1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/acpi.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-integrity.h>
12 #include <linux/dmi.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/kstrtox.h>
17 #include <linux/memremap.h>
18 #include <linux/mm.h>
19 #include <linux/module.h>
20 #include <linux/mutex.h>
21 #include <linux/once.h>
22 #include <linux/pci.h>
23 #include <linux/suspend.h>
24 #include <linux/t10-pi.h>
25 #include <linux/types.h>
26 #include <linux/io-64-nonatomic-lo-hi.h>
27 #include <linux/io-64-nonatomic-hi-lo.h>
28 #include <linux/sed-opal.h>
29 #include <linux/pci-p2pdma.h>
30
31 #include "trace.h"
32 #include "nvme.h"
33
34 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
35 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
36
37 #define SGES_PER_PAGE (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
38
39 /*
40 * These can be higher, but we need to ensure that any command doesn't
41 * require an sg allocation that needs more than a page of data.
42 */
43 #define NVME_MAX_KB_SZ 8192
44 #define NVME_MAX_SEGS 128
45 #define NVME_MAX_META_SEGS 15
46 #define NVME_MAX_NR_ALLOCATIONS 5
47
48 static int use_threaded_interrupts;
49 module_param(use_threaded_interrupts, int, 0444);
50
51 static bool use_cmb_sqes = true;
52 module_param(use_cmb_sqes, bool, 0444);
53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54
55 static unsigned int max_host_mem_size_mb = 128;
56 module_param(max_host_mem_size_mb, uint, 0444);
57 MODULE_PARM_DESC(max_host_mem_size_mb,
58 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
59
60 static unsigned int sgl_threshold = SZ_32K;
61 module_param(sgl_threshold, uint, 0644);
62 MODULE_PARM_DESC(sgl_threshold,
63 "Use SGLs when average request segment size is larger or equal to "
64 "this size. Use 0 to disable SGLs.");
65
66 #define NVME_PCI_MIN_QUEUE_SIZE 2
67 #define NVME_PCI_MAX_QUEUE_SIZE 4095
68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
69 static const struct kernel_param_ops io_queue_depth_ops = {
70 .set = io_queue_depth_set,
71 .get = param_get_uint,
72 };
73
74 static unsigned int io_queue_depth = 1024;
75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
77
io_queue_count_set(const char * val,const struct kernel_param * kp)78 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
79 {
80 unsigned int n;
81 int ret;
82
83 ret = kstrtouint(val, 10, &n);
84 if (ret != 0 || n > num_possible_cpus())
85 return -EINVAL;
86 return param_set_uint(val, kp);
87 }
88
89 static const struct kernel_param_ops io_queue_count_ops = {
90 .set = io_queue_count_set,
91 .get = param_get_uint,
92 };
93
94 static unsigned int write_queues;
95 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
96 MODULE_PARM_DESC(write_queues,
97 "Number of queues to use for writes. If not set, reads and writes "
98 "will share a queue set.");
99
100 static unsigned int poll_queues;
101 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
102 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
103
104 static bool noacpi;
105 module_param(noacpi, bool, 0444);
106 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
107
108 struct nvme_dev;
109 struct nvme_queue;
110
111 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
112 static void nvme_delete_io_queues(struct nvme_dev *dev);
113 static void nvme_update_attrs(struct nvme_dev *dev);
114
115 /*
116 * Represents an NVM Express device. Each nvme_dev is a PCI function.
117 */
118 struct nvme_dev {
119 struct nvme_queue *queues;
120 struct blk_mq_tag_set tagset;
121 struct blk_mq_tag_set admin_tagset;
122 u32 __iomem *dbs;
123 struct device *dev;
124 struct dma_pool *prp_page_pool;
125 struct dma_pool *prp_small_pool;
126 unsigned online_queues;
127 unsigned max_qid;
128 unsigned io_queues[HCTX_MAX_TYPES];
129 unsigned int num_vecs;
130 u32 q_depth;
131 int io_sqes;
132 u32 db_stride;
133 void __iomem *bar;
134 unsigned long bar_mapped_size;
135 struct mutex shutdown_lock;
136 bool subsystem;
137 u64 cmb_size;
138 bool cmb_use_sqes;
139 u32 cmbsz;
140 u32 cmbloc;
141 struct nvme_ctrl ctrl;
142 u32 last_ps;
143 bool hmb;
144 struct sg_table *hmb_sgt;
145
146 mempool_t *iod_mempool;
147 mempool_t *iod_meta_mempool;
148
149 /* shadow doorbell buffer support: */
150 __le32 *dbbuf_dbs;
151 dma_addr_t dbbuf_dbs_dma_addr;
152 __le32 *dbbuf_eis;
153 dma_addr_t dbbuf_eis_dma_addr;
154
155 /* host memory buffer support: */
156 u64 host_mem_size;
157 u32 nr_host_mem_descs;
158 u32 host_mem_descs_size;
159 dma_addr_t host_mem_descs_dma;
160 struct nvme_host_mem_buf_desc *host_mem_descs;
161 void **host_mem_desc_bufs;
162 unsigned int nr_allocated_queues;
163 unsigned int nr_write_queues;
164 unsigned int nr_poll_queues;
165 };
166
io_queue_depth_set(const char * val,const struct kernel_param * kp)167 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
168 {
169 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
170 NVME_PCI_MAX_QUEUE_SIZE);
171 }
172
sq_idx(unsigned int qid,u32 stride)173 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
174 {
175 return qid * 2 * stride;
176 }
177
cq_idx(unsigned int qid,u32 stride)178 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
179 {
180 return (qid * 2 + 1) * stride;
181 }
182
to_nvme_dev(struct nvme_ctrl * ctrl)183 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
184 {
185 return container_of(ctrl, struct nvme_dev, ctrl);
186 }
187
188 /*
189 * An NVM Express queue. Each device has at least two (one for admin
190 * commands and one for I/O commands).
191 */
192 struct nvme_queue {
193 struct nvme_dev *dev;
194 spinlock_t sq_lock;
195 void *sq_cmds;
196 /* only used for poll queues: */
197 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
198 struct nvme_completion *cqes;
199 dma_addr_t sq_dma_addr;
200 dma_addr_t cq_dma_addr;
201 u32 __iomem *q_db;
202 u32 q_depth;
203 u16 cq_vector;
204 u16 sq_tail;
205 u16 last_sq_tail;
206 u16 cq_head;
207 u16 qid;
208 u8 cq_phase;
209 u8 sqes;
210 unsigned long flags;
211 #define NVMEQ_ENABLED 0
212 #define NVMEQ_SQ_CMB 1
213 #define NVMEQ_DELETE_ERROR 2
214 #define NVMEQ_POLLED 3
215 __le32 *dbbuf_sq_db;
216 __le32 *dbbuf_cq_db;
217 __le32 *dbbuf_sq_ei;
218 __le32 *dbbuf_cq_ei;
219 struct completion delete_done;
220 };
221
222 union nvme_descriptor {
223 struct nvme_sgl_desc *sg_list;
224 __le64 *prp_list;
225 };
226
227 /*
228 * The nvme_iod describes the data in an I/O.
229 *
230 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
231 * to the actual struct scatterlist.
232 */
233 struct nvme_iod {
234 struct nvme_request req;
235 struct nvme_command cmd;
236 bool aborted;
237 s8 nr_allocations; /* PRP list pool allocations. 0 means small
238 pool in use */
239 unsigned int dma_len; /* length of single DMA segment mapping */
240 dma_addr_t first_dma;
241 dma_addr_t meta_dma;
242 struct sg_table sgt;
243 struct sg_table meta_sgt;
244 union nvme_descriptor meta_list;
245 union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS];
246 };
247
nvme_dbbuf_size(struct nvme_dev * dev)248 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
249 {
250 return dev->nr_allocated_queues * 8 * dev->db_stride;
251 }
252
nvme_dbbuf_dma_alloc(struct nvme_dev * dev)253 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
254 {
255 unsigned int mem_size = nvme_dbbuf_size(dev);
256
257 if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
258 return;
259
260 if (dev->dbbuf_dbs) {
261 /*
262 * Clear the dbbuf memory so the driver doesn't observe stale
263 * values from the previous instantiation.
264 */
265 memset(dev->dbbuf_dbs, 0, mem_size);
266 memset(dev->dbbuf_eis, 0, mem_size);
267 return;
268 }
269
270 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
271 &dev->dbbuf_dbs_dma_addr,
272 GFP_KERNEL);
273 if (!dev->dbbuf_dbs)
274 goto fail;
275 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
276 &dev->dbbuf_eis_dma_addr,
277 GFP_KERNEL);
278 if (!dev->dbbuf_eis)
279 goto fail_free_dbbuf_dbs;
280 return;
281
282 fail_free_dbbuf_dbs:
283 dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
284 dev->dbbuf_dbs_dma_addr);
285 dev->dbbuf_dbs = NULL;
286 fail:
287 dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
288 }
289
nvme_dbbuf_dma_free(struct nvme_dev * dev)290 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
291 {
292 unsigned int mem_size = nvme_dbbuf_size(dev);
293
294 if (dev->dbbuf_dbs) {
295 dma_free_coherent(dev->dev, mem_size,
296 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
297 dev->dbbuf_dbs = NULL;
298 }
299 if (dev->dbbuf_eis) {
300 dma_free_coherent(dev->dev, mem_size,
301 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
302 dev->dbbuf_eis = NULL;
303 }
304 }
305
nvme_dbbuf_init(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)306 static void nvme_dbbuf_init(struct nvme_dev *dev,
307 struct nvme_queue *nvmeq, int qid)
308 {
309 if (!dev->dbbuf_dbs || !qid)
310 return;
311
312 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
313 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
314 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
315 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
316 }
317
nvme_dbbuf_free(struct nvme_queue * nvmeq)318 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
319 {
320 if (!nvmeq->qid)
321 return;
322
323 nvmeq->dbbuf_sq_db = NULL;
324 nvmeq->dbbuf_cq_db = NULL;
325 nvmeq->dbbuf_sq_ei = NULL;
326 nvmeq->dbbuf_cq_ei = NULL;
327 }
328
nvme_dbbuf_set(struct nvme_dev * dev)329 static void nvme_dbbuf_set(struct nvme_dev *dev)
330 {
331 struct nvme_command c = { };
332 unsigned int i;
333
334 if (!dev->dbbuf_dbs)
335 return;
336
337 c.dbbuf.opcode = nvme_admin_dbbuf;
338 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
339 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
340
341 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
342 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
343 /* Free memory and continue on */
344 nvme_dbbuf_dma_free(dev);
345
346 for (i = 1; i <= dev->online_queues; i++)
347 nvme_dbbuf_free(&dev->queues[i]);
348 }
349 }
350
nvme_dbbuf_need_event(u16 event_idx,u16 new_idx,u16 old)351 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
352 {
353 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
354 }
355
356 /* Update dbbuf and return true if an MMIO is required */
nvme_dbbuf_update_and_check_event(u16 value,__le32 * dbbuf_db,volatile __le32 * dbbuf_ei)357 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
358 volatile __le32 *dbbuf_ei)
359 {
360 if (dbbuf_db) {
361 u16 old_value, event_idx;
362
363 /*
364 * Ensure that the queue is written before updating
365 * the doorbell in memory
366 */
367 wmb();
368
369 old_value = le32_to_cpu(*dbbuf_db);
370 *dbbuf_db = cpu_to_le32(value);
371
372 /*
373 * Ensure that the doorbell is updated before reading the event
374 * index from memory. The controller needs to provide similar
375 * ordering to ensure the event index is updated before reading
376 * the doorbell.
377 */
378 mb();
379
380 event_idx = le32_to_cpu(*dbbuf_ei);
381 if (!nvme_dbbuf_need_event(event_idx, value, old_value))
382 return false;
383 }
384
385 return true;
386 }
387
388 /*
389 * Will slightly overestimate the number of pages needed. This is OK
390 * as it only leads to a small amount of wasted memory for the lifetime of
391 * the I/O.
392 */
nvme_pci_npages_prp(void)393 static int nvme_pci_npages_prp(void)
394 {
395 unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
396 unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
397 return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
398 }
399
nvme_admin_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)400 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
401 unsigned int hctx_idx)
402 {
403 struct nvme_dev *dev = to_nvme_dev(data);
404 struct nvme_queue *nvmeq = &dev->queues[0];
405
406 WARN_ON(hctx_idx != 0);
407 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
408
409 hctx->driver_data = nvmeq;
410 return 0;
411 }
412
nvme_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)413 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
414 unsigned int hctx_idx)
415 {
416 struct nvme_dev *dev = to_nvme_dev(data);
417 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
418
419 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
420 hctx->driver_data = nvmeq;
421 return 0;
422 }
423
nvme_pci_init_request(struct blk_mq_tag_set * set,struct request * req,unsigned int hctx_idx,unsigned int numa_node)424 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
425 struct request *req, unsigned int hctx_idx,
426 unsigned int numa_node)
427 {
428 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
429
430 nvme_req(req)->ctrl = set->driver_data;
431 nvme_req(req)->cmd = &iod->cmd;
432 return 0;
433 }
434
queue_irq_offset(struct nvme_dev * dev)435 static int queue_irq_offset(struct nvme_dev *dev)
436 {
437 /* if we have more than 1 vec, admin queue offsets us by 1 */
438 if (dev->num_vecs > 1)
439 return 1;
440
441 return 0;
442 }
443
nvme_pci_map_queues(struct blk_mq_tag_set * set)444 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
445 {
446 struct nvme_dev *dev = to_nvme_dev(set->driver_data);
447 int i, qoff, offset;
448
449 offset = queue_irq_offset(dev);
450 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
451 struct blk_mq_queue_map *map = &set->map[i];
452
453 map->nr_queues = dev->io_queues[i];
454 if (!map->nr_queues) {
455 BUG_ON(i == HCTX_TYPE_DEFAULT);
456 continue;
457 }
458
459 /*
460 * The poll queue(s) doesn't have an IRQ (and hence IRQ
461 * affinity), so use the regular blk-mq cpu mapping
462 */
463 map->queue_offset = qoff;
464 if (i != HCTX_TYPE_POLL && offset)
465 blk_mq_map_hw_queues(map, dev->dev, offset);
466 else
467 blk_mq_map_queues(map);
468 qoff += map->nr_queues;
469 offset += map->nr_queues;
470 }
471 }
472
473 /*
474 * Write sq tail if we are asked to, or if the next command would wrap.
