xref: /linux/drivers/infiniband/core/cma.c (revision a760e80e90f5decb5045fd925bd842697c757e3c)
1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
2 /*
3  * Copyright (c) 2005 Voltaire Inc.  All rights reserved.
4  * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
5  * Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved.
6  * Copyright (c) 2005-2006 Intel Corporation.  All rights reserved.
7  */
8 
9 #include <linux/completion.h>
10 #include <linux/in.h>
11 #include <linux/in6.h>
12 #include <linux/mutex.h>
13 #include <linux/random.h>
14 #include <linux/rbtree.h>
15 #include <linux/igmp.h>
16 #include <linux/xarray.h>
17 #include <linux/inetdevice.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <net/route.h>
21 
22 #include <net/net_namespace.h>
23 #include <net/netns/generic.h>
24 #include <net/netevent.h>
25 #include <net/tcp.h>
26 #include <net/ipv6.h>
27 #include <net/ip_fib.h>
28 #include <net/ip6_route.h>
29 
30 #include <rdma/rdma_cm.h>
31 #include <rdma/rdma_cm_ib.h>
32 #include <rdma/rdma_netlink.h>
33 #include <rdma/ib.h>
34 #include <rdma/ib_cache.h>
35 #include <rdma/ib_cm.h>
36 #include <rdma/ib_sa.h>
37 #include <rdma/iw_cm.h>
38 
39 #include "core_priv.h"
40 #include "cma_priv.h"
41 #include "cma_trace.h"
42 
43 MODULE_AUTHOR("Sean Hefty");
44 MODULE_DESCRIPTION("Generic RDMA CM Agent");
45 MODULE_LICENSE("Dual BSD/GPL");
46 
47 #define CMA_CM_RESPONSE_TIMEOUT 20
48 #define CMA_MAX_CM_RETRIES 15
49 #define CMA_IBOE_PACKET_LIFETIME 16
50 #define CMA_PREFERRED_ROCE_GID_TYPE IB_GID_TYPE_ROCE_UDP_ENCAP
51 
52 static const char * const cma_events[] = {
53 	[RDMA_CM_EVENT_ADDR_RESOLVED]	 = "address resolved",
54 	[RDMA_CM_EVENT_ADDR_ERROR]	 = "address error",
55 	[RDMA_CM_EVENT_ROUTE_RESOLVED]	 = "route resolved ",
56 	[RDMA_CM_EVENT_ROUTE_ERROR]	 = "route error",
57 	[RDMA_CM_EVENT_CONNECT_REQUEST]	 = "connect request",
58 	[RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response",
59 	[RDMA_CM_EVENT_CONNECT_ERROR]	 = "connect error",
60 	[RDMA_CM_EVENT_UNREACHABLE]	 = "unreachable",
61 	[RDMA_CM_EVENT_REJECTED]	 = "rejected",
62 	[RDMA_CM_EVENT_ESTABLISHED]	 = "established",
63 	[RDMA_CM_EVENT_DISCONNECTED]	 = "disconnected",
64 	[RDMA_CM_EVENT_DEVICE_REMOVAL]	 = "device removal",
65 	[RDMA_CM_EVENT_MULTICAST_JOIN]	 = "multicast join",
66 	[RDMA_CM_EVENT_MULTICAST_ERROR]	 = "multicast error",
67 	[RDMA_CM_EVENT_ADDR_CHANGE]	 = "address change",
68 	[RDMA_CM_EVENT_TIMEWAIT_EXIT]	 = "timewait exit",
69 };
70 
71 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid,
72 			      enum ib_gid_type gid_type);
73 
74 static void cma_netevent_work_handler(struct work_struct *_work);
75 
76 const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event)
77 {
78 	size_t index = event;
79 
80 	return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ?
81 			cma_events[index] : "unrecognized event";
82 }
83 EXPORT_SYMBOL(rdma_event_msg);
84 
85 const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id,
86 						int reason)
87 {
88 	if (rdma_ib_or_roce(id->device, id->port_num))
89 		return ibcm_reject_msg(reason);
90 
91 	if (rdma_protocol_iwarp(id->device, id->port_num))
92 		return iwcm_reject_msg(reason);
93 
94 	WARN_ON_ONCE(1);
95 	return "unrecognized transport";
96 }
97 EXPORT_SYMBOL(rdma_reject_msg);
98 
99 /**
100  * rdma_is_consumer_reject - return true if the consumer rejected the connect
101  *                           request.
102  * @id: Communication identifier that received the REJECT event.
103  * @reason: Value returned in the REJECT event status field.
104  */
105 static bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason)
106 {
107 	if (rdma_ib_or_roce(id->device, id->port_num))
108 		return reason == IB_CM_REJ_CONSUMER_DEFINED;
109 
110 	if (rdma_protocol_iwarp(id->device, id->port_num))
111 		return reason == -ECONNREFUSED;
112 
113 	WARN_ON_ONCE(1);
114 	return false;
115 }
116 
117 const void *rdma_consumer_reject_data(struct rdma_cm_id *id,
118 				      struct rdma_cm_event *ev, u8 *data_len)
119 {
120 	const void *p;
121 
122 	if (rdma_is_consumer_reject(id, ev->status)) {
123 		*data_len = ev->param.conn.private_data_len;
124 		p = ev->param.conn.private_data;
125 	} else {
126 		*data_len = 0;
127 		p = NULL;
128 	}
129 	return p;
130 }
131 EXPORT_SYMBOL(rdma_consumer_reject_data);
132 
133 /**
134  * rdma_iw_cm_id() - return the iw_cm_id pointer for this cm_id.
135  * @id: Communication Identifier
136  */
137 struct iw_cm_id *rdma_iw_cm_id(struct rdma_cm_id *id)
138 {
139 	struct rdma_id_private *id_priv;
140 
141 	id_priv = container_of(id, struct rdma_id_private, id);
142 	if (id->device->node_type == RDMA_NODE_RNIC)
143 		return id_priv->cm_id.iw;
144 	return NULL;
145 }
146 EXPORT_SYMBOL(rdma_iw_cm_id);
147 
148 static int cma_add_one(struct ib_device *device);
149 static void cma_remove_one(struct ib_device *device, void *client_data);
150 
151 static struct ib_client cma_client = {
152 	.name   = "cma",
153 	.add    = cma_add_one,
154 	.remove = cma_remove_one
155 };
156 
157 static struct ib_sa_client sa_client;
158 static LIST_HEAD(dev_list);
159 static LIST_HEAD(listen_any_list);
160 static DEFINE_MUTEX(lock);
161 static struct rb_root id_table = RB_ROOT;
162 /* Serialize operations of id_table tree */
163 static DEFINE_SPINLOCK(id_table_lock);
164 static struct workqueue_struct *cma_wq;
165 static unsigned int cma_pernet_id;
166 
167 struct cma_pernet {
168 	struct xarray tcp_ps;
169 	struct xarray udp_ps;
170 	struct xarray ipoib_ps;
171 	struct xarray ib_ps;
172 };
173 
174 static struct cma_pernet *cma_pernet(struct net *net)
175 {
176 	return net_generic(net, cma_pernet_id);
177 }
178 
179 static
180 struct xarray *cma_pernet_xa(struct net *net, enum rdma_ucm_port_space ps)
181 {
182 	struct cma_pernet *pernet = cma_pernet(net);
183 
184 	switch (ps) {
185 	case RDMA_PS_TCP:
186 		return &pernet->tcp_ps;
187 	case RDMA_PS_UDP:
188 		return &pernet->udp_ps;
189 	case RDMA_PS_IPOIB:
190 		return &pernet->ipoib_ps;
191 	case RDMA_PS_IB:
192 		return &pernet->ib_ps;
193 	default:
194 		return NULL;
195 	}
196 }
197 
198 struct id_table_entry {
199 	struct list_head id_list;
200 	struct rb_node rb_node;
201 };
202 
203 struct cma_device {
204 	struct list_head	list;
205 	struct ib_device	*device;
206 	struct completion	comp;
207 	refcount_t refcount;
208 	struct list_head	id_list;
209 	enum ib_gid_type	*default_gid_type;
210 	u8			*default_roce_tos;
211 };
212 
213 struct rdma_bind_list {
214 	enum rdma_ucm_port_space ps;
215 	struct hlist_head	owners;
216 	unsigned short		port;
217 };
218 
219 static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space ps,
220 			struct rdma_bind_list *bind_list, int snum)
221 {
222 	struct xarray *xa = cma_pernet_xa(net, ps);
223 
224 	return xa_insert(xa, snum, bind_list, GFP_KERNEL);
225 }
226 
227 static struct rdma_bind_list *cma_ps_find(struct net *net,
228 					  enum rdma_ucm_port_space ps, int snum)
229 {
230 	struct xarray *xa = cma_pernet_xa(net, ps);
231 
232 	return xa_load(xa, snum);
233 }
234 
235 static void cma_ps_remove(struct net *net, enum rdma_ucm_port_space ps,
236 			  int snum)
237 {
238 	struct xarray *xa = cma_pernet_xa(net, ps);
239 
240 	xa_erase(xa, snum);
241 }
242 
243 enum {
244 	CMA_OPTION_AFONLY,
245 };
246 
247 void cma_dev_get(struct cma_device *cma_dev)
248 {
249 	refcount_inc(&cma_dev->refcount);
250 }
251 
252 void cma_dev_put(struct cma_device *cma_dev)
253 {
254 	if (refcount_dec_and_test(&cma_dev->refcount))
255 		complete(&cma_dev->comp);
256 }
257 
258 struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter	filter,
259 					     void		*cookie)
260 {
261 	struct cma_device *cma_dev;
262 	struct cma_device *found_cma_dev = NULL;
263 
264 	mutex_lock(&lock);
265 
266 	list_for_each_entry(cma_dev, &dev_list, list)
267 		if (filter(cma_dev->device, cookie)) {
268 			found_cma_dev = cma_dev;
269 			break;
270 		}
271 
272 	if (found_cma_dev)
273 		cma_dev_get(found_cma_dev);
274 	mutex_unlock(&lock);
275 	return found_cma_dev;
276 }
277 
278 int cma_get_default_gid_type(struct cma_device *cma_dev,
279 			     u32 port)
280 {
281 	if (!rdma_is_port_valid(cma_dev->device, port))
282 		return -EINVAL;
283 
284 	return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)];
285 }
286 
287 int cma_set_default_gid_type(struct cma_device *cma_dev,
288 			     u32 port,
289 			     enum ib_gid_type default_gid_type)
290 {
291 	unsigned long supported_gids;
292 
293 	if (!rdma_is_port_valid(cma_dev->device, port))
294 		return -EINVAL;
295 
296 	if (default_gid_type == IB_GID_TYPE_IB &&
297 	    rdma_protocol_roce_eth_encap(cma_dev->device, port))
298 		default_gid_type = IB_GID_TYPE_ROCE;
299 
300 	supported_gids = roce_gid_type_mask_support(cma_dev->device, port);
301 
302 	if (!(supported_gids & 1 << default_gid_type))
303 		return -EINVAL;
304 
305 	cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] =
306 		default_gid_type;
307 
308 	return 0;
309 }
310 
311 int cma_get_default_roce_tos(struct cma_device *cma_dev, u32 port)
312 {
313 	if (!rdma_is_port_valid(cma_dev->device, port))
314 		return -EINVAL;
315 
316 	return cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)];
317 }
318 
319 int cma_set_default_roce_tos(struct cma_device *cma_dev, u32 port,
320 			     u8 default_roce_tos)
321 {
322 	if (!rdma_is_port_valid(cma_dev->device, port))
323 		return -EINVAL;
324 
325 	cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)] =
326 		 default_roce_tos;
327 
328 	return 0;
329 }
330 struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev)
331 {
332 	return cma_dev->device;
333 }
334 
335 /*
336  * Device removal can occur at anytime, so we need extra handling to
337  * serialize notifying the user of device removal with other callbacks.
338  * We do this by disabling removal notification while a callback is in process,
339  * and reporting it after the callback completes.
340  */
341 
342 struct cma_multicast {
343 	struct rdma_id_private *id_priv;
344 	union {
345 		struct ib_sa_multicast *sa_mc;
346 		struct {
347 			struct work_struct work;
348 			struct rdma_cm_event event;
349 		} iboe_join;
350 	};
351 	struct list_head	list;
352 	void			*context;
353 	struct sockaddr_storage	addr;
354 	u8			join_state;
355 };
356 
357 struct cma_work {
358 	struct work_struct	work;
359 	struct rdma_id_private	*id;
360 	enum rdma_cm_state	old_state;
361 	enum rdma_cm_state	new_state;
362 	struct rdma_cm_event	event;
363 };
364 
365 union cma_ip_addr {
366 	struct in6_addr ip6;
367 	struct {
368 		__be32 pad[3];
369 		__be32 addr;
370 	} ip4;
371 };
372 
373 struct cma_hdr {
374 	u8 cma_version;
375 	u8 ip_version;	/* IP version: 7:4 */
376 	__be16 port;
377 	union cma_ip_addr src_addr;
378 	union cma_ip_addr dst_addr;
379 };
380 
381 #define CMA_VERSION 0x00
382 
383 struct cma_req_info {
384 	struct sockaddr_storage listen_addr_storage;
385 	struct sockaddr_storage src_addr_storage;
386 	struct ib_device *device;
387 	union ib_gid local_gid;
388 	__be64 service_id;
389 	int port;
390 	bool has_gid;
391 	u16 pkey;
392 };
393 
394 static int cma_comp_exch(struct rdma_id_private *id_priv,
395 			 enum rdma_cm_state comp, enum rdma_cm_state exch)
396 {
397 	unsigned long flags;
398 	int ret;
399 
400 	/*
401 	 * The FSM uses a funny double locking where state is protected by both
402 	 * the handler_mutex and the spinlock. State is not allowed to change
403 	 * to/from a handler_mutex protected value without also holding
404 	 * handler_mutex.
405 	 */
406 	if (comp == RDMA_CM_CONNECT || exch == RDMA_CM_CONNECT)
407 		lockdep_assert_held(&id_priv->handler_mutex);
408 
409 	spin_lock_irqsave(&id_priv->lock, flags);
410 	if ((ret = (id_priv->state == comp)))
411 		id_priv->state = exch;
412 	spin_unlock_irqrestore(&id_priv->lock, flags);
413 	return ret;
414 }
415 
416 static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr)
417 {
418 	return hdr->ip_version >> 4;
419 }
420 
421 static void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver)
422 {
423 	hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF);
424 }
425 
426 static struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv)
427 {
428 	return (struct sockaddr *)&id_priv->id.route.addr.src_addr;
429 }
430 
431 static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv)
432 {
433 	return (struct sockaddr *)&id_priv->id.route.addr.dst_addr;
434 }
435 
436 static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join)
437 {
438 	struct in_device *in_dev = NULL;
439 
440 	if (ndev) {
441 		rtnl_lock();
442 		in_dev = __in_dev_get_rtnl(ndev);
443 		if (in_dev) {
444 			if (join)
445 				ip_mc_inc_group(in_dev,
446 						*(__be32 *)(mgid->raw + 12));
447 			else
448 				ip_mc_dec_group(in_dev,
449 						*(__be32 *)(mgid->raw + 12));
450 		}
451 		rtnl_unlock();
452 	}
453 	return (in_dev) ? 0 : -ENODEV;
454 }
455 
456 static int compare_netdev_and_ip(int ifindex_a, struct sockaddr *sa,
457 				 struct id_table_entry *entry_b)
458 {
459 	struct rdma_id_private *id_priv = list_first_entry(
460 		&entry_b->id_list, struct rdma_id_private, id_list_entry);
461 	int ifindex_b = id_priv->id.route.addr.dev_addr.bound_dev_if;
462 	struct sockaddr *sb = cma_dst_addr(id_priv);
463 
464 	if (ifindex_a != ifindex_b)
465 		return (ifindex_a > ifindex_b) ? 1 : -1;
466 
467 	if (sa->sa_family != sb->sa_family)
468 		return sa->sa_family - sb->sa_family;
469 
470 	if (sa->sa_family == AF_INET &&
471 	    __builtin_object_size(sa, 0) >= sizeof(struct sockaddr_in)) {
472 		return memcmp(&((struct sockaddr_in *)sa)->sin_addr,
473 			      &((struct sockaddr_in *)sb)->sin_addr,
474 			      sizeof(((struct sockaddr_in *)sa)->sin_addr));
475 	}
476 
477 	if (sa->sa_family == AF_INET6 &&
478 	    __builtin_object_size(sa, 0) >= sizeof(struct sockaddr_in6)) {
479 		return ipv6_addr_cmp(&((struct sockaddr_in6 *)sa)->sin6_addr,
480 				     &((struct sockaddr_in6 *)sb)->sin6_addr);
481 	}
482 
483 	return -1;
484 }
485 
486 static int cma_add_id_to_tree(struct rdma_id_private *node_id_priv)
487 {
488 	struct rb_node **new, *parent = NULL;
489 	struct id_table_entry *this, *node;
490 	unsigned long flags;
491 	int result;
492 
493 	node = kzalloc(sizeof(*node), GFP_KERNEL);
494 	if (!node)
495 		return -ENOMEM;
496 
497 	spin_lock_irqsave(&id_table_lock, flags);
498 	new = &id_table.rb_node;
499 	while (*new) {
500 		this = container_of(*new, struct id_table_entry, rb_node);
501 		result = compare_netdev_and_ip(
502 			node_id_priv->id.route.addr.dev_addr.bound_dev_if,
503 			cma_dst_addr(node_id_priv), this);
504 
505 		parent = *new;
506 		if (result < 0)
507 			new = &((*new)->rb_left);
508 		else if (result > 0)
509 			new = &((*new)->rb_right);
510 		else {
511 			list_add_tail(&node_id_priv->id_list_entry,
512 				      &this->id_list);
513 			kfree(node);
514 			goto unlock;
515 		}
516 	}
517 
518 	INIT_LIST_HEAD(&node->id_list);
519 	list_add_tail(&node_id_priv->id_list_entry, &node->id_list);
520 
521 	rb_link_node(&node->rb_node, parent, new);
522 	rb_insert_color(&node->rb_node, &id_table);
523 
524 unlock:
525 	spin_unlock_irqrestore(&id_table_lock, flags);
526 	return 0;
527 }
528 
529 static struct id_table_entry *
530 node_from_ndev_ip(struct rb_root *root, int ifindex, struct sockaddr *sa)
531 {
532 	struct rb_node *node = root->rb_node;
533 	struct id_table_entry *data;
534 	int result;
535 
536 	while (node) {
537 		data = container_of(node, struct id_table_entry, rb_node);
538 		result = compare_netdev_and_ip(ifindex, sa, data);
539 		if (result < 0)
540 			node = node->rb_left;
541 		else if (result > 0)
542 			node = node->rb_right;
543 		else
544 			return data;
545 	}
546 
547 	return NULL;
548 }
549 
550 static void cma_remove_id_from_tree(struct rdma_id_private *id_priv)
551 {
552 	struct id_table_entry *data;
553 	unsigned long flags;
554 
555 	spin_lock_irqsave(&id_table_lock, flags);
556 	if (list_empty(&id_priv->id_list_entry))
557 		goto out;
558 
559 	data = node_from_ndev_ip(&id_table,
560 				 id_priv->id.route.addr.dev_addr.bound_dev_if,
561 				 cma_dst_addr(id_priv));
562 	if (!data)
563 		goto out;
564 
565 	list_del_init(&id_priv->id_list_entry);
566 	if (list_empty(&data->id_list)) {
567 		rb_erase(&data->rb_node, &id_table);
568 		kfree(data);
569 	}
570 out:
571 	spin_unlock_irqrestore(&id_table_lock, flags);
572 }
573 
574 static void _cma_attach_to_dev(struct rdma_id_private *id_priv,
575 			       struct cma_device *cma_dev)
576 {
577 	cma_dev_get(cma_dev);
578 	id_priv->cma_dev = cma_dev;
579 	id_priv->id.device = cma_dev->device;
580 	id_priv->id.route.addr.dev_addr.transport =
581 		rdma_node_get_transport(cma_dev->device->node_type);
582 	list_add_tail(&id_priv->device_item, &cma_dev->id_list);
583 
584 	trace_cm_id_attach(id_priv, cma_dev->device);
585 }
586 
587 static void cma_attach_to_dev(struct rdma_id_private *id_priv,
588 			      struct cma_device *cma_dev)
589 {
590 	_cma_attach_to_dev(id_priv, cma_dev);
591 	id_priv->gid_type =
592 		cma_dev->default_gid_type[id_priv->id.port_num -
593 					  rdma_start_port(cma_dev->device)];
594 }
595 
596 static void cma_release_dev(struct rdma_id_private *id_priv)
597 {
598 	mutex_lock(&lock);
599 	list_del_init(&id_priv->device_item);
600 	cma_dev_put(id_priv->cma_dev);
601 	id_priv->cma_dev = NULL;
602 	id_priv->id.device = NULL;
603 	if (id_priv->id.route.addr.dev_addr.sgid_attr) {
604 		rdma_put_gid_attr(id_priv->id.route.addr.dev_addr.sgid_attr);
605 		id_priv->id.route.addr.dev_addr.sgid_attr = NULL;
606 	}
607 	mutex_unlock(&lock);
608 }
609 
610 static inline unsigned short cma_family(struct rdma_id_private *id_priv)
611 {
612 	return id_priv->id.route.addr.src_addr.ss_family;
613 }
614 
615 static int cma_set_default_qkey(struct rdma_id_private *id_priv)
616 {
617 	struct ib_sa_mcmember_rec rec;
618 	int ret = 0;
619 
620 	switch (id_priv->id.ps) {
621 	case RDMA_PS_UDP:
622 	case RDMA_PS_IB:
623 		id_priv->qkey = RDMA_UDP_QKEY;
624 		break;
625 	case RDMA_PS_IPOIB:
626 		ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid);
627 		ret = ib_sa_get_mcmember_rec(id_priv->id.device,
628 					     id_priv->id.port_num, &rec.mgid,
629 					     &rec);
630 		if (!ret)
631 			id_priv->qkey = be32_to_cpu(rec.qkey);
632 		break;
633 	default:
634 		break;
635 	}
636 	return ret;
637 }
638 
639 static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey)
640 {
641 	if (!qkey ||
642 	    (id_priv->qkey && (id_priv->qkey != qkey)))
643 		return -EINVAL;
644 
645 	id_priv->qkey = qkey;
646 	return 0;
647 }
648 
649 static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr)
650 {
651 	dev_addr->dev_type = ARPHRD_INFINIBAND;
652 	rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr);
653 	ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey));
654 }
655 
656 static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr)
657 {
658 	int ret;
659 
660 	if (addr->sa_family != AF_IB) {
661 		ret = rdma_translate_ip(addr, dev_addr);
662 	} else {
663 		cma_translate_ib((struct sockaddr_ib *) addr, dev_addr);
664 		ret = 0;
665 	}
666 
667 	return ret;
668 }
669 
670 static const struct ib_gid_attr *
671 cma_validate_port(struct ib_device *device, u32 port,
672 		  enum ib_gid_type gid_type,
673 		  union ib_gid *gid,
674 		  struct rdma_id_private *id_priv)
675 {
676 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
677 	const struct ib_gid_attr *sgid_attr = ERR_PTR(-ENODEV);
678 	int bound_if_index = dev_addr->bound_dev_if;
679 	int dev_type = dev_addr->dev_type;
680 	struct net_device *ndev = NULL;
681 	struct net_device *pdev = NULL;
682 
683 	if (!rdma_dev_access_netns(device, id_priv->id.route.addr.dev_addr.net))
684 		goto out;
685 
686 	if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port))
687 		goto out;
688 
689 	if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port))
690 		goto out;
691 
692 	/*
693 	 * For drivers that do not associate more than one net device with
694 	 * their gid tables, such as iWARP drivers, it is sufficient to
695 	 * return the first table entry.
696 	 *
697 	 * Other driver classes might be included in the future.
698 	 */
699 	if (rdma_protocol_iwarp(device, port)) {
700 		sgid_attr = rdma_get_gid_attr(device, port, 0);
701 		if (IS_ERR(sgid_attr))
702 			goto out;
703 
704 		rcu_read_lock();
705 		ndev = rcu_dereference(sgid_attr->ndev);
706 		if (ndev->ifindex != bound_if_index) {
707 			pdev = dev_get_by_index_rcu(dev_addr->net, bound_if_index);
708 			if (pdev) {
709 				if (is_vlan_dev(pdev)) {
710 					pdev = vlan_dev_real_dev(pdev);
711 					if (ndev->ifindex == pdev->ifindex)
712 						bound_if_index = pdev->ifindex;
713 				}
714 				if (is_vlan_dev(ndev)) {
715 					pdev = vlan_dev_real_dev(ndev);
716 					if (bound_if_index == pdev->ifindex)
717 						bound_if_index = ndev->ifindex;
718 				}
719 			}
720 		}
721 		if (!net_eq(dev_net(ndev), dev_addr->net) ||
722 		    ndev->ifindex != bound_if_index) {
723 			rdma_put_gid_attr(sgid_attr);
724 			sgid_attr = ERR_PTR(-ENODEV);
725 		}
726 		rcu_read_unlock();
727 		goto out;
728 	}
729 
730 	/*
731 	 * For a RXE device, it should work with TUN device and normal ethernet
732 	 * devices. Use driver_id to check if a device is a RXE device or not.
733 	 * ARPHDR_NONE means a TUN device.
734 	 */
735 	if (device->ops.driver_id == RDMA_DRIVER_RXE) {
736 		if ((dev_type == ARPHRD_NONE || dev_type == ARPHRD_ETHER)
737 			&& rdma_protocol_roce(device, port)) {
738 			ndev = dev_get_by_index(dev_addr->net, bound_if_index);
739 			if (!ndev)
740 				goto out;
741 		}
742 	} else {
743 		if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) {
744 			ndev = dev_get_by_index(dev_addr->net, bound_if_index);
745 			if (!ndev)
746 				goto out;
747 		} else {
748 			gid_type = IB_GID_TYPE_IB;
749 		}
750 	}
751 
752 	sgid_attr = rdma_find_gid_by_port(device, gid, gid_type, port, ndev);
753 	dev_put(ndev);
754 out:
755 	return sgid_attr;
756 }
757 
758 static void cma_bind_sgid_attr(struct rdma_id_private *id_priv,
759 			       const struct ib_gid_attr *sgid_attr)
760 {
761 	WARN_ON(id_priv->id.route.addr.dev_addr.sgid_attr);
762 	id_priv->id.route.addr.dev_addr.sgid_attr = sgid_attr;
763 }
764 
765 /**
766  * cma_acquire_dev_by_src_ip - Acquire cma device, port, gid attribute
767  * based on source ip address.
