1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB 2 /* 3 * Copyright (c) 2005 Voltaire Inc. All rights reserved. 4 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved. 5 * Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved. 6 * Copyright (c) 2005-2006 Intel Corporation. All rights reserved. 7 */ 8 9 #include <linux/completion.h> 10 #include <linux/in.h> 11 #include <linux/in6.h> 12 #include <linux/mutex.h> 13 #include <linux/random.h> 14 #include <linux/rbtree.h> 15 #include <linux/igmp.h> 16 #include <linux/xarray.h> 17 #include <linux/inetdevice.h> 18 #include <linux/slab.h> 19 #include <linux/module.h> 20 #include <net/route.h> 21 22 #include <net/net_namespace.h> 23 #include <net/netns/generic.h> 24 #include <net/netevent.h> 25 #include <net/tcp.h> 26 #include <net/ipv6.h> 27 #include <net/ip_fib.h> 28 #include <net/ip6_route.h> 29 30 #include <rdma/rdma_cm.h> 31 #include <rdma/rdma_cm_ib.h> 32 #include <rdma/rdma_netlink.h> 33 #include <rdma/ib.h> 34 #include <rdma/ib_cache.h> 35 #include <rdma/ib_cm.h> 36 #include <rdma/ib_sa.h> 37 #include <rdma/iw_cm.h> 38 39 #include "core_priv.h" 40 #include "cma_priv.h" 41 #include "cma_trace.h" 42 43 MODULE_AUTHOR("Sean Hefty"); 44 MODULE_DESCRIPTION("Generic RDMA CM Agent"); 45 MODULE_LICENSE("Dual BSD/GPL"); 46 47 #define CMA_CM_RESPONSE_TIMEOUT 20 48 #define CMA_MAX_CM_RETRIES 15 49 #define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24) 50 #define CMA_IBOE_PACKET_LIFETIME 16 51 #define CMA_PREFERRED_ROCE_GID_TYPE IB_GID_TYPE_ROCE_UDP_ENCAP 52 53 static const char * const cma_events[] = { 54 [RDMA_CM_EVENT_ADDR_RESOLVED] = "address resolved", 55 [RDMA_CM_EVENT_ADDR_ERROR] = "address error", 56 [RDMA_CM_EVENT_ROUTE_RESOLVED] = "route resolved ", 57 [RDMA_CM_EVENT_ROUTE_ERROR] = "route error", 58 [RDMA_CM_EVENT_CONNECT_REQUEST] = "connect request", 59 [RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response", 60 [RDMA_CM_EVENT_CONNECT_ERROR] = "connect error", 61 [RDMA_CM_EVENT_UNREACHABLE] = "unreachable", 62 [RDMA_CM_EVENT_REJECTED] = "rejected", 63 [RDMA_CM_EVENT_ESTABLISHED] = "established", 64 [RDMA_CM_EVENT_DISCONNECTED] = "disconnected", 65 [RDMA_CM_EVENT_DEVICE_REMOVAL] = "device removal", 66 [RDMA_CM_EVENT_MULTICAST_JOIN] = "multicast join", 67 [RDMA_CM_EVENT_MULTICAST_ERROR] = "multicast error", 68 [RDMA_CM_EVENT_ADDR_CHANGE] = "address change", 69 [RDMA_CM_EVENT_TIMEWAIT_EXIT] = "timewait exit", 70 }; 71 72 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid, 73 enum ib_gid_type gid_type); 74 75 const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event) 76 { 77 size_t index = event; 78 79 return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ? 80 cma_events[index] : "unrecognized event"; 81 } 82 EXPORT_SYMBOL(rdma_event_msg); 83 84 const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id, 85 int reason) 86 { 87 if (rdma_ib_or_roce(id->device, id->port_num)) 88 return ibcm_reject_msg(reason); 89 90 if (rdma_protocol_iwarp(id->device, id->port_num)) 91 return iwcm_reject_msg(reason); 92 93 WARN_ON_ONCE(1); 94 return "unrecognized transport"; 95 } 96 EXPORT_SYMBOL(rdma_reject_msg); 97 98 /** 99 * rdma_is_consumer_reject - return true if the consumer rejected the connect 100 * request. 101 * @id: Communication identifier that received the REJECT event. 102 * @reason: Value returned in the REJECT event status field. 103 */ 104 static bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason) 105 { 106 if (rdma_ib_or_roce(id->device, id->port_num)) 107 return reason == IB_CM_REJ_CONSUMER_DEFINED; 108 109 if (rdma_protocol_iwarp(id->device, id->port_num)) 110 return reason == -ECONNREFUSED; 111 112 WARN_ON_ONCE(1); 113 return false; 114 } 115 116 const void *rdma_consumer_reject_data(struct rdma_cm_id *id, 117 struct rdma_cm_event *ev, u8 *data_len) 118 { 119 const void *p; 120 121 if (rdma_is_consumer_reject(id, ev->status)) { 122 *data_len = ev->param.conn.private_data_len; 123 p = ev->param.conn.private_data; 124 } else { 125 *data_len = 0; 126 p = NULL; 127 } 128 return p; 129 } 130 EXPORT_SYMBOL(rdma_consumer_reject_data); 131 132 /** 133 * rdma_iw_cm_id() - return the iw_cm_id pointer for this cm_id. 134 * @id: Communication Identifier 135 */ 136 struct iw_cm_id *rdma_iw_cm_id(struct rdma_cm_id *id) 137 { 138 struct rdma_id_private *id_priv; 139 140 id_priv = container_of(id, struct rdma_id_private, id); 141 if (id->device->node_type == RDMA_NODE_RNIC) 142 return id_priv->cm_id.iw; 143 return NULL; 144 } 145 EXPORT_SYMBOL(rdma_iw_cm_id); 146 147 /** 148 * rdma_res_to_id() - return the rdma_cm_id pointer for this restrack. 149 * @res: rdma resource tracking entry pointer 150 */ 151 struct rdma_cm_id *rdma_res_to_id(struct rdma_restrack_entry *res) 152 { 153 struct rdma_id_private *id_priv = 154 container_of(res, struct rdma_id_private, res); 155 156 return &id_priv->id; 157 } 158 EXPORT_SYMBOL(rdma_res_to_id); 159 160 static int cma_add_one(struct ib_device *device); 161 static void cma_remove_one(struct ib_device *device, void *client_data); 162 163 static struct ib_client cma_client = { 164 .name = "cma", 165 .add = cma_add_one, 166 .remove = cma_remove_one 167 }; 168 169 static struct ib_sa_client sa_client; 170 static LIST_HEAD(dev_list); 171 static LIST_HEAD(listen_any_list); 172 static DEFINE_MUTEX(lock); 173 static struct rb_root id_table = RB_ROOT; 174 /* Serialize operations of id_table tree */ 175 static DEFINE_SPINLOCK(id_table_lock); 176 static struct workqueue_struct *cma_wq; 177 static unsigned int cma_pernet_id; 178 179 struct cma_pernet { 180 struct xarray tcp_ps; 181 struct xarray udp_ps; 182 struct xarray ipoib_ps; 183 struct xarray ib_ps; 184 }; 185 186 static struct cma_pernet *cma_pernet(struct net *net) 187 { 188 return net_generic(net, cma_pernet_id); 189 } 190 191 static 192 struct xarray *cma_pernet_xa(struct net *net, enum rdma_ucm_port_space ps) 193 { 194 struct cma_pernet *pernet = cma_pernet(net); 195 196 switch (ps) { 197 case RDMA_PS_TCP: 198 return &pernet->tcp_ps; 199 case RDMA_PS_UDP: 200 return &pernet->udp_ps; 201 case RDMA_PS_IPOIB: 202 return &pernet->ipoib_ps; 203 case RDMA_PS_IB: 204 return &pernet->ib_ps; 205 default: 206 return NULL; 207 } 208 } 209 210 struct id_table_entry { 211 struct list_head id_list; 212 struct rb_node rb_node; 213 }; 214 215 struct cma_device { 216 struct list_head list; 217 struct ib_device *device; 218 struct completion comp; 219 refcount_t refcount; 220 struct list_head id_list; 221 enum ib_gid_type *default_gid_type; 222 u8 *default_roce_tos; 223 }; 224 225 struct rdma_bind_list { 226 enum rdma_ucm_port_space ps; 227 struct hlist_head owners; 228 unsigned short port; 229 }; 230 231 static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space ps, 232 struct rdma_bind_list *bind_list, int snum) 233 { 234 struct xarray *xa = cma_pernet_xa(net, ps); 235 236 return xa_insert(xa, snum, bind_list, GFP_KERNEL); 237 } 238 239 static struct rdma_bind_list *cma_ps_find(struct net *net, 240 enum rdma_ucm_port_space ps, int snum) 241 { 242 struct xarray *xa = cma_pernet_xa(net, ps); 243 244 return xa_load(xa, snum); 245 } 246 247 static void cma_ps_remove(struct net *net, enum rdma_ucm_port_space ps, 248 int snum) 249 { 250 struct xarray *xa = cma_pernet_xa(net, ps); 251 252 xa_erase(xa, snum); 253 } 254 255 enum { 256 CMA_OPTION_AFONLY, 257 }; 258 259 void cma_dev_get(struct cma_device *cma_dev) 260 { 261 refcount_inc(&cma_dev->refcount); 262 } 263 264 void cma_dev_put(struct cma_device *cma_dev) 265 { 266 if (refcount_dec_and_test(&cma_dev->refcount)) 267 complete(&cma_dev->comp); 268 } 269 270 struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter filter, 271 void *cookie) 272 { 273 struct cma_device *cma_dev; 274 struct cma_device *found_cma_dev = NULL; 275 276 mutex_lock(&lock); 277 278 list_for_each_entry(cma_dev, &dev_list, list) 279 if (filter(cma_dev->device, cookie)) { 280 found_cma_dev = cma_dev; 281 break; 282 } 283 284 if (found_cma_dev) 285 cma_dev_get(found_cma_dev); 286 mutex_unlock(&lock); 287 return found_cma_dev; 288 } 289 290 int cma_get_default_gid_type(struct cma_device *cma_dev, 291 u32 port) 292 { 293 if (!rdma_is_port_valid(cma_dev->device, port)) 294 return -EINVAL; 295 296 return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)]; 297 } 298 299 int cma_set_default_gid_type(struct cma_device *cma_dev, 300 u32 port, 301 enum ib_gid_type default_gid_type) 302 { 303 unsigned long supported_gids; 304 305 if (!rdma_is_port_valid(cma_dev->device, port)) 306 return -EINVAL; 307 308 if (default_gid_type == IB_GID_TYPE_IB && 309 rdma_protocol_roce_eth_encap(cma_dev->device, port)) 310 default_gid_type = IB_GID_TYPE_ROCE; 311 312 supported_gids = roce_gid_type_mask_support(cma_dev->device, port); 313 314 if (!(supported_gids & 1 << default_gid_type)) 315 return -EINVAL; 316 317 cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] = 318 default_gid_type; 319 320 return 0; 321 } 322 323 int cma_get_default_roce_tos(struct cma_device *cma_dev, u32 port) 324 { 325 if (!rdma_is_port_valid(cma_dev->device, port)) 326 return -EINVAL; 327 328 return cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)]; 329 } 330 331 int cma_set_default_roce_tos(struct cma_device *cma_dev, u32 port, 332 u8 default_roce_tos) 333 { 334 if (!rdma_is_port_valid(cma_dev->device, port)) 335 return -EINVAL; 336 337 cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)] = 338 default_roce_tos; 339 340 return 0; 341 } 342 struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev) 343 { 344 return cma_dev->device; 345 } 346 347 /* 348 * Device removal can occur at anytime, so we need extra handling to 349 * serialize notifying the user of device removal with other callbacks. 350 * We do this by disabling removal notification while a callback is in process, 351 * and reporting it after the callback completes. 352 */ 353 354 struct cma_multicast { 355 struct rdma_id_private *id_priv; 356 union { 357 struct ib_sa_multicast *sa_mc; 358 struct { 359 struct work_struct work; 360 struct rdma_cm_event event; 361 } iboe_join; 362 }; 363 struct list_head list; 364 void *context; 365 struct sockaddr_storage addr; 366 u8 join_state; 367 }; 368 369 struct cma_work { 370 struct work_struct work; 371 struct rdma_id_private *id; 372 enum rdma_cm_state old_state; 373 enum rdma_cm_state new_state; 374 struct rdma_cm_event event; 375 }; 376 377 union cma_ip_addr { 378 struct in6_addr ip6; 379 struct { 380 __be32 pad[3]; 381 __be32 addr; 382 } ip4; 383 }; 384 385 struct cma_hdr { 386 u8 cma_version; 387 u8 ip_version; /* IP version: 7:4 */ 388 __be16 port; 389 union cma_ip_addr src_addr; 390 union cma_ip_addr dst_addr; 391 }; 392 393 #define CMA_VERSION 0x00 394 395 struct cma_req_info { 396 struct sockaddr_storage listen_addr_storage; 397 struct sockaddr_storage src_addr_storage; 398 struct ib_device *device; 399 union ib_gid local_gid; 400 __be64 service_id; 401 int port; 402 bool has_gid; 403 u16 pkey; 404 }; 405 406 static int cma_comp_exch(struct rdma_id_private *id_priv, 407 enum rdma_cm_state comp, enum rdma_cm_state exch) 408 { 409 unsigned long flags; 410 int ret; 411 412 /* 413 * The FSM uses a funny double locking where state is protected by both 414 * the handler_mutex and the spinlock. State is not allowed to change 415 * to/from a handler_mutex protected value without also holding 416 * handler_mutex. 417 */ 418 if (comp == RDMA_CM_CONNECT || exch == RDMA_CM_CONNECT) 419 lockdep_assert_held(&id_priv->handler_mutex); 420 421 spin_lock_irqsave(&id_priv->lock, flags); 422 if ((ret = (id_priv->state == comp))) 423 id_priv->state = exch; 424 spin_unlock_irqrestore(&id_priv->lock, flags); 425 return ret; 426 } 427 428 static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr) 429 { 430 return hdr->ip_version >> 4; 431 } 432 433 static void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver) 434 { 435 hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF); 436 } 437 438 static struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv) 439 { 440 return (struct sockaddr *)&id_priv->id.route.addr.src_addr; 441 } 442 443 static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv) 444 { 445 return (struct sockaddr *)&id_priv->id.route.addr.dst_addr; 446 } 447 448 static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join) 449 { 450 struct in_device *in_dev = NULL; 451 452 if (ndev) { 453 rtnl_lock(); 454 in_dev = __in_dev_get_rtnl(ndev); 455 if (in_dev) { 456 if (join) 457 ip_mc_inc_group(in_dev, 458 *(__be32 *)(mgid->raw + 12)); 459 else 460 ip_mc_dec_group(in_dev, 461 *(__be32 *)(mgid->raw + 12)); 462 } 463 rtnl_unlock(); 464 } 465 return (in_dev) ? 0 : -ENODEV; 466 } 467 468 static int compare_netdev_and_ip(int ifindex_a, struct sockaddr *sa, 469 struct id_table_entry *entry_b) 470 { 471 struct rdma_id_private *id_priv = list_first_entry( 472 &entry_b->id_list, struct rdma_id_private, id_list_entry); 473 int ifindex_b = id_priv->id.route.addr.dev_addr.bound_dev_if; 474 struct sockaddr *sb = cma_dst_addr(id_priv); 475 476 if (ifindex_a != ifindex_b) 477 return (ifindex_a > ifindex_b) ? 1 : -1; 478 479 if (sa->sa_family != sb->sa_family) 480 return sa->sa_family - sb->sa_family; 481 482 if (sa->sa_family == AF_INET && 483 __builtin_object_size(sa, 0) >= sizeof(struct sockaddr_in)) { 484 return memcmp(&((struct sockaddr_in *)sa)->sin_addr, 485 &((struct sockaddr_in *)sb)->sin_addr, 486 sizeof(((struct sockaddr_in *)sa)->sin_addr)); 487 } 488 489 if (sa->sa_family == AF_INET6 && 490 __builtin_object_size(sa, 0) >= sizeof(struct sockaddr_in6)) { 491 return ipv6_addr_cmp(&((struct sockaddr_in6 *)sa)->sin6_addr, 492 &((struct sockaddr_in6 *)sb)->sin6_addr); 493 } 494 495 return -1; 496 } 497 498 static int cma_add_id_to_tree(struct rdma_id_private *node_id_priv) 499 { 500 struct rb_node **new, *parent = NULL; 501 struct id_table_entry *this, *node; 502 unsigned long flags; 503 int result; 504 505 node = kzalloc(sizeof(*node), GFP_KERNEL); 506 if (!node) 507 return -ENOMEM; 508 509 spin_lock_irqsave(&id_table_lock, flags); 510 new = &id_table.rb_node; 511 while (*new) { 512 this = container_of(*new, struct id_table_entry, rb_node); 513 result = compare_netdev_and_ip( 514 node_id_priv->id.route.addr.dev_addr.bound_dev_if, 515 cma_dst_addr(node_id_priv), this); 516 517 parent = *new; 518 if (result < 0) 519 new = &((*new)->rb_left); 520 else if (result > 0) 521 new = &((*new)->rb_right); 522 else { 523 list_add_tail(&node_id_priv->id_list_entry, 524 &this->id_list); 525 kfree(node); 526 goto unlock; 527 } 528 } 529 530 INIT_LIST_HEAD(&node->id_list); 531 list_add_tail(&node_id_priv->id_list_entry, &node->id_list); 532 533 rb_link_node(&node->rb_node, parent, new); 534 rb_insert_color(&node->rb_node, &id_table); 535 536 unlock: 537 spin_unlock_irqrestore(&id_table_lock, flags); 538 return 0; 539 } 540 541 static struct id_table_entry * 542 node_from_ndev_ip(struct rb_root *root, int ifindex, struct sockaddr *sa) 543 { 544 struct rb_node *node = root->rb_node; 545 struct id_table_entry *data; 546 int result; 547 548 while (node) { 549 data = container_of(node, struct id_table_entry, rb_node); 550 result = compare_netdev_and_ip(ifindex, sa, data); 551 if (result < 0) 552 node = node->rb_left; 553 else if (result > 0) 554 node = node->rb_right; 555 else 556 return data; 557 } 558 559 return NULL; 560 } 561 562 static void cma_remove_id_from_tree(struct rdma_id_private *id_priv) 563 { 564 struct id_table_entry *data; 565 unsigned long flags; 566 567 spin_lock_irqsave(&id_table_lock, flags); 568 if (list_empty(&id_priv->id_list_entry)) 569 goto out; 570 571 data = node_from_ndev_ip(&id_table, 572 id_priv->id.route.addr.dev_addr.bound_dev_if, 573 cma_dst_addr(id_priv)); 574 if (!data) 575 goto out; 576 577 list_del_init(&id_priv->id_list_entry); 578 if (list_empty(&data->id_list)) { 579 rb_erase(&data->rb_node, &id_table); 580 kfree(data); 581 } 582 out: 583 spin_unlock_irqrestore(&id_table_lock, flags); 584 } 585 586 static void _cma_attach_to_dev(struct rdma_id_private *id_priv, 587 struct cma_device *cma_dev) 588 { 589 cma_dev_get(cma_dev); 590 id_priv->cma_dev = cma_dev; 591 id_priv->id.device = cma_dev->device; 592 id_priv->id.route.addr.dev_addr.transport = 593 rdma_node_get_transport(cma_dev->device->node_type); 594 list_add_tail(&id_priv->device_item, &cma_dev->id_list); 595 596 trace_cm_id_attach(id_priv, cma_dev->device); 597 } 598 599 static void cma_attach_to_dev(struct rdma_id_private *id_priv, 600 struct cma_device *cma_dev) 601 { 602 _cma_attach_to_dev(id_priv, cma_dev); 603 id_priv->gid_type = 604 cma_dev->default_gid_type[id_priv->id.port_num - 605 rdma_start_port(cma_dev->device)]; 606 } 607 608 static void cma_release_dev(struct rdma_id_private *id_priv) 609 { 610 mutex_lock(&lock); 611 list_del_init(&id_priv->device_item); 612 cma_dev_put(id_priv->cma_dev); 613 id_priv->cma_dev = NULL; 614 id_priv->id.device = NULL; 615 if (id_priv->id.route.addr.dev_addr.sgid_attr) { 616 rdma_put_gid_attr(id_priv->id.route.addr.dev_addr.sgid_attr); 617 id_priv->id.route.addr.dev_addr.sgid_attr = NULL; 618 } 619 mutex_unlock(&lock); 620 } 621 622 static inline unsigned short cma_family(struct rdma_id_private *id_priv) 623 { 624 return id_priv->id.route.addr.src_addr.ss_family; 625 } 626 627 static int cma_set_default_qkey(struct rdma_id_private *id_priv) 628 { 629 struct ib_sa_mcmember_rec rec; 630 int ret = 0; 631 632 switch (id_priv->id.ps) { 633 case RDMA_PS_UDP: 634 case RDMA_PS_IB: 635 id_priv->qkey = RDMA_UDP_QKEY; 636 break; 637 case RDMA_PS_IPOIB: 638 ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid); 639 ret = ib_sa_get_mcmember_rec(id_priv->id.device, 640 id_priv->id.port_num, &rec.mgid, 641 &rec); 642 if (!ret) 643 id_priv->qkey = be32_to_cpu(rec.qkey); 644 break; 645 default: 646 break; 647 } 648 return ret; 649 } 650 651 static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey) 652 { 653 if (!qkey || 654 (id_priv->qkey && (id_priv->qkey != qkey))) 655 return -EINVAL; 656 657 id_priv->qkey = qkey; 658 return 0; 659 } 660 661 static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr) 662 { 663 dev_addr->dev_type = ARPHRD_INFINIBAND; 664 rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr); 665 ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey)); 666 } 667 668 static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr) 669 { 670 int ret; 671 672 if (addr->sa_family != AF_IB) { 673 ret = rdma_translate_ip(addr, dev_addr); 674 } else { 675 cma_translate_ib((struct sockaddr_ib *) addr, dev_addr); 676 ret = 0; 677 } 678 679 return ret; 680 } 681 682 static const struct ib_gid_attr * 683 cma_validate_port(struct ib_device *device, u32 port, 684 enum ib_gid_type gid_type, 685 union ib_gid *gid, 686 struct rdma_id_private *id_priv) 687 { 688 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 689 const struct ib_gid_attr *sgid_attr = ERR_PTR(-ENODEV); 690 int bound_if_index = dev_addr->bound_dev_if; 691 int dev_type = dev_addr->dev_type; 692 struct net_device *ndev = NULL; 693 struct net_device *pdev = NULL; 694 695 if (!rdma_dev_access_netns(device, id_priv->id.route.addr.dev_addr.net)) 696 goto out; 697 698 if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port)) 699 goto out; 700 701 if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port)) 702 goto out; 703 704 /* 705 * For drivers that do not associate more than one net device with 706 * their gid tables, such as iWARP drivers, it is sufficient to 707 * return the first table entry. 708 * 709 * Other driver classes might be included in the future. 710 */ 711 if (rdma_protocol_iwarp(device, port)) { 712 sgid_attr = rdma_get_gid_attr(device, port, 0); 713 if (IS_ERR(sgid_attr)) 714 goto out; 715 716 rcu_read_lock(); 717 ndev = rcu_dereference(sgid_attr->ndev); 718 if (ndev->ifindex != bound_if_index) { 719 pdev = dev_get_by_index_rcu(dev_addr->net, bound_if_index); 720 if (pdev) { 721 if (is_vlan_dev(pdev)) { 722 pdev = vlan_dev_real_dev(pdev); 723 if (ndev->ifindex == pdev->ifindex) 724 bound_if_index = pdev->ifindex; 725 } 726 if (is_vlan_dev(ndev)) { 727 pdev = vlan_dev_real_dev(ndev); 728 if (bound_if_index == pdev->ifindex) 729 bound_if_index = ndev->ifindex; 730 } 731 } 732 } 733 if (!net_eq(dev_net(ndev), dev_addr->net) || 734 ndev->ifindex != bound_if_index) { 735 rdma_put_gid_attr(sgid_attr); 736 sgid_attr = ERR_PTR(-ENODEV); 737 } 738 rcu_read_unlock(); 739 goto out; 740 } 741 742 /* 743 * For a RXE device, it should work with TUN device and normal ethernet 744 * devices. Use driver_id to check if a device is a RXE device or not. 745 * ARPHDR_NONE means a TUN device. 