475 */
nvme_write_sq_db(struct nvme_queue * nvmeq,bool write_sq)476 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
477 {
478 if (!write_sq) {
479 u16 next_tail = nvmeq->sq_tail + 1;
480
481 if (next_tail == nvmeq->q_depth)
482 next_tail = 0;
483 if (next_tail != nvmeq->last_sq_tail)
484 return;
485 }
486
487 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
488 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
489 writel(nvmeq->sq_tail, nvmeq->q_db);
490 nvmeq->last_sq_tail = nvmeq->sq_tail;
491 }
492
nvme_sq_copy_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd)493 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
494 struct nvme_command *cmd)
495 {
496 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
497 absolute_pointer(cmd), sizeof(*cmd));
498 if (++nvmeq->sq_tail == nvmeq->q_depth)
499 nvmeq->sq_tail = 0;
500 }
501
nvme_commit_rqs(struct blk_mq_hw_ctx * hctx)502 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
503 {
504 struct nvme_queue *nvmeq = hctx->driver_data;
505
506 spin_lock(&nvmeq->sq_lock);
507 if (nvmeq->sq_tail != nvmeq->last_sq_tail)
508 nvme_write_sq_db(nvmeq, true);
509 spin_unlock(&nvmeq->sq_lock);
510 }
511
nvme_pci_metadata_use_sgls(struct nvme_dev * dev,struct request * req)512 static inline bool nvme_pci_metadata_use_sgls(struct nvme_dev *dev,
513 struct request *req)
514 {
515 if (!nvme_ctrl_meta_sgl_supported(&dev->ctrl))
516 return false;
517 return req->nr_integrity_segments > 1 ||
518 nvme_req(req)->flags & NVME_REQ_USERCMD;
519 }
520
nvme_pci_use_sgls(struct nvme_dev * dev,struct request * req,int nseg)521 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req,
522 int nseg)
523 {
524 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
525 unsigned int avg_seg_size;
526
527 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
528
529 if (!nvme_ctrl_sgl_supported(&dev->ctrl))
530 return false;
531 if (!nvmeq->qid)
532 return false;
533 if (nvme_pci_metadata_use_sgls(dev, req))
534 return true;
535 if (!sgl_threshold || avg_seg_size < sgl_threshold)
536 return nvme_req(req)->flags & NVME_REQ_USERCMD;
537 return true;
538 }
539
nvme_free_prps(struct nvme_dev * dev,struct request * req)540 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
541 {
542 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
543 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
544 dma_addr_t dma_addr = iod->first_dma;
545 int i;
546
547 for (i = 0; i < iod->nr_allocations; i++) {
548 __le64 *prp_list = iod->list[i].prp_list;
549 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
550
551 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
552 dma_addr = next_dma_addr;
553 }
554 }
555
nvme_unmap_data(struct nvme_dev * dev,struct request * req)556 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
557 {
558 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
559
560 if (iod->dma_len) {
561 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
562 rq_dma_dir(req));
563 return;
564 }
565
566 WARN_ON_ONCE(!iod->sgt.nents);
567
568 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
569
570 if (iod->nr_allocations == 0)
571 dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list,
572 iod->first_dma);
573 else if (iod->nr_allocations == 1)
574 dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list,
575 iod->first_dma);
576 else
577 nvme_free_prps(dev, req);
578 mempool_free(iod->sgt.sgl, dev->iod_mempool);
579 }
580
nvme_print_sgl(struct scatterlist * sgl,int nents)581 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
582 {
583 int i;
584 struct scatterlist *sg;
585
586 for_each_sg(sgl, sg, nents, i) {
587 dma_addr_t phys = sg_phys(sg);
588 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
589 "dma_address:%pad dma_length:%d\n",
590 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
591 sg_dma_len(sg));
592 }
593 }
594
nvme_pci_setup_prps(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd)595 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
596 struct request *req, struct nvme_rw_command *cmnd)
597 {
598 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
599 struct dma_pool *pool;
600 int length = blk_rq_payload_bytes(req);
601 struct scatterlist *sg = iod->sgt.sgl;
602 int dma_len = sg_dma_len(sg);
603 u64 dma_addr = sg_dma_address(sg);
604 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
605 __le64 *prp_list;
606 dma_addr_t prp_dma;
607 int nprps, i;
608
609 length -= (NVME_CTRL_PAGE_SIZE - offset);
610 if (length <= 0) {
611 iod->first_dma = 0;
612 goto done;
613 }
614
615 dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
616 if (dma_len) {
617 dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
618 } else {
619 sg = sg_next(sg);
620 dma_addr = sg_dma_address(sg);
621 dma_len = sg_dma_len(sg);
622 }
623
624 if (length <= NVME_CTRL_PAGE_SIZE) {
625 iod->first_dma = dma_addr;
626 goto done;
627 }
628
629 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
630 if (nprps <= (256 / 8)) {
631 pool = dev->prp_small_pool;
632 iod->nr_allocations = 0;
633 } else {
634 pool = dev->prp_page_pool;
635 iod->nr_allocations = 1;
636 }
637
638 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
639 if (!prp_list) {
640 iod->nr_allocations = -1;
641 return BLK_STS_RESOURCE;
642 }
643 iod->list[0].prp_list = prp_list;
644 iod->first_dma = prp_dma;
645 i = 0;
646 for (;;) {
647 if (i == NVME_CTRL_PAGE_SIZE >> 3) {
648 __le64 *old_prp_list = prp_list;
649 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
650 if (!prp_list)
651 goto free_prps;
652 iod->list[iod->nr_allocations++].prp_list = prp_list;
653 prp_list[0] = old_prp_list[i - 1];
654 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
655 i = 1;
656 }
657 prp_list[i++] = cpu_to_le64(dma_addr);
658 dma_len -= NVME_CTRL_PAGE_SIZE;
659 dma_addr += NVME_CTRL_PAGE_SIZE;
660 length -= NVME_CTRL_PAGE_SIZE;
661 if (length <= 0)
662 break;
663 if (dma_len > 0)
664 continue;
665 if (unlikely(dma_len < 0))
666 goto bad_sgl;
667 sg = sg_next(sg);
668 dma_addr = sg_dma_address(sg);
669 dma_len = sg_dma_len(sg);
670 }
671 done:
672 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
673 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
674 return BLK_STS_OK;
675 free_prps:
676 nvme_free_prps(dev, req);
677 return BLK_STS_RESOURCE;
678 bad_sgl:
679 WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
680 "Invalid SGL for payload:%d nents:%d\n",
681 blk_rq_payload_bytes(req), iod->sgt.nents);
682 return BLK_STS_IOERR;
683 }
684
nvme_pci_sgl_set_data(struct nvme_sgl_desc * sge,struct scatterlist * sg)685 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
686 struct scatterlist *sg)
687 {
688 sge->addr = cpu_to_le64(sg_dma_address(sg));
689 sge->length = cpu_to_le32(sg_dma_len(sg));
690 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
691 }
692
nvme_pci_sgl_set_seg(struct nvme_sgl_desc * sge,dma_addr_t dma_addr,int entries)693 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
694 dma_addr_t dma_addr, int entries)
695 {
696 sge->addr = cpu_to_le64(dma_addr);
697 sge->length = cpu_to_le32(entries * sizeof(*sge));
698 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
699 }
700
nvme_pci_setup_sgls(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmd)701 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
702 struct request *req, struct nvme_rw_command *cmd)
703 {
704 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
705 struct dma_pool *pool;
706 struct nvme_sgl_desc *sg_list;
707 struct scatterlist *sg = iod->sgt.sgl;
708 unsigned int entries = iod->sgt.nents;
709 dma_addr_t sgl_dma;
710 int i = 0;
711
712 /* setting the transfer type as SGL */
713 cmd->flags = NVME_CMD_SGL_METABUF;
714
715 if (entries == 1) {
716 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
717 return BLK_STS_OK;
718 }
719
720 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
721 pool = dev->prp_small_pool;
722 iod->nr_allocations = 0;
723 } else {
724 pool = dev->prp_page_pool;
725 iod->nr_allocations = 1;
726 }
727
728 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
729 if (!sg_list) {
730 iod->nr_allocations = -1;
731 return BLK_STS_RESOURCE;
732 }
733
734 iod->list[0].sg_list = sg_list;
735 iod->first_dma = sgl_dma;
736
737 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
738 do {
739 nvme_pci_sgl_set_data(&sg_list[i++], sg);
740 sg = sg_next(sg);
741 } while (--entries > 0);
742
743 return BLK_STS_OK;
744 }
745
nvme_setup_prp_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)746 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
747 struct request *req, struct nvme_rw_command *cmnd,
748 struct bio_vec *bv)
749 {
750 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
751 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
752 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
753
754 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
755 if (dma_mapping_error(dev->dev, iod->first_dma))
756 return BLK_STS_RESOURCE;
757 iod->dma_len = bv->bv_len;
758
759 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
760 if (bv->bv_len > first_prp_len)
761 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
762 else
763 cmnd->dptr.prp2 = 0;
764 return BLK_STS_OK;
765 }
766
nvme_setup_sgl_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)767 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
768 struct request *req, struct nvme_rw_command *cmnd,
769 struct bio_vec *bv)
770 {
771 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
772
773 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
774 if (dma_mapping_error(dev->dev, iod->first_dma))
775 return BLK_STS_RESOURCE;
776 iod->dma_len = bv->bv_len;
777
778 cmnd->flags = NVME_CMD_SGL_METABUF;
779 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
780 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
781 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
782 return BLK_STS_OK;
783 }
784
nvme_map_data(struct nvme_dev * dev,struct request * req,struct nvme_command * cmnd)785 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
786 struct nvme_command *cmnd)
787 {
788 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
789 blk_status_t ret = BLK_STS_RESOURCE;
790 int rc;
791
792 if (blk_rq_nr_phys_segments(req) == 1) {
793 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
794 struct bio_vec bv = req_bvec(req);
795
796 if (!is_pci_p2pdma_page(bv.bv_page)) {
797 if (!nvme_pci_metadata_use_sgls(dev, req) &&
798 (bv.bv_offset & (NVME_CTRL_PAGE_SIZE - 1)) +
799 bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
800 return nvme_setup_prp_simple(dev, req,
801 &cmnd->rw, &bv);
802
803 if (nvmeq->qid && sgl_threshold &&
804 nvme_ctrl_sgl_supported(&dev->ctrl))
805 return nvme_setup_sgl_simple(dev, req,
806 &cmnd->rw, &bv);
807 }
808 }
809
810 iod->dma_len = 0;
811 iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
812 if (!iod->sgt.sgl)
813 return BLK_STS_RESOURCE;
814 sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
815 iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
816 if (!iod->sgt.orig_nents)
817 goto out_free_sg;
818
819 rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
820 DMA_ATTR_NO_WARN);
821 if (rc) {
822 if (rc == -EREMOTEIO)
823 ret = BLK_STS_TARGET;
824 goto out_free_sg;
825 }
826
827 if (nvme_pci_use_sgls(dev, req, iod->sgt.nents))
828 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
829 else
830 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
831 if (ret != BLK_STS_OK)
832 goto out_unmap_sg;
833 return BLK_STS_OK;
834
835 out_unmap_sg:
836 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
837 out_free_sg:
838 mempool_free(iod->sgt.sgl, dev->iod_mempool);
839 return ret;
840 }
841
nvme_pci_setup_meta_sgls(struct nvme_dev * dev,struct request * req)842 static blk_status_t nvme_pci_setup_meta_sgls(struct nvme_dev *dev,
843 struct request *req)
844 {
845 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
846 struct nvme_rw_command *cmnd = &iod->cmd.rw;
847 struct nvme_sgl_desc *sg_list;
848 struct scatterlist *sgl, *sg;
849 unsigned int entries;
850 dma_addr_t sgl_dma;
851 int rc, i;
852
853 iod->meta_sgt.sgl = mempool_alloc(dev->iod_meta_mempool, GFP_ATOMIC);
854 if (!iod->meta_sgt.sgl)
855 return BLK_STS_RESOURCE;
856
857 sg_init_table(iod->meta_sgt.sgl, req->nr_integrity_segments);
858 iod->meta_sgt.orig_nents = blk_rq_map_integrity_sg(req,
859 iod->meta_sgt.sgl);
860 if (!iod->meta_sgt.orig_nents)
861 goto out_free_sg;
862
863 rc = dma_map_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req),
864 DMA_ATTR_NO_WARN);
865 if (rc)
866 goto out_free_sg;
867
868 sg_list = dma_pool_alloc(dev->prp_small_pool, GFP_ATOMIC, &sgl_dma);
869 if (!sg_list)
870 goto out_unmap_sg;
871
872 entries = iod->meta_sgt.nents;
873 iod->meta_list.sg_list = sg_list;
874 iod->meta_dma = sgl_dma;
875
876 cmnd->flags = NVME_CMD_SGL_METASEG;
877 cmnd->metadata = cpu_to_le64(sgl_dma);
878
879 sgl = iod->meta_sgt.sgl;
880 if (entries == 1) {
881 nvme_pci_sgl_set_data(sg_list, sgl);
882 return BLK_STS_OK;
883 }
884
885 sgl_dma += sizeof(*sg_list);
886 nvme_pci_sgl_set_seg(sg_list, sgl_dma, entries);
887 for_each_sg(sgl, sg, entries, i)
888 nvme_pci_sgl_set_data(&sg_list[i + 1], sg);
889
890 return BLK_STS_OK;
891
892 out_unmap_sg:
893 dma_unmap_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req), 0);
894 out_free_sg:
895 mempool_free(iod->meta_sgt.sgl, dev->iod_meta_mempool);
896 return BLK_STS_RESOURCE;
897 }
898
nvme_pci_setup_meta_mptr(struct nvme_dev * dev,struct request * req)899 static blk_status_t nvme_pci_setup_meta_mptr(struct nvme_dev *dev,
900 struct request *req)
901 {
902 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
903 struct bio_vec bv = rq_integrity_vec(req);
904 struct nvme_command *cmnd = &iod->cmd;
905
906 iod->meta_dma = dma_map_bvec(dev->dev, &bv, rq_dma_dir(req), 0);
907 if (dma_mapping_error(dev->dev, iod->meta_dma))
908 return BLK_STS_IOERR;
909 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
910 return BLK_STS_OK;
911 }
912
nvme_map_metadata(struct nvme_dev * dev,struct request * req)913 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req)
914 {
915 if (nvme_pci_metadata_use_sgls(dev, req))
916 return nvme_pci_setup_meta_sgls(dev, req);
917 return nvme_pci_setup_meta_mptr(dev, req);
918 }
919
nvme_prep_rq(struct nvme_dev * dev,struct request * req)920 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
921 {
922 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
923 blk_status_t ret;
924
925 iod->aborted = false;
926 iod->nr_allocations = -1;
927 iod->sgt.nents = 0;
928 iod->meta_sgt.nents = 0;
929
930 ret = nvme_setup_cmd(req->q->queuedata, req);
931 if (ret)
932 return ret;
933
934 if (blk_rq_nr_phys_segments(req)) {
935 ret = nvme_map_data(dev, req, &iod->cmd);
936 if (ret)
937 goto out_free_cmd;
938 }
939
940 if (blk_integrity_rq(req)) {
941 ret = nvme_map_metadata(dev, req);
942 if (ret)
943 goto out_unmap_data;
944 }
945
946 nvme_start_request(req);
947 return BLK_STS_OK;
948 out_unmap_data:
949 if (blk_rq_nr_phys_segments(req))
950 nvme_unmap_data(dev, req);
951 out_free_cmd:
952 nvme_cleanup_cmd(req);
953 return ret;
954 }
955
956 /*
957 * NOTE: ns is NULL when called on the admin queue.
958 */
nvme_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)959 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
960 const struct blk_mq_queue_data *bd)
961 {
962 struct nvme_queue *nvmeq = hctx->driver_data;
963 struct nvme_dev *dev = nvmeq->dev;
964 struct request *req = bd->rq;
965 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
966 blk_status_t ret;
967
968 /*
969 * We should not need to do this, but we're still using this to
970 * ensure we can drain requests on a dying queue.