768  * @id_priv:	cm_id which should be bound to cma device
769  *
770  * cma_acquire_dev_by_src_ip() binds cm id to cma device, port and GID attribute
771  * based on source IP address. It returns 0 on success or error code otherwise.
772  * It is applicable to active and passive side cm_id.
773  */
774 static int cma_acquire_dev_by_src_ip(struct rdma_id_private *id_priv)
775 {
776 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
777 	const struct ib_gid_attr *sgid_attr;
778 	union ib_gid gid, iboe_gid, *gidp;
779 	struct cma_device *cma_dev;
780 	enum ib_gid_type gid_type;
781 	int ret = -ENODEV;
782 	u32 port;
783 
784 	if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
785 	    id_priv->id.ps == RDMA_PS_IPOIB)
786 		return -EINVAL;
787 
788 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
789 		    &iboe_gid);
790 
791 	memcpy(&gid, dev_addr->src_dev_addr +
792 	       rdma_addr_gid_offset(dev_addr), sizeof(gid));
793 
794 	mutex_lock(&lock);
795 	list_for_each_entry(cma_dev, &dev_list, list) {
796 		if (id_priv->restricted_node_type != RDMA_NODE_UNSPECIFIED &&
797 		    id_priv->restricted_node_type != cma_dev->device->node_type)
798 			continue;
799 		rdma_for_each_port (cma_dev->device, port) {
800 			gidp = rdma_protocol_roce(cma_dev->device, port) ?
801 			       &iboe_gid : &gid;
802 			gid_type = cma_dev->default_gid_type[port - 1];
803 			sgid_attr = cma_validate_port(cma_dev->device, port,
804 						      gid_type, gidp, id_priv);
805 			if (!IS_ERR(sgid_attr)) {
806 				id_priv->id.port_num = port;
807 				cma_bind_sgid_attr(id_priv, sgid_attr);
808 				cma_attach_to_dev(id_priv, cma_dev);
809 				ret = 0;
810 				goto out;
811 			}
812 		}
813 	}
814 out:
815 	mutex_unlock(&lock);
816 	return ret;
817 }
818 
819 /**
820  * cma_ib_acquire_dev - Acquire cma device, port and SGID attribute
821  * @id_priv:		cm id to bind to cma device
822  * @listen_id_priv:	listener cm id to match against
823  * @req:		Pointer to req structure containaining incoming
824  *			request information
825  * cma_ib_acquire_dev() acquires cma device, port and SGID attribute when
826  * rdma device matches for listen_id and incoming request. It also verifies
827  * that a GID table entry is present for the source address.
828  * Returns 0 on success, or returns error code otherwise.
829  */
830 static int cma_ib_acquire_dev(struct rdma_id_private *id_priv,
831 			      const struct rdma_id_private *listen_id_priv,
832 			      struct cma_req_info *req)
833 {
834 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
835 	const struct ib_gid_attr *sgid_attr;
836 	enum ib_gid_type gid_type;
837 	union ib_gid gid;
838 
839 	if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
840 	    id_priv->id.ps == RDMA_PS_IPOIB)
841 		return -EINVAL;
842 
843 	if (rdma_protocol_roce(req->device, req->port))
844 		rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
845 			    &gid);
846 	else
847 		memcpy(&gid, dev_addr->src_dev_addr +
848 		       rdma_addr_gid_offset(dev_addr), sizeof(gid));
849 
850 	gid_type = listen_id_priv->cma_dev->default_gid_type[req->port - 1];
851 	sgid_attr = cma_validate_port(req->device, req->port,
852 				      gid_type, &gid, id_priv);
853 	if (IS_ERR(sgid_attr))
854 		return PTR_ERR(sgid_attr);
855 
856 	id_priv->id.port_num = req->port;
857 	cma_bind_sgid_attr(id_priv, sgid_attr);
858 	/* Need to acquire lock to protect against reader
859 	 * of cma_dev->id_list such as cma_netdev_callback() and
860 	 * cma_process_remove().
861 	 */
862 	mutex_lock(&lock);
863 	cma_attach_to_dev(id_priv, listen_id_priv->cma_dev);
864 	mutex_unlock(&lock);
865 	rdma_restrack_add(&id_priv->res);
866 	return 0;
867 }
868 
869 static int cma_iw_acquire_dev(struct rdma_id_private *id_priv,
870 			      const struct rdma_id_private *listen_id_priv)
871 {
872 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
873 	const struct ib_gid_attr *sgid_attr;
874 	struct cma_device *cma_dev;
875 	enum ib_gid_type gid_type;
876 	int ret = -ENODEV;
877 	union ib_gid gid;
878 	u32 port;
879 
880 	if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
881 	    id_priv->id.ps == RDMA_PS_IPOIB)
882 		return -EINVAL;
883 
884 	memcpy(&gid, dev_addr->src_dev_addr +
885 	       rdma_addr_gid_offset(dev_addr), sizeof(gid));
886 
887 	mutex_lock(&lock);
888 
889 	cma_dev = listen_id_priv->cma_dev;
890 	port = listen_id_priv->id.port_num;
891 	gid_type = listen_id_priv->gid_type;
892 	sgid_attr = cma_validate_port(cma_dev->device, port,
893 				      gid_type, &gid, id_priv);
894 	if (!IS_ERR(sgid_attr)) {
895 		id_priv->id.port_num = port;
896 		cma_bind_sgid_attr(id_priv, sgid_attr);
897 		ret = 0;
898 		goto out;
899 	}
900 
901 	list_for_each_entry(cma_dev, &dev_list, list) {
902 		rdma_for_each_port (cma_dev->device, port) {
903 			if (listen_id_priv->cma_dev == cma_dev &&
904 			    listen_id_priv->id.port_num == port)
905 				continue;
906 
907 			gid_type = cma_dev->default_gid_type[port - 1];
908 			sgid_attr = cma_validate_port(cma_dev->device, port,
909 						      gid_type, &gid, id_priv);
910 			if (!IS_ERR(sgid_attr)) {
911 				id_priv->id.port_num = port;
912 				cma_bind_sgid_attr(id_priv, sgid_attr);
913 				ret = 0;
914 				goto out;
915 			}
916 		}
917 	}
918 
919 out:
920 	if (!ret) {
921 		cma_attach_to_dev(id_priv, cma_dev);
922 		rdma_restrack_add(&id_priv->res);
923 	}
924 
925 	mutex_unlock(&lock);
926 	return ret;
927 }
928 
929 /*
930  * Select the source IB device and address to reach the destination IB address.
931  */
932 static int cma_resolve_ib_dev(struct rdma_id_private *id_priv)
933 {
934 	struct cma_device *cma_dev, *cur_dev;
935 	struct sockaddr_ib *addr;
936 	union ib_gid gid, sgid, *dgid;
937 	unsigned int p;
938 	u16 pkey, index;
939 	enum ib_port_state port_state;
940 	int ret;
941 	int i;
942 
943 	cma_dev = NULL;
944 	addr = (struct sockaddr_ib *) cma_dst_addr(id_priv);
945 	dgid = (union ib_gid *) &addr->sib_addr;
946 	pkey = ntohs(addr->sib_pkey);
947 
948 	mutex_lock(&lock);
949 	list_for_each_entry(cur_dev, &dev_list, list) {
950 		rdma_for_each_port (cur_dev->device, p) {
951 			if (!rdma_cap_af_ib(cur_dev->device, p))
952 				continue;
953 
954 			if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index))
955 				continue;
956 
957 			if (ib_get_cached_port_state(cur_dev->device, p, &port_state))
958 				continue;
959 
960 			for (i = 0; i < cur_dev->device->port_data[p].immutable.gid_tbl_len;
961 			     ++i) {
962 				ret = rdma_query_gid(cur_dev->device, p, i,
963 						     &gid);
964 				if (ret)
965 					continue;
966 
967 				if (!memcmp(&gid, dgid, sizeof(gid))) {
968 					cma_dev = cur_dev;
969 					sgid = gid;
970 					id_priv->id.port_num = p;
971 					goto found;
972 				}
973 
974 				if (!cma_dev && (gid.global.subnet_prefix ==
975 				    dgid->global.subnet_prefix) &&
976 				    port_state == IB_PORT_ACTIVE) {
977 					cma_dev = cur_dev;
978 					sgid = gid;
979 					id_priv->id.port_num = p;
980 					goto found;
981 				}
982 			}
983 		}
984 	}
985 	mutex_unlock(&lock);
986 	return -ENODEV;
987 
988 found:
989 	cma_attach_to_dev(id_priv, cma_dev);
990 	rdma_restrack_add(&id_priv->res);
991 	mutex_unlock(&lock);
992 	addr = (struct sockaddr_ib *)cma_src_addr(id_priv);
993 	memcpy(&addr->sib_addr, &sgid, sizeof(sgid));
994 	cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr);
995 	return 0;
996 }
997 
998 static void cma_id_get(struct rdma_id_private *id_priv)
999 {
1000 	refcount_inc(&id_priv->refcount);
1001 }
1002 
1003 static void cma_id_put(struct rdma_id_private *id_priv)
1004 {
1005 	if (refcount_dec_and_test(&id_priv->refcount))
1006 		complete(&id_priv->comp);
1007 }
1008 
1009 static struct rdma_id_private *
1010 __rdma_create_id(struct net *net, rdma_cm_event_handler event_handler,
1011 		 void *context, enum rdma_ucm_port_space ps,
1012 		 enum ib_qp_type qp_type, const struct rdma_id_private *parent)
1013 {
1014 	struct rdma_id_private *id_priv;
1015 
1016 	id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL);
1017 	if (!id_priv)
1018 		return ERR_PTR(-ENOMEM);
1019 
1020 	id_priv->state = RDMA_CM_IDLE;
1021 	id_priv->restricted_node_type = RDMA_NODE_UNSPECIFIED;
1022 	id_priv->id.context = context;
1023 	id_priv->id.event_handler = event_handler;
1024 	id_priv->id.ps = ps;
1025 	id_priv->id.qp_type = qp_type;
1026 	id_priv->tos_set = false;
1027 	id_priv->timeout_set = false;
1028 	id_priv->min_rnr_timer_set = false;
1029 	id_priv->gid_type = IB_GID_TYPE_IB;
1030 	spin_lock_init(&id_priv->lock);
1031 	mutex_init(&id_priv->qp_mutex);
1032 	init_completion(&id_priv->comp);
1033 	refcount_set(&id_priv->refcount, 1);
1034 	mutex_init(&id_priv->handler_mutex);
1035 	INIT_LIST_HEAD(&id_priv->device_item);
1036 	INIT_LIST_HEAD(&id_priv->id_list_entry);
1037 	INIT_LIST_HEAD(&id_priv->listen_list);
1038 	INIT_LIST_HEAD(&id_priv->mc_list);
1039 	get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num);
1040 	id_priv->id.route.addr.dev_addr.net = get_net(net);
1041 	id_priv->seq_num &= 0x00ffffff;
1042 	INIT_WORK(&id_priv->id.net_work, cma_netevent_work_handler);
1043 
1044 	rdma_restrack_new(&id_priv->res, RDMA_RESTRACK_CM_ID);
1045 	if (parent)
1046 		rdma_restrack_parent_name(&id_priv->res, &parent->res);
1047 
1048 	return id_priv;
1049 }
1050 
1051 struct rdma_cm_id *
1052 __rdma_create_kernel_id(struct net *net, rdma_cm_event_handler event_handler,
1053 			void *context, enum rdma_ucm_port_space ps,
1054 			enum ib_qp_type qp_type, const char *caller)
1055 {
1056 	struct rdma_id_private *ret;
1057 
1058 	ret = __rdma_create_id(net, event_handler, context, ps, qp_type, NULL);
1059 	if (IS_ERR(ret))
1060 		return ERR_CAST(ret);
1061 
1062 	rdma_restrack_set_name(&ret->res, caller);
1063 	return &ret->id;
1064 }
1065 EXPORT_SYMBOL(__rdma_create_kernel_id);
1066 
1067 struct rdma_cm_id *rdma_create_user_id(rdma_cm_event_handler event_handler,
1068 				       void *context,
1069 				       enum rdma_ucm_port_space ps,
1070 				       enum ib_qp_type qp_type)
1071 {
1072 	struct rdma_id_private *ret;
1073 
1074 	ret = __rdma_create_id(current->nsproxy->net_ns, event_handler, context,
1075 			       ps, qp_type, NULL);
1076 	if (IS_ERR(ret))
1077 		return ERR_CAST(ret);
1078 
1079 	rdma_restrack_set_name(&ret->res, NULL);
1080 	return &ret->id;
1081 }
1082 EXPORT_SYMBOL(rdma_create_user_id);
1083 
1084 static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
1085 {
1086 	struct ib_qp_attr qp_attr;
1087 	int qp_attr_mask, ret;
1088 
1089 	qp_attr.qp_state = IB_QPS_INIT;
1090 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1091 	if (ret)
1092 		return ret;
1093 
1094 	ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask);
1095 	if (ret)
1096 		return ret;
1097 
1098 	qp_attr.qp_state = IB_QPS_RTR;
1099 	ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE);
1100 	if (ret)
1101 		return ret;
1102 
1103 	qp_attr.qp_state = IB_QPS_RTS;
1104 	qp_attr.sq_psn = 0;
1105 	ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN);
1106 
1107 	return ret;
1108 }
1109 
1110 static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
1111 {
1112 	struct ib_qp_attr qp_attr;
1113 	int qp_attr_mask, ret;
1114 
1115 	qp_attr.qp_state = IB_QPS_INIT;
1116 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1117 	if (ret)
1118 		return ret;
1119 
1120 	return ib_modify_qp(qp, &qp_attr, qp_attr_mask);
1121 }
1122 
1123 int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd,
1124 		   struct ib_qp_init_attr *qp_init_attr)
1125 {
1126 	struct rdma_id_private *id_priv;
1127 	struct ib_qp *qp;
1128 	int ret;
1129 
1130 	id_priv = container_of(id, struct rdma_id_private, id);
1131 	if (id->device != pd->device) {
1132 		ret = -EINVAL;
1133 		goto out_err;
1134 	}
1135 
1136 	qp_init_attr->port_num = id->port_num;
1137 	qp = ib_create_qp(pd, qp_init_attr);
1138 	if (IS_ERR(qp)) {
1139 		ret = PTR_ERR(qp);
1140 		goto out_err;
1141 	}
1142 
1143 	if (id->qp_type == IB_QPT_UD)
1144 		ret = cma_init_ud_qp(id_priv, qp);
1145 	else
1146 		ret = cma_init_conn_qp(id_priv, qp);
1147 	if (ret)
1148 		goto out_destroy;
1149 
1150 	id->qp = qp;
1151 	id_priv->qp_num = qp->qp_num;
1152 	id_priv->srq = (qp->srq != NULL);
1153 	trace_cm_qp_create(id_priv, pd, qp_init_attr, 0);
1154 	return 0;
1155 out_destroy:
1156 	ib_destroy_qp(qp);
1157 out_err:
1158 	trace_cm_qp_create(id_priv, pd, qp_init_attr, ret);
1159 	return ret;
1160 }
1161 EXPORT_SYMBOL(rdma_create_qp);
1162 
1163 void rdma_destroy_qp(struct rdma_cm_id *id)
1164 {
1165 	struct rdma_id_private *id_priv;
1166 
1167 	id_priv = container_of(id, struct rdma_id_private, id);
1168 	trace_cm_qp_destroy(id_priv);
1169 	mutex_lock(&id_priv->qp_mutex);
1170 	ib_destroy_qp(id_priv->id.qp);
1171 	id_priv->id.qp = NULL;
1172 	mutex_unlock(&id_priv->qp_mutex);
1173 }
1174 EXPORT_SYMBOL(rdma_destroy_qp);
1175 
1176 static int cma_modify_qp_rtr(struct rdma_id_private *id_priv,
1177 			     struct rdma_conn_param *conn_param)
1178 {
1179 	struct ib_qp_attr qp_attr;
1180 	int qp_attr_mask, ret;
1181 
1182 	mutex_lock(&id_priv->qp_mutex);
1183 	if (!id_priv->id.qp) {
1184 		ret = 0;
1185 		goto out;
1186 	}
1187 
1188 	/* Need to update QP attributes from default values. */
1189 	qp_attr.qp_state = IB_QPS_INIT;
1190 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1191 	if (ret)
1192 		goto out;
1193 
1194 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1195 	if (ret)
1196 		goto out;
1197 
1198 	qp_attr.qp_state = IB_QPS_RTR;
1199 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1200 	if (ret)
1201 		goto out;
1202 
1203 	BUG_ON(id_priv->cma_dev->device != id_priv->id.device);
1204 
1205 	if (conn_param)
1206 		qp_attr.max_dest_rd_atomic = conn_param->responder_resources;
1207 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1208 out:
1209 	mutex_unlock(&id_priv->qp_mutex);
1210 	return ret;
1211 }
1212 
1213 static int cma_modify_qp_rts(struct rdma_id_private *id_priv,
1214 			     struct rdma_conn_param *conn_param)
1215 {
1216 	struct ib_qp_attr qp_attr;
1217 	int qp_attr_mask, ret;
1218 
1219 	mutex_lock(&id_priv->qp_mutex);
1220 	if (!id_priv->id.qp) {
1221 		ret = 0;
1222 		goto out;
1223 	}
1224 
1225 	qp_attr.qp_state = IB_QPS_RTS;
1226 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1227 	if (ret)
1228 		goto out;
1229 
1230 	if (conn_param)
1231 		qp_attr.max_rd_atomic = conn_param->initiator_depth;
1232 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1233 out:
1234 	mutex_unlock(&id_priv->qp_mutex);
1235 	return ret;
1236 }
1237 
1238 static int cma_modify_qp_err(struct rdma_id_private *id_priv)
1239 {
1240 	struct ib_qp_attr qp_attr;
1241 	int ret;
1242 
1243 	mutex_lock(&id_priv->qp_mutex);
1244 	if (!id_priv->id.qp) {
1245 		ret = 0;
1246 		goto out;
1247 	}
1248 
1249 	qp_attr.qp_state = IB_QPS_ERR;
1250 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE);
1251 out:
1252 	mutex_unlock(&id_priv->qp_mutex);
1253 	return ret;
1254 }
1255 
1256 static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv,
1257 			       struct ib_qp_attr *qp_attr, int *qp_attr_mask)
1258 {
1259 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
1260 	int ret;
1261 	u16 pkey;
1262 
1263 	if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num))
1264 		pkey = 0xffff;
1265 	else
1266 		pkey = ib_addr_get_pkey(dev_addr);
1267 
1268 	ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num,
1269 				  pkey, &qp_attr->pkey_index);
1270 	if (ret)
1271 		return ret;
1272 
1273 	qp_attr->port_num = id_priv->id.port_num;
1274 	*qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT;
1275 
1276 	if (id_priv->id.qp_type == IB_QPT_UD) {
1277 		ret = cma_set_default_qkey(id_priv);
1278 		if (ret)
1279 			return ret;
1280 
1281 		qp_attr->qkey = id_priv->qkey;
1282 		*qp_attr_mask |= IB_QP_QKEY;
1283 	} else {
1284 		qp_attr->qp_access_flags = 0;
1285 		*qp_attr_mask |= IB_QP_ACCESS_FLAGS;
1286 	}
1287 	return 0;
1288 }
1289 
1290 int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr,
1291 		       int *qp_attr_mask)
1292 {
1293 	struct rdma_id_private *id_priv;
1294 	int ret = 0;
1295 
1296 	id_priv = container_of(id, struct rdma_id_private, id);
1297 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
1298 		if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD))
1299 			ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask);
1300 		else
1301 			ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr,
1302 						 qp_attr_mask);
1303 
1304 		if (qp_attr->qp_state == IB_QPS_RTR)
1305 			qp_attr->rq_psn = id_priv->seq_num;
1306 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
1307 		if (!id_priv->cm_id.iw) {
1308 			qp_attr->qp_access_flags = 0;
1309 			*qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS;
1310 		} else
1311 			ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr,
1312 						 qp_attr_mask);
1313 		qp_attr->port_num = id_priv->id.port_num;
1314 		*qp_attr_mask |= IB_QP_PORT;
1315 	} else {
1316 		ret = -ENOSYS;
1317 	}
1318 
1319 	if ((*qp_attr_mask & IB_QP_TIMEOUT) && id_priv->timeout_set)
1320 		qp_attr->timeout = id_priv->timeout;
1321 
1322 	if ((*qp_attr_mask & IB_QP_MIN_RNR_TIMER) && id_priv->min_rnr_timer_set)
1323 		qp_attr->min_rnr_timer = id_priv->min_rnr_timer;
1324 
1325 	return ret;
1326 }
1327 EXPORT_SYMBOL(rdma_init_qp_attr);
1328 
1329 static inline bool cma_zero_addr(const struct sockaddr *addr)
1330 {
1331 	switch (addr->sa_family) {
1332 	case AF_INET:
1333 		return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr);
1334 	case AF_INET6:
1335 		return ipv6_addr_any(&((struct sockaddr_in6 *)addr)->sin6_addr);
1336 	case AF_IB:
1337 		return ib_addr_any(&((struct sockaddr_ib *)addr)->sib_addr);
1338 	default:
1339 		return false;
1340 	}
1341 }
1342 
1343 static inline bool cma_loopback_addr(const struct sockaddr *addr)
1344 {
1345 	switch (addr->sa_family) {
1346 	case AF_INET:
1347 		return ipv4_is_loopback(
1348 			((struct sockaddr_in *)addr)->sin_addr.s_addr);
1349 	case AF_INET6:
1350 		return ipv6_addr_loopback(
1351 			&((struct sockaddr_in6 *)addr)->sin6_addr);
1352 	case AF_IB:
1353 		return ib_addr_loopback(
1354 			&((struct sockaddr_ib *)addr)->sib_addr);
1355 	default:
1356 		return false;
1357 	}
1358 }
1359 
1360 static inline bool cma_any_addr(const struct sockaddr *addr)
1361 {
1362 	return cma_zero_addr(addr) || cma_loopback_addr(addr);
1363 }
1364 
1365 static int cma_addr_cmp(const struct sockaddr *src, const struct sockaddr *dst)
1366 {
1367 	if (src->sa_family != dst->sa_family)
1368 		return -1;
1369 
1370 	switch (src->sa_family) {
1371 	case AF_INET:
1372 		return ((struct sockaddr_in *)src)->sin_addr.s_addr !=
1373 		       ((struct sockaddr_in *)dst)->sin_addr.s_addr;
1374 	case AF_INET6: {
1375 		struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src;
1376 		struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst;
1377 		bool link_local;
1378 
1379 		if (ipv6_addr_cmp(&src_addr6->sin6_addr,
1380 					  &dst_addr6->sin6_addr))
1381 			return 1;
1382 		link_local = ipv6_addr_type(&dst_addr6->sin6_addr) &
1383 			     IPV6_ADDR_LINKLOCAL;
1384 		/* Link local must match their scope_ids */
1385 		return link_local ? (src_addr6->sin6_scope_id !=
1386 				     dst_addr6->sin6_scope_id) :
1387 				    0;
1388 	}
1389 
1390 	default:
1391 		return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr,
1392 				   &((struct sockaddr_ib *) dst)->sib_addr);
1393 	}
1394 }
1395 
1396 static __be16 cma_port(const struct sockaddr *addr)
1397 {
1398 	struct sockaddr_ib *sib;
1399 
1400 	switch (addr->sa_family) {
1401 	case AF_INET:
1402 		return ((struct sockaddr_in *) addr)->sin_port;
1403 	case AF_INET6:
1404 		return ((struct sockaddr_in6 *) addr)->sin6_port;
1405 	case AF_IB:
1406 		sib = (struct sockaddr_ib *) addr;
1407 		return htons((u16) (be64_to_cpu(sib->sib_sid) &
1408 				    be64_to_cpu(sib->sib_sid_mask)));
1409 	default:
1410 		return 0;
1411 	}
1412 }
1413 
1414 static inline int cma_any_port(const struct sockaddr *addr)
1415 {
1416 	return !cma_port(addr);
1417 }
1418 
1419 static void cma_save_ib_info(struct sockaddr *src_addr,
1420 			     struct sockaddr *dst_addr,
1421 			     const struct rdma_cm_id *listen_id,
1422 			     const struct sa_path_rec *path)
1423 {
1424 	struct sockaddr_ib *listen_ib, *ib;
1425 
1426 	listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr;
1427 	if (src_addr) {
1428 		ib = (struct sockaddr_ib *)src_addr;
1429 		ib->sib_family = AF_IB;
1430 		if (path) {
1431 			ib->sib_pkey = path->pkey;
1432 			ib->sib_flowinfo = path->flow_label;
1433 			memcpy(&ib->sib_addr, &path->sgid, 16);
1434 			ib->sib_sid = path->service_id;
1435 			ib->sib_scope_id = 0;
1436 		} else {
1437 			ib->sib_pkey = listen_ib->sib_pkey;
1438 			ib->sib_flowinfo = listen_ib->sib_flowinfo;
1439 			ib->sib_addr = listen_ib->sib_addr;
1440 			ib->sib_sid = listen_ib->sib_sid;
1441 			ib->sib_scope_id = listen_ib->sib_scope_id;
1442 		}
1443 		ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL);
1444 	}
1445 	if (dst_addr) {
1446 		ib = (struct sockaddr_ib *)dst_addr;
1447 		ib->sib_family = AF_IB;
1448 		if (path) {
