1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Contiguous Memory Allocator 4 * 5 * Copyright (c) 2010-2011 by Samsung Electronics. 6 * Copyright IBM Corporation, 2013 7 * Copyright LG Electronics Inc., 2014 8 * Written by: 9 * Marek Szyprowski <m.szyprowski@samsung.com> 10 * Michal Nazarewicz <mina86@mina86.com> 11 * Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> 12 * Joonsoo Kim <iamjoonsoo.kim@lge.com> 13 */ 14 15 #define pr_fmt(fmt) "cma: " fmt 16 17 #define CREATE_TRACE_POINTS 18 19 #include <linux/memblock.h> 20 #include <linux/err.h> 21 #include <linux/list.h> 22 #include <linux/mm.h> 23 #include <linux/sizes.h> 24 #include <linux/slab.h> 25 #include <linux/string_choices.h> 26 #include <linux/log2.h> 27 #include <linux/cma.h> 28 #include <linux/highmem.h> 29 #include <linux/io.h> 30 #include <linux/kmemleak.h> 31 #include <trace/events/cma.h> 32 33 #include "internal.h" 34 #include "cma.h" 35 36 struct cma cma_areas[MAX_CMA_AREAS]; 37 unsigned int cma_area_count; 38 39 phys_addr_t cma_get_base(const struct cma *cma) 40 { 41 WARN_ON_ONCE(cma->nranges != 1); 42 return PFN_PHYS(cma->ranges[0].base_pfn); 43 } 44 45 unsigned long cma_get_size(const struct cma *cma) 46 { 47 return cma->count << PAGE_SHIFT; 48 } 49 50 const char *cma_get_name(const struct cma *cma) 51 { 52 return cma->name; 53 } 54 55 static unsigned long cma_bitmap_aligned_mask(const struct cma *cma, 56 unsigned int align_order) 57 { 58 if (align_order <= cma->order_per_bit) 59 return 0; 60 return (1UL << (align_order - cma->order_per_bit)) - 1; 61 } 62 63 /* 64 * Find the offset of the base PFN from the specified align_order. 65 * The value returned is represented in order_per_bits. 66 */ 67 static unsigned long cma_bitmap_aligned_offset(const struct cma *cma, 68 const struct cma_memrange *cmr, 69 unsigned int align_order) 70 { 71 return (cmr->base_pfn & ((1UL << align_order) - 1)) 72 >> cma->order_per_bit; 73 } 74 75 static unsigned long cma_bitmap_pages_to_bits(const struct cma *cma, 76 unsigned long pages) 77 { 78 return ALIGN(pages, 1UL << cma->order_per_bit) >> cma->order_per_bit; 79 } 80 81 static void cma_clear_bitmap(struct cma *cma, const struct cma_memrange *cmr, 82 unsigned long pfn, unsigned long count) 83 { 84 unsigned long bitmap_no, bitmap_count; 85 unsigned long flags; 86 87 bitmap_no = (pfn - cmr->base_pfn) >> cma->order_per_bit; 88 bitmap_count = cma_bitmap_pages_to_bits(cma, count); 89 90 spin_lock_irqsave(&cma->lock, flags); 91 bitmap_clear(cmr->bitmap, bitmap_no, bitmap_count); 92 cma->available_count += count; 93 spin_unlock_irqrestore(&cma->lock, flags); 94 } 95 96 /* 97 * Check if a CMA area contains no ranges that intersect with 98 * multiple zones. Store the result in the flags in case 99 * this gets called more than once. 100 */ 101 bool cma_validate_zones(struct cma *cma) 102 { 103 int r; 104 unsigned long base_pfn; 105 struct cma_memrange *cmr; 106 bool valid_bit_set; 107 108 /* 109 * If already validated, return result of previous check. 110 * Either the valid or invalid bit will be set if this 111 * check has already been done. If neither is set, the 112 * check has not been performed yet. 113 */ 114 valid_bit_set = test_bit(CMA_ZONES_VALID, &cma->flags); 115 if (valid_bit_set || test_bit(CMA_ZONES_INVALID, &cma->flags)) 116 return valid_bit_set; 117 118 for (r = 0; r < cma->nranges; r++) { 119 cmr = &cma->ranges[r]; 120 base_pfn = cmr->base_pfn; 121 122 /* 123 * alloc_contig_range() requires the pfn range specified 124 * to be in the same zone. Simplify by forcing the entire 125 * CMA resv range to be in the same zone. 126 */ 127 WARN_ON_ONCE(!pfn_valid(base_pfn)); 128 if (pfn_range_intersects_zones(cma->nid, base_pfn, cmr->count)) { 129 set_bit(CMA_ZONES_INVALID, &cma->flags); 130 return false; 131 } 132 } 133 134 set_bit(CMA_ZONES_VALID, &cma->flags); 135 136 return true; 137 } 138 139 static void __init cma_activate_area(struct cma *cma) 140 { 141 unsigned long pfn, end_pfn, early_pfn[CMA_MAX_RANGES]; 