xref: /linux/drivers/infiniband/core/cma.c (revision 190797d47f16d2d5bd32e2d3360218111d83869d)
1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
2 /*
3  * Copyright (c) 2005 Voltaire Inc.  All rights reserved.
4  * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
5  * Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved.
6  * Copyright (c) 2005-2006 Intel Corporation.  All rights reserved.
7  */
8 
9 #include <linux/completion.h>
10 #include <linux/in.h>
11 #include <linux/in6.h>
12 #include <linux/mutex.h>
13 #include <linux/random.h>
14 #include <linux/rbtree.h>
15 #include <linux/igmp.h>
16 #include <linux/xarray.h>
17 #include <linux/inetdevice.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <net/route.h>
21 
22 #include <net/net_namespace.h>
23 #include <net/netns/generic.h>
24 #include <net/netevent.h>
25 #include <net/tcp.h>
26 #include <net/ipv6.h>
27 #include <net/ip_fib.h>
28 #include <net/ip6_route.h>
29 
30 #include <rdma/rdma_cm.h>
31 #include <rdma/rdma_cm_ib.h>
32 #include <rdma/rdma_netlink.h>
33 #include <rdma/ib.h>
34 #include <rdma/ib_cache.h>
35 #include <rdma/ib_cm.h>
36 #include <rdma/ib_sa.h>
37 #include <rdma/iw_cm.h>
38 
39 #include "core_priv.h"
40 #include "cma_priv.h"
41 #include "cma_trace.h"
42 
43 MODULE_AUTHOR("Sean Hefty");
44 MODULE_DESCRIPTION("Generic RDMA CM Agent");
45 MODULE_LICENSE("Dual BSD/GPL");
46 
47 #define CMA_CM_RESPONSE_TIMEOUT 20
48 #define CMA_MAX_CM_RETRIES 15
49 #define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24)
50 #define CMA_IBOE_PACKET_LIFETIME 16
51 #define CMA_PREFERRED_ROCE_GID_TYPE IB_GID_TYPE_ROCE_UDP_ENCAP
52 
53 static const char * const cma_events[] = {
54 	[RDMA_CM_EVENT_ADDR_RESOLVED]	 = "address resolved",
55 	[RDMA_CM_EVENT_ADDR_ERROR]	 = "address error",
56 	[RDMA_CM_EVENT_ROUTE_RESOLVED]	 = "route resolved ",
57 	[RDMA_CM_EVENT_ROUTE_ERROR]	 = "route error",
58 	[RDMA_CM_EVENT_CONNECT_REQUEST]	 = "connect request",
59 	[RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response",
60 	[RDMA_CM_EVENT_CONNECT_ERROR]	 = "connect error",
61 	[RDMA_CM_EVENT_UNREACHABLE]	 = "unreachable",
62 	[RDMA_CM_EVENT_REJECTED]	 = "rejected",
63 	[RDMA_CM_EVENT_ESTABLISHED]	 = "established",
64 	[RDMA_CM_EVENT_DISCONNECTED]	 = "disconnected",
65 	[RDMA_CM_EVENT_DEVICE_REMOVAL]	 = "device removal",
66 	[RDMA_CM_EVENT_MULTICAST_JOIN]	 = "multicast join",
67 	[RDMA_CM_EVENT_MULTICAST_ERROR]	 = "multicast error",
68 	[RDMA_CM_EVENT_ADDR_CHANGE]	 = "address change",
69 	[RDMA_CM_EVENT_TIMEWAIT_EXIT]	 = "timewait exit",
70 };
71 
72 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid,
73 			      enum ib_gid_type gid_type);
74 
75 const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event)
76 {
77 	size_t index = event;
78 
79 	return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ?
80 			cma_events[index] : "unrecognized event";
81 }
82 EXPORT_SYMBOL(rdma_event_msg);
83 
84 const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id,
85 						int reason)
86 {
87 	if (rdma_ib_or_roce(id->device, id->port_num))
88 		return ibcm_reject_msg(reason);
89 
90 	if (rdma_protocol_iwarp(id->device, id->port_num))
91 		return iwcm_reject_msg(reason);
92 
93 	WARN_ON_ONCE(1);
94 	return "unrecognized transport";
95 }
96 EXPORT_SYMBOL(rdma_reject_msg);
97 
98 /**
99  * rdma_is_consumer_reject - return true if the consumer rejected the connect
100  *                           request.
101  * @id: Communication identifier that received the REJECT event.
102  * @reason: Value returned in the REJECT event status field.
103  */
104 static bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason)
105 {
106 	if (rdma_ib_or_roce(id->device, id->port_num))
107 		return reason == IB_CM_REJ_CONSUMER_DEFINED;
108 
109 	if (rdma_protocol_iwarp(id->device, id->port_num))
110 		return reason == -ECONNREFUSED;
111 
112 	WARN_ON_ONCE(1);
113 	return false;
114 }
115 
116 const void *rdma_consumer_reject_data(struct rdma_cm_id *id,
117 				      struct rdma_cm_event *ev, u8 *data_len)
118 {
119 	const void *p;
120 
121 	if (rdma_is_consumer_reject(id, ev->status)) {
122 		*data_len = ev->param.conn.private_data_len;
123 		p = ev->param.conn.private_data;
124 	} else {
125 		*data_len = 0;
126 		p = NULL;
127 	}
128 	return p;
129 }
130 EXPORT_SYMBOL(rdma_consumer_reject_data);
131 
132 /**
133  * rdma_iw_cm_id() - return the iw_cm_id pointer for this cm_id.
134  * @id: Communication Identifier
135  */
136 struct iw_cm_id *rdma_iw_cm_id(struct rdma_cm_id *id)
137 {
138 	struct rdma_id_private *id_priv;
139 
140 	id_priv = container_of(id, struct rdma_id_private, id);
141 	if (id->device->node_type == RDMA_NODE_RNIC)
142 		return id_priv->cm_id.iw;
143 	return NULL;
144 }
145 EXPORT_SYMBOL(rdma_iw_cm_id);
146 
147 /**
148  * rdma_res_to_id() - return the rdma_cm_id pointer for this restrack.
149  * @res: rdma resource tracking entry pointer
150  */
151 struct rdma_cm_id *rdma_res_to_id(struct rdma_restrack_entry *res)
152 {
153 	struct rdma_id_private *id_priv =
154 		container_of(res, struct rdma_id_private, res);
155 
156 	return &id_priv->id;
157 }
158 EXPORT_SYMBOL(rdma_res_to_id);
159 
160 static int cma_add_one(struct ib_device *device);
161 static void cma_remove_one(struct ib_device *device, void *client_data);
162 
163 static struct ib_client cma_client = {
164 	.name   = "cma",
165 	.add    = cma_add_one,
166 	.remove = cma_remove_one
167 };
168 
169 static struct ib_sa_client sa_client;
170 static LIST_HEAD(dev_list);
171 static LIST_HEAD(listen_any_list);
172 static DEFINE_MUTEX(lock);
173 static struct rb_root id_table = RB_ROOT;
174 /* Serialize operations of id_table tree */
175 static DEFINE_SPINLOCK(id_table_lock);
176 static struct workqueue_struct *cma_wq;
177 static unsigned int cma_pernet_id;
178 
179 struct cma_pernet {
180 	struct xarray tcp_ps;
181 	struct xarray udp_ps;
182 	struct xarray ipoib_ps;
183 	struct xarray ib_ps;
184 };
185 
186 static struct cma_pernet *cma_pernet(struct net *net)
187 {
188 	return net_generic(net, cma_pernet_id);
189 }
190 
191 static
192 struct xarray *cma_pernet_xa(struct net *net, enum rdma_ucm_port_space ps)
193 {
194 	struct cma_pernet *pernet = cma_pernet(net);
195 
196 	switch (ps) {
197 	case RDMA_PS_TCP:
198 		return &pernet->tcp_ps;
199 	case RDMA_PS_UDP:
200 		return &pernet->udp_ps;
201 	case RDMA_PS_IPOIB:
202 		return &pernet->ipoib_ps;
203 	case RDMA_PS_IB:
204 		return &pernet->ib_ps;
205 	default:
206 		return NULL;
207 	}
208 }
209 
210 struct id_table_entry {
211 	struct list_head id_list;
212 	struct rb_node rb_node;
213 };
214 
215 struct cma_device {
216 	struct list_head	list;
217 	struct ib_device	*device;
218 	struct completion	comp;
219 	refcount_t refcount;
220 	struct list_head	id_list;
221 	enum ib_gid_type	*default_gid_type;
222 	u8			*default_roce_tos;
223 };
224 
225 struct rdma_bind_list {
226 	enum rdma_ucm_port_space ps;
227 	struct hlist_head	owners;
228 	unsigned short		port;
229 };
230 
231 static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space ps,
232 			struct rdma_bind_list *bind_list, int snum)
233 {
234 	struct xarray *xa = cma_pernet_xa(net, ps);
235 
236 	return xa_insert(xa, snum, bind_list, GFP_KERNEL);
237 }
238 
239 static struct rdma_bind_list *cma_ps_find(struct net *net,
240 					  enum rdma_ucm_port_space ps, int snum)
241 {
242 	struct xarray *xa = cma_pernet_xa(net, ps);
243 
244 	return xa_load(xa, snum);
245 }
246 
247 static void cma_ps_remove(struct net *net, enum rdma_ucm_port_space ps,
248 			  int snum)
249 {
250 	struct xarray *xa = cma_pernet_xa(net, ps);
251 
252 	xa_erase(xa, snum);
253 }
254 
255 enum {
256 	CMA_OPTION_AFONLY,
257 };
258 
259 void cma_dev_get(struct cma_device *cma_dev)
260 {
261 	refcount_inc(&cma_dev->refcount);
262 }
263 
264 void cma_dev_put(struct cma_device *cma_dev)
265 {
266 	if (refcount_dec_and_test(&cma_dev->refcount))
267 		complete(&cma_dev->comp);
268 }
269 
270 struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter	filter,
271 					     void		*cookie)
272 {
273 	struct cma_device *cma_dev;
274 	struct cma_device *found_cma_dev = NULL;
275 
276 	mutex_lock(&lock);
277 
278 	list_for_each_entry(cma_dev, &dev_list, list)
279 		if (filter(cma_dev->device, cookie)) {
280 			found_cma_dev = cma_dev;
281 			break;
282 		}
283 
284 	if (found_cma_dev)
285 		cma_dev_get(found_cma_dev);
286 	mutex_unlock(&lock);
287 	return found_cma_dev;
288 }
289 
290 int cma_get_default_gid_type(struct cma_device *cma_dev,
291 			     u32 port)
292 {
293 	if (!rdma_is_port_valid(cma_dev->device, port))
294 		return -EINVAL;
295 
296 	return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)];
297 }
298 
299 int cma_set_default_gid_type(struct cma_device *cma_dev,
300 			     u32 port,
301 			     enum ib_gid_type default_gid_type)
302 {
303 	unsigned long supported_gids;
304 
305 	if (!rdma_is_port_valid(cma_dev->device, port))
306 		return -EINVAL;
307 
308 	if (default_gid_type == IB_GID_TYPE_IB &&
309 	    rdma_protocol_roce_eth_encap(cma_dev->device, port))
310 		default_gid_type = IB_GID_TYPE_ROCE;
311 
312 	supported_gids = roce_gid_type_mask_support(cma_dev->device, port);
313 
314 	if (!(supported_gids & 1 << default_gid_type))
315 		return -EINVAL;
316 
317 	cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] =
318 		default_gid_type;
319 
320 	return 0;
321 }
322 
323 int cma_get_default_roce_tos(struct cma_device *cma_dev, u32 port)
324 {
325 	if (!rdma_is_port_valid(cma_dev->device, port))
326 		return -EINVAL;
327 
328 	return cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)];
329 }
330 
331 int cma_set_default_roce_tos(struct cma_device *cma_dev, u32 port,
332 			     u8 default_roce_tos)
333 {
334 	if (!rdma_is_port_valid(cma_dev->device, port))
335 		return -EINVAL;
336 
337 	cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)] =
338 		 default_roce_tos;
339 
340 	return 0;
341 }
342 struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev)
343 {
344 	return cma_dev->device;
345 }
346 
347 /*
348  * Device removal can occur at anytime, so we need extra handling to
349  * serialize notifying the user of device removal with other callbacks.
350  * We do this by disabling removal notification while a callback is in process,
351  * and reporting it after the callback completes.
352  */
353 
354 struct cma_multicast {
355 	struct rdma_id_private *id_priv;
356 	union {
357 		struct ib_sa_multicast *sa_mc;
358 		struct {
359 			struct work_struct work;
360 			struct rdma_cm_event event;
361 		} iboe_join;
362 	};
363 	struct list_head	list;
364 	void			*context;
365 	struct sockaddr_storage	addr;
366 	u8			join_state;
367 };
368 
369 struct cma_work {
370 	struct work_struct	work;
371 	struct rdma_id_private	*id;
372 	enum rdma_cm_state	old_state;
373 	enum rdma_cm_state	new_state;
374 	struct rdma_cm_event	event;
375 };
376 
377 union cma_ip_addr {
378 	struct in6_addr ip6;
379 	struct {
380 		__be32 pad[3];
381 		__be32 addr;
382 	} ip4;
383 };
384 
385 struct cma_hdr {
386 	u8 cma_version;
387 	u8 ip_version;	/* IP version: 7:4 */
388 	__be16 port;
389 	union cma_ip_addr src_addr;
390 	union cma_ip_addr dst_addr;
391 };
392 
393 #define CMA_VERSION 0x00
394 
395 struct cma_req_info {
396 	struct sockaddr_storage listen_addr_storage;
397 	struct sockaddr_storage src_addr_storage;
398 	struct ib_device *device;
399 	union ib_gid local_gid;
400 	__be64 service_id;
401 	int port;
402 	bool has_gid;
403 	u16 pkey;
404 };
405 
406 static int cma_comp_exch(struct rdma_id_private *id_priv,
407 			 enum rdma_cm_state comp, enum rdma_cm_state exch)
408 {
409 	unsigned long flags;
410 	int ret;
411 
412 	/*
413 	 * The FSM uses a funny double locking where state is protected by both
414 	 * the handler_mutex and the spinlock. State is not allowed to change
415 	 * to/from a handler_mutex protected value without also holding
416 	 * handler_mutex.
417 	 */
418 	if (comp == RDMA_CM_CONNECT || exch == RDMA_CM_CONNECT)
419 		lockdep_assert_held(&id_priv->handler_mutex);
420 
421 	spin_lock_irqsave(&id_priv->lock, flags);
422 	if ((ret = (id_priv->state == comp)))
423 		id_priv->state = exch;
424 	spin_unlock_irqrestore(&id_priv->lock, flags);
425 	return ret;
426 }
427 
428 static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr)
429 {
430 	return hdr->ip_version >> 4;
431 }
432 
433 static void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver)
434 {
435 	hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF);
436 }
437 
438 static struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv)
439 {
440 	return (struct sockaddr *)&id_priv->id.route.addr.src_addr;
441 }
442 
443 static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv)
444 {
445 	return (struct sockaddr *)&id_priv->id.route.addr.dst_addr;
446 }
447 
448 static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join)
449 {
450 	struct in_device *in_dev = NULL;
451 
452 	if (ndev) {
453 		rtnl_lock();
454 		in_dev = __in_dev_get_rtnl(ndev);
455 		if (in_dev) {
456 			if (join)
457 				ip_mc_inc_group(in_dev,
458 						*(__be32 *)(mgid->raw + 12));
459 			else
460 				ip_mc_dec_group(in_dev,
461 						*(__be32 *)(mgid->raw + 12));
462 		}
463 		rtnl_unlock();
464 	}
465 	return (in_dev) ? 0 : -ENODEV;
466 }
467 
468 static int compare_netdev_and_ip(int ifindex_a, struct sockaddr *sa,
469 				 struct id_table_entry *entry_b)
470 {
471 	struct rdma_id_private *id_priv = list_first_entry(
472 		&entry_b->id_list, struct rdma_id_private, id_list_entry);
473 	int ifindex_b = id_priv->id.route.addr.dev_addr.bound_dev_if;
474 	struct sockaddr *sb = cma_dst_addr(id_priv);
475 
476 	if (ifindex_a != ifindex_b)
477 		return (ifindex_a > ifindex_b) ? 1 : -1;
478 
479 	if (sa->sa_family != sb->sa_family)
480 		return sa->sa_family - sb->sa_family;
481 
482 	if (sa->sa_family == AF_INET &&
483 	    __builtin_object_size(sa, 0) >= sizeof(struct sockaddr_in)) {
484 		return memcmp(&((struct sockaddr_in *)sa)->sin_addr,
485 			      &((struct sockaddr_in *)sb)->sin_addr,
486 			      sizeof(((struct sockaddr_in *)sa)->sin_addr));
487 	}
488 
489 	if (sa->sa_family == AF_INET6 &&
490 	    __builtin_object_size(sa, 0) >= sizeof(struct sockaddr_in6)) {
491 		return ipv6_addr_cmp(&((struct sockaddr_in6 *)sa)->sin6_addr,
492 				     &((struct sockaddr_in6 *)sb)->sin6_addr);
493 	}
494 
495 	return -1;
496 }
497 
498 static int cma_add_id_to_tree(struct rdma_id_private *node_id_priv)
499 {
500 	struct rb_node **new, *parent = NULL;
501 	struct id_table_entry *this, *node;
502 	unsigned long flags;
503 	int result;
504 
505 	node = kzalloc(sizeof(*node), GFP_KERNEL);
506 	if (!node)
507 		return -ENOMEM;
508 
509 	spin_lock_irqsave(&id_table_lock, flags);
510 	new = &id_table.rb_node;
511 	while (*new) {
512 		this = container_of(*new, struct id_table_entry, rb_node);
513 		result = compare_netdev_and_ip(
514 			node_id_priv->id.route.addr.dev_addr.bound_dev_if,
515 			cma_dst_addr(node_id_priv), this);
516 
517 		parent = *new;
518 		if (result < 0)
519 			new = &((*new)->rb_left);
520 		else if (result > 0)
521 			new = &((*new)->rb_right);
522 		else {
523 			list_add_tail(&node_id_priv->id_list_entry,
524 				      &this->id_list);
525 			kfree(node);
526 			goto unlock;
527 		}
528 	}
529 
530 	INIT_LIST_HEAD(&node->id_list);
531 	list_add_tail(&node_id_priv->id_list_entry, &node->id_list);
532 
533 	rb_link_node(&node->rb_node, parent, new);
534 	rb_insert_color(&node->rb_node, &id_table);
535 
536 unlock:
537 	spin_unlock_irqrestore(&id_table_lock, flags);
538 	return 0;
539 }
540 
541 static struct id_table_entry *
542 node_from_ndev_ip(struct rb_root *root, int ifindex, struct sockaddr *sa)
543 {
544 	struct rb_node *node = root->rb_node;
545 	struct id_table_entry *data;
546 	int result;
547 
548 	while (node) {
549 		data = container_of(node, struct id_table_entry, rb_node);
550 		result = compare_netdev_and_ip(ifindex, sa, data);
551 		if (result < 0)
552 			node = node->rb_left;
553 		else if (result > 0)
554 			node = node->rb_right;
555 		else
556 			return data;
557 	}
558 
559 	return NULL;
560 }
561 
562 static void cma_remove_id_from_tree(struct rdma_id_private *id_priv)
563 {
564 	struct id_table_entry *data;
565 	unsigned long flags;
566 
567 	spin_lock_irqsave(&id_table_lock, flags);
568 	if (list_empty(&id_priv->id_list_entry))
569 		goto out;
570 
571 	data = node_from_ndev_ip(&id_table,
572 				 id_priv->id.route.addr.dev_addr.bound_dev_if,
573 				 cma_dst_addr(id_priv));
574 	if (!data)
575 		goto out;
576 
577 	list_del_init(&id_priv->id_list_entry);
578 	if (list_empty(&data->id_list)) {
579 		rb_erase(&data->rb_node, &id_table);
580 		kfree(data);
581 	}
582 out:
583 	spin_unlock_irqrestore(&id_table_lock, flags);
584 }
585 
586 static void _cma_attach_to_dev(struct rdma_id_private *id_priv,
587 			       struct cma_device *cma_dev)
588 {
589 	cma_dev_get(cma_dev);
590 	id_priv->cma_dev = cma_dev;
591 	id_priv->id.device = cma_dev->device;
592 	id_priv->id.route.addr.dev_addr.transport =
593 		rdma_node_get_transport(cma_dev->device->node_type);
594 	list_add_tail(&id_priv->device_item, &cma_dev->id_list);
595 
596 	trace_cm_id_attach(id_priv, cma_dev->device);
597 }
598 
599 static void cma_attach_to_dev(struct rdma_id_private *id_priv,
600 			      struct cma_device *cma_dev)
601 {
602 	_cma_attach_to_dev(id_priv, cma_dev);
603 	id_priv->gid_type =
604 		cma_dev->default_gid_type[id_priv->id.port_num -
605 					  rdma_start_port(cma_dev->device)];
606 }
607 
608 static void cma_release_dev(struct rdma_id_private *id_priv)
609 {
610 	mutex_lock(&lock);
611 	list_del_init(&id_priv->device_item);
612 	cma_dev_put(id_priv->cma_dev);
613 	id_priv->cma_dev = NULL;
614 	id_priv->id.device = NULL;
615 	if (id_priv->id.route.addr.dev_addr.sgid_attr) {
616 		rdma_put_gid_attr(id_priv->id.route.addr.dev_addr.sgid_attr);
617 		id_priv->id.route.addr.dev_addr.sgid_attr = NULL;
618 	}
619 	mutex_unlock(&lock);
620 }
621 
622 static inline unsigned short cma_family(struct rdma_id_private *id_priv)
623 {
624 	return id_priv->id.route.addr.src_addr.ss_family;
625 }
626 
627 static int cma_set_default_qkey(struct rdma_id_private *id_priv)
628 {
629 	struct ib_sa_mcmember_rec rec;
630 	int ret = 0;
631 
632 	switch (id_priv->id.ps) {
633 	case RDMA_PS_UDP:
634 	case RDMA_PS_IB:
635 		id_priv->qkey = RDMA_UDP_QKEY;
636 		break;
637 	case RDMA_PS_IPOIB:
638 		ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid);
639 		ret = ib_sa_get_mcmember_rec(id_priv->id.device,
640 					     id_priv->id.port_num, &rec.mgid,
641 					     &rec);
642 		if (!ret)
643 			id_priv->qkey = be32_to_cpu(rec.qkey);
644 		break;
645 	default:
646 		break;
647 	}
648 	return ret;
649 }
650 
651 static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey)
652 {
653 	if (!qkey ||
654 	    (id_priv->qkey && (id_priv->qkey != qkey)))
655 		return -EINVAL;
656 
657 	id_priv->qkey = qkey;
658 	return 0;
659 }
660 
661 static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr)
662 {
663 	dev_addr->dev_type = ARPHRD_INFINIBAND;
664 	rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr);
665 	ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey));
666 }
667 
668 static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr)
669 {
670 	int ret;
671 
672 	if (addr->sa_family != AF_IB) {
673 		ret = rdma_translate_ip(addr, dev_addr);
674 	} else {
675 		cma_translate_ib((struct sockaddr_ib *) addr, dev_addr);
676 		ret = 0;
677 	}
678 
679 	return ret;
680 }
681 
682 static const struct ib_gid_attr *
683 cma_validate_port(struct ib_device *device, u32 port,
684 		  enum ib_gid_type gid_type,
685 		  union ib_gid *gid,
686 		  struct rdma_id_private *id_priv)
687 {
688 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
689 	const struct ib_gid_attr *sgid_attr = ERR_PTR(-ENODEV);
690 	int bound_if_index = dev_addr->bound_dev_if;
691 	int dev_type = dev_addr->dev_type;
692 	struct net_device *ndev = NULL;
693 	struct net_device *pdev = NULL;
694 
695 	if (!rdma_dev_access_netns(device, id_priv->id.route.addr.dev_addr.net))
696 		goto out;
697 
698 	if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port))
699 		goto out;
700 
701 	if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port))
702 		goto out;
703 
704 	/*
705 	 * For drivers that do not associate more than one net device with
706 	 * their gid tables, such as iWARP drivers, it is sufficient to
707 	 * return the first table entry.
708 	 *
709 	 * Other driver classes might be included in the future.
710 	 */
711 	if (rdma_protocol_iwarp(device, port)) {
712 		sgid_attr = rdma_get_gid_attr(device, port, 0);
713 		if (IS_ERR(sgid_attr))
714 			goto out;
715 
716 		rcu_read_lock();
717 		ndev = rcu_dereference(sgid_attr->ndev);
718 		if (ndev->ifindex != bound_if_index) {
719 			pdev = dev_get_by_index_rcu(dev_addr->net, bound_if_index);
720 			if (pdev) {
721 				if (is_vlan_dev(pdev)) {
722 					pdev = vlan_dev_real_dev(pdev);
723 					if (ndev->ifindex == pdev->ifindex)
724 						bound_if_index = pdev->ifindex;
725 				}
726 				if (is_vlan_dev(ndev)) {
727 					pdev = vlan_dev_real_dev(ndev);
728 					if (bound_if_index == pdev->ifindex)
729 						bound_if_index = ndev->ifindex;
730 				}
731 			}
732 		}
733 		if (!net_eq(dev_net(ndev), dev_addr->net) ||
734 		    ndev->ifindex != bound_if_index) {
735 			rdma_put_gid_attr(sgid_attr);
736 			sgid_attr = ERR_PTR(-ENODEV);
737 		}
738 		rcu_read_unlock();
739 		goto out;
740 	}
741 
742 	/*
743 	 * For a RXE device, it should work with TUN device and normal ethernet
744 	 * devices. Use driver_id to check if a device is a RXE device or not.
745 	 * ARPHDR_NONE means a TUN device.