746 */ 747 if (device->ops.driver_id == RDMA_DRIVER_RXE) { 748 if ((dev_type == ARPHRD_NONE || dev_type == ARPHRD_ETHER) 749 && rdma_protocol_roce(device, port)) { 750 ndev = dev_get_by_index(dev_addr->net, bound_if_index); 751 if (!ndev) 752 goto out; 753 } 754 } else { 755 if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) { 756 ndev = dev_get_by_index(dev_addr->net, bound_if_index); 757 if (!ndev) 758 goto out; 759 } else { 760 gid_type = IB_GID_TYPE_IB; 761 } 762 } 763 764 sgid_attr = rdma_find_gid_by_port(device, gid, gid_type, port, ndev); 765 dev_put(ndev); 766 out: 767 return sgid_attr; 768 } 769 770 static void cma_bind_sgid_attr(struct rdma_id_private *id_priv, 771 const struct ib_gid_attr *sgid_attr) 772 { 773 WARN_ON(id_priv->id.route.addr.dev_addr.sgid_attr); 774 id_priv->id.route.addr.dev_addr.sgid_attr = sgid_attr; 775 } 776 777 /** 778 * cma_acquire_dev_by_src_ip - Acquire cma device, port, gid attribute 779 * based on source ip address. 780 * @id_priv: cm_id which should be bound to cma device 781 * 782 * cma_acquire_dev_by_src_ip() binds cm id to cma device, port and GID attribute 783 * based on source IP address. It returns 0 on success or error code otherwise. 784 * It is applicable to active and passive side cm_id. 785 */ 786 static int cma_acquire_dev_by_src_ip(struct rdma_id_private *id_priv) 787 { 788 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 789 const struct ib_gid_attr *sgid_attr; 790 union ib_gid gid, iboe_gid, *gidp; 791 struct cma_device *cma_dev; 792 enum ib_gid_type gid_type; 793 int ret = -ENODEV; 794 u32 port; 795 796 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 797 id_priv->id.ps == RDMA_PS_IPOIB) 798 return -EINVAL; 799 800 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 801 &iboe_gid); 802 803 memcpy(&gid, dev_addr->src_dev_addr + 804 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 805 806 mutex_lock(&lock); 807 list_for_each_entry(cma_dev, &dev_list, list) { 808 rdma_for_each_port (cma_dev->device, port) { 809 gidp = rdma_protocol_roce(cma_dev->device, port) ? 810 &iboe_gid : &gid; 811 gid_type = cma_dev->default_gid_type[port - 1]; 812 sgid_attr = cma_validate_port(cma_dev->device, port, 813 gid_type, gidp, id_priv); 814 if (!IS_ERR(sgid_attr)) { 815 id_priv->id.port_num = port; 816 cma_bind_sgid_attr(id_priv, sgid_attr); 817 cma_attach_to_dev(id_priv, cma_dev); 818 ret = 0; 819 goto out; 820 } 821 } 822 } 823 out: 824 mutex_unlock(&lock); 825 return ret; 826 } 827 828 /** 829 * cma_ib_acquire_dev - Acquire cma device, port and SGID attribute 830 * @id_priv: cm id to bind to cma device 831 * @listen_id_priv: listener cm id to match against 832 * @req: Pointer to req structure containaining incoming 833 * request information 834 * cma_ib_acquire_dev() acquires cma device, port and SGID attribute when 835 * rdma device matches for listen_id and incoming request. It also verifies 836 * that a GID table entry is present for the source address. 837 * Returns 0 on success, or returns error code otherwise. 838 */ 839 static int cma_ib_acquire_dev(struct rdma_id_private *id_priv, 840 const struct rdma_id_private *listen_id_priv, 841 struct cma_req_info *req) 842 { 843 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 844 const struct ib_gid_attr *sgid_attr; 845 enum ib_gid_type gid_type; 846 union ib_gid gid; 847 848 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 849 id_priv->id.ps == RDMA_PS_IPOIB) 850 return -EINVAL; 851 852 if (rdma_protocol_roce(req->device, req->port)) 853 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 854 &gid); 855 else 856 memcpy(&gid, dev_addr->src_dev_addr + 857 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 858 859 gid_type = listen_id_priv->cma_dev->default_gid_type[req->port - 1]; 860 sgid_attr = cma_validate_port(req->device, req->port, 861 gid_type, &gid, id_priv); 862 if (IS_ERR(sgid_attr)) 863 return PTR_ERR(sgid_attr); 864 865 id_priv->id.port_num = req->port; 866 cma_bind_sgid_attr(id_priv, sgid_attr); 867 /* Need to acquire lock to protect against reader 868 * of cma_dev->id_list such as cma_netdev_callback() and 869 * cma_process_remove(). 870 */ 871 mutex_lock(&lock); 872 cma_attach_to_dev(id_priv, listen_id_priv->cma_dev); 873 mutex_unlock(&lock); 874 rdma_restrack_add(&id_priv->res); 875 return 0; 876 } 877 878 static int cma_iw_acquire_dev(struct rdma_id_private *id_priv, 879 const struct rdma_id_private *listen_id_priv) 880 { 881 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 882 const struct ib_gid_attr *sgid_attr; 883 struct cma_device *cma_dev; 884 enum ib_gid_type gid_type; 885 int ret = -ENODEV; 886 union ib_gid gid; 887 u32 port; 888 889 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 890 id_priv->id.ps == RDMA_PS_IPOIB) 891 return -EINVAL; 892 893 memcpy(&gid, dev_addr->src_dev_addr + 894 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 895 896 mutex_lock(&lock); 897 898 cma_dev = listen_id_priv->cma_dev; 899 port = listen_id_priv->id.port_num; 900 gid_type = listen_id_priv->gid_type; 901 sgid_attr = cma_validate_port(cma_dev->device, port, 902 gid_type, &gid, id_priv); 903 if (!IS_ERR(sgid_attr)) { 904 id_priv->id.port_num = port; 905 cma_bind_sgid_attr(id_priv, sgid_attr); 906 ret = 0; 907 goto out; 908 } 909 910 list_for_each_entry(cma_dev, &dev_list, list) { 911 rdma_for_each_port (cma_dev->device, port) { 912 if (listen_id_priv->cma_dev == cma_dev && 913 listen_id_priv->id.port_num == port) 914 continue; 915 916 gid_type = cma_dev->default_gid_type[port - 1]; 917 sgid_attr = cma_validate_port(cma_dev->device, port, 918 gid_type, &gid, id_priv); 919 if (!IS_ERR(sgid_attr)) { 920 id_priv->id.port_num = port; 921 cma_bind_sgid_attr(id_priv, sgid_attr); 922 ret = 0; 923 goto out; 924 } 925 } 926 } 927 928 out: 929 if (!ret) { 930 cma_attach_to_dev(id_priv, cma_dev); 931 rdma_restrack_add(&id_priv->res); 932 } 933 934 mutex_unlock(&lock); 935 return ret; 936 } 937 938 /* 939 * Select the source IB device and address to reach the destination IB address. 940 */ 941 static int cma_resolve_ib_dev(struct rdma_id_private *id_priv) 942 { 943 struct cma_device *cma_dev, *cur_dev; 944 struct sockaddr_ib *addr; 945 union ib_gid gid, sgid, *dgid; 946 unsigned int p; 947 u16 pkey, index; 948 enum ib_port_state port_state; 949 int ret; 950 int i; 951 952 cma_dev = NULL; 953 addr = (struct sockaddr_ib *) cma_dst_addr(id_priv); 954 dgid = (union ib_gid *) &addr->sib_addr; 955 pkey = ntohs(addr->sib_pkey); 956 957 mutex_lock(&lock); 958 list_for_each_entry(cur_dev, &dev_list, list) { 959 rdma_for_each_port (cur_dev->device, p) { 960 if (!rdma_cap_af_ib(cur_dev->device, p)) 961 continue; 962 963 if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index)) 964 continue; 965 966 if (ib_get_cached_port_state(cur_dev->device, p, &port_state)) 967 continue; 968 969 for (i = 0; i < cur_dev->device->port_data[p].immutable.gid_tbl_len; 970 ++i) { 971 ret = rdma_query_gid(cur_dev->device, p, i, 972 &gid); 973 if (ret) 974 continue; 975 976 if (!memcmp(&gid, dgid, sizeof(gid))) { 977 cma_dev = cur_dev; 978 sgid = gid; 979 id_priv->id.port_num = p; 980 goto found; 981 } 982 983 if (!cma_dev && (gid.global.subnet_prefix == 984 dgid->global.subnet_prefix) && 985 port_state == IB_PORT_ACTIVE) { 986 cma_dev = cur_dev; 987 sgid = gid; 988 id_priv->id.port_num = p; 989 goto found; 990 } 991 } 992 } 993 } 994 mutex_unlock(&lock); 995 return -ENODEV; 996 997 found: 998 cma_attach_to_dev(id_priv, cma_dev); 999 rdma_restrack_add(&id_priv->res); 1000 mutex_unlock(&lock); 1001 addr = (struct sockaddr_ib *)cma_src_addr(id_priv); 1002 memcpy(&addr->sib_addr, &sgid, sizeof(sgid)); 1003 cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr); 1004 return 0; 1005 } 1006 1007 static void cma_id_get(struct rdma_id_private *id_priv) 1008 { 1009 refcount_inc(&id_priv->refcount); 1010 } 1011 1012 static void cma_id_put(struct rdma_id_private *id_priv) 1013 { 1014 if (refcount_dec_and_test(&id_priv->refcount)) 1015 complete(&id_priv->comp); 1016 } 1017 1018 static struct rdma_id_private * 1019 __rdma_create_id(struct net *net, rdma_cm_event_handler event_handler, 1020 void *context, enum rdma_ucm_port_space ps, 1021 enum ib_qp_type qp_type, const struct rdma_id_private *parent) 1022 { 1023 struct rdma_id_private *id_priv; 1024 1025 id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL); 1026 if (!id_priv) 1027 return ERR_PTR(-ENOMEM); 1028 1029 id_priv->state = RDMA_CM_IDLE; 1030 id_priv->id.context = context; 1031 id_priv->id.event_handler = event_handler; 1032 id_priv->id.ps = ps; 1033 id_priv->id.qp_type = qp_type; 1034 id_priv->tos_set = false; 1035 id_priv->timeout_set = false; 1036 id_priv->min_rnr_timer_set = false; 1037 id_priv->gid_type = IB_GID_TYPE_IB; 1038 spin_lock_init(&id_priv->lock); 1039 mutex_init(&id_priv->qp_mutex); 1040 init_completion(&id_priv->comp); 1041 refcount_set(&id_priv->refcount, 1); 1042 mutex_init(&id_priv->handler_mutex); 1043 INIT_LIST_HEAD(&id_priv->device_item); 1044 INIT_LIST_HEAD(&id_priv->id_list_entry); 1045 INIT_LIST_HEAD(&id_priv->listen_list); 1046 INIT_LIST_HEAD(&id_priv->mc_list); 1047 get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num); 1048 id_priv->id.route.addr.dev_addr.net = get_net(net); 1049 id_priv->seq_num &= 0x00ffffff; 1050 1051 rdma_restrack_new(&id_priv->res, RDMA_RESTRACK_CM_ID); 1052 if (parent) 1053 rdma_restrack_parent_name(&id_priv->res, &parent->res); 1054 1055 return id_priv; 1056 } 1057 1058 struct rdma_cm_id * 1059 __rdma_create_kernel_id(struct net *net, rdma_cm_event_handler event_handler, 1060 void *context, enum rdma_ucm_port_space ps, 1061 enum ib_qp_type qp_type, const char *caller) 1062 { 1063 struct rdma_id_private *ret; 1064 1065 ret = __rdma_create_id(net, event_handler, context, ps, qp_type, NULL); 1066 if (IS_ERR(ret)) 1067 return ERR_CAST(ret); 1068 1069 rdma_restrack_set_name(&ret->res, caller); 1070 return &ret->id; 1071 } 1072 EXPORT_SYMBOL(__rdma_create_kernel_id); 1073 1074 struct rdma_cm_id *rdma_create_user_id(rdma_cm_event_handler event_handler, 1075 void *context, 1076 enum rdma_ucm_port_space ps, 1077 enum ib_qp_type qp_type) 1078 { 1079 struct rdma_id_private *ret; 1080 1081 ret = __rdma_create_id(current->nsproxy->net_ns, event_handler, context, 1082 ps, qp_type, NULL); 1083 if (IS_ERR(ret)) 1084 return ERR_CAST(ret); 1085 1086 rdma_restrack_set_name(&ret->res, NULL); 1087 return &ret->id; 1088 } 1089 EXPORT_SYMBOL(rdma_create_user_id); 1090 1091 static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 1092 { 1093 struct ib_qp_attr qp_attr; 1094 int qp_attr_mask, ret; 1095 1096 qp_attr.qp_state = IB_QPS_INIT; 1097 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1098 if (ret) 1099 return ret; 1100 1101 ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask); 1102 if (ret) 1103 return ret; 1104 1105 qp_attr.qp_state = IB_QPS_RTR; 1106 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE); 1107 if (ret) 1108 return ret; 1109 1110 qp_attr.qp_state = IB_QPS_RTS; 1111 qp_attr.sq_psn = 0; 1112 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN); 1113 1114 return ret; 1115 } 1116 1117 static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 1118 { 1119 struct ib_qp_attr qp_attr; 1120 int qp_attr_mask, ret; 1121 1122 qp_attr.qp_state = IB_QPS_INIT; 1123 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1124 if (ret) 1125 return ret; 1126 1127 return ib_modify_qp(qp, &qp_attr, qp_attr_mask); 1128 } 1129 1130 int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd, 1131 struct ib_qp_init_attr *qp_init_attr) 1132 { 1133 struct rdma_id_private *id_priv; 1134 struct ib_qp *qp; 1135 int ret; 1136 1137 id_priv = container_of(id, struct rdma_id_private, id); 1138 if (id->device != pd->device) { 1139 ret = -EINVAL; 1140 goto out_err; 1141 } 1142 1143 qp_init_attr->port_num = id->port_num; 1144 qp = ib_create_qp(pd, qp_init_attr); 1145 if (IS_ERR(qp)) { 1146 ret = PTR_ERR(qp); 1147 goto out_err; 1148 } 1149 1150 if (id->qp_type == IB_QPT_UD) 1151 ret = cma_init_ud_qp(id_priv, qp); 1152 else 1153 ret = cma_init_conn_qp(id_priv, qp); 1154 if (ret) 1155 goto out_destroy; 1156 1157 id->qp = qp; 1158 id_priv->qp_num = qp->qp_num; 1159 id_priv->srq = (qp->srq != NULL); 1160 trace_cm_qp_create(id_priv, pd, qp_init_attr, 0); 1161 return 0; 1162 out_destroy: 1163 ib_destroy_qp(qp); 1164 out_err: 1165 trace_cm_qp_create(id_priv, pd, qp_init_attr, ret); 1166 return ret; 1167 } 1168 EXPORT_SYMBOL(rdma_create_qp); 1169 1170 void rdma_destroy_qp(struct rdma_cm_id *id) 1171 { 1172 struct rdma_id_private *id_priv; 1173 1174 id_priv = container_of(id, struct rdma_id_private, id); 1175 trace_cm_qp_destroy(id_priv); 1176 mutex_lock(&id_priv->qp_mutex); 1177 ib_destroy_qp(id_priv->id.qp); 1178 id_priv->id.qp = NULL; 1179 mutex_unlock(&id_priv->qp_mutex); 1180 } 1181 EXPORT_SYMBOL(rdma_destroy_qp); 1182 1183 static int cma_modify_qp_rtr(struct rdma_id_private *id_priv, 1184 struct rdma_conn_param *conn_param) 1185 { 1186 struct ib_qp_attr qp_attr; 1187 int qp_attr_mask, ret; 1188 1189 mutex_lock(&id_priv->qp_mutex); 1190 if (!id_priv->id.qp) { 1191 ret = 0; 1192 goto out; 1193 } 1194 1195 /* Need to update QP attributes from default values. */ 1196 qp_attr.qp_state = IB_QPS_INIT; 1197 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1198 if (ret) 1199 goto out; 1200 1201 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1202 if (ret) 1203 goto out; 1204 1205 qp_attr.qp_state = IB_QPS_RTR; 1206 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1207 if (ret) 1208 goto out; 1209 1210 BUG_ON(id_priv->cma_dev->device != id_priv->id.device); 1211 1212 if (conn_param) 1213 qp_attr.max_dest_rd_atomic = conn_param->responder_resources; 1214 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1215 out: 1216 mutex_unlock(&id_priv->qp_mutex); 1217 return ret; 1218 } 1219 1220 static int cma_modify_qp_rts(struct rdma_id_private *id_priv, 1221 struct rdma_conn_param *conn_param) 1222 { 1223 struct ib_qp_attr qp_attr; 1224 int qp_attr_mask, ret; 1225 1226 mutex_lock(&id_priv->qp_mutex); 1227 if (!id_priv->id.qp) { 1228 ret = 0; 1229 goto out; 1230 } 1231 1232 qp_attr.qp_state = IB_QPS_RTS; 1233 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1234 if (ret) 1235 goto out; 1236 1237 if (conn_param) 1238 qp_attr.max_rd_atomic = conn_param->initiator_depth; 1239 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1240 out: 1241 mutex_unlock(&id_priv->qp_mutex); 1242 return ret; 1243 } 1244 1245 static int cma_modify_qp_err(struct rdma_id_private *id_priv) 1246 { 1247 struct ib_qp_attr qp_attr; 1248 int ret; 1249 1250 mutex_lock(&id_priv->qp_mutex); 1251 if (!id_priv->id.qp) { 1252 ret = 0; 1253 goto out; 1254 } 1255 1256 qp_attr.qp_state = IB_QPS_ERR; 1257 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE); 1258 out: 1259 mutex_unlock(&id_priv->qp_mutex); 1260 return ret; 1261 } 1262 1263 static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv, 1264 struct ib_qp_attr *qp_attr, int *qp_attr_mask) 1265 { 1266 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 1267 int ret; 1268 u16 pkey; 1269 1270 if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num)) 1271 pkey = 0xffff; 1272 else 1273 pkey = ib_addr_get_pkey(dev_addr); 1274 1275 ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num, 1276 pkey, &qp_attr->pkey_index); 1277 if (ret) 1278 return ret; 1279 1280 qp_attr->port_num = id_priv->id.port_num; 1281 *qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT; 1282 1283 if (id_priv->id.qp_type == IB_QPT_UD) { 1284 ret = cma_set_default_qkey(id_priv); 1285 if (ret) 1286 return ret; 1287 1288 qp_attr->qkey = id_priv->qkey; 1289 *qp_attr_mask |= IB_QP_QKEY; 1290 } else { 1291 qp_attr->qp_access_flags = 0; 1292 *qp_attr_mask |= IB_QP_ACCESS_FLAGS; 1293 } 1294 return 0; 1295 } 1296 1297 int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr, 1298 int *qp_attr_mask) 1299 { 1300 struct rdma_id_private *id_priv; 1301 int ret = 0; 1302 1303 id_priv = container_of(id, struct rdma_id_private, id); 1304 if (rdma_cap_ib_cm(id->device, id->port_num)) { 1305 if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD)) 1306 ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask); 1307 else 1308 ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr, 1309 qp_attr_mask); 1310 1311 if (qp_attr->qp_state == IB_QPS_RTR) 1312 qp_attr->rq_psn = id_priv->seq_num; 1313 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 1314 if (!id_priv->cm_id.iw) { 1315 qp_attr->qp_access_flags = 0; 1316 *qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS; 1317 } else 1318 ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr, 1319 qp_attr_mask); 1320 qp_attr->port_num = id_priv->id.port_num; 1321 *qp_attr_mask |= IB_QP_PORT; 1322 } else { 1323 ret = -ENOSYS; 1324 } 1325 1326 if ((*qp_attr_mask & IB_QP_TIMEOUT) && id_priv->timeout_set) 1327 qp_attr->timeout = id_priv->timeout; 1328 1329 if ((*qp_attr_mask & IB_QP_MIN_RNR_TIMER) && id_priv->min_rnr_timer_set) 1330 qp_attr->min_rnr_timer = id_priv->min_rnr_timer; 1331 1332 return ret; 1333 } 1334 EXPORT_SYMBOL(rdma_init_qp_attr); 1335 1336 static inline bool cma_zero_addr(const struct sockaddr *addr) 1337 { 1338 switch (addr->sa_family) { 1339 case AF_INET: 1340 return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr); 1341 case AF_INET6: 1342 return ipv6_addr_any(&((struct sockaddr_in6 *)addr)->sin6_addr); 1343 case AF_IB: 1344 return ib_addr_any(&((struct sockaddr_ib *)addr)->sib_addr); 1345 default: 1346 return false; 1347 } 1348 } 1349 1350 static inline bool cma_loopback_addr(const struct sockaddr *addr) 1351 { 1352 switch (addr->sa_family) { 1353 case AF_INET: 1354 return ipv4_is_loopback( 1355 ((struct sockaddr_in *)addr)->sin_addr.s_addr); 1356 case AF_INET6: 1357 return ipv6_addr_loopback( 1358 &((struct sockaddr_in6 *)addr)->sin6_addr); 1359 case AF_IB: 1360 return ib_addr_loopback( 1361 &((struct sockaddr_ib *)addr)->sib_addr); 1362 default: 1363 return false; 1364 } 1365 } 1366 1367 static inline bool cma_any_addr(const struct sockaddr *addr) 1368 { 1369 return cma_zero_addr(addr) || cma_loopback_addr(addr); 1370 } 1371 1372 static int cma_addr_cmp(const struct sockaddr *src, const struct sockaddr *dst) 1373 { 1374 if (src->sa_family != dst->sa_family) 1375 return -1; 1376 1377 switch (src->sa_family) { 1378 case AF_INET: 1379 return ((struct sockaddr_in *)src)->sin_addr.s_addr != 1380 ((struct sockaddr_in *)dst)->sin_addr.s_addr; 1381 case AF_INET6: { 1382 struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src; 1383 struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst; 1384 bool link_local; 1385 1386 if (ipv6_addr_cmp(&src_addr6->sin6_addr, 1387 &dst_addr6->sin6_addr)) 1388 return 1; 1389 link_local = ipv6_addr_type(&dst_addr6->sin6_addr) & 1390 IPV6_ADDR_LINKLOCAL; 1391 /* Link local must match their scope_ids */ 1392 return link_local ? (src_addr6->sin6_scope_id != 1393 dst_addr6->sin6_scope_id) : 1394 0; 1395 } 1396 1397 default: 1398 return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr, 1399 &((struct sockaddr_ib *) dst)->sib_addr); 1400 } 1401 } 1402 1403 static __be16 cma_port(const struct sockaddr *addr) 1404 { 1405 struct sockaddr_ib *sib; 1406 1407 switch (addr->sa_family) { 1408 case AF_INET: 1409 return ((struct sockaddr_in *) addr)->sin_port; 1410 case AF_INET6: 1411 return ((struct sockaddr_in6 *) addr)->sin6_port; 1412 case AF_IB: 1413 sib = (struct sockaddr_ib *) addr; 1414 return htons((u16) (be64_to_cpu(sib->sib_sid) & 1415 be64_to_cpu(sib->sib_sid_mask))); 1416 default: 1417 return 0; 1418 } 1419 } 1420 1421 static inline int cma_any_port(const struct sockaddr *addr) 1422 { 1423 return !cma_port(addr); 1424 } 1425 1426 static void cma_save_ib_info(struct sockaddr *src_addr, 1427 struct sockaddr *dst_addr, 1428 const struct rdma_cm_id *listen_id, 1429 const struct sa_path_rec *path) 1430 { 1431 struct sockaddr_ib *listen_ib, *ib; 1432 1433 listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr; 1434 if (src_addr) { 1435 ib = (struct sockaddr_ib *)src_addr; 1436 ib->sib_family = AF_IB; 1437 if (path) { 1438 ib->sib_pkey = path->pkey; 1439 ib->sib_flowinfo = path->flow_label; 1440 memcpy(&ib->sib_addr, &path->sgid, 16); 1441 ib->sib_sid = path->service_id; 1442 ib->sib_scope_id = 0; 1443 } else { 1444 ib->sib_pkey = listen_ib->sib_pkey; 1445 ib->sib_flowinfo = listen_ib->sib_flowinfo; 1446 ib->sib_addr = listen_ib->sib_addr; 