  static int xlat_bus_status(void *buf, unsigned int cmd, u32 status)
105  {
106  	struct nd_cmd_clear_error *clear_err;
107  	struct nd_cmd_ars_status *ars_status;
108  	u16 flags;
109  
110  	switch (cmd) {
111  	case ND_CMD_ARS_CAP:
112  		if ((status & 0xffff) == NFIT_ARS_CAP_NONE)
113  			return -ENOTTY;
114  
115  		/* Command failed */
116  		if (status & 0xffff)
117  			return -EIO;
118  
119  		/* No supported scan types for this range */
120  		flags = ND_ARS_PERSISTENT | ND_ARS_VOLATILE;
121  		if ((status >> 16 & flags) == 0)
122  			return -ENOTTY;
123  		return 0;
124  	case ND_CMD_ARS_START:
125  		/* ARS is in progress */
126  		if ((status & 0xffff) == NFIT_ARS_START_BUSY)
127  			return -EBUSY;
128  
129  		/* Command failed */
130  		if (status & 0xffff)
131  			return -EIO;
132  		return 0;
133  	case ND_CMD_ARS_STATUS:
134  		ars_status = buf;
135  		/* Command failed */
136  		if (status & 0xffff)
137  			return -EIO;
138  		/* Check extended status (Upper two bytes) */
139  		if (status == NFIT_ARS_STATUS_DONE)
140  			return 0;
141  
142  		/* ARS is in progress */
143  		if (status == NFIT_ARS_STATUS_BUSY)
144  			return -EBUSY;
145  
146  		/* No ARS performed for the current boot */
147  		if (status == NFIT_ARS_STATUS_NONE)
148  			return -EAGAIN;
149  
150  		/*
151  		 * ARS interrupted, either we overflowed or some other
152  		 * agent wants the scan to stop.  If we didn't overflow
153  		 * then just continue with the returned results.
154  		 */
155  		if (status == NFIT_ARS_STATUS_INTR) {
156  			if (ars_status->out_length >= 40 && (ars_status->flags
157  						& NFIT_ARS_F_OVERFLOW))
158  				return -ENOSPC;
159  			return 0;
160  		}
161  
162  		/* Unknown status */
163  		if (status >> 16)
164  			return -EIO;
165  		return 0;
166  	case ND_CMD_CLEAR_ERROR:
167  		clear_err = buf;
168  		if (status & 0xffff)
169  			return -EIO;
170  		if (!clear_err->cleared)
171  			return -EIO;
172  		if (clear_err->length > clear_err->cleared)
173  			return clear_err->cleared;
174  		return 0;
175  	default:
176  		break;
177  	}
178  
179  	/* all other non-zero status results in an error */
180  	if (status)
181  		return -EIO;
182  	return 0;
183  }
184  
185  #define ACPI_LABELS_LOCKED 3
186  
xlat_nvdimm_status(struct nvdimm * nvdimm,void * buf,unsigned int cmd,u32 status)187  static int xlat_nvdimm_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
188  		u32 status)
189  {
190  	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
191  
192  	switch (cmd) {
193  	case ND_CMD_GET_CONFIG_SIZE:
194  		/*
195  		 * In the _LSI, _LSR, _LSW case the locked status is
196  		 * communicated via the read/write commands
197  		 */
198  		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags))
199  			break;
200  
201  		if (status >> 16 & ND_CONFIG_LOCKED)
202  			return -EACCES;
203  		break;
204  	case ND_CMD_GET_CONFIG_DATA:
205  		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)
206  				&& status == ACPI_LABELS_LOCKED)
207  			return -EACCES;
208  		break;
209  	case ND_CMD_SET_CONFIG_DATA:
210  		if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags)
211  				&& status == ACPI_LABELS_LOCKED)
212  			return -EACCES;
213  		break;
214  	default:
215  		break;
216  	}
217  
218  	/* all other non-zero status results in an error */
219  	if (status)
220  		return -EIO;
221  	return 0;
222  }
223  
xlat_status(struct nvdimm * nvdimm,void * buf,unsigned int cmd,u32 status)224  static int xlat_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
225  		u32 status)
226  {
227  	if (!nvdimm)
228  		return xlat_bus_status(buf, cmd, status);
229  	return xlat_nvdimm_status(nvdimm, buf, cmd, status);
230  }
231  
232  /* convert _LS{I,R} packages to the buffer object acpi_nfit_ctl expects */
pkg_to_buf(union acpi_object * pkg)233  static union acpi_object *pkg_to_buf(union acpi_object *pkg)
234  {
235  	int i;
236  	void *dst;
237  	size_t size = 0;
238  	union acpi_object *buf = NULL;
239  
240  	if (pkg->type != ACPI_TYPE_PACKAGE) {
241  		WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
242  				pkg->type);
243  		goto err;
244  	}
245  
246  	for (i = 0; i < pkg->package.count; i++) {
247  		union acpi_object *obj = &pkg->package.elements[i];
248  
249  		if (obj->type == ACPI_TYPE_INTEGER)
250  			size += 4;
251  		else if (obj->type == ACPI_TYPE_BUFFER)
252  			size += obj->buffer.length;
253  		else {
254  			WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
255  					obj->type);
256  			goto err;
257  		}
258  	}
259  
260  	buf = ACPI_ALLOCATE(sizeof(*buf) + size);
261  	if (!buf)
262  		goto err;
263  
264  	dst = buf + 1;
265  	buf->type = ACPI_TYPE_BUFFER;
266  	buf->buffer.length = size;
267  	buf->buffer.pointer = dst;
268  	for (i = 0; i < pkg->package.count; i++) {
269  		union acpi_object *obj = &pkg->package.elements[i];
270  
271  		if (obj->type == ACPI_TYPE_INTEGER) {
272  			memcpy(dst, &obj->integer.value, 4);
273  			dst += 4;
274  		} else if (obj->type == ACPI_TYPE_BUFFER) {
275  			memcpy(dst, obj->buffer.pointer, obj->buffer.length);
276  			dst += obj->buffer.length;
277  		}
278  	}
279  err:
280  	ACPI_FREE(pkg);
281  	return buf;
282  }
283  
int_to_buf(union acpi_object * integer)284  static union acpi_object *int_to_buf(union acpi_object *integer)
285  {
286  	union acpi_object *buf = NULL;
287  	void *dst = NULL;
288  
289  	if (integer->type != ACPI_TYPE_INTEGER) {
290  		WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
291  				integer->type);
292  		goto err;
293  	}
294  
295  	buf = ACPI_ALLOCATE(sizeof(*buf) + 4);
296  	if (!buf)
297  		goto err;
298  
299  	dst = buf + 1;
300  	buf->type = ACPI_TYPE_BUFFER;
301  	buf->buffer.length = 4;
302  	buf->buffer.pointer = dst;
303  	memcpy(dst, &integer->integer.value, 4);
304  err:
305  	ACPI_FREE(integer);
306  	return buf;
307  }
308  
acpi_label_write(acpi_handle handle,u32 offset,u32 len,void * data)309  static union acpi_object *acpi_label_write(acpi_handle handle, u32 offset,
310  		u32 len, void *data)
311  {
312  	acpi_status rc;
313  	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
314  	struct acpi_object_list input = {
315  		.count = 3,
316  		.pointer = (union acpi_object []) {
317  			[0] = {
318  				.integer.type = ACPI_TYPE_INTEGER,
319  				.integer.value = offset,
320  			},
321  			[1] = {
322  				.integer.type = ACPI_TYPE_INTEGER,
323  				.integer.value = len,
324  			},
325  			[2] = {
326  				.buffer.type = ACPI_TYPE_BUFFER,
327  				.buffer.pointer = data,
328  				.buffer.length = len,
329  			},
330  		},
331  	};
332  
333  	rc = acpi_evaluate_object(handle, "_LSW", &input, &buf);
334  	if (ACPI_FAILURE(rc))
335  		return NULL;
336  	return int_to_buf(buf.pointer);
337  }
338  
acpi_label_read(acpi_handle handle,u32 offset,u32 len)339  static union acpi_object *acpi_label_read(acpi_handle handle, u32 offset,
340  		u32 len)
341  {
342  	acpi_status rc;
343  	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
344  	struct acpi_object_list input = {
345  		.count = 2,
346  		.pointer = (union acpi_object []) {
347  			[0] = {
348  				.integer.type = ACPI_TYPE_INTEGER,
349  				.integer.value = offset,
350  			},
351  			[1] = {
352  				.integer.type = ACPI_TYPE_INTEGER,
353  				.integer.value = len,
354  			},
355  		},
356  	};
357  
358  	rc = acpi_evaluate_object(handle, "_LSR", &input, &buf);
359  	if (ACPI_FAILURE(rc))
360  		return NULL;
361  	return pkg_to_buf(buf.pointer);
362  }
363  
acpi_label_info(acpi_handle handle)364  static union acpi_object *acpi_label_info(acpi_handle handle)
365  {
366  	acpi_status rc;
367  	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
368  
369  	rc = acpi_evaluate_object(handle, "_LSI", NULL, &buf);
370  	if (ACPI_FAILURE(rc))
371  		return NULL;
372  	return pkg_to_buf(buf.pointer);
373  }
374  
nfit_dsm_revid(unsigned family,unsigned func)375  static u8 nfit_dsm_revid(unsigned family, unsigned func)
376  {
377  	static const u8 revid_table[NVDIMM_FAMILY_MAX+1][NVDIMM_CMD_MAX+1] = {
378  		[NVDIMM_FAMILY_INTEL] = {
379  			[NVDIMM_INTEL_GET_MODES ...
380  				NVDIMM_INTEL_FW_ACTIVATE_ARM] = 2,
381  		},
382  	};
383  	u8 id;
384  
385  	if (family > NVDIMM_FAMILY_MAX)
386  		return 0;
387  	if (func > NVDIMM_CMD_MAX)
388  		return 0;
389  	id = revid_table[family][func];
390  	if (id == 0)
391  		return 1; /* default */
392  	return id;
393  }
394  
payload_dumpable(struct nvdimm * nvdimm,unsigned int func)395  static bool payload_dumpable(struct nvdimm *nvdimm, unsigned int func)
396  {
397  	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
398  
399  	if (nfit_mem && nfit_mem->family == NVDIMM_FAMILY_INTEL
400  			&& func >= NVDIMM_INTEL_GET_SECURITY_STATE
401  			&& func <= NVDIMM_INTEL_MASTER_SECURE_ERASE)
402  		return IS_ENABLED(CONFIG_NFIT_SECURITY_DEBUG);
403  	return true;
404  }
405  
cmd_to_func(struct nfit_mem * nfit_mem,unsigned int cmd,struct nd_cmd_pkg * call_pkg,int * family)406  static int cmd_to_func(struct nfit_mem *nfit_mem, unsigned int cmd,
407  		struct nd_cmd_pkg *call_pkg, int *family)
408  {
409  	if (call_pkg) {
410  		int i;
411  
412  		if (nfit_mem && nfit_mem->family != call_pkg->nd_family)
413  			return -ENOTTY;
414  
415  		for (i = 0; i < ARRAY_SIZE(call_pkg->nd_reserved2); i++)
416  			if (call_pkg->nd_reserved2[i])
417  				return -EINVAL;
418  		*family = call_pkg->nd_family;
419  		return call_pkg->nd_command;
420  	}
421  
422  	/* In the !call_pkg case, bus commands == bus functions */
423  	if (!nfit_mem)
424  		return cmd;
425  
426  	/* Linux ND commands == NVDIMM_FAMILY_INTEL function numbers */
427  	if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
428  		return cmd;
429  
430  	/*
431  	 * Force function number validation to fail since 0 is never
432  	 * published as a valid function in dsm_mask.
433  	 */
434  	return 0;
435  }
436  
acpi_nfit_ctl(struct nvdimm_bus_descriptor * nd_desc,struct nvdimm * nvdimm,unsigned int cmd,void * buf,unsigned int buf_len,int * cmd_rc)437  int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm,
438  		unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc)
439  {
440  	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
441  	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
442  	union acpi_object in_obj, in_buf, *out_obj;
443  	const struct nd_cmd_desc *desc = NULL;
444  	struct device *dev = acpi_desc->dev;
445  	struct nd_cmd_pkg *call_pkg = NULL;
446  	const char *cmd_name, *dimm_name;
447  	unsigned long cmd_mask, dsm_mask;
448  	u32 offset, fw_status = 0;
449  	acpi_handle handle;
450  	const guid_t *guid;
451  	int func, rc, i;
452  	int family = 0;
453  
454  	if (cmd_rc)
455  		*cmd_rc = -EINVAL;
456  
457  	if (cmd == ND_CMD_CALL) {
458  		if (!buf || buf_len < sizeof(*call_pkg))
459  			return -EINVAL;
460  
461  		call_pkg = buf;
462  	}
463  
464  	func = cmd_to_func(nfit_mem, cmd, call_pkg, &family);
465  	if (func < 0)
466  		return func;
467  
468  	if (nvdimm) {
469  		struct acpi_device *adev = nfit_mem->adev;
470  
471  		if (!adev)
472  			return -ENOTTY;
473  
474  		dimm_name = nvdimm_name(nvdimm);
475  		cmd_name = nvdimm_cmd_name(cmd);
476  		cmd_mask = nvdimm_cmd_mask(nvdimm);
477  		dsm_mask = nfit_mem->dsm_mask;
478  		desc = nd_cmd_dimm_desc(cmd);
479  		guid = to_nfit_uuid(nfit_mem->family);
480  		handle = adev->handle;
481  	} else {
482  		struct acpi_device *adev = to_acpi_dev(acpi_desc);
483  
484  		cmd_name = nvdimm_bus_cmd_name(cmd);
485  		cmd_mask = nd_desc->cmd_mask;
486  		if (cmd == ND_CMD_CALL && call_pkg->nd_family) {
487  			family = call_pkg->nd_family;
488  			if (call_pkg->nd_family > NVDIMM_BUS_FAMILY_MAX ||
489  			    !test_bit(family, &nd_desc->bus_family_mask))
490  				return -EINVAL;
491  			family = array_index_nospec(family,
492  						    NVDIMM_BUS_FAMILY_MAX + 1);
493  			dsm_mask = acpi_desc->family_dsm_mask[family];
494  			guid = to_nfit_bus_uuid(family);
495  		} else {
496  			dsm_mask = acpi_desc->bus_dsm_mask;
497  			guid = to_nfit_uuid(NFIT_DEV_BUS);
498  		}
499  		desc = nd_cmd_bus_desc(cmd);
500  		handle = adev->handle;
501  		dimm_name = "bus";
502  	}
503  
504  	if (!desc || (cmd && (desc->out_num + desc->in_num == 0)))
505  		return -ENOTTY;
506  
507  	/*
508  	 * Check for a valid command.  For ND_CMD_CALL, we also have to
509  	 * make sure that the DSM function is supported.
510  	 */
511  	if (cmd == ND_CMD_CALL &&
512  	    (func > NVDIMM_CMD_MAX || !test_bit(func, &dsm_mask)))
513  		return -ENOTTY;
514  	else if (!test_bit(cmd, &cmd_mask))
515  		return -ENOTTY;
516  
517  	in_obj.type = ACPI_TYPE_PACKAGE;
518  	in_obj.package.count = 1;
519  	in_obj.package.elements = &in_buf;
520  	in_buf.type = ACPI_TYPE_BUFFER;
521  	in_buf.buffer.pointer = buf;
522  	in_buf.buffer.length = 0;
523  
524  	/* libnvdimm has already validated the input envelope */
525  	for (i = 0; i < desc->in_num; i++)
526  		in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc,
527  				i, buf);
528  
529  	if (call_pkg) {
530  		/* skip over package wrapper */
531  		in_buf.buffer.pointer = (void *) &call_pkg->nd_payload;
532  		in_buf.buffer.length = call_pkg->nd_size_in;
533  	}
534  
535  	dev_dbg(dev, "%s cmd: %d: family: %d func: %d input length: %d\n",
536  		dimm_name, cmd, family, func, in_buf.buffer.length);
537  	if (payload_dumpable(nvdimm, func))
538  		print_hex_dump_debug("nvdimm in  ", DUMP_PREFIX_OFFSET, 4, 4,
539  				in_buf.buffer.pointer,
540  				min_t(u32, 256, in_buf.buffer.length), true);
541  
542  	/* call the BIOS, prefer the named methods over _DSM if available */
543  	if (nvdimm && cmd == ND_CMD_GET_CONFIG_SIZE
544  			&& test_bit(NFIT_MEM_LSR, &nfit_mem->flags))
545  		out_obj = acpi_label_info(handle);
546  	else if (nvdimm && cmd == ND_CMD_GET_CONFIG_DATA
547  			&& test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) {
548  		struct nd_cmd_get_config_data_hdr *p = buf;
549  
550  		out_obj = acpi_label_read(handle, p->in_offset, p->in_length);
551  	} else if (nvdimm && cmd == ND_CMD_SET_CONFIG_DATA
552  			&& test_bit(NFIT_MEM_LSW, &nfit_mem->flags)) {
553  		struct nd_cmd_set_config_hdr *p = buf;
554  
555  		out_obj = acpi_label_write(handle, p->in_offset, p->in_length,
556  				p->in_buf);
557  	} else {
558  		u8 revid;
559  
560  		if (nvdimm)
561  			revid = nfit_dsm_revid(nfit_mem->family, func);
562  		else
563  			revid = 1;
564  		out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj);
565  	}
566  
567  	if (!out_obj) {
568  		dev_dbg(dev, "%s _DSM failed cmd: %s\n", dimm_name, cmd_name);
569  		return -EINVAL;
570  	}
571  
572  	if (out_obj->type != ACPI_TYPE_BUFFER) {
573  		dev_dbg(dev, "%s unexpected output object type cmd: %s type: %d\n",
574  				dimm_name, cmd_name, out_obj->type);
575  		rc = -EINVAL;
576  		goto out;
577  	}
578  
579  	dev_dbg(dev, "%s cmd: %s output length: %d\n", dimm_name,
580  			cmd_name, out_obj->buffer.length);
581  	print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4, 4,
582  			out_obj->buffer.pointer,
583  			min_t(u32, 128, out_obj->buffer.length), true);
584  
585  	if (call_pkg) {
586  		call_pkg->nd_fw_size = out_obj->buffer.length;
587  		memcpy(call_pkg->nd_payload + call_pkg->nd_size_in,
588  			out_obj->buffer.pointer,
589  			min(call_pkg->nd_fw_size, call_pkg->nd_size_out));
590  
591  		ACPI_FREE(out_obj);
592  		/*
593  		 * Need to support FW function w/o known size in advance.
