1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB 2 /* 3 * Copyright (c) 2005 Voltaire Inc. All rights reserved. 4 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved. 5 * Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved. 6 * Copyright (c) 2005-2006 Intel Corporation. All rights reserved. 7 */ 8 9 #include <linux/completion.h> 10 #include <linux/in.h> 11 #include <linux/in6.h> 12 #include <linux/mutex.h> 13 #include <linux/random.h> 14 #include <linux/rbtree.h> 15 #include <linux/igmp.h> 16 #include <linux/xarray.h> 17 #include <linux/inetdevice.h> 18 #include <linux/slab.h> 19 #include <linux/module.h> 20 #include <net/route.h> 21 22 #include <net/net_namespace.h> 23 #include <net/netns/generic.h> 24 #include <net/netevent.h> 25 #include <net/tcp.h> 26 #include <net/ipv6.h> 27 #include <net/ip_fib.h> 28 #include <net/ip6_route.h> 29 30 #include <rdma/rdma_cm.h> 31 #include <rdma/rdma_cm_ib.h> 32 #include <rdma/rdma_netlink.h> 33 #include <rdma/ib.h> 34 #include <rdma/ib_cache.h> 35 #include <rdma/ib_cm.h> 36 #include <rdma/ib_sa.h> 37 #include <rdma/iw_cm.h> 38 39 #include "core_priv.h" 40 #include "cma_priv.h" 41 #include "cma_trace.h" 42 43 MODULE_AUTHOR("Sean Hefty"); 44 MODULE_DESCRIPTION("Generic RDMA CM Agent"); 45 MODULE_LICENSE("Dual BSD/GPL"); 46 47 #define CMA_CM_RESPONSE_TIMEOUT 20 48 #define CMA_MAX_CM_RETRIES 15 49 #define CMA_IBOE_PACKET_LIFETIME 16 50 #define CMA_PREFERRED_ROCE_GID_TYPE IB_GID_TYPE_ROCE_UDP_ENCAP 51 52 static const char * const cma_events[] = { 53 [RDMA_CM_EVENT_ADDR_RESOLVED] = "address resolved", 54 [RDMA_CM_EVENT_ADDR_ERROR] = "address error", 55 [RDMA_CM_EVENT_ROUTE_RESOLVED] = "route resolved ", 56 [RDMA_CM_EVENT_ROUTE_ERROR] = "route error", 57 [RDMA_CM_EVENT_CONNECT_REQUEST] = "connect request", 58 [RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response", 59 [RDMA_CM_EVENT_CONNECT_ERROR] = "connect error", 60 [RDMA_CM_EVENT_UNREACHABLE] = "unreachable", 61 [RDMA_CM_EVENT_REJECTED] = "rejected", 62 [RDMA_CM_EVENT_ESTABLISHED] = "established", 63 [RDMA_CM_EVENT_DISCONNECTED] = "disconnected", 64 [RDMA_CM_EVENT_DEVICE_REMOVAL] = "device removal", 65 [RDMA_CM_EVENT_MULTICAST_JOIN] = "multicast join", 66 [RDMA_CM_EVENT_MULTICAST_ERROR] = "multicast error", 67 [RDMA_CM_EVENT_ADDR_CHANGE] = "address change", 68 [RDMA_CM_EVENT_TIMEWAIT_EXIT] = "timewait exit", 69 }; 70 71 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid, 72 enum ib_gid_type gid_type); 73 74 static void cma_netevent_work_handler(struct work_struct *_work); 75 76 const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event) 77 { 78 size_t index = event; 79 80 return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ? 81 cma_events[index] : "unrecognized event"; 82 } 83 EXPORT_SYMBOL(rdma_event_msg); 84 85 const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id, 86 int reason) 87 { 88 if (rdma_ib_or_roce(id->device, id->port_num)) 89 return ibcm_reject_msg(reason); 90 91 if (rdma_protocol_iwarp(id->device, id->port_num)) 92 return iwcm_reject_msg(reason); 93 94 WARN_ON_ONCE(1); 95 return "unrecognized transport"; 96 } 97 EXPORT_SYMBOL(rdma_reject_msg); 98 99 /** 100 * rdma_is_consumer_reject - return true if the consumer rejected the connect 101 * request. 102 * @id: Communication identifier that received the REJECT event. 103 * @reason: Value returned in the REJECT event status field. 104 */ 105 static bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason) 106 { 107 if (rdma_ib_or_roce(id->device, id->port_num)) 108 return reason == IB_CM_REJ_CONSUMER_DEFINED; 109 110 if (rdma_protocol_iwarp(id->device, id->port_num)) 111 return reason == -ECONNREFUSED; 112 113 WARN_ON_ONCE(1); 114 return false; 115 } 116 117 const void *rdma_consumer_reject_data(struct rdma_cm_id *id, 118 struct rdma_cm_event *ev, u8 *data_len) 119 { 120 const void *p; 121 122 if (rdma_is_consumer_reject(id, ev->status)) { 123 *data_len = ev->param.conn.private_data_len; 124 p = ev->param.conn.private_data; 125 } else { 126 *data_len = 0; 127 p = NULL; 128 } 129 return p; 130 } 131 EXPORT_SYMBOL(rdma_consumer_reject_data); 132 133 /** 134 * rdma_iw_cm_id() - return the iw_cm_id pointer for this cm_id. 135 * @id: Communication Identifier 136 */ 137 struct iw_cm_id *rdma_iw_cm_id(struct rdma_cm_id *id) 138 { 139 struct rdma_id_private *id_priv; 140 141 id_priv = container_of(id, struct rdma_id_private, id); 142 if (id->device->node_type == RDMA_NODE_RNIC) 143 return id_priv->cm_id.iw; 144 return NULL; 145 } 146 EXPORT_SYMBOL(rdma_iw_cm_id); 147 148 static int cma_add_one(struct ib_device *device); 149 static void cma_remove_one(struct ib_device *device, void *client_data); 150 151 static struct ib_client cma_client = { 152 .name = "cma", 153 .add = cma_add_one, 154 .remove = cma_remove_one 155 }; 156 157 static struct ib_sa_client sa_client; 158 static LIST_HEAD(dev_list); 159 static LIST_HEAD(listen_any_list); 160 static DEFINE_MUTEX(lock); 161 static struct rb_root id_table = RB_ROOT; 162 /* Serialize operations of id_table tree */ 163 static DEFINE_SPINLOCK(id_table_lock); 164 static struct workqueue_struct *cma_wq; 165 static unsigned int cma_pernet_id; 166 167 struct cma_pernet { 168 struct xarray tcp_ps; 169 struct xarray udp_ps; 170 struct xarray ipoib_ps; 171 struct xarray ib_ps; 172 }; 173 174 static struct cma_pernet *cma_pernet(struct net *net) 175 { 176 return net_generic(net, cma_pernet_id); 177 } 178 179 static 180 struct xarray *cma_pernet_xa(struct net *net, enum rdma_ucm_port_space ps) 181 { 182 struct cma_pernet *pernet = cma_pernet(net); 183 184 switch (ps) { 185 case RDMA_PS_TCP: 186 return &pernet->tcp_ps; 187 case RDMA_PS_UDP: 188 return &pernet->udp_ps; 189 case RDMA_PS_IPOIB: 190 return &pernet->ipoib_ps; 191 case RDMA_PS_IB: 192 return &pernet->ib_ps; 193 default: 194 return NULL; 195 } 196 } 197 198 struct id_table_entry { 199 struct list_head id_list; 200 struct rb_node rb_node; 201 }; 202 203 struct cma_device { 204 struct list_head list; 205 struct ib_device *device; 206 struct completion comp; 207 refcount_t refcount; 208 struct list_head id_list; 209 enum ib_gid_type *default_gid_type; 210 u8 *default_roce_tos; 211 }; 212 213 struct rdma_bind_list { 214 enum rdma_ucm_port_space ps; 215 struct hlist_head owners; 216 unsigned short port; 217 }; 218 219 static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space ps, 220 struct rdma_bind_list *bind_list, int snum) 221 { 222 struct xarray *xa = cma_pernet_xa(net, ps); 223 224 return xa_insert(xa, snum, bind_list, GFP_KERNEL); 225 } 226 227 static struct rdma_bind_list *cma_ps_find(struct net *net, 228 enum rdma_ucm_port_space ps, int snum) 229 { 230 struct xarray *xa = cma_pernet_xa(net, ps); 231 232 return xa_load(xa, snum); 233 } 234 235 static void cma_ps_remove(struct net *net, enum rdma_ucm_port_space ps, 236 int snum) 237 { 238 struct xarray *xa = cma_pernet_xa(net, ps); 239 240 xa_erase(xa, snum); 241 } 242 243 enum { 244 CMA_OPTION_AFONLY, 245 }; 246 247 void cma_dev_get(struct cma_device *cma_dev) 248 { 249 refcount_inc(&cma_dev->refcount); 250 } 251 252 void cma_dev_put(struct cma_device *cma_dev) 253 { 254 if (refcount_dec_and_test(&cma_dev->refcount)) 255 complete(&cma_dev->comp); 256 } 257 258 struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter filter, 259 void *cookie) 260 { 261 struct cma_device *cma_dev; 262 struct cma_device *found_cma_dev = NULL; 263 264 mutex_lock(&lock); 265 266 list_for_each_entry(cma_dev, &dev_list, list) 267 if (filter(cma_dev->device, cookie)) { 268 found_cma_dev = cma_dev; 269 break; 270 } 271 272 if (found_cma_dev) 273 cma_dev_get(found_cma_dev); 274 mutex_unlock(&lock); 275 return found_cma_dev; 276 } 277 278 int cma_get_default_gid_type(struct cma_device *cma_dev, 279 u32 port) 280 { 281 if (!rdma_is_port_valid(cma_dev->device, port)) 282 return -EINVAL; 283 284 return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)]; 285 } 286 287 int cma_set_default_gid_type(struct cma_device *cma_dev, 288 u32 port, 289 enum ib_gid_type default_gid_type) 290 { 291 unsigned long supported_gids; 292 293 if (!rdma_is_port_valid(cma_dev->device, port)) 294 return -EINVAL; 295 296 if (default_gid_type == IB_GID_TYPE_IB && 297 rdma_protocol_roce_eth_encap(cma_dev->device, port)) 298 default_gid_type = IB_GID_TYPE_ROCE; 299 300 supported_gids = roce_gid_type_mask_support(cma_dev->device, port); 301 302 if (!(supported_gids & 1 << default_gid_type)) 303 return -EINVAL; 304 305 cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] = 306 default_gid_type; 307 308 return 0; 309 } 310 311 int cma_get_default_roce_tos(struct cma_device *cma_dev, u32 port) 312 { 313 if (!rdma_is_port_valid(cma_dev->device, port)) 314 return -EINVAL; 315 316 return cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)]; 317 } 318 319 int cma_set_default_roce_tos(struct cma_device *cma_dev, u32 port, 320 u8 default_roce_tos) 321 { 322 if (!rdma_is_port_valid(cma_dev->device, port)) 323 return -EINVAL; 324 325 cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)] = 326 default_roce_tos; 327 328 return 0; 329 } 330 struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev) 331 { 332 return cma_dev->device; 333 } 334 335 /* 336 * Device removal can occur at anytime, so we need extra handling to 337 * serialize notifying the user of device removal with other callbacks. 338 * We do this by disabling removal notification while a callback is in process, 339 * and reporting it after the callback completes. 340 */ 341 342 struct cma_multicast { 343 struct rdma_id_private *id_priv; 344 union { 345 struct ib_sa_multicast *sa_mc; 346 struct { 347 struct work_struct work; 348 struct rdma_cm_event event; 349 } iboe_join; 350 }; 351 struct list_head list; 352 void *context; 353 struct sockaddr_storage addr; 354 u8 join_state; 355 }; 356 357 struct cma_work { 358 struct work_struct work; 359 struct rdma_id_private *id; 360 enum rdma_cm_state old_state; 361 enum rdma_cm_state new_state; 362 struct rdma_cm_event event; 363 }; 364 365 union cma_ip_addr { 366 struct in6_addr ip6; 367 struct { 368 __be32 pad[3]; 369 __be32 addr; 370 } ip4; 371 }; 372 373 struct cma_hdr { 374 u8 cma_version; 375 u8 ip_version; /* IP version: 7:4 */ 376 __be16 port; 377 union cma_ip_addr src_addr; 378 union cma_ip_addr dst_addr; 379 }; 380 381 #define CMA_VERSION 0x00 382 383 struct cma_req_info { 384 struct sockaddr_storage listen_addr_storage; 385 struct sockaddr_storage src_addr_storage; 386 struct ib_device *device; 387 union ib_gid local_gid; 388 __be64 service_id; 389 int port; 390 bool has_gid; 391 u16 pkey; 392 }; 393 394 static int cma_comp_exch(struct rdma_id_private *id_priv, 395 enum rdma_cm_state comp, enum rdma_cm_state exch) 396 { 397 unsigned long flags; 398 int ret; 399 400 /* 401 * The FSM uses a funny double locking where state is protected by both 402 * the handler_mutex and the spinlock. State is not allowed to change 403 * to/from a handler_mutex protected value without also holding 404 * handler_mutex. 405 */ 406 if (comp == RDMA_CM_CONNECT || exch == RDMA_CM_CONNECT) 407 lockdep_assert_held(&id_priv->handler_mutex); 408 409 spin_lock_irqsave(&id_priv->lock, flags); 410 if ((ret = (id_priv->state == comp))) 411 id_priv->state = exch; 412 spin_unlock_irqrestore(&id_priv->lock, flags); 413 return ret; 414 } 415 416 static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr) 417 { 418 return hdr->ip_version >> 4; 419 } 420 421 static void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver) 422 { 423 hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF); 424 } 425 426 static struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv) 427 { 428 return (struct sockaddr *)&id_priv->id.route.addr.src_addr; 429 } 430 431 static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv) 432 { 433 return (struct sockaddr *)&id_priv->id.route.addr.dst_addr; 434 } 435 436 static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join) 437 { 438 struct in_device *in_dev = NULL; 439 440 if (ndev) { 441 rtnl_lock(); 442 in_dev = __in_dev_get_rtnl(ndev); 443 if (in_dev) { 444 if (join) 445 ip_mc_inc_group(in_dev, 446 *(__be32 *)(mgid->raw + 12)); 447 else 448 ip_mc_dec_group(in_dev, 449 *(__be32 *)(mgid->raw + 12)); 450 } 451 rtnl_unlock(); 452 } 453 return (in_dev) ? 0 : -ENODEV; 454 } 455 456 static int compare_netdev_and_ip(int ifindex_a, struct sockaddr *sa, 457 struct id_table_entry *entry_b) 458 { 459 struct rdma_id_private *id_priv = list_first_entry( 460 &entry_b->id_list, struct rdma_id_private, id_list_entry); 461 int ifindex_b = id_priv->id.route.addr.dev_addr.bound_dev_if; 462 struct sockaddr *sb = cma_dst_addr(id_priv); 463 464 if (ifindex_a != ifindex_b) 465 return (ifindex_a > ifindex_b) ? 1 : -1; 466 467 if (sa->sa_family != sb->sa_family) 468 return sa->sa_family - sb->sa_family; 469 470 if (sa->sa_family == AF_INET && 471 __builtin_object_size(sa, 0) >= sizeof(struct sockaddr_in)) { 472 return memcmp(&((struct sockaddr_in *)sa)->sin_addr, 473 &((struct sockaddr_in *)sb)->sin_addr, 474 sizeof(((struct sockaddr_in *)sa)->sin_addr)); 475 } 476 477 if (sa->sa_family == AF_INET6 && 478 __builtin_object_size(sa, 0) >= sizeof(struct sockaddr_in6)) { 479 return ipv6_addr_cmp(&((struct sockaddr_in6 *)sa)->sin6_addr, 480 &((struct sockaddr_in6 *)sb)->sin6_addr); 481 } 482 483 return -1; 484 } 485 486 static int cma_add_id_to_tree(struct rdma_id_private *node_id_priv) 487 { 488 struct rb_node **new, *parent = NULL; 489 struct id_table_entry *this, *node; 490 unsigned long flags; 491 int result; 492 493 node = kzalloc(sizeof(*node), GFP_KERNEL); 494 if (!node) 495 return -ENOMEM; 496 497 spin_lock_irqsave(&id_table_lock, flags); 498 new = &id_table.rb_node; 499 while (*new) { 500 this = container_of(*new, struct id_table_entry, rb_node); 501 result = compare_netdev_and_ip( 502 node_id_priv->id.route.addr.dev_addr.bound_dev_if, 503 cma_dst_addr(node_id_priv), this); 504 505 parent = *new; 506 if (result < 0) 507 new = &((*new)->rb_left); 508 else if (result > 0) 509 new = &((*new)->rb_right); 510 else { 511 list_add_tail(&node_id_priv->id_list_entry, 512 &this->id_list); 513 kfree(node); 514 goto unlock; 515 } 516 } 517 518 INIT_LIST_HEAD(&node->id_list); 519 list_add_tail(&node_id_priv->id_list_entry, &node->id_list); 520 521 rb_link_node(&node->rb_node, parent, new); 522 rb_insert_color(&node->rb_node, &id_table); 523 524 unlock: 525 spin_unlock_irqrestore(&id_table_lock, flags); 526 return 0; 527 } 528 529 static struct id_table_entry * 530 node_from_ndev_ip(struct rb_root *root, int ifindex, struct sockaddr *sa) 531 { 532 struct rb_node *node = root->rb_node; 533 struct id_table_entry *data; 534 int result; 535 536 while (node) { 537 data = container_of(node, struct id_table_entry, rb_node); 538 result = compare_netdev_and_ip(ifindex, sa, data); 539 if (result < 0) 540 node = node->rb_left; 541 else if (result > 0) 542 node = node->rb_right; 543 else 544 return data; 545 } 546 547 return NULL; 548 } 549 550 static void cma_remove_id_from_tree(struct rdma_id_private *id_priv) 551 { 552 struct id_table_entry *data; 553 unsigned long flags; 554 555 spin_lock_irqsave(&id_table_lock, flags); 556 if (list_empty(&id_priv->id_list_entry)) 557 goto out; 558 559 data = node_from_ndev_ip(&id_table, 560 id_priv->id.route.addr.dev_addr.bound_dev_if, 561 cma_dst_addr(id_priv)); 562 if (!data) 563 goto out; 564 565 list_del_init(&id_priv->id_list_entry); 566 if (list_empty(&data->id_list)) { 567 rb_erase(&data->rb_node, &id_table); 568 kfree(data); 569 } 570 out: 571 spin_unlock_irqrestore(&id_table_lock, flags); 572 } 573 574 static void _cma_attach_to_dev(struct rdma_id_private *id_priv, 575 struct cma_device *cma_dev) 576 { 577 cma_dev_get(cma_dev); 578 id_priv->cma_dev = cma_dev; 579 id_priv->id.device = cma_dev->device; 580 id_priv->id.route.addr.dev_addr.transport = 581 rdma_node_get_transport(cma_dev->device->node_type); 582 list_add_tail(&id_priv->device_item, &cma_dev->id_list); 583 584 trace_cm_id_attach(id_priv, cma_dev->device); 585 } 586 587 static void cma_attach_to_dev(struct rdma_id_private *id_priv, 588 struct cma_device *cma_dev) 589 { 590 _cma_attach_to_dev(id_priv, cma_dev); 591 id_priv->gid_type = 592 cma_dev->default_gid_type[id_priv->id.port_num - 593 rdma_start_port(cma_dev->device)]; 594 } 595 596 static void cma_release_dev(struct rdma_id_private *id_priv) 597 { 598 mutex_lock(&lock); 599 list_del_init(&id_priv->device_item); 600 cma_dev_put(id_priv->cma_dev); 601 id_priv->cma_dev = NULL; 602 id_priv->id.device = NULL; 603 if (id_priv->id.route.addr.dev_addr.sgid_attr) { 604 rdma_put_gid_attr(id_priv->id.route.addr.dev_addr.sgid_attr); 605 id_priv->id.route.addr.dev_addr.sgid_attr = NULL; 606 } 607 mutex_unlock(&lock); 608 } 609 610 static inline unsigned short cma_family(struct rdma_id_private *id_priv) 611 { 612 return id_priv->id.route.addr.src_addr.ss_family; 613 } 614 615 static int cma_set_default_qkey(struct rdma_id_private *id_priv) 616 { 617 struct ib_sa_mcmember_rec rec; 618 int ret = 0; 619 620 switch (id_priv->id.ps) { 621 case RDMA_PS_UDP: 622 case RDMA_PS_IB: 623 id_priv->qkey = RDMA_UDP_QKEY; 624 break; 625 case RDMA_PS_IPOIB: 626 ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid); 627 ret = ib_sa_get_mcmember_rec(id_priv->id.device, 628 id_priv->id.port_num, &rec.mgid, 629 &rec); 630 if (!ret) 631 id_priv->qkey = be32_to_cpu(rec.qkey); 632 break; 633 default: 634 break; 635 } 636 return ret; 637 } 638 639 static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey) 640 { 641 if (!qkey || 642 (id_priv->qkey && (id_priv->qkey != qkey))) 643 return -EINVAL; 644 645 id_priv->qkey = qkey; 646 return 0; 647 } 648 649 static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr) 650 { 651 dev_addr->dev_type = ARPHRD_INFINIBAND; 652 rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr); 653 ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey)); 654 } 655 656 static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr) 657 { 658 int ret; 659 660 if (addr->sa_family != AF_IB) { 661 ret = rdma_translate_ip(addr, dev_addr); 662 } else { 663 cma_translate_ib((struct sockaddr_ib *) addr, dev_addr); 664 ret = 0; 665 } 666 667 return ret; 668 } 669 670 static const struct ib_gid_attr * 671 cma_validate_port(struct ib_device *device, u32 port, 672 enum ib_gid_type gid_type, 673 union ib_gid *gid, 674 struct rdma_id_private *id_priv) 675 { 676 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 677 const struct ib_gid_attr *sgid_attr = ERR_PTR(-ENODEV); 678 int bound_if_index = dev_addr->bound_dev_if; 679 int dev_type = dev_addr->dev_type; 680 struct net_device *ndev = NULL; 681 struct net_device *pdev = NULL; 682 683 if (!rdma_dev_access_netns(device, id_priv->id.route.addr.dev_addr.net)) 684 goto out; 685 686 if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port)) 687 goto out; 688 689 if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port)) 690 goto out; 691 692 /* 693 * For drivers that do not associate more than one net device with 694 * their gid tables, such as iWARP drivers, it is sufficient to 695 * return the first table entry. 696 * 697 * Other driver classes might be included in the future. 698 */ 699 if (rdma_protocol_iwarp(device, port)) { 700 sgid_attr = rdma_get_gid_attr(device, port, 0); 701 if (IS_ERR(sgid_attr)) 702 goto out; 703 704 rcu_read_lock(); 705 ndev = rcu_dereference(sgid_attr->ndev); 706 if (ndev->ifindex != bound_if_index) { 707 pdev = dev_get_by_index_rcu(dev_addr->net, bound_if_index); 708 if (pdev) { 709 if (is_vlan_dev(pdev)) { 710 pdev = vlan_dev_real_dev(pdev); 711 if (ndev->ifindex == pdev->ifindex) 712 bound_if_index = pdev->ifindex; 713 } 714 if (is_vlan_dev(ndev)) { 715 pdev = vlan_dev_real_dev(ndev); 716 if (bound_if_index == pdev->ifindex) 717 bound_if_index = ndev->ifindex; 718 } 719 } 720 } 721 if (!net_eq(dev_net(ndev), dev_addr->net) || 722 ndev->ifindex != bound_if_index) { 723 rdma_put_gid_attr(sgid_attr); 724 sgid_attr = ERR_PTR(-ENODEV); 725 } 726 rcu_read_unlock(); 727 goto out; 728 } 729 730 /* 731 * For a RXE device, it should work with TUN device and normal ethernet 732 * devices. Use driver_id to check if a device is a RXE device or not. 733 * ARPHDR_NONE means a TUN device. 734 */ 735 if (device->ops.driver_id == RDMA_DRIVER_RXE) { 736 if ((dev_type == ARPHRD_NONE || dev_type == ARPHRD_ETHER) 737 && rdma_protocol_roce(device, port)) { 738 ndev = dev_get_by_index(dev_addr->net, bound_if_index); 739 if (!ndev) 740 goto out; 741 } 742 } else { 743 if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) { 744 ndev = dev_get_by_index(dev_addr->net, bound_if_index); 745 if (!ndev) 746 goto out; 747 } else { 748 gid_type = IB_GID_TYPE_IB; 749 } 750 } 751 752 sgid_attr = rdma_find_gid_by_port(device, gid, gid_type, port, ndev); 753 dev_put(ndev); 754 out: 755 return sgid_attr; 756 } 757 758 static void cma_bind_sgid_attr(struct rdma_id_private *id_priv, 759 const struct ib_gid_attr *sgid_attr) 760 { 761 WARN_ON(id_priv->id.route.addr.dev_addr.sgid_attr); 762 id_priv->id.route.addr.dev_addr.sgid_attr = sgid_attr; 763 } 764 765 /** 766 * cma_acquire_dev_by_src_ip - Acquire cma device, port, gid attribute 767 * based on source ip address. 