1447 ib->sib_sid = listen_ib->sib_sid; 1448 ib->sib_scope_id = listen_ib->sib_scope_id; 1449 } 1450 ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL); 1451 } 1452 if (dst_addr) { 1453 ib = (struct sockaddr_ib *)dst_addr; 1454 ib->sib_family = AF_IB; 1455 if (path) { 1456 ib->sib_pkey = path->pkey; 1457 ib->sib_flowinfo = path->flow_label; 1458 memcpy(&ib->sib_addr, &path->dgid, 16); 1459 } 1460 } 1461 } 1462 1463 static void cma_save_ip4_info(struct sockaddr_in *src_addr, 1464 struct sockaddr_in *dst_addr, 1465 struct cma_hdr *hdr, 1466 __be16 local_port) 1467 { 1468 if (src_addr) { 1469 *src_addr = (struct sockaddr_in) { 1470 .sin_family = AF_INET, 1471 .sin_addr.s_addr = hdr->dst_addr.ip4.addr, 1472 .sin_port = local_port, 1473 }; 1474 } 1475 1476 if (dst_addr) { 1477 *dst_addr = (struct sockaddr_in) { 1478 .sin_family = AF_INET, 1479 .sin_addr.s_addr = hdr->src_addr.ip4.addr, 1480 .sin_port = hdr->port, 1481 }; 1482 } 1483 } 1484 1485 static void cma_save_ip6_info(struct sockaddr_in6 *src_addr, 1486 struct sockaddr_in6 *dst_addr, 1487 struct cma_hdr *hdr, 1488 __be16 local_port) 1489 { 1490 if (src_addr) { 1491 *src_addr = (struct sockaddr_in6) { 1492 .sin6_family = AF_INET6, 1493 .sin6_addr = hdr->dst_addr.ip6, 1494 .sin6_port = local_port, 1495 }; 1496 } 1497 1498 if (dst_addr) { 1499 *dst_addr = (struct sockaddr_in6) { 1500 .sin6_family = AF_INET6, 1501 .sin6_addr = hdr->src_addr.ip6, 1502 .sin6_port = hdr->port, 1503 }; 1504 } 1505 } 1506 1507 static u16 cma_port_from_service_id(__be64 service_id) 1508 { 1509 return (u16)be64_to_cpu(service_id); 1510 } 1511 1512 static int cma_save_ip_info(struct sockaddr *src_addr, 1513 struct sockaddr *dst_addr, 1514 const struct ib_cm_event *ib_event, 1515 __be64 service_id) 1516 { 1517 struct cma_hdr *hdr; 1518 __be16 port; 1519 1520 hdr = ib_event->private_data; 1521 if (hdr->cma_version != CMA_VERSION) 1522 return -EINVAL; 1523 1524 port = htons(cma_port_from_service_id(service_id)); 1525 1526 switch (cma_get_ip_ver(hdr)) { 1527 case 4: 1528 cma_save_ip4_info((struct sockaddr_in *)src_addr, 1529 (struct sockaddr_in *)dst_addr, hdr, port); 1530 break; 1531 case 6: 1532 cma_save_ip6_info((struct sockaddr_in6 *)src_addr, 1533 (struct sockaddr_in6 *)dst_addr, hdr, port); 1534 break; 1535 default: 1536 return -EAFNOSUPPORT; 1537 } 1538 1539 return 0; 1540 } 1541 1542 static int cma_save_net_info(struct sockaddr *src_addr, 1543 struct sockaddr *dst_addr, 1544 const struct rdma_cm_id *listen_id, 1545 const struct ib_cm_event *ib_event, 1546 sa_family_t sa_family, __be64 service_id) 1547 { 1548 if (sa_family == AF_IB) { 1549 if (ib_event->event == IB_CM_REQ_RECEIVED) 1550 cma_save_ib_info(src_addr, dst_addr, listen_id, 1551 ib_event->param.req_rcvd.primary_path); 1552 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1553 cma_save_ib_info(src_addr, dst_addr, listen_id, NULL); 1554 return 0; 1555 } 1556 1557 return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id); 1558 } 1559 1560 static int cma_save_req_info(const struct ib_cm_event *ib_event, 1561 struct cma_req_info *req) 1562 { 1563 const struct ib_cm_req_event_param *req_param = 1564 &ib_event->param.req_rcvd; 1565 const struct ib_cm_sidr_req_event_param *sidr_param = 1566 &ib_event->param.sidr_req_rcvd; 1567 1568 switch (ib_event->event) { 1569 case IB_CM_REQ_RECEIVED: 1570 req->device = req_param->listen_id->device; 1571 req->port = req_param->port; 1572 memcpy(&req->local_gid, &req_param->primary_path->sgid, 1573 sizeof(req->local_gid)); 1574 req->has_gid = true; 1575 req->service_id = req_param->primary_path->service_id; 1576 req->pkey = be16_to_cpu(req_param->primary_path->pkey); 1577 if (req->pkey != req_param->bth_pkey) 1578 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n" 1579 "RDMA CMA: in the future this may cause the request to be dropped\n", 1580 req_param->bth_pkey, req->pkey); 1581 break; 1582 case IB_CM_SIDR_REQ_RECEIVED: 1583 req->device = sidr_param->listen_id->device; 1584 req->port = sidr_param->port; 1585 req->has_gid = false; 1586 req->service_id = sidr_param->service_id; 1587 req->pkey = sidr_param->pkey; 1588 if (req->pkey != sidr_param->bth_pkey) 1589 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n" 1590 "RDMA CMA: in the future this may cause the request to be dropped\n", 1591 sidr_param->bth_pkey, req->pkey); 1592 break; 1593 default: 1594 return -EINVAL; 1595 } 1596 1597 return 0; 1598 } 1599 1600 static bool validate_ipv4_net_dev(struct net_device *net_dev, 1601 const struct sockaddr_in *dst_addr, 1602 const struct sockaddr_in *src_addr) 1603 { 1604 __be32 daddr = dst_addr->sin_addr.s_addr, 1605 saddr = src_addr->sin_addr.s_addr; 1606 struct fib_result res; 1607 struct flowi4 fl4; 1608 int err; 1609 bool ret; 1610 1611 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) || 1612 ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) || 1613 ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) || 1614 ipv4_is_loopback(saddr)) 1615 return false; 1616 1617 memset(&fl4, 0, sizeof(fl4)); 1618 fl4.flowi4_oif = net_dev->ifindex; 1619 fl4.daddr = daddr; 1620 fl4.saddr = saddr; 1621 1622 rcu_read_lock(); 1623 err = fib_lookup(dev_net(net_dev), &fl4, &res, 0); 1624 ret = err == 0 && FIB_RES_DEV(res) == net_dev; 1625 rcu_read_unlock(); 1626 1627 return ret; 1628 } 1629 1630 static bool validate_ipv6_net_dev(struct net_device *net_dev, 1631 const struct sockaddr_in6 *dst_addr, 1632 const struct sockaddr_in6 *src_addr) 1633 { 1634 #if IS_ENABLED(CONFIG_IPV6) 1635 const int strict = ipv6_addr_type(&dst_addr->sin6_addr) & 1636 IPV6_ADDR_LINKLOCAL; 1637 struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr, 1638 &src_addr->sin6_addr, net_dev->ifindex, 1639 NULL, strict); 1640 bool ret; 1641 1642 if (!rt) 1643 return false; 1644 1645 ret = rt->rt6i_idev->dev == net_dev; 1646 ip6_rt_put(rt); 1647 1648 return ret; 1649 #else 1650 return false; 1651 #endif 1652 } 1653 1654 static bool validate_net_dev(struct net_device *net_dev, 1655 const struct sockaddr *daddr, 1656 const struct sockaddr *saddr) 1657 { 1658 const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr; 1659 const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr; 1660 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1661 const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr; 1662 1663 switch (daddr->sa_family) { 1664 case AF_INET: 1665 return saddr->sa_family == AF_INET && 1666 validate_ipv4_net_dev(net_dev, daddr4, saddr4); 1667 1668 case AF_INET6: 1669 return saddr->sa_family == AF_INET6 && 1670 validate_ipv6_net_dev(net_dev, daddr6, saddr6); 1671 1672 default: 1673 return false; 1674 } 1675 } 1676 1677 static struct net_device * 1678 roce_get_net_dev_by_cm_event(const struct ib_cm_event *ib_event) 1679 { 1680 const struct ib_gid_attr *sgid_attr = NULL; 1681 struct net_device *ndev; 1682 1683 if (ib_event->event == IB_CM_REQ_RECEIVED) 1684 sgid_attr = ib_event->param.req_rcvd.ppath_sgid_attr; 1685 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1686 sgid_attr = ib_event->param.sidr_req_rcvd.sgid_attr; 1687 1688 if (!sgid_attr) 1689 return NULL; 1690 1691 rcu_read_lock(); 1692 ndev = rdma_read_gid_attr_ndev_rcu(sgid_attr); 1693 if (IS_ERR(ndev)) 1694 ndev = NULL; 1695 else 1696 dev_hold(ndev); 1697 rcu_read_unlock(); 1698 return ndev; 1699 } 1700 1701 static struct net_device *cma_get_net_dev(const struct ib_cm_event *ib_event, 1702 struct cma_req_info *req) 1703 { 1704 struct sockaddr *listen_addr = 1705 (struct sockaddr *)&req->listen_addr_storage; 1706 struct sockaddr *src_addr = (struct sockaddr *)&req->src_addr_storage; 1707 struct net_device *net_dev; 1708 const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL; 1709 int err; 1710 1711 err = cma_save_ip_info(listen_addr, src_addr, ib_event, 1712 req->service_id); 1713 if (err) 1714 return ERR_PTR(err); 1715 1716 if (rdma_protocol_roce(req->device, req->port)) 1717 net_dev = roce_get_net_dev_by_cm_event(ib_event); 1718 else 1719 net_dev = ib_get_net_dev_by_params(req->device, req->port, 1720 req->pkey, 1721 gid, listen_addr); 1722 if (!net_dev) 1723 return ERR_PTR(-ENODEV); 1724 1725 return net_dev; 1726 } 1727 1728 static enum rdma_ucm_port_space rdma_ps_from_service_id(__be64 service_id) 1729 { 1730 return (be64_to_cpu(service_id) >> 16) & 0xffff; 1731 } 1732 1733 static bool cma_match_private_data(struct rdma_id_private *id_priv, 1734 const struct cma_hdr *hdr) 1735 { 1736 struct sockaddr *addr = cma_src_addr(id_priv); 1737 __be32 ip4_addr; 1738 struct in6_addr ip6_addr; 1739 1740 if (cma_any_addr(addr) && !id_priv->afonly) 1741 return true; 1742 1743 switch (addr->sa_family) { 1744 case AF_INET: 1745 ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr; 1746 if (cma_get_ip_ver(hdr) != 4) 1747 return false; 1748 if (!cma_any_addr(addr) && 1749 hdr->dst_addr.ip4.addr != ip4_addr) 1750 return false; 1751 break; 1752 case AF_INET6: 1753 ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr; 1754 if (cma_get_ip_ver(hdr) != 6) 1755 return false; 1756 if (!cma_any_addr(addr) && 1757 memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr))) 1758 return false; 1759 break; 1760 case AF_IB: 1761 return true; 1762 default: 1763 return false; 1764 } 1765 1766 return true; 1767 } 1768 1769 static bool cma_protocol_roce(const struct rdma_cm_id *id) 1770 { 1771 struct ib_device *device = id->device; 1772 const u32 port_num = id->port_num ?: rdma_start_port(device); 1773 1774 return rdma_protocol_roce(device, port_num); 1775 } 1776 1777 static bool cma_is_req_ipv6_ll(const struct cma_req_info *req) 1778 { 1779 const struct sockaddr *daddr = 1780 (const struct sockaddr *)&req->listen_addr_storage; 1781 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1782 1783 /* Returns true if the req is for IPv6 link local */ 1784 return (daddr->sa_family == AF_INET6 && 1785 (ipv6_addr_type(&daddr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)); 1786 } 1787 1788 static bool cma_match_net_dev(const struct rdma_cm_id *id, 1789 const struct net_device *net_dev, 1790 const struct cma_req_info *req) 1791 { 1792 const struct rdma_addr *addr = &id->route.addr; 1793 1794 if (!net_dev) 1795 /* This request is an AF_IB request */ 1796 return (!id->port_num || id->port_num == req->port) && 1797 (addr->src_addr.ss_family == AF_IB); 1798 1799 /* 1800 * If the request is not for IPv6 link local, allow matching 1801 * request to any netdevice of the one or multiport rdma device. 1802 */ 1803 if (!cma_is_req_ipv6_ll(req)) 1804 return true; 1805 /* 1806 * Net namespaces must match, and if the listner is listening 1807 * on a specific netdevice than netdevice must match as well. 1808 */ 1809 if (net_eq(dev_net(net_dev), addr->dev_addr.net) && 1810 (!!addr->dev_addr.bound_dev_if == 1811 (addr->dev_addr.bound_dev_if == net_dev->ifindex))) 1812 return true; 1813 else 1814 return false; 1815 } 1816 1817 static struct rdma_id_private *cma_find_listener( 1818 const struct rdma_bind_list *bind_list, 1819 const struct ib_cm_id *cm_id, 1820 const struct ib_cm_event *ib_event, 1821 const struct cma_req_info *req, 1822 const struct net_device *net_dev) 1823 { 1824 struct rdma_id_private *id_priv, *id_priv_dev; 1825 1826 lockdep_assert_held(&lock); 1827 1828 if (!bind_list) 1829 return ERR_PTR(-EINVAL); 1830 1831 hlist_for_each_entry(id_priv, &bind_list->owners, node) { 1832 if (cma_match_private_data(id_priv, ib_event->private_data)) { 1833 if (id_priv->id.device == cm_id->device && 1834 cma_match_net_dev(&id_priv->id, net_dev, req)) 1835 return id_priv; 1836 list_for_each_entry(id_priv_dev, 1837 &id_priv->listen_list, 1838 listen_item) { 1839 if (id_priv_dev->id.device == cm_id->device && 1840 cma_match_net_dev(&id_priv_dev->id, 1841 net_dev, req)) 1842 return id_priv_dev; 1843 } 1844 } 1845 } 1846 1847 return ERR_PTR(-EINVAL); 1848 } 1849 1850 static struct rdma_id_private * 1851 cma_ib_id_from_event(struct ib_cm_id *cm_id, 1852 const struct ib_cm_event *ib_event, 1853 struct cma_req_info *req, 1854 struct net_device **net_dev) 1855 { 1856 struct rdma_bind_list *bind_list; 1857 struct rdma_id_private *id_priv; 1858 int err; 1859 1860 err = cma_save_req_info(ib_event, req); 1861 if (err) 1862 return ERR_PTR(err); 1863 1864 *net_dev = cma_get_net_dev(ib_event, req); 1865 if (IS_ERR(*net_dev)) { 1866 if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) { 1867 /* Assuming the protocol is AF_IB */ 1868 *net_dev = NULL; 1869 } else { 1870 return ERR_CAST(*net_dev); 1871 } 1872 } 1873 1874 mutex_lock(&lock); 1875 /* 1876 * Net namespace might be getting deleted while route lookup, 1877 * cm_id lookup is in progress. Therefore, perform netdevice 1878 * validation, cm_id lookup under rcu lock. 1879 * RCU lock along with netdevice state check, synchronizes with 1880 * netdevice migrating to different net namespace and also avoids 1881 * case where net namespace doesn't get deleted while lookup is in 1882 * progress. 1883 * If the device state is not IFF_UP, its properties such as ifindex 1884 * and nd_net cannot be trusted to remain valid without rcu lock. 1885 * net/core/dev.c change_net_namespace() ensures to synchronize with 1886 * ongoing operations on net device after device is closed using 1887 * synchronize_net(). 1888 */ 1889 rcu_read_lock(); 1890 if (*net_dev) { 1891 /* 1892 * If netdevice is down, it is likely that it is administratively 1893 * down or it might be migrating to different namespace. 1894 * In that case avoid further processing, as the net namespace 1895 * or ifindex may change. 1896 */ 1897 if (((*net_dev)->flags & IFF_UP) == 0) { 1898 id_priv = ERR_PTR(-EHOSTUNREACH); 1899 goto err; 1900 } 1901 1902 if (!validate_net_dev(*net_dev, 1903 (struct sockaddr *)&req->src_addr_storage, 1904 (struct sockaddr *)&req->listen_addr_storage)) { 1905 id_priv = ERR_PTR(-EHOSTUNREACH); 1906 goto err; 1907 } 1908 } 1909 1910 bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net, 1911 rdma_ps_from_service_id(req->service_id), 1912 cma_port_from_service_id(req->service_id)); 1913 id_priv = cma_find_listener(bind_list, cm_id, ib_event, req, *net_dev); 1914 err: 1915 rcu_read_unlock(); 1916 mutex_unlock(&lock); 1917 if (IS_ERR(id_priv) && *net_dev) { 1918 dev_put(*net_dev); 1919 *net_dev = NULL; 1920 } 1921 return id_priv; 1922 } 1923 1924 static inline u8 cma_user_data_offset(struct rdma_id_private *id_priv) 1925 { 1926 return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr); 1927 } 1928 1929 static void cma_cancel_route(struct rdma_id_private *id_priv) 1930 { 1931 if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) { 1932 if (id_priv->query) 1933 ib_sa_cancel_query(id_priv->query_id, id_priv->query); 1934 } 1935 } 1936 1937 static void _cma_cancel_listens(struct rdma_id_private *id_priv) 1938 { 1939 struct rdma_id_private *dev_id_priv; 1940 1941 lockdep_assert_held(&lock); 1942 1943 /* 1944 * Remove from listen_any_list to prevent added devices from spawning 1945 * additional listen requests. 1946 */ 1947 list_del_init(&id_priv->listen_any_item); 1948 1949 while (!list_empty(&id_priv->listen_list)) { 1950 dev_id_priv = 1951 list_first_entry(&id_priv->listen_list, 1952 struct rdma_id_private, listen_item); 1953 /* sync with device removal to avoid duplicate destruction */ 1954 list_del_init(&dev_id_priv->device_item); 1955 list_del_init(&dev_id_priv->listen_item); 1956 mutex_unlock(&lock); 1957 1958 rdma_destroy_id(&dev_id_priv->id); 1959 mutex_lock(&lock); 1960 } 1961 } 1962 1963 static void cma_cancel_listens(struct rdma_id_private *id_priv) 1964 { 1965 mutex_lock(&lock); 1966 _cma_cancel_listens(id_priv); 1967 mutex_unlock(&lock); 1968 } 1969 1970 static void cma_cancel_operation(struct rdma_id_private *id_priv, 1971 enum rdma_cm_state state) 1972 { 1973 switch (state) { 1974 case RDMA_CM_ADDR_QUERY: 1975 /* 1976 * We can avoid doing the rdma_addr_cancel() based on state, 1977 * only RDMA_CM_ADDR_QUERY has a work that could still execute. 1978 * Notice that the addr_handler work could still be exiting 1979 * outside this state, however due to the interaction with the 1980 * handler_mutex the work is guaranteed not to touch id_priv 1981 * during exit. 1982 */ 1983 rdma_addr_cancel(&id_priv->id.route.addr.dev_addr); 1984 break; 1985 case RDMA_CM_ROUTE_QUERY: 1986 cma_cancel_route(id_priv); 1987 break; 1988 case RDMA_CM_LISTEN: 1989 if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev) 1990 cma_cancel_listens(id_priv); 1991 break; 1992 default: 1993 break; 1994 } 1995 } 1996 1997 static void cma_release_port(struct rdma_id_private *id_priv) 1998 { 1999 struct rdma_bind_list *bind_list = id_priv->bind_list; 2000 struct net *net = id_priv->id.route.addr.dev_addr.net; 2001 2002 if (!bind_list) 2003 return; 2004 2005 mutex_lock(&lock); 2006 hlist_del(&id_priv->node); 2007 if (hlist_empty(&bind_list->owners)) { 2008 cma_ps_remove(net, bind_list->ps, bind_list->port); 2009 kfree(bind_list); 2010 } 2011 mutex_unlock(&lock); 2012 } 2013 2014 static void destroy_mc(struct rdma_id_private *id_priv, 2015 struct cma_multicast *mc) 2016 { 2017 bool send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN); 2018 2019 if (rdma_cap_ib_mcast(id_priv->id.device, id_priv->id.port_num)) 2020 ib_sa_free_multicast(mc->sa_mc); 2021 2022 if (rdma_protocol_roce(id_priv->id.device, id_priv->id.port_num)) { 2023 struct rdma_dev_addr *dev_addr = 2024 &id_priv->id.route.addr.dev_addr; 2025 struct net_device *ndev = NULL; 2026 2027 if (dev_addr->bound_dev_if) 2028 ndev = dev_get_by_index(dev_addr->net, 2029 dev_addr->bound_dev_if); 2030 if (ndev && !send_only) { 2031 enum ib_gid_type gid_type; 2032 union ib_gid mgid; 2033 2034 gid_type = id_priv->cma_dev->default_gid_type 2035 [id_priv->id.port_num - 2036 rdma_start_port( 2037 id_priv->cma_dev->device)]; 2038 cma_iboe_set_mgid((struct sockaddr *)&mc->addr, &mgid, 2039 gid_type); 2040 cma_igmp_send(ndev, &mgid, false); 2041 } 2042 dev_put(ndev); 2043 2044 cancel_work_sync(&mc->iboe_join.work); 2045 } 2046 kfree(mc); 2047 } 2048 2049 static void cma_leave_mc_groups(struct rdma_id_private *id_priv) 2050 { 2051 struct cma_multicast *mc; 2052 2053 while (!list_empty(&id_priv->mc_list)) { 2054 mc = list_first_entry(&id_priv->mc_list, struct cma_multicast, 2055 list); 2056 list_del(&mc->list); 2057 destroy_mc(id_priv, mc); 2058 } 2059 } 2060 2061 static void _destroy_id(struct rdma_id_private *id_priv, 2062 enum rdma_cm_state state) 2063 { 2064 cma_cancel_operation(id_priv, state); 2065 2066 rdma_restrack_del(&id_priv->res); 2067 cma_remove_id_from_tree(id_priv); 2068 if (id_priv->cma_dev) { 2069 if (rdma_cap_ib_cm(id_priv->id.device, 1)) { 2070 if (id_priv->cm_id.ib) 2071 ib_destroy_cm_id(id_priv->cm_id.ib); 2072 } else if (rdma_cap_iw_cm(id_priv->id.device, 1)) { 2073 if (id_priv->cm_id.iw) 2074 iw_destroy_cm_id(id_priv->cm_id.iw); 2075 } 2076 cma_leave_mc_groups(id_priv); 2077 cma_release_dev(id_priv); 2078 } 2079 2080 cma_release_port(id_priv); 2081 cma_id_put(id_priv); 2082 wait_for_completion(&id_priv->comp); 2083 2084 if (id_priv->internal_id) 2085 cma_id_put(id_priv->id.context); 2086 2087 kfree(id_priv->id.route.path_rec); 2088 kfree(id_priv->id.route.path_rec_inbound); 2089 kfree(id_priv->id.route.path_rec_outbound); 2090 2091 put_net(id_priv->id.route.addr.dev_addr.net); 2092 kfree(id_priv); 2093 } 2094 2095 /* 2096 * destroy an ID from within the handler_mutex. This ensures that no other 2097 * handlers can start running concurrently. 2098 */ 2099 static void destroy_id_handler_unlock(struct rdma_id_private *id_priv) 2100 __releases(&idprv->handler_mutex) 2101 { 2102 enum rdma_cm_state state; 2103 unsigned long flags; 2104 2105 trace_cm_id_destroy(id_priv); 2106 2107 /* 2108 * Setting the state to destroyed under the handler mutex provides a 2109 * fence against calling handler callbacks. If this is invoked due to 2110 * the failure of a handler callback then it guarentees that no future 2111 * handlers will be called. 