1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
2 /*
3 * Copyright (c) 2005 Voltaire Inc. All rights reserved.
4 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
5 * Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved.
6 * Copyright (c) 2005-2006 Intel Corporation. All rights reserved.
7 */
8
9 #include <linux/completion.h>
10 #include <linux/in.h>
11 #include <linux/in6.h>
12 #include <linux/mutex.h>
13 #include <linux/random.h>
14 #include <linux/rbtree.h>
15 #include <linux/igmp.h>
16 #include <linux/xarray.h>
17 #include <linux/inetdevice.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <net/route.h>
21
22 #include <net/net_namespace.h>
23 #include <net/netns/generic.h>
24 #include <net/netevent.h>
25 #include <net/tcp.h>
26 #include <net/ipv6.h>
27 #include <net/ip_fib.h>
28 #include <net/ip6_route.h>
29
30 #include <rdma/rdma_cm.h>
31 #include <rdma/rdma_cm_ib.h>
32 #include <rdma/rdma_netlink.h>
33 #include <rdma/ib.h>
34 #include <rdma/ib_cache.h>
35 #include <rdma/ib_cm.h>
36 #include <rdma/ib_sa.h>
37 #include <rdma/iw_cm.h>
38
39 #include "core_priv.h"
40 #include "cma_priv.h"
41 #include "cma_trace.h"
42
43 MODULE_AUTHOR("Sean Hefty");
44 MODULE_DESCRIPTION("Generic RDMA CM Agent");
45 MODULE_LICENSE("Dual BSD/GPL");
46
47 #define CMA_CM_RESPONSE_TIMEOUT 20
48 #define CMA_MAX_CM_RETRIES 15
49 #define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24)
50 #define CMA_IBOE_PACKET_LIFETIME 16
51 #define CMA_PREFERRED_ROCE_GID_TYPE IB_GID_TYPE_ROCE_UDP_ENCAP
52
53 static const char * const cma_events[] = {
54 [RDMA_CM_EVENT_ADDR_RESOLVED] = "address resolved",
55 [RDMA_CM_EVENT_ADDR_ERROR] = "address error",
56 [RDMA_CM_EVENT_ROUTE_RESOLVED] = "route resolved ",
57 [RDMA_CM_EVENT_ROUTE_ERROR] = "route error",
58 [RDMA_CM_EVENT_CONNECT_REQUEST] = "connect request",
59 [RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response",
60 [RDMA_CM_EVENT_CONNECT_ERROR] = "connect error",
61 [RDMA_CM_EVENT_UNREACHABLE] = "unreachable",
62 [RDMA_CM_EVENT_REJECTED] = "rejected",
63 [RDMA_CM_EVENT_ESTABLISHED] = "established",
64 [RDMA_CM_EVENT_DISCONNECTED] = "disconnected",
65 [RDMA_CM_EVENT_DEVICE_REMOVAL] = "device removal",
66 [RDMA_CM_EVENT_MULTICAST_JOIN] = "multicast join",
67 [RDMA_CM_EVENT_MULTICAST_ERROR] = "multicast error",
68 [RDMA_CM_EVENT_ADDR_CHANGE] = "address change",
69 [RDMA_CM_EVENT_TIMEWAIT_EXIT] = "timewait exit",
70 };
71
72 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid,
73 enum ib_gid_type gid_type);
74
rdma_event_msg(enum rdma_cm_event_type event)75 const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event)
76 {
77 size_t index = event;
78
79 return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ?
80 cma_events[index] : "unrecognized event";
81 }
82 EXPORT_SYMBOL(rdma_event_msg);
83
rdma_reject_msg(struct rdma_cm_id * id,int reason)84 const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id,
85 int reason)
86 {
87 if (rdma_ib_or_roce(id->device, id->port_num))
88 return ibcm_reject_msg(reason);
89
90 if (rdma_protocol_iwarp(id->device, id->port_num))
91 return iwcm_reject_msg(reason);
92
93 WARN_ON_ONCE(1);
94 return "unrecognized transport";
95 }
96 EXPORT_SYMBOL(rdma_reject_msg);
97
98 /**
99 * rdma_is_consumer_reject - return true if the consumer rejected the connect
100 * request.
101 * @id: Communication identifier that received the REJECT event.
102 * @reason: Value returned in the REJECT event status field.
103 */
rdma_is_consumer_reject(struct rdma_cm_id * id,int reason)104 static bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason)
105 {
106 if (rdma_ib_or_roce(id->device, id->port_num))
107 return reason == IB_CM_REJ_CONSUMER_DEFINED;
108
109 if (rdma_protocol_iwarp(id->device, id->port_num))
110 return reason == -ECONNREFUSED;
111
112 WARN_ON_ONCE(1);
113 return false;
114 }
115
rdma_consumer_reject_data(struct rdma_cm_id * id,struct rdma_cm_event * ev,u8 * data_len)116 const void *rdma_consumer_reject_data(struct rdma_cm_id *id,
117 struct rdma_cm_event *ev, u8 *data_len)
118 {
119 const void *p;
120
121 if (rdma_is_consumer_reject(id, ev->status)) {
122 *data_len = ev->param.conn.private_data_len;
123 p = ev->param.conn.private_data;
124 } else {
125 *data_len = 0;
126 p = NULL;
127 }
128 return p;
129 }
130 EXPORT_SYMBOL(rdma_consumer_reject_data);
131
132 /**
133 * rdma_iw_cm_id() - return the iw_cm_id pointer for this cm_id.
134 * @id: Communication Identifier
135 */
rdma_iw_cm_id(struct rdma_cm_id * id)136 struct iw_cm_id *rdma_iw_cm_id(struct rdma_cm_id *id)
137 {
138 struct rdma_id_private *id_priv;
139
140 id_priv = container_of(id, struct rdma_id_private, id);
141 if (id->device->node_type == RDMA_NODE_RNIC)
142 return id_priv->cm_id.iw;
143 return NULL;
144 }
145 EXPORT_SYMBOL(rdma_iw_cm_id);
146
147 /**
148 * rdma_res_to_id() - return the rdma_cm_id pointer for this restrack.
149 * @res: rdma resource tracking entry pointer
150 */
rdma_res_to_id(struct rdma_restrack_entry * res)151 struct rdma_cm_id *rdma_res_to_id(struct rdma_restrack_entry *res)
152 {
153 struct rdma_id_private *id_priv =
154 container_of(res, struct rdma_id_private, res);
155
156 return &id_priv->id;
157 }
158 EXPORT_SYMBOL(rdma_res_to_id);
159
160 static int cma_add_one(struct ib_device *device);
161 static void cma_remove_one(struct ib_device *device, void *client_data);
162
163 static struct ib_client cma_client = {
164 .name = "cma",
165 .add = cma_add_one,
166 .remove = cma_remove_one
167 };
168
169 static struct ib_sa_client sa_client;
170 static LIST_HEAD(dev_list);
171 static LIST_HEAD(listen_any_list);
172 static DEFINE_MUTEX(lock);
173 static struct rb_root id_table = RB_ROOT;
174 /* Serialize operations of id_table tree */
175 static DEFINE_SPINLOCK(id_table_lock);
176 static struct workqueue_struct *cma_wq;
177 static unsigned int cma_pernet_id;
178
179 struct cma_pernet {
180 struct xarray tcp_ps;
181 struct xarray udp_ps;
182 struct xarray ipoib_ps;
183 struct xarray ib_ps;
184 };
185
cma_pernet(struct net * net)186 static struct cma_pernet *cma_pernet(struct net *net)
187 {
188 return net_generic(net, cma_pernet_id);
189 }
190
191 static
cma_pernet_xa(struct net * net,enum rdma_ucm_port_space ps)192 struct xarray *cma_pernet_xa(struct net *net, enum rdma_ucm_port_space ps)
193 {
194 struct cma_pernet *pernet = cma_pernet(net);
195
196 switch (ps) {
197 case RDMA_PS_TCP:
198 return &pernet->tcp_ps;
199 case RDMA_PS_UDP:
200 return &pernet->udp_ps;
201 case RDMA_PS_IPOIB:
202 return &pernet->ipoib_ps;
203 case RDMA_PS_IB:
204 return &pernet->ib_ps;
205 default:
206 return NULL;
207 }
208 }
209
210 struct id_table_entry {
211 struct list_head id_list;
212 struct rb_node rb_node;
213 };
214
215 struct cma_device {
216 struct list_head list;
217 struct ib_device *device;
218 struct completion comp;
219 refcount_t refcount;
220 struct list_head id_list;
221 enum ib_gid_type *default_gid_type;
222 u8 *default_roce_tos;
223 };
224
225 struct rdma_bind_list {
226 enum rdma_ucm_port_space ps;
227 struct hlist_head owners;
228 unsigned short port;
229 };
230
cma_ps_alloc(struct net * net,enum rdma_ucm_port_space ps,struct rdma_bind_list * bind_list,int snum)231 static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space ps,
232 struct rdma_bind_list *bind_list, int snum)
233 {
234 struct xarray *xa = cma_pernet_xa(net, ps);
235
236 return xa_insert(xa, snum, bind_list, GFP_KERNEL);
237 }
238
cma_ps_find(struct net * net,enum rdma_ucm_port_space ps,int snum)239 static struct rdma_bind_list *cma_ps_find(struct net *net,
240 enum rdma_ucm_port_space ps, int snum)
241 {
242 struct xarray *xa = cma_pernet_xa(net, ps);
243
244 return xa_load(xa, snum);
245 }
246
cma_ps_remove(struct net * net,enum rdma_ucm_port_space ps,int snum)247 static void cma_ps_remove(struct net *net, enum rdma_ucm_port_space ps,
248 int snum)
249 {
250 struct xarray *xa = cma_pernet_xa(net, ps);
251
252 xa_erase(xa, snum);
253 }
254
255 enum {
256 CMA_OPTION_AFONLY,
257 };
258
cma_dev_get(struct cma_device * cma_dev)259 void cma_dev_get(struct cma_device *cma_dev)
260 {
261 refcount_inc(&cma_dev->refcount);
262 }
263
cma_dev_put(struct cma_device * cma_dev)264 void cma_dev_put(struct cma_device *cma_dev)
265 {
266 if (refcount_dec_and_test(&cma_dev->refcount))
267 complete(&cma_dev->comp);
268 }
269
cma_enum_devices_by_ibdev(cma_device_filter filter,void * cookie)270 struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter filter,
271 void *cookie)
272 {
273 struct cma_device *cma_dev;
274 struct cma_device *found_cma_dev = NULL;
275
276 mutex_lock(&lock);
277
278 list_for_each_entry(cma_dev, &dev_list, list)
279 if (filter(cma_dev->device, cookie)) {
280 found_cma_dev = cma_dev;
281 break;
282 }
283
284 if (found_cma_dev)
285 cma_dev_get(found_cma_dev);
286 mutex_unlock(&lock);
287 return found_cma_dev;
288 }
289
cma_get_default_gid_type(struct cma_device * cma_dev,u32 port)290 int cma_get_default_gid_type(struct cma_device *cma_dev,
291 u32 port)
292 {
293 if (!rdma_is_port_valid(cma_dev->device, port))
294 return -EINVAL;
295
296 return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)];
297 }
298
cma_set_default_gid_type(struct cma_device * cma_dev,u32 port,enum ib_gid_type default_gid_type)299 int cma_set_default_gid_type(struct cma_device *cma_dev,
300 u32 port,
301 enum ib_gid_type default_gid_type)
302 {
303 unsigned long supported_gids;
304
305 if (!rdma_is_port_valid(cma_dev->device, port))
306 return -EINVAL;
307
308 if (default_gid_type == IB_GID_TYPE_IB &&
309 rdma_protocol_roce_eth_encap(cma_dev->device, port))
310 default_gid_type = IB_GID_TYPE_ROCE;
311
312 supported_gids = roce_gid_type_mask_support(cma_dev->device, port);
313
314 if (!(supported_gids & 1 << default_gid_type))
315 return -EINVAL;
316
317 cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] =
318 default_gid_type;
319
320 return 0;
321 }
322
cma_get_default_roce_tos(struct cma_device * cma_dev,u32 port)323 int cma_get_default_roce_tos(struct cma_device *cma_dev, u32 port)
324 {
325 if (!rdma_is_port_valid(cma_dev->device, port))
326 return -EINVAL;
327
328 return cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)];
329 }
330
cma_set_default_roce_tos(struct cma_device * cma_dev,u32 port,u8 default_roce_tos)331 int cma_set_default_roce_tos(struct cma_device *cma_dev, u32 port,
332 u8 default_roce_tos)
333 {
334 if (!rdma_is_port_valid(cma_dev->device, port))
335 return -EINVAL;
336
337 cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)] =
338 default_roce_tos;
339
340 return 0;
341 }
cma_get_ib_dev(struct cma_device * cma_dev)342 struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev)
343 {
344 return cma_dev->device;
345 }
346
347 /*
348 * Device removal can occur at anytime, so we need extra handling to
349 * serialize notifying the user of device removal with other callbacks.
350 * We do this by disabling removal notification while a callback is in process,
351 * and reporting it after the callback completes.
352 */
353
354 struct cma_multicast {
355 struct rdma_id_private *id_priv;
356 union {
357 struct ib_sa_multicast *sa_mc;
358 struct {
359 struct work_struct work;
360 struct rdma_cm_event event;
361 } iboe_join;
362 };
363 struct list_head list;
364 void *context;
365 struct sockaddr_storage addr;
366 u8 join_state;
367 };
368
369 struct cma_work {
370 struct work_struct work;
371 struct rdma_id_private *id;
372 enum rdma_cm_state old_state;
373 enum rdma_cm_state new_state;
374 struct rdma_cm_event event;
375 };
376
377 union cma_ip_addr {
378 struct in6_addr ip6;
379 struct {
380 __be32 pad[3];
381 __be32 addr;
382 } ip4;
383 };
384
385 struct cma_hdr {
386 u8 cma_version;
387 u8 ip_version; /* IP version: 7:4 */
388 __be16 port;
389 union cma_ip_addr src_addr;
390 union cma_ip_addr dst_addr;
391 };
392
393 #define CMA_VERSION 0x00
394
395 struct cma_req_info {
396 struct sockaddr_storage listen_addr_storage;
397 struct sockaddr_storage src_addr_storage;
398 struct ib_device *device;
399 union ib_gid local_gid;
400 __be64 service_id;
401 int port;
402 bool has_gid;
403 u16 pkey;
404 };
405
cma_comp_exch(struct rdma_id_private * id_priv,enum rdma_cm_state comp,enum rdma_cm_state exch)406 static int cma_comp_exch(struct rdma_id_private *id_priv,
407 enum rdma_cm_state comp, enum rdma_cm_state exch)
408 {
409 unsigned long flags;
410 int ret;
411
412 /*
413 * The FSM uses a funny double locking where state is protected by both
414 * the handler_mutex and the spinlock. State is not allowed to change
415 * to/from a handler_mutex protected value without also holding
416 * handler_mutex.