142 int allocrange, r; 143 struct cma_memrange *cmr; 144 unsigned long bitmap_count, count; 145 146 for (allocrange = 0; allocrange < cma->nranges; allocrange++) { 147 cmr = &cma->ranges[allocrange]; 148 early_pfn[allocrange] = cmr->early_pfn; 149 cmr->bitmap = bitmap_zalloc(cma_bitmap_maxno(cma, cmr), 150 GFP_KERNEL); 151 if (!cmr->bitmap) 152 goto cleanup; 153 } 154 155 if (!cma_validate_zones(cma)) 156 goto cleanup; 157 158 for (r = 0; r < cma->nranges; r++) { 159 cmr = &cma->ranges[r]; 160 if (early_pfn[r] != cmr->base_pfn) { 161 count = early_pfn[r] - cmr->base_pfn; 162 bitmap_count = cma_bitmap_pages_to_bits(cma, count); 163 bitmap_set(cmr->bitmap, 0, bitmap_count); 164 } 165 166 for (pfn = early_pfn[r]; pfn < cmr->base_pfn + cmr->count; 167 pfn += pageblock_nr_pages) 168 init_cma_reserved_pageblock(pfn_to_page(pfn)); 169 } 170 171 spin_lock_init(&cma->lock); 172 173 mutex_init(&cma->alloc_mutex); 174 175 #ifdef CONFIG_CMA_DEBUGFS 176 INIT_HLIST_HEAD(&cma->mem_head); 177 spin_lock_init(&cma->mem_head_lock); 178 #endif 179 set_bit(CMA_ACTIVATED, &cma->flags); 180 181 return; 182 183 cleanup: 184 for (r = 0; r < allocrange; r++) 185 bitmap_free(cma->ranges[r].bitmap); 186 187 /* Expose all pages to the buddy, they are useless for CMA. */ 188 if (!test_bit(CMA_RESERVE_PAGES_ON_ERROR, &cma->flags)) { 189 for (r = 0; r < allocrange; r++) { 190 cmr = &cma->ranges[r]; 191 end_pfn = cmr->base_pfn + cmr->count; 192 for (pfn = early_pfn[r]; pfn < end_pfn; pfn++) 193 free_reserved_page(pfn_to_page(pfn)); 194 } 195 } 196 totalcma_pages -= cma->count; 197 cma->available_count = cma->count = 0; 198 pr_err("CMA area %s could not be activated\n", cma->name); 199 } 200 201 static int __init cma_init_reserved_areas(void) 202 { 203 int i; 204 205 for (i = 0; i < cma_area_count; i++) 206 cma_activate_area(&cma_areas[i]); 207 208 return 0; 209 } 210 core_initcall(cma_init_reserved_areas); 211 212 void __init cma_reserve_pages_on_error(struct cma *cma) 213 { 214 set_bit(CMA_RESERVE_PAGES_ON_ERROR, &cma->flags); 215 } 216 217 static int __init cma_new_area(const char *name, phys_addr_t size, 218 unsigned int order_per_bit, 219 struct cma **res_cma) 220 { 221 struct cma *cma; 222 223 if (cma_area_count == ARRAY_SIZE(cma_areas)) { 224 pr_err("Not enough slots for CMA reserved regions!\n"); 225 return -ENOSPC; 226 } 227 228 /* 229 * Each reserved area must be initialised later, when more kernel 230 * subsystems (like slab allocator) are available. 231 */ 232 cma = &cma_areas[cma_area_count]; 233 cma_area_count++; 234 235 if (name) 236 snprintf(cma->name, CMA_MAX_NAME, "%s", name); 237 else 238 snprintf(cma->name, CMA_MAX_NAME, "cma%d\n", cma_area_count); 239 240 cma->available_count = cma->count = size >> PAGE_SHIFT; 241 cma->order_per_bit = order_per_bit; 242 *res_cma = cma; 243 totalcma_pages += cma->count; 244 245 return 0; 246 } 247 248 static void __init cma_drop_area(struct cma *cma) 249 { 250 totalcma_pages -= cma->count; 251 cma_area_count--; 252 } 253 254 /** 255 * cma_init_reserved_mem() - create custom contiguous area from reserved memory 256 * @base: Base address of the reserved area 257 * @size: Size of the reserved area (in bytes), 258 * @order_per_bit: Order of pages represented by one bit on bitmap. 259 * @name: The name of the area. If this parameter is NULL, the name of 260 * the area will be set to "cmaN", where N is a running counter of 261 * used areas. 262 * @res_cma: Pointer to store the created cma region. 263 * 264 * This function creates custom contiguous area from already reserved memory. 265 */ 266 int __init cma_init_reserved_mem(phys_addr_t base, phys_addr_t size, 267 unsigned int order_per_bit, 268 const char *name, 269 struct cma **res_cma) 270 { 271 struct cma *cma; 272 int ret; 273 274 /* Sanity checks */ 275 if (!size || !memblock_is_region_reserved(base, size)) 276 return -EINVAL; 277 278 /* 279 * CMA uses CMA_MIN_ALIGNMENT_BYTES as alignment requirement which 280 * needs pageblock_order to be initialized. Let's enforce it. 281 */ 282 if (!pageblock_order) { 283 pr_err("pageblock_order not yet initialized. Called during early boot?