594  		 * Caller can determine required size based upon nd_fw_size.
595  		 * If we return an error (like elsewhere) then caller wouldn't
596  		 * be able to rely upon data returned to make calculation.
597  		 */
598  		if (cmd_rc)
599  			*cmd_rc = 0;
600  		return 0;
601  	}
602  
603  	for (i = 0, offset = 0; i < desc->out_num; i++) {
604  		u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf,
605  				(u32 *) out_obj->buffer.pointer,
606  				out_obj->buffer.length - offset);
607  
608  		if (offset + out_size > out_obj->buffer.length) {
609  			dev_dbg(dev, "%s output object underflow cmd: %s field: %d\n",
610  					dimm_name, cmd_name, i);
611  			break;
612  		}
613  
614  		if (in_buf.buffer.length + offset + out_size > buf_len) {
615  			dev_dbg(dev, "%s output overrun cmd: %s field: %d\n",
616  					dimm_name, cmd_name, i);
617  			rc = -ENXIO;
618  			goto out;
619  		}
620  		memcpy(buf + in_buf.buffer.length + offset,
621  				out_obj->buffer.pointer + offset, out_size);
622  		offset += out_size;
623  	}
624  
625  	/*
626  	 * Set fw_status for all the commands with a known format to be
627  	 * later interpreted by xlat_status().
628  	 */
629  	if (i >= 1 && ((!nvdimm && cmd >= ND_CMD_ARS_CAP
630  					&& cmd <= ND_CMD_CLEAR_ERROR)
631  				|| (nvdimm && cmd >= ND_CMD_SMART
632  					&& cmd <= ND_CMD_VENDOR)))
633  		fw_status = *(u32 *) out_obj->buffer.pointer;
634  
635  	if (offset + in_buf.buffer.length < buf_len) {
636  		if (i >= 1) {
637  			/*
638  			 * status valid, return the number of bytes left
639  			 * unfilled in the output buffer
640  			 */
641  			rc = buf_len - offset - in_buf.buffer.length;
642  			if (cmd_rc)
643  				*cmd_rc = xlat_status(nvdimm, buf, cmd,
644  						fw_status);
645  		} else {
646  			dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n",
647  					__func__, dimm_name, cmd_name, buf_len,
648  					offset);
649  			rc = -ENXIO;
650  		}
651  	} else {
652  		rc = 0;
653  		if (cmd_rc)
654  			*cmd_rc = xlat_status(nvdimm, buf, cmd, fw_status);
655  	}
656  
657   out:
658  	ACPI_FREE(out_obj);
659  
660  	return rc;
661  }
662  EXPORT_SYMBOL_GPL(acpi_nfit_ctl);
663  
spa_type_name(u16 type)664  static const char *spa_type_name(u16 type)
665  {
666  	static const char *to_name[] = {
667  		[NFIT_SPA_VOLATILE] = "volatile",
668  		[NFIT_SPA_PM] = "pmem",
669  		[NFIT_SPA_DCR] = "dimm-control-region",
670  		[NFIT_SPA_BDW] = "block-data-window",
671  		[NFIT_SPA_VDISK] = "volatile-disk",
672  		[NFIT_SPA_VCD] = "volatile-cd",
673  		[NFIT_SPA_PDISK] = "persistent-disk",
674  		[NFIT_SPA_PCD] = "persistent-cd",
675  
676  	};
677  
678  	if (type > NFIT_SPA_PCD)
679  		return "unknown";
680  
681  	return to_name[type];
682  }
683  
nfit_spa_type(struct acpi_nfit_system_address * spa)684  int nfit_spa_type(struct acpi_nfit_system_address *spa)
685  {
686  	guid_t guid;
687  	int i;
688  
689  	import_guid(&guid, spa->range_guid);
690  	for (i = 0; i < NFIT_UUID_MAX; i++)
691  		if (guid_equal(to_nfit_uuid(i), &guid))
692  			return i;
693  	return -1;
694  }
695  
sizeof_spa(struct acpi_nfit_system_address * spa)696  static size_t sizeof_spa(struct acpi_nfit_system_address *spa)
697  {
698  	if (spa->flags & ACPI_NFIT_LOCATION_COOKIE_VALID)
699  		return sizeof(*spa);
700  	return sizeof(*spa) - 8;
701  }
702  
add_spa(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_system_address * spa)703  static bool add_spa(struct acpi_nfit_desc *acpi_desc,
704  		struct nfit_table_prev *prev,
705  		struct acpi_nfit_system_address *spa)
706  {
707  	struct device *dev = acpi_desc->dev;
708  	struct nfit_spa *nfit_spa;
709  
710  	if (spa->header.length != sizeof_spa(spa))
711  		return false;
712  
713  	list_for_each_entry(nfit_spa, &prev->spas, list) {
714  		if (memcmp(nfit_spa->spa, spa, sizeof_spa(spa)) == 0) {
715  			list_move_tail(&nfit_spa->list, &acpi_desc->spas);
716  			return true;
717  		}
718  	}
719  
720  	nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa) + sizeof_spa(spa),
721  			GFP_KERNEL);
722  	if (!nfit_spa)
723  		return false;
724  	INIT_LIST_HEAD(&nfit_spa->list);
725  	memcpy(nfit_spa->spa, spa, sizeof_spa(spa));
726  	list_add_tail(&nfit_spa->list, &acpi_desc->spas);
727  	dev_dbg(dev, "spa index: %d type: %s\n",
728  			spa->range_index,
729  			spa_type_name(nfit_spa_type(spa)));
730  	return true;
731  }
732  
add_memdev(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_memory_map * memdev)733  static bool add_memdev(struct acpi_nfit_desc *acpi_desc,
734  		struct nfit_table_prev *prev,
735  		struct acpi_nfit_memory_map *memdev)
736  {
737  	struct device *dev = acpi_desc->dev;
738  	struct nfit_memdev *nfit_memdev;
739  
740  	if (memdev->header.length != sizeof(*memdev))
741  		return false;
742  
743  	list_for_each_entry(nfit_memdev, &prev->memdevs, list)
744  		if (memcmp(nfit_memdev->memdev, memdev, sizeof(*memdev)) == 0) {
745  			list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs);
746  			return true;
747  		}
748  
749  	nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev) + sizeof(*memdev),
750  			GFP_KERNEL);
751  	if (!nfit_memdev)
752  		return false;
753  	INIT_LIST_HEAD(&nfit_memdev->list);
754  	memcpy(nfit_memdev->memdev, memdev, sizeof(*memdev));
755  	list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs);
756  	dev_dbg(dev, "memdev handle: %#x spa: %d dcr: %d flags: %#x\n",
757  			memdev->device_handle, memdev->range_index,
758  			memdev->region_index, memdev->flags);
759  	return true;
760  }
761  
nfit_get_smbios_id(u32 device_handle,u16 * flags)762  int nfit_get_smbios_id(u32 device_handle, u16 *flags)
763  {
764  	struct acpi_nfit_memory_map *memdev;
765  	struct acpi_nfit_desc *acpi_desc;
766  	struct nfit_mem *nfit_mem;
767  	u16 physical_id;
768  
769  	mutex_lock(&acpi_desc_lock);
770  	list_for_each_entry(acpi_desc, &acpi_descs, list) {
771  		mutex_lock(&acpi_desc->init_mutex);
772  		list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
773  			memdev = __to_nfit_memdev(nfit_mem);
774  			if (memdev->device_handle == device_handle) {
775  				*flags = memdev->flags;
776  				physical_id = memdev->physical_id;
777  				mutex_unlock(&acpi_desc->init_mutex);
778  				mutex_unlock(&acpi_desc_lock);
779  				return physical_id;
780  			}
781  		}
782  		mutex_unlock(&acpi_desc->init_mutex);
783  	}
784  	mutex_unlock(&acpi_desc_lock);
785  
786  	return -ENODEV;
787  }
788  EXPORT_SYMBOL_GPL(nfit_get_smbios_id);
789  
790  /*
791   * An implementation may provide a truncated control region if no block windows
792   * are defined.
793   */
sizeof_dcr(struct acpi_nfit_control_region * dcr)794  static size_t sizeof_dcr(struct acpi_nfit_control_region *dcr)
795  {
796  	if (dcr->header.length < offsetof(struct acpi_nfit_control_region,
797  				window_size))
798  		return 0;
799  	if (dcr->windows)
800  		return sizeof(*dcr);
801  	return offsetof(struct acpi_nfit_control_region, window_size);
802  }
803  
add_dcr(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_control_region * dcr)804  static bool add_dcr(struct acpi_nfit_desc *acpi_desc,
805  		struct nfit_table_prev *prev,
806  		struct acpi_nfit_control_region *dcr)
807  {
808  	struct device *dev = acpi_desc->dev;
809  	struct nfit_dcr *nfit_dcr;
810  
811  	if (!sizeof_dcr(dcr))
812  		return false;
813  
814  	list_for_each_entry(nfit_dcr, &prev->dcrs, list)
815  		if (memcmp(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)) == 0) {
816  			list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs);
817  			return true;
818  		}
819  
820  	nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr) + sizeof(*dcr),
821  			GFP_KERNEL);
822  	if (!nfit_dcr)
823  		return false;
824  	INIT_LIST_HEAD(&nfit_dcr->list);
825  	memcpy(nfit_dcr->dcr, dcr, sizeof_dcr(dcr));
826  	list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs);
827  	dev_dbg(dev, "dcr index: %d windows: %d\n",
828  			dcr->region_index, dcr->windows);
829  	return true;
830  }
831  
add_bdw(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_data_region * bdw)832  static bool add_bdw(struct acpi_nfit_desc *acpi_desc,
833  		struct nfit_table_prev *prev,
834  		struct acpi_nfit_data_region *bdw)
835  {
836  	struct device *dev = acpi_desc->dev;
837  	struct nfit_bdw *nfit_bdw;
838  
839  	if (bdw->header.length != sizeof(*bdw))
840  		return false;
841  	list_for_each_entry(nfit_bdw, &prev->bdws, list)
842  		if (memcmp(nfit_bdw->bdw, bdw, sizeof(*bdw)) == 0) {
843  			list_move_tail(&nfit_bdw->list, &acpi_desc->bdws);
844  			return true;
845  		}
846  
847  	nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw) + sizeof(*bdw),
848  			GFP_KERNEL);
849  	if (!nfit_bdw)
850  		return false;
851  	INIT_LIST_HEAD(&nfit_bdw->list);
852  	memcpy(nfit_bdw->bdw, bdw, sizeof(*bdw));
853  	list_add_tail(&nfit_bdw->list, &acpi_desc->bdws);
854  	dev_dbg(dev, "bdw dcr: %d windows: %d\n",
855  			bdw->region_index, bdw->windows);
856  	return true;
857  }
858  
sizeof_idt(struct acpi_nfit_interleave * idt)859  static size_t sizeof_idt(struct acpi_nfit_interleave *idt)
860  {
861  	if (idt->header.length < sizeof(*idt))
862  		return 0;
863  	return sizeof(*idt) + sizeof(u32) * idt->line_count;
864  }
865  
add_idt(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_interleave * idt)866  static bool add_idt(struct acpi_nfit_desc *acpi_desc,
867  		struct nfit_table_prev *prev,
868  		struct acpi_nfit_interleave *idt)
869  {
870  	struct device *dev = acpi_desc->dev;
871  	struct nfit_idt *nfit_idt;
872  
873  	if (!sizeof_idt(idt))
874  		return false;
875  
876  	list_for_each_entry(nfit_idt, &prev->idts, list) {
877  		if (sizeof_idt(nfit_idt->idt) != sizeof_idt(idt))
878  			continue;
879  
880  		if (memcmp(nfit_idt->idt, idt, sizeof_idt(idt)) == 0) {
881  			list_move_tail(&nfit_idt->list, &acpi_desc->idts);
882  			return true;
883  		}
884  	}
885  
886  	nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt) + sizeof_idt(idt),
887  			GFP_KERNEL);
888  	if (!nfit_idt)
889  		return false;
890  	INIT_LIST_HEAD(&nfit_idt->list);
891  	memcpy(nfit_idt->idt, idt, sizeof_idt(idt));
892  	list_add_tail(&nfit_idt->list, &acpi_desc->idts);
893  	dev_dbg(dev, "idt index: %d num_lines: %d\n",
894  			idt->interleave_index, idt->line_count);
895  	return true;
896  }
897  
sizeof_flush(struct acpi_nfit_flush_address * flush)898  static size_t sizeof_flush(struct acpi_nfit_flush_address *flush)
899  {
900  	if (flush->header.length < sizeof(*flush))
901  		return 0;
902  	return struct_size(flush, hint_address, flush->hint_count);
903  }
904  
add_flush(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_flush_address * flush)905  static bool add_flush(struct acpi_nfit_desc *acpi_desc,
906  		struct nfit_table_prev *prev,
907  		struct acpi_nfit_flush_address *flush)
908  {
909  	struct device *dev = acpi_desc->dev;
910  	struct nfit_flush *nfit_flush;
911  
912  	if (!sizeof_flush(flush))
913  		return false;
914  
915  	list_for_each_entry(nfit_flush, &prev->flushes, list) {
916  		if (sizeof_flush(nfit_flush->flush) != sizeof_flush(flush))
917  			continue;
918  
919  		if (memcmp(nfit_flush->flush, flush,
920  					sizeof_flush(flush)) == 0) {
921  			list_move_tail(&nfit_flush->list, &acpi_desc->flushes);
922  			return true;
923  		}
924  	}
925  
926  	nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush)
927  			+ sizeof_flush(flush), GFP_KERNEL);
928  	if (!nfit_flush)
929  		return false;
930  	INIT_LIST_HEAD(&nfit_flush->list);
931  	memcpy(nfit_flush->flush, flush, sizeof_flush(flush));
932  	list_add_tail(&nfit_flush->list, &acpi_desc->flushes);
933  	dev_dbg(dev, "nfit_flush handle: %d hint_count: %d\n",
934  			flush->device_handle, flush->hint_count);
935  	return true;
936  }
937  
add_platform_cap(struct acpi_nfit_desc * acpi_desc,struct acpi_nfit_capabilities * pcap)938  static bool add_platform_cap(struct acpi_nfit_desc *acpi_desc,
939  		struct acpi_nfit_capabilities *pcap)
940  {
941  	struct device *dev = acpi_desc->dev;
942  	u32 mask;
943  
944  	mask = (1 << (pcap->highest_capability + 1)) - 1;
945  	acpi_desc->platform_cap = pcap->capabilities & mask;
946  	dev_dbg(dev, "cap: %#x\n", acpi_desc->platform_cap);
947  	return true;
948  }
949  
add_table(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,void * table,const void * end)950  static void *add_table(struct acpi_nfit_desc *acpi_desc,
951  		struct nfit_table_prev *prev, void *table, const void *end)
952  {
953  	struct device *dev = acpi_desc->dev;
954  	struct acpi_nfit_header *hdr;
955  	void *err = ERR_PTR(-ENOMEM);
956  
957  	if (table >= end)
958  		return NULL;
959  
960  	hdr = table;
961  	if (!hdr->length) {
962  		dev_warn(dev, "found a zero length table '%d' parsing nfit\n",
963  			hdr->type);
964  		return NULL;
965  	}
966  
967  	switch (hdr->type) {
968  	case ACPI_NFIT_TYPE_SYSTEM_ADDRESS:
969  		if (!add_spa(acpi_desc, prev, table))
970  			return err;
971  		break;
972  	case ACPI_NFIT_TYPE_MEMORY_MAP:
973  		if (!add_memdev(acpi_desc, prev, table))
974  			return err;
975  		break;
976  	case ACPI_NFIT_TYPE_CONTROL_REGION:
977  		if (!add_dcr(acpi_desc, prev, table))
978  			return err;
979  		break;
980  	case ACPI_NFIT_TYPE_DATA_REGION:
981  		if (!add_bdw(acpi_desc, prev, table))
982  			return err;
983  		break;
984  	case ACPI_NFIT_TYPE_INTERLEAVE:
985  		if (!add_idt(acpi_desc, prev, table))
986  			return err;
987  		break;
988  	case ACPI_NFIT_TYPE_FLUSH_ADDRESS:
989  		if (!add_flush(acpi_desc, prev, table))
990  			return err;
991  		break;
992  	case ACPI_NFIT_TYPE_SMBIOS:
993  		dev_dbg(dev, "smbios\n");
994  		break;
995  	case ACPI_NFIT_TYPE_CAPABILITIES:
996  		if (!add_platform_cap(acpi_desc, table))
997  			return err;
998  		break;
999  	default:
1000  		dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type);
1001  		break;
1002  	}
1003  
1004  	return table + hdr->length;
1005  }
1006  
__nfit_mem_init(struct acpi_nfit_desc * acpi_desc,struct acpi_nfit_system_address * spa)1007  static int __nfit_mem_init(struct acpi_nfit_desc *acpi_desc,
1008  		struct acpi_nfit_system_address *spa)
1009  {
1010  	struct nfit_mem *nfit_mem, *found;
1011  	struct nfit_memdev *nfit_memdev;
1012  	int type = spa ? nfit_spa_type(spa) : 0;
1013  
1014  	switch (type) {
1015  	case NFIT_SPA_DCR:
1016  	case NFIT_SPA_PM:
1017  		break;
1018  	default:
1019  		if (spa)
1020  			return 0;
1021  	}
1022  
1023  	/*
1024  	 * This loop runs in two modes, when a dimm is mapped the loop
1025  	 * adds memdev associations to an existing dimm, or creates a
1026  	 * dimm. In the unmapped dimm case this loop sweeps for memdev
1027  	 * instances with an invalid / zero range_index and adds those
1028  	 * dimms without spa associations.