417 */
418 if (comp == RDMA_CM_CONNECT || exch == RDMA_CM_CONNECT)
419 lockdep_assert_held(&id_priv->handler_mutex);
420
421 spin_lock_irqsave(&id_priv->lock, flags);
422 if ((ret = (id_priv->state == comp)))
423 id_priv->state = exch;
424 spin_unlock_irqrestore(&id_priv->lock, flags);
425 return ret;
426 }
427
cma_get_ip_ver(const struct cma_hdr * hdr)428 static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr)
429 {
430 return hdr->ip_version >> 4;
431 }
432
cma_set_ip_ver(struct cma_hdr * hdr,u8 ip_ver)433 static void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver)
434 {
435 hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF);
436 }
437
cma_src_addr(struct rdma_id_private * id_priv)438 static struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv)
439 {
440 return (struct sockaddr *)&id_priv->id.route.addr.src_addr;
441 }
442
cma_dst_addr(struct rdma_id_private * id_priv)443 static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv)
444 {
445 return (struct sockaddr *)&id_priv->id.route.addr.dst_addr;
446 }
447
cma_igmp_send(struct net_device * ndev,union ib_gid * mgid,bool join)448 static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join)
449 {
450 struct in_device *in_dev = NULL;
451
452 if (ndev) {
453 rtnl_lock();
454 in_dev = __in_dev_get_rtnl(ndev);
455 if (in_dev) {
456 if (join)
457 ip_mc_inc_group(in_dev,
458 *(__be32 *)(mgid->raw + 12));
459 else
460 ip_mc_dec_group(in_dev,
461 *(__be32 *)(mgid->raw + 12));
462 }
463 rtnl_unlock();
464 }
465 return (in_dev) ? 0 : -ENODEV;
466 }
467
compare_netdev_and_ip(int ifindex_a,struct sockaddr * sa,struct id_table_entry * entry_b)468 static int compare_netdev_and_ip(int ifindex_a, struct sockaddr *sa,
469 struct id_table_entry *entry_b)
470 {
471 struct rdma_id_private *id_priv = list_first_entry(
472 &entry_b->id_list, struct rdma_id_private, id_list_entry);
473 int ifindex_b = id_priv->id.route.addr.dev_addr.bound_dev_if;
474 struct sockaddr *sb = cma_dst_addr(id_priv);
475
476 if (ifindex_a != ifindex_b)
477 return (ifindex_a > ifindex_b) ? 1 : -1;
478
479 if (sa->sa_family != sb->sa_family)
480 return sa->sa_family - sb->sa_family;
481
482 if (sa->sa_family == AF_INET &&
483 __builtin_object_size(sa, 0) >= sizeof(struct sockaddr_in)) {
484 return memcmp(&((struct sockaddr_in *)sa)->sin_addr,
485 &((struct sockaddr_in *)sb)->sin_addr,
486 sizeof(((struct sockaddr_in *)sa)->sin_addr));
487 }
488
489 if (sa->sa_family == AF_INET6 &&
490 __builtin_object_size(sa, 0) >= sizeof(struct sockaddr_in6)) {
491 return ipv6_addr_cmp(&((struct sockaddr_in6 *)sa)->sin6_addr,
492 &((struct sockaddr_in6 *)sb)->sin6_addr);
493 }
494
495 return -1;
496 }
497
cma_add_id_to_tree(struct rdma_id_private * node_id_priv)498 static int cma_add_id_to_tree(struct rdma_id_private *node_id_priv)
499 {
500 struct rb_node **new, *parent = NULL;
501 struct id_table_entry *this, *node;
502 unsigned long flags;
503 int result;
504
505 node = kzalloc(sizeof(*node), GFP_KERNEL);
506 if (!node)
507 return -ENOMEM;
508
509 spin_lock_irqsave(&id_table_lock, flags);
510 new = &id_table.rb_node;
511 while (*new) {
512 this = container_of(*new, struct id_table_entry, rb_node);
513 result = compare_netdev_and_ip(
514 node_id_priv->id.route.addr.dev_addr.bound_dev_if,
515 cma_dst_addr(node_id_priv), this);
516
517 parent = *new;
518 if (result < 0)
519 new = &((*new)->rb_left);
520 else if (result > 0)
521 new = &((*new)->rb_right);
522 else {
523 list_add_tail(&node_id_priv->id_list_entry,
524 &this->id_list);
525 kfree(node);
526 goto unlock;
527 }
528 }
529
530 INIT_LIST_HEAD(&node->id_list);
531 list_add_tail(&node_id_priv->id_list_entry, &node->id_list);
532
533 rb_link_node(&node->rb_node, parent, new);
534 rb_insert_color(&node->rb_node, &id_table);
535
536 unlock:
537 spin_unlock_irqrestore(&id_table_lock, flags);
538 return 0;
539 }
540
541 static struct id_table_entry *
node_from_ndev_ip(struct rb_root * root,int ifindex,struct sockaddr * sa)542 node_from_ndev_ip(struct rb_root *root, int ifindex, struct sockaddr *sa)
543 {
544 struct rb_node *node = root->rb_node;
545 struct id_table_entry *data;
546 int result;
547
548 while (node) {
549 data = container_of(node, struct id_table_entry, rb_node);
550 result = compare_netdev_and_ip(ifindex, sa, data);
551 if (result < 0)
552 node = node->rb_left;
553 else if (result > 0)
554 node = node->rb_right;
555 else
556 return data;
557 }
558
559 return NULL;
560 }
561
cma_remove_id_from_tree(struct rdma_id_private * id_priv)562 static void cma_remove_id_from_tree(struct rdma_id_private *id_priv)
563 {
564 struct id_table_entry *data;
565 unsigned long flags;
566
567 spin_lock_irqsave(&id_table_lock, flags);
568 if (list_empty(&id_priv->id_list_entry))
569 goto out;
570
571 data = node_from_ndev_ip(&id_table,
572 id_priv->id.route.addr.dev_addr.bound_dev_if,
573 cma_dst_addr(id_priv));
574 if (!data)
575 goto out;
576
577 list_del_init(&id_priv->id_list_entry);
578 if (list_empty(&data->id_list)) {
579 rb_erase(&data->rb_node, &id_table);
580 kfree(data);
581 }
582 out:
583 spin_unlock_irqrestore(&id_table_lock, flags);
584 }
585
_cma_attach_to_dev(struct rdma_id_private * id_priv,struct cma_device * cma_dev)586 static void _cma_attach_to_dev(struct rdma_id_private *id_priv,
587 struct cma_device *cma_dev)
588 {
589 cma_dev_get(cma_dev);
590 id_priv->cma_dev = cma_dev;
591 id_priv->id.device = cma_dev->device;
592 id_priv->id.route.addr.dev_addr.transport =
593 rdma_node_get_transport(cma_dev->device->node_type);
594 list_add_tail(&id_priv->device_item, &cma_dev->id_list);
595
596 trace_cm_id_attach(id_priv, cma_dev->device);
597 }
598
cma_attach_to_dev(struct rdma_id_private * id_priv,struct cma_device * cma_dev)599 static void cma_attach_to_dev(struct rdma_id_private *id_priv,
600 struct cma_device *cma_dev)
601 {
602 _cma_attach_to_dev(id_priv, cma_dev);
603 id_priv->gid_type =
604 cma_dev->default_gid_type[id_priv->id.port_num -
605 rdma_start_port(cma_dev->device)];
606 }
607
cma_release_dev(struct rdma_id_private * id_priv)608 static void cma_release_dev(struct rdma_id_private *id_priv)
609 {
610 mutex_lock(&lock);
611 list_del_init(&id_priv->device_item);
612 cma_dev_put(id_priv->cma_dev);
613 id_priv->cma_dev = NULL;
614 id_priv->id.device = NULL;
615 if (id_priv->id.route.addr.dev_addr.sgid_attr) {
616 rdma_put_gid_attr(id_priv->id.route.addr.dev_addr.sgid_attr);
617 id_priv->id.route.addr.dev_addr.sgid_attr = NULL;
618 }
619 mutex_unlock(&lock);
620 }
621
cma_family(struct rdma_id_private * id_priv)622 static inline unsigned short cma_family(struct rdma_id_private *id_priv)
623 {
624 return id_priv->id.route.addr.src_addr.ss_family;
625 }
626
cma_set_default_qkey(struct rdma_id_private * id_priv)627 static int cma_set_default_qkey(struct rdma_id_private *id_priv)
628 {
629 struct ib_sa_mcmember_rec rec;
630 int ret = 0;
631
632 switch (id_priv->id.ps) {
633 case RDMA_PS_UDP:
634 case RDMA_PS_IB:
635 id_priv->qkey = RDMA_UDP_QKEY;
636 break;
637 case RDMA_PS_IPOIB:
638 ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid);
639 ret = ib_sa_get_mcmember_rec(id_priv->id.device,
640 id_priv->id.port_num, &rec.mgid,
641 &rec);
642 if (!ret)
643 id_priv->qkey = be32_to_cpu(rec.qkey);
644 break;
645 default:
646 break;
647 }
648 return ret;
649 }
650
cma_set_qkey(struct rdma_id_private * id_priv,u32 qkey)651 static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey)
652 {
653 if (!qkey ||
654 (id_priv->qkey && (id_priv->qkey != qkey)))
655 return -EINVAL;
656
657 id_priv->qkey = qkey;
658 return 0;
659 }
660
cma_translate_ib(struct sockaddr_ib * sib,struct rdma_dev_addr * dev_addr)661 static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr)
662 {
663 dev_addr->dev_type = ARPHRD_INFINIBAND;
664 rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr);
665 ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey));
666 }
667
cma_translate_addr(struct sockaddr * addr,struct rdma_dev_addr * dev_addr)668 static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr)
669 {
670 int ret;
671
672 if (addr->sa_family != AF_IB) {
673 ret = rdma_translate_ip(addr, dev_addr);
674 } else {
675 cma_translate_ib((struct sockaddr_ib *) addr, dev_addr);
676 ret = 0;
677 }
678
679 return ret;
680 }
681
682 static const struct ib_gid_attr *
cma_validate_port(struct ib_device * device,u32 port,enum ib_gid_type gid_type,union ib_gid * gid,struct rdma_id_private * id_priv)683 cma_validate_port(struct ib_device *device, u32 port,
684 enum ib_gid_type gid_type,
685 union ib_gid *gid,
686 struct rdma_id_private *id_priv)
687 {
688 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
689 const struct ib_gid_attr *sgid_attr = ERR_PTR(-ENODEV);
690 int bound_if_index = dev_addr->bound_dev_if;
691 int dev_type = dev_addr->dev_type;
692 struct net_device *ndev = NULL;
693 struct net_device *pdev = NULL;
694
695 if (!rdma_dev_access_netns(device, id_priv->id.route.addr.dev_addr.net))
696 goto out;
697
698 if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port))
699 goto out;
700
701 if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port))
702 goto out;
703
704 /*
705 * For drivers that do not associate more than one net device with
706 * their gid tables, such as iWARP drivers, it is sufficient to
707 * return the first table entry.
708 *
709 * Other driver classes might be included in the future.
710 */
711 if (rdma_protocol_iwarp(device, port)) {
712 sgid_attr = rdma_get_gid_attr(device, port, 0);
713 if (IS_ERR(sgid_attr))
714 goto out;
715
716 rcu_read_lock();
717 ndev = rcu_dereference(sgid_attr->ndev);
718 if (ndev->ifindex != bound_if_index) {
719 pdev = dev_get_by_index_rcu(dev_addr->net, bound_if_index);
720 if (pdev) {
721 if (is_vlan_dev(pdev)) {
722 pdev = vlan_dev_real_dev(pdev);
723 if (ndev->ifindex == pdev->ifindex)
724 bound_if_index = pdev->ifindex;
725 }
726 if (is_vlan_dev(ndev)) {
727 pdev = vlan_dev_real_dev(ndev);
728 if (bound_if_index == pdev->ifindex)
729 bound_if_index = ndev->ifindex;
730 }
731 }
732 }
733 if (!net_eq(dev_net(ndev), dev_addr->net) ||
734 ndev->ifindex != bound_if_index) {
735 rdma_put_gid_attr(sgid_attr);
736 sgid_attr = ERR_PTR(-ENODEV);
737 }
738 rcu_read_unlock();
739 goto out;
740 }
741
742 if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) {
743 ndev = dev_get_by_index(dev_addr->net, bound_if_index);
744 if (!ndev)
745 goto out;
746 } else {
747 gid_type = IB_GID_TYPE_IB;
748 }
749
750 sgid_attr = rdma_find_gid_by_port(device, gid, gid_type, port, ndev);
751 dev_put(ndev);
752 out:
753 return sgid_attr;
754 }
755
cma_bind_sgid_attr(struct rdma_id_private * id_priv,const struct ib_gid_attr * sgid_attr)756 static void cma_bind_sgid_attr(struct rdma_id_private *id_priv,
757 const struct ib_gid_attr *sgid_attr)
758 {
759 WARN_ON(id_priv->id.route.addr.dev_addr.sgid_attr);
760 id_priv->id.route.addr.dev_addr.sgid_attr = sgid_attr;
761 }
762
763 /**
764 * cma_acquire_dev_by_src_ip - Acquire cma device, port, gid attribute
765 * based on source ip address.
766 * @id_priv: cm_id which should be bound to cma device
767 *
768 * cma_acquire_dev_by_src_ip() binds cm id to cma device, port and GID attribute
769 * based on source IP address. It returns 0 on success or error code otherwise.
770 * It is applicable to active and passive side cm_id.
771 */
cma_acquire_dev_by_src_ip(struct rdma_id_private * id_priv)772 static int cma_acquire_dev_by_src_ip(struct rdma_id_private *id_priv)
773 {
774 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
775 const struct ib_gid_attr *sgid_attr;
776 union ib_gid gid, iboe_gid, *gidp;
777 struct cma_device *cma_dev;
778 enum ib_gid_type gid_type;
779 int ret = -ENODEV;
780 u32 port;
781
782 if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
783 id_priv->id.ps == RDMA_PS_IPOIB)
784 return -EINVAL;
785
786 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
787 &iboe_gid);
788
789 memcpy(&gid, dev_addr->src_dev_addr +
790 rdma_addr_gid_offset(dev_addr), sizeof(gid));
791
792 mutex_lock(&lock);
793 list_for_each_entry(cma_dev, &dev_list, list) {
794 rdma_for_each_port (cma_dev->device, port) {
795 gidp = rdma_protocol_roce(cma_dev->device, port) ?
796 &iboe_gid : &gid;
797 gid_type = cma_dev->default_gid_type[port - 1];
798 sgid_attr = cma_validate_port(cma_dev->device, port,
799 gid_type, gidp, id_priv);
800 if (!IS_ERR(sgid_attr)) {
801 id_priv->id.port_num = port;
802 cma_bind_sgid_attr(id_priv, sgid_attr);
803 cma_attach_to_dev(id_priv, cma_dev);
804 ret = 0;
805 goto out;
806 }
807 }
808 }
809 out:
810 mutex_unlock(&lock);
811 return ret;
812 }
813
814 /**
815 * cma_ib_acquire_dev - Acquire cma device, port and SGID attribute
816 * @id_priv: cm id to bind to cma device
817 * @listen_id_priv: listener cm id to match against
818 * @req: Pointer to req structure containaining incoming
819 * request information
820 * cma_ib_acquire_dev() acquires cma device, port and SGID attribute when
821 * rdma device matches for listen_id and incoming request. It also verifies
822 * that a GID table entry is present for the source address.
823 * Returns 0 on success, or returns error code otherwise.
824 */
cma_ib_acquire_dev(struct rdma_id_private * id_priv,const struct rdma_id_private * listen_id_priv,struct cma_req_info * req)825 static int cma_ib_acquire_dev(struct rdma_id_private *id_priv,
826 const struct rdma_id_private *listen_id_priv,
827 struct cma_req_info *req)
828 {
829 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
830 const struct ib_gid_attr *sgid_attr;
831 enum ib_gid_type gid_type;
832 union ib_gid gid;
833
834 if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
835 id_priv->id.ps == RDMA_PS_IPOIB)
836 return -EINVAL;
837
838 if (rdma_protocol_roce(req->device, req->port))
839 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
840 &gid);
841 else
842 memcpy(&gid, dev_addr->src_dev_addr +
843 rdma_addr_gid_offset(dev_addr), sizeof(gid));
844
845 gid_type = listen_id_priv->cma_dev->default_gid_type[req->port - 1];
846 sgid_attr = cma_validate_port(req->device, req->port,
847 gid_type, &gid, id_priv);
848 if (IS_ERR(sgid_attr))
849 return PTR_ERR(sgid_attr);
850
851 id_priv->id.port_num = req->port;
852 cma_bind_sgid_attr(id_priv, sgid_attr);
853 /* Need to acquire lock to protect against reader
854 * of cma_dev->id_list such as cma_netdev_callback() and
855 * cma_process_remove().
856 */
857 mutex_lock(&lock);
858 cma_attach_to_dev(id_priv, listen_id_priv->cma_dev);
859 mutex_unlock(&lock);
860 rdma_restrack_add(&id_priv->res);
861 return 0;
862 }
863
cma_iw_acquire_dev(struct rdma_id_private * id_priv,const struct rdma_id_private * listen_id_priv)864 static int cma_iw_acquire_dev(struct rdma_id_private *id_priv,
865 const struct rdma_id_private *listen_id_priv)
866 {
867 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
868 const struct ib_gid_attr *sgid_attr;
869 struct cma_device *cma_dev;
870 enum ib_gid_type gid_type;
871 int ret = -ENODEV;
872 union ib_gid gid;
873 u32 port;
874
875 if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
876 id_priv->id.ps == RDMA_PS_IPOIB)
877 return -EINVAL;
878
879 memcpy(&gid, dev_addr->src_dev_addr +
880 rdma_addr_gid_offset(dev_addr), sizeof(gid));
881
882 mutex_lock(&lock);
883
884 cma_dev = listen_id_priv->cma_dev;
885 port = listen_id_priv->id.port_num;
886 gid_type = listen_id_priv->gid_type;
887 sgid_attr = cma_validate_port(cma_dev->device, port,
888 gid_type, &gid, id_priv);
889 if (!IS_ERR(sgid_attr)) {
890 id_priv->id.port_num = port;
891 cma_bind_sgid_attr(id_priv, sgid_attr);
892 ret = 0;
893 goto out;
894 }
895
896 list_for_each_entry(cma_dev, &dev_list, list) {
897 rdma_for_each_port (cma_dev->device, port) {
898 if (listen_id_priv->cma_dev == cma_dev &&
899 listen_id_priv->id.port_num == port)
900 continue;
901
902 gid_type = cma_dev->default_gid_type[port - 1];
903 sgid_attr = cma_validate_port(cma_dev->device, port,
904 gid_type, &gid, id_priv);
905 if (!IS_ERR(sgid_attr)) {
906 id_priv->id.port_num = port;
907 cma_bind_sgid_attr(id_priv, sgid_attr);
908 ret = 0;
909 goto out;
910 }
911 }
912 }
913
914 out:
915 if (!ret) {
916 cma_attach_to_dev(id_priv, cma_dev);
917 rdma_restrack_add(&id_priv->res);
918 }
919
920 mutex_unlock(&lock);
921 return ret;
922 }
923
924 /*
925 * Select the source IB device and address to reach the destination IB address.