\n"); 284 return -EINVAL; 285 } 286 287 /* ensure minimal alignment required by mm core */ 288 if (!IS_ALIGNED(base | size, CMA_MIN_ALIGNMENT_BYTES)) 289 return -EINVAL; 290 291 ret = cma_new_area(name, size, order_per_bit, &cma); 292 if (ret != 0) 293 return ret; 294 295 cma->ranges[0].base_pfn = PFN_DOWN(base); 296 cma->ranges[0].early_pfn = PFN_DOWN(base); 297 cma->ranges[0].count = cma->count; 298 cma->nranges = 1; 299 cma->nid = NUMA_NO_NODE; 300 301 *res_cma = cma; 302 303 return 0; 304 } 305 306 /* 307 * Structure used while walking physical memory ranges and finding out 308 * which one(s) to use for a CMA area. 309 */ 310 struct cma_init_memrange { 311 phys_addr_t base; 312 phys_addr_t size; 313 struct list_head list; 314 }; 315 316 /* 317 * Work array used during CMA initialization. 318 */ 319 static struct cma_init_memrange memranges[CMA_MAX_RANGES] __initdata; 320 321 static bool __init revsizecmp(struct cma_init_memrange *mlp, 322 struct cma_init_memrange *mrp) 323 { 324 return mlp->size > mrp->size; 325 } 326 327 static bool __init basecmp(struct cma_init_memrange *mlp, 328 struct cma_init_memrange *mrp) 329 { 330 return mlp->base < mrp->base; 331 } 332 333 /* 334 * Helper function to create sorted lists. 335 */ 336 static void __init list_insert_sorted( 337 struct list_head *ranges, 338 struct cma_init_memrange *mrp, 339 bool (*cmp)(struct cma_init_memrange *lh, struct cma_init_memrange *rh)) 340 { 341 struct list_head *mp; 342 struct cma_init_memrange *mlp; 343 344 if (list_empty(ranges)) 345 list_add(&mrp->list, ranges); 346 else { 347 list_for_each(mp, ranges) { 348 mlp = list_entry(mp, struct cma_init_memrange, list); 349 if (cmp(mlp, mrp)) 350 break; 351 } 352 __list_add(&mrp->list, mlp->list.prev, &mlp->list); 353 } 354 } 355 356 static int __init cma_fixed_reserve(phys_addr_t base, phys_addr_t size) 357 { 358 if (IS_ENABLED(CONFIG_HIGHMEM)) { 359 phys_addr_t highmem_start = __pa(high_memory - 1) + 1; 360 361 /* 362 * If allocating at a fixed base the request region must not 363 * cross the low/high memory boundary. 364 */ 365 if (base < highmem_start && base + size > highmem_start) { 366 pr_err("Region at %pa defined on low/high memory boundary (%pa)\n", 367 &base, &highmem_start); 368 return -EINVAL; 369 } 370 } 371 372 if (memblock_is_region_reserved(base, size) || 373 memblock_reserve(base, size) < 0) { 374 return -EBUSY; 375 } 376 377 return 0; 378 } 379 380 static phys_addr_t __init cma_alloc_mem(phys_addr_t base, phys_addr_t size, 381 phys_addr_t align, phys_addr_t limit, int nid) 382 { 383 phys_addr_t addr = 0; 384 385 /* 386 * If there is enough memory, try a bottom-up allocation first. 387 * It will place the new cma area close to the start of the node 388 * and guarantee that the compaction is moving pages out of the 389 * cma area and not into it. 390 * Avoid using first 4GB to not interfere with constrained zones 391 * like DMA/DMA32. 392 */ 393 #ifdef CONFIG_PHYS_ADDR_T_64BIT 394 if (!memblock_bottom_up() && limit >= SZ_4G + size) { 395 memblock_set_bottom_up(true); 396 addr = memblock_alloc_range_nid(size, align, SZ_4G, limit, 397 nid, true); 398 memblock_set_bottom_up(false); 399 } 400 #endif 401 402 /* 403 * On systems with HIGHMEM try allocating from there before consuming 404 * memory in lower zones. 405 */ 406 if (!addr && IS_ENABLED(CONFIG_HIGHMEM)) { 407 phys_addr_t highmem = __pa(high_memory - 1) + 1; 408 409 /* 410 * All pages in the reserved area must come from the same zone. 411 * If the requested region crosses the low/high memory boundary, 412 * try allocating from high memory first and fall back to low 413 * memory in case of failure. 