1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/arch/arm64/crypto/aes-glue.c - wrapper code for ARMv8 AES
4 *
5 * Copyright (C) 2013 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
6 */
7
8 #include <asm/neon.h>
9 #include <asm/hwcap.h>
10 #include <asm/simd.h>
11 #include <crypto/aes.h>
12 #include <crypto/ctr.h>
13 #include <crypto/sha2.h>
14 #include <crypto/internal/hash.h>
15 #include <crypto/internal/simd.h>
16 #include <crypto/internal/skcipher.h>
17 #include <crypto/scatterwalk.h>
18 #include <linux/module.h>
19 #include <linux/cpufeature.h>
20 #include <crypto/xts.h>
21
22 #include "aes-ce-setkey.h"
23
24 #ifdef USE_V8_CRYPTO_EXTENSIONS
25 #define MODE "ce"
26 #define PRIO 300
27 #define aes_expandkey ce_aes_expandkey
28 #define aes_ecb_encrypt ce_aes_ecb_encrypt
29 #define aes_ecb_decrypt ce_aes_ecb_decrypt
30 #define aes_cbc_encrypt ce_aes_cbc_encrypt
31 #define aes_cbc_decrypt ce_aes_cbc_decrypt
32 #define aes_cbc_cts_encrypt ce_aes_cbc_cts_encrypt
33 #define aes_cbc_cts_decrypt ce_aes_cbc_cts_decrypt
34 #define aes_essiv_cbc_encrypt ce_aes_essiv_cbc_encrypt
35 #define aes_essiv_cbc_decrypt ce_aes_essiv_cbc_decrypt
36 #define aes_ctr_encrypt ce_aes_ctr_encrypt
37 #define aes_xctr_encrypt ce_aes_xctr_encrypt
38 #define aes_xts_encrypt ce_aes_xts_encrypt
39 #define aes_xts_decrypt ce_aes_xts_decrypt
40 #define aes_mac_update ce_aes_mac_update
41 MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS/XCTR using ARMv8 Crypto Extensions");
42 #else
43 #define MODE "neon"
44 #define PRIO 200
45 #define aes_ecb_encrypt neon_aes_ecb_encrypt
46 #define aes_ecb_decrypt neon_aes_ecb_decrypt
47 #define aes_cbc_encrypt neon_aes_cbc_encrypt
48 #define aes_cbc_decrypt neon_aes_cbc_decrypt
49 #define aes_cbc_cts_encrypt neon_aes_cbc_cts_encrypt
50 #define aes_cbc_cts_decrypt neon_aes_cbc_cts_decrypt
51 #define aes_essiv_cbc_encrypt neon_aes_essiv_cbc_encrypt
52 #define aes_essiv_cbc_decrypt neon_aes_essiv_cbc_decrypt
53 #define aes_ctr_encrypt neon_aes_ctr_encrypt
54 #define aes_xctr_encrypt neon_aes_xctr_encrypt
55 #define aes_xts_encrypt neon_aes_xts_encrypt
56 #define aes_xts_decrypt neon_aes_xts_decrypt
57 #define aes_mac_update neon_aes_mac_update
58 MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS/XCTR using ARMv8 NEON");
59 #endif
60 #if defined(USE_V8_CRYPTO_EXTENSIONS) || !IS_ENABLED(CONFIG_CRYPTO_AES_ARM64_BS)
61 MODULE_ALIAS_CRYPTO("ecb(aes)");
62 MODULE_ALIAS_CRYPTO("cbc(aes)");
63 MODULE_ALIAS_CRYPTO("ctr(aes)");
64 MODULE_ALIAS_CRYPTO("xts(aes)");
65 MODULE_ALIAS_CRYPTO("xctr(aes)");
66 #endif
67 MODULE_ALIAS_CRYPTO("cts(cbc(aes))");
68 MODULE_ALIAS_CRYPTO("essiv(cbc(aes),sha256)");
69 MODULE_ALIAS_CRYPTO("cmac(aes)");
70 MODULE_ALIAS_CRYPTO("xcbc(aes)");
71 MODULE_ALIAS_CRYPTO("cbcmac(aes)");
72
73 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
74 MODULE_LICENSE("GPL v2");
75
76 /* defined in aes-modes.S */
77 asmlinkage void aes_ecb_encrypt(u8 out[], u8 const in[], u32 const rk[],
78 int rounds, int blocks);
79 asmlinkage void aes_ecb_decrypt(u8 out[], u8 const in[], u32 const rk[],
80 int rounds, int blocks);
81
82 asmlinkage void aes_cbc_encrypt(u8 out[], u8 const in[], u32 const rk[],
83 int rounds, int blocks, u8 iv[]);
84 asmlinkage void aes_cbc_decrypt(u8 out[], u8 const in[], u32 const rk[],
85 int rounds, int blocks, u8 iv[]);
86
87 asmlinkage void aes_cbc_cts_encrypt(u8 out[], u8 const in[], u32 const rk[],
88 int rounds, int bytes, u8 const iv[]);
89 asmlinkage void aes_cbc_cts_decrypt(u8 out[], u8 const in[], u32 const rk[],
90 int rounds, int bytes, u8 const iv[]);
91
92 asmlinkage void aes_ctr_encrypt(u8 out[], u8 const in[], u32 const rk[],
93 int rounds, int bytes, u8 ctr[]);
94
95 asmlinkage void aes_xctr_encrypt(u8 out[], u8 const in[], u32 const rk[],
96 int rounds, int bytes, u8 ctr[], int byte_ctr);
97
98 asmlinkage void aes_xts_encrypt(u8 out[], u8 const in[], u32 const rk1[],
99 int rounds, int bytes, u32 const rk2[], u8 iv[],
100 int first);
101 asmlinkage void aes_xts_decrypt(u8 out[], u8 const in[], u32 const rk1[],
102 int rounds, int bytes, u32 const rk2[], u8 iv[],
103 int first);
104
105 asmlinkage void aes_essiv_cbc_encrypt(u8 out[], u8 const in[], u32 const rk1[],
106 int rounds, int blocks, u8 iv[],
107 u32 const rk2[]);
108 asmlinkage void aes_essiv_cbc_decrypt(u8 out[], u8 const in[], u32 const rk1[],
109 int rounds, int blocks, u8 iv[],
110 u32 const rk2[]);
111