1029  	 */
1030  	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1031  		struct nfit_flush *nfit_flush;
1032  		struct nfit_dcr *nfit_dcr;
1033  		u32 device_handle;
1034  		u16 dcr;
1035  
1036  		if (spa && nfit_memdev->memdev->range_index != spa->range_index)
1037  			continue;
1038  		if (!spa && nfit_memdev->memdev->range_index)
1039  			continue;
1040  		found = NULL;
1041  		dcr = nfit_memdev->memdev->region_index;
1042  		device_handle = nfit_memdev->memdev->device_handle;
1043  		list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1044  			if (__to_nfit_memdev(nfit_mem)->device_handle
1045  					== device_handle) {
1046  				found = nfit_mem;
1047  				break;
1048  			}
1049  
1050  		if (found)
1051  			nfit_mem = found;
1052  		else {
1053  			nfit_mem = devm_kzalloc(acpi_desc->dev,
1054  					sizeof(*nfit_mem), GFP_KERNEL);
1055  			if (!nfit_mem)
1056  				return -ENOMEM;
1057  			INIT_LIST_HEAD(&nfit_mem->list);
1058  			nfit_mem->acpi_desc = acpi_desc;
1059  			list_add(&nfit_mem->list, &acpi_desc->dimms);
1060  		}
1061  
1062  		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1063  			if (nfit_dcr->dcr->region_index != dcr)
1064  				continue;
1065  			/*
1066  			 * Record the control region for the dimm.  For
1067  			 * the ACPI 6.1 case, where there are separate
1068  			 * control regions for the pmem vs blk
1069  			 * interfaces, be sure to record the extended
1070  			 * blk details.
1071  			 */
1072  			if (!nfit_mem->dcr)
1073  				nfit_mem->dcr = nfit_dcr->dcr;
1074  			else if (nfit_mem->dcr->windows == 0
1075  					&& nfit_dcr->dcr->windows)
1076  				nfit_mem->dcr = nfit_dcr->dcr;
1077  			break;
1078  		}
1079  
1080  		list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) {
1081  			struct acpi_nfit_flush_address *flush;
1082  			u16 i;
1083  
1084  			if (nfit_flush->flush->device_handle != device_handle)
1085  				continue;
1086  			nfit_mem->nfit_flush = nfit_flush;
1087  			flush = nfit_flush->flush;
1088  			nfit_mem->flush_wpq = devm_kcalloc(acpi_desc->dev,
1089  					flush->hint_count,
1090  					sizeof(struct resource),
1091  					GFP_KERNEL);
1092  			if (!nfit_mem->flush_wpq)
1093  				return -ENOMEM;
1094  			for (i = 0; i < flush->hint_count; i++) {
1095  				struct resource *res = &nfit_mem->flush_wpq[i];
1096  
1097  				res->start = flush->hint_address[i];
1098  				res->end = res->start + 8 - 1;
1099  			}
1100  			break;
1101  		}
1102  
1103  		if (dcr && !nfit_mem->dcr) {
1104  			dev_err(acpi_desc->dev, "SPA %d missing DCR %d\n",
1105  					spa->range_index, dcr);
1106  			return -ENODEV;
1107  		}
1108  
1109  		if (type == NFIT_SPA_DCR) {
1110  			struct nfit_idt *nfit_idt;
1111  			u16 idt_idx;
1112  
1113  			/* multiple dimms may share a SPA when interleaved */
1114  			nfit_mem->spa_dcr = spa;
1115  			nfit_mem->memdev_dcr = nfit_memdev->memdev;
1116  			idt_idx = nfit_memdev->memdev->interleave_index;
1117  			list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
1118  				if (nfit_idt->idt->interleave_index != idt_idx)
1119  					continue;
1120  				nfit_mem->idt_dcr = nfit_idt->idt;
1121  				break;
1122  			}
1123  		} else if (type == NFIT_SPA_PM) {
1124  			/*
1125  			 * A single dimm may belong to multiple SPA-PM
1126  			 * ranges, record at least one in addition to
1127  			 * any SPA-DCR range.
1128  			 */
1129  			nfit_mem->memdev_pmem = nfit_memdev->memdev;
1130  		} else
1131  			nfit_mem->memdev_dcr = nfit_memdev->memdev;
1132  	}
1133  
1134  	return 0;
1135  }
1136  
nfit_mem_cmp(void * priv,const struct list_head * _a,const struct list_head * _b)1137  static int nfit_mem_cmp(void *priv, const struct list_head *_a,
1138  		const struct list_head *_b)
1139  {
1140  	struct nfit_mem *a = container_of(_a, typeof(*a), list);
1141  	struct nfit_mem *b = container_of(_b, typeof(*b), list);
1142  	u32 handleA, handleB;
1143  
1144  	handleA = __to_nfit_memdev(a)->device_handle;
1145  	handleB = __to_nfit_memdev(b)->device_handle;
1146  	if (handleA < handleB)
1147  		return -1;
1148  	else if (handleA > handleB)
1149  		return 1;
1150  	return 0;
1151  }
1152  
nfit_mem_init(struct acpi_nfit_desc * acpi_desc)1153  static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc)
1154  {
1155  	struct nfit_spa *nfit_spa;
1156  	int rc;
1157  
1158  
1159  	/*
1160  	 * For each SPA-DCR or SPA-PMEM address range find its
1161  	 * corresponding MEMDEV(s).  From each MEMDEV find the
1162  	 * corresponding DCR.  Then, if we're operating on a SPA-DCR,
1163  	 * try to find a SPA-BDW and a corresponding BDW that references
1164  	 * the DCR.  Throw it all into an nfit_mem object.  Note, that
1165  	 * BDWs are optional.
1166  	 */
1167  	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
1168  		rc = __nfit_mem_init(acpi_desc, nfit_spa->spa);
1169  		if (rc)
1170  			return rc;
1171  	}
1172  
1173  	/*
1174  	 * If a DIMM has failed to be mapped into SPA there will be no
1175  	 * SPA entries above. Find and register all the unmapped DIMMs
1176  	 * for reporting and recovery purposes.
1177  	 */
1178  	rc = __nfit_mem_init(acpi_desc, NULL);
1179  	if (rc)
1180  		return rc;
1181  
1182  	list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp);
1183  
1184  	return 0;
1185  }
1186  
bus_dsm_mask_show(struct device * dev,struct device_attribute * attr,char * buf)1187  static ssize_t bus_dsm_mask_show(struct device *dev,
1188  		struct device_attribute *attr, char *buf)
1189  {
1190  	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1191  	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1192  	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1193  
1194  	return sysfs_emit(buf, "%#lx\n", acpi_desc->bus_dsm_mask);
1195  }
1196  static struct device_attribute dev_attr_bus_dsm_mask =
1197  		__ATTR(dsm_mask, 0444, bus_dsm_mask_show, NULL);
1198  
revision_show(struct device * dev,struct device_attribute * attr,char * buf)1199  static ssize_t revision_show(struct device *dev,
1200  		struct device_attribute *attr, char *buf)
1201  {
1202  	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1203  	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1204  	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1205  
1206  	return sysfs_emit(buf, "%d\n", acpi_desc->acpi_header.revision);
1207  }
1208  static DEVICE_ATTR_RO(revision);
1209  
hw_error_scrub_show(struct device * dev,struct device_attribute * attr,char * buf)1210  static ssize_t hw_error_scrub_show(struct device *dev,
1211  		struct device_attribute *attr, char *buf)
1212  {
1213  	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1214  	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1215  	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1216  
1217  	return sysfs_emit(buf, "%d\n", acpi_desc->scrub_mode);
1218  }
1219  
1220  /*
1221   * The 'hw_error_scrub' attribute can have the following values written to it:
1222   * '0': Switch to the default mode where an exception will only insert
1223   *      the address of the memory error into the poison and badblocks lists.
1224   * '1': Enable a full scrub to happen if an exception for a memory error is
1225   *      received.
1226   */
hw_error_scrub_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)1227  static ssize_t hw_error_scrub_store(struct device *dev,
1228  		struct device_attribute *attr, const char *buf, size_t size)
1229  {
1230  	struct nvdimm_bus_descriptor *nd_desc;
1231  	ssize_t rc;
1232  	long val;
1233  
1234  	rc = kstrtol(buf, 0, &val);
1235  	if (rc)
1236  		return rc;
1237  
1238  	device_lock(dev);
1239  	nd_desc = dev_get_drvdata(dev);
1240  	if (nd_desc) {
1241  		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1242  
1243  		switch (val) {
1244  		case HW_ERROR_SCRUB_ON:
1245  			acpi_desc->scrub_mode = HW_ERROR_SCRUB_ON;
1246  			break;
1247  		case HW_ERROR_SCRUB_OFF:
1248  			acpi_desc->scrub_mode = HW_ERROR_SCRUB_OFF;
1249  			break;
1250  		default:
1251  			rc = -EINVAL;
1252  			break;
1253  		}
1254  	}
1255  	device_unlock(dev);
1256  	if (rc)
1257  		return rc;
1258  	return size;
1259  }
1260  static DEVICE_ATTR_RW(hw_error_scrub);
1261  
1262  /*
1263   * This shows the number of full Address Range Scrubs that have been
1264   * completed since driver load time. Userspace can wait on this using
1265   * select/poll etc. A '+' at the end indicates an ARS is in progress
1266   */
scrub_show(struct device * dev,struct device_attribute * attr,char * buf)1267  static ssize_t scrub_show(struct device *dev,
1268  		struct device_attribute *attr, char *buf)
1269  {
1270  	struct nvdimm_bus_descriptor *nd_desc;
1271  	struct acpi_nfit_desc *acpi_desc;
1272  	ssize_t rc = -ENXIO;
1273  	bool busy;
1274  
1275  	device_lock(dev);
1276  	nd_desc = dev_get_drvdata(dev);
1277  	if (!nd_desc) {
1278  		device_unlock(dev);
1279  		return rc;
1280  	}
1281  	acpi_desc = to_acpi_desc(nd_desc);
1282  
1283  	mutex_lock(&acpi_desc->init_mutex);
1284  	busy = test_bit(ARS_BUSY, &acpi_desc->scrub_flags)
1285  		&& !test_bit(ARS_CANCEL, &acpi_desc->scrub_flags);
1286  	rc = sysfs_emit(buf, "%d%s", acpi_desc->scrub_count, busy ? "+\n" : "\n");
1287  	/* Allow an admin to poll the busy state at a higher rate */
1288  	if (busy && capable(CAP_SYS_RAWIO) && !test_and_set_bit(ARS_POLL,
1289  				&acpi_desc->scrub_flags)) {
1290  		acpi_desc->scrub_tmo = 1;
1291  		mod_delayed_work(nfit_wq, &acpi_desc->dwork, HZ);
1292  	}
1293  
1294  	mutex_unlock(&acpi_desc->init_mutex);
1295  	device_unlock(dev);
1296  	return rc;
1297  }
1298  
scrub_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)1299  static ssize_t scrub_store(struct device *dev,
1300  		struct device_attribute *attr, const char *buf, size_t size)
1301  {
1302  	struct nvdimm_bus_descriptor *nd_desc;
1303  	ssize_t rc;
1304  	long val;
1305  
1306  	rc = kstrtol(buf, 0, &val);
1307  	if (rc)
1308  		return rc;
1309  	if (val != 1)
1310  		return -EINVAL;
1311  
1312  	device_lock(dev);
1313  	nd_desc = dev_get_drvdata(dev);
1314  	if (nd_desc) {
1315  		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1316  
1317  		rc = acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG);
1318  	}
1319  	device_unlock(dev);
1320  	if (rc)
1321  		return rc;
1322  	return size;
1323  }
1324  static DEVICE_ATTR_RW(scrub);
1325  
ars_supported(struct nvdimm_bus * nvdimm_bus)1326  static bool ars_supported(struct nvdimm_bus *nvdimm_bus)
1327  {
1328  	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1329  	const unsigned long mask = 1 << ND_CMD_ARS_CAP | 1 << ND_CMD_ARS_START
1330  		| 1 << ND_CMD_ARS_STATUS;
1331  
1332  	return (nd_desc->cmd_mask & mask) == mask;
1333  }
1334  
nfit_visible(struct kobject * kobj,struct attribute * a,int n)1335  static umode_t nfit_visible(struct kobject *kobj, struct attribute *a, int n)
1336  {
1337  	struct device *dev = kobj_to_dev(kobj);
1338  	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1339  
1340  	if (a == &dev_attr_scrub.attr)
1341  		return ars_supported(nvdimm_bus) ? a->mode : 0;
1342  
1343  	if (a == &dev_attr_firmware_activate_noidle.attr)
1344  		return intel_fwa_supported(nvdimm_bus) ? a->mode : 0;
1345  
1346  	return a->mode;
1347  }
1348  
1349  static struct attribute *acpi_nfit_attributes[] = {
1350  	&dev_attr_revision.attr,
1351  	&dev_attr_scrub.attr,
1352  	&dev_attr_hw_error_scrub.attr,
1353  	&dev_attr_bus_dsm_mask.attr,
1354  	&dev_attr_firmware_activate_noidle.attr,
1355  	NULL,
1356  };
1357  
1358  static const struct attribute_group acpi_nfit_attribute_group = {
1359  	.name = "nfit",
1360  	.attrs = acpi_nfit_attributes,
1361  	.is_visible = nfit_visible,
1362  };
1363  
1364  static const struct attribute_group *acpi_nfit_attribute_groups[] = {
1365  	&acpi_nfit_attribute_group,
1366  	NULL,
1367  };
1368  
to_nfit_memdev(struct device * dev)1369  static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev)
1370  {
1371  	struct nvdimm *nvdimm = to_nvdimm(dev);
1372  	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1373  
1374  	return __to_nfit_memdev(nfit_mem);
1375  }
1376  
to_nfit_dcr(struct device * dev)1377  static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev)
1378  {
1379  	struct nvdimm *nvdimm = to_nvdimm(dev);
1380  	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1381  
1382  	return nfit_mem->dcr;
1383  }
1384  
handle_show(struct device * dev,struct device_attribute * attr,char * buf)1385  static ssize_t handle_show(struct device *dev,
1386  		struct device_attribute *attr, char *buf)
1387  {
1388  	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1389  
1390  	return sysfs_emit(buf, "%#x\n", memdev->device_handle);
1391  }
1392  static DEVICE_ATTR_RO(handle);
1393  
phys_id_show(struct device * dev,struct device_attribute * attr,char * buf)1394  static ssize_t phys_id_show(struct device *dev,
1395  		struct device_attribute *attr, char *buf)
1396  {
1397  	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1398  
1399  	return sysfs_emit(buf, "%#x\n", memdev->physical_id);
1400  }
1401  static DEVICE_ATTR_RO(phys_id);
1402  
vendor_show(struct device * dev,struct device_attribute * attr,char * buf)1403  static ssize_t vendor_show(struct device *dev,
1404  		struct device_attribute *attr, char *buf)
1405  {
1406  	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1407  
1408  	return sysfs_emit(buf, "0x%04x\n", be16_to_cpu(dcr->vendor_id));
1409  }
1410  static DEVICE_ATTR_RO(vendor);
1411  
rev_id_show(struct device * dev,struct device_attribute * attr,char * buf)1412  static ssize_t rev_id_show(struct device *dev,
1413  		struct device_attribute *attr, char *buf)
1414  {
1415  	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1416  
1417  	return sysfs_emit(buf, "0x%04x\n", be16_to_cpu(dcr->revision_id));
1418  }
1419  static DEVICE_ATTR_RO(rev_id);
1420  
device_show(struct device * dev,struct device_attribute * attr,char * buf)1421  static ssize_t device_show(struct device *dev,
1422  		struct device_attribute *attr, char *buf)
1423  {
1424  	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1425  
1426  	return sysfs_emit(buf, "0x%04x\n", be16_to_cpu(dcr->device_id));
1427  }
1428  static DEVICE_ATTR_RO(device);
1429  
subsystem_vendor_show(struct device * dev,struct device_attribute * attr,char * buf)1430  static ssize_t subsystem_vendor_show(struct device *dev,
1431  		struct device_attribute *attr, char *buf)
1432  {
1433  	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1434  
1435  	return sysfs_emit(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_vendor_id));
1436  }
1437  static DEVICE_ATTR_RO(subsystem_vendor);
1438  
subsystem_rev_id_show(struct device * dev,struct device_attribute * attr,char * buf)1439  static ssize_t subsystem_rev_id_show(struct device *dev,
1440  		struct device_attribute *attr, char *buf)
1441  {
1442  	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1443  
1444  	return sysfs_emit(buf, "0x%04x\n",
1445  			be16_to_cpu(dcr->subsystem_revision_id));
1446  }
1447  static DEVICE_ATTR_RO(subsystem_rev_id);
1448  
subsystem_device_show(struct device * dev,struct device_attribute * attr,char * buf)1449  static ssize_t subsystem_device_show(struct device *dev,
1450  		struct device_attribute *attr, char *buf)
1451  {
1452  	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1453  
1454  	return sysfs_emit(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_device_id));
1455  }
1456  static DEVICE_ATTR_RO(subsystem_device);
1457  
num_nvdimm_formats(struct nvdimm * nvdimm)1458  static int num_nvdimm_formats(struct nvdimm *nvdimm)
1459  {
1460  	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1461  	int formats = 0;
1462  
1463  	if (nfit_mem->memdev_pmem)
1464  		formats++;
1465  	return formats;
1466  }
1467  
