1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB 2 /* 3 * Copyright (c) 2005 Voltaire Inc. All rights reserved. 4 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved. 5 * Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved. 6 * Copyright (c) 2005-2006 Intel Corporation. All rights reserved. 7 */ 8 9 #include <linux/completion.h> 10 #include <linux/in.h> 11 #include <linux/in6.h> 12 #include <linux/mutex.h> 13 #include <linux/random.h> 14 #include <linux/rbtree.h> 15 #include <linux/igmp.h> 16 #include <linux/xarray.h> 17 #include <linux/inetdevice.h> 18 #include <linux/slab.h> 19 #include <linux/module.h> 20 #include <net/route.h> 21 22 #include <net/net_namespace.h> 23 #include <net/netns/generic.h> 24 #include <net/netevent.h> 25 #include <net/tcp.h> 26 #include <net/ipv6.h> 27 #include <net/ip_fib.h> 28 #include <net/ip6_route.h> 29 30 #include <rdma/rdma_cm.h> 31 #include <rdma/rdma_cm_ib.h> 32 #include <rdma/rdma_netlink.h> 33 #include <rdma/ib.h> 34 #include <rdma/ib_cache.h> 35 #include <rdma/ib_cm.h> 36 #include <rdma/ib_sa.h> 37 #include <rdma/iw_cm.h> 38 39 #include "core_priv.h" 40 #include "cma_priv.h" 41 #include "cma_trace.h" 42 43 MODULE_AUTHOR("Sean Hefty"); 44 MODULE_DESCRIPTION("Generic RDMA CM Agent"); 45 MODULE_LICENSE("Dual BSD/GPL"); 46 47 #define CMA_CM_RESPONSE_TIMEOUT 20 48 #define CMA_MAX_CM_RETRIES 15 49 #define CMA_IBOE_PACKET_LIFETIME 16 50 #define CMA_PREFERRED_ROCE_GID_TYPE IB_GID_TYPE_ROCE_UDP_ENCAP 51 52 static const char * const cma_events[] = { 53 [RDMA_CM_EVENT_ADDR_RESOLVED] = "address resolved", 54 [RDMA_CM_EVENT_ADDR_ERROR] = "address error", 55 [RDMA_CM_EVENT_ROUTE_RESOLVED] = "route resolved ", 56 [RDMA_CM_EVENT_ROUTE_ERROR] = "route error", 57 [RDMA_CM_EVENT_CONNECT_REQUEST] = "connect request", 58 [RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response", 59 [RDMA_CM_EVENT_CONNECT_ERROR] = "connect error", 60 [RDMA_CM_EVENT_UNREACHABLE] = "unreachable", 61 [RDMA_CM_EVENT_REJECTED] = "rejected", 62 [RDMA_CM_EVENT_ESTABLISHED] = "established", 63 [RDMA_CM_EVENT_DISCONNECTED] = "disconnected", 64 [RDMA_CM_EVENT_DEVICE_REMOVAL] = "device removal", 65 [RDMA_CM_EVENT_MULTICAST_JOIN] = "multicast join", 66 [RDMA_CM_EVENT_MULTICAST_ERROR] = "multicast error", 67 [RDMA_CM_EVENT_ADDR_CHANGE] = "address change", 68 [RDMA_CM_EVENT_TIMEWAIT_EXIT] = "timewait exit", 69 }; 70 71 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid, 72 enum ib_gid_type gid_type); 73 74 static void cma_netevent_work_handler(struct work_struct *_work); 75 76 const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event) 77 { 78 size_t index = event; 79 80 return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ? 81 cma_events[index] : "unrecognized event"; 82 } 83 EXPORT_SYMBOL(rdma_event_msg); 84 85 const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id, 86 int reason) 87 { 88 if (rdma_ib_or_roce(id->device, id->port_num)) 89 return ibcm_reject_msg(reason); 90 91 if (rdma_protocol_iwarp(id->device, id->port_num)) 92 return iwcm_reject_msg(reason); 93 94 WARN_ON_ONCE(1); 95 return "unrecognized transport"; 96 } 97 EXPORT_SYMBOL(rdma_reject_msg); 98 99 /** 100 * rdma_is_consumer_reject - return true if the consumer rejected the connect 101 * request. 102 * @id: Communication identifier that received the REJECT event. 103 * @reason: Value returned in the REJECT event status field. 104 */ 105 static bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason) 106 { 107 if (rdma_ib_or_roce(id->device, id->port_num)) 108 return reason == IB_CM_REJ_CONSUMER_DEFINED; 109 110 if (rdma_protocol_iwarp(id->device, id->port_num)) 111 return reason == -ECONNREFUSED; 112 113 WARN_ON_ONCE(1); 114 return false; 115 } 116 117 const void *rdma_consumer_reject_data(struct rdma_cm_id *id, 118 struct rdma_cm_event *ev, u8 *data_len) 119 { 120 const void *p; 121 122 if (rdma_is_consumer_reject(id, ev->status)) { 123 *data_len = ev->param.conn.private_data_len; 124 p = ev->param.conn.private_data; 125 } else { 126 *data_len = 0; 127 p = NULL; 128 } 129 return p; 130 } 131 EXPORT_SYMBOL(rdma_consumer_reject_data); 132 133 /** 134 * rdma_iw_cm_id() - return the iw_cm_id pointer for this cm_id. 135 * @id: Communication Identifier 136 */ 137 struct iw_cm_id *rdma_iw_cm_id(struct rdma_cm_id *id) 138 { 139 struct rdma_id_private *id_priv; 140 141 id_priv = container_of(id, struct rdma_id_private, id); 142 if (id->device->node_type == RDMA_NODE_RNIC) 143 return id_priv->cm_id.iw; 144 return NULL; 145 } 146 EXPORT_SYMBOL(rdma_iw_cm_id); 147 148 static int cma_add_one(struct ib_device *device); 149 static void cma_remove_one(struct ib_device *device, void *client_data); 150 151 static struct ib_client cma_client = { 152 .name = "cma", 153 .add = cma_add_one, 154 .remove = cma_remove_one 155 }; 156 157 static struct ib_sa_client sa_client; 158 static LIST_HEAD(dev_list); 159 static LIST_HEAD(listen_any_list); 160 static DEFINE_MUTEX(lock); 161 static struct rb_root id_table = RB_ROOT; 162 /* Serialize operations of id_table tree */ 163 static DEFINE_SPINLOCK(id_table_lock); 164 static struct workqueue_struct *cma_wq; 165 static unsigned int cma_pernet_id; 166 167 struct cma_pernet { 168 struct xarray tcp_ps; 169 struct xarray udp_ps; 170 struct xarray ipoib_ps; 171 struct xarray ib_ps; 172 }; 173 174 static struct cma_pernet *cma_pernet(struct net *net) 175 { 176 return net_generic(net, cma_pernet_id); 177 } 178 179 static 180 struct xarray *cma_pernet_xa(struct net *net, enum rdma_ucm_port_space ps) 181 { 182 struct cma_pernet *pernet = cma_pernet(net); 183 184 switch (ps) { 185 case RDMA_PS_TCP: 186 return &pernet->tcp_ps; 187 case RDMA_PS_UDP: 188 return &pernet->udp_ps; 189 case RDMA_PS_IPOIB: 190 return &pernet->ipoib_ps; 191 case RDMA_PS_IB: 192 return &pernet->ib_ps; 193 default: 194 return NULL; 195 } 196 } 197 198 struct id_table_entry { 199 struct list_head id_list; 200 struct rb_node rb_node; 201 }; 202 203 struct cma_device { 204 struct list_head list; 205 struct ib_device *device; 206 struct completion comp; 207 refcount_t refcount; 208 struct list_head id_list; 209 enum ib_gid_type *default_gid_type; 210 u8 *default_roce_tos; 211 }; 212 213 struct rdma_bind_list { 214 enum rdma_ucm_port_space ps; 215 struct hlist_head owners; 216 unsigned short port; 217 }; 218 219 static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space ps, 220 struct rdma_bind_list *bind_list, int snum) 221 { 222 struct xarray *xa = cma_pernet_xa(net, ps); 223 224 return xa_insert(xa, snum, bind_list, GFP_KERNEL); 225 } 226 227 static struct rdma_bind_list *cma_ps_find(struct net *net, 228 enum rdma_ucm_port_space ps, int snum) 229 { 230 struct xarray *xa = cma_pernet_xa(net, ps); 231 232 return xa_load(xa, snum); 233 } 234 235 static void cma_ps_remove(struct net *net, enum rdma_ucm_port_space ps, 236 int snum) 237 { 238 struct xarray *xa = cma_pernet_xa(net, ps); 239 240 xa_erase(xa, snum); 241 } 242 243 enum { 244 CMA_OPTION_AFONLY, 245 }; 246 247 void cma_dev_get(struct cma_device *cma_dev) 248 { 249 refcount_inc(&cma_dev->refcount); 250 } 251 252 void cma_dev_put(struct cma_device *cma_dev) 253 { 254 if (refcount_dec_and_test(&cma_dev->refcount)) 255 complete(&cma_dev->comp); 256 } 257 258 struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter filter, 259 void *cookie) 260 { 261 struct cma_device *cma_dev; 262 struct cma_device *found_cma_dev = NULL; 263 264 mutex_lock(&lock); 265 266 list_for_each_entry(cma_dev, &dev_list, list) 267 if (filter(cma_dev->device, cookie)) { 268 found_cma_dev = cma_dev; 269 break; 270 } 271 272 if (found_cma_dev) 273 cma_dev_get(found_cma_dev); 274 mutex_unlock(&lock); 275 return found_cma_dev; 276 } 277 278 int cma_get_default_gid_type(struct cma_device *cma_dev, 279 u32 port) 280 { 281 if (!rdma_is_port_valid(cma_dev->device, port)) 282 return -EINVAL; 283 284 return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)]; 285 } 286 287 int cma_set_default_gid_type(struct cma_device *cma_dev, 288 u32 port, 289 enum ib_gid_type default_gid_type) 290 { 291 unsigned long supported_gids; 292 293 if (!rdma_is_port_valid(cma_dev->device, port)) 294 return -EINVAL; 295 296 if (default_gid_type == IB_GID_TYPE_IB && 297 rdma_protocol_roce_eth_encap(cma_dev->device, port)) 298 default_gid_type = IB_GID_TYPE_ROCE; 299 300 supported_gids = roce_gid_type_mask_support(cma_dev->device, port); 301 302 if (!(supported_gids & 1 << default_gid_type)) 303 return -EINVAL; 304 305 cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] = 306 default_gid_type; 307 308 return 0; 309 } 310 311 int cma_get_default_roce_tos(struct cma_device *cma_dev, u32 port) 312 { 313 if (!rdma_is_port_valid(cma_dev->device, port)) 314 return -EINVAL; 315 316 return cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)]; 317 } 318 319 int cma_set_default_roce_tos(struct cma_device *cma_dev, u32 port, 320 u8 default_roce_tos) 321 { 322 if (!rdma_is_port_valid(cma_dev->device, port)) 323 return -EINVAL; 324 325 cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)] = 326 default_roce_tos; 327 328 return 0; 329 } 330 struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev) 331 { 332 return cma_dev->device; 333 } 334 335 /* 336 * Device removal can occur at anytime, so we need extra handling to 337 * serialize notifying the user of device removal with other callbacks. 338 * We do this by disabling removal notification while a callback is in process, 339 * and reporting it after the callback completes. 340 */ 341 342 struct cma_multicast { 343 struct rdma_id_private *id_priv; 344 union { 345 struct ib_sa_multicast *sa_mc; 346 struct { 347 struct work_struct work; 348 struct rdma_cm_event event; 349 } iboe_join; 350 }; 351 struct list_head list; 352 void *context; 353 struct sockaddr_storage addr; 354 u8 join_state; 355 }; 356 357 struct cma_work { 358 struct work_struct work; 359 struct rdma_id_private *id; 360 enum rdma_cm_state old_state; 361 enum rdma_cm_state new_state; 362 struct rdma_cm_event event; 363 }; 364 365 union cma_ip_addr { 366 struct in6_addr ip6; 367 struct { 368 __be32 pad[3]; 369 __be32 addr; 370 } ip4; 371 }; 372 373 struct cma_hdr { 374 u8 cma_version; 375 u8 ip_version; /* IP version: 7:4 */ 376 __be16 port; 377 union cma_ip_addr src_addr; 378 union cma_ip_addr dst_addr; 379 }; 380 381 #define CMA_VERSION 0x00 382 383 struct cma_req_info { 384 struct sockaddr_storage listen_addr_storage; 385 struct sockaddr_storage src_addr_storage; 386 struct ib_device *device; 387 union ib_gid local_gid; 388 __be64 service_id; 389 int port; 390 bool has_gid; 391 u16 pkey; 392 }; 393 394 static int cma_comp_exch(struct rdma_id_private *id_priv, 395 enum rdma_cm_state comp, enum rdma_cm_state exch) 396 { 397 unsigned long flags; 398 int ret; 399 400 /* 401 * The FSM uses a funny double locking where state is protected by both 402 * the handler_mutex and the spinlock. State is not allowed to change 403 * to/from a handler_mutex protected value without also holding 404 * handler_mutex. 405 */ 406 if (comp == RDMA_CM_CONNECT || exch == RDMA_CM_CONNECT) 407 lockdep_assert_held(&id_priv->handler_mutex); 408 409 spin_lock_irqsave(&id_priv->lock, flags); 410 if ((ret = (id_priv->state == comp))) 411 id_priv->state = exch; 412 spin_unlock_irqrestore(&id_priv->lock, flags); 413 return ret; 414 } 415 416 static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr) 417 { 418 return hdr->ip_version >> 4; 419 } 420 421 static void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver) 422 { 423 hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF); 424 } 425 426 static struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv) 427 { 428 return (struct sockaddr *)&id_priv->id.route.addr.src_addr; 429 } 430 431 static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv) 432 { 433 return (struct sockaddr *)&id_priv->id.route.addr.dst_addr; 434 } 435 436 static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join) 437 { 438 struct in_device *in_dev = NULL; 439 440 if (ndev) { 441 rtnl_lock(); 442 in_dev = __in_dev_get_rtnl(ndev); 443 if (in_dev) { 444 if (join) 445 ip_mc_inc_group(in_dev, 446 *(__be32 *)(mgid->raw + 12)); 447 else 448 ip_mc_dec_group(in_dev, 449 *(__be32 *)(mgid->raw + 12)); 450 } 451 rtnl_unlock(); 452 } 453 return (in_dev) ? 0 : -ENODEV; 454 } 455 456 static int compare_netdev_and_ip(int ifindex_a, struct sockaddr *sa, 457 struct id_table_entry *entry_b) 458 { 459 struct rdma_id_private *id_priv = list_first_entry( 460 &entry_b->id_list, struct rdma_id_private, id_list_entry); 461 int ifindex_b = id_priv->id.route.addr.dev_addr.bound_dev_if; 462 struct sockaddr *sb = cma_dst_addr(id_priv); 463 464 if (ifindex_a != ifindex_b) 465 return (ifindex_a > ifindex_b) ? 1 : -1; 466 467 if (sa->sa_family != sb->sa_family) 468 return sa->sa_family - sb->sa_family; 469 470 if (sa->sa_family == AF_INET && 471 __builtin_object_size(sa, 0) >= sizeof(struct sockaddr_in)) { 472 return memcmp(&((struct sockaddr_in *)sa)->sin_addr, 473 &((struct sockaddr_in *)sb)->sin_addr, 474 sizeof(((struct sockaddr_in *)sa)->sin_addr)); 475 } 476 477 if (sa->sa_family == AF_INET6 && 478 __builtin_object_size(sa, 0) >= sizeof(struct sockaddr_in6)) { 479 return ipv6_addr_cmp(&((struct sockaddr_in6 *)sa)->sin6_addr, 480 &((struct sockaddr_in6 *)sb)->sin6_addr); 481 } 482 483 return -1; 484 } 485 486 static int cma_add_id_to_tree(struct rdma_id_private *node_id_priv) 487 { 488 struct rb_node **new, *parent = NULL; 489 struct id_table_entry *this, *node; 490 unsigned long flags; 491 int result; 492 493 node = kzalloc(sizeof(*node), GFP_KERNEL); 494 if (!node) 495 return -ENOMEM; 496 497 spin_lock_irqsave(&id_table_lock, flags); 498 new = &id_table.rb_node; 499 while (*new) { 500 this = container_of(*new, struct id_table_entry, rb_node); 501 result = compare_netdev_and_ip( 502 node_id_priv->id.route.addr.dev_addr.bound_dev_if, 503 cma_dst_addr(node_id_priv), this); 504 505 parent = *new; 506 if (result < 0) 507 new = &((*new)->rb_left); 508 else if (result > 0) 509 new = &((*new)->rb_right); 510 else { 511 list_add_tail(&node_id_priv->id_list_entry, 512 &this->id_list); 513 kfree(node); 514 goto unlock; 515 } 516 } 517 518 INIT_LIST_HEAD(&node->id_list); 519 list_add_tail(&node_id_priv->id_list_entry, &node->id_list); 520 521 rb_link_node(&node->rb_node, parent, new); 522 rb_insert_color(&node->rb_node, &id_table); 523 524 unlock: 525 spin_unlock_irqrestore(&id_table_lock, flags); 526 return 0; 527 } 528 529 static struct id_table_entry * 530 node_from_ndev_ip(struct rb_root *root, int ifindex, struct sockaddr *sa) 531 { 532 struct rb_node *node = root->rb_node; 533 struct id_table_entry *data; 534 int result; 535 536 while (node) { 537 data = container_of(node, struct id_table_entry, rb_node); 538 result = compare_netdev_and_ip(ifindex, sa, data); 539 if (result < 0) 540 node = node->rb_left; 541 else if (result > 0) 542 node = node->rb_right; 543 else 544 return data; 545 } 546 547 return NULL; 548 } 549 550 static void cma_remove_id_from_tree(struct rdma_id_private *id_priv) 551 { 552 struct id_table_entry *data; 553 unsigned long flags; 554 555 spin_lock_irqsave(&id_table_lock, flags); 556 if (list_empty(&id_priv->id_list_entry)) 557 goto out; 558 559 data = node_from_ndev_ip(&id_table, 560 id_priv->id.route.addr.dev_addr.bound_dev_if, 561 cma_dst_addr(id_priv)); 562 if (!data) 563 goto out; 564 565 list_del_init(&id_priv->id_list_entry); 566 if (list_empty(&data->id_list)) { 567 rb_erase(&data->rb_node, &id_table); 568 kfree(data); 569 } 570 out: 571 spin_unlock_irqrestore(&id_table_lock, flags); 572 } 573 574 static void _cma_attach_to_dev(struct rdma_id_private *id_priv, 575 struct cma_device *cma_dev) 576 { 577 cma_dev_get(cma_dev); 578 id_priv->cma_dev = cma_dev; 579 id_priv->id.device = cma_dev->device; 580 id_priv->id.route.addr.dev_addr.transport = 581 rdma_node_get_transport(cma_dev->device->node_type); 582 list_add_tail(&id_priv->device_item, &cma_dev->id_list); 583 584 trace_cm_id_attach(id_priv, cma_dev->device); 585 } 586 587 static void cma_attach_to_dev(struct rdma_id_private *id_priv, 588 struct cma_device *cma_dev) 589 { 590 _cma_attach_to_dev(id_priv, cma_dev); 591 id_priv->gid_type = 592 cma_dev->default_gid_type[id_priv->id.port_num - 593 rdma_start_port(cma_dev->device)]; 594 } 595 596 static void cma_release_dev(struct rdma_id_private *id_priv) 597 { 598 mutex_lock(&lock); 599 list_del_init(&id_priv->device_item); 600 cma_dev_put(id_priv->cma_dev); 601 id_priv->cma_dev = NULL; 602 id_priv->id.device = NULL; 603 if (id_priv->id.route.addr.dev_addr.sgid_attr) { 604 rdma_put_gid_attr(id_priv->id.route.addr.dev_addr.sgid_attr); 605 id_priv->id.route.addr.dev_addr.sgid_attr = NULL; 606 } 607 mutex_unlock(&lock); 608 } 609 610 static inline unsigned short cma_family(struct rdma_id_private *id_priv) 611 { 612 return id_priv->id.route.addr.src_addr.ss_family; 613 } 614 615 static int cma_set_default_qkey(struct rdma_id_private *id_priv) 616 { 617 struct ib_sa_mcmember_rec rec; 618 int ret = 0; 619 620 switch (id_priv->id.ps) { 621 case RDMA_PS_UDP: 622 case RDMA_PS_IB: 623 id_priv->qkey = RDMA_UDP_QKEY; 624 break; 625 case RDMA_PS_IPOIB: 626 ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid); 627 ret = ib_sa_get_mcmember_rec(id_priv->id.device, 628 id_priv->id.port_num, &rec.mgid, 629 &rec); 630 if (!ret) 631 id_priv->qkey = be32_to_cpu(rec.qkey); 632 break; 633 default: 634 break; 635 } 636 return ret; 637 } 638 639 static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey) 640 { 641 if (!qkey || 642 (id_priv->qkey && (id_priv->qkey != qkey))) 643 return -EINVAL; 644 645 id_priv->qkey = qkey; 646 return 0; 647 } 648 649 static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr) 650 { 651 dev_addr->dev_type = ARPHRD_INFINIBAND; 652 rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr); 653 ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey)); 654 } 655 656 static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr) 657 { 658 int ret; 659 660 if (addr->sa_family != AF_IB) { 661 ret = rdma_translate_ip(addr, dev_addr); 662 } else { 663 cma_translate_ib((struct sockaddr_ib *) addr, dev_addr); 664 ret = 0; 665 } 666 667 return ret; 668 } 669 670 static const struct ib_gid_attr * 671 cma_validate_port(struct ib_device *device, u32 port, 672 enum ib_gid_type gid_type, 673 union ib_gid *gid, 674 struct rdma_id_private *id_priv) 675 { 676 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 677 const struct ib_gid_attr *sgid_attr = ERR_PTR(-ENODEV); 678 int bound_if_index = dev_addr->bound_dev_if; 679 int dev_type = dev_addr->dev_type; 680 struct net_device *ndev = NULL; 681 struct net_device *pdev = NULL; 682 683 if (!rdma_dev_access_netns(device, id_priv->id.route.addr.dev_addr.net)) 684 goto out; 685 686 if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port)) 687 goto out; 688 689 if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port)) 690 goto out; 691 692 /* 693 * For drivers that do not associate more than one net device with 694 * their gid tables, such as iWARP drivers, it is sufficient to 695 * return the first table entry. 696 * 697 * Other driver classes might be included in the future. 698 */ 699 if (rdma_protocol_iwarp(device, port)) { 700 sgid_attr = rdma_get_gid_attr(device, port, 0); 701 if (IS_ERR(sgid_attr)) 702 goto out; 703 704 rcu_read_lock(); 705 ndev = rcu_dereference(sgid_attr->ndev); 706 if (ndev->ifindex != bound_if_index) { 707 pdev = dev_get_by_index_rcu(dev_addr->net, bound_if_index); 708 if (pdev) { 709 if (is_vlan_dev(pdev)) { 710 pdev = vlan_dev_real_dev(pdev); 711 if (ndev->ifindex == pdev->ifindex) 712 bound_if_index = pdev->ifindex; 713 } 714 if (is_vlan_dev(ndev)) { 715 pdev = vlan_dev_real_dev(ndev); 716 if (bound_if_index == pdev->ifindex) 717 bound_if_index = ndev->ifindex; 718 } 719 } 720 } 721 if (!net_eq(dev_net(ndev), dev_addr->net) || 722 ndev->ifindex != bound_if_index) { 723 rdma_put_gid_attr(sgid_attr); 724 sgid_attr = ERR_PTR(-ENODEV); 725 } 726 rcu_read_unlock(); 727 goto out; 728 } 729 730 /* 731 * For a RXE device, it should work with TUN device and normal ethernet 732 * devices. Use driver_id to check if a device is a RXE device or not. 733 * ARPHDR_NONE means a TUN device. 734 */ 735 if (device->ops.driver_id == RDMA_DRIVER_RXE) { 736 if ((dev_type == ARPHRD_NONE || dev_type == ARPHRD_ETHER) 737 && rdma_protocol_roce(device, port)) { 738 ndev = dev_get_by_index(dev_addr->net, bound_if_index); 739 if (!ndev) 740 goto out; 741 } 742 } else { 743 if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) { 744 ndev = dev_get_by_index(dev_addr->net, bound_if_index); 745 if (!ndev) 746 goto out; 747 } else { 748 gid_type = IB_GID_TYPE_IB; 749 } 750 } 751 752 sgid_attr = rdma_find_gid_by_port(device, gid, gid_type, port, ndev); 753 dev_put(ndev); 754 out: 755 return sgid_attr; 756 } 757 758 static void cma_bind_sgid_attr(struct rdma_id_private *id_priv, 759 const struct ib_gid_attr *sgid_attr) 760 { 761 WARN_ON(id_priv->id.route.addr.dev_addr.sgid_attr); 762 id_priv->id.route.addr.dev_addr.sgid_attr = sgid_attr; 763 } 764 765 /** 766 * cma_acquire_dev_by_src_ip - Acquire cma device, port, gid attribute 767 * based on source ip address. 