414 */ 415 if (base < highmem && limit > highmem) { 416 addr = memblock_alloc_range_nid(size, align, highmem, 417 limit, nid, true); 418 limit = highmem; 419 } 420 } 421 422 if (!addr) 423 addr = memblock_alloc_range_nid(size, align, base, limit, nid, 424 true); 425 426 return addr; 427 } 428 429 static int __init __cma_declare_contiguous_nid(phys_addr_t *basep, 430 phys_addr_t size, phys_addr_t limit, 431 phys_addr_t alignment, unsigned int order_per_bit, 432 bool fixed, const char *name, struct cma **res_cma, 433 int nid) 434 { 435 phys_addr_t memblock_end = memblock_end_of_DRAM(); 436 phys_addr_t base = *basep; 437 int ret; 438 439 pr_debug("%s(size %pa, base %pa, limit %pa alignment %pa)\n", 440 __func__, &size, &base, &limit, &alignment); 441 442 if (cma_area_count == ARRAY_SIZE(cma_areas)) { 443 pr_err("Not enough slots for CMA reserved regions!\n"); 444 return -ENOSPC; 445 } 446 447 if (!size) 448 return -EINVAL; 449 450 if (alignment && !is_power_of_2(alignment)) 451 return -EINVAL; 452 453 if (!IS_ENABLED(CONFIG_NUMA)) 454 nid = NUMA_NO_NODE; 455 456 /* Sanitise input arguments. */ 457 alignment = max_t(phys_addr_t, alignment, CMA_MIN_ALIGNMENT_BYTES); 458 if (fixed && base & (alignment - 1)) { 459 pr_err("Region at %pa must be aligned to %pa bytes\n", 460 &base, &alignment); 461 return -EINVAL; 462 } 463 base = ALIGN(base, alignment); 464 size = ALIGN(size, alignment); 465 limit &= ~(alignment - 1); 466 467 if (!base) 468 fixed = false; 469 470 /* size should be aligned with order_per_bit */ 471 if (!IS_ALIGNED(size >> PAGE_SHIFT, 1 << order_per_bit)) 472 return -EINVAL; 473 474 475 /* 476 * If the limit is unspecified or above the memblock end, its effective 477 * value will be the memblock end. Set it explicitly to simplify further 478 * checks. 479 */ 480 if (limit == 0 || limit > memblock_end) 481 limit = memblock_end; 482 483 if (base + size > limit) { 484 pr_err("Size (%pa) of region at %pa exceeds limit (%pa)\n", 485 &size, &base, &limit); 486 return -EINVAL; 487 } 488 489 /* Reserve memory */ 490 if (fixed) { 491 ret = cma_fixed_reserve(base, size); 492 if (ret) 493 return ret; 494 } else { 495 base = cma_alloc_mem(base, size, alignment, limit, nid); 496 if (!base) 497 return -ENOMEM; 498 499 /* 500 * kmemleak scans/reads tracked objects for pointers to other 501 * objects but this address isn't mapped and accessible 502 */ 503 kmemleak_ignore_phys(base); 504 } 505 506 ret = cma_init_reserved_mem(base, size, order_per_bit, name, res_cma); 507 if (ret) { 508 memblock_phys_free(base, size); 509 return ret; 510 } 511 512 (*res_cma)->nid = nid; 513 *basep = base; 514 515 return 0; 516 } 517 518 /* 519 * Create CMA areas with a total size of @total_size. A normal allocation 520 * for one area is tried first. If that fails, the biggest memblock 521 * ranges above 4G are selected, and allocated bottom up. 522 * 523 * The complexity here is not great, but this function will only be 524 * called during boot, and the lists operated on have fewer than 525 * CMA_MAX_RANGES elements (default value: 8). 526 */ 527 int __init cma_declare_contiguous_multi(phys_addr_t total_size, 528 phys_addr_t align, unsigned int order_per_bit, 529 const char *name, struct cma **res_cma, int nid) 530 { 531 phys_addr_t start = 0, end; 532 phys_addr_t size, sizesum, sizeleft; 533 struct cma_init_memrange *mrp, *mlp, *failed; 534 struct cma_memrange *cmrp; 535 LIST_HEAD(ranges); 536 LIST_HEAD(final_ranges); 537 struct list_head *mp, *next; 538 int ret, nr = 1; 539 u64 i; 540 struct cma *cma; 541 542 /* 543 * First, try it the normal way, producing just one range. 544 */ 545 ret = __cma_declare_contiguous_nid(&start, total_size, 0, align, 546 order_per_bit, false, name, res_cma, nid); 547 if (ret != -ENOMEM) 548 goto out; 549 550 /* 551 * Couldn't find one range that fits our needs, so try multiple 552 * ranges. 