768 * @id_priv: cm_id which should be bound to cma device 769 * 770 * cma_acquire_dev_by_src_ip() binds cm id to cma device, port and GID attribute 771 * based on source IP address. It returns 0 on success or error code otherwise. 772 * It is applicable to active and passive side cm_id. 773 */ 774 static int cma_acquire_dev_by_src_ip(struct rdma_id_private *id_priv) 775 { 776 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 777 const struct ib_gid_attr *sgid_attr; 778 union ib_gid gid, iboe_gid, *gidp; 779 struct cma_device *cma_dev; 780 enum ib_gid_type gid_type; 781 int ret = -ENODEV; 782 u32 port; 783 784 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 785 id_priv->id.ps == RDMA_PS_IPOIB) 786 return -EINVAL; 787 788 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 789 &iboe_gid); 790 791 memcpy(&gid, dev_addr->src_dev_addr + 792 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 793 794 mutex_lock(&lock); 795 list_for_each_entry(cma_dev, &dev_list, list) { 796 rdma_for_each_port (cma_dev->device, port) { 797 gidp = rdma_protocol_roce(cma_dev->device, port) ? 798 &iboe_gid : &gid; 799 gid_type = cma_dev->default_gid_type[port - 1]; 800 sgid_attr = cma_validate_port(cma_dev->device, port, 801 gid_type, gidp, id_priv); 802 if (!IS_ERR(sgid_attr)) { 803 id_priv->id.port_num = port; 804 cma_bind_sgid_attr(id_priv, sgid_attr); 805 cma_attach_to_dev(id_priv, cma_dev); 806 ret = 0; 807 goto out; 808 } 809 } 810 } 811 out: 812 mutex_unlock(&lock); 813 return ret; 814 } 815 816 /** 817 * cma_ib_acquire_dev - Acquire cma device, port and SGID attribute 818 * @id_priv: cm id to bind to cma device 819 * @listen_id_priv: listener cm id to match against 820 * @req: Pointer to req structure containaining incoming 821 * request information 822 * cma_ib_acquire_dev() acquires cma device, port and SGID attribute when 823 * rdma device matches for listen_id and incoming request. It also verifies 824 * that a GID table entry is present for the source address. 825 * Returns 0 on success, or returns error code otherwise. 826 */ 827 static int cma_ib_acquire_dev(struct rdma_id_private *id_priv, 828 const struct rdma_id_private *listen_id_priv, 829 struct cma_req_info *req) 830 { 831 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 832 const struct ib_gid_attr *sgid_attr; 833 enum ib_gid_type gid_type; 834 union ib_gid gid; 835 836 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 837 id_priv->id.ps == RDMA_PS_IPOIB) 838 return -EINVAL; 839 840 if (rdma_protocol_roce(req->device, req->port)) 841 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 842 &gid); 843 else 844 memcpy(&gid, dev_addr->src_dev_addr + 845 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 846 847 gid_type = listen_id_priv->cma_dev->default_gid_type[req->port - 1]; 848 sgid_attr = cma_validate_port(req->device, req->port, 849 gid_type, &gid, id_priv); 850 if (IS_ERR(sgid_attr)) 851 return PTR_ERR(sgid_attr); 852 853 id_priv->id.port_num = req->port; 854 cma_bind_sgid_attr(id_priv, sgid_attr); 855 /* Need to acquire lock to protect against reader 856 * of cma_dev->id_list such as cma_netdev_callback() and 857 * cma_process_remove(). 858 */ 859 mutex_lock(&lock); 860 cma_attach_to_dev(id_priv, listen_id_priv->cma_dev); 861 mutex_unlock(&lock); 862 rdma_restrack_add(&id_priv->res); 863 return 0; 864 } 865 866 static int cma_iw_acquire_dev(struct rdma_id_private *id_priv, 867 const struct rdma_id_private *listen_id_priv) 868 { 869 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 870 const struct ib_gid_attr *sgid_attr; 871 struct cma_device *cma_dev; 872 enum ib_gid_type gid_type; 873 int ret = -ENODEV; 874 union ib_gid gid; 875 u32 port; 876 877 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 878 id_priv->id.ps == RDMA_PS_IPOIB) 879 return -EINVAL; 880 881 memcpy(&gid, dev_addr->src_dev_addr + 882 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 883 884 mutex_lock(&lock); 885 886 cma_dev = listen_id_priv->cma_dev; 887 port = listen_id_priv->id.port_num; 888 gid_type = listen_id_priv->gid_type; 889 sgid_attr = cma_validate_port(cma_dev->device, port, 890 gid_type, &gid, id_priv); 891 if (!IS_ERR(sgid_attr)) { 892 id_priv->id.port_num = port; 893 cma_bind_sgid_attr(id_priv, sgid_attr); 894 ret = 0; 895 goto out; 896 } 897 898 list_for_each_entry(cma_dev, &dev_list, list) { 899 rdma_for_each_port (cma_dev->device, port) { 900 if (listen_id_priv->cma_dev == cma_dev && 901 listen_id_priv->id.port_num == port) 902 continue; 903 904 gid_type = cma_dev->default_gid_type[port - 1]; 905 sgid_attr = cma_validate_port(cma_dev->device, port, 906 gid_type, &gid, id_priv); 907 if (!IS_ERR(sgid_attr)) { 908 id_priv->id.port_num = port; 909 cma_bind_sgid_attr(id_priv, sgid_attr); 910 ret = 0; 911 goto out; 912 } 913 } 914 } 915 916 out: 917 if (!ret) { 918 cma_attach_to_dev(id_priv, cma_dev); 919 rdma_restrack_add(&id_priv->res); 920 } 921 922 mutex_unlock(&lock); 923 return ret; 924 } 925 926 /* 927 * Select the source IB device and address to reach the destination IB address. 928 */ 929 static int cma_resolve_ib_dev(struct rdma_id_private *id_priv) 930 { 931 struct cma_device *cma_dev, *cur_dev; 932 struct sockaddr_ib *addr; 933 union ib_gid gid, sgid, *dgid; 934 unsigned int p; 935 u16 pkey, index; 936 enum ib_port_state port_state; 937 int ret; 938 int i; 939 940 cma_dev = NULL; 941 addr = (struct sockaddr_ib *) cma_dst_addr(id_priv); 942 dgid = (union ib_gid *) &addr->sib_addr; 943 pkey = ntohs(addr->sib_pkey); 944 945 mutex_lock(&lock); 946 list_for_each_entry(cur_dev, &dev_list, list) { 947 rdma_for_each_port (cur_dev->device, p) { 948 if (!rdma_cap_af_ib(cur_dev->device, p)) 949 continue; 950 951 if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index)) 952 continue; 953 954 if (ib_get_cached_port_state(cur_dev->device, p, &port_state)) 955 continue; 956 957 for (i = 0; i < cur_dev->device->port_data[p].immutable.gid_tbl_len; 958 ++i) { 959 ret = rdma_query_gid(cur_dev->device, p, i, 960 &gid); 961 if (ret) 962 continue; 963 964 if (!memcmp(&gid, dgid, sizeof(gid))) { 965 cma_dev = cur_dev; 966 sgid = gid; 967 id_priv->id.port_num = p; 968 goto found; 969 } 970 971 if (!cma_dev && (gid.global.subnet_prefix == 972 dgid->global.subnet_prefix) && 973 port_state == IB_PORT_ACTIVE) { 974 cma_dev = cur_dev; 975 sgid = gid; 976 id_priv->id.port_num = p; 977 goto found; 978 } 979 } 980 } 981 } 982 mutex_unlock(&lock); 983 return -ENODEV; 984 985 found: 986 cma_attach_to_dev(id_priv, cma_dev); 987 rdma_restrack_add(&id_priv->res); 988 mutex_unlock(&lock); 989 addr = (struct sockaddr_ib *)cma_src_addr(id_priv); 990 memcpy(&addr->sib_addr, &sgid, sizeof(sgid)); 991 cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr); 992 return 0; 993 } 994 995 static void cma_id_get(struct rdma_id_private *id_priv) 996 { 997 refcount_inc(&id_priv->refcount); 998 } 999 1000 static void cma_id_put(struct rdma_id_private *id_priv) 1001 { 1002 if (refcount_dec_and_test(&id_priv->refcount)) 1003 complete(&id_priv->comp); 1004 } 1005 1006 static struct rdma_id_private * 1007 __rdma_create_id(struct net *net, rdma_cm_event_handler event_handler, 1008 void *context, enum rdma_ucm_port_space ps, 1009 enum ib_qp_type qp_type, const struct rdma_id_private *parent) 1010 { 1011 struct rdma_id_private *id_priv; 1012 1013 id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL); 1014 if (!id_priv) 1015 return ERR_PTR(-ENOMEM); 1016 1017 id_priv->state = RDMA_CM_IDLE; 1018 id_priv->id.context = context; 1019 id_priv->id.event_handler = event_handler; 1020 id_priv->id.ps = ps; 1021 id_priv->id.qp_type = qp_type; 1022 id_priv->tos_set = false; 1023 id_priv->timeout_set = false; 1024 id_priv->min_rnr_timer_set = false; 1025 id_priv->gid_type = IB_GID_TYPE_IB; 1026 spin_lock_init(&id_priv->lock); 1027 mutex_init(&id_priv->qp_mutex); 1028 init_completion(&id_priv->comp); 1029 refcount_set(&id_priv->refcount, 1); 1030 mutex_init(&id_priv->handler_mutex); 1031 INIT_LIST_HEAD(&id_priv->device_item); 1032 INIT_LIST_HEAD(&id_priv->id_list_entry); 1033 INIT_LIST_HEAD(&id_priv->listen_list); 1034 INIT_LIST_HEAD(&id_priv->mc_list); 1035 get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num); 1036 id_priv->id.route.addr.dev_addr.net = get_net(net); 1037 id_priv->seq_num &= 0x00ffffff; 1038 INIT_WORK(&id_priv->id.net_work, cma_netevent_work_handler); 1039 1040 rdma_restrack_new(&id_priv->res, RDMA_RESTRACK_CM_ID); 1041 if (parent) 1042 rdma_restrack_parent_name(&id_priv->res, &parent->res); 1043 1044 return id_priv; 1045 } 1046 1047 struct rdma_cm_id * 1048 __rdma_create_kernel_id(struct net *net, rdma_cm_event_handler event_handler, 1049 void *context, enum rdma_ucm_port_space ps, 1050 enum ib_qp_type qp_type, const char *caller) 1051 { 1052 struct rdma_id_private *ret; 1053 1054 ret = __rdma_create_id(net, event_handler, context, ps, qp_type, NULL); 1055 if (IS_ERR(ret)) 1056 return ERR_CAST(ret); 1057 1058 rdma_restrack_set_name(&ret->res, caller); 1059 return &ret->id; 1060 } 1061 EXPORT_SYMBOL(__rdma_create_kernel_id); 1062 1063 struct rdma_cm_id *rdma_create_user_id(rdma_cm_event_handler event_handler, 1064 void *context, 1065 enum rdma_ucm_port_space ps, 1066 enum ib_qp_type qp_type) 1067 { 1068 struct rdma_id_private *ret; 1069 1070 ret = __rdma_create_id(current->nsproxy->net_ns, event_handler, context, 1071 ps, qp_type, NULL); 1072 if (IS_ERR(ret)) 1073 return ERR_CAST(ret); 1074 1075 rdma_restrack_set_name(&ret->res, NULL); 1076 return &ret->id; 1077 } 1078 EXPORT_SYMBOL(rdma_create_user_id); 1079 1080 static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 1081 { 1082 struct ib_qp_attr qp_attr; 1083 int qp_attr_mask, ret; 1084 1085 qp_attr.qp_state = IB_QPS_INIT; 1086 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1087 if (ret) 1088 return ret; 1089 1090 ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask); 1091 if (ret) 1092 return ret; 1093 1094 qp_attr.qp_state = IB_QPS_RTR; 1095 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE); 1096 if (ret) 1097 return ret; 1098 1099 qp_attr.qp_state = IB_QPS_RTS; 1100 qp_attr.sq_psn = 0; 1101 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN); 1102 1103 return ret; 1104 } 1105 1106 static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 1107 { 1108 struct ib_qp_attr qp_attr; 1109 int qp_attr_mask, ret; 1110 1111 qp_attr.qp_state = IB_QPS_INIT; 1112 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1113 if (ret) 1114 return ret; 1115 1116 return ib_modify_qp(qp, &qp_attr, qp_attr_mask); 1117 } 1118 1119 int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd, 1120 struct ib_qp_init_attr *qp_init_attr) 1121 { 1122 struct rdma_id_private *id_priv; 1123 struct ib_qp *qp; 1124 int ret; 1125 1126 id_priv = container_of(id, struct rdma_id_private, id); 1127 if (id->device != pd->device) { 1128 ret = -EINVAL; 1129 goto out_err; 1130 } 1131 1132 qp_init_attr->port_num = id->port_num; 1133 qp = ib_create_qp(pd, qp_init_attr); 1134 if (IS_ERR(qp)) { 1135 ret = PTR_ERR(qp); 1136 goto out_err; 1137 } 1138 1139 if (id->qp_type == IB_QPT_UD) 1140 ret = cma_init_ud_qp(id_priv, qp); 1141 else 1142 ret = cma_init_conn_qp(id_priv, qp); 1143 if (ret) 1144 goto out_destroy; 1145 1146 id->qp = qp; 1147 id_priv->qp_num = qp->qp_num; 1148 id_priv->srq = (qp->srq != NULL); 1149 trace_cm_qp_create(id_priv, pd, qp_init_attr, 0); 1150 return 0; 1151 out_destroy: 1152 ib_destroy_qp(qp); 1153 out_err: 1154 trace_cm_qp_create(id_priv, pd, qp_init_attr, ret); 1155 return ret; 1156 } 1157 EXPORT_SYMBOL(rdma_create_qp); 1158 1159 void rdma_destroy_qp(struct rdma_cm_id *id) 1160 { 1161 struct rdma_id_private *id_priv; 1162 1163 id_priv = container_of(id, struct rdma_id_private, id); 1164 trace_cm_qp_destroy(id_priv); 1165 mutex_lock(&id_priv->qp_mutex); 1166 ib_destroy_qp(id_priv->id.qp); 1167 id_priv->id.qp = NULL; 1168 mutex_unlock(&id_priv->qp_mutex); 1169 } 1170 EXPORT_SYMBOL(rdma_destroy_qp); 1171 1172 static int cma_modify_qp_rtr(struct rdma_id_private *id_priv, 1173 struct rdma_conn_param *conn_param) 1174 { 1175 struct ib_qp_attr qp_attr; 1176 int qp_attr_mask, ret; 1177 1178 mutex_lock(&id_priv->qp_mutex); 1179 if (!id_priv->id.qp) { 1180 ret = 0; 1181 goto out; 1182 } 1183 1184 /* Need to update QP attributes from default values. */ 1185 qp_attr.qp_state = IB_QPS_INIT; 1186 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1187 if (ret) 1188 goto out; 1189 1190 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1191 if (ret) 1192 goto out; 1193 1194 qp_attr.qp_state = IB_QPS_RTR; 1195 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1196 if (ret) 1197 goto out; 1198 1199 BUG_ON(id_priv->cma_dev->device != id_priv->id.device); 1200 1201 if (conn_param) 1202 qp_attr.max_dest_rd_atomic = conn_param->responder_resources; 1203 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1204 out: 1205 mutex_unlock(&id_priv->qp_mutex); 1206 return ret; 1207 } 1208 1209 static int cma_modify_qp_rts(struct rdma_id_private *id_priv, 1210 struct rdma_conn_param *conn_param) 1211 { 1212 struct ib_qp_attr qp_attr; 1213 int qp_attr_mask, ret; 1214 1215 mutex_lock(&id_priv->qp_mutex); 1216 if (!id_priv->id.qp) { 1217 ret = 0; 1218 goto out; 1219 } 1220 1221 qp_attr.qp_state = IB_QPS_RTS; 1222 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1223 if (ret) 1224 goto out; 1225 1226 if (conn_param) 1227 qp_attr.max_rd_atomic = conn_param->initiator_depth; 1228 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1229 out: 1230 mutex_unlock(&id_priv->qp_mutex); 1231 return ret; 1232 } 1233 1234 static int cma_modify_qp_err(struct rdma_id_private *id_priv) 1235 { 1236 struct ib_qp_attr qp_attr; 1237 int ret; 1238 1239 mutex_lock(&id_priv->qp_mutex); 1240 if (!id_priv->id.qp) { 1241 ret = 0; 1242 goto out; 1243 } 1244 1245 qp_attr.qp_state = IB_QPS_ERR; 1246 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE); 1247 out: 1248 mutex_unlock(&id_priv->qp_mutex); 1249 return ret; 1250 } 1251 1252 static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv, 1253 struct ib_qp_attr *qp_attr, int *qp_attr_mask) 1254 { 1255 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 1256 int ret; 1257 u16 pkey; 1258 1259 if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num)) 1260 pkey = 0xffff; 1261 else 1262 pkey = ib_addr_get_pkey(dev_addr); 1263 1264 ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num, 1265 pkey, &qp_attr->pkey_index); 1266 if (ret) 1267 return ret; 1268 1269 qp_attr->port_num = id_priv->id.port_num; 1270 *qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT; 1271 1272 if (id_priv->id.qp_type == IB_QPT_UD) { 1273 ret = cma_set_default_qkey(id_priv); 1274 if (ret) 1275 return ret; 1276 1277 qp_attr->qkey = id_priv->qkey; 1278 *qp_attr_mask |= IB_QP_QKEY; 1279 } else { 1280 qp_attr->qp_access_flags = 0; 1281 *qp_attr_mask |= IB_QP_ACCESS_FLAGS; 1282 } 1283 return 0; 1284 } 1285 1286 int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr, 1287 int *qp_attr_mask) 1288 { 1289 struct rdma_id_private *id_priv; 1290 int ret = 0; 1291 1292 id_priv = container_of(id, struct rdma_id_private, id); 1293 if (rdma_cap_ib_cm(id->device, id->port_num)) { 1294 if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD)) 1295 ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask); 1296 else 1297 ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr, 1298 qp_attr_mask); 1299 1300 if (qp_attr->qp_state == IB_QPS_RTR) 1301 qp_attr->rq_psn = id_priv->seq_num; 1302 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 1303 if (!id_priv->cm_id.iw) { 1304 qp_attr->qp_access_flags = 0; 1305 *qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS; 1306 } else 1307 ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr, 1308 qp_attr_mask); 1309 qp_attr->port_num = id_priv->id.port_num; 1310 *qp_attr_mask |= IB_QP_PORT; 1311 } else { 1312 ret = -ENOSYS; 1313 } 1314 1315 if ((*qp_attr_mask & IB_QP_TIMEOUT) && id_priv->timeout_set) 1316 qp_attr->timeout = id_priv->timeout; 1317 1318 if ((*qp_attr_mask & IB_QP_MIN_RNR_TIMER) && id_priv->min_rnr_timer_set) 1319 qp_attr->min_rnr_timer = id_priv->min_rnr_timer; 1320 1321 return ret; 1322 } 1323 EXPORT_SYMBOL(rdma_init_qp_attr); 1324 1325 static inline bool cma_zero_addr(const struct sockaddr *addr) 1326 { 1327 switch (addr->sa_family) { 1328 case AF_INET: 1329 return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr); 1330 case AF_INET6: 1331 return ipv6_addr_any(&((struct sockaddr_in6 *)addr)->sin6_addr); 1332 case AF_IB: 1333 return ib_addr_any(&((struct sockaddr_ib *)addr)->sib_addr); 1334 default: 1335 return false; 1336 } 1337 } 1338 1339 static inline bool cma_loopback_addr(const struct sockaddr *addr) 1340 { 1341 switch (addr->sa_family) { 1342 case AF_INET: 1343 return ipv4_is_loopback( 1344 ((struct sockaddr_in *)addr)->sin_addr.s_addr); 1345 case AF_INET6: 1346 return ipv6_addr_loopback( 1347 &((struct sockaddr_in6 *)addr)->sin6_addr); 1348 case AF_IB: 1349 return ib_addr_loopback( 1350 &((struct sockaddr_ib *)addr)->sib_addr); 1351 default: 1352 return false; 1353 } 1354 } 1355 1356 static inline bool cma_any_addr(const struct sockaddr *addr) 1357 { 1358 return cma_zero_addr(addr) || cma_loopback_addr(addr); 1359 } 1360 1361 static int cma_addr_cmp(const struct sockaddr *src, const struct sockaddr *dst) 1362 { 1363 if (src->sa_family != dst->sa_family) 1364 return -1; 1365 1366 switch (src->sa_family) { 1367 case AF_INET: 1368 return ((struct sockaddr_in *)src)->sin_addr.s_addr != 1369 ((struct sockaddr_in *)dst)->sin_addr.s_addr; 1370 case AF_INET6: { 1371 struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src; 1372 struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst; 1373 bool link_local; 1374 1375 if (ipv6_addr_cmp(&src_addr6->sin6_addr, 1376 &dst_addr6->sin6_addr)) 1377 return 1; 1378 link_local = ipv6_addr_type(&dst_addr6->sin6_addr) & 1379 IPV6_ADDR_LINKLOCAL; 1380 /* Link local must match their scope_ids */ 1381 return link_local ? (src_addr6->sin6_scope_id != 1382 dst_addr6->sin6_scope_id) : 1383 0; 1384 } 1385 1386 default: 1387 return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr, 1388 &((struct sockaddr_ib *) dst)->sib_addr); 1389 } 1390 } 1391 1392 static __be16 cma_port(const struct sockaddr *addr) 1393 { 1394 struct sockaddr_ib *sib; 1395 1396 switch (addr->sa_family) { 1397 case AF_INET: 1398 return ((struct sockaddr_in *) addr)->sin_port; 1399 case AF_INET6: 1400 return ((struct sockaddr_in6 *) addr)->sin6_port; 1401 case AF_IB: 1402 sib = (struct sockaddr_ib *) addr; 1403 return htons((u16) (be64_to_cpu(sib->sib_sid) & 1404 be64_to_cpu(sib->sib_sid_mask))); 1405 default: 1406 return 0; 1407 } 1408 } 1409 1410 static inline int cma_any_port(const struct sockaddr *addr) 1411 { 1412 return !cma_port(addr); 1413 } 1414 1415 static void cma_save_ib_info(struct sockaddr *src_addr, 1416 struct sockaddr *dst_addr, 1417 const struct rdma_cm_id *listen_id, 1418 const struct sa_path_rec *path) 1419 { 1420 struct sockaddr_ib *listen_ib, *ib; 1421 1422 listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr; 1423 if (src_addr) { 1424 ib = (struct sockaddr_ib *)src_addr; 1425 ib->sib_family = AF_IB; 1426 if (path) { 1427 ib->sib_pkey = path->pkey; 1428 ib->sib_flowinfo = path->flow_label; 1429 memcpy(&ib->sib_addr, &path->sgid, 16); 1430 ib->sib_sid = path->service_id; 1431 ib->sib_scope_id = 0; 1432 } else { 1433 ib->sib_pkey = listen_ib->sib_pkey; 1434 ib->sib_flowinfo = listen_ib->sib_flowinfo; 1435 ib->sib_addr = listen_ib->sib_addr; 1436 ib->sib_sid = listen_ib->sib_sid; 1437 ib->sib_scope_id = listen_ib->sib_scope_id; 1438 } 1439 ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL); 1440 } 1441 if (dst_addr) { 1442 ib = (struct sockaddr_ib *)dst_addr; 1443 ib->sib_family = AF_IB; 1444 if (path) { 1445 ib->sib_pkey = path->pkey; 1446 ib->sib_flowinfo = path->flow_label; 1447 memcpy(&ib->sib_addr, &path->dgid, 16); 1448 } 1449 } 1450 } 1451 1452 static void cma_save_ip4_info(struct sockaddr_in *src_addr, 1453 struct sockaddr_in *dst_addr, 1454 struct cma_hdr *hdr, 1455 __be16 local_port) 1456 { 1457 if (src_addr) { 1458 *src_addr = (struct sockaddr_in) { 1459 .sin_family = AF_INET, 1460 .sin_addr.s_addr = hdr->dst_addr.ip4.addr, 1461 .sin_port = local_port, 1462 }; 1463 } 1464 1465 if (dst_addr) { 1466 *dst_addr = (struct sockaddr_in) { 1467 .sin_family = AF_INET, 1468 .sin_addr.s_addr = hdr->src_addr.ip4.addr, 1469 .sin_port = hdr->port, 1470 }; 1471 } 1472 } 1473 1474 static void cma_save_ip6_info(struct sockaddr_in6 *src_addr, 1475 struct sockaddr_in6 *dst_addr, 1476 struct cma_hdr *hdr, 1477 __be16 local_port) 1478 { 1479 if (src_addr) { 1480 *src_addr = (struct sockaddr_in6) { 1481 .sin6_family = AF_INET6, 1482 .sin6_addr = hdr->dst_addr.ip6, 1483 .sin6_port = local_port, 1484 }; 1485 } 1486 1487 if (dst_addr) { 1488 *dst_addr = (struct sockaddr_in6) { 1489 .sin6_family = AF_INET6, 1490 .sin6_addr = hdr->src_addr.ip6, 1491 .sin6_port = hdr->port, 1492 }; 1493 } 1494 } 1495 1496 static u16 cma_port_from_service_id(__be64 service_id) 1497 { 1498 return (u16)be64_to_cpu(service_id); 1499 } 1500 1501 static int cma_save_ip_info(struct sockaddr *src_addr, 1502 struct sockaddr *dst_addr, 1503 const struct ib_cm_event *ib_event, 1504 __be64 service_id) 1505 { 1506 struct cma_hdr *hdr; 1507 __be16 port; 1508 1509 hdr = ib_event->private_data; 1510 if (hdr->cma_version != CMA_VERSION) 1511 return -EINVAL; 1512 1513 port = htons(cma_port_from_service_id(service_id)); 1514 1515 switch (cma_get_ip_ver(hdr)) { 1516 case 4: 1517 cma_save_ip4_info((struct sockaddr_in *)src_addr, 1518 (struct sockaddr_in *)dst_addr, hdr, port); 1519 break; 1520 case 6: 1521 cma_save_ip6_info((struct sockaddr_in6 *)src_addr, 1522 (struct sockaddr_in6 *)dst_addr, hdr, port); 1523 break; 1524 default: 1525 return -EAFNOSUPPORT; 1526 } 1527 1528 return 0; 1529 } 1530 1531 static int cma_save_net_info(struct sockaddr *src_addr, 1532 struct sockaddr *dst_addr, 1533 const struct rdma_cm_id *listen_id, 1534 const struct ib_cm_event *ib_event, 1535 sa_family_t sa_family, __be64 service_id) 1536 { 1537 if (sa_family == AF_IB) { 1538 if (ib_event->event == IB_CM_REQ_RECEIVED) 1539 cma_save_ib_info(src_addr, dst_addr, listen_id, 1540 ib_event->param.req_rcvd.primary_path); 1541 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1542 cma_save_ib_info(src_addr, dst_addr, listen_id, NULL); 1543 return 0; 1544 } 1545 1546 return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id); 1547 } 1548 1549 static int cma_save_req_info(const struct ib_cm_event *ib_event, 1550 struct cma_req_info *req) 1551 { 1552 const struct ib_cm_req_event_param *req_param = 1553 &ib_event->param.req_rcvd; 1554 const struct ib_cm_sidr_req_event_param *sidr_param = 1555 &ib_event->param.sidr_req_rcvd; 1556 1557 switch (ib_event->event) { 1558 case IB_CM_REQ_RECEIVED: 1559 req->device = req_param->listen_id->device; 1560 req->port = req_param->port; 1561 memcpy(&req->local_gid, &req_param->primary_path->sgid, 1562 sizeof(req->local_gid)); 1563 req->has_gid = true; 1564 req->service_id = req_param->primary_path->service_id; 1565 req->pkey = be16_to_cpu(req_param->primary_path->pkey); 1566 if (req->pkey != req_param->bth_pkey) 1567 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n" 1568 "RDMA CMA: in the future this may cause the request to be dropped\n", 1569 req_param->bth_pkey, req->pkey); 1570 break; 1571 case IB_CM_SIDR_REQ_RECEIVED: 1572 req->device = sidr_param->listen_id->device; 1573 req->port = sidr_param->port; 1574 req->has_gid = false; 1575 req->service_id = sidr_param->service_id; 1576 req->pkey = sidr_param->pkey; 1577 if (req->pkey != sidr_param->bth_pkey) 1578 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n" 1579 "RDMA CMA: in the future this may cause the request to be dropped\n", 1580 sidr_param->bth_pkey, req->pkey); 1581 break; 1582 default: 1583 return -EINVAL; 1584 } 1585 1586 return 0; 1587 } 1588 1589 static bool validate_ipv4_net_dev(struct net_device *net_dev, 1590 const struct sockaddr_in *dst_addr, 1591 const struct sockaddr_in *src_addr) 1592 { 1593 __be32 daddr = dst_addr->sin_addr.s_addr, 1594 saddr = src_addr->sin_addr.s_addr; 1595 struct fib_result res; 1596 struct flowi4 fl4; 1597 int err; 1598 bool ret; 1599 1600 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) || 1601 ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) || 1602 ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) || 1603 ipv4_is_loopback(saddr)) 1604 return false; 1605 1606 memset(&fl4, 0, sizeof(fl4)); 1607 fl4.flowi4_oif = net_dev->ifindex; 1608 fl4.daddr = daddr; 1609 fl4.saddr = saddr; 1610 1611 rcu_read_lock(); 1612 err = fib_lookup(dev_net(net_dev), &fl4, &res, 0); 1613 ret = err == 0 && FIB_RES_DEV(res) == net_dev; 1614 rcu_read_unlock(); 1615 1616 return ret; 1617 } 1618 1619 static bool validate_ipv6_net_dev(struct net_device *net_dev, 1620 const struct sockaddr_in6 *dst_addr, 1621 const struct sockaddr_in6 *src_addr) 1622 { 1623 #if IS_ENABLED(CONFIG_IPV6) 1624 const int strict = ipv6_addr_type(&dst_addr->sin6_addr) & 1625 IPV6_ADDR_LINKLOCAL; 1626 struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr, 1627 &src_addr->sin6_addr, net_dev->ifindex, 1628 NULL, strict); 1629 bool ret; 1630 1631 if (!rt) 1632 return false; 1633 1634 ret = rt->rt6i_idev->dev == net_dev; 1635 ip6_rt_put(rt); 1636 1637 return ret; 1638 #else 1639 return false; 1640 #endif 1641 } 1642 1643 static bool validate_net_dev(struct net_device *net_dev, 1644 const struct sockaddr *daddr, 1645 const struct sockaddr *saddr) 1646 { 1647 const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr; 1648 const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr; 1649 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1650 const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr; 1651 1652 switch (daddr->sa_family) { 1653 case AF_INET: 1654 return saddr->sa_family == AF_INET && 1655 validate_ipv4_net_dev(net_dev, daddr4, saddr4); 1656 1657 case AF_INET6: 1658 return saddr->sa_family == AF_INET6 && 1659 validate_ipv6_net_dev(net_dev, daddr6, saddr6); 1660 1661 default: 1662 return false; 1663 } 1664 } 1665 1666 static struct net_device * 1667 roce_get_net_dev_by_cm_event(const struct ib_cm_event *ib_event) 1668 { 1669 const struct ib_gid_attr *sgid_attr = NULL; 1670 struct net_device *ndev; 1671 1672 if (ib_event->event == IB_CM_REQ_RECEIVED) 1673 sgid_attr = ib_event->param.req_rcvd.ppath_sgid_attr; 1674 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1675 sgid_attr = ib_event->param.sidr_req_rcvd.sgid_attr; 1676 1677 if (!sgid_attr) 1678 return NULL; 1679 1680 rcu_read_lock(); 1681 ndev = rdma_read_gid_attr_ndev_rcu(sgid_attr); 1682 if (IS_ERR(ndev)) 1683 ndev = NULL; 1684 else 1685 dev_hold(ndev); 1686 rcu_read_unlock(); 1687 return ndev; 1688 } 1689 1690 static struct net_device *cma_get_net_dev(const struct ib_cm_event *ib_event, 1691 struct cma_req_info *req) 1692 { 1693 struct sockaddr *listen_addr = 1694 (struct sockaddr *)&req->listen_addr_storage; 1695 struct sockaddr *src_addr = (struct sockaddr *)&req->src_addr_storage; 1696 struct net_device *net_dev; 1697 const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL; 1698 int err; 1699 1700 err = cma_save_ip_info(listen_addr, src_addr, ib_event, 1701 req->service_id); 1702 if (err) 1703 return ERR_PTR(err); 1704 1705 if (rdma_protocol_roce(req->device, req->port)) 1706 net_dev = roce_get_net_dev_by_cm_event(ib_event); 1707 else 1708 net_dev = ib_get_net_dev_by_params(req->device, req->port, 1709 req->pkey, 1710 gid, listen_addr); 1711 if (!net_dev) 1712 return ERR_PTR(-ENODEV); 1713 1714 return net_dev; 1715 } 1716 1717 static enum rdma_ucm_port_space rdma_ps_from_service_id(__be64 service_id) 1718 { 1719 return (be64_to_cpu(service_id) >> 16) & 0xffff; 1720 } 1721 1722 static bool cma_match_private_data(struct rdma_id_private *id_priv, 1723 const struct cma_hdr *hdr) 1724 { 1725 struct sockaddr *addr = cma_src_addr(id_priv); 1726 __be32 ip4_addr; 1727 struct in6_addr ip6_addr; 1728 1729 if (cma_any_addr(addr) && !id_priv->afonly) 1730 return true; 1731 1732 switch (addr->sa_family) { 1733 case AF_INET: 1734 ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr; 1735 if (cma_get_ip_ver(hdr) != 4) 1736 return false; 1737 if (!cma_any_addr(addr) && 1738 hdr->dst_addr.ip4.addr != ip4_addr) 1739 return false; 1740 break; 1741 case AF_INET6: 1742 ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr; 1743 if (cma_get_ip_ver(hdr) != 6) 1744 return false; 1745 if (!cma_any_addr(addr) && 1746 memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr))) 1747 return false; 1748 break; 1749 case AF_IB: 1750 return true; 1751 default: 1752 return false; 1753 } 1754 1755 return true; 1756 } 1757 1758 static bool cma_protocol_roce(const struct rdma_cm_id *id) 1759 { 1760 struct ib_device *device = id->device; 1761 const u32 port_num = id->port_num ?: rdma_start_port(device); 1762 1763 return rdma_protocol_roce(device, port_num); 1764 } 1765 1766 static bool cma_is_req_ipv6_ll(const struct cma_req_info *req) 1767 { 1768 const struct sockaddr *daddr = 1769 (const struct sockaddr *)&req->listen_addr_storage; 1770 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1771 1772 /* Returns true if the req is for IPv6 link local */ 1773 return (daddr->sa_family == AF_INET6 && 1774 (ipv6_addr_type(&daddr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)); 1775 } 1776 1777 static bool cma_match_net_dev(const struct rdma_cm_id *id, 1778 const struct net_device *net_dev, 1779 const struct cma_req_info *req) 1780 { 1781 const struct rdma_addr *addr = &id->route.addr; 1782 1783 if (!net_dev) 1784 /* This request is an AF_IB request */ 1785 return (!id->port_num || id->port_num == req->port) && 1786 (addr->src_addr.ss_family == AF_IB); 1787 1788 /* 1789 * If the request is not for IPv6 link local, allow matching 1790 * request to any netdevice of the one or multiport rdma device. 1791 */ 1792 if (!cma_is_req_ipv6_ll(req)) 1793 return true; 1794 /* 1795 * Net namespaces must match, and if the listner is listening 1796 * on a specific netdevice than netdevice must match as well. 1797 */ 1798 if (net_eq(dev_net(net_dev), addr->dev_addr.net) && 1799 (!!addr->dev_addr.bound_dev_if == 1800 (addr->dev_addr.bound_dev_if == net_dev->ifindex))) 1801 return true; 1802 else 1803 return false; 1804 } 1805 1806 static struct rdma_id_private *cma_find_listener( 1807 const struct rdma_bind_list *bind_list, 1808 const struct ib_cm_id *cm_id, 1809 const struct ib_cm_event *ib_event, 1810 const struct cma_req_info *req, 1811 const struct net_device *net_dev) 1812 { 1813 struct rdma_id_private *id_priv, *id_priv_dev; 1814 1815 lockdep_assert_held(&lock); 1816 1817 if (!bind_list) 1818 return ERR_PTR(-EINVAL); 1819 1820 hlist_for_each_entry(id_priv, &bind_list->owners, node) { 1821 if (cma_match_private_data(id_priv, ib_event->private_data)) { 1822 if (id_priv->id.device == cm_id->device && 1823 cma_match_net_dev(&id_priv->id, net_dev, req)) 1824 return id_priv; 1825 list_for_each_entry(id_priv_dev, 1826 &id_priv->listen_list, 1827 listen_item) { 1828 if (id_priv_dev->id.device == cm_id->device && 1829 cma_match_net_dev(&id_priv_dev->id, 1830 net_dev, req)) 1831 return id_priv_dev; 1832 } 1833 } 1834 } 1835 1836 return ERR_PTR(-EINVAL); 1837 } 1838 1839 static struct rdma_id_private * 1840 cma_ib_id_from_event(struct ib_cm_id *cm_id, 1841 const struct ib_cm_event *ib_event, 1842 struct cma_req_info *req, 1843 struct net_device **net_dev) 1844 { 1845 struct rdma_bind_list *bind_list; 1846 struct rdma_id_private *id_priv; 1847 int err; 1848 1849 err = cma_save_req_info(ib_event, req); 1850 if (err) 1851 return ERR_PTR(err); 1852 1853 *net_dev = cma_get_net_dev(ib_event, req); 1854 if (IS_ERR(*net_dev)) { 1855 if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) { 1856 /* Assuming the protocol is AF_IB */ 1857 *net_dev = NULL; 1858 } else { 1859 return ERR_CAST(*net_dev); 1860 } 1861 } 1862 1863 mutex_lock(&lock); 1864 /* 1865 * Net namespace might be getting deleted while route lookup, 1866 * cm_id lookup is in progress. Therefore, perform netdevice 1867 * validation, cm_id lookup under rcu lock. 1868 * RCU lock along with netdevice state check, synchronizes with 1869 * netdevice migrating to different net namespace and also avoids 1870 * case where net namespace doesn't get deleted while lookup is in 1871 * progress. 1872 * If the device state is not IFF_UP, its properties such as ifindex 1873 * and nd_net cannot be trusted to remain valid without rcu lock. 1874 * net/core/dev.c change_net_namespace() ensures to synchronize with 1875 * ongoing operations on net device after device is closed using 1876 * synchronize_net(). 1877 */ 1878 rcu_read_lock(); 1879 if (*net_dev) { 1880 /* 1881 * If netdevice is down, it is likely that it is administratively 1882 * down or it might be migrating to different namespace. 1883 * In that case avoid further processing, as the net namespace 1884 * or ifindex may change. 1885 */ 1886 if (((*net_dev)->flags & IFF_UP) == 0) { 1887 id_priv = ERR_PTR(-EHOSTUNREACH); 1888 goto err; 1889 } 1890 1891 if (!validate_net_dev(*net_dev, 1892 (struct sockaddr *)&req->src_addr_storage, 1893 (struct sockaddr *)&req->listen_addr_storage)) { 1894 id_priv = ERR_PTR(-EHOSTUNREACH); 1895 goto err; 1896 } 1897 } 1898 1899 bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net, 1900 rdma_ps_from_service_id(req->service_id), 1901 cma_port_from_service_id(req->service_id)); 1902 id_priv = cma_find_listener(bind_list, cm_id, ib_event, req, *net_dev); 1903 err: 1904 rcu_read_unlock(); 1905 mutex_unlock(&lock); 1906 if (IS_ERR(id_priv) && *net_dev) { 1907 dev_put(*net_dev); 1908 *net_dev = NULL; 1909 } 1910 return id_priv; 1911 } 1912 1913 static inline u8 cma_user_data_offset(struct rdma_id_private *id_priv) 1914 { 1915 return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr); 1916 } 1917 1918 static void cma_cancel_route(struct rdma_id_private *id_priv) 1919 { 1920 if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) { 1921 if (id_priv->query) 1922 ib_sa_cancel_query(id_priv->query_id, id_priv->query); 1923 } 1924 } 1925 1926 static void _cma_cancel_listens(struct rdma_id_private *id_priv) 1927 { 1928 struct rdma_id_private *dev_id_priv; 1929 1930 lockdep_assert_held(&lock); 1931 1932 /* 1933 * Remove from listen_any_list to prevent added devices from spawning 1934 * additional listen requests. 1935 */ 1936 list_del_init(&id_priv->listen_any_item); 1937 1938 while (!list_empty(&id_priv->listen_list)) { 1939 dev_id_priv = 1940 list_first_entry(&id_priv->listen_list, 1941 struct rdma_id_private, listen_item); 1942 /* sync with device removal to avoid duplicate destruction */ 1943 list_del_init(&dev_id_priv->device_item); 1944 list_del_init(&dev_id_priv->listen_item); 1945 mutex_unlock(&lock); 1946 1947 rdma_destroy_id(&dev_id_priv->id); 1948 mutex_lock(&lock); 1949 } 1950 } 1951 1952 static void cma_cancel_listens(struct rdma_id_private *id_priv) 1953 { 1954 mutex_lock(&lock); 1955 _cma_cancel_listens(id_priv); 1956 mutex_unlock(&lock); 1957 } 1958 1959 static void cma_cancel_operation(struct rdma_id_private *id_priv, 1960 enum rdma_cm_state state) 1961 { 1962 switch (state) { 1963 case RDMA_CM_ADDR_QUERY: 1964 /* 1965 * We can avoid doing the rdma_addr_cancel() based on state, 1966 * only RDMA_CM_ADDR_QUERY has a work that could still execute. 1967 * Notice that the addr_handler work could still be exiting 1968 * outside this state, however due to the interaction with the 1969 * handler_mutex the work is guaranteed not to touch id_priv 1970 * during exit. 1971 */ 1972 rdma_addr_cancel(&id_priv->id.route.addr.dev_addr); 1973 break; 1974 case RDMA_CM_ROUTE_QUERY: 1975 cma_cancel_route(id_priv); 1976 break; 1977 case RDMA_CM_LISTEN: 1978 if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev) 1979 cma_cancel_listens(id_priv); 1980 break; 1981 default: 1982 break; 1983 } 1984 } 1985 1986 static void cma_release_port(struct rdma_id_private *id_priv) 1987 { 1988 struct rdma_bind_list *bind_list = id_priv->bind_list; 1989 struct net *net = id_priv->id.route.addr.dev_addr.net; 1990 1991 if (!bind_list) 1992 return; 1993 1994 mutex_lock(&lock); 1995 hlist_del(&id_priv->node); 1996 if (hlist_empty(&bind_list->owners)) { 1997 cma_ps_remove(net, bind_list->ps, bind_list->port); 1998 kfree(bind_list); 1999 } 2000 mutex_unlock(&lock); 2001 } 2002 2003 static void destroy_mc(struct rdma_id_private *id_priv, 2004 struct cma_multicast *mc) 2005 { 2006 bool send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN); 2007 2008 if (rdma_cap_ib_mcast(id_priv->id.device, id_priv->id.port_num)) 2009 ib_sa_free_multicast(mc->sa_mc); 2010 2011 if (rdma_protocol_roce(id_priv->id.device, id_priv->id.port_num)) { 2012 struct rdma_cm_event *event = &mc->iboe_join.event; 2013 struct rdma_dev_addr *dev_addr = 2014 &id_priv->id.route.addr.dev_addr; 2015 struct net_device *ndev = NULL; 2016 2017 if (dev_addr->bound_dev_if) 2018 ndev = dev_get_by_index(dev_addr->net, 2019 dev_addr->bound_dev_if); 2020 if (ndev && !send_only) { 2021 enum ib_gid_type gid_type; 2022 union ib_gid mgid; 2023 2024 gid_type = id_priv->cma_dev->default_gid_type 2025 [id_priv->id.port_num - 2026 rdma_start_port( 2027 id_priv->cma_dev->device)]; 2028 cma_iboe_set_mgid((struct sockaddr *)&mc->addr, &mgid, 2029 gid_type); 2030 cma_igmp_send(ndev, &mgid, false); 2031 } 2032 dev_put(ndev); 2033 2034 cancel_work_sync(&mc->iboe_join.work); 2035 if (event->event == RDMA_CM_EVENT_MULTICAST_JOIN) 2036 rdma_destroy_ah_attr(&event->param.ud.ah_attr); 2037 } 2038 kfree(mc); 2039 } 2040 2041 static void cma_leave_mc_groups(struct rdma_id_private *id_priv) 2042 { 2043 struct cma_multicast *mc; 2044 2045 while (!list_empty(&id_priv->mc_list)) { 2046 mc = list_first_entry(&id_priv->mc_list, struct cma_multicast, 2047 list); 2048 list_del(&mc->list); 2049 destroy_mc(id_priv, mc); 2050 } 2051 } 2052 2053 static void _destroy_id(struct rdma_id_private *id_priv, 2054 enum rdma_cm_state state) 2055 { 2056 cma_cancel_operation(id_priv, state); 2057 2058 rdma_restrack_del(&id_priv->res); 2059 cma_remove_id_from_tree(id_priv); 2060 if (id_priv->cma_dev) { 2061 if (rdma_cap_ib_cm(id_priv->id.device, 1)) { 2062 if (id_priv->cm_id.ib) 2063 ib_destroy_cm_id(id_priv->cm_id.ib); 2064 } else if (rdma_cap_iw_cm(id_priv->id.device, 1)) { 2065 if (id_priv->cm_id.iw) 2066 iw_destroy_cm_id(id_priv->cm_id.iw); 2067 } 2068 cma_leave_mc_groups(id_priv); 2069 cma_release_dev(id_priv); 2070 } 2071 2072 cma_release_port(id_priv); 2073 cma_id_put(id_priv); 2074 wait_for_completion(&id_priv->comp); 2075 2076 if (id_priv->internal_id) 2077 cma_id_put(id_priv->id.context); 2078 2079 kfree(id_priv->id.route.path_rec); 2080 kfree(id_priv->id.route.path_rec_inbound); 2081 kfree(id_priv->id.route.path_rec_outbound); 2082 kfree(id_priv->id.route.service_recs); 2083 2084 put_net(id_priv->id.route.addr.dev_addr.net); 2085 kfree(id_priv); 2086 } 2087 2088 /* 2089 * destroy an ID from within the handler_mutex. This ensures that no other 2090 * handlers can start running concurrently. 2091 */ 2092 static void destroy_id_handler_unlock(struct rdma_id_private *id_priv) 2093 __releases(&idprv->handler_mutex) 2094 { 2095 enum rdma_cm_state state; 2096 unsigned long flags; 2097 2098 trace_cm_id_destroy(id_priv); 2099 2100 /* 2101 * Setting the state to destroyed under the handler mutex provides a 2102 * fence against calling handler callbacks. If this is invoked due to 2103 * the failure of a handler callback then it guarentees that no future 2104 * handlers will be called. 