926 */
cma_resolve_ib_dev(struct rdma_id_private * id_priv)927 static int cma_resolve_ib_dev(struct rdma_id_private *id_priv)
928 {
929 struct cma_device *cma_dev, *cur_dev;
930 struct sockaddr_ib *addr;
931 union ib_gid gid, sgid, *dgid;
932 unsigned int p;
933 u16 pkey, index;
934 enum ib_port_state port_state;
935 int ret;
936 int i;
937
938 cma_dev = NULL;
939 addr = (struct sockaddr_ib *) cma_dst_addr(id_priv);
940 dgid = (union ib_gid *) &addr->sib_addr;
941 pkey = ntohs(addr->sib_pkey);
942
943 mutex_lock(&lock);
944 list_for_each_entry(cur_dev, &dev_list, list) {
945 rdma_for_each_port (cur_dev->device, p) {
946 if (!rdma_cap_af_ib(cur_dev->device, p))
947 continue;
948
949 if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index))
950 continue;
951
952 if (ib_get_cached_port_state(cur_dev->device, p, &port_state))
953 continue;
954
955 for (i = 0; i < cur_dev->device->port_data[p].immutable.gid_tbl_len;
956 ++i) {
957 ret = rdma_query_gid(cur_dev->device, p, i,
958 &gid);
959 if (ret)
960 continue;
961
962 if (!memcmp(&gid, dgid, sizeof(gid))) {
963 cma_dev = cur_dev;
964 sgid = gid;
965 id_priv->id.port_num = p;
966 goto found;
967 }
968
969 if (!cma_dev && (gid.global.subnet_prefix ==
970 dgid->global.subnet_prefix) &&
971 port_state == IB_PORT_ACTIVE) {
972 cma_dev = cur_dev;
973 sgid = gid;
974 id_priv->id.port_num = p;
975 goto found;
976 }
977 }
978 }
979 }
980 mutex_unlock(&lock);
981 return -ENODEV;
982
983 found:
984 cma_attach_to_dev(id_priv, cma_dev);
985 rdma_restrack_add(&id_priv->res);
986 mutex_unlock(&lock);
987 addr = (struct sockaddr_ib *)cma_src_addr(id_priv);
988 memcpy(&addr->sib_addr, &sgid, sizeof(sgid));
989 cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr);
990 return 0;
991 }
992
cma_id_get(struct rdma_id_private * id_priv)993 static void cma_id_get(struct rdma_id_private *id_priv)
994 {
995 refcount_inc(&id_priv->refcount);
996 }
997
cma_id_put(struct rdma_id_private * id_priv)998 static void cma_id_put(struct rdma_id_private *id_priv)
999 {
1000 if (refcount_dec_and_test(&id_priv->refcount))
1001 complete(&id_priv->comp);
1002 }
1003
1004 static struct rdma_id_private *
__rdma_create_id(struct net * net,rdma_cm_event_handler event_handler,void * context,enum rdma_ucm_port_space ps,enum ib_qp_type qp_type,const struct rdma_id_private * parent)1005 __rdma_create_id(struct net *net, rdma_cm_event_handler event_handler,
1006 void *context, enum rdma_ucm_port_space ps,
1007 enum ib_qp_type qp_type, const struct rdma_id_private *parent)
1008 {
1009 struct rdma_id_private *id_priv;
1010
1011 id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL);
1012 if (!id_priv)
1013 return ERR_PTR(-ENOMEM);
1014
1015 id_priv->state = RDMA_CM_IDLE;
1016 id_priv->id.context = context;
1017 id_priv->id.event_handler = event_handler;
1018 id_priv->id.ps = ps;
1019 id_priv->id.qp_type = qp_type;
1020 id_priv->tos_set = false;
1021 id_priv->timeout_set = false;
1022 id_priv->min_rnr_timer_set = false;
1023 id_priv->gid_type = IB_GID_TYPE_IB;
1024 spin_lock_init(&id_priv->lock);
1025 mutex_init(&id_priv->qp_mutex);
1026 init_completion(&id_priv->comp);
1027 refcount_set(&id_priv->refcount, 1);
1028 mutex_init(&id_priv->handler_mutex);
1029 INIT_LIST_HEAD(&id_priv->device_item);
1030 INIT_LIST_HEAD(&id_priv->id_list_entry);
1031 INIT_LIST_HEAD(&id_priv->listen_list);
1032 INIT_LIST_HEAD(&id_priv->mc_list);
1033 get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num);
1034 id_priv->id.route.addr.dev_addr.net = get_net(net);
1035 id_priv->seq_num &= 0x00ffffff;
1036
1037 rdma_restrack_new(&id_priv->res, RDMA_RESTRACK_CM_ID);
1038 if (parent)
1039 rdma_restrack_parent_name(&id_priv->res, &parent->res);
1040
1041 return id_priv;
1042 }
1043
1044 struct rdma_cm_id *
__rdma_create_kernel_id(struct net * net,rdma_cm_event_handler event_handler,void * context,enum rdma_ucm_port_space ps,enum ib_qp_type qp_type,const char * caller)1045 __rdma_create_kernel_id(struct net *net, rdma_cm_event_handler event_handler,
1046 void *context, enum rdma_ucm_port_space ps,
1047 enum ib_qp_type qp_type, const char *caller)
1048 {
1049 struct rdma_id_private *ret;
1050
1051 ret = __rdma_create_id(net, event_handler, context, ps, qp_type, NULL);
1052 if (IS_ERR(ret))
1053 return ERR_CAST(ret);
1054
1055 rdma_restrack_set_name(&ret->res, caller);
1056 return &ret->id;
1057 }
1058 EXPORT_SYMBOL(__rdma_create_kernel_id);
1059
rdma_create_user_id(rdma_cm_event_handler event_handler,void * context,enum rdma_ucm_port_space ps,enum ib_qp_type qp_type)1060 struct rdma_cm_id *rdma_create_user_id(rdma_cm_event_handler event_handler,
1061 void *context,
1062 enum rdma_ucm_port_space ps,
1063 enum ib_qp_type qp_type)
1064 {
1065 struct rdma_id_private *ret;
1066
1067 ret = __rdma_create_id(current->nsproxy->net_ns, event_handler, context,
1068 ps, qp_type, NULL);
1069 if (IS_ERR(ret))
1070 return ERR_CAST(ret);
1071
1072 rdma_restrack_set_name(&ret->res, NULL);
1073 return &ret->id;
1074 }
1075 EXPORT_SYMBOL(rdma_create_user_id);
1076
cma_init_ud_qp(struct rdma_id_private * id_priv,struct ib_qp * qp)1077 static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
1078 {
1079 struct ib_qp_attr qp_attr;
1080 int qp_attr_mask, ret;
1081
1082 qp_attr.qp_state = IB_QPS_INIT;
1083 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1084 if (ret)
1085 return ret;
1086
1087 ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask);
1088 if (ret)
1089 return ret;
1090
1091 qp_attr.qp_state = IB_QPS_RTR;
1092 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE);
1093 if (ret)
1094 return ret;
1095
1096 qp_attr.qp_state = IB_QPS_RTS;
1097 qp_attr.sq_psn = 0;
1098 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN);
1099
1100 return ret;
1101 }
1102
cma_init_conn_qp(struct rdma_id_private * id_priv,struct ib_qp * qp)1103 static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
1104 {
1105 struct ib_qp_attr qp_attr;
1106 int qp_attr_mask, ret;
1107
1108 qp_attr.qp_state = IB_QPS_INIT;
1109 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1110 if (ret)
1111 return ret;
1112
1113 return ib_modify_qp(qp, &qp_attr, qp_attr_mask);
1114 }
1115
rdma_create_qp(struct rdma_cm_id * id,struct ib_pd * pd,struct ib_qp_init_attr * qp_init_attr)1116 int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd,
1117 struct ib_qp_init_attr *qp_init_attr)
1118 {
1119 struct rdma_id_private *id_priv;
1120 struct ib_qp *qp;
1121 int ret;
1122
1123 id_priv = container_of(id, struct rdma_id_private, id);
1124 if (id->device != pd->device) {
1125 ret = -EINVAL;
1126 goto out_err;
1127 }
1128
1129 qp_init_attr->port_num = id->port_num;
1130 qp = ib_create_qp(pd, qp_init_attr);
1131 if (IS_ERR(qp)) {
1132 ret = PTR_ERR(qp);
1133 goto out_err;
1134 }
1135
1136 if (id->qp_type == IB_QPT_UD)
1137 ret = cma_init_ud_qp(id_priv, qp);
1138 else
1139 ret = cma_init_conn_qp(id_priv, qp);
1140 if (ret)
1141 goto out_destroy;
1142
1143 id->qp = qp;
1144 id_priv->qp_num = qp->qp_num;
1145 id_priv->srq = (qp->srq != NULL);
1146 trace_cm_qp_create(id_priv, pd, qp_init_attr, 0);
1147 return 0;
1148 out_destroy:
1149 ib_destroy_qp(qp);
1150 out_err:
1151 trace_cm_qp_create(id_priv, pd, qp_init_attr, ret);
1152 return ret;
1153 }
1154 EXPORT_SYMBOL(rdma_create_qp);
1155
rdma_destroy_qp(struct rdma_cm_id * id)1156 void rdma_destroy_qp(struct rdma_cm_id *id)
1157 {
1158 struct rdma_id_private *id_priv;
1159
1160 id_priv = container_of(id, struct rdma_id_private, id);
1161 trace_cm_qp_destroy(id_priv);
1162 mutex_lock(&id_priv->qp_mutex);
1163 ib_destroy_qp(id_priv->id.qp);
1164 id_priv->id.qp = NULL;
1165 mutex_unlock(&id_priv->qp_mutex);
1166 }
1167 EXPORT_SYMBOL(rdma_destroy_qp);
1168
cma_modify_qp_rtr(struct rdma_id_private * id_priv,struct rdma_conn_param * conn_param)1169 static int cma_modify_qp_rtr(struct rdma_id_private *id_priv,
1170 struct rdma_conn_param *conn_param)
1171 {
1172 struct ib_qp_attr qp_attr;
1173 int qp_attr_mask, ret;
1174
1175 mutex_lock(&id_priv->qp_mutex);
1176 if (!id_priv->id.qp) {
1177 ret = 0;
1178 goto out;
1179 }
1180
1181 /* Need to update QP attributes from default values. */
1182 qp_attr.qp_state = IB_QPS_INIT;
1183 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1184 if (ret)
1185 goto out;
1186
1187 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1188 if (ret)
1189 goto out;
1190
1191 qp_attr.qp_state = IB_QPS_RTR;
1192 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1193 if (ret)
1194 goto out;
1195
1196 BUG_ON(id_priv->cma_dev->device != id_priv->id.device);
1197
1198 if (conn_param)
1199 qp_attr.max_dest_rd_atomic = conn_param->responder_resources;
1200 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1201 out:
1202 mutex_unlock(&id_priv->qp_mutex);
1203 return ret;
1204 }
1205
cma_modify_qp_rts(struct rdma_id_private * id_priv,struct rdma_conn_param * conn_param)1206 static int cma_modify_qp_rts(struct rdma_id_private *id_priv,
1207 struct rdma_conn_param *conn_param)
1208 {
1209 struct ib_qp_attr qp_attr;
1210 int qp_attr_mask, ret;
1211
1212 mutex_lock(&id_priv->qp_mutex);
1213 if (!id_priv->id.qp) {
1214 ret = 0;
1215 goto out;
1216 }
1217
1218 qp_attr.qp_state = IB_QPS_RTS;
1219 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1220 if (ret)
1221 goto out;
1222
1223 if (conn_param)
1224 qp_attr.max_rd_atomic = conn_param->initiator_depth;
1225 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1226 out:
1227 mutex_unlock(&id_priv->qp_mutex);
1228 return ret;
1229 }
1230
cma_modify_qp_err(struct rdma_id_private * id_priv)1231 static int cma_modify_qp_err(struct rdma_id_private *id_priv)
1232 {
1233 struct ib_qp_attr qp_attr;
1234 int ret;
1235
1236 mutex_lock(&id_priv->qp_mutex);
1237 if (!id_priv->id.qp) {
1238 ret = 0;
1239 goto out;
1240 }
1241
1242 qp_attr.qp_state = IB_QPS_ERR;
1243 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE);
1244 out:
1245 mutex_unlock(&id_priv->qp_mutex);
1246 return ret;
1247 }
1248
cma_ib_init_qp_attr(struct rdma_id_private * id_priv,struct ib_qp_attr * qp_attr,int * qp_attr_mask)1249 static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv,
1250 struct ib_qp_attr *qp_attr, int *qp_attr_mask)
1251 {
1252 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
1253 int ret;
1254 u16 pkey;
1255
1256 if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num))
1257 pkey = 0xffff;
1258 else
1259 pkey = ib_addr_get_pkey(dev_addr);
1260
1261 ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num,
1262 pkey, &qp_attr->pkey_index);
1263 if (ret)
1264 return ret;
1265
1266 qp_attr->port_num = id_priv->id.port_num;
1267 *qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT;
1268
1269 if (id_priv->id.qp_type == IB_QPT_UD) {
1270 ret = cma_set_default_qkey(id_priv);
1271 if (ret)
1272 return ret;
1273
1274 qp_attr->qkey = id_priv->qkey;
1275 *qp_attr_mask |= IB_QP_QKEY;
1276 } else {
1277 qp_attr->qp_access_flags = 0;
1278 *qp_attr_mask |= IB_QP_ACCESS_FLAGS;
1279 }
1280 return 0;
1281 }
1282
rdma_init_qp_attr(struct rdma_cm_id * id,struct ib_qp_attr * qp_attr,int * qp_attr_mask)1283 int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr,
1284 int *qp_attr_mask)
1285 {
1286 struct rdma_id_private *id_priv;
1287 int ret = 0;
1288
1289 id_priv = container_of(id, struct rdma_id_private, id);
1290 if (rdma_cap_ib_cm(id->device, id->port_num)) {
1291 if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD))
1292 ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask);
1293 else
1294 ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr,
1295 qp_attr_mask);
1296
1297 if (qp_attr->qp_state == IB_QPS_RTR)
1298 qp_attr->rq_psn = id_priv->seq_num;
1299 } else if (rdma_cap_iw_cm(id->device, id->port_num)) {
1300 if (!id_priv->cm_id.iw) {
1301 qp_attr->qp_access_flags = 0;
1302 *qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS;
1303 } else
1304 ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr,
1305 qp_attr_mask);
1306 qp_attr->port_num = id_priv->id.port_num;
1307 *qp_attr_mask |= IB_QP_PORT;
1308 } else {
1309 ret = -ENOSYS;
1310 }
1311
1312 if ((*qp_attr_mask & IB_QP_TIMEOUT) && id_priv->timeout_set)
1313 qp_attr->timeout = id_priv->timeout;
1314
1315 if ((*qp_attr_mask & IB_QP_MIN_RNR_TIMER) && id_priv->min_rnr_timer_set)
1316 qp_attr->min_rnr_timer = id_priv->min_rnr_timer;
1317
1318 return ret;
1319 }
1320 EXPORT_SYMBOL(rdma_init_qp_attr);
1321
cma_zero_addr(const struct sockaddr * addr)1322 static inline bool cma_zero_addr(const struct sockaddr *addr)
1323 {
1324 switch (addr->sa_family) {
1325 case AF_INET:
1326 return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr);
1327 case AF_INET6:
1328 return ipv6_addr_any(&((struct sockaddr_in6 *)addr)->sin6_addr);
1329 case AF_IB:
1330 return ib_addr_any(&((struct sockaddr_ib *)addr)->sib_addr);
1331 default:
1332 return false;
1333 }
1334 }
1335
cma_loopback_addr(const struct sockaddr * addr)1336 static inline bool cma_loopback_addr(const struct sockaddr *addr)
1337 {
1338 switch (addr->sa_family) {
1339 case AF_INET:
1340 return ipv4_is_loopback(
1341 ((struct sockaddr_in *)addr)->sin_addr.s_addr);
1342 case AF_INET6:
1343 return ipv6_addr_loopback(
1344 &((struct sockaddr_in6 *)addr)->sin6_addr);
1345 case AF_IB:
1346 return ib_addr_loopback(
1347 &((struct sockaddr_ib *)addr)->sib_addr);
1348 default:
1349 return false;
1350 }
1351 }
1352
cma_any_addr(const struct sockaddr * addr)1353 static inline bool cma_any_addr(const struct sockaddr *addr)
1354 {
1355 return cma_zero_addr(addr) || cma_loopback_addr(addr);
1356 }
1357
cma_addr_cmp(const struct sockaddr * src,const struct sockaddr * dst)1358 static int cma_addr_cmp(const struct sockaddr *src, const struct sockaddr *dst)
1359 {
1360 if (src->sa_family != dst->sa_family)
1361 return -1;
1362
1363 switch (src->sa_family) {
1364 case AF_INET:
1365 return ((struct sockaddr_in *)src)->sin_addr.s_addr !=
1366 ((struct sockaddr_in *)dst)->sin_addr.s_addr;
1367 case AF_INET6: {
1368 struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src;