768 * @id_priv: cm_id which should be bound to cma device 769 * 770 * cma_acquire_dev_by_src_ip() binds cm id to cma device, port and GID attribute 771 * based on source IP address. It returns 0 on success or error code otherwise. 772 * It is applicable to active and passive side cm_id. 773 */ 774 static int cma_acquire_dev_by_src_ip(struct rdma_id_private *id_priv) 775 { 776 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 777 const struct ib_gid_attr *sgid_attr; 778 union ib_gid gid, iboe_gid, *gidp; 779 struct cma_device *cma_dev; 780 enum ib_gid_type gid_type; 781 int ret = -ENODEV; 782 u32 port; 783 784 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 785 id_priv->id.ps == RDMA_PS_IPOIB) 786 return -EINVAL; 787 788 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 789 &iboe_gid); 790 791 memcpy(&gid, dev_addr->src_dev_addr + 792 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 793 794 mutex_lock(&lock); 795 list_for_each_entry(cma_dev, &dev_list, list) { 796 if (id_priv->restricted_node_type != RDMA_NODE_UNSPECIFIED && 797 id_priv->restricted_node_type != cma_dev->device->node_type) 798 continue; 799 rdma_for_each_port (cma_dev->device, port) { 800 gidp = rdma_protocol_roce(cma_dev->device, port) ? 801 &iboe_gid : &gid; 802 gid_type = cma_dev->default_gid_type[port - 1]; 803 sgid_attr = cma_validate_port(cma_dev->device, port, 804 gid_type, gidp, id_priv); 805 if (!IS_ERR(sgid_attr)) { 806 id_priv->id.port_num = port; 807 cma_bind_sgid_attr(id_priv, sgid_attr); 808 cma_attach_to_dev(id_priv, cma_dev); 809 ret = 0; 810 goto out; 811 } 812 } 813 } 814 out: 815 mutex_unlock(&lock); 816 return ret; 817 } 818 819 /** 820 * cma_ib_acquire_dev - Acquire cma device, port and SGID attribute 821 * @id_priv: cm id to bind to cma device 822 * @listen_id_priv: listener cm id to match against 823 * @req: Pointer to req structure containaining incoming 824 * request information 825 * cma_ib_acquire_dev() acquires cma device, port and SGID attribute when 826 * rdma device matches for listen_id and incoming request. It also verifies 827 * that a GID table entry is present for the source address. 828 * Returns 0 on success, or returns error code otherwise. 829 */ 830 static int cma_ib_acquire_dev(struct rdma_id_private *id_priv, 831 const struct rdma_id_private *listen_id_priv, 832 struct cma_req_info *req) 833 { 834 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 835 const struct ib_gid_attr *sgid_attr; 836 enum ib_gid_type gid_type; 837 union ib_gid gid; 838 839 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 840 id_priv->id.ps == RDMA_PS_IPOIB) 841 return -EINVAL; 842 843 if (rdma_protocol_roce(req->device, req->port)) 844 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 845 &gid); 846 else 847 memcpy(&gid, dev_addr->src_dev_addr + 848 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 849 850 gid_type = listen_id_priv->cma_dev->default_gid_type[req->port - 1]; 851 sgid_attr = cma_validate_port(req->device, req->port, 852 gid_type, &gid, id_priv); 853 if (IS_ERR(sgid_attr)) 854 return PTR_ERR(sgid_attr); 855 856 id_priv->id.port_num = req->port; 857 cma_bind_sgid_attr(id_priv, sgid_attr); 858 /* Need to acquire lock to protect against reader 859 * of cma_dev->id_list such as cma_netdev_callback() and 860 * cma_process_remove(). 861 */ 862 mutex_lock(&lock); 863 cma_attach_to_dev(id_priv, listen_id_priv->cma_dev); 864 mutex_unlock(&lock); 865 rdma_restrack_add(&id_priv->res); 866 return 0; 867 } 868 869 static int cma_iw_acquire_dev(struct rdma_id_private *id_priv, 870 const struct rdma_id_private *listen_id_priv) 871 { 872 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 873 const struct ib_gid_attr *sgid_attr; 874 struct cma_device *cma_dev; 875 enum ib_gid_type gid_type; 876 int ret = -ENODEV; 877 union ib_gid gid; 878 u32 port; 879 880 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 881 id_priv->id.ps == RDMA_PS_IPOIB) 882 return -EINVAL; 883 884 memcpy(&gid, dev_addr->src_dev_addr + 885 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 886 887 mutex_lock(&lock); 888 889 cma_dev = listen_id_priv->cma_dev; 890 port = listen_id_priv->id.port_num; 891 gid_type = listen_id_priv->gid_type; 892 sgid_attr = cma_validate_port(cma_dev->device, port, 893 gid_type, &gid, id_priv); 894 if (!IS_ERR(sgid_attr)) { 895 id_priv->id.port_num = port; 896 cma_bind_sgid_attr(id_priv, sgid_attr); 897 ret = 0; 898 goto out; 899 } 900 901 list_for_each_entry(cma_dev, &dev_list, list) { 902 rdma_for_each_port (cma_dev->device, port) { 903 if (listen_id_priv->cma_dev == cma_dev && 904 listen_id_priv->id.port_num == port) 905 continue; 906 907 gid_type = cma_dev->default_gid_type[port - 1]; 908 sgid_attr = cma_validate_port(cma_dev->device, port, 909 gid_type, &gid, id_priv); 910 if (!IS_ERR(sgid_attr)) { 911 id_priv->id.port_num = port; 912 cma_bind_sgid_attr(id_priv, sgid_attr); 913 ret = 0; 914 goto out; 915 } 916 } 917 } 918 919 out: 920 if (!ret) { 921 cma_attach_to_dev(id_priv, cma_dev); 922 rdma_restrack_add(&id_priv->res); 923 } 924 925 mutex_unlock(&lock); 926 return ret; 927 } 928 929 /* 930 * Select the source IB device and address to reach the destination IB address. 931 */ 932 static int cma_resolve_ib_dev(struct rdma_id_private *id_priv) 933 { 934 struct cma_device *cma_dev, *cur_dev; 935 struct sockaddr_ib *addr; 936 union ib_gid gid, sgid, *dgid; 937 unsigned int p; 938 u16 pkey, index; 939 enum ib_port_state port_state; 940 int ret; 941 int i; 942 943 cma_dev = NULL; 944 addr = (struct sockaddr_ib *) cma_dst_addr(id_priv); 945 dgid = (union ib_gid *) &addr->sib_addr; 946 pkey = ntohs(addr->sib_pkey); 947 948 mutex_lock(&lock); 949 list_for_each_entry(cur_dev, &dev_list, list) { 950 rdma_for_each_port (cur_dev->device, p) { 951 if (!rdma_cap_af_ib(cur_dev->device, p)) 952 continue; 953 954 if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index)) 955 continue; 956 957 if (ib_get_cached_port_state(cur_dev->device, p, &port_state)) 958 continue; 959 960 for (i = 0; i < cur_dev->device->port_data[p].immutable.gid_tbl_len; 961 ++i) { 962 ret = rdma_query_gid(cur_dev->device, p, i, 963 &gid); 964 if (ret) 965 continue; 966 967 if (!memcmp(&gid, dgid, sizeof(gid))) { 968 cma_dev = cur_dev; 969 sgid = gid; 970 id_priv->id.port_num = p; 971 goto found; 972 } 973 974 if (!cma_dev && (gid.global.subnet_prefix == 975 dgid->global.subnet_prefix) && 976 port_state == IB_PORT_ACTIVE) { 977 cma_dev = cur_dev; 978 sgid = gid; 979 id_priv->id.port_num = p; 980 goto found; 981 } 982 } 983 } 984 } 985 mutex_unlock(&lock); 986 return -ENODEV; 987 988 found: 989 cma_attach_to_dev(id_priv, cma_dev); 990 rdma_restrack_add(&id_priv->res); 991 mutex_unlock(&lock); 992 addr = (struct sockaddr_ib *)cma_src_addr(id_priv); 993 memcpy(&addr->sib_addr, &sgid, sizeof(sgid)); 994 cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr); 995 return 0; 996 } 997 998 static void cma_id_get(struct rdma_id_private *id_priv) 999 { 1000 refcount_inc(&id_priv->refcount); 1001 } 1002 1003 static void cma_id_put(struct rdma_id_private *id_priv) 1004 { 1005 if (refcount_dec_and_test(&id_priv->refcount)) 1006 complete(&id_priv->comp); 1007 } 1008 1009 static struct rdma_id_private * 1010 __rdma_create_id(struct net *net, rdma_cm_event_handler event_handler, 1011 void *context, enum rdma_ucm_port_space ps, 1012 enum ib_qp_type qp_type, const struct rdma_id_private *parent) 1013 { 1014 struct rdma_id_private *id_priv; 1015 1016 id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL); 1017 if (!id_priv) 1018 return ERR_PTR(-ENOMEM); 1019 1020 id_priv->state = RDMA_CM_IDLE; 1021 id_priv->restricted_node_type = RDMA_NODE_UNSPECIFIED; 1022 id_priv->id.context = context; 1023 id_priv->id.event_handler = event_handler; 1024 id_priv->id.ps = ps; 1025 id_priv->id.qp_type = qp_type; 1026 id_priv->tos_set = false; 1027 id_priv->timeout_set = false; 1028 id_priv->min_rnr_timer_set = false; 1029 id_priv->gid_type = IB_GID_TYPE_IB; 1030 spin_lock_init(&id_priv->lock); 1031 mutex_init(&id_priv->qp_mutex); 1032 init_completion(&id_priv->comp); 1033 refcount_set(&id_priv->refcount, 1); 1034 mutex_init(&id_priv->handler_mutex); 1035 INIT_LIST_HEAD(&id_priv->device_item); 1036 INIT_LIST_HEAD(&id_priv->id_list_entry); 1037 INIT_LIST_HEAD(&id_priv->listen_list); 1038 INIT_LIST_HEAD(&id_priv->mc_list); 1039 get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num); 1040 id_priv->id.route.addr.dev_addr.net = get_net(net); 1041 id_priv->seq_num &= 0x00ffffff; 1042 INIT_WORK(&id_priv->id.net_work, cma_netevent_work_handler); 1043 1044 rdma_restrack_new(&id_priv->res, RDMA_RESTRACK_CM_ID); 1045 if (parent) 1046 rdma_restrack_parent_name(&id_priv->res, &parent->res); 1047 1048 return id_priv; 1049 } 1050 1051 struct rdma_cm_id * 1052 __rdma_create_kernel_id(struct net *net, rdma_cm_event_handler event_handler, 1053 void *context, enum rdma_ucm_port_space ps, 1054 enum ib_qp_type qp_type, const char *caller) 1055 { 1056 struct rdma_id_private *ret; 1057 1058 ret = __rdma_create_id(net, event_handler, context, ps, qp_type, NULL); 1059 if (IS_ERR(ret)) 1060 return ERR_CAST(ret); 1061 1062 rdma_restrack_set_name(&ret->res, caller); 1063 return &ret->id; 1064 } 1065 EXPORT_SYMBOL(__rdma_create_kernel_id); 1066 1067 struct rdma_cm_id *rdma_create_user_id(rdma_cm_event_handler event_handler, 1068 void *context, 1069 enum rdma_ucm_port_space ps, 1070 enum ib_qp_type qp_type) 1071 { 1072 struct rdma_id_private *ret; 1073 1074 ret = __rdma_create_id(current->nsproxy->net_ns, event_handler, context, 1075 ps, qp_type, NULL); 1076 if (IS_ERR(ret)) 1077 return ERR_CAST(ret); 1078 1079 rdma_restrack_set_name(&ret->res, NULL); 1080 return &ret->id; 1081 } 1082 EXPORT_SYMBOL(rdma_create_user_id); 1083 1084 static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 1085 { 1086 struct ib_qp_attr qp_attr; 1087 int qp_attr_mask, ret; 1088 1089 qp_attr.qp_state = IB_QPS_INIT; 1090 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1091 if (ret) 1092 return ret; 1093 1094 ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask); 1095 if (ret) 1096 return ret; 1097 1098 qp_attr.qp_state = IB_QPS_RTR; 1099 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE); 1100 if (ret) 1101 return ret; 1102 1103 qp_attr.qp_state = IB_QPS_RTS; 1104 qp_attr.sq_psn = 0; 1105 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN); 1106 1107 return ret; 1108 } 1109 1110 static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 1111 { 1112 struct ib_qp_attr qp_attr; 1113 int qp_attr_mask, ret; 1114 1115 qp_attr.qp_state = IB_QPS_INIT; 1116 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1117 if (ret) 1118 return ret; 1119 1120 return ib_modify_qp(qp, &qp_attr, qp_attr_mask); 1121 } 1122 1123 int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd, 1124 struct ib_qp_init_attr *qp_init_attr) 1125 { 1126 struct rdma_id_private *id_priv; 1127 struct ib_qp *qp; 1128 int ret; 1129 1130 id_priv = container_of(id, struct rdma_id_private, id); 1131 if (id->device != pd->device) { 1132 ret = -EINVAL; 1133 goto out_err; 1134 } 1135 1136 qp_init_attr->port_num = id->port_num; 1137 qp = ib_create_qp(pd, qp_init_attr); 1138 if (IS_ERR(qp)) { 1139 ret = PTR_ERR(qp); 1140 goto out_err; 1141 } 1142 1143 if (id->qp_type == IB_QPT_UD) 1144 ret = cma_init_ud_qp(id_priv, qp); 1145 else 1146 ret = cma_init_conn_qp(id_priv, qp); 1147 if (ret) 1148 goto out_destroy; 1149 1150 id->qp = qp; 1151 id_priv->qp_num = qp->qp_num; 1152 id_priv->srq = (qp->srq != NULL); 1153 trace_cm_qp_create(id_priv, pd, qp_init_attr, 0); 1154 return 0; 1155 out_destroy: 1156 ib_destroy_qp(qp); 1157 out_err: 1158 trace_cm_qp_create(id_priv, pd, qp_init_attr, ret); 1159 return ret; 1160 } 1161 EXPORT_SYMBOL(rdma_create_qp); 1162 1163 void rdma_destroy_qp(struct rdma_cm_id *id) 1164 { 1165 struct rdma_id_private *id_priv; 1166 1167 id_priv = container_of(id, struct rdma_id_private, id); 1168 trace_cm_qp_destroy(id_priv); 1169 mutex_lock(&id_priv->qp_mutex); 1170 ib_destroy_qp(id_priv->id.qp); 1171 id_priv->id.qp = NULL; 1172 mutex_unlock(&id_priv->qp_mutex); 1173 } 1174 EXPORT_SYMBOL(rdma_destroy_qp); 1175 1176 static int cma_modify_qp_rtr(struct rdma_id_private *id_priv, 1177 struct rdma_conn_param *conn_param) 1178 { 1179 struct ib_qp_attr qp_attr; 1180 int qp_attr_mask, ret; 1181 1182 mutex_lock(&id_priv->qp_mutex); 1183 if (!id_priv->id.qp) { 1184 ret = 0; 1185 goto out; 1186 } 1187 1188 /* Need to update QP attributes from default values. */ 1189 qp_attr.qp_state = IB_QPS_INIT; 1190 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1191 if (ret) 1192 goto out; 1193 1194 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1195 if (ret) 1196 goto out; 1197 1198 qp_attr.qp_state = IB_QPS_RTR; 1199 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1200 if (ret) 1201 goto out; 1202 1203 BUG_ON(id_priv->cma_dev->device != id_priv->id.device); 1204 1205 if (conn_param) 1206 qp_attr.max_dest_rd_atomic = conn_param->responder_resources; 1207 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1208 out: 1209 mutex_unlock(&id_priv->qp_mutex); 1210 return ret; 1211 } 1212 1213 static int cma_modify_qp_rts(struct rdma_id_private *id_priv, 1214 struct rdma_conn_param *conn_param) 1215 { 1216 struct ib_qp_attr qp_attr; 1217 int qp_attr_mask, ret; 1218 1219 mutex_lock(&id_priv->qp_mutex); 1220 if (!id_priv->id.qp) { 1221 ret = 0; 1222 goto out; 1223 } 1224 1225 qp_attr.qp_state = IB_QPS_RTS; 1226 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1227 if (ret) 1228 goto out; 1229 1230 if (conn_param) 1231 qp_attr.max_rd_atomic = conn_param->initiator_depth; 1232 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1233 out: 1234 mutex_unlock(&id_priv->qp_mutex); 1235 return ret; 1236 } 1237 1238 static int cma_modify_qp_err(struct rdma_id_private *id_priv) 1239 { 1240 struct ib_qp_attr qp_attr; 1241 int ret; 1242 1243 mutex_lock(&id_priv->qp_mutex); 1244 if (!id_priv->id.qp) { 1245 ret = 0; 1246 goto out; 1247 } 1248 1249 qp_attr.qp_state = IB_QPS_ERR; 1250 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE); 1251 out: 1252 mutex_unlock(&id_priv->qp_mutex); 1253 return ret; 1254 } 1255 1256 static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv, 1257 struct ib_qp_attr *qp_attr, int *qp_attr_mask) 1258 { 1259 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 1260 int ret; 1261 u16 pkey; 1262 1263 if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num)) 1264 pkey = 0xffff; 1265 else 1266 pkey = ib_addr_get_pkey(dev_addr); 1267 1268 ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num, 1269 pkey, &qp_attr->pkey_index); 1270 if (ret) 1271 return ret; 1272 1273 qp_attr->port_num = id_priv->id.port_num; 1274 *qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT; 1275 1276 if (id_priv->id.qp_type == IB_QPT_UD) { 1277 ret = cma_set_default_qkey(id_priv); 1278 if (ret) 1279 return ret; 1280 1281 qp_attr->qkey = id_priv->qkey; 1282 *qp_attr_mask |= IB_QP_QKEY; 1283 } else { 1284 qp_attr->qp_access_flags = 0; 1285 *qp_attr_mask |= IB_QP_ACCESS_FLAGS; 1286 } 1287 return 0; 1288 } 1289 1290 int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr, 1291 int *qp_attr_mask) 1292 { 1293 struct rdma_id_private *id_priv; 1294 int ret = 0; 1295 1296 id_priv = container_of(id, struct rdma_id_private, id); 1297 if (rdma_cap_ib_cm(id->device, id->port_num)) { 1298 if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD)) 1299 ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask); 1300 else 1301 ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr, 1302 qp_attr_mask); 1303 1304 if (qp_attr->qp_state == IB_QPS_RTR) 1305 qp_attr->rq_psn = id_priv->seq_num; 1306 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 1307 if (!id_priv->cm_id.iw) { 1308 qp_attr->qp_access_flags = 0; 1309 *qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS; 1310 } else 1311 ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr, 1312 qp_attr_mask); 1313 qp_attr->port_num = id_priv->id.port_num; 1314 *qp_attr_mask |= IB_QP_PORT; 1315 } else { 1316 ret = -ENOSYS; 1317 } 1318 1319 if ((*qp_attr_mask & IB_QP_TIMEOUT) && id_priv->timeout_set) 1320 qp_attr->timeout = id_priv->timeout; 1321 1322 if ((*qp_attr_mask & IB_QP_MIN_RNR_TIMER) && id_priv->min_rnr_timer_set) 1323 qp_attr->min_rnr_timer = id_priv->min_rnr_timer; 1324 1325 return ret; 1326 } 1327 EXPORT_SYMBOL(rdma_init_qp_attr); 1328 1329 static inline bool cma_zero_addr(const struct sockaddr *addr) 1330 { 1331 switch (addr->sa_family) { 1332 case AF_INET: 1333 return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr); 1334 case AF_INET6: 1335 return ipv6_addr_any(&((struct sockaddr_in6 *)addr)->sin6_addr); 1336 case AF_IB: 1337 return ib_addr_any(&((struct sockaddr_ib *)addr)->sib_addr); 1338 default: 1339 return false; 1340 } 1341 } 1342 1343 static inline bool cma_loopback_addr(const struct sockaddr *addr) 1344 { 1345 switch (addr->sa_family) { 1346 case AF_INET: 1347 return ipv4_is_loopback( 1348 ((struct sockaddr_in *)addr)->sin_addr.s_addr); 1349 case AF_INET6: 1350 return ipv6_addr_loopback( 1351 &((struct sockaddr_in6 *)addr)->sin6_addr); 1352 case AF_IB: 1353 return ib_addr_loopback( 1354 &((struct sockaddr_ib *)addr)->sib_addr); 1355 default: 1356 return false; 1357 } 1358 } 1359 1360 static inline bool cma_any_addr(const struct sockaddr *addr) 1361 { 1362 return cma_zero_addr(addr) || cma_loopback_addr(addr); 1363 } 1364 1365 static int cma_addr_cmp(const struct sockaddr *src, const struct sockaddr *dst) 1366 { 1367 if (src->sa_family != dst->sa_family) 1368 return -1; 1369 1370 switch (src->sa_family) { 1371 case AF_INET: 1372 return ((struct sockaddr_in *)src)->sin_addr.s_addr != 1373 ((struct sockaddr_in *)dst)->sin_addr.s_addr; 1374 case AF_INET6: { 1375 struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src; 1376 struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst; 1377 bool link_local; 1378 1379 if (ipv6_addr_cmp(&src_addr6->sin6_addr, 1380 &dst_addr6->sin6_addr)) 1381 return 1; 1382 link_local = ipv6_addr_type(&dst_addr6->sin6_addr) & 1383 IPV6_ADDR_LINKLOCAL; 1384 /* Link local must match their scope_ids */ 1385 return link_local ? (src_addr6->sin6_scope_id != 1386 dst_addr6->sin6_scope_id) : 1387 0; 1388 } 1389 1390 default: 1391 return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr, 1392 &((struct sockaddr_ib *) dst)->sib_addr); 1393 } 1394 } 1395 1396 static __be16 cma_port(const struct sockaddr *addr) 1397 { 1398 struct sockaddr_ib *sib; 1399 1400 switch (addr->sa_family) { 1401 case AF_INET: 1402 return ((struct sockaddr_in *) addr)->sin_port; 1403 case AF_INET6: 1404 return ((struct sockaddr_in6 *) addr)->sin6_port; 1405 case AF_IB: 1406 sib = (struct sockaddr_ib *) addr; 1407 return htons((u16) (be64_to_cpu(sib->sib_sid) & 1408 be64_to_cpu(sib->sib_sid_mask))); 1409 default: 1410 return 0; 1411 } 1412 } 1413 1414 static inline int cma_any_port(const struct sockaddr *addr) 1415 { 1416 return !cma_port(addr); 1417 } 1418 1419 static void cma_save_ib_info(struct sockaddr *src_addr, 1420 struct sockaddr *dst_addr, 1421 const struct rdma_cm_id *listen_id, 1422 const struct sa_path_rec *path) 1423 { 1424 struct sockaddr_ib *listen_ib, *ib; 1425 1426 listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr; 1427 if (src_addr) { 1428 ib = (struct sockaddr_ib *)src_addr; 1429 ib->sib_family = AF_IB; 1430 if (path) { 1431 ib->sib_pkey = path->pkey; 1432 ib->sib_flowinfo = path->flow_label; 1433 memcpy(&ib->sib_addr, &path->sgid, 16); 1434 ib->sib_sid = path->service_id; 1435 ib->sib_scope_id = 0; 1436 } else { 1437 ib->sib_pkey = listen_ib->sib_pkey; 1438 ib->sib_flowinfo = listen_ib->sib_flowinfo; 1439 ib->sib_addr = listen_ib->sib_addr; 1440 ib->sib_sid = listen_ib->sib_sid; 1441 ib->sib_scope_id = listen_ib->sib_scope_id; 1442 } 1443 ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL); 1444 } 1445 if (dst_addr) { 1446 ib = (struct sockaddr_ib *)dst_addr; 1447 ib->sib_family = AF_IB; 1448 if (path) { 1449 ib->sib_pkey = path->pkey; 1450 ib->sib_flowinfo = path->flow_label; 1451 memcpy(&ib->sib_addr, &path->dgid, 16); 1452 } 1453 } 1454 } 1455 1456 static void cma_save_ip4_info(struct sockaddr_in *src_addr, 1457 struct sockaddr_in *dst_addr, 1458 struct cma_hdr *hdr, 1459 __be16 local_port) 1460 { 1461 if (src_addr) { 1462 *src_addr = (struct sockaddr_in) { 1463 .sin_family = AF_INET, 1464 .sin_addr.s_addr = hdr->dst_addr.ip4.addr, 1465 .sin_port = local_port, 1466 }; 1467 } 1468 1469 if (dst_addr) { 1470 *dst_addr = (struct sockaddr_in) { 1471 .sin_family = AF_INET, 1472 .sin_addr.s_addr = hdr->src_addr.ip4.addr, 1473 .sin_port = hdr->port, 1474 }; 1475 } 1476 } 1477 1478 static void cma_save_ip6_info(struct sockaddr_in6 *src_addr, 1479 struct sockaddr_in6 *dst_addr, 1480 struct cma_hdr *hdr, 1481 __be16 local_port) 1482 { 1483 if (src_addr) { 1484 *src_addr = (struct sockaddr_in6) { 1485 .sin6_family = AF_INET6, 1486 .sin6_addr = hdr->dst_addr.ip6, 1487 .sin6_port = local_port, 1488 }; 1489 } 1490 1491 if (dst_addr) { 1492 *dst_addr = (struct sockaddr_in6) { 1493 .sin6_family = AF_INET6, 1494 .sin6_addr = hdr->src_addr.ip6, 1495 .sin6_port = hdr->port, 1496 }; 1497 } 1498 } 1499 1500 static u16 cma_port_from_service_id(__be64 service_id) 1501 { 1502 return (u16)be64_to_cpu(service_id); 1503 } 1504 1505 static int cma_save_ip_info(struct sockaddr *src_addr, 1506 struct sockaddr *dst_addr, 1507 const struct ib_cm_event *ib_event, 1508 __be64 service_id) 1509 { 1510 struct cma_hdr *hdr; 1511 __be16 port; 1512 1513 hdr = ib_event->private_data; 1514 if (hdr->cma_version != CMA_VERSION) 1515 return -EINVAL; 1516 1517 port = htons(cma_port_from_service_id(service_id)); 1518 1519 switch (cma_get_ip_ver(hdr)) { 1520 case 4: 1521 cma_save_ip4_info((struct sockaddr_in *)src_addr, 1522 (struct sockaddr_in *)dst_addr, hdr, port); 1523 break; 1524 case 6: 1525 cma_save_ip6_info((struct sockaddr_in6 *)src_addr, 1526 (struct sockaddr_in6 *)dst_addr, hdr, port); 1527 break; 1528 default: 1529 return -EAFNOSUPPORT; 1530 } 1531 1532 return 0; 1533 } 1534 1535 static int cma_save_net_info(struct sockaddr *src_addr, 1536 struct sockaddr *dst_addr, 1537 const struct rdma_cm_id *listen_id, 1538 const struct ib_cm_event *ib_event, 1539 sa_family_t sa_family, __be64 service_id) 1540 { 1541 if (sa_family == AF_IB) { 1542 if (ib_event->event == IB_CM_REQ_RECEIVED) 1543 cma_save_ib_info(src_addr, dst_addr, listen_id, 1544 ib_event->param.req_rcvd.primary_path); 1545 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1546 cma_save_ib_info(src_addr, dst_addr, listen_id, NULL); 1547 return 0; 1548 } 1549 1550 return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id); 1551 } 1552 1553 static int cma_save_req_info(const struct ib_cm_event *ib_event, 1554 struct cma_req_info *req) 1555 { 1556 const struct ib_cm_req_event_param *req_param = 1557 &ib_event->param.req_rcvd; 1558 const struct ib_cm_sidr_req_event_param *sidr_param = 1559 &ib_event->param.sidr_req_rcvd; 1560 1561 switch (ib_event->event) { 1562 case IB_CM_REQ_RECEIVED: 1563 req->device = req_param->listen_id->device; 1564 req->port = req_param->port; 1565 memcpy(&req->local_gid, &req_param->primary_path->sgid, 1566 sizeof(req->local_gid)); 1567 req->has_gid = true; 1568 req->service_id = req_param->primary_path->service_id; 1569 req->pkey = be16_to_cpu(req_param->primary_path->pkey); 1570 if (req->pkey != req_param->bth_pkey) 1571 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n" 1572 "RDMA CMA: in the future this may cause the request to be dropped\n", 1573 req_param->bth_pkey, req->pkey); 1574 break; 1575 case IB_CM_SIDR_REQ_RECEIVED: 1576 req->device = sidr_param->listen_id->device; 1577 req->port = sidr_param->port; 1578 req->has_gid = false; 1579 req->service_id = sidr_param->service_id; 1580 req->pkey = sidr_param->pkey; 1581 if (req->pkey != sidr_param->bth_pkey) 1582 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n" 1583 "RDMA CMA: in the future this may cause the request to be dropped\n", 1584 sidr_param->bth_pkey, req->pkey); 1585 break; 1586 default: 1587 return -EINVAL; 1588 } 1589 1590 return 0; 1591 } 1592 1593 static bool validate_ipv4_net_dev(struct net_device *net_dev, 1594 const struct sockaddr_in *dst_addr, 1595 const struct sockaddr_in *src_addr) 1596 { 1597 __be32 daddr = dst_addr->sin_addr.s_addr, 1598 saddr = src_addr->sin_addr.s_addr; 1599 struct fib_result res; 1600 struct flowi4 fl4; 1601 int err; 1602 bool ret; 1603 1604 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) || 1605 ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) || 1606 ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) || 1607 ipv4_is_loopback(saddr)) 1608 return false; 1609 1610 memset(&fl4, 0, sizeof(fl4)); 1611 fl4.flowi4_oif = net_dev->ifindex; 1612 fl4.daddr = daddr; 1613 fl4.saddr = saddr; 1614 1615 rcu_read_lock(); 1616 err = fib_lookup(dev_net(net_dev), &fl4, &res, 0); 1617 ret = err == 0 && FIB_RES_DEV(res) == net_dev; 1618 rcu_read_unlock(); 1619 1620 return ret; 1621 } 1622 1623 static bool validate_ipv6_net_dev(struct net_device *net_dev, 1624 const struct sockaddr_in6 *dst_addr, 1625 const struct sockaddr_in6 *src_addr) 1626 { 1627 #if IS_ENABLED(CONFIG_IPV6) 1628 const int strict = ipv6_addr_type(&dst_addr->sin6_addr) & 1629 IPV6_ADDR_LINKLOCAL; 1630 struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr, 1631 &src_addr->sin6_addr, net_dev->ifindex, 1632 NULL, strict); 1633 bool ret; 1634 1635 if (!rt) 1636 return false; 1637 1638 ret = rt->rt6i_idev->dev == net_dev; 1639 ip6_rt_put(rt); 1640 1641 return ret; 1642 #else 1643 return false; 1644 #endif 1645 } 1646 1647 static bool validate_net_dev(struct net_device *net_dev, 1648 const struct sockaddr *daddr, 1649 const struct sockaddr *saddr) 1650 { 1651 const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr; 1652 const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr; 1653 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1654 const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr; 1655 1656 switch (daddr->sa_family) { 1657 case AF_INET: 1658 return saddr->sa_family == AF_INET && 1659 validate_ipv4_net_dev(net_dev, daddr4, saddr4); 1660 1661 case AF_INET6: 1662 return saddr->sa_family == AF_INET6 && 1663 validate_ipv6_net_dev(net_dev, daddr6, saddr6); 1664 1665 default: 1666 return false; 1667 } 1668 } 1669 1670 static struct net_device * 1671 roce_get_net_dev_by_cm_event(const struct ib_cm_event *ib_event) 1672 { 1673 const struct ib_gid_attr *sgid_attr = NULL; 1674 struct net_device *ndev; 1675 1676 if (ib_event->event == IB_CM_REQ_RECEIVED) 1677 sgid_attr = ib_event->param.req_rcvd.ppath_sgid_attr; 1678 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1679 sgid_attr = ib_event->param.sidr_req_rcvd.sgid_attr; 1680 1681 if (!sgid_attr) 1682 return NULL; 1683 1684 rcu_read_lock(); 1685 ndev = rdma_read_gid_attr_ndev_rcu(sgid_attr); 1686 if (IS_ERR(ndev)) 1687 ndev = NULL; 1688 else 1689 dev_hold(ndev); 1690 rcu_read_unlock(); 1691 return ndev; 1692 } 1693 1694 static struct net_device *cma_get_net_dev(const struct ib_cm_event *ib_event, 1695 struct cma_req_info *req) 1696 { 1697 struct sockaddr *listen_addr = 1698 (struct sockaddr *)&req->listen_addr_storage; 1699 struct sockaddr *src_addr = (struct sockaddr *)&req->src_addr_storage; 1700 struct net_device *net_dev; 1701 const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL; 1702 int err; 1703 1704 err = cma_save_ip_info(listen_addr, src_addr, ib_event, 1705 req->service_id); 1706 if (err) 1707 return ERR_PTR(err); 1708 1709 if (rdma_protocol_roce(req->device, req->port)) 1710 net_dev = roce_get_net_dev_by_cm_event(ib_event); 1711 else 1712 net_dev = ib_get_net_dev_by_params(req->device, req->port, 1713 req->pkey, 1714 gid, listen_addr); 1715 if (!net_dev) 1716 return ERR_PTR(-ENODEV); 1717 1718 return net_dev; 1719 } 1720 1721 static enum rdma_ucm_port_space rdma_ps_from_service_id(__be64 service_id) 1722 { 1723 return (be64_to_cpu(service_id) >> 16) & 0xffff; 1724 } 1725 1726 static bool cma_match_private_data(struct rdma_id_private *id_priv, 1727 const struct cma_hdr *hdr) 1728 { 1729 struct sockaddr *addr = cma_src_addr(id_priv); 1730 __be32 ip4_addr; 1731 struct in6_addr ip6_addr; 1732 1733 if (cma_any_addr(addr) && !id_priv->afonly) 1734 return true; 1735 1736 switch (addr->sa_family) { 1737 case AF_INET: 1738 ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr; 1739 if (cma_get_ip_ver(hdr) != 4) 1740 return false; 1741 if (!cma_any_addr(addr) && 1742 hdr->dst_addr.ip4.addr != ip4_addr) 1743 return false; 1744 break; 1745 case AF_INET6: 1746 ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr; 1747 if (cma_get_ip_ver(hdr) != 6) 1748 return false; 1749 if (!cma_any_addr(addr) && 1750 memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr))) 1751 return false; 1752 break; 1753 case AF_IB: 1754 return true; 1755 default: 1756 return false; 1757 } 1758 1759 return true; 1760 } 1761 1762 static bool cma_protocol_roce(const struct rdma_cm_id *id) 1763 { 1764 struct ib_device *device = id->device; 1765 const u32 port_num = id->port_num ?: rdma_start_port(device); 1766 1767 return rdma_protocol_roce(device, port_num); 1768 } 1769 1770 static bool cma_is_req_ipv6_ll(const struct cma_req_info *req) 1771 { 1772 const struct sockaddr *daddr = 1773 (const struct sockaddr *)&req->listen_addr_storage; 1774 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1775 1776 /* Returns true if the req is for IPv6 link local */ 1777 return (daddr->sa_family == AF_INET6 && 1778 (ipv6_addr_type(&daddr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)); 1779 } 1780 1781 static bool cma_match_net_dev(const struct rdma_cm_id *id, 1782 const struct net_device *net_dev, 1783 const struct cma_req_info *req) 1784 { 1785 const struct rdma_addr *addr = &id->route.addr; 1786 1787 if (!net_dev) 1788 /* This request is an AF_IB request */ 1789 return (!id->port_num || id->port_num == req->port) && 1790 (addr->src_addr.ss_family == AF_IB); 1791 1792 /* 1793 * If the request is not for IPv6 link local, allow matching 1794 * request to any netdevice of the one or multiport rdma device. 1795 */ 1796 if (!cma_is_req_ipv6_ll(req)) 1797 return true; 1798 /* 1799 * Net namespaces must match, and if the listner is listening 1800 * on a specific netdevice than netdevice must match as well. 1801 */ 1802 if (net_eq(dev_net(net_dev), addr->dev_addr.net) && 1803 (!!addr->dev_addr.bound_dev_if == 1804 (addr->dev_addr.bound_dev_if == net_dev->ifindex))) 1805 return true; 1806 else 1807 return false; 1808 } 1809 1810 static struct rdma_id_private *cma_find_listener( 1811 const struct rdma_bind_list *bind_list, 1812 const struct ib_cm_id *cm_id, 1813 const struct ib_cm_event *ib_event, 1814 const struct cma_req_info *req, 1815 const struct net_device *net_dev) 1816 { 1817 struct rdma_id_private *id_priv, *id_priv_dev; 1818 1819 lockdep_assert_held(&lock); 1820 1821 if (!bind_list) 1822 return ERR_PTR(-EINVAL); 1823 1824 hlist_for_each_entry(id_priv, &bind_list->owners, node) { 1825 if (cma_match_private_data(id_priv, ib_event->private_data)) { 1826 if (id_priv->id.device == cm_id->device && 1827 cma_match_net_dev(&id_priv->id, net_dev, req)) 1828 return id_priv; 1829 list_for_each_entry(id_priv_dev, 1830 &id_priv->listen_list, 1831 listen_item) { 1832 if (id_priv_dev->id.device == cm_id->device && 1833 cma_match_net_dev(&id_priv_dev->id, 1834 net_dev, req)) 1835 return id_priv_dev; 1836 } 1837 } 1838 } 1839 1840 return ERR_PTR(-EINVAL); 1841 } 1842 1843 static struct rdma_id_private * 1844 cma_ib_id_from_event(struct ib_cm_id *cm_id, 1845 const struct ib_cm_event *ib_event, 1846 struct cma_req_info *req, 1847 struct net_device **net_dev) 1848 { 1849 struct rdma_bind_list *bind_list; 1850 struct rdma_id_private *id_priv; 1851 int err; 1852 1853 err = cma_save_req_info(ib_event, req); 1854 if (err) 1855 return ERR_PTR(err); 1856 1857 *net_dev = cma_get_net_dev(ib_event, req); 1858 if (IS_ERR(*net_dev)) { 1859 if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) { 1860 /* Assuming the protocol is AF_IB */ 1861 *net_dev = NULL; 1862 } else { 1863 return ERR_CAST(*net_dev); 1864 } 1865 } 1866 1867 mutex_lock(&lock); 1868 /* 1869 * Net namespace might be getting deleted while route lookup, 1870 * cm_id lookup is in progress. Therefore, perform netdevice 1871 * validation, cm_id lookup under rcu lock. 1872 * RCU lock along with netdevice state check, synchronizes with 1873 * netdevice migrating to different net namespace and also avoids 1874 * case where net namespace doesn't get deleted while lookup is in 1875 * progress. 1876 * If the device state is not IFF_UP, its properties such as ifindex 1877 * and nd_net cannot be trusted to remain valid without rcu lock. 1878 * net/core/dev.c change_net_namespace() ensures to synchronize with 1879 * ongoing operations on net device after device is closed using 1880 * synchronize_net(). 1881 */ 1882 rcu_read_lock(); 1883 if (*net_dev) { 1884 /* 1885 * If netdevice is down, it is likely that it is administratively 1886 * down or it might be migrating to different namespace. 1887 * In that case avoid further processing, as the net namespace 1888 * or ifindex may change. 1889 */ 1890 if (((*net_dev)->flags & IFF_UP) == 0) { 1891 id_priv = ERR_PTR(-EHOSTUNREACH); 1892 goto err; 1893 } 1894 1895 if (!validate_net_dev(*net_dev, 1896 (struct sockaddr *)&req->src_addr_storage, 1897 (struct sockaddr *)&req->listen_addr_storage)) { 1898 id_priv = ERR_PTR(-EHOSTUNREACH); 1899 goto err; 1900 } 1901 } 1902 1903 bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net, 1904 rdma_ps_from_service_id(req->service_id), 1905 cma_port_from_service_id(req->service_id)); 1906 id_priv = cma_find_listener(bind_list, cm_id, ib_event, req, *net_dev); 1907 err: 1908 rcu_read_unlock(); 1909 mutex_unlock(&lock); 1910 if (IS_ERR(id_priv) && *net_dev) { 1911 dev_put(*net_dev); 1912 *net_dev = NULL; 1913 } 1914 return id_priv; 1915 } 1916 1917 static inline u8 cma_user_data_offset(struct rdma_id_private *id_priv) 1918 { 1919 return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr); 1920 } 1921 1922 static void cma_cancel_route(struct rdma_id_private *id_priv) 1923 { 1924 if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) { 1925 if (id_priv->query) 1926 ib_sa_cancel_query(id_priv->query_id, id_priv->query); 1927 } 1928 } 1929 1930 static void _cma_cancel_listens(struct rdma_id_private *id_priv) 1931 { 1932 struct rdma_id_private *dev_id_priv; 1933 1934 lockdep_assert_held(&lock); 1935 1936 /* 1937 * Remove from listen_any_list to prevent added devices from spawning 1938 * additional listen requests. 1939 */ 1940 list_del_init(&id_priv->listen_any_item); 1941 1942 while (!list_empty(&id_priv->listen_list)) { 1943 dev_id_priv = 1944 list_first_entry(&id_priv->listen_list, 1945 struct rdma_id_private, listen_item); 1946 /* sync with device removal to avoid duplicate destruction */ 1947 list_del_init(&dev_id_priv->device_item); 1948 list_del_init(&dev_id_priv->listen_item); 1949 mutex_unlock(&lock); 1950 1951 rdma_destroy_id(&dev_id_priv->id); 1952 mutex_lock(&lock); 1953 } 1954 } 1955 1956 static void cma_cancel_listens(struct rdma_id_private *id_priv) 1957 { 1958 mutex_lock(&lock); 1959 _cma_cancel_listens(id_priv); 1960 mutex_unlock(&lock); 1961 } 1962 1963 static void cma_cancel_operation(struct rdma_id_private *id_priv, 1964 enum rdma_cm_state state) 1965 { 1966 switch (state) { 1967 case RDMA_CM_ADDR_QUERY: 1968 /* 1969 * We can avoid doing the rdma_addr_cancel() based on state, 1970 * only RDMA_CM_ADDR_QUERY has a work that could still execute. 1971 * Notice that the addr_handler work could still be exiting 1972 * outside this state, however due to the interaction with the 1973 * handler_mutex the work is guaranteed not to touch id_priv 1974 * during exit. 1975 */ 1976 rdma_addr_cancel(&id_priv->id.route.addr.dev_addr); 1977 break; 1978 case RDMA_CM_ROUTE_QUERY: 1979 cma_cancel_route(id_priv); 1980 break; 1981 case RDMA_CM_LISTEN: 1982 if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev) 1983 cma_cancel_listens(id_priv); 1984 break; 1985 default: 1986 break; 1987 } 1988 } 1989 1990 static void cma_release_port(struct rdma_id_private *id_priv) 1991 { 1992 struct rdma_bind_list *bind_list = id_priv->bind_list; 1993 struct net *net = id_priv->id.route.addr.dev_addr.net; 1994 1995 if (!bind_list) 1996 return; 1997 1998 mutex_lock(&lock); 1999 hlist_del(&id_priv->node); 2000 if (hlist_empty(&bind_list->owners)) { 2001 cma_ps_remove(net, bind_list->ps, bind_list->port); 2002 kfree(bind_list); 2003 } 2004 mutex_unlock(&lock); 2005 } 2006 2007 static void destroy_mc(struct rdma_id_private *id_priv, 2008 struct cma_multicast *mc) 2009 { 2010 bool send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN); 2011 2012 if (rdma_cap_ib_mcast(id_priv->id.device, id_priv->id.port_num)) 2013 ib_sa_free_multicast(mc->sa_mc); 2014 2015 if (rdma_protocol_roce(id_priv->id.device, id_priv->id.port_num)) { 2016 struct rdma_cm_event *event = &mc->iboe_join.event; 2017 struct rdma_dev_addr *dev_addr = 2018 &id_priv->id.route.addr.dev_addr; 2019 struct net_device *ndev = NULL; 2020 2021 if (dev_addr->bound_dev_if) 2022 ndev = dev_get_by_index(dev_addr->net, 2023 dev_addr->bound_dev_if); 2024 if (ndev && !send_only) { 2025 enum ib_gid_type gid_type; 2026 union ib_gid mgid; 2027 2028 gid_type = id_priv->cma_dev->default_gid_type 2029 [id_priv->id.port_num - 2030 rdma_start_port( 2031 id_priv->cma_dev->device)]; 2032 cma_iboe_set_mgid((struct sockaddr *)&mc->addr, &mgid, 2033 gid_type); 2034 cma_igmp_send(ndev, &mgid, false); 2035 } 2036 dev_put(ndev); 2037 2038 cancel_work_sync(&mc->iboe_join.work); 2039 if (event->event == RDMA_CM_EVENT_MULTICAST_JOIN) 2040 rdma_destroy_ah_attr(&event->param.ud.ah_attr); 2041 } 2042 kfree(mc); 2043 } 2044 2045 static void cma_leave_mc_groups(struct rdma_id_private *id_priv) 2046 { 2047 struct cma_multicast *mc; 2048 2049 while (!list_empty(&id_priv->mc_list)) { 2050 mc = list_first_entry(&id_priv->mc_list, struct cma_multicast, 2051 list); 2052 list_del(&mc->list); 2053 destroy_mc(id_priv, mc); 2054 } 2055 } 2056 2057 static void _destroy_id(struct rdma_id_private *id_priv, 2058 enum rdma_cm_state state) 2059 { 2060 cma_cancel_operation(id_priv, state); 2061 2062 rdma_restrack_del(&id_priv->res); 2063 cma_remove_id_from_tree(id_priv); 2064 if (id_priv->cma_dev) { 2065 if (rdma_cap_ib_cm(id_priv->id.device, 1)) { 2066 if (id_priv->cm_id.ib) 2067 ib_destroy_cm_id(id_priv->cm_id.ib); 2068 } else if (rdma_cap_iw_cm(id_priv->id.device, 1)) { 2069 if (id_priv->cm_id.iw) 2070 iw_destroy_cm_id(id_priv->cm_id.iw); 2071 } 2072 cma_leave_mc_groups(id_priv); 2073 cma_release_dev(id_priv); 2074 } 2075 2076 cma_release_port(id_priv); 2077 cma_id_put(id_priv); 2078 wait_for_completion(&id_priv->comp); 2079 2080 if (id_priv->internal_id) 2081 cma_id_put(id_priv->id.context); 2082 2083 kfree(id_priv->id.route.path_rec); 2084 kfree(id_priv->id.route.path_rec_inbound); 2085 kfree(id_priv->id.route.path_rec_outbound); 2086 kfree(id_priv->id.route.service_recs); 2087 2088 put_net(id_priv->id.route.addr.dev_addr.net); 2089 kfree(id_priv); 2090 } 2091 2092 /* 2093 * destroy an ID from within the handler_mutex. This ensures that no other 2094 * handlers can start running concurrently. 2095 */ 2096 static void destroy_id_handler_unlock(struct rdma_id_private *id_priv) 2097 __releases(&idprv->handler_mutex) 2098 { 2099 enum rdma_cm_state state; 2100 unsigned long flags; 2101 2102 trace_cm_id_destroy(id_priv); 2103 2104 /* 2105 * Setting the state to destroyed under the handler mutex provides a 2106 * fence against calling handler callbacks. If this is invoked due to 2107 * the failure of a handler callback then it guarentees that no future 2108 * handlers will be called. 