553 * 554 * No need to do the alignment checks here, the call to 555 * cma_declare_contiguous_nid above would have caught 556 * any issues. With the checks, we know that: 557 * 558 * - @align is a power of 2 559 * - @align is >= pageblock alignment 560 * - @size is aligned to @align and to @order_per_bit 561 * 562 * So, as long as we create ranges that have a base 563 * aligned to @align, and a size that is aligned to 564 * both @align and @order_to_bit, things will work out. 565 */ 566 nr = 0; 567 sizesum = 0; 568 failed = NULL; 569 570 ret = cma_new_area(name, total_size, order_per_bit, &cma); 571 if (ret != 0) 572 goto out; 573 574 align = max_t(phys_addr_t, align, CMA_MIN_ALIGNMENT_BYTES); 575 /* 576 * Create a list of ranges above 4G, largest range first. 577 */ 578 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &start, &end, NULL) { 579 if (upper_32_bits(start) == 0) 580 continue; 581 582 start = ALIGN(start, align); 583 if (start >= end) 584 continue; 585 586 end = ALIGN_DOWN(end, align); 587 if (end <= start) 588 continue; 589 590 size = end - start; 591 size = ALIGN_DOWN(size, (PAGE_SIZE << order_per_bit)); 592 if (!size) 593 continue; 594 sizesum += size; 595 596 pr_debug("consider %016llx - %016llx\n", (u64)start, (u64)end); 597 598 /* 599 * If we don't yet have used the maximum number of 600 * areas, grab a new one. 601 * 602 * If we can't use anymore, see if this range is not 603 * smaller than the smallest one already recorded. If 604 * not, re-use the smallest element. 605 */ 606 if (nr < CMA_MAX_RANGES) 607 mrp = &memranges[nr++]; 608 else { 609 mrp = list_last_entry(&ranges, 610 struct cma_init_memrange, list); 611 if (size < mrp->size) 612 continue; 613 list_del(&mrp->list); 614 sizesum -= mrp->size; 615 pr_debug("deleted %016llx - %016llx from the list\n", 616 (u64)mrp->base, (u64)mrp->base + size); 617 } 618 mrp->base = start; 619 mrp->size = size; 620 621 /* 622 * Now do a sorted insert. 623 */ 624 list_insert_sorted(&ranges, mrp, revsizecmp); 625 pr_debug("added %016llx - %016llx to the list\n", 626 (u64)mrp->base, (u64)mrp->base + size); 627 pr_debug("total size now %llu\n", (u64)sizesum); 628 } 629 630 /* 631 * There is not enough room in the CMA_MAX_RANGES largest 632 * ranges, so bail out. 633 */ 634 if (sizesum < total_size) { 635 cma_drop_area(cma); 636 ret = -ENOMEM; 637 goto out; 638 } 639 640 /* 641 * Found ranges that provide enough combined space. 642 * Now, sorted them by address, smallest first, because we 643 * want to mimic a bottom-up memblock allocation. 644 */ 645 sizesum = 0; 646 list_for_each_safe(mp, next, &ranges) { 647 mlp = list_entry(mp, struct cma_init_memrange, list); 648 list_del(mp); 649 list_insert_sorted(&final_ranges, mlp, basecmp); 650 sizesum += mlp->size; 651 if (sizesum >= total_size) 652 break; 653 } 654 655 /* 656 * Walk the final list, and add a CMA range for 657 * each range, possibly not using the last one fully. 658 */ 659 nr = 0; 660 sizeleft = total_size; 661 list_for_each(mp, &final_ranges) { 662 mlp = list_entry(mp, struct cma_init_memrange, list); 663 size = min(sizeleft, mlp->size); 664 if (memblock_reserve(mlp->base, size)) { 665 /* 666 * Unexpected error. Could go on to 667 * the next one, but just abort to 668 * be safe. 669 */ 670 failed = mlp; 671 break; 672 } 673 674 pr_debug("created region %d: %016llx - %016llx\n", 675 nr, (u64)mlp->base, (u64)mlp->base + size); 676 cmrp = &cma->ranges[nr++]; 677 cmrp->base_pfn = PHYS_PFN(mlp->base); 678 cmrp->early_pfn = cmrp->base_pfn; 679 cmrp->count = size >> PAGE_SHIFT; 680 681 sizeleft -= size; 682 if (sizeleft == 0) 683 break; 684 } 685 686 if (failed) { 687 list_for_each(mp, &final_ranges) { 688 mlp = list_entry(mp, struct cma_init_memrange, list); 689 if (mlp == failed) 690 break; 691 memblock_phys_free(mlp->base, mlp->size); 692 } 693 cma_drop_area(cma); 694 ret = -ENOMEM; 695 goto out; 696 } 697 698 cma->nranges = nr; 699 cma->nid = nid; 700 *res_cma = cma; 701 702 out: 703 if (ret != 0) 704 pr_err("Failed to reserve %lu MiB\n", 705 (unsigned long)total_size / SZ_1M); 706 else 707 pr_info("Reserved %lu MiB in %d range%s\n", 708 (unsigned long)total_size / SZ_1M, nr, str_plural(nr)); 709 return ret; 710 } 711 712 /** 713 * cma_declare_contiguous_nid() - reserve custom contiguous area 714 * @base: Base address of the reserved area optional, use 0 for any 715 * @size: Size of the reserved area (in bytes), 716 * @limit: End address of the reserved memory (optional, 0 for any). 