1369 struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst;
1370 bool link_local;
1371
1372 if (ipv6_addr_cmp(&src_addr6->sin6_addr,
1373 &dst_addr6->sin6_addr))
1374 return 1;
1375 link_local = ipv6_addr_type(&dst_addr6->sin6_addr) &
1376 IPV6_ADDR_LINKLOCAL;
1377 /* Link local must match their scope_ids */
1378 return link_local ? (src_addr6->sin6_scope_id !=
1379 dst_addr6->sin6_scope_id) :
1380 0;
1381 }
1382
1383 default:
1384 return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr,
1385 &((struct sockaddr_ib *) dst)->sib_addr);
1386 }
1387 }
1388
cma_port(const struct sockaddr * addr)1389 static __be16 cma_port(const struct sockaddr *addr)
1390 {
1391 struct sockaddr_ib *sib;
1392
1393 switch (addr->sa_family) {
1394 case AF_INET:
1395 return ((struct sockaddr_in *) addr)->sin_port;
1396 case AF_INET6:
1397 return ((struct sockaddr_in6 *) addr)->sin6_port;
1398 case AF_IB:
1399 sib = (struct sockaddr_ib *) addr;
1400 return htons((u16) (be64_to_cpu(sib->sib_sid) &
1401 be64_to_cpu(sib->sib_sid_mask)));
1402 default:
1403 return 0;
1404 }
1405 }
1406
cma_any_port(const struct sockaddr * addr)1407 static inline int cma_any_port(const struct sockaddr *addr)
1408 {
1409 return !cma_port(addr);
1410 }
1411
cma_save_ib_info(struct sockaddr * src_addr,struct sockaddr * dst_addr,const struct rdma_cm_id * listen_id,const struct sa_path_rec * path)1412 static void cma_save_ib_info(struct sockaddr *src_addr,
1413 struct sockaddr *dst_addr,
1414 const struct rdma_cm_id *listen_id,
1415 const struct sa_path_rec *path)
1416 {
1417 struct sockaddr_ib *listen_ib, *ib;
1418
1419 listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr;
1420 if (src_addr) {
1421 ib = (struct sockaddr_ib *)src_addr;
1422 ib->sib_family = AF_IB;
1423 if (path) {
1424 ib->sib_pkey = path->pkey;
1425 ib->sib_flowinfo = path->flow_label;
1426 memcpy(&ib->sib_addr, &path->sgid, 16);
1427 ib->sib_sid = path->service_id;
1428 ib->sib_scope_id = 0;
1429 } else {
1430 ib->sib_pkey = listen_ib->sib_pkey;
1431 ib->sib_flowinfo = listen_ib->sib_flowinfo;
1432 ib->sib_addr = listen_ib->sib_addr;
1433 ib->sib_sid = listen_ib->sib_sid;
1434 ib->sib_scope_id = listen_ib->sib_scope_id;
1435 }
1436 ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL);
1437 }
1438 if (dst_addr) {
1439 ib = (struct sockaddr_ib *)dst_addr;
1440 ib->sib_family = AF_IB;
1441 if (path) {
1442 ib->sib_pkey = path->pkey;
1443 ib->sib_flowinfo = path->flow_label;
1444 memcpy(&ib->sib_addr, &path->dgid, 16);
1445 }
1446 }
1447 }
1448
cma_save_ip4_info(struct sockaddr_in * src_addr,struct sockaddr_in * dst_addr,struct cma_hdr * hdr,__be16 local_port)1449 static void cma_save_ip4_info(struct sockaddr_in *src_addr,
1450 struct sockaddr_in *dst_addr,
1451 struct cma_hdr *hdr,
1452 __be16 local_port)
1453 {
1454 if (src_addr) {
1455 *src_addr = (struct sockaddr_in) {
1456 .sin_family = AF_INET,
1457 .sin_addr.s_addr = hdr->dst_addr.ip4.addr,
1458 .sin_port = local_port,
1459 };
1460 }
1461
1462 if (dst_addr) {
1463 *dst_addr = (struct sockaddr_in) {
1464 .sin_family = AF_INET,
1465 .sin_addr.s_addr = hdr->src_addr.ip4.addr,
1466 .sin_port = hdr->port,
1467 };
1468 }
1469 }
1470
cma_save_ip6_info(struct sockaddr_in6 * src_addr,struct sockaddr_in6 * dst_addr,struct cma_hdr * hdr,__be16 local_port)1471 static void cma_save_ip6_info(struct sockaddr_in6 *src_addr,
1472 struct sockaddr_in6 *dst_addr,
1473 struct cma_hdr *hdr,
1474 __be16 local_port)
1475 {
1476 if (src_addr) {
1477 *src_addr = (struct sockaddr_in6) {
1478 .sin6_family = AF_INET6,
1479 .sin6_addr = hdr->dst_addr.ip6,
1480 .sin6_port = local_port,
1481 };
1482 }
1483
1484 if (dst_addr) {
1485 *dst_addr = (struct sockaddr_in6) {
1486 .sin6_family = AF_INET6,
1487 .sin6_addr = hdr->src_addr.ip6,
1488 .sin6_port = hdr->port,
1489 };
1490 }
1491 }
1492
cma_port_from_service_id(__be64 service_id)1493 static u16 cma_port_from_service_id(__be64 service_id)
1494 {
1495 return (u16)be64_to_cpu(service_id);
1496 }
1497
cma_save_ip_info(struct sockaddr * src_addr,struct sockaddr * dst_addr,const struct ib_cm_event * ib_event,__be64 service_id)1498 static int cma_save_ip_info(struct sockaddr *src_addr,
1499 struct sockaddr *dst_addr,
1500 const struct ib_cm_event *ib_event,
1501 __be64 service_id)
1502 {
1503 struct cma_hdr *hdr;
1504 __be16 port;
1505
1506 hdr = ib_event->private_data;
1507 if (hdr->cma_version != CMA_VERSION)
1508 return -EINVAL;
1509
1510 port = htons(cma_port_from_service_id(service_id));
1511
1512 switch (cma_get_ip_ver(hdr)) {
1513 case 4:
1514 cma_save_ip4_info((struct sockaddr_in *)src_addr,
1515 (struct sockaddr_in *)dst_addr, hdr, port);
1516 break;
1517 case 6:
1518 cma_save_ip6_info((struct sockaddr_in6 *)src_addr,
1519 (struct sockaddr_in6 *)dst_addr, hdr, port);
1520 break;
1521 default:
1522 return -EAFNOSUPPORT;
1523 }
1524
1525 return 0;
1526 }
1527
cma_save_net_info(struct sockaddr * src_addr,struct sockaddr * dst_addr,const struct rdma_cm_id * listen_id,const struct ib_cm_event * ib_event,sa_family_t sa_family,__be64 service_id)1528 static int cma_save_net_info(struct sockaddr *src_addr,
1529 struct sockaddr *dst_addr,
1530 const struct rdma_cm_id *listen_id,
1531 const struct ib_cm_event *ib_event,
1532 sa_family_t sa_family, __be64 service_id)
1533 {
1534 if (sa_family == AF_IB) {
1535 if (ib_event->event == IB_CM_REQ_RECEIVED)
1536 cma_save_ib_info(src_addr, dst_addr, listen_id,
1537 ib_event->param.req_rcvd.primary_path);
1538 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED)
1539 cma_save_ib_info(src_addr, dst_addr, listen_id, NULL);
1540 return 0;
1541 }
1542
1543 return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id);
1544 }
1545
cma_save_req_info(const struct ib_cm_event * ib_event,struct cma_req_info * req)1546 static int cma_save_req_info(const struct ib_cm_event *ib_event,
1547 struct cma_req_info *req)
1548 {
1549 const struct ib_cm_req_event_param *req_param =
1550 &ib_event->param.req_rcvd;
1551 const struct ib_cm_sidr_req_event_param *sidr_param =
1552 &ib_event->param.sidr_req_rcvd;
1553
1554 switch (ib_event->event) {
1555 case IB_CM_REQ_RECEIVED:
1556 req->device = req_param->listen_id->device;
1557 req->port = req_param->port;
1558 memcpy(&req->local_gid, &req_param->primary_path->sgid,
1559 sizeof(req->local_gid));
1560 req->has_gid = true;
1561 req->service_id = req_param->primary_path->service_id;
1562 req->pkey = be16_to_cpu(req_param->primary_path->pkey);
1563 if (req->pkey != req_param->bth_pkey)
1564 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n"
1565 "RDMA CMA: in the future this may cause the request to be dropped\n",
1566 req_param->bth_pkey, req->pkey);
1567 break;
1568 case IB_CM_SIDR_REQ_RECEIVED:
1569 req->device = sidr_param->listen_id->device;
1570 req->port = sidr_param->port;
1571 req->has_gid = false;
1572 req->service_id = sidr_param->service_id;
1573 req->pkey = sidr_param->pkey;
1574 if (req->pkey != sidr_param->bth_pkey)
1575 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n"
1576 "RDMA CMA: in the future this may cause the request to be dropped\n",
1577 sidr_param->bth_pkey, req->pkey);
1578 break;
1579 default:
1580 return -EINVAL;
1581 }
1582
1583 return 0;
1584 }
1585
validate_ipv4_net_dev(struct net_device * net_dev,const struct sockaddr_in * dst_addr,const struct sockaddr_in * src_addr)1586 static bool validate_ipv4_net_dev(struct net_device *net_dev,
1587 const struct sockaddr_in *dst_addr,
1588 const struct sockaddr_in *src_addr)
1589 {
1590 __be32 daddr = dst_addr->sin_addr.s_addr,
1591 saddr = src_addr->sin_addr.s_addr;
1592 struct fib_result res;
1593 struct flowi4 fl4;
1594 int err;
1595 bool ret;
1596
1597 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
1598 ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) ||
1599 ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) ||
1600 ipv4_is_loopback(saddr))
1601 return false;
1602
1603 memset(&fl4, 0, sizeof(fl4));
1604 fl4.flowi4_oif = net_dev->ifindex;
1605 fl4.daddr = daddr;
1606 fl4.saddr = saddr;
1607
1608 rcu_read_lock();
1609 err = fib_lookup(dev_net(net_dev), &fl4, &res, 0);
1610 ret = err == 0 && FIB_RES_DEV(res) == net_dev;
1611 rcu_read_unlock();
1612
1613 return ret;
1614 }
1615
validate_ipv6_net_dev(struct net_device * net_dev,const struct sockaddr_in6 * dst_addr,const struct sockaddr_in6 * src_addr)1616 static bool validate_ipv6_net_dev(struct net_device *net_dev,
1617 const struct sockaddr_in6 *dst_addr,
1618 const struct sockaddr_in6 *src_addr)
1619 {
1620 #if IS_ENABLED(CONFIG_IPV6)
1621 const int strict = ipv6_addr_type(&dst_addr->sin6_addr) &
1622 IPV6_ADDR_LINKLOCAL;
1623 struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr,
1624 &src_addr->sin6_addr, net_dev->ifindex,
1625 NULL, strict);
1626 bool ret;
1627
1628 if (!rt)
1629 return false;
1630
1631 ret = rt->rt6i_idev->dev == net_dev;
1632 ip6_rt_put(rt);
1633
1634 return ret;
1635 #else
1636 return false;
1637 #endif
1638 }
1639
validate_net_dev(struct net_device * net_dev,const struct sockaddr * daddr,const struct sockaddr * saddr)1640 static bool validate_net_dev(struct net_device *net_dev,
1641 const struct sockaddr *daddr,
1642 const struct sockaddr *saddr)
1643 {
1644 const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr;
1645 const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr;
1646 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr;
1647 const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr;
1648
1649 switch (daddr->sa_family) {
1650 case AF_INET:
1651 return saddr->sa_family == AF_INET &&
1652 validate_ipv4_net_dev(net_dev, daddr4, saddr4);
1653
1654 case AF_INET6:
1655 return saddr->sa_family == AF_INET6 &&
1656 validate_ipv6_net_dev(net_dev, daddr6, saddr6);
1657
1658 default:
1659 return false;
1660 }
1661 }
1662
1663 static struct net_device *
roce_get_net_dev_by_cm_event(const struct ib_cm_event * ib_event)1664 roce_get_net_dev_by_cm_event(const struct ib_cm_event *ib_event)
1665 {
1666 const struct ib_gid_attr *sgid_attr = NULL;
1667 struct net_device *ndev;
1668
1669 if (ib_event->event == IB_CM_REQ_RECEIVED)
1670 sgid_attr = ib_event->param.req_rcvd.ppath_sgid_attr;
1671 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED)
1672 sgid_attr = ib_event->param.sidr_req_rcvd.sgid_attr;
1673
1674 if (!sgid_attr)
1675 return NULL;
1676
1677 rcu_read_lock();
1678 ndev = rdma_read_gid_attr_ndev_rcu(sgid_attr);
1679 if (IS_ERR(ndev))
1680 ndev = NULL;
1681 else
1682 dev_hold(ndev);
1683 rcu_read_unlock();
1684 return ndev;
1685 }
1686
cma_get_net_dev(const struct ib_cm_event * ib_event,struct cma_req_info * req)1687 static struct net_device *cma_get_net_dev(const struct ib_cm_event *ib_event,
1688 struct cma_req_info *req)
1689 {
1690 struct sockaddr *listen_addr =
1691 (struct sockaddr *)&req->listen_addr_storage;
1692 struct sockaddr *src_addr = (struct sockaddr *)&req->src_addr_storage;
1693 struct net_device *net_dev;
1694 const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL;
1695 int err;
1696
1697 err = cma_save_ip_info(listen_addr, src_addr, ib_event,
1698 req->service_id);
1699 if (err)
1700 return ERR_PTR(err);
1701
1702 if (rdma_protocol_roce(req->device, req->port))
1703 net_dev = roce_get_net_dev_by_cm_event(ib_event);
1704 else
1705 net_dev = ib_get_net_dev_by_params(req->device, req->port,
1706 req->pkey,
1707 gid, listen_addr);
1708 if (!net_dev)
1709 return ERR_PTR(-ENODEV);
1710
1711 return net_dev;
1712 }
1713
rdma_ps_from_service_id(__be64 service_id)1714 static enum rdma_ucm_port_space rdma_ps_from_service_id(__be64 service_id)
1715 {
1716 return (be64_to_cpu(service_id) >> 16) & 0xffff;
1717 }
1718
cma_match_private_data(struct rdma_id_private * id_priv,const struct cma_hdr * hdr)1719 static bool cma_match_private_data(struct rdma_id_private *id_priv,
1720 const struct cma_hdr *hdr)
1721 {
1722 struct sockaddr *addr = cma_src_addr(id_priv);
1723 __be32 ip4_addr;
1724 struct in6_addr ip6_addr;
1725
1726 if (cma_any_addr(addr) && !id_priv->afonly)
1727 return true;
1728
1729 switch (addr->sa_family) {
1730 case AF_INET:
1731 ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr;
1732 if (cma_get_ip_ver(hdr) != 4)
1733 return false;
1734 if (!cma_any_addr(addr) &&
1735 hdr->dst_addr.ip4.addr != ip4_addr)
1736 return false;
1737 break;
1738 case AF_INET6:
1739 ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr;
1740 if (cma_get_ip_ver(hdr) != 6)
1741 return false;
1742 if (!cma_any_addr(addr) &&
1743 memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr)))
1744 return false;
1745 break;
1746 case AF_IB:
1747 return true;
1748 default:
1749 return false;
1750 }
1751
1752 return true;
1753 }
1754
cma_protocol_roce(const struct rdma_cm_id * id)1755 static bool cma_protocol_roce(const struct rdma_cm_id *id)
1756 {
1757 struct ib_device *device = id->device;
1758 const u32 port_num = id->port_num ?: rdma_start_port(device);
1759
1760 return rdma_protocol_roce(device, port_num);
1761 }
1762
cma_is_req_ipv6_ll(const struct cma_req_info * req)1763 static bool cma_is_req_ipv6_ll(const struct cma_req_info *req)
1764 {
1765 const struct sockaddr *daddr =
1766 (const struct sockaddr *)&req->listen_addr_storage;
1767 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr;
1768
1769 /* Returns true if the req is for IPv6 link local */
1770 return (daddr->sa_family == AF_INET6 &&
1771 (ipv6_addr_type(&daddr6->sin6_addr) & IPV6_ADDR_LINKLOCAL));
1772 }
1773
cma_match_net_dev(const struct rdma_cm_id * id,const struct net_device * net_dev,const struct cma_req_info * req)1774 static bool cma_match_net_dev(const struct rdma_cm_id *id,
1775 const struct net_device *net_dev,
1776 const struct cma_req_info *req)
1777 {
1778 const struct rdma_addr *addr = &id->route.addr;
1779
1780 if (!net_dev)
1781 /* This request is an AF_IB request */
1782 return (!id->port_num || id->port_num == req->port) &&
1783 (addr->src_addr.ss_family == AF_IB);
1784
1785 /*
1786 * If the request is not for IPv6 link local, allow matching
1787 * request to any netdevice of the one or multiport rdma device.