2109 */ 2110 lockdep_assert_held(&id_priv->handler_mutex); 2111 spin_lock_irqsave(&id_priv->lock, flags); 2112 state = id_priv->state; 2113 id_priv->state = RDMA_CM_DESTROYING; 2114 spin_unlock_irqrestore(&id_priv->lock, flags); 2115 mutex_unlock(&id_priv->handler_mutex); 2116 _destroy_id(id_priv, state); 2117 } 2118 2119 void rdma_destroy_id(struct rdma_cm_id *id) 2120 { 2121 struct rdma_id_private *id_priv = 2122 container_of(id, struct rdma_id_private, id); 2123 2124 mutex_lock(&id_priv->handler_mutex); 2125 destroy_id_handler_unlock(id_priv); 2126 } 2127 EXPORT_SYMBOL(rdma_destroy_id); 2128 2129 static int cma_rep_recv(struct rdma_id_private *id_priv) 2130 { 2131 int ret; 2132 2133 ret = cma_modify_qp_rtr(id_priv, NULL); 2134 if (ret) 2135 goto reject; 2136 2137 ret = cma_modify_qp_rts(id_priv, NULL); 2138 if (ret) 2139 goto reject; 2140 2141 trace_cm_send_rtu(id_priv); 2142 ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0); 2143 if (ret) 2144 goto reject; 2145 2146 return 0; 2147 reject: 2148 pr_debug_ratelimited("RDMA CM: CONNECT_ERROR: failed to handle reply. status %d\n", ret); 2149 cma_modify_qp_err(id_priv); 2150 trace_cm_send_rej(id_priv); 2151 ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED, 2152 NULL, 0, NULL, 0); 2153 return ret; 2154 } 2155 2156 static void cma_set_rep_event_data(struct rdma_cm_event *event, 2157 const struct ib_cm_rep_event_param *rep_data, 2158 void *private_data) 2159 { 2160 event->param.conn.private_data = private_data; 2161 event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE; 2162 event->param.conn.responder_resources = rep_data->responder_resources; 2163 event->param.conn.initiator_depth = rep_data->initiator_depth; 2164 event->param.conn.flow_control = rep_data->flow_control; 2165 event->param.conn.rnr_retry_count = rep_data->rnr_retry_count; 2166 event->param.conn.srq = rep_data->srq; 2167 event->param.conn.qp_num = rep_data->remote_qpn; 2168 2169 event->ece.vendor_id = rep_data->ece.vendor_id; 2170 event->ece.attr_mod = rep_data->ece.attr_mod; 2171 } 2172 2173 static int cma_cm_event_handler(struct rdma_id_private *id_priv, 2174 struct rdma_cm_event *event) 2175 { 2176 int ret; 2177 2178 lockdep_assert_held(&id_priv->handler_mutex); 2179 2180 trace_cm_event_handler(id_priv, event); 2181 ret = id_priv->id.event_handler(&id_priv->id, event); 2182 trace_cm_event_done(id_priv, event, ret); 2183 return ret; 2184 } 2185 2186 static int cma_ib_handler(struct ib_cm_id *cm_id, 2187 const struct ib_cm_event *ib_event) 2188 { 2189 struct rdma_id_private *id_priv = cm_id->context; 2190 struct rdma_cm_event event = {}; 2191 enum rdma_cm_state state; 2192 int ret; 2193 2194 mutex_lock(&id_priv->handler_mutex); 2195 state = READ_ONCE(id_priv->state); 2196 if ((ib_event->event != IB_CM_TIMEWAIT_EXIT && 2197 state != RDMA_CM_CONNECT) || 2198 (ib_event->event == IB_CM_TIMEWAIT_EXIT && 2199 state != RDMA_CM_DISCONNECT)) 2200 goto out; 2201 2202 switch (ib_event->event) { 2203 case IB_CM_REQ_ERROR: 2204 case IB_CM_REP_ERROR: 2205 event.event = RDMA_CM_EVENT_UNREACHABLE; 2206 event.status = -ETIMEDOUT; 2207 break; 2208 case IB_CM_REP_RECEIVED: 2209 if (state == RDMA_CM_CONNECT && 2210 (id_priv->id.qp_type != IB_QPT_UD)) { 2211 trace_cm_prepare_mra(id_priv); 2212 ib_prepare_cm_mra(cm_id); 2213 } 2214 if (id_priv->id.qp) { 2215 event.status = cma_rep_recv(id_priv); 2216 event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR : 2217 RDMA_CM_EVENT_ESTABLISHED; 2218 } else { 2219 event.event = RDMA_CM_EVENT_CONNECT_RESPONSE; 2220 } 2221 cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd, 2222 ib_event->private_data); 2223 break; 2224 case IB_CM_RTU_RECEIVED: 2225 case IB_CM_USER_ESTABLISHED: 2226 event.event = RDMA_CM_EVENT_ESTABLISHED; 2227 break; 2228 case IB_CM_DREQ_ERROR: 2229 event.status = -ETIMEDOUT; 2230 fallthrough; 2231 case IB_CM_DREQ_RECEIVED: 2232 case IB_CM_DREP_RECEIVED: 2233 if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT, 2234 RDMA_CM_DISCONNECT)) 2235 goto out; 2236 event.event = RDMA_CM_EVENT_DISCONNECTED; 2237 break; 2238 case IB_CM_TIMEWAIT_EXIT: 2239 event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT; 2240 break; 2241 case IB_CM_MRA_RECEIVED: 2242 /* ignore event */ 2243 goto out; 2244 case IB_CM_REJ_RECEIVED: 2245 pr_debug_ratelimited("RDMA CM: REJECTED: %s\n", rdma_reject_msg(&id_priv->id, 2246 ib_event->param.rej_rcvd.reason)); 2247 cma_modify_qp_err(id_priv); 2248 event.status = ib_event->param.rej_rcvd.reason; 2249 event.event = RDMA_CM_EVENT_REJECTED; 2250 event.param.conn.private_data = ib_event->private_data; 2251 event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE; 2252 break; 2253 default: 2254 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 2255 ib_event->event); 2256 goto out; 2257 } 2258 2259 ret = cma_cm_event_handler(id_priv, &event); 2260 if (ret) { 2261 /* Destroy the CM ID by returning a non-zero value. */ 2262 id_priv->cm_id.ib = NULL; 2263 destroy_id_handler_unlock(id_priv); 2264 return ret; 2265 } 2266 out: 2267 mutex_unlock(&id_priv->handler_mutex); 2268 return 0; 2269 } 2270 2271 static struct rdma_id_private * 2272 cma_ib_new_conn_id(const struct rdma_cm_id *listen_id, 2273 const struct ib_cm_event *ib_event, 2274 struct net_device *net_dev) 2275 { 2276 struct rdma_id_private *listen_id_priv; 2277 struct rdma_id_private *id_priv; 2278 struct rdma_cm_id *id; 2279 struct rdma_route *rt; 2280 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2281 struct sa_path_rec *path = ib_event->param.req_rcvd.primary_path; 2282 const __be64 service_id = 2283 ib_event->param.req_rcvd.primary_path->service_id; 2284 int ret; 2285 2286 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2287 id_priv = __rdma_create_id(listen_id->route.addr.dev_addr.net, 2288 listen_id->event_handler, listen_id->context, 2289 listen_id->ps, 2290 ib_event->param.req_rcvd.qp_type, 2291 listen_id_priv); 2292 if (IS_ERR(id_priv)) 2293 return NULL; 2294 2295 id = &id_priv->id; 2296 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2297 (struct sockaddr *)&id->route.addr.dst_addr, 2298 listen_id, ib_event, ss_family, service_id)) 2299 goto err; 2300 2301 rt = &id->route; 2302 rt->num_pri_alt_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1; 2303 rt->path_rec = kmalloc_array(rt->num_pri_alt_paths, 2304 sizeof(*rt->path_rec), GFP_KERNEL); 2305 if (!rt->path_rec) 2306 goto err; 2307 2308 rt->path_rec[0] = *path; 2309 if (rt->num_pri_alt_paths == 2) 2310 rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path; 2311 2312 if (net_dev) { 2313 rdma_copy_src_l2_addr(&rt->addr.dev_addr, net_dev); 2314 } else { 2315 if (!cma_protocol_roce(listen_id) && 2316 cma_any_addr(cma_src_addr(id_priv))) { 2317 rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND; 2318 rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid); 2319 ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey)); 2320 } else if (!cma_any_addr(cma_src_addr(id_priv))) { 2321 ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr); 2322 if (ret) 2323 goto err; 2324 } 2325 } 2326 rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid); 2327 2328 id_priv->state = RDMA_CM_CONNECT; 2329 return id_priv; 2330 2331 err: 2332 rdma_destroy_id(id); 2333 return NULL; 2334 } 2335 2336 static struct rdma_id_private * 2337 cma_ib_new_udp_id(const struct rdma_cm_id *listen_id, 2338 const struct ib_cm_event *ib_event, 2339 struct net_device *net_dev) 2340 { 2341 const struct rdma_id_private *listen_id_priv; 2342 struct rdma_id_private *id_priv; 2343 struct rdma_cm_id *id; 2344 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2345 struct net *net = listen_id->route.addr.dev_addr.net; 2346 int ret; 2347 2348 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2349 id_priv = __rdma_create_id(net, listen_id->event_handler, 2350 listen_id->context, listen_id->ps, IB_QPT_UD, 2351 listen_id_priv); 2352 if (IS_ERR(id_priv)) 2353 return NULL; 2354 2355 id = &id_priv->id; 2356 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2357 (struct sockaddr *)&id->route.addr.dst_addr, 2358 listen_id, ib_event, ss_family, 2359 ib_event->param.sidr_req_rcvd.service_id)) 2360 goto err; 2361 2362 if (net_dev) { 2363 rdma_copy_src_l2_addr(&id->route.addr.dev_addr, net_dev); 2364 } else { 2365 if (!cma_any_addr(cma_src_addr(id_priv))) { 2366 ret = cma_translate_addr(cma_src_addr(id_priv), 2367 &id->route.addr.dev_addr); 2368 if (ret) 2369 goto err; 2370 } 2371 } 2372 2373 id_priv->state = RDMA_CM_CONNECT; 2374 return id_priv; 2375 err: 2376 rdma_destroy_id(id); 2377 return NULL; 2378 } 2379 2380 static void cma_set_req_event_data(struct rdma_cm_event *event, 2381 const struct ib_cm_req_event_param *req_data, 2382 void *private_data, int offset) 2383 { 2384 event->param.conn.private_data = private_data + offset; 2385 event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset; 2386 event->param.conn.responder_resources = req_data->responder_resources; 2387 event->param.conn.initiator_depth = req_data->initiator_depth; 2388 event->param.conn.flow_control = req_data->flow_control; 2389 event->param.conn.retry_count = req_data->retry_count; 2390 event->param.conn.rnr_retry_count = req_data->rnr_retry_count; 2391 event->param.conn.srq = req_data->srq; 2392 event->param.conn.qp_num = req_data->remote_qpn; 2393 2394 event->ece.vendor_id = req_data->ece.vendor_id; 2395 event->ece.attr_mod = req_data->ece.attr_mod; 2396 } 2397 2398 static int cma_ib_check_req_qp_type(const struct rdma_cm_id *id, 2399 const struct ib_cm_event *ib_event) 2400 { 2401 return (((ib_event->event == IB_CM_REQ_RECEIVED) && 2402 (ib_event->param.req_rcvd.qp_type == id->qp_type)) || 2403 ((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) && 2404 (id->qp_type == IB_QPT_UD)) || 2405 (!id->qp_type)); 2406 } 2407 2408 static int cma_ib_req_handler(struct ib_cm_id *cm_id, 2409 const struct ib_cm_event *ib_event) 2410 { 2411 struct rdma_id_private *listen_id, *conn_id = NULL; 2412 struct rdma_cm_event event = {}; 2413 struct cma_req_info req = {}; 2414 struct net_device *net_dev; 2415 u8 offset; 2416 int ret; 2417 2418 listen_id = cma_ib_id_from_event(cm_id, ib_event, &req, &net_dev); 2419 if (IS_ERR(listen_id)) 2420 return PTR_ERR(listen_id); 2421 2422 trace_cm_req_handler(listen_id, ib_event->event); 2423 if (!cma_ib_check_req_qp_type(&listen_id->id, ib_event)) { 2424 ret = -EINVAL; 2425 goto net_dev_put; 2426 } 2427 2428 mutex_lock(&listen_id->handler_mutex); 2429 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) { 2430 ret = -ECONNABORTED; 2431 goto err_unlock; 2432 } 2433 2434 offset = cma_user_data_offset(listen_id); 2435 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2436 if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) { 2437 conn_id = cma_ib_new_udp_id(&listen_id->id, ib_event, net_dev); 2438 event.param.ud.private_data = ib_event->private_data + offset; 2439 event.param.ud.private_data_len = 2440 IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset; 2441 } else { 2442 conn_id = cma_ib_new_conn_id(&listen_id->id, ib_event, net_dev); 2443 cma_set_req_event_data(&event, &ib_event->param.req_rcvd, 2444 ib_event->private_data, offset); 2445 } 2446 if (!conn_id) { 2447 ret = -ENOMEM; 2448 goto err_unlock; 2449 } 2450 2451 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2452 ret = cma_ib_acquire_dev(conn_id, listen_id, &req); 2453 if (ret) { 2454 destroy_id_handler_unlock(conn_id); 2455 goto err_unlock; 2456 } 2457 2458 conn_id->cm_id.ib = cm_id; 2459 cm_id->context = conn_id; 2460 cm_id->cm_handler = cma_ib_handler; 2461 2462 ret = cma_cm_event_handler(conn_id, &event); 2463 if (ret) { 2464 /* Destroy the CM ID by returning a non-zero value. */ 2465 conn_id->cm_id.ib = NULL; 2466 mutex_unlock(&listen_id->handler_mutex); 2467 destroy_id_handler_unlock(conn_id); 2468 goto net_dev_put; 2469 } 2470 2471 if (READ_ONCE(conn_id->state) == RDMA_CM_CONNECT && 2472 conn_id->id.qp_type != IB_QPT_UD) { 2473 trace_cm_prepare_mra(cm_id->context); 2474 ib_prepare_cm_mra(cm_id); 2475 } 2476 mutex_unlock(&conn_id->handler_mutex); 2477 2478 err_unlock: 2479 mutex_unlock(&listen_id->handler_mutex); 2480 2481 net_dev_put: 2482 dev_put(net_dev); 2483 2484 return ret; 2485 } 2486 2487 __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr) 2488 { 2489 if (addr->sa_family == AF_IB) 2490 return ((struct sockaddr_ib *) addr)->sib_sid; 2491 2492 return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr))); 2493 } 2494 EXPORT_SYMBOL(rdma_get_service_id); 2495 2496 void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid, 2497 union ib_gid *dgid) 2498 { 2499 struct rdma_addr *addr = &cm_id->route.addr; 2500 2501 if (!cm_id->device) { 2502 if (sgid) 2503 memset(sgid, 0, sizeof(*sgid)); 2504 if (dgid) 2505 memset(dgid, 0, sizeof(*dgid)); 2506 return; 2507 } 2508 2509 if (rdma_protocol_roce(cm_id->device, cm_id->port_num)) { 2510 if (sgid) 2511 rdma_ip2gid((struct sockaddr *)&addr->src_addr, sgid); 2512 if (dgid) 2513 rdma_ip2gid((struct sockaddr *)&addr->dst_addr, dgid); 2514 } else { 2515 if (sgid) 2516 rdma_addr_get_sgid(&addr->dev_addr, sgid); 2517 if (dgid) 2518 rdma_addr_get_dgid(&addr->dev_addr, dgid); 2519 } 2520 } 2521 EXPORT_SYMBOL(rdma_read_gids); 2522 2523 static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event) 2524 { 2525 struct rdma_id_private *id_priv = iw_id->context; 2526 struct rdma_cm_event event = {}; 2527 int ret = 0; 2528 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2529 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2530 2531 mutex_lock(&id_priv->handler_mutex); 2532 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 2533 goto out; 2534 2535 switch (iw_event->event) { 2536 case IW_CM_EVENT_CLOSE: 2537 event.event = RDMA_CM_EVENT_DISCONNECTED; 2538 break; 2539 case IW_CM_EVENT_CONNECT_REPLY: 2540 memcpy(cma_src_addr(id_priv), laddr, 2541 rdma_addr_size(laddr)); 2542 memcpy(cma_dst_addr(id_priv), raddr, 2543 rdma_addr_size(raddr)); 2544 switch (iw_event->status) { 2545 case 0: 2546 event.event = RDMA_CM_EVENT_ESTABLISHED; 2547 event.param.conn.initiator_depth = iw_event->ird; 2548 event.param.conn.responder_resources = iw_event->ord; 2549 break; 2550 case -ECONNRESET: 2551 case -ECONNREFUSED: 2552 event.event = RDMA_CM_EVENT_REJECTED; 2553 break; 2554 case -ETIMEDOUT: 2555 event.event = RDMA_CM_EVENT_UNREACHABLE; 2556 break; 2557 default: 2558 event.event = RDMA_CM_EVENT_CONNECT_ERROR; 2559 break; 2560 } 2561 break; 2562 case IW_CM_EVENT_ESTABLISHED: 2563 event.event = RDMA_CM_EVENT_ESTABLISHED; 2564 event.param.conn.initiator_depth = iw_event->ird; 2565 event.param.conn.responder_resources = iw_event->ord; 2566 break; 2567 default: 2568 goto out; 2569 } 2570 2571 event.status = iw_event->status; 2572 event.param.conn.private_data = iw_event->private_data; 2573 event.param.conn.private_data_len = iw_event->private_data_len; 2574 ret = cma_cm_event_handler(id_priv, &event); 2575 if (ret) { 2576 /* Destroy the CM ID by returning a non-zero value. */ 2577 id_priv->cm_id.iw = NULL; 2578 destroy_id_handler_unlock(id_priv); 2579 return ret; 2580 } 2581 2582 out: 2583 mutex_unlock(&id_priv->handler_mutex); 2584 return ret; 2585 } 2586 2587 static int iw_conn_req_handler(struct iw_cm_id *cm_id, 2588 struct iw_cm_event *iw_event) 2589 { 2590 struct rdma_id_private *listen_id, *conn_id; 2591 struct rdma_cm_event event = {}; 2592 int ret = -ECONNABORTED; 2593 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2594 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2595 2596 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2597 event.param.conn.private_data = iw_event->private_data; 2598 event.param.conn.private_data_len = iw_event->private_data_len; 2599 event.param.conn.initiator_depth = iw_event->ird; 2600 event.param.conn.responder_resources = iw_event->ord; 2601 2602 listen_id = cm_id->context; 2603 2604 mutex_lock(&listen_id->handler_mutex); 2605 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) 2606 goto out; 2607 2608 /* Create a new RDMA id for the new IW CM ID */ 2609 conn_id = __rdma_create_id(listen_id->id.route.addr.dev_addr.net, 2610 listen_id->id.event_handler, 2611 listen_id->id.context, RDMA_PS_TCP, 2612 IB_QPT_RC, listen_id); 2613 if (IS_ERR(conn_id)) { 2614 ret = -ENOMEM; 2615 goto out; 2616 } 2617 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2618 conn_id->state = RDMA_CM_CONNECT; 2619 2620 ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr); 2621 if (ret) { 2622 mutex_unlock(&listen_id->handler_mutex); 2623 destroy_id_handler_unlock(conn_id); 2624 return ret; 2625 } 2626 2627 ret = cma_iw_acquire_dev(conn_id, listen_id); 2628 if (ret) { 2629 mutex_unlock(&listen_id->handler_mutex); 2630 destroy_id_handler_unlock(conn_id); 2631 return ret; 2632 } 2633 2634 conn_id->cm_id.iw = cm_id; 2635 cm_id->context = conn_id; 2636 cm_id->cm_handler = cma_iw_handler; 2637 2638 memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr)); 2639 memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr)); 2640 2641 ret = cma_cm_event_handler(conn_id, &event); 2642 if (ret) { 2643 /* User wants to destroy the CM ID */ 2644 conn_id->cm_id.iw = NULL; 2645 mutex_unlock(&listen_id->handler_mutex); 2646 destroy_id_handler_unlock(conn_id); 2647 return ret; 2648 } 2649 2650 mutex_unlock(&conn_id->handler_mutex); 2651 2652 out: 2653 mutex_unlock(&listen_id->handler_mutex); 2654 return ret; 2655 } 2656 2657 static int cma_ib_listen(struct rdma_id_private *id_priv) 2658 { 2659 struct sockaddr *addr; 2660 struct ib_cm_id *id; 2661 __be64 svc_id; 2662 2663 addr = cma_src_addr(id_priv); 2664 svc_id = rdma_get_service_id(&id_priv->id, addr); 2665 id = ib_cm_insert_listen(id_priv->id.device, 2666 cma_ib_req_handler, svc_id); 2667 if (IS_ERR(id)) 2668 return PTR_ERR(id); 2669 id_priv->cm_id.ib = id; 2670 2671 return 0; 2672 } 2673 2674 static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog) 2675 { 2676 int ret; 2677 struct iw_cm_id *id; 2678 2679 id = iw_create_cm_id(id_priv->id.device, 2680 iw_conn_req_handler, 2681 id_priv); 2682 if (IS_ERR(id)) 2683 return PTR_ERR(id); 2684 2685 mutex_lock(&id_priv->qp_mutex); 2686 id->tos = id_priv->tos; 2687 id->tos_set = id_priv->tos_set; 2688 mutex_unlock(&id_priv->qp_mutex); 2689 id->afonly = id_priv->afonly; 2690 id_priv->cm_id.iw = id; 2691 2692 memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv), 2693 rdma_addr_size(cma_src_addr(id_priv))); 2694 2695 ret = iw_cm_listen(id_priv->cm_id.iw, backlog); 2696 2697 if (ret) { 2698 iw_destroy_cm_id(id_priv->cm_id.iw); 2699 id_priv->cm_id.iw = NULL; 2700 } 2701 2702 return ret; 2703 } 2704 2705 static int cma_listen_handler(struct rdma_cm_id *id, 2706 struct rdma_cm_event *event) 2707 { 2708 struct rdma_id_private *id_priv = id->context; 2709 2710 /* Listening IDs are always destroyed on removal */ 2711 if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) 2712 return -1; 2713 2714 id->context = id_priv->id.context; 2715 id->event_handler = id_priv->id.event_handler; 2716 trace_cm_event_handler(id_priv, event); 2717 return id_priv->id.event_handler(id, event); 2718 } 2719 2720 static int cma_listen_on_dev(struct rdma_id_private *id_priv, 2721 struct cma_device *cma_dev, 2722 struct rdma_id_private **to_destroy) 2723 { 2724 struct rdma_id_private *dev_id_priv; 2725 struct net *net = id_priv->id.route.addr.dev_addr.net; 2726 int ret; 2727 2728 lockdep_assert_held(&lock); 2729 2730 *to_destroy = NULL; 2731 if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1)) 2732 return 0; 2733 2734 dev_id_priv = 2735 __rdma_create_id(net, cma_listen_handler, id_priv, 2736 id_priv->id.ps, id_priv->id.qp_type, id_priv); 2737 if (IS_ERR(dev_id_priv)) 2738 return PTR_ERR(dev_id_priv); 2739 2740 dev_id_priv->state = RDMA_CM_ADDR_BOUND; 2741 memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv), 2742 rdma_addr_size(cma_src_addr(id_priv))); 2743 2744 _cma_attach_to_dev(dev_id_priv, cma_dev); 2745 rdma_restrack_add(&dev_id_priv->res); 2746 cma_id_get(id_priv); 2747 dev_id_priv->internal_id = 1; 2748 dev_id_priv->afonly = id_priv->afonly; 2749 mutex_lock(&id_priv->qp_mutex); 2750 dev_id_priv->tos_set = id_priv->tos_set; 2751 dev_id_priv->tos = id_priv->tos; 2752 mutex_unlock(&id_priv->qp_mutex); 2753 2754 ret = rdma_listen(&dev_id_priv->id, id_priv->backlog); 2755 if (ret) 2756 goto err_listen; 2757 list_add_tail(&dev_id_priv->listen_item, &id_priv->listen_list); 2758 return 0; 2759 err_listen: 2760 /* Caller must destroy this after releasing lock */ 2761 *to_destroy = dev_id_priv; 2762 dev_warn(&cma_dev->device->dev, "RDMA CMA: %s, error %d\n", __func__, ret); 2763 return ret; 2764 } 2765 2766 static int cma_listen_on_all(struct rdma_id_private *id_priv) 2767 { 2768 struct rdma_id_private *to_destroy; 2769 struct cma_device *cma_dev; 2770 int ret; 2771 2772 mutex_lock(&lock); 2773 list_add_tail(&id_priv->listen_any_item, &listen_any_list); 2774 list_for_each_entry(cma_dev, &dev_list, list) { 2775 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy); 2776 if (ret) { 2777 /* Prevent racing with cma_process_remove() */ 2778 if (to_destroy) 2779 list_del_init(&to_destroy->device_item); 2780 goto err_listen; 2781 } 2782 } 2783 mutex_unlock(&lock); 2784 return 0; 2785 2786 err_listen: 2787 _cma_cancel_listens(id_priv); 2788 mutex_unlock(&lock); 2789 if (to_destroy) 2790 rdma_destroy_id(&to_destroy->id); 2791 return ret; 2792 } 2793 2794 void rdma_set_service_type(struct rdma_cm_id *id, int tos) 2795 { 2796 struct rdma_id_private *id_priv; 2797 2798 id_priv = container_of(id, struct rdma_id_private, id); 2799 mutex_lock(&id_priv->qp_mutex); 2800 id_priv->tos = (u8) tos; 2801 id_priv->tos_set = true; 2802 mutex_unlock(&id_priv->qp_mutex); 2803 } 2804 EXPORT_SYMBOL(rdma_set_service_type); 2805 2806 /** 2807 * rdma_set_ack_timeout() - Set the ack timeout of QP associated 2808 * with a connection identifier. 2809 * @id: Communication identifier to associated with service type. 2810 * @timeout: Ack timeout to set a QP, expressed as 4.096 * 2^(timeout) usec. 2811 * 2812 * This function should be called before rdma_connect() on active side, 2813 * and on passive side before rdma_accept(). It is applicable to primary 2814 * path only. The timeout will affect the local side of the QP, it is not 2815 * negotiated with remote side and zero disables the timer. In case it is 2816 * set before rdma_resolve_route, the value will also be used to determine 2817 * PacketLifeTime for RoCE. 2818 * 2819 * Return: 0 for success 2820 */ 2821 int rdma_set_ack_timeout(struct rdma_cm_id *id, u8 timeout) 2822 { 2823 struct rdma_id_private *id_priv; 2824 2825 if (id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_INI) 2826 return -EINVAL; 2827 2828 id_priv = container_of(id, struct rdma_id_private, id); 2829 mutex_lock(&id_priv->qp_mutex); 2830 id_priv->timeout = timeout; 2831 id_priv->timeout_set = true; 2832 mutex_unlock(&id_priv->qp_mutex); 2833 2834 return 0; 2835 } 2836 EXPORT_SYMBOL(rdma_set_ack_timeout); 2837 2838 /** 2839 * rdma_set_min_rnr_timer() - Set the minimum RNR Retry timer of the 2840 * QP associated with a connection identifier. 2841 * @id: Communication identifier to associated with service type. 2842 * @min_rnr_timer: 5-bit value encoded as Table 45: "Encoding for RNR NAK 2843 * Timer Field" in the IBTA specification. 