112 asmlinkage int aes_mac_update(u8 const in[], u32 const rk[], int rounds,
113 int blocks, u8 dg[], int enc_before,
114 int enc_after);
115
116 struct crypto_aes_xts_ctx {
117 struct crypto_aes_ctx key1;
118 struct crypto_aes_ctx __aligned(8) key2;
119 };
120
121 struct crypto_aes_essiv_cbc_ctx {
122 struct crypto_aes_ctx key1;
123 struct crypto_aes_ctx __aligned(8) key2;
124 struct crypto_shash *hash;
125 };
126
127 struct mac_tfm_ctx {
128 struct crypto_aes_ctx key;
129 u8 __aligned(8) consts[];
130 };
131
132 struct mac_desc_ctx {
133 unsigned int len;
134 u8 dg[AES_BLOCK_SIZE];
135 };
136
skcipher_aes_setkey(struct crypto_skcipher * tfm,const u8 * in_key,unsigned int key_len)137 static int skcipher_aes_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
138 unsigned int key_len)
139 {
140 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
141
142 return aes_expandkey(ctx, in_key, key_len);
143 }
144
xts_set_key(struct crypto_skcipher * tfm,const u8 * in_key,unsigned int key_len)145 static int __maybe_unused xts_set_key(struct crypto_skcipher *tfm,
146 const u8 *in_key, unsigned int key_len)
147 {
148 struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
149 int ret;
150
151 ret = xts_verify_key(tfm, in_key, key_len);
152 if (ret)
153 return ret;
154
155 ret = aes_expandkey(&ctx->key1, in_key, key_len / 2);
156 if (!ret)
157 ret = aes_expandkey(&ctx->key2, &in_key[key_len / 2],
158 key_len / 2);
159 return ret;
160 }
161
essiv_cbc_set_key(struct crypto_skcipher * tfm,const u8 * in_key,unsigned int key_len)162 static int __maybe_unused essiv_cbc_set_key(struct crypto_skcipher *tfm,
163 const u8 *in_key,
164 unsigned int key_len)
165 {
166 struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
167 u8 digest[SHA256_DIGEST_SIZE];
168 int ret;
169
170 ret = aes_expandkey(&ctx->key1, in_key, key_len);
171 if (ret)
172 return ret;
173
174 crypto_shash_tfm_digest(ctx->hash, in_key, key_len, digest);
175
176 return aes_expandkey(&ctx->key2, digest, sizeof(digest));
177 }
178
ecb_encrypt(struct skcipher_request * req)179 static int __maybe_unused ecb_encrypt(struct skcipher_request *req)
180 {
181 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
182 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
183 int err, rounds = 6 + ctx->key_length / 4;
184 struct skcipher_walk walk;
185 unsigned int blocks;
186
187 err = skcipher_walk_virt(&walk, req, false);
188
189 while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
190 kernel_neon_begin();
191 aes_ecb_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
192 ctx->key_enc, rounds, blocks);
193 kernel_neon_end();
194 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
195 }
196 return err;
197 }
198
ecb_decrypt(struct skcipher_request * req)199 static int __maybe_unused ecb_decrypt(struct skcipher_request *req)
200 {
201 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
202 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
203 int err, rounds = 6 + ctx->key_length / 4;
204 struct skcipher_walk walk;
205 unsigned int blocks;
206
207 err = skcipher_walk_virt(&walk, req, false);
208
209 while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
210 kernel_neon_begin();
211 aes_ecb_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
212 ctx->key_dec, rounds, blocks);
213 kernel_neon_end();
214 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
215 }
216 return err;
217 }
218
cbc_encrypt_walk(struct skcipher_request * req,struct skcipher_walk * walk)219 static int cbc_encrypt_walk(struct skcipher_request *req,
220 struct skcipher_walk *walk)
221 {
222 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
223 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
224 int err = 0, rounds = 6 + ctx->key_length / 4;
225 unsigned int blocks;
226
227 while ((blocks = (walk->nbytes / AES_BLOCK_SIZE))) {
228 kernel_neon_begin();
229 aes_cbc_encrypt(walk->dst.virt.addr, walk->src.virt.addr,
230 ctx->key_enc, rounds, blocks, walk->iv);
231 kernel_neon_end();
232 err = skcipher_walk_done(walk, walk->nbytes % AES_BLOCK_SIZE);
233 }
234 return err;
235 }
236
cbc_encrypt(struct skcipher_request * req)237 static int __maybe_unused cbc_encrypt(struct skcipher_request *req)
238 {
239 struct skcipher_walk walk;
240 int err;
241
242 err = skcipher_walk_virt(&walk, req, false);
243 if (err)
244 return err;
245 return cbc_encrypt_walk(req, &walk);
246 }
247
cbc_decrypt_walk(struct skcipher_request * req,struct skcipher_walk * walk)248 static int cbc_decrypt_walk(struct skcipher_request *req,