2105 */ 2106 lockdep_assert_held(&id_priv->handler_mutex); 2107 spin_lock_irqsave(&id_priv->lock, flags); 2108 state = id_priv->state; 2109 id_priv->state = RDMA_CM_DESTROYING; 2110 spin_unlock_irqrestore(&id_priv->lock, flags); 2111 mutex_unlock(&id_priv->handler_mutex); 2112 _destroy_id(id_priv, state); 2113 } 2114 2115 void rdma_destroy_id(struct rdma_cm_id *id) 2116 { 2117 struct rdma_id_private *id_priv = 2118 container_of(id, struct rdma_id_private, id); 2119 2120 mutex_lock(&id_priv->handler_mutex); 2121 destroy_id_handler_unlock(id_priv); 2122 } 2123 EXPORT_SYMBOL(rdma_destroy_id); 2124 2125 static int cma_rep_recv(struct rdma_id_private *id_priv) 2126 { 2127 int ret; 2128 2129 ret = cma_modify_qp_rtr(id_priv, NULL); 2130 if (ret) 2131 goto reject; 2132 2133 ret = cma_modify_qp_rts(id_priv, NULL); 2134 if (ret) 2135 goto reject; 2136 2137 trace_cm_send_rtu(id_priv); 2138 ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0); 2139 if (ret) 2140 goto reject; 2141 2142 return 0; 2143 reject: 2144 pr_debug_ratelimited("RDMA CM: CONNECT_ERROR: failed to handle reply. status %d\n", ret); 2145 cma_modify_qp_err(id_priv); 2146 trace_cm_send_rej(id_priv); 2147 ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED, 2148 NULL, 0, NULL, 0); 2149 return ret; 2150 } 2151 2152 static void cma_set_rep_event_data(struct rdma_cm_event *event, 2153 const struct ib_cm_rep_event_param *rep_data, 2154 void *private_data) 2155 { 2156 event->param.conn.private_data = private_data; 2157 event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE; 2158 event->param.conn.responder_resources = rep_data->responder_resources; 2159 event->param.conn.initiator_depth = rep_data->initiator_depth; 2160 event->param.conn.flow_control = rep_data->flow_control; 2161 event->param.conn.rnr_retry_count = rep_data->rnr_retry_count; 2162 event->param.conn.srq = rep_data->srq; 2163 event->param.conn.qp_num = rep_data->remote_qpn; 2164 2165 event->ece.vendor_id = rep_data->ece.vendor_id; 2166 event->ece.attr_mod = rep_data->ece.attr_mod; 2167 } 2168 2169 static int cma_cm_event_handler(struct rdma_id_private *id_priv, 2170 struct rdma_cm_event *event) 2171 { 2172 int ret; 2173 2174 lockdep_assert_held(&id_priv->handler_mutex); 2175 2176 trace_cm_event_handler(id_priv, event); 2177 ret = id_priv->id.event_handler(&id_priv->id, event); 2178 trace_cm_event_done(id_priv, event, ret); 2179 return ret; 2180 } 2181 2182 static int cma_ib_handler(struct ib_cm_id *cm_id, 2183 const struct ib_cm_event *ib_event) 2184 { 2185 struct rdma_id_private *id_priv = cm_id->context; 2186 struct rdma_cm_event event = {}; 2187 enum rdma_cm_state state; 2188 int ret; 2189 2190 mutex_lock(&id_priv->handler_mutex); 2191 state = READ_ONCE(id_priv->state); 2192 if ((ib_event->event != IB_CM_TIMEWAIT_EXIT && 2193 state != RDMA_CM_CONNECT) || 2194 (ib_event->event == IB_CM_TIMEWAIT_EXIT && 2195 state != RDMA_CM_DISCONNECT)) 2196 goto out; 2197 2198 switch (ib_event->event) { 2199 case IB_CM_REQ_ERROR: 2200 case IB_CM_REP_ERROR: 2201 event.event = RDMA_CM_EVENT_UNREACHABLE; 2202 event.status = -ETIMEDOUT; 2203 break; 2204 case IB_CM_REP_RECEIVED: 2205 if (state == RDMA_CM_CONNECT && 2206 (id_priv->id.qp_type != IB_QPT_UD)) { 2207 trace_cm_prepare_mra(id_priv); 2208 ib_prepare_cm_mra(cm_id); 2209 } 2210 if (id_priv->id.qp) { 2211 event.status = cma_rep_recv(id_priv); 2212 event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR : 2213 RDMA_CM_EVENT_ESTABLISHED; 2214 } else { 2215 event.event = RDMA_CM_EVENT_CONNECT_RESPONSE; 2216 } 2217 cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd, 2218 ib_event->private_data); 2219 break; 2220 case IB_CM_RTU_RECEIVED: 2221 case IB_CM_USER_ESTABLISHED: 2222 event.event = RDMA_CM_EVENT_ESTABLISHED; 2223 break; 2224 case IB_CM_DREQ_ERROR: 2225 event.status = -ETIMEDOUT; 2226 fallthrough; 2227 case IB_CM_DREQ_RECEIVED: 2228 case IB_CM_DREP_RECEIVED: 2229 if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT, 2230 RDMA_CM_DISCONNECT)) 2231 goto out; 2232 event.event = RDMA_CM_EVENT_DISCONNECTED; 2233 break; 2234 case IB_CM_TIMEWAIT_EXIT: 2235 event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT; 2236 break; 2237 case IB_CM_MRA_RECEIVED: 2238 /* ignore event */ 2239 goto out; 2240 case IB_CM_REJ_RECEIVED: 2241 pr_debug_ratelimited("RDMA CM: REJECTED: %s\n", rdma_reject_msg(&id_priv->id, 2242 ib_event->param.rej_rcvd.reason)); 2243 cma_modify_qp_err(id_priv); 2244 event.status = ib_event->param.rej_rcvd.reason; 2245 event.event = RDMA_CM_EVENT_REJECTED; 2246 event.param.conn.private_data = ib_event->private_data; 2247 event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE; 2248 break; 2249 default: 2250 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 2251 ib_event->event); 2252 goto out; 2253 } 2254 2255 ret = cma_cm_event_handler(id_priv, &event); 2256 if (ret) { 2257 /* Destroy the CM ID by returning a non-zero value. */ 2258 id_priv->cm_id.ib = NULL; 2259 destroy_id_handler_unlock(id_priv); 2260 return ret; 2261 } 2262 out: 2263 mutex_unlock(&id_priv->handler_mutex); 2264 return 0; 2265 } 2266 2267 static struct rdma_id_private * 2268 cma_ib_new_conn_id(const struct rdma_cm_id *listen_id, 2269 const struct ib_cm_event *ib_event, 2270 struct net_device *net_dev) 2271 { 2272 struct rdma_id_private *listen_id_priv; 2273 struct rdma_id_private *id_priv; 2274 struct rdma_cm_id *id; 2275 struct rdma_route *rt; 2276 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2277 struct sa_path_rec *path = ib_event->param.req_rcvd.primary_path; 2278 const __be64 service_id = 2279 ib_event->param.req_rcvd.primary_path->service_id; 2280 int ret; 2281 2282 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2283 id_priv = __rdma_create_id(listen_id->route.addr.dev_addr.net, 2284 listen_id->event_handler, listen_id->context, 2285 listen_id->ps, 2286 ib_event->param.req_rcvd.qp_type, 2287 listen_id_priv); 2288 if (IS_ERR(id_priv)) 2289 return NULL; 2290 2291 id = &id_priv->id; 2292 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2293 (struct sockaddr *)&id->route.addr.dst_addr, 2294 listen_id, ib_event, ss_family, service_id)) 2295 goto err; 2296 2297 rt = &id->route; 2298 rt->num_pri_alt_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1; 2299 rt->path_rec = kmalloc_array(rt->num_pri_alt_paths, 2300 sizeof(*rt->path_rec), GFP_KERNEL); 2301 if (!rt->path_rec) 2302 goto err; 2303 2304 rt->path_rec[0] = *path; 2305 if (rt->num_pri_alt_paths == 2) 2306 rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path; 2307 2308 if (net_dev) { 2309 rdma_copy_src_l2_addr(&rt->addr.dev_addr, net_dev); 2310 } else { 2311 if (!cma_protocol_roce(listen_id) && 2312 cma_any_addr(cma_src_addr(id_priv))) { 2313 rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND; 2314 rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid); 2315 ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey)); 2316 } else if (!cma_any_addr(cma_src_addr(id_priv))) { 2317 ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr); 2318 if (ret) 2319 goto err; 2320 } 2321 } 2322 rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid); 2323 2324 id_priv->state = RDMA_CM_CONNECT; 2325 return id_priv; 2326 2327 err: 2328 rdma_destroy_id(id); 2329 return NULL; 2330 } 2331 2332 static struct rdma_id_private * 2333 cma_ib_new_udp_id(const struct rdma_cm_id *listen_id, 2334 const struct ib_cm_event *ib_event, 2335 struct net_device *net_dev) 2336 { 2337 const struct rdma_id_private *listen_id_priv; 2338 struct rdma_id_private *id_priv; 2339 struct rdma_cm_id *id; 2340 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2341 struct net *net = listen_id->route.addr.dev_addr.net; 2342 int ret; 2343 2344 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2345 id_priv = __rdma_create_id(net, listen_id->event_handler, 2346 listen_id->context, listen_id->ps, IB_QPT_UD, 2347 listen_id_priv); 2348 if (IS_ERR(id_priv)) 2349 return NULL; 2350 2351 id = &id_priv->id; 2352 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2353 (struct sockaddr *)&id->route.addr.dst_addr, 2354 listen_id, ib_event, ss_family, 2355 ib_event->param.sidr_req_rcvd.service_id)) 2356 goto err; 2357 2358 if (net_dev) { 2359 rdma_copy_src_l2_addr(&id->route.addr.dev_addr, net_dev); 2360 } else { 2361 if (!cma_any_addr(cma_src_addr(id_priv))) { 2362 ret = cma_translate_addr(cma_src_addr(id_priv), 2363 &id->route.addr.dev_addr); 2364 if (ret) 2365 goto err; 2366 } 2367 } 2368 2369 id_priv->state = RDMA_CM_CONNECT; 2370 return id_priv; 2371 err: 2372 rdma_destroy_id(id); 2373 return NULL; 2374 } 2375 2376 static void cma_set_req_event_data(struct rdma_cm_event *event, 2377 const struct ib_cm_req_event_param *req_data, 2378 void *private_data, int offset) 2379 { 2380 event->param.conn.private_data = private_data + offset; 2381 event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset; 2382 event->param.conn.responder_resources = req_data->responder_resources; 2383 event->param.conn.initiator_depth = req_data->initiator_depth; 2384 event->param.conn.flow_control = req_data->flow_control; 2385 event->param.conn.retry_count = req_data->retry_count; 2386 event->param.conn.rnr_retry_count = req_data->rnr_retry_count; 2387 event->param.conn.srq = req_data->srq; 2388 event->param.conn.qp_num = req_data->remote_qpn; 2389 2390 event->ece.vendor_id = req_data->ece.vendor_id; 2391 event->ece.attr_mod = req_data->ece.attr_mod; 2392 } 2393 2394 static int cma_ib_check_req_qp_type(const struct rdma_cm_id *id, 2395 const struct ib_cm_event *ib_event) 2396 { 2397 return (((ib_event->event == IB_CM_REQ_RECEIVED) && 2398 (ib_event->param.req_rcvd.qp_type == id->qp_type)) || 2399 ((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) && 2400 (id->qp_type == IB_QPT_UD)) || 2401 (!id->qp_type)); 2402 } 2403 2404 static int cma_ib_req_handler(struct ib_cm_id *cm_id, 2405 const struct ib_cm_event *ib_event) 2406 { 2407 struct rdma_id_private *listen_id, *conn_id = NULL; 2408 struct rdma_cm_event event = {}; 2409 struct cma_req_info req = {}; 2410 struct net_device *net_dev; 2411 u8 offset; 2412 int ret; 2413 2414 listen_id = cma_ib_id_from_event(cm_id, ib_event, &req, &net_dev); 2415 if (IS_ERR(listen_id)) 2416 return PTR_ERR(listen_id); 2417 2418 trace_cm_req_handler(listen_id, ib_event->event); 2419 if (!cma_ib_check_req_qp_type(&listen_id->id, ib_event)) { 2420 ret = -EINVAL; 2421 goto net_dev_put; 2422 } 2423 2424 mutex_lock(&listen_id->handler_mutex); 2425 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) { 2426 ret = -ECONNABORTED; 2427 goto err_unlock; 2428 } 2429 2430 offset = cma_user_data_offset(listen_id); 2431 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2432 if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) { 2433 conn_id = cma_ib_new_udp_id(&listen_id->id, ib_event, net_dev); 2434 event.param.ud.private_data = ib_event->private_data + offset; 2435 event.param.ud.private_data_len = 2436 IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset; 2437 } else { 2438 conn_id = cma_ib_new_conn_id(&listen_id->id, ib_event, net_dev); 2439 cma_set_req_event_data(&event, &ib_event->param.req_rcvd, 2440 ib_event->private_data, offset); 2441 } 2442 if (!conn_id) { 2443 ret = -ENOMEM; 2444 goto err_unlock; 2445 } 2446 2447 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2448 ret = cma_ib_acquire_dev(conn_id, listen_id, &req); 2449 if (ret) { 2450 destroy_id_handler_unlock(conn_id); 2451 goto err_unlock; 2452 } 2453 2454 conn_id->cm_id.ib = cm_id; 2455 cm_id->context = conn_id; 2456 cm_id->cm_handler = cma_ib_handler; 2457 2458 ret = cma_cm_event_handler(conn_id, &event); 2459 if (ret) { 2460 /* Destroy the CM ID by returning a non-zero value. */ 2461 conn_id->cm_id.ib = NULL; 2462 mutex_unlock(&listen_id->handler_mutex); 2463 destroy_id_handler_unlock(conn_id); 2464 goto net_dev_put; 2465 } 2466 2467 if (READ_ONCE(conn_id->state) == RDMA_CM_CONNECT && 2468 conn_id->id.qp_type != IB_QPT_UD) { 2469 trace_cm_prepare_mra(cm_id->context); 2470 ib_prepare_cm_mra(cm_id); 2471 } 2472 mutex_unlock(&conn_id->handler_mutex); 2473 2474 err_unlock: 2475 mutex_unlock(&listen_id->handler_mutex); 2476 2477 net_dev_put: 2478 dev_put(net_dev); 2479 2480 return ret; 2481 } 2482 2483 __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr) 2484 { 2485 if (addr->sa_family == AF_IB) 2486 return ((struct sockaddr_ib *) addr)->sib_sid; 2487 2488 return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr))); 2489 } 2490 EXPORT_SYMBOL(rdma_get_service_id); 2491 2492 void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid, 2493 union ib_gid *dgid) 2494 { 2495 struct rdma_addr *addr = &cm_id->route.addr; 2496 2497 if (!cm_id->device) { 2498 if (sgid) 2499 memset(sgid, 0, sizeof(*sgid)); 2500 if (dgid) 2501 memset(dgid, 0, sizeof(*dgid)); 2502 return; 2503 } 2504 2505 if (rdma_protocol_roce(cm_id->device, cm_id->port_num)) { 2506 if (sgid) 2507 rdma_ip2gid((struct sockaddr *)&addr->src_addr, sgid); 2508 if (dgid) 2509 rdma_ip2gid((struct sockaddr *)&addr->dst_addr, dgid); 2510 } else { 2511 if (sgid) 2512 rdma_addr_get_sgid(&addr->dev_addr, sgid); 2513 if (dgid) 2514 rdma_addr_get_dgid(&addr->dev_addr, dgid); 2515 } 2516 } 2517 EXPORT_SYMBOL(rdma_read_gids); 2518 2519 static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event) 2520 { 2521 struct rdma_id_private *id_priv = iw_id->context; 2522 struct rdma_cm_event event = {}; 2523 int ret = 0; 2524 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2525 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2526 2527 mutex_lock(&id_priv->handler_mutex); 2528 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 2529 goto out; 2530 2531 switch (iw_event->event) { 2532 case IW_CM_EVENT_CLOSE: 2533 event.event = RDMA_CM_EVENT_DISCONNECTED; 2534 break; 2535 case IW_CM_EVENT_CONNECT_REPLY: 2536 memcpy(cma_src_addr(id_priv), laddr, 2537 rdma_addr_size(laddr)); 2538 memcpy(cma_dst_addr(id_priv), raddr, 2539 rdma_addr_size(raddr)); 2540 switch (iw_event->status) { 2541 case 0: 2542 event.event = RDMA_CM_EVENT_ESTABLISHED; 2543 event.param.conn.initiator_depth = iw_event->ird; 2544 event.param.conn.responder_resources = iw_event->ord; 2545 break; 2546 case -ECONNRESET: 2547 case -ECONNREFUSED: 2548 event.event = RDMA_CM_EVENT_REJECTED; 2549 break; 2550 case -ETIMEDOUT: 2551 event.event = RDMA_CM_EVENT_UNREACHABLE; 2552 break; 2553 default: 2554 event.event = RDMA_CM_EVENT_CONNECT_ERROR; 2555 break; 2556 } 2557 break; 2558 case IW_CM_EVENT_ESTABLISHED: 2559 event.event = RDMA_CM_EVENT_ESTABLISHED; 2560 event.param.conn.initiator_depth = iw_event->ird; 2561 event.param.conn.responder_resources = iw_event->ord; 2562 break; 2563 default: 2564 goto out; 2565 } 2566 2567 event.status = iw_event->status; 2568 event.param.conn.private_data = iw_event->private_data; 2569 event.param.conn.private_data_len = iw_event->private_data_len; 2570 ret = cma_cm_event_handler(id_priv, &event); 2571 if (ret) { 2572 /* Destroy the CM ID by returning a non-zero value. */ 2573 id_priv->cm_id.iw = NULL; 2574 destroy_id_handler_unlock(id_priv); 2575 return ret; 2576 } 2577 2578 out: 2579 mutex_unlock(&id_priv->handler_mutex); 2580 return ret; 2581 } 2582 2583 static int iw_conn_req_handler(struct iw_cm_id *cm_id, 2584 struct iw_cm_event *iw_event) 2585 { 2586 struct rdma_id_private *listen_id, *conn_id; 2587 struct rdma_cm_event event = {}; 2588 int ret = -ECONNABORTED; 2589 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2590 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2591 2592 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2593 event.param.conn.private_data = iw_event->private_data; 2594 event.param.conn.private_data_len = iw_event->private_data_len; 2595 event.param.conn.initiator_depth = iw_event->ird; 2596 event.param.conn.responder_resources = iw_event->ord; 2597 2598 listen_id = cm_id->context; 2599 2600 mutex_lock(&listen_id->handler_mutex); 2601 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) 2602 goto out; 2603 2604 /* Create a new RDMA id for the new IW CM ID */ 2605 conn_id = __rdma_create_id(listen_id->id.route.addr.dev_addr.net, 2606 listen_id->id.event_handler, 2607 listen_id->id.context, RDMA_PS_TCP, 2608 IB_QPT_RC, listen_id); 2609 if (IS_ERR(conn_id)) { 2610 ret = -ENOMEM; 2611 goto out; 2612 } 2613 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2614 conn_id->state = RDMA_CM_CONNECT; 2615 2616 ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr); 2617 if (ret) { 2618 mutex_unlock(&listen_id->handler_mutex); 2619 destroy_id_handler_unlock(conn_id); 2620 return ret; 2621 } 2622 2623 ret = cma_iw_acquire_dev(conn_id, listen_id); 2624 if (ret) { 2625 mutex_unlock(&listen_id->handler_mutex); 2626 destroy_id_handler_unlock(conn_id); 2627 return ret; 2628 } 2629 2630 conn_id->cm_id.iw = cm_id; 2631 cm_id->context = conn_id; 2632 cm_id->cm_handler = cma_iw_handler; 2633 2634 memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr)); 2635 memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr)); 2636 2637 ret = cma_cm_event_handler(conn_id, &event); 2638 if (ret) { 2639 /* User wants to destroy the CM ID */ 2640 conn_id->cm_id.iw = NULL; 2641 mutex_unlock(&listen_id->handler_mutex); 2642 destroy_id_handler_unlock(conn_id); 2643 return ret; 2644 } 2645 2646 mutex_unlock(&conn_id->handler_mutex); 2647 2648 out: 2649 mutex_unlock(&listen_id->handler_mutex); 2650 return ret; 2651 } 2652 2653 static int cma_ib_listen(struct rdma_id_private *id_priv) 2654 { 2655 struct sockaddr *addr; 2656 struct ib_cm_id *id; 2657 __be64 svc_id; 2658 2659 addr = cma_src_addr(id_priv); 2660 svc_id = rdma_get_service_id(&id_priv->id, addr); 2661 id = ib_cm_insert_listen(id_priv->id.device, 2662 cma_ib_req_handler, svc_id); 2663 if (IS_ERR(id)) 2664 return PTR_ERR(id); 2665 id_priv->cm_id.ib = id; 2666 2667 return 0; 2668 } 2669 2670 static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog) 2671 { 2672 int ret; 2673 struct iw_cm_id *id; 2674 2675 id = iw_create_cm_id(id_priv->id.device, 2676 iw_conn_req_handler, 2677 id_priv); 2678 if (IS_ERR(id)) 2679 return PTR_ERR(id); 2680 2681 mutex_lock(&id_priv->qp_mutex); 2682 id->tos = id_priv->tos; 2683 id->tos_set = id_priv->tos_set; 2684 mutex_unlock(&id_priv->qp_mutex); 2685 id->afonly = id_priv->afonly; 2686 id_priv->cm_id.iw = id; 2687 2688 memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv), 2689 rdma_addr_size(cma_src_addr(id_priv))); 2690 2691 ret = iw_cm_listen(id_priv->cm_id.iw, backlog); 2692 2693 if (ret) { 2694 iw_destroy_cm_id(id_priv->cm_id.iw); 2695 id_priv->cm_id.iw = NULL; 2696 } 2697 2698 return ret; 2699 } 2700 2701 static int cma_listen_handler(struct rdma_cm_id *id, 2702 struct rdma_cm_event *event) 2703 { 2704 struct rdma_id_private *id_priv = id->context; 2705 2706 /* Listening IDs are always destroyed on removal */ 2707 if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) 2708 return -1; 2709 2710 id->context = id_priv->id.context; 2711 id->event_handler = id_priv->id.event_handler; 2712 trace_cm_event_handler(id_priv, event); 2713 return id_priv->id.event_handler(id, event); 2714 } 2715 2716 static int cma_listen_on_dev(struct rdma_id_private *id_priv, 2717 struct cma_device *cma_dev, 2718 struct rdma_id_private **to_destroy) 2719 { 2720 struct rdma_id_private *dev_id_priv; 2721 struct net *net = id_priv->id.route.addr.dev_addr.net; 2722 int ret; 2723 2724 lockdep_assert_held(&lock); 2725 2726 *to_destroy = NULL; 2727 if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1)) 2728 return 0; 2729 2730 dev_id_priv = 2731 __rdma_create_id(net, cma_listen_handler, id_priv, 2732 id_priv->id.ps, id_priv->id.qp_type, id_priv); 2733 if (IS_ERR(dev_id_priv)) 2734 return PTR_ERR(dev_id_priv); 2735 2736 dev_id_priv->state = RDMA_CM_ADDR_BOUND; 2737 memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv), 2738 rdma_addr_size(cma_src_addr(id_priv))); 2739 2740 _cma_attach_to_dev(dev_id_priv, cma_dev); 2741 rdma_restrack_add(&dev_id_priv->res); 2742 cma_id_get(id_priv); 2743 dev_id_priv->internal_id = 1; 2744 dev_id_priv->afonly = id_priv->afonly; 2745 mutex_lock(&id_priv->qp_mutex); 2746 dev_id_priv->tos_set = id_priv->tos_set; 2747 dev_id_priv->tos = id_priv->tos; 2748 mutex_unlock(&id_priv->qp_mutex); 2749 2750 ret = rdma_listen(&dev_id_priv->id, id_priv->backlog); 2751 if (ret) 2752 goto err_listen; 2753 list_add_tail(&dev_id_priv->listen_item, &id_priv->listen_list); 2754 return 0; 2755 err_listen: 2756 /* Caller must destroy this after releasing lock */ 2757 *to_destroy = dev_id_priv; 2758 dev_warn(&cma_dev->device->dev, "RDMA CMA: %s, error %d\n", __func__, ret); 2759 return ret; 2760 } 2761 2762 static int cma_listen_on_all(struct rdma_id_private *id_priv) 2763 { 2764 struct rdma_id_private *to_destroy; 2765 struct cma_device *cma_dev; 2766 int ret; 2767 2768 mutex_lock(&lock); 2769 list_add_tail(&id_priv->listen_any_item, &listen_any_list); 2770 list_for_each_entry(cma_dev, &dev_list, list) { 2771 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy); 2772 if (ret) { 2773 /* Prevent racing with cma_process_remove() */ 2774 if (to_destroy) 2775 list_del_init(&to_destroy->device_item); 2776 goto err_listen; 2777 } 2778 } 2779 mutex_unlock(&lock); 2780 return 0; 2781 2782 err_listen: 2783 _cma_cancel_listens(id_priv); 2784 mutex_unlock(&lock); 2785 if (to_destroy) 2786 rdma_destroy_id(&to_destroy->id); 2787 return ret; 2788 } 2789 2790 void rdma_set_service_type(struct rdma_cm_id *id, int tos) 2791 { 2792 struct rdma_id_private *id_priv; 2793 2794 id_priv = container_of(id, struct rdma_id_private, id); 2795 mutex_lock(&id_priv->qp_mutex); 2796 id_priv->tos = (u8) tos; 2797 id_priv->tos_set = true; 2798 mutex_unlock(&id_priv->qp_mutex); 2799 } 2800 EXPORT_SYMBOL(rdma_set_service_type); 2801 2802 /** 2803 * rdma_set_ack_timeout() - Set the ack timeout of QP associated 2804 * with a connection identifier. 2805 * @id: Communication identifier to associated with service type. 2806 * @timeout: Ack timeout to set a QP, expressed as 4.096 * 2^(timeout) usec. 2807 * 2808 * This function should be called before rdma_connect() on active side, 2809 * and on passive side before rdma_accept(). It is applicable to primary 2810 * path only. The timeout will affect the local side of the QP, it is not 2811 * negotiated with remote side and zero disables the timer. In case it is 2812 * set before rdma_resolve_route, the value will also be used to determine 2813 * PacketLifeTime for RoCE. 2814 * 2815 * Return: 0 for success 2816 */ 2817 int rdma_set_ack_timeout(struct rdma_cm_id *id, u8 timeout) 2818 { 2819 struct rdma_id_private *id_priv; 2820 2821 if (id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_INI) 2822 return -EINVAL; 2823 2824 id_priv = container_of(id, struct rdma_id_private, id); 2825 mutex_lock(&id_priv->qp_mutex); 2826 id_priv->timeout = timeout; 2827 id_priv->timeout_set = true; 2828 mutex_unlock(&id_priv->qp_mutex); 2829 2830 return 0; 2831 } 2832 EXPORT_SYMBOL(rdma_set_ack_timeout); 2833 2834 /** 2835 * rdma_set_min_rnr_timer() - Set the minimum RNR Retry timer of the 2836 * QP associated with a connection identifier. 