2112 */ 2113 lockdep_assert_held(&id_priv->handler_mutex); 2114 spin_lock_irqsave(&id_priv->lock, flags); 2115 state = id_priv->state; 2116 id_priv->state = RDMA_CM_DESTROYING; 2117 spin_unlock_irqrestore(&id_priv->lock, flags); 2118 mutex_unlock(&id_priv->handler_mutex); 2119 _destroy_id(id_priv, state); 2120 } 2121 2122 void rdma_destroy_id(struct rdma_cm_id *id) 2123 { 2124 struct rdma_id_private *id_priv = 2125 container_of(id, struct rdma_id_private, id); 2126 2127 mutex_lock(&id_priv->handler_mutex); 2128 destroy_id_handler_unlock(id_priv); 2129 } 2130 EXPORT_SYMBOL(rdma_destroy_id); 2131 2132 static int cma_rep_recv(struct rdma_id_private *id_priv) 2133 { 2134 int ret; 2135 2136 ret = cma_modify_qp_rtr(id_priv, NULL); 2137 if (ret) 2138 goto reject; 2139 2140 ret = cma_modify_qp_rts(id_priv, NULL); 2141 if (ret) 2142 goto reject; 2143 2144 trace_cm_send_rtu(id_priv); 2145 ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0); 2146 if (ret) 2147 goto reject; 2148 2149 return 0; 2150 reject: 2151 pr_debug_ratelimited("RDMA CM: CONNECT_ERROR: failed to handle reply. status %d\n", ret); 2152 cma_modify_qp_err(id_priv); 2153 trace_cm_send_rej(id_priv); 2154 ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED, 2155 NULL, 0, NULL, 0); 2156 return ret; 2157 } 2158 2159 static void cma_set_rep_event_data(struct rdma_cm_event *event, 2160 const struct ib_cm_rep_event_param *rep_data, 2161 void *private_data) 2162 { 2163 event->param.conn.private_data = private_data; 2164 event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE; 2165 event->param.conn.responder_resources = rep_data->responder_resources; 2166 event->param.conn.initiator_depth = rep_data->initiator_depth; 2167 event->param.conn.flow_control = rep_data->flow_control; 2168 event->param.conn.rnr_retry_count = rep_data->rnr_retry_count; 2169 event->param.conn.srq = rep_data->srq; 2170 event->param.conn.qp_num = rep_data->remote_qpn; 2171 2172 event->ece.vendor_id = rep_data->ece.vendor_id; 2173 event->ece.attr_mod = rep_data->ece.attr_mod; 2174 } 2175 2176 static int cma_cm_event_handler(struct rdma_id_private *id_priv, 2177 struct rdma_cm_event *event) 2178 { 2179 int ret; 2180 2181 lockdep_assert_held(&id_priv->handler_mutex); 2182 2183 trace_cm_event_handler(id_priv, event); 2184 ret = id_priv->id.event_handler(&id_priv->id, event); 2185 trace_cm_event_done(id_priv, event, ret); 2186 return ret; 2187 } 2188 2189 static int cma_ib_handler(struct ib_cm_id *cm_id, 2190 const struct ib_cm_event *ib_event) 2191 { 2192 struct rdma_id_private *id_priv = cm_id->context; 2193 struct rdma_cm_event event = {}; 2194 enum rdma_cm_state state; 2195 int ret; 2196 2197 mutex_lock(&id_priv->handler_mutex); 2198 state = READ_ONCE(id_priv->state); 2199 if ((ib_event->event != IB_CM_TIMEWAIT_EXIT && 2200 state != RDMA_CM_CONNECT) || 2201 (ib_event->event == IB_CM_TIMEWAIT_EXIT && 2202 state != RDMA_CM_DISCONNECT)) 2203 goto out; 2204 2205 switch (ib_event->event) { 2206 case IB_CM_REQ_ERROR: 2207 case IB_CM_REP_ERROR: 2208 event.event = RDMA_CM_EVENT_UNREACHABLE; 2209 event.status = -ETIMEDOUT; 2210 break; 2211 case IB_CM_REP_RECEIVED: 2212 if (state == RDMA_CM_CONNECT && 2213 (id_priv->id.qp_type != IB_QPT_UD)) { 2214 trace_cm_send_mra(id_priv); 2215 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0); 2216 } 2217 if (id_priv->id.qp) { 2218 event.status = cma_rep_recv(id_priv); 2219 event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR : 2220 RDMA_CM_EVENT_ESTABLISHED; 2221 } else { 2222 event.event = RDMA_CM_EVENT_CONNECT_RESPONSE; 2223 } 2224 cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd, 2225 ib_event->private_data); 2226 break; 2227 case IB_CM_RTU_RECEIVED: 2228 case IB_CM_USER_ESTABLISHED: 2229 event.event = RDMA_CM_EVENT_ESTABLISHED; 2230 break; 2231 case IB_CM_DREQ_ERROR: 2232 event.status = -ETIMEDOUT; 2233 fallthrough; 2234 case IB_CM_DREQ_RECEIVED: 2235 case IB_CM_DREP_RECEIVED: 2236 if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT, 2237 RDMA_CM_DISCONNECT)) 2238 goto out; 2239 event.event = RDMA_CM_EVENT_DISCONNECTED; 2240 break; 2241 case IB_CM_TIMEWAIT_EXIT: 2242 event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT; 2243 break; 2244 case IB_CM_MRA_RECEIVED: 2245 /* ignore event */ 2246 goto out; 2247 case IB_CM_REJ_RECEIVED: 2248 pr_debug_ratelimited("RDMA CM: REJECTED: %s\n", rdma_reject_msg(&id_priv->id, 2249 ib_event->param.rej_rcvd.reason)); 2250 cma_modify_qp_err(id_priv); 2251 event.status = ib_event->param.rej_rcvd.reason; 2252 event.event = RDMA_CM_EVENT_REJECTED; 2253 event.param.conn.private_data = ib_event->private_data; 2254 event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE; 2255 break; 2256 default: 2257 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 2258 ib_event->event); 2259 goto out; 2260 } 2261 2262 ret = cma_cm_event_handler(id_priv, &event); 2263 if (ret) { 2264 /* Destroy the CM ID by returning a non-zero value. */ 2265 id_priv->cm_id.ib = NULL; 2266 destroy_id_handler_unlock(id_priv); 2267 return ret; 2268 } 2269 out: 2270 mutex_unlock(&id_priv->handler_mutex); 2271 return 0; 2272 } 2273 2274 static struct rdma_id_private * 2275 cma_ib_new_conn_id(const struct rdma_cm_id *listen_id, 2276 const struct ib_cm_event *ib_event, 2277 struct net_device *net_dev) 2278 { 2279 struct rdma_id_private *listen_id_priv; 2280 struct rdma_id_private *id_priv; 2281 struct rdma_cm_id *id; 2282 struct rdma_route *rt; 2283 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2284 struct sa_path_rec *path = ib_event->param.req_rcvd.primary_path; 2285 const __be64 service_id = 2286 ib_event->param.req_rcvd.primary_path->service_id; 2287 int ret; 2288 2289 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2290 id_priv = __rdma_create_id(listen_id->route.addr.dev_addr.net, 2291 listen_id->event_handler, listen_id->context, 2292 listen_id->ps, 2293 ib_event->param.req_rcvd.qp_type, 2294 listen_id_priv); 2295 if (IS_ERR(id_priv)) 2296 return NULL; 2297 2298 id = &id_priv->id; 2299 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2300 (struct sockaddr *)&id->route.addr.dst_addr, 2301 listen_id, ib_event, ss_family, service_id)) 2302 goto err; 2303 2304 rt = &id->route; 2305 rt->num_pri_alt_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1; 2306 rt->path_rec = kmalloc_array(rt->num_pri_alt_paths, 2307 sizeof(*rt->path_rec), GFP_KERNEL); 2308 if (!rt->path_rec) 2309 goto err; 2310 2311 rt->path_rec[0] = *path; 2312 if (rt->num_pri_alt_paths == 2) 2313 rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path; 2314 2315 if (net_dev) { 2316 rdma_copy_src_l2_addr(&rt->addr.dev_addr, net_dev); 2317 } else { 2318 if (!cma_protocol_roce(listen_id) && 2319 cma_any_addr(cma_src_addr(id_priv))) { 2320 rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND; 2321 rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid); 2322 ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey)); 2323 } else if (!cma_any_addr(cma_src_addr(id_priv))) { 2324 ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr); 2325 if (ret) 2326 goto err; 2327 } 2328 } 2329 rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid); 2330 2331 id_priv->state = RDMA_CM_CONNECT; 2332 return id_priv; 2333 2334 err: 2335 rdma_destroy_id(id); 2336 return NULL; 2337 } 2338 2339 static struct rdma_id_private * 2340 cma_ib_new_udp_id(const struct rdma_cm_id *listen_id, 2341 const struct ib_cm_event *ib_event, 2342 struct net_device *net_dev) 2343 { 2344 const struct rdma_id_private *listen_id_priv; 2345 struct rdma_id_private *id_priv; 2346 struct rdma_cm_id *id; 2347 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2348 struct net *net = listen_id->route.addr.dev_addr.net; 2349 int ret; 2350 2351 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2352 id_priv = __rdma_create_id(net, listen_id->event_handler, 2353 listen_id->context, listen_id->ps, IB_QPT_UD, 2354 listen_id_priv); 2355 if (IS_ERR(id_priv)) 2356 return NULL; 2357 2358 id = &id_priv->id; 2359 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2360 (struct sockaddr *)&id->route.addr.dst_addr, 2361 listen_id, ib_event, ss_family, 2362 ib_event->param.sidr_req_rcvd.service_id)) 2363 goto err; 2364 2365 if (net_dev) { 2366 rdma_copy_src_l2_addr(&id->route.addr.dev_addr, net_dev); 2367 } else { 2368 if (!cma_any_addr(cma_src_addr(id_priv))) { 2369 ret = cma_translate_addr(cma_src_addr(id_priv), 2370 &id->route.addr.dev_addr); 2371 if (ret) 2372 goto err; 2373 } 2374 } 2375 2376 id_priv->state = RDMA_CM_CONNECT; 2377 return id_priv; 2378 err: 2379 rdma_destroy_id(id); 2380 return NULL; 2381 } 2382 2383 static void cma_set_req_event_data(struct rdma_cm_event *event, 2384 const struct ib_cm_req_event_param *req_data, 2385 void *private_data, int offset) 2386 { 2387 event->param.conn.private_data = private_data + offset; 2388 event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset; 2389 event->param.conn.responder_resources = req_data->responder_resources; 2390 event->param.conn.initiator_depth = req_data->initiator_depth; 2391 event->param.conn.flow_control = req_data->flow_control; 2392 event->param.conn.retry_count = req_data->retry_count; 2393 event->param.conn.rnr_retry_count = req_data->rnr_retry_count; 2394 event->param.conn.srq = req_data->srq; 2395 event->param.conn.qp_num = req_data->remote_qpn; 2396 2397 event->ece.vendor_id = req_data->ece.vendor_id; 2398 event->ece.attr_mod = req_data->ece.attr_mod; 2399 } 2400 2401 static int cma_ib_check_req_qp_type(const struct rdma_cm_id *id, 2402 const struct ib_cm_event *ib_event) 2403 { 2404 return (((ib_event->event == IB_CM_REQ_RECEIVED) && 2405 (ib_event->param.req_rcvd.qp_type == id->qp_type)) || 2406 ((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) && 2407 (id->qp_type == IB_QPT_UD)) || 2408 (!id->qp_type)); 2409 } 2410 2411 static int cma_ib_req_handler(struct ib_cm_id *cm_id, 2412 const struct ib_cm_event *ib_event) 2413 { 2414 struct rdma_id_private *listen_id, *conn_id = NULL; 2415 struct rdma_cm_event event = {}; 2416 struct cma_req_info req = {}; 2417 struct net_device *net_dev; 2418 u8 offset; 2419 int ret; 2420 2421 listen_id = cma_ib_id_from_event(cm_id, ib_event, &req, &net_dev); 2422 if (IS_ERR(listen_id)) 2423 return PTR_ERR(listen_id); 2424 2425 trace_cm_req_handler(listen_id, ib_event->event); 2426 if (!cma_ib_check_req_qp_type(&listen_id->id, ib_event)) { 2427 ret = -EINVAL; 2428 goto net_dev_put; 2429 } 2430 2431 mutex_lock(&listen_id->handler_mutex); 2432 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) { 2433 ret = -ECONNABORTED; 2434 goto err_unlock; 2435 } 2436 2437 offset = cma_user_data_offset(listen_id); 2438 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2439 if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) { 2440 conn_id = cma_ib_new_udp_id(&listen_id->id, ib_event, net_dev); 2441 event.param.ud.private_data = ib_event->private_data + offset; 2442 event.param.ud.private_data_len = 2443 IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset; 2444 } else { 2445 conn_id = cma_ib_new_conn_id(&listen_id->id, ib_event, net_dev); 2446 cma_set_req_event_data(&event, &ib_event->param.req_rcvd, 2447 ib_event->private_data, offset); 2448 } 2449 if (!conn_id) { 2450 ret = -ENOMEM; 2451 goto err_unlock; 2452 } 2453 2454 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2455 ret = cma_ib_acquire_dev(conn_id, listen_id, &req); 2456 if (ret) { 2457 destroy_id_handler_unlock(conn_id); 2458 goto err_unlock; 2459 } 2460 2461 conn_id->cm_id.ib = cm_id; 2462 cm_id->context = conn_id; 2463 cm_id->cm_handler = cma_ib_handler; 2464 2465 ret = cma_cm_event_handler(conn_id, &event); 2466 if (ret) { 2467 /* Destroy the CM ID by returning a non-zero value. */ 2468 conn_id->cm_id.ib = NULL; 2469 mutex_unlock(&listen_id->handler_mutex); 2470 destroy_id_handler_unlock(conn_id); 2471 goto net_dev_put; 2472 } 2473 2474 if (READ_ONCE(conn_id->state) == RDMA_CM_CONNECT && 2475 conn_id->id.qp_type != IB_QPT_UD) { 2476 trace_cm_send_mra(cm_id->context); 2477 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0); 2478 } 2479 mutex_unlock(&conn_id->handler_mutex); 2480 2481 err_unlock: 2482 mutex_unlock(&listen_id->handler_mutex); 2483 2484 net_dev_put: 2485 dev_put(net_dev); 2486 2487 return ret; 2488 } 2489 2490 __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr) 2491 { 2492 if (addr->sa_family == AF_IB) 2493 return ((struct sockaddr_ib *) addr)->sib_sid; 2494 2495 return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr))); 2496 } 2497 EXPORT_SYMBOL(rdma_get_service_id); 2498 2499 void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid, 2500 union ib_gid *dgid) 2501 { 2502 struct rdma_addr *addr = &cm_id->route.addr; 2503 2504 if (!cm_id->device) { 2505 if (sgid) 2506 memset(sgid, 0, sizeof(*sgid)); 2507 if (dgid) 2508 memset(dgid, 0, sizeof(*dgid)); 2509 return; 2510 } 2511 2512 if (rdma_protocol_roce(cm_id->device, cm_id->port_num)) { 2513 if (sgid) 2514 rdma_ip2gid((struct sockaddr *)&addr->src_addr, sgid); 2515 if (dgid) 2516 rdma_ip2gid((struct sockaddr *)&addr->dst_addr, dgid); 2517 } else { 2518 if (sgid) 2519 rdma_addr_get_sgid(&addr->dev_addr, sgid); 2520 if (dgid) 2521 rdma_addr_get_dgid(&addr->dev_addr, dgid); 2522 } 2523 } 2524 EXPORT_SYMBOL(rdma_read_gids); 2525 2526 static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event) 2527 { 2528 struct rdma_id_private *id_priv = iw_id->context; 2529 struct rdma_cm_event event = {}; 2530 int ret = 0; 2531 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2532 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2533 2534 mutex_lock(&id_priv->handler_mutex); 2535 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 2536 goto out; 2537 2538 switch (iw_event->event) { 2539 case IW_CM_EVENT_CLOSE: 2540 event.event = RDMA_CM_EVENT_DISCONNECTED; 2541 break; 2542 case IW_CM_EVENT_CONNECT_REPLY: 2543 memcpy(cma_src_addr(id_priv), laddr, 2544 rdma_addr_size(laddr)); 2545 memcpy(cma_dst_addr(id_priv), raddr, 2546 rdma_addr_size(raddr)); 2547 switch (iw_event->status) { 2548 case 0: 2549 event.event = RDMA_CM_EVENT_ESTABLISHED; 2550 event.param.conn.initiator_depth = iw_event->ird; 2551 event.param.conn.responder_resources = iw_event->ord; 2552 break; 2553 case -ECONNRESET: 2554 case -ECONNREFUSED: 2555 event.event = RDMA_CM_EVENT_REJECTED; 2556 break; 2557 case -ETIMEDOUT: 2558 event.event = RDMA_CM_EVENT_UNREACHABLE; 2559 break; 2560 default: 2561 event.event = RDMA_CM_EVENT_CONNECT_ERROR; 2562 break; 2563 } 2564 break; 2565 case IW_CM_EVENT_ESTABLISHED: 2566 event.event = RDMA_CM_EVENT_ESTABLISHED; 2567 event.param.conn.initiator_depth = iw_event->ird; 2568 event.param.conn.responder_resources = iw_event->ord; 2569 break; 2570 default: 2571 goto out; 2572 } 2573 2574 event.status = iw_event->status; 2575 event.param.conn.private_data = iw_event->private_data; 2576 event.param.conn.private_data_len = iw_event->private_data_len; 2577 ret = cma_cm_event_handler(id_priv, &event); 2578 if (ret) { 2579 /* Destroy the CM ID by returning a non-zero value. */ 2580 id_priv->cm_id.iw = NULL; 2581 destroy_id_handler_unlock(id_priv); 2582 return ret; 2583 } 2584 2585 out: 2586 mutex_unlock(&id_priv->handler_mutex); 2587 return ret; 2588 } 2589 2590 static int iw_conn_req_handler(struct iw_cm_id *cm_id, 2591 struct iw_cm_event *iw_event) 2592 { 2593 struct rdma_id_private *listen_id, *conn_id; 2594 struct rdma_cm_event event = {}; 2595 int ret = -ECONNABORTED; 2596 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2597 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2598 2599 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2600 event.param.conn.private_data = iw_event->private_data; 2601 event.param.conn.private_data_len = iw_event->private_data_len; 2602 event.param.conn.initiator_depth = iw_event->ird; 2603 event.param.conn.responder_resources = iw_event->ord; 2604 2605 listen_id = cm_id->context; 2606 2607 mutex_lock(&listen_id->handler_mutex); 2608 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) 2609 goto out; 2610 2611 /* Create a new RDMA id for the new IW CM ID */ 2612 conn_id = __rdma_create_id(listen_id->id.route.addr.dev_addr.net, 2613 listen_id->id.event_handler, 2614 listen_id->id.context, RDMA_PS_TCP, 2615 IB_QPT_RC, listen_id); 2616 if (IS_ERR(conn_id)) { 2617 ret = -ENOMEM; 2618 goto out; 2619 } 2620 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2621 conn_id->state = RDMA_CM_CONNECT; 2622 2623 ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr); 2624 if (ret) { 2625 mutex_unlock(&listen_id->handler_mutex); 2626 destroy_id_handler_unlock(conn_id); 2627 return ret; 2628 } 2629 2630 ret = cma_iw_acquire_dev(conn_id, listen_id); 2631 if (ret) { 2632 mutex_unlock(&listen_id->handler_mutex); 2633 destroy_id_handler_unlock(conn_id); 2634 return ret; 2635 } 2636 2637 conn_id->cm_id.iw = cm_id; 2638 cm_id->context = conn_id; 2639 cm_id->cm_handler = cma_iw_handler; 2640 2641 memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr)); 2642 memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr)); 2643 2644 ret = cma_cm_event_handler(conn_id, &event); 2645 if (ret) { 2646 /* User wants to destroy the CM ID */ 2647 conn_id->cm_id.iw = NULL; 2648 mutex_unlock(&listen_id->handler_mutex); 2649 destroy_id_handler_unlock(conn_id); 2650 return ret; 2651 } 2652 2653 mutex_unlock(&conn_id->handler_mutex); 2654 2655 out: 2656 mutex_unlock(&listen_id->handler_mutex); 2657 return ret; 2658 } 2659 2660 static int cma_ib_listen(struct rdma_id_private *id_priv) 2661 { 2662 struct sockaddr *addr; 2663 struct ib_cm_id *id; 2664 __be64 svc_id; 2665 2666 addr = cma_src_addr(id_priv); 2667 svc_id = rdma_get_service_id(&id_priv->id, addr); 2668 id = ib_cm_insert_listen(id_priv->id.device, 2669 cma_ib_req_handler, svc_id); 2670 if (IS_ERR(id)) 2671 return PTR_ERR(id); 2672 id_priv->cm_id.ib = id; 2673 2674 return 0; 2675 } 2676 2677 static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog) 2678 { 2679 int ret; 2680 struct iw_cm_id *id; 2681 2682 id = iw_create_cm_id(id_priv->id.device, 2683 iw_conn_req_handler, 2684 id_priv); 2685 if (IS_ERR(id)) 2686 return PTR_ERR(id); 2687 2688 mutex_lock(&id_priv->qp_mutex); 2689 id->tos = id_priv->tos; 2690 id->tos_set = id_priv->tos_set; 2691 mutex_unlock(&id_priv->qp_mutex); 2692 id->afonly = id_priv->afonly; 2693 id_priv->cm_id.iw = id; 2694 2695 memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv), 2696 rdma_addr_size(cma_src_addr(id_priv))); 2697 2698 ret = iw_cm_listen(id_priv->cm_id.iw, backlog); 2699 2700 if (ret) { 2701 iw_destroy_cm_id(id_priv->cm_id.iw); 2702 id_priv->cm_id.iw = NULL; 2703 } 2704 2705 return ret; 2706 } 2707 2708 static int cma_listen_handler(struct rdma_cm_id *id, 2709 struct rdma_cm_event *event) 2710 { 2711 struct rdma_id_private *id_priv = id->context; 2712 2713 /* Listening IDs are always destroyed on removal */ 2714 if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) 2715 return -1; 2716 2717 id->context = id_priv->id.context; 2718 id->event_handler = id_priv->id.event_handler; 2719 trace_cm_event_handler(id_priv, event); 2720 return id_priv->id.event_handler(id, event); 2721 } 2722 2723 static int cma_listen_on_dev(struct rdma_id_private *id_priv, 2724 struct cma_device *cma_dev, 2725 struct rdma_id_private **to_destroy) 2726 { 2727 struct rdma_id_private *dev_id_priv; 2728 struct net *net = id_priv->id.route.addr.dev_addr.net; 2729 int ret; 2730 2731 lockdep_assert_held(&lock); 2732 2733 *to_destroy = NULL; 2734 if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1)) 2735 return 0; 2736 2737 dev_id_priv = 2738 __rdma_create_id(net, cma_listen_handler, id_priv, 2739 id_priv->id.ps, id_priv->id.qp_type, id_priv); 2740 if (IS_ERR(dev_id_priv)) 2741 return PTR_ERR(dev_id_priv); 2742 2743 dev_id_priv->state = RDMA_CM_ADDR_BOUND; 2744 memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv), 2745 rdma_addr_size(cma_src_addr(id_priv))); 2746 2747 _cma_attach_to_dev(dev_id_priv, cma_dev); 2748 rdma_restrack_add(&dev_id_priv->res); 2749 cma_id_get(id_priv); 2750 dev_id_priv->internal_id = 1; 2751 dev_id_priv->afonly = id_priv->afonly; 2752 mutex_lock(&id_priv->qp_mutex); 2753 dev_id_priv->tos_set = id_priv->tos_set; 2754 dev_id_priv->tos = id_priv->tos; 2755 mutex_unlock(&id_priv->qp_mutex); 2756 2757 ret = rdma_listen(&dev_id_priv->id, id_priv->backlog); 2758 if (ret) 2759 goto err_listen; 2760 list_add_tail(&dev_id_priv->listen_item, &id_priv->listen_list); 2761 return 0; 2762 err_listen: 2763 /* Caller must destroy this after releasing lock */ 2764 *to_destroy = dev_id_priv; 2765 dev_warn(&cma_dev->device->dev, "RDMA CMA: %s, error %d\n", __func__, ret); 2766 return ret; 2767 } 2768 2769 static int cma_listen_on_all(struct rdma_id_private *id_priv) 2770 { 2771 struct rdma_id_private *to_destroy; 2772 struct cma_device *cma_dev; 2773 int ret; 2774 2775 mutex_lock(&lock); 2776 list_add_tail(&id_priv->listen_any_item, &listen_any_list); 2777 list_for_each_entry(cma_dev, &dev_list, list) { 2778 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy); 2779 if (ret) { 2780 /* Prevent racing with cma_process_remove() */ 2781 if (to_destroy) 2782 list_del_init(&to_destroy->device_item); 2783 goto err_listen; 2784 } 2785 } 2786 mutex_unlock(&lock); 2787 return 0; 2788 2789 err_listen: 2790 _cma_cancel_listens(id_priv); 2791 mutex_unlock(&lock); 2792 if (to_destroy) 2793 rdma_destroy_id(&to_destroy->id); 2794 return ret; 2795 } 2796 2797 void rdma_set_service_type(struct rdma_cm_id *id, int tos) 2798 { 2799 struct rdma_id_private *id_priv; 2800 2801 id_priv = container_of(id, struct rdma_id_private, id); 2802 mutex_lock(&id_priv->qp_mutex); 2803 id_priv->tos = (u8) tos; 2804 id_priv->tos_set = true; 2805 mutex_unlock(&id_priv->qp_mutex); 2806 } 2807 EXPORT_SYMBOL(rdma_set_service_type); 2808 2809 /** 2810 * rdma_set_ack_timeout() - Set the ack timeout of QP associated 2811 * with a connection identifier. 