1449 			ib->sib_pkey = path->pkey;
1450 			ib->sib_flowinfo = path->flow_label;
1451 			memcpy(&ib->sib_addr, &path->dgid, 16);
1452 		}
1453 	}
1454 }
1455 
1456 static void cma_save_ip4_info(struct sockaddr_in *src_addr,
1457 			      struct sockaddr_in *dst_addr,
1458 			      struct cma_hdr *hdr,
1459 			      __be16 local_port)
1460 {
1461 	if (src_addr) {
1462 		*src_addr = (struct sockaddr_in) {
1463 			.sin_family = AF_INET,
1464 			.sin_addr.s_addr = hdr->dst_addr.ip4.addr,
1465 			.sin_port = local_port,
1466 		};
1467 	}
1468 
1469 	if (dst_addr) {
1470 		*dst_addr = (struct sockaddr_in) {
1471 			.sin_family = AF_INET,
1472 			.sin_addr.s_addr = hdr->src_addr.ip4.addr,
1473 			.sin_port = hdr->port,
1474 		};
1475 	}
1476 }
1477 
1478 static void cma_save_ip6_info(struct sockaddr_in6 *src_addr,
1479 			      struct sockaddr_in6 *dst_addr,
1480 			      struct cma_hdr *hdr,
1481 			      __be16 local_port)
1482 {
1483 	if (src_addr) {
1484 		*src_addr = (struct sockaddr_in6) {
1485 			.sin6_family = AF_INET6,
1486 			.sin6_addr = hdr->dst_addr.ip6,
1487 			.sin6_port = local_port,
1488 		};
1489 	}
1490 
1491 	if (dst_addr) {
1492 		*dst_addr = (struct sockaddr_in6) {
1493 			.sin6_family = AF_INET6,
1494 			.sin6_addr = hdr->src_addr.ip6,
1495 			.sin6_port = hdr->port,
1496 		};
1497 	}
1498 }
1499 
1500 static u16 cma_port_from_service_id(__be64 service_id)
1501 {
1502 	return (u16)be64_to_cpu(service_id);
1503 }
1504 
1505 static int cma_save_ip_info(struct sockaddr *src_addr,
1506 			    struct sockaddr *dst_addr,
1507 			    const struct ib_cm_event *ib_event,
1508 			    __be64 service_id)
1509 {
1510 	struct cma_hdr *hdr;
1511 	__be16 port;
1512 
1513 	hdr = ib_event->private_data;
1514 	if (hdr->cma_version != CMA_VERSION)
1515 		return -EINVAL;
1516 
1517 	port = htons(cma_port_from_service_id(service_id));
1518 
1519 	switch (cma_get_ip_ver(hdr)) {
1520 	case 4:
1521 		cma_save_ip4_info((struct sockaddr_in *)src_addr,
1522 				  (struct sockaddr_in *)dst_addr, hdr, port);
1523 		break;
1524 	case 6:
1525 		cma_save_ip6_info((struct sockaddr_in6 *)src_addr,
1526 				  (struct sockaddr_in6 *)dst_addr, hdr, port);
1527 		break;
1528 	default:
1529 		return -EAFNOSUPPORT;
1530 	}
1531 
1532 	return 0;
1533 }
1534 
1535 static int cma_save_net_info(struct sockaddr *src_addr,
1536 			     struct sockaddr *dst_addr,
1537 			     const struct rdma_cm_id *listen_id,
1538 			     const struct ib_cm_event *ib_event,
1539 			     sa_family_t sa_family, __be64 service_id)
1540 {
1541 	if (sa_family == AF_IB) {
1542 		if (ib_event->event == IB_CM_REQ_RECEIVED)
1543 			cma_save_ib_info(src_addr, dst_addr, listen_id,
1544 					 ib_event->param.req_rcvd.primary_path);
1545 		else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED)
1546 			cma_save_ib_info(src_addr, dst_addr, listen_id, NULL);
1547 		return 0;
1548 	}
1549 
1550 	return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id);
1551 }
1552 
1553 static int cma_save_req_info(const struct ib_cm_event *ib_event,
1554 			     struct cma_req_info *req)
1555 {
1556 	const struct ib_cm_req_event_param *req_param =
1557 		&ib_event->param.req_rcvd;
1558 	const struct ib_cm_sidr_req_event_param *sidr_param =
1559 		&ib_event->param.sidr_req_rcvd;
1560 
1561 	switch (ib_event->event) {
1562 	case IB_CM_REQ_RECEIVED:
1563 		req->device	= req_param->listen_id->device;
1564 		req->port	= req_param->port;
1565 		memcpy(&req->local_gid, &req_param->primary_path->sgid,
1566 		       sizeof(req->local_gid));
1567 		req->has_gid	= true;
1568 		req->service_id = req_param->primary_path->service_id;
1569 		req->pkey	= be16_to_cpu(req_param->primary_path->pkey);
1570 		if (req->pkey != req_param->bth_pkey)
1571 			pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n"
1572 					    "RDMA CMA: in the future this may cause the request to be dropped\n",
1573 					    req_param->bth_pkey, req->pkey);
1574 		break;
1575 	case IB_CM_SIDR_REQ_RECEIVED:
1576 		req->device	= sidr_param->listen_id->device;
1577 		req->port	= sidr_param->port;
1578 		req->has_gid	= false;
1579 		req->service_id	= sidr_param->service_id;
1580 		req->pkey	= sidr_param->pkey;
1581 		if (req->pkey != sidr_param->bth_pkey)
1582 			pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n"
1583 					    "RDMA CMA: in the future this may cause the request to be dropped\n",
1584 					    sidr_param->bth_pkey, req->pkey);
1585 		break;
1586 	default:
1587 		return -EINVAL;
1588 	}
1589 
1590 	return 0;
1591 }
1592 
1593 static bool validate_ipv4_net_dev(struct net_device *net_dev,
1594 				  const struct sockaddr_in *dst_addr,
1595 				  const struct sockaddr_in *src_addr)
1596 {
1597 	__be32 daddr = dst_addr->sin_addr.s_addr,
1598 	       saddr = src_addr->sin_addr.s_addr;
1599 	struct fib_result res;
1600 	struct flowi4 fl4;
1601 	int err;
1602 	bool ret;
1603 
1604 	if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
1605 	    ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) ||
1606 	    ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) ||
1607 	    ipv4_is_loopback(saddr))
1608 		return false;
1609 
1610 	memset(&fl4, 0, sizeof(fl4));
1611 	fl4.flowi4_oif = net_dev->ifindex;
1612 	fl4.daddr = daddr;
1613 	fl4.saddr = saddr;
1614 
1615 	rcu_read_lock();
1616 	err = fib_lookup(dev_net(net_dev), &fl4, &res, 0);
1617 	ret = err == 0 && FIB_RES_DEV(res) == net_dev;
1618 	rcu_read_unlock();
1619 
1620 	return ret;
1621 }
1622 
1623 static bool validate_ipv6_net_dev(struct net_device *net_dev,
1624 				  const struct sockaddr_in6 *dst_addr,
1625 				  const struct sockaddr_in6 *src_addr)
1626 {
1627 #if IS_ENABLED(CONFIG_IPV6)
1628 	const int strict = ipv6_addr_type(&dst_addr->sin6_addr) &
1629 			   IPV6_ADDR_LINKLOCAL;
1630 	struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr,
1631 					 &src_addr->sin6_addr, net_dev->ifindex,
1632 					 NULL, strict);
1633 	bool ret;
1634 
1635 	if (!rt)
1636 		return false;
1637 
1638 	ret = rt->rt6i_idev->dev == net_dev;
1639 	ip6_rt_put(rt);
1640 
1641 	return ret;
1642 #else
1643 	return false;
1644 #endif
1645 }
1646 
1647 static bool validate_net_dev(struct net_device *net_dev,
1648 			     const struct sockaddr *daddr,
1649 			     const struct sockaddr *saddr)
1650 {
1651 	const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr;
1652 	const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr;
1653 	const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr;
1654 	const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr;
1655 
1656 	switch (daddr->sa_family) {
1657 	case AF_INET:
1658 		return saddr->sa_family == AF_INET &&
1659 		       validate_ipv4_net_dev(net_dev, daddr4, saddr4);
1660 
1661 	case AF_INET6:
1662 		return saddr->sa_family == AF_INET6 &&
1663 		       validate_ipv6_net_dev(net_dev, daddr6, saddr6);
1664 
1665 	default:
1666 		return false;
1667 	}
1668 }
1669 
1670 static struct net_device *
1671 roce_get_net_dev_by_cm_event(const struct ib_cm_event *ib_event)
1672 {
1673 	const struct ib_gid_attr *sgid_attr = NULL;
1674 	struct net_device *ndev;
1675 
1676 	if (ib_event->event == IB_CM_REQ_RECEIVED)
1677 		sgid_attr = ib_event->param.req_rcvd.ppath_sgid_attr;
1678 	else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED)
1679 		sgid_attr = ib_event->param.sidr_req_rcvd.sgid_attr;
1680 
1681 	if (!sgid_attr)
1682 		return NULL;
1683 
1684 	rcu_read_lock();
1685 	ndev = rdma_read_gid_attr_ndev_rcu(sgid_attr);
1686 	if (IS_ERR(ndev))
1687 		ndev = NULL;
1688 	else
1689 		dev_hold(ndev);
1690 	rcu_read_unlock();
1691 	return ndev;
1692 }
1693 
1694 static struct net_device *cma_get_net_dev(const struct ib_cm_event *ib_event,
1695 					  struct cma_req_info *req)
1696 {
1697 	struct sockaddr *listen_addr =
1698 			(struct sockaddr *)&req->listen_addr_storage;
1699 	struct sockaddr *src_addr = (struct sockaddr *)&req->src_addr_storage;
1700 	struct net_device *net_dev;
1701 	const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL;
1702 	int err;
1703 
1704 	err = cma_save_ip_info(listen_addr, src_addr, ib_event,
1705 			       req->service_id);
1706 	if (err)
1707 		return ERR_PTR(err);
1708 
1709 	if (rdma_protocol_roce(req->device, req->port))
1710 		net_dev = roce_get_net_dev_by_cm_event(ib_event);
1711 	else
1712 		net_dev = ib_get_net_dev_by_params(req->device, req->port,
1713 						   req->pkey,
1714 						   gid, listen_addr);
1715 	if (!net_dev)
1716 		return ERR_PTR(-ENODEV);
1717 
1718 	return net_dev;
1719 }
1720 
1721 static enum rdma_ucm_port_space rdma_ps_from_service_id(__be64 service_id)
1722 {
1723 	return (be64_to_cpu(service_id) >> 16) & 0xffff;
1724 }
1725 
1726 static bool cma_match_private_data(struct rdma_id_private *id_priv,
1727 				   const struct cma_hdr *hdr)
1728 {
1729 	struct sockaddr *addr = cma_src_addr(id_priv);
1730 	__be32 ip4_addr;
1731 	struct in6_addr ip6_addr;
1732 
1733 	if (cma_any_addr(addr) && !id_priv->afonly)
1734 		return true;
1735 
1736 	switch (addr->sa_family) {
1737 	case AF_INET:
1738 		ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr;
1739 		if (cma_get_ip_ver(hdr) != 4)
1740 			return false;
1741 		if (!cma_any_addr(addr) &&
1742 		    hdr->dst_addr.ip4.addr != ip4_addr)
1743 			return false;
1744 		break;
1745 	case AF_INET6:
1746 		ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr;
1747 		if (cma_get_ip_ver(hdr) != 6)
1748 			return false;
1749 		if (!cma_any_addr(addr) &&
1750 		    memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr)))
1751 			return false;
1752 		break;
1753 	case AF_IB:
1754 		return true;
1755 	default:
1756 		return false;
1757 	}
1758 
1759 	return true;
1760 }
1761 
1762 static bool cma_protocol_roce(const struct rdma_cm_id *id)
1763 {
1764 	struct ib_device *device = id->device;
1765 	const u32 port_num = id->port_num ?: rdma_start_port(device);
1766 
1767 	return rdma_protocol_roce(device, port_num);
1768 }
1769 
1770 static bool cma_is_req_ipv6_ll(const struct cma_req_info *req)
1771 {
1772 	const struct sockaddr *daddr =
1773 			(const struct sockaddr *)&req->listen_addr_storage;
1774 	const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr;
1775 
1776 	/* Returns true if the req is for IPv6 link local */
1777 	return (daddr->sa_family == AF_INET6 &&
1778 		(ipv6_addr_type(&daddr6->sin6_addr) & IPV6_ADDR_LINKLOCAL));
1779 }
1780 
1781 static bool cma_match_net_dev(const struct rdma_cm_id *id,
1782 			      const struct net_device *net_dev,
1783 			      const struct cma_req_info *req)
1784 {
1785 	const struct rdma_addr *addr = &id->route.addr;
1786 
1787 	if (!net_dev)
1788 		/* This request is an AF_IB request */
1789 		return (!id->port_num || id->port_num == req->port) &&
1790 		       (addr->src_addr.ss_family == AF_IB);
1791 
1792 	/*
1793 	 * If the request is not for IPv6 link local, allow matching
1794 	 * request to any netdevice of the one or multiport rdma device.
1795 	 */
1796 	if (!cma_is_req_ipv6_ll(req))
1797 		return true;
1798 	/*
1799 	 * Net namespaces must match, and if the listner is listening
1800 	 * on a specific netdevice than netdevice must match as well.
1801 	 */
1802 	if (net_eq(dev_net(net_dev), addr->dev_addr.net) &&
1803 	    (!!addr->dev_addr.bound_dev_if ==
1804 	     (addr->dev_addr.bound_dev_if == net_dev->ifindex)))
1805 		return true;
1806 	else
1807 		return false;
1808 }
1809 
1810 static struct rdma_id_private *cma_find_listener(
1811 		const struct rdma_bind_list *bind_list,
1812 		const struct ib_cm_id *cm_id,
1813 		const struct ib_cm_event *ib_event,
1814 		const struct cma_req_info *req,
1815 		const struct net_device *net_dev)
1816 {
1817 	struct rdma_id_private *id_priv, *id_priv_dev;
1818 
1819 	lockdep_assert_held(&lock);
1820 
1821 	if (!bind_list)
1822 		return ERR_PTR(-EINVAL);
1823 
1824 	hlist_for_each_entry(id_priv, &bind_list->owners, node) {
1825 		if (cma_match_private_data(id_priv, ib_event->private_data)) {
1826 			if (id_priv->id.device == cm_id->device &&
1827 			    cma_match_net_dev(&id_priv->id, net_dev, req))
1828 				return id_priv;
1829 			list_for_each_entry(id_priv_dev,
1830 					    &id_priv->listen_list,
1831 					    listen_item) {
1832 				if (id_priv_dev->id.device == cm_id->device &&
1833 				    cma_match_net_dev(&id_priv_dev->id,
1834 						      net_dev, req))
1835 					return id_priv_dev;
1836 			}
1837 		}
1838 	}
1839 
1840 	return ERR_PTR(-EINVAL);
1841 }
1842 
1843 static struct rdma_id_private *
1844 cma_ib_id_from_event(struct ib_cm_id *cm_id,
1845 		     const struct ib_cm_event *ib_event,
1846 		     struct cma_req_info *req,
1847 		     struct net_device **net_dev)
1848 {
1849 	struct rdma_bind_list *bind_list;
1850 	struct rdma_id_private *id_priv;
1851 	int err;
1852 
1853 	err = cma_save_req_info(ib_event, req);
1854 	if (err)
1855 		return ERR_PTR(err);
1856 
1857 	*net_dev = cma_get_net_dev(ib_event, req);
1858 	if (IS_ERR(*net_dev)) {
1859 		if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) {
1860 			/* Assuming the protocol is AF_IB */
1861 			*net_dev = NULL;
1862 		} else {
1863 			return ERR_CAST(*net_dev);
1864 		}
1865 	}
1866 
1867 	mutex_lock(&lock);
1868 	/*
1869 	 * Net namespace might be getting deleted while route lookup,
1870 	 * cm_id lookup is in progress. Therefore, perform netdevice
1871 	 * validation, cm_id lookup under rcu lock.
1872 	 * RCU lock along with netdevice state check, synchronizes with
1873 	 * netdevice migrating to different net namespace and also avoids
1874 	 * case where net namespace doesn't get deleted while lookup is in
1875 	 * progress.
1876 	 * If the device state is not IFF_UP, its properties such as ifindex
1877 	 * and nd_net cannot be trusted to remain valid without rcu lock.
1878 	 * net/core/dev.c change_net_namespace() ensures to synchronize with
1879 	 * ongoing operations on net device after device is closed using
1880 	 * synchronize_net().
1881 	 */
1882 	rcu_read_lock();
1883 	if (*net_dev) {
1884 		/*
1885 		 * If netdevice is down, it is likely that it is administratively
1886 		 * down or it might be migrating to different namespace.
1887 		 * In that case avoid further processing, as the net namespace
1888 		 * or ifindex may change.
1889 		 */
1890 		if (((*net_dev)->flags & IFF_UP) == 0) {
1891 			id_priv = ERR_PTR(-EHOSTUNREACH);
1892 			goto err;
1893 		}
1894 
1895 		if (!validate_net_dev(*net_dev,
1896 				 (struct sockaddr *)&req->src_addr_storage,
1897 				 (struct sockaddr *)&req->listen_addr_storage)) {
1898 			id_priv = ERR_PTR(-EHOSTUNREACH);
1899 			goto err;
1900 		}
1901 	}
1902 
1903 	bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net,
1904 				rdma_ps_from_service_id(req->service_id),
1905 				cma_port_from_service_id(req->service_id));
1906 	id_priv = cma_find_listener(bind_list, cm_id, ib_event, req, *net_dev);
1907 err:
1908 	rcu_read_unlock();
1909 	mutex_unlock(&lock);
1910 	if (IS_ERR(id_priv) && *net_dev) {
1911 		dev_put(*net_dev);
1912 		*net_dev = NULL;
1913 	}
1914 	return id_priv;
1915 }
1916 
1917 static inline u8 cma_user_data_offset(struct rdma_id_private *id_priv)
1918 {
1919 	return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr);
1920 }
1921 
1922 static void cma_cancel_route(struct rdma_id_private *id_priv)
1923 {
1924 	if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) {
1925 		if (id_priv->query)
1926 			ib_sa_cancel_query(id_priv->query_id, id_priv->query);
1927 	}
1928 }
1929 
1930 static void _cma_cancel_listens(struct rdma_id_private *id_priv)
1931 {
1932 	struct rdma_id_private *dev_id_priv;
1933 
1934 	lockdep_assert_held(&lock);
1935 
1936 	/*
1937 	 * Remove from listen_any_list to prevent added devices from spawning
1938 	 * additional listen requests.
1939 	 */
1940 	list_del_init(&id_priv->listen_any_item);
1941 
1942 	while (!list_empty(&id_priv->listen_list)) {
1943 		dev_id_priv =
1944 			list_first_entry(&id_priv->listen_list,
1945 					 struct rdma_id_private, listen_item);
1946 		/* sync with device removal to avoid duplicate destruction */
1947 		list_del_init(&dev_id_priv->device_item);
1948 		list_del_init(&dev_id_priv->listen_item);
1949 		mutex_unlock(&lock);
1950 
1951 		rdma_destroy_id(&dev_id_priv->id);
1952 		mutex_lock(&lock);
1953 	}
1954 }
1955 
1956 static void cma_cancel_listens(struct rdma_id_private *id_priv)
1957 {
1958 	mutex_lock(&lock);
1959 	_cma_cancel_listens(id_priv);
1960 	mutex_unlock(&lock);
1961 }
1962 
1963 static void cma_cancel_operation(struct rdma_id_private *id_priv,
1964 				 enum rdma_cm_state state)
1965 {
1966 	switch (state) {
1967 	case RDMA_CM_ADDR_QUERY:
1968 		/*
1969 		 * We can avoid doing the rdma_addr_cancel() based on state,
1970 		 * only RDMA_CM_ADDR_QUERY has a work that could still execute.
1971 		 * Notice that the addr_handler work could still be exiting
1972 		 * outside this state, however due to the interaction with the
1973 		 * handler_mutex the work is guaranteed not to touch id_priv
1974 		 * during exit.
1975 		 */
1976 		rdma_addr_cancel(&id_priv->id.route.addr.dev_addr);
1977 		break;
1978 	case RDMA_CM_ROUTE_QUERY:
1979 		cma_cancel_route(id_priv);
1980 		break;
1981 	case RDMA_CM_LISTEN:
1982 		if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev)
1983 			cma_cancel_listens(id_priv);
1984 		break;
1985 	default:
1986 		break;
1987 	}
1988 }
1989 
1990 static void cma_release_port(struct rdma_id_private *id_priv)
1991 {
1992 	struct rdma_bind_list *bind_list = id_priv->bind_list;
1993 	struct net *net = id_priv->id.route.addr.dev_addr.net;
1994 
1995 	if (!bind_list)
1996 		return;
1997 
1998 	mutex_lock(&lock);
1999 	hlist_del(&id_priv->node);
2000 	if (hlist_empty(&bind_list->owners)) {
2001 		cma_ps_remove(net, bind_list->ps, bind_list->port);
2002 		kfree(bind_list);
2003 	}
2004 	mutex_unlock(&lock);
2005 }
2006 
2007 static void destroy_mc(struct rdma_id_private *id_priv,
2008 		       struct cma_multicast *mc)
2009 {
2010 	bool send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN);
2011 
2012 	if (rdma_cap_ib_mcast(id_priv->id.device, id_priv->id.port_num))
2013 		ib_sa_free_multicast(mc->sa_mc);
2014 
2015 	if (rdma_protocol_roce(id_priv->id.device, id_priv->id.port_num)) {
2016 		struct rdma_cm_event *event = &mc->iboe_join.event;
2017 		struct rdma_dev_addr *dev_addr =
2018 			&id_priv->id.route.addr.dev_addr;
2019 		struct net_device *ndev = NULL;
2020 
2021 		if (dev_addr->bound_dev_if)
2022 			ndev = dev_get_by_index(dev_addr->net,
2023 						dev_addr->bound_dev_if);
2024 		if (ndev && !send_only) {
2025 			enum ib_gid_type gid_type;
2026 			union ib_gid mgid;
2027 
2028 			gid_type = id_priv->cma_dev->default_gid_type
2029 					   [id_priv->id.port_num -
2030 					    rdma_start_port(
2031 						    id_priv->cma_dev->device)];
2032 			cma_iboe_set_mgid((struct sockaddr *)&mc->addr, &mgid,
2033 					  gid_type);
2034 			cma_igmp_send(ndev, &mgid, false);
2035 		}
2036 		dev_put(ndev);
2037 
2038 		cancel_work_sync(&mc->iboe_join.work);
2039 		if (event->event == RDMA_CM_EVENT_MULTICAST_JOIN)
2040 			rdma_destroy_ah_attr(&event->param.ud.ah_attr);
2041 	}
2042 	kfree(mc);
2043 }
2044 
2045 static void cma_leave_mc_groups(struct rdma_id_private *id_priv)
2046 {
2047 	struct cma_multicast *mc;
2048 
2049 	while (!list_empty(&id_priv->mc_list)) {
2050 		mc = list_first_entry(&id_priv->mc_list, struct cma_multicast,
2051 				      list);
2052 		list_del(&mc->list);
2053 		destroy_mc(id_priv, mc);
2054 	}
2055 }
2056 
2057 static void _destroy_id(struct rdma_id_private *id_priv,
2058 			enum rdma_cm_state state)
2059 {
2060 	cma_cancel_operation(id_priv, state);
2061 
2062 	rdma_restrack_del(&id_priv->res);
2063 	cma_remove_id_from_tree(id_priv);
2064 	if (id_priv->cma_dev) {
2065 		if (rdma_cap_ib_cm(id_priv->id.device, 1)) {
2066 			if (id_priv->cm_id.ib)
2067 				ib_destroy_cm_id(id_priv->cm_id.ib);
2068 		} else if (rdma_cap_iw_cm(id_priv->id.device, 1)) {
2069 			if (id_priv->cm_id.iw)
2070 				iw_destroy_cm_id(id_priv->cm_id.iw);
2071 		}
2072 		cma_leave_mc_groups(id_priv);
2073 		cma_release_dev(id_priv);
2074 	}
2075 
2076 	cma_release_port(id_priv);
2077 	cma_id_put(id_priv);
2078 	wait_for_completion(&id_priv->comp);
2079 
2080 	if (id_priv->internal_id)
2081 		cma_id_put(id_priv->id.context);
2082 
2083 	kfree(id_priv->id.route.path_rec);
2084 	kfree(id_priv->id.route.path_rec_inbound);
2085 	kfree(id_priv->id.route.path_rec_outbound);
2086 	kfree(id_priv->id.route.service_recs);
2087 
2088 	put_net(id_priv->id.route.addr.dev_addr.net);
2089 	kfree(id_priv);
2090 }
2091 
2092 /*
2093  * destroy an ID from within the handler_mutex. This ensures that no other
2094  * handlers can start running concurrently.
2095  */
2096 static void destroy_id_handler_unlock(struct rdma_id_private *id_priv)
2097 	__releases(&idprv->handler_mutex)
2098 {
2099 	enum rdma_cm_state state;
2100 	unsigned long flags;
2101 
2102 	trace_cm_id_destroy(id_priv);
2103 
2104 	/*
2105 	 * Setting the state to destroyed under the handler mutex provides a
2106 	 * fence against calling handler callbacks. If this is invoked due to
2107 	 * the failure of a handler callback then it guarentees that no future
2108 	 * handlers will be called.