746 	 */
747 	if (device->ops.driver_id == RDMA_DRIVER_RXE) {
748 		if ((dev_type == ARPHRD_NONE || dev_type == ARPHRD_ETHER)
749 			&& rdma_protocol_roce(device, port)) {
750 			ndev = dev_get_by_index(dev_addr->net, bound_if_index);
751 			if (!ndev)
752 				goto out;
753 		}
754 	} else {
755 		if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) {
756 			ndev = dev_get_by_index(dev_addr->net, bound_if_index);
757 			if (!ndev)
758 				goto out;
759 		} else {
760 			gid_type = IB_GID_TYPE_IB;
761 		}
762 	}
763 
764 	sgid_attr = rdma_find_gid_by_port(device, gid, gid_type, port, ndev);
765 	dev_put(ndev);
766 out:
767 	return sgid_attr;
768 }
769 
770 static void cma_bind_sgid_attr(struct rdma_id_private *id_priv,
771 			       const struct ib_gid_attr *sgid_attr)
772 {
773 	WARN_ON(id_priv->id.route.addr.dev_addr.sgid_attr);
774 	id_priv->id.route.addr.dev_addr.sgid_attr = sgid_attr;
775 }
776 
777 /**
778  * cma_acquire_dev_by_src_ip - Acquire cma device, port, gid attribute
779  * based on source ip address.
780  * @id_priv:	cm_id which should be bound to cma device
781  *
782  * cma_acquire_dev_by_src_ip() binds cm id to cma device, port and GID attribute
783  * based on source IP address. It returns 0 on success or error code otherwise.
784  * It is applicable to active and passive side cm_id.
785  */
786 static int cma_acquire_dev_by_src_ip(struct rdma_id_private *id_priv)
787 {
788 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
789 	const struct ib_gid_attr *sgid_attr;
790 	union ib_gid gid, iboe_gid, *gidp;
791 	struct cma_device *cma_dev;
792 	enum ib_gid_type gid_type;
793 	int ret = -ENODEV;
794 	u32 port;
795 
796 	if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
797 	    id_priv->id.ps == RDMA_PS_IPOIB)
798 		return -EINVAL;
799 
800 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
801 		    &iboe_gid);
802 
803 	memcpy(&gid, dev_addr->src_dev_addr +
804 	       rdma_addr_gid_offset(dev_addr), sizeof(gid));
805 
806 	mutex_lock(&lock);
807 	list_for_each_entry(cma_dev, &dev_list, list) {
808 		rdma_for_each_port (cma_dev->device, port) {
809 			gidp = rdma_protocol_roce(cma_dev->device, port) ?
810 			       &iboe_gid : &gid;
811 			gid_type = cma_dev->default_gid_type[port - 1];
812 			sgid_attr = cma_validate_port(cma_dev->device, port,
813 						      gid_type, gidp, id_priv);
814 			if (!IS_ERR(sgid_attr)) {
815 				id_priv->id.port_num = port;
816 				cma_bind_sgid_attr(id_priv, sgid_attr);
817 				cma_attach_to_dev(id_priv, cma_dev);
818 				ret = 0;
819 				goto out;
820 			}
821 		}
822 	}
823 out:
824 	mutex_unlock(&lock);
825 	return ret;
826 }
827 
828 /**
829  * cma_ib_acquire_dev - Acquire cma device, port and SGID attribute
830  * @id_priv:		cm id to bind to cma device
831  * @listen_id_priv:	listener cm id to match against
832  * @req:		Pointer to req structure containaining incoming
833  *			request information
834  * cma_ib_acquire_dev() acquires cma device, port and SGID attribute when
835  * rdma device matches for listen_id and incoming request. It also verifies
836  * that a GID table entry is present for the source address.
837  * Returns 0 on success, or returns error code otherwise.
838  */
839 static int cma_ib_acquire_dev(struct rdma_id_private *id_priv,
840 			      const struct rdma_id_private *listen_id_priv,
841 			      struct cma_req_info *req)
842 {
843 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
844 	const struct ib_gid_attr *sgid_attr;
845 	enum ib_gid_type gid_type;
846 	union ib_gid gid;
847 
848 	if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
849 	    id_priv->id.ps == RDMA_PS_IPOIB)
850 		return -EINVAL;
851 
852 	if (rdma_protocol_roce(req->device, req->port))
853 		rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
854 			    &gid);
855 	else
856 		memcpy(&gid, dev_addr->src_dev_addr +
857 		       rdma_addr_gid_offset(dev_addr), sizeof(gid));
858 
859 	gid_type = listen_id_priv->cma_dev->default_gid_type[req->port - 1];
860 	sgid_attr = cma_validate_port(req->device, req->port,
861 				      gid_type, &gid, id_priv);
862 	if (IS_ERR(sgid_attr))
863 		return PTR_ERR(sgid_attr);
864 
865 	id_priv->id.port_num = req->port;
866 	cma_bind_sgid_attr(id_priv, sgid_attr);
867 	/* Need to acquire lock to protect against reader
868 	 * of cma_dev->id_list such as cma_netdev_callback() and
869 	 * cma_process_remove().
870 	 */
871 	mutex_lock(&lock);
872 	cma_attach_to_dev(id_priv, listen_id_priv->cma_dev);
873 	mutex_unlock(&lock);
874 	rdma_restrack_add(&id_priv->res);
875 	return 0;
876 }
877 
878 static int cma_iw_acquire_dev(struct rdma_id_private *id_priv,
879 			      const struct rdma_id_private *listen_id_priv)
880 {
881 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
882 	const struct ib_gid_attr *sgid_attr;
883 	struct cma_device *cma_dev;
884 	enum ib_gid_type gid_type;
885 	int ret = -ENODEV;
886 	union ib_gid gid;
887 	u32 port;
888 
889 	if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
890 	    id_priv->id.ps == RDMA_PS_IPOIB)
891 		return -EINVAL;
892 
893 	memcpy(&gid, dev_addr->src_dev_addr +
894 	       rdma_addr_gid_offset(dev_addr), sizeof(gid));
895 
896 	mutex_lock(&lock);
897 
898 	cma_dev = listen_id_priv->cma_dev;
899 	port = listen_id_priv->id.port_num;
900 	gid_type = listen_id_priv->gid_type;
901 	sgid_attr = cma_validate_port(cma_dev->device, port,
902 				      gid_type, &gid, id_priv);
903 	if (!IS_ERR(sgid_attr)) {
904 		id_priv->id.port_num = port;
905 		cma_bind_sgid_attr(id_priv, sgid_attr);
906 		ret = 0;
907 		goto out;
908 	}
909 
910 	list_for_each_entry(cma_dev, &dev_list, list) {
911 		rdma_for_each_port (cma_dev->device, port) {
912 			if (listen_id_priv->cma_dev == cma_dev &&
913 			    listen_id_priv->id.port_num == port)
914 				continue;
915 
916 			gid_type = cma_dev->default_gid_type[port - 1];
917 			sgid_attr = cma_validate_port(cma_dev->device, port,
918 						      gid_type, &gid, id_priv);
919 			if (!IS_ERR(sgid_attr)) {
920 				id_priv->id.port_num = port;
921 				cma_bind_sgid_attr(id_priv, sgid_attr);
922 				ret = 0;
923 				goto out;
924 			}
925 		}
926 	}
927 
928 out:
929 	if (!ret) {
930 		cma_attach_to_dev(id_priv, cma_dev);
931 		rdma_restrack_add(&id_priv->res);
932 	}
933 
934 	mutex_unlock(&lock);
935 	return ret;
936 }
937 
938 /*
939  * Select the source IB device and address to reach the destination IB address.
940  */
941 static int cma_resolve_ib_dev(struct rdma_id_private *id_priv)
942 {
943 	struct cma_device *cma_dev, *cur_dev;
944 	struct sockaddr_ib *addr;
945 	union ib_gid gid, sgid, *dgid;
946 	unsigned int p;
947 	u16 pkey, index;
948 	enum ib_port_state port_state;
949 	int ret;
950 	int i;
951 
952 	cma_dev = NULL;
953 	addr = (struct sockaddr_ib *) cma_dst_addr(id_priv);
954 	dgid = (union ib_gid *) &addr->sib_addr;
955 	pkey = ntohs(addr->sib_pkey);
956 
957 	mutex_lock(&lock);
958 	list_for_each_entry(cur_dev, &dev_list, list) {
959 		rdma_for_each_port (cur_dev->device, p) {
960 			if (!rdma_cap_af_ib(cur_dev->device, p))
961 				continue;
962 
963 			if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index))
964 				continue;
965 
966 			if (ib_get_cached_port_state(cur_dev->device, p, &port_state))
967 				continue;
968 
969 			for (i = 0; i < cur_dev->device->port_data[p].immutable.gid_tbl_len;
970 			     ++i) {
971 				ret = rdma_query_gid(cur_dev->device, p, i,
972 						     &gid);
973 				if (ret)
974 					continue;
975 
976 				if (!memcmp(&gid, dgid, sizeof(gid))) {
977 					cma_dev = cur_dev;
978 					sgid = gid;
979 					id_priv->id.port_num = p;
980 					goto found;
981 				}
982 
983 				if (!cma_dev && (gid.global.subnet_prefix ==
984 				    dgid->global.subnet_prefix) &&
985 				    port_state == IB_PORT_ACTIVE) {
986 					cma_dev = cur_dev;
987 					sgid = gid;
988 					id_priv->id.port_num = p;
989 					goto found;
990 				}
991 			}
992 		}
993 	}
994 	mutex_unlock(&lock);
995 	return -ENODEV;
996 
997 found:
998 	cma_attach_to_dev(id_priv, cma_dev);
999 	rdma_restrack_add(&id_priv->res);
1000 	mutex_unlock(&lock);
1001 	addr = (struct sockaddr_ib *)cma_src_addr(id_priv);
1002 	memcpy(&addr->sib_addr, &sgid, sizeof(sgid));
1003 	cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr);
1004 	return 0;
1005 }
1006 
1007 static void cma_id_get(struct rdma_id_private *id_priv)
1008 {
1009 	refcount_inc(&id_priv->refcount);
1010 }
1011 
1012 static void cma_id_put(struct rdma_id_private *id_priv)
1013 {
1014 	if (refcount_dec_and_test(&id_priv->refcount))
1015 		complete(&id_priv->comp);
1016 }
1017 
1018 static struct rdma_id_private *
1019 __rdma_create_id(struct net *net, rdma_cm_event_handler event_handler,
1020 		 void *context, enum rdma_ucm_port_space ps,
1021 		 enum ib_qp_type qp_type, const struct rdma_id_private *parent)
1022 {
1023 	struct rdma_id_private *id_priv;
1024 
1025 	id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL);
1026 	if (!id_priv)
1027 		return ERR_PTR(-ENOMEM);
1028 
1029 	id_priv->state = RDMA_CM_IDLE;
1030 	id_priv->id.context = context;
1031 	id_priv->id.event_handler = event_handler;
1032 	id_priv->id.ps = ps;
1033 	id_priv->id.qp_type = qp_type;
1034 	id_priv->tos_set = false;
1035 	id_priv->timeout_set = false;
1036 	id_priv->min_rnr_timer_set = false;
1037 	id_priv->gid_type = IB_GID_TYPE_IB;
1038 	spin_lock_init(&id_priv->lock);
1039 	mutex_init(&id_priv->qp_mutex);
1040 	init_completion(&id_priv->comp);
1041 	refcount_set(&id_priv->refcount, 1);
1042 	mutex_init(&id_priv->handler_mutex);
1043 	INIT_LIST_HEAD(&id_priv->device_item);
1044 	INIT_LIST_HEAD(&id_priv->id_list_entry);
1045 	INIT_LIST_HEAD(&id_priv->listen_list);
1046 	INIT_LIST_HEAD(&id_priv->mc_list);
1047 	get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num);
1048 	id_priv->id.route.addr.dev_addr.net = get_net(net);
1049 	id_priv->seq_num &= 0x00ffffff;
1050 
1051 	rdma_restrack_new(&id_priv->res, RDMA_RESTRACK_CM_ID);
1052 	if (parent)
1053 		rdma_restrack_parent_name(&id_priv->res, &parent->res);
1054 
1055 	return id_priv;
1056 }
1057 
1058 struct rdma_cm_id *
1059 __rdma_create_kernel_id(struct net *net, rdma_cm_event_handler event_handler,
1060 			void *context, enum rdma_ucm_port_space ps,
1061 			enum ib_qp_type qp_type, const char *caller)
1062 {
1063 	struct rdma_id_private *ret;
1064 
1065 	ret = __rdma_create_id(net, event_handler, context, ps, qp_type, NULL);
1066 	if (IS_ERR(ret))
1067 		return ERR_CAST(ret);
1068 
1069 	rdma_restrack_set_name(&ret->res, caller);
1070 	return &ret->id;
1071 }
1072 EXPORT_SYMBOL(__rdma_create_kernel_id);
1073 
1074 struct rdma_cm_id *rdma_create_user_id(rdma_cm_event_handler event_handler,
1075 				       void *context,
1076 				       enum rdma_ucm_port_space ps,
1077 				       enum ib_qp_type qp_type)
1078 {
1079 	struct rdma_id_private *ret;
1080 
1081 	ret = __rdma_create_id(current->nsproxy->net_ns, event_handler, context,
1082 			       ps, qp_type, NULL);
1083 	if (IS_ERR(ret))
1084 		return ERR_CAST(ret);
1085 
1086 	rdma_restrack_set_name(&ret->res, NULL);
1087 	return &ret->id;
1088 }
1089 EXPORT_SYMBOL(rdma_create_user_id);
1090 
1091 static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
1092 {
1093 	struct ib_qp_attr qp_attr;
1094 	int qp_attr_mask, ret;
1095 
1096 	qp_attr.qp_state = IB_QPS_INIT;
1097 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1098 	if (ret)
1099 		return ret;
1100 
1101 	ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask);
1102 	if (ret)
1103 		return ret;
1104 
1105 	qp_attr.qp_state = IB_QPS_RTR;
1106 	ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE);
1107 	if (ret)
1108 		return ret;
1109 
1110 	qp_attr.qp_state = IB_QPS_RTS;
1111 	qp_attr.sq_psn = 0;
1112 	ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN);
1113 
1114 	return ret;
1115 }
1116 
1117 static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
1118 {
1119 	struct ib_qp_attr qp_attr;
1120 	int qp_attr_mask, ret;
1121 
1122 	qp_attr.qp_state = IB_QPS_INIT;
1123 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1124 	if (ret)
1125 		return ret;
1126 
1127 	return ib_modify_qp(qp, &qp_attr, qp_attr_mask);
1128 }
1129 
1130 int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd,
1131 		   struct ib_qp_init_attr *qp_init_attr)
1132 {
1133 	struct rdma_id_private *id_priv;
1134 	struct ib_qp *qp;
1135 	int ret;
1136 
1137 	id_priv = container_of(id, struct rdma_id_private, id);
1138 	if (id->device != pd->device) {
1139 		ret = -EINVAL;
1140 		goto out_err;
1141 	}
1142 
1143 	qp_init_attr->port_num = id->port_num;
1144 	qp = ib_create_qp(pd, qp_init_attr);
1145 	if (IS_ERR(qp)) {
1146 		ret = PTR_ERR(qp);
1147 		goto out_err;
1148 	}
1149 
1150 	if (id->qp_type == IB_QPT_UD)
1151 		ret = cma_init_ud_qp(id_priv, qp);
1152 	else
1153 		ret = cma_init_conn_qp(id_priv, qp);
1154 	if (ret)
1155 		goto out_destroy;
1156 
1157 	id->qp = qp;
1158 	id_priv->qp_num = qp->qp_num;
1159 	id_priv->srq = (qp->srq != NULL);
1160 	trace_cm_qp_create(id_priv, pd, qp_init_attr, 0);
1161 	return 0;
1162 out_destroy:
1163 	ib_destroy_qp(qp);
1164 out_err:
1165 	trace_cm_qp_create(id_priv, pd, qp_init_attr, ret);
1166 	return ret;
1167 }
1168 EXPORT_SYMBOL(rdma_create_qp);
1169 
1170 void rdma_destroy_qp(struct rdma_cm_id *id)
1171 {
1172 	struct rdma_id_private *id_priv;
1173 
1174 	id_priv = container_of(id, struct rdma_id_private, id);
1175 	trace_cm_qp_destroy(id_priv);
1176 	mutex_lock(&id_priv->qp_mutex);
1177 	ib_destroy_qp(id_priv->id.qp);
1178 	id_priv->id.qp = NULL;
1179 	mutex_unlock(&id_priv->qp_mutex);
1180 }
1181 EXPORT_SYMBOL(rdma_destroy_qp);
1182 
1183 static int cma_modify_qp_rtr(struct rdma_id_private *id_priv,
1184 			     struct rdma_conn_param *conn_param)
1185 {
1186 	struct ib_qp_attr qp_attr;
1187 	int qp_attr_mask, ret;
1188 
1189 	mutex_lock(&id_priv->qp_mutex);
1190 	if (!id_priv->id.qp) {
1191 		ret = 0;
1192 		goto out;
1193 	}
1194 
1195 	/* Need to update QP attributes from default values. */
1196 	qp_attr.qp_state = IB_QPS_INIT;
1197 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1198 	if (ret)
1199 		goto out;
1200 
1201 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1202 	if (ret)
1203 		goto out;
1204 
1205 	qp_attr.qp_state = IB_QPS_RTR;
1206 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1207 	if (ret)
1208 		goto out;
1209 
1210 	BUG_ON(id_priv->cma_dev->device != id_priv->id.device);
1211 
1212 	if (conn_param)
1213 		qp_attr.max_dest_rd_atomic = conn_param->responder_resources;
1214 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1215 out:
1216 	mutex_unlock(&id_priv->qp_mutex);
1217 	return ret;
1218 }
1219 
1220 static int cma_modify_qp_rts(struct rdma_id_private *id_priv,
1221 			     struct rdma_conn_param *conn_param)
1222 {
1223 	struct ib_qp_attr qp_attr;
1224 	int qp_attr_mask, ret;
1225 
1226 	mutex_lock(&id_priv->qp_mutex);
1227 	if (!id_priv->id.qp) {
1228 		ret = 0;
1229 		goto out;
1230 	}
1231 
1232 	qp_attr.qp_state = IB_QPS_RTS;
1233 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1234 	if (ret)
1235 		goto out;
1236 
1237 	if (conn_param)
1238 		qp_attr.max_rd_atomic = conn_param->initiator_depth;
1239 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1240 out:
1241 	mutex_unlock(&id_priv->qp_mutex);
1242 	return ret;
1243 }
1244 
1245 static int cma_modify_qp_err(struct rdma_id_private *id_priv)
1246 {
1247 	struct ib_qp_attr qp_attr;
1248 	int ret;
1249 
1250 	mutex_lock(&id_priv->qp_mutex);
1251 	if (!id_priv->id.qp) {
1252 		ret = 0;
1253 		goto out;
1254 	}
1255 
1256 	qp_attr.qp_state = IB_QPS_ERR;
1257 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE);
1258 out:
1259 	mutex_unlock(&id_priv->qp_mutex);
1260 	return ret;
1261 }
1262 
1263 static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv,
1264 			       struct ib_qp_attr *qp_attr, int *qp_attr_mask)
1265 {
1266 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
1267 	int ret;
1268 	u16 pkey;
1269 
1270 	if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num))
1271 		pkey = 0xffff;
1272 	else
1273 		pkey = ib_addr_get_pkey(dev_addr);
1274 
1275 	ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num,
1276 				  pkey, &qp_attr->pkey_index);
1277 	if (ret)
1278 		return ret;
1279 
1280 	qp_attr->port_num = id_priv->id.port_num;
1281 	*qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT;
1282 
1283 	if (id_priv->id.qp_type == IB_QPT_UD) {
1284 		ret = cma_set_default_qkey(id_priv);
1285 		if (ret)
1286 			return ret;
1287 
1288 		qp_attr->qkey = id_priv->qkey;
1289 		*qp_attr_mask |= IB_QP_QKEY;
1290 	} else {
1291 		qp_attr->qp_access_flags = 0;
1292 		*qp_attr_mask |= IB_QP_ACCESS_FLAGS;
1293 	}
1294 	return 0;
1295 }
1296 
1297 int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr,
1298 		       int *qp_attr_mask)
1299 {
1300 	struct rdma_id_private *id_priv;
1301 	int ret = 0;
1302 
1303 	id_priv = container_of(id, struct rdma_id_private, id);
1304 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
1305 		if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD))
1306 			ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask);
1307 		else
1308 			ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr,
1309 						 qp_attr_mask);
1310 
1311 		if (qp_attr->qp_state == IB_QPS_RTR)
1312 			qp_attr->rq_psn = id_priv->seq_num;
1313 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
1314 		if (!id_priv->cm_id.iw) {
1315 			qp_attr->qp_access_flags = 0;
1316 			*qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS;
1317 		} else
1318 			ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr,
1319 						 qp_attr_mask);
1320 		qp_attr->port_num = id_priv->id.port_num;
1321 		*qp_attr_mask |= IB_QP_PORT;
1322 	} else {
1323 		ret = -ENOSYS;
1324 	}
1325 
1326 	if ((*qp_attr_mask & IB_QP_TIMEOUT) && id_priv->timeout_set)
1327 		qp_attr->timeout = id_priv->timeout;
1328 
1329 	if ((*qp_attr_mask & IB_QP_MIN_RNR_TIMER) && id_priv->min_rnr_timer_set)
1330 		qp_attr->min_rnr_timer = id_priv->min_rnr_timer;
1331 
1332 	return ret;
1333 }
1334 EXPORT_SYMBOL(rdma_init_qp_attr);
1335 
1336 static inline bool cma_zero_addr(const struct sockaddr *addr)
1337 {
1338 	switch (addr->sa_family) {
1339 	case AF_INET:
1340 		return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr);
1341 	case AF_INET6:
1342 		return ipv6_addr_any(&((struct sockaddr_in6 *)addr)->sin6_addr);
1343 	case AF_IB:
1344 		return ib_addr_any(&((struct sockaddr_ib *)addr)->sib_addr);
1345 	default:
1346 		return false;
1347 	}
1348 }
1349 
1350 static inline bool cma_loopback_addr(const struct sockaddr *addr)
1351 {
1352 	switch (addr->sa_family) {
1353 	case AF_INET:
1354 		return ipv4_is_loopback(
1355 			((struct sockaddr_in *)addr)->sin_addr.s_addr);
1356 	case AF_INET6:
1357 		return ipv6_addr_loopback(
1358 			&((struct sockaddr_in6 *)addr)->sin6_addr);
1359 	case AF_IB:
1360 		return ib_addr_loopback(
1361 			&((struct sockaddr_ib *)addr)->sib_addr);
1362 	default:
1363 		return false;
1364 	}
1365 }
1366 
1367 static inline bool cma_any_addr(const struct sockaddr *addr)
1368 {
1369 	return cma_zero_addr(addr) || cma_loopback_addr(addr);
1370 }
1371 
1372 static int cma_addr_cmp(const struct sockaddr *src, const struct sockaddr *dst)
1373 {
1374 	if (src->sa_family != dst->sa_family)
1375 		return -1;
1376 
1377 	switch (src->sa_family) {
1378 	case AF_INET:
1379 		return ((struct sockaddr_in *)src)->sin_addr.s_addr !=
1380 		       ((struct sockaddr_in *)dst)->sin_addr.s_addr;
1381 	case AF_INET6: {
1382 		struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src;
1383 		struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst;
1384 		bool link_local;
1385 
1386 		if (ipv6_addr_cmp(&src_addr6->sin6_addr,
1387 					  &dst_addr6->sin6_addr))
1388 			return 1;
1389 		link_local = ipv6_addr_type(&dst_addr6->sin6_addr) &
1390 			     IPV6_ADDR_LINKLOCAL;
1391 		/* Link local must match their scope_ids */
1392 		return link_local ? (src_addr6->sin6_scope_id !=
1393 				     dst_addr6->sin6_scope_id) :
1394 				    0;
1395 	}
1396 
1397 	default:
1398 		return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr,
1399 				   &((struct sockaddr_ib *) dst)->sib_addr);
1400 	}
1401 }
1402 
1403 static __be16 cma_port(const struct sockaddr *addr)
1404 {
1405 	struct sockaddr_ib *sib;
1406 
1407 	switch (addr->sa_family) {
1408 	case AF_INET:
1409 		return ((struct sockaddr_in *) addr)->sin_port;
1410 	case AF_INET6:
1411 		return ((struct sockaddr_in6 *) addr)->sin6_port;
1412 	case AF_IB:
1413 		sib = (struct sockaddr_ib *) addr;
1414 		return htons((u16) (be64_to_cpu(sib->sib_sid) &
1415 				    be64_to_cpu(sib->sib_sid_mask)));
1416 	default:
1417 		return 0;
1418 	}
1419 }
1420 
1421 static inline int cma_any_port(const struct sockaddr *addr)
1422 {
1423 	return !cma_port(addr);
1424 }
1425 
1426 static void cma_save_ib_info(struct sockaddr *src_addr,
1427 			     struct sockaddr *dst_addr,
1428 			     const struct rdma_cm_id *listen_id,
1429 			     const struct sa_path_rec *path)
1430 {
1431 	struct sockaddr_ib *listen_ib, *ib;
1432 
1433 	listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr;
1434 	if (src_addr) {
1435 		ib = (struct sockaddr_ib *)src_addr;
1436 		ib->sib_family = AF_IB;
1437 		if (path) {
1438 			ib->sib_pkey = path->pkey;
1439 			ib->sib_flowinfo = path->flow_label;
1440 			memcpy(&ib->sib_addr, &path->sgid, 16);
1441 			ib->sib_sid = path->service_id;