2812 * @id: Communication identifier to associated with service type. 2813 * @timeout: Ack timeout to set a QP, expressed as 4.096 * 2^(timeout) usec. 2814 * 2815 * This function should be called before rdma_connect() on active side, 2816 * and on passive side before rdma_accept(). It is applicable to primary 2817 * path only. The timeout will affect the local side of the QP, it is not 2818 * negotiated with remote side and zero disables the timer. In case it is 2819 * set before rdma_resolve_route, the value will also be used to determine 2820 * PacketLifeTime for RoCE. 2821 * 2822 * Return: 0 for success 2823 */ 2824 int rdma_set_ack_timeout(struct rdma_cm_id *id, u8 timeout) 2825 { 2826 struct rdma_id_private *id_priv; 2827 2828 if (id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_INI) 2829 return -EINVAL; 2830 2831 id_priv = container_of(id, struct rdma_id_private, id); 2832 mutex_lock(&id_priv->qp_mutex); 2833 id_priv->timeout = timeout; 2834 id_priv->timeout_set = true; 2835 mutex_unlock(&id_priv->qp_mutex); 2836 2837 return 0; 2838 } 2839 EXPORT_SYMBOL(rdma_set_ack_timeout); 2840 2841 /** 2842 * rdma_set_min_rnr_timer() - Set the minimum RNR Retry timer of the 2843 * QP associated with a connection identifier. 2844 * @id: Communication identifier to associated with service type. 2845 * @min_rnr_timer: 5-bit value encoded as Table 45: "Encoding for RNR NAK 2846 * Timer Field" in the IBTA specification. 2847 * 2848 * This function should be called before rdma_connect() on active 2849 * side, and on passive side before rdma_accept(). The timer value 2850 * will be associated with the local QP. When it receives a send it is 2851 * not read to handle, typically if the receive queue is empty, an RNR 2852 * Retry NAK is returned to the requester with the min_rnr_timer 2853 * encoded. The requester will then wait at least the time specified 2854 * in the NAK before retrying. The default is zero, which translates 2855 * to a minimum RNR Timer value of 655 ms. 2856 * 2857 * Return: 0 for success 2858 */ 2859 int rdma_set_min_rnr_timer(struct rdma_cm_id *id, u8 min_rnr_timer) 2860 { 2861 struct rdma_id_private *id_priv; 2862 2863 /* It is a five-bit value */ 2864 if (min_rnr_timer & 0xe0) 2865 return -EINVAL; 2866 2867 if (WARN_ON(id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_TGT)) 2868 return -EINVAL; 2869 2870 id_priv = container_of(id, struct rdma_id_private, id); 2871 mutex_lock(&id_priv->qp_mutex); 2872 id_priv->min_rnr_timer = min_rnr_timer; 2873 id_priv->min_rnr_timer_set = true; 2874 mutex_unlock(&id_priv->qp_mutex); 2875 2876 return 0; 2877 } 2878 EXPORT_SYMBOL(rdma_set_min_rnr_timer); 2879 2880 static int route_set_path_rec_inbound(struct cma_work *work, 2881 struct sa_path_rec *path_rec) 2882 { 2883 struct rdma_route *route = &work->id->id.route; 2884 2885 if (!route->path_rec_inbound) { 2886 route->path_rec_inbound = 2887 kzalloc(sizeof(*route->path_rec_inbound), GFP_KERNEL); 2888 if (!route->path_rec_inbound) 2889 return -ENOMEM; 2890 } 2891 2892 *route->path_rec_inbound = *path_rec; 2893 return 0; 2894 } 2895 2896 static int route_set_path_rec_outbound(struct cma_work *work, 2897 struct sa_path_rec *path_rec) 2898 { 2899 struct rdma_route *route = &work->id->id.route; 2900 2901 if (!route->path_rec_outbound) { 2902 route->path_rec_outbound = 2903 kzalloc(sizeof(*route->path_rec_outbound), GFP_KERNEL); 2904 if (!route->path_rec_outbound) 2905 return -ENOMEM; 2906 } 2907 2908 *route->path_rec_outbound = *path_rec; 2909 return 0; 2910 } 2911 2912 static void cma_query_handler(int status, struct sa_path_rec *path_rec, 2913 unsigned int num_prs, void *context) 2914 { 2915 struct cma_work *work = context; 2916 struct rdma_route *route; 2917 int i; 2918 2919 route = &work->id->id.route; 2920 2921 if (status) 2922 goto fail; 2923 2924 for (i = 0; i < num_prs; i++) { 2925 if (!path_rec[i].flags || (path_rec[i].flags & IB_PATH_GMP)) 2926 *route->path_rec = path_rec[i]; 2927 else if (path_rec[i].flags & IB_PATH_INBOUND) 2928 status = route_set_path_rec_inbound(work, &path_rec[i]); 2929 else if (path_rec[i].flags & IB_PATH_OUTBOUND) 2930 status = route_set_path_rec_outbound(work, 2931 &path_rec[i]); 2932 else 2933 status = -EINVAL; 2934 2935 if (status) 2936 goto fail; 2937 } 2938 2939 route->num_pri_alt_paths = 1; 2940 queue_work(cma_wq, &work->work); 2941 return; 2942 2943 fail: 2944 work->old_state = RDMA_CM_ROUTE_QUERY; 2945 work->new_state = RDMA_CM_ADDR_RESOLVED; 2946 work->event.event = RDMA_CM_EVENT_ROUTE_ERROR; 2947 work->event.status = status; 2948 pr_debug_ratelimited("RDMA CM: ROUTE_ERROR: failed to query path. status %d\n", 2949 status); 2950 queue_work(cma_wq, &work->work); 2951 } 2952 2953 static int cma_query_ib_route(struct rdma_id_private *id_priv, 2954 unsigned long timeout_ms, struct cma_work *work) 2955 { 2956 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 2957 struct sa_path_rec path_rec; 2958 ib_sa_comp_mask comp_mask; 2959 struct sockaddr_in6 *sin6; 2960 struct sockaddr_ib *sib; 2961 2962 memset(&path_rec, 0, sizeof path_rec); 2963 2964 if (rdma_cap_opa_ah(id_priv->id.device, id_priv->id.port_num)) 2965 path_rec.rec_type = SA_PATH_REC_TYPE_OPA; 2966 else 2967 path_rec.rec_type = SA_PATH_REC_TYPE_IB; 2968 rdma_addr_get_sgid(dev_addr, &path_rec.sgid); 2969 rdma_addr_get_dgid(dev_addr, &path_rec.dgid); 2970 path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 2971 path_rec.numb_path = 1; 2972 path_rec.reversible = 1; 2973 path_rec.service_id = rdma_get_service_id(&id_priv->id, 2974 cma_dst_addr(id_priv)); 2975 2976 comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID | 2977 IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH | 2978 IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID; 2979 2980 switch (cma_family(id_priv)) { 2981 case AF_INET: 2982 path_rec.qos_class = cpu_to_be16((u16) id_priv->tos); 2983 comp_mask |= IB_SA_PATH_REC_QOS_CLASS; 2984 break; 2985 case AF_INET6: 2986 sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 2987 path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20); 2988 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2989 break; 2990 case AF_IB: 2991 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 2992 path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20); 2993 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2994 break; 2995 } 2996 2997 id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device, 2998 id_priv->id.port_num, &path_rec, 2999 comp_mask, timeout_ms, 3000 GFP_KERNEL, cma_query_handler, 3001 work, &id_priv->query); 3002 3003 return (id_priv->query_id < 0) ? id_priv->query_id : 0; 3004 } 3005 3006 static void cma_iboe_join_work_handler(struct work_struct *work) 3007 { 3008 struct cma_multicast *mc = 3009 container_of(work, struct cma_multicast, iboe_join.work); 3010 struct rdma_cm_event *event = &mc->iboe_join.event; 3011 struct rdma_id_private *id_priv = mc->id_priv; 3012 int ret; 3013 3014 mutex_lock(&id_priv->handler_mutex); 3015 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 3016 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 3017 goto out_unlock; 3018 3019 ret = cma_cm_event_handler(id_priv, event); 3020 WARN_ON(ret); 3021 3022 out_unlock: 3023 mutex_unlock(&id_priv->handler_mutex); 3024 if (event->event == RDMA_CM_EVENT_MULTICAST_JOIN) 3025 rdma_destroy_ah_attr(&event->param.ud.ah_attr); 3026 } 3027 3028 static void cma_work_handler(struct work_struct *_work) 3029 { 3030 struct cma_work *work = container_of(_work, struct cma_work, work); 3031 struct rdma_id_private *id_priv = work->id; 3032 3033 mutex_lock(&id_priv->handler_mutex); 3034 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 3035 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 3036 goto out_unlock; 3037 if (work->old_state != 0 || work->new_state != 0) { 3038 if (!cma_comp_exch(id_priv, work->old_state, work->new_state)) 3039 goto out_unlock; 3040 } 3041 3042 if (cma_cm_event_handler(id_priv, &work->event)) { 3043 cma_id_put(id_priv); 3044 destroy_id_handler_unlock(id_priv); 3045 goto out_free; 3046 } 3047 3048 out_unlock: 3049 mutex_unlock(&id_priv->handler_mutex); 3050 cma_id_put(id_priv); 3051 out_free: 3052 if (work->event.event == RDMA_CM_EVENT_MULTICAST_JOIN) 3053 rdma_destroy_ah_attr(&work->event.param.ud.ah_attr); 3054 kfree(work); 3055 } 3056 3057 static void cma_init_resolve_route_work(struct cma_work *work, 3058 struct rdma_id_private *id_priv) 3059 { 3060 work->id = id_priv; 3061 INIT_WORK(&work->work, cma_work_handler); 3062 work->old_state = RDMA_CM_ROUTE_QUERY; 3063 work->new_state = RDMA_CM_ROUTE_RESOLVED; 3064 work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED; 3065 } 3066 3067 static void enqueue_resolve_addr_work(struct cma_work *work, 3068 struct rdma_id_private *id_priv) 3069 { 3070 /* Balances with cma_id_put() in cma_work_handler */ 3071 cma_id_get(id_priv); 3072 3073 work->id = id_priv; 3074 INIT_WORK(&work->work, cma_work_handler); 3075 work->old_state = RDMA_CM_ADDR_QUERY; 3076 work->new_state = RDMA_CM_ADDR_RESOLVED; 3077 work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 3078 3079 queue_work(cma_wq, &work->work); 3080 } 3081 3082 static int cma_resolve_ib_route(struct rdma_id_private *id_priv, 3083 unsigned long timeout_ms) 3084 { 3085 struct rdma_route *route = &id_priv->id.route; 3086 struct cma_work *work; 3087 int ret; 3088 3089 work = kzalloc(sizeof *work, GFP_KERNEL); 3090 if (!work) 3091 return -ENOMEM; 3092 3093 cma_init_resolve_route_work(work, id_priv); 3094 3095 if (!route->path_rec) 3096 route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL); 3097 if (!route->path_rec) { 3098 ret = -ENOMEM; 3099 goto err1; 3100 } 3101 3102 ret = cma_query_ib_route(id_priv, timeout_ms, work); 3103 if (ret) 3104 goto err2; 3105 3106 return 0; 3107 err2: 3108 kfree(route->path_rec); 3109 route->path_rec = NULL; 3110 err1: 3111 kfree(work); 3112 return ret; 3113 } 3114 3115 static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type, 3116 unsigned long supported_gids, 3117 enum ib_gid_type default_gid) 3118 { 3119 if ((network_type == RDMA_NETWORK_IPV4 || 3120 network_type == RDMA_NETWORK_IPV6) && 3121 test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids)) 3122 return IB_GID_TYPE_ROCE_UDP_ENCAP; 3123 3124 return default_gid; 3125 } 3126 3127 /* 3128 * cma_iboe_set_path_rec_l2_fields() is helper function which sets 3129 * path record type based on GID type. 3130 * It also sets up other L2 fields which includes destination mac address 3131 * netdev ifindex, of the path record. 3132 * It returns the netdev of the bound interface for this path record entry. 3133 */ 3134 static struct net_device * 3135 cma_iboe_set_path_rec_l2_fields(struct rdma_id_private *id_priv) 3136 { 3137 struct rdma_route *route = &id_priv->id.route; 3138 enum ib_gid_type gid_type = IB_GID_TYPE_ROCE; 3139 struct rdma_addr *addr = &route->addr; 3140 unsigned long supported_gids; 3141 struct net_device *ndev; 3142 3143 if (!addr->dev_addr.bound_dev_if) 3144 return NULL; 3145 3146 ndev = dev_get_by_index(addr->dev_addr.net, 3147 addr->dev_addr.bound_dev_if); 3148 if (!ndev) 3149 return NULL; 3150 3151 supported_gids = roce_gid_type_mask_support(id_priv->id.device, 3152 id_priv->id.port_num); 3153 gid_type = cma_route_gid_type(addr->dev_addr.network, 3154 supported_gids, 3155 id_priv->gid_type); 3156 /* Use the hint from IP Stack to select GID Type */ 3157 if (gid_type < ib_network_to_gid_type(addr->dev_addr.network)) 3158 gid_type = ib_network_to_gid_type(addr->dev_addr.network); 3159 route->path_rec->rec_type = sa_conv_gid_to_pathrec_type(gid_type); 3160 3161 route->path_rec->roce.route_resolved = true; 3162 sa_path_set_dmac(route->path_rec, addr->dev_addr.dst_dev_addr); 3163 return ndev; 3164 } 3165 3166 int rdma_set_ib_path(struct rdma_cm_id *id, 3167 struct sa_path_rec *path_rec) 3168 { 3169 struct rdma_id_private *id_priv; 3170 struct net_device *ndev; 3171 int ret; 3172 3173 id_priv = container_of(id, struct rdma_id_private, id); 3174 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 3175 RDMA_CM_ROUTE_RESOLVED)) 3176 return -EINVAL; 3177 3178 id->route.path_rec = kmemdup(path_rec, sizeof(*path_rec), 3179 GFP_KERNEL); 3180 if (!id->route.path_rec) { 3181 ret = -ENOMEM; 3182 goto err; 3183 } 3184 3185 if (rdma_protocol_roce(id->device, id->port_num)) { 3186 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 3187 if (!ndev) { 3188 ret = -ENODEV; 3189 goto err_free; 3190 } 3191 dev_put(ndev); 3192 } 3193 3194 id->route.num_pri_alt_paths = 1; 3195 return 0; 3196 3197 err_free: 3198 kfree(id->route.path_rec); 3199 id->route.path_rec = NULL; 3200 err: 3201 cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED); 3202 return ret; 3203 } 3204 EXPORT_SYMBOL(rdma_set_ib_path); 3205 3206 static int cma_resolve_iw_route(struct rdma_id_private *id_priv) 3207 { 3208 struct cma_work *work; 3209 3210 work = kzalloc(sizeof *work, GFP_KERNEL); 3211 if (!work) 3212 return -ENOMEM; 3213 3214 cma_init_resolve_route_work(work, id_priv); 3215 queue_work(cma_wq, &work->work); 3216 return 0; 3217 } 3218 3219 static int get_vlan_ndev_tc(struct net_device *vlan_ndev, int prio) 3220 { 3221 struct net_device *dev; 3222 3223 dev = vlan_dev_real_dev(vlan_ndev); 3224 if (dev->num_tc) 3225 return netdev_get_prio_tc_map(dev, prio); 3226 3227 return (vlan_dev_get_egress_qos_mask(vlan_ndev, prio) & 3228 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 3229 } 3230 3231 struct iboe_prio_tc_map { 3232 int input_prio; 3233 int output_tc; 3234 bool found; 3235 }; 3236 3237 static int get_lower_vlan_dev_tc(struct net_device *dev, 3238 struct netdev_nested_priv *priv) 3239 { 3240 struct iboe_prio_tc_map *map = (struct iboe_prio_tc_map *)priv->data; 3241 3242 if (is_vlan_dev(dev)) 3243 map->output_tc = get_vlan_ndev_tc(dev, map->input_prio); 3244 else if (dev->num_tc) 3245 map->output_tc = netdev_get_prio_tc_map(dev, map->input_prio); 3246 else 3247 map->output_tc = 0; 3248 /* We are interested only in first level VLAN device, so always 3249 * return 1 to stop iterating over next level devices. 3250 */ 3251 map->found = true; 3252 return 1; 3253 } 3254 3255 static int iboe_tos_to_sl(struct net_device *ndev, int tos) 3256 { 3257 struct iboe_prio_tc_map prio_tc_map = {}; 3258 int prio = rt_tos2priority(tos); 3259 struct netdev_nested_priv priv; 3260 3261 /* If VLAN device, get it directly from the VLAN netdev */ 3262 if (is_vlan_dev(ndev)) 3263 return get_vlan_ndev_tc(ndev, prio); 3264 3265 prio_tc_map.input_prio = prio; 3266 priv.data = (void *)&prio_tc_map; 3267 rcu_read_lock(); 3268 netdev_walk_all_lower_dev_rcu(ndev, 3269 get_lower_vlan_dev_tc, 3270 &priv); 3271 rcu_read_unlock(); 3272 /* If map is found from lower device, use it; Otherwise 3273 * continue with the current netdevice to get priority to tc map. 3274 */ 3275 if (prio_tc_map.found) 3276 return prio_tc_map.output_tc; 3277 else if (ndev->num_tc) 3278 return netdev_get_prio_tc_map(ndev, prio); 3279 else 3280 return 0; 3281 } 3282 3283 static __be32 cma_get_roce_udp_flow_label(struct rdma_id_private *id_priv) 3284 { 3285 struct sockaddr_in6 *addr6; 3286 u16 dport, sport; 3287 u32 hash, fl; 3288 3289 addr6 = (struct sockaddr_in6 *)cma_src_addr(id_priv); 3290 fl = be32_to_cpu(addr6->sin6_flowinfo) & IB_GRH_FLOWLABEL_MASK; 3291 if ((cma_family(id_priv) != AF_INET6) || !fl) { 3292 dport = be16_to_cpu(cma_port(cma_dst_addr(id_priv))); 3293 sport = be16_to_cpu(cma_port(cma_src_addr(id_priv))); 3294 hash = (u32)sport * 31 + dport; 3295 fl = hash & IB_GRH_FLOWLABEL_MASK; 3296 } 3297 3298 return cpu_to_be32(fl); 3299 } 3300 3301 static int cma_resolve_iboe_route(struct rdma_id_private *id_priv) 3302 { 3303 struct rdma_route *route = &id_priv->id.route; 3304 struct rdma_addr *addr = &route->addr; 3305 struct cma_work *work; 3306 int ret; 3307 struct net_device *ndev; 3308 3309 u8 default_roce_tos = id_priv->cma_dev->default_roce_tos[id_priv->id.port_num - 3310 rdma_start_port(id_priv->cma_dev->device)]; 3311 u8 tos; 3312 3313 mutex_lock(&id_priv->qp_mutex); 3314 tos = id_priv->tos_set ? id_priv->tos : default_roce_tos; 3315 mutex_unlock(&id_priv->qp_mutex); 3316 3317 work = kzalloc(sizeof *work, GFP_KERNEL); 3318 if (!work) 3319 return -ENOMEM; 3320 3321 route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL); 3322 if (!route->path_rec) { 3323 ret = -ENOMEM; 3324 goto err1; 3325 } 3326 3327 route->num_pri_alt_paths = 1; 3328 3329 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 3330 if (!ndev) { 3331 ret = -ENODEV; 3332 goto err2; 3333 } 3334 3335 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 3336 &route->path_rec->sgid); 3337 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr, 3338 &route->path_rec->dgid); 3339 3340 if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB) 3341 /* TODO: get the hoplimit from the inet/inet6 device */ 3342 route->path_rec->hop_limit = addr->dev_addr.hoplimit; 3343 else 3344 route->path_rec->hop_limit = 1; 3345 route->path_rec->reversible = 1; 3346 route->path_rec->pkey = cpu_to_be16(0xffff); 3347 route->path_rec->mtu_selector = IB_SA_EQ; 3348 route->path_rec->sl = iboe_tos_to_sl(ndev, tos); 3349 route->path_rec->traffic_class = tos; 3350 route->path_rec->mtu = iboe_get_mtu(ndev->mtu); 3351 route->path_rec->rate_selector = IB_SA_EQ; 3352 route->path_rec->rate = IB_RATE_PORT_CURRENT; 3353 dev_put(ndev); 3354 route->path_rec->packet_life_time_selector = IB_SA_EQ; 3355 /* In case ACK timeout is set, use this value to calculate 3356 * PacketLifeTime. As per IBTA 12.7.34, 3357 * local ACK timeout = (2 * PacketLifeTime + Local CA’s ACK delay). 3358 * Assuming a negligible local ACK delay, we can use 3359 * PacketLifeTime = local ACK timeout/2 3360 * as a reasonable approximation for RoCE networks. 3361 */ 3362 mutex_lock(&id_priv->qp_mutex); 3363 if (id_priv->timeout_set && id_priv->timeout) 3364 route->path_rec->packet_life_time = id_priv->timeout - 1; 3365 else 3366 route->path_rec->packet_life_time = CMA_IBOE_PACKET_LIFETIME; 3367 mutex_unlock(&id_priv->qp_mutex); 3368 3369 if (!route->path_rec->mtu) { 3370 ret = -EINVAL; 3371 goto err2; 3372 } 3373 3374 if (rdma_protocol_roce_udp_encap(id_priv->id.device, 3375 id_priv->id.port_num)) 3376 route->path_rec->flow_label = 3377 cma_get_roce_udp_flow_label(id_priv); 3378 3379 cma_init_resolve_route_work(work, id_priv); 3380 queue_work(cma_wq, &work->work); 3381 3382 return 0; 3383 3384 err2: 3385 kfree(route->path_rec); 3386 route->path_rec = NULL; 3387 route->num_pri_alt_paths = 0; 3388 err1: 3389 kfree(work); 3390 return ret; 3391 } 3392 3393 int rdma_resolve_route(struct rdma_cm_id *id, unsigned long timeout_ms) 3394 { 3395 struct rdma_id_private *id_priv; 3396 int ret; 3397 3398 if (!timeout_ms) 3399 return -EINVAL; 3400 3401 id_priv = container_of(id, struct rdma_id_private, id); 3402 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY)) 3403 return -EINVAL; 3404 3405 cma_id_get(id_priv); 3406 if (rdma_cap_ib_sa(id->device, id->port_num)) 3407 ret = cma_resolve_ib_route(id_priv, timeout_ms); 3408 else if (rdma_protocol_roce(id->device, id->port_num)) { 3409 ret = cma_resolve_iboe_route(id_priv); 3410 if (!ret) 3411 cma_add_id_to_tree(id_priv); 3412 } 3413 else if (rdma_protocol_iwarp(id->device, id->port_num)) 3414 ret = cma_resolve_iw_route(id_priv); 3415 else 3416 ret = -ENOSYS; 3417 3418 if (ret) 3419 goto err; 3420 3421 return 0; 3422 err: 3423 cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED); 3424 cma_id_put(id_priv); 3425 return ret; 3426 } 3427 EXPORT_SYMBOL(rdma_resolve_route); 3428 3429 static void cma_set_loopback(struct sockaddr *addr) 3430 { 3431 switch (addr->sa_family) { 3432 case AF_INET: 3433 ((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK); 3434 break; 3435 case AF_INET6: 3436 ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr, 3437 0, 0, 0, htonl(1)); 3438 break; 3439 default: 3440 ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr, 3441 0, 0, 0, htonl(1)); 3442 break; 3443 } 3444 } 3445 3446 static int cma_bind_loopback(struct rdma_id_private *id_priv) 3447 { 3448 struct cma_device *cma_dev, *cur_dev; 3449 union ib_gid gid; 3450 enum ib_port_state port_state; 3451 unsigned int p; 3452 u16 pkey; 3453 int ret; 3454 3455 cma_dev = NULL; 3456 mutex_lock(&lock); 3457 list_for_each_entry(cur_dev, &dev_list, list) { 3458 if (cma_family(id_priv) == AF_IB && 3459 !rdma_cap_ib_cm(cur_dev->device, 1)) 3460 continue; 3461 3462 if (!cma_dev) 3463 cma_dev = cur_dev; 3464 3465 rdma_for_each_port (cur_dev->device, p) { 3466 if (!ib_get_cached_port_state(cur_dev->device, p, &port_state) && 3467 port_state == IB_PORT_ACTIVE) { 3468 cma_dev = cur_dev; 3469 goto port_found; 3470 } 3471 } 3472 } 3473 3474 if (!cma_dev) { 3475 ret = -ENODEV; 3476 goto out; 3477 } 3478 3479 p = 1; 3480 3481 port_found: 3482 ret = rdma_query_gid(cma_dev->device, p, 0, &gid); 3483 if (ret) 3484 goto out; 3485 3486 ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey); 3487 if (ret) 3488 goto out; 3489 3490 id_priv->id.route.addr.dev_addr.dev_type = 3491 (rdma_protocol_ib(cma_dev->device, p)) ? 