971 */
972 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
973 return BLK_STS_IOERR;
974
975 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
976 return nvme_fail_nonready_command(&dev->ctrl, req);
977
978 ret = nvme_prep_rq(dev, req);
979 if (unlikely(ret))
980 return ret;
981 spin_lock(&nvmeq->sq_lock);
982 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
983 nvme_write_sq_db(nvmeq, bd->last);
984 spin_unlock(&nvmeq->sq_lock);
985 return BLK_STS_OK;
986 }
987
nvme_submit_cmds(struct nvme_queue * nvmeq,struct rq_list * rqlist)988 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct rq_list *rqlist)
989 {
990 struct request *req;
991
992 spin_lock(&nvmeq->sq_lock);
993 while ((req = rq_list_pop(rqlist))) {
994 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
995
996 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
997 }
998 nvme_write_sq_db(nvmeq, true);
999 spin_unlock(&nvmeq->sq_lock);
1000 }
1001
nvme_prep_rq_batch(struct nvme_queue * nvmeq,struct request * req)1002 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
1003 {
1004 /*
1005 * We should not need to do this, but we're still using this to
1006 * ensure we can drain requests on a dying queue.
1007 */
1008 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
1009 return false;
1010 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
1011 return false;
1012
1013 return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
1014 }
1015
nvme_queue_rqs(struct rq_list * rqlist)1016 static void nvme_queue_rqs(struct rq_list *rqlist)
1017 {
1018 struct rq_list submit_list = { };
1019 struct rq_list requeue_list = { };
1020 struct nvme_queue *nvmeq = NULL;
1021 struct request *req;
1022
1023 while ((req = rq_list_pop(rqlist))) {
1024 if (nvmeq && nvmeq != req->mq_hctx->driver_data)
1025 nvme_submit_cmds(nvmeq, &submit_list);
1026 nvmeq = req->mq_hctx->driver_data;
1027
1028 if (nvme_prep_rq_batch(nvmeq, req))
1029 rq_list_add_tail(&submit_list, req);
1030 else
1031 rq_list_add_tail(&requeue_list, req);
1032 }
1033
1034 if (nvmeq)
1035 nvme_submit_cmds(nvmeq, &submit_list);
1036 *rqlist = requeue_list;
1037 }
1038
nvme_unmap_metadata(struct nvme_dev * dev,struct request * req)1039 static __always_inline void nvme_unmap_metadata(struct nvme_dev *dev,
1040 struct request *req)
1041 {
1042 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1043
1044 if (!iod->meta_sgt.nents) {
1045 dma_unmap_page(dev->dev, iod->meta_dma,
1046 rq_integrity_vec(req).bv_len,
1047 rq_dma_dir(req));
1048 return;
1049 }
1050
1051 dma_pool_free(dev->prp_small_pool, iod->meta_list.sg_list,
1052 iod->meta_dma);
1053 dma_unmap_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req), 0);
1054 mempool_free(iod->meta_sgt.sgl, dev->iod_meta_mempool);
1055 }
1056
nvme_pci_unmap_rq(struct request * req)1057 static __always_inline void nvme_pci_unmap_rq(struct request *req)
1058 {
1059 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1060 struct nvme_dev *dev = nvmeq->dev;
1061
1062 if (blk_integrity_rq(req))
1063 nvme_unmap_metadata(dev, req);
1064
1065 if (blk_rq_nr_phys_segments(req))
1066 nvme_unmap_data(dev, req);
1067 }
1068
nvme_pci_complete_rq(struct request * req)1069 static void nvme_pci_complete_rq(struct request *req)
1070 {
1071 nvme_pci_unmap_rq(req);
1072 nvme_complete_rq(req);
1073 }
1074
nvme_pci_complete_batch(struct io_comp_batch * iob)1075 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
1076 {
1077 nvme_complete_batch(iob, nvme_pci_unmap_rq);
1078 }
1079
1080 /* We read the CQE phase first to check if the rest of the entry is valid */
nvme_cqe_pending(struct nvme_queue * nvmeq)1081 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
1082 {
1083 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
1084
1085 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
1086 }
1087
nvme_ring_cq_doorbell(struct nvme_queue * nvmeq)1088 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
1089 {
1090 u16 head = nvmeq->cq_head;
1091
1092 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1093 nvmeq->dbbuf_cq_ei))
1094 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1095 }
1096
nvme_queue_tagset(struct nvme_queue * nvmeq)1097 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1098 {
1099 if (!nvmeq->qid)
1100 return nvmeq->dev->admin_tagset.tags[0];
1101 return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1102 }
1103
nvme_handle_cqe(struct nvme_queue * nvmeq,struct io_comp_batch * iob,u16 idx)1104 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1105 struct io_comp_batch *iob, u16 idx)
1106 {
1107 struct nvme_completion *cqe = &nvmeq->cqes[idx];
1108 __u16 command_id = READ_ONCE(cqe->command_id);
1109 struct request *req;
1110
1111 /*
1112 * AEN requests are special as they don't time out and can
1113 * survive any kind of queue freeze and often don't respond to
1114 * aborts. We don't even bother to allocate a struct request
1115 * for them but rather special case them here.
1116 */
1117 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1118 nvme_complete_async_event(&nvmeq->dev->ctrl,
1119 cqe->status, &cqe->result);
1120 return;
1121 }
1122
1123 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1124 if (unlikely(!req)) {
1125 dev_warn(nvmeq->dev->ctrl.device,
1126 "invalid id %d completed on queue %d\n",
1127 command_id, le16_to_cpu(cqe->sq_id));
1128 return;
1129 }
1130
1131 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1132 if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1133 !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1134 nvme_pci_complete_batch))
1135 nvme_pci_complete_rq(req);
1136 }
1137
nvme_update_cq_head(struct nvme_queue * nvmeq)1138 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1139 {
1140 u32 tmp = nvmeq->cq_head + 1;
1141
1142 if (tmp == nvmeq->q_depth) {
1143 nvmeq->cq_head = 0;
1144 nvmeq->cq_phase ^= 1;
1145 } else {
1146 nvmeq->cq_head = tmp;
1147 }
1148 }
1149
nvme_poll_cq(struct nvme_queue * nvmeq,struct io_comp_batch * iob)1150 static inline bool nvme_poll_cq(struct nvme_queue *nvmeq,
1151 struct io_comp_batch *iob)
1152 {
1153 bool found = false;
1154
1155 while (nvme_cqe_pending(nvmeq)) {
1156 found = true;
1157 /*
1158 * load-load control dependency between phase and the rest of
1159 * the cqe requires a full read memory barrier
1160 */
1161 dma_rmb();
1162 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1163 nvme_update_cq_head(nvmeq);
1164 }
1165
1166 if (found)
1167 nvme_ring_cq_doorbell(nvmeq);
1168 return found;
1169 }
1170
nvme_irq(int irq,void * data)1171 static irqreturn_t nvme_irq(int irq, void *data)
1172 {
1173 struct nvme_queue *nvmeq = data;
1174 DEFINE_IO_COMP_BATCH(iob);
1175
1176 if (nvme_poll_cq(nvmeq, &iob)) {
1177 if (!rq_list_empty(&iob.req_list))
1178 nvme_pci_complete_batch(&iob);
1179 return IRQ_HANDLED;
1180 }
1181 return IRQ_NONE;
1182 }
1183
nvme_irq_check(int irq,void * data)1184 static irqreturn_t nvme_irq_check(int irq, void *data)
1185 {
1186 struct nvme_queue *nvmeq = data;
1187
1188 if (nvme_cqe_pending(nvmeq))
1189 return IRQ_WAKE_THREAD;
1190 return IRQ_NONE;
1191 }
1192
1193 /*
1194 * Poll for completions for any interrupt driven queue
1195 * Can be called from any context.
1196 */
nvme_poll_irqdisable(struct nvme_queue * nvmeq)1197 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1198 {
1199 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1200
1201 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1202
1203 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1204 nvme_poll_cq(nvmeq, NULL);
1205 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1206 }
1207
nvme_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)1208 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1209 {
1210 struct nvme_queue *nvmeq = hctx->driver_data;
1211 bool found;
1212
1213 if (!nvme_cqe_pending(nvmeq))
1214 return 0;
1215
1216 spin_lock(&nvmeq->cq_poll_lock);
1217 found = nvme_poll_cq(nvmeq, iob);
1218 spin_unlock(&nvmeq->cq_poll_lock);
1219
1220 return found;
1221 }
1222
nvme_pci_submit_async_event(struct nvme_ctrl * ctrl)1223 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1224 {
1225 struct nvme_dev *dev = to_nvme_dev(ctrl);
1226 struct nvme_queue *nvmeq = &dev->queues[0];
1227 struct nvme_command c = { };
1228
1229 c.common.opcode = nvme_admin_async_event;
1230 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1231
1232 spin_lock(&nvmeq->sq_lock);
1233 nvme_sq_copy_cmd(nvmeq, &c);
1234 nvme_write_sq_db(nvmeq, true);
1235 spin_unlock(&nvmeq->sq_lock);
1236 }
1237
nvme_pci_subsystem_reset(struct nvme_ctrl * ctrl)1238 static int nvme_pci_subsystem_reset(struct nvme_ctrl *ctrl)
1239 {
1240 struct nvme_dev *dev = to_nvme_dev(ctrl);
1241 int ret = 0;
1242
1243 /*
1244 * Taking the shutdown_lock ensures the BAR mapping is not being
1245 * altered by reset_work. Holding this lock before the RESETTING state
1246 * change, if successful, also ensures nvme_remove won't be able to
1247 * proceed to iounmap until we're done.
1248 */
1249 mutex_lock(&dev->shutdown_lock);
1250 if (!dev->bar_mapped_size) {
1251 ret = -ENODEV;
1252 goto unlock;
1253 }
1254
1255 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
1256 ret = -EBUSY;
1257 goto unlock;
1258 }
1259
1260 writel(NVME_SUBSYS_RESET, dev->bar + NVME_REG_NSSR);
1261 nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE);
1262
1263 /*
1264 * Read controller status to flush the previous write and trigger a
1265 * pcie read error.
1266 */
1267 readl(dev->bar + NVME_REG_CSTS);
1268 unlock:
1269 mutex_unlock(&dev->shutdown_lock);
1270 return ret;
1271 }
1272
adapter_delete_queue(struct nvme_dev * dev,u8 opcode,u16 id)1273 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1274 {
1275 struct nvme_command c = { };
1276
1277 c.delete_queue.opcode = opcode;
1278 c.delete_queue.qid = cpu_to_le16(id);
1279
1280 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1281 }
1282
adapter_alloc_cq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq,s16 vector)1283 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1284 struct nvme_queue *nvmeq, s16 vector)
1285 {
1286 struct nvme_command c = { };
1287 int flags = NVME_QUEUE_PHYS_CONTIG;
1288
1289 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1290 flags |= NVME_CQ_IRQ_ENABLED;
1291
1292 /*
1293 * Note: we (ab)use the fact that the prp fields survive if no data
1294 * is attached to the request.
1295 */
1296 c.create_cq.opcode = nvme_admin_create_cq;
1297 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1298 c.create_cq.cqid = cpu_to_le16(qid);
1299 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1300 c.create_cq.cq_flags = cpu_to_le16(flags);
1301 c.create_cq.irq_vector = cpu_to_le16(vector);
1302
1303 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1304 }
1305
adapter_alloc_sq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)1306 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1307 struct nvme_queue *nvmeq)
1308 {
1309 struct nvme_ctrl *ctrl = &dev->ctrl;
1310 struct nvme_command c = { };
1311 int flags = NVME_QUEUE_PHYS_CONTIG;
1312
1313 /*
1314 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1315 * set. Since URGENT priority is zeroes, it makes all queues
1316 * URGENT.
1317 */
1318 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1319 flags |= NVME_SQ_PRIO_MEDIUM;
1320
1321 /*
1322 * Note: we (ab)use the fact that the prp fields survive if no data
1323 * is attached to the request.
1324 */
1325 c.create_sq.opcode = nvme_admin_create_sq;
1326 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1327 c.create_sq.sqid = cpu_to_le16(qid);
1328 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1329 c.create_sq.sq_flags = cpu_to_le16(flags);
1330 c.create_sq.cqid = cpu_to_le16(qid);
1331
1332 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1333 }
1334
adapter_delete_cq(struct nvme_dev * dev,u16 cqid)1335 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1336 {
1337 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1338 }
1339
adapter_delete_sq(struct nvme_dev * dev,u16 sqid)1340 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1341 {
1342 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1343 }
1344
abort_endio(struct request * req,blk_status_t error)1345 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1346 {
1347 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1348
1349 dev_warn(nvmeq->dev->ctrl.device,
1350 "Abort status: 0x%x", nvme_req(req)->status);
1351 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1352 blk_mq_free_request(req);
1353 return RQ_END_IO_NONE;
1354 }
1355
nvme_should_reset(struct nvme_dev * dev,u32 csts)1356 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1357 {
1358 /* If true, indicates loss of adapter communication, possibly by a
1359 * NVMe Subsystem reset.
1360 */
1361 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1362
1363 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1364 switch (nvme_ctrl_state(&dev->ctrl)) {
1365 case NVME_CTRL_RESETTING:
1366 case NVME_CTRL_CONNECTING:
1367 return false;
1368 default:
1369 break;
1370 }
1371
1372 /* We shouldn't reset unless the controller is on fatal error state
1373 * _or_ if we lost the communication with it.
1374 */
1375 if (!(csts & NVME_CSTS_CFS) && !nssro)
1376 return false;
1377
1378 return true;
1379 }
1380
nvme_warn_reset(struct nvme_dev * dev,u32 csts)1381 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1382 {
1383 /* Read a config register to help see what died. */
1384 u16 pci_status;
1385 int result;
1386
1387 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1388 &pci_status);
1389 if (result == PCIBIOS_SUCCESSFUL)
1390 dev_warn(dev->ctrl.device,
1391 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1392 csts, pci_status);
1393 else
1394 dev_warn(dev->ctrl.device,
1395 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1396 csts, result);
1397
1398 if (csts != ~0)
1399 return;
1400
1401 dev_warn(dev->ctrl.device,
1402 "Does your device have a faulty power saving mode enabled?\n");
1403 dev_warn(dev->ctrl.device,
1404 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off pcie_port_pm=off\" and report a bug\n");
1405 }
1406
nvme_timeout(struct request * req)1407 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1408 {
1409 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1410 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1411 struct nvme_dev *dev = nvmeq->dev;
1412 struct request *abort_req;
1413 struct nvme_command cmd = { };
1414 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1415 u8 opcode;
1416
1417 if (nvme_state_terminal(&dev->ctrl))
1418 goto disable;
1419
1420 /* If PCI error recovery process is happening, we cannot reset or
1421 * the recovery mechanism will surely fail.
1422 */
1423 mb();
1424 if (pci_channel_offline(to_pci_dev(dev->dev)))
1425 return BLK_EH_RESET_TIMER;
1426
1427 /*
1428 * Reset immediately if the controller is failed
1429 */
1430 if (nvme_should_reset(dev, csts)) {
1431 nvme_warn_reset(dev, csts);
1432 goto disable;
1433 }
1434
1435 /*
1436 * Did we miss an interrupt?
1437 */
1438 if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1439 nvme_poll(req->mq_hctx, NULL);
1440 else
1441 nvme_poll_irqdisable(nvmeq);
1442
1443 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1444 dev_warn(dev->ctrl.device,
1445 "I/O tag %d (%04x) QID %d timeout, completion polled\n",
1446 req->tag, nvme_cid(req), nvmeq->qid);
1447 return BLK_EH_DONE;
1448 }
1449
1450 /*
1451 * Shutdown immediately if controller times out while starting. The
1452 * reset work will see the pci device disabled when it gets the forced
1453 * cancellation error. All outstanding requests are completed on
1454 * shutdown, so we return BLK_EH_DONE.