2844 * 2845 * This function should be called before rdma_connect() on active 2846 * side, and on passive side before rdma_accept(). The timer value 2847 * will be associated with the local QP. When it receives a send it is 2848 * not read to handle, typically if the receive queue is empty, an RNR 2849 * Retry NAK is returned to the requester with the min_rnr_timer 2850 * encoded. The requester will then wait at least the time specified 2851 * in the NAK before retrying. The default is zero, which translates 2852 * to a minimum RNR Timer value of 655 ms. 2853 * 2854 * Return: 0 for success 2855 */ 2856 int rdma_set_min_rnr_timer(struct rdma_cm_id *id, u8 min_rnr_timer) 2857 { 2858 struct rdma_id_private *id_priv; 2859 2860 /* It is a five-bit value */ 2861 if (min_rnr_timer & 0xe0) 2862 return -EINVAL; 2863 2864 if (WARN_ON(id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_TGT)) 2865 return -EINVAL; 2866 2867 id_priv = container_of(id, struct rdma_id_private, id); 2868 mutex_lock(&id_priv->qp_mutex); 2869 id_priv->min_rnr_timer = min_rnr_timer; 2870 id_priv->min_rnr_timer_set = true; 2871 mutex_unlock(&id_priv->qp_mutex); 2872 2873 return 0; 2874 } 2875 EXPORT_SYMBOL(rdma_set_min_rnr_timer); 2876 2877 static int route_set_path_rec_inbound(struct cma_work *work, 2878 struct sa_path_rec *path_rec) 2879 { 2880 struct rdma_route *route = &work->id->id.route; 2881 2882 if (!route->path_rec_inbound) { 2883 route->path_rec_inbound = 2884 kzalloc(sizeof(*route->path_rec_inbound), GFP_KERNEL); 2885 if (!route->path_rec_inbound) 2886 return -ENOMEM; 2887 } 2888 2889 *route->path_rec_inbound = *path_rec; 2890 return 0; 2891 } 2892 2893 static int route_set_path_rec_outbound(struct cma_work *work, 2894 struct sa_path_rec *path_rec) 2895 { 2896 struct rdma_route *route = &work->id->id.route; 2897 2898 if (!route->path_rec_outbound) { 2899 route->path_rec_outbound = 2900 kzalloc(sizeof(*route->path_rec_outbound), GFP_KERNEL); 2901 if (!route->path_rec_outbound) 2902 return -ENOMEM; 2903 } 2904 2905 *route->path_rec_outbound = *path_rec; 2906 return 0; 2907 } 2908 2909 static void cma_query_handler(int status, struct sa_path_rec *path_rec, 2910 unsigned int num_prs, void *context) 2911 { 2912 struct cma_work *work = context; 2913 struct rdma_route *route; 2914 int i; 2915 2916 route = &work->id->id.route; 2917 2918 if (status) 2919 goto fail; 2920 2921 for (i = 0; i < num_prs; i++) { 2922 if (!path_rec[i].flags || (path_rec[i].flags & IB_PATH_GMP)) 2923 *route->path_rec = path_rec[i]; 2924 else if (path_rec[i].flags & IB_PATH_INBOUND) 2925 status = route_set_path_rec_inbound(work, &path_rec[i]); 2926 else if (path_rec[i].flags & IB_PATH_OUTBOUND) 2927 status = route_set_path_rec_outbound(work, 2928 &path_rec[i]); 2929 else 2930 status = -EINVAL; 2931 2932 if (status) 2933 goto fail; 2934 } 2935 2936 route->num_pri_alt_paths = 1; 2937 queue_work(cma_wq, &work->work); 2938 return; 2939 2940 fail: 2941 work->old_state = RDMA_CM_ROUTE_QUERY; 2942 work->new_state = RDMA_CM_ADDR_RESOLVED; 2943 work->event.event = RDMA_CM_EVENT_ROUTE_ERROR; 2944 work->event.status = status; 2945 pr_debug_ratelimited("RDMA CM: ROUTE_ERROR: failed to query path. status %d\n", 2946 status); 2947 queue_work(cma_wq, &work->work); 2948 } 2949 2950 static int cma_query_ib_route(struct rdma_id_private *id_priv, 2951 unsigned long timeout_ms, struct cma_work *work) 2952 { 2953 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 2954 struct sa_path_rec path_rec; 2955 ib_sa_comp_mask comp_mask; 2956 struct sockaddr_in6 *sin6; 2957 struct sockaddr_ib *sib; 2958 2959 memset(&path_rec, 0, sizeof path_rec); 2960 2961 if (rdma_cap_opa_ah(id_priv->id.device, id_priv->id.port_num)) 2962 path_rec.rec_type = SA_PATH_REC_TYPE_OPA; 2963 else 2964 path_rec.rec_type = SA_PATH_REC_TYPE_IB; 2965 rdma_addr_get_sgid(dev_addr, &path_rec.sgid); 2966 rdma_addr_get_dgid(dev_addr, &path_rec.dgid); 2967 path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 2968 path_rec.numb_path = 1; 2969 path_rec.reversible = 1; 2970 path_rec.service_id = rdma_get_service_id(&id_priv->id, 2971 cma_dst_addr(id_priv)); 2972 2973 comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID | 2974 IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH | 2975 IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID; 2976 2977 switch (cma_family(id_priv)) { 2978 case AF_INET: 2979 path_rec.qos_class = cpu_to_be16((u16) id_priv->tos); 2980 comp_mask |= IB_SA_PATH_REC_QOS_CLASS; 2981 break; 2982 case AF_INET6: 2983 sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 2984 path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20); 2985 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2986 break; 2987 case AF_IB: 2988 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 2989 path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20); 2990 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2991 break; 2992 } 2993 2994 id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device, 2995 id_priv->id.port_num, &path_rec, 2996 comp_mask, timeout_ms, 2997 GFP_KERNEL, cma_query_handler, 2998 work, &id_priv->query); 2999 3000 return (id_priv->query_id < 0) ? id_priv->query_id : 0; 3001 } 3002 3003 static void cma_iboe_join_work_handler(struct work_struct *work) 3004 { 3005 struct cma_multicast *mc = 3006 container_of(work, struct cma_multicast, iboe_join.work); 3007 struct rdma_cm_event *event = &mc->iboe_join.event; 3008 struct rdma_id_private *id_priv = mc->id_priv; 3009 int ret; 3010 3011 mutex_lock(&id_priv->handler_mutex); 3012 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 3013 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 3014 goto out_unlock; 3015 3016 ret = cma_cm_event_handler(id_priv, event); 3017 WARN_ON(ret); 3018 3019 out_unlock: 3020 mutex_unlock(&id_priv->handler_mutex); 3021 if (event->event == RDMA_CM_EVENT_MULTICAST_JOIN) 3022 rdma_destroy_ah_attr(&event->param.ud.ah_attr); 3023 } 3024 3025 static void cma_work_handler(struct work_struct *_work) 3026 { 3027 struct cma_work *work = container_of(_work, struct cma_work, work); 3028 struct rdma_id_private *id_priv = work->id; 3029 3030 mutex_lock(&id_priv->handler_mutex); 3031 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 3032 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 3033 goto out_unlock; 3034 if (work->old_state != 0 || work->new_state != 0) { 3035 if (!cma_comp_exch(id_priv, work->old_state, work->new_state)) 3036 goto out_unlock; 3037 } 3038 3039 if (cma_cm_event_handler(id_priv, &work->event)) { 3040 cma_id_put(id_priv); 3041 destroy_id_handler_unlock(id_priv); 3042 goto out_free; 3043 } 3044 3045 out_unlock: 3046 mutex_unlock(&id_priv->handler_mutex); 3047 cma_id_put(id_priv); 3048 out_free: 3049 if (work->event.event == RDMA_CM_EVENT_MULTICAST_JOIN) 3050 rdma_destroy_ah_attr(&work->event.param.ud.ah_attr); 3051 kfree(work); 3052 } 3053 3054 static void cma_init_resolve_route_work(struct cma_work *work, 3055 struct rdma_id_private *id_priv) 3056 { 3057 work->id = id_priv; 3058 INIT_WORK(&work->work, cma_work_handler); 3059 work->old_state = RDMA_CM_ROUTE_QUERY; 3060 work->new_state = RDMA_CM_ROUTE_RESOLVED; 3061 work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED; 3062 } 3063 3064 static void enqueue_resolve_addr_work(struct cma_work *work, 3065 struct rdma_id_private *id_priv) 3066 { 3067 /* Balances with cma_id_put() in cma_work_handler */ 3068 cma_id_get(id_priv); 3069 3070 work->id = id_priv; 3071 INIT_WORK(&work->work, cma_work_handler); 3072 work->old_state = RDMA_CM_ADDR_QUERY; 3073 work->new_state = RDMA_CM_ADDR_RESOLVED; 3074 work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 3075 3076 queue_work(cma_wq, &work->work); 3077 } 3078 3079 static int cma_resolve_ib_route(struct rdma_id_private *id_priv, 3080 unsigned long timeout_ms) 3081 { 3082 struct rdma_route *route = &id_priv->id.route; 3083 struct cma_work *work; 3084 int ret; 3085 3086 work = kzalloc(sizeof *work, GFP_KERNEL); 3087 if (!work) 3088 return -ENOMEM; 3089 3090 cma_init_resolve_route_work(work, id_priv); 3091 3092 if (!route->path_rec) 3093 route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL); 3094 if (!route->path_rec) { 3095 ret = -ENOMEM; 3096 goto err1; 3097 } 3098 3099 ret = cma_query_ib_route(id_priv, timeout_ms, work); 3100 if (ret) 3101 goto err2; 3102 3103 return 0; 3104 err2: 3105 kfree(route->path_rec); 3106 route->path_rec = NULL; 3107 err1: 3108 kfree(work); 3109 return ret; 3110 } 3111 3112 static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type, 3113 unsigned long supported_gids, 3114 enum ib_gid_type default_gid) 3115 { 3116 if ((network_type == RDMA_NETWORK_IPV4 || 3117 network_type == RDMA_NETWORK_IPV6) && 3118 test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids)) 3119 return IB_GID_TYPE_ROCE_UDP_ENCAP; 3120 3121 return default_gid; 3122 } 3123 3124 /* 3125 * cma_iboe_set_path_rec_l2_fields() is helper function which sets 3126 * path record type based on GID type. 3127 * It also sets up other L2 fields which includes destination mac address 3128 * netdev ifindex, of the path record. 3129 * It returns the netdev of the bound interface for this path record entry. 3130 */ 3131 static struct net_device * 3132 cma_iboe_set_path_rec_l2_fields(struct rdma_id_private *id_priv) 3133 { 3134 struct rdma_route *route = &id_priv->id.route; 3135 enum ib_gid_type gid_type = IB_GID_TYPE_ROCE; 3136 struct rdma_addr *addr = &route->addr; 3137 unsigned long supported_gids; 3138 struct net_device *ndev; 3139 3140 if (!addr->dev_addr.bound_dev_if) 3141 return NULL; 3142 3143 ndev = dev_get_by_index(addr->dev_addr.net, 3144 addr->dev_addr.bound_dev_if); 3145 if (!ndev) 3146 return NULL; 3147 3148 supported_gids = roce_gid_type_mask_support(id_priv->id.device, 3149 id_priv->id.port_num); 3150 gid_type = cma_route_gid_type(addr->dev_addr.network, 3151 supported_gids, 3152 id_priv->gid_type); 3153 /* Use the hint from IP Stack to select GID Type */ 3154 if (gid_type < ib_network_to_gid_type(addr->dev_addr.network)) 3155 gid_type = ib_network_to_gid_type(addr->dev_addr.network); 3156 route->path_rec->rec_type = sa_conv_gid_to_pathrec_type(gid_type); 3157 3158 route->path_rec->roce.route_resolved = true; 3159 sa_path_set_dmac(route->path_rec, addr->dev_addr.dst_dev_addr); 3160 return ndev; 3161 } 3162 3163 int rdma_set_ib_path(struct rdma_cm_id *id, 3164 struct sa_path_rec *path_rec) 3165 { 3166 struct rdma_id_private *id_priv; 3167 struct net_device *ndev; 3168 int ret; 3169 3170 id_priv = container_of(id, struct rdma_id_private, id); 3171 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 3172 RDMA_CM_ROUTE_RESOLVED)) 3173 return -EINVAL; 3174 3175 id->route.path_rec = kmemdup(path_rec, sizeof(*path_rec), 3176 GFP_KERNEL); 3177 if (!id->route.path_rec) { 3178 ret = -ENOMEM; 3179 goto err; 3180 } 3181 3182 if (rdma_protocol_roce(id->device, id->port_num)) { 3183 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 3184 if (!ndev) { 3185 ret = -ENODEV; 3186 goto err_free; 3187 } 3188 dev_put(ndev); 3189 } 3190 3191 id->route.num_pri_alt_paths = 1; 3192 return 0; 3193 3194 err_free: 3195 kfree(id->route.path_rec); 3196 id->route.path_rec = NULL; 3197 err: 3198 cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED); 3199 return ret; 3200 } 3201 EXPORT_SYMBOL(rdma_set_ib_path); 3202 3203 static int cma_resolve_iw_route(struct rdma_id_private *id_priv) 3204 { 3205 struct cma_work *work; 3206 3207 work = kzalloc(sizeof *work, GFP_KERNEL); 3208 if (!work) 3209 return -ENOMEM; 3210 3211 cma_init_resolve_route_work(work, id_priv); 3212 queue_work(cma_wq, &work->work); 3213 return 0; 3214 } 3215 3216 static int get_vlan_ndev_tc(struct net_device *vlan_ndev, int prio) 3217 { 3218 struct net_device *dev; 3219 3220 dev = vlan_dev_real_dev(vlan_ndev); 3221 if (dev->num_tc) 3222 return netdev_get_prio_tc_map(dev, prio); 3223 3224 return (vlan_dev_get_egress_qos_mask(vlan_ndev, prio) & 3225 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 3226 } 3227 3228 struct iboe_prio_tc_map { 3229 int input_prio; 3230 int output_tc; 3231 bool found; 3232 }; 3233 3234 static int get_lower_vlan_dev_tc(struct net_device *dev, 3235 struct netdev_nested_priv *priv) 3236 { 3237 struct iboe_prio_tc_map *map = (struct iboe_prio_tc_map *)priv->data; 3238 3239 if (is_vlan_dev(dev)) 3240 map->output_tc = get_vlan_ndev_tc(dev, map->input_prio); 3241 else if (dev->num_tc) 3242 map->output_tc = netdev_get_prio_tc_map(dev, map->input_prio); 3243 else 3244 map->output_tc = 0; 3245 /* We are interested only in first level VLAN device, so always 3246 * return 1 to stop iterating over next level devices. 3247 */ 3248 map->found = true; 3249 return 1; 3250 } 3251 3252 static int iboe_tos_to_sl(struct net_device *ndev, int tos) 3253 { 3254 struct iboe_prio_tc_map prio_tc_map = {}; 3255 int prio = rt_tos2priority(tos); 3256 struct netdev_nested_priv priv; 3257 3258 /* If VLAN device, get it directly from the VLAN netdev */ 3259 if (is_vlan_dev(ndev)) 3260 return get_vlan_ndev_tc(ndev, prio); 3261 3262 prio_tc_map.input_prio = prio; 3263 priv.data = (void *)&prio_tc_map; 3264 rcu_read_lock(); 3265 netdev_walk_all_lower_dev_rcu(ndev, 3266 get_lower_vlan_dev_tc, 3267 &priv); 3268 rcu_read_unlock(); 3269 /* If map is found from lower device, use it; Otherwise 3270 * continue with the current netdevice to get priority to tc map. 3271 */ 3272 if (prio_tc_map.found) 3273 return prio_tc_map.output_tc; 3274 else if (ndev->num_tc) 3275 return netdev_get_prio_tc_map(ndev, prio); 3276 else 3277 return 0; 3278 } 3279 3280 static __be32 cma_get_roce_udp_flow_label(struct rdma_id_private *id_priv) 3281 { 3282 struct sockaddr_in6 *addr6; 3283 u16 dport, sport; 3284 u32 hash, fl; 3285 3286 addr6 = (struct sockaddr_in6 *)cma_src_addr(id_priv); 3287 fl = be32_to_cpu(addr6->sin6_flowinfo) & IB_GRH_FLOWLABEL_MASK; 3288 if ((cma_family(id_priv) != AF_INET6) || !fl) { 3289 dport = be16_to_cpu(cma_port(cma_dst_addr(id_priv))); 3290 sport = be16_to_cpu(cma_port(cma_src_addr(id_priv))); 3291 hash = (u32)sport * 31 + dport; 3292 fl = hash & IB_GRH_FLOWLABEL_MASK; 3293 } 3294 3295 return cpu_to_be32(fl); 3296 } 3297 3298 static int cma_resolve_iboe_route(struct rdma_id_private *id_priv) 3299 { 3300 struct rdma_route *route = &id_priv->id.route; 3301 struct rdma_addr *addr = &route->addr; 3302 struct cma_work *work; 3303 int ret; 3304 struct net_device *ndev; 3305 3306 u8 default_roce_tos = id_priv->cma_dev->default_roce_tos[id_priv->id.port_num - 3307 rdma_start_port(id_priv->cma_dev->device)]; 3308 u8 tos; 3309 3310 mutex_lock(&id_priv->qp_mutex); 3311 tos = id_priv->tos_set ? id_priv->tos : default_roce_tos; 3312 mutex_unlock(&id_priv->qp_mutex); 3313 3314 work = kzalloc(sizeof *work, GFP_KERNEL); 3315 if (!work) 3316 return -ENOMEM; 3317 3318 route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL); 3319 if (!route->path_rec) { 3320 ret = -ENOMEM; 3321 goto err1; 3322 } 3323 3324 route->num_pri_alt_paths = 1; 3325 3326 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 3327 if (!ndev) { 3328 ret = -ENODEV; 3329 goto err2; 3330 } 3331 3332 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 3333 &route->path_rec->sgid); 3334 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr, 3335 &route->path_rec->dgid); 3336 3337 if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB) 3338 /* TODO: get the hoplimit from the inet/inet6 device */ 3339 route->path_rec->hop_limit = addr->dev_addr.hoplimit; 3340 else 3341 route->path_rec->hop_limit = 1; 3342 route->path_rec->reversible = 1; 3343 route->path_rec->pkey = cpu_to_be16(0xffff); 3344 route->path_rec->mtu_selector = IB_SA_EQ; 3345 route->path_rec->sl = iboe_tos_to_sl(ndev, tos); 3346 route->path_rec->traffic_class = tos; 3347 route->path_rec->mtu = iboe_get_mtu(ndev->mtu); 3348 route->path_rec->rate_selector = IB_SA_EQ; 3349 route->path_rec->rate = IB_RATE_PORT_CURRENT; 3350 dev_put(ndev); 3351 route->path_rec->packet_life_time_selector = IB_SA_EQ; 3352 /* In case ACK timeout is set, use this value to calculate 3353 * PacketLifeTime. As per IBTA 12.7.34, 3354 * local ACK timeout = (2 * PacketLifeTime + Local CA’s ACK delay). 3355 * Assuming a negligible local ACK delay, we can use 3356 * PacketLifeTime = local ACK timeout/2 3357 * as a reasonable approximation for RoCE networks. 3358 */ 3359 mutex_lock(&id_priv->qp_mutex); 3360 if (id_priv->timeout_set && id_priv->timeout) 3361 route->path_rec->packet_life_time = id_priv->timeout - 1; 3362 else 3363 route->path_rec->packet_life_time = CMA_IBOE_PACKET_LIFETIME; 3364 mutex_unlock(&id_priv->qp_mutex); 3365 3366 if (!route->path_rec->mtu) { 3367 ret = -EINVAL; 3368 goto err2; 3369 } 3370 3371 if (rdma_protocol_roce_udp_encap(id_priv->id.device, 3372 id_priv->id.port_num)) 3373 route->path_rec->flow_label = 3374 cma_get_roce_udp_flow_label(id_priv); 3375 3376 cma_init_resolve_route_work(work, id_priv); 3377 queue_work(cma_wq, &work->work); 3378 3379 return 0; 3380 3381 err2: 3382 kfree(route->path_rec); 3383 route->path_rec = NULL; 3384 route->num_pri_alt_paths = 0; 3385 err1: 3386 kfree(work); 3387 return ret; 3388 } 3389 3390 int rdma_resolve_route(struct rdma_cm_id *id, unsigned long timeout_ms) 3391 { 3392 struct rdma_id_private *id_priv; 3393 enum rdma_cm_state state; 3394 int ret; 3395 3396 if (!timeout_ms) 3397 return -EINVAL; 3398 3399 id_priv = container_of(id, struct rdma_id_private, id); 3400 state = id_priv->state; 3401 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 3402 RDMA_CM_ROUTE_QUERY) && 3403 !cma_comp_exch(id_priv, RDMA_CM_ADDRINFO_RESOLVED, 3404 RDMA_CM_ROUTE_QUERY)) 3405 return -EINVAL; 3406 3407 cma_id_get(id_priv); 3408 if (rdma_cap_ib_sa(id->device, id->port_num)) 3409 ret = cma_resolve_ib_route(id_priv, timeout_ms); 3410 else if (rdma_protocol_roce(id->device, id->port_num)) { 3411 ret = cma_resolve_iboe_route(id_priv); 3412 if (!ret) 3413 cma_add_id_to_tree(id_priv); 3414 } 3415 else if (rdma_protocol_iwarp(id->device, id->port_num)) 3416 ret = cma_resolve_iw_route(id_priv); 3417 else 3418 ret = -ENOSYS; 3419 3420 if (ret) 3421 goto err; 3422 3423 return 0; 3424 err: 3425 cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, state); 3426 cma_id_put(id_priv); 3427 return ret; 3428 } 3429 EXPORT_SYMBOL(rdma_resolve_route); 3430 3431 static void cma_set_loopback(struct sockaddr *addr) 3432 { 3433 switch (addr->sa_family) { 3434 case AF_INET: 3435 ((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK); 3436 break; 3437 case AF_INET6: 3438 ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr, 3439 0, 0, 0, htonl(1)); 3440 break; 3441 default: 3442 ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr, 3443 0, 0, 0, htonl(1)); 3444 break; 3445 } 3446 } 3447 3448 static int cma_bind_loopback(struct rdma_id_private *id_priv) 3449 { 3450 struct cma_device *cma_dev, *cur_dev; 3451 union ib_gid gid; 3452 enum ib_port_state port_state; 3453 unsigned int p; 3454 u16 pkey; 3455 int ret; 3456 3457 cma_dev = NULL; 3458 mutex_lock(&lock); 3459 list_for_each_entry(cur_dev, &dev_list, list) { 3460 if (cma_family(id_priv) == AF_IB && 3461 !rdma_cap_ib_cm(cur_dev->device, 1)) 3462 continue; 3463 3464 if (!cma_dev) 3465 cma_dev = cur_dev; 3466 3467 rdma_for_each_port (cur_dev->device, p) { 3468 if (!ib_get_cached_port_state(cur_dev->device, p, &port_state) && 3469 port_state == IB_PORT_ACTIVE) { 3470 cma_dev = cur_dev; 3471 goto port_found; 3472 } 3473 } 3474 } 3475 3476 if (!cma_dev) { 3477 ret = -ENODEV; 3478 goto out; 3479 } 3480 3481 p = 1; 3482 3483 port_found: 3484 ret = rdma_query_gid(cma_dev->device, p, 0, &gid); 3485 if (ret) 3486 goto out; 3487 3488 ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey); 3489 if (ret) 3490 goto out; 3491 3492 id_priv->id.route.addr.dev_addr.dev_type = 3493 (rdma_protocol_ib(cma_dev->device, p)) ? 3494 ARPHRD_INFINIBAND : ARPHRD_ETHER; 3495 3496 rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3497 ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey); 3498 id_priv->id.port_num = p; 3499 cma_attach_to_dev(id_priv, cma_dev); 3500 rdma_restrack_add(&id_priv->res); 3501 cma_set_loopback(cma_src_addr(id_priv)); 3502 out: 3503 mutex_unlock(&lock); 3504 return ret; 3505 } 3506 3507 static void addr_handler(int status, struct sockaddr *src_addr, 3508 struct rdma_dev_addr *dev_addr, void *context) 3509 { 3510 struct rdma_id_private *id_priv = context; 3511 struct rdma_cm_event event = {}; 3512 struct sockaddr *addr; 3513 struct sockaddr_storage old_addr; 3514 3515 mutex_lock(&id_priv->handler_mutex); 3516 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, 3517 RDMA_CM_ADDR_RESOLVED)) 3518 goto out; 3519 3520 /* 3521 * Store the previous src address, so that if we fail to acquire 3522 * matching rdma device, old address can be restored back, which helps 3523 * to cancel the cma listen operation correctly. 