format_show(struct device * dev,struct device_attribute * attr,char * buf)1468  static ssize_t format_show(struct device *dev,
1469  		struct device_attribute *attr, char *buf)
1470  {
1471  	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1472  
1473  	return sysfs_emit(buf, "0x%04x\n", le16_to_cpu(dcr->code));
1474  }
1475  static DEVICE_ATTR_RO(format);
1476  
format1_show(struct device * dev,struct device_attribute * attr,char * buf)1477  static ssize_t format1_show(struct device *dev,
1478  		struct device_attribute *attr, char *buf)
1479  {
1480  	u32 handle;
1481  	ssize_t rc = -ENXIO;
1482  	struct nfit_mem *nfit_mem;
1483  	struct nfit_memdev *nfit_memdev;
1484  	struct acpi_nfit_desc *acpi_desc;
1485  	struct nvdimm *nvdimm = to_nvdimm(dev);
1486  	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1487  
1488  	nfit_mem = nvdimm_provider_data(nvdimm);
1489  	acpi_desc = nfit_mem->acpi_desc;
1490  	handle = to_nfit_memdev(dev)->device_handle;
1491  
1492  	/* assumes DIMMs have at most 2 published interface codes */
1493  	mutex_lock(&acpi_desc->init_mutex);
1494  	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1495  		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
1496  		struct nfit_dcr *nfit_dcr;
1497  
1498  		if (memdev->device_handle != handle)
1499  			continue;
1500  
1501  		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1502  			if (nfit_dcr->dcr->region_index != memdev->region_index)
1503  				continue;
1504  			if (nfit_dcr->dcr->code == dcr->code)
1505  				continue;
1506  			rc = sysfs_emit(buf, "0x%04x\n",
1507  					le16_to_cpu(nfit_dcr->dcr->code));
1508  			break;
1509  		}
1510  		if (rc != -ENXIO)
1511  			break;
1512  	}
1513  	mutex_unlock(&acpi_desc->init_mutex);
1514  	return rc;
1515  }
1516  static DEVICE_ATTR_RO(format1);
1517  
formats_show(struct device * dev,struct device_attribute * attr,char * buf)1518  static ssize_t formats_show(struct device *dev,
1519  		struct device_attribute *attr, char *buf)
1520  {
1521  	struct nvdimm *nvdimm = to_nvdimm(dev);
1522  
1523  	return sysfs_emit(buf, "%d\n", num_nvdimm_formats(nvdimm));
1524  }
1525  static DEVICE_ATTR_RO(formats);
1526  
serial_show(struct device * dev,struct device_attribute * attr,char * buf)1527  static ssize_t serial_show(struct device *dev,
1528  		struct device_attribute *attr, char *buf)
1529  {
1530  	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1531  
1532  	return sysfs_emit(buf, "0x%08x\n", be32_to_cpu(dcr->serial_number));
1533  }
1534  static DEVICE_ATTR_RO(serial);
1535  
family_show(struct device * dev,struct device_attribute * attr,char * buf)1536  static ssize_t family_show(struct device *dev,
1537  		struct device_attribute *attr, char *buf)
1538  {
1539  	struct nvdimm *nvdimm = to_nvdimm(dev);
1540  	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1541  
1542  	if (nfit_mem->family < 0)
1543  		return -ENXIO;
1544  	return sysfs_emit(buf, "%d\n", nfit_mem->family);
1545  }
1546  static DEVICE_ATTR_RO(family);
1547  
dsm_mask_show(struct device * dev,struct device_attribute * attr,char * buf)1548  static ssize_t dsm_mask_show(struct device *dev,
1549  		struct device_attribute *attr, char *buf)
1550  {
1551  	struct nvdimm *nvdimm = to_nvdimm(dev);
1552  	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1553  
1554  	if (nfit_mem->family < 0)
1555  		return -ENXIO;
1556  	return sysfs_emit(buf, "%#lx\n", nfit_mem->dsm_mask);
1557  }
1558  static DEVICE_ATTR_RO(dsm_mask);
1559  
flags_show(struct device * dev,struct device_attribute * attr,char * buf)1560  static ssize_t flags_show(struct device *dev,
1561  		struct device_attribute *attr, char *buf)
1562  {
1563  	struct nvdimm *nvdimm = to_nvdimm(dev);
1564  	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1565  	u16 flags = __to_nfit_memdev(nfit_mem)->flags;
1566  
1567  	if (test_bit(NFIT_MEM_DIRTY, &nfit_mem->flags))
1568  		flags |= ACPI_NFIT_MEM_FLUSH_FAILED;
1569  
1570  	return sysfs_emit(buf, "%s%s%s%s%s%s%s\n",
1571  		flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "",
1572  		flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "",
1573  		flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "",
1574  		flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "",
1575  		flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : "",
1576  		flags & ACPI_NFIT_MEM_MAP_FAILED ? "map_fail " : "",
1577  		flags & ACPI_NFIT_MEM_HEALTH_ENABLED ? "smart_notify " : "");
1578  }
1579  static DEVICE_ATTR_RO(flags);
1580  
id_show(struct device * dev,struct device_attribute * attr,char * buf)1581  static ssize_t id_show(struct device *dev,
1582  		struct device_attribute *attr, char *buf)
1583  {
1584  	struct nvdimm *nvdimm = to_nvdimm(dev);
1585  	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1586  
1587  	return sysfs_emit(buf, "%s\n", nfit_mem->id);
1588  }
1589  static DEVICE_ATTR_RO(id);
1590  
dirty_shutdown_show(struct device * dev,struct device_attribute * attr,char * buf)1591  static ssize_t dirty_shutdown_show(struct device *dev,
1592  		struct device_attribute *attr, char *buf)
1593  {
1594  	struct nvdimm *nvdimm = to_nvdimm(dev);
1595  	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1596  
1597  	return sysfs_emit(buf, "%d\n", nfit_mem->dirty_shutdown);
1598  }
1599  static DEVICE_ATTR_RO(dirty_shutdown);
1600  
1601  static struct attribute *acpi_nfit_dimm_attributes[] = {
1602  	&dev_attr_handle.attr,
1603  	&dev_attr_phys_id.attr,
1604  	&dev_attr_vendor.attr,
1605  	&dev_attr_device.attr,
1606  	&dev_attr_rev_id.attr,
1607  	&dev_attr_subsystem_vendor.attr,
1608  	&dev_attr_subsystem_device.attr,
1609  	&dev_attr_subsystem_rev_id.attr,
1610  	&dev_attr_format.attr,
1611  	&dev_attr_formats.attr,
1612  	&dev_attr_format1.attr,
1613  	&dev_attr_serial.attr,
1614  	&dev_attr_flags.attr,
1615  	&dev_attr_id.attr,
1616  	&dev_attr_family.attr,
1617  	&dev_attr_dsm_mask.attr,
1618  	&dev_attr_dirty_shutdown.attr,
1619  	NULL,
1620  };
1621  
acpi_nfit_dimm_attr_visible(struct kobject * kobj,struct attribute * a,int n)1622  static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj,
1623  		struct attribute *a, int n)
1624  {
1625  	struct device *dev = kobj_to_dev(kobj);
1626  	struct nvdimm *nvdimm = to_nvdimm(dev);
1627  	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1628  
1629  	if (!to_nfit_dcr(dev)) {
1630  		/* Without a dcr only the memdev attributes can be surfaced */
1631  		if (a == &dev_attr_handle.attr || a == &dev_attr_phys_id.attr
1632  				|| a == &dev_attr_flags.attr
1633  				|| a == &dev_attr_family.attr
1634  				|| a == &dev_attr_dsm_mask.attr)
1635  			return a->mode;
1636  		return 0;
1637  	}
1638  
1639  	if (a == &dev_attr_format1.attr && num_nvdimm_formats(nvdimm) <= 1)
1640  		return 0;
1641  
1642  	if (!test_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags)
1643  			&& a == &dev_attr_dirty_shutdown.attr)
1644  		return 0;
1645  
1646  	return a->mode;
1647  }
1648  
1649  static const struct attribute_group acpi_nfit_dimm_attribute_group = {
1650  	.name = "nfit",
1651  	.attrs = acpi_nfit_dimm_attributes,
1652  	.is_visible = acpi_nfit_dimm_attr_visible,
1653  };
1654  
1655  static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = {
1656  	&acpi_nfit_dimm_attribute_group,
1657  	NULL,
1658  };
1659  
acpi_nfit_dimm_by_handle(struct acpi_nfit_desc * acpi_desc,u32 device_handle)1660  static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc,
1661  		u32 device_handle)
1662  {
1663  	struct nfit_mem *nfit_mem;
1664  
1665  	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1666  		if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle)
1667  			return nfit_mem->nvdimm;
1668  
1669  	return NULL;
1670  }
1671  
__acpi_nvdimm_notify(struct device * dev,u32 event)1672  void __acpi_nvdimm_notify(struct device *dev, u32 event)
1673  {
1674  	struct nfit_mem *nfit_mem;
1675  	struct acpi_nfit_desc *acpi_desc;
1676  
1677  	dev_dbg(dev->parent, "%s: event: %d\n", dev_name(dev),
1678  			event);
1679  
1680  	if (event != NFIT_NOTIFY_DIMM_HEALTH) {
1681  		dev_dbg(dev->parent, "%s: unknown event: %d\n", dev_name(dev),
1682  				event);
1683  		return;
1684  	}
1685  
1686  	acpi_desc = dev_get_drvdata(dev->parent);
1687  	if (!acpi_desc)
1688  		return;
1689  
1690  	/*
1691  	 * If we successfully retrieved acpi_desc, then we know nfit_mem data
1692  	 * is still valid.
1693  	 */
1694  	nfit_mem = dev_get_drvdata(dev);
1695  	if (nfit_mem && nfit_mem->flags_attr)
1696  		sysfs_notify_dirent(nfit_mem->flags_attr);
1697  }
1698  EXPORT_SYMBOL_GPL(__acpi_nvdimm_notify);
1699  
acpi_nvdimm_notify(acpi_handle handle,u32 event,void * data)1700  static void acpi_nvdimm_notify(acpi_handle handle, u32 event, void *data)
1701  {
1702  	struct acpi_device *adev = data;
1703  	struct device *dev = &adev->dev;
1704  
1705  	device_lock(dev->parent);
1706  	__acpi_nvdimm_notify(dev, event);
1707  	device_unlock(dev->parent);
1708  }
1709  
acpi_nvdimm_has_method(struct acpi_device * adev,char * method)1710  static bool acpi_nvdimm_has_method(struct acpi_device *adev, char *method)
1711  {
1712  	acpi_handle handle;
1713  	acpi_status status;
1714  
1715  	status = acpi_get_handle(adev->handle, method, &handle);
1716  
1717  	if (ACPI_SUCCESS(status))
1718  		return true;
1719  	return false;
1720  }
1721  
nfit_intel_shutdown_status(struct nfit_mem * nfit_mem)1722  __weak void nfit_intel_shutdown_status(struct nfit_mem *nfit_mem)
1723  {
1724  	struct device *dev = &nfit_mem->adev->dev;
1725  	struct nd_intel_smart smart = { 0 };
1726  	union acpi_object in_buf = {
1727  		.buffer.type = ACPI_TYPE_BUFFER,
1728  		.buffer.length = 0,
1729  	};
1730  	union acpi_object in_obj = {
1731  		.package.type = ACPI_TYPE_PACKAGE,
1732  		.package.count = 1,
1733  		.package.elements = &in_buf,
1734  	};
1735  	const u8 func = ND_INTEL_SMART;
1736  	const guid_t *guid = to_nfit_uuid(nfit_mem->family);
1737  	u8 revid = nfit_dsm_revid(nfit_mem->family, func);
1738  	struct acpi_device *adev = nfit_mem->adev;
1739  	acpi_handle handle = adev->handle;
1740  	union acpi_object *out_obj;
1741  
1742  	if ((nfit_mem->dsm_mask & (1 << func)) == 0)
1743  		return;
1744  
1745  	out_obj = acpi_evaluate_dsm_typed(handle, guid, revid, func, &in_obj, ACPI_TYPE_BUFFER);
1746  	if (!out_obj || out_obj->buffer.length < sizeof(smart)) {
1747  		dev_dbg(dev->parent, "%s: failed to retrieve initial health\n",
1748  				dev_name(dev));
1749  		ACPI_FREE(out_obj);
1750  		return;
1751  	}
1752  	memcpy(&smart, out_obj->buffer.pointer, sizeof(smart));
1753  	ACPI_FREE(out_obj);
1754  
1755  	if (smart.flags & ND_INTEL_SMART_SHUTDOWN_VALID) {
1756  		if (smart.shutdown_state)
1757  			set_bit(NFIT_MEM_DIRTY, &nfit_mem->flags);
1758  	}
1759  
1760  	if (smart.flags & ND_INTEL_SMART_SHUTDOWN_COUNT_VALID) {
1761  		set_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags);
1762  		nfit_mem->dirty_shutdown = smart.shutdown_count;
1763  	}
1764  }
1765  
populate_shutdown_status(struct nfit_mem * nfit_mem)1766  static void populate_shutdown_status(struct nfit_mem *nfit_mem)
1767  {
1768  	/*
1769  	 * For DIMMs that provide a dynamic facility to retrieve a
1770  	 * dirty-shutdown status and/or a dirty-shutdown count, cache
1771  	 * these values in nfit_mem.
1772  	 */
1773  	if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
1774  		nfit_intel_shutdown_status(nfit_mem);
1775  }
1776  
acpi_nfit_add_dimm(struct acpi_nfit_desc * acpi_desc,struct nfit_mem * nfit_mem,u32 device_handle)1777  static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc,
1778  		struct nfit_mem *nfit_mem, u32 device_handle)
1779  {
1780  	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
1781  	struct acpi_device *adev, *adev_dimm;
1782  	struct device *dev = acpi_desc->dev;
1783  	unsigned long dsm_mask, label_mask;
1784  	const guid_t *guid;
1785  	int i;
1786  	int family = -1;
1787  	struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
1788  
1789  	/* nfit test assumes 1:1 relationship between commands and dsms */
1790  	nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en;
1791  	nfit_mem->family = NVDIMM_FAMILY_INTEL;
1792  	set_bit(NVDIMM_FAMILY_INTEL, &nd_desc->dimm_family_mask);
1793  
1794  	if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID)
1795  		sprintf(nfit_mem->id, "%04x-%02x-%04x-%08x",
1796  				be16_to_cpu(dcr->vendor_id),
1797  				dcr->manufacturing_location,
1798  				be16_to_cpu(dcr->manufacturing_date),
1799  				be32_to_cpu(dcr->serial_number));
1800  	else
1801  		sprintf(nfit_mem->id, "%04x-%08x",
1802  				be16_to_cpu(dcr->vendor_id),
1803  				be32_to_cpu(dcr->serial_number));
1804  
1805  	adev = to_acpi_dev(acpi_desc);
1806  	if (!adev) {
1807  		/* unit test case */
1808  		populate_shutdown_status(nfit_mem);
1809  		return 0;
1810  	}
1811  
1812  	adev_dimm = acpi_find_child_device(adev, device_handle, false);
1813  	nfit_mem->adev = adev_dimm;
1814  	if (!adev_dimm) {
1815  		dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n",
1816  				device_handle);
1817  		return force_enable_dimms ? 0 : -ENODEV;
1818  	}
1819  
1820  	if (ACPI_FAILURE(acpi_install_notify_handler(adev_dimm->handle,
1821  		ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify, adev_dimm))) {
1822  		dev_err(dev, "%s: notification registration failed\n",
1823  				dev_name(&adev_dimm->dev));
1824  		return -ENXIO;
1825  	}
1826  	/*
1827  	 * Record nfit_mem for the notification path to track back to
1828  	 * the nfit sysfs attributes for this dimm device object.
1829  	 */
1830  	dev_set_drvdata(&adev_dimm->dev, nfit_mem);
1831  
1832  	/*
1833  	 * There are 4 "legacy" NVDIMM command sets
1834  	 * (NVDIMM_FAMILY_{INTEL,MSFT,HPE1,HPE2}) that were created before
1835  	 * an EFI working group was established to constrain this
1836  	 * proliferation. The nfit driver probes for the supported command
1837  	 * set by GUID. Note, if you're a platform developer looking to add
1838  	 * a new command set to this probe, consider using an existing set,
1839  	 * or otherwise seek approval to publish the command set at
1840  	 * http://www.uefi.org/RFIC_LIST.
1841  	 *
1842  	 * Note, that checking for function0 (bit0) tells us if any commands
1843  	 * are reachable through this GUID.
1844  	 */
1845  	clear_bit(NVDIMM_FAMILY_INTEL, &nd_desc->dimm_family_mask);
1846  	for (i = 0; i <= NVDIMM_FAMILY_MAX; i++)
1847  		if (acpi_check_dsm(adev_dimm->handle, to_nfit_uuid(i), 1, 1)) {
1848  			set_bit(i, &nd_desc->dimm_family_mask);
1849  			if (family < 0 || i == default_dsm_family)
1850  				family = i;
1851  		}
1852  
1853  	/* limit the supported commands to those that are publicly documented */
1854  	nfit_mem->family = family;
1855  	if (override_dsm_mask && !disable_vendor_specific)
1856  		dsm_mask = override_dsm_mask;
1857  	else if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
1858  		dsm_mask = NVDIMM_INTEL_CMDMASK;
1859  		if (disable_vendor_specific)
1860  			dsm_mask &= ~(1 << ND_CMD_VENDOR);
1861  	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE1) {
1862  		dsm_mask = 0x1c3c76;
1863  	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE2) {
1864  		dsm_mask = 0x1fe;
1865  		if (disable_vendor_specific)
1866  			dsm_mask &= ~(1 << 8);
1867  	} else if (nfit_mem->family == NVDIMM_FAMILY_MSFT) {
1868  		dsm_mask = 0xffffffff;
1869  	} else if (nfit_mem->family == NVDIMM_FAMILY_HYPERV) {
1870  		dsm_mask = 0x1f;
1871  	} else {
1872  		dev_dbg(dev, "unknown dimm command family\n");
1873  		nfit_mem->family = -1;
1874  		/* DSMs are optional, continue loading the driver... */
1875  		return 0;
1876  	}
1877  
1878  	/*
1879  	 * Function 0 is the command interrogation function, don't
1880  	 * export it to potential userspace use, and enable it to be
1881  	 * used as an error value in acpi_nfit_ctl().