249 struct skcipher_walk *walk)
250 {
251 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
252 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
253 int err = 0, rounds = 6 + ctx->key_length / 4;
254 unsigned int blocks;
255
256 while ((blocks = (walk->nbytes / AES_BLOCK_SIZE))) {
257 kernel_neon_begin();
258 aes_cbc_decrypt(walk->dst.virt.addr, walk->src.virt.addr,
259 ctx->key_dec, rounds, blocks, walk->iv);
260 kernel_neon_end();
261 err = skcipher_walk_done(walk, walk->nbytes % AES_BLOCK_SIZE);
262 }
263 return err;
264 }
265
cbc_decrypt(struct skcipher_request * req)266 static int __maybe_unused cbc_decrypt(struct skcipher_request *req)
267 {
268 struct skcipher_walk walk;
269 int err;
270
271 err = skcipher_walk_virt(&walk, req, false);
272 if (err)
273 return err;
274 return cbc_decrypt_walk(req, &walk);
275 }
276
cts_cbc_encrypt(struct skcipher_request * req)277 static int cts_cbc_encrypt(struct skcipher_request *req)
278 {
279 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
280 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
281 int err, rounds = 6 + ctx->key_length / 4;
282 int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
283 struct scatterlist *src = req->src, *dst = req->dst;
284 struct scatterlist sg_src[2], sg_dst[2];
285 struct skcipher_request subreq;
286 struct skcipher_walk walk;
287
288 skcipher_request_set_tfm(&subreq, tfm);
289 skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
290 NULL, NULL);
291
292 if (req->cryptlen <= AES_BLOCK_SIZE) {
293 if (req->cryptlen < AES_BLOCK_SIZE)
294 return -EINVAL;
295 cbc_blocks = 1;
296 }
297
298 if (cbc_blocks > 0) {
299 skcipher_request_set_crypt(&subreq, req->src, req->dst,
300 cbc_blocks * AES_BLOCK_SIZE,
301 req->iv);
302
303 err = skcipher_walk_virt(&walk, &subreq, false) ?:
304 cbc_encrypt_walk(&subreq, &walk);
305 if (err)
306 return err;
307
308 if (req->cryptlen == AES_BLOCK_SIZE)
309 return 0;
310
311 dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
312 if (req->dst != req->src)
313 dst = scatterwalk_ffwd(sg_dst, req->dst,
314 subreq.cryptlen);
315 }
316
317 /* handle ciphertext stealing */
318 skcipher_request_set_crypt(&subreq, src, dst,
319 req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
320 req->iv);
321
322 err = skcipher_walk_virt(&walk, &subreq, false);
323 if (err)
324 return err;
325
326 kernel_neon_begin();
327 aes_cbc_cts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
328 ctx->key_enc, rounds, walk.nbytes, walk.iv);
329 kernel_neon_end();
330
331 return skcipher_walk_done(&walk, 0);
332 }
333
cts_cbc_decrypt(struct skcipher_request * req)334 static int cts_cbc_decrypt(struct skcipher_request *req)
335 {
336 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
337 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
338 int err, rounds = 6 + ctx->key_length / 4;
339 int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
340 struct scatterlist *src = req->src, *dst = req->dst;
341 struct scatterlist sg_src[2], sg_dst[2];
342 struct skcipher_request subreq;
343 struct skcipher_walk walk;
344
345 skcipher_request_set_tfm(&subreq, tfm);
346 skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
347 NULL, NULL);
348
349 if (req->cryptlen <= AES_BLOCK_SIZE) {
350 if (req->cryptlen < AES_BLOCK_SIZE)
351 return -EINVAL;
352 cbc_blocks = 1;
353 }
354
355 if (cbc_blocks > 0) {
356 skcipher_request_set_crypt(&subreq, req->src, req->dst,
357 cbc_blocks * AES_BLOCK_SIZE,
358 req->iv);
359
360 err = skcipher_walk_virt(&walk, &subreq, false) ?:
361 cbc_decrypt_walk(&subreq, &walk);
362 if (err)
363 return err;
364
365 if (req->cryptlen == AES_BLOCK_SIZE)
366 return 0;
367
368 dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
369 if (req->dst != req->src)
370 dst = scatterwalk_ffwd(sg_dst, req->dst,
371 subreq.cryptlen);
372 }
373
374 /* handle ciphertext stealing */
375 skcipher_request_set_crypt(&subreq, src, dst,
376 req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
377 req->iv);
378
379 err = skcipher_walk_virt(&walk, &subreq, false);
380 if (err)
381 return err;
382
383 kernel_neon_begin();
384 aes_cbc_cts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
385 ctx->key_dec, rounds, walk.nbytes, walk.iv);
386 kernel_neon_end();
387
388 return skcipher_walk_done(&walk, 0);
389 }
390
essiv_cbc_init_tfm(struct crypto_skcipher * tfm)391 static int __maybe_unused essiv_cbc_init_tfm(struct crypto_skcipher *tfm)