1442 			ib->sib_scope_id = 0;
1443 		} else {
1444 			ib->sib_pkey = listen_ib->sib_pkey;
1445 			ib->sib_flowinfo = listen_ib->sib_flowinfo;
1446 			ib->sib_addr = listen_ib->sib_addr;
1447 			ib->sib_sid = listen_ib->sib_sid;
1448 			ib->sib_scope_id = listen_ib->sib_scope_id;
1449 		}
1450 		ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL);
1451 	}
1452 	if (dst_addr) {
1453 		ib = (struct sockaddr_ib *)dst_addr;
1454 		ib->sib_family = AF_IB;
1455 		if (path) {
1456 			ib->sib_pkey = path->pkey;
1457 			ib->sib_flowinfo = path->flow_label;
1458 			memcpy(&ib->sib_addr, &path->dgid, 16);
1459 		}
1460 	}
1461 }
1462 
1463 static void cma_save_ip4_info(struct sockaddr_in *src_addr,
1464 			      struct sockaddr_in *dst_addr,
1465 			      struct cma_hdr *hdr,
1466 			      __be16 local_port)
1467 {
1468 	if (src_addr) {
1469 		*src_addr = (struct sockaddr_in) {
1470 			.sin_family = AF_INET,
1471 			.sin_addr.s_addr = hdr->dst_addr.ip4.addr,
1472 			.sin_port = local_port,
1473 		};
1474 	}
1475 
1476 	if (dst_addr) {
1477 		*dst_addr = (struct sockaddr_in) {
1478 			.sin_family = AF_INET,
1479 			.sin_addr.s_addr = hdr->src_addr.ip4.addr,
1480 			.sin_port = hdr->port,
1481 		};
1482 	}
1483 }
1484 
1485 static void cma_save_ip6_info(struct sockaddr_in6 *src_addr,
1486 			      struct sockaddr_in6 *dst_addr,
1487 			      struct cma_hdr *hdr,
1488 			      __be16 local_port)
1489 {
1490 	if (src_addr) {
1491 		*src_addr = (struct sockaddr_in6) {
1492 			.sin6_family = AF_INET6,
1493 			.sin6_addr = hdr->dst_addr.ip6,
1494 			.sin6_port = local_port,
1495 		};
1496 	}
1497 
1498 	if (dst_addr) {
1499 		*dst_addr = (struct sockaddr_in6) {
1500 			.sin6_family = AF_INET6,
1501 			.sin6_addr = hdr->src_addr.ip6,
1502 			.sin6_port = hdr->port,
1503 		};
1504 	}
1505 }
1506 
1507 static u16 cma_port_from_service_id(__be64 service_id)
1508 {
1509 	return (u16)be64_to_cpu(service_id);
1510 }
1511 
1512 static int cma_save_ip_info(struct sockaddr *src_addr,
1513 			    struct sockaddr *dst_addr,
1514 			    const struct ib_cm_event *ib_event,
1515 			    __be64 service_id)
1516 {
1517 	struct cma_hdr *hdr;
1518 	__be16 port;
1519 
1520 	hdr = ib_event->private_data;
1521 	if (hdr->cma_version != CMA_VERSION)
1522 		return -EINVAL;
1523 
1524 	port = htons(cma_port_from_service_id(service_id));
1525 
1526 	switch (cma_get_ip_ver(hdr)) {
1527 	case 4:
1528 		cma_save_ip4_info((struct sockaddr_in *)src_addr,
1529 				  (struct sockaddr_in *)dst_addr, hdr, port);
1530 		break;
1531 	case 6:
1532 		cma_save_ip6_info((struct sockaddr_in6 *)src_addr,
1533 				  (struct sockaddr_in6 *)dst_addr, hdr, port);
1534 		break;
1535 	default:
1536 		return -EAFNOSUPPORT;
1537 	}
1538 
1539 	return 0;
1540 }
1541 
1542 static int cma_save_net_info(struct sockaddr *src_addr,
1543 			     struct sockaddr *dst_addr,
1544 			     const struct rdma_cm_id *listen_id,
1545 			     const struct ib_cm_event *ib_event,
1546 			     sa_family_t sa_family, __be64 service_id)
1547 {
1548 	if (sa_family == AF_IB) {
1549 		if (ib_event->event == IB_CM_REQ_RECEIVED)
1550 			cma_save_ib_info(src_addr, dst_addr, listen_id,
1551 					 ib_event->param.req_rcvd.primary_path);
1552 		else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED)
1553 			cma_save_ib_info(src_addr, dst_addr, listen_id, NULL);
1554 		return 0;
1555 	}
1556 
1557 	return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id);
1558 }
1559 
1560 static int cma_save_req_info(const struct ib_cm_event *ib_event,
1561 			     struct cma_req_info *req)
1562 {
1563 	const struct ib_cm_req_event_param *req_param =
1564 		&ib_event->param.req_rcvd;
1565 	const struct ib_cm_sidr_req_event_param *sidr_param =
1566 		&ib_event->param.sidr_req_rcvd;
1567 
1568 	switch (ib_event->event) {
1569 	case IB_CM_REQ_RECEIVED:
1570 		req->device	= req_param->listen_id->device;
1571 		req->port	= req_param->port;
1572 		memcpy(&req->local_gid, &req_param->primary_path->sgid,
1573 		       sizeof(req->local_gid));
1574 		req->has_gid	= true;
1575 		req->service_id = req_param->primary_path->service_id;
1576 		req->pkey	= be16_to_cpu(req_param->primary_path->pkey);
1577 		if (req->pkey != req_param->bth_pkey)
1578 			pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n"
1579 					    "RDMA CMA: in the future this may cause the request to be dropped\n",
1580 					    req_param->bth_pkey, req->pkey);
1581 		break;
1582 	case IB_CM_SIDR_REQ_RECEIVED:
1583 		req->device	= sidr_param->listen_id->device;
1584 		req->port	= sidr_param->port;
1585 		req->has_gid	= false;
1586 		req->service_id	= sidr_param->service_id;
1587 		req->pkey	= sidr_param->pkey;
1588 		if (req->pkey != sidr_param->bth_pkey)
1589 			pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n"
1590 					    "RDMA CMA: in the future this may cause the request to be dropped\n",
1591 					    sidr_param->bth_pkey, req->pkey);
1592 		break;
1593 	default:
1594 		return -EINVAL;
1595 	}
1596 
1597 	return 0;
1598 }
1599 
1600 static bool validate_ipv4_net_dev(struct net_device *net_dev,
1601 				  const struct sockaddr_in *dst_addr,
1602 				  const struct sockaddr_in *src_addr)
1603 {
1604 	__be32 daddr = dst_addr->sin_addr.s_addr,
1605 	       saddr = src_addr->sin_addr.s_addr;
1606 	struct fib_result res;
1607 	struct flowi4 fl4;
1608 	int err;
1609 	bool ret;
1610 
1611 	if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
1612 	    ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) ||
1613 	    ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) ||
1614 	    ipv4_is_loopback(saddr))
1615 		return false;
1616 
1617 	memset(&fl4, 0, sizeof(fl4));
1618 	fl4.flowi4_oif = net_dev->ifindex;
1619 	fl4.daddr = daddr;
1620 	fl4.saddr = saddr;
1621 
1622 	rcu_read_lock();
1623 	err = fib_lookup(dev_net(net_dev), &fl4, &res, 0);
1624 	ret = err == 0 && FIB_RES_DEV(res) == net_dev;
1625 	rcu_read_unlock();
1626 
1627 	return ret;
1628 }
1629 
1630 static bool validate_ipv6_net_dev(struct net_device *net_dev,
1631 				  const struct sockaddr_in6 *dst_addr,
1632 				  const struct sockaddr_in6 *src_addr)
1633 {
1634 #if IS_ENABLED(CONFIG_IPV6)
1635 	const int strict = ipv6_addr_type(&dst_addr->sin6_addr) &
1636 			   IPV6_ADDR_LINKLOCAL;
1637 	struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr,
1638 					 &src_addr->sin6_addr, net_dev->ifindex,
1639 					 NULL, strict);
1640 	bool ret;
1641 
1642 	if (!rt)
1643 		return false;
1644 
1645 	ret = rt->rt6i_idev->dev == net_dev;
1646 	ip6_rt_put(rt);
1647 
1648 	return ret;
1649 #else
1650 	return false;
1651 #endif
1652 }
1653 
1654 static bool validate_net_dev(struct net_device *net_dev,
1655 			     const struct sockaddr *daddr,
1656 			     const struct sockaddr *saddr)
1657 {
1658 	const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr;
1659 	const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr;
1660 	const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr;
1661 	const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr;
1662 
1663 	switch (daddr->sa_family) {
1664 	case AF_INET:
1665 		return saddr->sa_family == AF_INET &&
1666 		       validate_ipv4_net_dev(net_dev, daddr4, saddr4);
1667 
1668 	case AF_INET6:
1669 		return saddr->sa_family == AF_INET6 &&
1670 		       validate_ipv6_net_dev(net_dev, daddr6, saddr6);
1671 
1672 	default:
1673 		return false;
1674 	}
1675 }
1676 
1677 static struct net_device *
1678 roce_get_net_dev_by_cm_event(const struct ib_cm_event *ib_event)
1679 {
1680 	const struct ib_gid_attr *sgid_attr = NULL;
1681 	struct net_device *ndev;
1682 
1683 	if (ib_event->event == IB_CM_REQ_RECEIVED)
1684 		sgid_attr = ib_event->param.req_rcvd.ppath_sgid_attr;
1685 	else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED)
1686 		sgid_attr = ib_event->param.sidr_req_rcvd.sgid_attr;
1687 
1688 	if (!sgid_attr)
1689 		return NULL;
1690 
1691 	rcu_read_lock();
1692 	ndev = rdma_read_gid_attr_ndev_rcu(sgid_attr);
1693 	if (IS_ERR(ndev))
1694 		ndev = NULL;
1695 	else
1696 		dev_hold(ndev);
1697 	rcu_read_unlock();
1698 	return ndev;
1699 }
1700 
1701 static struct net_device *cma_get_net_dev(const struct ib_cm_event *ib_event,
1702 					  struct cma_req_info *req)
1703 {
1704 	struct sockaddr *listen_addr =
1705 			(struct sockaddr *)&req->listen_addr_storage;
1706 	struct sockaddr *src_addr = (struct sockaddr *)&req->src_addr_storage;
1707 	struct net_device *net_dev;
1708 	const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL;
1709 	int err;
1710 
1711 	err = cma_save_ip_info(listen_addr, src_addr, ib_event,
1712 			       req->service_id);
1713 	if (err)
1714 		return ERR_PTR(err);
1715 
1716 	if (rdma_protocol_roce(req->device, req->port))
1717 		net_dev = roce_get_net_dev_by_cm_event(ib_event);
1718 	else
1719 		net_dev = ib_get_net_dev_by_params(req->device, req->port,
1720 						   req->pkey,
1721 						   gid, listen_addr);
1722 	if (!net_dev)
1723 		return ERR_PTR(-ENODEV);
1724 
1725 	return net_dev;
1726 }
1727 
1728 static enum rdma_ucm_port_space rdma_ps_from_service_id(__be64 service_id)
1729 {
1730 	return (be64_to_cpu(service_id) >> 16) & 0xffff;
1731 }
1732 
1733 static bool cma_match_private_data(struct rdma_id_private *id_priv,
1734 				   const struct cma_hdr *hdr)
1735 {
1736 	struct sockaddr *addr = cma_src_addr(id_priv);
1737 	__be32 ip4_addr;
1738 	struct in6_addr ip6_addr;
1739 
1740 	if (cma_any_addr(addr) && !id_priv->afonly)
1741 		return true;
1742 
1743 	switch (addr->sa_family) {
1744 	case AF_INET:
1745 		ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr;
1746 		if (cma_get_ip_ver(hdr) != 4)
1747 			return false;
1748 		if (!cma_any_addr(addr) &&
1749 		    hdr->dst_addr.ip4.addr != ip4_addr)
1750 			return false;
1751 		break;
1752 	case AF_INET6:
1753 		ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr;
1754 		if (cma_get_ip_ver(hdr) != 6)
1755 			return false;
1756 		if (!cma_any_addr(addr) &&
1757 		    memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr)))
1758 			return false;
1759 		break;
1760 	case AF_IB:
1761 		return true;
1762 	default:
1763 		return false;
1764 	}
1765 
1766 	return true;
1767 }
1768 
1769 static bool cma_protocol_roce(const struct rdma_cm_id *id)
1770 {
1771 	struct ib_device *device = id->device;
1772 	const u32 port_num = id->port_num ?: rdma_start_port(device);
1773 
1774 	return rdma_protocol_roce(device, port_num);
1775 }
1776 
1777 static bool cma_is_req_ipv6_ll(const struct cma_req_info *req)
1778 {
1779 	const struct sockaddr *daddr =
1780 			(const struct sockaddr *)&req->listen_addr_storage;
1781 	const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr;
1782 
1783 	/* Returns true if the req is for IPv6 link local */
1784 	return (daddr->sa_family == AF_INET6 &&
1785 		(ipv6_addr_type(&daddr6->sin6_addr) & IPV6_ADDR_LINKLOCAL));
1786 }
1787 
1788 static bool cma_match_net_dev(const struct rdma_cm_id *id,
1789 			      const struct net_device *net_dev,
1790 			      const struct cma_req_info *req)
1791 {
1792 	const struct rdma_addr *addr = &id->route.addr;
1793 
1794 	if (!net_dev)
1795 		/* This request is an AF_IB request */
1796 		return (!id->port_num || id->port_num == req->port) &&
1797 		       (addr->src_addr.ss_family == AF_IB);
1798 
1799 	/*
1800 	 * If the request is not for IPv6 link local, allow matching
1801 	 * request to any netdevice of the one or multiport rdma device.
1802 	 */
1803 	if (!cma_is_req_ipv6_ll(req))
1804 		return true;
1805 	/*
1806 	 * Net namespaces must match, and if the listner is listening
1807 	 * on a specific netdevice than netdevice must match as well.
1808 	 */
1809 	if (net_eq(dev_net(net_dev), addr->dev_addr.net) &&
1810 	    (!!addr->dev_addr.bound_dev_if ==
1811 	     (addr->dev_addr.bound_dev_if == net_dev->ifindex)))
1812 		return true;
1813 	else
1814 		return false;
1815 }
1816 
1817 static struct rdma_id_private *cma_find_listener(
1818 		const struct rdma_bind_list *bind_list,
1819 		const struct ib_cm_id *cm_id,
1820 		const struct ib_cm_event *ib_event,
1821 		const struct cma_req_info *req,
1822 		const struct net_device *net_dev)
1823 {
1824 	struct rdma_id_private *id_priv, *id_priv_dev;
1825 
1826 	lockdep_assert_held(&lock);
1827 
1828 	if (!bind_list)
1829 		return ERR_PTR(-EINVAL);
1830 
1831 	hlist_for_each_entry(id_priv, &bind_list->owners, node) {
1832 		if (cma_match_private_data(id_priv, ib_event->private_data)) {
1833 			if (id_priv->id.device == cm_id->device &&
1834 			    cma_match_net_dev(&id_priv->id, net_dev, req))
1835 				return id_priv;
1836 			list_for_each_entry(id_priv_dev,
1837 					    &id_priv->listen_list,
1838 					    listen_item) {
1839 				if (id_priv_dev->id.device == cm_id->device &&
1840 				    cma_match_net_dev(&id_priv_dev->id,
1841 						      net_dev, req))
1842 					return id_priv_dev;
1843 			}
1844 		}
1845 	}
1846 
1847 	return ERR_PTR(-EINVAL);
1848 }
1849 
1850 static struct rdma_id_private *
1851 cma_ib_id_from_event(struct ib_cm_id *cm_id,
1852 		     const struct ib_cm_event *ib_event,
1853 		     struct cma_req_info *req,
1854 		     struct net_device **net_dev)
1855 {
1856 	struct rdma_bind_list *bind_list;
1857 	struct rdma_id_private *id_priv;
1858 	int err;
1859 
1860 	err = cma_save_req_info(ib_event, req);
1861 	if (err)
1862 		return ERR_PTR(err);
1863 
1864 	*net_dev = cma_get_net_dev(ib_event, req);
1865 	if (IS_ERR(*net_dev)) {
1866 		if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) {
1867 			/* Assuming the protocol is AF_IB */
1868 			*net_dev = NULL;
1869 		} else {
1870 			return ERR_CAST(*net_dev);
1871 		}
1872 	}
1873 
1874 	mutex_lock(&lock);
1875 	/*
1876 	 * Net namespace might be getting deleted while route lookup,
1877 	 * cm_id lookup is in progress. Therefore, perform netdevice
1878 	 * validation, cm_id lookup under rcu lock.
1879 	 * RCU lock along with netdevice state check, synchronizes with
1880 	 * netdevice migrating to different net namespace and also avoids
1881 	 * case where net namespace doesn't get deleted while lookup is in
1882 	 * progress.
1883 	 * If the device state is not IFF_UP, its properties such as ifindex
1884 	 * and nd_net cannot be trusted to remain valid without rcu lock.
1885 	 * net/core/dev.c change_net_namespace() ensures to synchronize with
1886 	 * ongoing operations on net device after device is closed using
1887 	 * synchronize_net().
1888 	 */
1889 	rcu_read_lock();
1890 	if (*net_dev) {
1891 		/*
1892 		 * If netdevice is down, it is likely that it is administratively
1893 		 * down or it might be migrating to different namespace.
1894 		 * In that case avoid further processing, as the net namespace
1895 		 * or ifindex may change.
1896 		 */
1897 		if (((*net_dev)->flags & IFF_UP) == 0) {
1898 			id_priv = ERR_PTR(-EHOSTUNREACH);
1899 			goto err;
1900 		}
1901 
1902 		if (!validate_net_dev(*net_dev,
1903 				 (struct sockaddr *)&req->src_addr_storage,
1904 				 (struct sockaddr *)&req->listen_addr_storage)) {
1905 			id_priv = ERR_PTR(-EHOSTUNREACH);
1906 			goto err;
1907 		}
1908 	}
1909 
1910 	bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net,
1911 				rdma_ps_from_service_id(req->service_id),
1912 				cma_port_from_service_id(req->service_id));
1913 	id_priv = cma_find_listener(bind_list, cm_id, ib_event, req, *net_dev);
1914 err:
1915 	rcu_read_unlock();
1916 	mutex_unlock(&lock);
1917 	if (IS_ERR(id_priv) && *net_dev) {
1918 		dev_put(*net_dev);
1919 		*net_dev = NULL;
1920 	}
1921 	return id_priv;
1922 }
1923 
1924 static inline u8 cma_user_data_offset(struct rdma_id_private *id_priv)
1925 {
1926 	return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr);
1927 }
1928 
1929 static void cma_cancel_route(struct rdma_id_private *id_priv)
1930 {
1931 	if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) {
1932 		if (id_priv->query)
1933 			ib_sa_cancel_query(id_priv->query_id, id_priv->query);
1934 	}
1935 }
1936 
1937 static void _cma_cancel_listens(struct rdma_id_private *id_priv)
1938 {
1939 	struct rdma_id_private *dev_id_priv;
1940 
1941 	lockdep_assert_held(&lock);
1942 
1943 	/*
1944 	 * Remove from listen_any_list to prevent added devices from spawning
1945 	 * additional listen requests.
1946 	 */
1947 	list_del_init(&id_priv->listen_any_item);
1948 
1949 	while (!list_empty(&id_priv->listen_list)) {
1950 		dev_id_priv =
1951 			list_first_entry(&id_priv->listen_list,
1952 					 struct rdma_id_private, listen_item);
1953 		/* sync with device removal to avoid duplicate destruction */
1954 		list_del_init(&dev_id_priv->device_item);
1955 		list_del_init(&dev_id_priv->listen_item);
1956 		mutex_unlock(&lock);
1957 
1958 		rdma_destroy_id(&dev_id_priv->id);
1959 		mutex_lock(&lock);
1960 	}
1961 }
1962 
1963 static void cma_cancel_listens(struct rdma_id_private *id_priv)
1964 {
1965 	mutex_lock(&lock);
1966 	_cma_cancel_listens(id_priv);
1967 	mutex_unlock(&lock);
1968 }
1969 
1970 static void cma_cancel_operation(struct rdma_id_private *id_priv,
1971 				 enum rdma_cm_state state)
1972 {
1973 	switch (state) {
1974 	case RDMA_CM_ADDR_QUERY:
1975 		/*
1976 		 * We can avoid doing the rdma_addr_cancel() based on state,
1977 		 * only RDMA_CM_ADDR_QUERY has a work that could still execute.
1978 		 * Notice that the addr_handler work could still be exiting
1979 		 * outside this state, however due to the interaction with the
1980 		 * handler_mutex the work is guaranteed not to touch id_priv
1981 		 * during exit.
1982 		 */
1983 		rdma_addr_cancel(&id_priv->id.route.addr.dev_addr);
1984 		break;
1985 	case RDMA_CM_ROUTE_QUERY:
1986 		cma_cancel_route(id_priv);
1987 		break;
1988 	case RDMA_CM_LISTEN:
1989 		if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev)
1990 			cma_cancel_listens(id_priv);
1991 		break;
1992 	default:
1993 		break;
1994 	}
1995 }
1996 
1997 static void cma_release_port(struct rdma_id_private *id_priv)
1998 {
1999 	struct rdma_bind_list *bind_list = id_priv->bind_list;
2000 	struct net *net = id_priv->id.route.addr.dev_addr.net;
2001 
2002 	if (!bind_list)
2003 		return;
2004 
2005 	mutex_lock(&lock);
2006 	hlist_del(&id_priv->node);
2007 	if (hlist_empty(&bind_list->owners)) {
2008 		cma_ps_remove(net, bind_list->ps, bind_list->port);
2009 		kfree(bind_list);
2010 	}
2011 	mutex_unlock(&lock);
2012 }
2013 
2014 static void destroy_mc(struct rdma_id_private *id_priv,
2015 		       struct cma_multicast *mc)
2016 {
2017 	bool send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN);
2018 
2019 	if (rdma_cap_ib_mcast(id_priv->id.device, id_priv->id.port_num))
2020 		ib_sa_free_multicast(mc->sa_mc);
2021 
2022 	if (rdma_protocol_roce(id_priv->id.device, id_priv->id.port_num)) {
2023 		struct rdma_dev_addr *dev_addr =
2024 			&id_priv->id.route.addr.dev_addr;
2025 		struct net_device *ndev = NULL;
2026 
2027 		if (dev_addr->bound_dev_if)
2028 			ndev = dev_get_by_index(dev_addr->net,
2029 						dev_addr->bound_dev_if);
2030 		if (ndev && !send_only) {
2031 			enum ib_gid_type gid_type;
2032 			union ib_gid mgid;
2033 
2034 			gid_type = id_priv->cma_dev->default_gid_type
2035 					   [id_priv->id.port_num -
2036 					    rdma_start_port(
2037 						    id_priv->cma_dev->device)];
2038 			cma_iboe_set_mgid((struct sockaddr *)&mc->addr, &mgid,
2039 					  gid_type);
2040 			cma_igmp_send(ndev, &mgid, false);
2041 		}
2042 		dev_put(ndev);
2043 
2044 		cancel_work_sync(&mc->iboe_join.work);
2045 	}
2046 	kfree(mc);
2047 }
2048 
2049 static void cma_leave_mc_groups(struct rdma_id_private *id_priv)
2050 {
2051 	struct cma_multicast *mc;
2052 
2053 	while (!list_empty(&id_priv->mc_list)) {
2054 		mc = list_first_entry(&id_priv->mc_list, struct cma_multicast,
2055 				      list);
2056 		list_del(&mc->list);
2057 		destroy_mc(id_priv, mc);
2058 	}
2059 }
2060 
2061 static void _destroy_id(struct rdma_id_private *id_priv,
2062 			enum rdma_cm_state state)
2063 {
2064 	cma_cancel_operation(id_priv, state);
2065 
2066 	rdma_restrack_del(&id_priv->res);
2067 	cma_remove_id_from_tree(id_priv);
2068 	if (id_priv->cma_dev) {
2069 		if (rdma_cap_ib_cm(id_priv->id.device, 1)) {
2070 			if (id_priv->cm_id.ib)
2071 				ib_destroy_cm_id(id_priv->cm_id.ib);
2072 		} else if (rdma_cap_iw_cm(id_priv->id.device, 1)) {
2073 			if (id_priv->cm_id.iw)
2074 				iw_destroy_cm_id(id_priv->cm_id.iw);
2075 		}
2076 		cma_leave_mc_groups(id_priv);
2077 		cma_release_dev(id_priv);
2078 	}
2079 
2080 	cma_release_port(id_priv);
2081 	cma_id_put(id_priv);
2082 	wait_for_completion(&id_priv->comp);
2083 
2084 	if (id_priv->internal_id)
2085 		cma_id_put(id_priv->id.context);
2086 
2087 	kfree(id_priv->id.route.path_rec);
2088 	kfree(id_priv->id.route.path_rec_inbound);
2089 	kfree(id_priv->id.route.path_rec_outbound);
2090 
2091 	put_net(id_priv->id.route.addr.dev_addr.net);
2092 	kfree(id_priv);
2093 }
2094 
2095 /*
2096  * destroy an ID from within the handler_mutex. This ensures that no other
2097  * handlers can start running concurrently.
2098  */
2099 static void destroy_id_handler_unlock(struct rdma_id_private *id_priv)
2100 	__releases(&idprv->handler_mutex)
2101 {
2102 	enum rdma_cm_state state;
2103 	unsigned long flags;
2104 
2105 	trace_cm_id_destroy(id_priv);
2106 
2107 	/*
2108 	 * Setting the state to destroyed under the handler mutex provides a
2109 	 * fence against calling handler callbacks. If this is invoked due to
2110 	 * the failure of a handler callback then it guarentees that no future
2111 	 * handlers will be called.