1882  	 */
1883  	dsm_mask &= ~1UL;
1884  
1885  	guid = to_nfit_uuid(nfit_mem->family);
1886  	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
1887  		if (acpi_check_dsm(adev_dimm->handle, guid,
1888  					nfit_dsm_revid(nfit_mem->family, i),
1889  					1ULL << i))
1890  			set_bit(i, &nfit_mem->dsm_mask);
1891  
1892  	/*
1893  	 * Prefer the NVDIMM_FAMILY_INTEL label read commands if present
1894  	 * due to their better semantics handling locked capacity.
1895  	 */
1896  	label_mask = 1 << ND_CMD_GET_CONFIG_SIZE | 1 << ND_CMD_GET_CONFIG_DATA
1897  		| 1 << ND_CMD_SET_CONFIG_DATA;
1898  	if (family == NVDIMM_FAMILY_INTEL
1899  			&& (dsm_mask & label_mask) == label_mask)
1900  		/* skip _LS{I,R,W} enabling */;
1901  	else {
1902  		if (acpi_nvdimm_has_method(adev_dimm, "_LSI")
1903  				&& acpi_nvdimm_has_method(adev_dimm, "_LSR")) {
1904  			dev_dbg(dev, "%s: has _LSR\n", dev_name(&adev_dimm->dev));
1905  			set_bit(NFIT_MEM_LSR, &nfit_mem->flags);
1906  		}
1907  
1908  		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)
1909  				&& acpi_nvdimm_has_method(adev_dimm, "_LSW")) {
1910  			dev_dbg(dev, "%s: has _LSW\n", dev_name(&adev_dimm->dev));
1911  			set_bit(NFIT_MEM_LSW, &nfit_mem->flags);
1912  		}
1913  
1914  		/*
1915  		 * Quirk read-only label configurations to preserve
1916  		 * access to label-less namespaces by default.
1917  		 */
1918  		if (!test_bit(NFIT_MEM_LSW, &nfit_mem->flags)
1919  				&& !force_labels) {
1920  			dev_dbg(dev, "%s: No _LSW, disable labels\n",
1921  					dev_name(&adev_dimm->dev));
1922  			clear_bit(NFIT_MEM_LSR, &nfit_mem->flags);
1923  		} else
1924  			dev_dbg(dev, "%s: Force enable labels\n",
1925  					dev_name(&adev_dimm->dev));
1926  	}
1927  
1928  	populate_shutdown_status(nfit_mem);
1929  
1930  	return 0;
1931  }
1932  
shutdown_dimm_notify(void * data)1933  static void shutdown_dimm_notify(void *data)
1934  {
1935  	struct acpi_nfit_desc *acpi_desc = data;
1936  	struct nfit_mem *nfit_mem;
1937  
1938  	mutex_lock(&acpi_desc->init_mutex);
1939  	/*
1940  	 * Clear out the nfit_mem->flags_attr and shut down dimm event
1941  	 * notifications.
1942  	 */
1943  	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1944  		struct acpi_device *adev_dimm = nfit_mem->adev;
1945  
1946  		if (nfit_mem->flags_attr) {
1947  			sysfs_put(nfit_mem->flags_attr);
1948  			nfit_mem->flags_attr = NULL;
1949  		}
1950  		if (adev_dimm) {
1951  			acpi_remove_notify_handler(adev_dimm->handle,
1952  					ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify);
1953  			dev_set_drvdata(&adev_dimm->dev, NULL);
1954  		}
1955  	}
1956  	mutex_unlock(&acpi_desc->init_mutex);
1957  }
1958  
acpi_nfit_get_security_ops(int family)1959  static const struct nvdimm_security_ops *acpi_nfit_get_security_ops(int family)
1960  {
1961  	switch (family) {
1962  	case NVDIMM_FAMILY_INTEL:
1963  		return intel_security_ops;
1964  	default:
1965  		return NULL;
1966  	}
1967  }
1968  
acpi_nfit_get_fw_ops(struct nfit_mem * nfit_mem)1969  static const struct nvdimm_fw_ops *acpi_nfit_get_fw_ops(
1970  		struct nfit_mem *nfit_mem)
1971  {
1972  	unsigned long mask;
1973  	struct acpi_nfit_desc *acpi_desc = nfit_mem->acpi_desc;
1974  	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
1975  
1976  	if (!nd_desc->fw_ops)
1977  		return NULL;
1978  
1979  	if (nfit_mem->family != NVDIMM_FAMILY_INTEL)
1980  		return NULL;
1981  
1982  	mask = nfit_mem->dsm_mask & NVDIMM_INTEL_FW_ACTIVATE_CMDMASK;
1983  	if (mask != NVDIMM_INTEL_FW_ACTIVATE_CMDMASK)
1984  		return NULL;
1985  
1986  	return intel_fw_ops;
1987  }
1988  
acpi_nfit_register_dimms(struct acpi_nfit_desc * acpi_desc)1989  static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc)
1990  {
1991  	struct nfit_mem *nfit_mem;
1992  	int dimm_count = 0, rc;
1993  	struct nvdimm *nvdimm;
1994  
1995  	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1996  		struct acpi_nfit_flush_address *flush;
1997  		unsigned long flags = 0, cmd_mask;
1998  		struct nfit_memdev *nfit_memdev;
1999  		u32 device_handle;
2000  		u16 mem_flags;
2001  
2002  		device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
2003  		nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle);
2004  		if (nvdimm) {
2005  			dimm_count++;
2006  			continue;
2007  		}
2008  
2009  		/* collate flags across all memdevs for this dimm */
2010  		list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
2011  			struct acpi_nfit_memory_map *dimm_memdev;
2012  
2013  			dimm_memdev = __to_nfit_memdev(nfit_mem);
2014  			if (dimm_memdev->device_handle
2015  					!= nfit_memdev->memdev->device_handle)
2016  				continue;
2017  			dimm_memdev->flags |= nfit_memdev->memdev->flags;
2018  		}
2019  
2020  		mem_flags = __to_nfit_memdev(nfit_mem)->flags;
2021  		if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED)
2022  			set_bit(NDD_UNARMED, &flags);
2023  
2024  		rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle);
2025  		if (rc)
2026  			continue;
2027  
2028  		/*
2029  		 * TODO: provide translation for non-NVDIMM_FAMILY_INTEL
2030  		 * devices (i.e. from nd_cmd to acpi_dsm) to standardize the
2031  		 * userspace interface.
2032  		 */
2033  		cmd_mask = 1UL << ND_CMD_CALL;
2034  		if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
2035  			/*
2036  			 * These commands have a 1:1 correspondence
2037  			 * between DSM payload and libnvdimm ioctl
2038  			 * payload format.
2039  			 */
2040  			cmd_mask |= nfit_mem->dsm_mask & NVDIMM_STANDARD_CMDMASK;
2041  		}
2042  
2043  		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) {
2044  			set_bit(ND_CMD_GET_CONFIG_SIZE, &cmd_mask);
2045  			set_bit(ND_CMD_GET_CONFIG_DATA, &cmd_mask);
2046  		}
2047  		if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags))
2048  			set_bit(ND_CMD_SET_CONFIG_DATA, &cmd_mask);
2049  
2050  		flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush
2051  			: NULL;
2052  		nvdimm = __nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem,
2053  				acpi_nfit_dimm_attribute_groups,
2054  				flags, cmd_mask, flush ? flush->hint_count : 0,
2055  				nfit_mem->flush_wpq, &nfit_mem->id[0],
2056  				acpi_nfit_get_security_ops(nfit_mem->family),
2057  				acpi_nfit_get_fw_ops(nfit_mem));
2058  		if (!nvdimm)
2059  			return -ENOMEM;
2060  
2061  		nfit_mem->nvdimm = nvdimm;
2062  		dimm_count++;
2063  
2064  		if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0)
2065  			continue;
2066  
2067  		dev_err(acpi_desc->dev, "Error found in NVDIMM %s flags:%s%s%s%s%s\n",
2068  				nvdimm_name(nvdimm),
2069  		  mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "",
2070  		  mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"",
2071  		  mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "",
2072  		  mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : "",
2073  		  mem_flags & ACPI_NFIT_MEM_MAP_FAILED ? " map_fail" : "");
2074  
2075  	}
2076  
2077  	rc = nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count);
2078  	if (rc)
2079  		return rc;
2080  
2081  	/*
2082  	 * Now that dimms are successfully registered, and async registration
2083  	 * is flushed, attempt to enable event notification.
2084  	 */
2085  	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
2086  		struct kernfs_node *nfit_kernfs;
2087  
2088  		nvdimm = nfit_mem->nvdimm;
2089  		if (!nvdimm)
2090  			continue;
2091  
2092  		nfit_kernfs = sysfs_get_dirent(nvdimm_kobj(nvdimm)->sd, "nfit");
2093  		if (nfit_kernfs)
2094  			nfit_mem->flags_attr = sysfs_get_dirent(nfit_kernfs,
2095  					"flags");
2096  		sysfs_put(nfit_kernfs);
2097  		if (!nfit_mem->flags_attr)
2098  			dev_warn(acpi_desc->dev, "%s: notifications disabled\n",
2099  					nvdimm_name(nvdimm));
2100  	}
2101  
2102  	return devm_add_action_or_reset(acpi_desc->dev, shutdown_dimm_notify,
2103  			acpi_desc);
2104  }
2105  
2106  /*
2107   * These constants are private because there are no kernel consumers of
2108   * these commands.
2109   */
2110  enum nfit_aux_cmds {
2111  	NFIT_CMD_TRANSLATE_SPA = 5,
2112  	NFIT_CMD_ARS_INJECT_SET = 7,
2113  	NFIT_CMD_ARS_INJECT_CLEAR = 8,
2114  	NFIT_CMD_ARS_INJECT_GET = 9,
2115  };
2116  
acpi_nfit_init_dsms(struct acpi_nfit_desc * acpi_desc)2117  static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc)
2118  {
2119  	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2120  	const guid_t *guid = to_nfit_uuid(NFIT_DEV_BUS);
2121  	unsigned long dsm_mask, *mask;
2122  	struct acpi_device *adev;
2123  	int i;
2124  
2125  	set_bit(ND_CMD_CALL, &nd_desc->cmd_mask);
2126  	set_bit(NVDIMM_BUS_FAMILY_NFIT, &nd_desc->bus_family_mask);
2127  
2128  	/* enable nfit_test to inject bus command emulation */
2129  	if (acpi_desc->bus_cmd_force_en) {
2130  		nd_desc->cmd_mask = acpi_desc->bus_cmd_force_en;
2131  		mask = &nd_desc->bus_family_mask;
2132  		if (acpi_desc->family_dsm_mask[NVDIMM_BUS_FAMILY_INTEL]) {
2133  			set_bit(NVDIMM_BUS_FAMILY_INTEL, mask);
2134  			nd_desc->fw_ops = intel_bus_fw_ops;
2135  		}
2136  	}
2137  
2138  	adev = to_acpi_dev(acpi_desc);
2139  	if (!adev)
2140  		return;
2141  
2142  	for (i = ND_CMD_ARS_CAP; i <= ND_CMD_CLEAR_ERROR; i++)
2143  		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2144  			set_bit(i, &nd_desc->cmd_mask);
2145  
2146  	dsm_mask =
2147  		(1 << ND_CMD_ARS_CAP) |
2148  		(1 << ND_CMD_ARS_START) |
2149  		(1 << ND_CMD_ARS_STATUS) |
2150  		(1 << ND_CMD_CLEAR_ERROR) |
2151  		(1 << NFIT_CMD_TRANSLATE_SPA) |
2152  		(1 << NFIT_CMD_ARS_INJECT_SET) |
2153  		(1 << NFIT_CMD_ARS_INJECT_CLEAR) |
2154  		(1 << NFIT_CMD_ARS_INJECT_GET);
2155  	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
2156  		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2157  			set_bit(i, &acpi_desc->bus_dsm_mask);
2158  
2159  	/* Enumerate allowed NVDIMM_BUS_FAMILY_INTEL commands */
2160  	dsm_mask = NVDIMM_BUS_INTEL_FW_ACTIVATE_CMDMASK;
2161  	guid = to_nfit_bus_uuid(NVDIMM_BUS_FAMILY_INTEL);
2162  	mask = &acpi_desc->family_dsm_mask[NVDIMM_BUS_FAMILY_INTEL];
2163  	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
2164  		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2165  			set_bit(i, mask);
2166  
2167  	if (*mask == dsm_mask) {
2168  		set_bit(NVDIMM_BUS_FAMILY_INTEL, &nd_desc->bus_family_mask);
2169  		nd_desc->fw_ops = intel_bus_fw_ops;
2170  	}
2171  }
2172  
range_index_show(struct device * dev,struct device_attribute * attr,char * buf)2173  static ssize_t range_index_show(struct device *dev,
2174  		struct device_attribute *attr, char *buf)
2175  {
2176  	struct nd_region *nd_region = to_nd_region(dev);
2177  	struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region);
2178  
2179  	return sysfs_emit(buf, "%d\n", nfit_spa->spa->range_index);
2180  }
2181  static DEVICE_ATTR_RO(range_index);
2182  
2183  static struct attribute *acpi_nfit_region_attributes[] = {
2184  	&dev_attr_range_index.attr,
2185  	NULL,
2186  };
2187  
2188  static const struct attribute_group acpi_nfit_region_attribute_group = {
2189  	.name = "nfit",
2190  	.attrs = acpi_nfit_region_attributes,
2191  };
2192  
2193  static const struct attribute_group *acpi_nfit_region_attribute_groups[] = {
2194  	&acpi_nfit_region_attribute_group,
2195  	NULL,
2196  };
2197  
2198  /* enough info to uniquely specify an interleave set */
2199  struct nfit_set_info {
2200  	u64 region_offset;
2201  	u32 serial_number;
2202  	u32 pad;
2203  };
2204  
2205  struct nfit_set_info2 {
2206  	u64 region_offset;
2207  	u32 serial_number;
2208  	u16 vendor_id;
2209  	u16 manufacturing_date;
2210  	u8 manufacturing_location;
2211  	u8 reserved[31];
2212  };
2213  
cmp_map_compat(const void * m0,const void * m1)2214  static int cmp_map_compat(const void *m0, const void *m1)
2215  {
2216  	const struct nfit_set_info *map0 = m0;
2217  	const struct nfit_set_info *map1 = m1;
2218  
2219  	return memcmp(&map0->region_offset, &map1->region_offset,
2220  			sizeof(u64));
2221  }
2222  
cmp_map(const void * m0,const void * m1)2223  static int cmp_map(const void *m0, const void *m1)
2224  {
2225  	const struct nfit_set_info *map0 = m0;
2226  	const struct nfit_set_info *map1 = m1;
2227  
2228  	if (map0->region_offset < map1->region_offset)
2229  		return -1;
2230  	else if (map0->region_offset > map1->region_offset)
2231  		return 1;
2232  	return 0;
2233  }
2234  
cmp_map2(const void * m0,const void * m1)2235  static int cmp_map2(const void *m0, const void *m1)
2236  {
2237  	const struct nfit_set_info2 *map0 = m0;
2238  	const struct nfit_set_info2 *map1 = m1;
2239  
2240  	if (map0->region_offset < map1->region_offset)
2241  		return -1;
2242  	else if (map0->region_offset > map1->region_offset)
2243  		return 1;
2244  	return 0;
2245  }
2246  
2247  /* Retrieve the nth entry referencing this spa */
memdev_from_spa(struct acpi_nfit_desc * acpi_desc,u16 range_index,int n)2248  static struct acpi_nfit_memory_map *memdev_from_spa(
2249  		struct acpi_nfit_desc *acpi_desc, u16 range_index, int n)
2250  {
2251  	struct nfit_memdev *nfit_memdev;
2252  
2253  	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list)
2254  		if (nfit_memdev->memdev->range_index == range_index)
2255  			if (n-- == 0)
2256  				return nfit_memdev->memdev;
2257  	return NULL;
2258  }
2259  
acpi_nfit_init_interleave_set(struct acpi_nfit_desc * acpi_desc,struct nd_region_desc * ndr_desc,struct acpi_nfit_system_address * spa)2260  static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc,
2261  		struct nd_region_desc *ndr_desc,
2262  		struct acpi_nfit_system_address *spa)
2263  {
2264  	u16 nr = ndr_desc->num_mappings;
2265  	struct nfit_set_info2 *info2 __free(kfree) =
2266  		kcalloc(nr, sizeof(*info2), GFP_KERNEL);
2267  	struct nfit_set_info *info __free(kfree) =
2268  		kcalloc(nr, sizeof(*info), GFP_KERNEL);
2269  	struct device *dev = acpi_desc->dev;
2270  	struct nd_interleave_set *nd_set;
2271  	int i;
2272  
2273  	if (!info || !info2)
2274  		return -ENOMEM;
2275  
2276  	nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL);
2277  	if (!nd_set)
2278  		return -ENOMEM;
2279  	import_guid(&nd_set->type_guid, spa->range_guid);
2280  
2281  	for (i = 0; i < nr; i++) {
2282  		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
2283  		struct nvdimm *nvdimm = mapping->nvdimm;
2284  		struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2285  		struct nfit_set_info *map = &info[i];
2286  		struct nfit_set_info2 *map2 = &info2[i];
2287  		struct acpi_nfit_memory_map *memdev =
2288  			memdev_from_spa(acpi_desc, spa->range_index, i);
2289  		struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2290  
2291  		if (!memdev || !nfit_mem->dcr) {
2292  			dev_err(dev, "%s: failed to find DCR\n", __func__);
2293  			return -ENODEV;
2294  		}
2295  
2296  		map->region_offset = memdev->region_offset;
2297  		map->serial_number = dcr->serial_number;
2298  
2299  		map2->region_offset = memdev->region_offset;
2300  		map2->serial_number = dcr->serial_number;
2301  		map2->vendor_id = dcr->vendor_id;
2302  		map2->manufacturing_date = dcr->manufacturing_date;
2303  		map2->manufacturing_location = dcr->manufacturing_location;
2304  	}
2305  
2306  	/* v1.1 namespaces */
2307  	sort(info, nr, sizeof(*info), cmp_map, NULL);
2308  	nd_set->cookie1 = nd_fletcher64(info, sizeof(*info) * nr, 0);
2309  
2310  	/* v1.2 namespaces */
2311  	sort(info2, nr, sizeof(*info2), cmp_map2, NULL);
2312  	nd_set->cookie2 = nd_fletcher64(info2, sizeof(*info2) * nr, 0);
2313  
2314  	/* support v1.1 namespaces created with the wrong sort order */
2315  	sort(info, nr, sizeof(*info), cmp_map_compat, NULL);
2316  	nd_set->altcookie = nd_fletcher64(info, sizeof(*info) * nr, 0);
2317  
2318  	/* record the result of the sort for the mapping position */
2319  	for (i = 0; i < nr; i++) {
2320  		struct nfit_set_info2 *map2 = &info2[i];
2321  		int j;
2322  
2323  		for (j = 0; j < nr; j++) {
2324  			struct nd_mapping_desc *mapping = &ndr_desc->mapping[j];
2325  			struct nvdimm *nvdimm = mapping->nvdimm;
2326  			struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2327  			struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2328  