2109 	 */
2110 	lockdep_assert_held(&id_priv->handler_mutex);
2111 	spin_lock_irqsave(&id_priv->lock, flags);
2112 	state = id_priv->state;
2113 	id_priv->state = RDMA_CM_DESTROYING;
2114 	spin_unlock_irqrestore(&id_priv->lock, flags);
2115 	mutex_unlock(&id_priv->handler_mutex);
2116 	_destroy_id(id_priv, state);
2117 }
2118 
2119 void rdma_destroy_id(struct rdma_cm_id *id)
2120 {
2121 	struct rdma_id_private *id_priv =
2122 		container_of(id, struct rdma_id_private, id);
2123 
2124 	mutex_lock(&id_priv->handler_mutex);
2125 	destroy_id_handler_unlock(id_priv);
2126 }
2127 EXPORT_SYMBOL(rdma_destroy_id);
2128 
2129 static int cma_rep_recv(struct rdma_id_private *id_priv)
2130 {
2131 	int ret;
2132 
2133 	ret = cma_modify_qp_rtr(id_priv, NULL);
2134 	if (ret)
2135 		goto reject;
2136 
2137 	ret = cma_modify_qp_rts(id_priv, NULL);
2138 	if (ret)
2139 		goto reject;
2140 
2141 	trace_cm_send_rtu(id_priv);
2142 	ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0);
2143 	if (ret)
2144 		goto reject;
2145 
2146 	return 0;
2147 reject:
2148 	pr_debug_ratelimited("RDMA CM: CONNECT_ERROR: failed to handle reply. status %d\n", ret);
2149 	cma_modify_qp_err(id_priv);
2150 	trace_cm_send_rej(id_priv);
2151 	ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED,
2152 		       NULL, 0, NULL, 0);
2153 	return ret;
2154 }
2155 
2156 static void cma_set_rep_event_data(struct rdma_cm_event *event,
2157 				   const struct ib_cm_rep_event_param *rep_data,
2158 				   void *private_data)
2159 {
2160 	event->param.conn.private_data = private_data;
2161 	event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE;
2162 	event->param.conn.responder_resources = rep_data->responder_resources;
2163 	event->param.conn.initiator_depth = rep_data->initiator_depth;
2164 	event->param.conn.flow_control = rep_data->flow_control;
2165 	event->param.conn.rnr_retry_count = rep_data->rnr_retry_count;
2166 	event->param.conn.srq = rep_data->srq;
2167 	event->param.conn.qp_num = rep_data->remote_qpn;
2168 
2169 	event->ece.vendor_id = rep_data->ece.vendor_id;
2170 	event->ece.attr_mod = rep_data->ece.attr_mod;
2171 }
2172 
2173 static int cma_cm_event_handler(struct rdma_id_private *id_priv,
2174 				struct rdma_cm_event *event)
2175 {
2176 	int ret;
2177 
2178 	lockdep_assert_held(&id_priv->handler_mutex);
2179 
2180 	trace_cm_event_handler(id_priv, event);
2181 	ret = id_priv->id.event_handler(&id_priv->id, event);
2182 	trace_cm_event_done(id_priv, event, ret);
2183 	return ret;
2184 }
2185 
2186 static int cma_ib_handler(struct ib_cm_id *cm_id,
2187 			  const struct ib_cm_event *ib_event)
2188 {
2189 	struct rdma_id_private *id_priv = cm_id->context;
2190 	struct rdma_cm_event event = {};
2191 	enum rdma_cm_state state;
2192 	int ret;
2193 
2194 	mutex_lock(&id_priv->handler_mutex);
2195 	state = READ_ONCE(id_priv->state);
2196 	if ((ib_event->event != IB_CM_TIMEWAIT_EXIT &&
2197 	     state != RDMA_CM_CONNECT) ||
2198 	    (ib_event->event == IB_CM_TIMEWAIT_EXIT &&
2199 	     state != RDMA_CM_DISCONNECT))
2200 		goto out;
2201 
2202 	switch (ib_event->event) {
2203 	case IB_CM_REQ_ERROR:
2204 	case IB_CM_REP_ERROR:
2205 		event.event = RDMA_CM_EVENT_UNREACHABLE;
2206 		event.status = -ETIMEDOUT;
2207 		break;
2208 	case IB_CM_REP_RECEIVED:
2209 		if (state == RDMA_CM_CONNECT &&
2210 		    (id_priv->id.qp_type != IB_QPT_UD)) {
2211 			trace_cm_prepare_mra(id_priv);
2212 			ib_prepare_cm_mra(cm_id);
2213 		}
2214 		if (id_priv->id.qp) {
2215 			event.status = cma_rep_recv(id_priv);
2216 			event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR :
2217 						     RDMA_CM_EVENT_ESTABLISHED;
2218 		} else {
2219 			event.event = RDMA_CM_EVENT_CONNECT_RESPONSE;
2220 		}
2221 		cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd,
2222 				       ib_event->private_data);
2223 		break;
2224 	case IB_CM_RTU_RECEIVED:
2225 	case IB_CM_USER_ESTABLISHED:
2226 		event.event = RDMA_CM_EVENT_ESTABLISHED;
2227 		break;
2228 	case IB_CM_DREQ_ERROR:
2229 		event.status = -ETIMEDOUT;
2230 		fallthrough;
2231 	case IB_CM_DREQ_RECEIVED:
2232 	case IB_CM_DREP_RECEIVED:
2233 		if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT,
2234 				   RDMA_CM_DISCONNECT))
2235 			goto out;
2236 		event.event = RDMA_CM_EVENT_DISCONNECTED;
2237 		break;
2238 	case IB_CM_TIMEWAIT_EXIT:
2239 		event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT;
2240 		break;
2241 	case IB_CM_MRA_RECEIVED:
2242 		/* ignore event */
2243 		goto out;
2244 	case IB_CM_REJ_RECEIVED:
2245 		pr_debug_ratelimited("RDMA CM: REJECTED: %s\n", rdma_reject_msg(&id_priv->id,
2246 										ib_event->param.rej_rcvd.reason));
2247 		cma_modify_qp_err(id_priv);
2248 		event.status = ib_event->param.rej_rcvd.reason;
2249 		event.event = RDMA_CM_EVENT_REJECTED;
2250 		event.param.conn.private_data = ib_event->private_data;
2251 		event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE;
2252 		break;
2253 	default:
2254 		pr_err("RDMA CMA: unexpected IB CM event: %d\n",
2255 		       ib_event->event);
2256 		goto out;
2257 	}
2258 
2259 	ret = cma_cm_event_handler(id_priv, &event);
2260 	if (ret) {
2261 		/* Destroy the CM ID by returning a non-zero value. */
2262 		id_priv->cm_id.ib = NULL;
2263 		destroy_id_handler_unlock(id_priv);
2264 		return ret;
2265 	}
2266 out:
2267 	mutex_unlock(&id_priv->handler_mutex);
2268 	return 0;
2269 }
2270 
2271 static struct rdma_id_private *
2272 cma_ib_new_conn_id(const struct rdma_cm_id *listen_id,
2273 		   const struct ib_cm_event *ib_event,
2274 		   struct net_device *net_dev)
2275 {
2276 	struct rdma_id_private *listen_id_priv;
2277 	struct rdma_id_private *id_priv;
2278 	struct rdma_cm_id *id;
2279 	struct rdma_route *rt;
2280 	const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family;
2281 	struct sa_path_rec *path = ib_event->param.req_rcvd.primary_path;
2282 	const __be64 service_id =
2283 		ib_event->param.req_rcvd.primary_path->service_id;
2284 	int ret;
2285 
2286 	listen_id_priv = container_of(listen_id, struct rdma_id_private, id);
2287 	id_priv = __rdma_create_id(listen_id->route.addr.dev_addr.net,
2288 				   listen_id->event_handler, listen_id->context,
2289 				   listen_id->ps,
2290 				   ib_event->param.req_rcvd.qp_type,
2291 				   listen_id_priv);
2292 	if (IS_ERR(id_priv))
2293 		return NULL;
2294 
2295 	id = &id_priv->id;
2296 	if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr,
2297 			      (struct sockaddr *)&id->route.addr.dst_addr,
2298 			      listen_id, ib_event, ss_family, service_id))
2299 		goto err;
2300 
2301 	rt = &id->route;
2302 	rt->num_pri_alt_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1;
2303 	rt->path_rec = kmalloc_array(rt->num_pri_alt_paths,
2304 				     sizeof(*rt->path_rec), GFP_KERNEL);
2305 	if (!rt->path_rec)
2306 		goto err;
2307 
2308 	rt->path_rec[0] = *path;
2309 	if (rt->num_pri_alt_paths == 2)
2310 		rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path;
2311 
2312 	if (net_dev) {
2313 		rdma_copy_src_l2_addr(&rt->addr.dev_addr, net_dev);
2314 	} else {
2315 		if (!cma_protocol_roce(listen_id) &&
2316 		    cma_any_addr(cma_src_addr(id_priv))) {
2317 			rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND;
2318 			rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid);
2319 			ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey));
2320 		} else if (!cma_any_addr(cma_src_addr(id_priv))) {
2321 			ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr);
2322 			if (ret)
2323 				goto err;
2324 		}
2325 	}
2326 	rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid);
2327 
2328 	id_priv->state = RDMA_CM_CONNECT;
2329 	return id_priv;
2330 
2331 err:
2332 	rdma_destroy_id(id);
2333 	return NULL;
2334 }
2335 
2336 static struct rdma_id_private *
2337 cma_ib_new_udp_id(const struct rdma_cm_id *listen_id,
2338 		  const struct ib_cm_event *ib_event,
2339 		  struct net_device *net_dev)
2340 {
2341 	const struct rdma_id_private *listen_id_priv;
2342 	struct rdma_id_private *id_priv;
2343 	struct rdma_cm_id *id;
2344 	const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family;
2345 	struct net *net = listen_id->route.addr.dev_addr.net;
2346 	int ret;
2347 
2348 	listen_id_priv = container_of(listen_id, struct rdma_id_private, id);
2349 	id_priv = __rdma_create_id(net, listen_id->event_handler,
2350 				   listen_id->context, listen_id->ps, IB_QPT_UD,
2351 				   listen_id_priv);
2352 	if (IS_ERR(id_priv))
2353 		return NULL;
2354 
2355 	id = &id_priv->id;
2356 	if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr,
2357 			      (struct sockaddr *)&id->route.addr.dst_addr,
2358 			      listen_id, ib_event, ss_family,
2359 			      ib_event->param.sidr_req_rcvd.service_id))
2360 		goto err;
2361 
2362 	if (net_dev) {
2363 		rdma_copy_src_l2_addr(&id->route.addr.dev_addr, net_dev);
2364 	} else {
2365 		if (!cma_any_addr(cma_src_addr(id_priv))) {
2366 			ret = cma_translate_addr(cma_src_addr(id_priv),
2367 						 &id->route.addr.dev_addr);
2368 			if (ret)
2369 				goto err;
2370 		}
2371 	}
2372 
2373 	id_priv->state = RDMA_CM_CONNECT;
2374 	return id_priv;
2375 err:
2376 	rdma_destroy_id(id);
2377 	return NULL;
2378 }
2379 
2380 static void cma_set_req_event_data(struct rdma_cm_event *event,
2381 				   const struct ib_cm_req_event_param *req_data,
2382 				   void *private_data, int offset)
2383 {
2384 	event->param.conn.private_data = private_data + offset;
2385 	event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset;
2386 	event->param.conn.responder_resources = req_data->responder_resources;
2387 	event->param.conn.initiator_depth = req_data->initiator_depth;
2388 	event->param.conn.flow_control = req_data->flow_control;
2389 	event->param.conn.retry_count = req_data->retry_count;
2390 	event->param.conn.rnr_retry_count = req_data->rnr_retry_count;
2391 	event->param.conn.srq = req_data->srq;
2392 	event->param.conn.qp_num = req_data->remote_qpn;
2393 
2394 	event->ece.vendor_id = req_data->ece.vendor_id;
2395 	event->ece.attr_mod = req_data->ece.attr_mod;
2396 }
2397 
2398 static int cma_ib_check_req_qp_type(const struct rdma_cm_id *id,
2399 				    const struct ib_cm_event *ib_event)
2400 {
2401 	return (((ib_event->event == IB_CM_REQ_RECEIVED) &&
2402 		 (ib_event->param.req_rcvd.qp_type == id->qp_type)) ||
2403 		((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) &&
2404 		 (id->qp_type == IB_QPT_UD)) ||
2405 		(!id->qp_type));
2406 }
2407 
2408 static int cma_ib_req_handler(struct ib_cm_id *cm_id,
2409 			      const struct ib_cm_event *ib_event)
2410 {
2411 	struct rdma_id_private *listen_id, *conn_id = NULL;
2412 	struct rdma_cm_event event = {};
2413 	struct cma_req_info req = {};
2414 	struct net_device *net_dev;
2415 	u8 offset;
2416 	int ret;
2417 
2418 	listen_id = cma_ib_id_from_event(cm_id, ib_event, &req, &net_dev);
2419 	if (IS_ERR(listen_id))
2420 		return PTR_ERR(listen_id);
2421 
2422 	trace_cm_req_handler(listen_id, ib_event->event);
2423 	if (!cma_ib_check_req_qp_type(&listen_id->id, ib_event)) {
2424 		ret = -EINVAL;
2425 		goto net_dev_put;
2426 	}
2427 
2428 	mutex_lock(&listen_id->handler_mutex);
2429 	if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) {
2430 		ret = -ECONNABORTED;
2431 		goto err_unlock;
2432 	}
2433 
2434 	offset = cma_user_data_offset(listen_id);
2435 	event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
2436 	if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) {
2437 		conn_id = cma_ib_new_udp_id(&listen_id->id, ib_event, net_dev);
2438 		event.param.ud.private_data = ib_event->private_data + offset;
2439 		event.param.ud.private_data_len =
2440 				IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset;
2441 	} else {
2442 		conn_id = cma_ib_new_conn_id(&listen_id->id, ib_event, net_dev);
2443 		cma_set_req_event_data(&event, &ib_event->param.req_rcvd,
2444 				       ib_event->private_data, offset);
2445 	}
2446 	if (!conn_id) {
2447 		ret = -ENOMEM;
2448 		goto err_unlock;
2449 	}
2450 
2451 	mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
2452 	ret = cma_ib_acquire_dev(conn_id, listen_id, &req);
2453 	if (ret) {
2454 		destroy_id_handler_unlock(conn_id);
2455 		goto err_unlock;
2456 	}
2457 
2458 	conn_id->cm_id.ib = cm_id;
2459 	cm_id->context = conn_id;
2460 	cm_id->cm_handler = cma_ib_handler;
2461 
2462 	ret = cma_cm_event_handler(conn_id, &event);
2463 	if (ret) {
2464 		/* Destroy the CM ID by returning a non-zero value. */
2465 		conn_id->cm_id.ib = NULL;
2466 		mutex_unlock(&listen_id->handler_mutex);
2467 		destroy_id_handler_unlock(conn_id);
2468 		goto net_dev_put;
2469 	}
2470 
2471 	if (READ_ONCE(conn_id->state) == RDMA_CM_CONNECT &&
2472 	    conn_id->id.qp_type != IB_QPT_UD) {
2473 		trace_cm_prepare_mra(cm_id->context);
2474 		ib_prepare_cm_mra(cm_id);
2475 	}
2476 	mutex_unlock(&conn_id->handler_mutex);
2477 
2478 err_unlock:
2479 	mutex_unlock(&listen_id->handler_mutex);
2480 
2481 net_dev_put:
2482 	dev_put(net_dev);
2483 
2484 	return ret;
2485 }
2486 
2487 __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr)
2488 {
2489 	if (addr->sa_family == AF_IB)
2490 		return ((struct sockaddr_ib *) addr)->sib_sid;
2491 
2492 	return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr)));
2493 }
2494 EXPORT_SYMBOL(rdma_get_service_id);
2495 
2496 void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid,
2497 		    union ib_gid *dgid)
2498 {
2499 	struct rdma_addr *addr = &cm_id->route.addr;
2500 
2501 	if (!cm_id->device) {
2502 		if (sgid)
2503 			memset(sgid, 0, sizeof(*sgid));
2504 		if (dgid)
2505 			memset(dgid, 0, sizeof(*dgid));
2506 		return;
2507 	}
2508 
2509 	if (rdma_protocol_roce(cm_id->device, cm_id->port_num)) {
2510 		if (sgid)
2511 			rdma_ip2gid((struct sockaddr *)&addr->src_addr, sgid);
2512 		if (dgid)
2513 			rdma_ip2gid((struct sockaddr *)&addr->dst_addr, dgid);
2514 	} else {
2515 		if (sgid)
2516 			rdma_addr_get_sgid(&addr->dev_addr, sgid);
2517 		if (dgid)
2518 			rdma_addr_get_dgid(&addr->dev_addr, dgid);
2519 	}
2520 }
2521 EXPORT_SYMBOL(rdma_read_gids);
2522 
2523 static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event)
2524 {
2525 	struct rdma_id_private *id_priv = iw_id->context;
2526 	struct rdma_cm_event event = {};
2527 	int ret = 0;
2528 	struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
2529 	struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
2530 
2531 	mutex_lock(&id_priv->handler_mutex);
2532 	if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
2533 		goto out;
2534 
2535 	switch (iw_event->event) {
2536 	case IW_CM_EVENT_CLOSE:
2537 		event.event = RDMA_CM_EVENT_DISCONNECTED;
2538 		break;
2539 	case IW_CM_EVENT_CONNECT_REPLY:
2540 		memcpy(cma_src_addr(id_priv), laddr,
2541 		       rdma_addr_size(laddr));
2542 		memcpy(cma_dst_addr(id_priv), raddr,
2543 		       rdma_addr_size(raddr));
2544 		switch (iw_event->status) {
2545 		case 0:
2546 			event.event = RDMA_CM_EVENT_ESTABLISHED;
2547 			event.param.conn.initiator_depth = iw_event->ird;
2548 			event.param.conn.responder_resources = iw_event->ord;
2549 			break;
2550 		case -ECONNRESET:
2551 		case -ECONNREFUSED:
2552 			event.event = RDMA_CM_EVENT_REJECTED;
2553 			break;
2554 		case -ETIMEDOUT:
2555 			event.event = RDMA_CM_EVENT_UNREACHABLE;
2556 			break;
2557 		default:
2558 			event.event = RDMA_CM_EVENT_CONNECT_ERROR;
2559 			break;
2560 		}
2561 		break;
2562 	case IW_CM_EVENT_ESTABLISHED:
2563 		event.event = RDMA_CM_EVENT_ESTABLISHED;
2564 		event.param.conn.initiator_depth = iw_event->ird;
2565 		event.param.conn.responder_resources = iw_event->ord;
2566 		break;
2567 	default:
2568 		goto out;
2569 	}
2570 
2571 	event.status = iw_event->status;
2572 	event.param.conn.private_data = iw_event->private_data;
2573 	event.param.conn.private_data_len = iw_event->private_data_len;
2574 	ret = cma_cm_event_handler(id_priv, &event);
2575 	if (ret) {
2576 		/* Destroy the CM ID by returning a non-zero value. */
2577 		id_priv->cm_id.iw = NULL;
2578 		destroy_id_handler_unlock(id_priv);
2579 		return ret;
2580 	}
2581 
2582 out:
2583 	mutex_unlock(&id_priv->handler_mutex);
2584 	return ret;
2585 }
2586 
2587 static int iw_conn_req_handler(struct iw_cm_id *cm_id,
2588 			       struct iw_cm_event *iw_event)
2589 {
2590 	struct rdma_id_private *listen_id, *conn_id;
2591 	struct rdma_cm_event event = {};
2592 	int ret = -ECONNABORTED;
2593 	struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
2594 	struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
2595 
2596 	event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
2597 	event.param.conn.private_data = iw_event->private_data;
2598 	event.param.conn.private_data_len = iw_event->private_data_len;
2599 	event.param.conn.initiator_depth = iw_event->ird;
2600 	event.param.conn.responder_resources = iw_event->ord;
2601 
2602 	listen_id = cm_id->context;
2603 
2604 	mutex_lock(&listen_id->handler_mutex);
2605 	if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN)
2606 		goto out;
2607 
2608 	/* Create a new RDMA id for the new IW CM ID */
2609 	conn_id = __rdma_create_id(listen_id->id.route.addr.dev_addr.net,
2610 				   listen_id->id.event_handler,
2611 				   listen_id->id.context, RDMA_PS_TCP,
2612 				   IB_QPT_RC, listen_id);
2613 	if (IS_ERR(conn_id)) {
2614 		ret = -ENOMEM;
2615 		goto out;
2616 	}
2617 	mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
2618 	conn_id->state = RDMA_CM_CONNECT;
2619 
2620 	ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr);
2621 	if (ret) {
2622 		mutex_unlock(&listen_id->handler_mutex);
2623 		destroy_id_handler_unlock(conn_id);
2624 		return ret;
2625 	}
2626 
2627 	ret = cma_iw_acquire_dev(conn_id, listen_id);
2628 	if (ret) {
2629 		mutex_unlock(&listen_id->handler_mutex);
2630 		destroy_id_handler_unlock(conn_id);
2631 		return ret;
2632 	}
2633 
2634 	conn_id->cm_id.iw = cm_id;
2635 	cm_id->context = conn_id;
2636 	cm_id->cm_handler = cma_iw_handler;
2637 
2638 	memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr));
2639 	memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr));
2640 
2641 	ret = cma_cm_event_handler(conn_id, &event);
2642 	if (ret) {
2643 		/* User wants to destroy the CM ID */
2644 		conn_id->cm_id.iw = NULL;
2645 		mutex_unlock(&listen_id->handler_mutex);
2646 		destroy_id_handler_unlock(conn_id);
2647 		return ret;
2648 	}
2649 
2650 	mutex_unlock(&conn_id->handler_mutex);
2651 
2652 out:
2653 	mutex_unlock(&listen_id->handler_mutex);
2654 	return ret;
2655 }
2656 
2657 static int cma_ib_listen(struct rdma_id_private *id_priv)
2658 {
2659 	struct sockaddr *addr;
2660 	struct ib_cm_id	*id;
2661 	__be64 svc_id;
2662 
2663 	addr = cma_src_addr(id_priv);
2664 	svc_id = rdma_get_service_id(&id_priv->id, addr);
2665 	id = ib_cm_insert_listen(id_priv->id.device,
2666 				 cma_ib_req_handler, svc_id);
2667 	if (IS_ERR(id))
2668 		return PTR_ERR(id);
2669 	id_priv->cm_id.ib = id;
2670 
2671 	return 0;
2672 }
2673 
2674 static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog)
2675 {
2676 	int ret;
2677 	struct iw_cm_id	*id;
2678 
2679 	id = iw_create_cm_id(id_priv->id.device,
2680 			     iw_conn_req_handler,
2681 			     id_priv);
2682 	if (IS_ERR(id))
2683 		return PTR_ERR(id);
2684 
2685 	mutex_lock(&id_priv->qp_mutex);
2686 	id->tos = id_priv->tos;
2687 	id->tos_set = id_priv->tos_set;
2688 	mutex_unlock(&id_priv->qp_mutex);
2689 	id->afonly = id_priv->afonly;
2690 	id_priv->cm_id.iw = id;
2691 
2692 	memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv),
2693 	       rdma_addr_size(cma_src_addr(id_priv)));
2694 
2695 	ret = iw_cm_listen(id_priv->cm_id.iw, backlog);
2696 
2697 	if (ret) {
2698 		iw_destroy_cm_id(id_priv->cm_id.iw);
2699 		id_priv->cm_id.iw = NULL;
2700 	}
2701 
2702 	return ret;
2703 }
2704 
2705 static int cma_listen_handler(struct rdma_cm_id *id,
2706 			      struct rdma_cm_event *event)
2707 {
2708 	struct rdma_id_private *id_priv = id->context;
2709 
2710 	/* Listening IDs are always destroyed on removal */
2711 	if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL)
2712 		return -1;
2713 
2714 	id->context = id_priv->id.context;
2715 	id->event_handler = id_priv->id.event_handler;
2716 	trace_cm_event_handler(id_priv, event);
2717 	return id_priv->id.event_handler(id, event);
2718 }
2719 
2720 static int cma_listen_on_dev(struct rdma_id_private *id_priv,
2721 			     struct cma_device *cma_dev,
2722 			     struct rdma_id_private **to_destroy)
2723 {
2724 	struct rdma_id_private *dev_id_priv;
2725 	struct net *net = id_priv->id.route.addr.dev_addr.net;
2726 	int ret;
2727 
2728 	lockdep_assert_held(&lock);
2729 
2730 	*to_destroy = NULL;
2731 	if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1))
2732 		return 0;
2733 
2734 	dev_id_priv =
2735 		__rdma_create_id(net, cma_listen_handler, id_priv,
2736 				 id_priv->id.ps, id_priv->id.qp_type, id_priv);
2737 	if (IS_ERR(dev_id_priv))
2738 		return PTR_ERR(dev_id_priv);
2739 
2740 	dev_id_priv->state = RDMA_CM_ADDR_BOUND;
2741 	memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv),
2742 	       rdma_addr_size(cma_src_addr(id_priv)));
2743 
2744 	_cma_attach_to_dev(dev_id_priv, cma_dev);
2745 	rdma_restrack_add(&dev_id_priv->res);
2746 	cma_id_get(id_priv);
2747 	dev_id_priv->internal_id = 1;
2748 	dev_id_priv->afonly = id_priv->afonly;
2749 	mutex_lock(&id_priv->qp_mutex);
2750 	dev_id_priv->tos_set = id_priv->tos_set;
2751 	dev_id_priv->tos = id_priv->tos;
2752 	mutex_unlock(&id_priv->qp_mutex);
2753 
2754 	ret = rdma_listen(&dev_id_priv->id, id_priv->backlog);
2755 	if (ret)
2756 		goto err_listen;
2757 	list_add_tail(&dev_id_priv->listen_item, &id_priv->listen_list);
2758 	return 0;
2759 err_listen:
2760 	/* Caller must destroy this after releasing lock */
2761 	*to_destroy = dev_id_priv;
2762 	dev_warn(&cma_dev->device->dev, "RDMA CMA: %s, error %d\n", __func__, ret);
2763 	return ret;
2764 }
2765 
2766 static int cma_listen_on_all(struct rdma_id_private *id_priv)
2767 {
2768 	struct rdma_id_private *to_destroy;
2769 	struct cma_device *cma_dev;
2770 	int ret;
2771 
2772 	mutex_lock(&lock);
2773 	list_add_tail(&id_priv->listen_any_item, &listen_any_list);
2774 	list_for_each_entry(cma_dev, &dev_list, list) {
2775 		ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy);
2776 		if (ret) {
2777 			/* Prevent racing with cma_process_remove() */
2778 			if (to_destroy)
2779 				list_del_init(&to_destroy->device_item);
2780 			goto err_listen;
2781 		}
2782 	}
2783 	mutex_unlock(&lock);
2784 	return 0;
2785 
2786 err_listen:
2787 	_cma_cancel_listens(id_priv);
2788 	mutex_unlock(&lock);
2789 	if (to_destroy)
2790 		rdma_destroy_id(&to_destroy->id);
2791 	return ret;
2792 }
2793 
2794 void rdma_set_service_type(struct rdma_cm_id *id, int tos)
2795 {
2796 	struct rdma_id_private *id_priv;
2797 
2798 	id_priv = container_of(id, struct rdma_id_private, id);
2799 	mutex_lock(&id_priv->qp_mutex);
2800 	id_priv->tos = (u8) tos;
2801 	id_priv->tos_set = true;
2802 	mutex_unlock(&id_priv->qp_mutex);
2803 }
2804 EXPORT_SYMBOL(rdma_set_service_type);
2805 
2806 /**
2807  * rdma_set_ack_timeout() - Set the ack timeout of QP associated
2808  *                          with a connection identifier.
2809  * @id: Communication identifier to associated with service type.
2810  * @timeout: Ack timeout to set a QP, expressed as 4.096 * 2^(timeout) usec.
2811  *
2812  * This function should be called before rdma_connect() on active side,
2813  * and on passive side before rdma_accept(). It is applicable to primary
2814  * path only. The timeout will affect the local side of the QP, it is not
2815  * negotiated with remote side and zero disables the timer. In case it is
2816  * set before rdma_resolve_route, the value will also be used to determine
2817  * PacketLifeTime for RoCE.
2818  *
2819  * Return: 0 for success
2820  */
2821 int rdma_set_ack_timeout(struct rdma_cm_id *id, u8 timeout)
2822 {
2823 	struct rdma_id_private *id_priv;
2824 
2825 	if (id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_INI)
2826 		return -EINVAL;
2827 
2828 	id_priv = container_of(id, struct rdma_id_private, id);
2829 	mutex_lock(&id_priv->qp_mutex);
2830 	id_priv->timeout = timeout;
2831 	id_priv->timeout_set = true;
2832 	mutex_unlock(&id_priv->qp_mutex);
2833 
2834 	return 0;
2835 }
2836 EXPORT_SYMBOL(rdma_set_ack_timeout);
2837 
2838 /**
2839  * rdma_set_min_rnr_timer() - Set the minimum RNR Retry timer of the
2840  *			      QP associated with a connection identifier.
2841  * @id: Communication identifier to associated with service type.