2112 	 */
2113 	lockdep_assert_held(&id_priv->handler_mutex);
2114 	spin_lock_irqsave(&id_priv->lock, flags);
2115 	state = id_priv->state;
2116 	id_priv->state = RDMA_CM_DESTROYING;
2117 	spin_unlock_irqrestore(&id_priv->lock, flags);
2118 	mutex_unlock(&id_priv->handler_mutex);
2119 	_destroy_id(id_priv, state);
2120 }
2121 
2122 void rdma_destroy_id(struct rdma_cm_id *id)
2123 {
2124 	struct rdma_id_private *id_priv =
2125 		container_of(id, struct rdma_id_private, id);
2126 
2127 	mutex_lock(&id_priv->handler_mutex);
2128 	destroy_id_handler_unlock(id_priv);
2129 }
2130 EXPORT_SYMBOL(rdma_destroy_id);
2131 
2132 static int cma_rep_recv(struct rdma_id_private *id_priv)
2133 {
2134 	int ret;
2135 
2136 	ret = cma_modify_qp_rtr(id_priv, NULL);
2137 	if (ret)
2138 		goto reject;
2139 
2140 	ret = cma_modify_qp_rts(id_priv, NULL);
2141 	if (ret)
2142 		goto reject;
2143 
2144 	trace_cm_send_rtu(id_priv);
2145 	ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0);
2146 	if (ret)
2147 		goto reject;
2148 
2149 	return 0;
2150 reject:
2151 	pr_debug_ratelimited("RDMA CM: CONNECT_ERROR: failed to handle reply. status %d\n", ret);
2152 	cma_modify_qp_err(id_priv);
2153 	trace_cm_send_rej(id_priv);
2154 	ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED,
2155 		       NULL, 0, NULL, 0);
2156 	return ret;
2157 }
2158 
2159 static void cma_set_rep_event_data(struct rdma_cm_event *event,
2160 				   const struct ib_cm_rep_event_param *rep_data,
2161 				   void *private_data)
2162 {
2163 	event->param.conn.private_data = private_data;
2164 	event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE;
2165 	event->param.conn.responder_resources = rep_data->responder_resources;
2166 	event->param.conn.initiator_depth = rep_data->initiator_depth;
2167 	event->param.conn.flow_control = rep_data->flow_control;
2168 	event->param.conn.rnr_retry_count = rep_data->rnr_retry_count;
2169 	event->param.conn.srq = rep_data->srq;
2170 	event->param.conn.qp_num = rep_data->remote_qpn;
2171 
2172 	event->ece.vendor_id = rep_data->ece.vendor_id;
2173 	event->ece.attr_mod = rep_data->ece.attr_mod;
2174 }
2175 
2176 static int cma_cm_event_handler(struct rdma_id_private *id_priv,
2177 				struct rdma_cm_event *event)
2178 {
2179 	int ret;
2180 
2181 	lockdep_assert_held(&id_priv->handler_mutex);
2182 
2183 	trace_cm_event_handler(id_priv, event);
2184 	ret = id_priv->id.event_handler(&id_priv->id, event);
2185 	trace_cm_event_done(id_priv, event, ret);
2186 	return ret;
2187 }
2188 
2189 static int cma_ib_handler(struct ib_cm_id *cm_id,
2190 			  const struct ib_cm_event *ib_event)
2191 {
2192 	struct rdma_id_private *id_priv = cm_id->context;
2193 	struct rdma_cm_event event = {};
2194 	enum rdma_cm_state state;
2195 	int ret;
2196 
2197 	mutex_lock(&id_priv->handler_mutex);
2198 	state = READ_ONCE(id_priv->state);
2199 	if ((ib_event->event != IB_CM_TIMEWAIT_EXIT &&
2200 	     state != RDMA_CM_CONNECT) ||
2201 	    (ib_event->event == IB_CM_TIMEWAIT_EXIT &&
2202 	     state != RDMA_CM_DISCONNECT))
2203 		goto out;
2204 
2205 	switch (ib_event->event) {
2206 	case IB_CM_REQ_ERROR:
2207 	case IB_CM_REP_ERROR:
2208 		event.event = RDMA_CM_EVENT_UNREACHABLE;
2209 		event.status = -ETIMEDOUT;
2210 		break;
2211 	case IB_CM_REP_RECEIVED:
2212 		if (state == RDMA_CM_CONNECT &&
2213 		    (id_priv->id.qp_type != IB_QPT_UD)) {
2214 			trace_cm_send_mra(id_priv);
2215 			ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0);
2216 		}
2217 		if (id_priv->id.qp) {
2218 			event.status = cma_rep_recv(id_priv);
2219 			event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR :
2220 						     RDMA_CM_EVENT_ESTABLISHED;
2221 		} else {
2222 			event.event = RDMA_CM_EVENT_CONNECT_RESPONSE;
2223 		}
2224 		cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd,
2225 				       ib_event->private_data);
2226 		break;
2227 	case IB_CM_RTU_RECEIVED:
2228 	case IB_CM_USER_ESTABLISHED:
2229 		event.event = RDMA_CM_EVENT_ESTABLISHED;
2230 		break;
2231 	case IB_CM_DREQ_ERROR:
2232 		event.status = -ETIMEDOUT;
2233 		fallthrough;
2234 	case IB_CM_DREQ_RECEIVED:
2235 	case IB_CM_DREP_RECEIVED:
2236 		if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT,
2237 				   RDMA_CM_DISCONNECT))
2238 			goto out;
2239 		event.event = RDMA_CM_EVENT_DISCONNECTED;
2240 		break;
2241 	case IB_CM_TIMEWAIT_EXIT:
2242 		event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT;
2243 		break;
2244 	case IB_CM_MRA_RECEIVED:
2245 		/* ignore event */
2246 		goto out;
2247 	case IB_CM_REJ_RECEIVED:
2248 		pr_debug_ratelimited("RDMA CM: REJECTED: %s\n", rdma_reject_msg(&id_priv->id,
2249 										ib_event->param.rej_rcvd.reason));
2250 		cma_modify_qp_err(id_priv);
2251 		event.status = ib_event->param.rej_rcvd.reason;
2252 		event.event = RDMA_CM_EVENT_REJECTED;
2253 		event.param.conn.private_data = ib_event->private_data;
2254 		event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE;
2255 		break;
2256 	default:
2257 		pr_err("RDMA CMA: unexpected IB CM event: %d\n",
2258 		       ib_event->event);
2259 		goto out;
2260 	}
2261 
2262 	ret = cma_cm_event_handler(id_priv, &event);
2263 	if (ret) {
2264 		/* Destroy the CM ID by returning a non-zero value. */
2265 		id_priv->cm_id.ib = NULL;
2266 		destroy_id_handler_unlock(id_priv);
2267 		return ret;
2268 	}
2269 out:
2270 	mutex_unlock(&id_priv->handler_mutex);
2271 	return 0;
2272 }
2273 
2274 static struct rdma_id_private *
2275 cma_ib_new_conn_id(const struct rdma_cm_id *listen_id,
2276 		   const struct ib_cm_event *ib_event,
2277 		   struct net_device *net_dev)
2278 {
2279 	struct rdma_id_private *listen_id_priv;
2280 	struct rdma_id_private *id_priv;
2281 	struct rdma_cm_id *id;
2282 	struct rdma_route *rt;
2283 	const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family;
2284 	struct sa_path_rec *path = ib_event->param.req_rcvd.primary_path;
2285 	const __be64 service_id =
2286 		ib_event->param.req_rcvd.primary_path->service_id;
2287 	int ret;
2288 
2289 	listen_id_priv = container_of(listen_id, struct rdma_id_private, id);
2290 	id_priv = __rdma_create_id(listen_id->route.addr.dev_addr.net,
2291 				   listen_id->event_handler, listen_id->context,
2292 				   listen_id->ps,
2293 				   ib_event->param.req_rcvd.qp_type,
2294 				   listen_id_priv);
2295 	if (IS_ERR(id_priv))
2296 		return NULL;
2297 
2298 	id = &id_priv->id;
2299 	if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr,
2300 			      (struct sockaddr *)&id->route.addr.dst_addr,
2301 			      listen_id, ib_event, ss_family, service_id))
2302 		goto err;
2303 
2304 	rt = &id->route;
2305 	rt->num_pri_alt_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1;
2306 	rt->path_rec = kmalloc_array(rt->num_pri_alt_paths,
2307 				     sizeof(*rt->path_rec), GFP_KERNEL);
2308 	if (!rt->path_rec)
2309 		goto err;
2310 
2311 	rt->path_rec[0] = *path;
2312 	if (rt->num_pri_alt_paths == 2)
2313 		rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path;
2314 
2315 	if (net_dev) {
2316 		rdma_copy_src_l2_addr(&rt->addr.dev_addr, net_dev);
2317 	} else {
2318 		if (!cma_protocol_roce(listen_id) &&
2319 		    cma_any_addr(cma_src_addr(id_priv))) {
2320 			rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND;
2321 			rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid);
2322 			ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey));
2323 		} else if (!cma_any_addr(cma_src_addr(id_priv))) {
2324 			ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr);
2325 			if (ret)
2326 				goto err;
2327 		}
2328 	}
2329 	rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid);
2330 
2331 	id_priv->state = RDMA_CM_CONNECT;
2332 	return id_priv;
2333 
2334 err:
2335 	rdma_destroy_id(id);
2336 	return NULL;
2337 }
2338 
2339 static struct rdma_id_private *
2340 cma_ib_new_udp_id(const struct rdma_cm_id *listen_id,
2341 		  const struct ib_cm_event *ib_event,
2342 		  struct net_device *net_dev)
2343 {
2344 	const struct rdma_id_private *listen_id_priv;
2345 	struct rdma_id_private *id_priv;
2346 	struct rdma_cm_id *id;
2347 	const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family;
2348 	struct net *net = listen_id->route.addr.dev_addr.net;
2349 	int ret;
2350 
2351 	listen_id_priv = container_of(listen_id, struct rdma_id_private, id);
2352 	id_priv = __rdma_create_id(net, listen_id->event_handler,
2353 				   listen_id->context, listen_id->ps, IB_QPT_UD,
2354 				   listen_id_priv);
2355 	if (IS_ERR(id_priv))
2356 		return NULL;
2357 
2358 	id = &id_priv->id;
2359 	if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr,
2360 			      (struct sockaddr *)&id->route.addr.dst_addr,
2361 			      listen_id, ib_event, ss_family,
2362 			      ib_event->param.sidr_req_rcvd.service_id))
2363 		goto err;
2364 
2365 	if (net_dev) {
2366 		rdma_copy_src_l2_addr(&id->route.addr.dev_addr, net_dev);
2367 	} else {
2368 		if (!cma_any_addr(cma_src_addr(id_priv))) {
2369 			ret = cma_translate_addr(cma_src_addr(id_priv),
2370 						 &id->route.addr.dev_addr);
2371 			if (ret)
2372 				goto err;
2373 		}
2374 	}
2375 
2376 	id_priv->state = RDMA_CM_CONNECT;
2377 	return id_priv;
2378 err:
2379 	rdma_destroy_id(id);
2380 	return NULL;
2381 }
2382 
2383 static void cma_set_req_event_data(struct rdma_cm_event *event,
2384 				   const struct ib_cm_req_event_param *req_data,
2385 				   void *private_data, int offset)
2386 {
2387 	event->param.conn.private_data = private_data + offset;
2388 	event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset;
2389 	event->param.conn.responder_resources = req_data->responder_resources;
2390 	event->param.conn.initiator_depth = req_data->initiator_depth;
2391 	event->param.conn.flow_control = req_data->flow_control;
2392 	event->param.conn.retry_count = req_data->retry_count;
2393 	event->param.conn.rnr_retry_count = req_data->rnr_retry_count;
2394 	event->param.conn.srq = req_data->srq;
2395 	event->param.conn.qp_num = req_data->remote_qpn;
2396 
2397 	event->ece.vendor_id = req_data->ece.vendor_id;
2398 	event->ece.attr_mod = req_data->ece.attr_mod;
2399 }
2400 
2401 static int cma_ib_check_req_qp_type(const struct rdma_cm_id *id,
2402 				    const struct ib_cm_event *ib_event)
2403 {
2404 	return (((ib_event->event == IB_CM_REQ_RECEIVED) &&
2405 		 (ib_event->param.req_rcvd.qp_type == id->qp_type)) ||
2406 		((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) &&
2407 		 (id->qp_type == IB_QPT_UD)) ||
2408 		(!id->qp_type));
2409 }
2410 
2411 static int cma_ib_req_handler(struct ib_cm_id *cm_id,
2412 			      const struct ib_cm_event *ib_event)
2413 {
2414 	struct rdma_id_private *listen_id, *conn_id = NULL;
2415 	struct rdma_cm_event event = {};
2416 	struct cma_req_info req = {};
2417 	struct net_device *net_dev;
2418 	u8 offset;
2419 	int ret;
2420 
2421 	listen_id = cma_ib_id_from_event(cm_id, ib_event, &req, &net_dev);
2422 	if (IS_ERR(listen_id))
2423 		return PTR_ERR(listen_id);
2424 
2425 	trace_cm_req_handler(listen_id, ib_event->event);
2426 	if (!cma_ib_check_req_qp_type(&listen_id->id, ib_event)) {
2427 		ret = -EINVAL;
2428 		goto net_dev_put;
2429 	}
2430 
2431 	mutex_lock(&listen_id->handler_mutex);
2432 	if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) {
2433 		ret = -ECONNABORTED;
2434 		goto err_unlock;
2435 	}
2436 
2437 	offset = cma_user_data_offset(listen_id);
2438 	event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
2439 	if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) {
2440 		conn_id = cma_ib_new_udp_id(&listen_id->id, ib_event, net_dev);
2441 		event.param.ud.private_data = ib_event->private_data + offset;
2442 		event.param.ud.private_data_len =
2443 				IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset;
2444 	} else {
2445 		conn_id = cma_ib_new_conn_id(&listen_id->id, ib_event, net_dev);
2446 		cma_set_req_event_data(&event, &ib_event->param.req_rcvd,
2447 				       ib_event->private_data, offset);
2448 	}
2449 	if (!conn_id) {
2450 		ret = -ENOMEM;
2451 		goto err_unlock;
2452 	}
2453 
2454 	mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
2455 	ret = cma_ib_acquire_dev(conn_id, listen_id, &req);
2456 	if (ret) {
2457 		destroy_id_handler_unlock(conn_id);
2458 		goto err_unlock;
2459 	}
2460 
2461 	conn_id->cm_id.ib = cm_id;
2462 	cm_id->context = conn_id;
2463 	cm_id->cm_handler = cma_ib_handler;
2464 
2465 	ret = cma_cm_event_handler(conn_id, &event);
2466 	if (ret) {
2467 		/* Destroy the CM ID by returning a non-zero value. */
2468 		conn_id->cm_id.ib = NULL;
2469 		mutex_unlock(&listen_id->handler_mutex);
2470 		destroy_id_handler_unlock(conn_id);
2471 		goto net_dev_put;
2472 	}
2473 
2474 	if (READ_ONCE(conn_id->state) == RDMA_CM_CONNECT &&
2475 	    conn_id->id.qp_type != IB_QPT_UD) {
2476 		trace_cm_send_mra(cm_id->context);
2477 		ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0);
2478 	}
2479 	mutex_unlock(&conn_id->handler_mutex);
2480 
2481 err_unlock:
2482 	mutex_unlock(&listen_id->handler_mutex);
2483 
2484 net_dev_put:
2485 	dev_put(net_dev);
2486 
2487 	return ret;
2488 }
2489 
2490 __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr)
2491 {
2492 	if (addr->sa_family == AF_IB)
2493 		return ((struct sockaddr_ib *) addr)->sib_sid;
2494 
2495 	return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr)));
2496 }
2497 EXPORT_SYMBOL(rdma_get_service_id);
2498 
2499 void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid,
2500 		    union ib_gid *dgid)
2501 {
2502 	struct rdma_addr *addr = &cm_id->route.addr;
2503 
2504 	if (!cm_id->device) {
2505 		if (sgid)
2506 			memset(sgid, 0, sizeof(*sgid));
2507 		if (dgid)
2508 			memset(dgid, 0, sizeof(*dgid));
2509 		return;
2510 	}
2511 
2512 	if (rdma_protocol_roce(cm_id->device, cm_id->port_num)) {
2513 		if (sgid)
2514 			rdma_ip2gid((struct sockaddr *)&addr->src_addr, sgid);
2515 		if (dgid)
2516 			rdma_ip2gid((struct sockaddr *)&addr->dst_addr, dgid);
2517 	} else {
2518 		if (sgid)
2519 			rdma_addr_get_sgid(&addr->dev_addr, sgid);
2520 		if (dgid)
2521 			rdma_addr_get_dgid(&addr->dev_addr, dgid);
2522 	}
2523 }
2524 EXPORT_SYMBOL(rdma_read_gids);
2525 
2526 static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event)
2527 {
2528 	struct rdma_id_private *id_priv = iw_id->context;
2529 	struct rdma_cm_event event = {};
2530 	int ret = 0;
2531 	struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
2532 	struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
2533 
2534 	mutex_lock(&id_priv->handler_mutex);
2535 	if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
2536 		goto out;
2537 
2538 	switch (iw_event->event) {
2539 	case IW_CM_EVENT_CLOSE:
2540 		event.event = RDMA_CM_EVENT_DISCONNECTED;
2541 		break;
2542 	case IW_CM_EVENT_CONNECT_REPLY:
2543 		memcpy(cma_src_addr(id_priv), laddr,
2544 		       rdma_addr_size(laddr));
2545 		memcpy(cma_dst_addr(id_priv), raddr,
2546 		       rdma_addr_size(raddr));
2547 		switch (iw_event->status) {
2548 		case 0:
2549 			event.event = RDMA_CM_EVENT_ESTABLISHED;
2550 			event.param.conn.initiator_depth = iw_event->ird;
2551 			event.param.conn.responder_resources = iw_event->ord;
2552 			break;
2553 		case -ECONNRESET:
2554 		case -ECONNREFUSED:
2555 			event.event = RDMA_CM_EVENT_REJECTED;
2556 			break;
2557 		case -ETIMEDOUT:
2558 			event.event = RDMA_CM_EVENT_UNREACHABLE;
2559 			break;
2560 		default:
2561 			event.event = RDMA_CM_EVENT_CONNECT_ERROR;
2562 			break;
2563 		}
2564 		break;
2565 	case IW_CM_EVENT_ESTABLISHED:
2566 		event.event = RDMA_CM_EVENT_ESTABLISHED;
2567 		event.param.conn.initiator_depth = iw_event->ird;
2568 		event.param.conn.responder_resources = iw_event->ord;
2569 		break;
2570 	default:
2571 		goto out;
2572 	}
2573 
2574 	event.status = iw_event->status;
2575 	event.param.conn.private_data = iw_event->private_data;
2576 	event.param.conn.private_data_len = iw_event->private_data_len;
2577 	ret = cma_cm_event_handler(id_priv, &event);
2578 	if (ret) {
2579 		/* Destroy the CM ID by returning a non-zero value. */
2580 		id_priv->cm_id.iw = NULL;
2581 		destroy_id_handler_unlock(id_priv);
2582 		return ret;
2583 	}
2584 
2585 out:
2586 	mutex_unlock(&id_priv->handler_mutex);
2587 	return ret;
2588 }
2589 
2590 static int iw_conn_req_handler(struct iw_cm_id *cm_id,
2591 			       struct iw_cm_event *iw_event)
2592 {
2593 	struct rdma_id_private *listen_id, *conn_id;
2594 	struct rdma_cm_event event = {};
2595 	int ret = -ECONNABORTED;
2596 	struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
2597 	struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
2598 
2599 	event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
2600 	event.param.conn.private_data = iw_event->private_data;
2601 	event.param.conn.private_data_len = iw_event->private_data_len;
2602 	event.param.conn.initiator_depth = iw_event->ird;
2603 	event.param.conn.responder_resources = iw_event->ord;
2604 
2605 	listen_id = cm_id->context;
2606 
2607 	mutex_lock(&listen_id->handler_mutex);
2608 	if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN)
2609 		goto out;
2610 
2611 	/* Create a new RDMA id for the new IW CM ID */
2612 	conn_id = __rdma_create_id(listen_id->id.route.addr.dev_addr.net,
2613 				   listen_id->id.event_handler,
2614 				   listen_id->id.context, RDMA_PS_TCP,
2615 				   IB_QPT_RC, listen_id);
2616 	if (IS_ERR(conn_id)) {
2617 		ret = -ENOMEM;
2618 		goto out;
2619 	}
2620 	mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
2621 	conn_id->state = RDMA_CM_CONNECT;
2622 
2623 	ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr);
2624 	if (ret) {
2625 		mutex_unlock(&listen_id->handler_mutex);
2626 		destroy_id_handler_unlock(conn_id);
2627 		return ret;
2628 	}
2629 
2630 	ret = cma_iw_acquire_dev(conn_id, listen_id);
2631 	if (ret) {
2632 		mutex_unlock(&listen_id->handler_mutex);
2633 		destroy_id_handler_unlock(conn_id);
2634 		return ret;
2635 	}
2636 
2637 	conn_id->cm_id.iw = cm_id;
2638 	cm_id->context = conn_id;
2639 	cm_id->cm_handler = cma_iw_handler;
2640 
2641 	memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr));
2642 	memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr));
2643 
2644 	ret = cma_cm_event_handler(conn_id, &event);
2645 	if (ret) {
2646 		/* User wants to destroy the CM ID */
2647 		conn_id->cm_id.iw = NULL;
2648 		mutex_unlock(&listen_id->handler_mutex);
2649 		destroy_id_handler_unlock(conn_id);
2650 		return ret;
2651 	}
2652 
2653 	mutex_unlock(&conn_id->handler_mutex);
2654 
2655 out:
2656 	mutex_unlock(&listen_id->handler_mutex);
2657 	return ret;
2658 }
2659 
2660 static int cma_ib_listen(struct rdma_id_private *id_priv)
2661 {
2662 	struct sockaddr *addr;
2663 	struct ib_cm_id	*id;
2664 	__be64 svc_id;
2665 
2666 	addr = cma_src_addr(id_priv);
2667 	svc_id = rdma_get_service_id(&id_priv->id, addr);
2668 	id = ib_cm_insert_listen(id_priv->id.device,
2669 				 cma_ib_req_handler, svc_id);
2670 	if (IS_ERR(id))
2671 		return PTR_ERR(id);
2672 	id_priv->cm_id.ib = id;
2673 
2674 	return 0;
2675 }
2676 
2677 static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog)
2678 {
2679 	int ret;
2680 	struct iw_cm_id	*id;
2681 
2682 	id = iw_create_cm_id(id_priv->id.device,
2683 			     iw_conn_req_handler,
2684 			     id_priv);
2685 	if (IS_ERR(id))
2686 		return PTR_ERR(id);
2687 
2688 	mutex_lock(&id_priv->qp_mutex);
2689 	id->tos = id_priv->tos;
2690 	id->tos_set = id_priv->tos_set;
2691 	mutex_unlock(&id_priv->qp_mutex);
2692 	id->afonly = id_priv->afonly;
2693 	id_priv->cm_id.iw = id;
2694 
2695 	memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv),
2696 	       rdma_addr_size(cma_src_addr(id_priv)));
2697 
2698 	ret = iw_cm_listen(id_priv->cm_id.iw, backlog);
2699 
2700 	if (ret) {
2701 		iw_destroy_cm_id(id_priv->cm_id.iw);
2702 		id_priv->cm_id.iw = NULL;
2703 	}
2704 
2705 	return ret;
2706 }
2707 
2708 static int cma_listen_handler(struct rdma_cm_id *id,
2709 			      struct rdma_cm_event *event)
2710 {
2711 	struct rdma_id_private *id_priv = id->context;
2712 
2713 	/* Listening IDs are always destroyed on removal */
2714 	if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL)
2715 		return -1;
2716 
2717 	id->context = id_priv->id.context;
2718 	id->event_handler = id_priv->id.event_handler;
2719 	trace_cm_event_handler(id_priv, event);
2720 	return id_priv->id.event_handler(id, event);
2721 }
2722 
2723 static int cma_listen_on_dev(struct rdma_id_private *id_priv,
2724 			     struct cma_device *cma_dev,
2725 			     struct rdma_id_private **to_destroy)
2726 {
2727 	struct rdma_id_private *dev_id_priv;
2728 	struct net *net = id_priv->id.route.addr.dev_addr.net;
2729 	int ret;
2730 
2731 	lockdep_assert_held(&lock);
2732 
2733 	*to_destroy = NULL;
2734 	if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1))
2735 		return 0;
2736 
2737 	dev_id_priv =
2738 		__rdma_create_id(net, cma_listen_handler, id_priv,
2739 				 id_priv->id.ps, id_priv->id.qp_type, id_priv);
2740 	if (IS_ERR(dev_id_priv))
2741 		return PTR_ERR(dev_id_priv);
2742 
2743 	dev_id_priv->state = RDMA_CM_ADDR_BOUND;
2744 	memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv),
2745 	       rdma_addr_size(cma_src_addr(id_priv)));
2746 
2747 	_cma_attach_to_dev(dev_id_priv, cma_dev);
2748 	rdma_restrack_add(&dev_id_priv->res);
2749 	cma_id_get(id_priv);
2750 	dev_id_priv->internal_id = 1;
2751 	dev_id_priv->afonly = id_priv->afonly;
2752 	mutex_lock(&id_priv->qp_mutex);
2753 	dev_id_priv->tos_set = id_priv->tos_set;
2754 	dev_id_priv->tos = id_priv->tos;
2755 	mutex_unlock(&id_priv->qp_mutex);
2756 
2757 	ret = rdma_listen(&dev_id_priv->id, id_priv->backlog);
2758 	if (ret)
2759 		goto err_listen;
2760 	list_add_tail(&dev_id_priv->listen_item, &id_priv->listen_list);
2761 	return 0;
2762 err_listen:
2763 	/* Caller must destroy this after releasing lock */
2764 	*to_destroy = dev_id_priv;
2765 	dev_warn(&cma_dev->device->dev, "RDMA CMA: %s, error %d\n", __func__, ret);
2766 	return ret;
2767 }
2768 
2769 static int cma_listen_on_all(struct rdma_id_private *id_priv)
2770 {
2771 	struct rdma_id_private *to_destroy;
2772 	struct cma_device *cma_dev;
2773 	int ret;
2774 
2775 	mutex_lock(&lock);
2776 	list_add_tail(&id_priv->listen_any_item, &listen_any_list);
2777 	list_for_each_entry(cma_dev, &dev_list, list) {
2778 		ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy);
2779 		if (ret) {
2780 			/* Prevent racing with cma_process_remove() */
2781 			if (to_destroy)
2782 				list_del_init(&to_destroy->device_item);
2783 			goto err_listen;
2784 		}
2785 	}
2786 	mutex_unlock(&lock);
2787 	return 0;
2788 
2789 err_listen:
2790 	_cma_cancel_listens(id_priv);
2791 	mutex_unlock(&lock);
2792 	if (to_destroy)
2793 		rdma_destroy_id(&to_destroy->id);
2794 	return ret;
2795 }
2796 
2797 void rdma_set_service_type(struct rdma_cm_id *id, int tos)
2798 {
2799 	struct rdma_id_private *id_priv;
2800 
2801 	id_priv = container_of(id, struct rdma_id_private, id);
2802 	mutex_lock(&id_priv->qp_mutex);
2803 	id_priv->tos = (u8) tos;
2804 	id_priv->tos_set = true;
2805 	mutex_unlock(&id_priv->qp_mutex);
2806 }
2807 EXPORT_SYMBOL(rdma_set_service_type);
2808 
2809 /**
2810  * rdma_set_ack_timeout() - Set the ack timeout of QP associated
2811  *                          with a connection identifier.