3524 */ 3525 addr = cma_src_addr(id_priv); 3526 memcpy(&old_addr, addr, rdma_addr_size(addr)); 3527 memcpy(addr, src_addr, rdma_addr_size(src_addr)); 3528 if (!status && !id_priv->cma_dev) { 3529 status = cma_acquire_dev_by_src_ip(id_priv); 3530 if (status) 3531 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to acquire device. status %d\n", 3532 status); 3533 rdma_restrack_add(&id_priv->res); 3534 } else if (status) { 3535 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to resolve IP. status %d\n", status); 3536 } 3537 3538 if (status) { 3539 memcpy(addr, &old_addr, 3540 rdma_addr_size((struct sockaddr *)&old_addr)); 3541 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 3542 RDMA_CM_ADDR_BOUND)) 3543 goto out; 3544 event.event = RDMA_CM_EVENT_ADDR_ERROR; 3545 event.status = status; 3546 } else 3547 event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 3548 3549 if (cma_cm_event_handler(id_priv, &event)) { 3550 destroy_id_handler_unlock(id_priv); 3551 return; 3552 } 3553 out: 3554 mutex_unlock(&id_priv->handler_mutex); 3555 } 3556 3557 static int cma_resolve_loopback(struct rdma_id_private *id_priv) 3558 { 3559 struct cma_work *work; 3560 union ib_gid gid; 3561 int ret; 3562 3563 work = kzalloc(sizeof *work, GFP_KERNEL); 3564 if (!work) 3565 return -ENOMEM; 3566 3567 if (!id_priv->cma_dev) { 3568 ret = cma_bind_loopback(id_priv); 3569 if (ret) 3570 goto err; 3571 } 3572 3573 rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3574 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid); 3575 3576 enqueue_resolve_addr_work(work, id_priv); 3577 return 0; 3578 err: 3579 kfree(work); 3580 return ret; 3581 } 3582 3583 static int cma_resolve_ib_addr(struct rdma_id_private *id_priv) 3584 { 3585 struct cma_work *work; 3586 int ret; 3587 3588 work = kzalloc(sizeof *work, GFP_KERNEL); 3589 if (!work) 3590 return -ENOMEM; 3591 3592 if (!id_priv->cma_dev) { 3593 ret = cma_resolve_ib_dev(id_priv); 3594 if (ret) 3595 goto err; 3596 } 3597 3598 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *) 3599 &(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr)); 3600 3601 enqueue_resolve_addr_work(work, id_priv); 3602 return 0; 3603 err: 3604 kfree(work); 3605 return ret; 3606 } 3607 3608 int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse) 3609 { 3610 struct rdma_id_private *id_priv; 3611 unsigned long flags; 3612 int ret; 3613 3614 id_priv = container_of(id, struct rdma_id_private, id); 3615 spin_lock_irqsave(&id_priv->lock, flags); 3616 if ((reuse && id_priv->state != RDMA_CM_LISTEN) || 3617 id_priv->state == RDMA_CM_IDLE) { 3618 id_priv->reuseaddr = reuse; 3619 ret = 0; 3620 } else { 3621 ret = -EINVAL; 3622 } 3623 spin_unlock_irqrestore(&id_priv->lock, flags); 3624 return ret; 3625 } 3626 EXPORT_SYMBOL(rdma_set_reuseaddr); 3627 3628 int rdma_set_afonly(struct rdma_cm_id *id, int afonly) 3629 { 3630 struct rdma_id_private *id_priv; 3631 unsigned long flags; 3632 int ret; 3633 3634 id_priv = container_of(id, struct rdma_id_private, id); 3635 spin_lock_irqsave(&id_priv->lock, flags); 3636 if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) { 3637 id_priv->options |= (1 << CMA_OPTION_AFONLY); 3638 id_priv->afonly = afonly; 3639 ret = 0; 3640 } else { 3641 ret = -EINVAL; 3642 } 3643 spin_unlock_irqrestore(&id_priv->lock, flags); 3644 return ret; 3645 } 3646 EXPORT_SYMBOL(rdma_set_afonly); 3647 3648 static void cma_bind_port(struct rdma_bind_list *bind_list, 3649 struct rdma_id_private *id_priv) 3650 { 3651 struct sockaddr *addr; 3652 struct sockaddr_ib *sib; 3653 u64 sid, mask; 3654 __be16 port; 3655 3656 lockdep_assert_held(&lock); 3657 3658 addr = cma_src_addr(id_priv); 3659 port = htons(bind_list->port); 3660 3661 switch (addr->sa_family) { 3662 case AF_INET: 3663 ((struct sockaddr_in *) addr)->sin_port = port; 3664 break; 3665 case AF_INET6: 3666 ((struct sockaddr_in6 *) addr)->sin6_port = port; 3667 break; 3668 case AF_IB: 3669 sib = (struct sockaddr_ib *) addr; 3670 sid = be64_to_cpu(sib->sib_sid); 3671 mask = be64_to_cpu(sib->sib_sid_mask); 3672 sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port)); 3673 sib->sib_sid_mask = cpu_to_be64(~0ULL); 3674 break; 3675 } 3676 id_priv->bind_list = bind_list; 3677 hlist_add_head(&id_priv->node, &bind_list->owners); 3678 } 3679 3680 static int cma_alloc_port(enum rdma_ucm_port_space ps, 3681 struct rdma_id_private *id_priv, unsigned short snum) 3682 { 3683 struct rdma_bind_list *bind_list; 3684 int ret; 3685 3686 lockdep_assert_held(&lock); 3687 3688 bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL); 3689 if (!bind_list) 3690 return -ENOMEM; 3691 3692 ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list, 3693 snum); 3694 if (ret < 0) 3695 goto err; 3696 3697 bind_list->ps = ps; 3698 bind_list->port = snum; 3699 cma_bind_port(bind_list, id_priv); 3700 return 0; 3701 err: 3702 kfree(bind_list); 3703 return ret == -ENOSPC ? -EADDRNOTAVAIL : ret; 3704 } 3705 3706 static int cma_port_is_unique(struct rdma_bind_list *bind_list, 3707 struct rdma_id_private *id_priv) 3708 { 3709 struct rdma_id_private *cur_id; 3710 struct sockaddr *daddr = cma_dst_addr(id_priv); 3711 struct sockaddr *saddr = cma_src_addr(id_priv); 3712 __be16 dport = cma_port(daddr); 3713 3714 lockdep_assert_held(&lock); 3715 3716 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3717 struct sockaddr *cur_daddr = cma_dst_addr(cur_id); 3718 struct sockaddr *cur_saddr = cma_src_addr(cur_id); 3719 __be16 cur_dport = cma_port(cur_daddr); 3720 3721 if (id_priv == cur_id) 3722 continue; 3723 3724 /* different dest port -> unique */ 3725 if (!cma_any_port(daddr) && 3726 !cma_any_port(cur_daddr) && 3727 (dport != cur_dport)) 3728 continue; 3729 3730 /* different src address -> unique */ 3731 if (!cma_any_addr(saddr) && 3732 !cma_any_addr(cur_saddr) && 3733 cma_addr_cmp(saddr, cur_saddr)) 3734 continue; 3735 3736 /* different dst address -> unique */ 3737 if (!cma_any_addr(daddr) && 3738 !cma_any_addr(cur_daddr) && 3739 cma_addr_cmp(daddr, cur_daddr)) 3740 continue; 3741 3742 return -EADDRNOTAVAIL; 3743 } 3744 return 0; 3745 } 3746 3747 static int cma_alloc_any_port(enum rdma_ucm_port_space ps, 3748 struct rdma_id_private *id_priv) 3749 { 3750 static unsigned int last_used_port; 3751 int low, high, remaining; 3752 unsigned int rover; 3753 struct net *net = id_priv->id.route.addr.dev_addr.net; 3754 3755 lockdep_assert_held(&lock); 3756 3757 inet_get_local_port_range(net, &low, &high); 3758 remaining = (high - low) + 1; 3759 rover = get_random_u32_inclusive(low, remaining + low - 1); 3760 retry: 3761 if (last_used_port != rover) { 3762 struct rdma_bind_list *bind_list; 3763 int ret; 3764 3765 bind_list = cma_ps_find(net, ps, (unsigned short)rover); 3766 3767 if (!bind_list) { 3768 ret = cma_alloc_port(ps, id_priv, rover); 3769 } else { 3770 ret = cma_port_is_unique(bind_list, id_priv); 3771 if (!ret) 3772 cma_bind_port(bind_list, id_priv); 3773 } 3774 /* 3775 * Remember previously used port number in order to avoid 3776 * re-using same port immediately after it is closed. 3777 */ 3778 if (!ret) 3779 last_used_port = rover; 3780 if (ret != -EADDRNOTAVAIL) 3781 return ret; 3782 } 3783 if (--remaining) { 3784 rover++; 3785 if ((rover < low) || (rover > high)) 3786 rover = low; 3787 goto retry; 3788 } 3789 return -EADDRNOTAVAIL; 3790 } 3791 3792 /* 3793 * Check that the requested port is available. This is called when trying to 3794 * bind to a specific port, or when trying to listen on a bound port. In 3795 * the latter case, the provided id_priv may already be on the bind_list, but 3796 * we still need to check that it's okay to start listening. 3797 */ 3798 static int cma_check_port(struct rdma_bind_list *bind_list, 3799 struct rdma_id_private *id_priv, uint8_t reuseaddr) 3800 { 3801 struct rdma_id_private *cur_id; 3802 struct sockaddr *addr, *cur_addr; 3803 3804 lockdep_assert_held(&lock); 3805 3806 addr = cma_src_addr(id_priv); 3807 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3808 if (id_priv == cur_id) 3809 continue; 3810 3811 if (reuseaddr && cur_id->reuseaddr) 3812 continue; 3813 3814 cur_addr = cma_src_addr(cur_id); 3815 if (id_priv->afonly && cur_id->afonly && 3816 (addr->sa_family != cur_addr->sa_family)) 3817 continue; 3818 3819 if (cma_any_addr(addr) || cma_any_addr(cur_addr)) 3820 return -EADDRNOTAVAIL; 3821 3822 if (!cma_addr_cmp(addr, cur_addr)) 3823 return -EADDRINUSE; 3824 } 3825 return 0; 3826 } 3827 3828 static int cma_use_port(enum rdma_ucm_port_space ps, 3829 struct rdma_id_private *id_priv) 3830 { 3831 struct rdma_bind_list *bind_list; 3832 unsigned short snum; 3833 int ret; 3834 3835 lockdep_assert_held(&lock); 3836 3837 snum = ntohs(cma_port(cma_src_addr(id_priv))); 3838 if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 3839 return -EACCES; 3840 3841 bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum); 3842 if (!bind_list) { 3843 ret = cma_alloc_port(ps, id_priv, snum); 3844 } else { 3845 ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr); 3846 if (!ret) 3847 cma_bind_port(bind_list, id_priv); 3848 } 3849 return ret; 3850 } 3851 3852 static enum rdma_ucm_port_space 3853 cma_select_inet_ps(struct rdma_id_private *id_priv) 3854 { 3855 switch (id_priv->id.ps) { 3856 case RDMA_PS_TCP: 3857 case RDMA_PS_UDP: 3858 case RDMA_PS_IPOIB: 3859 case RDMA_PS_IB: 3860 return id_priv->id.ps; 3861 default: 3862 3863 return 0; 3864 } 3865 } 3866 3867 static enum rdma_ucm_port_space 3868 cma_select_ib_ps(struct rdma_id_private *id_priv) 3869 { 3870 enum rdma_ucm_port_space ps = 0; 3871 struct sockaddr_ib *sib; 3872 u64 sid_ps, mask, sid; 3873 3874 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 3875 mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK; 3876 sid = be64_to_cpu(sib->sib_sid) & mask; 3877 3878 if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) { 3879 sid_ps = RDMA_IB_IP_PS_IB; 3880 ps = RDMA_PS_IB; 3881 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) && 3882 (sid == (RDMA_IB_IP_PS_TCP & mask))) { 3883 sid_ps = RDMA_IB_IP_PS_TCP; 3884 ps = RDMA_PS_TCP; 3885 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) && 3886 (sid == (RDMA_IB_IP_PS_UDP & mask))) { 3887 sid_ps = RDMA_IB_IP_PS_UDP; 3888 ps = RDMA_PS_UDP; 3889 } 3890 3891 if (ps) { 3892 sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib))); 3893 sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK | 3894 be64_to_cpu(sib->sib_sid_mask)); 3895 } 3896 return ps; 3897 } 3898 3899 static int cma_get_port(struct rdma_id_private *id_priv) 3900 { 3901 enum rdma_ucm_port_space ps; 3902 int ret; 3903 3904 if (cma_family(id_priv) != AF_IB) 3905 ps = cma_select_inet_ps(id_priv); 3906 else 3907 ps = cma_select_ib_ps(id_priv); 3908 if (!ps) 3909 return -EPROTONOSUPPORT; 3910 3911 mutex_lock(&lock); 3912 if (cma_any_port(cma_src_addr(id_priv))) 3913 ret = cma_alloc_any_port(ps, id_priv); 3914 else 3915 ret = cma_use_port(ps, id_priv); 3916 mutex_unlock(&lock); 3917 3918 return ret; 3919 } 3920 3921 static int cma_check_linklocal(struct rdma_dev_addr *dev_addr, 3922 struct sockaddr *addr) 3923 { 3924 #if IS_ENABLED(CONFIG_IPV6) 3925 struct sockaddr_in6 *sin6; 3926 3927 if (addr->sa_family != AF_INET6) 3928 return 0; 3929 3930 sin6 = (struct sockaddr_in6 *) addr; 3931 3932 if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL)) 3933 return 0; 3934 3935 if (!sin6->sin6_scope_id) 3936 return -EINVAL; 3937 3938 dev_addr->bound_dev_if = sin6->sin6_scope_id; 3939 #endif 3940 return 0; 3941 } 3942 3943 int rdma_listen(struct rdma_cm_id *id, int backlog) 3944 { 3945 struct rdma_id_private *id_priv = 3946 container_of(id, struct rdma_id_private, id); 3947 int ret; 3948 3949 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) { 3950 struct sockaddr_in any_in = { 3951 .sin_family = AF_INET, 3952 .sin_addr.s_addr = htonl(INADDR_ANY), 3953 }; 3954 3955 /* For a well behaved ULP state will be RDMA_CM_IDLE */ 3956 ret = rdma_bind_addr(id, (struct sockaddr *)&any_in); 3957 if (ret) 3958 return ret; 3959 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, 3960 RDMA_CM_LISTEN))) 3961 return -EINVAL; 3962 } 3963 3964 /* 3965 * Once the ID reaches RDMA_CM_LISTEN it is not allowed to be reusable 3966 * any more, and has to be unique in the bind list. 3967 */ 3968 if (id_priv->reuseaddr) { 3969 mutex_lock(&lock); 3970 ret = cma_check_port(id_priv->bind_list, id_priv, 0); 3971 if (!ret) 3972 id_priv->reuseaddr = 0; 3973 mutex_unlock(&lock); 3974 if (ret) 3975 goto err; 3976 } 3977 3978 id_priv->backlog = backlog; 3979 if (id_priv->cma_dev) { 3980 if (rdma_cap_ib_cm(id->device, 1)) { 3981 ret = cma_ib_listen(id_priv); 3982 if (ret) 3983 goto err; 3984 } else if (rdma_cap_iw_cm(id->device, 1)) { 3985 ret = cma_iw_listen(id_priv, backlog); 3986 if (ret) 3987 goto err; 3988 } else { 3989 ret = -ENOSYS; 3990 goto err; 3991 } 3992 } else { 3993 ret = cma_listen_on_all(id_priv); 3994 if (ret) 3995 goto err; 3996 } 3997 3998 return 0; 3999 err: 4000 id_priv->backlog = 0; 4001 /* 4002 * All the failure paths that lead here will not allow the req_handler's 4003 * to have run. 4004 */ 4005 cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND); 4006 return ret; 4007 } 4008 EXPORT_SYMBOL(rdma_listen); 4009 4010 static int rdma_bind_addr_dst(struct rdma_id_private *id_priv, 4011 struct sockaddr *addr, const struct sockaddr *daddr) 4012 { 4013 struct sockaddr *id_daddr; 4014 int ret; 4015 4016 if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 && 4017 addr->sa_family != AF_IB) 4018 return -EAFNOSUPPORT; 4019 4020 if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND)) 4021 return -EINVAL; 4022 4023 ret = cma_check_linklocal(&id_priv->id.route.addr.dev_addr, addr); 4024 if (ret) 4025 goto err1; 4026 4027 memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr)); 4028 if (!cma_any_addr(addr)) { 4029 ret = cma_translate_addr(addr, &id_priv->id.route.addr.dev_addr); 4030 if (ret) 4031 goto err1; 4032 4033 ret = cma_acquire_dev_by_src_ip(id_priv); 4034 if (ret) 4035 goto err1; 4036 } 4037 4038 if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) { 4039 if (addr->sa_family == AF_INET) 4040 id_priv->afonly = 1; 4041 #if IS_ENABLED(CONFIG_IPV6) 4042 else if (addr->sa_family == AF_INET6) { 4043 struct net *net = id_priv->id.route.addr.dev_addr.net; 4044 4045 id_priv->afonly = net->ipv6.sysctl.bindv6only; 4046 } 4047 #endif 4048 } 4049 id_daddr = cma_dst_addr(id_priv); 4050 if (daddr != id_daddr) 4051 memcpy(id_daddr, daddr, rdma_addr_size(addr)); 4052 id_daddr->sa_family = addr->sa_family; 4053 4054 ret = cma_get_port(id_priv); 4055 if (ret) 4056 goto err2; 4057 4058 if (!cma_any_addr(addr)) 4059 rdma_restrack_add(&id_priv->res); 4060 return 0; 4061 err2: 4062 if (id_priv->cma_dev) 4063 cma_release_dev(id_priv); 4064 err1: 4065 cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE); 4066 return ret; 4067 } 4068 4069 static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 4070 const struct sockaddr *dst_addr) 4071 { 4072 struct rdma_id_private *id_priv = 4073 container_of(id, struct rdma_id_private, id); 4074 struct sockaddr_storage zero_sock = {}; 4075 4076 if (src_addr && src_addr->sa_family) 4077 return rdma_bind_addr_dst(id_priv, src_addr, dst_addr); 4078 4079 /* 4080 * When the src_addr is not specified, automatically supply an any addr 4081 */ 4082 zero_sock.ss_family = dst_addr->sa_family; 4083 if (IS_ENABLED(CONFIG_IPV6) && dst_addr->sa_family == AF_INET6) { 4084 struct sockaddr_in6 *src_addr6 = 4085 (struct sockaddr_in6 *)&zero_sock; 4086 struct sockaddr_in6 *dst_addr6 = 4087 (struct sockaddr_in6 *)dst_addr; 4088 4089 src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id; 4090 if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL) 4091 id->route.addr.dev_addr.bound_dev_if = 4092 dst_addr6->sin6_scope_id; 4093 } else if (dst_addr->sa_family == AF_IB) { 4094 ((struct sockaddr_ib *)&zero_sock)->sib_pkey = 4095 ((struct sockaddr_ib *)dst_addr)->sib_pkey; 4096 } 4097 return rdma_bind_addr_dst(id_priv, (struct sockaddr *)&zero_sock, dst_addr); 4098 } 4099 4100 /* 4101 * If required, resolve the source address for bind and leave the id_priv in 4102 * state RDMA_CM_ADDR_BOUND. This oddly uses the state to determine the prior 4103 * calls made by ULP, a previously bound ID will not be re-bound and src_addr is 4104 * ignored. 4105 */ 4106 static int resolve_prepare_src(struct rdma_id_private *id_priv, 4107 struct sockaddr *src_addr, 4108 const struct sockaddr *dst_addr) 4109 { 4110 int ret; 4111 4112 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) { 4113 /* For a well behaved ULP state will be RDMA_CM_IDLE */ 4114 ret = cma_bind_addr(&id_priv->id, src_addr, dst_addr); 4115 if (ret) 4116 return ret; 4117 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, 4118 RDMA_CM_ADDR_QUERY))) 4119 return -EINVAL; 4120 4121 } else { 4122 memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr)); 4123 } 4124 4125 if (cma_family(id_priv) != dst_addr->sa_family) { 4126 ret = -EINVAL; 4127 goto err_state; 4128 } 4129 return 0; 4130 4131 err_state: 4132 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); 4133 return ret; 4134 } 4135 4136 int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 4137 const struct sockaddr *dst_addr, unsigned long timeout_ms) 4138 { 4139 struct rdma_id_private *id_priv = 4140 container_of(id, struct rdma_id_private, id); 4141 int ret; 4142 4143 ret = resolve_prepare_src(id_priv, src_addr, dst_addr); 4144 if (ret) 4145 return ret; 4146 4147 if (cma_any_addr(dst_addr)) { 4148 ret = cma_resolve_loopback(id_priv); 4149 } else { 4150 if (dst_addr->sa_family == AF_IB) { 4151 ret = cma_resolve_ib_addr(id_priv); 4152 } else { 4153 /* 4154 * The FSM can return back to RDMA_CM_ADDR_BOUND after 4155 * rdma_resolve_ip() is called, eg through the error 4156 * path in addr_handler(). If this happens the existing 4157 * request must be canceled before issuing a new one. 4158 * Since canceling a request is a bit slow and this 4159 * oddball path is rare, keep track once a request has 4160 * been issued. The track turns out to be a permanent 4161 * state since this is the only cancel as it is 4162 * immediately before rdma_resolve_ip(). 