2842  * @min_rnr_timer: 5-bit value encoded as Table 45: "Encoding for RNR NAK
2843  *		   Timer Field" in the IBTA specification.
2844  *
2845  * This function should be called before rdma_connect() on active
2846  * side, and on passive side before rdma_accept(). The timer value
2847  * will be associated with the local QP. When it receives a send it is
2848  * not read to handle, typically if the receive queue is empty, an RNR
2849  * Retry NAK is returned to the requester with the min_rnr_timer
2850  * encoded. The requester will then wait at least the time specified
2851  * in the NAK before retrying. The default is zero, which translates
2852  * to a minimum RNR Timer value of 655 ms.
2853  *
2854  * Return: 0 for success
2855  */
2856 int rdma_set_min_rnr_timer(struct rdma_cm_id *id, u8 min_rnr_timer)
2857 {
2858 	struct rdma_id_private *id_priv;
2859 
2860 	/* It is a five-bit value */
2861 	if (min_rnr_timer & 0xe0)
2862 		return -EINVAL;
2863 
2864 	if (WARN_ON(id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_TGT))
2865 		return -EINVAL;
2866 
2867 	id_priv = container_of(id, struct rdma_id_private, id);
2868 	mutex_lock(&id_priv->qp_mutex);
2869 	id_priv->min_rnr_timer = min_rnr_timer;
2870 	id_priv->min_rnr_timer_set = true;
2871 	mutex_unlock(&id_priv->qp_mutex);
2872 
2873 	return 0;
2874 }
2875 EXPORT_SYMBOL(rdma_set_min_rnr_timer);
2876 
2877 static int route_set_path_rec_inbound(struct cma_work *work,
2878 				      struct sa_path_rec *path_rec)
2879 {
2880 	struct rdma_route *route = &work->id->id.route;
2881 
2882 	if (!route->path_rec_inbound) {
2883 		route->path_rec_inbound =
2884 			kzalloc(sizeof(*route->path_rec_inbound), GFP_KERNEL);
2885 		if (!route->path_rec_inbound)
2886 			return -ENOMEM;
2887 	}
2888 
2889 	*route->path_rec_inbound = *path_rec;
2890 	return 0;
2891 }
2892 
2893 static int route_set_path_rec_outbound(struct cma_work *work,
2894 				       struct sa_path_rec *path_rec)
2895 {
2896 	struct rdma_route *route = &work->id->id.route;
2897 
2898 	if (!route->path_rec_outbound) {
2899 		route->path_rec_outbound =
2900 			kzalloc(sizeof(*route->path_rec_outbound), GFP_KERNEL);
2901 		if (!route->path_rec_outbound)
2902 			return -ENOMEM;
2903 	}
2904 
2905 	*route->path_rec_outbound = *path_rec;
2906 	return 0;
2907 }
2908 
2909 static void cma_query_handler(int status, struct sa_path_rec *path_rec,
2910 			      unsigned int num_prs, void *context)
2911 {
2912 	struct cma_work *work = context;
2913 	struct rdma_route *route;
2914 	int i;
2915 
2916 	route = &work->id->id.route;
2917 
2918 	if (status)
2919 		goto fail;
2920 
2921 	for (i = 0; i < num_prs; i++) {
2922 		if (!path_rec[i].flags || (path_rec[i].flags & IB_PATH_GMP))
2923 			*route->path_rec = path_rec[i];
2924 		else if (path_rec[i].flags & IB_PATH_INBOUND)
2925 			status = route_set_path_rec_inbound(work, &path_rec[i]);
2926 		else if (path_rec[i].flags & IB_PATH_OUTBOUND)
2927 			status = route_set_path_rec_outbound(work,
2928 							     &path_rec[i]);
2929 		else
2930 			status = -EINVAL;
2931 
2932 		if (status)
2933 			goto fail;
2934 	}
2935 
2936 	route->num_pri_alt_paths = 1;
2937 	queue_work(cma_wq, &work->work);
2938 	return;
2939 
2940 fail:
2941 	work->old_state = RDMA_CM_ROUTE_QUERY;
2942 	work->new_state = RDMA_CM_ADDR_RESOLVED;
2943 	work->event.event = RDMA_CM_EVENT_ROUTE_ERROR;
2944 	work->event.status = status;
2945 	pr_debug_ratelimited("RDMA CM: ROUTE_ERROR: failed to query path. status %d\n",
2946 			     status);
2947 	queue_work(cma_wq, &work->work);
2948 }
2949 
2950 static int cma_query_ib_route(struct rdma_id_private *id_priv,
2951 			      unsigned long timeout_ms, struct cma_work *work)
2952 {
2953 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
2954 	struct sa_path_rec path_rec;
2955 	ib_sa_comp_mask comp_mask;
2956 	struct sockaddr_in6 *sin6;
2957 	struct sockaddr_ib *sib;
2958 
2959 	memset(&path_rec, 0, sizeof path_rec);
2960 
2961 	if (rdma_cap_opa_ah(id_priv->id.device, id_priv->id.port_num))
2962 		path_rec.rec_type = SA_PATH_REC_TYPE_OPA;
2963 	else
2964 		path_rec.rec_type = SA_PATH_REC_TYPE_IB;
2965 	rdma_addr_get_sgid(dev_addr, &path_rec.sgid);
2966 	rdma_addr_get_dgid(dev_addr, &path_rec.dgid);
2967 	path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
2968 	path_rec.numb_path = 1;
2969 	path_rec.reversible = 1;
2970 	path_rec.service_id = rdma_get_service_id(&id_priv->id,
2971 						  cma_dst_addr(id_priv));
2972 
2973 	comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID |
2974 		    IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH |
2975 		    IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID;
2976 
2977 	switch (cma_family(id_priv)) {
2978 	case AF_INET:
2979 		path_rec.qos_class = cpu_to_be16((u16) id_priv->tos);
2980 		comp_mask |= IB_SA_PATH_REC_QOS_CLASS;
2981 		break;
2982 	case AF_INET6:
2983 		sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv);
2984 		path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20);
2985 		comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
2986 		break;
2987 	case AF_IB:
2988 		sib = (struct sockaddr_ib *) cma_src_addr(id_priv);
2989 		path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20);
2990 		comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
2991 		break;
2992 	}
2993 
2994 	id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device,
2995 					       id_priv->id.port_num, &path_rec,
2996 					       comp_mask, timeout_ms,
2997 					       GFP_KERNEL, cma_query_handler,
2998 					       work, &id_priv->query);
2999 
3000 	return (id_priv->query_id < 0) ? id_priv->query_id : 0;
3001 }
3002 
3003 static void cma_iboe_join_work_handler(struct work_struct *work)
3004 {
3005 	struct cma_multicast *mc =
3006 		container_of(work, struct cma_multicast, iboe_join.work);
3007 	struct rdma_cm_event *event = &mc->iboe_join.event;
3008 	struct rdma_id_private *id_priv = mc->id_priv;
3009 	int ret;
3010 
3011 	mutex_lock(&id_priv->handler_mutex);
3012 	if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
3013 	    READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
3014 		goto out_unlock;
3015 
3016 	ret = cma_cm_event_handler(id_priv, event);
3017 	WARN_ON(ret);
3018 
3019 out_unlock:
3020 	mutex_unlock(&id_priv->handler_mutex);
3021 	if (event->event == RDMA_CM_EVENT_MULTICAST_JOIN)
3022 		rdma_destroy_ah_attr(&event->param.ud.ah_attr);
3023 }
3024 
3025 static void cma_work_handler(struct work_struct *_work)
3026 {
3027 	struct cma_work *work = container_of(_work, struct cma_work, work);
3028 	struct rdma_id_private *id_priv = work->id;
3029 
3030 	mutex_lock(&id_priv->handler_mutex);
3031 	if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
3032 	    READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
3033 		goto out_unlock;
3034 	if (work->old_state != 0 || work->new_state != 0) {
3035 		if (!cma_comp_exch(id_priv, work->old_state, work->new_state))
3036 			goto out_unlock;
3037 	}
3038 
3039 	if (cma_cm_event_handler(id_priv, &work->event)) {
3040 		cma_id_put(id_priv);
3041 		destroy_id_handler_unlock(id_priv);
3042 		goto out_free;
3043 	}
3044 
3045 out_unlock:
3046 	mutex_unlock(&id_priv->handler_mutex);
3047 	cma_id_put(id_priv);
3048 out_free:
3049 	if (work->event.event == RDMA_CM_EVENT_MULTICAST_JOIN)
3050 		rdma_destroy_ah_attr(&work->event.param.ud.ah_attr);
3051 	kfree(work);
3052 }
3053 
3054 static void cma_init_resolve_route_work(struct cma_work *work,
3055 					struct rdma_id_private *id_priv)
3056 {
3057 	work->id = id_priv;
3058 	INIT_WORK(&work->work, cma_work_handler);
3059 	work->old_state = RDMA_CM_ROUTE_QUERY;
3060 	work->new_state = RDMA_CM_ROUTE_RESOLVED;
3061 	work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED;
3062 }
3063 
3064 static void enqueue_resolve_addr_work(struct cma_work *work,
3065 				      struct rdma_id_private *id_priv)
3066 {
3067 	/* Balances with cma_id_put() in cma_work_handler */
3068 	cma_id_get(id_priv);
3069 
3070 	work->id = id_priv;
3071 	INIT_WORK(&work->work, cma_work_handler);
3072 	work->old_state = RDMA_CM_ADDR_QUERY;
3073 	work->new_state = RDMA_CM_ADDR_RESOLVED;
3074 	work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
3075 
3076 	queue_work(cma_wq, &work->work);
3077 }
3078 
3079 static int cma_resolve_ib_route(struct rdma_id_private *id_priv,
3080 				unsigned long timeout_ms)
3081 {
3082 	struct rdma_route *route = &id_priv->id.route;
3083 	struct cma_work *work;
3084 	int ret;
3085 
3086 	work = kzalloc(sizeof *work, GFP_KERNEL);
3087 	if (!work)
3088 		return -ENOMEM;
3089 
3090 	cma_init_resolve_route_work(work, id_priv);
3091 
3092 	if (!route->path_rec)
3093 		route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL);
3094 	if (!route->path_rec) {
3095 		ret = -ENOMEM;
3096 		goto err1;
3097 	}
3098 
3099 	ret = cma_query_ib_route(id_priv, timeout_ms, work);
3100 	if (ret)
3101 		goto err2;
3102 
3103 	return 0;
3104 err2:
3105 	kfree(route->path_rec);
3106 	route->path_rec = NULL;
3107 err1:
3108 	kfree(work);
3109 	return ret;
3110 }
3111 
3112 static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type,
3113 					   unsigned long supported_gids,
3114 					   enum ib_gid_type default_gid)
3115 {
3116 	if ((network_type == RDMA_NETWORK_IPV4 ||
3117 	     network_type == RDMA_NETWORK_IPV6) &&
3118 	    test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids))
3119 		return IB_GID_TYPE_ROCE_UDP_ENCAP;
3120 
3121 	return default_gid;
3122 }
3123 
3124 /*
3125  * cma_iboe_set_path_rec_l2_fields() is helper function which sets
3126  * path record type based on GID type.
3127  * It also sets up other L2 fields which includes destination mac address
3128  * netdev ifindex, of the path record.
3129  * It returns the netdev of the bound interface for this path record entry.
3130  */
3131 static struct net_device *
3132 cma_iboe_set_path_rec_l2_fields(struct rdma_id_private *id_priv)
3133 {
3134 	struct rdma_route *route = &id_priv->id.route;
3135 	enum ib_gid_type gid_type = IB_GID_TYPE_ROCE;
3136 	struct rdma_addr *addr = &route->addr;
3137 	unsigned long supported_gids;
3138 	struct net_device *ndev;
3139 
3140 	if (!addr->dev_addr.bound_dev_if)
3141 		return NULL;
3142 
3143 	ndev = dev_get_by_index(addr->dev_addr.net,
3144 				addr->dev_addr.bound_dev_if);
3145 	if (!ndev)
3146 		return NULL;
3147 
3148 	supported_gids = roce_gid_type_mask_support(id_priv->id.device,
3149 						    id_priv->id.port_num);
3150 	gid_type = cma_route_gid_type(addr->dev_addr.network,
3151 				      supported_gids,
3152 				      id_priv->gid_type);
3153 	/* Use the hint from IP Stack to select GID Type */
3154 	if (gid_type < ib_network_to_gid_type(addr->dev_addr.network))
3155 		gid_type = ib_network_to_gid_type(addr->dev_addr.network);
3156 	route->path_rec->rec_type = sa_conv_gid_to_pathrec_type(gid_type);
3157 
3158 	route->path_rec->roce.route_resolved = true;
3159 	sa_path_set_dmac(route->path_rec, addr->dev_addr.dst_dev_addr);
3160 	return ndev;
3161 }
3162 
3163 int rdma_set_ib_path(struct rdma_cm_id *id,
3164 		     struct sa_path_rec *path_rec)
3165 {
3166 	struct rdma_id_private *id_priv;
3167 	struct net_device *ndev;
3168 	int ret;
3169 
3170 	id_priv = container_of(id, struct rdma_id_private, id);
3171 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
3172 			   RDMA_CM_ROUTE_RESOLVED))
3173 		return -EINVAL;
3174 
3175 	id->route.path_rec = kmemdup(path_rec, sizeof(*path_rec),
3176 				     GFP_KERNEL);
3177 	if (!id->route.path_rec) {
3178 		ret = -ENOMEM;
3179 		goto err;
3180 	}
3181 
3182 	if (rdma_protocol_roce(id->device, id->port_num)) {
3183 		ndev = cma_iboe_set_path_rec_l2_fields(id_priv);
3184 		if (!ndev) {
3185 			ret = -ENODEV;
3186 			goto err_free;
3187 		}
3188 		dev_put(ndev);
3189 	}
3190 
3191 	id->route.num_pri_alt_paths = 1;
3192 	return 0;
3193 
3194 err_free:
3195 	kfree(id->route.path_rec);
3196 	id->route.path_rec = NULL;
3197 err:
3198 	cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED);
3199 	return ret;
3200 }
3201 EXPORT_SYMBOL(rdma_set_ib_path);
3202 
3203 static int cma_resolve_iw_route(struct rdma_id_private *id_priv)
3204 {
3205 	struct cma_work *work;
3206 
3207 	work = kzalloc(sizeof *work, GFP_KERNEL);
3208 	if (!work)
3209 		return -ENOMEM;
3210 
3211 	cma_init_resolve_route_work(work, id_priv);
3212 	queue_work(cma_wq, &work->work);
3213 	return 0;
3214 }
3215 
3216 static int get_vlan_ndev_tc(struct net_device *vlan_ndev, int prio)
3217 {
3218 	struct net_device *dev;
3219 
3220 	dev = vlan_dev_real_dev(vlan_ndev);
3221 	if (dev->num_tc)
3222 		return netdev_get_prio_tc_map(dev, prio);
3223 
3224 	return (vlan_dev_get_egress_qos_mask(vlan_ndev, prio) &
3225 		VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
3226 }
3227 
3228 struct iboe_prio_tc_map {
3229 	int input_prio;
3230 	int output_tc;
3231 	bool found;
3232 };
3233 
3234 static int get_lower_vlan_dev_tc(struct net_device *dev,
3235 				 struct netdev_nested_priv *priv)
3236 {
3237 	struct iboe_prio_tc_map *map = (struct iboe_prio_tc_map *)priv->data;
3238 
3239 	if (is_vlan_dev(dev))
3240 		map->output_tc = get_vlan_ndev_tc(dev, map->input_prio);
3241 	else if (dev->num_tc)
3242 		map->output_tc = netdev_get_prio_tc_map(dev, map->input_prio);
3243 	else
3244 		map->output_tc = 0;
3245 	/* We are interested only in first level VLAN device, so always
3246 	 * return 1 to stop iterating over next level devices.
3247 	 */
3248 	map->found = true;
3249 	return 1;
3250 }
3251 
3252 static int iboe_tos_to_sl(struct net_device *ndev, int tos)
3253 {
3254 	struct iboe_prio_tc_map prio_tc_map = {};
3255 	int prio = rt_tos2priority(tos);
3256 	struct netdev_nested_priv priv;
3257 
3258 	/* If VLAN device, get it directly from the VLAN netdev */
3259 	if (is_vlan_dev(ndev))
3260 		return get_vlan_ndev_tc(ndev, prio);
3261 
3262 	prio_tc_map.input_prio = prio;
3263 	priv.data = (void *)&prio_tc_map;
3264 	rcu_read_lock();
3265 	netdev_walk_all_lower_dev_rcu(ndev,
3266 				      get_lower_vlan_dev_tc,
3267 				      &priv);
3268 	rcu_read_unlock();
3269 	/* If map is found from lower device, use it; Otherwise
3270 	 * continue with the current netdevice to get priority to tc map.
3271 	 */
3272 	if (prio_tc_map.found)
3273 		return prio_tc_map.output_tc;
3274 	else if (ndev->num_tc)
3275 		return netdev_get_prio_tc_map(ndev, prio);
3276 	else
3277 		return 0;
3278 }
3279 
3280 static __be32 cma_get_roce_udp_flow_label(struct rdma_id_private *id_priv)
3281 {
3282 	struct sockaddr_in6 *addr6;
3283 	u16 dport, sport;
3284 	u32 hash, fl;
3285 
3286 	addr6 = (struct sockaddr_in6 *)cma_src_addr(id_priv);
3287 	fl = be32_to_cpu(addr6->sin6_flowinfo) & IB_GRH_FLOWLABEL_MASK;
3288 	if ((cma_family(id_priv) != AF_INET6) || !fl) {
3289 		dport = be16_to_cpu(cma_port(cma_dst_addr(id_priv)));
3290 		sport = be16_to_cpu(cma_port(cma_src_addr(id_priv)));
3291 		hash = (u32)sport * 31 + dport;
3292 		fl = hash & IB_GRH_FLOWLABEL_MASK;
3293 	}
3294 
3295 	return cpu_to_be32(fl);
3296 }
3297 
3298 static int cma_resolve_iboe_route(struct rdma_id_private *id_priv)
3299 {
3300 	struct rdma_route *route = &id_priv->id.route;
3301 	struct rdma_addr *addr = &route->addr;
3302 	struct cma_work *work;
3303 	int ret;
3304 	struct net_device *ndev;
3305 
3306 	u8 default_roce_tos = id_priv->cma_dev->default_roce_tos[id_priv->id.port_num -
3307 					rdma_start_port(id_priv->cma_dev->device)];
3308 	u8 tos;
3309 
3310 	mutex_lock(&id_priv->qp_mutex);
3311 	tos = id_priv->tos_set ? id_priv->tos : default_roce_tos;
3312 	mutex_unlock(&id_priv->qp_mutex);
3313 
3314 	work = kzalloc(sizeof *work, GFP_KERNEL);
3315 	if (!work)
3316 		return -ENOMEM;
3317 
3318 	route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL);
3319 	if (!route->path_rec) {
3320 		ret = -ENOMEM;
3321 		goto err1;
3322 	}
3323 
3324 	route->num_pri_alt_paths = 1;
3325 
3326 	ndev = cma_iboe_set_path_rec_l2_fields(id_priv);
3327 	if (!ndev) {
3328 		ret = -ENODEV;
3329 		goto err2;
3330 	}
3331 
3332 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
3333 		    &route->path_rec->sgid);
3334 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr,
3335 		    &route->path_rec->dgid);
3336 
3337 	if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB)
3338 		/* TODO: get the hoplimit from the inet/inet6 device */
3339 		route->path_rec->hop_limit = addr->dev_addr.hoplimit;
3340 	else
3341 		route->path_rec->hop_limit = 1;
3342 	route->path_rec->reversible = 1;
3343 	route->path_rec->pkey = cpu_to_be16(0xffff);
3344 	route->path_rec->mtu_selector = IB_SA_EQ;
3345 	route->path_rec->sl = iboe_tos_to_sl(ndev, tos);
3346 	route->path_rec->traffic_class = tos;
3347 	route->path_rec->mtu = iboe_get_mtu(ndev->mtu);
3348 	route->path_rec->rate_selector = IB_SA_EQ;
3349 	route->path_rec->rate = IB_RATE_PORT_CURRENT;
3350 	dev_put(ndev);
3351 	route->path_rec->packet_life_time_selector = IB_SA_EQ;
3352 	/* In case ACK timeout is set, use this value to calculate
3353 	 * PacketLifeTime.  As per IBTA 12.7.34,
3354 	 * local ACK timeout = (2 * PacketLifeTime + Local CA’s ACK delay).
3355 	 * Assuming a negligible local ACK delay, we can use
3356 	 * PacketLifeTime = local ACK timeout/2
3357 	 * as a reasonable approximation for RoCE networks.
3358 	 */
3359 	mutex_lock(&id_priv->qp_mutex);
3360 	if (id_priv->timeout_set && id_priv->timeout)
3361 		route->path_rec->packet_life_time = id_priv->timeout - 1;
3362 	else
3363 		route->path_rec->packet_life_time = CMA_IBOE_PACKET_LIFETIME;
3364 	mutex_unlock(&id_priv->qp_mutex);
3365 
3366 	if (!route->path_rec->mtu) {
3367 		ret = -EINVAL;
3368 		goto err2;
3369 	}
3370 
3371 	if (rdma_protocol_roce_udp_encap(id_priv->id.device,
3372 					 id_priv->id.port_num))
3373 		route->path_rec->flow_label =
3374 			cma_get_roce_udp_flow_label(id_priv);
3375 
3376 	cma_init_resolve_route_work(work, id_priv);
3377 	queue_work(cma_wq, &work->work);
3378 
3379 	return 0;
3380 
3381 err2:
3382 	kfree(route->path_rec);
3383 	route->path_rec = NULL;
3384 	route->num_pri_alt_paths = 0;
3385 err1:
3386 	kfree(work);
3387 	return ret;
3388 }
3389 
3390 int rdma_resolve_route(struct rdma_cm_id *id, unsigned long timeout_ms)
3391 {
3392 	struct rdma_id_private *id_priv;
3393 	enum rdma_cm_state state;
3394 	int ret;
3395 
3396 	if (!timeout_ms)
3397 		return -EINVAL;
3398 
3399 	id_priv = container_of(id, struct rdma_id_private, id);
3400 	state = id_priv->state;
3401 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
3402 			   RDMA_CM_ROUTE_QUERY) &&
3403 	    !cma_comp_exch(id_priv, RDMA_CM_ADDRINFO_RESOLVED,
3404 			   RDMA_CM_ROUTE_QUERY))
3405 		return -EINVAL;
3406 
3407 	cma_id_get(id_priv);
3408 	if (rdma_cap_ib_sa(id->device, id->port_num))
3409 		ret = cma_resolve_ib_route(id_priv, timeout_ms);
3410 	else if (rdma_protocol_roce(id->device, id->port_num)) {
3411 		ret = cma_resolve_iboe_route(id_priv);
3412 		if (!ret)
3413 			cma_add_id_to_tree(id_priv);
3414 	}
3415 	else if (rdma_protocol_iwarp(id->device, id->port_num))
3416 		ret = cma_resolve_iw_route(id_priv);
3417 	else
3418 		ret = -ENOSYS;
3419 
3420 	if (ret)
3421 		goto err;
3422 
3423 	return 0;
3424 err:
3425 	cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, state);
3426 	cma_id_put(id_priv);
3427 	return ret;
3428 }
3429 EXPORT_SYMBOL(rdma_resolve_route);
3430 
3431 static void cma_set_loopback(struct sockaddr *addr)
3432 {
3433 	switch (addr->sa_family) {
3434 	case AF_INET:
3435 		((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK);
3436 		break;
3437 	case AF_INET6:
3438 		ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr,
3439 			      0, 0, 0, htonl(1));
3440 		break;
3441 	default:
3442 		ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr,
3443 			    0, 0, 0, htonl(1));
3444 		break;
3445 	}
3446 }
3447 
3448 static int cma_bind_loopback(struct rdma_id_private *id_priv)
3449 {
3450 	struct cma_device *cma_dev, *cur_dev;
3451 	union ib_gid gid;
3452 	enum ib_port_state port_state;
3453 	unsigned int p;
3454 	u16 pkey;
3455 	int ret;
3456 
3457 	cma_dev = NULL;
3458 	mutex_lock(&lock);
3459 	list_for_each_entry(cur_dev, &dev_list, list) {
3460 		if (cma_family(id_priv) == AF_IB &&
3461 		    !rdma_cap_ib_cm(cur_dev->device, 1))
3462 			continue;
3463 
3464 		if (!cma_dev)
3465 			cma_dev = cur_dev;
3466 
3467 		rdma_for_each_port (cur_dev->device, p) {
3468 			if (!ib_get_cached_port_state(cur_dev->device, p, &port_state) &&
3469 			    port_state == IB_PORT_ACTIVE) {
3470 				cma_dev = cur_dev;
3471 				goto port_found;
3472 			}
3473 		}
3474 	}
3475 
3476 	if (!cma_dev) {
3477 		ret = -ENODEV;
3478 		goto out;
3479 	}
3480 
3481 	p = 1;
3482 
3483 port_found:
3484 	ret = rdma_query_gid(cma_dev->device, p, 0, &gid);
3485 	if (ret)
3486 		goto out;
3487 
3488 	ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey);
3489 	if (ret)
3490 		goto out;
3491 
3492 	id_priv->id.route.addr.dev_addr.dev_type =
3493 		(rdma_protocol_ib(cma_dev->device, p)) ?
3494 		ARPHRD_INFINIBAND : ARPHRD_ETHER;
3495 
3496 	rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid);
3497 	ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey);
3498 	id_priv->id.port_num = p;
3499 	cma_attach_to_dev(id_priv, cma_dev);
3500 	rdma_restrack_add(&id_priv->res);
3501 	cma_set_loopback(cma_src_addr(id_priv));
3502 out:
3503 	mutex_unlock(&lock);
3504 	return ret;
3505 }
3506 
3507 static void addr_handler(int status, struct sockaddr *src_addr,
3508 			 struct rdma_dev_addr *dev_addr, void *context)
3509 {
3510 	struct rdma_id_private *id_priv = context;
3511 	struct rdma_cm_event event = {};
3512 	struct sockaddr *addr;
3513 	struct sockaddr_storage old_addr;
3514 
3515 	mutex_lock(&id_priv->handler_mutex);
3516 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY,
3517 			   RDMA_CM_ADDR_RESOLVED))
3518 		goto out;
3519 
3520 	/*
3521 	 * Store the previous src address, so that if we fail to acquire
3522 	 * matching rdma device, old address can be restored back, which helps
3523 	 * to cancel the cma listen operation correctly.