392 {
393 struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
394
395 ctx->hash = crypto_alloc_shash("sha256", 0, 0);
396
397 return PTR_ERR_OR_ZERO(ctx->hash);
398 }
399
essiv_cbc_exit_tfm(struct crypto_skcipher * tfm)400 static void __maybe_unused essiv_cbc_exit_tfm(struct crypto_skcipher *tfm)
401 {
402 struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
403
404 crypto_free_shash(ctx->hash);
405 }
406
essiv_cbc_encrypt(struct skcipher_request * req)407 static int __maybe_unused essiv_cbc_encrypt(struct skcipher_request *req)
408 {
409 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
410 struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
411 int err, rounds = 6 + ctx->key1.key_length / 4;
412 struct skcipher_walk walk;
413 unsigned int blocks;
414
415 err = skcipher_walk_virt(&walk, req, false);
416
417 blocks = walk.nbytes / AES_BLOCK_SIZE;
418 if (blocks) {
419 kernel_neon_begin();
420 aes_essiv_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
421 ctx->key1.key_enc, rounds, blocks,
422 req->iv, ctx->key2.key_enc);
423 kernel_neon_end();
424 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
425 }
426 return err ?: cbc_encrypt_walk(req, &walk);
427 }
428
essiv_cbc_decrypt(struct skcipher_request * req)429 static int __maybe_unused essiv_cbc_decrypt(struct skcipher_request *req)
430 {
431 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
432 struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
433 int err, rounds = 6 + ctx->key1.key_length / 4;
434 struct skcipher_walk walk;
435 unsigned int blocks;
436
437 err = skcipher_walk_virt(&walk, req, false);
438
439 blocks = walk.nbytes / AES_BLOCK_SIZE;
440 if (blocks) {
441 kernel_neon_begin();
442 aes_essiv_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
443 ctx->key1.key_dec, rounds, blocks,
444 req->iv, ctx->key2.key_enc);
445 kernel_neon_end();
446 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
447 }
448 return err ?: cbc_decrypt_walk(req, &walk);
449 }
450
xctr_encrypt(struct skcipher_request * req)451 static int __maybe_unused xctr_encrypt(struct skcipher_request *req)
452 {
453 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
454 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
455 int err, rounds = 6 + ctx->key_length / 4;
456 struct skcipher_walk walk;
457 unsigned int byte_ctr = 0;
458
459 err = skcipher_walk_virt(&walk, req, false);
460
461 while (walk.nbytes > 0) {
462 const u8 *src = walk.src.virt.addr;
463 unsigned int nbytes = walk.nbytes;
464 u8 *dst = walk.dst.virt.addr;
465 u8 buf[AES_BLOCK_SIZE];
466
467 /*
468 * If given less than 16 bytes, we must copy the partial block
469 * into a temporary buffer of 16 bytes to avoid out of bounds
470 * reads and writes. Furthermore, this code is somewhat unusual
471 * in that it expects the end of the data to be at the end of
472 * the temporary buffer, rather than the start of the data at
473 * the start of the temporary buffer.
474 */
475 if (unlikely(nbytes < AES_BLOCK_SIZE))
476 src = dst = memcpy(buf + sizeof(buf) - nbytes,
477 src, nbytes);
478 else if (nbytes < walk.total)
479 nbytes &= ~(AES_BLOCK_SIZE - 1);
480
481 kernel_neon_begin();
482 aes_xctr_encrypt(dst, src, ctx->key_enc, rounds, nbytes,
483 walk.iv, byte_ctr);
484 kernel_neon_end();
485
486 if (unlikely(nbytes < AES_BLOCK_SIZE))
487 memcpy(walk.dst.virt.addr,
488 buf + sizeof(buf) - nbytes, nbytes);
489 byte_ctr += nbytes;
490
491 err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
492 }
493
494 return err;
495 }
496
ctr_encrypt(struct skcipher_request * req)497 static int __maybe_unused ctr_encrypt(struct skcipher_request *req)
498 {
499 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
500 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
501 int err, rounds = 6 + ctx->key_length / 4;
502 struct skcipher_walk walk;
503
504 err = skcipher_walk_virt(&walk, req, false);
505
506 while (walk.nbytes > 0) {
507 const u8 *src = walk.src.virt.addr;
508 unsigned int nbytes = walk.nbytes;
509 u8 *dst = walk.dst.virt.addr;
510 u8 buf[AES_BLOCK_SIZE];
511
512 /*
513 * If given less than 16 bytes, we must copy the partial block
514 * into a temporary buffer of 16 bytes to avoid out of bounds
515 * reads and writes. Furthermore, this code is somewhat unusual
516 * in that it expects the end of the data to be at the end of
517 * the temporary buffer, rather than the start of the data at
518 * the start of the temporary buffer.