4163 */ 4164 if (id_priv->used_resolve_ip) 4165 rdma_addr_cancel(&id->route.addr.dev_addr); 4166 else 4167 id_priv->used_resolve_ip = 1; 4168 ret = rdma_resolve_ip(cma_src_addr(id_priv), dst_addr, 4169 &id->route.addr.dev_addr, 4170 timeout_ms, addr_handler, 4171 false, id_priv); 4172 } 4173 } 4174 if (ret) 4175 goto err; 4176 4177 return 0; 4178 err: 4179 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); 4180 return ret; 4181 } 4182 EXPORT_SYMBOL(rdma_resolve_addr); 4183 4184 int rdma_restrict_node_type(struct rdma_cm_id *id, u8 node_type) 4185 { 4186 struct rdma_id_private *id_priv = 4187 container_of(id, struct rdma_id_private, id); 4188 int ret = 0; 4189 4190 switch (node_type) { 4191 case RDMA_NODE_UNSPECIFIED: 4192 case RDMA_NODE_IB_CA: 4193 case RDMA_NODE_RNIC: 4194 break; 4195 default: 4196 return -EINVAL; 4197 } 4198 4199 mutex_lock(&lock); 4200 if (id_priv->cma_dev) 4201 ret = -EALREADY; 4202 else 4203 id_priv->restricted_node_type = node_type; 4204 mutex_unlock(&lock); 4205 4206 return ret; 4207 } 4208 EXPORT_SYMBOL(rdma_restrict_node_type); 4209 4210 int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr) 4211 { 4212 struct rdma_id_private *id_priv = 4213 container_of(id, struct rdma_id_private, id); 4214 4215 return rdma_bind_addr_dst(id_priv, addr, cma_dst_addr(id_priv)); 4216 } 4217 EXPORT_SYMBOL(rdma_bind_addr); 4218 4219 static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv) 4220 { 4221 struct cma_hdr *cma_hdr; 4222 4223 cma_hdr = hdr; 4224 cma_hdr->cma_version = CMA_VERSION; 4225 if (cma_family(id_priv) == AF_INET) { 4226 struct sockaddr_in *src4, *dst4; 4227 4228 src4 = (struct sockaddr_in *) cma_src_addr(id_priv); 4229 dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv); 4230 4231 cma_set_ip_ver(cma_hdr, 4); 4232 cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr; 4233 cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr; 4234 cma_hdr->port = src4->sin_port; 4235 } else if (cma_family(id_priv) == AF_INET6) { 4236 struct sockaddr_in6 *src6, *dst6; 4237 4238 src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 4239 dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv); 4240 4241 cma_set_ip_ver(cma_hdr, 6); 4242 cma_hdr->src_addr.ip6 = src6->sin6_addr; 4243 cma_hdr->dst_addr.ip6 = dst6->sin6_addr; 4244 cma_hdr->port = src6->sin6_port; 4245 } 4246 return 0; 4247 } 4248 4249 static int cma_sidr_rep_handler(struct ib_cm_id *cm_id, 4250 const struct ib_cm_event *ib_event) 4251 { 4252 struct rdma_id_private *id_priv = cm_id->context; 4253 struct rdma_cm_event event = {}; 4254 const struct ib_cm_sidr_rep_event_param *rep = 4255 &ib_event->param.sidr_rep_rcvd; 4256 int ret; 4257 4258 mutex_lock(&id_priv->handler_mutex); 4259 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 4260 goto out; 4261 4262 switch (ib_event->event) { 4263 case IB_CM_SIDR_REQ_ERROR: 4264 event.event = RDMA_CM_EVENT_UNREACHABLE; 4265 event.status = -ETIMEDOUT; 4266 break; 4267 case IB_CM_SIDR_REP_RECEIVED: 4268 event.param.ud.private_data = ib_event->private_data; 4269 event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE; 4270 if (rep->status != IB_SIDR_SUCCESS) { 4271 event.event = RDMA_CM_EVENT_UNREACHABLE; 4272 event.status = ib_event->param.sidr_rep_rcvd.status; 4273 pr_debug_ratelimited("RDMA CM: UNREACHABLE: bad SIDR reply. status %d\n", 4274 event.status); 4275 break; 4276 } 4277 ret = cma_set_qkey(id_priv, rep->qkey); 4278 if (ret) { 4279 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to set qkey. status %d\n", ret); 4280 event.event = RDMA_CM_EVENT_ADDR_ERROR; 4281 event.status = ret; 4282 break; 4283 } 4284 ib_init_ah_attr_from_path(id_priv->id.device, 4285 id_priv->id.port_num, 4286 id_priv->id.route.path_rec, 4287 &event.param.ud.ah_attr, 4288 rep->sgid_attr); 4289 event.param.ud.qp_num = rep->qpn; 4290 event.param.ud.qkey = rep->qkey; 4291 event.event = RDMA_CM_EVENT_ESTABLISHED; 4292 event.status = 0; 4293 break; 4294 default: 4295 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 4296 ib_event->event); 4297 goto out; 4298 } 4299 4300 ret = cma_cm_event_handler(id_priv, &event); 4301 4302 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 4303 if (ret) { 4304 /* Destroy the CM ID by returning a non-zero value. */ 4305 id_priv->cm_id.ib = NULL; 4306 destroy_id_handler_unlock(id_priv); 4307 return ret; 4308 } 4309 out: 4310 mutex_unlock(&id_priv->handler_mutex); 4311 return 0; 4312 } 4313 4314 static int cma_resolve_ib_udp(struct rdma_id_private *id_priv, 4315 struct rdma_conn_param *conn_param) 4316 { 4317 struct ib_cm_sidr_req_param req; 4318 struct ib_cm_id *id; 4319 void *private_data; 4320 u8 offset; 4321 int ret; 4322 4323 memset(&req, 0, sizeof req); 4324 offset = cma_user_data_offset(id_priv); 4325 if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len)) 4326 return -EINVAL; 4327 4328 if (req.private_data_len) { 4329 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 4330 if (!private_data) 4331 return -ENOMEM; 4332 } else { 4333 private_data = NULL; 4334 } 4335 4336 if (conn_param->private_data && conn_param->private_data_len) 4337 memcpy(private_data + offset, conn_param->private_data, 4338 conn_param->private_data_len); 4339 4340 if (private_data) { 4341 ret = cma_format_hdr(private_data, id_priv); 4342 if (ret) 4343 goto out; 4344 req.private_data = private_data; 4345 } 4346 4347 id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler, 4348 id_priv); 4349 if (IS_ERR(id)) { 4350 ret = PTR_ERR(id); 4351 goto out; 4352 } 4353 id_priv->cm_id.ib = id; 4354 4355 req.path = id_priv->id.route.path_rec; 4356 req.sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 4357 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 4358 req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8); 4359 req.max_cm_retries = CMA_MAX_CM_RETRIES; 4360 4361 trace_cm_send_sidr_req(id_priv); 4362 ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req); 4363 if (ret) { 4364 ib_destroy_cm_id(id_priv->cm_id.ib); 4365 id_priv->cm_id.ib = NULL; 4366 } 4367 out: 4368 kfree(private_data); 4369 return ret; 4370 } 4371 4372 static int cma_connect_ib(struct rdma_id_private *id_priv, 4373 struct rdma_conn_param *conn_param) 4374 { 4375 struct ib_cm_req_param req; 4376 struct rdma_route *route; 4377 void *private_data; 4378 struct ib_cm_id *id; 4379 u8 offset; 4380 int ret; 4381 4382 memset(&req, 0, sizeof req); 4383 offset = cma_user_data_offset(id_priv); 4384 if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len)) 4385 return -EINVAL; 4386 4387 if (req.private_data_len) { 4388 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 4389 if (!private_data) 4390 return -ENOMEM; 4391 } else { 4392 private_data = NULL; 4393 } 4394 4395 if (conn_param->private_data && conn_param->private_data_len) 4396 memcpy(private_data + offset, conn_param->private_data, 4397 conn_param->private_data_len); 4398 4399 id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv); 4400 if (IS_ERR(id)) { 4401 ret = PTR_ERR(id); 4402 goto out; 4403 } 4404 id_priv->cm_id.ib = id; 4405 4406 route = &id_priv->id.route; 4407 if (private_data) { 4408 ret = cma_format_hdr(private_data, id_priv); 4409 if (ret) 4410 goto out; 4411 req.private_data = private_data; 4412 } 4413 4414 req.primary_path = &route->path_rec[0]; 4415 req.primary_path_inbound = route->path_rec_inbound; 4416 req.primary_path_outbound = route->path_rec_outbound; 4417 if (route->num_pri_alt_paths == 2) 4418 req.alternate_path = &route->path_rec[1]; 4419 4420 req.ppath_sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 4421 /* Alternate path SGID attribute currently unsupported */ 4422 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 4423 req.qp_num = id_priv->qp_num; 4424 req.qp_type = id_priv->id.qp_type; 4425 req.starting_psn = id_priv->seq_num; 4426 req.responder_resources = conn_param->responder_resources; 4427 req.initiator_depth = conn_param->initiator_depth; 4428 req.flow_control = conn_param->flow_control; 4429 req.retry_count = min_t(u8, 7, conn_param->retry_count); 4430 req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 4431 req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 4432 req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 4433 req.max_cm_retries = CMA_MAX_CM_RETRIES; 4434 req.srq = id_priv->srq ? 1 : 0; 4435 req.ece.vendor_id = id_priv->ece.vendor_id; 4436 req.ece.attr_mod = id_priv->ece.attr_mod; 4437 4438 trace_cm_send_req(id_priv); 4439 ret = ib_send_cm_req(id_priv->cm_id.ib, &req); 4440 out: 4441 if (ret && !IS_ERR(id)) { 4442 ib_destroy_cm_id(id); 4443 id_priv->cm_id.ib = NULL; 4444 } 4445 4446 kfree(private_data); 4447 return ret; 4448 } 4449 4450 static int cma_connect_iw(struct rdma_id_private *id_priv, 4451 struct rdma_conn_param *conn_param) 4452 { 4453 struct iw_cm_id *cm_id; 4454 int ret; 4455 struct iw_cm_conn_param iw_param; 4456 4457 cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv); 4458 if (IS_ERR(cm_id)) 4459 return PTR_ERR(cm_id); 4460 4461 mutex_lock(&id_priv->qp_mutex); 4462 cm_id->tos = id_priv->tos; 4463 cm_id->tos_set = id_priv->tos_set; 4464 mutex_unlock(&id_priv->qp_mutex); 4465 4466 id_priv->cm_id.iw = cm_id; 4467 4468 memcpy(&cm_id->local_addr, cma_src_addr(id_priv), 4469 rdma_addr_size(cma_src_addr(id_priv))); 4470 memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv), 4471 rdma_addr_size(cma_dst_addr(id_priv))); 4472 4473 ret = cma_modify_qp_rtr(id_priv, conn_param); 4474 if (ret) 4475 goto out; 4476 4477 if (conn_param) { 4478 iw_param.ord = conn_param->initiator_depth; 4479 iw_param.ird = conn_param->responder_resources; 4480 iw_param.private_data = conn_param->private_data; 4481 iw_param.private_data_len = conn_param->private_data_len; 4482 iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num; 4483 } else { 4484 memset(&iw_param, 0, sizeof iw_param); 4485 iw_param.qpn = id_priv->qp_num; 4486 } 4487 ret = iw_cm_connect(cm_id, &iw_param); 4488 out: 4489 if (ret) { 4490 iw_destroy_cm_id(cm_id); 4491 id_priv->cm_id.iw = NULL; 4492 } 4493 return ret; 4494 } 4495 4496 /** 4497 * rdma_connect_locked - Initiate an active connection request. 4498 * @id: Connection identifier to connect. 4499 * @conn_param: Connection information used for connected QPs. 4500 * 4501 * Same as rdma_connect() but can only be called from the 4502 * RDMA_CM_EVENT_ROUTE_RESOLVED handler callback. 4503 */ 4504 int rdma_connect_locked(struct rdma_cm_id *id, 4505 struct rdma_conn_param *conn_param) 4506 { 4507 struct rdma_id_private *id_priv = 4508 container_of(id, struct rdma_id_private, id); 4509 int ret; 4510 4511 lockdep_assert_held(&id_priv->handler_mutex); 4512 4513 if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT)) 4514 return -EINVAL; 4515 4516 if (!id->qp) { 4517 id_priv->qp_num = conn_param->qp_num; 4518 id_priv->srq = conn_param->srq; 4519 } 4520 4521 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4522 if (id->qp_type == IB_QPT_UD) 4523 ret = cma_resolve_ib_udp(id_priv, conn_param); 4524 else 4525 ret = cma_connect_ib(id_priv, conn_param); 4526 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4527 ret = cma_connect_iw(id_priv, conn_param); 4528 } else { 4529 ret = -ENOSYS; 4530 } 4531 if (ret) 4532 goto err_state; 4533 return 0; 4534 err_state: 4535 cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED); 4536 return ret; 4537 } 4538 EXPORT_SYMBOL(rdma_connect_locked); 4539 4540 /** 4541 * rdma_connect - Initiate an active connection request. 4542 * @id: Connection identifier to connect. 4543 * @conn_param: Connection information used for connected QPs. 4544 * 4545 * Users must have resolved a route for the rdma_cm_id to connect with by having 4546 * called rdma_resolve_route before calling this routine. 4547 * 4548 * This call will either connect to a remote QP or obtain remote QP information 4549 * for unconnected rdma_cm_id's. The actual operation is based on the 4550 * rdma_cm_id's port space. 4551 */ 4552 int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) 4553 { 4554 struct rdma_id_private *id_priv = 4555 container_of(id, struct rdma_id_private, id); 4556 int ret; 4557 4558 mutex_lock(&id_priv->handler_mutex); 4559 ret = rdma_connect_locked(id, conn_param); 4560 mutex_unlock(&id_priv->handler_mutex); 4561 return ret; 4562 } 4563 EXPORT_SYMBOL(rdma_connect); 4564 4565 /** 4566 * rdma_connect_ece - Initiate an active connection request with ECE data. 4567 * @id: Connection identifier to connect. 4568 * @conn_param: Connection information used for connected QPs. 4569 * @ece: ECE parameters 4570 * 4571 * See rdma_connect() explanation. 4572 */ 4573 int rdma_connect_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4574 struct rdma_ucm_ece *ece) 4575 { 4576 struct rdma_id_private *id_priv = 4577 container_of(id, struct rdma_id_private, id); 4578 4579 id_priv->ece.vendor_id = ece->vendor_id; 4580 id_priv->ece.attr_mod = ece->attr_mod; 4581 4582 return rdma_connect(id, conn_param); 4583 } 4584 EXPORT_SYMBOL(rdma_connect_ece); 4585 4586 static int cma_accept_ib(struct rdma_id_private *id_priv, 4587 struct rdma_conn_param *conn_param) 4588 { 4589 struct ib_cm_rep_param rep; 4590 int ret; 4591 4592 ret = cma_modify_qp_rtr(id_priv, conn_param); 4593 if (ret) 4594 goto out; 4595 4596 ret = cma_modify_qp_rts(id_priv, conn_param); 4597 if (ret) 4598 goto out; 4599 4600 memset(&rep, 0, sizeof rep); 4601 rep.qp_num = id_priv->qp_num; 4602 rep.starting_psn = id_priv->seq_num; 4603 rep.private_data = conn_param->private_data; 4604 rep.private_data_len = conn_param->private_data_len; 4605 rep.responder_resources = conn_param->responder_resources; 4606 rep.initiator_depth = conn_param->initiator_depth; 4607 rep.failover_accepted = 0; 4608 rep.flow_control = conn_param->flow_control; 4609 rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 4610 rep.srq = id_priv->srq ? 1 : 0; 4611 rep.ece.vendor_id = id_priv->ece.vendor_id; 4612 rep.ece.attr_mod = id_priv->ece.attr_mod; 4613 4614 trace_cm_send_rep(id_priv); 4615 ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep); 4616 out: 4617 return ret; 4618 } 4619 4620 static int cma_accept_iw(struct rdma_id_private *id_priv, 4621 struct rdma_conn_param *conn_param) 4622 { 4623 struct iw_cm_conn_param iw_param; 4624 int ret; 4625 4626 if (!conn_param) 4627 return -EINVAL; 4628 4629 ret = cma_modify_qp_rtr(id_priv, conn_param); 4630 if (ret) 4631 return ret; 4632 4633 iw_param.ord = conn_param->initiator_depth; 4634 iw_param.ird = conn_param->responder_resources; 4635 iw_param.private_data = conn_param->private_data; 4636 iw_param.private_data_len = conn_param->private_data_len; 4637 if (id_priv->id.qp) 4638 iw_param.qpn = id_priv->qp_num; 4639 else 4640 iw_param.qpn = conn_param->qp_num; 4641 4642 return iw_cm_accept(id_priv->cm_id.iw, &iw_param); 4643 } 4644 4645 static int cma_send_sidr_rep(struct rdma_id_private *id_priv, 4646 enum ib_cm_sidr_status status, u32 qkey, 4647 const void *private_data, int private_data_len) 4648 { 4649 struct ib_cm_sidr_rep_param rep; 4650 int ret; 4651 4652 memset(&rep, 0, sizeof rep); 4653 rep.status = status; 4654 if (status == IB_SIDR_SUCCESS) { 4655 if (qkey) 4656 ret = cma_set_qkey(id_priv, qkey); 4657 else 4658 ret = cma_set_default_qkey(id_priv); 4659 if (ret) 4660 return ret; 4661 rep.qp_num = id_priv->qp_num; 4662 rep.qkey = id_priv->qkey; 4663 4664 rep.ece.vendor_id = id_priv->ece.vendor_id; 4665 rep.ece.attr_mod = id_priv->ece.attr_mod; 4666 } 4667 4668 rep.private_data = private_data; 4669 rep.private_data_len = private_data_len; 4670 4671 trace_cm_send_sidr_rep(id_priv); 4672 return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep); 4673 } 4674 4675 /** 4676 * rdma_accept - Called to accept a connection request or response. 4677 * @id: Connection identifier associated with the request. 4678 * @conn_param: Information needed to establish the connection. This must be 4679 * provided if accepting a connection request. If accepting a connection 4680 * response, this parameter must be NULL. 4681 * 4682 * Typically, this routine is only called by the listener to accept a connection 4683 * request. It must also be called on the active side of a connection if the 4684 * user is performing their own QP transitions. 4685 * 4686 * In the case of error, a reject message is sent to the remote side and the 4687 * state of the qp associated with the id is modified to error, such that any 4688 * previously posted receive buffers would be flushed. 4689 * 4690 * This function is for use by kernel ULPs and must be called from under the 4691 * handler callback. 4692 */ 4693 int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) 4694 { 4695 struct rdma_id_private *id_priv = 4696 container_of(id, struct rdma_id_private, id); 4697 int ret; 4698 4699 lockdep_assert_held(&id_priv->handler_mutex); 4700 4701 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 4702 return -EINVAL; 4703 4704 if (!id->qp && conn_param) { 4705 id_priv->qp_num = conn_param->qp_num; 4706 id_priv->srq = conn_param->srq; 4707 } 4708 4709 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4710 if (id->qp_type == IB_QPT_UD) { 4711 if (conn_param) 4712 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4713 conn_param->qkey, 4714 conn_param->private_data, 4715 conn_param->private_data_len); 4716 else 4717 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4718 0, NULL, 0); 4719 } else { 4720 if (conn_param) 4721 ret = cma_accept_ib(id_priv, conn_param); 4722 else 4723 ret = cma_rep_recv(id_priv); 4724 } 4725 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4726 ret = cma_accept_iw(id_priv, conn_param); 4727 } else { 4728 ret = -ENOSYS; 4729 } 4730 if (ret) 4731 goto reject; 4732 4733 return 0; 4734 reject: 4735 cma_modify_qp_err(id_priv); 4736 rdma_reject(id, NULL, 0, IB_CM_REJ_CONSUMER_DEFINED); 4737 return ret; 4738 } 4739 EXPORT_SYMBOL(rdma_accept); 4740 4741 int rdma_accept_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4742 struct rdma_ucm_ece *ece) 4743 { 4744 struct rdma_id_private *id_priv = 4745 container_of(id, struct rdma_id_private, id); 4746 4747 id_priv->ece.vendor_id = ece->vendor_id; 4748 id_priv->ece.attr_mod = ece->attr_mod; 4749 4750 return rdma_accept(id, conn_param); 4751 } 4752 EXPORT_SYMBOL(rdma_accept_ece); 4753 4754 void rdma_lock_handler(struct rdma_cm_id *id) 4755 { 4756 struct rdma_id_private *id_priv = 4757 container_of(id, struct rdma_id_private, id); 4758 4759 mutex_lock(&id_priv->handler_mutex); 4760 } 4761 EXPORT_SYMBOL(rdma_lock_handler); 4762 4763 void rdma_unlock_handler(struct rdma_cm_id *id) 4764 { 4765 struct rdma_id_private *id_priv = 4766 container_of(id, struct rdma_id_private, id); 4767 4768 mutex_unlock(&id_priv->handler_mutex); 4769 } 4770 EXPORT_SYMBOL(rdma_unlock_handler); 4771 4772 int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event) 4773 { 4774 struct rdma_id_private *id_priv; 4775 int ret; 4776 4777 id_priv = container_of(id, struct rdma_id_private, id); 4778 if (!id_priv->cm_id.ib) 4779 return -EINVAL; 4780 4781 switch (id->device->node_type) { 4782 case RDMA_NODE_IB_CA: 4783 ret = ib_cm_notify(id_priv->cm_id.ib, event); 4784 break; 4785 default: 4786 ret = 0; 4787 break; 4788 } 4789 return ret; 4790 } 4791 EXPORT_SYMBOL(rdma_notify); 4792 4793 int rdma_reject(struct rdma_cm_id *id, const void *private_data, 4794 u8 private_data_len, u8 reason) 4795 { 4796 struct rdma_id_private *id_priv; 4797 int ret; 4798 4799 id_priv = container_of(id, struct rdma_id_private, id); 4800 if (!id_priv->cm_id.ib) 4801 return -EINVAL; 4802 4803 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4804 if (id->qp_type == IB_QPT_UD) { 4805 ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0, 4806 private_data, private_data_len); 4807 } else { 4808 trace_cm_send_rej(id_priv); 4809 ret = ib_send_cm_rej(id_priv->cm_id.ib, reason, NULL, 0, 4810 private_data, private_data_len); 4811 } 4812 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4813 ret = iw_cm_reject(id_priv->cm_id.iw, 4814 private_data, private_data_len); 4815 } else { 4816 ret = -ENOSYS; 4817 } 4818 4819 return ret; 4820 } 4821 EXPORT_SYMBOL(rdma_reject); 4822 4823 int rdma_disconnect(struct rdma_cm_id *id) 4824 { 4825 struct rdma_id_private *id_priv; 4826 int ret; 4827 4828 id_priv = container_of(id, struct rdma_id_private, id); 4829 if (!id_priv->cm_id.ib) 4830 return -EINVAL; 4831 4832 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4833 ret = cma_modify_qp_err(id_priv); 4834 if (ret) 4835 goto out; 4836 /* Initiate or respond to a disconnect. */ 4837 trace_cm_disconnect(id_priv); 4838 if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) { 4839 if (!ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0)) 4840 trace_cm_sent_drep(id_priv); 4841 } else { 4842 trace_cm_sent_dreq(id_priv); 4843 } 4844 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4845 ret = iw_cm_disconnect(id_priv->cm_id.iw, 0); 4846 } else 4847 ret = -EINVAL; 4848 4849 out: 4850 return ret; 4851 } 4852 EXPORT_SYMBOL(rdma_disconnect); 4853 4854 static void cma_make_mc_event(int status, struct rdma_id_private *id_priv, 4855 struct ib_sa_multicast *multicast, 4856 struct rdma_cm_event *event, 4857 struct cma_multicast *mc) 4858 { 4859 struct rdma_dev_addr *dev_addr; 4860 enum ib_gid_type gid_type; 4861 struct net_device *ndev; 4862 4863 if (status) 4864 pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to join multicast. status %d\n", 4865 status); 4866 4867 event->status = status; 4868 event->param.ud.private_data = mc->context; 4869 if (status) { 4870 event->event = RDMA_CM_EVENT_MULTICAST_ERROR; 4871 return; 4872 } 4873 4874 dev_addr = &id_priv->id.route.addr.dev_addr; 4875 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 4876 gid_type = 4877 id_priv->cma_dev 4878 ->default_gid_type[id_priv->id.port_num - 4879 rdma_start_port( 4880 id_priv->cma_dev->device)]; 4881 4882 event->event = RDMA_CM_EVENT_MULTICAST_JOIN; 4883 if (ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num, 4884 &multicast->rec, ndev, gid_type, 4885 &event->param.ud.ah_attr)) { 4886 event->event = RDMA_CM_EVENT_MULTICAST_ERROR; 4887 goto out; 4888 } 4889 4890 event->param.ud.qp_num = 0xFFFFFF; 4891 event->param.ud.qkey = id_priv->qkey; 4892 4893 out: 4894 dev_put(ndev); 4895 } 4896 4897 static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast) 4898 { 4899 struct cma_multicast *mc = multicast->context; 4900 struct rdma_id_private *id_priv = mc->id_priv; 4901 struct rdma_cm_event event = {}; 4902 int ret = 0; 4903 4904 mutex_lock(&id_priv->handler_mutex); 4905 if (READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL || 4906 READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING) 4907 goto out; 4908 4909 ret = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey)); 4910 if (!ret) { 4911 cma_make_mc_event(status, id_priv, multicast, &event, mc); 4912 ret = cma_cm_event_handler(id_priv, &event); 4913 } 4914 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 4915 WARN_ON(ret); 4916 4917 out: 4918 mutex_unlock(&id_priv->handler_mutex); 4919 return 0; 4920 } 4921 4922 static void cma_set_mgid(struct rdma_id_private *id_priv, 4923 struct sockaddr *addr, union ib_gid *mgid) 4924 { 4925 unsigned char mc_map[MAX_ADDR_LEN]; 4926 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4927 struct sockaddr_in *sin = (struct sockaddr_in *) addr; 4928 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr; 4929 4930 if (cma_any_addr(addr)) { 4931 memset(mgid, 0, sizeof *mgid); 4932 } else if ((addr->sa_family == AF_INET6) && 4933 ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) == 4934 0xFF10A01B)) { 4935 /* IPv6 address is an SA assigned MGID. */ 4936 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4937 } else if (addr->sa_family == AF_IB) { 4938 memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid); 4939 } else if (addr->sa_family == AF_INET6) { 4940 ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map); 4941 if (id_priv->id.ps == RDMA_PS_UDP) 4942 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4943 *mgid = *(union ib_gid *) (mc_map + 4); 4944 } else { 4945 ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map); 4946 if (id_priv->id.ps == RDMA_PS_UDP) 4947 