3524 	 */
3525 	addr = cma_src_addr(id_priv);
3526 	memcpy(&old_addr, addr, rdma_addr_size(addr));
3527 	memcpy(addr, src_addr, rdma_addr_size(src_addr));
3528 	if (!status && !id_priv->cma_dev) {
3529 		status = cma_acquire_dev_by_src_ip(id_priv);
3530 		if (status)
3531 			pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to acquire device. status %d\n",
3532 					     status);
3533 		rdma_restrack_add(&id_priv->res);
3534 	} else if (status) {
3535 		pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to resolve IP. status %d\n", status);
3536 	}
3537 
3538 	if (status) {
3539 		memcpy(addr, &old_addr,
3540 		       rdma_addr_size((struct sockaddr *)&old_addr));
3541 		if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
3542 				   RDMA_CM_ADDR_BOUND))
3543 			goto out;
3544 		event.event = RDMA_CM_EVENT_ADDR_ERROR;
3545 		event.status = status;
3546 	} else
3547 		event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
3548 
3549 	if (cma_cm_event_handler(id_priv, &event)) {
3550 		destroy_id_handler_unlock(id_priv);
3551 		return;
3552 	}
3553 out:
3554 	mutex_unlock(&id_priv->handler_mutex);
3555 }
3556 
3557 static int cma_resolve_loopback(struct rdma_id_private *id_priv)
3558 {
3559 	struct cma_work *work;
3560 	union ib_gid gid;
3561 	int ret;
3562 
3563 	work = kzalloc(sizeof *work, GFP_KERNEL);
3564 	if (!work)
3565 		return -ENOMEM;
3566 
3567 	if (!id_priv->cma_dev) {
3568 		ret = cma_bind_loopback(id_priv);
3569 		if (ret)
3570 			goto err;
3571 	}
3572 
3573 	rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid);
3574 	rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid);
3575 
3576 	enqueue_resolve_addr_work(work, id_priv);
3577 	return 0;
3578 err:
3579 	kfree(work);
3580 	return ret;
3581 }
3582 
3583 static int cma_resolve_ib_addr(struct rdma_id_private *id_priv)
3584 {
3585 	struct cma_work *work;
3586 	int ret;
3587 
3588 	work = kzalloc(sizeof *work, GFP_KERNEL);
3589 	if (!work)
3590 		return -ENOMEM;
3591 
3592 	if (!id_priv->cma_dev) {
3593 		ret = cma_resolve_ib_dev(id_priv);
3594 		if (ret)
3595 			goto err;
3596 	}
3597 
3598 	rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *)
3599 		&(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr));
3600 
3601 	enqueue_resolve_addr_work(work, id_priv);
3602 	return 0;
3603 err:
3604 	kfree(work);
3605 	return ret;
3606 }
3607 
3608 int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse)
3609 {
3610 	struct rdma_id_private *id_priv;
3611 	unsigned long flags;
3612 	int ret;
3613 
3614 	id_priv = container_of(id, struct rdma_id_private, id);
3615 	spin_lock_irqsave(&id_priv->lock, flags);
3616 	if ((reuse && id_priv->state != RDMA_CM_LISTEN) ||
3617 	    id_priv->state == RDMA_CM_IDLE) {
3618 		id_priv->reuseaddr = reuse;
3619 		ret = 0;
3620 	} else {
3621 		ret = -EINVAL;
3622 	}
3623 	spin_unlock_irqrestore(&id_priv->lock, flags);
3624 	return ret;
3625 }
3626 EXPORT_SYMBOL(rdma_set_reuseaddr);
3627 
3628 int rdma_set_afonly(struct rdma_cm_id *id, int afonly)
3629 {
3630 	struct rdma_id_private *id_priv;
3631 	unsigned long flags;
3632 	int ret;
3633 
3634 	id_priv = container_of(id, struct rdma_id_private, id);
3635 	spin_lock_irqsave(&id_priv->lock, flags);
3636 	if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) {
3637 		id_priv->options |= (1 << CMA_OPTION_AFONLY);
3638 		id_priv->afonly = afonly;
3639 		ret = 0;
3640 	} else {
3641 		ret = -EINVAL;
3642 	}
3643 	spin_unlock_irqrestore(&id_priv->lock, flags);
3644 	return ret;
3645 }
3646 EXPORT_SYMBOL(rdma_set_afonly);
3647 
3648 static void cma_bind_port(struct rdma_bind_list *bind_list,
3649 			  struct rdma_id_private *id_priv)
3650 {
3651 	struct sockaddr *addr;
3652 	struct sockaddr_ib *sib;
3653 	u64 sid, mask;
3654 	__be16 port;
3655 
3656 	lockdep_assert_held(&lock);
3657 
3658 	addr = cma_src_addr(id_priv);
3659 	port = htons(bind_list->port);
3660 
3661 	switch (addr->sa_family) {
3662 	case AF_INET:
3663 		((struct sockaddr_in *) addr)->sin_port = port;
3664 		break;
3665 	case AF_INET6:
3666 		((struct sockaddr_in6 *) addr)->sin6_port = port;
3667 		break;
3668 	case AF_IB:
3669 		sib = (struct sockaddr_ib *) addr;
3670 		sid = be64_to_cpu(sib->sib_sid);
3671 		mask = be64_to_cpu(sib->sib_sid_mask);
3672 		sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port));
3673 		sib->sib_sid_mask = cpu_to_be64(~0ULL);
3674 		break;
3675 	}
3676 	id_priv->bind_list = bind_list;
3677 	hlist_add_head(&id_priv->node, &bind_list->owners);
3678 }
3679 
3680 static int cma_alloc_port(enum rdma_ucm_port_space ps,
3681 			  struct rdma_id_private *id_priv, unsigned short snum)
3682 {
3683 	struct rdma_bind_list *bind_list;
3684 	int ret;
3685 
3686 	lockdep_assert_held(&lock);
3687 
3688 	bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL);
3689 	if (!bind_list)
3690 		return -ENOMEM;
3691 
3692 	ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list,
3693 			   snum);
3694 	if (ret < 0)
3695 		goto err;
3696 
3697 	bind_list->ps = ps;
3698 	bind_list->port = snum;
3699 	cma_bind_port(bind_list, id_priv);
3700 	return 0;
3701 err:
3702 	kfree(bind_list);
3703 	return ret == -ENOSPC ? -EADDRNOTAVAIL : ret;
3704 }
3705 
3706 static int cma_port_is_unique(struct rdma_bind_list *bind_list,
3707 			      struct rdma_id_private *id_priv)
3708 {
3709 	struct rdma_id_private *cur_id;
3710 	struct sockaddr  *daddr = cma_dst_addr(id_priv);
3711 	struct sockaddr  *saddr = cma_src_addr(id_priv);
3712 	__be16 dport = cma_port(daddr);
3713 
3714 	lockdep_assert_held(&lock);
3715 
3716 	hlist_for_each_entry(cur_id, &bind_list->owners, node) {
3717 		struct sockaddr  *cur_daddr = cma_dst_addr(cur_id);
3718 		struct sockaddr  *cur_saddr = cma_src_addr(cur_id);
3719 		__be16 cur_dport = cma_port(cur_daddr);
3720 
3721 		if (id_priv == cur_id)
3722 			continue;
3723 
3724 		/* different dest port -> unique */
3725 		if (!cma_any_port(daddr) &&
3726 		    !cma_any_port(cur_daddr) &&
3727 		    (dport != cur_dport))
3728 			continue;
3729 
3730 		/* different src address -> unique */
3731 		if (!cma_any_addr(saddr) &&
3732 		    !cma_any_addr(cur_saddr) &&
3733 		    cma_addr_cmp(saddr, cur_saddr))
3734 			continue;
3735 
3736 		/* different dst address -> unique */
3737 		if (!cma_any_addr(daddr) &&
3738 		    !cma_any_addr(cur_daddr) &&
3739 		    cma_addr_cmp(daddr, cur_daddr))
3740 			continue;
3741 
3742 		return -EADDRNOTAVAIL;
3743 	}
3744 	return 0;
3745 }
3746 
3747 static int cma_alloc_any_port(enum rdma_ucm_port_space ps,
3748 			      struct rdma_id_private *id_priv)
3749 {
3750 	static unsigned int last_used_port;
3751 	int low, high, remaining;
3752 	unsigned int rover;
3753 	struct net *net = id_priv->id.route.addr.dev_addr.net;
3754 
3755 	lockdep_assert_held(&lock);
3756 
3757 	inet_get_local_port_range(net, &low, &high);
3758 	remaining = (high - low) + 1;
3759 	rover = get_random_u32_inclusive(low, remaining + low - 1);
3760 retry:
3761 	if (last_used_port != rover) {
3762 		struct rdma_bind_list *bind_list;
3763 		int ret;
3764 
3765 		bind_list = cma_ps_find(net, ps, (unsigned short)rover);
3766 
3767 		if (!bind_list) {
3768 			ret = cma_alloc_port(ps, id_priv, rover);
3769 		} else {
3770 			ret = cma_port_is_unique(bind_list, id_priv);
3771 			if (!ret)
3772 				cma_bind_port(bind_list, id_priv);
3773 		}
3774 		/*
3775 		 * Remember previously used port number in order to avoid
3776 		 * re-using same port immediately after it is closed.
3777 		 */
3778 		if (!ret)
3779 			last_used_port = rover;
3780 		if (ret != -EADDRNOTAVAIL)
3781 			return ret;
3782 	}
3783 	if (--remaining) {
3784 		rover++;
3785 		if ((rover < low) || (rover > high))
3786 			rover = low;
3787 		goto retry;
3788 	}
3789 	return -EADDRNOTAVAIL;
3790 }
3791 
3792 /*
3793  * Check that the requested port is available.  This is called when trying to
3794  * bind to a specific port, or when trying to listen on a bound port.  In
3795  * the latter case, the provided id_priv may already be on the bind_list, but
3796  * we still need to check that it's okay to start listening.
3797  */
3798 static int cma_check_port(struct rdma_bind_list *bind_list,
3799 			  struct rdma_id_private *id_priv, uint8_t reuseaddr)
3800 {
3801 	struct rdma_id_private *cur_id;
3802 	struct sockaddr *addr, *cur_addr;
3803 
3804 	lockdep_assert_held(&lock);
3805 
3806 	addr = cma_src_addr(id_priv);
3807 	hlist_for_each_entry(cur_id, &bind_list->owners, node) {
3808 		if (id_priv == cur_id)
3809 			continue;
3810 
3811 		if (reuseaddr && cur_id->reuseaddr)
3812 			continue;
3813 
3814 		cur_addr = cma_src_addr(cur_id);
3815 		if (id_priv->afonly && cur_id->afonly &&
3816 		    (addr->sa_family != cur_addr->sa_family))
3817 			continue;
3818 
3819 		if (cma_any_addr(addr) || cma_any_addr(cur_addr))
3820 			return -EADDRNOTAVAIL;
3821 
3822 		if (!cma_addr_cmp(addr, cur_addr))
3823 			return -EADDRINUSE;
3824 	}
3825 	return 0;
3826 }
3827 
3828 static int cma_use_port(enum rdma_ucm_port_space ps,
3829 			struct rdma_id_private *id_priv)
3830 {
3831 	struct rdma_bind_list *bind_list;
3832 	unsigned short snum;
3833 	int ret;
3834 
3835 	lockdep_assert_held(&lock);
3836 
3837 	snum = ntohs(cma_port(cma_src_addr(id_priv)));
3838 	if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
3839 		return -EACCES;
3840 
3841 	bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum);
3842 	if (!bind_list) {
3843 		ret = cma_alloc_port(ps, id_priv, snum);
3844 	} else {
3845 		ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr);
3846 		if (!ret)
3847 			cma_bind_port(bind_list, id_priv);
3848 	}
3849 	return ret;
3850 }
3851 
3852 static enum rdma_ucm_port_space
3853 cma_select_inet_ps(struct rdma_id_private *id_priv)
3854 {
3855 	switch (id_priv->id.ps) {
3856 	case RDMA_PS_TCP:
3857 	case RDMA_PS_UDP:
3858 	case RDMA_PS_IPOIB:
3859 	case RDMA_PS_IB:
3860 		return id_priv->id.ps;
3861 	default:
3862 
3863 		return 0;
3864 	}
3865 }
3866 
3867 static enum rdma_ucm_port_space
3868 cma_select_ib_ps(struct rdma_id_private *id_priv)
3869 {
3870 	enum rdma_ucm_port_space ps = 0;
3871 	struct sockaddr_ib *sib;
3872 	u64 sid_ps, mask, sid;
3873 
3874 	sib = (struct sockaddr_ib *) cma_src_addr(id_priv);
3875 	mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK;
3876 	sid = be64_to_cpu(sib->sib_sid) & mask;
3877 
3878 	if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) {
3879 		sid_ps = RDMA_IB_IP_PS_IB;
3880 		ps = RDMA_PS_IB;
3881 	} else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) &&
3882 		   (sid == (RDMA_IB_IP_PS_TCP & mask))) {
3883 		sid_ps = RDMA_IB_IP_PS_TCP;
3884 		ps = RDMA_PS_TCP;
3885 	} else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) &&
3886 		   (sid == (RDMA_IB_IP_PS_UDP & mask))) {
3887 		sid_ps = RDMA_IB_IP_PS_UDP;
3888 		ps = RDMA_PS_UDP;
3889 	}
3890 
3891 	if (ps) {
3892 		sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib)));
3893 		sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK |
3894 						be64_to_cpu(sib->sib_sid_mask));
3895 	}
3896 	return ps;
3897 }
3898 
3899 static int cma_get_port(struct rdma_id_private *id_priv)
3900 {
3901 	enum rdma_ucm_port_space ps;
3902 	int ret;
3903 
3904 	if (cma_family(id_priv) != AF_IB)
3905 		ps = cma_select_inet_ps(id_priv);
3906 	else
3907 		ps = cma_select_ib_ps(id_priv);
3908 	if (!ps)
3909 		return -EPROTONOSUPPORT;
3910 
3911 	mutex_lock(&lock);
3912 	if (cma_any_port(cma_src_addr(id_priv)))
3913 		ret = cma_alloc_any_port(ps, id_priv);
3914 	else
3915 		ret = cma_use_port(ps, id_priv);
3916 	mutex_unlock(&lock);
3917 
3918 	return ret;
3919 }
3920 
3921 static int cma_check_linklocal(struct rdma_dev_addr *dev_addr,
3922 			       struct sockaddr *addr)
3923 {
3924 #if IS_ENABLED(CONFIG_IPV6)
3925 	struct sockaddr_in6 *sin6;
3926 
3927 	if (addr->sa_family != AF_INET6)
3928 		return 0;
3929 
3930 	sin6 = (struct sockaddr_in6 *) addr;
3931 
3932 	if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL))
3933 		return 0;
3934 
3935 	if (!sin6->sin6_scope_id)
3936 			return -EINVAL;
3937 
3938 	dev_addr->bound_dev_if = sin6->sin6_scope_id;
3939 #endif
3940 	return 0;
3941 }
3942 
3943 int rdma_listen(struct rdma_cm_id *id, int backlog)
3944 {
3945 	struct rdma_id_private *id_priv =
3946 		container_of(id, struct rdma_id_private, id);
3947 	int ret;
3948 
3949 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) {
3950 		struct sockaddr_in any_in = {
3951 			.sin_family = AF_INET,
3952 			.sin_addr.s_addr = htonl(INADDR_ANY),
3953 		};
3954 
3955 		/* For a well behaved ULP state will be RDMA_CM_IDLE */
3956 		ret = rdma_bind_addr(id, (struct sockaddr *)&any_in);
3957 		if (ret)
3958 			return ret;
3959 		if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND,
3960 					   RDMA_CM_LISTEN)))
3961 			return -EINVAL;
3962 	}
3963 
3964 	/*
3965 	 * Once the ID reaches RDMA_CM_LISTEN it is not allowed to be reusable
3966 	 * any more, and has to be unique in the bind list.
3967 	 */
3968 	if (id_priv->reuseaddr) {
3969 		mutex_lock(&lock);
3970 		ret = cma_check_port(id_priv->bind_list, id_priv, 0);
3971 		if (!ret)
3972 			id_priv->reuseaddr = 0;
3973 		mutex_unlock(&lock);
3974 		if (ret)
3975 			goto err;
3976 	}
3977 
3978 	id_priv->backlog = backlog;
3979 	if (id_priv->cma_dev) {
3980 		if (rdma_cap_ib_cm(id->device, 1)) {
3981 			ret = cma_ib_listen(id_priv);
3982 			if (ret)
3983 				goto err;
3984 		} else if (rdma_cap_iw_cm(id->device, 1)) {
3985 			ret = cma_iw_listen(id_priv, backlog);
3986 			if (ret)
3987 				goto err;
3988 		} else {
3989 			ret = -ENOSYS;
3990 			goto err;
3991 		}
3992 	} else {
3993 		ret = cma_listen_on_all(id_priv);
3994 		if (ret)
3995 			goto err;
3996 	}
3997 
3998 	return 0;
3999 err:
4000 	id_priv->backlog = 0;
4001 	/*
4002 	 * All the failure paths that lead here will not allow the req_handler's
4003 	 * to have run.
4004 	 */
4005 	cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND);
4006 	return ret;
4007 }
4008 EXPORT_SYMBOL(rdma_listen);
4009 
4010 static int rdma_bind_addr_dst(struct rdma_id_private *id_priv,
4011 			      struct sockaddr *addr, const struct sockaddr *daddr)
4012 {
4013 	struct sockaddr *id_daddr;
4014 	int ret;
4015 
4016 	if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 &&
4017 	    addr->sa_family != AF_IB)
4018 		return -EAFNOSUPPORT;
4019 
4020 	if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND))
4021 		return -EINVAL;
4022 
4023 	ret = cma_check_linklocal(&id_priv->id.route.addr.dev_addr, addr);
4024 	if (ret)
4025 		goto err1;
4026 
4027 	memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr));
4028 	if (!cma_any_addr(addr)) {
4029 		ret = cma_translate_addr(addr, &id_priv->id.route.addr.dev_addr);
4030 		if (ret)
4031 			goto err1;
4032 
4033 		ret = cma_acquire_dev_by_src_ip(id_priv);
4034 		if (ret)
4035 			goto err1;
4036 	}
4037 
4038 	if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) {
4039 		if (addr->sa_family == AF_INET)
4040 			id_priv->afonly = 1;
4041 #if IS_ENABLED(CONFIG_IPV6)
4042 		else if (addr->sa_family == AF_INET6) {
4043 			struct net *net = id_priv->id.route.addr.dev_addr.net;
4044 
4045 			id_priv->afonly = net->ipv6.sysctl.bindv6only;
4046 		}
4047 #endif
4048 	}
4049 	id_daddr = cma_dst_addr(id_priv);
4050 	if (daddr != id_daddr)
4051 		memcpy(id_daddr, daddr, rdma_addr_size(addr));
4052 	id_daddr->sa_family = addr->sa_family;
4053 
4054 	ret = cma_get_port(id_priv);
4055 	if (ret)
4056 		goto err2;
4057 
4058 	if (!cma_any_addr(addr))
4059 		rdma_restrack_add(&id_priv->res);
4060 	return 0;
4061 err2:
4062 	if (id_priv->cma_dev)
4063 		cma_release_dev(id_priv);
4064 err1:
4065 	cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE);
4066 	return ret;
4067 }
4068 
4069 static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
4070 			 const struct sockaddr *dst_addr)
4071 {
4072 	struct rdma_id_private *id_priv =
4073 		container_of(id, struct rdma_id_private, id);
4074 	struct sockaddr_storage zero_sock = {};
4075 
4076 	if (src_addr && src_addr->sa_family)
4077 		return rdma_bind_addr_dst(id_priv, src_addr, dst_addr);
4078 
4079 	/*
4080 	 * When the src_addr is not specified, automatically supply an any addr
4081 	 */
4082 	zero_sock.ss_family = dst_addr->sa_family;
4083 	if (IS_ENABLED(CONFIG_IPV6) && dst_addr->sa_family == AF_INET6) {
4084 		struct sockaddr_in6 *src_addr6 =
4085 			(struct sockaddr_in6 *)&zero_sock;
4086 		struct sockaddr_in6 *dst_addr6 =
4087 			(struct sockaddr_in6 *)dst_addr;
4088 
4089 		src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id;
4090 		if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)
4091 			id->route.addr.dev_addr.bound_dev_if =
4092 				dst_addr6->sin6_scope_id;
4093 	} else if (dst_addr->sa_family == AF_IB) {
4094 		((struct sockaddr_ib *)&zero_sock)->sib_pkey =
4095 			((struct sockaddr_ib *)dst_addr)->sib_pkey;
4096 	}
4097 	return rdma_bind_addr_dst(id_priv, (struct sockaddr *)&zero_sock, dst_addr);
4098 }
4099 
4100 /*
4101  * If required, resolve the source address for bind and leave the id_priv in
4102  * state RDMA_CM_ADDR_BOUND. This oddly uses the state to determine the prior
4103  * calls made by ULP, a previously bound ID will not be re-bound and src_addr is
4104  * ignored.
4105  */
4106 static int resolve_prepare_src(struct rdma_id_private *id_priv,
4107 			       struct sockaddr *src_addr,
4108 			       const struct sockaddr *dst_addr)
4109 {
4110 	int ret;
4111 
4112 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) {
4113 		/* For a well behaved ULP state will be RDMA_CM_IDLE */
4114 		ret = cma_bind_addr(&id_priv->id, src_addr, dst_addr);
4115 		if (ret)
4116 			return ret;
4117 		if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND,
4118 					   RDMA_CM_ADDR_QUERY)))
4119 			return -EINVAL;
4120 
4121 	} else {
4122 		memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr));
4123 	}
4124 
4125 	if (cma_family(id_priv) != dst_addr->sa_family) {
4126 		ret = -EINVAL;
4127 		goto err_state;
4128 	}
4129 	return 0;
4130 
4131 err_state:
4132 	cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND);
4133 	return ret;
4134 }
4135 
4136 int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
4137 		      const struct sockaddr *dst_addr, unsigned long timeout_ms)
4138 {
4139 	struct rdma_id_private *id_priv =
4140 		container_of(id, struct rdma_id_private, id);
4141 	int ret;
4142 
4143 	ret = resolve_prepare_src(id_priv, src_addr, dst_addr);
4144 	if (ret)
4145 		return ret;
4146 
4147 	if (cma_any_addr(dst_addr)) {
4148 		ret = cma_resolve_loopback(id_priv);
4149 	} else {
4150 		if (dst_addr->sa_family == AF_IB) {
4151 			ret = cma_resolve_ib_addr(id_priv);
4152 		} else {
4153 			/*
4154 			 * The FSM can return back to RDMA_CM_ADDR_BOUND after
4155 			 * rdma_resolve_ip() is called, eg through the error
4156 			 * path in addr_handler(). If this happens the existing
4157 			 * request must be canceled before issuing a new one.
4158 			 * Since canceling a request is a bit slow and this
4159 			 * oddball path is rare, keep track once a request has
4160 			 * been issued. The track turns out to be a permanent
4161 			 * state since this is the only cancel as it is
4162 			 * immediately before rdma_resolve_ip().