1455 */
1456 switch (nvme_ctrl_state(&dev->ctrl)) {
1457 case NVME_CTRL_CONNECTING:
1458 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1459 fallthrough;
1460 case NVME_CTRL_DELETING:
1461 dev_warn_ratelimited(dev->ctrl.device,
1462 "I/O tag %d (%04x) QID %d timeout, disable controller\n",
1463 req->tag, nvme_cid(req), nvmeq->qid);
1464 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1465 nvme_dev_disable(dev, true);
1466 return BLK_EH_DONE;
1467 case NVME_CTRL_RESETTING:
1468 return BLK_EH_RESET_TIMER;
1469 default:
1470 break;
1471 }
1472
1473 /*
1474 * Shutdown the controller immediately and schedule a reset if the
1475 * command was already aborted once before and still hasn't been
1476 * returned to the driver, or if this is the admin queue.
1477 */
1478 opcode = nvme_req(req)->cmd->common.opcode;
1479 if (!nvmeq->qid || iod->aborted) {
1480 dev_warn(dev->ctrl.device,
1481 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, reset controller\n",
1482 req->tag, nvme_cid(req), opcode,
1483 nvme_opcode_str(nvmeq->qid, opcode), nvmeq->qid);
1484 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1485 goto disable;
1486 }
1487
1488 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1489 atomic_inc(&dev->ctrl.abort_limit);
1490 return BLK_EH_RESET_TIMER;
1491 }
1492 iod->aborted = true;
1493
1494 cmd.abort.opcode = nvme_admin_abort_cmd;
1495 cmd.abort.cid = nvme_cid(req);
1496 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1497
1498 dev_warn(nvmeq->dev->ctrl.device,
1499 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, aborting req_op:%s(%u) size:%u\n",
1500 req->tag, nvme_cid(req), opcode, nvme_get_opcode_str(opcode),
1501 nvmeq->qid, blk_op_str(req_op(req)), req_op(req),
1502 blk_rq_bytes(req));
1503
1504 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1505 BLK_MQ_REQ_NOWAIT);
1506 if (IS_ERR(abort_req)) {
1507 atomic_inc(&dev->ctrl.abort_limit);
1508 return BLK_EH_RESET_TIMER;
1509 }
1510 nvme_init_request(abort_req, &cmd);
1511
1512 abort_req->end_io = abort_endio;
1513 abort_req->end_io_data = NULL;
1514 blk_execute_rq_nowait(abort_req, false);
1515
1516 /*
1517 * The aborted req will be completed on receiving the abort req.
1518 * We enable the timer again. If hit twice, it'll cause a device reset,
1519 * as the device then is in a faulty state.
1520 */
1521 return BLK_EH_RESET_TIMER;
1522
1523 disable:
1524 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
1525 if (nvme_state_terminal(&dev->ctrl))
1526 nvme_dev_disable(dev, true);
1527 return BLK_EH_DONE;
1528 }
1529
1530 nvme_dev_disable(dev, false);
1531 if (nvme_try_sched_reset(&dev->ctrl))
1532 nvme_unquiesce_io_queues(&dev->ctrl);
1533 return BLK_EH_DONE;
1534 }
1535
nvme_free_queue(struct nvme_queue * nvmeq)1536 static void nvme_free_queue(struct nvme_queue *nvmeq)
1537 {
1538 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1539 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1540 if (!nvmeq->sq_cmds)
1541 return;
1542
1543 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1544 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1545 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1546 } else {
1547 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1548 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1549 }
1550 }
1551
nvme_free_queues(struct nvme_dev * dev,int lowest)1552 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1553 {
1554 int i;
1555
1556 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1557 dev->ctrl.queue_count--;
1558 nvme_free_queue(&dev->queues[i]);
1559 }
1560 }
1561
nvme_suspend_queue(struct nvme_dev * dev,unsigned int qid)1562 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1563 {
1564 struct nvme_queue *nvmeq = &dev->queues[qid];
1565
1566 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1567 return;
1568
1569 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1570 mb();
1571
1572 nvmeq->dev->online_queues--;
1573 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1574 nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1575 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1576 pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
1577 }
1578
nvme_suspend_io_queues(struct nvme_dev * dev)1579 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1580 {
1581 int i;
1582
1583 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1584 nvme_suspend_queue(dev, i);
1585 }
1586
1587 /*
1588 * Called only on a device that has been disabled and after all other threads
1589 * that can check this device's completion queues have synced, except
1590 * nvme_poll(). This is the last chance for the driver to see a natural
1591 * completion before nvme_cancel_request() terminates all incomplete requests.
1592 */
nvme_reap_pending_cqes(struct nvme_dev * dev)1593 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1594 {
1595 int i;
1596
1597 for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1598 spin_lock(&dev->queues[i].cq_poll_lock);
1599 nvme_poll_cq(&dev->queues[i], NULL);
1600 spin_unlock(&dev->queues[i].cq_poll_lock);
1601 }
1602 }
1603
nvme_cmb_qdepth(struct nvme_dev * dev,int nr_io_queues,int entry_size)1604 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1605 int entry_size)
1606 {
1607 int q_depth = dev->q_depth;
1608 unsigned q_size_aligned = roundup(q_depth * entry_size,
1609 NVME_CTRL_PAGE_SIZE);
1610
1611 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1612 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1613
1614 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1615 q_depth = div_u64(mem_per_q, entry_size);
1616
1617 /*
1618 * Ensure the reduced q_depth is above some threshold where it
1619 * would be better to map queues in system memory with the
1620 * original depth
1621 */
1622 if (q_depth < 64)
1623 return -ENOMEM;
1624 }
1625
1626 return q_depth;
1627 }
1628
nvme_alloc_sq_cmds(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)1629 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1630 int qid)
1631 {
1632 struct pci_dev *pdev = to_pci_dev(dev->dev);
1633
1634 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1635 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1636 if (nvmeq->sq_cmds) {
1637 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1638 nvmeq->sq_cmds);
1639 if (nvmeq->sq_dma_addr) {
1640 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1641 return 0;
1642 }
1643
1644 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1645 }
1646 }
1647
1648 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1649 &nvmeq->sq_dma_addr, GFP_KERNEL);
1650 if (!nvmeq->sq_cmds)
1651 return -ENOMEM;
1652 return 0;
1653 }
1654
nvme_alloc_queue(struct nvme_dev * dev,int qid,int depth)1655 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1656 {
1657 struct nvme_queue *nvmeq = &dev->queues[qid];
1658
1659 if (dev->ctrl.queue_count > qid)
1660 return 0;
1661
1662 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1663 nvmeq->q_depth = depth;
1664 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1665 &nvmeq->cq_dma_addr, GFP_KERNEL);
1666 if (!nvmeq->cqes)
1667 goto free_nvmeq;
1668
1669 if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1670 goto free_cqdma;
1671
1672 nvmeq->dev = dev;
1673 spin_lock_init(&nvmeq->sq_lock);
1674 spin_lock_init(&nvmeq->cq_poll_lock);
1675 nvmeq->cq_head = 0;
1676 nvmeq->cq_phase = 1;
1677 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1678 nvmeq->qid = qid;
1679 dev->ctrl.queue_count++;
1680
1681 return 0;
1682
1683 free_cqdma:
1684 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1685 nvmeq->cq_dma_addr);
1686 free_nvmeq:
1687 return -ENOMEM;
1688 }
1689
queue_request_irq(struct nvme_queue * nvmeq)1690 static int queue_request_irq(struct nvme_queue *nvmeq)
1691 {
1692 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1693 int nr = nvmeq->dev->ctrl.instance;
1694
1695 if (use_threaded_interrupts) {
1696 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1697 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1698 } else {
1699 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1700 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1701 }
1702 }
1703
nvme_init_queue(struct nvme_queue * nvmeq,u16 qid)1704 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1705 {
1706 struct nvme_dev *dev = nvmeq->dev;
1707
1708 nvmeq->sq_tail = 0;
1709 nvmeq->last_sq_tail = 0;
1710 nvmeq->cq_head = 0;
1711 nvmeq->cq_phase = 1;
1712 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1713 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1714 nvme_dbbuf_init(dev, nvmeq, qid);
1715 dev->online_queues++;
1716 wmb(); /* ensure the first interrupt sees the initialization */
1717 }
1718
1719 /*
1720 * Try getting shutdown_lock while setting up IO queues.
1721 */
nvme_setup_io_queues_trylock(struct nvme_dev * dev)1722 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1723 {
1724 /*
1725 * Give up if the lock is being held by nvme_dev_disable.
1726 */
1727 if (!mutex_trylock(&dev->shutdown_lock))
1728 return -ENODEV;
1729
1730 /*
1731 * Controller is in wrong state, fail early.
1732 */
1733 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) {
1734 mutex_unlock(&dev->shutdown_lock);
1735 return -ENODEV;
1736 }
1737
1738 return 0;
1739 }
1740
nvme_create_queue(struct nvme_queue * nvmeq,int qid,bool polled)1741 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1742 {
1743 struct nvme_dev *dev = nvmeq->dev;
1744 int result;
1745 u16 vector = 0;
1746
1747 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1748
1749 /*
1750 * A queue's vector matches the queue identifier unless the controller
1751 * has only one vector available.
1752 */
1753 if (!polled)
1754 vector = dev->num_vecs == 1 ? 0 : qid;
1755 else
1756 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1757
1758 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1759 if (result)
1760 return result;
1761
1762 result = adapter_alloc_sq(dev, qid, nvmeq);
1763 if (result < 0)
1764 return result;
1765 if (result)
1766 goto release_cq;
1767
1768 nvmeq->cq_vector = vector;
1769
1770 result = nvme_setup_io_queues_trylock(dev);
1771 if (result)
1772 return result;
1773 nvme_init_queue(nvmeq, qid);
1774 if (!polled) {
1775 result = queue_request_irq(nvmeq);
1776 if (result < 0)
1777 goto release_sq;
1778 }
1779
1780 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1781 mutex_unlock(&dev->shutdown_lock);
1782 return result;
1783
1784 release_sq:
1785 dev->online_queues--;
1786 mutex_unlock(&dev->shutdown_lock);
1787 adapter_delete_sq(dev, qid);
1788 release_cq:
1789 adapter_delete_cq(dev, qid);
1790 return result;
1791 }
1792
1793 static const struct blk_mq_ops nvme_mq_admin_ops = {
1794 .queue_rq = nvme_queue_rq,
1795 .complete = nvme_pci_complete_rq,
1796 .init_hctx = nvme_admin_init_hctx,
1797 .init_request = nvme_pci_init_request,
1798 .timeout = nvme_timeout,
1799 };
1800
1801 static const struct blk_mq_ops nvme_mq_ops = {
1802 .queue_rq = nvme_queue_rq,
1803 .queue_rqs = nvme_queue_rqs,
1804 .complete = nvme_pci_complete_rq,
1805 .commit_rqs = nvme_commit_rqs,
1806 .init_hctx = nvme_init_hctx,
1807 .init_request = nvme_pci_init_request,
1808 .map_queues = nvme_pci_map_queues,
1809 .timeout = nvme_timeout,
1810 .poll = nvme_poll,
1811 };
1812
nvme_dev_remove_admin(struct nvme_dev * dev)1813 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1814 {
1815 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1816 /*
1817 * If the controller was reset during removal, it's possible
1818 * user requests may be waiting on a stopped queue. Start the
1819 * queue to flush these to completion.
1820 */
1821 nvme_unquiesce_admin_queue(&dev->ctrl);
1822 nvme_remove_admin_tag_set(&dev->ctrl);
1823 }
1824 }
1825
db_bar_size(struct nvme_dev * dev,unsigned nr_io_queues)1826 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1827 {
1828 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1829 }
1830
nvme_remap_bar(struct nvme_dev * dev,unsigned long size)1831 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1832 {
1833 struct pci_dev *pdev = to_pci_dev(dev->dev);
1834
1835 if (size <= dev->bar_mapped_size)
1836 return 0;
1837 if (size > pci_resource_len(pdev, 0))
1838 return -ENOMEM;
1839 if (dev->bar)
1840 iounmap(dev->bar);
1841 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1842 if (!dev->bar) {
1843 dev->bar_mapped_size = 0;
1844 return -ENOMEM;
1845 }
1846 dev->bar_mapped_size = size;
1847 dev->dbs = dev->bar + NVME_REG_DBS;
1848
1849 return 0;
1850 }
1851
nvme_pci_configure_admin_queue(struct nvme_dev * dev)1852 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1853 {
1854 int result;
1855 u32 aqa;
1856 struct nvme_queue *nvmeq;
1857
1858 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1859 if (result < 0)
1860 return result;
1861
1862 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1863 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1864
1865 if (dev->subsystem &&
1866 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1867 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1868
1869 /*
1870 * If the device has been passed off to us in an enabled state, just
1871 * clear the enabled bit. The spec says we should set the 'shutdown
1872 * notification bits', but doing so may cause the device to complete
1873 * commands to the admin queue ... and we don't know what memory that
1874 * might be pointing at!
1875 */
1876 result = nvme_disable_ctrl(&dev->ctrl, false);
1877 if (result < 0)
1878 return result;
1879
1880 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1881 if (result)
1882 return result;
1883
1884 dev->ctrl.numa_node = dev_to_node(dev->dev);
1885
1886 nvmeq = &dev->queues[0];
1887 aqa = nvmeq->q_depth - 1;
1888 aqa |= aqa << 16;
1889
1890 writel(aqa, dev->bar + NVME_REG_AQA);
1891 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1892 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1893
1894 result = nvme_enable_ctrl(&dev->ctrl);
1895 if (result)
1896 return result;
1897
1898 nvmeq->cq_vector = 0;
1899 nvme_init_queue(nvmeq, 0);
1900 result = queue_request_irq(nvmeq);
1901 if (result) {
1902 dev->online_queues--;
1903 return result;
1904 }
1905
1906 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1907 return result;
1908 }
1909
nvme_create_io_queues(struct nvme_dev * dev)1910 static int nvme_create_io_queues(struct nvme_dev *dev)
1911 {
1912 unsigned i, max, rw_queues;
1913 int ret = 0;
1914
1915 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1916 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1917 ret = -ENOMEM;
1918 break;
1919 }
1920 }
1921
1922 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1923 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1924 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1925 dev->io_queues[HCTX_TYPE_READ];
1926 } else {
1927 rw_queues = max;
1928 }
1929
1930 for (i = dev->online_queues; i <= max; i++) {
1931 bool polled = i > rw_queues;
1932
1933 ret = nvme_create_queue(&dev->queues[i], i, polled);
1934 if (ret)
1935 break;
1936 }
1937
1938 /*
1939 * Ignore failing Create SQ/CQ commands, we can continue with less
1940 * than the desired amount of queues, and even a controller without
1941 * I/O queues can still be used to issue admin commands. This might
1942 * be useful to upgrade a buggy firmware for example.