2329  			if (map2->serial_number == dcr->serial_number &&
2330  			    map2->vendor_id == dcr->vendor_id &&
2331  			    map2->manufacturing_date == dcr->manufacturing_date &&
2332  			    map2->manufacturing_location
2333  				    == dcr->manufacturing_location) {
2334  				mapping->position = i;
2335  				break;
2336  			}
2337  		}
2338  	}
2339  
2340  	ndr_desc->nd_set = nd_set;
2341  
2342  	return 0;
2343  }
2344  
ars_get_cap(struct acpi_nfit_desc * acpi_desc,struct nd_cmd_ars_cap * cmd,struct nfit_spa * nfit_spa)2345  static int ars_get_cap(struct acpi_nfit_desc *acpi_desc,
2346  		struct nd_cmd_ars_cap *cmd, struct nfit_spa *nfit_spa)
2347  {
2348  	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2349  	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2350  	int cmd_rc, rc;
2351  
2352  	cmd->address = spa->address;
2353  	cmd->length = spa->length;
2354  	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd,
2355  			sizeof(*cmd), &cmd_rc);
2356  	if (rc < 0)
2357  		return rc;
2358  	return cmd_rc;
2359  }
2360  
ars_start(struct acpi_nfit_desc * acpi_desc,struct nfit_spa * nfit_spa,enum nfit_ars_state req_type)2361  static int ars_start(struct acpi_nfit_desc *acpi_desc,
2362  		struct nfit_spa *nfit_spa, enum nfit_ars_state req_type)
2363  {
2364  	int rc;
2365  	int cmd_rc;
2366  	struct nd_cmd_ars_start ars_start;
2367  	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2368  	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2369  
2370  	memset(&ars_start, 0, sizeof(ars_start));
2371  	ars_start.address = spa->address;
2372  	ars_start.length = spa->length;
2373  	if (req_type == ARS_REQ_SHORT)
2374  		ars_start.flags = ND_ARS_RETURN_PREV_DATA;
2375  	if (nfit_spa_type(spa) == NFIT_SPA_PM)
2376  		ars_start.type = ND_ARS_PERSISTENT;
2377  	else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE)
2378  		ars_start.type = ND_ARS_VOLATILE;
2379  	else
2380  		return -ENOTTY;
2381  
2382  	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2383  			sizeof(ars_start), &cmd_rc);
2384  
2385  	if (rc < 0)
2386  		return rc;
2387  	if (cmd_rc < 0)
2388  		return cmd_rc;
2389  	set_bit(ARS_VALID, &acpi_desc->scrub_flags);
2390  	return 0;
2391  }
2392  
ars_continue(struct acpi_nfit_desc * acpi_desc)2393  static int ars_continue(struct acpi_nfit_desc *acpi_desc)
2394  {
2395  	int rc, cmd_rc;
2396  	struct nd_cmd_ars_start ars_start;
2397  	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2398  	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2399  
2400  	ars_start = (struct nd_cmd_ars_start) {
2401  		.address = ars_status->restart_address,
2402  		.length = ars_status->restart_length,
2403  		.type = ars_status->type,
2404  	};
2405  	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2406  			sizeof(ars_start), &cmd_rc);
2407  	if (rc < 0)
2408  		return rc;
2409  	return cmd_rc;
2410  }
2411  
ars_get_status(struct acpi_nfit_desc * acpi_desc)2412  static int ars_get_status(struct acpi_nfit_desc *acpi_desc)
2413  {
2414  	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2415  	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2416  	int rc, cmd_rc;
2417  
2418  	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, ars_status,
2419  			acpi_desc->max_ars, &cmd_rc);
2420  	if (rc < 0)
2421  		return rc;
2422  	return cmd_rc;
2423  }
2424  
ars_complete(struct acpi_nfit_desc * acpi_desc,struct nfit_spa * nfit_spa)2425  static void ars_complete(struct acpi_nfit_desc *acpi_desc,
2426  		struct nfit_spa *nfit_spa)
2427  {
2428  	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2429  	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2430  	struct nd_region *nd_region = nfit_spa->nd_region;
2431  	struct device *dev;
2432  
2433  	lockdep_assert_held(&acpi_desc->init_mutex);
2434  	/*
2435  	 * Only advance the ARS state for ARS runs initiated by the
2436  	 * kernel, ignore ARS results from BIOS initiated runs for scrub
2437  	 * completion tracking.
2438  	 */
2439  	if (acpi_desc->scrub_spa != nfit_spa)
2440  		return;
2441  
2442  	if ((ars_status->address >= spa->address && ars_status->address
2443  				< spa->address + spa->length)
2444  			|| (ars_status->address < spa->address)) {
2445  		/*
2446  		 * Assume that if a scrub starts at an offset from the
2447  		 * start of nfit_spa that we are in the continuation
2448  		 * case.
2449  		 *
2450  		 * Otherwise, if the scrub covers the spa range, mark
2451  		 * any pending request complete.
2452  		 */
2453  		if (ars_status->address + ars_status->length
2454  				>= spa->address + spa->length)
2455  				/* complete */;
2456  		else
2457  			return;
2458  	} else
2459  		return;
2460  
2461  	acpi_desc->scrub_spa = NULL;
2462  	if (nd_region) {
2463  		dev = nd_region_dev(nd_region);
2464  		nvdimm_region_notify(nd_region, NVDIMM_REVALIDATE_POISON);
2465  	} else
2466  		dev = acpi_desc->dev;
2467  	dev_dbg(dev, "ARS: range %d complete\n", spa->range_index);
2468  }
2469  
ars_status_process_records(struct acpi_nfit_desc * acpi_desc)2470  static int ars_status_process_records(struct acpi_nfit_desc *acpi_desc)
2471  {
2472  	struct nvdimm_bus *nvdimm_bus = acpi_desc->nvdimm_bus;
2473  	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2474  	int rc;
2475  	u32 i;
2476  
2477  	/*
2478  	 * First record starts at 44 byte offset from the start of the
2479  	 * payload.
2480  	 */
2481  	if (ars_status->out_length < 44)
2482  		return 0;
2483  
2484  	/*
2485  	 * Ignore potentially stale results that are only refreshed
2486  	 * after a start-ARS event.
2487  	 */
2488  	if (!test_and_clear_bit(ARS_VALID, &acpi_desc->scrub_flags)) {
2489  		dev_dbg(acpi_desc->dev, "skip %d stale records\n",
2490  				ars_status->num_records);
2491  		return 0;
2492  	}
2493  
2494  	for (i = 0; i < ars_status->num_records; i++) {
2495  		/* only process full records */
2496  		if (ars_status->out_length
2497  				< 44 + sizeof(struct nd_ars_record) * (i + 1))
2498  			break;
2499  		rc = nvdimm_bus_add_badrange(nvdimm_bus,
2500  				ars_status->records[i].err_address,
2501  				ars_status->records[i].length);
2502  		if (rc)
2503  			return rc;
2504  	}
2505  	if (i < ars_status->num_records)
2506  		dev_warn(acpi_desc->dev, "detected truncated ars results\n");
2507  
2508  	return 0;
2509  }
2510  
acpi_nfit_remove_resource(void * data)2511  static void acpi_nfit_remove_resource(void *data)
2512  {
2513  	struct resource *res = data;
2514  
2515  	remove_resource(res);
2516  }
2517  
acpi_nfit_insert_resource(struct acpi_nfit_desc * acpi_desc,struct nd_region_desc * ndr_desc)2518  static int acpi_nfit_insert_resource(struct acpi_nfit_desc *acpi_desc,
2519  		struct nd_region_desc *ndr_desc)
2520  {
2521  	struct resource *res, *nd_res = ndr_desc->res;
2522  	int is_pmem, ret;
2523  
2524  	/* No operation if the region is already registered as PMEM */
2525  	is_pmem = region_intersects(nd_res->start, resource_size(nd_res),
2526  				IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY);
2527  	if (is_pmem == REGION_INTERSECTS)
2528  		return 0;
2529  
2530  	res = devm_kzalloc(acpi_desc->dev, sizeof(*res), GFP_KERNEL);
2531  	if (!res)
2532  		return -ENOMEM;
2533  
2534  	res->name = "Persistent Memory";
2535  	res->start = nd_res->start;
2536  	res->end = nd_res->end;
2537  	res->flags = IORESOURCE_MEM;
2538  	res->desc = IORES_DESC_PERSISTENT_MEMORY;
2539  
2540  	ret = insert_resource(&iomem_resource, res);
2541  	if (ret)
2542  		return ret;
2543  
2544  	ret = devm_add_action_or_reset(acpi_desc->dev,
2545  					acpi_nfit_remove_resource,
2546  					res);
2547  	if (ret)
2548  		return ret;
2549  
2550  	return 0;
2551  }
2552  
acpi_nfit_init_mapping(struct acpi_nfit_desc * acpi_desc,struct nd_mapping_desc * mapping,struct nd_region_desc * ndr_desc,struct acpi_nfit_memory_map * memdev,struct nfit_spa * nfit_spa)2553  static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc,
2554  		struct nd_mapping_desc *mapping, struct nd_region_desc *ndr_desc,
2555  		struct acpi_nfit_memory_map *memdev,
2556  		struct nfit_spa *nfit_spa)
2557  {
2558  	struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc,
2559  			memdev->device_handle);
2560  	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2561  
2562  	if (!nvdimm) {
2563  		dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n",
2564  				spa->range_index, memdev->device_handle);
2565  		return -ENODEV;
2566  	}
2567  
2568  	mapping->nvdimm = nvdimm;
2569  	switch (nfit_spa_type(spa)) {
2570  	case NFIT_SPA_PM:
2571  	case NFIT_SPA_VOLATILE:
2572  		mapping->start = memdev->address;
2573  		mapping->size = memdev->region_size;
2574  		break;
2575  	}
2576  
2577  	return 0;
2578  }
2579  
nfit_spa_is_virtual(struct acpi_nfit_system_address * spa)2580  static bool nfit_spa_is_virtual(struct acpi_nfit_system_address *spa)
2581  {
2582  	return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2583  		nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2584  		nfit_spa_type(spa) == NFIT_SPA_PDISK ||
2585  		nfit_spa_type(spa) == NFIT_SPA_PCD);
2586  }
2587  
nfit_spa_is_volatile(struct acpi_nfit_system_address * spa)2588  static bool nfit_spa_is_volatile(struct acpi_nfit_system_address *spa)
2589  {
2590  	return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2591  		nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2592  		nfit_spa_type(spa) == NFIT_SPA_VOLATILE);
2593  }
2594  
acpi_nfit_register_region(struct acpi_nfit_desc * acpi_desc,struct nfit_spa * nfit_spa)2595  static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc,
2596  		struct nfit_spa *nfit_spa)
2597  {
2598  	static struct nd_mapping_desc mappings[ND_MAX_MAPPINGS];
2599  	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2600  	struct nd_region_desc *ndr_desc, _ndr_desc;
2601  	struct nfit_memdev *nfit_memdev;
2602  	struct nvdimm_bus *nvdimm_bus;
2603  	struct resource res;
2604  	int count = 0, rc;
2605  
2606  	if (nfit_spa->nd_region)
2607  		return 0;
2608  
2609  	if (spa->range_index == 0 && !nfit_spa_is_virtual(spa)) {
2610  		dev_dbg(acpi_desc->dev, "detected invalid spa index\n");
2611  		return 0;
2612  	}
2613  
2614  	memset(&res, 0, sizeof(res));
2615  	memset(&mappings, 0, sizeof(mappings));
2616  	memset(&_ndr_desc, 0, sizeof(_ndr_desc));
2617  	res.start = spa->address;
2618  	res.end = res.start + spa->length - 1;
2619  	ndr_desc = &_ndr_desc;
2620  	ndr_desc->res = &res;
2621  	ndr_desc->provider_data = nfit_spa;
2622  	ndr_desc->attr_groups = acpi_nfit_region_attribute_groups;
2623  	if (spa->flags & ACPI_NFIT_PROXIMITY_VALID) {
2624  		ndr_desc->numa_node = pxm_to_online_node(spa->proximity_domain);
2625  		ndr_desc->target_node = pxm_to_node(spa->proximity_domain);
2626  	} else {
2627  		ndr_desc->numa_node = NUMA_NO_NODE;
2628  		ndr_desc->target_node = NUMA_NO_NODE;
2629  	}
2630  
2631  	/* Fallback to address based numa information if node lookup failed */
2632  	if (ndr_desc->numa_node == NUMA_NO_NODE) {
2633  		ndr_desc->numa_node = memory_add_physaddr_to_nid(spa->address);
2634  		dev_info(acpi_desc->dev, "changing numa node from %d to %d for nfit region [%pa-%pa]",
2635  			NUMA_NO_NODE, ndr_desc->numa_node, &res.start, &res.end);
2636  	}
2637  	if (ndr_desc->target_node == NUMA_NO_NODE) {
2638  		ndr_desc->target_node = phys_to_target_node(spa->address);
2639  		dev_info(acpi_desc->dev, "changing target node from %d to %d for nfit region [%pa-%pa]",
2640  			NUMA_NO_NODE, ndr_desc->numa_node, &res.start, &res.end);
2641  	}
2642  
2643  	/*
2644  	 * Persistence domain bits are hierarchical, if
2645  	 * ACPI_NFIT_CAPABILITY_CACHE_FLUSH is set then
2646  	 * ACPI_NFIT_CAPABILITY_MEM_FLUSH is implied.
2647  	 */
2648  	if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_CACHE_FLUSH)
2649  		set_bit(ND_REGION_PERSIST_CACHE, &ndr_desc->flags);
2650  	else if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_MEM_FLUSH)
2651  		set_bit(ND_REGION_PERSIST_MEMCTRL, &ndr_desc->flags);
2652  
2653  	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
2654  		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
2655  		struct nd_mapping_desc *mapping;
2656  
2657  		/* range index 0 == unmapped in SPA or invalid-SPA */
2658  		if (memdev->range_index == 0 || spa->range_index == 0)
2659  			continue;
2660  		if (memdev->range_index != spa->range_index)
2661  			continue;
2662  		if (count >= ND_MAX_MAPPINGS) {
2663  			dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n",
2664  					spa->range_index, ND_MAX_MAPPINGS);
2665  			return -ENXIO;
2666  		}
2667  		mapping = &mappings[count++];
2668  		rc = acpi_nfit_init_mapping(acpi_desc, mapping, ndr_desc,
2669  				memdev, nfit_spa);
2670  		if (rc)
2671  			goto out;
2672  	}
2673  
2674  	ndr_desc->mapping = mappings;
2675  	ndr_desc->num_mappings = count;
2676  	rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
2677  	if (rc)
2678  		goto out;
2679  
2680  	nvdimm_bus = acpi_desc->nvdimm_bus;
2681  	if (nfit_spa_type(spa) == NFIT_SPA_PM) {
2682  		rc = acpi_nfit_insert_resource(acpi_desc, ndr_desc);
2683  		if (rc) {
2684  			dev_warn(acpi_desc->dev,
2685  				"failed to insert pmem resource to iomem: %d\n",
2686  				rc);
2687  			goto out;
2688  		}
2689  
2690  		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2691  				ndr_desc);
2692  		if (!nfit_spa->nd_region)
2693  			rc = -ENOMEM;
2694  	} else if (nfit_spa_is_volatile(spa)) {
2695  		nfit_spa->nd_region = nvdimm_volatile_region_create(nvdimm_bus,
2696  				ndr_desc);
2697  		if (!nfit_spa->nd_region)
2698  			rc = -ENOMEM;
2699  	} else if (nfit_spa_is_virtual(spa)) {
2700  		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2701  				ndr_desc);
2702  		if (!nfit_spa->nd_region)
2703  			rc = -ENOMEM;
2704  	}
2705  
2706   out:
2707  	if (rc)
2708  		dev_err(acpi_desc->dev, "failed to register spa range %d\n",
2709  				nfit_spa->spa->range_index);
2710  	return rc;
2711  }
2712  
ars_status_alloc(struct acpi_nfit_desc * acpi_desc)2713  static int ars_status_alloc(struct acpi_nfit_desc *acpi_desc)
2714  {
2715  	struct device *dev = acpi_desc->dev;
2716  	struct nd_cmd_ars_status *ars_status;
2717  
2718  	if (acpi_desc->ars_status) {
2719  		memset(acpi_desc->ars_status, 0, acpi_desc->max_ars);
2720  		return 0;
2721  	}
2722  
2723  	ars_status = devm_kzalloc(dev, acpi_desc->max_ars, GFP_KERNEL);
2724  	if (!ars_status)
2725  		return -ENOMEM;
2726  	acpi_desc->ars_status = ars_status;
2727  	return 0;
2728  }
2729  
acpi_nfit_query_poison(struct acpi_nfit_desc * acpi_desc)2730  static int acpi_nfit_query_poison(struct acpi_nfit_desc *acpi_desc)
2731  {
2732  	int rc;
2733  
2734  	if (ars_status_alloc(acpi_desc))
2735  		return -ENOMEM;
2736  
2737  	rc = ars_get_status(acpi_desc);
2738  
2739  	if (rc < 0 && rc != -ENOSPC)
2740  		return rc;
2741  
2742  	if (ars_status_process_records(acpi_desc))
2743  		dev_err(acpi_desc->dev, "Failed to process ARS records\n");
2744  
2745  	return rc;
2746  }
2747  
ars_register(struct acpi_nfit_desc * acpi_desc,struct nfit_spa * nfit_spa)2748  static int ars_register(struct acpi_nfit_desc *acpi_desc,
2749  		struct nfit_spa *nfit_spa)
2750  {
2751  	int rc;
2752  
2753  	if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
2754  		return acpi_nfit_register_region(acpi_desc, nfit_spa);
2755  
2756  	set_bit(ARS_REQ_SHORT, &nfit_spa->ars_state);
2757  	if (!no_init_ars)
2758  		set_bit(ARS_REQ_LONG, &nfit_spa->ars_state);
2759  
2760  	switch (acpi_nfit_query_poison(acpi_desc)) {
2761  	case 0:
2762  	case -ENOSPC:
2763  	case -EAGAIN:
2764  		rc = ars_start(acpi_desc, nfit_spa, ARS_REQ_SHORT);
2765  		/* shouldn't happen, try again later */
2766  		if (rc == -EBUSY)
2767  			break;
2768  		if (rc) {
2769  			set_bit(ARS_FAILED, &nfit_spa->ars_state);
2770  			break;
2771  		}
2772  		clear_bit(ARS_REQ_SHORT, &nfit_spa->ars_state);
2773  		rc = acpi_nfit_query_poison(acpi_desc);
2774  		if (rc)
2775  			break;
2776  		acpi_desc->scrub_spa = nfit_spa;
2777  		ars_complete(acpi_desc, nfit_spa);
2778  		/*
2779  		 * If ars_complete() says we didn't complete the
2780  		 * short scrub, we'll try again with a long
2781  		 * request.