2812  * @id: Communication identifier to associated with service type.
2813  * @timeout: Ack timeout to set a QP, expressed as 4.096 * 2^(timeout) usec.
2814  *
2815  * This function should be called before rdma_connect() on active side,
2816  * and on passive side before rdma_accept(). It is applicable to primary
2817  * path only. The timeout will affect the local side of the QP, it is not
2818  * negotiated with remote side and zero disables the timer. In case it is
2819  * set before rdma_resolve_route, the value will also be used to determine
2820  * PacketLifeTime for RoCE.
2821  *
2822  * Return: 0 for success
2823  */
2824 int rdma_set_ack_timeout(struct rdma_cm_id *id, u8 timeout)
2825 {
2826 	struct rdma_id_private *id_priv;
2827 
2828 	if (id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_INI)
2829 		return -EINVAL;
2830 
2831 	id_priv = container_of(id, struct rdma_id_private, id);
2832 	mutex_lock(&id_priv->qp_mutex);
2833 	id_priv->timeout = timeout;
2834 	id_priv->timeout_set = true;
2835 	mutex_unlock(&id_priv->qp_mutex);
2836 
2837 	return 0;
2838 }
2839 EXPORT_SYMBOL(rdma_set_ack_timeout);
2840 
2841 /**
2842  * rdma_set_min_rnr_timer() - Set the minimum RNR Retry timer of the
2843  *			      QP associated with a connection identifier.
2844  * @id: Communication identifier to associated with service type.
2845  * @min_rnr_timer: 5-bit value encoded as Table 45: "Encoding for RNR NAK
2846  *		   Timer Field" in the IBTA specification.
2847  *
2848  * This function should be called before rdma_connect() on active
2849  * side, and on passive side before rdma_accept(). The timer value
2850  * will be associated with the local QP. When it receives a send it is
2851  * not read to handle, typically if the receive queue is empty, an RNR
2852  * Retry NAK is returned to the requester with the min_rnr_timer
2853  * encoded. The requester will then wait at least the time specified
2854  * in the NAK before retrying. The default is zero, which translates
2855  * to a minimum RNR Timer value of 655 ms.
2856  *
2857  * Return: 0 for success
2858  */
2859 int rdma_set_min_rnr_timer(struct rdma_cm_id *id, u8 min_rnr_timer)
2860 {
2861 	struct rdma_id_private *id_priv;
2862 
2863 	/* It is a five-bit value */
2864 	if (min_rnr_timer & 0xe0)
2865 		return -EINVAL;
2866 
2867 	if (WARN_ON(id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_TGT))
2868 		return -EINVAL;
2869 
2870 	id_priv = container_of(id, struct rdma_id_private, id);
2871 	mutex_lock(&id_priv->qp_mutex);
2872 	id_priv->min_rnr_timer = min_rnr_timer;
2873 	id_priv->min_rnr_timer_set = true;
2874 	mutex_unlock(&id_priv->qp_mutex);
2875 
2876 	return 0;
2877 }
2878 EXPORT_SYMBOL(rdma_set_min_rnr_timer);
2879 
2880 static int route_set_path_rec_inbound(struct cma_work *work,
2881 				      struct sa_path_rec *path_rec)
2882 {
2883 	struct rdma_route *route = &work->id->id.route;
2884 
2885 	if (!route->path_rec_inbound) {
2886 		route->path_rec_inbound =
2887 			kzalloc(sizeof(*route->path_rec_inbound), GFP_KERNEL);
2888 		if (!route->path_rec_inbound)
2889 			return -ENOMEM;
2890 	}
2891 
2892 	*route->path_rec_inbound = *path_rec;
2893 	return 0;
2894 }
2895 
2896 static int route_set_path_rec_outbound(struct cma_work *work,
2897 				       struct sa_path_rec *path_rec)
2898 {
2899 	struct rdma_route *route = &work->id->id.route;
2900 
2901 	if (!route->path_rec_outbound) {
2902 		route->path_rec_outbound =
2903 			kzalloc(sizeof(*route->path_rec_outbound), GFP_KERNEL);
2904 		if (!route->path_rec_outbound)
2905 			return -ENOMEM;
2906 	}
2907 
2908 	*route->path_rec_outbound = *path_rec;
2909 	return 0;
2910 }
2911 
2912 static void cma_query_handler(int status, struct sa_path_rec *path_rec,
2913 			      unsigned int num_prs, void *context)
2914 {
2915 	struct cma_work *work = context;
2916 	struct rdma_route *route;
2917 	int i;
2918 
2919 	route = &work->id->id.route;
2920 
2921 	if (status)
2922 		goto fail;
2923 
2924 	for (i = 0; i < num_prs; i++) {
2925 		if (!path_rec[i].flags || (path_rec[i].flags & IB_PATH_GMP))
2926 			*route->path_rec = path_rec[i];
2927 		else if (path_rec[i].flags & IB_PATH_INBOUND)
2928 			status = route_set_path_rec_inbound(work, &path_rec[i]);
2929 		else if (path_rec[i].flags & IB_PATH_OUTBOUND)
2930 			status = route_set_path_rec_outbound(work,
2931 							     &path_rec[i]);
2932 		else
2933 			status = -EINVAL;
2934 
2935 		if (status)
2936 			goto fail;
2937 	}
2938 
2939 	route->num_pri_alt_paths = 1;
2940 	queue_work(cma_wq, &work->work);
2941 	return;
2942 
2943 fail:
2944 	work->old_state = RDMA_CM_ROUTE_QUERY;
2945 	work->new_state = RDMA_CM_ADDR_RESOLVED;
2946 	work->event.event = RDMA_CM_EVENT_ROUTE_ERROR;
2947 	work->event.status = status;
2948 	pr_debug_ratelimited("RDMA CM: ROUTE_ERROR: failed to query path. status %d\n",
2949 			     status);
2950 	queue_work(cma_wq, &work->work);
2951 }
2952 
2953 static int cma_query_ib_route(struct rdma_id_private *id_priv,
2954 			      unsigned long timeout_ms, struct cma_work *work)
2955 {
2956 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
2957 	struct sa_path_rec path_rec;
2958 	ib_sa_comp_mask comp_mask;
2959 	struct sockaddr_in6 *sin6;
2960 	struct sockaddr_ib *sib;
2961 
2962 	memset(&path_rec, 0, sizeof path_rec);
2963 
2964 	if (rdma_cap_opa_ah(id_priv->id.device, id_priv->id.port_num))
2965 		path_rec.rec_type = SA_PATH_REC_TYPE_OPA;
2966 	else
2967 		path_rec.rec_type = SA_PATH_REC_TYPE_IB;
2968 	rdma_addr_get_sgid(dev_addr, &path_rec.sgid);
2969 	rdma_addr_get_dgid(dev_addr, &path_rec.dgid);
2970 	path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
2971 	path_rec.numb_path = 1;
2972 	path_rec.reversible = 1;
2973 	path_rec.service_id = rdma_get_service_id(&id_priv->id,
2974 						  cma_dst_addr(id_priv));
2975 
2976 	comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID |
2977 		    IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH |
2978 		    IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID;
2979 
2980 	switch (cma_family(id_priv)) {
2981 	case AF_INET:
2982 		path_rec.qos_class = cpu_to_be16((u16) id_priv->tos);
2983 		comp_mask |= IB_SA_PATH_REC_QOS_CLASS;
2984 		break;
2985 	case AF_INET6:
2986 		sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv);
2987 		path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20);
2988 		comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
2989 		break;
2990 	case AF_IB:
2991 		sib = (struct sockaddr_ib *) cma_src_addr(id_priv);
2992 		path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20);
2993 		comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
2994 		break;
2995 	}
2996 
2997 	id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device,
2998 					       id_priv->id.port_num, &path_rec,
2999 					       comp_mask, timeout_ms,
3000 					       GFP_KERNEL, cma_query_handler,
3001 					       work, &id_priv->query);
3002 
3003 	return (id_priv->query_id < 0) ? id_priv->query_id : 0;
3004 }
3005 
3006 static void cma_iboe_join_work_handler(struct work_struct *work)
3007 {
3008 	struct cma_multicast *mc =
3009 		container_of(work, struct cma_multicast, iboe_join.work);
3010 	struct rdma_cm_event *event = &mc->iboe_join.event;
3011 	struct rdma_id_private *id_priv = mc->id_priv;
3012 	int ret;
3013 
3014 	mutex_lock(&id_priv->handler_mutex);
3015 	if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
3016 	    READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
3017 		goto out_unlock;
3018 
3019 	ret = cma_cm_event_handler(id_priv, event);
3020 	WARN_ON(ret);
3021 
3022 out_unlock:
3023 	mutex_unlock(&id_priv->handler_mutex);
3024 	if (event->event == RDMA_CM_EVENT_MULTICAST_JOIN)
3025 		rdma_destroy_ah_attr(&event->param.ud.ah_attr);
3026 }
3027 
3028 static void cma_work_handler(struct work_struct *_work)
3029 {
3030 	struct cma_work *work = container_of(_work, struct cma_work, work);
3031 	struct rdma_id_private *id_priv = work->id;
3032 
3033 	mutex_lock(&id_priv->handler_mutex);
3034 	if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
3035 	    READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
3036 		goto out_unlock;
3037 	if (work->old_state != 0 || work->new_state != 0) {
3038 		if (!cma_comp_exch(id_priv, work->old_state, work->new_state))
3039 			goto out_unlock;
3040 	}
3041 
3042 	if (cma_cm_event_handler(id_priv, &work->event)) {
3043 		cma_id_put(id_priv);
3044 		destroy_id_handler_unlock(id_priv);
3045 		goto out_free;
3046 	}
3047 
3048 out_unlock:
3049 	mutex_unlock(&id_priv->handler_mutex);
3050 	cma_id_put(id_priv);
3051 out_free:
3052 	if (work->event.event == RDMA_CM_EVENT_MULTICAST_JOIN)
3053 		rdma_destroy_ah_attr(&work->event.param.ud.ah_attr);
3054 	kfree(work);
3055 }
3056 
3057 static void cma_init_resolve_route_work(struct cma_work *work,
3058 					struct rdma_id_private *id_priv)
3059 {
3060 	work->id = id_priv;
3061 	INIT_WORK(&work->work, cma_work_handler);
3062 	work->old_state = RDMA_CM_ROUTE_QUERY;
3063 	work->new_state = RDMA_CM_ROUTE_RESOLVED;
3064 	work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED;
3065 }
3066 
3067 static void enqueue_resolve_addr_work(struct cma_work *work,
3068 				      struct rdma_id_private *id_priv)
3069 {
3070 	/* Balances with cma_id_put() in cma_work_handler */
3071 	cma_id_get(id_priv);
3072 
3073 	work->id = id_priv;
3074 	INIT_WORK(&work->work, cma_work_handler);
3075 	work->old_state = RDMA_CM_ADDR_QUERY;
3076 	work->new_state = RDMA_CM_ADDR_RESOLVED;
3077 	work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
3078 
3079 	queue_work(cma_wq, &work->work);
3080 }
3081 
3082 static int cma_resolve_ib_route(struct rdma_id_private *id_priv,
3083 				unsigned long timeout_ms)
3084 {
3085 	struct rdma_route *route = &id_priv->id.route;
3086 	struct cma_work *work;
3087 	int ret;
3088 
3089 	work = kzalloc(sizeof *work, GFP_KERNEL);
3090 	if (!work)
3091 		return -ENOMEM;
3092 
3093 	cma_init_resolve_route_work(work, id_priv);
3094 
3095 	if (!route->path_rec)
3096 		route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL);
3097 	if (!route->path_rec) {
3098 		ret = -ENOMEM;
3099 		goto err1;
3100 	}
3101 
3102 	ret = cma_query_ib_route(id_priv, timeout_ms, work);
3103 	if (ret)
3104 		goto err2;
3105 
3106 	return 0;
3107 err2:
3108 	kfree(route->path_rec);
3109 	route->path_rec = NULL;
3110 err1:
3111 	kfree(work);
3112 	return ret;
3113 }
3114 
3115 static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type,
3116 					   unsigned long supported_gids,
3117 					   enum ib_gid_type default_gid)
3118 {
3119 	if ((network_type == RDMA_NETWORK_IPV4 ||
3120 	     network_type == RDMA_NETWORK_IPV6) &&
3121 	    test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids))
3122 		return IB_GID_TYPE_ROCE_UDP_ENCAP;
3123 
3124 	return default_gid;
3125 }
3126 
3127 /*
3128  * cma_iboe_set_path_rec_l2_fields() is helper function which sets
3129  * path record type based on GID type.
3130  * It also sets up other L2 fields which includes destination mac address
3131  * netdev ifindex, of the path record.
3132  * It returns the netdev of the bound interface for this path record entry.
3133  */
3134 static struct net_device *
3135 cma_iboe_set_path_rec_l2_fields(struct rdma_id_private *id_priv)
3136 {
3137 	struct rdma_route *route = &id_priv->id.route;
3138 	enum ib_gid_type gid_type = IB_GID_TYPE_ROCE;
3139 	struct rdma_addr *addr = &route->addr;
3140 	unsigned long supported_gids;
3141 	struct net_device *ndev;
3142 
3143 	if (!addr->dev_addr.bound_dev_if)
3144 		return NULL;
3145 
3146 	ndev = dev_get_by_index(addr->dev_addr.net,
3147 				addr->dev_addr.bound_dev_if);
3148 	if (!ndev)
3149 		return NULL;
3150 
3151 	supported_gids = roce_gid_type_mask_support(id_priv->id.device,
3152 						    id_priv->id.port_num);
3153 	gid_type = cma_route_gid_type(addr->dev_addr.network,
3154 				      supported_gids,
3155 				      id_priv->gid_type);
3156 	/* Use the hint from IP Stack to select GID Type */
3157 	if (gid_type < ib_network_to_gid_type(addr->dev_addr.network))
3158 		gid_type = ib_network_to_gid_type(addr->dev_addr.network);
3159 	route->path_rec->rec_type = sa_conv_gid_to_pathrec_type(gid_type);
3160 
3161 	route->path_rec->roce.route_resolved = true;
3162 	sa_path_set_dmac(route->path_rec, addr->dev_addr.dst_dev_addr);
3163 	return ndev;
3164 }
3165 
3166 int rdma_set_ib_path(struct rdma_cm_id *id,
3167 		     struct sa_path_rec *path_rec)
3168 {
3169 	struct rdma_id_private *id_priv;
3170 	struct net_device *ndev;
3171 	int ret;
3172 
3173 	id_priv = container_of(id, struct rdma_id_private, id);
3174 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
3175 			   RDMA_CM_ROUTE_RESOLVED))
3176 		return -EINVAL;
3177 
3178 	id->route.path_rec = kmemdup(path_rec, sizeof(*path_rec),
3179 				     GFP_KERNEL);
3180 	if (!id->route.path_rec) {
3181 		ret = -ENOMEM;
3182 		goto err;
3183 	}
3184 
3185 	if (rdma_protocol_roce(id->device, id->port_num)) {
3186 		ndev = cma_iboe_set_path_rec_l2_fields(id_priv);
3187 		if (!ndev) {
3188 			ret = -ENODEV;
3189 			goto err_free;
3190 		}
3191 		dev_put(ndev);
3192 	}
3193 
3194 	id->route.num_pri_alt_paths = 1;
3195 	return 0;
3196 
3197 err_free:
3198 	kfree(id->route.path_rec);
3199 	id->route.path_rec = NULL;
3200 err:
3201 	cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED);
3202 	return ret;
3203 }
3204 EXPORT_SYMBOL(rdma_set_ib_path);
3205 
3206 static int cma_resolve_iw_route(struct rdma_id_private *id_priv)
3207 {
3208 	struct cma_work *work;
3209 
3210 	work = kzalloc(sizeof *work, GFP_KERNEL);
3211 	if (!work)
3212 		return -ENOMEM;
3213 
3214 	cma_init_resolve_route_work(work, id_priv);
3215 	queue_work(cma_wq, &work->work);
3216 	return 0;
3217 }
3218 
3219 static int get_vlan_ndev_tc(struct net_device *vlan_ndev, int prio)
3220 {
3221 	struct net_device *dev;
3222 
3223 	dev = vlan_dev_real_dev(vlan_ndev);
3224 	if (dev->num_tc)
3225 		return netdev_get_prio_tc_map(dev, prio);
3226 
3227 	return (vlan_dev_get_egress_qos_mask(vlan_ndev, prio) &
3228 		VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
3229 }
3230 
3231 struct iboe_prio_tc_map {
3232 	int input_prio;
3233 	int output_tc;
3234 	bool found;
3235 };
3236 
3237 static int get_lower_vlan_dev_tc(struct net_device *dev,
3238 				 struct netdev_nested_priv *priv)
3239 {
3240 	struct iboe_prio_tc_map *map = (struct iboe_prio_tc_map *)priv->data;
3241 
3242 	if (is_vlan_dev(dev))
3243 		map->output_tc = get_vlan_ndev_tc(dev, map->input_prio);
3244 	else if (dev->num_tc)
3245 		map->output_tc = netdev_get_prio_tc_map(dev, map->input_prio);
3246 	else
3247 		map->output_tc = 0;
3248 	/* We are interested only in first level VLAN device, so always
3249 	 * return 1 to stop iterating over next level devices.
3250 	 */
3251 	map->found = true;
3252 	return 1;
3253 }
3254 
3255 static int iboe_tos_to_sl(struct net_device *ndev, int tos)
3256 {
3257 	struct iboe_prio_tc_map prio_tc_map = {};
3258 	int prio = rt_tos2priority(tos);
3259 	struct netdev_nested_priv priv;
3260 
3261 	/* If VLAN device, get it directly from the VLAN netdev */
3262 	if (is_vlan_dev(ndev))
3263 		return get_vlan_ndev_tc(ndev, prio);
3264 
3265 	prio_tc_map.input_prio = prio;
3266 	priv.data = (void *)&prio_tc_map;
3267 	rcu_read_lock();
3268 	netdev_walk_all_lower_dev_rcu(ndev,
3269 				      get_lower_vlan_dev_tc,
3270 				      &priv);
3271 	rcu_read_unlock();
3272 	/* If map is found from lower device, use it; Otherwise
3273 	 * continue with the current netdevice to get priority to tc map.
3274 	 */
3275 	if (prio_tc_map.found)
3276 		return prio_tc_map.output_tc;
3277 	else if (ndev->num_tc)
3278 		return netdev_get_prio_tc_map(ndev, prio);
3279 	else
3280 		return 0;
3281 }
3282 
3283 static __be32 cma_get_roce_udp_flow_label(struct rdma_id_private *id_priv)
3284 {
3285 	struct sockaddr_in6 *addr6;
3286 	u16 dport, sport;
3287 	u32 hash, fl;
3288 
3289 	addr6 = (struct sockaddr_in6 *)cma_src_addr(id_priv);
3290 	fl = be32_to_cpu(addr6->sin6_flowinfo) & IB_GRH_FLOWLABEL_MASK;
3291 	if ((cma_family(id_priv) != AF_INET6) || !fl) {
3292 		dport = be16_to_cpu(cma_port(cma_dst_addr(id_priv)));
3293 		sport = be16_to_cpu(cma_port(cma_src_addr(id_priv)));
3294 		hash = (u32)sport * 31 + dport;
3295 		fl = hash & IB_GRH_FLOWLABEL_MASK;
3296 	}
3297 
3298 	return cpu_to_be32(fl);
3299 }
3300 
3301 static int cma_resolve_iboe_route(struct rdma_id_private *id_priv)
3302 {
3303 	struct rdma_route *route = &id_priv->id.route;
3304 	struct rdma_addr *addr = &route->addr;
3305 	struct cma_work *work;
3306 	int ret;
3307 	struct net_device *ndev;
3308 
3309 	u8 default_roce_tos = id_priv->cma_dev->default_roce_tos[id_priv->id.port_num -
3310 					rdma_start_port(id_priv->cma_dev->device)];
3311 	u8 tos;
3312 
3313 	mutex_lock(&id_priv->qp_mutex);
3314 	tos = id_priv->tos_set ? id_priv->tos : default_roce_tos;
3315 	mutex_unlock(&id_priv->qp_mutex);
3316 
3317 	work = kzalloc(sizeof *work, GFP_KERNEL);
3318 	if (!work)
3319 		return -ENOMEM;
3320 
3321 	route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL);
3322 	if (!route->path_rec) {
3323 		ret = -ENOMEM;
3324 		goto err1;
3325 	}
3326 
3327 	route->num_pri_alt_paths = 1;
3328 
3329 	ndev = cma_iboe_set_path_rec_l2_fields(id_priv);
3330 	if (!ndev) {
3331 		ret = -ENODEV;
3332 		goto err2;
3333 	}
3334 
3335 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
3336 		    &route->path_rec->sgid);
3337 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr,
3338 		    &route->path_rec->dgid);
3339 
3340 	if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB)
3341 		/* TODO: get the hoplimit from the inet/inet6 device */
3342 		route->path_rec->hop_limit = addr->dev_addr.hoplimit;
3343 	else
3344 		route->path_rec->hop_limit = 1;
3345 	route->path_rec->reversible = 1;
3346 	route->path_rec->pkey = cpu_to_be16(0xffff);
3347 	route->path_rec->mtu_selector = IB_SA_EQ;
3348 	route->path_rec->sl = iboe_tos_to_sl(ndev, tos);
3349 	route->path_rec->traffic_class = tos;
3350 	route->path_rec->mtu = iboe_get_mtu(ndev->mtu);
3351 	route->path_rec->rate_selector = IB_SA_EQ;
3352 	route->path_rec->rate = IB_RATE_PORT_CURRENT;
3353 	dev_put(ndev);
3354 	route->path_rec->packet_life_time_selector = IB_SA_EQ;
3355 	/* In case ACK timeout is set, use this value to calculate
3356 	 * PacketLifeTime.  As per IBTA 12.7.34,
3357 	 * local ACK timeout = (2 * PacketLifeTime + Local CA’s ACK delay).
3358 	 * Assuming a negligible local ACK delay, we can use
3359 	 * PacketLifeTime = local ACK timeout/2
3360 	 * as a reasonable approximation for RoCE networks.