1943 */
1944 return ret >= 0 ? 0 : ret;
1945 }
1946
nvme_cmb_size_unit(struct nvme_dev * dev)1947 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1948 {
1949 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1950
1951 return 1ULL << (12 + 4 * szu);
1952 }
1953
nvme_cmb_size(struct nvme_dev * dev)1954 static u32 nvme_cmb_size(struct nvme_dev *dev)
1955 {
1956 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1957 }
1958
nvme_map_cmb(struct nvme_dev * dev)1959 static void nvme_map_cmb(struct nvme_dev *dev)
1960 {
1961 u64 size, offset;
1962 resource_size_t bar_size;
1963 struct pci_dev *pdev = to_pci_dev(dev->dev);
1964 int bar;
1965
1966 if (dev->cmb_size)
1967 return;
1968
1969 if (NVME_CAP_CMBS(dev->ctrl.cap))
1970 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1971
1972 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1973 if (!dev->cmbsz)
1974 return;
1975 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1976
1977 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1978 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1979 bar = NVME_CMB_BIR(dev->cmbloc);
1980 bar_size = pci_resource_len(pdev, bar);
1981
1982 if (offset > bar_size)
1983 return;
1984
1985 /*
1986 * Controllers may support a CMB size larger than their BAR, for
1987 * example, due to being behind a bridge. Reduce the CMB to the
1988 * reported size of the BAR
1989 */
1990 size = min(size, bar_size - offset);
1991
1992 if (!IS_ALIGNED(size, memremap_compat_align()) ||
1993 !IS_ALIGNED(pci_resource_start(pdev, bar),
1994 memremap_compat_align()))
1995 return;
1996
1997 /*
1998 * Tell the controller about the host side address mapping the CMB,
1999 * and enable CMB decoding for the NVMe 1.4+ scheme:
2000 */
2001 if (NVME_CAP_CMBS(dev->ctrl.cap)) {
2002 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
2003 (pci_bus_address(pdev, bar) + offset),
2004 dev->bar + NVME_REG_CMBMSC);
2005 }
2006
2007 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
2008 dev_warn(dev->ctrl.device,
2009 "failed to register the CMB\n");
2010 hi_lo_writeq(0, dev->bar + NVME_REG_CMBMSC);
2011 return;
2012 }
2013
2014 dev->cmb_size = size;
2015 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
2016
2017 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
2018 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
2019 pci_p2pmem_publish(pdev, true);
2020
2021 nvme_update_attrs(dev);
2022 }
2023
nvme_set_host_mem(struct nvme_dev * dev,u32 bits)2024 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
2025 {
2026 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
2027 u64 dma_addr = dev->host_mem_descs_dma;
2028 struct nvme_command c = { };
2029 int ret;
2030
2031 c.features.opcode = nvme_admin_set_features;
2032 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
2033 c.features.dword11 = cpu_to_le32(bits);
2034 c.features.dword12 = cpu_to_le32(host_mem_size);
2035 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
2036 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
2037 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
2038
2039 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
2040 if (ret) {
2041 dev_warn(dev->ctrl.device,
2042 "failed to set host mem (err %d, flags %#x).\n",
2043 ret, bits);
2044 } else
2045 dev->hmb = bits & NVME_HOST_MEM_ENABLE;
2046
2047 return ret;
2048 }
2049
nvme_free_host_mem_multi(struct nvme_dev * dev)2050 static void nvme_free_host_mem_multi(struct nvme_dev *dev)
2051 {
2052 int i;
2053
2054 for (i = 0; i < dev->nr_host_mem_descs; i++) {
2055 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
2056 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
2057
2058 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
2059 le64_to_cpu(desc->addr),
2060 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2061 }
2062
2063 kfree(dev->host_mem_desc_bufs);
2064 dev->host_mem_desc_bufs = NULL;
2065 }
2066
nvme_free_host_mem(struct nvme_dev * dev)2067 static void nvme_free_host_mem(struct nvme_dev *dev)
2068 {
2069 if (dev->hmb_sgt)
2070 dma_free_noncontiguous(dev->dev, dev->host_mem_size,
2071 dev->hmb_sgt, DMA_BIDIRECTIONAL);
2072 else
2073 nvme_free_host_mem_multi(dev);
2074
2075 dma_free_coherent(dev->dev, dev->host_mem_descs_size,
2076 dev->host_mem_descs, dev->host_mem_descs_dma);
2077 dev->host_mem_descs = NULL;
2078 dev->host_mem_descs_size = 0;
2079 dev->nr_host_mem_descs = 0;
2080 }
2081
nvme_alloc_host_mem_single(struct nvme_dev * dev,u64 size)2082 static int nvme_alloc_host_mem_single(struct nvme_dev *dev, u64 size)
2083 {
2084 dev->hmb_sgt = dma_alloc_noncontiguous(dev->dev, size,
2085 DMA_BIDIRECTIONAL, GFP_KERNEL, 0);
2086 if (!dev->hmb_sgt)
2087 return -ENOMEM;
2088
2089 dev->host_mem_descs = dma_alloc_coherent(dev->dev,
2090 sizeof(*dev->host_mem_descs), &dev->host_mem_descs_dma,
2091 GFP_KERNEL);
2092 if (!dev->host_mem_descs) {
2093 dma_free_noncontiguous(dev->dev, size, dev->hmb_sgt,
2094 DMA_BIDIRECTIONAL);
2095 dev->hmb_sgt = NULL;
2096 return -ENOMEM;
2097 }
2098 dev->host_mem_size = size;
2099 dev->host_mem_descs_size = sizeof(*dev->host_mem_descs);
2100 dev->nr_host_mem_descs = 1;
2101
2102 dev->host_mem_descs[0].addr =
2103 cpu_to_le64(dev->hmb_sgt->sgl->dma_address);
2104 dev->host_mem_descs[0].size = cpu_to_le32(size / NVME_CTRL_PAGE_SIZE);
2105 return 0;
2106 }
2107
nvme_alloc_host_mem_multi(struct nvme_dev * dev,u64 preferred,u32 chunk_size)2108 static int nvme_alloc_host_mem_multi(struct nvme_dev *dev, u64 preferred,
2109 u32 chunk_size)
2110 {
2111 struct nvme_host_mem_buf_desc *descs;
2112 u32 max_entries, len, descs_size;
2113 dma_addr_t descs_dma;
2114 int i = 0;
2115 void **bufs;
2116 u64 size, tmp;
2117
2118 tmp = (preferred + chunk_size - 1);
2119 do_div(tmp, chunk_size);
2120 max_entries = tmp;
2121
2122 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
2123 max_entries = dev->ctrl.hmmaxd;
2124
2125 descs_size = max_entries * sizeof(*descs);
2126 descs = dma_alloc_coherent(dev->dev, descs_size, &descs_dma,
2127 GFP_KERNEL);
2128 if (!descs)
2129 goto out;
2130
2131 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
2132 if (!bufs)
2133 goto out_free_descs;
2134
2135 for (size = 0; size < preferred && i < max_entries; size += len) {
2136 dma_addr_t dma_addr;
2137
2138 len = min_t(u64, chunk_size, preferred - size);
2139 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2140 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2141 if (!bufs[i])
2142 break;
2143
2144 descs[i].addr = cpu_to_le64(dma_addr);
2145 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
2146 i++;
2147 }
2148
2149 if (!size)
2150 goto out_free_bufs;
2151
2152 dev->nr_host_mem_descs = i;
2153 dev->host_mem_size = size;
2154 dev->host_mem_descs = descs;
2155 dev->host_mem_descs_dma = descs_dma;
2156 dev->host_mem_descs_size = descs_size;
2157 dev->host_mem_desc_bufs = bufs;
2158 return 0;
2159
2160 out_free_bufs:
2161 kfree(bufs);
2162 out_free_descs:
2163 dma_free_coherent(dev->dev, descs_size, descs, descs_dma);
2164 out:
2165 dev->host_mem_descs = NULL;
2166 return -ENOMEM;
2167 }
2168
nvme_alloc_host_mem(struct nvme_dev * dev,u64 min,u64 preferred)2169 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2170 {
2171 unsigned long dma_merge_boundary = dma_get_merge_boundary(dev->dev);
2172 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2173 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2174 u64 chunk_size;
2175
2176 /*
2177 * If there is an IOMMU that can merge pages, try a virtually
2178 * non-contiguous allocation for a single segment first.
2179 */
2180 if (dma_merge_boundary && (PAGE_SIZE & dma_merge_boundary) == 0) {
2181 if (!nvme_alloc_host_mem_single(dev, preferred))
2182 return 0;
2183 }
2184
2185 /* start big and work our way down */
2186 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2187 if (!nvme_alloc_host_mem_multi(dev, preferred, chunk_size)) {
2188 if (!min || dev->host_mem_size >= min)
2189 return 0;
2190 nvme_free_host_mem(dev);
2191 }
2192 }
2193
2194 return -ENOMEM;
2195 }
2196
nvme_setup_host_mem(struct nvme_dev * dev)2197 static int nvme_setup_host_mem(struct nvme_dev *dev)
2198 {
2199 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2200 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2201 u64 min = (u64)dev->ctrl.hmmin * 4096;
2202 u32 enable_bits = NVME_HOST_MEM_ENABLE;
2203 int ret;
2204
2205 if (!dev->ctrl.hmpre)
2206 return 0;
2207
2208 preferred = min(preferred, max);
2209 if (min > max) {
2210 dev_warn(dev->ctrl.device,
2211 "min host memory (%lld MiB) above limit (%d MiB).\n",
2212 min >> ilog2(SZ_1M), max_host_mem_size_mb);
2213 nvme_free_host_mem(dev);
2214 return 0;
2215 }
2216
2217 /*
2218 * If we already have a buffer allocated check if we can reuse it.
2219 */
2220 if (dev->host_mem_descs) {
2221 if (dev->host_mem_size >= min)
2222 enable_bits |= NVME_HOST_MEM_RETURN;
2223 else
2224 nvme_free_host_mem(dev);
2225 }
2226
2227 if (!dev->host_mem_descs) {
2228 if (nvme_alloc_host_mem(dev, min, preferred)) {
2229 dev_warn(dev->ctrl.device,
2230 "failed to allocate host memory buffer.\n");
2231 return 0; /* controller must work without HMB */
2232 }
2233
2234 dev_info(dev->ctrl.device,
2235 "allocated %lld MiB host memory buffer (%u segment%s).\n",
2236 dev->host_mem_size >> ilog2(SZ_1M),
2237 dev->nr_host_mem_descs,
2238 str_plural(dev->nr_host_mem_descs));
2239 }
2240
2241 ret = nvme_set_host_mem(dev, enable_bits);
2242 if (ret)
2243 nvme_free_host_mem(dev);
2244 return ret;
2245 }
2246
cmb_show(struct device * dev,struct device_attribute * attr,char * buf)2247 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2248 char *buf)
2249 {
2250 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2251
2252 return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n",
2253 ndev->cmbloc, ndev->cmbsz);
2254 }
2255 static DEVICE_ATTR_RO(cmb);
2256
cmbloc_show(struct device * dev,struct device_attribute * attr,char * buf)2257 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2258 char *buf)
2259 {
2260 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2261
2262 return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2263 }
2264 static DEVICE_ATTR_RO(cmbloc);
2265
cmbsz_show(struct device * dev,struct device_attribute * attr,char * buf)2266 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2267 char *buf)
2268 {
2269 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2270
2271 return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2272 }
2273 static DEVICE_ATTR_RO(cmbsz);
2274
hmb_show(struct device * dev,struct device_attribute * attr,char * buf)2275 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2276 char *buf)
2277 {
2278 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2279
2280 return sysfs_emit(buf, "%d\n", ndev->hmb);
2281 }
2282
hmb_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2283 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2284 const char *buf, size_t count)
2285 {
2286 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2287 bool new;
2288 int ret;
2289
2290 if (kstrtobool(buf, &new) < 0)
2291 return -EINVAL;
2292
2293 if (new == ndev->hmb)
2294 return count;
2295
2296 if (new) {
2297 ret = nvme_setup_host_mem(ndev);
2298 } else {
2299 ret = nvme_set_host_mem(ndev, 0);
2300 if (!ret)
2301 nvme_free_host_mem(ndev);
2302 }
2303
2304 if (ret < 0)
2305 return ret;
2306
2307 return count;
2308 }
2309 static DEVICE_ATTR_RW(hmb);
2310
nvme_pci_attrs_are_visible(struct kobject * kobj,struct attribute * a,int n)2311 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2312 struct attribute *a, int n)
2313 {
2314 struct nvme_ctrl *ctrl =
2315 dev_get_drvdata(container_of(kobj, struct device, kobj));
2316 struct nvme_dev *dev = to_nvme_dev(ctrl);
2317
2318 if (a == &dev_attr_cmb.attr ||
2319 a == &dev_attr_cmbloc.attr ||
2320 a == &dev_attr_cmbsz.attr) {
2321 if (!dev->cmbsz)
2322 return 0;
2323 }
2324 if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2325 return 0;
2326
2327 return a->mode;
2328 }
2329
2330 static struct attribute *nvme_pci_attrs[] = {
2331 &dev_attr_cmb.attr,
2332 &dev_attr_cmbloc.attr,
2333 &dev_attr_cmbsz.attr,
2334 &dev_attr_hmb.attr,
2335 NULL,
2336 };
2337
2338 static const struct attribute_group nvme_pci_dev_attrs_group = {
2339 .attrs = nvme_pci_attrs,
2340 .is_visible = nvme_pci_attrs_are_visible,
2341 };
2342
2343 static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2344 &nvme_dev_attrs_group,
2345 &nvme_pci_dev_attrs_group,
2346 NULL,
2347 };
2348
nvme_update_attrs(struct nvme_dev * dev)2349 static void nvme_update_attrs(struct nvme_dev *dev)
2350 {
2351 sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
2352 }
2353
2354 /*
2355 * nirqs is the number of interrupts available for write and read
2356 * queues. The core already reserved an interrupt for the admin queue.
2357 */
nvme_calc_irq_sets(struct irq_affinity * affd,unsigned int nrirqs)2358 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2359 {
2360 struct nvme_dev *dev = affd->priv;
2361 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2362
2363 /*
2364 * If there is no interrupt available for queues, ensure that
2365 * the default queue is set to 1. The affinity set size is
2366 * also set to one, but the irq core ignores it for this case.
2367 *
2368 * If only one interrupt is available or 'write_queue' == 0, combine
2369 * write and read queues.
2370 *
2371 * If 'write_queues' > 0, ensure it leaves room for at least one read
2372 * queue.
2373 */
2374 if (!nrirqs) {
2375 nrirqs = 1;
2376 nr_read_queues = 0;
2377 } else if (nrirqs == 1 || !nr_write_queues) {
2378 nr_read_queues = 0;
2379 } else if (nr_write_queues >= nrirqs) {
2380 nr_read_queues = 1;
2381 } else {
2382 nr_read_queues = nrirqs - nr_write_queues;
2383 }
2384
2385 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2386 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2387 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2388 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2389 affd->nr_sets = nr_read_queues ? 2 : 1;
2390 }
2391
nvme_setup_irqs(struct nvme_dev * dev,unsigned int nr_io_queues)2392 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2393 {
2394 struct pci_dev *pdev = to_pci_dev(dev->dev);
2395 struct irq_affinity affd = {
2396 .pre_vectors = 1,
2397 .calc_sets = nvme_calc_irq_sets,
2398 .priv = dev,
2399 };
2400 unsigned int irq_queues, poll_queues;
2401 unsigned int flags = PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY;
2402
2403 /*
2404 * Poll queues don't need interrupts, but we need at least one I/O queue
2405 * left over for non-polled I/O.
2406 */
2407 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2408 dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2409
2410 /*
2411 * Initialize for the single interrupt case, will be updated in
2412 * nvme_calc_irq_sets().
2413 */
2414 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2415 dev->io_queues[HCTX_TYPE_READ] = 0;
2416
2417 /*
2418 * We need interrupts for the admin queue and each non-polled I/O queue,
2419 * but some Apple controllers require all queues to use the first
2420 * vector.