519 */
520 if (unlikely(nbytes < AES_BLOCK_SIZE))
521 src = dst = memcpy(buf + sizeof(buf) - nbytes,
522 src, nbytes);
523 else if (nbytes < walk.total)
524 nbytes &= ~(AES_BLOCK_SIZE - 1);
525
526 kernel_neon_begin();
527 aes_ctr_encrypt(dst, src, ctx->key_enc, rounds, nbytes,
528 walk.iv);
529 kernel_neon_end();
530
531 if (unlikely(nbytes < AES_BLOCK_SIZE))
532 memcpy(walk.dst.virt.addr,
533 buf + sizeof(buf) - nbytes, nbytes);
534
535 err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
536 }
537
538 return err;
539 }
540
xts_encrypt(struct skcipher_request * req)541 static int __maybe_unused xts_encrypt(struct skcipher_request *req)
542 {
543 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
544 struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
545 int err, first, rounds = 6 + ctx->key1.key_length / 4;
546 int tail = req->cryptlen % AES_BLOCK_SIZE;
547 struct scatterlist sg_src[2], sg_dst[2];
548 struct skcipher_request subreq;
549 struct scatterlist *src, *dst;
550 struct skcipher_walk walk;
551
552 if (req->cryptlen < AES_BLOCK_SIZE)
553 return -EINVAL;
554
555 err = skcipher_walk_virt(&walk, req, false);
556
557 if (unlikely(tail > 0 && walk.nbytes < walk.total)) {
558 int xts_blocks = DIV_ROUND_UP(req->cryptlen,
559 AES_BLOCK_SIZE) - 2;
560
561 skcipher_walk_abort(&walk);
562
563 skcipher_request_set_tfm(&subreq, tfm);
564 skcipher_request_set_callback(&subreq,
565 skcipher_request_flags(req),
566 NULL, NULL);
567 skcipher_request_set_crypt(&subreq, req->src, req->dst,
568 xts_blocks * AES_BLOCK_SIZE,
569 req->iv);
570 req = &subreq;
571 err = skcipher_walk_virt(&walk, req, false);
572 } else {
573 tail = 0;
574 }
575
576 for (first = 1; walk.nbytes >= AES_BLOCK_SIZE; first = 0) {
577 int nbytes = walk.nbytes;
578
579 if (walk.nbytes < walk.total)
580 nbytes &= ~(AES_BLOCK_SIZE - 1);
581
582 kernel_neon_begin();
583 aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
584 ctx->key1.key_enc, rounds, nbytes,
585 ctx->key2.key_enc, walk.iv, first);
586 kernel_neon_end();
587 err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
588 }
589
590 if (err || likely(!tail))
591 return err;
592
593 dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
594 if (req->dst != req->src)
595 dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
596
597 skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
598 req->iv);
599
600 err = skcipher_walk_virt(&walk, &subreq, false);
601 if (err)
602 return err;
603
604 kernel_neon_begin();
605 aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
606 ctx->key1.key_enc, rounds, walk.nbytes,
607 ctx->key2.key_enc, walk.iv, first);
608 kernel_neon_end();
609
610 return skcipher_walk_done(&walk, 0);
611 }
612
xts_decrypt(struct skcipher_request * req)613 static int __maybe_unused xts_decrypt(struct skcipher_request *req)
614 {
615 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
616 struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
617 int err, first, rounds = 6 + ctx->key1.key_length / 4;
618 int tail = req->cryptlen % AES_BLOCK_SIZE;
619 struct scatterlist sg_src[2], sg_dst[2];
620 struct skcipher_request subreq;
621 struct scatterlist *src, *dst;
622 struct skcipher_walk walk;
623
624 if (req->cryptlen < AES_BLOCK_SIZE)
625 return -EINVAL;
626
627 err = skcipher_walk_virt(&walk, req, false);
628
629 if (unlikely(tail > 0 && walk.nbytes < walk.total)) {
630 int xts_blocks = DIV_ROUND_UP(req->cryptlen,
631 AES_BLOCK_SIZE) - 2;
632
633 skcipher_walk_abort(&walk);
634
635 skcipher_request_set_tfm(&subreq, tfm);
636 skcipher_request_set_callback(&subreq,
637 skcipher_request_flags(req),
638 NULL, NULL);
639 skcipher_request_set_crypt(&subreq, req->src, req->dst,
640 xts_blocks * AES_BLOCK_SIZE,
641 req->iv);
642 req = &subreq;
643 err = skcipher_walk_virt(&walk, req, false);
644 } else {
645 tail = 0;
646 }
647
648 for (first = 1; walk.nbytes >= AES_BLOCK_SIZE; first = 0) {
649 int nbytes = walk.nbytes;
650