2837 * @id: Communication identifier to associated with service type. 2838 * @min_rnr_timer: 5-bit value encoded as Table 45: "Encoding for RNR NAK 2839 * Timer Field" in the IBTA specification. 2840 * 2841 * This function should be called before rdma_connect() on active 2842 * side, and on passive side before rdma_accept(). The timer value 2843 * will be associated with the local QP. When it receives a send it is 2844 * not read to handle, typically if the receive queue is empty, an RNR 2845 * Retry NAK is returned to the requester with the min_rnr_timer 2846 * encoded. The requester will then wait at least the time specified 2847 * in the NAK before retrying. The default is zero, which translates 2848 * to a minimum RNR Timer value of 655 ms. 2849 * 2850 * Return: 0 for success 2851 */ 2852 int rdma_set_min_rnr_timer(struct rdma_cm_id *id, u8 min_rnr_timer) 2853 { 2854 struct rdma_id_private *id_priv; 2855 2856 /* It is a five-bit value */ 2857 if (min_rnr_timer & 0xe0) 2858 return -EINVAL; 2859 2860 if (WARN_ON(id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_TGT)) 2861 return -EINVAL; 2862 2863 id_priv = container_of(id, struct rdma_id_private, id); 2864 mutex_lock(&id_priv->qp_mutex); 2865 id_priv->min_rnr_timer = min_rnr_timer; 2866 id_priv->min_rnr_timer_set = true; 2867 mutex_unlock(&id_priv->qp_mutex); 2868 2869 return 0; 2870 } 2871 EXPORT_SYMBOL(rdma_set_min_rnr_timer); 2872 2873 static int route_set_path_rec_inbound(struct cma_work *work, 2874 struct sa_path_rec *path_rec) 2875 { 2876 struct rdma_route *route = &work->id->id.route; 2877 2878 if (!route->path_rec_inbound) { 2879 route->path_rec_inbound = 2880 kzalloc(sizeof(*route->path_rec_inbound), GFP_KERNEL); 2881 if (!route->path_rec_inbound) 2882 return -ENOMEM; 2883 } 2884 2885 *route->path_rec_inbound = *path_rec; 2886 return 0; 2887 } 2888 2889 static int route_set_path_rec_outbound(struct cma_work *work, 2890 struct sa_path_rec *path_rec) 2891 { 2892 struct rdma_route *route = &work->id->id.route; 2893 2894 if (!route->path_rec_outbound) { 2895 route->path_rec_outbound = 2896 kzalloc(sizeof(*route->path_rec_outbound), GFP_KERNEL); 2897 if (!route->path_rec_outbound) 2898 return -ENOMEM; 2899 } 2900 2901 *route->path_rec_outbound = *path_rec; 2902 return 0; 2903 } 2904 2905 static void cma_query_handler(int status, struct sa_path_rec *path_rec, 2906 unsigned int num_prs, void *context) 2907 { 2908 struct cma_work *work = context; 2909 struct rdma_route *route; 2910 int i; 2911 2912 route = &work->id->id.route; 2913 2914 if (status) 2915 goto fail; 2916 2917 for (i = 0; i < num_prs; i++) { 2918 if (!path_rec[i].flags || (path_rec[i].flags & IB_PATH_GMP)) 2919 *route->path_rec = path_rec[i]; 2920 else if (path_rec[i].flags & IB_PATH_INBOUND) 2921 status = route_set_path_rec_inbound(work, &path_rec[i]); 2922 else if (path_rec[i].flags & IB_PATH_OUTBOUND) 2923 status = route_set_path_rec_outbound(work, 2924 &path_rec[i]); 2925 else 2926 status = -EINVAL; 2927 2928 if (status) 2929 goto fail; 2930 } 2931 2932 route->num_pri_alt_paths = 1; 2933 queue_work(cma_wq, &work->work); 2934 return; 2935 2936 fail: 2937 work->old_state = RDMA_CM_ROUTE_QUERY; 2938 work->new_state = RDMA_CM_ADDR_RESOLVED; 2939 work->event.event = RDMA_CM_EVENT_ROUTE_ERROR; 2940 work->event.status = status; 2941 pr_debug_ratelimited("RDMA CM: ROUTE_ERROR: failed to query path. status %d\n", 2942 status); 2943 queue_work(cma_wq, &work->work); 2944 } 2945 2946 static int cma_query_ib_route(struct rdma_id_private *id_priv, 2947 unsigned long timeout_ms, struct cma_work *work) 2948 { 2949 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 2950 struct sa_path_rec path_rec; 2951 ib_sa_comp_mask comp_mask; 2952 struct sockaddr_in6 *sin6; 2953 struct sockaddr_ib *sib; 2954 2955 memset(&path_rec, 0, sizeof path_rec); 2956 2957 if (rdma_cap_opa_ah(id_priv->id.device, id_priv->id.port_num)) 2958 path_rec.rec_type = SA_PATH_REC_TYPE_OPA; 2959 else 2960 path_rec.rec_type = SA_PATH_REC_TYPE_IB; 2961 rdma_addr_get_sgid(dev_addr, &path_rec.sgid); 2962 rdma_addr_get_dgid(dev_addr, &path_rec.dgid); 2963 path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 2964 path_rec.numb_path = 1; 2965 path_rec.reversible = 1; 2966 path_rec.service_id = rdma_get_service_id(&id_priv->id, 2967 cma_dst_addr(id_priv)); 2968 2969 comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID | 2970 IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH | 2971 IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID; 2972 2973 switch (cma_family(id_priv)) { 2974 case AF_INET: 2975 path_rec.qos_class = cpu_to_be16((u16) id_priv->tos); 2976 comp_mask |= IB_SA_PATH_REC_QOS_CLASS; 2977 break; 2978 case AF_INET6: 2979 sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 2980 path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20); 2981 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2982 break; 2983 case AF_IB: 2984 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 2985 path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20); 2986 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2987 break; 2988 } 2989 2990 id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device, 2991 id_priv->id.port_num, &path_rec, 2992 comp_mask, timeout_ms, 2993 GFP_KERNEL, cma_query_handler, 2994 work, &id_priv->query); 2995 2996 return (id_priv->query_id < 0) ? id_priv->query_id : 0; 2997 } 2998 2999 static void cma_iboe_join_work_handler(struct work_struct *work) 3000 { 3001 struct cma_multicast *mc = 3002 container_of(work, struct cma_multicast, iboe_join.work); 3003 struct rdma_cm_event *event = &mc->iboe_join.event; 3004 struct rdma_id_private *id_priv = mc->id_priv; 3005 int ret; 3006 3007 mutex_lock(&id_priv->handler_mutex); 3008 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 3009 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 3010 goto out_unlock; 3011 3012 ret = cma_cm_event_handler(id_priv, event); 3013 WARN_ON(ret); 3014 3015 out_unlock: 3016 mutex_unlock(&id_priv->handler_mutex); 3017 if (event->event == RDMA_CM_EVENT_MULTICAST_JOIN) 3018 rdma_destroy_ah_attr(&event->param.ud.ah_attr); 3019 } 3020 3021 static void cma_work_handler(struct work_struct *_work) 3022 { 3023 struct cma_work *work = container_of(_work, struct cma_work, work); 3024 struct rdma_id_private *id_priv = work->id; 3025 3026 mutex_lock(&id_priv->handler_mutex); 3027 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 3028 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 3029 goto out_unlock; 3030 if (work->old_state != 0 || work->new_state != 0) { 3031 if (!cma_comp_exch(id_priv, work->old_state, work->new_state)) 3032 goto out_unlock; 3033 } 3034 3035 if (cma_cm_event_handler(id_priv, &work->event)) { 3036 cma_id_put(id_priv); 3037 destroy_id_handler_unlock(id_priv); 3038 goto out_free; 3039 } 3040 3041 out_unlock: 3042 mutex_unlock(&id_priv->handler_mutex); 3043 cma_id_put(id_priv); 3044 out_free: 3045 if (work->event.event == RDMA_CM_EVENT_MULTICAST_JOIN) 3046 rdma_destroy_ah_attr(&work->event.param.ud.ah_attr); 3047 kfree(work); 3048 } 3049 3050 static void cma_init_resolve_route_work(struct cma_work *work, 3051 struct rdma_id_private *id_priv) 3052 { 3053 work->id = id_priv; 3054 INIT_WORK(&work->work, cma_work_handler); 3055 work->old_state = RDMA_CM_ROUTE_QUERY; 3056 work->new_state = RDMA_CM_ROUTE_RESOLVED; 3057 work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED; 3058 } 3059 3060 static void enqueue_resolve_addr_work(struct cma_work *work, 3061 struct rdma_id_private *id_priv) 3062 { 3063 /* Balances with cma_id_put() in cma_work_handler */ 3064 cma_id_get(id_priv); 3065 3066 work->id = id_priv; 3067 INIT_WORK(&work->work, cma_work_handler); 3068 work->old_state = RDMA_CM_ADDR_QUERY; 3069 work->new_state = RDMA_CM_ADDR_RESOLVED; 3070 work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 3071 3072 queue_work(cma_wq, &work->work); 3073 } 3074 3075 static int cma_resolve_ib_route(struct rdma_id_private *id_priv, 3076 unsigned long timeout_ms) 3077 { 3078 struct rdma_route *route = &id_priv->id.route; 3079 struct cma_work *work; 3080 int ret; 3081 3082 work = kzalloc(sizeof *work, GFP_KERNEL); 3083 if (!work) 3084 return -ENOMEM; 3085 3086 cma_init_resolve_route_work(work, id_priv); 3087 3088 if (!route->path_rec) 3089 route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL); 3090 if (!route->path_rec) { 3091 ret = -ENOMEM; 3092 goto err1; 3093 } 3094 3095 ret = cma_query_ib_route(id_priv, timeout_ms, work); 3096 if (ret) 3097 goto err2; 3098 3099 return 0; 3100 err2: 3101 kfree(route->path_rec); 3102 route->path_rec = NULL; 3103 err1: 3104 kfree(work); 3105 return ret; 3106 } 3107 3108 static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type, 3109 unsigned long supported_gids, 3110 enum ib_gid_type default_gid) 3111 { 3112 if ((network_type == RDMA_NETWORK_IPV4 || 3113 network_type == RDMA_NETWORK_IPV6) && 3114 test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids)) 3115 return IB_GID_TYPE_ROCE_UDP_ENCAP; 3116 3117 return default_gid; 3118 } 3119 3120 /* 3121 * cma_iboe_set_path_rec_l2_fields() is helper function which sets 3122 * path record type based on GID type. 3123 * It also sets up other L2 fields which includes destination mac address 3124 * netdev ifindex, of the path record. 3125 * It returns the netdev of the bound interface for this path record entry. 3126 */ 3127 static struct net_device * 3128 cma_iboe_set_path_rec_l2_fields(struct rdma_id_private *id_priv) 3129 { 3130 struct rdma_route *route = &id_priv->id.route; 3131 enum ib_gid_type gid_type = IB_GID_TYPE_ROCE; 3132 struct rdma_addr *addr = &route->addr; 3133 unsigned long supported_gids; 3134 struct net_device *ndev; 3135 3136 if (!addr->dev_addr.bound_dev_if) 3137 return NULL; 3138 3139 ndev = dev_get_by_index(addr->dev_addr.net, 3140 addr->dev_addr.bound_dev_if); 3141 if (!ndev) 3142 return NULL; 3143 3144 supported_gids = roce_gid_type_mask_support(id_priv->id.device, 3145 id_priv->id.port_num); 3146 gid_type = cma_route_gid_type(addr->dev_addr.network, 3147 supported_gids, 3148 id_priv->gid_type); 3149 /* Use the hint from IP Stack to select GID Type */ 3150 if (gid_type < ib_network_to_gid_type(addr->dev_addr.network)) 3151 gid_type = ib_network_to_gid_type(addr->dev_addr.network); 3152 route->path_rec->rec_type = sa_conv_gid_to_pathrec_type(gid_type); 3153 3154 route->path_rec->roce.route_resolved = true; 3155 sa_path_set_dmac(route->path_rec, addr->dev_addr.dst_dev_addr); 3156 return ndev; 3157 } 3158 3159 int rdma_set_ib_path(struct rdma_cm_id *id, 3160 struct sa_path_rec *path_rec) 3161 { 3162 struct rdma_id_private *id_priv; 3163 struct net_device *ndev; 3164 int ret; 3165 3166 id_priv = container_of(id, struct rdma_id_private, id); 3167 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 3168 RDMA_CM_ROUTE_RESOLVED)) 3169 return -EINVAL; 3170 3171 id->route.path_rec = kmemdup(path_rec, sizeof(*path_rec), 3172 GFP_KERNEL); 3173 if (!id->route.path_rec) { 3174 ret = -ENOMEM; 3175 goto err; 3176 } 3177 3178 if (rdma_protocol_roce(id->device, id->port_num)) { 3179 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 3180 if (!ndev) { 3181 ret = -ENODEV; 3182 goto err_free; 3183 } 3184 dev_put(ndev); 3185 } 3186 3187 id->route.num_pri_alt_paths = 1; 3188 return 0; 3189 3190 err_free: 3191 kfree(id->route.path_rec); 3192 id->route.path_rec = NULL; 3193 err: 3194 cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED); 3195 return ret; 3196 } 3197 EXPORT_SYMBOL(rdma_set_ib_path); 3198 3199 static int cma_resolve_iw_route(struct rdma_id_private *id_priv) 3200 { 3201 struct cma_work *work; 3202 3203 work = kzalloc(sizeof *work, GFP_KERNEL); 3204 if (!work) 3205 return -ENOMEM; 3206 3207 cma_init_resolve_route_work(work, id_priv); 3208 queue_work(cma_wq, &work->work); 3209 return 0; 3210 } 3211 3212 static int get_vlan_ndev_tc(struct net_device *vlan_ndev, int prio) 3213 { 3214 struct net_device *dev; 3215 3216 dev = vlan_dev_real_dev(vlan_ndev); 3217 if (dev->num_tc) 3218 return netdev_get_prio_tc_map(dev, prio); 3219 3220 return (vlan_dev_get_egress_qos_mask(vlan_ndev, prio) & 3221 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 3222 } 3223 3224 struct iboe_prio_tc_map { 3225 int input_prio; 3226 int output_tc; 3227 bool found; 3228 }; 3229 3230 static int get_lower_vlan_dev_tc(struct net_device *dev, 3231 struct netdev_nested_priv *priv) 3232 { 3233 struct iboe_prio_tc_map *map = (struct iboe_prio_tc_map *)priv->data; 3234 3235 if (is_vlan_dev(dev)) 3236 map->output_tc = get_vlan_ndev_tc(dev, map->input_prio); 3237 else if (dev->num_tc) 3238 map->output_tc = netdev_get_prio_tc_map(dev, map->input_prio); 3239 else 3240 map->output_tc = 0; 3241 /* We are interested only in first level VLAN device, so always 3242 * return 1 to stop iterating over next level devices. 3243 */ 3244 map->found = true; 3245 return 1; 3246 } 3247 3248 static int iboe_tos_to_sl(struct net_device *ndev, int tos) 3249 { 3250 struct iboe_prio_tc_map prio_tc_map = {}; 3251 int prio = rt_tos2priority(tos); 3252 struct netdev_nested_priv priv; 3253 3254 /* If VLAN device, get it directly from the VLAN netdev */ 3255 if (is_vlan_dev(ndev)) 3256 return get_vlan_ndev_tc(ndev, prio); 3257 3258 prio_tc_map.input_prio = prio; 3259 priv.data = (void *)&prio_tc_map; 3260 rcu_read_lock(); 3261 netdev_walk_all_lower_dev_rcu(ndev, 3262 get_lower_vlan_dev_tc, 3263 &priv); 3264 rcu_read_unlock(); 3265 /* If map is found from lower device, use it; Otherwise 3266 * continue with the current netdevice to get priority to tc map. 3267 */ 3268 if (prio_tc_map.found) 3269 return prio_tc_map.output_tc; 3270 else if (ndev->num_tc) 3271 return netdev_get_prio_tc_map(ndev, prio); 3272 else 3273 return 0; 3274 } 3275 3276 static __be32 cma_get_roce_udp_flow_label(struct rdma_id_private *id_priv) 3277 { 3278 struct sockaddr_in6 *addr6; 3279 u16 dport, sport; 3280 u32 hash, fl; 3281 3282 addr6 = (struct sockaddr_in6 *)cma_src_addr(id_priv); 3283 fl = be32_to_cpu(addr6->sin6_flowinfo) & IB_GRH_FLOWLABEL_MASK; 3284 if ((cma_family(id_priv) != AF_INET6) || !fl) { 3285 dport = be16_to_cpu(cma_port(cma_dst_addr(id_priv))); 3286 sport = be16_to_cpu(cma_port(cma_src_addr(id_priv))); 3287 hash = (u32)sport * 31 + dport; 3288 fl = hash & IB_GRH_FLOWLABEL_MASK; 3289 } 3290 3291 return cpu_to_be32(fl); 3292 } 3293 3294 static int cma_resolve_iboe_route(struct rdma_id_private *id_priv) 3295 { 3296 struct rdma_route *route = &id_priv->id.route; 3297 struct rdma_addr *addr = &route->addr; 3298 struct cma_work *work; 3299 int ret; 3300 struct net_device *ndev; 3301 3302 u8 default_roce_tos = id_priv->cma_dev->default_roce_tos[id_priv->id.port_num - 3303 rdma_start_port(id_priv->cma_dev->device)]; 3304 u8 tos; 3305 3306 mutex_lock(&id_priv->qp_mutex); 3307 tos = id_priv->tos_set ? id_priv->tos : default_roce_tos; 3308 mutex_unlock(&id_priv->qp_mutex); 3309 3310 work = kzalloc(sizeof *work, GFP_KERNEL); 3311 if (!work) 3312 return -ENOMEM; 3313 3314 route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL); 3315 if (!route->path_rec) { 3316 ret = -ENOMEM; 3317 goto err1; 3318 } 3319 3320 route->num_pri_alt_paths = 1; 3321 3322 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 3323 if (!ndev) { 3324 ret = -ENODEV; 3325 goto err2; 3326 } 3327 3328 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 3329 &route->path_rec->sgid); 3330 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr, 3331 &route->path_rec->dgid); 3332 3333 if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB) 3334 /* TODO: get the hoplimit from the inet/inet6 device */ 3335 route->path_rec->hop_limit = addr->dev_addr.hoplimit; 3336 else 3337 route->path_rec->hop_limit = 1; 3338 route->path_rec->reversible = 1; 3339 route->path_rec->pkey = cpu_to_be16(0xffff); 3340 route->path_rec->mtu_selector = IB_SA_EQ; 3341 route->path_rec->sl = iboe_tos_to_sl(ndev, tos); 3342 route->path_rec->traffic_class = tos; 3343 route->path_rec->mtu = iboe_get_mtu(ndev->mtu); 3344 route->path_rec->rate_selector = IB_SA_EQ; 3345 route->path_rec->rate = IB_RATE_PORT_CURRENT; 3346 dev_put(ndev); 3347 route->path_rec->packet_life_time_selector = IB_SA_EQ; 3348 /* In case ACK timeout is set, use this value to calculate 3349 * PacketLifeTime. As per IBTA 12.7.34, 3350 * local ACK timeout = (2 * PacketLifeTime + Local CA’s ACK delay). 3351 * Assuming a negligible local ACK delay, we can use 3352 * PacketLifeTime = local ACK timeout/2 3353 * as a reasonable approximation for RoCE networks. 3354 */ 3355 mutex_lock(&id_priv->qp_mutex); 3356 if (id_priv->timeout_set && id_priv->timeout) 3357 route->path_rec->packet_life_time = id_priv->timeout - 1; 3358 else 3359 route->path_rec->packet_life_time = CMA_IBOE_PACKET_LIFETIME; 3360 mutex_unlock(&id_priv->qp_mutex); 3361 3362 if (!route->path_rec->mtu) { 3363 ret = -EINVAL; 3364 goto err2; 3365 } 3366 3367 if (rdma_protocol_roce_udp_encap(id_priv->id.device, 3368 id_priv->id.port_num)) 3369 route->path_rec->flow_label = 3370 cma_get_roce_udp_flow_label(id_priv); 3371 3372 cma_init_resolve_route_work(work, id_priv); 3373 queue_work(cma_wq, &work->work); 3374 3375 return 0; 3376 3377 err2: 3378 kfree(route->path_rec); 3379 route->path_rec = NULL; 3380 route->num_pri_alt_paths = 0; 3381 err1: 3382 kfree(work); 3383 return ret; 3384 } 3385 3386 int rdma_resolve_route(struct rdma_cm_id *id, unsigned long timeout_ms) 3387 { 3388 struct rdma_id_private *id_priv; 3389 enum rdma_cm_state state; 3390 int ret; 3391 3392 if (!timeout_ms) 3393 return -EINVAL; 3394 3395 id_priv = container_of(id, struct rdma_id_private, id); 3396 state = id_priv->state; 3397 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 3398 RDMA_CM_ROUTE_QUERY) && 3399 !cma_comp_exch(id_priv, RDMA_CM_ADDRINFO_RESOLVED, 3400 RDMA_CM_ROUTE_QUERY)) 3401 return -EINVAL; 3402 3403 cma_id_get(id_priv); 3404 if (rdma_cap_ib_sa(id->device, id->port_num)) 3405 ret = cma_resolve_ib_route(id_priv, timeout_ms); 3406 else if (rdma_protocol_roce(id->device, id->port_num)) { 3407 ret = cma_resolve_iboe_route(id_priv); 3408 if (!ret) 3409 cma_add_id_to_tree(id_priv); 3410 } 3411 else if (rdma_protocol_iwarp(id->device, id->port_num)) 3412 ret = cma_resolve_iw_route(id_priv); 3413 else 3414 ret = -ENOSYS; 3415 3416 if (ret) 3417 goto err; 3418 3419 return 0; 3420 err: 3421 cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, state); 3422 cma_id_put(id_priv); 3423 return ret; 3424 } 3425 EXPORT_SYMBOL(rdma_resolve_route); 3426 3427 static void cma_set_loopback(struct sockaddr *addr) 3428 { 3429 switch (addr->sa_family) { 3430 case AF_INET: 3431 ((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK); 3432 break; 3433 case AF_INET6: 3434 ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr, 3435 0, 0, 0, htonl(1)); 3436 break; 3437 default: 3438 ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr, 3439 0, 0, 0, htonl(1)); 3440 break; 3441 } 3442 } 3443 3444 static int cma_bind_loopback(struct rdma_id_private *id_priv) 3445 { 3446 struct cma_device *cma_dev, *cur_dev; 3447 union ib_gid gid; 3448 enum ib_port_state port_state; 3449 unsigned int p; 3450 u16 pkey; 3451 int ret; 3452 3453 cma_dev = NULL; 3454 mutex_lock(&lock); 3455 list_for_each_entry(cur_dev, &dev_list, list) { 3456 if (cma_family(id_priv) == AF_IB && 3457 !rdma_cap_ib_cm(cur_dev->device, 1)) 3458 continue; 3459 3460 if (!cma_dev) 3461 cma_dev = cur_dev; 3462 3463 rdma_for_each_port (cur_dev->device, p) { 3464 if (!ib_get_cached_port_state(cur_dev->device, p, &port_state) && 3465 port_state == IB_PORT_ACTIVE) { 3466 cma_dev = cur_dev; 3467 goto port_found; 3468 } 3469 } 3470 } 3471 3472 if (!cma_dev) { 3473 ret = -ENODEV; 3474 goto out; 3475 } 3476 3477 p = 1; 3478 3479 port_found: 3480 ret = rdma_query_gid(cma_dev->device, p, 0, &gid); 3481 if (ret) 3482 goto out; 3483 3484 ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey); 3485 if (ret) 3486 goto out; 3487 3488 id_priv->id.route.addr.dev_addr.dev_type = 3489 (rdma_protocol_ib(cma_dev->device, p)) ? 3490 ARPHRD_INFINIBAND : ARPHRD_ETHER; 3491 3492 rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3493 ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey); 3494 id_priv->id.port_num = p; 3495 cma_attach_to_dev(id_priv, cma_dev); 3496 rdma_restrack_add(&id_priv->res); 3497 cma_set_loopback(cma_src_addr(id_priv)); 3498 out: 3499 mutex_unlock(&lock); 3500 return ret; 3501 } 3502 3503 static void addr_handler(int status, struct sockaddr *src_addr, 3504 struct rdma_dev_addr *dev_addr, void *context) 3505 { 3506 struct rdma_id_private *id_priv = context; 3507 struct rdma_cm_event event = {}; 3508 struct sockaddr *addr; 3509 struct sockaddr_storage old_addr; 3510 3511 mutex_lock(&id_priv->handler_mutex); 3512 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, 3513 RDMA_CM_ADDR_RESOLVED)) 3514 goto out; 3515 3516 /* 3517 * Store the previous src address, so that if we fail to acquire 3518 * matching rdma device, old address can be restored back, which helps 3519 * to cancel the cma listen operation correctly. 