2421 */
2422 irq_queues = 1;
2423 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2424 irq_queues += (nr_io_queues - poll_queues);
2425 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2426 flags &= ~PCI_IRQ_MSI;
2427 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, flags,
2428 &affd);
2429 }
2430
nvme_max_io_queues(struct nvme_dev * dev)2431 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2432 {
2433 /*
2434 * If tags are shared with admin queue (Apple bug), then
2435 * make sure we only use one IO queue.
2436 */
2437 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2438 return 1;
2439 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2440 }
2441
nvme_setup_io_queues(struct nvme_dev * dev)2442 static int nvme_setup_io_queues(struct nvme_dev *dev)
2443 {
2444 struct nvme_queue *adminq = &dev->queues[0];
2445 struct pci_dev *pdev = to_pci_dev(dev->dev);
2446 unsigned int nr_io_queues;
2447 unsigned long size;
2448 int result;
2449
2450 /*
2451 * Sample the module parameters once at reset time so that we have
2452 * stable values to work with.
2453 */
2454 dev->nr_write_queues = write_queues;
2455 dev->nr_poll_queues = poll_queues;
2456
2457 nr_io_queues = dev->nr_allocated_queues - 1;
2458 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2459 if (result < 0)
2460 return result;
2461
2462 if (nr_io_queues == 0)
2463 return 0;
2464
2465 /*
2466 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2467 * from set to unset. If there is a window to it is truely freed,
2468 * pci_free_irq_vectors() jumping into this window will crash.
2469 * And take lock to avoid racing with pci_free_irq_vectors() in
2470 * nvme_dev_disable() path.
2471 */
2472 result = nvme_setup_io_queues_trylock(dev);
2473 if (result)
2474 return result;
2475 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2476 pci_free_irq(pdev, 0, adminq);
2477
2478 if (dev->cmb_use_sqes) {
2479 result = nvme_cmb_qdepth(dev, nr_io_queues,
2480 sizeof(struct nvme_command));
2481 if (result > 0) {
2482 dev->q_depth = result;
2483 dev->ctrl.sqsize = result - 1;
2484 } else {
2485 dev->cmb_use_sqes = false;
2486 }
2487 }
2488
2489 do {
2490 size = db_bar_size(dev, nr_io_queues);
2491 result = nvme_remap_bar(dev, size);
2492 if (!result)
2493 break;
2494 if (!--nr_io_queues) {
2495 result = -ENOMEM;
2496 goto out_unlock;
2497 }
2498 } while (1);
2499 adminq->q_db = dev->dbs;
2500
2501 retry:
2502 /* Deregister the admin queue's interrupt */
2503 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2504 pci_free_irq(pdev, 0, adminq);
2505
2506 /*
2507 * If we enable msix early due to not intx, disable it again before
2508 * setting up the full range we need.
2509 */
2510 pci_free_irq_vectors(pdev);
2511
2512 result = nvme_setup_irqs(dev, nr_io_queues);
2513 if (result <= 0) {
2514 result = -EIO;
2515 goto out_unlock;
2516 }
2517
2518 dev->num_vecs = result;
2519 result = max(result - 1, 1);
2520 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2521
2522 /*
2523 * Should investigate if there's a performance win from allocating
2524 * more queues than interrupt vectors; it might allow the submission
2525 * path to scale better, even if the receive path is limited by the
2526 * number of interrupts.
2527 */
2528 result = queue_request_irq(adminq);
2529 if (result)
2530 goto out_unlock;
2531 set_bit(NVMEQ_ENABLED, &adminq->flags);
2532 mutex_unlock(&dev->shutdown_lock);
2533
2534 result = nvme_create_io_queues(dev);
2535 if (result || dev->online_queues < 2)
2536 return result;
2537
2538 if (dev->online_queues - 1 < dev->max_qid) {
2539 nr_io_queues = dev->online_queues - 1;
2540 nvme_delete_io_queues(dev);
2541 result = nvme_setup_io_queues_trylock(dev);
2542 if (result)
2543 return result;
2544 nvme_suspend_io_queues(dev);
2545 goto retry;
2546 }
2547 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2548 dev->io_queues[HCTX_TYPE_DEFAULT],
2549 dev->io_queues[HCTX_TYPE_READ],
2550 dev->io_queues[HCTX_TYPE_POLL]);
2551 return 0;
2552 out_unlock:
2553 mutex_unlock(&dev->shutdown_lock);
2554 return result;
2555 }
2556
nvme_del_queue_end(struct request * req,blk_status_t error)2557 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2558 blk_status_t error)
2559 {
2560 struct nvme_queue *nvmeq = req->end_io_data;
2561
2562 blk_mq_free_request(req);
2563 complete(&nvmeq->delete_done);
2564 return RQ_END_IO_NONE;
2565 }
2566
nvme_del_cq_end(struct request * req,blk_status_t error)2567 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2568 blk_status_t error)
2569 {
2570 struct nvme_queue *nvmeq = req->end_io_data;
2571
2572 if (error)
2573 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2574
2575 return nvme_del_queue_end(req, error);
2576 }
2577
nvme_delete_queue(struct nvme_queue * nvmeq,u8 opcode)2578 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2579 {
2580 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2581 struct request *req;
2582 struct nvme_command cmd = { };
2583
2584 cmd.delete_queue.opcode = opcode;
2585 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2586
2587 req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2588 if (IS_ERR(req))
2589 return PTR_ERR(req);
2590 nvme_init_request(req, &cmd);
2591
2592 if (opcode == nvme_admin_delete_cq)
2593 req->end_io = nvme_del_cq_end;
2594 else
2595 req->end_io = nvme_del_queue_end;
2596 req->end_io_data = nvmeq;
2597
2598 init_completion(&nvmeq->delete_done);
2599 blk_execute_rq_nowait(req, false);
2600 return 0;
2601 }
2602
__nvme_delete_io_queues(struct nvme_dev * dev,u8 opcode)2603 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2604 {
2605 int nr_queues = dev->online_queues - 1, sent = 0;
2606 unsigned long timeout;
2607
2608 retry:
2609 timeout = NVME_ADMIN_TIMEOUT;
2610 while (nr_queues > 0) {
2611 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2612 break;
2613 nr_queues--;
2614 sent++;
2615 }
2616 while (sent) {
2617 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2618
2619 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2620 timeout);
2621 if (timeout == 0)
2622 return false;
2623
2624 sent--;
2625 if (nr_queues)
2626 goto retry;
2627 }
2628 return true;
2629 }
2630
nvme_delete_io_queues(struct nvme_dev * dev)2631 static void nvme_delete_io_queues(struct nvme_dev *dev)
2632 {
2633 if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2634 __nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2635 }
2636
nvme_pci_nr_maps(struct nvme_dev * dev)2637 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2638 {
2639 if (dev->io_queues[HCTX_TYPE_POLL])
2640 return 3;
2641 if (dev->io_queues[HCTX_TYPE_READ])
2642 return 2;
2643 return 1;
2644 }
2645
nvme_pci_update_nr_queues(struct nvme_dev * dev)2646 static bool nvme_pci_update_nr_queues(struct nvme_dev *dev)
2647 {
2648 if (!dev->ctrl.tagset) {
2649 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
2650 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
2651 return true;
2652 }
2653
2654 /* Give up if we are racing with nvme_dev_disable() */
2655 if (!mutex_trylock(&dev->shutdown_lock))
2656 return false;
2657
2658 /* Check if nvme_dev_disable() has been executed already */
2659 if (!dev->online_queues) {
2660 mutex_unlock(&dev->shutdown_lock);
2661 return false;
2662 }
2663
2664 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2665 /* free previously allocated queues that are no longer usable */
2666 nvme_free_queues(dev, dev->online_queues);
2667 mutex_unlock(&dev->shutdown_lock);
2668 return true;
2669 }
2670
nvme_pci_enable(struct nvme_dev * dev)2671 static int nvme_pci_enable(struct nvme_dev *dev)
2672 {
2673 int result = -ENOMEM;
2674 struct pci_dev *pdev = to_pci_dev(dev->dev);
2675 unsigned int flags = PCI_IRQ_ALL_TYPES;
2676
2677 if (pci_enable_device_mem(pdev))
2678 return result;
2679
2680 pci_set_master(pdev);
2681
2682 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2683 result = -ENODEV;
2684 goto disable;
2685 }
2686
2687 /*
2688 * Some devices and/or platforms don't advertise or work with INTx
2689 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2690 * adjust this later.
2691 */
2692 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2693 flags &= ~PCI_IRQ_MSI;
2694 result = pci_alloc_irq_vectors(pdev, 1, 1, flags);
2695 if (result < 0)
2696 goto disable;
2697
2698 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2699
2700 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2701 io_queue_depth);
2702 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2703 dev->dbs = dev->bar + 4096;
2704
2705 /*
2706 * Some Apple controllers require a non-standard SQE size.
2707 * Interestingly they also seem to ignore the CC:IOSQES register
2708 * so we don't bother updating it here.
2709 */
2710 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2711 dev->io_sqes = 7;
2712 else
2713 dev->io_sqes = NVME_NVM_IOSQES;
2714
2715 if (dev->ctrl.quirks & NVME_QUIRK_QDEPTH_ONE) {
2716 dev->q_depth = 2;
2717 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2718 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2719 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2720 dev->q_depth = 64;
2721 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2722 "set queue depth=%u\n", dev->q_depth);
2723 }
2724
2725 /*
2726 * Controllers with the shared tags quirk need the IO queue to be
2727 * big enough so that we get 32 tags for the admin queue
2728 */
2729 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2730 (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2731 dev->q_depth = NVME_AQ_DEPTH + 2;
2732 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2733 dev->q_depth);
2734 }
2735 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2736
2737 nvme_map_cmb(dev);
2738
2739 pci_save_state(pdev);
2740
2741 result = nvme_pci_configure_admin_queue(dev);
2742 if (result)
2743 goto free_irq;
2744 return result;
2745
2746 free_irq:
2747 pci_free_irq_vectors(pdev);
2748 disable:
2749 pci_disable_device(pdev);
2750 return result;
2751 }
2752
nvme_dev_unmap(struct nvme_dev * dev)2753 static void nvme_dev_unmap(struct nvme_dev *dev)
2754 {
2755 if (dev->bar)
2756 iounmap(dev->bar);
2757 pci_release_mem_regions(to_pci_dev(dev->dev));
2758 }
2759
nvme_pci_ctrl_is_dead(struct nvme_dev * dev)2760 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
2761 {
2762 struct pci_dev *pdev = to_pci_dev(dev->dev);
2763 u32 csts;
2764
2765 if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
2766 return true;
2767 if (pdev->error_state != pci_channel_io_normal)
2768 return true;
2769
2770 csts = readl(dev->bar + NVME_REG_CSTS);
2771 return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
2772 }
2773
nvme_dev_disable(struct nvme_dev * dev,bool shutdown)2774 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2775 {
2776 enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl);
2777 struct pci_dev *pdev = to_pci_dev(dev->dev);
2778 bool dead;
2779
2780 mutex_lock(&dev->shutdown_lock);
2781 dead = nvme_pci_ctrl_is_dead(dev);
2782 if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) {
2783 if (pci_is_enabled(pdev))
2784 nvme_start_freeze(&dev->ctrl);
2785 /*
2786 * Give the controller a chance to complete all entered requests
2787 * if doing a safe shutdown.
2788 */
2789 if (!dead && shutdown)
2790 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2791 }
2792
2793 nvme_quiesce_io_queues(&dev->ctrl);
2794
2795 if (!dead && dev->ctrl.queue_count > 0) {
2796 nvme_delete_io_queues(dev);
2797 nvme_disable_ctrl(&dev->ctrl, shutdown);
2798 nvme_poll_irqdisable(&dev->queues[0]);
2799 }
2800 nvme_suspend_io_queues(dev);
2801 nvme_suspend_queue(dev, 0);
2802 pci_free_irq_vectors(pdev);
2803 if (pci_is_enabled(pdev))
2804 pci_disable_device(pdev);
2805 nvme_reap_pending_cqes(dev);
2806
2807 nvme_cancel_tagset(&dev->ctrl);
2808 nvme_cancel_admin_tagset(&dev->ctrl);
2809
2810 /*
2811 * The driver will not be starting up queues again if shutting down so
2812 * must flush all entered requests to their failed completion to avoid
2813 * deadlocking blk-mq hot-cpu notifier.
2814 */
2815 if (shutdown) {
2816 nvme_unquiesce_io_queues(&dev->ctrl);
2817 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2818 nvme_unquiesce_admin_queue(&dev->ctrl);
2819 }
2820 mutex_unlock(&dev->shutdown_lock);
2821 }
2822
nvme_disable_prepare_reset(struct nvme_dev * dev,bool shutdown)2823 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2824 {
2825 if (!nvme_wait_reset(&dev->ctrl))
2826 return -EBUSY;
2827 nvme_dev_disable(dev, shutdown);
2828 return 0;
2829 }
2830
nvme_setup_prp_pools(struct nvme_dev * dev)2831 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2832 {
2833 size_t small_align = 256;
2834
2835 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2836 NVME_CTRL_PAGE_SIZE,
2837 NVME_CTRL_PAGE_SIZE, 0);
2838 if (!dev->prp_page_pool)
2839 return -ENOMEM;
2840
2841 if (dev->ctrl.quirks & NVME_QUIRK_DMAPOOL_ALIGN_512)
2842 small_align = 512;
2843
2844 /* Optimisation for I/Os between 4k and 128k */
2845 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2846 256, small_align, 0);
2847 if (!dev->prp_small_pool) {
2848 dma_pool_destroy(dev->prp_page_pool);
2849 return -ENOMEM;
2850 }
2851 return 0;
2852 }
2853
nvme_release_prp_pools(struct nvme_dev * dev)2854 static void nvme_release_prp_pools(struct nvme_dev *dev)
2855 {
2856 dma_pool_destroy(dev->prp_page_pool);
2857 dma_pool_destroy(dev->prp_small_pool);
2858 }
2859
nvme_pci_alloc_iod_mempool(struct nvme_dev * dev)2860 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2861 {
2862 size_t meta_size = sizeof(struct scatterlist) * (NVME_MAX_META_SEGS + 1);
2863 size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS;
2864
2865 dev->iod_mempool = mempool_create_node(1,
2866 mempool_kmalloc, mempool_kfree,
2867 (void *)alloc_size, GFP_KERNEL,
2868 dev_to_node(dev->dev));
2869 if (!dev->iod_mempool)
2870 return -ENOMEM;
2871
2872 dev->iod_meta_mempool = mempool_create_node(1,
2873 mempool_kmalloc, mempool_kfree,
2874 (void *)meta_size, GFP_KERNEL,
2875 dev_to_node(dev->dev));
2876 if (!dev->iod_meta_mempool)
2877 goto free;
2878
2879 return 0;
2880 free:
2881 mempool_destroy(dev->iod_mempool);
2882 return -ENOMEM;
2883 }
2884
nvme_free_tagset(struct nvme_dev * dev)2885 static void nvme_free_tagset(struct nvme_dev *dev)
2886 {
2887 if (dev->tagset.tags)
2888 nvme_remove_io_tag_set(&dev->ctrl);
2889 dev->ctrl.tagset = NULL;
2890 }
2891
2892 /* pairs with nvme_pci_alloc_dev */
nvme_pci_free_ctrl(struct nvme_ctrl * ctrl)2893 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2894 {
2895 struct nvme_dev *dev = to_nvme_dev(ctrl);
2896
2897 nvme_free_tagset(dev);
2898 put_device(dev->dev);
2899 kfree(dev->queues);
2900 kfree(dev);
2901 }
2902
nvme_reset_work(struct work_struct * work)2903 static void nvme_reset_work(struct work_struct *work)
2904 {
2905 struct nvme_dev *dev =
2906 container_of(work, struct nvme_dev, ctrl.reset_work);
2907 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2908 int result;
2909
2910 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) {
2911 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2912 dev->ctrl.state);
2913 result = -ENODEV;
2914 goto out;
2915 }
2916
2917 /*
2918 * If we're called to reset a live controller first shut it down before
2919 * moving on.