1788 */
1789 if (!cma_is_req_ipv6_ll(req))
1790 return true;
1791 /*
1792 * Net namespaces must match, and if the listner is listening
1793 * on a specific netdevice than netdevice must match as well.
1794 */
1795 if (net_eq(dev_net(net_dev), addr->dev_addr.net) &&
1796 (!!addr->dev_addr.bound_dev_if ==
1797 (addr->dev_addr.bound_dev_if == net_dev->ifindex)))
1798 return true;
1799 else
1800 return false;
1801 }
1802
cma_find_listener(const struct rdma_bind_list * bind_list,const struct ib_cm_id * cm_id,const struct ib_cm_event * ib_event,const struct cma_req_info * req,const struct net_device * net_dev)1803 static struct rdma_id_private *cma_find_listener(
1804 const struct rdma_bind_list *bind_list,
1805 const struct ib_cm_id *cm_id,
1806 const struct ib_cm_event *ib_event,
1807 const struct cma_req_info *req,
1808 const struct net_device *net_dev)
1809 {
1810 struct rdma_id_private *id_priv, *id_priv_dev;
1811
1812 lockdep_assert_held(&lock);
1813
1814 if (!bind_list)
1815 return ERR_PTR(-EINVAL);
1816
1817 hlist_for_each_entry(id_priv, &bind_list->owners, node) {
1818 if (cma_match_private_data(id_priv, ib_event->private_data)) {
1819 if (id_priv->id.device == cm_id->device &&
1820 cma_match_net_dev(&id_priv->id, net_dev, req))
1821 return id_priv;
1822 list_for_each_entry(id_priv_dev,
1823 &id_priv->listen_list,
1824 listen_item) {
1825 if (id_priv_dev->id.device == cm_id->device &&
1826 cma_match_net_dev(&id_priv_dev->id,
1827 net_dev, req))
1828 return id_priv_dev;
1829 }
1830 }
1831 }
1832
1833 return ERR_PTR(-EINVAL);
1834 }
1835
1836 static struct rdma_id_private *
cma_ib_id_from_event(struct ib_cm_id * cm_id,const struct ib_cm_event * ib_event,struct cma_req_info * req,struct net_device ** net_dev)1837 cma_ib_id_from_event(struct ib_cm_id *cm_id,
1838 const struct ib_cm_event *ib_event,
1839 struct cma_req_info *req,
1840 struct net_device **net_dev)
1841 {
1842 struct rdma_bind_list *bind_list;
1843 struct rdma_id_private *id_priv;
1844 int err;
1845
1846 err = cma_save_req_info(ib_event, req);
1847 if (err)
1848 return ERR_PTR(err);
1849
1850 *net_dev = cma_get_net_dev(ib_event, req);
1851 if (IS_ERR(*net_dev)) {
1852 if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) {
1853 /* Assuming the protocol is AF_IB */
1854 *net_dev = NULL;
1855 } else {
1856 return ERR_CAST(*net_dev);
1857 }
1858 }
1859
1860 mutex_lock(&lock);
1861 /*
1862 * Net namespace might be getting deleted while route lookup,
1863 * cm_id lookup is in progress. Therefore, perform netdevice
1864 * validation, cm_id lookup under rcu lock.
1865 * RCU lock along with netdevice state check, synchronizes with
1866 * netdevice migrating to different net namespace and also avoids
1867 * case where net namespace doesn't get deleted while lookup is in
1868 * progress.
1869 * If the device state is not IFF_UP, its properties such as ifindex
1870 * and nd_net cannot be trusted to remain valid without rcu lock.
1871 * net/core/dev.c change_net_namespace() ensures to synchronize with
1872 * ongoing operations on net device after device is closed using
1873 * synchronize_net().
1874 */
1875 rcu_read_lock();
1876 if (*net_dev) {
1877 /*
1878 * If netdevice is down, it is likely that it is administratively
1879 * down or it might be migrating to different namespace.
1880 * In that case avoid further processing, as the net namespace
1881 * or ifindex may change.
1882 */
1883 if (((*net_dev)->flags & IFF_UP) == 0) {
1884 id_priv = ERR_PTR(-EHOSTUNREACH);
1885 goto err;
1886 }
1887
1888 if (!validate_net_dev(*net_dev,
1889 (struct sockaddr *)&req->src_addr_storage,
1890 (struct sockaddr *)&req->listen_addr_storage)) {
1891 id_priv = ERR_PTR(-EHOSTUNREACH);
1892 goto err;
1893 }
1894 }
1895
1896 bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net,
1897 rdma_ps_from_service_id(req->service_id),
1898 cma_port_from_service_id(req->service_id));
1899 id_priv = cma_find_listener(bind_list, cm_id, ib_event, req, *net_dev);
1900 err:
1901 rcu_read_unlock();
1902 mutex_unlock(&lock);
1903 if (IS_ERR(id_priv) && *net_dev) {
1904 dev_put(*net_dev);
1905 *net_dev = NULL;
1906 }
1907 return id_priv;
1908 }
1909
cma_user_data_offset(struct rdma_id_private * id_priv)1910 static inline u8 cma_user_data_offset(struct rdma_id_private *id_priv)
1911 {
1912 return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr);
1913 }
1914
cma_cancel_route(struct rdma_id_private * id_priv)1915 static void cma_cancel_route(struct rdma_id_private *id_priv)
1916 {
1917 if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) {
1918 if (id_priv->query)
1919 ib_sa_cancel_query(id_priv->query_id, id_priv->query);
1920 }
1921 }
1922
_cma_cancel_listens(struct rdma_id_private * id_priv)1923 static void _cma_cancel_listens(struct rdma_id_private *id_priv)
1924 {
1925 struct rdma_id_private *dev_id_priv;
1926
1927 lockdep_assert_held(&lock);
1928
1929 /*
1930 * Remove from listen_any_list to prevent added devices from spawning
1931 * additional listen requests.
1932 */
1933 list_del_init(&id_priv->listen_any_item);
1934
1935 while (!list_empty(&id_priv->listen_list)) {
1936 dev_id_priv =
1937 list_first_entry(&id_priv->listen_list,
1938 struct rdma_id_private, listen_item);
1939 /* sync with device removal to avoid duplicate destruction */
1940 list_del_init(&dev_id_priv->device_item);
1941 list_del_init(&dev_id_priv->listen_item);
1942 mutex_unlock(&lock);
1943
1944 rdma_destroy_id(&dev_id_priv->id);
1945 mutex_lock(&lock);
1946 }
1947 }
1948
cma_cancel_listens(struct rdma_id_private * id_priv)1949 static void cma_cancel_listens(struct rdma_id_private *id_priv)
1950 {
1951 mutex_lock(&lock);
1952 _cma_cancel_listens(id_priv);
1953 mutex_unlock(&lock);
1954 }
1955
cma_cancel_operation(struct rdma_id_private * id_priv,enum rdma_cm_state state)1956 static void cma_cancel_operation(struct rdma_id_private *id_priv,
1957 enum rdma_cm_state state)
1958 {
1959 switch (state) {
1960 case RDMA_CM_ADDR_QUERY:
1961 /*
1962 * We can avoid doing the rdma_addr_cancel() based on state,
1963 * only RDMA_CM_ADDR_QUERY has a work that could still execute.
1964 * Notice that the addr_handler work could still be exiting
1965 * outside this state, however due to the interaction with the
1966 * handler_mutex the work is guaranteed not to touch id_priv
1967 * during exit.
1968 */
1969 rdma_addr_cancel(&id_priv->id.route.addr.dev_addr);
1970 break;
1971 case RDMA_CM_ROUTE_QUERY:
1972 cma_cancel_route(id_priv);
1973 break;
1974 case RDMA_CM_LISTEN:
1975 if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev)
1976 cma_cancel_listens(id_priv);
1977 break;
1978 default:
1979 break;
1980 }
1981 }
1982
cma_release_port(struct rdma_id_private * id_priv)1983 static void cma_release_port(struct rdma_id_private *id_priv)
1984 {
1985 struct rdma_bind_list *bind_list = id_priv->bind_list;
1986 struct net *net = id_priv->id.route.addr.dev_addr.net;
1987
1988 if (!bind_list)
1989 return;
1990
1991 mutex_lock(&lock);
1992 hlist_del(&id_priv->node);
1993 if (hlist_empty(&bind_list->owners)) {
1994 cma_ps_remove(net, bind_list->ps, bind_list->port);
1995 kfree(bind_list);
1996 }
1997 mutex_unlock(&lock);
1998 }
1999
destroy_mc(struct rdma_id_private * id_priv,struct cma_multicast * mc)2000 static void destroy_mc(struct rdma_id_private *id_priv,
2001 struct cma_multicast *mc)
2002 {
2003 bool send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN);
2004
2005 if (rdma_cap_ib_mcast(id_priv->id.device, id_priv->id.port_num))
2006 ib_sa_free_multicast(mc->sa_mc);
2007
2008 if (rdma_protocol_roce(id_priv->id.device, id_priv->id.port_num)) {
2009 struct rdma_dev_addr *dev_addr =
2010 &id_priv->id.route.addr.dev_addr;
2011 struct net_device *ndev = NULL;
2012
2013 if (dev_addr->bound_dev_if)
2014 ndev = dev_get_by_index(dev_addr->net,
2015 dev_addr->bound_dev_if);
2016 if (ndev && !send_only) {
2017 enum ib_gid_type gid_type;
2018 union ib_gid mgid;
2019
2020 gid_type = id_priv->cma_dev->default_gid_type
2021 [id_priv->id.port_num -
2022 rdma_start_port(
2023 id_priv->cma_dev->device)];
2024 cma_iboe_set_mgid((struct sockaddr *)&mc->addr, &mgid,
2025 gid_type);
2026 cma_igmp_send(ndev, &mgid, false);
2027 }
2028 dev_put(ndev);
2029
2030 cancel_work_sync(&mc->iboe_join.work);
2031 }
2032 kfree(mc);
2033 }
2034
cma_leave_mc_groups(struct rdma_id_private * id_priv)2035 static void cma_leave_mc_groups(struct rdma_id_private *id_priv)
2036 {
2037 struct cma_multicast *mc;
2038
2039 while (!list_empty(&id_priv->mc_list)) {
2040 mc = list_first_entry(&id_priv->mc_list, struct cma_multicast,
2041 list);
2042 list_del(&mc->list);
2043 destroy_mc(id_priv, mc);
2044 }
2045 }
2046
_destroy_id(struct rdma_id_private * id_priv,enum rdma_cm_state state)2047 static void _destroy_id(struct rdma_id_private *id_priv,
2048 enum rdma_cm_state state)
2049 {
2050 cma_cancel_operation(id_priv, state);
2051
2052 rdma_restrack_del(&id_priv->res);
2053 cma_remove_id_from_tree(id_priv);
2054 if (id_priv->cma_dev) {
2055 if (rdma_cap_ib_cm(id_priv->id.device, 1)) {
2056 if (id_priv->cm_id.ib)
2057 ib_destroy_cm_id(id_priv->cm_id.ib);
2058 } else if (rdma_cap_iw_cm(id_priv->id.device, 1)) {
2059 if (id_priv->cm_id.iw)
2060 iw_destroy_cm_id(id_priv->cm_id.iw);
2061 }
2062 cma_leave_mc_groups(id_priv);
2063 cma_release_dev(id_priv);
2064 }
2065
2066 cma_release_port(id_priv);
2067 cma_id_put(id_priv);
2068 wait_for_completion(&id_priv->comp);
2069
2070 if (id_priv->internal_id)
2071 cma_id_put(id_priv->id.context);
2072
2073 kfree(id_priv->id.route.path_rec);
2074 kfree(id_priv->id.route.path_rec_inbound);
2075 kfree(id_priv->id.route.path_rec_outbound);
2076
2077 put_net(id_priv->id.route.addr.dev_addr.net);
2078 kfree(id_priv);
2079 }
2080
2081 /*
2082 * destroy an ID from within the handler_mutex. This ensures that no other
2083 * handlers can start running concurrently.
2084 */
destroy_id_handler_unlock(struct rdma_id_private * id_priv)2085 static void destroy_id_handler_unlock(struct rdma_id_private *id_priv)
2086 __releases(&idprv->handler_mutex)
2087 {
2088 enum rdma_cm_state state;
2089 unsigned long flags;
2090
2091 trace_cm_id_destroy(id_priv);
2092
2093 /*
2094 * Setting the state to destroyed under the handler mutex provides a
2095 * fence against calling handler callbacks. If this is invoked due to
2096 * the failure of a handler callback then it guarentees that no future
2097 * handlers will be called.