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4948 *mgid = *(union ib_gid *) (mc_map + 4); 4949 } 4950 } 4951 4952 static int cma_join_ib_multicast(struct rdma_id_private *id_priv, 4953 struct cma_multicast *mc) 4954 { 4955 struct ib_sa_mcmember_rec rec; 4956 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4957 ib_sa_comp_mask comp_mask; 4958 int ret; 4959 4960 ib_addr_get_mgid(dev_addr, &rec.mgid); 4961 ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num, 4962 &rec.mgid, &rec); 4963 if (ret) 4964 return ret; 4965 4966 if (!id_priv->qkey) { 4967 ret = cma_set_default_qkey(id_priv); 4968 if (ret) 4969 return ret; 4970 } 4971 4972 cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid); 4973 rec.qkey = cpu_to_be32(id_priv->qkey); 4974 rdma_addr_get_sgid(dev_addr, &rec.port_gid); 4975 rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 4976 rec.join_state = mc->join_state; 4977 4978 comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID | 4979 IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE | 4980 IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL | 4981 IB_SA_MCMEMBER_REC_FLOW_LABEL | 4982 IB_SA_MCMEMBER_REC_TRAFFIC_CLASS; 4983 4984 if (id_priv->id.ps == RDMA_PS_IPOIB) 4985 comp_mask |= IB_SA_MCMEMBER_REC_RATE | 4986 IB_SA_MCMEMBER_REC_RATE_SELECTOR | 4987 IB_SA_MCMEMBER_REC_MTU_SELECTOR | 4988 IB_SA_MCMEMBER_REC_MTU | 4989 IB_SA_MCMEMBER_REC_HOP_LIMIT; 4990 4991 mc->sa_mc = ib_sa_join_multicast(&sa_client, id_priv->id.device, 4992 id_priv->id.port_num, &rec, comp_mask, 4993 GFP_KERNEL, cma_ib_mc_handler, mc); 4994 return PTR_ERR_OR_ZERO(mc->sa_mc); 4995 } 4996 4997 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid, 4998 enum ib_gid_type gid_type) 4999 { 5000 struct sockaddr_in *sin = (struct sockaddr_in *)addr; 5001 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr; 5002 5003 if (cma_any_addr(addr)) { 5004 memset(mgid, 0, sizeof *mgid); 5005 } else if (addr->sa_family == AF_INET6) { 5006 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 5007 } else { 5008 mgid->raw[0] = 5009 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff; 5010 mgid->raw[1] = 5011 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e; 5012 mgid->raw[2] = 0; 5013 mgid->raw[3] = 0; 5014 mgid->raw[4] = 0; 5015 mgid->raw[5] = 0; 5016 mgid->raw[6] = 0; 5017 mgid->raw[7] = 0; 5018 mgid->raw[8] = 0; 5019 mgid->raw[9] = 0; 5020 mgid->raw[10] = 0xff; 5021 mgid->raw[11] = 0xff; 5022 *(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr; 5023 } 5024 } 5025 5026 static int cma_iboe_join_multicast(struct rdma_id_private *id_priv, 5027 struct cma_multicast *mc) 5028 { 5029 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 5030 int err = 0; 5031 struct sockaddr *addr = (struct sockaddr *)&mc->addr; 5032 struct net_device *ndev = NULL; 5033 struct ib_sa_multicast ib = {}; 5034 enum ib_gid_type gid_type; 5035 bool send_only; 5036 5037 send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN); 5038 5039 if (cma_zero_addr(addr)) 5040 return -EINVAL; 5041 5042 gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num - 5043 rdma_start_port(id_priv->cma_dev->device)]; 5044 cma_iboe_set_mgid(addr, &ib.rec.mgid, gid_type); 5045 5046 ib.rec.pkey = cpu_to_be16(0xffff); 5047 if (dev_addr->bound_dev_if) 5048 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 5049 if (!ndev) 5050 return -ENODEV; 5051 5052 ib.rec.rate = IB_RATE_PORT_CURRENT; 5053 ib.rec.hop_limit = 1; 5054 ib.rec.mtu = iboe_get_mtu(ndev->mtu); 5055 5056 if (addr->sa_family == AF_INET) { 5057 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) { 5058 ib.rec.hop_limit = IPV6_DEFAULT_HOPLIMIT; 5059 if (!send_only) { 5060 err = cma_igmp_send(ndev, &ib.rec.mgid, 5061 true); 5062 } 5063 } 5064 } else { 5065 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) 5066 err = -ENOTSUPP; 5067 } 5068 dev_put(ndev); 5069 if (err || !ib.rec.mtu) 5070 return err ?: -EINVAL; 5071 5072 if (!id_priv->qkey) 5073 cma_set_default_qkey(id_priv); 5074 5075 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 5076 &ib.rec.port_gid); 5077 INIT_WORK(&mc->iboe_join.work, cma_iboe_join_work_handler); 5078 cma_make_mc_event(0, id_priv, &ib, &mc->iboe_join.event, mc); 5079 queue_work(cma_wq, &mc->iboe_join.work); 5080 return 0; 5081 } 5082 5083 int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr, 5084 u8 join_state, void *context) 5085 { 5086 struct rdma_id_private *id_priv = 5087 container_of(id, struct rdma_id_private, id); 5088 struct cma_multicast *mc; 5089 int ret; 5090 5091 /* Not supported for kernel QPs */ 5092 if (WARN_ON(id->qp)) 5093 return -EINVAL; 5094 5095 /* ULP is calling this wrong. */ 5096 if (!id->device || (READ_ONCE(id_priv->state) != RDMA_CM_ADDR_BOUND && 5097 READ_ONCE(id_priv->state) != RDMA_CM_ADDR_RESOLVED)) 5098 return -EINVAL; 5099 5100 if (id_priv->id.qp_type != IB_QPT_UD) 5101 return -EINVAL; 5102 5103 mc = kzalloc(sizeof(*mc), GFP_KERNEL); 5104 if (!mc) 5105 return -ENOMEM; 5106 5107 memcpy(&mc->addr, addr, rdma_addr_size(addr)); 5108 mc->context = context; 5109 mc->id_priv = id_priv; 5110 mc->join_state = join_state; 5111 5112 if (rdma_protocol_roce(id->device, id->port_num)) { 5113 ret = cma_iboe_join_multicast(id_priv, mc); 5114 if (ret) 5115 goto out_err; 5116 } else if (rdma_cap_ib_mcast(id->device, id->port_num)) { 5117 ret = cma_join_ib_multicast(id_priv, mc); 5118 if (ret) 5119 goto out_err; 5120 } else { 5121 ret = -ENOSYS; 5122 goto out_err; 5123 } 5124 5125 spin_lock(&id_priv->lock); 5126 list_add(&mc->list, &id_priv->mc_list); 5127 spin_unlock(&id_priv->lock); 5128 5129 return 0; 5130 out_err: 5131 kfree(mc); 5132 return ret; 5133 } 5134 EXPORT_SYMBOL(rdma_join_multicast); 5135 5136 void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr) 5137 { 5138 struct rdma_id_private *id_priv; 5139 struct cma_multicast *mc; 5140 5141 id_priv = container_of(id, struct rdma_id_private, id); 5142 spin_lock_irq(&id_priv->lock); 5143 list_for_each_entry(mc, &id_priv->mc_list, list) { 5144 if (memcmp(&mc->addr, addr, rdma_addr_size(addr)) != 0) 5145 continue; 5146 list_del(&mc->list); 5147 spin_unlock_irq(&id_priv->lock); 5148 5149 WARN_ON(id_priv->cma_dev->device != id->device); 5150 destroy_mc(id_priv, mc); 5151 return; 5152 } 5153 spin_unlock_irq(&id_priv->lock); 5154 } 5155 EXPORT_SYMBOL(rdma_leave_multicast); 5156 5157 static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv) 5158 { 5159 struct rdma_dev_addr *dev_addr; 5160 struct cma_work *work; 5161 5162 dev_addr = &id_priv->id.route.addr.dev_addr; 5163 5164 if ((dev_addr->bound_dev_if == ndev->ifindex) && 5165 (net_eq(dev_net(ndev), dev_addr->net)) && 5166 memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) { 5167 pr_info("RDMA CM addr change for ndev %s used by id %p\n", 5168 ndev->name, &id_priv->id); 5169 work = kzalloc(sizeof *work, GFP_KERNEL); 5170 if (!work) 5171 return -ENOMEM; 5172 5173 INIT_WORK(&work->work, cma_work_handler); 5174 work->id = id_priv; 5175 work->event.event = RDMA_CM_EVENT_ADDR_CHANGE; 5176 cma_id_get(id_priv); 5177 queue_work(cma_wq, &work->work); 5178 } 5179 5180 return 0; 5181 } 5182 5183 static int cma_netdev_callback(struct notifier_block *self, unsigned long event, 5184 void *ptr) 5185 { 5186 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 5187 struct cma_device *cma_dev; 5188 struct rdma_id_private *id_priv; 5189 int ret = NOTIFY_DONE; 5190 5191 if (event != NETDEV_BONDING_FAILOVER) 5192 return NOTIFY_DONE; 5193 5194 if (!netif_is_bond_master(ndev)) 5195 return NOTIFY_DONE; 5196 5197 mutex_lock(&lock); 5198 list_for_each_entry(cma_dev, &dev_list, list) 5199 list_for_each_entry(id_priv, &cma_dev->id_list, device_item) { 5200 ret = cma_netdev_change(ndev, id_priv); 5201 if (ret) 5202 goto out; 5203 } 5204 5205 out: 5206 mutex_unlock(&lock); 5207 return ret; 5208 } 5209 5210 static void cma_netevent_work_handler(struct work_struct *_work) 5211 { 5212 struct rdma_id_private *id_priv = 5213 container_of(_work, struct rdma_id_private, id.net_work); 5214 struct rdma_cm_event event = {}; 5215 5216 mutex_lock(&id_priv->handler_mutex); 5217 5218 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 5219 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 5220 goto out_unlock; 5221 5222 event.event = RDMA_CM_EVENT_UNREACHABLE; 5223 event.status = -ETIMEDOUT; 5224 5225 if (cma_cm_event_handler(id_priv, &event)) { 5226 __acquire(&id_priv->handler_mutex); 5227 id_priv->cm_id.ib = NULL; 5228 cma_id_put(id_priv); 5229 destroy_id_handler_unlock(id_priv); 5230 return; 5231 } 5232 5233 out_unlock: 5234 mutex_unlock(&id_priv->handler_mutex); 5235 cma_id_put(id_priv); 5236 } 5237 5238 static int cma_netevent_callback(struct notifier_block *self, 5239 unsigned long event, void *ctx) 5240 { 5241 struct id_table_entry *ips_node = NULL; 5242 struct rdma_id_private *current_id; 5243 struct neighbour *neigh = ctx; 5244 unsigned long flags; 5245 5246 if (event != NETEVENT_NEIGH_UPDATE) 5247 return NOTIFY_DONE; 5248 5249 spin_lock_irqsave(&id_table_lock, flags); 5250 if (neigh->tbl->family == AF_INET6) { 5251 struct sockaddr_in6 neigh_sock_6; 5252 5253 neigh_sock_6.sin6_family = AF_INET6; 5254 neigh_sock_6.sin6_addr = *(struct in6_addr *)neigh->primary_key; 5255 ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex, 5256 (struct sockaddr *)&neigh_sock_6); 5257 } else if (neigh->tbl->family == AF_INET) { 5258 struct sockaddr_in neigh_sock_4; 5259 5260 neigh_sock_4.sin_family = AF_INET; 5261 neigh_sock_4.sin_addr.s_addr = *(__be32 *)(neigh->primary_key); 5262 ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex, 5263 (struct sockaddr *)&neigh_sock_4); 5264 } else 5265 goto out; 5266 5267 if (!ips_node) 5268 goto out; 5269 5270 list_for_each_entry(current_id, &ips_node->id_list, id_list_entry) { 5271 if (!memcmp(current_id->id.route.addr.dev_addr.dst_dev_addr, 5272 neigh->ha, ETH_ALEN)) 5273 continue; 5274 cma_id_get(current_id); 5275 if (!queue_work(cma_wq, ¤t_id->id.net_work)) 5276 cma_id_put(current_id); 5277 } 5278 out: 5279 spin_unlock_irqrestore(&id_table_lock, flags); 5280 return NOTIFY_DONE; 5281 } 5282 5283 static struct notifier_block cma_nb = { 5284 .notifier_call = cma_netdev_callback 5285 }; 5286 5287 static struct notifier_block cma_netevent_cb = { 5288 .notifier_call = cma_netevent_callback 5289 }; 5290 5291 static void cma_send_device_removal_put(struct rdma_id_private *id_priv) 5292 { 5293 struct rdma_cm_event event = { .event = RDMA_CM_EVENT_DEVICE_REMOVAL }; 5294 enum rdma_cm_state state; 5295 unsigned long flags; 5296 5297 mutex_lock(&id_priv->handler_mutex); 5298 /* Record that we want to remove the device */ 5299 spin_lock_irqsave(&id_priv->lock, flags); 5300 state = id_priv->state; 5301 if (state == RDMA_CM_DESTROYING || state == RDMA_CM_DEVICE_REMOVAL) { 5302 spin_unlock_irqrestore(&id_priv->lock, flags); 5303 mutex_unlock(&id_priv->handler_mutex); 5304 cma_id_put(id_priv); 5305 return; 5306 } 5307 id_priv->state = RDMA_CM_DEVICE_REMOVAL; 5308 spin_unlock_irqrestore(&id_priv->lock, flags); 5309 5310 if (cma_cm_event_handler(id_priv, &event)) { 5311 /* 5312 * At this point the ULP promises it won't call 5313 * rdma_destroy_id() concurrently 5314 */ 5315 cma_id_put(id_priv); 5316 mutex_unlock(&id_priv->handler_mutex); 5317 trace_cm_id_destroy(id_priv); 5318 _destroy_id(id_priv, state); 5319 return; 5320 } 5321 mutex_unlock(&id_priv->handler_mutex); 5322 5323 /* 5324 * If this races with destroy then the thread that first assigns state 5325 * to a destroying does the cancel. 5326 */ 5327 cma_cancel_operation(id_priv, state); 5328 cma_id_put(id_priv); 5329 } 5330 5331 static void cma_process_remove(struct cma_device *cma_dev) 5332 { 5333 mutex_lock(&lock); 5334 while (!list_empty(&cma_dev->id_list)) { 5335 struct rdma_id_private *id_priv = list_first_entry( 5336 &cma_dev->id_list, struct rdma_id_private, device_item); 5337 5338 list_del_init(&id_priv->listen_item); 5339 list_del_init(&id_priv->device_item); 5340 cma_id_get(id_priv); 5341 mutex_unlock(&lock); 5342 5343 cma_send_device_removal_put(id_priv); 5344 5345 mutex_lock(&lock); 5346 } 5347 mutex_unlock(&lock); 5348 5349 cma_dev_put(cma_dev); 5350 wait_for_completion(&cma_dev->comp); 5351 } 5352 5353 static bool cma_supported(struct ib_device *device) 5354 { 5355 u32 i; 5356 5357 rdma_for_each_port(device, i) { 5358 if (rdma_cap_ib_cm(device, i) || rdma_cap_iw_cm(device, i)) 5359 return true; 5360 } 5361 return false; 5362 } 5363 5364 static int cma_add_one(struct ib_device *device) 5365 { 5366 struct rdma_id_private *to_destroy; 5367 struct cma_device *cma_dev; 5368 struct rdma_id_private *id_priv; 5369 unsigned long supported_gids = 0; 5370 int ret; 5371 u32 i; 5372 5373 if (!cma_supported(device)) 5374 return -EOPNOTSUPP; 5375 5376 cma_dev = kmalloc(sizeof(*cma_dev), GFP_KERNEL); 5377 if (!cma_dev) 5378 return -ENOMEM; 5379 5380 cma_dev->device = device; 5381 cma_dev->default_gid_type = kcalloc(device->phys_port_cnt, 5382 sizeof(*cma_dev->default_gid_type), 5383 GFP_KERNEL); 5384 if (!cma_dev->default_gid_type) { 5385 ret = -ENOMEM; 5386 goto free_cma_dev; 5387 } 5388 5389 cma_dev->default_roce_tos = kcalloc(device->phys_port_cnt, 5390 sizeof(*cma_dev->default_roce_tos), 5391 GFP_KERNEL); 5392 if (!cma_dev->default_roce_tos) { 5393 ret = -ENOMEM; 5394 goto free_gid_type; 5395 } 5396 5397 rdma_for_each_port (device, i) { 5398 supported_gids = roce_gid_type_mask_support(device, i); 5399 WARN_ON(!supported_gids); 5400 if (supported_gids & (1 << CMA_PREFERRED_ROCE_GID_TYPE)) 5401 cma_dev->default_gid_type[i - rdma_start_port(device)] = 5402 CMA_PREFERRED_ROCE_GID_TYPE; 5403 else 5404 cma_dev->default_gid_type[i - rdma_start_port(device)] = 5405 find_first_bit(&supported_gids, BITS_PER_LONG); 5406 cma_dev->default_roce_tos[i - rdma_start_port(device)] = 0; 5407 } 5408 5409 init_completion(&cma_dev->comp); 5410 refcount_set(&cma_dev->refcount, 1); 5411 INIT_LIST_HEAD(&cma_dev->id_list); 5412 ib_set_client_data(device, &cma_client, cma_dev); 5413 5414 mutex_lock(&lock); 5415 list_add_tail(&cma_dev->list, &dev_list); 5416 list_for_each_entry(id_priv, &listen_any_list, listen_any_item) { 5417 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy); 5418 if (ret) 5419 goto free_listen; 5420 } 5421 mutex_unlock(&lock); 5422 5423 trace_cm_add_one(device); 5424 return 0; 5425 5426 free_listen: 5427 list_del(&cma_dev->list); 5428 mutex_unlock(&lock); 5429 5430 /* cma_process_remove() will delete to_destroy */ 5431 cma_process_remove(cma_dev); 5432 kfree(cma_dev->default_roce_tos); 5433 free_gid_type: 5434 kfree(cma_dev->default_gid_type); 5435 5436 free_cma_dev: 5437 kfree(cma_dev); 5438 return ret; 5439 } 5440 5441 static void cma_remove_one(struct ib_device *device, void *client_data) 5442 { 5443 struct cma_device *cma_dev = client_data; 5444 5445 trace_cm_remove_one(device); 5446 5447 mutex_lock(&lock); 5448 list_del(&cma_dev->list); 5449 mutex_unlock(&lock); 5450 5451 cma_process_remove(cma_dev); 5452 kfree(cma_dev->default_roce_tos); 5453 kfree(cma_dev->default_gid_type); 5454 kfree(cma_dev); 5455 } 5456 5457 static int cma_init_net(struct net *net) 5458 { 5459 struct cma_pernet *pernet = cma_pernet(net); 5460 5461 xa_init(&pernet->tcp_ps); 5462 xa_init(&pernet->udp_ps); 5463 xa_init(&pernet->ipoib_ps); 5464 xa_init(&pernet->ib_ps); 5465 5466 return 0; 5467 } 5468 5469 static void cma_exit_net(struct net *net) 5470 { 5471 struct cma_pernet *pernet = cma_pernet(net); 5472 5473 WARN_ON(!xa_empty(&pernet->tcp_ps)); 5474 WARN_ON(!xa_empty(&pernet->udp_ps)); 5475 WARN_ON(!xa_empty(&pernet->ipoib_ps)); 5476 WARN_ON(!xa_empty(&pernet->ib_ps)); 5477 } 5478 5479 static struct pernet_operations cma_pernet_operations = { 5480 .init = cma_init_net, 5481 .exit = cma_exit_net, 5482 .id = &cma_pernet_id, 5483 .size = sizeof(struct cma_pernet), 5484 }; 5485 5486 static int __init cma_init(void) 5487 { 5488 int ret; 5489 5490 /* 5491 * There is a rare lock ordering dependency in cma_netdev_callback() 5492 * that only happens when bonding is enabled. Teach lockdep that rtnl 5493 * must never be nested under lock so it can find these without having 5494 * to test with bonding. 5495 */ 5496 if (IS_ENABLED(CONFIG_LOCKDEP)) { 5497 rtnl_lock(); 5498 mutex_lock(&lock); 5499 mutex_unlock(&lock); 5500 rtnl_unlock(); 5501 } 5502 5503 cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM); 5504 if (!cma_wq) 5505 return -ENOMEM; 5506 5507 ret = register_pernet_subsys(&cma_pernet_operations); 5508 if (ret) 5509 goto err_wq; 5510 5511 ib_sa_register_client(&sa_client); 5512 register_netdevice_notifier(&cma_nb); 5513 register_netevent_notifier(&cma_netevent_cb); 5514 5515 ret = ib_register_client(&cma_client); 5516 if (ret) 5517 goto err; 5518 5519 ret = cma_configfs_init(); 5520 if (ret) 5521 goto err_ib; 5522 5523 return 0; 5524 5525 err_ib: 5526 ib_unregister_client(&cma_client); 5527 err: 5528 unregister_netevent_notifier(&cma_netevent_cb); 5529 unregister_netdevice_notifier(&cma_nb); 5530 ib_sa_unregister_client(&sa_client); 5531 unregister_pernet_subsys(&cma_pernet_operations); 5532 err_wq: 5533 destroy_workqueue(cma_wq); 5534 return ret; 5535 } 5536 5537 static void __exit cma_cleanup(void) 5538 { 5539 cma_configfs_exit(); 5540 ib_unregister_client(&cma_client); 5541 unregister_netevent_notifier(&cma_netevent_cb); 5542 unregister_netdevice_notifier(&cma_nb); 5543 ib_sa_unregister_client(&sa_client); 5544 unregister_pernet_subsys(&cma_pernet_operations); 5545 destroy_workqueue(cma_wq); 5546 } 5547 5548 module_init(cma_init); 5549 module_exit(cma_cleanup); 5550 5551 static void cma_query_ib_service_handler(int status, 5552 struct sa_service_rec *recs, 5553 unsigned int num_recs, void *context) 5554 { 5555 struct cma_work *work = context; 5556 struct rdma_id_private *id_priv = work->id; 5557 struct sockaddr_ib *addr; 5558 5559 if (status) 5560 goto fail; 5561 5562 if (!num_recs) { 5563 status = -ENOENT; 5564 goto fail; 5565 } 5566 5567 if (id_priv->id.route.service_recs) { 5568 status = -EALREADY; 5569 goto fail; 5570 } 5571 5572 id_priv->id.route.service_recs = 5573 kmalloc_array(num_recs, sizeof(*recs), GFP_KERNEL); 5574 if (!id_priv->id.route.service_recs) { 5575 status = -ENOMEM; 5576 goto fail; 5577 } 5578 5579 id_priv->id.route.num_service_recs = num_recs; 5580 memcpy(id_priv->id.route.service_recs, recs, sizeof(*recs) * num_recs); 5581 5582 addr = (struct sockaddr_ib *)&id_priv->id.route.addr.dst_addr; 5583 addr->sib_family = AF_IB; 5584 addr->sib_addr = *(struct ib_addr *)&recs->gid; 5585 addr->sib_pkey = recs->pkey; 5586 addr->sib_sid = recs->id; 5587 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, 5588 (union ib_gid *)&addr->sib_addr); 5589 ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, 5590 ntohs(addr->sib_pkey)); 5591 5592 queue_work(cma_wq, &work->work); 5593 return; 5594 5595 fail: 5596 work->old_state = RDMA_CM_ADDRINFO_QUERY; 5597 work->new_state = RDMA_CM_ADDR_BOUND; 5598 work->event.event = RDMA_CM_EVENT_ADDRINFO_ERROR; 5599 work->event.status = status; 5600 pr_debug_ratelimited( 5601 "RDMA CM: SERVICE_ERROR: failed to query service record. status %d\n", 5602 status); 5603 queue_work(cma_wq, &work->work); 5604 } 5605 5606 static int cma_resolve_ib_service(struct rdma_id_private *id_priv, 5607 struct rdma_ucm_ib_service *ibs) 5608 { 5609 struct sa_service_rec sr = {}; 5610 ib_sa_comp_mask mask = 0; 5611 struct cma_work *work; 5612 5613 work = kzalloc(sizeof(*work), GFP_KERNEL); 5614 if (!work) 5615 return -ENOMEM; 5616 5617 cma_id_get(id_priv); 5618 5619 work->id = id_priv; 5620 INIT_WORK(&work->work, cma_work_handler); 5621 work->old_state = RDMA_CM_ADDRINFO_QUERY; 5622 work->new_state = RDMA_CM_ADDRINFO_RESOLVED; 5623 work->event.event = RDMA_CM_EVENT_ADDRINFO_RESOLVED; 5624 5625 if (ibs->flags & RDMA_USER_CM_IB_SERVICE_FLAG_ID) { 5626 sr.id = cpu_to_be64(ibs->service_id); 5627 mask |= IB_SA_SERVICE_REC_SERVICE_ID; 5628 } 5629 if (ibs->flags & RDMA_USER_CM_IB_SERVICE_FLAG_NAME) { 5630 strscpy(sr.name, ibs->service_name, sizeof(sr.name)); 5631 mask |= IB_SA_SERVICE_REC_SERVICE_NAME; 5632 } 5633 5634 id_priv->query_id = ib_sa_service_rec_get(&sa_client, 5635 id_priv->id.device, 5636 id_priv->id.port_num, 5637 &sr, mask, 5638 2000, GFP_KERNEL, 5639 cma_query_ib_service_handler, 5640 work, &id_priv->query); 5641 5642 if (id_priv->query_id < 0) { 5643 cma_id_put(id_priv); 5644 kfree(work); 5645 return id_priv->query_id; 5646 } 5647 5648 return 0; 5649 } 5650 5651 int rdma_resolve_ib_service(struct rdma_cm_id *id, 5652 struct rdma_ucm_ib_service *ibs) 5653 { 5654 struct rdma_id_private *id_priv; 5655 int ret; 5656 5657 id_priv = container_of(id, struct rdma_id_private, id); 5658 if (!id_priv->cma_dev || 5659 !cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDRINFO_QUERY)) 5660 return -EINVAL; 5661 5662 if (rdma_cap_ib_sa(id->device, id->port_num)) 5663 ret = cma_resolve_ib_service(id_priv, ibs); 5664 else 5665 ret = -EOPNOTSUPP; 5666 5667 if (ret) 5668 goto err; 5669 5670 return 0; 5671 err: 5672 cma_comp_exch(id_priv, RDMA_CM_ADDRINFO_QUERY, RDMA_CM_ADDR_BOUND); 5673 return ret; 5674 } 5675 EXPORT_SYMBOL(rdma_resolve_ib_service); 5676