2920 */
2921 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2922 nvme_dev_disable(dev, false);
2923 nvme_sync_queues(&dev->ctrl);
2924
2925 mutex_lock(&dev->shutdown_lock);
2926 result = nvme_pci_enable(dev);
2927 if (result)
2928 goto out_unlock;
2929 nvme_unquiesce_admin_queue(&dev->ctrl);
2930 mutex_unlock(&dev->shutdown_lock);
2931
2932 /*
2933 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2934 * initializing procedure here.
2935 */
2936 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2937 dev_warn(dev->ctrl.device,
2938 "failed to mark controller CONNECTING\n");
2939 result = -EBUSY;
2940 goto out;
2941 }
2942
2943 result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
2944 if (result)
2945 goto out;
2946
2947 if (nvme_ctrl_meta_sgl_supported(&dev->ctrl))
2948 dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS;
2949 else
2950 dev->ctrl.max_integrity_segments = 1;
2951
2952 nvme_dbbuf_dma_alloc(dev);
2953
2954 result = nvme_setup_host_mem(dev);
2955 if (result < 0)
2956 goto out;
2957
2958 result = nvme_setup_io_queues(dev);
2959 if (result)
2960 goto out;
2961
2962 /*
2963 * Freeze and update the number of I/O queues as thos might have
2964 * changed. If there are no I/O queues left after this reset, keep the
2965 * controller around but remove all namespaces.
2966 */
2967 if (dev->online_queues > 1) {
2968 nvme_dbbuf_set(dev);
2969 nvme_unquiesce_io_queues(&dev->ctrl);
2970 nvme_wait_freeze(&dev->ctrl);
2971 if (!nvme_pci_update_nr_queues(dev))
2972 goto out;
2973 nvme_unfreeze(&dev->ctrl);
2974 } else {
2975 dev_warn(dev->ctrl.device, "IO queues lost\n");
2976 nvme_mark_namespaces_dead(&dev->ctrl);
2977 nvme_unquiesce_io_queues(&dev->ctrl);
2978 nvme_remove_namespaces(&dev->ctrl);
2979 nvme_free_tagset(dev);
2980 }
2981
2982 /*
2983 * If only admin queue live, keep it to do further investigation or
2984 * recovery.
2985 */
2986 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2987 dev_warn(dev->ctrl.device,
2988 "failed to mark controller live state\n");
2989 result = -ENODEV;
2990 goto out;
2991 }
2992
2993 nvme_start_ctrl(&dev->ctrl);
2994 return;
2995
2996 out_unlock:
2997 mutex_unlock(&dev->shutdown_lock);
2998 out:
2999 /*
3000 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
3001 * may be holding this pci_dev's device lock.
3002 */
3003 dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
3004 result);
3005 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3006 nvme_dev_disable(dev, true);
3007 nvme_sync_queues(&dev->ctrl);
3008 nvme_mark_namespaces_dead(&dev->ctrl);
3009 nvme_unquiesce_io_queues(&dev->ctrl);
3010 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3011 }
3012
nvme_pci_reg_read32(struct nvme_ctrl * ctrl,u32 off,u32 * val)3013 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
3014 {
3015 *val = readl(to_nvme_dev(ctrl)->bar + off);
3016 return 0;
3017 }
3018
nvme_pci_reg_write32(struct nvme_ctrl * ctrl,u32 off,u32 val)3019 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
3020 {
3021 writel(val, to_nvme_dev(ctrl)->bar + off);
3022 return 0;
3023 }
3024
nvme_pci_reg_read64(struct nvme_ctrl * ctrl,u32 off,u64 * val)3025 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
3026 {
3027 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
3028 return 0;
3029 }
3030
nvme_pci_get_address(struct nvme_ctrl * ctrl,char * buf,int size)3031 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
3032 {
3033 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
3034
3035 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
3036 }
3037
nvme_pci_print_device_info(struct nvme_ctrl * ctrl)3038 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
3039 {
3040 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
3041 struct nvme_subsystem *subsys = ctrl->subsys;
3042
3043 dev_err(ctrl->device,
3044 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
3045 pdev->vendor, pdev->device,
3046 nvme_strlen(subsys->model, sizeof(subsys->model)),
3047 subsys->model, nvme_strlen(subsys->firmware_rev,
3048 sizeof(subsys->firmware_rev)),
3049 subsys->firmware_rev);
3050 }
3051
nvme_pci_supports_pci_p2pdma(struct nvme_ctrl * ctrl)3052 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
3053 {
3054 struct nvme_dev *dev = to_nvme_dev(ctrl);
3055
3056 return dma_pci_p2pdma_supported(dev->dev);
3057 }
3058
3059 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
3060 .name = "pcie",
3061 .module = THIS_MODULE,
3062 .flags = NVME_F_METADATA_SUPPORTED,
3063 .dev_attr_groups = nvme_pci_dev_attr_groups,
3064 .reg_read32 = nvme_pci_reg_read32,
3065 .reg_write32 = nvme_pci_reg_write32,
3066 .reg_read64 = nvme_pci_reg_read64,
3067 .free_ctrl = nvme_pci_free_ctrl,
3068 .submit_async_event = nvme_pci_submit_async_event,
3069 .subsystem_reset = nvme_pci_subsystem_reset,
3070 .get_address = nvme_pci_get_address,
3071 .print_device_info = nvme_pci_print_device_info,
3072 .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma,
3073 };
3074
nvme_dev_map(struct nvme_dev * dev)3075 static int nvme_dev_map(struct nvme_dev *dev)
3076 {
3077 struct pci_dev *pdev = to_pci_dev(dev->dev);
3078
3079 if (pci_request_mem_regions(pdev, "nvme"))
3080 return -ENODEV;
3081
3082 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
3083 goto release;
3084
3085 return 0;
3086 release:
3087 pci_release_mem_regions(pdev);
3088 return -ENODEV;
3089 }
3090
check_vendor_combination_bug(struct pci_dev * pdev)3091 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
3092 {
3093 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
3094 /*
3095 * Several Samsung devices seem to drop off the PCIe bus
3096 * randomly when APST is on and uses the deepest sleep state.
3097 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
3098 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
3099 * 950 PRO 256GB", but it seems to be restricted to two Dell
3100 * laptops.
3101 */
3102 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
3103 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
3104 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
3105 return NVME_QUIRK_NO_DEEPEST_PS;
3106 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
3107 /*
3108 * Samsung SSD 960 EVO drops off the PCIe bus after system
3109 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
3110 * within few minutes after bootup on a Coffee Lake board -
3111 * ASUS PRIME Z370-A
3112 */
3113 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
3114 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
3115 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
3116 return NVME_QUIRK_NO_APST;
3117 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
3118 pdev->device == 0xa808 || pdev->device == 0xa809)) ||
3119 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
3120 /*
3121 * Forcing to use host managed nvme power settings for
3122 * lowest idle power with quick resume latency on
3123 * Samsung and Toshiba SSDs based on suspend behavior
3124 * on Coffee Lake board for LENOVO C640
3125 */
3126 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
3127 dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
3128 return NVME_QUIRK_SIMPLE_SUSPEND;
3129 } else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 ||
3130 pdev->device == 0x500f)) {
3131 /*
3132 * Exclude some Kingston NV1 and A2000 devices from
3133 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a
3134 * lot fo energy with s2idle sleep on some TUXEDO platforms.
3135 */
3136 if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
3137 dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") ||
3138 dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") ||
3139 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1"))
3140 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
3141 } else if (pdev->vendor == 0x144d && pdev->device == 0xa80d) {
3142 /*
3143 * Exclude Samsung 990 Evo from NVME_QUIRK_SIMPLE_SUSPEND
3144 * because of high power consumption (> 2 Watt) in s2idle
3145 * sleep. Only some boards with Intel CPU are affected.
3146 */
3147 if (dmi_match(DMI_BOARD_NAME, "DN50Z-140HC-YD") ||
3148 dmi_match(DMI_BOARD_NAME, "GMxPXxx") ||
3149 dmi_match(DMI_BOARD_NAME, "GXxMRXx") ||
3150 dmi_match(DMI_BOARD_NAME, "PH4PG31") ||
3151 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1") ||
3152 dmi_match(DMI_BOARD_NAME, "PH6PG01_PH6PG71"))
3153 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
3154 }
3155
3156 /*
3157 * NVMe SSD drops off the PCIe bus after system idle
3158 * for 10 hours on a Lenovo N60z board.
3159 */
3160 if (dmi_match(DMI_BOARD_NAME, "LXKT-ZXEG-N6"))
3161 return NVME_QUIRK_NO_APST;
3162
3163 return 0;
3164 }
3165
nvme_pci_alloc_dev(struct pci_dev * pdev,const struct pci_device_id * id)3166 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
3167 const struct pci_device_id *id)
3168 {
3169 unsigned long quirks = id->driver_data;
3170 int node = dev_to_node(&pdev->dev);
3171 struct nvme_dev *dev;
3172 int ret = -ENOMEM;
3173
3174 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
3175 if (!dev)
3176 return ERR_PTR(-ENOMEM);
3177 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
3178 mutex_init(&dev->shutdown_lock);
3179
3180 dev->nr_write_queues = write_queues;
3181 dev->nr_poll_queues = poll_queues;
3182 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3183 dev->queues = kcalloc_node(dev->nr_allocated_queues,
3184 sizeof(struct nvme_queue), GFP_KERNEL, node);
3185 if (!dev->queues)
3186 goto out_free_dev;
3187
3188 dev->dev = get_device(&pdev->dev);
3189
3190 quirks |= check_vendor_combination_bug(pdev);
3191 if (!noacpi &&
3192 !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) &&
3193 acpi_storage_d3(&pdev->dev)) {
3194 /*
3195 * Some systems use a bios work around to ask for D3 on
3196 * platforms that support kernel managed suspend.
3197 */
3198 dev_info(&pdev->dev,
3199 "platform quirk: setting simple suspend\n");
3200 quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3201 }
3202 ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3203 quirks);
3204 if (ret)
3205 goto out_put_device;
3206
3207 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
3208 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
3209 else
3210 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3211 dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
3212 dma_set_max_seg_size(&pdev->dev, 0xffffffff);
3213
3214 /*
3215 * Limit the max command size to prevent iod->sg allocations going
3216 * over a single page.
3217 */
3218 dev->ctrl.max_hw_sectors = min_t(u32,
3219 NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9);
3220 dev->ctrl.max_segments = NVME_MAX_SEGS;
3221 dev->ctrl.max_integrity_segments = 1;
3222 return dev;
3223
3224 out_put_device:
3225 put_device(dev->dev);
3226 kfree(dev->queues);
3227 out_free_dev:
3228 kfree(dev);
3229 return ERR_PTR(ret);
3230 }
3231
nvme_probe(struct pci_dev * pdev,const struct pci_device_id * id)3232 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3233 {
3234 struct nvme_dev *dev;
3235 int result = -ENOMEM;
3236
3237 dev = nvme_pci_alloc_dev(pdev, id);
3238 if (IS_ERR(dev))
3239 return PTR_ERR(dev);
3240
3241 result = nvme_add_ctrl(&dev->ctrl);
3242 if (result)
3243 goto out_put_ctrl;
3244
3245 result = nvme_dev_map(dev);
3246 if (result)
3247 goto out_uninit_ctrl;
3248
3249 result = nvme_setup_prp_pools(dev);
3250 if (result)
3251 goto out_dev_unmap;
3252
3253 result = nvme_pci_alloc_iod_mempool(dev);
3254 if (result)
3255 goto out_release_prp_pools;
3256
3257 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3258
3259 result = nvme_pci_enable(dev);
3260 if (result)
3261 goto out_release_iod_mempool;
3262
3263 result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3264 &nvme_mq_admin_ops, sizeof(struct nvme_iod));
3265 if (result)
3266 goto out_disable;
3267
3268 /*
3269 * Mark the controller as connecting before sending admin commands to
3270 * allow the timeout handler to do the right thing.
3271 */
3272 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3273 dev_warn(dev->ctrl.device,
3274 "failed to mark controller CONNECTING\n");
3275 result = -EBUSY;
3276 goto out_disable;
3277 }
3278
3279 result = nvme_init_ctrl_finish(&dev->ctrl, false);
3280 if (result)
3281 goto out_disable;
3282
3283 if (nvme_ctrl_meta_sgl_supported(&dev->ctrl))
3284 dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS;
3285 else
3286 dev->ctrl.max_integrity_segments = 1;
3287
3288 nvme_dbbuf_dma_alloc(dev);
3289
3290 result = nvme_setup_host_mem(dev);
3291 if (result < 0)
3292 goto out_disable;
3293
3294 result = nvme_setup_io_queues(dev);
3295 if (result)
3296 goto out_disable;
3297
3298 if (dev->online_queues > 1) {
3299 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3300 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
3301 nvme_dbbuf_set(dev);
3302 }
3303
3304 if (!dev->ctrl.tagset)
3305 dev_warn(dev->ctrl.device, "IO queues not created\n");
3306
3307 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3308 dev_warn(dev->ctrl.device,
3309 "failed to mark controller live state\n");
3310 result = -ENODEV;
3311 goto out_disable;
3312 }
3313
3314 pci_set_drvdata(pdev, dev);
3315
3316 nvme_start_ctrl(&dev->ctrl);
3317 nvme_put_ctrl(&dev->ctrl);
3318 flush_work(&dev->ctrl.scan_work);
3319 return 0;
3320
3321 out_disable:
3322 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3323 nvme_dev_disable(dev, true);
3324 nvme_free_host_mem(dev);
3325 nvme_dev_remove_admin(dev);
3326 nvme_dbbuf_dma_free(dev);
3327 nvme_free_queues(dev, 0);
3328 out_release_iod_mempool:
3329 mempool_destroy(dev->iod_mempool);
3330 mempool_destroy(dev->iod_meta_mempool);
3331 out_release_prp_pools:
3332 nvme_release_prp_pools(dev);
3333 out_dev_unmap:
3334 nvme_dev_unmap(dev);
3335 out_uninit_ctrl:
3336 nvme_uninit_ctrl(&dev->ctrl);
3337 out_put_ctrl:
3338 nvme_put_ctrl(&dev->ctrl);
3339 return result;
3340 }
3341
nvme_reset_prepare(struct pci_dev * pdev)3342 static void nvme_reset_prepare(struct pci_dev *pdev)
3343 {
3344 struct nvme_dev *dev = pci_get_drvdata(pdev);
3345
3346 /*
3347 * We don't need to check the return value from waiting for the reset
3348 * state as pci_dev device lock is held, making it impossible to race
3349 * with ->remove().
3350 */
3351 nvme_disable_prepare_reset(dev, false);
3352 nvme_sync_queues(&dev->ctrl);
3353 }
3354
nvme_reset_done(struct pci_dev * pdev)3355 static void nvme_reset_done(struct pci_dev *pdev)
3356 {
3357 struct nvme_dev *dev = pci_get_drvdata(pdev);
3358
3359 if (!nvme_try_sched_reset(&dev->ctrl))
3360 flush_work(&dev->ctrl.reset_work);
3361 }
3362
nvme_shutdown(struct pci_dev * pdev)3363 static void nvme_shutdown(struct pci_dev *pdev)
3364 {
3365 struct nvme_dev *dev = pci_get_drvdata(pdev);
3366
3367 nvme_disable_prepare_reset(dev, true);
3368 }
3369
3370 /*
3371 * The driver's remove may be called on a device in a partially initialized
3372 * state. This function must not have any dependencies on the device state in
3373 * order to proceed.