3520 */ 3521 addr = cma_src_addr(id_priv); 3522 memcpy(&old_addr, addr, rdma_addr_size(addr)); 3523 memcpy(addr, src_addr, rdma_addr_size(src_addr)); 3524 if (!status && !id_priv->cma_dev) { 3525 status = cma_acquire_dev_by_src_ip(id_priv); 3526 if (status) 3527 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to acquire device. status %d\n", 3528 status); 3529 rdma_restrack_add(&id_priv->res); 3530 } else if (status) { 3531 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to resolve IP. status %d\n", status); 3532 } 3533 3534 if (status) { 3535 memcpy(addr, &old_addr, 3536 rdma_addr_size((struct sockaddr *)&old_addr)); 3537 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 3538 RDMA_CM_ADDR_BOUND)) 3539 goto out; 3540 event.event = RDMA_CM_EVENT_ADDR_ERROR; 3541 event.status = status; 3542 } else 3543 event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 3544 3545 if (cma_cm_event_handler(id_priv, &event)) { 3546 destroy_id_handler_unlock(id_priv); 3547 return; 3548 } 3549 out: 3550 mutex_unlock(&id_priv->handler_mutex); 3551 } 3552 3553 static int cma_resolve_loopback(struct rdma_id_private *id_priv) 3554 { 3555 struct cma_work *work; 3556 union ib_gid gid; 3557 int ret; 3558 3559 work = kzalloc(sizeof *work, GFP_KERNEL); 3560 if (!work) 3561 return -ENOMEM; 3562 3563 if (!id_priv->cma_dev) { 3564 ret = cma_bind_loopback(id_priv); 3565 if (ret) 3566 goto err; 3567 } 3568 3569 rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3570 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid); 3571 3572 enqueue_resolve_addr_work(work, id_priv); 3573 return 0; 3574 err: 3575 kfree(work); 3576 return ret; 3577 } 3578 3579 static int cma_resolve_ib_addr(struct rdma_id_private *id_priv) 3580 { 3581 struct cma_work *work; 3582 int ret; 3583 3584 work = kzalloc(sizeof *work, GFP_KERNEL); 3585 if (!work) 3586 return -ENOMEM; 3587 3588 if (!id_priv->cma_dev) { 3589 ret = cma_resolve_ib_dev(id_priv); 3590 if (ret) 3591 goto err; 3592 } 3593 3594 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *) 3595 &(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr)); 3596 3597 enqueue_resolve_addr_work(work, id_priv); 3598 return 0; 3599 err: 3600 kfree(work); 3601 return ret; 3602 } 3603 3604 int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse) 3605 { 3606 struct rdma_id_private *id_priv; 3607 unsigned long flags; 3608 int ret; 3609 3610 id_priv = container_of(id, struct rdma_id_private, id); 3611 spin_lock_irqsave(&id_priv->lock, flags); 3612 if ((reuse && id_priv->state != RDMA_CM_LISTEN) || 3613 id_priv->state == RDMA_CM_IDLE) { 3614 id_priv->reuseaddr = reuse; 3615 ret = 0; 3616 } else { 3617 ret = -EINVAL; 3618 } 3619 spin_unlock_irqrestore(&id_priv->lock, flags); 3620 return ret; 3621 } 3622 EXPORT_SYMBOL(rdma_set_reuseaddr); 3623 3624 int rdma_set_afonly(struct rdma_cm_id *id, int afonly) 3625 { 3626 struct rdma_id_private *id_priv; 3627 unsigned long flags; 3628 int ret; 3629 3630 id_priv = container_of(id, struct rdma_id_private, id); 3631 spin_lock_irqsave(&id_priv->lock, flags); 3632 if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) { 3633 id_priv->options |= (1 << CMA_OPTION_AFONLY); 3634 id_priv->afonly = afonly; 3635 ret = 0; 3636 } else { 3637 ret = -EINVAL; 3638 } 3639 spin_unlock_irqrestore(&id_priv->lock, flags); 3640 return ret; 3641 } 3642 EXPORT_SYMBOL(rdma_set_afonly); 3643 3644 static void cma_bind_port(struct rdma_bind_list *bind_list, 3645 struct rdma_id_private *id_priv) 3646 { 3647 struct sockaddr *addr; 3648 struct sockaddr_ib *sib; 3649 u64 sid, mask; 3650 __be16 port; 3651 3652 lockdep_assert_held(&lock); 3653 3654 addr = cma_src_addr(id_priv); 3655 port = htons(bind_list->port); 3656 3657 switch (addr->sa_family) { 3658 case AF_INET: 3659 ((struct sockaddr_in *) addr)->sin_port = port; 3660 break; 3661 case AF_INET6: 3662 ((struct sockaddr_in6 *) addr)->sin6_port = port; 3663 break; 3664 case AF_IB: 3665 sib = (struct sockaddr_ib *) addr; 3666 sid = be64_to_cpu(sib->sib_sid); 3667 mask = be64_to_cpu(sib->sib_sid_mask); 3668 sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port)); 3669 sib->sib_sid_mask = cpu_to_be64(~0ULL); 3670 break; 3671 } 3672 id_priv->bind_list = bind_list; 3673 hlist_add_head(&id_priv->node, &bind_list->owners); 3674 } 3675 3676 static int cma_alloc_port(enum rdma_ucm_port_space ps, 3677 struct rdma_id_private *id_priv, unsigned short snum) 3678 { 3679 struct rdma_bind_list *bind_list; 3680 int ret; 3681 3682 lockdep_assert_held(&lock); 3683 3684 bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL); 3685 if (!bind_list) 3686 return -ENOMEM; 3687 3688 ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list, 3689 snum); 3690 if (ret < 0) 3691 goto err; 3692 3693 bind_list->ps = ps; 3694 bind_list->port = snum; 3695 cma_bind_port(bind_list, id_priv); 3696 return 0; 3697 err: 3698 kfree(bind_list); 3699 return ret == -ENOSPC ? -EADDRNOTAVAIL : ret; 3700 } 3701 3702 static int cma_port_is_unique(struct rdma_bind_list *bind_list, 3703 struct rdma_id_private *id_priv) 3704 { 3705 struct rdma_id_private *cur_id; 3706 struct sockaddr *daddr = cma_dst_addr(id_priv); 3707 struct sockaddr *saddr = cma_src_addr(id_priv); 3708 __be16 dport = cma_port(daddr); 3709 3710 lockdep_assert_held(&lock); 3711 3712 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3713 struct sockaddr *cur_daddr = cma_dst_addr(cur_id); 3714 struct sockaddr *cur_saddr = cma_src_addr(cur_id); 3715 __be16 cur_dport = cma_port(cur_daddr); 3716 3717 if (id_priv == cur_id) 3718 continue; 3719 3720 /* different dest port -> unique */ 3721 if (!cma_any_port(daddr) && 3722 !cma_any_port(cur_daddr) && 3723 (dport != cur_dport)) 3724 continue; 3725 3726 /* different src address -> unique */ 3727 if (!cma_any_addr(saddr) && 3728 !cma_any_addr(cur_saddr) && 3729 cma_addr_cmp(saddr, cur_saddr)) 3730 continue; 3731 3732 /* different dst address -> unique */ 3733 if (!cma_any_addr(daddr) && 3734 !cma_any_addr(cur_daddr) && 3735 cma_addr_cmp(daddr, cur_daddr)) 3736 continue; 3737 3738 return -EADDRNOTAVAIL; 3739 } 3740 return 0; 3741 } 3742 3743 static int cma_alloc_any_port(enum rdma_ucm_port_space ps, 3744 struct rdma_id_private *id_priv) 3745 { 3746 static unsigned int last_used_port; 3747 int low, high, remaining; 3748 unsigned int rover; 3749 struct net *net = id_priv->id.route.addr.dev_addr.net; 3750 3751 lockdep_assert_held(&lock); 3752 3753 inet_get_local_port_range(net, &low, &high); 3754 remaining = (high - low) + 1; 3755 rover = get_random_u32_inclusive(low, remaining + low - 1); 3756 retry: 3757 if (last_used_port != rover) { 3758 struct rdma_bind_list *bind_list; 3759 int ret; 3760 3761 bind_list = cma_ps_find(net, ps, (unsigned short)rover); 3762 3763 if (!bind_list) { 3764 ret = cma_alloc_port(ps, id_priv, rover); 3765 } else { 3766 ret = cma_port_is_unique(bind_list, id_priv); 3767 if (!ret) 3768 cma_bind_port(bind_list, id_priv); 3769 } 3770 /* 3771 * Remember previously used port number in order to avoid 3772 * re-using same port immediately after it is closed. 3773 */ 3774 if (!ret) 3775 last_used_port = rover; 3776 if (ret != -EADDRNOTAVAIL) 3777 return ret; 3778 } 3779 if (--remaining) { 3780 rover++; 3781 if ((rover < low) || (rover > high)) 3782 rover = low; 3783 goto retry; 3784 } 3785 return -EADDRNOTAVAIL; 3786 } 3787 3788 /* 3789 * Check that the requested port is available. This is called when trying to 3790 * bind to a specific port, or when trying to listen on a bound port. In 3791 * the latter case, the provided id_priv may already be on the bind_list, but 3792 * we still need to check that it's okay to start listening. 3793 */ 3794 static int cma_check_port(struct rdma_bind_list *bind_list, 3795 struct rdma_id_private *id_priv, uint8_t reuseaddr) 3796 { 3797 struct rdma_id_private *cur_id; 3798 struct sockaddr *addr, *cur_addr; 3799 3800 lockdep_assert_held(&lock); 3801 3802 addr = cma_src_addr(id_priv); 3803 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3804 if (id_priv == cur_id) 3805 continue; 3806 3807 if (reuseaddr && cur_id->reuseaddr) 3808 continue; 3809 3810 cur_addr = cma_src_addr(cur_id); 3811 if (id_priv->afonly && cur_id->afonly && 3812 (addr->sa_family != cur_addr->sa_family)) 3813 continue; 3814 3815 if (cma_any_addr(addr) || cma_any_addr(cur_addr)) 3816 return -EADDRNOTAVAIL; 3817 3818 if (!cma_addr_cmp(addr, cur_addr)) 3819 return -EADDRINUSE; 3820 } 3821 return 0; 3822 } 3823 3824 static int cma_use_port(enum rdma_ucm_port_space ps, 3825 struct rdma_id_private *id_priv) 3826 { 3827 struct rdma_bind_list *bind_list; 3828 unsigned short snum; 3829 int ret; 3830 3831 lockdep_assert_held(&lock); 3832 3833 snum = ntohs(cma_port(cma_src_addr(id_priv))); 3834 if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 3835 return -EACCES; 3836 3837 bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum); 3838 if (!bind_list) { 3839 ret = cma_alloc_port(ps, id_priv, snum); 3840 } else { 3841 ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr); 3842 if (!ret) 3843 cma_bind_port(bind_list, id_priv); 3844 } 3845 return ret; 3846 } 3847 3848 static enum rdma_ucm_port_space 3849 cma_select_inet_ps(struct rdma_id_private *id_priv) 3850 { 3851 switch (id_priv->id.ps) { 3852 case RDMA_PS_TCP: 3853 case RDMA_PS_UDP: 3854 case RDMA_PS_IPOIB: 3855 case RDMA_PS_IB: 3856 return id_priv->id.ps; 3857 default: 3858 3859 return 0; 3860 } 3861 } 3862 3863 static enum rdma_ucm_port_space 3864 cma_select_ib_ps(struct rdma_id_private *id_priv) 3865 { 3866 enum rdma_ucm_port_space ps = 0; 3867 struct sockaddr_ib *sib; 3868 u64 sid_ps, mask, sid; 3869 3870 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 3871 mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK; 3872 sid = be64_to_cpu(sib->sib_sid) & mask; 3873 3874 if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) { 3875 sid_ps = RDMA_IB_IP_PS_IB; 3876 ps = RDMA_PS_IB; 3877 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) && 3878 (sid == (RDMA_IB_IP_PS_TCP & mask))) { 3879 sid_ps = RDMA_IB_IP_PS_TCP; 3880 ps = RDMA_PS_TCP; 3881 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) && 3882 (sid == (RDMA_IB_IP_PS_UDP & mask))) { 3883 sid_ps = RDMA_IB_IP_PS_UDP; 3884 ps = RDMA_PS_UDP; 3885 } 3886 3887 if (ps) { 3888 sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib))); 3889 sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK | 3890 be64_to_cpu(sib->sib_sid_mask)); 3891 } 3892 return ps; 3893 } 3894 3895 static int cma_get_port(struct rdma_id_private *id_priv) 3896 { 3897 enum rdma_ucm_port_space ps; 3898 int ret; 3899 3900 if (cma_family(id_priv) != AF_IB) 3901 ps = cma_select_inet_ps(id_priv); 3902 else 3903 ps = cma_select_ib_ps(id_priv); 3904 if (!ps) 3905 return -EPROTONOSUPPORT; 3906 3907 mutex_lock(&lock); 3908 if (cma_any_port(cma_src_addr(id_priv))) 3909 ret = cma_alloc_any_port(ps, id_priv); 3910 else 3911 ret = cma_use_port(ps, id_priv); 3912 mutex_unlock(&lock); 3913 3914 return ret; 3915 } 3916 3917 static int cma_check_linklocal(struct rdma_dev_addr *dev_addr, 3918 struct sockaddr *addr) 3919 { 3920 #if IS_ENABLED(CONFIG_IPV6) 3921 struct sockaddr_in6 *sin6; 3922 3923 if (addr->sa_family != AF_INET6) 3924 return 0; 3925 3926 sin6 = (struct sockaddr_in6 *) addr; 3927 3928 if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL)) 3929 return 0; 3930 3931 if (!sin6->sin6_scope_id) 3932 return -EINVAL; 3933 3934 dev_addr->bound_dev_if = sin6->sin6_scope_id; 3935 #endif 3936 return 0; 3937 } 3938 3939 int rdma_listen(struct rdma_cm_id *id, int backlog) 3940 { 3941 struct rdma_id_private *id_priv = 3942 container_of(id, struct rdma_id_private, id); 3943 int ret; 3944 3945 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) { 3946 struct sockaddr_in any_in = { 3947 .sin_family = AF_INET, 3948 .sin_addr.s_addr = htonl(INADDR_ANY), 3949 }; 3950 3951 /* For a well behaved ULP state will be RDMA_CM_IDLE */ 3952 ret = rdma_bind_addr(id, (struct sockaddr *)&any_in); 3953 if (ret) 3954 return ret; 3955 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, 3956 RDMA_CM_LISTEN))) 3957 return -EINVAL; 3958 } 3959 3960 /* 3961 * Once the ID reaches RDMA_CM_LISTEN it is not allowed to be reusable 3962 * any more, and has to be unique in the bind list. 3963 */ 3964 if (id_priv->reuseaddr) { 3965 mutex_lock(&lock); 3966 ret = cma_check_port(id_priv->bind_list, id_priv, 0); 3967 if (!ret) 3968 id_priv->reuseaddr = 0; 3969 mutex_unlock(&lock); 3970 if (ret) 3971 goto err; 3972 } 3973 3974 id_priv->backlog = backlog; 3975 if (id_priv->cma_dev) { 3976 if (rdma_cap_ib_cm(id->device, 1)) { 3977 ret = cma_ib_listen(id_priv); 3978 if (ret) 3979 goto err; 3980 } else if (rdma_cap_iw_cm(id->device, 1)) { 3981 ret = cma_iw_listen(id_priv, backlog); 3982 if (ret) 3983 goto err; 3984 } else { 3985 ret = -ENOSYS; 3986 goto err; 3987 } 3988 } else { 3989 ret = cma_listen_on_all(id_priv); 3990 if (ret) 3991 goto err; 3992 } 3993 3994 return 0; 3995 err: 3996 id_priv->backlog = 0; 3997 /* 3998 * All the failure paths that lead here will not allow the req_handler's 3999 * to have run. 4000 */ 4001 cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND); 4002 return ret; 4003 } 4004 EXPORT_SYMBOL(rdma_listen); 4005 4006 static int rdma_bind_addr_dst(struct rdma_id_private *id_priv, 4007 struct sockaddr *addr, const struct sockaddr *daddr) 4008 { 4009 struct sockaddr *id_daddr; 4010 int ret; 4011 4012 if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 && 4013 addr->sa_family != AF_IB) 4014 return -EAFNOSUPPORT; 4015 4016 if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND)) 4017 return -EINVAL; 4018 4019 ret = cma_check_linklocal(&id_priv->id.route.addr.dev_addr, addr); 4020 if (ret) 4021 goto err1; 4022 4023 memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr)); 4024 if (!cma_any_addr(addr)) { 4025 ret = cma_translate_addr(addr, &id_priv->id.route.addr.dev_addr); 4026 if (ret) 4027 goto err1; 4028 4029 ret = cma_acquire_dev_by_src_ip(id_priv); 4030 if (ret) 4031 goto err1; 4032 } 4033 4034 if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) { 4035 if (addr->sa_family == AF_INET) 4036 id_priv->afonly = 1; 4037 #if IS_ENABLED(CONFIG_IPV6) 4038 else if (addr->sa_family == AF_INET6) { 4039 struct net *net = id_priv->id.route.addr.dev_addr.net; 4040 4041 id_priv->afonly = net->ipv6.sysctl.bindv6only; 4042 } 4043 #endif 4044 } 4045 id_daddr = cma_dst_addr(id_priv); 4046 if (daddr != id_daddr) 4047 memcpy(id_daddr, daddr, rdma_addr_size(addr)); 4048 id_daddr->sa_family = addr->sa_family; 4049 4050 ret = cma_get_port(id_priv); 4051 if (ret) 4052 goto err2; 4053 4054 if (!cma_any_addr(addr)) 4055 rdma_restrack_add(&id_priv->res); 4056 return 0; 4057 err2: 4058 if (id_priv->cma_dev) 4059 cma_release_dev(id_priv); 4060 err1: 4061 cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE); 4062 return ret; 4063 } 4064 4065 static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 4066 const struct sockaddr *dst_addr) 4067 { 4068 struct rdma_id_private *id_priv = 4069 container_of(id, struct rdma_id_private, id); 4070 struct sockaddr_storage zero_sock = {}; 4071 4072 if (src_addr && src_addr->sa_family) 4073 return rdma_bind_addr_dst(id_priv, src_addr, dst_addr); 4074 4075 /* 4076 * When the src_addr is not specified, automatically supply an any addr 4077 */ 4078 zero_sock.ss_family = dst_addr->sa_family; 4079 if (IS_ENABLED(CONFIG_IPV6) && dst_addr->sa_family == AF_INET6) { 4080 struct sockaddr_in6 *src_addr6 = 4081 (struct sockaddr_in6 *)&zero_sock; 4082 struct sockaddr_in6 *dst_addr6 = 4083 (struct sockaddr_in6 *)dst_addr; 4084 4085 src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id; 4086 if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL) 4087 id->route.addr.dev_addr.bound_dev_if = 4088 dst_addr6->sin6_scope_id; 4089 } else if (dst_addr->sa_family == AF_IB) { 4090 ((struct sockaddr_ib *)&zero_sock)->sib_pkey = 4091 ((struct sockaddr_ib *)dst_addr)->sib_pkey; 4092 } 4093 return rdma_bind_addr_dst(id_priv, (struct sockaddr *)&zero_sock, dst_addr); 4094 } 4095 4096 /* 4097 * If required, resolve the source address for bind and leave the id_priv in 4098 * state RDMA_CM_ADDR_BOUND. This oddly uses the state to determine the prior 4099 * calls made by ULP, a previously bound ID will not be re-bound and src_addr is 4100 * ignored. 4101 */ 4102 static int resolve_prepare_src(struct rdma_id_private *id_priv, 4103 struct sockaddr *src_addr, 4104 const struct sockaddr *dst_addr) 4105 { 4106 int ret; 4107 4108 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) { 4109 /* For a well behaved ULP state will be RDMA_CM_IDLE */ 4110 ret = cma_bind_addr(&id_priv->id, src_addr, dst_addr); 4111 if (ret) 4112 return ret; 4113 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, 4114 RDMA_CM_ADDR_QUERY))) 4115 return -EINVAL; 4116 4117 } else { 4118 memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr)); 4119 } 4120 4121 if (cma_family(id_priv) != dst_addr->sa_family) { 4122 ret = -EINVAL; 4123 goto err_state; 4124 } 4125 return 0; 4126 4127 err_state: 4128 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); 4129 return ret; 4130 } 4131 4132 int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 4133 const struct sockaddr *dst_addr, unsigned long timeout_ms) 4134 { 4135 struct rdma_id_private *id_priv = 4136 container_of(id, struct rdma_id_private, id); 4137 int ret; 4138 4139 ret = resolve_prepare_src(id_priv, src_addr, dst_addr); 4140 if (ret) 4141 return ret; 4142 4143 if (cma_any_addr(dst_addr)) { 4144 ret = cma_resolve_loopback(id_priv); 4145 } else { 4146 if (dst_addr->sa_family == AF_IB) { 4147 ret = cma_resolve_ib_addr(id_priv); 4148 } else { 4149 /* 4150 * The FSM can return back to RDMA_CM_ADDR_BOUND after 4151 * rdma_resolve_ip() is called, eg through the error 4152 * path in addr_handler(). If this happens the existing 4153 * request must be canceled before issuing a new one. 4154 * Since canceling a request is a bit slow and this 4155 * oddball path is rare, keep track once a request has 4156 * been issued. The track turns out to be a permanent 4157 * state since this is the only cancel as it is 4158 * immediately before rdma_resolve_ip(). 