3361 	 */
3362 	mutex_lock(&id_priv->qp_mutex);
3363 	if (id_priv->timeout_set && id_priv->timeout)
3364 		route->path_rec->packet_life_time = id_priv->timeout - 1;
3365 	else
3366 		route->path_rec->packet_life_time = CMA_IBOE_PACKET_LIFETIME;
3367 	mutex_unlock(&id_priv->qp_mutex);
3368 
3369 	if (!route->path_rec->mtu) {
3370 		ret = -EINVAL;
3371 		goto err2;
3372 	}
3373 
3374 	if (rdma_protocol_roce_udp_encap(id_priv->id.device,
3375 					 id_priv->id.port_num))
3376 		route->path_rec->flow_label =
3377 			cma_get_roce_udp_flow_label(id_priv);
3378 
3379 	cma_init_resolve_route_work(work, id_priv);
3380 	queue_work(cma_wq, &work->work);
3381 
3382 	return 0;
3383 
3384 err2:
3385 	kfree(route->path_rec);
3386 	route->path_rec = NULL;
3387 	route->num_pri_alt_paths = 0;
3388 err1:
3389 	kfree(work);
3390 	return ret;
3391 }
3392 
3393 int rdma_resolve_route(struct rdma_cm_id *id, unsigned long timeout_ms)
3394 {
3395 	struct rdma_id_private *id_priv;
3396 	int ret;
3397 
3398 	if (!timeout_ms)
3399 		return -EINVAL;
3400 
3401 	id_priv = container_of(id, struct rdma_id_private, id);
3402 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY))
3403 		return -EINVAL;
3404 
3405 	cma_id_get(id_priv);
3406 	if (rdma_cap_ib_sa(id->device, id->port_num))
3407 		ret = cma_resolve_ib_route(id_priv, timeout_ms);
3408 	else if (rdma_protocol_roce(id->device, id->port_num)) {
3409 		ret = cma_resolve_iboe_route(id_priv);
3410 		if (!ret)
3411 			cma_add_id_to_tree(id_priv);
3412 	}
3413 	else if (rdma_protocol_iwarp(id->device, id->port_num))
3414 		ret = cma_resolve_iw_route(id_priv);
3415 	else
3416 		ret = -ENOSYS;
3417 
3418 	if (ret)
3419 		goto err;
3420 
3421 	return 0;
3422 err:
3423 	cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED);
3424 	cma_id_put(id_priv);
3425 	return ret;
3426 }
3427 EXPORT_SYMBOL(rdma_resolve_route);
3428 
3429 static void cma_set_loopback(struct sockaddr *addr)
3430 {
3431 	switch (addr->sa_family) {
3432 	case AF_INET:
3433 		((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK);
3434 		break;
3435 	case AF_INET6:
3436 		ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr,
3437 			      0, 0, 0, htonl(1));
3438 		break;
3439 	default:
3440 		ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr,
3441 			    0, 0, 0, htonl(1));
3442 		break;
3443 	}
3444 }
3445 
3446 static int cma_bind_loopback(struct rdma_id_private *id_priv)
3447 {
3448 	struct cma_device *cma_dev, *cur_dev;
3449 	union ib_gid gid;
3450 	enum ib_port_state port_state;
3451 	unsigned int p;
3452 	u16 pkey;
3453 	int ret;
3454 
3455 	cma_dev = NULL;
3456 	mutex_lock(&lock);
3457 	list_for_each_entry(cur_dev, &dev_list, list) {
3458 		if (cma_family(id_priv) == AF_IB &&
3459 		    !rdma_cap_ib_cm(cur_dev->device, 1))
3460 			continue;
3461 
3462 		if (!cma_dev)
3463 			cma_dev = cur_dev;
3464 
3465 		rdma_for_each_port (cur_dev->device, p) {
3466 			if (!ib_get_cached_port_state(cur_dev->device, p, &port_state) &&
3467 			    port_state == IB_PORT_ACTIVE) {
3468 				cma_dev = cur_dev;
3469 				goto port_found;
3470 			}
3471 		}
3472 	}
3473 
3474 	if (!cma_dev) {
3475 		ret = -ENODEV;
3476 		goto out;
3477 	}
3478 
3479 	p = 1;
3480 
3481 port_found:
3482 	ret = rdma_query_gid(cma_dev->device, p, 0, &gid);
3483 	if (ret)
3484 		goto out;
3485 
3486 	ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey);
3487 	if (ret)
3488 		goto out;
3489 
3490 	id_priv->id.route.addr.dev_addr.dev_type =
3491 		(rdma_protocol_ib(cma_dev->device, p)) ?
3492 		ARPHRD_INFINIBAND : ARPHRD_ETHER;
3493 
3494 	rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid);
3495 	ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey);
3496 	id_priv->id.port_num = p;
3497 	cma_attach_to_dev(id_priv, cma_dev);
3498 	rdma_restrack_add(&id_priv->res);
3499 	cma_set_loopback(cma_src_addr(id_priv));
3500 out:
3501 	mutex_unlock(&lock);
3502 	return ret;
3503 }
3504 
3505 static void addr_handler(int status, struct sockaddr *src_addr,
3506 			 struct rdma_dev_addr *dev_addr, void *context)
3507 {
3508 	struct rdma_id_private *id_priv = context;
3509 	struct rdma_cm_event event = {};
3510 	struct sockaddr *addr;
3511 	struct sockaddr_storage old_addr;
3512 
3513 	mutex_lock(&id_priv->handler_mutex);
3514 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY,
3515 			   RDMA_CM_ADDR_RESOLVED))
3516 		goto out;
3517 
3518 	/*
3519 	 * Store the previous src address, so that if we fail to acquire
3520 	 * matching rdma device, old address can be restored back, which helps
3521 	 * to cancel the cma listen operation correctly.
3522 	 */
3523 	addr = cma_src_addr(id_priv);
3524 	memcpy(&old_addr, addr, rdma_addr_size(addr));
3525 	memcpy(addr, src_addr, rdma_addr_size(src_addr));
3526 	if (!status && !id_priv->cma_dev) {
3527 		status = cma_acquire_dev_by_src_ip(id_priv);
3528 		if (status)
3529 			pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to acquire device. status %d\n",
3530 					     status);
3531 		rdma_restrack_add(&id_priv->res);
3532 	} else if (status) {
3533 		pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to resolve IP. status %d\n", status);
3534 	}
3535 
3536 	if (status) {
3537 		memcpy(addr, &old_addr,
3538 		       rdma_addr_size((struct sockaddr *)&old_addr));
3539 		if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
3540 				   RDMA_CM_ADDR_BOUND))
3541 			goto out;
3542 		event.event = RDMA_CM_EVENT_ADDR_ERROR;
3543 		event.status = status;
3544 	} else
3545 		event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
3546 
3547 	if (cma_cm_event_handler(id_priv, &event)) {
3548 		destroy_id_handler_unlock(id_priv);
3549 		return;
3550 	}
3551 out:
3552 	mutex_unlock(&id_priv->handler_mutex);
3553 }
3554 
3555 static int cma_resolve_loopback(struct rdma_id_private *id_priv)
3556 {
3557 	struct cma_work *work;
3558 	union ib_gid gid;
3559 	int ret;
3560 
3561 	work = kzalloc(sizeof *work, GFP_KERNEL);
3562 	if (!work)
3563 		return -ENOMEM;
3564 
3565 	if (!id_priv->cma_dev) {
3566 		ret = cma_bind_loopback(id_priv);
3567 		if (ret)
3568 			goto err;
3569 	}
3570 
3571 	rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid);
3572 	rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid);
3573 
3574 	enqueue_resolve_addr_work(work, id_priv);
3575 	return 0;
3576 err:
3577 	kfree(work);
3578 	return ret;
3579 }
3580 
3581 static int cma_resolve_ib_addr(struct rdma_id_private *id_priv)
3582 {
3583 	struct cma_work *work;
3584 	int ret;
3585 
3586 	work = kzalloc(sizeof *work, GFP_KERNEL);
3587 	if (!work)
3588 		return -ENOMEM;
3589 
3590 	if (!id_priv->cma_dev) {
3591 		ret = cma_resolve_ib_dev(id_priv);
3592 		if (ret)
3593 			goto err;
3594 	}
3595 
3596 	rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *)
3597 		&(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr));
3598 
3599 	enqueue_resolve_addr_work(work, id_priv);
3600 	return 0;
3601 err:
3602 	kfree(work);
3603 	return ret;
3604 }
3605 
3606 int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse)
3607 {
3608 	struct rdma_id_private *id_priv;
3609 	unsigned long flags;
3610 	int ret;
3611 
3612 	id_priv = container_of(id, struct rdma_id_private, id);
3613 	spin_lock_irqsave(&id_priv->lock, flags);
3614 	if ((reuse && id_priv->state != RDMA_CM_LISTEN) ||
3615 	    id_priv->state == RDMA_CM_IDLE) {
3616 		id_priv->reuseaddr = reuse;
3617 		ret = 0;
3618 	} else {
3619 		ret = -EINVAL;
3620 	}
3621 	spin_unlock_irqrestore(&id_priv->lock, flags);
3622 	return ret;
3623 }
3624 EXPORT_SYMBOL(rdma_set_reuseaddr);
3625 
3626 int rdma_set_afonly(struct rdma_cm_id *id, int afonly)
3627 {
3628 	struct rdma_id_private *id_priv;
3629 	unsigned long flags;
3630 	int ret;
3631 
3632 	id_priv = container_of(id, struct rdma_id_private, id);
3633 	spin_lock_irqsave(&id_priv->lock, flags);
3634 	if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) {
3635 		id_priv->options |= (1 << CMA_OPTION_AFONLY);
3636 		id_priv->afonly = afonly;
3637 		ret = 0;
3638 	} else {
3639 		ret = -EINVAL;
3640 	}
3641 	spin_unlock_irqrestore(&id_priv->lock, flags);
3642 	return ret;
3643 }
3644 EXPORT_SYMBOL(rdma_set_afonly);
3645 
3646 static void cma_bind_port(struct rdma_bind_list *bind_list,
3647 			  struct rdma_id_private *id_priv)
3648 {
3649 	struct sockaddr *addr;
3650 	struct sockaddr_ib *sib;
3651 	u64 sid, mask;
3652 	__be16 port;
3653 
3654 	lockdep_assert_held(&lock);
3655 
3656 	addr = cma_src_addr(id_priv);
3657 	port = htons(bind_list->port);
3658 
3659 	switch (addr->sa_family) {
3660 	case AF_INET:
3661 		((struct sockaddr_in *) addr)->sin_port = port;
3662 		break;
3663 	case AF_INET6:
3664 		((struct sockaddr_in6 *) addr)->sin6_port = port;
3665 		break;
3666 	case AF_IB:
3667 		sib = (struct sockaddr_ib *) addr;
3668 		sid = be64_to_cpu(sib->sib_sid);
3669 		mask = be64_to_cpu(sib->sib_sid_mask);
3670 		sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port));
3671 		sib->sib_sid_mask = cpu_to_be64(~0ULL);
3672 		break;
3673 	}
3674 	id_priv->bind_list = bind_list;
3675 	hlist_add_head(&id_priv->node, &bind_list->owners);
3676 }
3677 
3678 static int cma_alloc_port(enum rdma_ucm_port_space ps,
3679 			  struct rdma_id_private *id_priv, unsigned short snum)
3680 {
3681 	struct rdma_bind_list *bind_list;
3682 	int ret;
3683 
3684 	lockdep_assert_held(&lock);
3685 
3686 	bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL);
3687 	if (!bind_list)
3688 		return -ENOMEM;
3689 
3690 	ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list,
3691 			   snum);
3692 	if (ret < 0)
3693 		goto err;
3694 
3695 	bind_list->ps = ps;
3696 	bind_list->port = snum;
3697 	cma_bind_port(bind_list, id_priv);
3698 	return 0;
3699 err:
3700 	kfree(bind_list);
3701 	return ret == -ENOSPC ? -EADDRNOTAVAIL : ret;
3702 }
3703 
3704 static int cma_port_is_unique(struct rdma_bind_list *bind_list,
3705 			      struct rdma_id_private *id_priv)
3706 {
3707 	struct rdma_id_private *cur_id;
3708 	struct sockaddr  *daddr = cma_dst_addr(id_priv);
3709 	struct sockaddr  *saddr = cma_src_addr(id_priv);
3710 	__be16 dport = cma_port(daddr);
3711 
3712 	lockdep_assert_held(&lock);
3713 
3714 	hlist_for_each_entry(cur_id, &bind_list->owners, node) {
3715 		struct sockaddr  *cur_daddr = cma_dst_addr(cur_id);
3716 		struct sockaddr  *cur_saddr = cma_src_addr(cur_id);
3717 		__be16 cur_dport = cma_port(cur_daddr);
3718 
3719 		if (id_priv == cur_id)
3720 			continue;
3721 
3722 		/* different dest port -> unique */
3723 		if (!cma_any_port(daddr) &&
3724 		    !cma_any_port(cur_daddr) &&
3725 		    (dport != cur_dport))
3726 			continue;
3727 
3728 		/* different src address -> unique */
3729 		if (!cma_any_addr(saddr) &&
3730 		    !cma_any_addr(cur_saddr) &&
3731 		    cma_addr_cmp(saddr, cur_saddr))
3732 			continue;
3733 
3734 		/* different dst address -> unique */
3735 		if (!cma_any_addr(daddr) &&
3736 		    !cma_any_addr(cur_daddr) &&
3737 		    cma_addr_cmp(daddr, cur_daddr))
3738 			continue;
3739 
3740 		return -EADDRNOTAVAIL;
3741 	}
3742 	return 0;
3743 }
3744 
3745 static int cma_alloc_any_port(enum rdma_ucm_port_space ps,
3746 			      struct rdma_id_private *id_priv)
3747 {
3748 	static unsigned int last_used_port;
3749 	int low, high, remaining;
3750 	unsigned int rover;
3751 	struct net *net = id_priv->id.route.addr.dev_addr.net;
3752 
3753 	lockdep_assert_held(&lock);
3754 
3755 	inet_get_local_port_range(net, &low, &high);
3756 	remaining = (high - low) + 1;
3757 	rover = get_random_u32_inclusive(low, remaining + low - 1);
3758 retry:
3759 	if (last_used_port != rover) {
3760 		struct rdma_bind_list *bind_list;
3761 		int ret;
3762 
3763 		bind_list = cma_ps_find(net, ps, (unsigned short)rover);
3764 
3765 		if (!bind_list) {
3766 			ret = cma_alloc_port(ps, id_priv, rover);
3767 		} else {
3768 			ret = cma_port_is_unique(bind_list, id_priv);
3769 			if (!ret)
3770 				cma_bind_port(bind_list, id_priv);
3771 		}
3772 		/*
3773 		 * Remember previously used port number in order to avoid
3774 		 * re-using same port immediately after it is closed.
3775 		 */
3776 		if (!ret)
3777 			last_used_port = rover;
3778 		if (ret != -EADDRNOTAVAIL)
3779 			return ret;
3780 	}
3781 	if (--remaining) {
3782 		rover++;
3783 		if ((rover < low) || (rover > high))
3784 			rover = low;
3785 		goto retry;
3786 	}
3787 	return -EADDRNOTAVAIL;
3788 }
3789 
3790 /*
3791  * Check that the requested port is available.  This is called when trying to
3792  * bind to a specific port, or when trying to listen on a bound port.  In
3793  * the latter case, the provided id_priv may already be on the bind_list, but
3794  * we still need to check that it's okay to start listening.
3795  */
3796 static int cma_check_port(struct rdma_bind_list *bind_list,
3797 			  struct rdma_id_private *id_priv, uint8_t reuseaddr)
3798 {
3799 	struct rdma_id_private *cur_id;
3800 	struct sockaddr *addr, *cur_addr;
3801 
3802 	lockdep_assert_held(&lock);
3803 
3804 	addr = cma_src_addr(id_priv);
3805 	hlist_for_each_entry(cur_id, &bind_list->owners, node) {
3806 		if (id_priv == cur_id)
3807 			continue;
3808 
3809 		if (reuseaddr && cur_id->reuseaddr)
3810 			continue;
3811 
3812 		cur_addr = cma_src_addr(cur_id);
3813 		if (id_priv->afonly && cur_id->afonly &&
3814 		    (addr->sa_family != cur_addr->sa_family))
3815 			continue;
3816 
3817 		if (cma_any_addr(addr) || cma_any_addr(cur_addr))
3818 			return -EADDRNOTAVAIL;
3819 
3820 		if (!cma_addr_cmp(addr, cur_addr))
3821 			return -EADDRINUSE;
3822 	}
3823 	return 0;
3824 }
3825 
3826 static int cma_use_port(enum rdma_ucm_port_space ps,
3827 			struct rdma_id_private *id_priv)
3828 {
3829 	struct rdma_bind_list *bind_list;
3830 	unsigned short snum;
3831 	int ret;
3832 
3833 	lockdep_assert_held(&lock);
3834 
3835 	snum = ntohs(cma_port(cma_src_addr(id_priv)));
3836 	if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
3837 		return -EACCES;
3838 
3839 	bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum);
3840 	if (!bind_list) {
3841 		ret = cma_alloc_port(ps, id_priv, snum);
3842 	} else {
3843 		ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr);
3844 		if (!ret)
3845 			cma_bind_port(bind_list, id_priv);
3846 	}
3847 	return ret;
3848 }
3849 
3850 static enum rdma_ucm_port_space
3851 cma_select_inet_ps(struct rdma_id_private *id_priv)
3852 {
3853 	switch (id_priv->id.ps) {
3854 	case RDMA_PS_TCP:
3855 	case RDMA_PS_UDP:
3856 	case RDMA_PS_IPOIB:
3857 	case RDMA_PS_IB:
3858 		return id_priv->id.ps;
3859 	default:
3860 
3861 		return 0;
3862 	}
3863 }
3864 
3865 static enum rdma_ucm_port_space
3866 cma_select_ib_ps(struct rdma_id_private *id_priv)
3867 {
3868 	enum rdma_ucm_port_space ps = 0;
3869 	struct sockaddr_ib *sib;
3870 	u64 sid_ps, mask, sid;
3871 
3872 	sib = (struct sockaddr_ib *) cma_src_addr(id_priv);
3873 	mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK;
3874 	sid = be64_to_cpu(sib->sib_sid) & mask;
3875 
3876 	if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) {
3877 		sid_ps = RDMA_IB_IP_PS_IB;
3878 		ps = RDMA_PS_IB;
3879 	} else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) &&
3880 		   (sid == (RDMA_IB_IP_PS_TCP & mask))) {
3881 		sid_ps = RDMA_IB_IP_PS_TCP;
3882 		ps = RDMA_PS_TCP;
3883 	} else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) &&
3884 		   (sid == (RDMA_IB_IP_PS_UDP & mask))) {
3885 		sid_ps = RDMA_IB_IP_PS_UDP;
3886 		ps = RDMA_PS_UDP;
3887 	}
3888 
3889 	if (ps) {
3890 		sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib)));
3891 		sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK |
3892 						be64_to_cpu(sib->sib_sid_mask));
3893 	}
3894 	return ps;
3895 }
3896 
3897 static int cma_get_port(struct rdma_id_private *id_priv)
3898 {
3899 	enum rdma_ucm_port_space ps;
3900 	int ret;
3901 
3902 	if (cma_family(id_priv) != AF_IB)
3903 		ps = cma_select_inet_ps(id_priv);
3904 	else
3905 		ps = cma_select_ib_ps(id_priv);
3906 	if (!ps)
3907 		return -EPROTONOSUPPORT;
3908 
3909 	mutex_lock(&lock);
3910 	if (cma_any_port(cma_src_addr(id_priv)))
3911 		ret = cma_alloc_any_port(ps, id_priv);
3912 	else
3913 		ret = cma_use_port(ps, id_priv);
3914 	mutex_unlock(&lock);
3915 
3916 	return ret;
3917 }
3918 
3919 static int cma_check_linklocal(struct rdma_dev_addr *dev_addr,
3920 			       struct sockaddr *addr)
3921 {
3922 #if IS_ENABLED(CONFIG_IPV6)
3923 	struct sockaddr_in6 *sin6;
3924 
3925 	if (addr->sa_family != AF_INET6)
3926 		return 0;
3927 
3928 	sin6 = (struct sockaddr_in6 *) addr;
3929 
3930 	if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL))
3931 		return 0;
3932 
3933 	if (!sin6->sin6_scope_id)
3934 			return -EINVAL;
3935 
3936 	dev_addr->bound_dev_if = sin6->sin6_scope_id;
3937 #endif
3938 	return 0;
3939 }
3940 
3941 int rdma_listen(struct rdma_cm_id *id, int backlog)
3942 {
3943 	struct rdma_id_private *id_priv =
3944 		container_of(id, struct rdma_id_private, id);
3945 	int ret;
3946 
3947 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) {
3948 		struct sockaddr_in any_in = {
3949 			.sin_family = AF_INET,
3950 			.sin_addr.s_addr = htonl(INADDR_ANY),
3951 		};
3952 
3953 		/* For a well behaved ULP state will be RDMA_CM_IDLE */
3954 		ret = rdma_bind_addr(id, (struct sockaddr *)&any_in);
3955 		if (ret)
3956 			return ret;
3957 		if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND,
3958 					   RDMA_CM_LISTEN)))
3959 			return -EINVAL;
3960 	}
3961 
3962 	/*
3963 	 * Once the ID reaches RDMA_CM_LISTEN it is not allowed to be reusable
3964 	 * any more, and has to be unique in the bind list.
3965 	 */
3966 	if (id_priv->reuseaddr) {
3967 		mutex_lock(&lock);
3968 		ret = cma_check_port(id_priv->bind_list, id_priv, 0);
3969 		if (!ret)
3970 			id_priv->reuseaddr = 0;
3971 		mutex_unlock(&lock);
3972 		if (ret)
3973 			goto err;
3974 	}
3975 
3976 	id_priv->backlog = backlog;
3977 	if (id_priv->cma_dev) {
3978 		if (rdma_cap_ib_cm(id->device, 1)) {
3979 			ret = cma_ib_listen(id_priv);
3980 			if (ret)
3981 				goto err;
3982 		} else if (rdma_cap_iw_cm(id->device, 1)) {
3983 			ret = cma_iw_listen(id_priv, backlog);
3984 			if (ret)
3985 				goto err;
3986 		} else {
3987 			ret = -ENOSYS;
3988 			goto err;
3989 		}
3990 	} else {
3991 		ret = cma_listen_on_all(id_priv);
3992 		if (ret)
3993 			goto err;
3994 	}
3995 
3996 	return 0;
3997 err:
3998 	id_priv->backlog = 0;
3999 	/*
4000 	 * All the failure paths that lead here will not allow the req_handler's
4001 	 * to have run.
4002 	 */
4003 	cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND);
4004 	return ret;
4005 }
4006 EXPORT_SYMBOL(rdma_listen);
4007 
4008 static int rdma_bind_addr_dst(struct rdma_id_private *id_priv,
4009 			      struct sockaddr *addr, const struct sockaddr *daddr)
4010 {
4011 	struct sockaddr *id_daddr;
4012 	int ret;
4013 
4014 	if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 &&
4015 	    addr->sa_family != AF_IB)
4016 		return -EAFNOSUPPORT;
4017 
4018 	if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND))
4019 		return -EINVAL;
4020 
4021 	ret = cma_check_linklocal(&id_priv->id.route.addr.dev_addr, addr);
4022 	if (ret)
4023 		goto err1;
4024 
4025 	memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr));
4026 	if (!cma_any_addr(addr)) {
4027 		ret = cma_translate_addr(addr, &id_priv->id.route.addr.dev_addr);
4028 		if (ret)
4029 			goto err1;
4030 
4031 		ret = cma_acquire_dev_by_src_ip(id_priv);
4032 		if (ret)
4033 			goto err1;
4034 	}
4035 
4036 	if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) {
4037 		if (addr->sa_family == AF_INET)
4038 			id_priv->afonly = 1;
4039 #if IS_ENABLED(CONFIG_IPV6)
4040 		else if (addr->sa_family == AF_INET6) {
4041 			struct net *net = id_priv->id.route.addr.dev_addr.net;
4042 
4043 			id_priv->afonly = net->ipv6.sysctl.bindv6only;
4044 		}
4045 #endif
4046 	}
4047 	id_daddr = cma_dst_addr(id_priv);
4048 	if (daddr != id_daddr)
4049 		memcpy(id_daddr, daddr, rdma_addr_size(addr));
4050 	id_daddr->sa_family = addr->sa_family;
4051 
4052 	ret = cma_get_port(id_priv);
4053 	if (ret)
4054 		goto err2;
4055 
4056 	if (!cma_any_addr(addr))
4057 		rdma_restrack_add(&id_priv->res);
4058 	return 0;
4059 err2:
4060 	if (id_priv->cma_dev)
4061 		cma_release_dev(id_priv);
4062 err1:
4063 	cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE);
4064 	return ret;
4065 }
4066 
4067 static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
4068 			 const struct sockaddr *dst_addr)
4069 {
4070 	struct rdma_id_private *id_priv =
4071 		container_of(id, struct rdma_id_private, id);
4072 	struct sockaddr_storage zero_sock = {};
4073 
4074 	if (src_addr && src_addr->sa_family)
4075 		return rdma_bind_addr_dst(id_priv, src_addr, dst_addr);
4076 
4077 	/*
4078 	 * When the src_addr is not specified, automatically supply an any addr
4079 	 */
4080 	zero_sock.ss_family = dst_addr->sa_family;
4081 	if (IS_ENABLED(CONFIG_IPV6) && dst_addr->sa_family == AF_INET6) {
4082 		struct sockaddr_in6 *src_addr6 =
4083 			(struct sockaddr_in6 *)&zero_sock;
4084 		struct sockaddr_in6 *dst_addr6 =
4085 			(struct sockaddr_in6 *)dst_addr;
4086 
4087 		src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id;
4088 		if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)
4089 			id->route.addr.dev_addr.bound_dev_if =
4090 				dst_addr6->sin6_scope_id;
4091 	} else if (dst_addr->sa_family == AF_IB) {
4092 		((struct sockaddr_ib *)&zero_sock)->sib_pkey =
4093 			((struct sockaddr_ib *)dst_addr)->sib_pkey;
4094 	}
4095 	return rdma_bind_addr_dst(id_priv, (struct sockaddr *)&zero_sock, dst_addr);
4096 }
4097 
4098 /*
4099  * If required, resolve the source address for bind and leave the id_priv in
4100  * state RDMA_CM_ADDR_BOUND. This oddly uses the state to determine the prior
4101  * calls made by ULP, a previously bound ID will not be re-bound and src_addr is
4102  * ignored.
4103  */
4104 static int resolve_prepare_src(struct rdma_id_private *id_priv,
4105 			       struct sockaddr *src_addr,
4106 			       const struct sockaddr *dst_addr)
4107 {
4108 	int ret;
4109 
4110 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) {
4111 		/* For a well behaved ULP state will be RDMA_CM_IDLE */
4112 		ret = cma_bind_addr(&id_priv->id, src_addr, dst_addr);
4113 		if (ret)
4114 			return ret;
4115 		if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND,
4116 					   RDMA_CM_ADDR_QUERY)))
4117 			return -EINVAL;
4118 
4119 	} else {
4120 		memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr));
4121 	}
4122 
4123 	if (cma_family(id_priv) != dst_addr->sa_family) {
4124 		ret = -EINVAL;
4125 		goto err_state;
4126 	}
4127 	return 0;
4128 
4129 err_state:
4130 	cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND);
4131 	return ret;
4132 }
4133 
4134 int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
4135 		      const struct sockaddr *dst_addr, unsigned long timeout_ms)
4136 {
4137 	struct rdma_id_private *id_priv =
4138 		container_of(id, struct rdma_id_private, id);
4139 	int ret;
4140 
4141 	ret = resolve_prepare_src(id_priv, src_addr, dst_addr);
4142 	if (ret)
4143 		return ret;
4144 
4145 	if (cma_any_addr(dst_addr)) {
4146 		ret = cma_resolve_loopback(id_priv);
4147 	} else {
4148 		if (dst_addr->sa_family == AF_IB) {
4149 			ret = cma_resolve_ib_addr(id_priv);
4150 		} else {
4151 			/*
4152 			 * The FSM can return back to RDMA_CM_ADDR_BOUND after
4153 			 * rdma_resolve_ip() is called, eg through the error
4154 			 * path in addr_handler(). If this happens the existing
4155 			 * request must be canceled before issuing a new one.