717 * @alignment: Alignment for the CMA area, should be power of 2 or zero 718 * @order_per_bit: Order of pages represented by one bit on bitmap. 719 * @fixed: hint about where to place the reserved area 720 * @name: The name of the area. See function cma_init_reserved_mem() 721 * @res_cma: Pointer to store the created cma region. 722 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 723 * 724 * This function reserves memory from early allocator. It should be 725 * called by arch specific code once the early allocator (memblock or bootmem) 726 * has been activated and all other subsystems have already allocated/reserved 727 * memory. This function allows to create custom reserved areas. 728 * 729 * If @fixed is true, reserve contiguous area at exactly @base. If false, 730 * reserve in range from @base to @limit. 731 */ 732 int __init cma_declare_contiguous_nid(phys_addr_t base, 733 phys_addr_t size, phys_addr_t limit, 734 phys_addr_t alignment, unsigned int order_per_bit, 735 bool fixed, const char *name, struct cma **res_cma, 736 int nid) 737 { 738 int ret; 739 740 ret = __cma_declare_contiguous_nid(&base, size, limit, alignment, 741 order_per_bit, fixed, name, res_cma, nid); 742 if (ret != 0) 743 pr_err("Failed to reserve %ld MiB\n", 744 (unsigned long)size / SZ_1M); 745 else 746 pr_info("Reserved %ld MiB at %pa\n", 747 (unsigned long)size / SZ_1M, &base); 748 749 return ret; 750 } 751 752 static void cma_debug_show_areas(struct cma *cma) 753 { 754 unsigned long start, end; 755 unsigned long nr_part; 756 unsigned long nbits; 757 int r; 758 struct cma_memrange *cmr; 759 760 spin_lock_irq(&cma->lock); 761 pr_info("number of available pages: "); 762 for (r = 0; r < cma->nranges; r++) { 763 cmr = &cma->ranges[r]; 764 765 nbits = cma_bitmap_maxno(cma, cmr); 766 767 pr_info("range %d: ", r); 768 for_each_clear_bitrange(start, end, cmr->bitmap, nbits) { 769 nr_part = (end - start) << cma->order_per_bit; 770 pr_cont("%s%lu@%lu", start ? "+" : "", nr_part, start); 771 } 772 pr_info("\n"); 773 } 774 pr_cont("=> %lu free of %lu total pages\n", cma->available_count, 775 cma->count); 776 spin_unlock_irq(&cma->lock); 777 } 778 779 static int cma_range_alloc(struct cma *cma, struct cma_memrange *cmr, 780 unsigned long count, unsigned int align, 781 struct page **pagep, gfp_t gfp) 782 { 783 unsigned long mask, offset; 784 unsigned long pfn = -1; 785 unsigned long start = 0; 786 unsigned long bitmap_maxno, bitmap_no, bitmap_count; 787 int ret = -EBUSY; 788 struct page *page = NULL; 789 790 mask = cma_bitmap_aligned_mask(cma, align); 791 offset = cma_bitmap_aligned_offset(cma, cmr, align); 792 bitmap_maxno = cma_bitmap_maxno(cma, cmr); 793 bitmap_count = cma_bitmap_pages_to_bits(cma, count); 794 795 if (bitmap_count > bitmap_maxno) 796 goto out; 797 798 for (;;) { 799 spin_lock_irq(&cma->lock); 800 /* 801 * If the request is larger than the available number 802 * of pages, stop right away. 803 */ 804 if (count > cma->available_count) { 805 spin_unlock_irq(&cma->lock); 806 break; 807 } 808 bitmap_no = bitmap_find_next_zero_area_off(cmr->bitmap, 809 bitmap_maxno, start, bitmap_count, mask, 810 offset); 811 if (bitmap_no >= bitmap_maxno) { 812 spin_unlock_irq(&cma->lock); 813 break; 814 } 815 bitmap_set(cmr->bitmap, bitmap_no, bitmap_count); 816 cma->available_count -= count; 817 /* 818 * It's safe to drop the lock here. We've marked this region for 819 * our exclusive use. If the migration fails we will take the 820 * lock again and unmark it. 821 */ 822 spin_unlock_irq(&cma->lock); 823 824 pfn = cmr->base_pfn + (bitmap_no << cma->order_per_bit); 825 mutex_lock(&cma->alloc_mutex); 826 ret = alloc_contig_range(pfn, pfn + count, ACR_FLAGS_CMA, gfp); 827 mutex_unlock(&cma->alloc_mutex); 