3374 */
nvme_remove(struct pci_dev * pdev)3375 static void nvme_remove(struct pci_dev *pdev)
3376 {
3377 struct nvme_dev *dev = pci_get_drvdata(pdev);
3378
3379 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3380 pci_set_drvdata(pdev, NULL);
3381
3382 if (!pci_device_is_present(pdev)) {
3383 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3384 nvme_dev_disable(dev, true);
3385 }
3386
3387 flush_work(&dev->ctrl.reset_work);
3388 nvme_stop_ctrl(&dev->ctrl);
3389 nvme_remove_namespaces(&dev->ctrl);
3390 nvme_dev_disable(dev, true);
3391 nvme_free_host_mem(dev);
3392 nvme_dev_remove_admin(dev);
3393 nvme_dbbuf_dma_free(dev);
3394 nvme_free_queues(dev, 0);
3395 mempool_destroy(dev->iod_mempool);
3396 mempool_destroy(dev->iod_meta_mempool);
3397 nvme_release_prp_pools(dev);
3398 nvme_dev_unmap(dev);
3399 nvme_uninit_ctrl(&dev->ctrl);
3400 }
3401
3402 #ifdef CONFIG_PM_SLEEP
nvme_get_power_state(struct nvme_ctrl * ctrl,u32 * ps)3403 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3404 {
3405 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3406 }
3407
nvme_set_power_state(struct nvme_ctrl * ctrl,u32 ps)3408 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3409 {
3410 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3411 }
3412
nvme_resume(struct device * dev)3413 static int nvme_resume(struct device *dev)
3414 {
3415 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3416 struct nvme_ctrl *ctrl = &ndev->ctrl;
3417
3418 if (ndev->last_ps == U32_MAX ||
3419 nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3420 goto reset;
3421 if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3422 goto reset;
3423
3424 return 0;
3425 reset:
3426 return nvme_try_sched_reset(ctrl);
3427 }
3428
nvme_suspend(struct device * dev)3429 static int nvme_suspend(struct device *dev)
3430 {
3431 struct pci_dev *pdev = to_pci_dev(dev);
3432 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3433 struct nvme_ctrl *ctrl = &ndev->ctrl;
3434 int ret = -EBUSY;
3435
3436 ndev->last_ps = U32_MAX;
3437
3438 /*
3439 * The platform does not remove power for a kernel managed suspend so
3440 * use host managed nvme power settings for lowest idle power if
3441 * possible. This should have quicker resume latency than a full device
3442 * shutdown. But if the firmware is involved after the suspend or the
3443 * device does not support any non-default power states, shut down the
3444 * device fully.
3445 *
3446 * If ASPM is not enabled for the device, shut down the device and allow
3447 * the PCI bus layer to put it into D3 in order to take the PCIe link
3448 * down, so as to allow the platform to achieve its minimum low-power
3449 * state (which may not be possible if the link is up).
3450 */
3451 if (pm_suspend_via_firmware() || !ctrl->npss ||
3452 !pcie_aspm_enabled(pdev) ||
3453 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3454 return nvme_disable_prepare_reset(ndev, true);
3455
3456 nvme_start_freeze(ctrl);
3457 nvme_wait_freeze(ctrl);
3458 nvme_sync_queues(ctrl);
3459
3460 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
3461 goto unfreeze;
3462
3463 /*
3464 * Host memory access may not be successful in a system suspend state,
3465 * but the specification allows the controller to access memory in a
3466 * non-operational power state.
3467 */
3468 if (ndev->hmb) {
3469 ret = nvme_set_host_mem(ndev, 0);
3470 if (ret < 0)
3471 goto unfreeze;
3472 }
3473
3474 ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3475 if (ret < 0)
3476 goto unfreeze;
3477
3478 /*
3479 * A saved state prevents pci pm from generically controlling the
3480 * device's power. If we're using protocol specific settings, we don't
3481 * want pci interfering.
3482 */
3483 pci_save_state(pdev);
3484
3485 ret = nvme_set_power_state(ctrl, ctrl->npss);
3486 if (ret < 0)
3487 goto unfreeze;
3488
3489 if (ret) {
3490 /* discard the saved state */
3491 pci_load_saved_state(pdev, NULL);
3492
3493 /*
3494 * Clearing npss forces a controller reset on resume. The
3495 * correct value will be rediscovered then.
3496 */
3497 ret = nvme_disable_prepare_reset(ndev, true);
3498 ctrl->npss = 0;
3499 }
3500 unfreeze:
3501 nvme_unfreeze(ctrl);
3502 return ret;
3503 }
3504
nvme_simple_suspend(struct device * dev)3505 static int nvme_simple_suspend(struct device *dev)
3506 {
3507 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3508
3509 return nvme_disable_prepare_reset(ndev, true);
3510 }
3511
nvme_simple_resume(struct device * dev)3512 static int nvme_simple_resume(struct device *dev)
3513 {
3514 struct pci_dev *pdev = to_pci_dev(dev);
3515 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3516
3517 return nvme_try_sched_reset(&ndev->ctrl);
3518 }
3519
3520 static const struct dev_pm_ops nvme_dev_pm_ops = {
3521 .suspend = nvme_suspend,
3522 .resume = nvme_resume,
3523 .freeze = nvme_simple_suspend,
3524 .thaw = nvme_simple_resume,
3525 .poweroff = nvme_simple_suspend,
3526 .restore = nvme_simple_resume,
3527 };
3528 #endif /* CONFIG_PM_SLEEP */
3529
nvme_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3530 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3531 pci_channel_state_t state)
3532 {
3533 struct nvme_dev *dev = pci_get_drvdata(pdev);
3534
3535 /*
3536 * A frozen channel requires a reset. When detected, this method will
3537 * shutdown the controller to quiesce. The controller will be restarted
3538 * after the slot reset through driver's slot_reset callback.
3539 */
3540 switch (state) {
3541 case pci_channel_io_normal:
3542 return PCI_ERS_RESULT_CAN_RECOVER;
3543 case pci_channel_io_frozen:
3544 dev_warn(dev->ctrl.device,
3545 "frozen state error detected, reset controller\n");
3546 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
3547 nvme_dev_disable(dev, true);
3548 return PCI_ERS_RESULT_DISCONNECT;
3549 }
3550 nvme_dev_disable(dev, false);
3551 return PCI_ERS_RESULT_NEED_RESET;
3552 case pci_channel_io_perm_failure:
3553 dev_warn(dev->ctrl.device,
3554 "failure state error detected, request disconnect\n");
3555 return PCI_ERS_RESULT_DISCONNECT;
3556 }
3557 return PCI_ERS_RESULT_NEED_RESET;
3558 }
3559
nvme_slot_reset(struct pci_dev * pdev)3560 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3561 {
3562 struct nvme_dev *dev = pci_get_drvdata(pdev);
3563
3564 dev_info(dev->ctrl.device, "restart after slot reset\n");
3565 pci_restore_state(pdev);
3566 if (!nvme_try_sched_reset(&dev->ctrl))
3567 nvme_unquiesce_io_queues(&dev->ctrl);
3568 return PCI_ERS_RESULT_RECOVERED;
3569 }
3570
nvme_error_resume(struct pci_dev * pdev)3571 static void nvme_error_resume(struct pci_dev *pdev)
3572 {
3573 struct nvme_dev *dev = pci_get_drvdata(pdev);
3574
3575 flush_work(&dev->ctrl.reset_work);
3576 }
3577
3578 static const struct pci_error_handlers nvme_err_handler = {
3579 .error_detected = nvme_error_detected,
3580 .slot_reset = nvme_slot_reset,
3581 .resume = nvme_error_resume,
3582 .reset_prepare = nvme_reset_prepare,
3583 .reset_done = nvme_reset_done,
3584 };
3585
3586 static const struct pci_device_id nvme_id_table[] = {
3587 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */
3588 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3589 NVME_QUIRK_DEALLOCATE_ZEROES, },
3590 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */
3591 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3592 NVME_QUIRK_DEALLOCATE_ZEROES, },
3593 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */
3594 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3595 NVME_QUIRK_IGNORE_DEV_SUBNQN |
3596 NVME_QUIRK_BOGUS_NID, },
3597 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */
3598 .driver_data = NVME_QUIRK_STRIPE_SIZE, },
3599 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
3600 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3601 NVME_QUIRK_MEDIUM_PRIO_SQ |
3602 NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3603 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3604 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
3605 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3606 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
3607 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3608 NVME_QUIRK_DISABLE_WRITE_ZEROES |
3609 NVME_QUIRK_BOGUS_NID, },
3610 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */
3611 .driver_data = NVME_QUIRK_BOGUS_NID, },
3612 { PCI_DEVICE(0x1217, 0x8760), /* O2 Micro 64GB Steam Deck */
3613 .driver_data = NVME_QUIRK_DMAPOOL_ALIGN_512, },
3614 { PCI_DEVICE(0x126f, 0x2262), /* Silicon Motion generic */
3615 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3616 NVME_QUIRK_BOGUS_NID, },
3617 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */
3618 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3619 NVME_QUIRK_BOGUS_NID, },
3620 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
3621 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3622 NVME_QUIRK_NO_NS_DESC_LIST, },
3623 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3624 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3625 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3626 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3627 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3628 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3629 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3630 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3631 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
3632 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3633 NVME_QUIRK_DISABLE_WRITE_ZEROES|
3634 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3635 { PCI_DEVICE(0x15b7, 0x5008), /* Sandisk SN530 */
3636 .driver_data = NVME_QUIRK_BROKEN_MSI },
3637 { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */
3638 .driver_data = NVME_QUIRK_BOGUS_NID, },
3639 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */
3640 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3641 NVME_QUIRK_BOGUS_NID, },
3642 { PCI_DEVICE(0x1987, 0x5019), /* phison E19 */
3643 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3644 { PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */
3645 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3646 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */
3647 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3648 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3649 { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */
3650 .driver_data = NVME_QUIRK_BOGUS_NID, },
3651 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
3652 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3653 NVME_QUIRK_BOGUS_NID, },
3654 { PCI_DEVICE(0x10ec, 0x5763), /* ADATA SX6000PNP */
3655 .driver_data = NVME_QUIRK_BOGUS_NID, },
3656 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3657 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3658 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3659 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3660 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3661 { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */
3662 .driver_data = NVME_QUIRK_BOGUS_NID, },
3663 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */
3664 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3665 { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */
3666 .driver_data = NVME_QUIRK_BOGUS_NID, },
3667 { PCI_DEVICE(0x1c5c, 0x1D59), /* SK Hynix BC901 */
3668 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3669 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */
3670 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3671 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */
3672 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3673 { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */
3674 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES |
3675 NVME_QUIRK_BOGUS_NID, },
3676 { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */
3677 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3678 { PCI_DEVICE(0x144d, 0xa802), /* Samsung SM953 */
3679 .driver_data = NVME_QUIRK_BOGUS_NID, },
3680 { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */
3681 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3682 { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */
3683 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3684 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */
3685 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3686 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */
3687 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3688 { PCI_DEVICE(0x2646, 0x5013), /* Kingston KC3000, Kingston FURY Renegade */
3689 .driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
3690 { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3691 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3692 { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3693 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3694 { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3695 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3696 { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3697 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3698 { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3699 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3700 { PCI_DEVICE(0x1f40, 0x1202), /* Netac Technologies Co. NV3000 NVMe SSD */
3701 .driver_data = NVME_QUIRK_BOGUS_NID, },
3702 { PCI_DEVICE(0x1f40, 0x5236), /* Netac Technologies Co. NV7000 NVMe SSD */
3703 .driver_data = NVME_QUIRK_BOGUS_NID, },
3704 { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */
3705 .driver_data = NVME_QUIRK_BOGUS_NID, },
3706 { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */
3707 .driver_data = NVME_QUIRK_BOGUS_NID, },
3708 { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */
3709 .driver_data = NVME_QUIRK_BOGUS_NID, },
3710 { PCI_DEVICE(0x1e4B, 0x1602), /* MAXIO MAP1602 */
3711 .driver_data = NVME_QUIRK_BOGUS_NID, },
3712 { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */
3713 .driver_data = NVME_QUIRK_BOGUS_NID, },
3714 { PCI_DEVICE(0x1dbe, 0x5216), /* Acer/INNOGRIT FA100/5216 NVMe SSD */
3715 .driver_data = NVME_QUIRK_BOGUS_NID, },
3716 { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */
3717 .driver_data = NVME_QUIRK_BOGUS_NID, },
3718 { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */
3719 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3720 { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */
3721 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3722 { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */
3723 .driver_data = NVME_QUIRK_BOGUS_NID, },
3724 { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3725 .driver_data = NVME_QUIRK_BOGUS_NID, },
3726 { PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
3727 .driver_data = NVME_QUIRK_BOGUS_NID, },
3728 { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3729 .driver_data = NVME_QUIRK_BOGUS_NID |
3730 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3731 { PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
3732 .driver_data = NVME_QUIRK_BOGUS_NID, },
3733 { PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G */
3734 .driver_data = NVME_QUIRK_BOGUS_NID, },
3735 { PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
3736 .driver_data = NVME_QUIRK_BOGUS_NID, },
3737 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3738 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3739 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3740 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3741 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3742 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3743 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3744 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3745 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3746 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3747 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3748 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3749 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3750 /*
3751 * Fix for the Apple controller found in the MacBook8,1 and
3752 * some MacBook7,1 to avoid controller resets and data loss.
3753 */
3754 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3755 NVME_QUIRK_QDEPTH_ONE },
3756 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3757 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3758 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3759 NVME_QUIRK_128_BYTES_SQES |
3760 NVME_QUIRK_SHARED_TAGS |
3761 NVME_QUIRK_SKIP_CID_GEN |
3762 NVME_QUIRK_IDENTIFY_CNS },
3763 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3764 { 0, }
3765 };
3766 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3767
3768 static struct pci_driver nvme_driver = {
3769 .name = "nvme",
3770 .id_table = nvme_id_table,
3771 .probe = nvme_probe,
3772 .remove = nvme_remove,
3773 .shutdown = nvme_shutdown,
3774 .driver = {
3775 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
3776 #ifdef CONFIG_PM_SLEEP
3777 .pm = &nvme_dev_pm_ops,
3778 #endif
3779 },
3780 .sriov_configure = pci_sriov_configure_simple,
3781 .err_handler = &nvme_err_handler,
3782 };
3783
nvme_init(void)3784 static int __init nvme_init(void)
3785 {
3786 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3787 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3788 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3789 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3790 BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE);
3791 BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE);
3792 BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS);
3793
3794 return pci_register_driver(&nvme_driver);
3795 }
3796
nvme_exit(void)3797 static void __exit nvme_exit(void)
3798 {
3799 pci_unregister_driver(&nvme_driver);
3800 flush_workqueue(nvme_wq);
3801 }
3802
3803 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3804 MODULE_LICENSE("GPL");
3805 MODULE_VERSION("1.0");
3806 MODULE_DESCRIPTION("NVMe host PCIe transport driver");
3807 module_init(nvme_init);
3808 module_exit(nvme_exit);
3809