4156 			 * Since canceling a request is a bit slow and this
4157 			 * oddball path is rare, keep track once a request has
4158 			 * been issued. The track turns out to be a permanent
4159 			 * state since this is the only cancel as it is
4160 			 * immediately before rdma_resolve_ip().
4161 			 */
4162 			if (id_priv->used_resolve_ip)
4163 				rdma_addr_cancel(&id->route.addr.dev_addr);
4164 			else
4165 				id_priv->used_resolve_ip = 1;
4166 			ret = rdma_resolve_ip(cma_src_addr(id_priv), dst_addr,
4167 					      &id->route.addr.dev_addr,
4168 					      timeout_ms, addr_handler,
4169 					      false, id_priv);
4170 		}
4171 	}
4172 	if (ret)
4173 		goto err;
4174 
4175 	return 0;
4176 err:
4177 	cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND);
4178 	return ret;
4179 }
4180 EXPORT_SYMBOL(rdma_resolve_addr);
4181 
4182 int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr)
4183 {
4184 	struct rdma_id_private *id_priv =
4185 		container_of(id, struct rdma_id_private, id);
4186 
4187 	return rdma_bind_addr_dst(id_priv, addr, cma_dst_addr(id_priv));
4188 }
4189 EXPORT_SYMBOL(rdma_bind_addr);
4190 
4191 static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv)
4192 {
4193 	struct cma_hdr *cma_hdr;
4194 
4195 	cma_hdr = hdr;
4196 	cma_hdr->cma_version = CMA_VERSION;
4197 	if (cma_family(id_priv) == AF_INET) {
4198 		struct sockaddr_in *src4, *dst4;
4199 
4200 		src4 = (struct sockaddr_in *) cma_src_addr(id_priv);
4201 		dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv);
4202 
4203 		cma_set_ip_ver(cma_hdr, 4);
4204 		cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr;
4205 		cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr;
4206 		cma_hdr->port = src4->sin_port;
4207 	} else if (cma_family(id_priv) == AF_INET6) {
4208 		struct sockaddr_in6 *src6, *dst6;
4209 
4210 		src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv);
4211 		dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv);
4212 
4213 		cma_set_ip_ver(cma_hdr, 6);
4214 		cma_hdr->src_addr.ip6 = src6->sin6_addr;
4215 		cma_hdr->dst_addr.ip6 = dst6->sin6_addr;
4216 		cma_hdr->port = src6->sin6_port;
4217 	}
4218 	return 0;
4219 }
4220 
4221 static int cma_sidr_rep_handler(struct ib_cm_id *cm_id,
4222 				const struct ib_cm_event *ib_event)
4223 {
4224 	struct rdma_id_private *id_priv = cm_id->context;
4225 	struct rdma_cm_event event = {};
4226 	const struct ib_cm_sidr_rep_event_param *rep =
4227 				&ib_event->param.sidr_rep_rcvd;
4228 	int ret;
4229 
4230 	mutex_lock(&id_priv->handler_mutex);
4231 	if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
4232 		goto out;
4233 
4234 	switch (ib_event->event) {
4235 	case IB_CM_SIDR_REQ_ERROR:
4236 		event.event = RDMA_CM_EVENT_UNREACHABLE;
4237 		event.status = -ETIMEDOUT;
4238 		break;
4239 	case IB_CM_SIDR_REP_RECEIVED:
4240 		event.param.ud.private_data = ib_event->private_data;
4241 		event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE;
4242 		if (rep->status != IB_SIDR_SUCCESS) {
4243 			event.event = RDMA_CM_EVENT_UNREACHABLE;
4244 			event.status = ib_event->param.sidr_rep_rcvd.status;
4245 			pr_debug_ratelimited("RDMA CM: UNREACHABLE: bad SIDR reply. status %d\n",
4246 					     event.status);
4247 			break;
4248 		}
4249 		ret = cma_set_qkey(id_priv, rep->qkey);
4250 		if (ret) {
4251 			pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to set qkey. status %d\n", ret);
4252 			event.event = RDMA_CM_EVENT_ADDR_ERROR;
4253 			event.status = ret;
4254 			break;
4255 		}
4256 		ib_init_ah_attr_from_path(id_priv->id.device,
4257 					  id_priv->id.port_num,
4258 					  id_priv->id.route.path_rec,
4259 					  &event.param.ud.ah_attr,
4260 					  rep->sgid_attr);
4261 		event.param.ud.qp_num = rep->qpn;
4262 		event.param.ud.qkey = rep->qkey;
4263 		event.event = RDMA_CM_EVENT_ESTABLISHED;
4264 		event.status = 0;
4265 		break;
4266 	default:
4267 		pr_err("RDMA CMA: unexpected IB CM event: %d\n",
4268 		       ib_event->event);
4269 		goto out;
4270 	}
4271 
4272 	ret = cma_cm_event_handler(id_priv, &event);
4273 
4274 	rdma_destroy_ah_attr(&event.param.ud.ah_attr);
4275 	if (ret) {
4276 		/* Destroy the CM ID by returning a non-zero value. */
4277 		id_priv->cm_id.ib = NULL;
4278 		destroy_id_handler_unlock(id_priv);
4279 		return ret;
4280 	}
4281 out:
4282 	mutex_unlock(&id_priv->handler_mutex);
4283 	return 0;
4284 }
4285 
4286 static int cma_resolve_ib_udp(struct rdma_id_private *id_priv,
4287 			      struct rdma_conn_param *conn_param)
4288 {
4289 	struct ib_cm_sidr_req_param req;
4290 	struct ib_cm_id	*id;
4291 	void *private_data;
4292 	u8 offset;
4293 	int ret;
4294 
4295 	memset(&req, 0, sizeof req);
4296 	offset = cma_user_data_offset(id_priv);
4297 	if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len))
4298 		return -EINVAL;
4299 
4300 	if (req.private_data_len) {
4301 		private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
4302 		if (!private_data)
4303 			return -ENOMEM;
4304 	} else {
4305 		private_data = NULL;
4306 	}
4307 
4308 	if (conn_param->private_data && conn_param->private_data_len)
4309 		memcpy(private_data + offset, conn_param->private_data,
4310 		       conn_param->private_data_len);
4311 
4312 	if (private_data) {
4313 		ret = cma_format_hdr(private_data, id_priv);
4314 		if (ret)
4315 			goto out;
4316 		req.private_data = private_data;
4317 	}
4318 
4319 	id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler,
4320 			     id_priv);
4321 	if (IS_ERR(id)) {
4322 		ret = PTR_ERR(id);
4323 		goto out;
4324 	}
4325 	id_priv->cm_id.ib = id;
4326 
4327 	req.path = id_priv->id.route.path_rec;
4328 	req.sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr;
4329 	req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
4330 	req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8);
4331 	req.max_cm_retries = CMA_MAX_CM_RETRIES;
4332 
4333 	trace_cm_send_sidr_req(id_priv);
4334 	ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req);
4335 	if (ret) {
4336 		ib_destroy_cm_id(id_priv->cm_id.ib);
4337 		id_priv->cm_id.ib = NULL;
4338 	}
4339 out:
4340 	kfree(private_data);
4341 	return ret;
4342 }
4343 
4344 static int cma_connect_ib(struct rdma_id_private *id_priv,
4345 			  struct rdma_conn_param *conn_param)
4346 {
4347 	struct ib_cm_req_param req;
4348 	struct rdma_route *route;
4349 	void *private_data;
4350 	struct ib_cm_id	*id;
4351 	u8 offset;
4352 	int ret;
4353 
4354 	memset(&req, 0, sizeof req);
4355 	offset = cma_user_data_offset(id_priv);
4356 	if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len))
4357 		return -EINVAL;
4358 
4359 	if (req.private_data_len) {
4360 		private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
4361 		if (!private_data)
4362 			return -ENOMEM;
4363 	} else {
4364 		private_data = NULL;
4365 	}
4366 
4367 	if (conn_param->private_data && conn_param->private_data_len)
4368 		memcpy(private_data + offset, conn_param->private_data,
4369 		       conn_param->private_data_len);
4370 
4371 	id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv);
4372 	if (IS_ERR(id)) {
4373 		ret = PTR_ERR(id);
4374 		goto out;
4375 	}
4376 	id_priv->cm_id.ib = id;
4377 
4378 	route = &id_priv->id.route;
4379 	if (private_data) {
4380 		ret = cma_format_hdr(private_data, id_priv);
4381 		if (ret)
4382 			goto out;
4383 		req.private_data = private_data;
4384 	}
4385 
4386 	req.primary_path = &route->path_rec[0];
4387 	req.primary_path_inbound = route->path_rec_inbound;
4388 	req.primary_path_outbound = route->path_rec_outbound;
4389 	if (route->num_pri_alt_paths == 2)
4390 		req.alternate_path = &route->path_rec[1];
4391 
4392 	req.ppath_sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr;
4393 	/* Alternate path SGID attribute currently unsupported */
4394 	req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
4395 	req.qp_num = id_priv->qp_num;
4396 	req.qp_type = id_priv->id.qp_type;
4397 	req.starting_psn = id_priv->seq_num;
4398 	req.responder_resources = conn_param->responder_resources;
4399 	req.initiator_depth = conn_param->initiator_depth;
4400 	req.flow_control = conn_param->flow_control;
4401 	req.retry_count = min_t(u8, 7, conn_param->retry_count);
4402 	req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
4403 	req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
4404 	req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
4405 	req.max_cm_retries = CMA_MAX_CM_RETRIES;
4406 	req.srq = id_priv->srq ? 1 : 0;
4407 	req.ece.vendor_id = id_priv->ece.vendor_id;
4408 	req.ece.attr_mod = id_priv->ece.attr_mod;
4409 
4410 	trace_cm_send_req(id_priv);
4411 	ret = ib_send_cm_req(id_priv->cm_id.ib, &req);
4412 out:
4413 	if (ret && !IS_ERR(id)) {
4414 		ib_destroy_cm_id(id);
4415 		id_priv->cm_id.ib = NULL;
4416 	}
4417 
4418 	kfree(private_data);
4419 	return ret;
4420 }
4421 
4422 static int cma_connect_iw(struct rdma_id_private *id_priv,
4423 			  struct rdma_conn_param *conn_param)
4424 {
4425 	struct iw_cm_id *cm_id;
4426 	int ret;
4427 	struct iw_cm_conn_param iw_param;
4428 
4429 	cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv);
4430 	if (IS_ERR(cm_id))
4431 		return PTR_ERR(cm_id);
4432 
4433 	mutex_lock(&id_priv->qp_mutex);
4434 	cm_id->tos = id_priv->tos;
4435 	cm_id->tos_set = id_priv->tos_set;
4436 	mutex_unlock(&id_priv->qp_mutex);
4437 
4438 	id_priv->cm_id.iw = cm_id;
4439 
4440 	memcpy(&cm_id->local_addr, cma_src_addr(id_priv),
4441 	       rdma_addr_size(cma_src_addr(id_priv)));
4442 	memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv),
4443 	       rdma_addr_size(cma_dst_addr(id_priv)));
4444 
4445 	ret = cma_modify_qp_rtr(id_priv, conn_param);
4446 	if (ret)
4447 		goto out;
4448 
4449 	if (conn_param) {
4450 		iw_param.ord = conn_param->initiator_depth;
4451 		iw_param.ird = conn_param->responder_resources;
4452 		iw_param.private_data = conn_param->private_data;
4453 		iw_param.private_data_len = conn_param->private_data_len;
4454 		iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num;
4455 	} else {
4456 		memset(&iw_param, 0, sizeof iw_param);
4457 		iw_param.qpn = id_priv->qp_num;
4458 	}
4459 	ret = iw_cm_connect(cm_id, &iw_param);
4460 out:
4461 	if (ret) {
4462 		iw_destroy_cm_id(cm_id);
4463 		id_priv->cm_id.iw = NULL;
4464 	}
4465 	return ret;
4466 }
4467 
4468 /**
4469  * rdma_connect_locked - Initiate an active connection request.
4470  * @id: Connection identifier to connect.
4471  * @conn_param: Connection information used for connected QPs.
4472  *
4473  * Same as rdma_connect() but can only be called from the
4474  * RDMA_CM_EVENT_ROUTE_RESOLVED handler callback.
4475  */
4476 int rdma_connect_locked(struct rdma_cm_id *id,
4477 			struct rdma_conn_param *conn_param)
4478 {
4479 	struct rdma_id_private *id_priv =
4480 		container_of(id, struct rdma_id_private, id);
4481 	int ret;
4482 
4483 	if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT))
4484 		return -EINVAL;
4485 
4486 	if (!id->qp) {
4487 		id_priv->qp_num = conn_param->qp_num;
4488 		id_priv->srq = conn_param->srq;
4489 	}
4490 
4491 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4492 		if (id->qp_type == IB_QPT_UD)
4493 			ret = cma_resolve_ib_udp(id_priv, conn_param);
4494 		else
4495 			ret = cma_connect_ib(id_priv, conn_param);
4496 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4497 		ret = cma_connect_iw(id_priv, conn_param);
4498 	} else {
4499 		ret = -ENOSYS;
4500 	}
4501 	if (ret)
4502 		goto err_state;
4503 	return 0;
4504 err_state:
4505 	cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED);
4506 	return ret;
4507 }
4508 EXPORT_SYMBOL(rdma_connect_locked);
4509 
4510 /**
4511  * rdma_connect - Initiate an active connection request.
4512  * @id: Connection identifier to connect.
4513  * @conn_param: Connection information used for connected QPs.
4514  *
4515  * Users must have resolved a route for the rdma_cm_id to connect with by having
4516  * called rdma_resolve_route before calling this routine.
4517  *
4518  * This call will either connect to a remote QP or obtain remote QP information
4519  * for unconnected rdma_cm_id's.  The actual operation is based on the
4520  * rdma_cm_id's port space.
4521  */
4522 int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
4523 {
4524 	struct rdma_id_private *id_priv =
4525 		container_of(id, struct rdma_id_private, id);
4526 	int ret;
4527 
4528 	mutex_lock(&id_priv->handler_mutex);
4529 	ret = rdma_connect_locked(id, conn_param);
4530 	mutex_unlock(&id_priv->handler_mutex);
4531 	return ret;
4532 }
4533 EXPORT_SYMBOL(rdma_connect);
4534 
4535 /**
4536  * rdma_connect_ece - Initiate an active connection request with ECE data.
4537  * @id: Connection identifier to connect.
4538  * @conn_param: Connection information used for connected QPs.
4539  * @ece: ECE parameters
4540  *
4541  * See rdma_connect() explanation.
4542  */
4543 int rdma_connect_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param,
4544 		     struct rdma_ucm_ece *ece)
4545 {
4546 	struct rdma_id_private *id_priv =
4547 		container_of(id, struct rdma_id_private, id);
4548 
4549 	id_priv->ece.vendor_id = ece->vendor_id;
4550 	id_priv->ece.attr_mod = ece->attr_mod;
4551 
4552 	return rdma_connect(id, conn_param);
4553 }
4554 EXPORT_SYMBOL(rdma_connect_ece);
4555 
4556 static int cma_accept_ib(struct rdma_id_private *id_priv,
4557 			 struct rdma_conn_param *conn_param)
4558 {
4559 	struct ib_cm_rep_param rep;
4560 	int ret;
4561 
4562 	ret = cma_modify_qp_rtr(id_priv, conn_param);
4563 	if (ret)
4564 		goto out;
4565 
4566 	ret = cma_modify_qp_rts(id_priv, conn_param);
4567 	if (ret)
4568 		goto out;
4569 
4570 	memset(&rep, 0, sizeof rep);
4571 	rep.qp_num = id_priv->qp_num;
4572 	rep.starting_psn = id_priv->seq_num;
4573 	rep.private_data = conn_param->private_data;
4574 	rep.private_data_len = conn_param->private_data_len;
4575 	rep.responder_resources = conn_param->responder_resources;
4576 	rep.initiator_depth = conn_param->initiator_depth;
4577 	rep.failover_accepted = 0;
4578 	rep.flow_control = conn_param->flow_control;
4579 	rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
4580 	rep.srq = id_priv->srq ? 1 : 0;
4581 	rep.ece.vendor_id = id_priv->ece.vendor_id;
4582 	rep.ece.attr_mod = id_priv->ece.attr_mod;
4583 
4584 	trace_cm_send_rep(id_priv);
4585 	ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep);
4586 out:
4587 	return ret;
4588 }
4589 
4590 static int cma_accept_iw(struct rdma_id_private *id_priv,
4591 		  struct rdma_conn_param *conn_param)
4592 {
4593 	struct iw_cm_conn_param iw_param;
4594 	int ret;
4595 
4596 	if (!conn_param)
4597 		return -EINVAL;
4598 
4599 	ret = cma_modify_qp_rtr(id_priv, conn_param);
4600 	if (ret)
4601 		return ret;
4602 
4603 	iw_param.ord = conn_param->initiator_depth;
4604 	iw_param.ird = conn_param->responder_resources;
4605 	iw_param.private_data = conn_param->private_data;
4606 	iw_param.private_data_len = conn_param->private_data_len;
4607 	if (id_priv->id.qp)
4608 		iw_param.qpn = id_priv->qp_num;
4609 	else
4610 		iw_param.qpn = conn_param->qp_num;
4611 
4612 	return iw_cm_accept(id_priv->cm_id.iw, &iw_param);
4613 }
4614 
4615 static int cma_send_sidr_rep(struct rdma_id_private *id_priv,
4616 			     enum ib_cm_sidr_status status, u32 qkey,
4617 			     const void *private_data, int private_data_len)
4618 {
4619 	struct ib_cm_sidr_rep_param rep;
4620 	int ret;
4621 
4622 	memset(&rep, 0, sizeof rep);
4623 	rep.status = status;
4624 	if (status == IB_SIDR_SUCCESS) {
4625 		if (qkey)
4626 			ret = cma_set_qkey(id_priv, qkey);
4627 		else
4628 			ret = cma_set_default_qkey(id_priv);
4629 		if (ret)
4630 			return ret;
4631 		rep.qp_num = id_priv->qp_num;
4632 		rep.qkey = id_priv->qkey;
4633 
4634 		rep.ece.vendor_id = id_priv->ece.vendor_id;
4635 		rep.ece.attr_mod = id_priv->ece.attr_mod;
4636 	}
4637 
4638 	rep.private_data = private_data;
4639 	rep.private_data_len = private_data_len;
4640 
4641 	trace_cm_send_sidr_rep(id_priv);
4642 	return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep);
4643 }
4644 
4645 /**
4646  * rdma_accept - Called to accept a connection request or response.
4647  * @id: Connection identifier associated with the request.
4648  * @conn_param: Information needed to establish the connection.  This must be
4649  *   provided if accepting a connection request.  If accepting a connection
4650  *   response, this parameter must be NULL.
4651  *
4652  * Typically, this routine is only called by the listener to accept a connection
4653  * request.  It must also be called on the active side of a connection if the
4654  * user is performing their own QP transitions.
4655  *
4656  * In the case of error, a reject message is sent to the remote side and the
4657  * state of the qp associated with the id is modified to error, such that any
4658  * previously posted receive buffers would be flushed.
4659  *
4660  * This function is for use by kernel ULPs and must be called from under the
4661  * handler callback.