3492 ARPHRD_INFINIBAND : ARPHRD_ETHER; 3493 3494 rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3495 ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey); 3496 id_priv->id.port_num = p; 3497 cma_attach_to_dev(id_priv, cma_dev); 3498 rdma_restrack_add(&id_priv->res); 3499 cma_set_loopback(cma_src_addr(id_priv)); 3500 out: 3501 mutex_unlock(&lock); 3502 return ret; 3503 } 3504 3505 static void addr_handler(int status, struct sockaddr *src_addr, 3506 struct rdma_dev_addr *dev_addr, void *context) 3507 { 3508 struct rdma_id_private *id_priv = context; 3509 struct rdma_cm_event event = {}; 3510 struct sockaddr *addr; 3511 struct sockaddr_storage old_addr; 3512 3513 mutex_lock(&id_priv->handler_mutex); 3514 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, 3515 RDMA_CM_ADDR_RESOLVED)) 3516 goto out; 3517 3518 /* 3519 * Store the previous src address, so that if we fail to acquire 3520 * matching rdma device, old address can be restored back, which helps 3521 * to cancel the cma listen operation correctly. 3522 */ 3523 addr = cma_src_addr(id_priv); 3524 memcpy(&old_addr, addr, rdma_addr_size(addr)); 3525 memcpy(addr, src_addr, rdma_addr_size(src_addr)); 3526 if (!status && !id_priv->cma_dev) { 3527 status = cma_acquire_dev_by_src_ip(id_priv); 3528 if (status) 3529 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to acquire device. status %d\n", 3530 status); 3531 rdma_restrack_add(&id_priv->res); 3532 } else if (status) { 3533 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to resolve IP. status %d\n", status); 3534 } 3535 3536 if (status) { 3537 memcpy(addr, &old_addr, 3538 rdma_addr_size((struct sockaddr *)&old_addr)); 3539 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 3540 RDMA_CM_ADDR_BOUND)) 3541 goto out; 3542 event.event = RDMA_CM_EVENT_ADDR_ERROR; 3543 event.status = status; 3544 } else 3545 event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 3546 3547 if (cma_cm_event_handler(id_priv, &event)) { 3548 destroy_id_handler_unlock(id_priv); 3549 return; 3550 } 3551 out: 3552 mutex_unlock(&id_priv->handler_mutex); 3553 } 3554 3555 static int cma_resolve_loopback(struct rdma_id_private *id_priv) 3556 { 3557 struct cma_work *work; 3558 union ib_gid gid; 3559 int ret; 3560 3561 work = kzalloc(sizeof *work, GFP_KERNEL); 3562 if (!work) 3563 return -ENOMEM; 3564 3565 if (!id_priv->cma_dev) { 3566 ret = cma_bind_loopback(id_priv); 3567 if (ret) 3568 goto err; 3569 } 3570 3571 rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3572 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid); 3573 3574 enqueue_resolve_addr_work(work, id_priv); 3575 return 0; 3576 err: 3577 kfree(work); 3578 return ret; 3579 } 3580 3581 static int cma_resolve_ib_addr(struct rdma_id_private *id_priv) 3582 { 3583 struct cma_work *work; 3584 int ret; 3585 3586 work = kzalloc(sizeof *work, GFP_KERNEL); 3587 if (!work) 3588 return -ENOMEM; 3589 3590 if (!id_priv->cma_dev) { 3591 ret = cma_resolve_ib_dev(id_priv); 3592 if (ret) 3593 goto err; 3594 } 3595 3596 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *) 3597 &(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr)); 3598 3599 enqueue_resolve_addr_work(work, id_priv); 3600 return 0; 3601 err: 3602 kfree(work); 3603 return ret; 3604 } 3605 3606 int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse) 3607 { 3608 struct rdma_id_private *id_priv; 3609 unsigned long flags; 3610 int ret; 3611 3612 id_priv = container_of(id, struct rdma_id_private, id); 3613 spin_lock_irqsave(&id_priv->lock, flags); 3614 if ((reuse && id_priv->state != RDMA_CM_LISTEN) || 3615 id_priv->state == RDMA_CM_IDLE) { 3616 id_priv->reuseaddr = reuse; 3617 ret = 0; 3618 } else { 3619 ret = -EINVAL; 3620 } 3621 spin_unlock_irqrestore(&id_priv->lock, flags); 3622 return ret; 3623 } 3624 EXPORT_SYMBOL(rdma_set_reuseaddr); 3625 3626 int rdma_set_afonly(struct rdma_cm_id *id, int afonly) 3627 { 3628 struct rdma_id_private *id_priv; 3629 unsigned long flags; 3630 int ret; 3631 3632 id_priv = container_of(id, struct rdma_id_private, id); 3633 spin_lock_irqsave(&id_priv->lock, flags); 3634 if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) { 3635 id_priv->options |= (1 << CMA_OPTION_AFONLY); 3636 id_priv->afonly = afonly; 3637 ret = 0; 3638 } else { 3639 ret = -EINVAL; 3640 } 3641 spin_unlock_irqrestore(&id_priv->lock, flags); 3642 return ret; 3643 } 3644 EXPORT_SYMBOL(rdma_set_afonly); 3645 3646 static void cma_bind_port(struct rdma_bind_list *bind_list, 3647 struct rdma_id_private *id_priv) 3648 { 3649 struct sockaddr *addr; 3650 struct sockaddr_ib *sib; 3651 u64 sid, mask; 3652 __be16 port; 3653 3654 lockdep_assert_held(&lock); 3655 3656 addr = cma_src_addr(id_priv); 3657 port = htons(bind_list->port); 3658 3659 switch (addr->sa_family) { 3660 case AF_INET: 3661 ((struct sockaddr_in *) addr)->sin_port = port; 3662 break; 3663 case AF_INET6: 3664 ((struct sockaddr_in6 *) addr)->sin6_port = port; 3665 break; 3666 case AF_IB: 3667 sib = (struct sockaddr_ib *) addr; 3668 sid = be64_to_cpu(sib->sib_sid); 3669 mask = be64_to_cpu(sib->sib_sid_mask); 3670 sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port)); 3671 sib->sib_sid_mask = cpu_to_be64(~0ULL); 3672 break; 3673 } 3674 id_priv->bind_list = bind_list; 3675 hlist_add_head(&id_priv->node, &bind_list->owners); 3676 } 3677 3678 static int cma_alloc_port(enum rdma_ucm_port_space ps, 3679 struct rdma_id_private *id_priv, unsigned short snum) 3680 { 3681 struct rdma_bind_list *bind_list; 3682 int ret; 3683 3684 lockdep_assert_held(&lock); 3685 3686 bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL); 3687 if (!bind_list) 3688 return -ENOMEM; 3689 3690 ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list, 3691 snum); 3692 if (ret < 0) 3693 goto err; 3694 3695 bind_list->ps = ps; 3696 bind_list->port = snum; 3697 cma_bind_port(bind_list, id_priv); 3698 return 0; 3699 err: 3700 kfree(bind_list); 3701 return ret == -ENOSPC ? -EADDRNOTAVAIL : ret; 3702 } 3703 3704 static int cma_port_is_unique(struct rdma_bind_list *bind_list, 3705 struct rdma_id_private *id_priv) 3706 { 3707 struct rdma_id_private *cur_id; 3708 struct sockaddr *daddr = cma_dst_addr(id_priv); 3709 struct sockaddr *saddr = cma_src_addr(id_priv); 3710 __be16 dport = cma_port(daddr); 3711 3712 lockdep_assert_held(&lock); 3713 3714 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3715 struct sockaddr *cur_daddr = cma_dst_addr(cur_id); 3716 struct sockaddr *cur_saddr = cma_src_addr(cur_id); 3717 __be16 cur_dport = cma_port(cur_daddr); 3718 3719 if (id_priv == cur_id) 3720 continue; 3721 3722 /* different dest port -> unique */ 3723 if (!cma_any_port(daddr) && 3724 !cma_any_port(cur_daddr) && 3725 (dport != cur_dport)) 3726 continue; 3727 3728 /* different src address -> unique */ 3729 if (!cma_any_addr(saddr) && 3730 !cma_any_addr(cur_saddr) && 3731 cma_addr_cmp(saddr, cur_saddr)) 3732 continue; 3733 3734 /* different dst address -> unique */ 3735 if (!cma_any_addr(daddr) && 3736 !cma_any_addr(cur_daddr) && 3737 cma_addr_cmp(daddr, cur_daddr)) 3738 continue; 3739 3740 return -EADDRNOTAVAIL; 3741 } 3742 return 0; 3743 } 3744 3745 static int cma_alloc_any_port(enum rdma_ucm_port_space ps, 3746 struct rdma_id_private *id_priv) 3747 { 3748 static unsigned int last_used_port; 3749 int low, high, remaining; 3750 unsigned int rover; 3751 struct net *net = id_priv->id.route.addr.dev_addr.net; 3752 3753 lockdep_assert_held(&lock); 3754 3755 inet_get_local_port_range(net, &low, &high); 3756 remaining = (high - low) + 1; 3757 rover = get_random_u32_inclusive(low, remaining + low - 1); 3758 retry: 3759 if (last_used_port != rover) { 3760 struct rdma_bind_list *bind_list; 3761 int ret; 3762 3763 bind_list = cma_ps_find(net, ps, (unsigned short)rover); 3764 3765 if (!bind_list) { 3766 ret = cma_alloc_port(ps, id_priv, rover); 3767 } else { 3768 ret = cma_port_is_unique(bind_list, id_priv); 3769 if (!ret) 3770 cma_bind_port(bind_list, id_priv); 3771 } 3772 /* 3773 * Remember previously used port number in order to avoid 3774 * re-using same port immediately after it is closed. 3775 */ 3776 if (!ret) 3777 last_used_port = rover; 3778 if (ret != -EADDRNOTAVAIL) 3779 return ret; 3780 } 3781 if (--remaining) { 3782 rover++; 3783 if ((rover < low) || (rover > high)) 3784 rover = low; 3785 goto retry; 3786 } 3787 return -EADDRNOTAVAIL; 3788 } 3789 3790 /* 3791 * Check that the requested port is available. This is called when trying to 3792 * bind to a specific port, or when trying to listen on a bound port. In 3793 * the latter case, the provided id_priv may already be on the bind_list, but 3794 * we still need to check that it's okay to start listening. 3795 */ 3796 static int cma_check_port(struct rdma_bind_list *bind_list, 3797 struct rdma_id_private *id_priv, uint8_t reuseaddr) 3798 { 3799 struct rdma_id_private *cur_id; 3800 struct sockaddr *addr, *cur_addr; 3801 3802 lockdep_assert_held(&lock); 3803 3804 addr = cma_src_addr(id_priv); 3805 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3806 if (id_priv == cur_id) 3807 continue; 3808 3809 if (reuseaddr && cur_id->reuseaddr) 3810 continue; 3811 3812 cur_addr = cma_src_addr(cur_id); 3813 if (id_priv->afonly && cur_id->afonly && 3814 (addr->sa_family != cur_addr->sa_family)) 3815 continue; 3816 3817 if (cma_any_addr(addr) || cma_any_addr(cur_addr)) 3818 return -EADDRNOTAVAIL; 3819 3820 if (!cma_addr_cmp(addr, cur_addr)) 3821 return -EADDRINUSE; 3822 } 3823 return 0; 3824 } 3825 3826 static int cma_use_port(enum rdma_ucm_port_space ps, 3827 struct rdma_id_private *id_priv) 3828 { 3829 struct rdma_bind_list *bind_list; 3830 unsigned short snum; 3831 int ret; 3832 3833 lockdep_assert_held(&lock); 3834 3835 snum = ntohs(cma_port(cma_src_addr(id_priv))); 3836 if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 3837 return -EACCES; 3838 3839 bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum); 3840 if (!bind_list) { 3841 ret = cma_alloc_port(ps, id_priv, snum); 3842 } else { 3843 ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr); 3844 if (!ret) 3845 cma_bind_port(bind_list, id_priv); 3846 } 3847 return ret; 3848 } 3849 3850 static enum rdma_ucm_port_space 3851 cma_select_inet_ps(struct rdma_id_private *id_priv) 3852 { 3853 switch (id_priv->id.ps) { 3854 case RDMA_PS_TCP: 3855 case RDMA_PS_UDP: 3856 case RDMA_PS_IPOIB: 3857 case RDMA_PS_IB: 3858 return id_priv->id.ps; 3859 default: 3860 3861 return 0; 3862 } 3863 } 3864 3865 static enum rdma_ucm_port_space 3866 cma_select_ib_ps(struct rdma_id_private *id_priv) 3867 { 3868 enum rdma_ucm_port_space ps = 0; 3869 struct sockaddr_ib *sib; 3870 u64 sid_ps, mask, sid; 3871 3872 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 3873 mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK; 3874 sid = be64_to_cpu(sib->sib_sid) & mask; 3875 3876 if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) { 3877 sid_ps = RDMA_IB_IP_PS_IB; 3878 ps = RDMA_PS_IB; 3879 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) && 3880 (sid == (RDMA_IB_IP_PS_TCP & mask))) { 3881 sid_ps = RDMA_IB_IP_PS_TCP; 3882 ps = RDMA_PS_TCP; 3883 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) && 3884 (sid == (RDMA_IB_IP_PS_UDP & mask))) { 3885 sid_ps = RDMA_IB_IP_PS_UDP; 3886 ps = RDMA_PS_UDP; 3887 } 3888 3889 if (ps) { 3890 sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib))); 3891 sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK | 3892 be64_to_cpu(sib->sib_sid_mask)); 3893 } 3894 return ps; 3895 } 3896 3897 static int cma_get_port(struct rdma_id_private *id_priv) 3898 { 3899 enum rdma_ucm_port_space ps; 3900 int ret; 3901 3902 if (cma_family(id_priv) != AF_IB) 3903 ps = cma_select_inet_ps(id_priv); 3904 else 3905 ps = cma_select_ib_ps(id_priv); 3906 if (!ps) 3907 return -EPROTONOSUPPORT; 3908 3909 mutex_lock(&lock); 3910 if (cma_any_port(cma_src_addr(id_priv))) 3911 ret = cma_alloc_any_port(ps, id_priv); 3912 else 3913 ret = cma_use_port(ps, id_priv); 3914 mutex_unlock(&lock); 3915 3916 return ret; 3917 } 3918 3919 static int cma_check_linklocal(struct rdma_dev_addr *dev_addr, 3920 struct sockaddr *addr) 3921 { 3922 #if IS_ENABLED(CONFIG_IPV6) 3923 struct sockaddr_in6 *sin6; 3924 3925 if (addr->sa_family != AF_INET6) 3926 return 0; 3927 3928 sin6 = (struct sockaddr_in6 *) addr; 3929 3930 if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL)) 3931 return 0; 3932 3933 if (!sin6->sin6_scope_id) 3934 return -EINVAL; 3935 3936 dev_addr->bound_dev_if = sin6->sin6_scope_id; 3937 #endif 3938 return 0; 3939 } 3940 3941 int rdma_listen(struct rdma_cm_id *id, int backlog) 3942 { 3943 struct rdma_id_private *id_priv = 3944 container_of(id, struct rdma_id_private, id); 3945 int ret; 3946 3947 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) { 3948 struct sockaddr_in any_in = { 3949 .sin_family = AF_INET, 3950 .sin_addr.s_addr = htonl(INADDR_ANY), 3951 }; 3952 3953 /* For a well behaved ULP state will be RDMA_CM_IDLE */ 3954 ret = rdma_bind_addr(id, (struct sockaddr *)&any_in); 3955 if (ret) 3956 return ret; 3957 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, 3958 RDMA_CM_LISTEN))) 3959 return -EINVAL; 3960 } 3961 3962 /* 3963 * Once the ID reaches RDMA_CM_LISTEN it is not allowed to be reusable 3964 * any more, and has to be unique in the bind list. 3965 */ 3966 if (id_priv->reuseaddr) { 3967 mutex_lock(&lock); 3968 ret = cma_check_port(id_priv->bind_list, id_priv, 0); 3969 if (!ret) 3970 id_priv->reuseaddr = 0; 3971 mutex_unlock(&lock); 3972 if (ret) 3973 goto err; 3974 } 3975 3976 id_priv->backlog = backlog; 3977 if (id_priv->cma_dev) { 3978 if (rdma_cap_ib_cm(id->device, 1)) { 3979 ret = cma_ib_listen(id_priv); 3980 if (ret) 3981 goto err; 3982 } else if (rdma_cap_iw_cm(id->device, 1)) { 3983 ret = cma_iw_listen(id_priv, backlog); 3984 if (ret) 3985 goto err; 3986 } else { 3987 ret = -ENOSYS; 3988 goto err; 3989 } 3990 } else { 3991 ret = cma_listen_on_all(id_priv); 3992 if (ret) 3993 goto err; 3994 } 3995 3996 return 0; 3997 err: 3998 id_priv->backlog = 0; 3999 /* 4000 * All the failure paths that lead here will not allow the req_handler's 4001 * to have run. 4002 */ 4003 cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND); 4004 return ret; 4005 } 4006 EXPORT_SYMBOL(rdma_listen); 4007 4008 static int rdma_bind_addr_dst(struct rdma_id_private *id_priv, 4009 struct sockaddr *addr, const struct sockaddr *daddr) 4010 { 4011 struct sockaddr *id_daddr; 4012 int ret; 4013 4014 if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 && 4015 addr->sa_family != AF_IB) 4016 return -EAFNOSUPPORT; 4017 4018 if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND)) 4019 return -EINVAL; 4020 4021 ret = cma_check_linklocal(&id_priv->id.route.addr.dev_addr, addr); 4022 if (ret) 4023 goto err1; 4024 4025 memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr)); 4026 if (!cma_any_addr(addr)) { 4027 ret = cma_translate_addr(addr, &id_priv->id.route.addr.dev_addr); 4028 if (ret) 4029 goto err1; 4030 4031 ret = cma_acquire_dev_by_src_ip(id_priv); 4032 if (ret) 4033 goto err1; 4034 } 4035 4036 if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) { 4037 if (addr->sa_family == AF_INET) 4038 id_priv->afonly = 1; 4039 #if IS_ENABLED(CONFIG_IPV6) 4040 else if (addr->sa_family == AF_INET6) { 4041 struct net *net = id_priv->id.route.addr.dev_addr.net; 4042 4043 id_priv->afonly = net->ipv6.sysctl.bindv6only; 4044 } 4045 #endif 4046 } 4047 id_daddr = cma_dst_addr(id_priv); 4048 if (daddr != id_daddr) 4049 memcpy(id_daddr, daddr, rdma_addr_size(addr)); 4050 id_daddr->sa_family = addr->sa_family; 4051 4052 ret = cma_get_port(id_priv); 4053 if (ret) 4054 goto err2; 4055 4056 if (!cma_any_addr(addr)) 4057 rdma_restrack_add(&id_priv->res); 4058 return 0; 4059 err2: 4060 if (id_priv->cma_dev) 4061 cma_release_dev(id_priv); 4062 err1: 4063 cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE); 4064 return ret; 4065 } 4066 4067 static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 4068 const struct sockaddr *dst_addr) 4069 { 4070 struct rdma_id_private *id_priv = 4071 container_of(id, struct rdma_id_private, id); 4072 struct sockaddr_storage zero_sock = {}; 4073 4074 if (src_addr && src_addr->sa_family) 4075 return rdma_bind_addr_dst(id_priv, src_addr, dst_addr); 4076 4077 /* 4078 * When the src_addr is not specified, automatically supply an any addr 4079 */ 4080 zero_sock.ss_family = dst_addr->sa_family; 4081 if (IS_ENABLED(CONFIG_IPV6) && dst_addr->sa_family == AF_INET6) { 4082 struct sockaddr_in6 *src_addr6 = 4083 (struct sockaddr_in6 *)&zero_sock; 4084 struct sockaddr_in6 *dst_addr6 = 4085 (struct sockaddr_in6 *)dst_addr; 4086 4087 src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id; 4088 if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL) 4089 id->route.addr.dev_addr.bound_dev_if = 4090 dst_addr6->sin6_scope_id; 4091 } else if (dst_addr->sa_family == AF_IB) { 4092 ((struct sockaddr_ib *)&zero_sock)->sib_pkey = 4093 ((struct sockaddr_ib *)dst_addr)->sib_pkey; 4094 } 4095 return rdma_bind_addr_dst(id_priv, (struct sockaddr *)&zero_sock, dst_addr); 4096 } 4097 4098 /* 4099 * If required, resolve the source address for bind and leave the id_priv in 4100 * state RDMA_CM_ADDR_BOUND. This oddly uses the state to determine the prior 4101 * calls made by ULP, a previously bound ID will not be re-bound and src_addr is 4102 * ignored. 4103 */ 4104 static int resolve_prepare_src(struct rdma_id_private *id_priv, 4105 struct sockaddr *src_addr, 4106 const struct sockaddr *dst_addr) 4107 { 4108 int ret; 4109 4110 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) { 4111 /* For a well behaved ULP state will be RDMA_CM_IDLE */ 4112 ret = cma_bind_addr(&id_priv->id, src_addr, dst_addr); 4113 if (ret) 4114 return ret; 4115 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, 4116 RDMA_CM_ADDR_QUERY))) 4117 return -EINVAL; 4118 4119 } else { 4120 memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr)); 4121 } 4122 4123 if (cma_family(id_priv) != dst_addr->sa_family) { 4124 ret = -EINVAL; 4125 goto err_state; 4126 } 4127 return 0; 4128 4129 err_state: 4130 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); 4131 return ret; 4132 } 4133 4134 int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 4135 const struct sockaddr *dst_addr, unsigned long timeout_ms) 4136 { 4137 struct rdma_id_private *id_priv = 4138 container_of(id, struct rdma_id_private, id); 4139 int ret; 4140 4141 ret = resolve_prepare_src(id_priv, src_addr, dst_addr); 4142 if (ret) 4143 return ret; 4144 4145 if (cma_any_addr(dst_addr)) { 4146 ret = cma_resolve_loopback(id_priv); 4147 } else { 4148 if (dst_addr->sa_family == AF_IB) { 4149 ret = cma_resolve_ib_addr(id_priv); 4150 } else { 4151 /* 4152 * The FSM can return back to RDMA_CM_ADDR_BOUND after 4153 * rdma_resolve_ip() is called, eg through the error 4154 * path in addr_handler(). If this happens the existing 4155 * request must be canceled before issuing a new one. 4156 * Since canceling a request is a bit slow and this 4157 * oddball path is rare, keep track once a request has 4158 * been issued. The track turns out to be a permanent 4159 * state since this is the only cancel as it is 4160 * immediately before rdma_resolve_ip(). 