2782  		 */
2783  		acpi_desc->scrub_spa = NULL;
2784  		break;
2785  	case -EBUSY:
2786  	case -ENOMEM:
2787  		/*
2788  		 * BIOS was using ARS, wait for it to complete (or
2789  		 * resources to become available) and then perform our
2790  		 * own scrubs.
2791  		 */
2792  		break;
2793  	default:
2794  		set_bit(ARS_FAILED, &nfit_spa->ars_state);
2795  		break;
2796  	}
2797  
2798  	return acpi_nfit_register_region(acpi_desc, nfit_spa);
2799  }
2800  
ars_complete_all(struct acpi_nfit_desc * acpi_desc)2801  static void ars_complete_all(struct acpi_nfit_desc *acpi_desc)
2802  {
2803  	struct nfit_spa *nfit_spa;
2804  
2805  	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2806  		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
2807  			continue;
2808  		ars_complete(acpi_desc, nfit_spa);
2809  	}
2810  }
2811  
__acpi_nfit_scrub(struct acpi_nfit_desc * acpi_desc,int query_rc)2812  static unsigned int __acpi_nfit_scrub(struct acpi_nfit_desc *acpi_desc,
2813  		int query_rc)
2814  {
2815  	unsigned int tmo = acpi_desc->scrub_tmo;
2816  	struct device *dev = acpi_desc->dev;
2817  	struct nfit_spa *nfit_spa;
2818  
2819  	lockdep_assert_held(&acpi_desc->init_mutex);
2820  
2821  	if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags))
2822  		return 0;
2823  
2824  	if (query_rc == -EBUSY) {
2825  		dev_dbg(dev, "ARS: ARS busy\n");
2826  		return min(30U * 60U, tmo * 2);
2827  	}
2828  	if (query_rc == -ENOSPC) {
2829  		dev_dbg(dev, "ARS: ARS continue\n");
2830  		ars_continue(acpi_desc);
2831  		return 1;
2832  	}
2833  	if (query_rc && query_rc != -EAGAIN) {
2834  		unsigned long long addr, end;
2835  
2836  		addr = acpi_desc->ars_status->address;
2837  		end = addr + acpi_desc->ars_status->length;
2838  		dev_dbg(dev, "ARS: %llx-%llx failed (%d)\n", addr, end,
2839  				query_rc);
2840  	}
2841  
2842  	ars_complete_all(acpi_desc);
2843  	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2844  		enum nfit_ars_state req_type;
2845  		int rc;
2846  
2847  		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
2848  			continue;
2849  
2850  		/* prefer short ARS requests first */
2851  		if (test_bit(ARS_REQ_SHORT, &nfit_spa->ars_state))
2852  			req_type = ARS_REQ_SHORT;
2853  		else if (test_bit(ARS_REQ_LONG, &nfit_spa->ars_state))
2854  			req_type = ARS_REQ_LONG;
2855  		else
2856  			continue;
2857  		rc = ars_start(acpi_desc, nfit_spa, req_type);
2858  
2859  		dev = nd_region_dev(nfit_spa->nd_region);
2860  		dev_dbg(dev, "ARS: range %d ARS start %s (%d)\n",
2861  				nfit_spa->spa->range_index,
2862  				req_type == ARS_REQ_SHORT ? "short" : "long",
2863  				rc);
2864  		/*
2865  		 * Hmm, we raced someone else starting ARS? Try again in
2866  		 * a bit.
2867  		 */
2868  		if (rc == -EBUSY)
2869  			return 1;
2870  		if (rc == 0) {
2871  			dev_WARN_ONCE(dev, acpi_desc->scrub_spa,
2872  					"scrub start while range %d active\n",
2873  					acpi_desc->scrub_spa->spa->range_index);
2874  			clear_bit(req_type, &nfit_spa->ars_state);
2875  			acpi_desc->scrub_spa = nfit_spa;
2876  			/*
2877  			 * Consider this spa last for future scrub
2878  			 * requests
2879  			 */
2880  			list_move_tail(&nfit_spa->list, &acpi_desc->spas);
2881  			return 1;
2882  		}
2883  
2884  		dev_err(dev, "ARS: range %d ARS failed (%d)\n",
2885  				nfit_spa->spa->range_index, rc);
2886  		set_bit(ARS_FAILED, &nfit_spa->ars_state);
2887  	}
2888  	return 0;
2889  }
2890  
__sched_ars(struct acpi_nfit_desc * acpi_desc,unsigned int tmo)2891  static void __sched_ars(struct acpi_nfit_desc *acpi_desc, unsigned int tmo)
2892  {
2893  	lockdep_assert_held(&acpi_desc->init_mutex);
2894  
2895  	set_bit(ARS_BUSY, &acpi_desc->scrub_flags);
2896  	/* note this should only be set from within the workqueue */
2897  	if (tmo)
2898  		acpi_desc->scrub_tmo = tmo;
2899  	queue_delayed_work(nfit_wq, &acpi_desc->dwork, tmo * HZ);
2900  }
2901  
sched_ars(struct acpi_nfit_desc * acpi_desc)2902  static void sched_ars(struct acpi_nfit_desc *acpi_desc)
2903  {
2904  	__sched_ars(acpi_desc, 0);
2905  }
2906  
notify_ars_done(struct acpi_nfit_desc * acpi_desc)2907  static void notify_ars_done(struct acpi_nfit_desc *acpi_desc)
2908  {
2909  	lockdep_assert_held(&acpi_desc->init_mutex);
2910  
2911  	clear_bit(ARS_BUSY, &acpi_desc->scrub_flags);
2912  	acpi_desc->scrub_count++;
2913  	if (acpi_desc->scrub_count_state)
2914  		sysfs_notify_dirent(acpi_desc->scrub_count_state);
2915  }
2916  
acpi_nfit_scrub(struct work_struct * work)2917  static void acpi_nfit_scrub(struct work_struct *work)
2918  {
2919  	struct acpi_nfit_desc *acpi_desc;
2920  	unsigned int tmo;
2921  	int query_rc;
2922  
2923  	acpi_desc = container_of(work, typeof(*acpi_desc), dwork.work);
2924  	mutex_lock(&acpi_desc->init_mutex);
2925  	query_rc = acpi_nfit_query_poison(acpi_desc);
2926  	tmo = __acpi_nfit_scrub(acpi_desc, query_rc);
2927  	if (tmo)
2928  		__sched_ars(acpi_desc, tmo);
2929  	else
2930  		notify_ars_done(acpi_desc);
2931  	memset(acpi_desc->ars_status, 0, acpi_desc->max_ars);
2932  	clear_bit(ARS_POLL, &acpi_desc->scrub_flags);
2933  	mutex_unlock(&acpi_desc->init_mutex);
2934  }
2935  
acpi_nfit_init_ars(struct acpi_nfit_desc * acpi_desc,struct nfit_spa * nfit_spa)2936  static void acpi_nfit_init_ars(struct acpi_nfit_desc *acpi_desc,
2937  		struct nfit_spa *nfit_spa)
2938  {
2939  	int type = nfit_spa_type(nfit_spa->spa);
2940  	struct nd_cmd_ars_cap ars_cap;
2941  	int rc;
2942  
2943  	set_bit(ARS_FAILED, &nfit_spa->ars_state);
2944  	memset(&ars_cap, 0, sizeof(ars_cap));
2945  	rc = ars_get_cap(acpi_desc, &ars_cap, nfit_spa);
2946  	if (rc < 0)
2947  		return;
2948  	/* check that the supported scrub types match the spa type */
2949  	if (type == NFIT_SPA_VOLATILE && ((ars_cap.status >> 16)
2950  				& ND_ARS_VOLATILE) == 0)
2951  		return;
2952  	if (type == NFIT_SPA_PM && ((ars_cap.status >> 16)
2953  				& ND_ARS_PERSISTENT) == 0)
2954  		return;
2955  
2956  	nfit_spa->max_ars = ars_cap.max_ars_out;
2957  	nfit_spa->clear_err_unit = ars_cap.clear_err_unit;
2958  	acpi_desc->max_ars = max(nfit_spa->max_ars, acpi_desc->max_ars);
2959  	clear_bit(ARS_FAILED, &nfit_spa->ars_state);
2960  }
2961  
acpi_nfit_register_regions(struct acpi_nfit_desc * acpi_desc)2962  static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc)
2963  {
2964  	struct nfit_spa *nfit_spa;
2965  	int rc, do_sched_ars = 0;
2966  
2967  	set_bit(ARS_VALID, &acpi_desc->scrub_flags);
2968  	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2969  		switch (nfit_spa_type(nfit_spa->spa)) {
2970  		case NFIT_SPA_VOLATILE:
2971  		case NFIT_SPA_PM:
2972  			acpi_nfit_init_ars(acpi_desc, nfit_spa);
2973  			break;
2974  		}
2975  	}
2976  
2977  	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2978  		switch (nfit_spa_type(nfit_spa->spa)) {
2979  		case NFIT_SPA_VOLATILE:
2980  		case NFIT_SPA_PM:
2981  			/* register regions and kick off initial ARS run */
2982  			rc = ars_register(acpi_desc, nfit_spa);
2983  			if (rc)
2984  				return rc;
2985  
2986  			/*
2987  			 * Kick off background ARS if at least one
2988  			 * region successfully registered ARS
2989  			 */
2990  			if (!test_bit(ARS_FAILED, &nfit_spa->ars_state))
2991  				do_sched_ars++;
2992  			break;
2993  		case NFIT_SPA_BDW:
2994  			/* nothing to register */
2995  			break;
2996  		case NFIT_SPA_DCR:
2997  		case NFIT_SPA_VDISK:
2998  		case NFIT_SPA_VCD:
2999  		case NFIT_SPA_PDISK:
3000  		case NFIT_SPA_PCD:
3001  			/* register known regions that don't support ARS */
3002  			rc = acpi_nfit_register_region(acpi_desc, nfit_spa);
3003  			if (rc)
3004  				return rc;
3005  			break;
3006  		default:
3007  			/* don't register unknown regions */
3008  			break;
3009  		}
3010  	}
3011  
3012  	if (do_sched_ars)
3013  		sched_ars(acpi_desc);
3014  	return 0;
3015  }
3016  
acpi_nfit_check_deletions(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev)3017  static int acpi_nfit_check_deletions(struct acpi_nfit_desc *acpi_desc,
3018  		struct nfit_table_prev *prev)
3019  {
3020  	struct device *dev = acpi_desc->dev;
3021  
3022  	if (!list_empty(&prev->spas) ||
3023  			!list_empty(&prev->memdevs) ||
3024  			!list_empty(&prev->dcrs) ||
3025  			!list_empty(&prev->bdws) ||
3026  			!list_empty(&prev->idts) ||
3027  			!list_empty(&prev->flushes)) {
3028  		dev_err(dev, "new nfit deletes entries (unsupported)\n");
3029  		return -ENXIO;
3030  	}
3031  	return 0;
3032  }
3033  
acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc * acpi_desc)3034  static int acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc *acpi_desc)
3035  {
3036  	struct device *dev = acpi_desc->dev;
3037  	struct kernfs_node *nfit;
3038  	struct device *bus_dev;
3039  
3040  	if (!ars_supported(acpi_desc->nvdimm_bus))
3041  		return 0;
3042  
3043  	bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3044  	nfit = sysfs_get_dirent(bus_dev->kobj.sd, "nfit");
3045  	if (!nfit) {
3046  		dev_err(dev, "sysfs_get_dirent 'nfit' failed\n");
3047  		return -ENODEV;
3048  	}
3049  	acpi_desc->scrub_count_state = sysfs_get_dirent(nfit, "scrub");
3050  	sysfs_put(nfit);
3051  	if (!acpi_desc->scrub_count_state) {
3052  		dev_err(dev, "sysfs_get_dirent 'scrub' failed\n");
3053  		return -ENODEV;
3054  	}
3055  
3056  	return 0;
3057  }
3058  
acpi_nfit_unregister(void * data)3059  static void acpi_nfit_unregister(void *data)
3060  {
3061  	struct acpi_nfit_desc *acpi_desc = data;
3062  
3063  	nvdimm_bus_unregister(acpi_desc->nvdimm_bus);
3064  }
3065  
acpi_nfit_init(struct acpi_nfit_desc * acpi_desc,void * data,acpi_size sz)3066  int acpi_nfit_init(struct acpi_nfit_desc *acpi_desc, void *data, acpi_size sz)
3067  {
3068  	struct device *dev = acpi_desc->dev;
3069  	struct nfit_table_prev prev;
3070  	const void *end;
3071  	int rc;
3072  
3073  	if (!acpi_desc->nvdimm_bus) {
3074  		acpi_nfit_init_dsms(acpi_desc);
3075  
3076  		acpi_desc->nvdimm_bus = nvdimm_bus_register(dev,
3077  				&acpi_desc->nd_desc);
3078  		if (!acpi_desc->nvdimm_bus)
3079  			return -ENOMEM;
3080  
3081  		rc = devm_add_action_or_reset(dev, acpi_nfit_unregister,
3082  				acpi_desc);
3083  		if (rc)
3084  			return rc;
3085  
3086  		rc = acpi_nfit_desc_init_scrub_attr(acpi_desc);
3087  		if (rc)
3088  			return rc;
3089  
3090  		/* register this acpi_desc for mce notifications */
3091  		mutex_lock(&acpi_desc_lock);
3092  		list_add_tail(&acpi_desc->list, &acpi_descs);
3093  		mutex_unlock(&acpi_desc_lock);
3094  	}
3095  
3096  	mutex_lock(&acpi_desc->init_mutex);
3097  
3098  	INIT_LIST_HEAD(&prev.spas);
3099  	INIT_LIST_HEAD(&prev.memdevs);
3100  	INIT_LIST_HEAD(&prev.dcrs);
3101  	INIT_LIST_HEAD(&prev.bdws);
3102  	INIT_LIST_HEAD(&prev.idts);
3103  	INIT_LIST_HEAD(&prev.flushes);
3104  
3105  	list_cut_position(&prev.spas, &acpi_desc->spas,
3106  				acpi_desc->spas.prev);
3107  	list_cut_position(&prev.memdevs, &acpi_desc->memdevs,
3108  				acpi_desc->memdevs.prev);
3109  	list_cut_position(&prev.dcrs, &acpi_desc->dcrs,
3110  				acpi_desc->dcrs.prev);
3111  	list_cut_position(&prev.bdws, &acpi_desc->bdws,
3112  				acpi_desc->bdws.prev);
3113  	list_cut_position(&prev.idts, &acpi_desc->idts,
3114  				acpi_desc->idts.prev);
3115  	list_cut_position(&prev.flushes, &acpi_desc->flushes,
3116  				acpi_desc->flushes.prev);
3117  
3118  	end = data + sz;
3119  	while (!IS_ERR_OR_NULL(data))
3120  		data = add_table(acpi_desc, &prev, data, end);
3121  
3122  	if (IS_ERR(data)) {
3123  		dev_dbg(dev, "nfit table parsing error: %ld\n",	PTR_ERR(data));
3124  		rc = PTR_ERR(data);
3125  		goto out_unlock;
3126  	}
3127  
3128  	rc = acpi_nfit_check_deletions(acpi_desc, &prev);
3129  	if (rc)
3130  		goto out_unlock;
3131  
3132  	rc = nfit_mem_init(acpi_desc);
3133  	if (rc)
3134  		goto out_unlock;
3135  
3136  	rc = acpi_nfit_register_dimms(acpi_desc);
3137  	if (rc)
3138  		goto out_unlock;
3139  
3140  	rc = acpi_nfit_register_regions(acpi_desc);
3141  
3142   out_unlock:
3143  	mutex_unlock(&acpi_desc->init_mutex);
3144  	return rc;
3145  }
3146  EXPORT_SYMBOL_GPL(acpi_nfit_init);
3147  
acpi_nfit_flush_probe(struct nvdimm_bus_descriptor * nd_desc)3148  static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc)
3149  {
3150  	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
3151  	struct device *dev = acpi_desc->dev;
3152  
3153  	/* Bounce the device lock to flush acpi_nfit_add / acpi_nfit_notify */
3154  	device_lock(dev);
3155  	device_unlock(dev);
3156  
3157  	/* Bounce the init_mutex to complete initial registration */
3158  	mutex_lock(&acpi_desc->init_mutex);
3159  	mutex_unlock(&acpi_desc->init_mutex);
3160  
3161  	return 0;
3162  }
3163  
__acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor * nd_desc,struct nvdimm * nvdimm,unsigned int cmd)3164  static int __acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
3165  		struct nvdimm *nvdimm, unsigned int cmd)
3166  {
3167  	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
3168  
3169  	if (nvdimm)
3170  		return 0;
3171  	if (cmd != ND_CMD_ARS_START)
3172  		return 0;
3173  
3174  	/*
3175  	 * The kernel and userspace may race to initiate a scrub, but
3176  	 * the scrub thread is prepared to lose that initial race.  It
3177  	 * just needs guarantees that any ARS it initiates are not
3178  	 * interrupted by any intervening start requests from userspace.