651 if (walk.nbytes < walk.total)
652 nbytes &= ~(AES_BLOCK_SIZE - 1);
653
654 kernel_neon_begin();
655 aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
656 ctx->key1.key_dec, rounds, nbytes,
657 ctx->key2.key_enc, walk.iv, first);
658 kernel_neon_end();
659 err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
660 }
661
662 if (err || likely(!tail))
663 return err;
664
665 dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
666 if (req->dst != req->src)
667 dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
668
669 skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
670 req->iv);
671
672 err = skcipher_walk_virt(&walk, &subreq, false);
673 if (err)
674 return err;
675
676
677 kernel_neon_begin();
678 aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
679 ctx->key1.key_dec, rounds, walk.nbytes,
680 ctx->key2.key_enc, walk.iv, first);
681 kernel_neon_end();
682
683 return skcipher_walk_done(&walk, 0);
684 }
685
686 static struct skcipher_alg aes_algs[] = { {
687 #if defined(USE_V8_CRYPTO_EXTENSIONS) || !IS_ENABLED(CONFIG_CRYPTO_AES_ARM64_BS)
688 .base = {
689 .cra_name = "ecb(aes)",
690 .cra_driver_name = "ecb-aes-" MODE,
691 .cra_priority = PRIO,
692 .cra_blocksize = AES_BLOCK_SIZE,
693 .cra_ctxsize = sizeof(struct crypto_aes_ctx),
694 .cra_module = THIS_MODULE,
695 },
696 .min_keysize = AES_MIN_KEY_SIZE,
697 .max_keysize = AES_MAX_KEY_SIZE,
698 .setkey = skcipher_aes_setkey,
699 .encrypt = ecb_encrypt,
700 .decrypt = ecb_decrypt,
701 }, {
702 .base = {
703 .cra_name = "cbc(aes)",
704 .cra_driver_name = "cbc-aes-" MODE,
705 .cra_priority = PRIO,
706 .cra_blocksize = AES_BLOCK_SIZE,
707 .cra_ctxsize = sizeof(struct crypto_aes_ctx),
708 .cra_module = THIS_MODULE,
709 },
710 .min_keysize = AES_MIN_KEY_SIZE,
711 .max_keysize = AES_MAX_KEY_SIZE,
712 .ivsize = AES_BLOCK_SIZE,
713 .setkey = skcipher_aes_setkey,
714 .encrypt = cbc_encrypt,
715 .decrypt = cbc_decrypt,
716 }, {
717 .base = {
718 .cra_name = "ctr(aes)",
719 .cra_driver_name = "ctr-aes-" MODE,
720 .cra_priority = PRIO,
721 .cra_blocksize = 1,
722 .cra_ctxsize = sizeof(struct crypto_aes_ctx),
723 .cra_module = THIS_MODULE,
724 },
725 .min_keysize = AES_MIN_KEY_SIZE,
726 .max_keysize = AES_MAX_KEY_SIZE,
727 .ivsize = AES_BLOCK_SIZE,
728 .chunksize = AES_BLOCK_SIZE,
729 .setkey = skcipher_aes_setkey,
730 .encrypt = ctr_encrypt,
731 .decrypt = ctr_encrypt,
732 }, {
733 .base = {
734 .cra_name = "xctr(aes)",
735 .cra_driver_name = "xctr-aes-" MODE,
736 .cra_priority = PRIO,
737 .cra_blocksize = 1,
738 .cra_ctxsize = sizeof(struct crypto_aes_ctx),
739 .cra_module = THIS_MODULE,
740 },
741 .min_keysize = AES_MIN_KEY_SIZE,
742 .max_keysize = AES_MAX_KEY_SIZE,
743 .ivsize = AES_BLOCK_SIZE,
744 .chunksize = AES_BLOCK_SIZE,
745 .setkey = skcipher_aes_setkey,
746 .encrypt = xctr_encrypt,
747 .decrypt = xctr_encrypt,
748 }, {
749 .base = {
750 .cra_name = "xts(aes)",
751 .cra_driver_name = "xts-aes-" MODE,
752 .cra_priority = PRIO,
753 .cra_blocksize = AES_BLOCK_SIZE,
754 .cra_ctxsize = sizeof(struct crypto_aes_xts_ctx),
755 .cra_module = THIS_MODULE,
756 },
757 .min_keysize = 2 * AES_MIN_KEY_SIZE,
758 .max_keysize = 2 * AES_MAX_KEY_SIZE,
759 .ivsize = AES_BLOCK_SIZE,
760 .walksize = 2 * AES_BLOCK_SIZE,
761 .setkey = xts_set_key,
762 .encrypt = xts_encrypt,
763 .decrypt = xts_decrypt,
764 }, {
765 #endif
766 .base = {
767 .cra_name = "cts(cbc(aes))",
768 .cra_driver_name = "cts-cbc-aes-" MODE,
769 .cra_priority = PRIO,
770 .cra_blocksize = AES_BLOCK_SIZE,
771 .cra_ctxsize = sizeof(struct crypto_aes_ctx),
772 .cra_module = THIS_MODULE,
773 },
774 .min_keysize = AES_MIN_KEY_SIZE,
775 .max_keysize = AES_MAX_KEY_SIZE,
776 .ivsize = AES_BLOCK_SIZE,
777 .walksize = 2 * AES_BLOCK_SIZE,
778 .setkey = skcipher_aes_setkey,
779 .encrypt = cts_cbc_encrypt,
780 .decrypt = cts_cbc_decrypt,
781 }, {
782 .base = {
783 .cra_name = "essiv(cbc(aes),sha256)",
784 .cra_driver_name = "essiv-cbc-aes-sha256-" MODE,
785 .cra_priority = PRIO + 1,