4161 */ 4162 if (id_priv->used_resolve_ip) 4163 rdma_addr_cancel(&id->route.addr.dev_addr); 4164 else 4165 id_priv->used_resolve_ip = 1; 4166 ret = rdma_resolve_ip(cma_src_addr(id_priv), dst_addr, 4167 &id->route.addr.dev_addr, 4168 timeout_ms, addr_handler, 4169 false, id_priv); 4170 } 4171 } 4172 if (ret) 4173 goto err; 4174 4175 return 0; 4176 err: 4177 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); 4178 return ret; 4179 } 4180 EXPORT_SYMBOL(rdma_resolve_addr); 4181 4182 int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr) 4183 { 4184 struct rdma_id_private *id_priv = 4185 container_of(id, struct rdma_id_private, id); 4186 4187 return rdma_bind_addr_dst(id_priv, addr, cma_dst_addr(id_priv)); 4188 } 4189 EXPORT_SYMBOL(rdma_bind_addr); 4190 4191 static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv) 4192 { 4193 struct cma_hdr *cma_hdr; 4194 4195 cma_hdr = hdr; 4196 cma_hdr->cma_version = CMA_VERSION; 4197 if (cma_family(id_priv) == AF_INET) { 4198 struct sockaddr_in *src4, *dst4; 4199 4200 src4 = (struct sockaddr_in *) cma_src_addr(id_priv); 4201 dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv); 4202 4203 cma_set_ip_ver(cma_hdr, 4); 4204 cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr; 4205 cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr; 4206 cma_hdr->port = src4->sin_port; 4207 } else if (cma_family(id_priv) == AF_INET6) { 4208 struct sockaddr_in6 *src6, *dst6; 4209 4210 src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 4211 dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv); 4212 4213 cma_set_ip_ver(cma_hdr, 6); 4214 cma_hdr->src_addr.ip6 = src6->sin6_addr; 4215 cma_hdr->dst_addr.ip6 = dst6->sin6_addr; 4216 cma_hdr->port = src6->sin6_port; 4217 } 4218 return 0; 4219 } 4220 4221 static int cma_sidr_rep_handler(struct ib_cm_id *cm_id, 4222 const struct ib_cm_event *ib_event) 4223 { 4224 struct rdma_id_private *id_priv = cm_id->context; 4225 struct rdma_cm_event event = {}; 4226 const struct ib_cm_sidr_rep_event_param *rep = 4227 &ib_event->param.sidr_rep_rcvd; 4228 int ret; 4229 4230 mutex_lock(&id_priv->handler_mutex); 4231 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 4232 goto out; 4233 4234 switch (ib_event->event) { 4235 case IB_CM_SIDR_REQ_ERROR: 4236 event.event = RDMA_CM_EVENT_UNREACHABLE; 4237 event.status = -ETIMEDOUT; 4238 break; 4239 case IB_CM_SIDR_REP_RECEIVED: 4240 event.param.ud.private_data = ib_event->private_data; 4241 event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE; 4242 if (rep->status != IB_SIDR_SUCCESS) { 4243 event.event = RDMA_CM_EVENT_UNREACHABLE; 4244 event.status = ib_event->param.sidr_rep_rcvd.status; 4245 pr_debug_ratelimited("RDMA CM: UNREACHABLE: bad SIDR reply. status %d\n", 4246 event.status); 4247 break; 4248 } 4249 ret = cma_set_qkey(id_priv, rep->qkey); 4250 if (ret) { 4251 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to set qkey. status %d\n", ret); 4252 event.event = RDMA_CM_EVENT_ADDR_ERROR; 4253 event.status = ret; 4254 break; 4255 } 4256 ib_init_ah_attr_from_path(id_priv->id.device, 4257 id_priv->id.port_num, 4258 id_priv->id.route.path_rec, 4259 &event.param.ud.ah_attr, 4260 rep->sgid_attr); 4261 event.param.ud.qp_num = rep->qpn; 4262 event.param.ud.qkey = rep->qkey; 4263 event.event = RDMA_CM_EVENT_ESTABLISHED; 4264 event.status = 0; 4265 break; 4266 default: 4267 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 4268 ib_event->event); 4269 goto out; 4270 } 4271 4272 ret = cma_cm_event_handler(id_priv, &event); 4273 4274 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 4275 if (ret) { 4276 /* Destroy the CM ID by returning a non-zero value. */ 4277 id_priv->cm_id.ib = NULL; 4278 destroy_id_handler_unlock(id_priv); 4279 return ret; 4280 } 4281 out: 4282 mutex_unlock(&id_priv->handler_mutex); 4283 return 0; 4284 } 4285 4286 static int cma_resolve_ib_udp(struct rdma_id_private *id_priv, 4287 struct rdma_conn_param *conn_param) 4288 { 4289 struct ib_cm_sidr_req_param req; 4290 struct ib_cm_id *id; 4291 void *private_data; 4292 u8 offset; 4293 int ret; 4294 4295 memset(&req, 0, sizeof req); 4296 offset = cma_user_data_offset(id_priv); 4297 if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len)) 4298 return -EINVAL; 4299 4300 if (req.private_data_len) { 4301 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 4302 if (!private_data) 4303 return -ENOMEM; 4304 } else { 4305 private_data = NULL; 4306 } 4307 4308 if (conn_param->private_data && conn_param->private_data_len) 4309 memcpy(private_data + offset, conn_param->private_data, 4310 conn_param->private_data_len); 4311 4312 if (private_data) { 4313 ret = cma_format_hdr(private_data, id_priv); 4314 if (ret) 4315 goto out; 4316 req.private_data = private_data; 4317 } 4318 4319 id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler, 4320 id_priv); 4321 if (IS_ERR(id)) { 4322 ret = PTR_ERR(id); 4323 goto out; 4324 } 4325 id_priv->cm_id.ib = id; 4326 4327 req.path = id_priv->id.route.path_rec; 4328 req.sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 4329 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 4330 req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8); 4331 req.max_cm_retries = CMA_MAX_CM_RETRIES; 4332 4333 trace_cm_send_sidr_req(id_priv); 4334 ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req); 4335 if (ret) { 4336 ib_destroy_cm_id(id_priv->cm_id.ib); 4337 id_priv->cm_id.ib = NULL; 4338 } 4339 out: 4340 kfree(private_data); 4341 return ret; 4342 } 4343 4344 static int cma_connect_ib(struct rdma_id_private *id_priv, 4345 struct rdma_conn_param *conn_param) 4346 { 4347 struct ib_cm_req_param req; 4348 struct rdma_route *route; 4349 void *private_data; 4350 struct ib_cm_id *id; 4351 u8 offset; 4352 int ret; 4353 4354 memset(&req, 0, sizeof req); 4355 offset = cma_user_data_offset(id_priv); 4356 if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len)) 4357 return -EINVAL; 4358 4359 if (req.private_data_len) { 4360 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 4361 if (!private_data) 4362 return -ENOMEM; 4363 } else { 4364 private_data = NULL; 4365 } 4366 4367 if (conn_param->private_data && conn_param->private_data_len) 4368 memcpy(private_data + offset, conn_param->private_data, 4369 conn_param->private_data_len); 4370 4371 id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv); 4372 if (IS_ERR(id)) { 4373 ret = PTR_ERR(id); 4374 goto out; 4375 } 4376 id_priv->cm_id.ib = id; 4377 4378 route = &id_priv->id.route; 4379 if (private_data) { 4380 ret = cma_format_hdr(private_data, id_priv); 4381 if (ret) 4382 goto out; 4383 req.private_data = private_data; 4384 } 4385 4386 req.primary_path = &route->path_rec[0]; 4387 req.primary_path_inbound = route->path_rec_inbound; 4388 req.primary_path_outbound = route->path_rec_outbound; 4389 if (route->num_pri_alt_paths == 2) 4390 req.alternate_path = &route->path_rec[1]; 4391 4392 req.ppath_sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 4393 /* Alternate path SGID attribute currently unsupported */ 4394 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 4395 req.qp_num = id_priv->qp_num; 4396 req.qp_type = id_priv->id.qp_type; 4397 req.starting_psn = id_priv->seq_num; 4398 req.responder_resources = conn_param->responder_resources; 4399 req.initiator_depth = conn_param->initiator_depth; 4400 req.flow_control = conn_param->flow_control; 4401 req.retry_count = min_t(u8, 7, conn_param->retry_count); 4402 req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 4403 req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 4404 req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 4405 req.max_cm_retries = CMA_MAX_CM_RETRIES; 4406 req.srq = id_priv->srq ? 1 : 0; 4407 req.ece.vendor_id = id_priv->ece.vendor_id; 4408 req.ece.attr_mod = id_priv->ece.attr_mod; 4409 4410 trace_cm_send_req(id_priv); 4411 ret = ib_send_cm_req(id_priv->cm_id.ib, &req); 4412 out: 4413 if (ret && !IS_ERR(id)) { 4414 ib_destroy_cm_id(id); 4415 id_priv->cm_id.ib = NULL; 4416 } 4417 4418 kfree(private_data); 4419 return ret; 4420 } 4421 4422 static int cma_connect_iw(struct rdma_id_private *id_priv, 4423 struct rdma_conn_param *conn_param) 4424 { 4425 struct iw_cm_id *cm_id; 4426 int ret; 4427 struct iw_cm_conn_param iw_param; 4428 4429 cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv); 4430 if (IS_ERR(cm_id)) 4431 return PTR_ERR(cm_id); 4432 4433 mutex_lock(&id_priv->qp_mutex); 4434 cm_id->tos = id_priv->tos; 4435 cm_id->tos_set = id_priv->tos_set; 4436 mutex_unlock(&id_priv->qp_mutex); 4437 4438 id_priv->cm_id.iw = cm_id; 4439 4440 memcpy(&cm_id->local_addr, cma_src_addr(id_priv), 4441 rdma_addr_size(cma_src_addr(id_priv))); 4442 memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv), 4443 rdma_addr_size(cma_dst_addr(id_priv))); 4444 4445 ret = cma_modify_qp_rtr(id_priv, conn_param); 4446 if (ret) 4447 goto out; 4448 4449 if (conn_param) { 4450 iw_param.ord = conn_param->initiator_depth; 4451 iw_param.ird = conn_param->responder_resources; 4452 iw_param.private_data = conn_param->private_data; 4453 iw_param.private_data_len = conn_param->private_data_len; 4454 iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num; 4455 } else { 4456 memset(&iw_param, 0, sizeof iw_param); 4457 iw_param.qpn = id_priv->qp_num; 4458 } 4459 ret = iw_cm_connect(cm_id, &iw_param); 4460 out: 4461 if (ret) { 4462 iw_destroy_cm_id(cm_id); 4463 id_priv->cm_id.iw = NULL; 4464 } 4465 return ret; 4466 } 4467 4468 /** 4469 * rdma_connect_locked - Initiate an active connection request. 4470 * @id: Connection identifier to connect. 4471 * @conn_param: Connection information used for connected QPs. 4472 * 4473 * Same as rdma_connect() but can only be called from the 4474 * RDMA_CM_EVENT_ROUTE_RESOLVED handler callback. 4475 */ 4476 int rdma_connect_locked(struct rdma_cm_id *id, 4477 struct rdma_conn_param *conn_param) 4478 { 4479 struct rdma_id_private *id_priv = 4480 container_of(id, struct rdma_id_private, id); 4481 int ret; 4482 4483 if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT)) 4484 return -EINVAL; 4485 4486 if (!id->qp) { 4487 id_priv->qp_num = conn_param->qp_num; 4488 id_priv->srq = conn_param->srq; 4489 } 4490 4491 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4492 if (id->qp_type == IB_QPT_UD) 4493 ret = cma_resolve_ib_udp(id_priv, conn_param); 4494 else 4495 ret = cma_connect_ib(id_priv, conn_param); 4496 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4497 ret = cma_connect_iw(id_priv, conn_param); 4498 } else { 4499 ret = -ENOSYS; 4500 } 4501 if (ret) 4502 goto err_state; 4503 return 0; 4504 err_state: 4505 cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED); 4506 return ret; 4507 } 4508 EXPORT_SYMBOL(rdma_connect_locked); 4509 4510 /** 4511 * rdma_connect - Initiate an active connection request. 4512 * @id: Connection identifier to connect. 4513 * @conn_param: Connection information used for connected QPs. 4514 * 4515 * Users must have resolved a route for the rdma_cm_id to connect with by having 4516 * called rdma_resolve_route before calling this routine. 4517 * 4518 * This call will either connect to a remote QP or obtain remote QP information 4519 * for unconnected rdma_cm_id's. The actual operation is based on the 4520 * rdma_cm_id's port space. 4521 */ 4522 int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) 4523 { 4524 struct rdma_id_private *id_priv = 4525 container_of(id, struct rdma_id_private, id); 4526 int ret; 4527 4528 mutex_lock(&id_priv->handler_mutex); 4529 ret = rdma_connect_locked(id, conn_param); 4530 mutex_unlock(&id_priv->handler_mutex); 4531 return ret; 4532 } 4533 EXPORT_SYMBOL(rdma_connect); 4534 4535 /** 4536 * rdma_connect_ece - Initiate an active connection request with ECE data. 4537 * @id: Connection identifier to connect. 4538 * @conn_param: Connection information used for connected QPs. 4539 * @ece: ECE parameters 4540 * 4541 * See rdma_connect() explanation. 4542 */ 4543 int rdma_connect_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4544 struct rdma_ucm_ece *ece) 4545 { 4546 struct rdma_id_private *id_priv = 4547 container_of(id, struct rdma_id_private, id); 4548 4549 id_priv->ece.vendor_id = ece->vendor_id; 4550 id_priv->ece.attr_mod = ece->attr_mod; 4551 4552 return rdma_connect(id, conn_param); 4553 } 4554 EXPORT_SYMBOL(rdma_connect_ece); 4555 4556 static int cma_accept_ib(struct rdma_id_private *id_priv, 4557 struct rdma_conn_param *conn_param) 4558 { 4559 struct ib_cm_rep_param rep; 4560 int ret; 4561 4562 ret = cma_modify_qp_rtr(id_priv, conn_param); 4563 if (ret) 4564 goto out; 4565 4566 ret = cma_modify_qp_rts(id_priv, conn_param); 4567 if (ret) 4568 goto out; 4569 4570 memset(&rep, 0, sizeof rep); 4571 rep.qp_num = id_priv->qp_num; 4572 rep.starting_psn = id_priv->seq_num; 4573 rep.private_data = conn_param->private_data; 4574 rep.private_data_len = conn_param->private_data_len; 4575 rep.responder_resources = conn_param->responder_resources; 4576 rep.initiator_depth = conn_param->initiator_depth; 4577 rep.failover_accepted = 0; 4578 rep.flow_control = conn_param->flow_control; 4579 rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 4580 rep.srq = id_priv->srq ? 1 : 0; 4581 rep.ece.vendor_id = id_priv->ece.vendor_id; 4582 rep.ece.attr_mod = id_priv->ece.attr_mod; 4583 4584 trace_cm_send_rep(id_priv); 4585 ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep); 4586 out: 4587 return ret; 4588 } 4589 4590 static int cma_accept_iw(struct rdma_id_private *id_priv, 4591 struct rdma_conn_param *conn_param) 4592 { 4593 struct iw_cm_conn_param iw_param; 4594 int ret; 4595 4596 if (!conn_param) 4597 return -EINVAL; 4598 4599 ret = cma_modify_qp_rtr(id_priv, conn_param); 4600 if (ret) 4601 return ret; 4602 4603 iw_param.ord = conn_param->initiator_depth; 4604 iw_param.ird = conn_param->responder_resources; 4605 iw_param.private_data = conn_param->private_data; 4606 iw_param.private_data_len = conn_param->private_data_len; 4607 if (id_priv->id.qp) 4608 iw_param.qpn = id_priv->qp_num; 4609 else 4610 iw_param.qpn = conn_param->qp_num; 4611 4612 return iw_cm_accept(id_priv->cm_id.iw, &iw_param); 4613 } 4614 4615 static int cma_send_sidr_rep(struct rdma_id_private *id_priv, 4616 enum ib_cm_sidr_status status, u32 qkey, 4617 const void *private_data, int private_data_len) 4618 { 4619 struct ib_cm_sidr_rep_param rep; 4620 int ret; 4621 4622 memset(&rep, 0, sizeof rep); 4623 rep.status = status; 4624 if (status == IB_SIDR_SUCCESS) { 4625 if (qkey) 4626 ret = cma_set_qkey(id_priv, qkey); 4627 else 4628 ret = cma_set_default_qkey(id_priv); 4629 if (ret) 4630 return ret; 4631 rep.qp_num = id_priv->qp_num; 4632 rep.qkey = id_priv->qkey; 4633 4634 rep.ece.vendor_id = id_priv->ece.vendor_id; 4635 rep.ece.attr_mod = id_priv->ece.attr_mod; 4636 } 4637 4638 rep.private_data = private_data; 4639 rep.private_data_len = private_data_len; 4640 4641 trace_cm_send_sidr_rep(id_priv); 4642 return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep); 4643 } 4644 4645 /** 4646 * rdma_accept - Called to accept a connection request or response. 4647 * @id: Connection identifier associated with the request. 4648 * @conn_param: Information needed to establish the connection. This must be 4649 * provided if accepting a connection request. If accepting a connection 4650 * response, this parameter must be NULL. 4651 * 4652 * Typically, this routine is only called by the listener to accept a connection 4653 * request. It must also be called on the active side of a connection if the 4654 * user is performing their own QP transitions. 4655 * 4656 * In the case of error, a reject message is sent to the remote side and the 4657 * state of the qp associated with the id is modified to error, such that any 4658 * previously posted receive buffers would be flushed. 4659 * 4660 * This function is for use by kernel ULPs and must be called from under the 4661 * handler callback. 4662 */ 4663 int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) 4664 { 4665 struct rdma_id_private *id_priv = 4666 container_of(id, struct rdma_id_private, id); 4667 int ret; 4668 4669 lockdep_assert_held(&id_priv->handler_mutex); 4670 4671 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 4672 return -EINVAL; 4673 4674 if (!id->qp && conn_param) { 4675 id_priv->qp_num = conn_param->qp_num; 4676 id_priv->srq = conn_param->srq; 4677 } 4678 4679 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4680 if (id->qp_type == IB_QPT_UD) { 4681 if (conn_param) 4682 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4683 conn_param->qkey, 4684 conn_param->private_data, 4685 conn_param->private_data_len); 4686 else 4687 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4688 0, NULL, 0); 4689 } else { 4690 if (conn_param) 4691 ret = cma_accept_ib(id_priv, conn_param); 4692 else 4693 ret = cma_rep_recv(id_priv); 4694 } 4695 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4696 ret = cma_accept_iw(id_priv, conn_param); 4697 } else { 4698 ret = -ENOSYS; 4699 } 4700 if (ret) 4701 goto reject; 4702 4703 return 0; 4704 reject: 4705 cma_modify_qp_err(id_priv); 4706 rdma_reject(id, NULL, 0, IB_CM_REJ_CONSUMER_DEFINED); 4707 return ret; 4708 } 4709 EXPORT_SYMBOL(rdma_accept); 4710 4711 int rdma_accept_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4712 struct rdma_ucm_ece *ece) 4713 { 4714 struct rdma_id_private *id_priv = 4715 container_of(id, struct rdma_id_private, id); 4716 4717 id_priv->ece.vendor_id = ece->vendor_id; 4718 id_priv->ece.attr_mod = ece->attr_mod; 4719 4720 return rdma_accept(id, conn_param); 4721 } 4722 EXPORT_SYMBOL(rdma_accept_ece); 4723 4724 void rdma_lock_handler(struct rdma_cm_id *id) 4725 { 4726 struct rdma_id_private *id_priv = 4727 container_of(id, struct rdma_id_private, id); 4728 4729 mutex_lock(&id_priv->handler_mutex); 4730 } 4731 EXPORT_SYMBOL(rdma_lock_handler); 4732 4733 void rdma_unlock_handler(struct rdma_cm_id *id) 4734 { 4735 struct rdma_id_private *id_priv = 4736 container_of(id, struct rdma_id_private, id); 4737 4738 mutex_unlock(&id_priv->handler_mutex); 4739 } 4740 EXPORT_SYMBOL(rdma_unlock_handler); 4741 4742 int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event) 4743 { 4744 struct rdma_id_private *id_priv; 4745 int ret; 4746 4747 id_priv = container_of(id, struct rdma_id_private, id); 4748 if (!id_priv->cm_id.ib) 4749 return -EINVAL; 4750 4751 switch (id->device->node_type) { 4752 case RDMA_NODE_IB_CA: 4753 ret = ib_cm_notify(id_priv->cm_id.ib, event); 4754 break; 4755 default: 4756 ret = 0; 4757 break; 4758 } 4759 return ret; 4760 } 4761 EXPORT_SYMBOL(rdma_notify); 4762 4763 int rdma_reject(struct rdma_cm_id *id, const void *private_data, 4764 u8 private_data_len, u8 reason) 4765 { 4766 struct rdma_id_private *id_priv; 4767 int ret; 4768 4769 id_priv = container_of(id, struct rdma_id_private, id); 4770 if (!id_priv->cm_id.ib) 4771 return -EINVAL; 4772 4773 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4774 if (id->qp_type == IB_QPT_UD) { 4775 ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0, 4776 private_data, private_data_len); 4777 } else { 4778 trace_cm_send_rej(id_priv); 4779 ret = ib_send_cm_rej(id_priv->cm_id.ib, reason, NULL, 0, 4780 private_data, private_data_len); 4781 } 4782 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4783 ret = iw_cm_reject(id_priv->cm_id.iw, 4784 private_data, private_data_len); 4785 } else { 4786 ret = -ENOSYS; 4787 } 4788 4789 return ret; 4790 } 4791 EXPORT_SYMBOL(rdma_reject); 4792 4793 int rdma_disconnect(struct rdma_cm_id *id) 4794 { 4795 struct rdma_id_private *id_priv; 4796 int ret; 4797 4798 id_priv = container_of(id, struct rdma_id_private, id); 4799 if (!id_priv->cm_id.ib) 4800 return -EINVAL; 4801 4802 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4803 ret = cma_modify_qp_err(id_priv); 4804 if (ret) 4805 goto out; 4806 /* Initiate or respond to a disconnect. */ 4807 trace_cm_disconnect(id_priv); 4808 if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) { 4809 if (!ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0)) 4810 trace_cm_sent_drep(id_priv); 4811 } else { 4812 trace_cm_sent_dreq(id_priv); 4813 } 4814 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4815 ret = iw_cm_disconnect(id_priv->cm_id.iw, 0); 4816 } else 4817 ret = -EINVAL; 4818 4819 out: 4820 return ret; 4821 } 4822 EXPORT_SYMBOL(rdma_disconnect); 4823 4824 static void cma_make_mc_event(int status, struct rdma_id_private *id_priv, 4825 struct ib_sa_multicast *multicast, 4826 struct rdma_cm_event *event, 4827 struct cma_multicast *mc) 4828 { 4829 struct rdma_dev_addr *dev_addr; 4830 enum ib_gid_type gid_type; 4831 struct net_device *ndev; 4832 4833 if (status) 4834 pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to join multicast. status %d\n", 4835 status); 4836 4837 event->status = status; 4838 event->param.ud.private_data = mc->context; 4839 if (status) { 4840 event->event = RDMA_CM_EVENT_MULTICAST_ERROR; 4841 return; 4842 } 4843 4844 dev_addr = &id_priv->id.route.addr.dev_addr; 4845 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 4846 gid_type = 4847 id_priv->cma_dev 4848 ->default_gid_type[id_priv->id.port_num - 4849 rdma_start_port( 4850 id_priv->cma_dev->device)]; 4851 4852 event->event = RDMA_CM_EVENT_MULTICAST_JOIN; 4853 if (ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num, 4854 &multicast->rec, ndev, gid_type, 4855 &event->param.ud.ah_attr)) { 4856 event->event = RDMA_CM_EVENT_MULTICAST_ERROR; 4857 goto out; 4858 } 4859 4860 event->param.ud.qp_num = 0xFFFFFF; 4861 event->param.ud.qkey = id_priv->qkey; 4862 4863 out: 4864 dev_put(ndev); 4865 } 4866 4867 static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast) 4868 { 4869 struct cma_multicast *mc = multicast->context; 4870 struct rdma_id_private *id_priv = mc->id_priv; 4871 struct rdma_cm_event event = {}; 4872 int ret = 0; 4873 4874 mutex_lock(&id_priv->handler_mutex); 4875 if (READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL || 4876 READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING) 4877 goto out; 4878 4879 ret = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey)); 4880 if (!ret) { 4881 cma_make_mc_event(status, id_priv, multicast, &event, mc); 4882 ret = cma_cm_event_handler(id_priv, &event); 4883 } 4884 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 4885 WARN_ON(ret); 4886 4887 out: 4888 mutex_unlock(&id_priv->handler_mutex); 4889 return 0; 4890 } 4891 4892 static void cma_set_mgid(struct rdma_id_private *id_priv, 4893 struct sockaddr *addr, union ib_gid *mgid) 4894 { 4895 unsigned char mc_map[MAX_ADDR_LEN]; 4896 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4897 struct sockaddr_in *sin = (struct sockaddr_in *) addr; 4898 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr; 4899 4900 if (cma_any_addr(addr)) { 4901 memset(mgid, 0, sizeof *mgid); 4902 } else if ((addr->sa_family == AF_INET6) && 4903 ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) == 4904 0xFF10A01B)) { 4905 /* IPv6 address is an SA assigned MGID. */ 4906 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4907 } else if (addr->sa_family == AF_IB) { 4908 memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid); 4909 } else if (addr->sa_family == AF_INET6) { 4910 ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map); 4911 if (id_priv->id.ps == RDMA_PS_UDP) 4912 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4913 *mgid = *(union ib_gid *) (mc_map + 4); 4914 } else { 4915 ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map); 4916 if (id_priv->id.ps == RDMA_PS_UDP) 4917 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4918 *mgid = *(union ib_gid *) (mc_map + 4); 4919 } 4920 } 4921 4922 static int cma_join_ib_multicast(struct rdma_id_private *id_priv, 4923 struct cma_multicast *mc) 4924 { 4925 struct ib_sa_mcmember_rec rec; 4926 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4927 ib_sa_comp_mask comp_mask; 4928 int ret; 4929 4930 ib_addr_get_mgid(dev_addr, &rec.mgid); 4931 ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num, 4932 &rec.mgid, &rec); 4933 if (ret) 4934 return ret; 4935 4936 if (!id_priv->qkey) { 4937 ret = cma_set_default_qkey(id_priv); 4938 if (ret) 4939 return ret; 4940 } 4941 4942 cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid); 4943 rec.qkey = cpu_to_be32(id_priv->qkey); 4944 rdma_addr_get_sgid(dev_addr, &rec.port_gid); 4945 rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 4946 rec.join_state = mc->join_state; 4947 4948 comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID | 4949 IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE | 4950 IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL | 4951 IB_SA_MCMEMBER_REC_FLOW_LABEL | 4952 IB_SA_MCMEMBER_REC_TRAFFIC_CLASS; 4953 4954 if (id_priv->id.ps == RDMA_PS_IPOIB) 4955 comp_mask |= IB_SA_MCMEMBER_REC_RATE | 4956 IB_SA_MCMEMBER_REC_RATE_SELECTOR | 4957 IB_SA_MCMEMBER_REC_MTU_SELECTOR | 4958 IB_SA_MCMEMBER_REC_MTU | 4959 IB_SA_MCMEMBER_REC_HOP_LIMIT; 4960 4961 mc->sa_mc = ib_sa_join_multicast(&sa_client, id_priv->id.device, 4962 id_priv->id.port_num, &rec, comp_mask, 4963 GFP_KERNEL, cma_ib_mc_handler, mc); 4964 return PTR_ERR_OR_ZERO(mc->sa_mc); 4965 } 4966 4967 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid, 4968 enum ib_gid_type gid_type) 4969 { 4970 struct sockaddr_in *sin = (struct sockaddr_in *)addr; 4971 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr; 4972 4973 if (cma_any_addr(addr)) { 4974 memset(mgid, 0, sizeof *mgid); 4975 } else if (addr->sa_family == AF_INET6) { 4976 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4977 } else { 4978 mgid->raw[0] = 4979 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff; 4980 mgid->raw[1] = 4981 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e; 4982 mgid->raw[2] = 0; 4983 mgid->raw[3] = 0; 4984 mgid->raw[4] = 0; 4985 mgid->raw[5] = 0; 4986 mgid->raw[6] = 0; 4987 mgid->raw[7] = 0; 4988 mgid->raw[8] = 0; 4989 mgid->raw[9] = 0; 4990 mgid->raw[10] = 0xff; 4991 mgid->raw[11] = 0xff; 4992 *(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr; 4993 } 4994 } 4995 4996 static int cma_iboe_join_multicast(struct rdma_id_private *id_priv, 4997 struct cma_multicast *mc) 4998 { 4999 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 5000 int err = 0; 5001 struct sockaddr *addr = (struct sockaddr *)&mc->addr; 5002 struct net_device *ndev = NULL; 5003 struct ib_sa_multicast ib = {}; 5004 enum ib_gid_type gid_type; 5005 bool send_only; 5006 5007 send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN); 5008 5009 if (cma_zero_addr(addr)) 5010 return -EINVAL; 5011 5012 gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num - 5013 rdma_start_port(id_priv->cma_dev->device)]; 5014 cma_iboe_set_mgid(addr, &ib.rec.mgid, gid_type); 5015 5016 ib.rec.pkey = cpu_to_be16(0xffff); 5017 if (dev_addr->bound_dev_if) 5018 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 5019 if (!ndev) 5020 return -ENODEV; 5021 5022 ib.rec.rate = IB_RATE_PORT_CURRENT; 5023 ib.rec.hop_limit = 1; 5024 ib.rec.mtu = iboe_get_mtu(ndev->mtu); 5025 5026 if (addr->sa_family == AF_INET) { 5027 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) { 5028 ib.rec.hop_limit = IPV6_DEFAULT_HOPLIMIT; 5029 if (!send_only) { 5030 err = cma_igmp_send(ndev, &ib.rec.mgid, 5031 true); 5032 } 5033 } 5034 } else { 5035 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) 5036 err = -ENOTSUPP; 5037 } 5038 dev_put(ndev); 5039 if (err || !ib.rec.mtu) 5040 return err ?: -EINVAL; 5041 5042 if (!id_priv->qkey) 5043 cma_set_default_qkey(id_priv); 5044 5045 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 5046 &ib.rec.port_gid); 5047 INIT_WORK(&mc->iboe_join.work, cma_iboe_join_work_handler); 5048 cma_make_mc_event(0, id_priv, &ib, &mc->iboe_join.event, mc); 5049 queue_work(cma_wq, &mc->iboe_join.work); 5050 return 0; 5051 } 5052 5053 int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr, 5054 u8 join_state, void *context) 5055 { 5056 struct rdma_id_private *id_priv = 5057 container_of(id, struct rdma_id_private, id); 5058 struct cma_multicast *mc; 5059 int ret; 5060 5061 /* Not supported for kernel QPs */ 5062 if (WARN_ON(id->qp)) 5063 return -EINVAL; 5064 5065 /* ULP is calling this wrong. */ 5066 if (!id->device || (READ_ONCE(id_priv->state) != RDMA_CM_ADDR_BOUND && 5067 READ_ONCE(id_priv->state) != RDMA_CM_ADDR_RESOLVED)) 5068 return -EINVAL; 5069 5070 if (id_priv->id.qp_type != IB_QPT_UD) 5071 return -EINVAL; 5072 5073 mc = kzalloc(sizeof(*mc), GFP_KERNEL); 5074 if (!mc) 5075 return -ENOMEM; 5076 5077 memcpy(&mc->addr, addr, rdma_addr_size(addr)); 5078 mc->context = context; 5079 mc->id_priv = id_priv; 5080 mc->join_state = join_state; 5081 5082 if (rdma_protocol_roce(id->device, id->port_num)) { 5083 ret = cma_iboe_join_multicast(id_priv, mc); 5084 if (ret) 5085 goto out_err; 5086 } else if (rdma_cap_ib_mcast(id->device, id->port_num)) { 5087 ret = cma_join_ib_multicast(id_priv, mc); 5088 if (ret) 5089 goto out_err; 5090 } else { 5091 ret = -ENOSYS; 5092 goto out_err; 5093 } 5094 5095 spin_lock(&id_priv->lock); 5096 list_add(&mc->list, &id_priv->mc_list); 5097 spin_unlock(&id_priv->lock); 5098 5099 return 0; 5100 out_err: 5101 kfree(mc); 5102 return ret; 5103 } 5104 EXPORT_SYMBOL(rdma_join_multicast); 5105 5106 void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr) 5107 { 5108 struct rdma_id_private *id_priv; 5109 struct cma_multicast *mc; 5110 5111 id_priv = container_of(id, struct rdma_id_private, id); 5112 spin_lock_irq(&id_priv->lock); 5113 list_for_each_entry(mc, &id_priv->mc_list, list) { 5114 if (memcmp(&mc->addr, addr, rdma_addr_size(addr)) != 0) 5115 continue; 5116 list_del(&mc->list); 5117 spin_unlock_irq(&id_priv->lock); 5118 5119 WARN_ON(id_priv->cma_dev->device != id->device); 5120 destroy_mc(id_priv, mc); 5121 return; 5122 } 5123 spin_unlock_irq(&id_priv->lock); 5124 } 5125 EXPORT_SYMBOL(rdma_leave_multicast); 5126 5127 static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv) 5128 { 5129 struct rdma_dev_addr *dev_addr; 5130 struct cma_work *work; 5131 5132 dev_addr = &id_priv->id.route.addr.dev_addr; 5133 5134 if ((dev_addr->bound_dev_if == ndev->ifindex) && 5135 (net_eq(dev_net(ndev), dev_addr->net)) && 5136 memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) { 5137 pr_info("RDMA CM addr change for ndev %s used by id %p\n", 5138 ndev->name, &id_priv->id); 5139 work = kzalloc(sizeof *work, GFP_KERNEL); 5140 if (!work) 5141 return -ENOMEM; 5142 5143 INIT_WORK(&work->work, cma_work_handler); 5144 work->id = id_priv; 5145 work->event.event = RDMA_CM_EVENT_ADDR_CHANGE; 5146 cma_id_get(id_priv); 5147 queue_work(cma_wq, &work->work); 5148 } 5149 5150 return 0; 5151 } 5152 5153 static int cma_netdev_callback(struct notifier_block *self, unsigned long event, 5154 void *ptr) 5155 { 5156 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 5157 struct cma_device *cma_dev; 5158 struct rdma_id_private *id_priv; 5159 int ret = NOTIFY_DONE; 5160 5161 if (event != NETDEV_BONDING_FAILOVER) 5162 return NOTIFY_DONE; 5163 5164 if (!netif_is_bond_master(ndev)) 5165 return NOTIFY_DONE; 5166 5167 mutex_lock(&lock); 5168 list_for_each_entry(cma_dev, &dev_list, list) 5169 list_for_each_entry(id_priv, &cma_dev->id_list, device_item) { 5170 ret = cma_netdev_change(ndev, id_priv); 5171 if (ret) 5172 goto out; 5173 } 5174 5175 out: 5176 mutex_unlock(&lock); 5177 return ret; 5178 } 5179 5180 static void cma_netevent_work_handler(struct work_struct *_work) 5181 { 5182 struct rdma_id_private *id_priv = 5183 container_of(_work, struct rdma_id_private, id.net_work); 5184 struct rdma_cm_event event = {}; 5185 5186 mutex_lock(&id_priv->handler_mutex); 5187 5188 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 5189 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 5190 goto out_unlock; 5191 5192 event.event = RDMA_CM_EVENT_UNREACHABLE; 5193 event.status = -ETIMEDOUT; 5194 5195 if (cma_cm_event_handler(id_priv, &event)) { 5196 __acquire(&id_priv->handler_mutex); 5197 id_priv->cm_id.ib = NULL; 5198 cma_id_put(id_priv); 5199 destroy_id_handler_unlock(id_priv); 5200 return; 5201 } 5202 5203 out_unlock: 5204 mutex_unlock(&id_priv->handler_mutex); 5205 cma_id_put(id_priv); 5206 } 5207 5208 static int cma_netevent_callback(struct notifier_block *self, 5209 unsigned long event, void *ctx) 5210 { 5211 struct id_table_entry *ips_node = NULL; 5212 struct rdma_id_private *current_id; 5213 struct neighbour *neigh = ctx; 5214 unsigned long flags; 5215 5216 if (event != NETEVENT_NEIGH_UPDATE) 5217 return NOTIFY_DONE; 5218 5219 spin_lock_irqsave(&id_table_lock, flags); 5220 if (neigh->tbl->family == AF_INET6) { 5221 struct sockaddr_in6 neigh_sock_6; 5222 5223 neigh_sock_6.sin6_family = AF_INET6; 5224 neigh_sock_6.sin6_addr = *(struct in6_addr *)neigh->primary_key; 5225 ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex, 5226 (struct sockaddr *)&neigh_sock_6); 5227 } else if (neigh->tbl->family == AF_INET) { 5228 struct sockaddr_in neigh_sock_4; 5229 5230 neigh_sock_4.sin_family = AF_INET; 5231 neigh_sock_4.sin_addr.s_addr = *(__be32 *)(neigh->primary_key); 5232 ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex, 5233 (struct sockaddr *)&neigh_sock_4); 5234 } else 5235 goto out; 5236 5237 if (!ips_node) 5238 goto out; 5239 5240 list_for_each_entry(current_id, &ips_node->id_list, id_list_entry) { 5241 if (!memcmp(current_id->id.route.addr.dev_addr.dst_dev_addr, 5242 neigh->ha, ETH_ALEN)) 5243 continue; 5244 INIT_WORK(¤t_id->id.net_work, cma_netevent_work_handler); 5245 cma_id_get(current_id); 5246 queue_work(cma_wq, ¤t_id->id.net_work); 5247 } 5248 out: 5249 spin_unlock_irqrestore(&id_table_lock, flags); 5250 return NOTIFY_DONE; 5251 } 5252 5253 static struct notifier_block cma_nb = { 5254 .notifier_call = cma_netdev_callback 5255 }; 5256 5257 static struct notifier_block cma_netevent_cb = { 5258 .notifier_call = cma_netevent_callback 5259 }; 5260 5261 static void cma_send_device_removal_put(struct rdma_id_private *id_priv) 5262 { 5263 struct rdma_cm_event event = { .event = RDMA_CM_EVENT_DEVICE_REMOVAL }; 5264 enum rdma_cm_state state; 5265 unsigned long flags; 5266 5267 mutex_lock(&id_priv->handler_mutex); 5268 /* Record that we want to remove the device */ 5269 spin_lock_irqsave(&id_priv->lock, flags); 5270 state = id_priv->state; 5271 if (state == RDMA_CM_DESTROYING || state == RDMA_CM_DEVICE_REMOVAL) { 5272 spin_unlock_irqrestore(&id_priv->lock, flags); 5273 mutex_unlock(&id_priv->handler_mutex); 5274 cma_id_put(id_priv); 5275 return; 5276 } 5277 id_priv->state = RDMA_CM_DEVICE_REMOVAL; 5278 spin_unlock_irqrestore(&id_priv->lock, flags); 5279 5280 if (cma_cm_event_handler(id_priv, &event)) { 5281 /* 5282 * At this point the ULP promises it won't call 5283 * rdma_destroy_id() concurrently 5284 */ 5285 cma_id_put(id_priv); 5286 mutex_unlock(&id_priv->handler_mutex); 5287 trace_cm_id_destroy(id_priv); 5288 _destroy_id(id_priv, state); 5289 return; 5290 } 5291 mutex_unlock(&id_priv->handler_mutex); 5292 5293 /* 5294 * If this races with destroy then the thread that first assigns state 5295 * to a destroying does the cancel. 5296 */ 5297 cma_cancel_operation(id_priv, state); 5298 cma_id_put(id_priv); 5299 } 5300 5301 static void cma_process_remove(struct cma_device *cma_dev) 5302 { 5303 mutex_lock(&lock); 5304 while (!list_empty(&cma_dev->id_list)) { 5305 struct rdma_id_private *id_priv = list_first_entry( 5306 &cma_dev->id_list, struct rdma_id_private, device_item); 5307 5308 list_del_init(&id_priv->listen_item); 5309 list_del_init(&id_priv->device_item); 5310 cma_id_get(id_priv); 5311 mutex_unlock(&lock); 5312 5313 cma_send_device_removal_put(id_priv); 5314 5315 mutex_lock(&lock); 5316 } 5317 mutex_unlock(&lock); 5318 5319 cma_dev_put(cma_dev); 5320 wait_for_completion(&cma_dev->comp); 5321 } 5322 5323 static bool cma_supported(struct ib_device *device) 5324 { 5325 u32 i; 5326 5327 rdma_for_each_port(device, i) { 5328 if (rdma_cap_ib_cm(device, i) || rdma_cap_iw_cm(device, i)) 5329 return true; 5330 } 5331 return false; 5332 } 5333 5334 static int cma_add_one(struct ib_device *device) 5335 { 5336 struct rdma_id_private *to_destroy; 5337 struct cma_device *cma_dev; 5338 struct rdma_id_private *id_priv; 5339 unsigned long supported_gids = 0; 5340 int ret; 5341 u32 i; 5342 5343 if (!cma_supported(device)) 5344 return -EOPNOTSUPP; 5345 5346 cma_dev = kmalloc(sizeof(*cma_dev), GFP_KERNEL); 5347 if (!cma_dev) 5348 return -ENOMEM; 5349 5350 cma_dev->device = device; 5351 cma_dev->default_gid_type = kcalloc(device->phys_port_cnt, 5352 sizeof(*cma_dev->default_gid_type), 5353 GFP_KERNEL); 5354 if (!cma_dev->default_gid_type) { 5355 ret = -ENOMEM; 5356 goto free_cma_dev; 5357 } 5358 5359 cma_dev->default_roce_tos = kcalloc(device->phys_port_cnt, 5360 sizeof(*cma_dev->default_roce_tos), 5361 GFP_KERNEL); 5362 if (!cma_dev->default_roce_tos) { 5363 ret = -ENOMEM; 5364 goto free_gid_type; 5365 } 5366 5367 rdma_for_each_port (device, i) { 5368 supported_gids = roce_gid_type_mask_support(device, i); 5369 WARN_ON(!supported_gids); 5370 if (supported_gids & (1 << CMA_PREFERRED_ROCE_GID_TYPE)) 5371 cma_dev->default_gid_type[i - rdma_start_port(device)] = 5372 CMA_PREFERRED_ROCE_GID_TYPE; 5373 else 5374 cma_dev->default_gid_type[i - rdma_start_port(device)] = 5375 find_first_bit(&supported_gids, BITS_PER_LONG); 5376 cma_dev->default_roce_tos[i - rdma_start_port(device)] = 0; 5377 } 5378 5379 init_completion(&cma_dev->comp); 5380 refcount_set(&cma_dev->refcount, 1); 5381 INIT_LIST_HEAD(&cma_dev->id_list); 5382 ib_set_client_data(device, &cma_client, cma_dev); 5383 5384 mutex_lock(&lock); 5385 list_add_tail(&cma_dev->list, &dev_list); 5386 list_for_each_entry(id_priv, &listen_any_list, listen_any_item) { 5387 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy); 5388 if (ret) 5389 goto free_listen; 5390 } 5391 mutex_unlock(&lock); 5392 5393 trace_cm_add_one(device); 5394 return 0; 5395 5396 free_listen: 5397 list_del(&cma_dev->list); 5398 mutex_unlock(&lock); 5399 5400 /* cma_process_remove() will delete to_destroy */ 5401 cma_process_remove(cma_dev); 5402 kfree(cma_dev->default_roce_tos); 5403 free_gid_type: 5404 kfree(cma_dev->default_gid_type); 5405 5406 free_cma_dev: 5407 kfree(cma_dev); 5408 return ret; 5409 } 5410 5411 static void cma_remove_one(struct ib_device *device, void *client_data) 5412 { 5413 struct cma_device *cma_dev = client_data; 5414 5415 trace_cm_remove_one(device); 5416 5417 mutex_lock(&lock); 5418 list_del(&cma_dev->list); 5419 mutex_unlock(&lock); 5420 5421 cma_process_remove(cma_dev); 5422 kfree(cma_dev->default_roce_tos); 5423 kfree(cma_dev->default_gid_type); 5424 kfree(cma_dev); 5425 } 5426 5427 static int cma_init_net(struct net *net) 5428 { 5429 struct cma_pernet *pernet = cma_pernet(net); 5430 5431 xa_init(&pernet->tcp_ps); 5432 xa_init(&pernet->udp_ps); 5433 xa_init(&pernet->ipoib_ps); 5434 xa_init(&pernet->ib_ps); 5435 5436 return 0; 5437 } 5438 5439 static void cma_exit_net(struct net *net) 5440 { 5441 struct cma_pernet *pernet = cma_pernet(net); 5442 5443 WARN_ON(!xa_empty(&pernet->tcp_ps)); 5444 WARN_ON(!xa_empty(&pernet->udp_ps)); 5445 WARN_ON(!xa_empty(&pernet->ipoib_ps)); 5446 WARN_ON(!xa_empty(&pernet->ib_ps)); 5447 } 5448 5449 static struct pernet_operations cma_pernet_operations = { 5450 .init = cma_init_net, 5451 .exit = cma_exit_net, 5452 .id = &cma_pernet_id, 5453 .size = sizeof(struct cma_pernet), 5454 }; 5455 5456 static int __init cma_init(void) 5457 { 5458 int ret; 5459 5460 /* 5461 * There is a rare lock ordering dependency in cma_netdev_callback() 5462 * that only happens when bonding is enabled. Teach lockdep that rtnl 5463 * must never be nested under lock so it can find these without having 5464 * to test with bonding. 5465 */ 5466 if (IS_ENABLED(CONFIG_LOCKDEP)) { 5467 rtnl_lock(); 5468 mutex_lock(&lock); 5469 mutex_unlock(&lock); 5470 rtnl_unlock(); 5471 } 5472 5473 cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM); 5474 if (!cma_wq) 5475 return -ENOMEM; 5476 5477 ret = register_pernet_subsys(&cma_pernet_operations); 5478 if (ret) 5479 goto err_wq; 5480 5481 ib_sa_register_client(&sa_client); 5482 register_netdevice_notifier(&cma_nb); 5483 register_netevent_notifier(&cma_netevent_cb); 5484 5485 ret = ib_register_client(&cma_client); 5486 if (ret) 5487 goto err; 5488 5489 ret = cma_configfs_init(); 5490 if (ret) 5491 goto err_ib; 5492 5493 return 0; 5494 5495 err_ib: 5496 ib_unregister_client(&cma_client); 5497 err: 5498 unregister_netevent_notifier(&cma_netevent_cb); 5499 unregister_netdevice_notifier(&cma_nb); 5500 ib_sa_unregister_client(&sa_client); 5501 unregister_pernet_subsys(&cma_pernet_operations); 5502 err_wq: 5503 destroy_workqueue(cma_wq); 5504 return ret; 5505 } 5506 5507 static void __exit cma_cleanup(void) 5508 { 5509 cma_configfs_exit(); 5510 ib_unregister_client(&cma_client); 5511 unregister_netevent_notifier(&cma_netevent_cb); 5512 unregister_netdevice_notifier(&cma_nb); 5513 ib_sa_unregister_client(&sa_client); 5514 unregister_pernet_subsys(&cma_pernet_operations); 5515 destroy_workqueue(cma_wq); 5516 } 5517 5518 module_init(cma_init); 5519 module_exit(cma_cleanup); 5520