4163 			 */
4164 			if (id_priv->used_resolve_ip)
4165 				rdma_addr_cancel(&id->route.addr.dev_addr);
4166 			else
4167 				id_priv->used_resolve_ip = 1;
4168 			ret = rdma_resolve_ip(cma_src_addr(id_priv), dst_addr,
4169 					      &id->route.addr.dev_addr,
4170 					      timeout_ms, addr_handler,
4171 					      false, id_priv);
4172 		}
4173 	}
4174 	if (ret)
4175 		goto err;
4176 
4177 	return 0;
4178 err:
4179 	cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND);
4180 	return ret;
4181 }
4182 EXPORT_SYMBOL(rdma_resolve_addr);
4183 
4184 int rdma_restrict_node_type(struct rdma_cm_id *id, u8 node_type)
4185 {
4186 	struct rdma_id_private *id_priv =
4187 		container_of(id, struct rdma_id_private, id);
4188 	int ret = 0;
4189 
4190 	switch (node_type) {
4191 	case RDMA_NODE_UNSPECIFIED:
4192 	case RDMA_NODE_IB_CA:
4193 	case RDMA_NODE_RNIC:
4194 		break;
4195 	default:
4196 		return -EINVAL;
4197 	}
4198 
4199 	mutex_lock(&lock);
4200 	if (id_priv->cma_dev)
4201 		ret = -EALREADY;
4202 	else
4203 		id_priv->restricted_node_type = node_type;
4204 	mutex_unlock(&lock);
4205 
4206 	return ret;
4207 }
4208 EXPORT_SYMBOL(rdma_restrict_node_type);
4209 
4210 int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr)
4211 {
4212 	struct rdma_id_private *id_priv =
4213 		container_of(id, struct rdma_id_private, id);
4214 
4215 	return rdma_bind_addr_dst(id_priv, addr, cma_dst_addr(id_priv));
4216 }
4217 EXPORT_SYMBOL(rdma_bind_addr);
4218 
4219 static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv)
4220 {
4221 	struct cma_hdr *cma_hdr;
4222 
4223 	cma_hdr = hdr;
4224 	cma_hdr->cma_version = CMA_VERSION;
4225 	if (cma_family(id_priv) == AF_INET) {
4226 		struct sockaddr_in *src4, *dst4;
4227 
4228 		src4 = (struct sockaddr_in *) cma_src_addr(id_priv);
4229 		dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv);
4230 
4231 		cma_set_ip_ver(cma_hdr, 4);
4232 		cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr;
4233 		cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr;
4234 		cma_hdr->port = src4->sin_port;
4235 	} else if (cma_family(id_priv) == AF_INET6) {
4236 		struct sockaddr_in6 *src6, *dst6;
4237 
4238 		src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv);
4239 		dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv);
4240 
4241 		cma_set_ip_ver(cma_hdr, 6);
4242 		cma_hdr->src_addr.ip6 = src6->sin6_addr;
4243 		cma_hdr->dst_addr.ip6 = dst6->sin6_addr;
4244 		cma_hdr->port = src6->sin6_port;
4245 	}
4246 	return 0;
4247 }
4248 
4249 static int cma_sidr_rep_handler(struct ib_cm_id *cm_id,
4250 				const struct ib_cm_event *ib_event)
4251 {
4252 	struct rdma_id_private *id_priv = cm_id->context;
4253 	struct rdma_cm_event event = {};
4254 	const struct ib_cm_sidr_rep_event_param *rep =
4255 				&ib_event->param.sidr_rep_rcvd;
4256 	int ret;
4257 
4258 	mutex_lock(&id_priv->handler_mutex);
4259 	if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
4260 		goto out;
4261 
4262 	switch (ib_event->event) {
4263 	case IB_CM_SIDR_REQ_ERROR:
4264 		event.event = RDMA_CM_EVENT_UNREACHABLE;
4265 		event.status = -ETIMEDOUT;
4266 		break;
4267 	case IB_CM_SIDR_REP_RECEIVED:
4268 		event.param.ud.private_data = ib_event->private_data;
4269 		event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE;
4270 		if (rep->status != IB_SIDR_SUCCESS) {
4271 			event.event = RDMA_CM_EVENT_UNREACHABLE;
4272 			event.status = ib_event->param.sidr_rep_rcvd.status;
4273 			pr_debug_ratelimited("RDMA CM: UNREACHABLE: bad SIDR reply. status %d\n",
4274 					     event.status);
4275 			break;
4276 		}
4277 		ret = cma_set_qkey(id_priv, rep->qkey);
4278 		if (ret) {
4279 			pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to set qkey. status %d\n", ret);
4280 			event.event = RDMA_CM_EVENT_ADDR_ERROR;
4281 			event.status = ret;
4282 			break;
4283 		}
4284 		ib_init_ah_attr_from_path(id_priv->id.device,
4285 					  id_priv->id.port_num,
4286 					  id_priv->id.route.path_rec,
4287 					  &event.param.ud.ah_attr,
4288 					  rep->sgid_attr);
4289 		event.param.ud.qp_num = rep->qpn;
4290 		event.param.ud.qkey = rep->qkey;
4291 		event.event = RDMA_CM_EVENT_ESTABLISHED;
4292 		event.status = 0;
4293 		break;
4294 	default:
4295 		pr_err("RDMA CMA: unexpected IB CM event: %d\n",
4296 		       ib_event->event);
4297 		goto out;
4298 	}
4299 
4300 	ret = cma_cm_event_handler(id_priv, &event);
4301 
4302 	rdma_destroy_ah_attr(&event.param.ud.ah_attr);
4303 	if (ret) {
4304 		/* Destroy the CM ID by returning a non-zero value. */
4305 		id_priv->cm_id.ib = NULL;
4306 		destroy_id_handler_unlock(id_priv);
4307 		return ret;
4308 	}
4309 out:
4310 	mutex_unlock(&id_priv->handler_mutex);
4311 	return 0;
4312 }
4313 
4314 static int cma_resolve_ib_udp(struct rdma_id_private *id_priv,
4315 			      struct rdma_conn_param *conn_param)
4316 {
4317 	struct ib_cm_sidr_req_param req;
4318 	struct ib_cm_id	*id;
4319 	void *private_data;
4320 	u8 offset;
4321 	int ret;
4322 
4323 	memset(&req, 0, sizeof req);
4324 	offset = cma_user_data_offset(id_priv);
4325 	if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len))
4326 		return -EINVAL;
4327 
4328 	if (req.private_data_len) {
4329 		private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
4330 		if (!private_data)
4331 			return -ENOMEM;
4332 	} else {
4333 		private_data = NULL;
4334 	}
4335 
4336 	if (conn_param->private_data && conn_param->private_data_len)
4337 		memcpy(private_data + offset, conn_param->private_data,
4338 		       conn_param->private_data_len);
4339 
4340 	if (private_data) {
4341 		ret = cma_format_hdr(private_data, id_priv);
4342 		if (ret)
4343 			goto out;
4344 		req.private_data = private_data;
4345 	}
4346 
4347 	id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler,
4348 			     id_priv);
4349 	if (IS_ERR(id)) {
4350 		ret = PTR_ERR(id);
4351 		goto out;
4352 	}
4353 	id_priv->cm_id.ib = id;
4354 
4355 	req.path = id_priv->id.route.path_rec;
4356 	req.sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr;
4357 	req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
4358 	req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8);
4359 	req.max_cm_retries = CMA_MAX_CM_RETRIES;
4360 
4361 	trace_cm_send_sidr_req(id_priv);
4362 	ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req);
4363 	if (ret) {
4364 		ib_destroy_cm_id(id_priv->cm_id.ib);
4365 		id_priv->cm_id.ib = NULL;
4366 	}
4367 out:
4368 	kfree(private_data);
4369 	return ret;
4370 }
4371 
4372 static int cma_connect_ib(struct rdma_id_private *id_priv,
4373 			  struct rdma_conn_param *conn_param)
4374 {
4375 	struct ib_cm_req_param req;
4376 	struct rdma_route *route;
4377 	void *private_data;
4378 	struct ib_cm_id	*id;
4379 	u8 offset;
4380 	int ret;
4381 
4382 	memset(&req, 0, sizeof req);
4383 	offset = cma_user_data_offset(id_priv);
4384 	if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len))
4385 		return -EINVAL;
4386 
4387 	if (req.private_data_len) {
4388 		private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
4389 		if (!private_data)
4390 			return -ENOMEM;
4391 	} else {
4392 		private_data = NULL;
4393 	}
4394 
4395 	if (conn_param->private_data && conn_param->private_data_len)
4396 		memcpy(private_data + offset, conn_param->private_data,
4397 		       conn_param->private_data_len);
4398 
4399 	id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv);
4400 	if (IS_ERR(id)) {
4401 		ret = PTR_ERR(id);
4402 		goto out;
4403 	}
4404 	id_priv->cm_id.ib = id;
4405 
4406 	route = &id_priv->id.route;
4407 	if (private_data) {
4408 		ret = cma_format_hdr(private_data, id_priv);
4409 		if (ret)
4410 			goto out;
4411 		req.private_data = private_data;
4412 	}
4413 
4414 	req.primary_path = &route->path_rec[0];
4415 	req.primary_path_inbound = route->path_rec_inbound;
4416 	req.primary_path_outbound = route->path_rec_outbound;
4417 	if (route->num_pri_alt_paths == 2)
4418 		req.alternate_path = &route->path_rec[1];
4419 
4420 	req.ppath_sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr;
4421 	/* Alternate path SGID attribute currently unsupported */
4422 	req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
4423 	req.qp_num = id_priv->qp_num;
4424 	req.qp_type = id_priv->id.qp_type;
4425 	req.starting_psn = id_priv->seq_num;
4426 	req.responder_resources = conn_param->responder_resources;
4427 	req.initiator_depth = conn_param->initiator_depth;
4428 	req.flow_control = conn_param->flow_control;
4429 	req.retry_count = min_t(u8, 7, conn_param->retry_count);
4430 	req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
4431 	req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
4432 	req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
4433 	req.max_cm_retries = CMA_MAX_CM_RETRIES;
4434 	req.srq = id_priv->srq ? 1 : 0;
4435 	req.ece.vendor_id = id_priv->ece.vendor_id;
4436 	req.ece.attr_mod = id_priv->ece.attr_mod;
4437 
4438 	trace_cm_send_req(id_priv);
4439 	ret = ib_send_cm_req(id_priv->cm_id.ib, &req);
4440 out:
4441 	if (ret && !IS_ERR(id)) {
4442 		ib_destroy_cm_id(id);
4443 		id_priv->cm_id.ib = NULL;
4444 	}
4445 
4446 	kfree(private_data);
4447 	return ret;
4448 }
4449 
4450 static int cma_connect_iw(struct rdma_id_private *id_priv,
4451 			  struct rdma_conn_param *conn_param)
4452 {
4453 	struct iw_cm_id *cm_id;
4454 	int ret;
4455 	struct iw_cm_conn_param iw_param;
4456 
4457 	cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv);
4458 	if (IS_ERR(cm_id))
4459 		return PTR_ERR(cm_id);
4460 
4461 	mutex_lock(&id_priv->qp_mutex);
4462 	cm_id->tos = id_priv->tos;
4463 	cm_id->tos_set = id_priv->tos_set;
4464 	mutex_unlock(&id_priv->qp_mutex);
4465 
4466 	id_priv->cm_id.iw = cm_id;
4467 
4468 	memcpy(&cm_id->local_addr, cma_src_addr(id_priv),
4469 	       rdma_addr_size(cma_src_addr(id_priv)));
4470 	memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv),
4471 	       rdma_addr_size(cma_dst_addr(id_priv)));
4472 
4473 	ret = cma_modify_qp_rtr(id_priv, conn_param);
4474 	if (ret)
4475 		goto out;
4476 
4477 	if (conn_param) {
4478 		iw_param.ord = conn_param->initiator_depth;
4479 		iw_param.ird = conn_param->responder_resources;
4480 		iw_param.private_data = conn_param->private_data;
4481 		iw_param.private_data_len = conn_param->private_data_len;
4482 		iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num;
4483 	} else {
4484 		memset(&iw_param, 0, sizeof iw_param);
4485 		iw_param.qpn = id_priv->qp_num;
4486 	}
4487 	ret = iw_cm_connect(cm_id, &iw_param);
4488 out:
4489 	if (ret) {
4490 		iw_destroy_cm_id(cm_id);
4491 		id_priv->cm_id.iw = NULL;
4492 	}
4493 	return ret;
4494 }
4495 
4496 /**
4497  * rdma_connect_locked - Initiate an active connection request.
4498  * @id: Connection identifier to connect.
4499  * @conn_param: Connection information used for connected QPs.
4500  *
4501  * Same as rdma_connect() but can only be called from the
4502  * RDMA_CM_EVENT_ROUTE_RESOLVED handler callback.
4503  */
4504 int rdma_connect_locked(struct rdma_cm_id *id,
4505 			struct rdma_conn_param *conn_param)
4506 {
4507 	struct rdma_id_private *id_priv =
4508 		container_of(id, struct rdma_id_private, id);
4509 	int ret;
4510 
4511 	lockdep_assert_held(&id_priv->handler_mutex);
4512 
4513 	if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT))
4514 		return -EINVAL;
4515 
4516 	if (!id->qp) {
4517 		id_priv->qp_num = conn_param->qp_num;
4518 		id_priv->srq = conn_param->srq;
4519 	}
4520 
4521 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4522 		if (id->qp_type == IB_QPT_UD)
4523 			ret = cma_resolve_ib_udp(id_priv, conn_param);
4524 		else
4525 			ret = cma_connect_ib(id_priv, conn_param);
4526 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4527 		ret = cma_connect_iw(id_priv, conn_param);
4528 	} else {
4529 		ret = -ENOSYS;
4530 	}
4531 	if (ret)
4532 		goto err_state;
4533 	return 0;
4534 err_state:
4535 	cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED);
4536 	return ret;
4537 }
4538 EXPORT_SYMBOL(rdma_connect_locked);
4539 
4540 /**
4541  * rdma_connect - Initiate an active connection request.
4542  * @id: Connection identifier to connect.
4543  * @conn_param: Connection information used for connected QPs.
4544  *
4545  * Users must have resolved a route for the rdma_cm_id to connect with by having
4546  * called rdma_resolve_route before calling this routine.
4547  *
4548  * This call will either connect to a remote QP or obtain remote QP information
4549  * for unconnected rdma_cm_id's.  The actual operation is based on the
4550  * rdma_cm_id's port space.
4551  */
4552 int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
4553 {
4554 	struct rdma_id_private *id_priv =
4555 		container_of(id, struct rdma_id_private, id);
4556 	int ret;
4557 
4558 	mutex_lock(&id_priv->handler_mutex);
4559 	ret = rdma_connect_locked(id, conn_param);
4560 	mutex_unlock(&id_priv->handler_mutex);
4561 	return ret;
4562 }
4563 EXPORT_SYMBOL(rdma_connect);
4564 
4565 /**
4566  * rdma_connect_ece - Initiate an active connection request with ECE data.
4567  * @id: Connection identifier to connect.
4568  * @conn_param: Connection information used for connected QPs.
4569  * @ece: ECE parameters
4570  *
4571  * See rdma_connect() explanation.
4572  */
4573 int rdma_connect_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param,
4574 		     struct rdma_ucm_ece *ece)
4575 {
4576 	struct rdma_id_private *id_priv =
4577 		container_of(id, struct rdma_id_private, id);
4578 
4579 	id_priv->ece.vendor_id = ece->vendor_id;
4580 	id_priv->ece.attr_mod = ece->attr_mod;
4581 
4582 	return rdma_connect(id, conn_param);
4583 }
4584 EXPORT_SYMBOL(rdma_connect_ece);
4585 
4586 static int cma_accept_ib(struct rdma_id_private *id_priv,
4587 			 struct rdma_conn_param *conn_param)
4588 {
4589 	struct ib_cm_rep_param rep;
4590 	int ret;
4591 
4592 	ret = cma_modify_qp_rtr(id_priv, conn_param);
4593 	if (ret)
4594 		goto out;
4595 
4596 	ret = cma_modify_qp_rts(id_priv, conn_param);
4597 	if (ret)
4598 		goto out;
4599 
4600 	memset(&rep, 0, sizeof rep);
4601 	rep.qp_num = id_priv->qp_num;
4602 	rep.starting_psn = id_priv->seq_num;
4603 	rep.private_data = conn_param->private_data;
4604 	rep.private_data_len = conn_param->private_data_len;
4605 	rep.responder_resources = conn_param->responder_resources;
4606 	rep.initiator_depth = conn_param->initiator_depth;
4607 	rep.failover_accepted = 0;
4608 	rep.flow_control = conn_param->flow_control;
4609 	rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
4610 	rep.srq = id_priv->srq ? 1 : 0;
4611 	rep.ece.vendor_id = id_priv->ece.vendor_id;
4612 	rep.ece.attr_mod = id_priv->ece.attr_mod;
4613 
4614 	trace_cm_send_rep(id_priv);
4615 	ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep);
4616 out:
4617 	return ret;
4618 }
4619 
4620 static int cma_accept_iw(struct rdma_id_private *id_priv,
4621 		  struct rdma_conn_param *conn_param)
4622 {
4623 	struct iw_cm_conn_param iw_param;
4624 	int ret;
4625 
4626 	if (!conn_param)
4627 		return -EINVAL;
4628 
4629 	ret = cma_modify_qp_rtr(id_priv, conn_param);
4630 	if (ret)
4631 		return ret;
4632 
4633 	iw_param.ord = conn_param->initiator_depth;
4634 	iw_param.ird = conn_param->responder_resources;
4635 	iw_param.private_data = conn_param->private_data;
4636 	iw_param.private_data_len = conn_param->private_data_len;
4637 	if (id_priv->id.qp)
4638 		iw_param.qpn = id_priv->qp_num;
4639 	else
4640 		iw_param.qpn = conn_param->qp_num;
4641 
4642 	return iw_cm_accept(id_priv->cm_id.iw, &iw_param);
4643 }
4644 
4645 static int cma_send_sidr_rep(struct rdma_id_private *id_priv,
4646 			     enum ib_cm_sidr_status status, u32 qkey,
4647 			     const void *private_data, int private_data_len)
4648 {
4649 	struct ib_cm_sidr_rep_param rep;
4650 	int ret;
4651 
4652 	memset(&rep, 0, sizeof rep);
4653 	rep.status = status;
4654 	if (status == IB_SIDR_SUCCESS) {
4655 		if (qkey)
4656 			ret = cma_set_qkey(id_priv, qkey);
4657 		else
4658 			ret = cma_set_default_qkey(id_priv);
4659 		if (ret)
4660 			return ret;
4661 		rep.qp_num = id_priv->qp_num;
4662 		rep.qkey = id_priv->qkey;
4663 
4664 		rep.ece.vendor_id = id_priv->ece.vendor_id;
4665 		rep.ece.attr_mod = id_priv->ece.attr_mod;
4666 	}
4667 
4668 	rep.private_data = private_data;
4669 	rep.private_data_len = private_data_len;
4670 
4671 	trace_cm_send_sidr_rep(id_priv);
4672 	return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep);
4673 }
4674 
4675 /**
4676  * rdma_accept - Called to accept a connection request or response.
4677  * @id: Connection identifier associated with the request.
4678  * @conn_param: Information needed to establish the connection.  This must be
4679  *   provided if accepting a connection request.  If accepting a connection
4680  *   response, this parameter must be NULL.
4681  *
4682  * Typically, this routine is only called by the listener to accept a connection
4683  * request.  It must also be called on the active side of a connection if the
4684  * user is performing their own QP transitions.
4685  *
4686  * In the case of error, a reject message is sent to the remote side and the
4687  * state of the qp associated with the id is modified to error, such that any
4688  * previously posted receive buffers would be flushed.
4689  *
4690  * This function is for use by kernel ULPs and must be called from under the
4691  * handler callback.
4692  */
4693 int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
4694 {
4695 	struct rdma_id_private *id_priv =
4696 		container_of(id, struct rdma_id_private, id);
4697 	int ret;
4698 
4699 	lockdep_assert_held(&id_priv->handler_mutex);
4700 
4701 	if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
4702 		return -EINVAL;
4703 
4704 	if (!id->qp && conn_param) {
4705 		id_priv->qp_num = conn_param->qp_num;
4706 		id_priv->srq = conn_param->srq;
4707 	}
4708 
4709 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4710 		if (id->qp_type == IB_QPT_UD) {
4711 			if (conn_param)
4712 				ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
4713 							conn_param->qkey,
4714 							conn_param->private_data,
4715 							conn_param->private_data_len);
4716 			else
4717 				ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
4718 							0, NULL, 0);
4719 		} else {
4720 			if (conn_param)
4721 				ret = cma_accept_ib(id_priv, conn_param);
4722 			else
4723 				ret = cma_rep_recv(id_priv);
4724 		}
4725 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4726 		ret = cma_accept_iw(id_priv, conn_param);
4727 	} else {
4728 		ret = -ENOSYS;
4729 	}
4730 	if (ret)
4731 		goto reject;
4732 
4733 	return 0;
4734 reject:
4735 	cma_modify_qp_err(id_priv);
4736 	rdma_reject(id, NULL, 0, IB_CM_REJ_CONSUMER_DEFINED);
4737 	return ret;
4738 }
4739 EXPORT_SYMBOL(rdma_accept);
4740 
4741 int rdma_accept_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param,
4742 		    struct rdma_ucm_ece *ece)
4743 {
4744 	struct rdma_id_private *id_priv =
4745 		container_of(id, struct rdma_id_private, id);
4746 
4747 	id_priv->ece.vendor_id = ece->vendor_id;
4748 	id_priv->ece.attr_mod = ece->attr_mod;
4749 
4750 	return rdma_accept(id, conn_param);
4751 }
4752 EXPORT_SYMBOL(rdma_accept_ece);
4753 
4754 void rdma_lock_handler(struct rdma_cm_id *id)
4755 {
4756 	struct rdma_id_private *id_priv =
4757 		container_of(id, struct rdma_id_private, id);
4758 
4759 	mutex_lock(&id_priv->handler_mutex);
4760 }
4761 EXPORT_SYMBOL(rdma_lock_handler);
4762 
4763 void rdma_unlock_handler(struct rdma_cm_id *id)
4764 {
4765 	struct rdma_id_private *id_priv =
4766 		container_of(id, struct rdma_id_private, id);
4767 
4768 	mutex_unlock(&id_priv->handler_mutex);
4769 }
4770 EXPORT_SYMBOL(rdma_unlock_handler);
4771 
4772 int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event)
4773 {
4774 	struct rdma_id_private *id_priv;
4775 	int ret;
4776 
4777 	id_priv = container_of(id, struct rdma_id_private, id);
4778 	if (!id_priv->cm_id.ib)
4779 		return -EINVAL;
4780 
4781 	switch (id->device->node_type) {
4782 	case RDMA_NODE_IB_CA:
4783 		ret = ib_cm_notify(id_priv->cm_id.ib, event);
4784 		break;
4785 	default:
4786 		ret = 0;
4787 		break;
4788 	}
4789 	return ret;
4790 }
4791 EXPORT_SYMBOL(rdma_notify);
4792 
4793 int rdma_reject(struct rdma_cm_id *id, const void *private_data,
4794 		u8 private_data_len, u8 reason)
4795 {
4796 	struct rdma_id_private *id_priv;
4797 	int ret;
4798 
4799 	id_priv = container_of(id, struct rdma_id_private, id);
4800 	if (!id_priv->cm_id.ib)
4801 		return -EINVAL;
4802 
4803 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4804 		if (id->qp_type == IB_QPT_UD) {
4805 			ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0,
4806 						private_data, private_data_len);
4807 		} else {
4808 			trace_cm_send_rej(id_priv);
4809 			ret = ib_send_cm_rej(id_priv->cm_id.ib, reason, NULL, 0,
4810 					     private_data, private_data_len);
4811 		}
4812 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4813 		ret = iw_cm_reject(id_priv->cm_id.iw,
4814 				   private_data, private_data_len);
4815 	} else {
4816 		ret = -ENOSYS;
4817 	}
4818 
4819 	return ret;
4820 }
4821 EXPORT_SYMBOL(rdma_reject);
4822 
4823 int rdma_disconnect(struct rdma_cm_id *id)
4824 {
4825 	struct rdma_id_private *id_priv;
4826 	int ret;
4827 
4828 	id_priv = container_of(id, struct rdma_id_private, id);
4829 	if (!id_priv->cm_id.ib)
4830 		return -EINVAL;
4831 
4832 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4833 		ret = cma_modify_qp_err(id_priv);
4834 		if (ret)
4835 			goto out;
4836 		/* Initiate or respond to a disconnect. */
4837 		trace_cm_disconnect(id_priv);
4838 		if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) {
4839 			if (!ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0))
4840 				trace_cm_sent_drep(id_priv);
4841 		} else {
4842 			trace_cm_sent_dreq(id_priv);
4843 		}
4844 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4845 		ret = iw_cm_disconnect(id_priv->cm_id.iw, 0);
4846 	} else
4847 		ret = -EINVAL;
4848 
4849 out:
4850 	return ret;
4851 }
4852 EXPORT_SYMBOL(rdma_disconnect);
4853 
4854 static void cma_make_mc_event(int status, struct rdma_id_private *id_priv,
4855 			      struct ib_sa_multicast *multicast,
4856 			      struct rdma_cm_event *event,
4857 			      struct cma_multicast *mc)
4858 {
4859 	struct rdma_dev_addr *dev_addr;
4860 	enum ib_gid_type gid_type;
4861 	struct net_device *ndev;
4862 
4863 	if (status)
4864 		pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to join multicast. status %d\n",
4865 				     status);
4866 
4867 	event->status = status;
4868 	event->param.ud.private_data = mc->context;
4869 	if (status) {
4870 		event->event = RDMA_CM_EVENT_MULTICAST_ERROR;
4871 		return;
4872 	}
4873 
4874 	dev_addr = &id_priv->id.route.addr.dev_addr;
4875 	ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
4876 	gid_type =
4877 		id_priv->cma_dev
4878 			->default_gid_type[id_priv->id.port_num -
4879 					   rdma_start_port(
4880 						   id_priv->cma_dev->device)];
4881 
4882 	event->event = RDMA_CM_EVENT_MULTICAST_JOIN;
4883 	if (ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num,
4884 				     &multicast->rec, ndev, gid_type,
4885 				     &event->param.ud.ah_attr)) {
4886 		event->event = RDMA_CM_EVENT_MULTICAST_ERROR;
4887 		goto out;
4888 	}
4889 
4890 	event->param.ud.qp_num = 0xFFFFFF;
4891 	event->param.ud.qkey = id_priv->qkey;
4892 
4893 out:
4894 	dev_put(ndev);
4895 }
4896 
4897 static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast)
4898 {
4899 	struct cma_multicast *mc = multicast->context;
4900 	struct rdma_id_private *id_priv = mc->id_priv;
4901 	struct rdma_cm_event event = {};
4902 	int ret = 0;
4903 
4904 	mutex_lock(&id_priv->handler_mutex);
4905 	if (READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL ||
4906 	    READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING)