2098 */
2099 lockdep_assert_held(&id_priv->handler_mutex);
2100 spin_lock_irqsave(&id_priv->lock, flags);
2101 state = id_priv->state;
2102 id_priv->state = RDMA_CM_DESTROYING;
2103 spin_unlock_irqrestore(&id_priv->lock, flags);
2104 mutex_unlock(&id_priv->handler_mutex);
2105 _destroy_id(id_priv, state);
2106 }
2107
rdma_destroy_id(struct rdma_cm_id * id)2108 void rdma_destroy_id(struct rdma_cm_id *id)
2109 {
2110 struct rdma_id_private *id_priv =
2111 container_of(id, struct rdma_id_private, id);
2112
2113 mutex_lock(&id_priv->handler_mutex);
2114 destroy_id_handler_unlock(id_priv);
2115 }
2116 EXPORT_SYMBOL(rdma_destroy_id);
2117
cma_rep_recv(struct rdma_id_private * id_priv)2118 static int cma_rep_recv(struct rdma_id_private *id_priv)
2119 {
2120 int ret;
2121
2122 ret = cma_modify_qp_rtr(id_priv, NULL);
2123 if (ret)
2124 goto reject;
2125
2126 ret = cma_modify_qp_rts(id_priv, NULL);
2127 if (ret)
2128 goto reject;
2129
2130 trace_cm_send_rtu(id_priv);
2131 ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0);
2132 if (ret)
2133 goto reject;
2134
2135 return 0;
2136 reject:
2137 pr_debug_ratelimited("RDMA CM: CONNECT_ERROR: failed to handle reply. status %d\n", ret);
2138 cma_modify_qp_err(id_priv);
2139 trace_cm_send_rej(id_priv);
2140 ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED,
2141 NULL, 0, NULL, 0);
2142 return ret;
2143 }
2144
cma_set_rep_event_data(struct rdma_cm_event * event,const struct ib_cm_rep_event_param * rep_data,void * private_data)2145 static void cma_set_rep_event_data(struct rdma_cm_event *event,
2146 const struct ib_cm_rep_event_param *rep_data,
2147 void *private_data)
2148 {
2149 event->param.conn.private_data = private_data;
2150 event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE;
2151 event->param.conn.responder_resources = rep_data->responder_resources;
2152 event->param.conn.initiator_depth = rep_data->initiator_depth;
2153 event->param.conn.flow_control = rep_data->flow_control;
2154 event->param.conn.rnr_retry_count = rep_data->rnr_retry_count;
2155 event->param.conn.srq = rep_data->srq;
2156 event->param.conn.qp_num = rep_data->remote_qpn;
2157
2158 event->ece.vendor_id = rep_data->ece.vendor_id;
2159 event->ece.attr_mod = rep_data->ece.attr_mod;
2160 }
2161
cma_cm_event_handler(struct rdma_id_private * id_priv,struct rdma_cm_event * event)2162 static int cma_cm_event_handler(struct rdma_id_private *id_priv,
2163 struct rdma_cm_event *event)
2164 {
2165 int ret;
2166
2167 lockdep_assert_held(&id_priv->handler_mutex);
2168
2169 trace_cm_event_handler(id_priv, event);
2170 ret = id_priv->id.event_handler(&id_priv->id, event);
2171 trace_cm_event_done(id_priv, event, ret);
2172 return ret;
2173 }
2174
cma_ib_handler(struct ib_cm_id * cm_id,const struct ib_cm_event * ib_event)2175 static int cma_ib_handler(struct ib_cm_id *cm_id,
2176 const struct ib_cm_event *ib_event)
2177 {
2178 struct rdma_id_private *id_priv = cm_id->context;
2179 struct rdma_cm_event event = {};
2180 enum rdma_cm_state state;
2181 int ret;
2182
2183 mutex_lock(&id_priv->handler_mutex);
2184 state = READ_ONCE(id_priv->state);
2185 if ((ib_event->event != IB_CM_TIMEWAIT_EXIT &&
2186 state != RDMA_CM_CONNECT) ||
2187 (ib_event->event == IB_CM_TIMEWAIT_EXIT &&
2188 state != RDMA_CM_DISCONNECT))
2189 goto out;
2190
2191 switch (ib_event->event) {
2192 case IB_CM_REQ_ERROR:
2193 case IB_CM_REP_ERROR:
2194 event.event = RDMA_CM_EVENT_UNREACHABLE;
2195 event.status = -ETIMEDOUT;
2196 break;
2197 case IB_CM_REP_RECEIVED:
2198 if (state == RDMA_CM_CONNECT &&
2199 (id_priv->id.qp_type != IB_QPT_UD)) {
2200 trace_cm_send_mra(id_priv);
2201 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0);
2202 }
2203 if (id_priv->id.qp) {
2204 event.status = cma_rep_recv(id_priv);
2205 event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR :
2206 RDMA_CM_EVENT_ESTABLISHED;
2207 } else {
2208 event.event = RDMA_CM_EVENT_CONNECT_RESPONSE;
2209 }
2210 cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd,
2211 ib_event->private_data);
2212 break;
2213 case IB_CM_RTU_RECEIVED:
2214 case IB_CM_USER_ESTABLISHED:
2215 event.event = RDMA_CM_EVENT_ESTABLISHED;
2216 break;
2217 case IB_CM_DREQ_ERROR:
2218 event.status = -ETIMEDOUT;
2219 fallthrough;
2220 case IB_CM_DREQ_RECEIVED:
2221 case IB_CM_DREP_RECEIVED:
2222 if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT,
2223 RDMA_CM_DISCONNECT))
2224 goto out;
2225 event.event = RDMA_CM_EVENT_DISCONNECTED;
2226 break;
2227 case IB_CM_TIMEWAIT_EXIT:
2228 event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT;
2229 break;
2230 case IB_CM_MRA_RECEIVED:
2231 /* ignore event */
2232 goto out;
2233 case IB_CM_REJ_RECEIVED:
2234 pr_debug_ratelimited("RDMA CM: REJECTED: %s\n", rdma_reject_msg(&id_priv->id,
2235 ib_event->param.rej_rcvd.reason));
2236 cma_modify_qp_err(id_priv);
2237 event.status = ib_event->param.rej_rcvd.reason;
2238 event.event = RDMA_CM_EVENT_REJECTED;
2239 event.param.conn.private_data = ib_event->private_data;
2240 event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE;
2241 break;
2242 default:
2243 pr_err("RDMA CMA: unexpected IB CM event: %d\n",
2244 ib_event->event);
2245 goto out;
2246 }
2247
2248 ret = cma_cm_event_handler(id_priv, &event);
2249 if (ret) {
2250 /* Destroy the CM ID by returning a non-zero value. */
2251 id_priv->cm_id.ib = NULL;
2252 destroy_id_handler_unlock(id_priv);
2253 return ret;
2254 }
2255 out:
2256 mutex_unlock(&id_priv->handler_mutex);
2257 return 0;
2258 }
2259
2260 static struct rdma_id_private *
cma_ib_new_conn_id(const struct rdma_cm_id * listen_id,const struct ib_cm_event * ib_event,struct net_device * net_dev)2261 cma_ib_new_conn_id(const struct rdma_cm_id *listen_id,
2262 const struct ib_cm_event *ib_event,
2263 struct net_device *net_dev)
2264 {
2265 struct rdma_id_private *listen_id_priv;
2266 struct rdma_id_private *id_priv;
2267 struct rdma_cm_id *id;
2268 struct rdma_route *rt;
2269 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family;
2270 struct sa_path_rec *path = ib_event->param.req_rcvd.primary_path;
2271 const __be64 service_id =
2272 ib_event->param.req_rcvd.primary_path->service_id;
2273 int ret;
2274
2275 listen_id_priv = container_of(listen_id, struct rdma_id_private, id);
2276 id_priv = __rdma_create_id(listen_id->route.addr.dev_addr.net,
2277 listen_id->event_handler, listen_id->context,
2278 listen_id->ps,
2279 ib_event->param.req_rcvd.qp_type,
2280 listen_id_priv);
2281 if (IS_ERR(id_priv))
2282 return NULL;
2283
2284 id = &id_priv->id;
2285 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr,
2286 (struct sockaddr *)&id->route.addr.dst_addr,
2287 listen_id, ib_event, ss_family, service_id))
2288 goto err;
2289
2290 rt = &id->route;
2291 rt->num_pri_alt_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1;
2292 rt->path_rec = kmalloc_array(rt->num_pri_alt_paths,
2293 sizeof(*rt->path_rec), GFP_KERNEL);
2294 if (!rt->path_rec)
2295 goto err;
2296
2297 rt->path_rec[0] = *path;
2298 if (rt->num_pri_alt_paths == 2)
2299 rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path;
2300
2301 if (net_dev) {
2302 rdma_copy_src_l2_addr(&rt->addr.dev_addr, net_dev);
2303 } else {
2304 if (!cma_protocol_roce(listen_id) &&
2305 cma_any_addr(cma_src_addr(id_priv))) {
2306 rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND;
2307 rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid);
2308 ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey));
2309 } else if (!cma_any_addr(cma_src_addr(id_priv))) {
2310 ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr);
2311 if (ret)
2312 goto err;
2313 }
2314 }
2315 rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid);
2316
2317 id_priv->state = RDMA_CM_CONNECT;
2318 return id_priv;
2319
2320 err:
2321 rdma_destroy_id(id);
2322 return NULL;
2323 }
2324
2325 static struct rdma_id_private *
cma_ib_new_udp_id(const struct rdma_cm_id * listen_id,const struct ib_cm_event * ib_event,struct net_device * net_dev)2326 cma_ib_new_udp_id(const struct rdma_cm_id *listen_id,
2327 const struct ib_cm_event *ib_event,
2328 struct net_device *net_dev)
2329 {
2330 const struct rdma_id_private *listen_id_priv;
2331 struct rdma_id_private *id_priv;
2332 struct rdma_cm_id *id;
2333 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family;
2334 struct net *net = listen_id->route.addr.dev_addr.net;
2335 int ret;
2336
2337 listen_id_priv = container_of(listen_id, struct rdma_id_private, id);
2338 id_priv = __rdma_create_id(net, listen_id->event_handler,
2339 listen_id->context, listen_id->ps, IB_QPT_UD,
2340 listen_id_priv);
2341 if (IS_ERR(id_priv))
2342 return NULL;
2343
2344 id = &id_priv->id;
2345 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr,
2346 (struct sockaddr *)&id->route.addr.dst_addr,
2347 listen_id, ib_event, ss_family,
2348 ib_event->param.sidr_req_rcvd.service_id))
2349 goto err;
2350
2351 if (net_dev) {
2352 rdma_copy_src_l2_addr(&id->route.addr.dev_addr, net_dev);
2353 } else {
2354 if (!cma_any_addr(cma_src_addr(id_priv))) {
2355 ret = cma_translate_addr(cma_src_addr(id_priv),
2356 &id->route.addr.dev_addr);
2357 if (ret)
2358 goto err;
2359 }
2360 }
2361
2362 id_priv->state = RDMA_CM_CONNECT;
2363 return id_priv;
2364 err:
2365 rdma_destroy_id(id);
2366 return NULL;
2367 }
2368
cma_set_req_event_data(struct rdma_cm_event * event,const struct ib_cm_req_event_param * req_data,void * private_data,int offset)2369 static void cma_set_req_event_data(struct rdma_cm_event *event,
2370 const struct ib_cm_req_event_param *req_data,
2371 void *private_data, int offset)
2372 {
2373 event->param.conn.private_data = private_data + offset;
2374 event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset;
2375 event->param.conn.responder_resources = req_data->responder_resources;
2376 event->param.conn.initiator_depth = req_data->initiator_depth;
2377 event->param.conn.flow_control = req_data->flow_control;
2378 event->param.conn.retry_count = req_data->retry_count;
2379 event->param.conn.rnr_retry_count = req_data->rnr_retry_count;
2380 event->param.conn.srq = req_data->srq;
2381 event->param.conn.qp_num = req_data->remote_qpn;
2382
2383 event->ece.vendor_id = req_data->ece.vendor_id;
2384 event->ece.attr_mod = req_data->ece.attr_mod;
2385 }
2386
cma_ib_check_req_qp_type(const struct rdma_cm_id * id,const struct ib_cm_event * ib_event)2387 static int cma_ib_check_req_qp_type(const struct rdma_cm_id *id,
2388 const struct ib_cm_event *ib_event)
2389 {
2390 return (((ib_event->event == IB_CM_REQ_RECEIVED) &&
2391 (ib_event->param.req_rcvd.qp_type == id->qp_type)) ||
2392 ((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) &&
2393 (id->qp_type == IB_QPT_UD)) ||
2394 (!id->qp_type));
2395 }
2396
cma_ib_req_handler(struct ib_cm_id * cm_id,const struct ib_cm_event * ib_event)2397 static int cma_ib_req_handler(struct ib_cm_id *cm_id,
2398 const struct ib_cm_event *ib_event)
2399 {
2400 struct rdma_id_private *listen_id, *conn_id = NULL;
2401 struct rdma_cm_event event = {};
2402 struct cma_req_info req = {};
2403 struct net_device *net_dev;
2404 u8 offset;
2405 int ret;
2406
2407 listen_id = cma_ib_id_from_event(cm_id, ib_event, &req, &net_dev);
2408 if (IS_ERR(listen_id))
2409 return PTR_ERR(listen_id);
2410
2411 trace_cm_req_handler(listen_id, ib_event->event);
2412 if (!cma_ib_check_req_qp_type(&listen_id->id, ib_event)) {
2413 ret = -EINVAL;
2414 goto net_dev_put;
2415 }
2416
2417 mutex_lock(&listen_id->handler_mutex);
2418 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) {
2419 ret = -ECONNABORTED;
2420 goto err_unlock;
2421 }
2422
2423 offset = cma_user_data_offset(listen_id);
2424 event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
2425 if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) {
2426 conn_id = cma_ib_new_udp_id(&listen_id->id, ib_event, net_dev);
2427 event.param.ud.private_data = ib_event->private_data + offset;
2428 event.param.ud.private_data_len =
2429 IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset;
2430 } else {
2431 conn_id = cma_ib_new_conn_id(&listen_id->id, ib_event, net_dev);
2432 cma_set_req_event_data(&event, &ib_event->param.req_rcvd,
2433 ib_event->private_data, offset);
2434 }
2435 if (!conn_id) {
2436 ret = -ENOMEM;
2437 goto err_unlock;
2438 }
2439
2440 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
2441 ret = cma_ib_acquire_dev(conn_id, listen_id, &req);
2442 if (ret) {
2443 destroy_id_handler_unlock(conn_id);
2444 goto err_unlock;
2445 }
2446
2447 conn_id->cm_id.ib = cm_id;
2448 cm_id->context = conn_id;
2449 cm_id->cm_handler = cma_ib_handler;
2450
2451 ret = cma_cm_event_handler(conn_id, &event);
2452 if (ret) {
2453 /* Destroy the CM ID by returning a non-zero value. */
2454 conn_id->cm_id.ib = NULL;
2455 mutex_unlock(&listen_id->handler_mutex);
2456 destroy_id_handler_unlock(conn_id);
2457 goto net_dev_put;
2458 }
2459
2460 if (READ_ONCE(conn_id->state) == RDMA_CM_CONNECT &&
2461 conn_id->id.qp_type != IB_QPT_UD) {
2462 trace_cm_send_mra(cm_id->context);
2463 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0);
2464 }
2465 mutex_unlock(&conn_id->handler_mutex);
2466
2467 err_unlock:
2468 mutex_unlock(&listen_id->handler_mutex);
2469
2470 net_dev_put:
2471 dev_put(net_dev);
2472
2473 return ret;
2474 }
2475
rdma_get_service_id(struct rdma_cm_id * id,struct sockaddr * addr)2476 __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr)
2477 {
2478 if (addr->sa_family == AF_IB)
2479 return ((struct sockaddr_ib *) addr)->sib_sid;
2480
2481 return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr)));
2482 }
2483 EXPORT_SYMBOL(rdma_get_service_id);
2484
rdma_read_gids(struct rdma_cm_id * cm_id,union ib_gid * sgid,union ib_gid * dgid)2485 void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid,
2486 union ib_gid *dgid)
2487 {
2488 struct rdma_addr *addr = &cm_id->route.addr;
2489
2490 if (!cm_id->device) {
2491 if (sgid)
2492 memset(sgid, 0, sizeof(*sgid));
2493 if (dgid)
2494 memset(dgid, 0, sizeof(*dgid));
2495 return;
2496 }
2497
2498 if (rdma_protocol_roce(cm_id->device, cm_id->port_num)) {
2499 if (sgid)
2500 rdma_ip2gid((struct sockaddr *)&addr->src_addr, sgid);
2501 if (dgid)
2502 rdma_ip2gid((struct sockaddr *)&addr->dst_addr, dgid);
2503 } else {
2504 if (sgid)
2505 rdma_addr_get_sgid(&addr->dev_addr, sgid);
2506 if (dgid)
2507 rdma_addr_get_dgid(&addr->dev_addr, dgid);
2508 }
2509 }
2510 EXPORT_SYMBOL(rdma_read_gids);
2511
cma_iw_handler(struct iw_cm_id * iw_id,struct iw_cm_event * iw_event)2512 static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event)
2513 {
2514 struct rdma_id_private *id_priv = iw_id->context;
2515 struct rdma_cm_event event = {};
2516 int ret = 0;
2517 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
2518 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
2519
2520 mutex_lock(&id_priv->handler_mutex);
2521 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
2522 goto out;
2523
2524 switch (iw_event->event) {
2525 case IW_CM_EVENT_CLOSE:
2526 event.event = RDMA_CM_EVENT_DISCONNECTED;
2527 break;
2528 case IW_CM_EVENT_CONNECT_REPLY:
2529 memcpy(cma_src_addr(id_priv), laddr,
2530 rdma_addr_size(laddr));
2531 memcpy(cma_dst_addr(id_priv), raddr,
2532 rdma_addr_size(raddr));
2533 switch (iw_event->status) {
2534 case 0:
2535 event.event = RDMA_CM_EVENT_ESTABLISHED;
2536 event.param.conn.initiator_depth = iw_event->ird;
2537 event.param.conn.responder_resources = iw_event->ord;
2538 break;
2539 case -ECONNRESET:
2540 case -ECONNREFUSED:
2541 event.event = RDMA_CM_EVENT_REJECTED;
2542 break;
2543 case -ETIMEDOUT:
2544 event.event = RDMA_CM_EVENT_UNREACHABLE;
2545 break;
2546 default:
2547 event.event = RDMA_CM_EVENT_CONNECT_ERROR;
2548 break;
2549 }
2550 break;
2551 case IW_CM_EVENT_ESTABLISHED:
2552 event.event = RDMA_CM_EVENT_ESTABLISHED;
2553 event.param.conn.initiator_depth = iw_event->ird;
2554 event.param.conn.responder_resources = iw_event->ord;
2555 break;
2556 default:
2557 goto out;
2558 }
2559
2560 event.status = iw_event->status;
2561 event.param.conn.private_data = iw_event->private_data;
2562 event.param.conn.private_data_len = iw_event->private_data_len;
2563 ret = cma_cm_event_handler(id_priv, &event);
2564 if (ret) {
2565 /* Destroy the CM ID by returning a non-zero value. */
2566 id_priv->cm_id.iw = NULL;
2567 destroy_id_handler_unlock(id_priv);
2568 return ret;
2569 }
2570
2571 out:
2572 mutex_unlock(&id_priv->handler_mutex);
2573 return ret;
2574 }
2575
iw_conn_req_handler(struct iw_cm_id * cm_id,struct iw_cm_event * iw_event)2576 static int iw_conn_req_handler(struct iw_cm_id *cm_id,
2577 struct iw_cm_event *iw_event)
2578 {
2579 struct rdma_id_private *listen_id, *conn_id;
2580 struct rdma_cm_event event = {};
2581 int ret = -ECONNABORTED;
2582 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
2583 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
2584
2585 event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
2586 event.param.conn.private_data = iw_event->private_data;
2587 event.param.conn.private_data_len = iw_event->private_data_len;
2588 event.param.conn.initiator_depth = iw_event->ird;
2589 event.param.conn.responder_resources = iw_event->ord;
2590
2591 listen_id = cm_id->context;
2592
2593 mutex_lock(&listen_id->handler_mutex);
2594 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN)
2595 goto out;
2596
2597 /* Create a new RDMA id for the new IW CM ID */
2598 conn_id = __rdma_create_id(listen_id->id.route.addr.dev_addr.net,
2599 listen_id->id.event_handler,