828 if (ret == 0) { 829 page = pfn_to_page(pfn); 830 break; 831 } 832 833 cma_clear_bitmap(cma, cmr, pfn, count); 834 if (ret != -EBUSY) 835 break; 836 837 pr_debug("%s(): memory range at pfn 0x%lx %p is busy, retrying\n", 838 __func__, pfn, pfn_to_page(pfn)); 839 840 trace_cma_alloc_busy_retry(cma->name, pfn, pfn_to_page(pfn), 841 count, align); 842 /* try again with a bit different memory target */ 843 start = bitmap_no + mask + 1; 844 } 845 out: 846 *pagep = page; 847 return ret; 848 } 849 850 static struct page *__cma_alloc(struct cma *cma, unsigned long count, 851 unsigned int align, gfp_t gfp) 852 { 853 struct page *page = NULL; 854 int ret = -ENOMEM, r; 855 unsigned long i; 856 const char *name = cma ? cma->name : NULL; 857 858 if (!cma || !cma->count) 859 return page; 860 861 pr_debug("%s(cma %p, name: %s, count %lu, align %d)\n", __func__, 862 (void *)cma, cma->name, count, align); 863 864 if (!count) 865 return page; 866 867 trace_cma_alloc_start(name, count, align); 868 869 for (r = 0; r < cma->nranges; r++) { 870 page = NULL; 871 872 ret = cma_range_alloc(cma, &cma->ranges[r], count, align, 873 &page, gfp); 874 if (ret != -EBUSY || page) 875 break; 876 } 877 878 /* 879 * CMA can allocate multiple page blocks, which results in different 880 * blocks being marked with different tags. Reset the tags to ignore 881 * those page blocks. 882 */ 883 if (page) { 884 for (i = 0; i < count; i++) 885 page_kasan_tag_reset(nth_page(page, i)); 886 } 887 888 if (ret && !(gfp & __GFP_NOWARN)) { 889 pr_err_ratelimited("%s: %s: alloc failed, req-size: %lu pages, ret: %d\n", 890 __func__, cma->name, count, ret); 891 cma_debug_show_areas(cma); 892 } 893 894 pr_debug("%s(): returned %p\n", __func__, page); 895 trace_cma_alloc_finish(name, page ? page_to_pfn(page) : 0, 896 page, count, align, ret); 897 if (page) { 898 count_vm_event(CMA_ALLOC_SUCCESS); 899 cma_sysfs_account_success_pages(cma, count); 900 } else { 901 count_vm_event(CMA_ALLOC_FAIL); 902 cma_sysfs_account_fail_pages(cma, count); 903 } 904 905 return page; 906 } 907 908 /** 909 * cma_alloc() - allocate pages from contiguous area 910 * @cma: Contiguous memory region for which the allocation is performed. 911 * @count: Requested number of pages. 912 * @align: Requested alignment of pages (in PAGE_SIZE order). 913 * @no_warn: Avoid printing message about failed allocation 914 * 915 * This function allocates part of contiguous memory on specific 916 * contiguous memory area. 917 */ 918 struct page *cma_alloc(struct cma *cma, unsigned long count, 919 unsigned int align, bool no_warn) 920 { 921 return __cma_alloc(cma, count, align, GFP_KERNEL | (no_warn ? __GFP_NOWARN : 0)); 922 } 923 924 struct folio *cma_alloc_folio(struct cma *cma, int order, gfp_t gfp) 925 { 926 struct page *page; 927 928 if (WARN_ON(!order || !(gfp & __GFP_COMP))) 929 return NULL; 930 931 page = __cma_alloc(cma, 1 << order, order, gfp); 932 933 return page ? page_folio(page) : NULL; 934 } 935 936 bool cma_pages_valid(struct cma *cma, const struct page *pages, 937 unsigned long count) 938 { 939 unsigned long pfn, end; 940 int r; 941 struct cma_memrange *cmr; 942 bool ret; 943 944 if (!cma || !pages || count > cma->count) 945 return false; 946 947 pfn = page_to_pfn(pages); 948 ret = false; 949 950 for (r = 0; r < cma->nranges; r++) { 951 cmr = &cma->ranges[r]; 952 end = cmr->base_pfn + cmr->count; 953 if (pfn >= cmr->base_pfn && pfn < end) { 954 ret = pfn + count <= end; 955 break; 956 } 957 } 958 959 if (!ret) 960 pr_debug("%s(page %p, count %lu)\n", 961 __func__, (void *)pages, count); 962 963 return ret; 964 } 965 966 /** 967 * cma_release() - release allocated pages 968 * @cma: Contiguous memory region for which the allocation is performed. 969 * @pages: Allocated pages. 970 * @count: Number of allocated pages. 971 * 972 * This function releases memory allocated by cma_alloc(). 973 * It returns false when provided pages do not belong to contiguous area and 974 * true otherwise. 