4907 		goto out;
4908 
4909 	ret = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey));
4910 	if (!ret) {
4911 		cma_make_mc_event(status, id_priv, multicast, &event, mc);
4912 		ret = cma_cm_event_handler(id_priv, &event);
4913 	}
4914 	rdma_destroy_ah_attr(&event.param.ud.ah_attr);
4915 	WARN_ON(ret);
4916 
4917 out:
4918 	mutex_unlock(&id_priv->handler_mutex);
4919 	return 0;
4920 }
4921 
4922 static void cma_set_mgid(struct rdma_id_private *id_priv,
4923 			 struct sockaddr *addr, union ib_gid *mgid)
4924 {
4925 	unsigned char mc_map[MAX_ADDR_LEN];
4926 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4927 	struct sockaddr_in *sin = (struct sockaddr_in *) addr;
4928 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr;
4929 
4930 	if (cma_any_addr(addr)) {
4931 		memset(mgid, 0, sizeof *mgid);
4932 	} else if ((addr->sa_family == AF_INET6) &&
4933 		   ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) ==
4934 								 0xFF10A01B)) {
4935 		/* IPv6 address is an SA assigned MGID. */
4936 		memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
4937 	} else if (addr->sa_family == AF_IB) {
4938 		memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid);
4939 	} else if (addr->sa_family == AF_INET6) {
4940 		ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map);
4941 		if (id_priv->id.ps == RDMA_PS_UDP)
4942 			mc_map[7] = 0x01;	/* Use RDMA CM signature */
4943 		*mgid = *(union ib_gid *) (mc_map + 4);
4944 	} else {
4945 		ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map);
4946 		if (id_priv->id.ps == RDMA_PS_UDP)
4947 			mc_map[7] = 0x01;	/* Use RDMA CM signature */
4948 		*mgid = *(union ib_gid *) (mc_map + 4);
4949 	}
4950 }
4951 
4952 static int cma_join_ib_multicast(struct rdma_id_private *id_priv,
4953 				 struct cma_multicast *mc)
4954 {
4955 	struct ib_sa_mcmember_rec rec;
4956 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4957 	ib_sa_comp_mask comp_mask;
4958 	int ret;
4959 
4960 	ib_addr_get_mgid(dev_addr, &rec.mgid);
4961 	ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num,
4962 				     &rec.mgid, &rec);
4963 	if (ret)
4964 		return ret;
4965 
4966 	if (!id_priv->qkey) {
4967 		ret = cma_set_default_qkey(id_priv);
4968 		if (ret)
4969 			return ret;
4970 	}
4971 
4972 	cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid);
4973 	rec.qkey = cpu_to_be32(id_priv->qkey);
4974 	rdma_addr_get_sgid(dev_addr, &rec.port_gid);
4975 	rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
4976 	rec.join_state = mc->join_state;
4977 
4978 	comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID |
4979 		    IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE |
4980 		    IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL |
4981 		    IB_SA_MCMEMBER_REC_FLOW_LABEL |
4982 		    IB_SA_MCMEMBER_REC_TRAFFIC_CLASS;
4983 
4984 	if (id_priv->id.ps == RDMA_PS_IPOIB)
4985 		comp_mask |= IB_SA_MCMEMBER_REC_RATE |
4986 			     IB_SA_MCMEMBER_REC_RATE_SELECTOR |
4987 			     IB_SA_MCMEMBER_REC_MTU_SELECTOR |
4988 			     IB_SA_MCMEMBER_REC_MTU |
4989 			     IB_SA_MCMEMBER_REC_HOP_LIMIT;
4990 
4991 	mc->sa_mc = ib_sa_join_multicast(&sa_client, id_priv->id.device,
4992 					 id_priv->id.port_num, &rec, comp_mask,
4993 					 GFP_KERNEL, cma_ib_mc_handler, mc);
4994 	return PTR_ERR_OR_ZERO(mc->sa_mc);
4995 }
4996 
4997 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid,
4998 			      enum ib_gid_type gid_type)
4999 {
5000 	struct sockaddr_in *sin = (struct sockaddr_in *)addr;
5001 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr;
5002 
5003 	if (cma_any_addr(addr)) {
5004 		memset(mgid, 0, sizeof *mgid);
5005 	} else if (addr->sa_family == AF_INET6) {
5006 		memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
5007 	} else {
5008 		mgid->raw[0] =
5009 			(gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff;
5010 		mgid->raw[1] =
5011 			(gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e;
5012 		mgid->raw[2] = 0;
5013 		mgid->raw[3] = 0;
5014 		mgid->raw[4] = 0;
5015 		mgid->raw[5] = 0;
5016 		mgid->raw[6] = 0;
5017 		mgid->raw[7] = 0;
5018 		mgid->raw[8] = 0;
5019 		mgid->raw[9] = 0;
5020 		mgid->raw[10] = 0xff;
5021 		mgid->raw[11] = 0xff;
5022 		*(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr;
5023 	}
5024 }
5025 
5026 static int cma_iboe_join_multicast(struct rdma_id_private *id_priv,
5027 				   struct cma_multicast *mc)
5028 {
5029 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
5030 	int err = 0;
5031 	struct sockaddr *addr = (struct sockaddr *)&mc->addr;
5032 	struct net_device *ndev = NULL;
5033 	struct ib_sa_multicast ib = {};
5034 	enum ib_gid_type gid_type;
5035 	bool send_only;
5036 
5037 	send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN);
5038 
5039 	if (cma_zero_addr(addr))
5040 		return -EINVAL;
5041 
5042 	gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num -
5043 		   rdma_start_port(id_priv->cma_dev->device)];
5044 	cma_iboe_set_mgid(addr, &ib.rec.mgid, gid_type);
5045 
5046 	ib.rec.pkey = cpu_to_be16(0xffff);
5047 	if (dev_addr->bound_dev_if)
5048 		ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
5049 	if (!ndev)
5050 		return -ENODEV;
5051 
5052 	ib.rec.rate = IB_RATE_PORT_CURRENT;
5053 	ib.rec.hop_limit = 1;
5054 	ib.rec.mtu = iboe_get_mtu(ndev->mtu);
5055 
5056 	if (addr->sa_family == AF_INET) {
5057 		if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) {
5058 			ib.rec.hop_limit = IPV6_DEFAULT_HOPLIMIT;
5059 			if (!send_only) {
5060 				err = cma_igmp_send(ndev, &ib.rec.mgid,
5061 						    true);
5062 			}
5063 		}
5064 	} else {
5065 		if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP)
5066 			err = -ENOTSUPP;
5067 	}
5068 	dev_put(ndev);
5069 	if (err || !ib.rec.mtu)
5070 		return err ?: -EINVAL;
5071 
5072 	if (!id_priv->qkey)
5073 		cma_set_default_qkey(id_priv);
5074 
5075 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
5076 		    &ib.rec.port_gid);
5077 	INIT_WORK(&mc->iboe_join.work, cma_iboe_join_work_handler);
5078 	cma_make_mc_event(0, id_priv, &ib, &mc->iboe_join.event, mc);
5079 	queue_work(cma_wq, &mc->iboe_join.work);
5080 	return 0;
5081 }
5082 
5083 int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr,
5084 			u8 join_state, void *context)
5085 {
5086 	struct rdma_id_private *id_priv =
5087 		container_of(id, struct rdma_id_private, id);
5088 	struct cma_multicast *mc;
5089 	int ret;
5090 
5091 	/* Not supported for kernel QPs */
5092 	if (WARN_ON(id->qp))
5093 		return -EINVAL;
5094 
5095 	/* ULP is calling this wrong. */
5096 	if (!id->device || (READ_ONCE(id_priv->state) != RDMA_CM_ADDR_BOUND &&
5097 			    READ_ONCE(id_priv->state) != RDMA_CM_ADDR_RESOLVED))
5098 		return -EINVAL;
5099 
5100 	if (id_priv->id.qp_type != IB_QPT_UD)
5101 		return -EINVAL;
5102 
5103 	mc = kzalloc(sizeof(*mc), GFP_KERNEL);
5104 	if (!mc)
5105 		return -ENOMEM;
5106 
5107 	memcpy(&mc->addr, addr, rdma_addr_size(addr));
5108 	mc->context = context;
5109 	mc->id_priv = id_priv;
5110 	mc->join_state = join_state;
5111 
5112 	if (rdma_protocol_roce(id->device, id->port_num)) {
5113 		ret = cma_iboe_join_multicast(id_priv, mc);
5114 		if (ret)
5115 			goto out_err;
5116 	} else if (rdma_cap_ib_mcast(id->device, id->port_num)) {
5117 		ret = cma_join_ib_multicast(id_priv, mc);
5118 		if (ret)
5119 			goto out_err;
5120 	} else {
5121 		ret = -ENOSYS;
5122 		goto out_err;
5123 	}
5124 
5125 	spin_lock(&id_priv->lock);
5126 	list_add(&mc->list, &id_priv->mc_list);
5127 	spin_unlock(&id_priv->lock);
5128 
5129 	return 0;
5130 out_err:
5131 	kfree(mc);
5132 	return ret;
5133 }
5134 EXPORT_SYMBOL(rdma_join_multicast);
5135 
5136 void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr)
5137 {
5138 	struct rdma_id_private *id_priv;
5139 	struct cma_multicast *mc;
5140 
5141 	id_priv = container_of(id, struct rdma_id_private, id);
5142 	spin_lock_irq(&id_priv->lock);
5143 	list_for_each_entry(mc, &id_priv->mc_list, list) {
5144 		if (memcmp(&mc->addr, addr, rdma_addr_size(addr)) != 0)
5145 			continue;
5146 		list_del(&mc->list);
5147 		spin_unlock_irq(&id_priv->lock);
5148 
5149 		WARN_ON(id_priv->cma_dev->device != id->device);
5150 		destroy_mc(id_priv, mc);
5151 		return;
5152 	}
5153 	spin_unlock_irq(&id_priv->lock);
5154 }
5155 EXPORT_SYMBOL(rdma_leave_multicast);
5156 
5157 static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv)
5158 {
5159 	struct rdma_dev_addr *dev_addr;
5160 	struct cma_work *work;
5161 
5162 	dev_addr = &id_priv->id.route.addr.dev_addr;
5163 
5164 	if ((dev_addr->bound_dev_if == ndev->ifindex) &&
5165 	    (net_eq(dev_net(ndev), dev_addr->net)) &&
5166 	    memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) {
5167 		pr_info("RDMA CM addr change for ndev %s used by id %p\n",
5168 			ndev->name, &id_priv->id);
5169 		work = kzalloc(sizeof *work, GFP_KERNEL);
5170 		if (!work)
5171 			return -ENOMEM;
5172 
5173 		INIT_WORK(&work->work, cma_work_handler);
5174 		work->id = id_priv;
5175 		work->event.event = RDMA_CM_EVENT_ADDR_CHANGE;
5176 		cma_id_get(id_priv);
5177 		queue_work(cma_wq, &work->work);
5178 	}
5179 
5180 	return 0;
5181 }
5182 
5183 static int cma_netdev_callback(struct notifier_block *self, unsigned long event,
5184 			       void *ptr)
5185 {
5186 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
5187 	struct cma_device *cma_dev;
5188 	struct rdma_id_private *id_priv;
5189 	int ret = NOTIFY_DONE;
5190 
5191 	if (event != NETDEV_BONDING_FAILOVER)
5192 		return NOTIFY_DONE;
5193 
5194 	if (!netif_is_bond_master(ndev))
5195 		return NOTIFY_DONE;
5196 
5197 	mutex_lock(&lock);
5198 	list_for_each_entry(cma_dev, &dev_list, list)
5199 		list_for_each_entry(id_priv, &cma_dev->id_list, device_item) {
5200 			ret = cma_netdev_change(ndev, id_priv);
5201 			if (ret)
5202 				goto out;
5203 		}
5204 
5205 out:
5206 	mutex_unlock(&lock);
5207 	return ret;
5208 }
5209 
5210 static void cma_netevent_work_handler(struct work_struct *_work)
5211 {
5212 	struct rdma_id_private *id_priv =
5213 		container_of(_work, struct rdma_id_private, id.net_work);
5214 	struct rdma_cm_event event = {};
5215 
5216 	mutex_lock(&id_priv->handler_mutex);
5217 
5218 	if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
5219 	    READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
5220 		goto out_unlock;
5221 
5222 	event.event = RDMA_CM_EVENT_UNREACHABLE;
5223 	event.status = -ETIMEDOUT;
5224 
5225 	if (cma_cm_event_handler(id_priv, &event)) {
5226 		__acquire(&id_priv->handler_mutex);
5227 		id_priv->cm_id.ib = NULL;
5228 		cma_id_put(id_priv);
5229 		destroy_id_handler_unlock(id_priv);
5230 		return;
5231 	}
5232 
5233 out_unlock:
5234 	mutex_unlock(&id_priv->handler_mutex);
5235 	cma_id_put(id_priv);
5236 }
5237 
5238 static int cma_netevent_callback(struct notifier_block *self,
5239 				 unsigned long event, void *ctx)
5240 {
5241 	struct id_table_entry *ips_node = NULL;
5242 	struct rdma_id_private *current_id;
5243 	struct neighbour *neigh = ctx;
5244 	unsigned long flags;
5245 
5246 	if (event != NETEVENT_NEIGH_UPDATE)
5247 		return NOTIFY_DONE;
5248 
5249 	spin_lock_irqsave(&id_table_lock, flags);
5250 	if (neigh->tbl->family == AF_INET6) {
5251 		struct sockaddr_in6 neigh_sock_6;
5252 
5253 		neigh_sock_6.sin6_family = AF_INET6;
5254 		neigh_sock_6.sin6_addr = *(struct in6_addr *)neigh->primary_key;
5255 		ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex,
5256 					     (struct sockaddr *)&neigh_sock_6);
5257 	} else if (neigh->tbl->family == AF_INET) {
5258 		struct sockaddr_in neigh_sock_4;
5259 
5260 		neigh_sock_4.sin_family = AF_INET;
5261 		neigh_sock_4.sin_addr.s_addr = *(__be32 *)(neigh->primary_key);
5262 		ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex,
5263 					     (struct sockaddr *)&neigh_sock_4);
5264 	} else
5265 		goto out;
5266 
5267 	if (!ips_node)
5268 		goto out;
5269 
5270 	list_for_each_entry(current_id, &ips_node->id_list, id_list_entry) {
5271 		if (!memcmp(current_id->id.route.addr.dev_addr.dst_dev_addr,
5272 			   neigh->ha, ETH_ALEN))
5273 			continue;
5274 		cma_id_get(current_id);
5275 		if (!queue_work(cma_wq, &current_id->id.net_work))
5276 			cma_id_put(current_id);
5277 	}
5278 out:
5279 	spin_unlock_irqrestore(&id_table_lock, flags);
5280 	return NOTIFY_DONE;
5281 }
5282 
5283 static struct notifier_block cma_nb = {
5284 	.notifier_call = cma_netdev_callback
5285 };
5286 
5287 static struct notifier_block cma_netevent_cb = {
5288 	.notifier_call = cma_netevent_callback
5289 };
5290 
5291 static void cma_send_device_removal_put(struct rdma_id_private *id_priv)
5292 {
5293 	struct rdma_cm_event event = { .event = RDMA_CM_EVENT_DEVICE_REMOVAL };
5294 	enum rdma_cm_state state;
5295 	unsigned long flags;
5296 
5297 	mutex_lock(&id_priv->handler_mutex);
5298 	/* Record that we want to remove the device */
5299 	spin_lock_irqsave(&id_priv->lock, flags);
5300 	state = id_priv->state;
5301 	if (state == RDMA_CM_DESTROYING || state == RDMA_CM_DEVICE_REMOVAL) {
5302 		spin_unlock_irqrestore(&id_priv->lock, flags);
5303 		mutex_unlock(&id_priv->handler_mutex);
5304 		cma_id_put(id_priv);
5305 		return;
5306 	}
5307 	id_priv->state = RDMA_CM_DEVICE_REMOVAL;
5308 	spin_unlock_irqrestore(&id_priv->lock, flags);
5309 
5310 	if (cma_cm_event_handler(id_priv, &event)) {
5311 		/*
5312 		 * At this point the ULP promises it won't call
5313 		 * rdma_destroy_id() concurrently
5314 		 */
5315 		cma_id_put(id_priv);
5316 		mutex_unlock(&id_priv->handler_mutex);
5317 		trace_cm_id_destroy(id_priv);
5318 		_destroy_id(id_priv, state);
5319 		return;
5320 	}
5321 	mutex_unlock(&id_priv->handler_mutex);
5322 
5323 	/*
5324 	 * If this races with destroy then the thread that first assigns state
5325 	 * to a destroying does the cancel.
5326 	 */
5327 	cma_cancel_operation(id_priv, state);
5328 	cma_id_put(id_priv);
5329 }
5330 
5331 static void cma_process_remove(struct cma_device *cma_dev)
5332 {
5333 	mutex_lock(&lock);
5334 	while (!list_empty(&cma_dev->id_list)) {
5335 		struct rdma_id_private *id_priv = list_first_entry(
5336 			&cma_dev->id_list, struct rdma_id_private, device_item);
5337 
5338 		list_del_init(&id_priv->listen_item);
5339 		list_del_init(&id_priv->device_item);
5340 		cma_id_get(id_priv);
5341 		mutex_unlock(&lock);
5342 
5343 		cma_send_device_removal_put(id_priv);
5344 
5345 		mutex_lock(&lock);
5346 	}
5347 	mutex_unlock(&lock);
5348 
5349 	cma_dev_put(cma_dev);
5350 	wait_for_completion(&cma_dev->comp);
5351 }
5352 
5353 static bool cma_supported(struct ib_device *device)
5354 {
5355 	u32 i;
5356 
5357 	rdma_for_each_port(device, i) {
5358 		if (rdma_cap_ib_cm(device, i) || rdma_cap_iw_cm(device, i))
5359 			return true;
5360 	}
5361 	return false;
5362 }
5363 
5364 static int cma_add_one(struct ib_device *device)
5365 {
5366 	struct rdma_id_private *to_destroy;
5367 	struct cma_device *cma_dev;
5368 	struct rdma_id_private *id_priv;
5369 	unsigned long supported_gids = 0;
5370 	int ret;
5371 	u32 i;
5372 
5373 	if (!cma_supported(device))
5374 		return -EOPNOTSUPP;
5375 
5376 	cma_dev = kmalloc(sizeof(*cma_dev), GFP_KERNEL);
5377 	if (!cma_dev)
5378 		return -ENOMEM;
5379 
5380 	cma_dev->device = device;
5381 	cma_dev->default_gid_type = kcalloc(device->phys_port_cnt,
5382 					    sizeof(*cma_dev->default_gid_type),
5383 					    GFP_KERNEL);
5384 	if (!cma_dev->default_gid_type) {
5385 		ret = -ENOMEM;
5386 		goto free_cma_dev;
5387 	}
5388 
5389 	cma_dev->default_roce_tos = kcalloc(device->phys_port_cnt,
5390 					    sizeof(*cma_dev->default_roce_tos),
5391 					    GFP_KERNEL);
5392 	if (!cma_dev->default_roce_tos) {
5393 		ret = -ENOMEM;
5394 		goto free_gid_type;
5395 	}
5396 
5397 	rdma_for_each_port (device, i) {
5398 		supported_gids = roce_gid_type_mask_support(device, i);
5399 		WARN_ON(!supported_gids);
5400 		if (supported_gids & (1 << CMA_PREFERRED_ROCE_GID_TYPE))
5401 			cma_dev->default_gid_type[i - rdma_start_port(device)] =
5402 				CMA_PREFERRED_ROCE_GID_TYPE;
5403 		else
5404 			cma_dev->default_gid_type[i - rdma_start_port(device)] =
5405 				find_first_bit(&supported_gids, BITS_PER_LONG);
5406 		cma_dev->default_roce_tos[i - rdma_start_port(device)] = 0;
5407 	}
5408 
5409 	init_completion(&cma_dev->comp);
5410 	refcount_set(&cma_dev->refcount, 1);
5411 	INIT_LIST_HEAD(&cma_dev->id_list);
5412 	ib_set_client_data(device, &cma_client, cma_dev);
5413 
5414 	mutex_lock(&lock);
5415 	list_add_tail(&cma_dev->list, &dev_list);
5416 	list_for_each_entry(id_priv, &listen_any_list, listen_any_item) {
5417 		ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy);
5418 		if (ret)
5419 			goto free_listen;
5420 	}
5421 	mutex_unlock(&lock);
5422 
5423 	trace_cm_add_one(device);
5424 	return 0;
5425 
5426 free_listen:
5427 	list_del(&cma_dev->list);
5428 	mutex_unlock(&lock);
5429 
5430 	/* cma_process_remove() will delete to_destroy */
5431 	cma_process_remove(cma_dev);
5432 	kfree(cma_dev->default_roce_tos);
5433 free_gid_type:
5434 	kfree(cma_dev->default_gid_type);
5435 
5436 free_cma_dev:
5437 	kfree(cma_dev);
5438 	return ret;
5439 }
5440 
5441 static void cma_remove_one(struct ib_device *device, void *client_data)
5442 {
5443 	struct cma_device *cma_dev = client_data;
5444 
5445 	trace_cm_remove_one(device);
5446 
5447 	mutex_lock(&lock);
5448 	list_del(&cma_dev->list);
5449 	mutex_unlock(&lock);
5450 
5451 	cma_process_remove(cma_dev);
5452 	kfree(cma_dev->default_roce_tos);
5453 	kfree(cma_dev->default_gid_type);
5454 	kfree(cma_dev);
5455 }
5456 
5457 static int cma_init_net(struct net *net)
5458 {
5459 	struct cma_pernet *pernet = cma_pernet(net);
5460 
5461 	xa_init(&pernet->tcp_ps);
5462 	xa_init(&pernet->udp_ps);
5463 	xa_init(&pernet->ipoib_ps);
5464 	xa_init(&pernet->ib_ps);
5465 
5466 	return 0;
5467 }
5468 
5469 static void cma_exit_net(struct net *net)
5470 {
5471 	struct cma_pernet *pernet = cma_pernet(net);
5472 
5473 	WARN_ON(!xa_empty(&pernet->tcp_ps));
5474 	WARN_ON(!xa_empty(&pernet->udp_ps));
5475 	WARN_ON(!xa_empty(&pernet->ipoib_ps));
5476 	WARN_ON(!xa_empty(&pernet->ib_ps));
5477 }
5478 
5479 static struct pernet_operations cma_pernet_operations = {
5480 	.init = cma_init_net,
5481 	.exit = cma_exit_net,
5482 	.id = &cma_pernet_id,
5483 	.size = sizeof(struct cma_pernet),
5484 };
5485 
5486 static int __init cma_init(void)
5487 {
5488 	int ret;
5489 
5490 	/*
5491 	 * There is a rare lock ordering dependency in cma_netdev_callback()
5492 	 * that only happens when bonding is enabled. Teach lockdep that rtnl
5493 	 * must never be nested under lock so it can find these without having
5494 	 * to test with bonding.
5495 	 */
5496 	if (IS_ENABLED(CONFIG_LOCKDEP)) {
5497 		rtnl_lock();
5498 		mutex_lock(&lock);
5499 		mutex_unlock(&lock);
5500 		rtnl_unlock();
5501 	}
5502 
5503 	cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM);
5504 	if (!cma_wq)
5505 		return -ENOMEM;
5506 
5507 	ret = register_pernet_subsys(&cma_pernet_operations);
5508 	if (ret)
5509 		goto err_wq;
5510 
5511 	ib_sa_register_client(&sa_client);
5512 	register_netdevice_notifier(&cma_nb);
5513 	register_netevent_notifier(&cma_netevent_cb);
5514 
5515 	ret = ib_register_client(&cma_client);
5516 	if (ret)
5517 		goto err;
5518 
5519 	ret = cma_configfs_init();
5520 	if (ret)
5521 		goto err_ib;
5522 
5523 	return 0;
5524 
5525 err_ib:
5526 	ib_unregister_client(&cma_client);
5527 err:
5528 	unregister_netevent_notifier(&cma_netevent_cb);
5529 	unregister_netdevice_notifier(&cma_nb);
5530 	ib_sa_unregister_client(&sa_client);
5531 	unregister_pernet_subsys(&cma_pernet_operations);
5532 err_wq:
5533 	destroy_workqueue(cma_wq);
5534 	return ret;
5535 }
5536 
5537 static void __exit cma_cleanup(void)
5538 {
5539 	cma_configfs_exit();
5540 	ib_unregister_client(&cma_client);
5541 	unregister_netevent_notifier(&cma_netevent_cb);
5542 	unregister_netdevice_notifier(&cma_nb);
5543 	ib_sa_unregister_client(&sa_client);
5544 	unregister_pernet_subsys(&cma_pernet_operations);
5545 	destroy_workqueue(cma_wq);
5546 }
5547 
5548 module_init(cma_init);
5549 module_exit(cma_cleanup);
5550 
5551 static void cma_query_ib_service_handler(int status,
5552 					 struct sa_service_rec *recs,
5553 					 unsigned int num_recs, void *context)
5554 {
5555 	struct cma_work *work = context;
5556 	struct rdma_id_private *id_priv = work->id;
5557 	struct sockaddr_ib *addr;
5558 
5559 	if (status)
5560 		goto fail;
5561 
5562 	if (!num_recs) {
5563 		status = -ENOENT;
5564 		goto fail;
5565 	}
5566 
5567 	if (id_priv->id.route.service_recs) {
5568 		status = -EALREADY;
5569 		goto fail;
5570 	}
5571 
5572 	id_priv->id.route.service_recs =
5573 		kmalloc_array(num_recs, sizeof(*recs), GFP_KERNEL);
5574 	if (!id_priv->id.route.service_recs) {
5575 		status = -ENOMEM;
5576 		goto fail;
5577 	}
5578 
5579 	id_priv->id.route.num_service_recs = num_recs;
5580 	memcpy(id_priv->id.route.service_recs, recs, sizeof(*recs) * num_recs);
5581 
5582 	addr = (struct sockaddr_ib *)&id_priv->id.route.addr.dst_addr;
5583 	addr->sib_family = AF_IB;
5584 	addr->sib_addr = *(struct ib_addr *)&recs->gid;
5585 	addr->sib_pkey = recs->pkey;
5586 	addr->sib_sid = recs->id;
5587 	rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr,
5588 			   (union ib_gid *)&addr->sib_addr);
5589 	ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr,
5590 			 ntohs(addr->sib_pkey));
5591 
5592 	queue_work(cma_wq, &work->work);
5593 	return;
5594 
5595 fail:
5596 	work->old_state = RDMA_CM_ADDRINFO_QUERY;
5597 	work->new_state = RDMA_CM_ADDR_BOUND;
5598 	work->event.event = RDMA_CM_EVENT_ADDRINFO_ERROR;
5599 	work->event.status = status;
5600 	pr_debug_ratelimited(
5601 		"RDMA CM: SERVICE_ERROR: failed to query service record. status %d\n",
5602 		status);
5603 	queue_work(cma_wq, &work->work);
5604 }
5605 
5606 static int cma_resolve_ib_service(struct rdma_id_private *id_priv,
5607 				  struct rdma_ucm_ib_service *ibs)
5608 {
5609 	struct sa_service_rec sr = {};
5610 	ib_sa_comp_mask mask = 0;
5611 	struct cma_work *work;
5612 
5613 	work = kzalloc(sizeof(*work), GFP_KERNEL);
5614 	if (!work)
5615 		return -ENOMEM;
5616 
5617 	cma_id_get(id_priv);
5618 
5619 	work->id = id_priv;
5620 	INIT_WORK(&work->work, cma_work_handler);
5621 	work->old_state = RDMA_CM_ADDRINFO_QUERY;
5622 	work->new_state = RDMA_CM_ADDRINFO_RESOLVED;
5623 	work->event.event = RDMA_CM_EVENT_ADDRINFO_RESOLVED;
5624 
5625 	if (ibs->flags & RDMA_USER_CM_IB_SERVICE_FLAG_ID) {
5626 		sr.id = cpu_to_be64(ibs->service_id);
5627 		mask |= IB_SA_SERVICE_REC_SERVICE_ID;
5628 	}
5629 	if (ibs->flags & RDMA_USER_CM_IB_SERVICE_FLAG_NAME) {
5630 		strscpy(sr.name, ibs->service_name, sizeof(sr.name));
5631 		mask |= IB_SA_SERVICE_REC_SERVICE_NAME;
5632 	}
5633 
5634 	id_priv->query_id = ib_sa_service_rec_get(&sa_client,
5635 						  id_priv->id.device,
5636 						  id_priv->id.port_num,
5637 						  &sr, mask,
5638 						  2000, GFP_KERNEL,
5639 						  cma_query_ib_service_handler,
5640 						  work, &id_priv->query);
5641 
5642 	if (id_priv->query_id < 0) {
5643 		cma_id_put(id_priv);
5644 		kfree(work);
5645 		return id_priv->query_id;
5646 	}
5647 
5648 	return 0;
5649 }
5650 
5651 int rdma_resolve_ib_service(struct rdma_cm_id *id,
5652 			    struct rdma_ucm_ib_service *ibs)
5653 {
5654 	struct rdma_id_private *id_priv;
5655 	int ret;
5656 
5657 	id_priv = container_of(id, struct rdma_id_private, id);
5658 	if (!id_priv->cma_dev ||
5659 	    !cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDRINFO_QUERY))
5660 		return -EINVAL;
5661 
5662 	if (rdma_cap_ib_sa(id->device, id->port_num))
5663 		ret = cma_resolve_ib_service(id_priv, ibs);
5664 	else
5665 		ret = -EOPNOTSUPP;
5666 
5667 	if (ret)
5668 		goto err;
5669 
5670 	return 0;
5671 err:
5672 	cma_comp_exch(id_priv, RDMA_CM_ADDRINFO_QUERY, RDMA_CM_ADDR_BOUND);
5673 	return ret;
5674 }
5675 EXPORT_SYMBOL(rdma_resolve_ib_service);
5676