2600 listen_id->id.context, RDMA_PS_TCP,
2601 IB_QPT_RC, listen_id);
2602 if (IS_ERR(conn_id)) {
2603 ret = -ENOMEM;
2604 goto out;
2605 }
2606 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
2607 conn_id->state = RDMA_CM_CONNECT;
2608
2609 ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr);
2610 if (ret) {
2611 mutex_unlock(&listen_id->handler_mutex);
2612 destroy_id_handler_unlock(conn_id);
2613 return ret;
2614 }
2615
2616 ret = cma_iw_acquire_dev(conn_id, listen_id);
2617 if (ret) {
2618 mutex_unlock(&listen_id->handler_mutex);
2619 destroy_id_handler_unlock(conn_id);
2620 return ret;
2621 }
2622
2623 conn_id->cm_id.iw = cm_id;
2624 cm_id->context = conn_id;
2625 cm_id->cm_handler = cma_iw_handler;
2626
2627 memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr));
2628 memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr));
2629
2630 ret = cma_cm_event_handler(conn_id, &event);
2631 if (ret) {
2632 /* User wants to destroy the CM ID */
2633 conn_id->cm_id.iw = NULL;
2634 mutex_unlock(&listen_id->handler_mutex);
2635 destroy_id_handler_unlock(conn_id);
2636 return ret;
2637 }
2638
2639 mutex_unlock(&conn_id->handler_mutex);
2640
2641 out:
2642 mutex_unlock(&listen_id->handler_mutex);
2643 return ret;
2644 }
2645
cma_ib_listen(struct rdma_id_private * id_priv)2646 static int cma_ib_listen(struct rdma_id_private *id_priv)
2647 {
2648 struct sockaddr *addr;
2649 struct ib_cm_id *id;
2650 __be64 svc_id;
2651
2652 addr = cma_src_addr(id_priv);
2653 svc_id = rdma_get_service_id(&id_priv->id, addr);
2654 id = ib_cm_insert_listen(id_priv->id.device,
2655 cma_ib_req_handler, svc_id);
2656 if (IS_ERR(id))
2657 return PTR_ERR(id);
2658 id_priv->cm_id.ib = id;
2659
2660 return 0;
2661 }
2662
cma_iw_listen(struct rdma_id_private * id_priv,int backlog)2663 static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog)
2664 {
2665 int ret;
2666 struct iw_cm_id *id;
2667
2668 id = iw_create_cm_id(id_priv->id.device,
2669 iw_conn_req_handler,
2670 id_priv);
2671 if (IS_ERR(id))
2672 return PTR_ERR(id);
2673
2674 mutex_lock(&id_priv->qp_mutex);
2675 id->tos = id_priv->tos;
2676 id->tos_set = id_priv->tos_set;
2677 mutex_unlock(&id_priv->qp_mutex);
2678 id->afonly = id_priv->afonly;
2679 id_priv->cm_id.iw = id;
2680
2681 memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv),
2682 rdma_addr_size(cma_src_addr(id_priv)));
2683
2684 ret = iw_cm_listen(id_priv->cm_id.iw, backlog);
2685
2686 if (ret) {
2687 iw_destroy_cm_id(id_priv->cm_id.iw);
2688 id_priv->cm_id.iw = NULL;
2689 }
2690
2691 return ret;
2692 }
2693
cma_listen_handler(struct rdma_cm_id * id,struct rdma_cm_event * event)2694 static int cma_listen_handler(struct rdma_cm_id *id,
2695 struct rdma_cm_event *event)
2696 {
2697 struct rdma_id_private *id_priv = id->context;
2698
2699 /* Listening IDs are always destroyed on removal */
2700 if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL)
2701 return -1;
2702
2703 id->context = id_priv->id.context;
2704 id->event_handler = id_priv->id.event_handler;
2705 trace_cm_event_handler(id_priv, event);
2706 return id_priv->id.event_handler(id, event);
2707 }
2708
cma_listen_on_dev(struct rdma_id_private * id_priv,struct cma_device * cma_dev,struct rdma_id_private ** to_destroy)2709 static int cma_listen_on_dev(struct rdma_id_private *id_priv,
2710 struct cma_device *cma_dev,
2711 struct rdma_id_private **to_destroy)
2712 {
2713 struct rdma_id_private *dev_id_priv;
2714 struct net *net = id_priv->id.route.addr.dev_addr.net;
2715 int ret;
2716
2717 lockdep_assert_held(&lock);
2718
2719 *to_destroy = NULL;
2720 if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1))
2721 return 0;
2722
2723 dev_id_priv =
2724 __rdma_create_id(net, cma_listen_handler, id_priv,
2725 id_priv->id.ps, id_priv->id.qp_type, id_priv);
2726 if (IS_ERR(dev_id_priv))
2727 return PTR_ERR(dev_id_priv);
2728
2729 dev_id_priv->state = RDMA_CM_ADDR_BOUND;
2730 memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv),
2731 rdma_addr_size(cma_src_addr(id_priv)));
2732
2733 _cma_attach_to_dev(dev_id_priv, cma_dev);
2734 rdma_restrack_add(&dev_id_priv->res);
2735 cma_id_get(id_priv);
2736 dev_id_priv->internal_id = 1;
2737 dev_id_priv->afonly = id_priv->afonly;
2738 mutex_lock(&id_priv->qp_mutex);
2739 dev_id_priv->tos_set = id_priv->tos_set;
2740 dev_id_priv->tos = id_priv->tos;
2741 mutex_unlock(&id_priv->qp_mutex);
2742
2743 ret = rdma_listen(&dev_id_priv->id, id_priv->backlog);
2744 if (ret)
2745 goto err_listen;
2746 list_add_tail(&dev_id_priv->listen_item, &id_priv->listen_list);
2747 return 0;
2748 err_listen:
2749 /* Caller must destroy this after releasing lock */
2750 *to_destroy = dev_id_priv;
2751 dev_warn(&cma_dev->device->dev, "RDMA CMA: %s, error %d\n", __func__, ret);
2752 return ret;
2753 }
2754
cma_listen_on_all(struct rdma_id_private * id_priv)2755 static int cma_listen_on_all(struct rdma_id_private *id_priv)
2756 {
2757 struct rdma_id_private *to_destroy;
2758 struct cma_device *cma_dev;
2759 int ret;
2760
2761 mutex_lock(&lock);
2762 list_add_tail(&id_priv->listen_any_item, &listen_any_list);
2763 list_for_each_entry(cma_dev, &dev_list, list) {
2764 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy);
2765 if (ret) {
2766 /* Prevent racing with cma_process_remove() */
2767 if (to_destroy)
2768 list_del_init(&to_destroy->device_item);
2769 goto err_listen;
2770 }
2771 }
2772 mutex_unlock(&lock);
2773 return 0;
2774
2775 err_listen:
2776 _cma_cancel_listens(id_priv);
2777 mutex_unlock(&lock);
2778 if (to_destroy)
2779 rdma_destroy_id(&to_destroy->id);
2780 return ret;
2781 }
2782
rdma_set_service_type(struct rdma_cm_id * id,int tos)2783 void rdma_set_service_type(struct rdma_cm_id *id, int tos)
2784 {
2785 struct rdma_id_private *id_priv;
2786
2787 id_priv = container_of(id, struct rdma_id_private, id);
2788 mutex_lock(&id_priv->qp_mutex);
2789 id_priv->tos = (u8) tos;
2790 id_priv->tos_set = true;
2791 mutex_unlock(&id_priv->qp_mutex);
2792 }
2793 EXPORT_SYMBOL(rdma_set_service_type);
2794
2795 /**
2796 * rdma_set_ack_timeout() - Set the ack timeout of QP associated
2797 * with a connection identifier.
2798 * @id: Communication identifier to associated with service type.
2799 * @timeout: Ack timeout to set a QP, expressed as 4.096 * 2^(timeout) usec.
2800 *
2801 * This function should be called before rdma_connect() on active side,
2802 * and on passive side before rdma_accept(). It is applicable to primary
2803 * path only. The timeout will affect the local side of the QP, it is not
2804 * negotiated with remote side and zero disables the timer. In case it is
2805 * set before rdma_resolve_route, the value will also be used to determine
2806 * PacketLifeTime for RoCE.
2807 *
2808 * Return: 0 for success
2809 */
rdma_set_ack_timeout(struct rdma_cm_id * id,u8 timeout)2810 int rdma_set_ack_timeout(struct rdma_cm_id *id, u8 timeout)
2811 {
2812 struct rdma_id_private *id_priv;
2813
2814 if (id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_INI)
2815 return -EINVAL;
2816
2817 id_priv = container_of(id, struct rdma_id_private, id);
2818 mutex_lock(&id_priv->qp_mutex);
2819 id_priv->timeout = timeout;
2820 id_priv->timeout_set = true;
2821 mutex_unlock(&id_priv->qp_mutex);
2822
2823 return 0;
2824 }
2825 EXPORT_SYMBOL(rdma_set_ack_timeout);
2826
2827 /**
2828 * rdma_set_min_rnr_timer() - Set the minimum RNR Retry timer of the
2829 * QP associated with a connection identifier.
2830 * @id: Communication identifier to associated with service type.
2831 * @min_rnr_timer: 5-bit value encoded as Table 45: "Encoding for RNR NAK
2832 * Timer Field" in the IBTA specification.
2833 *
2834 * This function should be called before rdma_connect() on active
2835 * side, and on passive side before rdma_accept(). The timer value
2836 * will be associated with the local QP. When it receives a send it is
2837 * not read to handle, typically if the receive queue is empty, an RNR
2838 * Retry NAK is returned to the requester with the min_rnr_timer
2839 * encoded. The requester will then wait at least the time specified
2840 * in the NAK before retrying. The default is zero, which translates
2841 * to a minimum RNR Timer value of 655 ms.
2842 *
2843 * Return: 0 for success
2844 */
rdma_set_min_rnr_timer(struct rdma_cm_id * id,u8 min_rnr_timer)2845 int rdma_set_min_rnr_timer(struct rdma_cm_id *id, u8 min_rnr_timer)
2846 {
2847 struct rdma_id_private *id_priv;
2848
2849 /* It is a five-bit value */
2850 if (min_rnr_timer & 0xe0)
2851 return -EINVAL;
2852
2853 if (WARN_ON(id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_TGT))
2854 return -EINVAL;
2855
2856 id_priv = container_of(id, struct rdma_id_private, id);
2857 mutex_lock(&id_priv->qp_mutex);
2858 id_priv->min_rnr_timer = min_rnr_timer;
2859 id_priv->min_rnr_timer_set = true;
2860 mutex_unlock(&id_priv->qp_mutex);
2861
2862 return 0;
2863 }
2864 EXPORT_SYMBOL(rdma_set_min_rnr_timer);
2865
route_set_path_rec_inbound(struct cma_work * work,struct sa_path_rec * path_rec)2866 static int route_set_path_rec_inbound(struct cma_work *work,
2867 struct sa_path_rec *path_rec)
2868 {
2869 struct rdma_route *route = &work->id->id.route;
2870
2871 if (!route->path_rec_inbound) {
2872 route->path_rec_inbound =
2873 kzalloc(sizeof(*route->path_rec_inbound), GFP_KERNEL);
2874 if (!route->path_rec_inbound)
2875 return -ENOMEM;
2876 }
2877
2878 *route->path_rec_inbound = *path_rec;
2879 return 0;
2880 }
2881
route_set_path_rec_outbound(struct cma_work * work,struct sa_path_rec * path_rec)2882 static int route_set_path_rec_outbound(struct cma_work *work,
2883 struct sa_path_rec *path_rec)
2884 {
2885 struct rdma_route *route = &work->id->id.route;
2886
2887 if (!route->path_rec_outbound) {
2888 route->path_rec_outbound =
2889 kzalloc(sizeof(*route->path_rec_outbound), GFP_KERNEL);
2890 if (!route->path_rec_outbound)
2891 return -ENOMEM;
2892 }
2893
2894 *route->path_rec_outbound = *path_rec;
2895 return 0;
2896 }
2897
cma_query_handler(int status,struct sa_path_rec * path_rec,unsigned int num_prs,void * context)2898 static void cma_query_handler(int status, struct sa_path_rec *path_rec,
2899 unsigned int num_prs, void *context)
2900 {
2901 struct cma_work *work = context;
2902 struct rdma_route *route;
2903 int i;
2904
2905 route = &work->id->id.route;
2906
2907 if (status)
2908 goto fail;
2909
2910 for (i = 0; i < num_prs; i++) {
2911 if (!path_rec[i].flags || (path_rec[i].flags & IB_PATH_GMP))
2912 *route->path_rec = path_rec[i];
2913 else if (path_rec[i].flags & IB_PATH_INBOUND)
2914 status = route_set_path_rec_inbound(work, &path_rec[i]);
2915 else if (path_rec[i].flags & IB_PATH_OUTBOUND)
2916 status = route_set_path_rec_outbound(work,
2917 &path_rec[i]);
2918 else
2919 status = -EINVAL;
2920
2921 if (status)
2922 goto fail;
2923 }
2924
2925 route->num_pri_alt_paths = 1;
2926 queue_work(cma_wq, &work->work);
2927 return;
2928
2929 fail:
2930 work->old_state = RDMA_CM_ROUTE_QUERY;
2931 work->new_state = RDMA_CM_ADDR_RESOLVED;
2932 work->event.event = RDMA_CM_EVENT_ROUTE_ERROR;
2933 work->event.status = status;
2934 pr_debug_ratelimited("RDMA CM: ROUTE_ERROR: failed to query path. status %d\n",
2935 status);
2936 queue_work(cma_wq, &work->work);
2937 }
2938
cma_query_ib_route(struct rdma_id_private * id_priv,unsigned long timeout_ms,struct cma_work * work)2939 static int cma_query_ib_route(struct rdma_id_private *id_priv,
2940 unsigned long timeout_ms, struct cma_work *work)
2941 {
2942 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
2943 struct sa_path_rec path_rec;
2944 ib_sa_comp_mask comp_mask;
2945 struct sockaddr_in6 *sin6;
2946 struct sockaddr_ib *sib;
2947
2948 memset(&path_rec, 0, sizeof path_rec);
2949
2950 if (rdma_cap_opa_ah(id_priv->id.device, id_priv->id.port_num))
2951 path_rec.rec_type = SA_PATH_REC_TYPE_OPA;
2952 else
2953 path_rec.rec_type = SA_PATH_REC_TYPE_IB;
2954 rdma_addr_get_sgid(dev_addr, &path_rec.sgid);
2955 rdma_addr_get_dgid(dev_addr, &path_rec.dgid);
2956 path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
2957 path_rec.numb_path = 1;
2958 path_rec.reversible = 1;
2959 path_rec.service_id = rdma_get_service_id(&id_priv->id,
2960 cma_dst_addr(id_priv));
2961
2962 comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID |
2963 IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH |
2964 IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID;
2965
2966 switch (cma_family(id_priv)) {
2967 case AF_INET:
2968 path_rec.qos_class = cpu_to_be16((u16) id_priv->tos);
2969 comp_mask |= IB_SA_PATH_REC_QOS_CLASS;
2970 break;
2971 case AF_INET6:
2972 sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv);
2973 path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20);
2974 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
2975 break;
2976 case AF_IB:
2977 sib = (struct sockaddr_ib *) cma_src_addr(id_priv);
2978 path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20);
2979 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
2980 break;
2981 }
2982
2983 id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device,
2984 id_priv->id.port_num, &path_rec,
2985 comp_mask, timeout_ms,
2986 GFP_KERNEL, cma_query_handler,
2987 work, &id_priv->query);
2988
2989 return (id_priv->query_id < 0) ? id_priv->query_id : 0;
2990 }
2991
cma_iboe_join_work_handler(struct work_struct * work)2992 static void cma_iboe_join_work_handler(struct work_struct *work)
2993 {
2994 struct cma_multicast *mc =
2995 container_of(work, struct cma_multicast, iboe_join.work);
2996 struct rdma_cm_event *event = &mc->iboe_join.event;
2997 struct rdma_id_private *id_priv = mc->id_priv;
2998 int ret;
2999
3000 mutex_lock(&id_priv->handler_mutex);
3001 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
3002 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
3003 goto out_unlock;
3004
3005 ret = cma_cm_event_handler(id_priv, event);
3006 WARN_ON(ret);
3007
3008 out_unlock:
3009 mutex_unlock(&id_priv->handler_mutex);
3010 if (event->event == RDMA_CM_EVENT_MULTICAST_JOIN)
3011 rdma_destroy_ah_attr(&event->param.ud.ah_attr);
3012 }
3013
cma_work_handler(struct work_struct * _work)3014 static void cma_work_handler(struct work_struct *_work)
3015 {
3016 struct cma_work *work = container_of(_work, struct cma_work, work);
3017 struct rdma_id_private *id_priv = work->id;
3018
3019 mutex_lock(&id_priv->handler_mutex);
3020 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
3021 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
3022 goto out_unlock;
3023 if (work->old_state != 0 || work->new_state != 0) {
3024 if (!cma_comp_exch(id_priv, work->old_state, work->new_state))
3025 goto out_unlock;
3026 }
3027
3028 if (cma_cm_event_handler(id_priv, &work->event)) {
3029 cma_id_put(id_priv);
3030 destroy_id_handler_unlock(id_priv);
3031 goto out_free;
3032 }
3033
3034 out_unlock:
3035 mutex_unlock(&id_priv->handler_mutex);
3036 cma_id_put(id_priv);
3037 out_free:
3038 if (work->event.event == RDMA_CM_EVENT_MULTICAST_JOIN)
3039 rdma_destroy_ah_attr(&work->event.param.ud.ah_attr);
3040 kfree(work);
3041 }
3042
cma_init_resolve_route_work(struct cma_work * work,struct rdma_id_private * id_priv)3043 static void cma_init_resolve_route_work(struct cma_work *work,
3044 struct rdma_id_private *id_priv)
3045 {
3046 work->id = id_priv;
3047 INIT_WORK(&work->work, cma_work_handler);
3048 work->old_state = RDMA_CM_ROUTE_QUERY;
3049 work->new_state = RDMA_CM_ROUTE_RESOLVED;
3050 work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED;
3051 }
3052
enqueue_resolve_addr_work(struct cma_work * work,struct rdma_id_private * id_priv)3053 static void enqueue_resolve_addr_work(struct cma_work *work,
3054 struct rdma_id_private *id_priv)
3055 {
3056 /* Balances with cma_id_put() in cma_work_handler */
3057 cma_id_get(id_priv);
3058
3059 work->id = id_priv;
3060 INIT_WORK(&work->work, cma_work_handler);
3061 work->old_state = RDMA_CM_ADDR_QUERY;
3062 work->new_state = RDMA_CM_ADDR_RESOLVED;
3063 work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
3064
3065 queue_work(cma_wq, &work->work);
3066 }
3067
cma_resolve_ib_route(struct rdma_id_private * id_priv,unsigned long timeout_ms)3068 static int cma_resolve_ib_route(struct rdma_id_private *id_priv,
3069 unsigned long timeout_ms)
3070 {
3071 struct rdma_route *route = &id_priv->id.route;
3072 struct cma_work *work;
3073 int ret;
3074
3075 work = kzalloc(sizeof *work, GFP_KERNEL);
3076 if (!work)
3077 return -ENOMEM;
3078
3079 cma_init_resolve_route_work(work, id_priv);
3080
3081 if (!route->path_rec)
3082 route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL);
3083 if (!route->path_rec) {
3084 ret = -ENOMEM;
3085 goto err1;
3086 }
3087
3088 ret = cma_query_ib_route(id_priv, timeout_ms, work);
3089 if (ret)
3090 goto err2;
3091
3092 return 0;
3093 err2:
3094 kfree(route->path_rec);
3095 route->path_rec = NULL;
3096 err1:
3097 kfree(work);
3098 return ret;
3099 }
3100
cma_route_gid_type(enum rdma_network_type network_type,unsigned long supported_gids,enum ib_gid_type default_gid)3101 static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type,
3102 unsigned long supported_gids,
3103 enum ib_gid_type default_gid)
3104 {
3105 if ((network_type == RDMA_NETWORK_IPV4 ||
3106 network_type == RDMA_NETWORK_IPV6) &&
3107 test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids))
3108 return IB_GID_TYPE_ROCE_UDP_ENCAP;
3109
3110 return default_gid;
3111 }
3112
3113 /*
3114 * cma_iboe_set_path_rec_l2_fields() is helper function which sets
3115 * path record type based on GID type.