786 .cra_blocksize = AES_BLOCK_SIZE,
787 .cra_ctxsize = sizeof(struct crypto_aes_essiv_cbc_ctx),
788 .cra_module = THIS_MODULE,
789 },
790 .min_keysize = AES_MIN_KEY_SIZE,
791 .max_keysize = AES_MAX_KEY_SIZE,
792 .ivsize = AES_BLOCK_SIZE,
793 .setkey = essiv_cbc_set_key,
794 .encrypt = essiv_cbc_encrypt,
795 .decrypt = essiv_cbc_decrypt,
796 .init = essiv_cbc_init_tfm,
797 .exit = essiv_cbc_exit_tfm,
798 } };
799
cbcmac_setkey(struct crypto_shash * tfm,const u8 * in_key,unsigned int key_len)800 static int cbcmac_setkey(struct crypto_shash *tfm, const u8 *in_key,
801 unsigned int key_len)
802 {
803 struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
804
805 return aes_expandkey(&ctx->key, in_key, key_len);
806 }
807
cmac_gf128_mul_by_x(be128 * y,const be128 * x)808 static void cmac_gf128_mul_by_x(be128 *y, const be128 *x)
809 {
810 u64 a = be64_to_cpu(x->a);
811 u64 b = be64_to_cpu(x->b);
812
813 y->a = cpu_to_be64((a << 1) | (b >> 63));
814 y->b = cpu_to_be64((b << 1) ^ ((a >> 63) ? 0x87 : 0));
815 }
816
cmac_setkey(struct crypto_shash * tfm,const u8 * in_key,unsigned int key_len)817 static int cmac_setkey(struct crypto_shash *tfm, const u8 *in_key,
818 unsigned int key_len)
819 {
820 struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
821 be128 *consts = (be128 *)ctx->consts;
822 int rounds = 6 + key_len / 4;
823 int err;
824
825 err = cbcmac_setkey(tfm, in_key, key_len);
826 if (err)
827 return err;
828
829 /* encrypt the zero vector */
830 kernel_neon_begin();
831 aes_ecb_encrypt(ctx->consts, (u8[AES_BLOCK_SIZE]){}, ctx->key.key_enc,
832 rounds, 1);
833 kernel_neon_end();
834
835 cmac_gf128_mul_by_x(consts, consts);
836 cmac_gf128_mul_by_x(consts + 1, consts);
837
838 return 0;
839 }
840
xcbc_setkey(struct crypto_shash * tfm,const u8 * in_key,unsigned int key_len)841 static int xcbc_setkey(struct crypto_shash *tfm, const u8 *in_key,
842 unsigned int key_len)
843 {
844 static u8 const ks[3][AES_BLOCK_SIZE] = {
845 { [0 ... AES_BLOCK_SIZE - 1] = 0x1 },
846 { [0 ... AES_BLOCK_SIZE - 1] = 0x2 },
847 { [0 ... AES_BLOCK_SIZE - 1] = 0x3 },
848 };
849
850 struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
851 int rounds = 6 + key_len / 4;
852 u8 key[AES_BLOCK_SIZE];
853 int err;
854
855 err = cbcmac_setkey(tfm, in_key, key_len);
856 if (err)
857 return err;
858
859 kernel_neon_begin();
860 aes_ecb_encrypt(key, ks[0], ctx->key.key_enc, rounds, 1);
861 aes_ecb_encrypt(ctx->consts, ks[1], ctx->key.key_enc, rounds, 2);
862 kernel_neon_end();
863
864 return cbcmac_setkey(tfm, key, sizeof(key));
865 }
866
mac_init(struct shash_desc * desc)867 static int mac_init(struct shash_desc *desc)
868 {
869 struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
870
871 memset(ctx->dg, 0, AES_BLOCK_SIZE);
872 ctx->len = 0;
873
874 return 0;
875 }
876
mac_do_update(struct crypto_aes_ctx * ctx,u8 const in[],int blocks,u8 dg[],int enc_before,int enc_after)877 static void mac_do_update(struct crypto_aes_ctx *ctx, u8 const in[], int blocks,
878 u8 dg[], int enc_before, int enc_after)
879 {
880 int rounds = 6 + ctx->key_length / 4;
881
882 if (crypto_simd_usable()) {
883 int rem;
884
885 do {
886 kernel_neon_begin();
887 rem = aes_mac_update(in, ctx->key_enc, rounds, blocks,
888 dg, enc_before, enc_after);
889 kernel_neon_end();
890 in += (blocks - rem) * AES_BLOCK_SIZE;
891 blocks = rem;
892 enc_before = 0;
893 } while (blocks);
894 } else {
895 if (enc_before)
896 aes_encrypt(ctx, dg, dg);
897
898 while (blocks--) {
899 crypto_xor(dg, in, AES_BLOCK_SIZE);
900 in += AES_BLOCK_SIZE;
901
902 if (blocks || enc_after)
903 aes_encrypt(ctx, dg, dg);
904 }
905 }
906 }
907
mac_update(struct shash_desc * desc,const u8 * p,unsigned int len)908 static int mac_update(struct shash_desc *desc, const u8 *p, unsigned int len)
909 {
910 struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
911 struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
912
913 while (len > 0) {
914 unsigned int l;
915