3179  	 */
3180  	if (work_busy(&acpi_desc->dwork.work))
3181  		return -EBUSY;
3182  
3183  	return 0;
3184  }
3185  
3186  /*
3187   * Prevent security and firmware activate commands from being issued via
3188   * ioctl.
3189   */
acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor * nd_desc,struct nvdimm * nvdimm,unsigned int cmd,void * buf)3190  static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
3191  		struct nvdimm *nvdimm, unsigned int cmd, void *buf)
3192  {
3193  	struct nd_cmd_pkg *call_pkg = buf;
3194  	unsigned int func;
3195  
3196  	if (nvdimm && cmd == ND_CMD_CALL &&
3197  			call_pkg->nd_family == NVDIMM_FAMILY_INTEL) {
3198  		func = call_pkg->nd_command;
3199  		if (func > NVDIMM_CMD_MAX ||
3200  		    (1 << func) & NVDIMM_INTEL_DENY_CMDMASK)
3201  			return -EOPNOTSUPP;
3202  	}
3203  
3204  	/* block all non-nfit bus commands */
3205  	if (!nvdimm && cmd == ND_CMD_CALL &&
3206  			call_pkg->nd_family != NVDIMM_BUS_FAMILY_NFIT)
3207  		return -EOPNOTSUPP;
3208  
3209  	return __acpi_nfit_clear_to_send(nd_desc, nvdimm, cmd);
3210  }
3211  
acpi_nfit_ars_rescan(struct acpi_nfit_desc * acpi_desc,enum nfit_ars_state req_type)3212  int acpi_nfit_ars_rescan(struct acpi_nfit_desc *acpi_desc,
3213  		enum nfit_ars_state req_type)
3214  {
3215  	struct device *dev = acpi_desc->dev;
3216  	int scheduled = 0, busy = 0;
3217  	struct nfit_spa *nfit_spa;
3218  
3219  	mutex_lock(&acpi_desc->init_mutex);
3220  	if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags)) {
3221  		mutex_unlock(&acpi_desc->init_mutex);
3222  		return 0;
3223  	}
3224  
3225  	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3226  		int type = nfit_spa_type(nfit_spa->spa);
3227  
3228  		if (type != NFIT_SPA_PM && type != NFIT_SPA_VOLATILE)
3229  			continue;
3230  		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3231  			continue;
3232  
3233  		if (test_and_set_bit(req_type, &nfit_spa->ars_state))
3234  			busy++;
3235  		else
3236  			scheduled++;
3237  	}
3238  	if (scheduled) {
3239  		sched_ars(acpi_desc);
3240  		dev_dbg(dev, "ars_scan triggered\n");
3241  	}
3242  	mutex_unlock(&acpi_desc->init_mutex);
3243  
3244  	if (scheduled)
3245  		return 0;
3246  	if (busy)
3247  		return -EBUSY;
3248  	return -ENOTTY;
3249  }
3250  
acpi_nfit_desc_init(struct acpi_nfit_desc * acpi_desc,struct device * dev)3251  void acpi_nfit_desc_init(struct acpi_nfit_desc *acpi_desc, struct device *dev)
3252  {
3253  	struct nvdimm_bus_descriptor *nd_desc;
3254  
3255  	dev_set_drvdata(dev, acpi_desc);
3256  	acpi_desc->dev = dev;
3257  	nd_desc = &acpi_desc->nd_desc;
3258  	nd_desc->provider_name = "ACPI.NFIT";
3259  	nd_desc->module = THIS_MODULE;
3260  	nd_desc->ndctl = acpi_nfit_ctl;
3261  	nd_desc->flush_probe = acpi_nfit_flush_probe;
3262  	nd_desc->clear_to_send = acpi_nfit_clear_to_send;
3263  	nd_desc->attr_groups = acpi_nfit_attribute_groups;
3264  
3265  	INIT_LIST_HEAD(&acpi_desc->spas);
3266  	INIT_LIST_HEAD(&acpi_desc->dcrs);
3267  	INIT_LIST_HEAD(&acpi_desc->bdws);
3268  	INIT_LIST_HEAD(&acpi_desc->idts);
3269  	INIT_LIST_HEAD(&acpi_desc->flushes);
3270  	INIT_LIST_HEAD(&acpi_desc->memdevs);
3271  	INIT_LIST_HEAD(&acpi_desc->dimms);
3272  	INIT_LIST_HEAD(&acpi_desc->list);
3273  	mutex_init(&acpi_desc->init_mutex);
3274  	acpi_desc->scrub_tmo = 1;
3275  	INIT_DELAYED_WORK(&acpi_desc->dwork, acpi_nfit_scrub);
3276  }
3277  EXPORT_SYMBOL_GPL(acpi_nfit_desc_init);
3278  
acpi_nfit_put_table(void * table)3279  static void acpi_nfit_put_table(void *table)
3280  {
3281  	acpi_put_table(table);
3282  }
3283  
acpi_nfit_notify(acpi_handle handle,u32 event,void * data)3284  static void acpi_nfit_notify(acpi_handle handle, u32 event, void *data)
3285  {
3286  	struct acpi_device *adev = data;
3287  
3288  	device_lock(&adev->dev);
3289  	__acpi_nfit_notify(&adev->dev, handle, event);
3290  	device_unlock(&adev->dev);
3291  }
3292  
acpi_nfit_remove_notify_handler(void * data)3293  static void acpi_nfit_remove_notify_handler(void *data)
3294  {
3295  	struct acpi_device *adev = data;
3296  
3297  	acpi_dev_remove_notify_handler(adev, ACPI_DEVICE_NOTIFY,
3298  				       acpi_nfit_notify);
3299  }
3300  
acpi_nfit_shutdown(void * data)3301  void acpi_nfit_shutdown(void *data)
3302  {
3303  	struct acpi_nfit_desc *acpi_desc = data;
3304  	struct device *bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3305  
3306  	/*
3307  	 * Destruct under acpi_desc_lock so that nfit_handle_mce does not
3308  	 * race teardown
3309  	 */
3310  	mutex_lock(&acpi_desc_lock);
3311  	list_del(&acpi_desc->list);
3312  	mutex_unlock(&acpi_desc_lock);
3313  
3314  	mutex_lock(&acpi_desc->init_mutex);
3315  	set_bit(ARS_CANCEL, &acpi_desc->scrub_flags);
3316  	mutex_unlock(&acpi_desc->init_mutex);
3317  	cancel_delayed_work_sync(&acpi_desc->dwork);
3318  
3319  	/*
3320  	 * Bounce the nvdimm bus lock to make sure any in-flight
3321  	 * acpi_nfit_ars_rescan() submissions have had a chance to
3322  	 * either submit or see ->cancel set.
3323  	 */
3324  	device_lock(bus_dev);
3325  	device_unlock(bus_dev);
3326  
3327  	flush_workqueue(nfit_wq);
3328  }
3329  EXPORT_SYMBOL_GPL(acpi_nfit_shutdown);
3330  
acpi_nfit_add(struct acpi_device * adev)3331  static int acpi_nfit_add(struct acpi_device *adev)
3332  {
3333  	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3334  	struct acpi_nfit_desc *acpi_desc;
3335  	struct device *dev = &adev->dev;
3336  	struct acpi_table_header *tbl;
3337  	acpi_status status = AE_OK;
3338  	acpi_size sz;
3339  	int rc = 0;
3340  
3341  	rc = acpi_dev_install_notify_handler(adev, ACPI_DEVICE_NOTIFY,
3342  					     acpi_nfit_notify, adev);
3343  	if (rc)
3344  		return rc;
3345  
3346  	rc = devm_add_action_or_reset(dev, acpi_nfit_remove_notify_handler,
3347  					adev);
3348  	if (rc)
3349  		return rc;
3350  
3351  	status = acpi_get_table(ACPI_SIG_NFIT, 0, &tbl);
3352  	if (ACPI_FAILURE(status)) {
3353  		/* The NVDIMM root device allows OS to trigger enumeration of
3354  		 * NVDIMMs through NFIT at boot time and re-enumeration at
3355  		 * root level via the _FIT method during runtime.
3356  		 * This is ok to return 0 here, we could have an nvdimm
3357  		 * hotplugged later and evaluate _FIT method which returns
3358  		 * data in the format of a series of NFIT Structures.
3359  		 */
3360  		dev_dbg(dev, "failed to find NFIT at startup\n");
3361  		return 0;
3362  	}
3363  
3364  	rc = devm_add_action_or_reset(dev, acpi_nfit_put_table, tbl);
3365  	if (rc)
3366  		return rc;
3367  	sz = tbl->length;
3368  
3369  	acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3370  	if (!acpi_desc)
3371  		return -ENOMEM;
3372  	acpi_nfit_desc_init(acpi_desc, &adev->dev);
3373  
3374  	/* Save the acpi header for exporting the revision via sysfs */
3375  	acpi_desc->acpi_header = *tbl;
3376  
3377  	/* Evaluate _FIT and override with that if present */
3378  	status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf);
3379  	if (ACPI_SUCCESS(status) && buf.length > 0) {
3380  		union acpi_object *obj = buf.pointer;
3381  
3382  		if (obj->type == ACPI_TYPE_BUFFER)
3383  			rc = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3384  					obj->buffer.length);
3385  		else
3386  			dev_dbg(dev, "invalid type %d, ignoring _FIT\n",
3387  				(int) obj->type);
3388  		kfree(buf.pointer);
3389  	} else
3390  		/* skip over the lead-in header table */
3391  		rc = acpi_nfit_init(acpi_desc, (void *) tbl
3392  				+ sizeof(struct acpi_table_nfit),
3393  				sz - sizeof(struct acpi_table_nfit));
3394  
3395  	if (rc)
3396  		return rc;
3397  
3398  	return devm_add_action_or_reset(dev, acpi_nfit_shutdown, acpi_desc);
3399  }
3400  
acpi_nfit_update_notify(struct device * dev,acpi_handle handle)3401  static void acpi_nfit_update_notify(struct device *dev, acpi_handle handle)
3402  {
3403  	struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3404  	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3405  	union acpi_object *obj;
3406  	acpi_status status;
3407  	int ret;
3408  
3409  	if (!dev->driver) {
3410  		/* dev->driver may be null if we're being removed */
3411  		dev_dbg(dev, "no driver found for dev\n");
3412  		return;
3413  	}
3414  
3415  	if (!acpi_desc) {
3416  		acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3417  		if (!acpi_desc)
3418  			return;
3419  		acpi_nfit_desc_init(acpi_desc, dev);
3420  	} else {
3421  		/*
3422  		 * Finish previous registration before considering new
3423  		 * regions.
3424  		 */
3425  		flush_workqueue(nfit_wq);
3426  	}
3427  
3428  	/* Evaluate _FIT */
3429  	status = acpi_evaluate_object(handle, "_FIT", NULL, &buf);
3430  	if (ACPI_FAILURE(status)) {
3431  		dev_err(dev, "failed to evaluate _FIT\n");
3432  		return;
3433  	}
3434  
3435  	obj = buf.pointer;
3436  	if (obj->type == ACPI_TYPE_BUFFER) {
3437  		ret = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3438  				obj->buffer.length);
3439  		if (ret)
3440  			dev_err(dev, "failed to merge updated NFIT\n");
3441  	} else
3442  		dev_err(dev, "Invalid _FIT\n");
3443  	kfree(buf.pointer);
3444  }
3445  
acpi_nfit_uc_error_notify(struct device * dev,acpi_handle handle)3446  static void acpi_nfit_uc_error_notify(struct device *dev, acpi_handle handle)
3447  {
3448  	struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3449  
3450  	if (acpi_desc->scrub_mode == HW_ERROR_SCRUB_ON)
3451  		acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG);
3452  	else
3453  		acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_SHORT);
3454  }
3455  
__acpi_nfit_notify(struct device * dev,acpi_handle handle,u32 event)3456  void __acpi_nfit_notify(struct device *dev, acpi_handle handle, u32 event)
3457  {
3458  	dev_dbg(dev, "event: 0x%x\n", event);
3459  
3460  	switch (event) {
3461  	case NFIT_NOTIFY_UPDATE:
3462  		return acpi_nfit_update_notify(dev, handle);
3463  	case NFIT_NOTIFY_UC_MEMORY_ERROR:
3464  		return acpi_nfit_uc_error_notify(dev, handle);
3465  	default:
3466  		return;
3467  	}
3468  }
3469  EXPORT_SYMBOL_GPL(__acpi_nfit_notify);
3470  
3471  static const struct acpi_device_id acpi_nfit_ids[] = {
3472  	{ "ACPI0012", 0 },
3473  	{ "", 0 },
3474  };
3475  MODULE_DEVICE_TABLE(acpi, acpi_nfit_ids);
3476  
3477  static struct acpi_driver acpi_nfit_driver = {
3478  	.name = KBUILD_MODNAME,
3479  	.ids = acpi_nfit_ids,
3480  	.ops = {
3481  		.add = acpi_nfit_add,
3482  	},
3483  };
3484  
nfit_init(void)3485  static __init int nfit_init(void)
3486  {
3487  	int ret;
3488  
3489  	BUILD_BUG_ON(sizeof(struct acpi_table_nfit) != 40);
3490  	BUILD_BUG_ON(sizeof(struct acpi_nfit_system_address) != 64);
3491  	BUILD_BUG_ON(sizeof(struct acpi_nfit_memory_map) != 48);
3492  	BUILD_BUG_ON(sizeof(struct acpi_nfit_interleave) != 16);
3493  	BUILD_BUG_ON(sizeof(struct acpi_nfit_smbios) != 8);
3494  	BUILD_BUG_ON(sizeof(struct acpi_nfit_control_region) != 80);
3495  	BUILD_BUG_ON(sizeof(struct acpi_nfit_data_region) != 40);
3496  	BUILD_BUG_ON(sizeof(struct acpi_nfit_capabilities) != 16);
3497  
3498  	guid_parse(UUID_VOLATILE_MEMORY, &nfit_uuid[NFIT_SPA_VOLATILE]);
3499  	guid_parse(UUID_PERSISTENT_MEMORY, &nfit_uuid[NFIT_SPA_PM]);
3500  	guid_parse(UUID_CONTROL_REGION, &nfit_uuid[NFIT_SPA_DCR]);
3501  	guid_parse(UUID_DATA_REGION, &nfit_uuid[NFIT_SPA_BDW]);
3502  	guid_parse(UUID_VOLATILE_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_VDISK]);
3503  	guid_parse(UUID_VOLATILE_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_VCD]);
3504  	guid_parse(UUID_PERSISTENT_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_PDISK]);
3505  	guid_parse(UUID_PERSISTENT_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_PCD]);
3506  	guid_parse(UUID_NFIT_BUS, &nfit_uuid[NFIT_DEV_BUS]);
3507  	guid_parse(UUID_NFIT_DIMM, &nfit_uuid[NFIT_DEV_DIMM]);
3508  	guid_parse(UUID_NFIT_DIMM_N_HPE1, &nfit_uuid[NFIT_DEV_DIMM_N_HPE1]);
3509  	guid_parse(UUID_NFIT_DIMM_N_HPE2, &nfit_uuid[NFIT_DEV_DIMM_N_HPE2]);
3510  	guid_parse(UUID_NFIT_DIMM_N_MSFT, &nfit_uuid[NFIT_DEV_DIMM_N_MSFT]);
3511  	guid_parse(UUID_NFIT_DIMM_N_HYPERV, &nfit_uuid[NFIT_DEV_DIMM_N_HYPERV]);
3512  	guid_parse(UUID_INTEL_BUS, &nfit_uuid[NFIT_BUS_INTEL]);
3513  
3514  	nfit_wq = create_singlethread_workqueue("nfit");
3515  	if (!nfit_wq)
3516  		return -ENOMEM;
3517  
3518  	nfit_mce_register();
3519  	ret = acpi_bus_register_driver(&acpi_nfit_driver);
3520  	if (ret) {
3521  		nfit_mce_unregister();
3522  		destroy_workqueue(nfit_wq);
3523  	}
3524  
3525  	return ret;
3526  
3527  }
3528  
nfit_exit(void)3529  static __exit void nfit_exit(void)
3530  {
3531  	nfit_mce_unregister();
3532  	acpi_bus_unregister_driver(&acpi_nfit_driver);
3533  	destroy_workqueue(nfit_wq);
3534  	WARN_ON(!list_empty(&acpi_descs));
3535  }
3536  
3537  module_init(nfit_init);
3538  module_exit(nfit_exit);
3539  MODULE_DESCRIPTION("ACPI NVDIMM Firmware Interface Table (NFIT) driver");
3540  MODULE_LICENSE("GPL v2");
3541  MODULE_AUTHOR("Intel Corporation");
3542