4159 */ 4160 if (id_priv->used_resolve_ip) 4161 rdma_addr_cancel(&id->route.addr.dev_addr); 4162 else 4163 id_priv->used_resolve_ip = 1; 4164 ret = rdma_resolve_ip(cma_src_addr(id_priv), dst_addr, 4165 &id->route.addr.dev_addr, 4166 timeout_ms, addr_handler, 4167 false, id_priv); 4168 } 4169 } 4170 if (ret) 4171 goto err; 4172 4173 return 0; 4174 err: 4175 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); 4176 return ret; 4177 } 4178 EXPORT_SYMBOL(rdma_resolve_addr); 4179 4180 int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr) 4181 { 4182 struct rdma_id_private *id_priv = 4183 container_of(id, struct rdma_id_private, id); 4184 4185 return rdma_bind_addr_dst(id_priv, addr, cma_dst_addr(id_priv)); 4186 } 4187 EXPORT_SYMBOL(rdma_bind_addr); 4188 4189 static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv) 4190 { 4191 struct cma_hdr *cma_hdr; 4192 4193 cma_hdr = hdr; 4194 cma_hdr->cma_version = CMA_VERSION; 4195 if (cma_family(id_priv) == AF_INET) { 4196 struct sockaddr_in *src4, *dst4; 4197 4198 src4 = (struct sockaddr_in *) cma_src_addr(id_priv); 4199 dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv); 4200 4201 cma_set_ip_ver(cma_hdr, 4); 4202 cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr; 4203 cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr; 4204 cma_hdr->port = src4->sin_port; 4205 } else if (cma_family(id_priv) == AF_INET6) { 4206 struct sockaddr_in6 *src6, *dst6; 4207 4208 src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 4209 dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv); 4210 4211 cma_set_ip_ver(cma_hdr, 6); 4212 cma_hdr->src_addr.ip6 = src6->sin6_addr; 4213 cma_hdr->dst_addr.ip6 = dst6->sin6_addr; 4214 cma_hdr->port = src6->sin6_port; 4215 } 4216 return 0; 4217 } 4218 4219 static int cma_sidr_rep_handler(struct ib_cm_id *cm_id, 4220 const struct ib_cm_event *ib_event) 4221 { 4222 struct rdma_id_private *id_priv = cm_id->context; 4223 struct rdma_cm_event event = {}; 4224 const struct ib_cm_sidr_rep_event_param *rep = 4225 &ib_event->param.sidr_rep_rcvd; 4226 int ret; 4227 4228 mutex_lock(&id_priv->handler_mutex); 4229 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 4230 goto out; 4231 4232 switch (ib_event->event) { 4233 case IB_CM_SIDR_REQ_ERROR: 4234 event.event = RDMA_CM_EVENT_UNREACHABLE; 4235 event.status = -ETIMEDOUT; 4236 break; 4237 case IB_CM_SIDR_REP_RECEIVED: 4238 event.param.ud.private_data = ib_event->private_data; 4239 event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE; 4240 if (rep->status != IB_SIDR_SUCCESS) { 4241 event.event = RDMA_CM_EVENT_UNREACHABLE; 4242 event.status = ib_event->param.sidr_rep_rcvd.status; 4243 pr_debug_ratelimited("RDMA CM: UNREACHABLE: bad SIDR reply. status %d\n", 4244 event.status); 4245 break; 4246 } 4247 ret = cma_set_qkey(id_priv, rep->qkey); 4248 if (ret) { 4249 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to set qkey. status %d\n", ret); 4250 event.event = RDMA_CM_EVENT_ADDR_ERROR; 4251 event.status = ret; 4252 break; 4253 } 4254 ib_init_ah_attr_from_path(id_priv->id.device, 4255 id_priv->id.port_num, 4256 id_priv->id.route.path_rec, 4257 &event.param.ud.ah_attr, 4258 rep->sgid_attr); 4259 event.param.ud.qp_num = rep->qpn; 4260 event.param.ud.qkey = rep->qkey; 4261 event.event = RDMA_CM_EVENT_ESTABLISHED; 4262 event.status = 0; 4263 break; 4264 default: 4265 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 4266 ib_event->event); 4267 goto out; 4268 } 4269 4270 ret = cma_cm_event_handler(id_priv, &event); 4271 4272 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 4273 if (ret) { 4274 /* Destroy the CM ID by returning a non-zero value. */ 4275 id_priv->cm_id.ib = NULL; 4276 destroy_id_handler_unlock(id_priv); 4277 return ret; 4278 } 4279 out: 4280 mutex_unlock(&id_priv->handler_mutex); 4281 return 0; 4282 } 4283 4284 static int cma_resolve_ib_udp(struct rdma_id_private *id_priv, 4285 struct rdma_conn_param *conn_param) 4286 { 4287 struct ib_cm_sidr_req_param req; 4288 struct ib_cm_id *id; 4289 void *private_data; 4290 u8 offset; 4291 int ret; 4292 4293 memset(&req, 0, sizeof req); 4294 offset = cma_user_data_offset(id_priv); 4295 if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len)) 4296 return -EINVAL; 4297 4298 if (req.private_data_len) { 4299 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 4300 if (!private_data) 4301 return -ENOMEM; 4302 } else { 4303 private_data = NULL; 4304 } 4305 4306 if (conn_param->private_data && conn_param->private_data_len) 4307 memcpy(private_data + offset, conn_param->private_data, 4308 conn_param->private_data_len); 4309 4310 if (private_data) { 4311 ret = cma_format_hdr(private_data, id_priv); 4312 if (ret) 4313 goto out; 4314 req.private_data = private_data; 4315 } 4316 4317 id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler, 4318 id_priv); 4319 if (IS_ERR(id)) { 4320 ret = PTR_ERR(id); 4321 goto out; 4322 } 4323 id_priv->cm_id.ib = id; 4324 4325 req.path = id_priv->id.route.path_rec; 4326 req.sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 4327 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 4328 req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8); 4329 req.max_cm_retries = CMA_MAX_CM_RETRIES; 4330 4331 trace_cm_send_sidr_req(id_priv); 4332 ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req); 4333 if (ret) { 4334 ib_destroy_cm_id(id_priv->cm_id.ib); 4335 id_priv->cm_id.ib = NULL; 4336 } 4337 out: 4338 kfree(private_data); 4339 return ret; 4340 } 4341 4342 static int cma_connect_ib(struct rdma_id_private *id_priv, 4343 struct rdma_conn_param *conn_param) 4344 { 4345 struct ib_cm_req_param req; 4346 struct rdma_route *route; 4347 void *private_data; 4348 struct ib_cm_id *id; 4349 u8 offset; 4350 int ret; 4351 4352 memset(&req, 0, sizeof req); 4353 offset = cma_user_data_offset(id_priv); 4354 if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len)) 4355 return -EINVAL; 4356 4357 if (req.private_data_len) { 4358 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 4359 if (!private_data) 4360 return -ENOMEM; 4361 } else { 4362 private_data = NULL; 4363 } 4364 4365 if (conn_param->private_data && conn_param->private_data_len) 4366 memcpy(private_data + offset, conn_param->private_data, 4367 conn_param->private_data_len); 4368 4369 id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv); 4370 if (IS_ERR(id)) { 4371 ret = PTR_ERR(id); 4372 goto out; 4373 } 4374 id_priv->cm_id.ib = id; 4375 4376 route = &id_priv->id.route; 4377 if (private_data) { 4378 ret = cma_format_hdr(private_data, id_priv); 4379 if (ret) 4380 goto out; 4381 req.private_data = private_data; 4382 } 4383 4384 req.primary_path = &route->path_rec[0]; 4385 req.primary_path_inbound = route->path_rec_inbound; 4386 req.primary_path_outbound = route->path_rec_outbound; 4387 if (route->num_pri_alt_paths == 2) 4388 req.alternate_path = &route->path_rec[1]; 4389 4390 req.ppath_sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 4391 /* Alternate path SGID attribute currently unsupported */ 4392 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 4393 req.qp_num = id_priv->qp_num; 4394 req.qp_type = id_priv->id.qp_type; 4395 req.starting_psn = id_priv->seq_num; 4396 req.responder_resources = conn_param->responder_resources; 4397 req.initiator_depth = conn_param->initiator_depth; 4398 req.flow_control = conn_param->flow_control; 4399 req.retry_count = min_t(u8, 7, conn_param->retry_count); 4400 req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 4401 req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 4402 req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 4403 req.max_cm_retries = CMA_MAX_CM_RETRIES; 4404 req.srq = id_priv->srq ? 1 : 0; 4405 req.ece.vendor_id = id_priv->ece.vendor_id; 4406 req.ece.attr_mod = id_priv->ece.attr_mod; 4407 4408 trace_cm_send_req(id_priv); 4409 ret = ib_send_cm_req(id_priv->cm_id.ib, &req); 4410 out: 4411 if (ret && !IS_ERR(id)) { 4412 ib_destroy_cm_id(id); 4413 id_priv->cm_id.ib = NULL; 4414 } 4415 4416 kfree(private_data); 4417 return ret; 4418 } 4419 4420 static int cma_connect_iw(struct rdma_id_private *id_priv, 4421 struct rdma_conn_param *conn_param) 4422 { 4423 struct iw_cm_id *cm_id; 4424 int ret; 4425 struct iw_cm_conn_param iw_param; 4426 4427 cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv); 4428 if (IS_ERR(cm_id)) 4429 return PTR_ERR(cm_id); 4430 4431 mutex_lock(&id_priv->qp_mutex); 4432 cm_id->tos = id_priv->tos; 4433 cm_id->tos_set = id_priv->tos_set; 4434 mutex_unlock(&id_priv->qp_mutex); 4435 4436 id_priv->cm_id.iw = cm_id; 4437 4438 memcpy(&cm_id->local_addr, cma_src_addr(id_priv), 4439 rdma_addr_size(cma_src_addr(id_priv))); 4440 memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv), 4441 rdma_addr_size(cma_dst_addr(id_priv))); 4442 4443 ret = cma_modify_qp_rtr(id_priv, conn_param); 4444 if (ret) 4445 goto out; 4446 4447 if (conn_param) { 4448 iw_param.ord = conn_param->initiator_depth; 4449 iw_param.ird = conn_param->responder_resources; 4450 iw_param.private_data = conn_param->private_data; 4451 iw_param.private_data_len = conn_param->private_data_len; 4452 iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num; 4453 } else { 4454 memset(&iw_param, 0, sizeof iw_param); 4455 iw_param.qpn = id_priv->qp_num; 4456 } 4457 ret = iw_cm_connect(cm_id, &iw_param); 4458 out: 4459 if (ret) { 4460 iw_destroy_cm_id(cm_id); 4461 id_priv->cm_id.iw = NULL; 4462 } 4463 return ret; 4464 } 4465 4466 /** 4467 * rdma_connect_locked - Initiate an active connection request. 4468 * @id: Connection identifier to connect. 4469 * @conn_param: Connection information used for connected QPs. 4470 * 4471 * Same as rdma_connect() but can only be called from the 4472 * RDMA_CM_EVENT_ROUTE_RESOLVED handler callback. 4473 */ 4474 int rdma_connect_locked(struct rdma_cm_id *id, 4475 struct rdma_conn_param *conn_param) 4476 { 4477 struct rdma_id_private *id_priv = 4478 container_of(id, struct rdma_id_private, id); 4479 int ret; 4480 4481 lockdep_assert_held(&id_priv->handler_mutex); 4482 4483 if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT)) 4484 return -EINVAL; 4485 4486 if (!id->qp) { 4487 id_priv->qp_num = conn_param->qp_num; 4488 id_priv->srq = conn_param->srq; 4489 } 4490 4491 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4492 if (id->qp_type == IB_QPT_UD) 4493 ret = cma_resolve_ib_udp(id_priv, conn_param); 4494 else 4495 ret = cma_connect_ib(id_priv, conn_param); 4496 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4497 ret = cma_connect_iw(id_priv, conn_param); 4498 } else { 4499 ret = -ENOSYS; 4500 } 4501 if (ret) 4502 goto err_state; 4503 return 0; 4504 err_state: 4505 cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED); 4506 return ret; 4507 } 4508 EXPORT_SYMBOL(rdma_connect_locked); 4509 4510 /** 4511 * rdma_connect - Initiate an active connection request. 4512 * @id: Connection identifier to connect. 4513 * @conn_param: Connection information used for connected QPs. 4514 * 4515 * Users must have resolved a route for the rdma_cm_id to connect with by having 4516 * called rdma_resolve_route before calling this routine. 4517 * 4518 * This call will either connect to a remote QP or obtain remote QP information 4519 * for unconnected rdma_cm_id's. The actual operation is based on the 4520 * rdma_cm_id's port space. 4521 */ 4522 int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) 4523 { 4524 struct rdma_id_private *id_priv = 4525 container_of(id, struct rdma_id_private, id); 4526 int ret; 4527 4528 mutex_lock(&id_priv->handler_mutex); 4529 ret = rdma_connect_locked(id, conn_param); 4530 mutex_unlock(&id_priv->handler_mutex); 4531 return ret; 4532 } 4533 EXPORT_SYMBOL(rdma_connect); 4534 4535 /** 4536 * rdma_connect_ece - Initiate an active connection request with ECE data. 4537 * @id: Connection identifier to connect. 4538 * @conn_param: Connection information used for connected QPs. 4539 * @ece: ECE parameters 4540 * 4541 * See rdma_connect() explanation. 4542 */ 4543 int rdma_connect_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4544 struct rdma_ucm_ece *ece) 4545 { 4546 struct rdma_id_private *id_priv = 4547 container_of(id, struct rdma_id_private, id); 4548 4549 id_priv->ece.vendor_id = ece->vendor_id; 4550 id_priv->ece.attr_mod = ece->attr_mod; 4551 4552 return rdma_connect(id, conn_param); 4553 } 4554 EXPORT_SYMBOL(rdma_connect_ece); 4555 4556 static int cma_accept_ib(struct rdma_id_private *id_priv, 4557 struct rdma_conn_param *conn_param) 4558 { 4559 struct ib_cm_rep_param rep; 4560 int ret; 4561 4562 ret = cma_modify_qp_rtr(id_priv, conn_param); 4563 if (ret) 4564 goto out; 4565 4566 ret = cma_modify_qp_rts(id_priv, conn_param); 4567 if (ret) 4568 goto out; 4569 4570 memset(&rep, 0, sizeof rep); 4571 rep.qp_num = id_priv->qp_num; 4572 rep.starting_psn = id_priv->seq_num; 4573 rep.private_data = conn_param->private_data; 4574 rep.private_data_len = conn_param->private_data_len; 4575 rep.responder_resources = conn_param->responder_resources; 4576 rep.initiator_depth = conn_param->initiator_depth; 4577 rep.failover_accepted = 0; 4578 rep.flow_control = conn_param->flow_control; 4579 rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 4580 rep.srq = id_priv->srq ? 1 : 0; 4581 rep.ece.vendor_id = id_priv->ece.vendor_id; 4582 rep.ece.attr_mod = id_priv->ece.attr_mod; 4583 4584 trace_cm_send_rep(id_priv); 4585 ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep); 4586 out: 4587 return ret; 4588 } 4589 4590 static int cma_accept_iw(struct rdma_id_private *id_priv, 4591 struct rdma_conn_param *conn_param) 4592 { 4593 struct iw_cm_conn_param iw_param; 4594 int ret; 4595 4596 if (!conn_param) 4597 return -EINVAL; 4598 4599 ret = cma_modify_qp_rtr(id_priv, conn_param); 4600 if (ret) 4601 return ret; 4602 4603 iw_param.ord = conn_param->initiator_depth; 4604 iw_param.ird = conn_param->responder_resources; 4605 iw_param.private_data = conn_param->private_data; 4606 iw_param.private_data_len = conn_param->private_data_len; 4607 if (id_priv->id.qp) 4608 iw_param.qpn = id_priv->qp_num; 4609 else 4610 iw_param.qpn = conn_param->qp_num; 4611 4612 return iw_cm_accept(id_priv->cm_id.iw, &iw_param); 4613 } 4614 4615 static int cma_send_sidr_rep(struct rdma_id_private *id_priv, 4616 enum ib_cm_sidr_status status, u32 qkey, 4617 const void *private_data, int private_data_len) 4618 { 4619 struct ib_cm_sidr_rep_param rep; 4620 int ret; 4621 4622 memset(&rep, 0, sizeof rep); 4623 rep.status = status; 4624 if (status == IB_SIDR_SUCCESS) { 4625 if (qkey) 4626 ret = cma_set_qkey(id_priv, qkey); 4627 else 4628 ret = cma_set_default_qkey(id_priv); 4629 if (ret) 4630 return ret; 4631 rep.qp_num = id_priv->qp_num; 4632 rep.qkey = id_priv->qkey; 4633 4634 rep.ece.vendor_id = id_priv->ece.vendor_id; 4635 rep.ece.attr_mod = id_priv->ece.attr_mod; 4636 } 4637 4638 rep.private_data = private_data; 4639 rep.private_data_len = private_data_len; 4640 4641 trace_cm_send_sidr_rep(id_priv); 4642 return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep); 4643 } 4644 4645 /** 4646 * rdma_accept - Called to accept a connection request or response. 4647 * @id: Connection identifier associated with the request. 4648 * @conn_param: Information needed to establish the connection. This must be 4649 * provided if accepting a connection request. If accepting a connection 4650 * response, this parameter must be NULL. 4651 * 4652 * Typically, this routine is only called by the listener to accept a connection 4653 * request. It must also be called on the active side of a connection if the 4654 * user is performing their own QP transitions. 4655 * 4656 * In the case of error, a reject message is sent to the remote side and the 4657 * state of the qp associated with the id is modified to error, such that any 4658 * previously posted receive buffers would be flushed. 4659 * 4660 * This function is for use by kernel ULPs and must be called from under the 4661 * handler callback. 4662 */ 4663 int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) 4664 { 4665 struct rdma_id_private *id_priv = 4666 container_of(id, struct rdma_id_private, id); 4667 int ret; 4668 4669 lockdep_assert_held(&id_priv->handler_mutex); 4670 4671 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 4672 return -EINVAL; 4673 4674 if (!id->qp && conn_param) { 4675 id_priv->qp_num = conn_param->qp_num; 4676 id_priv->srq = conn_param->srq; 4677 } 4678 4679 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4680 if (id->qp_type == IB_QPT_UD) { 4681 if (conn_param) 4682 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4683 conn_param->qkey, 4684 conn_param->private_data, 4685 conn_param->private_data_len); 4686 else 4687 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4688 0, NULL, 0); 4689 } else { 4690 if (conn_param) 4691 ret = cma_accept_ib(id_priv, conn_param); 4692 else 4693 ret = cma_rep_recv(id_priv); 4694 } 4695 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4696 ret = cma_accept_iw(id_priv, conn_param); 4697 } else { 4698 ret = -ENOSYS; 4699 } 4700 if (ret) 4701 goto reject; 4702 4703 return 0; 4704 reject: 4705 cma_modify_qp_err(id_priv); 4706 rdma_reject(id, NULL, 0, IB_CM_REJ_CONSUMER_DEFINED); 4707 return ret; 4708 } 4709 EXPORT_SYMBOL(rdma_accept); 4710 4711 int rdma_accept_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4712 struct rdma_ucm_ece *ece) 4713 { 4714 struct rdma_id_private *id_priv = 4715 container_of(id, struct rdma_id_private, id); 4716 4717 id_priv->ece.vendor_id = ece->vendor_id; 4718 id_priv->ece.attr_mod = ece->attr_mod; 4719 4720 return rdma_accept(id, conn_param); 4721 } 4722 EXPORT_SYMBOL(rdma_accept_ece); 4723 4724 void rdma_lock_handler(struct rdma_cm_id *id) 4725 { 4726 struct rdma_id_private *id_priv = 4727 container_of(id, struct rdma_id_private, id); 4728 4729 mutex_lock(&id_priv->handler_mutex); 4730 } 4731 EXPORT_SYMBOL(rdma_lock_handler); 4732 4733 void rdma_unlock_handler(struct rdma_cm_id *id) 4734 { 4735 struct rdma_id_private *id_priv = 4736 container_of(id, struct rdma_id_private, id); 4737 4738 mutex_unlock(&id_priv->handler_mutex); 4739 } 4740 EXPORT_SYMBOL(rdma_unlock_handler); 4741 4742 int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event) 4743 { 4744 struct rdma_id_private *id_priv; 4745 int ret; 4746 4747 id_priv = container_of(id, struct rdma_id_private, id); 4748 if (!id_priv->cm_id.ib) 4749 return -EINVAL; 4750 4751 switch (id->device->node_type) { 4752 case RDMA_NODE_IB_CA: 4753 ret = ib_cm_notify(id_priv->cm_id.ib, event); 4754 break; 4755 default: 4756 ret = 0; 4757 break; 4758 } 4759 return ret; 4760 } 4761 EXPORT_SYMBOL(rdma_notify); 4762 4763 int rdma_reject(struct rdma_cm_id *id, const void *private_data, 4764 u8 private_data_len, u8 reason) 4765 { 4766 struct rdma_id_private *id_priv; 4767 int ret; 4768 4769 id_priv = container_of(id, struct rdma_id_private, id); 4770 if (!id_priv->cm_id.ib) 4771 return -EINVAL; 4772 4773 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4774 if (id->qp_type == IB_QPT_UD) { 4775 ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0, 4776 private_data, private_data_len); 4777 } else { 4778 trace_cm_send_rej(id_priv); 4779 ret = ib_send_cm_rej(id_priv->cm_id.ib, reason, NULL, 0, 4780 private_data, private_data_len); 4781 } 4782 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4783 ret = iw_cm_reject(id_priv->cm_id.iw, 4784 private_data, private_data_len); 4785 } else { 4786 ret = -ENOSYS; 4787 } 4788 4789 return ret; 4790 } 4791 EXPORT_SYMBOL(rdma_reject); 4792 4793 int rdma_disconnect(struct rdma_cm_id *id) 4794 { 4795 struct rdma_id_private *id_priv; 4796 int ret; 4797 4798 id_priv = container_of(id, struct rdma_id_private, id); 4799 if (!id_priv->cm_id.ib) 4800 return -EINVAL; 4801 4802 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4803 ret = cma_modify_qp_err(id_priv); 4804 if (ret) 4805 goto out; 4806 /* Initiate or respond to a disconnect. */ 4807 trace_cm_disconnect(id_priv); 4808 if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) { 4809 if (!ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0)) 4810 trace_cm_sent_drep(id_priv); 4811 } else { 4812 trace_cm_sent_dreq(id_priv); 4813 } 4814 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4815 ret = iw_cm_disconnect(id_priv->cm_id.iw, 0); 4816 } else 4817 ret = -EINVAL; 4818 4819 out: 4820 return ret; 4821 } 4822 EXPORT_SYMBOL(rdma_disconnect); 4823 4824 static void cma_make_mc_event(int status, struct rdma_id_private *id_priv, 4825 struct ib_sa_multicast *multicast, 4826 struct rdma_cm_event *event, 4827 struct cma_multicast *mc) 4828 { 4829 struct rdma_dev_addr *dev_addr; 4830 enum ib_gid_type gid_type; 4831 struct net_device *ndev; 4832 4833 if (status) 4834 pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to join multicast. status %d\n", 4835 status); 4836 4837 event->status = status; 4838 event->param.ud.private_data = mc->context; 4839 if (status) { 4840 event->event = RDMA_CM_EVENT_MULTICAST_ERROR; 4841 return; 4842 } 4843 4844 dev_addr = &id_priv->id.route.addr.dev_addr; 4845 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 4846 gid_type = 4847 id_priv->cma_dev 4848 ->default_gid_type[id_priv->id.port_num - 4849 rdma_start_port( 4850 id_priv->cma_dev->device)]; 4851 4852 event->event = RDMA_CM_EVENT_MULTICAST_JOIN; 4853 if (ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num, 4854 &multicast->rec, ndev, gid_type, 4855 &event->param.ud.ah_attr)) { 4856 event->event = RDMA_CM_EVENT_MULTICAST_ERROR; 4857 goto out; 4858 } 4859 4860 event->param.ud.qp_num = 0xFFFFFF; 4861 event->param.ud.qkey = id_priv->qkey; 4862 4863 out: 4864 dev_put(ndev); 4865 } 4866 4867 static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast) 4868 { 4869 struct cma_multicast *mc = multicast->context; 4870 struct rdma_id_private *id_priv = mc->id_priv; 4871 struct rdma_cm_event event = {}; 4872 int ret = 0; 4873 4874 mutex_lock(&id_priv->handler_mutex); 4875 if (READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL || 4876 READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING) 4877 goto out; 4878 4879 ret = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey)); 4880 if (!ret) { 4881 cma_make_mc_event(status, id_priv, multicast, &event, mc); 4882 ret = cma_cm_event_handler(id_priv, &event); 4883 } 4884 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 4885 WARN_ON(ret); 4886 4887 out: 4888 mutex_unlock(&id_priv->handler_mutex); 4889 return 0; 4890 } 4891 4892 static void cma_set_mgid(struct rdma_id_private *id_priv, 4893 struct sockaddr *addr, union ib_gid *mgid) 4894 { 4895 unsigned char mc_map[MAX_ADDR_LEN]; 4896 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4897 struct sockaddr_in *sin = (struct sockaddr_in *) addr; 4898 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr; 4899 4900 if (cma_any_addr(addr)) { 4901 memset(mgid, 0, sizeof *mgid); 4902 } else if ((addr->sa_family == AF_INET6) && 4903 ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) == 4904 0xFF10A01B)) { 4905 /* IPv6 address is an SA assigned MGID. */ 4906 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4907 } else if (addr->sa_family == AF_IB) { 4908 memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid); 4909 } else if (addr->sa_family == AF_INET6) { 4910 ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map); 4911 if (id_priv->id.ps == RDMA_PS_UDP) 4912 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4913 *mgid = *(union ib_gid *) (mc_map + 4); 4914 } else { 4915 ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map); 4916 if (id_priv->id.ps == RDMA_PS_UDP) 4917 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4918 *mgid = *(union ib_gid *) (mc_map + 4); 4919 } 4920 } 4921 4922 