916 if ((ctx->len % AES_BLOCK_SIZE) == 0 &&
917 (ctx->len + len) > AES_BLOCK_SIZE) {
918
919 int blocks = len / AES_BLOCK_SIZE;
920
921 len %= AES_BLOCK_SIZE;
922
923 mac_do_update(&tctx->key, p, blocks, ctx->dg,
924 (ctx->len != 0), (len != 0));
925
926 p += blocks * AES_BLOCK_SIZE;
927
928 if (!len) {
929 ctx->len = AES_BLOCK_SIZE;
930 break;
931 }
932 ctx->len = 0;
933 }
934
935 l = min(len, AES_BLOCK_SIZE - ctx->len);
936
937 if (l <= AES_BLOCK_SIZE) {
938 crypto_xor(ctx->dg + ctx->len, p, l);
939 ctx->len += l;
940 len -= l;
941 p += l;
942 }
943 }
944
945 return 0;
946 }
947
cbcmac_final(struct shash_desc * desc,u8 * out)948 static int cbcmac_final(struct shash_desc *desc, u8 *out)
949 {
950 struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
951 struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
952
953 mac_do_update(&tctx->key, NULL, 0, ctx->dg, (ctx->len != 0), 0);
954
955 memcpy(out, ctx->dg, AES_BLOCK_SIZE);
956
957 return 0;
958 }
959
cmac_final(struct shash_desc * desc,u8 * out)960 static int cmac_final(struct shash_desc *desc, u8 *out)
961 {
962 struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
963 struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
964 u8 *consts = tctx->consts;
965
966 if (ctx->len != AES_BLOCK_SIZE) {
967 ctx->dg[ctx->len] ^= 0x80;
968 consts += AES_BLOCK_SIZE;
969 }
970
971 mac_do_update(&tctx->key, consts, 1, ctx->dg, 0, 1);
972
973 memcpy(out, ctx->dg, AES_BLOCK_SIZE);
974
975 return 0;
976 }
977
978 static struct shash_alg mac_algs[] = { {
979 .base.cra_name = "cmac(aes)",
980 .base.cra_driver_name = "cmac-aes-" MODE,
981 .base.cra_priority = PRIO,
982 .base.cra_blocksize = AES_BLOCK_SIZE,
983 .base.cra_ctxsize = sizeof(struct mac_tfm_ctx) +
984 2 * AES_BLOCK_SIZE,
985 .base.cra_module = THIS_MODULE,
986
987 .digestsize = AES_BLOCK_SIZE,
988 .init = mac_init,
989 .update = mac_update,
990 .final = cmac_final,
991 .setkey = cmac_setkey,
992 .descsize = sizeof(struct mac_desc_ctx),
993 }, {
994 .base.cra_name = "xcbc(aes)",
995 .base.cra_driver_name = "xcbc-aes-" MODE,
996 .base.cra_priority = PRIO,
997 .base.cra_blocksize = AES_BLOCK_SIZE,
998 .base.cra_ctxsize = sizeof(struct mac_tfm_ctx) +
999 2 * AES_BLOCK_SIZE,
1000 .base.cra_module = THIS_MODULE,
1001
1002 .digestsize = AES_BLOCK_SIZE,
1003 .init = mac_init,
1004 .update = mac_update,
1005 .final = cmac_final,
1006 .setkey = xcbc_setkey,
1007 .descsize = sizeof(struct mac_desc_ctx),
1008 }, {
1009 .base.cra_name = "cbcmac(aes)",
1010 .base.cra_driver_name = "cbcmac-aes-" MODE,
1011 .base.cra_priority = PRIO,
1012 .base.cra_blocksize = 1,
1013 .base.cra_ctxsize = sizeof(struct mac_tfm_ctx),
1014 .base.cra_module = THIS_MODULE,
1015
1016 .digestsize = AES_BLOCK_SIZE,
1017 .init = mac_init,
1018 .update = mac_update,
1019 .final = cbcmac_final,
1020 .setkey = cbcmac_setkey,
1021 .descsize = sizeof(struct mac_desc_ctx),
1022 } };
1023
aes_exit(void)1024 static void aes_exit(void)
1025 {
1026 crypto_unregister_shashes(mac_algs, ARRAY_SIZE(mac_algs));
1027 crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
1028 }
1029
aes_init(void)1030 static int __init aes_init(void)
1031 {
1032 int err;
1033
1034 err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
1035 if (err)
1036 return err;
1037
1038 err = crypto_register_shashes(mac_algs, ARRAY_SIZE(mac_algs));
1039 if (err)
1040 goto unregister_ciphers;
1041
1042 return 0;
1043
1044 unregister_ciphers:
1045 crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
1046 return err;
1047 }
1048
1049 #ifdef USE_V8_CRYPTO_EXTENSIONS
1050 module_cpu_feature_match(AES, aes_init);
1051 EXPORT_SYMBOL_NS(ce_aes_mac_update, "CRYPTO_INTERNAL");
1052 #else
1053 module_init(aes_init);
1054 EXPORT_SYMBOL(neon_aes_ecb_encrypt);
1055 EXPORT_SYMBOL(neon_aes_cbc_encrypt);
1056 EXPORT_SYMBOL(neon_aes_ctr_encrypt);
1057 EXPORT_SYMBOL(neon_aes_xts_encrypt);
1058 EXPORT_SYMBOL(neon_aes_xts_decrypt);
1059 #endif
1060 module_exit(aes_exit);
1061