975 */ 976 bool cma_release(struct cma *cma, const struct page *pages, 977 unsigned long count) 978 { 979 struct cma_memrange *cmr; 980 unsigned long pfn, end_pfn; 981 int r; 982 983 pr_debug("%s(page %p, count %lu)\n", __func__, (void *)pages, count); 984 985 if (!cma_pages_valid(cma, pages, count)) 986 return false; 987 988 pfn = page_to_pfn(pages); 989 end_pfn = pfn + count; 990 991 for (r = 0; r < cma->nranges; r++) { 992 cmr = &cma->ranges[r]; 993 if (pfn >= cmr->base_pfn && 994 pfn < (cmr->base_pfn + cmr->count)) { 995 VM_BUG_ON(end_pfn > cmr->base_pfn + cmr->count); 996 break; 997 } 998 } 999 1000 if (r == cma->nranges) 1001 return false; 1002 1003 free_contig_range(pfn, count); 1004 cma_clear_bitmap(cma, cmr, pfn, count); 1005 cma_sysfs_account_release_pages(cma, count); 1006 trace_cma_release(cma->name, pfn, pages, count); 1007 1008 return true; 1009 } 1010 1011 bool cma_free_folio(struct cma *cma, const struct folio *folio) 1012 { 1013 if (WARN_ON(!folio_test_large(folio))) 1014 return false; 1015 1016 return cma_release(cma, &folio->page, folio_nr_pages(folio)); 1017 } 1018 1019 int cma_for_each_area(int (*it)(struct cma *cma, void *data), void *data) 1020 { 1021 int i; 1022 1023 for (i = 0; i < cma_area_count; i++) { 1024 int ret = it(&cma_areas[i], data); 1025 1026 if (ret) 1027 return ret; 1028 } 1029 1030 return 0; 1031 } 1032 1033 bool cma_intersects(struct cma *cma, unsigned long start, unsigned long end) 1034 { 1035 int r; 1036 struct cma_memrange *cmr; 1037 unsigned long rstart, rend; 1038 1039 for (r = 0; r < cma->nranges; r++) { 1040 cmr = &cma->ranges[r]; 1041 1042 rstart = PFN_PHYS(cmr->base_pfn); 1043 rend = PFN_PHYS(cmr->base_pfn + cmr->count); 1044 if (end < rstart) 1045 continue; 1046 if (start >= rend) 1047 continue; 1048 return true; 1049 } 1050 1051 return false; 1052 } 1053 1054 /* 1055 * Very basic function to reserve memory from a CMA area that has not 1056 * yet been activated. This is expected to be called early, when the 1057 * system is single-threaded, so there is no locking. The alignment 1058 * checking is restrictive - only pageblock-aligned areas 1059 * (CMA_MIN_ALIGNMENT_BYTES) may be reserved through this function. 1060 * This keeps things simple, and is enough for the current use case. 1061 * 1062 * The CMA bitmaps have not yet been allocated, so just start 1063 * reserving from the bottom up, using a PFN to keep track 1064 * of what has been reserved. Unreserving is not possible. 1065 * 1066 * The caller is responsible for initializing the page structures 1067 * in the area properly, since this just points to memblock-allocated 1068 * memory. The caller should subsequently use init_cma_pageblock to 1069 * set the migrate type and CMA stats the pageblocks that were reserved. 1070 * 1071 * If the CMA area fails to activate later, memory obtained through 1072 * this interface is not handed to the page allocator, this is 1073 * the responsibility of the caller (e.g. like normal memblock-allocated 1074 * memory). 1075 */ 1076 void __init *cma_reserve_early(struct cma *cma, unsigned long size) 1077 { 1078 int r; 1079 struct cma_memrange *cmr; 1080 unsigned long available; 1081 void *ret = NULL; 1082 1083 if (!cma || !cma->count) 1084 return NULL; 1085 /* 1086 * Can only be called early in init. 1087 */ 1088 if (test_bit(CMA_ACTIVATED, &cma->flags)) 1089 return NULL; 1090 1091 if (!IS_ALIGNED(size, CMA_MIN_ALIGNMENT_BYTES)) 1092 return NULL; 1093 1094 if (!IS_ALIGNED(size, (PAGE_SIZE << cma->order_per_bit))) 1095 return NULL; 1096 1097 size >>= PAGE_SHIFT; 1098 1099 if (size > cma->available_count) 1100 return NULL; 1101 1102 for (r = 0; r < cma->nranges; r++) { 1103 cmr = &cma->ranges[r]; 1104 available = cmr->count - (cmr->early_pfn - cmr->base_pfn); 1105 if (size <= available) { 1106 ret = phys_to_virt(PFN_PHYS(cmr->early_pfn)); 1107 cmr->early_pfn += size; 1108 cma->available_count -= size; 1109 return ret; 1110 } 1111 } 1112 1113 return ret; 1114 } 1115