static int cma_join_ib_multicast(struct rdma_id_private *id_priv, 4923 struct cma_multicast *mc) 4924 { 4925 struct ib_sa_mcmember_rec rec; 4926 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4927 ib_sa_comp_mask comp_mask; 4928 int ret; 4929 4930 ib_addr_get_mgid(dev_addr, &rec.mgid); 4931 ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num, 4932 &rec.mgid, &rec); 4933 if (ret) 4934 return ret; 4935 4936 if (!id_priv->qkey) { 4937 ret = cma_set_default_qkey(id_priv); 4938 if (ret) 4939 return ret; 4940 } 4941 4942 cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid); 4943 rec.qkey = cpu_to_be32(id_priv->qkey); 4944 rdma_addr_get_sgid(dev_addr, &rec.port_gid); 4945 rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 4946 rec.join_state = mc->join_state; 4947 4948 comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID | 4949 IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE | 4950 IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL | 4951 IB_SA_MCMEMBER_REC_FLOW_LABEL | 4952 IB_SA_MCMEMBER_REC_TRAFFIC_CLASS; 4953 4954 if (id_priv->id.ps == RDMA_PS_IPOIB) 4955 comp_mask |= IB_SA_MCMEMBER_REC_RATE | 4956 IB_SA_MCMEMBER_REC_RATE_SELECTOR | 4957 IB_SA_MCMEMBER_REC_MTU_SELECTOR | 4958 IB_SA_MCMEMBER_REC_MTU | 4959 IB_SA_MCMEMBER_REC_HOP_LIMIT; 4960 4961 mc->sa_mc = ib_sa_join_multicast(&sa_client, id_priv->id.device, 4962 id_priv->id.port_num, &rec, comp_mask, 4963 GFP_KERNEL, cma_ib_mc_handler, mc); 4964 return PTR_ERR_OR_ZERO(mc->sa_mc); 4965 } 4966 4967 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid, 4968 enum ib_gid_type gid_type) 4969 { 4970 struct sockaddr_in *sin = (struct sockaddr_in *)addr; 4971 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr; 4972 4973 if (cma_any_addr(addr)) { 4974 memset(mgid, 0, sizeof *mgid); 4975 } else if (addr->sa_family == AF_INET6) { 4976 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4977 } else { 4978 mgid->raw[0] = 4979 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff; 4980 mgid->raw[1] = 4981 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e; 4982 mgid->raw[2] = 0; 4983 mgid->raw[3] = 0; 4984 mgid->raw[4] = 0; 4985 mgid->raw[5] = 0; 4986 mgid->raw[6] = 0; 4987 mgid->raw[7] = 0; 4988 mgid->raw[8] = 0; 4989 mgid->raw[9] = 0; 4990 mgid->raw[10] = 0xff; 4991 mgid->raw[11] = 0xff; 4992 *(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr; 4993 } 4994 } 4995 4996 static int cma_iboe_join_multicast(struct rdma_id_private *id_priv, 4997 struct cma_multicast *mc) 4998 { 4999 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 5000 int err = 0; 5001 struct sockaddr *addr = (struct sockaddr *)&mc->addr; 5002 struct net_device *ndev = NULL; 5003 struct ib_sa_multicast ib = {}; 5004 enum ib_gid_type gid_type; 5005 bool send_only; 5006 5007 send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN); 5008 5009 if (cma_zero_addr(addr)) 5010 return -EINVAL; 5011 5012 gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num - 5013 rdma_start_port(id_priv->cma_dev->device)]; 5014 cma_iboe_set_mgid(addr, &ib.rec.mgid, gid_type); 5015 5016 ib.rec.pkey = cpu_to_be16(0xffff); 5017 if (dev_addr->bound_dev_if) 5018 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 5019 if (!ndev) 5020 return -ENODEV; 5021 5022 ib.rec.rate = IB_RATE_PORT_CURRENT; 5023 ib.rec.hop_limit = 1; 5024 ib.rec.mtu = iboe_get_mtu(ndev->mtu); 5025 5026 if (addr->sa_family == AF_INET) { 5027 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) { 5028 ib.rec.hop_limit = IPV6_DEFAULT_HOPLIMIT; 5029 if (!send_only) { 5030 err = cma_igmp_send(ndev, &ib.rec.mgid, 5031 true); 5032 } 5033 } 5034 } else { 5035 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) 5036 err = -ENOTSUPP; 5037 } 5038 dev_put(ndev); 5039 if (err || !ib.rec.mtu) 5040 return err ?: -EINVAL; 5041 5042 if (!id_priv->qkey) 5043 cma_set_default_qkey(id_priv); 5044 5045 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 5046 &ib.rec.port_gid); 5047 INIT_WORK(&mc->iboe_join.work, cma_iboe_join_work_handler); 5048 cma_make_mc_event(0, id_priv, &ib, &mc->iboe_join.event, mc); 5049 queue_work(cma_wq, &mc->iboe_join.work); 5050 return 0; 5051 } 5052 5053 int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr, 5054 u8 join_state, void *context) 5055 { 5056 struct rdma_id_private *id_priv = 5057 container_of(id, struct rdma_id_private, id); 5058 struct cma_multicast *mc; 5059 int ret; 5060 5061 /* Not supported for kernel QPs */ 5062 if (WARN_ON(id->qp)) 5063 return -EINVAL; 5064 5065 /* ULP is calling this wrong. */ 5066 if (!id->device || (READ_ONCE(id_priv->state) != RDMA_CM_ADDR_BOUND && 5067 READ_ONCE(id_priv->state) != RDMA_CM_ADDR_RESOLVED)) 5068 return -EINVAL; 5069 5070 if (id_priv->id.qp_type != IB_QPT_UD) 5071 return -EINVAL; 5072 5073 mc = kzalloc(sizeof(*mc), GFP_KERNEL); 5074 if (!mc) 5075 return -ENOMEM; 5076 5077 memcpy(&mc->addr, addr, rdma_addr_size(addr)); 5078 mc->context = context; 5079 mc->id_priv = id_priv; 5080 mc->join_state = join_state; 5081 5082 if (rdma_protocol_roce(id->device, id->port_num)) { 5083 ret = cma_iboe_join_multicast(id_priv, mc); 5084 if (ret) 5085 goto out_err; 5086 } else if (rdma_cap_ib_mcast(id->device, id->port_num)) { 5087 ret = cma_join_ib_multicast(id_priv, mc); 5088 if (ret) 5089 goto out_err; 5090 } else { 5091 ret = -ENOSYS; 5092 goto out_err; 5093 } 5094 5095 spin_lock(&id_priv->lock); 5096 list_add(&mc->list, &id_priv->mc_list); 5097 spin_unlock(&id_priv->lock); 5098 5099 return 0; 5100 out_err: 5101 kfree(mc); 5102 return ret; 5103 } 5104 EXPORT_SYMBOL(rdma_join_multicast); 5105 5106 void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr) 5107 { 5108 struct rdma_id_private *id_priv; 5109 struct cma_multicast *mc; 5110 5111 id_priv = container_of(id, struct rdma_id_private, id); 5112 spin_lock_irq(&id_priv->lock); 5113 list_for_each_entry(mc, &id_priv->mc_list, list) { 5114 if (memcmp(&mc->addr, addr, rdma_addr_size(addr)) != 0) 5115 continue; 5116 list_del(&mc->list); 5117 spin_unlock_irq(&id_priv->lock); 5118 5119 WARN_ON(id_priv->cma_dev->device != id->device); 5120 destroy_mc(id_priv, mc); 5121 return; 5122 } 5123 spin_unlock_irq(&id_priv->lock); 5124 } 5125 EXPORT_SYMBOL(rdma_leave_multicast); 5126 5127 static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv) 5128 { 5129 struct rdma_dev_addr *dev_addr; 5130 struct cma_work *work; 5131 5132 dev_addr = &id_priv->id.route.addr.dev_addr; 5133 5134 if ((dev_addr->bound_dev_if == ndev->ifindex) && 5135 (net_eq(dev_net(ndev), dev_addr->net)) && 5136 memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) { 5137 pr_info("RDMA CM addr change for ndev %s used by id %p\n", 5138 ndev->name, &id_priv->id); 5139 work = kzalloc(sizeof *work, GFP_KERNEL); 5140 if (!work) 5141 return -ENOMEM; 5142 5143 INIT_WORK(&work->work, cma_work_handler); 5144 work->id = id_priv; 5145 work->event.event = RDMA_CM_EVENT_ADDR_CHANGE; 5146 cma_id_get(id_priv); 5147 queue_work(cma_wq, &work->work); 5148 } 5149 5150 return 0; 5151 } 5152 5153 static int cma_netdev_callback(struct notifier_block *self, unsigned long event, 5154 void *ptr) 5155 { 5156 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 5157 struct cma_device *cma_dev; 5158 struct rdma_id_private *id_priv; 5159 int ret = NOTIFY_DONE; 5160 5161 if (event != NETDEV_BONDING_FAILOVER) 5162 return NOTIFY_DONE; 5163 5164 if (!netif_is_bond_master(ndev)) 5165 return NOTIFY_DONE; 5166 5167 mutex_lock(&lock); 5168 list_for_each_entry(cma_dev, &dev_list, list) 5169 list_for_each_entry(id_priv, &cma_dev->id_list, device_item) { 5170 ret = cma_netdev_change(ndev, id_priv); 5171 if (ret) 5172 goto out; 5173 } 5174 5175 out: 5176 mutex_unlock(&lock); 5177 return ret; 5178 } 5179 5180 static void cma_netevent_work_handler(struct work_struct *_work) 5181 { 5182 struct rdma_id_private *id_priv = 5183 container_of(_work, struct rdma_id_private, id.net_work); 5184 struct rdma_cm_event event = {}; 5185 5186 mutex_lock(&id_priv->handler_mutex); 5187 5188 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 5189 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 5190 goto out_unlock; 5191 5192 event.event = RDMA_CM_EVENT_UNREACHABLE; 5193 event.status = -ETIMEDOUT; 5194 5195 if (cma_cm_event_handler(id_priv, &event)) { 5196 __acquire(&id_priv->handler_mutex); 5197 id_priv->cm_id.ib = NULL; 5198 cma_id_put(id_priv); 5199 destroy_id_handler_unlock(id_priv); 5200 return; 5201 } 5202 5203 out_unlock: 5204 mutex_unlock(&id_priv->handler_mutex); 5205 cma_id_put(id_priv); 5206 } 5207 5208 static int cma_netevent_callback(struct notifier_block *self, 5209 unsigned long event, void *ctx) 5210 { 5211 struct id_table_entry *ips_node = NULL; 5212 struct rdma_id_private *current_id; 5213 struct neighbour *neigh = ctx; 5214 unsigned long flags; 5215 5216 if (event != NETEVENT_NEIGH_UPDATE) 5217 return NOTIFY_DONE; 5218 5219 spin_lock_irqsave(&id_table_lock, flags); 5220 if (neigh->tbl->family == AF_INET6) { 5221 struct sockaddr_in6 neigh_sock_6; 5222 5223 neigh_sock_6.sin6_family = AF_INET6; 5224 neigh_sock_6.sin6_addr = *(struct in6_addr *)neigh->primary_key; 5225 ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex, 5226 (struct sockaddr *)&neigh_sock_6); 5227 } else if (neigh->tbl->family == AF_INET) { 5228 struct sockaddr_in neigh_sock_4; 5229 5230 neigh_sock_4.sin_family = AF_INET; 5231 neigh_sock_4.sin_addr.s_addr = *(__be32 *)(neigh->primary_key); 5232 ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex, 5233 (struct sockaddr *)&neigh_sock_4); 5234 } else 5235 goto out; 5236 5237 if (!ips_node) 5238 goto out; 5239 5240 list_for_each_entry(current_id, &ips_node->id_list, id_list_entry) { 5241 if (!memcmp(current_id->id.route.addr.dev_addr.dst_dev_addr, 5242 neigh->ha, ETH_ALEN)) 5243 continue; 5244 cma_id_get(current_id); 5245 if (!queue_work(cma_wq, ¤t_id->id.net_work)) 5246 cma_id_put(current_id); 5247 } 5248 out: 5249 spin_unlock_irqrestore(&id_table_lock, flags); 5250 return NOTIFY_DONE; 5251 } 5252 5253 static struct notifier_block cma_nb = { 5254 .notifier_call = cma_netdev_callback 5255 }; 5256 5257 static struct notifier_block cma_netevent_cb = { 5258 .notifier_call = cma_netevent_callback 5259 }; 5260 5261 static void cma_send_device_removal_put(struct rdma_id_private *id_priv) 5262 { 5263 struct rdma_cm_event event = { .event = RDMA_CM_EVENT_DEVICE_REMOVAL }; 5264 enum rdma_cm_state state; 5265 unsigned long flags; 5266 5267 mutex_lock(&id_priv->handler_mutex); 5268 /* Record that we want to remove the device */ 5269 spin_lock_irqsave(&id_priv->lock, flags); 5270 state = id_priv->state; 5271 if (state == RDMA_CM_DESTROYING || state == RDMA_CM_DEVICE_REMOVAL) { 5272 spin_unlock_irqrestore(&id_priv->lock, flags); 5273 mutex_unlock(&id_priv->handler_mutex); 5274 cma_id_put(id_priv); 5275 return; 5276 } 5277 id_priv->state = RDMA_CM_DEVICE_REMOVAL; 5278 spin_unlock_irqrestore(&id_priv->lock, flags); 5279 5280 if (cma_cm_event_handler(id_priv, &event)) { 5281 /* 5282 * At this point the ULP promises it won't call 5283 * rdma_destroy_id() concurrently 5284 */ 5285 cma_id_put(id_priv); 5286 mutex_unlock(&id_priv->handler_mutex); 5287 trace_cm_id_destroy(id_priv); 5288 _destroy_id(id_priv, state); 5289 return; 5290 } 5291 mutex_unlock(&id_priv->handler_mutex); 5292 5293 /* 5294 * If this races with destroy then the thread that first assigns state 5295 * to a destroying does the cancel. 5296 */ 5297 cma_cancel_operation(id_priv, state); 5298 cma_id_put(id_priv); 5299 } 5300 5301 static void cma_process_remove(struct cma_device *cma_dev) 5302 { 5303 mutex_lock(&lock); 5304 while (!list_empty(&cma_dev->id_list)) { 5305 struct rdma_id_private *id_priv = list_first_entry( 5306 &cma_dev->id_list, struct rdma_id_private, device_item); 5307 5308 list_del_init(&id_priv->listen_item); 5309 list_del_init(&id_priv->device_item); 5310 cma_id_get(id_priv); 5311 mutex_unlock(&lock); 5312 5313 cma_send_device_removal_put(id_priv); 5314 5315 mutex_lock(&lock); 5316 } 5317 mutex_unlock(&lock); 5318 5319 cma_dev_put(cma_dev); 5320 wait_for_completion(&cma_dev->comp); 5321 } 5322 5323 static bool cma_supported(struct ib_device *device) 5324 { 5325 u32 i; 5326 5327 rdma_for_each_port(device, i) { 5328 if (rdma_cap_ib_cm(device, i) || rdma_cap_iw_cm(device, i)) 5329 return true; 5330 } 5331 return false; 5332 } 5333 5334 static int cma_add_one(struct ib_device *device) 5335 { 5336 struct rdma_id_private *to_destroy; 5337 struct cma_device *cma_dev; 5338 struct rdma_id_private *id_priv; 5339 unsigned long supported_gids = 0; 5340 int ret; 5341 u32 i; 5342 5343 if (!cma_supported(device)) 5344 return -EOPNOTSUPP; 5345 5346 cma_dev = kmalloc(sizeof(*cma_dev), GFP_KERNEL); 5347 if (!cma_dev) 5348 return -ENOMEM; 5349 5350 cma_dev->device = device; 5351 cma_dev->default_gid_type = kcalloc(device->phys_port_cnt, 5352 sizeof(*cma_dev->default_gid_type), 5353 GFP_KERNEL); 5354 if (!cma_dev->default_gid_type) { 5355 ret = -ENOMEM; 5356 goto free_cma_dev; 5357 } 5358 5359 cma_dev->default_roce_tos = kcalloc(device->phys_port_cnt, 5360 sizeof(*cma_dev->default_roce_tos), 5361 GFP_KERNEL); 5362 if (!cma_dev->default_roce_tos) { 5363 ret = -ENOMEM; 5364 goto free_gid_type; 5365 } 5366 5367 rdma_for_each_port (device, i) { 5368 supported_gids = roce_gid_type_mask_support(device, i); 5369 WARN_ON(!supported_gids); 5370 if (supported_gids & (1 << CMA_PREFERRED_ROCE_GID_TYPE)) 5371 cma_dev->default_gid_type[i - rdma_start_port(device)] = 5372 CMA_PREFERRED_ROCE_GID_TYPE; 5373 else 5374 cma_dev->default_gid_type[i - rdma_start_port(device)] = 5375 find_first_bit(&supported_gids, BITS_PER_LONG); 5376 cma_dev->default_roce_tos[i - rdma_start_port(device)] = 0; 5377 } 5378 5379 init_completion(&cma_dev->comp); 5380 refcount_set(&cma_dev->refcount, 1); 5381 INIT_LIST_HEAD(&cma_dev->id_list); 5382 ib_set_client_data(device, &cma_client, cma_dev); 5383 5384 mutex_lock(&lock); 5385 list_add_tail(&cma_dev->list, &dev_list); 5386 list_for_each_entry(id_priv, &listen_any_list, listen_any_item) { 5387 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy); 5388 if (ret) 5389 goto free_listen; 5390 } 5391 mutex_unlock(&lock); 5392 5393 trace_cm_add_one(device); 5394 return 0; 5395 5396 free_listen: 5397 list_del(&cma_dev->list); 5398 mutex_unlock(&lock); 5399 5400 /* cma_process_remove() will delete to_destroy */ 5401 cma_process_remove(cma_dev); 5402 kfree(cma_dev->default_roce_tos); 5403 free_gid_type: 5404 kfree(cma_dev->default_gid_type); 5405 5406 free_cma_dev: 5407 kfree(cma_dev); 5408 return ret; 5409 } 5410 5411 static void cma_remove_one(struct ib_device *device, void *client_data) 5412 { 5413 struct cma_device *cma_dev = client_data; 5414 5415 trace_cm_remove_one(device); 5416 5417 mutex_lock(&lock); 5418 list_del(&cma_dev->list); 5419 mutex_unlock(&lock); 5420 5421 cma_process_remove(cma_dev); 5422 kfree(cma_dev->default_roce_tos); 5423 kfree(cma_dev->default_gid_type); 5424 kfree(cma_dev); 5425 } 5426 5427 static int cma_init_net(struct net *net) 5428 { 5429 struct cma_pernet *pernet = cma_pernet(net); 5430 5431 xa_init(&pernet->tcp_ps); 5432 xa_init(&pernet->udp_ps); 5433 xa_init(&pernet->ipoib_ps); 5434 xa_init(&pernet->ib_ps); 5435 5436 return 0; 5437 } 5438 5439 static void cma_exit_net(struct net *net) 5440 { 5441 struct cma_pernet *pernet = cma_pernet(net); 5442 5443 WARN_ON(!xa_empty(&pernet->tcp_ps)); 5444 WARN_ON(!xa_empty(&pernet->udp_ps)); 5445 WARN_ON(!xa_empty(&pernet->ipoib_ps)); 5446 WARN_ON(!xa_empty(&pernet->ib_ps)); 5447 } 5448 5449 static struct pernet_operations cma_pernet_operations = { 5450 .init = cma_init_net, 5451 .exit = cma_exit_net, 5452 .id = &cma_pernet_id, 5453 .size = sizeof(struct cma_pernet), 5454 }; 5455 5456 static int __init cma_init(void) 5457 { 5458 int ret; 5459 5460 /* 5461 * There is a rare lock ordering dependency in cma_netdev_callback() 5462 * that only happens when bonding is enabled. Teach lockdep that rtnl 5463 * must never be nested under lock so it can find these without having 5464 * to test with bonding. 5465 */ 5466 if (IS_ENABLED(CONFIG_LOCKDEP)) { 5467 rtnl_lock(); 5468 mutex_lock(&lock); 5469 mutex_unlock(&lock); 5470 rtnl_unlock(); 5471 } 5472 5473 cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM); 5474 if (!cma_wq) 5475 return -ENOMEM; 5476 5477 ret = register_pernet_subsys(&cma_pernet_operations); 5478 if (ret) 5479 goto err_wq; 5480 5481 ib_sa_register_client(&sa_client); 5482 register_netdevice_notifier(&cma_nb); 5483 register_netevent_notifier(&cma_netevent_cb); 5484 5485 ret = ib_register_client(&cma_client); 5486 if (ret) 5487 goto err; 5488 5489 ret = cma_configfs_init(); 5490 if (ret) 5491 goto err_ib; 5492 5493 return 0; 5494 5495 err_ib: 5496 ib_unregister_client(&cma_client); 5497 err: 5498 unregister_netevent_notifier(&cma_netevent_cb); 5499 unregister_netdevice_notifier(&cma_nb); 5500 ib_sa_unregister_client(&sa_client); 5501 unregister_pernet_subsys(&cma_pernet_operations); 5502 err_wq: 5503 destroy_workqueue(cma_wq); 5504 return ret; 5505 } 5506 5507 static void __exit cma_cleanup(void) 5508 { 5509 cma_configfs_exit(); 5510 ib_unregister_client(&cma_client); 5511 unregister_netevent_notifier(&cma_netevent_cb); 5512 unregister_netdevice_notifier(&cma_nb); 5513 ib_sa_unregister_client(&sa_client); 5514 unregister_pernet_subsys(&cma_pernet_operations); 5515 destroy_workqueue(cma_wq); 5516 } 5517 5518 module_init(cma_init); 5519 module_exit(cma_cleanup); 5520 5521 static void cma_query_ib_service_handler(int status, 5522 struct sa_service_rec *recs, 5523 unsigned int num_recs, void *context) 5524 { 5525 struct cma_work *work = context; 5526 struct rdma_id_private *id_priv = work->id; 5527 struct sockaddr_ib *addr; 5528 5529 if (status) 5530 goto fail; 5531 5532 if (!num_recs) { 5533 status = -ENOENT; 5534 goto fail; 5535 } 5536 5537 if (id_priv->id.route.service_recs) { 5538 status = -EALREADY; 5539 goto fail; 5540 } 5541 5542 id_priv->id.route.service_recs = 5543 kmalloc_array(num_recs, sizeof(*recs), GFP_KERNEL); 5544 if (!id_priv->id.route.service_recs) { 5545 status = -ENOMEM; 5546 goto fail; 5547 } 5548 5549 id_priv->id.route.num_service_recs = num_recs; 5550 memcpy(id_priv->id.route.service_recs, recs, sizeof(*recs) * num_recs); 5551 5552 addr = (struct sockaddr_ib *)&id_priv->id.route.addr.dst_addr; 5553 addr->sib_family = AF_IB; 5554 addr->sib_addr = *(struct ib_addr *)&recs->gid; 5555 addr->sib_pkey = recs->pkey; 5556 addr->sib_sid = recs->id; 5557 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, 5558 (union ib_gid *)&addr->sib_addr); 5559 ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, 5560 ntohs(addr->sib_pkey)); 5561 5562 queue_work(cma_wq, &work->work); 5563 return; 5564 5565 fail: 5566 work->old_state = RDMA_CM_ADDRINFO_QUERY; 5567 work->new_state = RDMA_CM_ADDR_BOUND; 5568 work->event.event = RDMA_CM_EVENT_ADDRINFO_ERROR; 5569 work->event.status = status; 5570 pr_debug_ratelimited( 5571 "RDMA CM: SERVICE_ERROR: failed to query service record. status %d\n", 5572 status); 5573 queue_work(cma_wq, &work->work); 5574 } 5575 5576 static int cma_resolve_ib_service(struct rdma_id_private *id_priv, 5577 struct rdma_ucm_ib_service *ibs) 5578 { 5579 struct sa_service_rec sr = {}; 5580 ib_sa_comp_mask mask = 0; 5581 struct cma_work *work; 5582 5583 work = kzalloc(sizeof(*work), GFP_KERNEL); 5584 if (!work) 5585 return -ENOMEM; 5586 5587 cma_id_get(id_priv); 5588 5589 work->id = id_priv; 5590 INIT_WORK(&work->work, cma_work_handler); 5591 work->old_state = RDMA_CM_ADDRINFO_QUERY; 5592 work->new_state = RDMA_CM_ADDRINFO_RESOLVED; 5593 work->event.event = RDMA_CM_EVENT_ADDRINFO_RESOLVED; 5594 5595 if (ibs->flags & RDMA_USER_CM_IB_SERVICE_FLAG_ID) { 5596 sr.id = cpu_to_be64(ibs->service_id); 5597 mask |= IB_SA_SERVICE_REC_SERVICE_ID; 5598 } 5599 if (ibs->flags & RDMA_USER_CM_IB_SERVICE_FLAG_NAME) { 5600 strscpy(sr.name, ibs->service_name, sizeof(sr.name)); 5601 mask |= IB_SA_SERVICE_REC_SERVICE_NAME; 5602 } 5603 5604 id_priv->query_id = ib_sa_service_rec_get(&sa_client, 5605 id_priv->id.device, 5606 id_priv->id.port_num, 5607 &sr, mask, 5608 2000, GFP_KERNEL, 5609 cma_query_ib_service_handler, 5610 work, &id_priv->query); 5611 5612 if (id_priv->query_id < 0) { 5613 cma_id_put(id_priv); 5614 kfree(work); 5615 return id_priv->query_id; 5616 } 5617 5618 return 0; 5619 } 5620 5621 int rdma_resolve_ib_service(struct rdma_cm_id *id, 5622 struct rdma_ucm_ib_service *ibs) 5623 { 5624 struct rdma_id_private *id_priv; 5625 int ret; 5626 5627 id_priv = container_of(id, struct rdma_id_private, id); 5628 if (!id_priv->cma_dev || 5629 !cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDRINFO_QUERY)) 5630 return -EINVAL; 5631 5632 if (rdma_cap_ib_sa(id->device, id->port_num)) 5633 ret = cma_resolve_ib_service(id_priv, ibs); 5634 else 5635 ret = -EOPNOTSUPP; 5636 5637 if (ret) 5638 goto err; 5639 5640 return 0; 5641 err: 5642 cma_comp_exch(id_priv, RDMA_CM_ADDRINFO_QUERY, RDMA_CM_ADDR_BOUND); 5643 return ret; 5644 } 5645 EXPORT_SYMBOL(rdma_resolve_ib_service); 5646