4662  */
4663 int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
4664 {
4665 	struct rdma_id_private *id_priv =
4666 		container_of(id, struct rdma_id_private, id);
4667 	int ret;
4668 
4669 	lockdep_assert_held(&id_priv->handler_mutex);
4670 
4671 	if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
4672 		return -EINVAL;
4673 
4674 	if (!id->qp && conn_param) {
4675 		id_priv->qp_num = conn_param->qp_num;
4676 		id_priv->srq = conn_param->srq;
4677 	}
4678 
4679 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4680 		if (id->qp_type == IB_QPT_UD) {
4681 			if (conn_param)
4682 				ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
4683 							conn_param->qkey,
4684 							conn_param->private_data,
4685 							conn_param->private_data_len);
4686 			else
4687 				ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
4688 							0, NULL, 0);
4689 		} else {
4690 			if (conn_param)
4691 				ret = cma_accept_ib(id_priv, conn_param);
4692 			else
4693 				ret = cma_rep_recv(id_priv);
4694 		}
4695 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4696 		ret = cma_accept_iw(id_priv, conn_param);
4697 	} else {
4698 		ret = -ENOSYS;
4699 	}
4700 	if (ret)
4701 		goto reject;
4702 
4703 	return 0;
4704 reject:
4705 	cma_modify_qp_err(id_priv);
4706 	rdma_reject(id, NULL, 0, IB_CM_REJ_CONSUMER_DEFINED);
4707 	return ret;
4708 }
4709 EXPORT_SYMBOL(rdma_accept);
4710 
4711 int rdma_accept_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param,
4712 		    struct rdma_ucm_ece *ece)
4713 {
4714 	struct rdma_id_private *id_priv =
4715 		container_of(id, struct rdma_id_private, id);
4716 
4717 	id_priv->ece.vendor_id = ece->vendor_id;
4718 	id_priv->ece.attr_mod = ece->attr_mod;
4719 
4720 	return rdma_accept(id, conn_param);
4721 }
4722 EXPORT_SYMBOL(rdma_accept_ece);
4723 
4724 void rdma_lock_handler(struct rdma_cm_id *id)
4725 {
4726 	struct rdma_id_private *id_priv =
4727 		container_of(id, struct rdma_id_private, id);
4728 
4729 	mutex_lock(&id_priv->handler_mutex);
4730 }
4731 EXPORT_SYMBOL(rdma_lock_handler);
4732 
4733 void rdma_unlock_handler(struct rdma_cm_id *id)
4734 {
4735 	struct rdma_id_private *id_priv =
4736 		container_of(id, struct rdma_id_private, id);
4737 
4738 	mutex_unlock(&id_priv->handler_mutex);
4739 }
4740 EXPORT_SYMBOL(rdma_unlock_handler);
4741 
4742 int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event)
4743 {
4744 	struct rdma_id_private *id_priv;
4745 	int ret;
4746 
4747 	id_priv = container_of(id, struct rdma_id_private, id);
4748 	if (!id_priv->cm_id.ib)
4749 		return -EINVAL;
4750 
4751 	switch (id->device->node_type) {
4752 	case RDMA_NODE_IB_CA:
4753 		ret = ib_cm_notify(id_priv->cm_id.ib, event);
4754 		break;
4755 	default:
4756 		ret = 0;
4757 		break;
4758 	}
4759 	return ret;
4760 }
4761 EXPORT_SYMBOL(rdma_notify);
4762 
4763 int rdma_reject(struct rdma_cm_id *id, const void *private_data,
4764 		u8 private_data_len, u8 reason)
4765 {
4766 	struct rdma_id_private *id_priv;
4767 	int ret;
4768 
4769 	id_priv = container_of(id, struct rdma_id_private, id);
4770 	if (!id_priv->cm_id.ib)
4771 		return -EINVAL;
4772 
4773 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4774 		if (id->qp_type == IB_QPT_UD) {
4775 			ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0,
4776 						private_data, private_data_len);
4777 		} else {
4778 			trace_cm_send_rej(id_priv);
4779 			ret = ib_send_cm_rej(id_priv->cm_id.ib, reason, NULL, 0,
4780 					     private_data, private_data_len);
4781 		}
4782 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4783 		ret = iw_cm_reject(id_priv->cm_id.iw,
4784 				   private_data, private_data_len);
4785 	} else {
4786 		ret = -ENOSYS;
4787 	}
4788 
4789 	return ret;
4790 }
4791 EXPORT_SYMBOL(rdma_reject);
4792 
4793 int rdma_disconnect(struct rdma_cm_id *id)
4794 {
4795 	struct rdma_id_private *id_priv;
4796 	int ret;
4797 
4798 	id_priv = container_of(id, struct rdma_id_private, id);
4799 	if (!id_priv->cm_id.ib)
4800 		return -EINVAL;
4801 
4802 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4803 		ret = cma_modify_qp_err(id_priv);
4804 		if (ret)
4805 			goto out;
4806 		/* Initiate or respond to a disconnect. */
4807 		trace_cm_disconnect(id_priv);
4808 		if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) {
4809 			if (!ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0))
4810 				trace_cm_sent_drep(id_priv);
4811 		} else {
4812 			trace_cm_sent_dreq(id_priv);
4813 		}
4814 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4815 		ret = iw_cm_disconnect(id_priv->cm_id.iw, 0);
4816 	} else
4817 		ret = -EINVAL;
4818 
4819 out:
4820 	return ret;
4821 }
4822 EXPORT_SYMBOL(rdma_disconnect);
4823 
4824 static void cma_make_mc_event(int status, struct rdma_id_private *id_priv,
4825 			      struct ib_sa_multicast *multicast,
4826 			      struct rdma_cm_event *event,
4827 			      struct cma_multicast *mc)
4828 {
4829 	struct rdma_dev_addr *dev_addr;
4830 	enum ib_gid_type gid_type;
4831 	struct net_device *ndev;
4832 
4833 	if (status)
4834 		pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to join multicast. status %d\n",
4835 				     status);
4836 
4837 	event->status = status;
4838 	event->param.ud.private_data = mc->context;
4839 	if (status) {
4840 		event->event = RDMA_CM_EVENT_MULTICAST_ERROR;
4841 		return;
4842 	}
4843 
4844 	dev_addr = &id_priv->id.route.addr.dev_addr;
4845 	ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
4846 	gid_type =
4847 		id_priv->cma_dev
4848 			->default_gid_type[id_priv->id.port_num -
4849 					   rdma_start_port(
4850 						   id_priv->cma_dev->device)];
4851 
4852 	event->event = RDMA_CM_EVENT_MULTICAST_JOIN;
4853 	if (ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num,
4854 				     &multicast->rec, ndev, gid_type,
4855 				     &event->param.ud.ah_attr)) {
4856 		event->event = RDMA_CM_EVENT_MULTICAST_ERROR;
4857 		goto out;
4858 	}
4859 
4860 	event->param.ud.qp_num = 0xFFFFFF;
4861 	event->param.ud.qkey = id_priv->qkey;
4862 
4863 out:
4864 	dev_put(ndev);
4865 }
4866 
4867 static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast)
4868 {
4869 	struct cma_multicast *mc = multicast->context;
4870 	struct rdma_id_private *id_priv = mc->id_priv;
4871 	struct rdma_cm_event event = {};
4872 	int ret = 0;
4873 
4874 	mutex_lock(&id_priv->handler_mutex);
4875 	if (READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL ||
4876 	    READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING)
4877 		goto out;
4878 
4879 	ret = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey));
4880 	if (!ret) {
4881 		cma_make_mc_event(status, id_priv, multicast, &event, mc);
4882 		ret = cma_cm_event_handler(id_priv, &event);
4883 	}
4884 	rdma_destroy_ah_attr(&event.param.ud.ah_attr);
4885 	WARN_ON(ret);
4886 
4887 out:
4888 	mutex_unlock(&id_priv->handler_mutex);
4889 	return 0;
4890 }
4891 
4892 static void cma_set_mgid(struct rdma_id_private *id_priv,
4893 			 struct sockaddr *addr, union ib_gid *mgid)
4894 {
4895 	unsigned char mc_map[MAX_ADDR_LEN];
4896 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4897 	struct sockaddr_in *sin = (struct sockaddr_in *) addr;
4898 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr;
4899 
4900 	if (cma_any_addr(addr)) {
4901 		memset(mgid, 0, sizeof *mgid);
4902 	} else if ((addr->sa_family == AF_INET6) &&
4903 		   ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) ==
4904 								 0xFF10A01B)) {
4905 		/* IPv6 address is an SA assigned MGID. */
4906 		memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
4907 	} else if (addr->sa_family == AF_IB) {
4908 		memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid);
4909 	} else if (addr->sa_family == AF_INET6) {
4910 		ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map);
4911 		if (id_priv->id.ps == RDMA_PS_UDP)
4912 			mc_map[7] = 0x01;	/* Use RDMA CM signature */
4913 		*mgid = *(union ib_gid *) (mc_map + 4);
4914 	} else {
4915 		ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map);
4916 		if (id_priv->id.ps == RDMA_PS_UDP)
4917 			mc_map[7] = 0x01;	/* Use RDMA CM signature */
4918 		*mgid = *(union ib_gid *) (mc_map + 4);
4919 	}
4920 }
4921 
4922 static int cma_join_ib_multicast(struct rdma_id_private *id_priv,
4923 				 struct cma_multicast *mc)
4924 {
4925 	struct ib_sa_mcmember_rec rec;
4926 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4927 	ib_sa_comp_mask comp_mask;
4928 	int ret;
4929 
4930 	ib_addr_get_mgid(dev_addr, &rec.mgid);
4931 	ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num,
4932 				     &rec.mgid, &rec);
4933 	if (ret)
4934 		return ret;
4935 
4936 	if (!id_priv->qkey) {
4937 		ret = cma_set_default_qkey(id_priv);
4938 		if (ret)
4939 			return ret;
4940 	}
4941 
4942 	cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid);
4943 	rec.qkey = cpu_to_be32(id_priv->qkey);
4944 	rdma_addr_get_sgid(dev_addr, &rec.port_gid);
4945 	rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
4946 	rec.join_state = mc->join_state;
4947 
4948 	comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID |
4949 		    IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE |
4950 		    IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL |
4951 		    IB_SA_MCMEMBER_REC_FLOW_LABEL |
4952 		    IB_SA_MCMEMBER_REC_TRAFFIC_CLASS;
4953 
4954 	if (id_priv->id.ps == RDMA_PS_IPOIB)
4955 		comp_mask |= IB_SA_MCMEMBER_REC_RATE |
4956 			     IB_SA_MCMEMBER_REC_RATE_SELECTOR |
4957 			     IB_SA_MCMEMBER_REC_MTU_SELECTOR |
4958 			     IB_SA_MCMEMBER_REC_MTU |
4959 			     IB_SA_MCMEMBER_REC_HOP_LIMIT;
4960 
4961 	mc->sa_mc = ib_sa_join_multicast(&sa_client, id_priv->id.device,
4962 					 id_priv->id.port_num, &rec, comp_mask,
4963 					 GFP_KERNEL, cma_ib_mc_handler, mc);
4964 	return PTR_ERR_OR_ZERO(mc->sa_mc);
4965 }
4966 
4967 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid,
4968 			      enum ib_gid_type gid_type)
4969 {
4970 	struct sockaddr_in *sin = (struct sockaddr_in *)addr;
4971 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr;
4972 
4973 	if (cma_any_addr(addr)) {
4974 		memset(mgid, 0, sizeof *mgid);
4975 	} else if (addr->sa_family == AF_INET6) {
4976 		memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
4977 	} else {
4978 		mgid->raw[0] =
4979 			(gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff;
4980 		mgid->raw[1] =
4981 			(gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e;
4982 		mgid->raw[2] = 0;
4983 		mgid->raw[3] = 0;
4984 		mgid->raw[4] = 0;
4985 		mgid->raw[5] = 0;
4986 		mgid->raw[6] = 0;
4987 		mgid->raw[7] = 0;
4988 		mgid->raw[8] = 0;
4989 		mgid->raw[9] = 0;
4990 		mgid->raw[10] = 0xff;
4991 		mgid->raw[11] = 0xff;
4992 		*(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr;
4993 	}
4994 }
4995 
4996 static int cma_iboe_join_multicast(struct rdma_id_private *id_priv,
4997 				   struct cma_multicast *mc)
4998 {
4999 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
5000 	int err = 0;
5001 	struct sockaddr *addr = (struct sockaddr *)&mc->addr;
5002 	struct net_device *ndev = NULL;
5003 	struct ib_sa_multicast ib = {};
5004 	enum ib_gid_type gid_type;
5005 	bool send_only;
5006 
5007 	send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN);
5008 
5009 	if (cma_zero_addr(addr))
5010 		return -EINVAL;
5011 
5012 	gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num -
5013 		   rdma_start_port(id_priv->cma_dev->device)];
5014 	cma_iboe_set_mgid(addr, &ib.rec.mgid, gid_type);
5015 
5016 	ib.rec.pkey = cpu_to_be16(0xffff);
5017 	if (dev_addr->bound_dev_if)
5018 		ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
5019 	if (!ndev)
5020 		return -ENODEV;
5021 
5022 	ib.rec.rate = IB_RATE_PORT_CURRENT;
5023 	ib.rec.hop_limit = 1;
5024 	ib.rec.mtu = iboe_get_mtu(ndev->mtu);
5025 
5026 	if (addr->sa_family == AF_INET) {
5027 		if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) {
5028 			ib.rec.hop_limit = IPV6_DEFAULT_HOPLIMIT;
5029 			if (!send_only) {
5030 				err = cma_igmp_send(ndev, &ib.rec.mgid,
5031 						    true);
5032 			}
5033 		}
5034 	} else {
5035 		if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP)
5036 			err = -ENOTSUPP;
5037 	}
5038 	dev_put(ndev);
5039 	if (err || !ib.rec.mtu)
5040 		return err ?: -EINVAL;
5041 
5042 	if (!id_priv->qkey)
5043 		cma_set_default_qkey(id_priv);
5044 
5045 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
5046 		    &ib.rec.port_gid);
5047 	INIT_WORK(&mc->iboe_join.work, cma_iboe_join_work_handler);
5048 	cma_make_mc_event(0, id_priv, &ib, &mc->iboe_join.event, mc);
5049 	queue_work(cma_wq, &mc->iboe_join.work);
5050 	return 0;
5051 }
5052 
5053 int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr,
5054 			u8 join_state, void *context)
5055 {
5056 	struct rdma_id_private *id_priv =
5057 		container_of(id, struct rdma_id_private, id);
5058 	struct cma_multicast *mc;
5059 	int ret;
5060 
5061 	/* Not supported for kernel QPs */
5062 	if (WARN_ON(id->qp))
5063 		return -EINVAL;
5064 
5065 	/* ULP is calling this wrong. */
5066 	if (!id->device || (READ_ONCE(id_priv->state) != RDMA_CM_ADDR_BOUND &&
5067 			    READ_ONCE(id_priv->state) != RDMA_CM_ADDR_RESOLVED))
5068 		return -EINVAL;
5069 
5070 	if (id_priv->id.qp_type != IB_QPT_UD)
5071 		return -EINVAL;
5072 
5073 	mc = kzalloc(sizeof(*mc), GFP_KERNEL);
5074 	if (!mc)
5075 		return -ENOMEM;
5076 
5077 	memcpy(&mc->addr, addr, rdma_addr_size(addr));
5078 	mc->context = context;
5079 	mc->id_priv = id_priv;
5080 	mc->join_state = join_state;
5081 
5082 	if (rdma_protocol_roce(id->device, id->port_num)) {
5083 		ret = cma_iboe_join_multicast(id_priv, mc);
5084 		if (ret)
5085 			goto out_err;
5086 	} else if (rdma_cap_ib_mcast(id->device, id->port_num)) {
5087 		ret = cma_join_ib_multicast(id_priv, mc);
5088 		if (ret)
5089 			goto out_err;
5090 	} else {
5091 		ret = -ENOSYS;
5092 		goto out_err;
5093 	}
5094 
5095 	spin_lock(&id_priv->lock);
5096 	list_add(&mc->list, &id_priv->mc_list);
5097 	spin_unlock(&id_priv->lock);
5098 
5099 	return 0;
5100 out_err:
5101 	kfree(mc);
5102 	return ret;
5103 }
5104 EXPORT_SYMBOL(rdma_join_multicast);
5105 
5106 void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr)
5107 {
5108 	struct rdma_id_private *id_priv;
5109 	struct cma_multicast *mc;
5110 
5111 	id_priv = container_of(id, struct rdma_id_private, id);
5112 	spin_lock_irq(&id_priv->lock);
5113 	list_for_each_entry(mc, &id_priv->mc_list, list) {
5114 		if (memcmp(&mc->addr, addr, rdma_addr_size(addr)) != 0)
5115 			continue;
5116 		list_del(&mc->list);
5117 		spin_unlock_irq(&id_priv->lock);
5118 
5119 		WARN_ON(id_priv->cma_dev->device != id->device);
5120 		destroy_mc(id_priv, mc);
5121 		return;
5122 	}
5123 	spin_unlock_irq(&id_priv->lock);
5124 }
5125 EXPORT_SYMBOL(rdma_leave_multicast);
5126 
5127 static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv)
5128 {
5129 	struct rdma_dev_addr *dev_addr;
5130 	struct cma_work *work;
5131 
5132 	dev_addr = &id_priv->id.route.addr.dev_addr;
5133 
5134 	if ((dev_addr->bound_dev_if == ndev->ifindex) &&
5135 	    (net_eq(dev_net(ndev), dev_addr->net)) &&
5136 	    memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) {
5137 		pr_info("RDMA CM addr change for ndev %s used by id %p\n",
5138 			ndev->name, &id_priv->id);
5139 		work = kzalloc(sizeof *work, GFP_KERNEL);
5140 		if (!work)
5141 			return -ENOMEM;
5142 
5143 		INIT_WORK(&work->work, cma_work_handler);
5144 		work->id = id_priv;
5145 		work->event.event = RDMA_CM_EVENT_ADDR_CHANGE;
5146 		cma_id_get(id_priv);
5147 		queue_work(cma_wq, &work->work);
5148 	}
5149 
5150 	return 0;
5151 }
5152 
5153 static int cma_netdev_callback(struct notifier_block *self, unsigned long event,
5154 			       void *ptr)
5155 {
5156 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
5157 	struct cma_device *cma_dev;
5158 	struct rdma_id_private *id_priv;
5159 	int ret = NOTIFY_DONE;
5160 
5161 	if (event != NETDEV_BONDING_FAILOVER)
5162 		return NOTIFY_DONE;
5163 
5164 	if (!netif_is_bond_master(ndev))
5165 		return NOTIFY_DONE;
5166 
5167 	mutex_lock(&lock);
5168 	list_for_each_entry(cma_dev, &dev_list, list)
5169 		list_for_each_entry(id_priv, &cma_dev->id_list, device_item) {
5170 			ret = cma_netdev_change(ndev, id_priv);
5171 			if (ret)
5172 				goto out;
5173 		}
5174 
5175 out:
5176 	mutex_unlock(&lock);
5177 	return ret;
5178 }
5179 
5180 static void cma_netevent_work_handler(struct work_struct *_work)
5181 {
5182 	struct rdma_id_private *id_priv =
5183 		container_of(_work, struct rdma_id_private, id.net_work);
5184 	struct rdma_cm_event event = {};
5185 
5186 	mutex_lock(&id_priv->handler_mutex);
5187 
5188 	if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
5189 	    READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
5190 		goto out_unlock;
5191 
5192 	event.event = RDMA_CM_EVENT_UNREACHABLE;
5193 	event.status = -ETIMEDOUT;
5194 
5195 	if (cma_cm_event_handler(id_priv, &event)) {
5196 		__acquire(&id_priv->handler_mutex);
5197 		id_priv->cm_id.ib = NULL;
5198 		cma_id_put(id_priv);
5199 		destroy_id_handler_unlock(id_priv);
5200 		return;
5201 	}
5202 
5203 out_unlock:
5204 	mutex_unlock(&id_priv->handler_mutex);
5205 	cma_id_put(id_priv);
5206 }
5207 
5208 static int cma_netevent_callback(struct notifier_block *self,
5209 				 unsigned long event, void *ctx)
5210 {
5211 	struct id_table_entry *ips_node = NULL;
5212 	struct rdma_id_private *current_id;
5213 	struct neighbour *neigh = ctx;
5214 	unsigned long flags;
5215 
5216 	if (event != NETEVENT_NEIGH_UPDATE)
5217 		return NOTIFY_DONE;
5218 
5219 	spin_lock_irqsave(&id_table_lock, flags);
5220 	if (neigh->tbl->family == AF_INET6) {
5221 		struct sockaddr_in6 neigh_sock_6;
5222 
5223 		neigh_sock_6.sin6_family = AF_INET6;
5224 		neigh_sock_6.sin6_addr = *(struct in6_addr *)neigh->primary_key;
5225 		ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex,
5226 					     (struct sockaddr *)&neigh_sock_6);
5227 	} else if (neigh->tbl->family == AF_INET) {
5228 		struct sockaddr_in neigh_sock_4;
5229 
5230 		neigh_sock_4.sin_family = AF_INET;
5231 		neigh_sock_4.sin_addr.s_addr = *(__be32 *)(neigh->primary_key);
5232 		ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex,
5233 					     (struct sockaddr *)&neigh_sock_4);
5234 	} else
5235 		goto out;
5236 
5237 	if (!ips_node)
5238 		goto out;
5239 
5240 	list_for_each_entry(current_id, &ips_node->id_list, id_list_entry) {
5241 		if (!memcmp(current_id->id.route.addr.dev_addr.dst_dev_addr,
5242 			   neigh->ha, ETH_ALEN))
5243 			continue;
5244 		INIT_WORK(&current_id->id.net_work, cma_netevent_work_handler);
5245 		cma_id_get(current_id);
5246 		queue_work(cma_wq, &current_id->id.net_work);
5247 	}
5248 out:
5249 	spin_unlock_irqrestore(&id_table_lock, flags);
5250 	return NOTIFY_DONE;
5251 }
5252 
5253 static struct notifier_block cma_nb = {
5254 	.notifier_call = cma_netdev_callback
5255 };
5256 
5257 static struct notifier_block cma_netevent_cb = {
5258 	.notifier_call = cma_netevent_callback
5259 };
5260 
5261 static void cma_send_device_removal_put(struct rdma_id_private *id_priv)
5262 {
5263 	struct rdma_cm_event event = { .event = RDMA_CM_EVENT_DEVICE_REMOVAL };
5264 	enum rdma_cm_state state;
5265 	unsigned long flags;
5266 
5267 	mutex_lock(&id_priv->handler_mutex);
5268 	/* Record that we want to remove the device */
5269 	spin_lock_irqsave(&id_priv->lock, flags);
5270 	state = id_priv->state;
5271 	if (state == RDMA_CM_DESTROYING || state == RDMA_CM_DEVICE_REMOVAL) {
5272 		spin_unlock_irqrestore(&id_priv->lock, flags);
5273 		mutex_unlock(&id_priv->handler_mutex);
5274 		cma_id_put(id_priv);
5275 		return;
5276 	}
5277 	id_priv->state = RDMA_CM_DEVICE_REMOVAL;
5278 	spin_unlock_irqrestore(&id_priv->lock, flags);
5279 
5280 	if (cma_cm_event_handler(id_priv, &event)) {
5281 		/*
5282 		 * At this point the ULP promises it won't call
5283 		 * rdma_destroy_id() concurrently
5284 		 */
5285 		cma_id_put(id_priv);
5286 		mutex_unlock(&id_priv->handler_mutex);
5287 		trace_cm_id_destroy(id_priv);
5288 		_destroy_id(id_priv, state);
5289 		return;
5290 	}
5291 	mutex_unlock(&id_priv->handler_mutex);
5292 
5293 	/*
5294 	 * If this races with destroy then the thread that first assigns state
5295 	 * to a destroying does the cancel.
5296 	 */
5297 	cma_cancel_operation(id_priv, state);
5298 	cma_id_put(id_priv);
5299 }
5300 
5301 static void cma_process_remove(struct cma_device *cma_dev)
5302 {
5303 	mutex_lock(&lock);
5304 	while (!list_empty(&cma_dev->id_list)) {
5305 		struct rdma_id_private *id_priv = list_first_entry(
5306 			&cma_dev->id_list, struct rdma_id_private, device_item);
5307 
5308 		list_del_init(&id_priv->listen_item);
5309 		list_del_init(&id_priv->device_item);
5310 		cma_id_get(id_priv);
5311 		mutex_unlock(&lock);
5312 
5313 		cma_send_device_removal_put(id_priv);
5314 
5315 		mutex_lock(&lock);
5316 	}
5317 	mutex_unlock(&lock);
5318 
5319 	cma_dev_put(cma_dev);
5320 	wait_for_completion(&cma_dev->comp);
5321 }
5322 
5323 static bool cma_supported(struct ib_device *device)
5324 {
5325 	u32 i;
5326 
5327 	rdma_for_each_port(device, i) {
5328 		if (rdma_cap_ib_cm(device, i) || rdma_cap_iw_cm(device, i))
5329 			return true;
5330 	}
5331 	return false;
5332 }
5333 
5334 static int cma_add_one(struct ib_device *device)
5335 {
5336 	struct rdma_id_private *to_destroy;
5337 	struct cma_device *cma_dev;
5338 	struct rdma_id_private *id_priv;
5339 	unsigned long supported_gids = 0;
5340 	int ret;
5341 	u32 i;
5342 
5343 	if (!cma_supported(device))
5344 		return -EOPNOTSUPP;
5345 
5346 	cma_dev = kmalloc(sizeof(*cma_dev), GFP_KERNEL);
5347 	if (!cma_dev)
5348 		return -ENOMEM;
5349 
5350 	cma_dev->device = device;
5351 	cma_dev->default_gid_type = kcalloc(device->phys_port_cnt,
5352 					    sizeof(*cma_dev->default_gid_type),
5353 					    GFP_KERNEL);
5354 	if (!cma_dev->default_gid_type) {
5355 		ret = -ENOMEM;
5356 		goto free_cma_dev;
5357 	}
5358 
5359 	cma_dev->default_roce_tos = kcalloc(device->phys_port_cnt,
5360 					    sizeof(*cma_dev->default_roce_tos),
5361 					    GFP_KERNEL);
5362 	if (!cma_dev->default_roce_tos) {
5363 		ret = -ENOMEM;
5364 		goto free_gid_type;
5365 	}
5366 
5367 	rdma_for_each_port (device, i) {
5368 		supported_gids = roce_gid_type_mask_support(device, i);
5369 		WARN_ON(!supported_gids);
5370 		if (supported_gids & (1 << CMA_PREFERRED_ROCE_GID_TYPE))
5371 			cma_dev->default_gid_type[i - rdma_start_port(device)] =
5372 				CMA_PREFERRED_ROCE_GID_TYPE;
5373 		else
5374 			cma_dev->default_gid_type[i - rdma_start_port(device)] =
5375 				find_first_bit(&supported_gids, BITS_PER_LONG);
5376 		cma_dev->default_roce_tos[i - rdma_start_port(device)] = 0;
5377 	}
5378 
5379 	init_completion(&cma_dev->comp);
5380 	refcount_set(&cma_dev->refcount, 1);
5381 	INIT_LIST_HEAD(&cma_dev->id_list);
5382 	ib_set_client_data(device, &cma_client, cma_dev);
5383 
5384 	mutex_lock(&lock);
5385 	list_add_tail(&cma_dev->list, &dev_list);
5386 	list_for_each_entry(id_priv, &listen_any_list, listen_any_item) {
5387 		ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy);
5388 		if (ret)
5389 			goto free_listen;
5390 	}
5391 	mutex_unlock(&lock);
5392 
5393 	trace_cm_add_one(device);
5394 	return 0;
5395 
5396 free_listen:
5397 	list_del(&cma_dev->list);
5398 	mutex_unlock(&lock);
5399 
5400 	/* cma_process_remove() will delete to_destroy */
5401 	cma_process_remove(cma_dev);
5402 	kfree(cma_dev->default_roce_tos);
5403 free_gid_type:
5404 	kfree(cma_dev->default_gid_type);
5405 
5406 free_cma_dev:
5407 	kfree(cma_dev);
5408 	return ret;
5409 }
5410 
5411 static void cma_remove_one(struct ib_device *device, void *client_data)
5412 {
5413 	struct cma_device *cma_dev = client_data;
5414 
5415 	trace_cm_remove_one(device);
5416 
5417 	mutex_lock(&lock);
5418 	list_del(&cma_dev->list);
5419 	mutex_unlock(&lock);
5420 
5421 	cma_process_remove(cma_dev);
5422 	kfree(cma_dev->default_roce_tos);
5423 	kfree(cma_dev->default_gid_type);
5424 	kfree(cma_dev);
5425 }
5426 
5427 static int cma_init_net(struct net *net)
5428 {
5429 	struct cma_pernet *pernet = cma_pernet(net);
5430 
5431 	xa_init(&pernet->tcp_ps);
5432 	xa_init(&pernet->udp_ps);
5433 	xa_init(&pernet->ipoib_ps);
5434 	xa_init(&pernet->ib_ps);
5435 
5436 	return 0;
5437 }
5438 
5439 static void cma_exit_net(struct net *net)
5440 {
5441 	struct cma_pernet *pernet = cma_pernet(net);
5442 
5443 	WARN_ON(!xa_empty(&pernet->tcp_ps));
5444 	WARN_ON(!xa_empty(&pernet->udp_ps));
5445 	WARN_ON(!xa_empty(&pernet->ipoib_ps));
5446 	WARN_ON(!xa_empty(&pernet->ib_ps));
5447 }
5448 
5449 static struct pernet_operations cma_pernet_operations = {
5450 	.init = cma_init_net,
5451 	.exit = cma_exit_net,
5452 	.id = &cma_pernet_id,
5453 	.size = sizeof(struct cma_pernet),
5454 };
5455 
5456 static int __init cma_init(void)
5457 {
5458 	int ret;
5459 
5460 	/*
5461 	 * There is a rare lock ordering dependency in cma_netdev_callback()
5462 	 * that only happens when bonding is enabled. Teach lockdep that rtnl
5463 	 * must never be nested under lock so it can find these without having
5464 	 * to test with bonding.
5465 	 */
5466 	if (IS_ENABLED(CONFIG_LOCKDEP)) {
5467 		rtnl_lock();
5468 		mutex_lock(&lock);
5469 		mutex_unlock(&lock);
5470 		rtnl_unlock();
5471 	}
5472 
5473 	cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM);
5474 	if (!cma_wq)
5475 		return -ENOMEM;
5476 
5477 	ret = register_pernet_subsys(&cma_pernet_operations);
5478 	if (ret)
5479 		goto err_wq;
5480 
5481 	ib_sa_register_client(&sa_client);
5482 	register_netdevice_notifier(&cma_nb);
5483 	register_netevent_notifier(&cma_netevent_cb);
5484 
5485 	ret = ib_register_client(&cma_client);
5486 	if (ret)
5487 		goto err;
5488 
5489 	ret = cma_configfs_init();
5490 	if (ret)
5491 		goto err_ib;
5492 
5493 	return 0;
5494 
5495 err_ib:
5496 	ib_unregister_client(&cma_client);
5497 err:
5498 	unregister_netevent_notifier(&cma_netevent_cb);
5499 	unregister_netdevice_notifier(&cma_nb);
5500 	ib_sa_unregister_client(&sa_client);
5501 	unregister_pernet_subsys(&cma_pernet_operations);
5502 err_wq:
5503 	destroy_workqueue(cma_wq);
5504 	return ret;
5505 }
5506 
5507 static void __exit cma_cleanup(void)
5508 {
5509 	cma_configfs_exit();
5510 	ib_unregister_client(&cma_client);
5511 	unregister_netevent_notifier(&cma_netevent_cb);
5512 	unregister_netdevice_notifier(&cma_nb);
5513 	ib_sa_unregister_client(&sa_client);
5514 	unregister_pernet_subsys(&cma_pernet_operations);
5515 	destroy_workqueue(cma_wq);
5516 }
5517 
5518 module_init(cma_init);
5519 module_exit(cma_cleanup);
5520