3116 * It also sets up other L2 fields which includes destination mac address
3117 * netdev ifindex, of the path record.
3118 * It returns the netdev of the bound interface for this path record entry.
3119 */
3120 static struct net_device *
cma_iboe_set_path_rec_l2_fields(struct rdma_id_private * id_priv)3121 cma_iboe_set_path_rec_l2_fields(struct rdma_id_private *id_priv)
3122 {
3123 struct rdma_route *route = &id_priv->id.route;
3124 enum ib_gid_type gid_type = IB_GID_TYPE_ROCE;
3125 struct rdma_addr *addr = &route->addr;
3126 unsigned long supported_gids;
3127 struct net_device *ndev;
3128
3129 if (!addr->dev_addr.bound_dev_if)
3130 return NULL;
3131
3132 ndev = dev_get_by_index(addr->dev_addr.net,
3133 addr->dev_addr.bound_dev_if);
3134 if (!ndev)
3135 return NULL;
3136
3137 supported_gids = roce_gid_type_mask_support(id_priv->id.device,
3138 id_priv->id.port_num);
3139 gid_type = cma_route_gid_type(addr->dev_addr.network,
3140 supported_gids,
3141 id_priv->gid_type);
3142 /* Use the hint from IP Stack to select GID Type */
3143 if (gid_type < ib_network_to_gid_type(addr->dev_addr.network))
3144 gid_type = ib_network_to_gid_type(addr->dev_addr.network);
3145 route->path_rec->rec_type = sa_conv_gid_to_pathrec_type(gid_type);
3146
3147 route->path_rec->roce.route_resolved = true;
3148 sa_path_set_dmac(route->path_rec, addr->dev_addr.dst_dev_addr);
3149 return ndev;
3150 }
3151
rdma_set_ib_path(struct rdma_cm_id * id,struct sa_path_rec * path_rec)3152 int rdma_set_ib_path(struct rdma_cm_id *id,
3153 struct sa_path_rec *path_rec)
3154 {
3155 struct rdma_id_private *id_priv;
3156 struct net_device *ndev;
3157 int ret;
3158
3159 id_priv = container_of(id, struct rdma_id_private, id);
3160 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
3161 RDMA_CM_ROUTE_RESOLVED))
3162 return -EINVAL;
3163
3164 id->route.path_rec = kmemdup(path_rec, sizeof(*path_rec),
3165 GFP_KERNEL);
3166 if (!id->route.path_rec) {
3167 ret = -ENOMEM;
3168 goto err;
3169 }
3170
3171 if (rdma_protocol_roce(id->device, id->port_num)) {
3172 ndev = cma_iboe_set_path_rec_l2_fields(id_priv);
3173 if (!ndev) {
3174 ret = -ENODEV;
3175 goto err_free;
3176 }
3177 dev_put(ndev);
3178 }
3179
3180 id->route.num_pri_alt_paths = 1;
3181 return 0;
3182
3183 err_free:
3184 kfree(id->route.path_rec);
3185 id->route.path_rec = NULL;
3186 err:
3187 cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED);
3188 return ret;
3189 }
3190 EXPORT_SYMBOL(rdma_set_ib_path);
3191
cma_resolve_iw_route(struct rdma_id_private * id_priv)3192 static int cma_resolve_iw_route(struct rdma_id_private *id_priv)
3193 {
3194 struct cma_work *work;
3195
3196 work = kzalloc(sizeof *work, GFP_KERNEL);
3197 if (!work)
3198 return -ENOMEM;
3199
3200 cma_init_resolve_route_work(work, id_priv);
3201 queue_work(cma_wq, &work->work);
3202 return 0;
3203 }
3204
get_vlan_ndev_tc(struct net_device * vlan_ndev,int prio)3205 static int get_vlan_ndev_tc(struct net_device *vlan_ndev, int prio)
3206 {
3207 struct net_device *dev;
3208
3209 dev = vlan_dev_real_dev(vlan_ndev);
3210 if (dev->num_tc)
3211 return netdev_get_prio_tc_map(dev, prio);
3212
3213 return (vlan_dev_get_egress_qos_mask(vlan_ndev, prio) &
3214 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
3215 }
3216
3217 struct iboe_prio_tc_map {
3218 int input_prio;
3219 int output_tc;
3220 bool found;
3221 };
3222
get_lower_vlan_dev_tc(struct net_device * dev,struct netdev_nested_priv * priv)3223 static int get_lower_vlan_dev_tc(struct net_device *dev,
3224 struct netdev_nested_priv *priv)
3225 {
3226 struct iboe_prio_tc_map *map = (struct iboe_prio_tc_map *)priv->data;
3227
3228 if (is_vlan_dev(dev))
3229 map->output_tc = get_vlan_ndev_tc(dev, map->input_prio);
3230 else if (dev->num_tc)
3231 map->output_tc = netdev_get_prio_tc_map(dev, map->input_prio);
3232 else
3233 map->output_tc = 0;
3234 /* We are interested only in first level VLAN device, so always
3235 * return 1 to stop iterating over next level devices.
3236 */
3237 map->found = true;
3238 return 1;
3239 }
3240
iboe_tos_to_sl(struct net_device * ndev,int tos)3241 static int iboe_tos_to_sl(struct net_device *ndev, int tos)
3242 {
3243 struct iboe_prio_tc_map prio_tc_map = {};
3244 int prio = rt_tos2priority(tos);
3245 struct netdev_nested_priv priv;
3246
3247 /* If VLAN device, get it directly from the VLAN netdev */
3248 if (is_vlan_dev(ndev))
3249 return get_vlan_ndev_tc(ndev, prio);
3250
3251 prio_tc_map.input_prio = prio;
3252 priv.data = (void *)&prio_tc_map;
3253 rcu_read_lock();
3254 netdev_walk_all_lower_dev_rcu(ndev,
3255 get_lower_vlan_dev_tc,
3256 &priv);
3257 rcu_read_unlock();
3258 /* If map is found from lower device, use it; Otherwise
3259 * continue with the current netdevice to get priority to tc map.
3260 */
3261 if (prio_tc_map.found)
3262 return prio_tc_map.output_tc;
3263 else if (ndev->num_tc)
3264 return netdev_get_prio_tc_map(ndev, prio);
3265 else
3266 return 0;
3267 }
3268
cma_get_roce_udp_flow_label(struct rdma_id_private * id_priv)3269 static __be32 cma_get_roce_udp_flow_label(struct rdma_id_private *id_priv)
3270 {
3271 struct sockaddr_in6 *addr6;
3272 u16 dport, sport;
3273 u32 hash, fl;
3274
3275 addr6 = (struct sockaddr_in6 *)cma_src_addr(id_priv);
3276 fl = be32_to_cpu(addr6->sin6_flowinfo) & IB_GRH_FLOWLABEL_MASK;
3277 if ((cma_family(id_priv) != AF_INET6) || !fl) {
3278 dport = be16_to_cpu(cma_port(cma_dst_addr(id_priv)));
3279 sport = be16_to_cpu(cma_port(cma_src_addr(id_priv)));
3280 hash = (u32)sport * 31 + dport;
3281 fl = hash & IB_GRH_FLOWLABEL_MASK;
3282 }
3283
3284 return cpu_to_be32(fl);
3285 }
3286
cma_resolve_iboe_route(struct rdma_id_private * id_priv)3287 static int cma_resolve_iboe_route(struct rdma_id_private *id_priv)
3288 {
3289 struct rdma_route *route = &id_priv->id.route;
3290 struct rdma_addr *addr = &route->addr;
3291 struct cma_work *work;
3292 int ret;
3293 struct net_device *ndev;
3294
3295 u8 default_roce_tos = id_priv->cma_dev->default_roce_tos[id_priv->id.port_num -
3296 rdma_start_port(id_priv->cma_dev->device)];
3297 u8 tos;
3298
3299 mutex_lock(&id_priv->qp_mutex);
3300 tos = id_priv->tos_set ? id_priv->tos : default_roce_tos;
3301 mutex_unlock(&id_priv->qp_mutex);
3302
3303 work = kzalloc(sizeof *work, GFP_KERNEL);
3304 if (!work)
3305 return -ENOMEM;
3306
3307 route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL);
3308 if (!route->path_rec) {
3309 ret = -ENOMEM;
3310 goto err1;
3311 }
3312
3313 route->num_pri_alt_paths = 1;
3314
3315 ndev = cma_iboe_set_path_rec_l2_fields(id_priv);
3316 if (!ndev) {
3317 ret = -ENODEV;
3318 goto err2;
3319 }
3320
3321 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
3322 &route->path_rec->sgid);
3323 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr,
3324 &route->path_rec->dgid);
3325
3326 if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB)
3327 /* TODO: get the hoplimit from the inet/inet6 device */
3328 route->path_rec->hop_limit = addr->dev_addr.hoplimit;
3329 else
3330 route->path_rec->hop_limit = 1;
3331 route->path_rec->reversible = 1;
3332 route->path_rec->pkey = cpu_to_be16(0xffff);
3333 route->path_rec->mtu_selector = IB_SA_EQ;
3334 route->path_rec->sl = iboe_tos_to_sl(ndev, tos);
3335 route->path_rec->traffic_class = tos;
3336 route->path_rec->mtu = iboe_get_mtu(ndev->mtu);
3337 route->path_rec->rate_selector = IB_SA_EQ;
3338 route->path_rec->rate = IB_RATE_PORT_CURRENT;
3339 dev_put(ndev);
3340 route->path_rec->packet_life_time_selector = IB_SA_EQ;
3341 /* In case ACK timeout is set, use this value to calculate
3342 * PacketLifeTime. As per IBTA 12.7.34,
3343 * local ACK timeout = (2 * PacketLifeTime + Local CA’s ACK delay).
3344 * Assuming a negligible local ACK delay, we can use
3345 * PacketLifeTime = local ACK timeout/2
3346 * as a reasonable approximation for RoCE networks.
3347 */
3348 mutex_lock(&id_priv->qp_mutex);
3349 if (id_priv->timeout_set && id_priv->timeout)
3350 route->path_rec->packet_life_time = id_priv->timeout - 1;
3351 else
3352 route->path_rec->packet_life_time = CMA_IBOE_PACKET_LIFETIME;
3353 mutex_unlock(&id_priv->qp_mutex);
3354
3355 if (!route->path_rec->mtu) {
3356 ret = -EINVAL;
3357 goto err2;
3358 }
3359
3360 if (rdma_protocol_roce_udp_encap(id_priv->id.device,
3361 id_priv->id.port_num))
3362 route->path_rec->flow_label =
3363 cma_get_roce_udp_flow_label(id_priv);
3364
3365 cma_init_resolve_route_work(work, id_priv);
3366 queue_work(cma_wq, &work->work);
3367
3368 return 0;
3369
3370 err2:
3371 kfree(route->path_rec);
3372 route->path_rec = NULL;
3373 route->num_pri_alt_paths = 0;
3374 err1:
3375 kfree(work);
3376 return ret;
3377 }
3378
rdma_resolve_route(struct rdma_cm_id * id,unsigned long timeout_ms)3379 int rdma_resolve_route(struct rdma_cm_id *id, unsigned long timeout_ms)
3380 {
3381 struct rdma_id_private *id_priv;
3382 int ret;
3383
3384 if (!timeout_ms)
3385 return -EINVAL;
3386
3387 id_priv = container_of(id, struct rdma_id_private, id);
3388 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY))
3389 return -EINVAL;
3390
3391 cma_id_get(id_priv);
3392 if (rdma_cap_ib_sa(id->device, id->port_num))
3393 ret = cma_resolve_ib_route(id_priv, timeout_ms);
3394 else if (rdma_protocol_roce(id->device, id->port_num)) {
3395 ret = cma_resolve_iboe_route(id_priv);
3396 if (!ret)
3397 cma_add_id_to_tree(id_priv);
3398 }
3399 else if (rdma_protocol_iwarp(id->device, id->port_num))
3400 ret = cma_resolve_iw_route(id_priv);
3401 else
3402 ret = -ENOSYS;
3403
3404 if (ret)
3405 goto err;
3406
3407 return 0;
3408 err:
3409 cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED);
3410 cma_id_put(id_priv);
3411 return ret;
3412 }
3413 EXPORT_SYMBOL(rdma_resolve_route);
3414
cma_set_loopback(struct sockaddr * addr)3415 static void cma_set_loopback(struct sockaddr *addr)
3416 {
3417 switch (addr->sa_family) {
3418 case AF_INET:
3419 ((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK);
3420 break;
3421 case AF_INET6:
3422 ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr,
3423 0, 0, 0, htonl(1));
3424 break;
3425 default:
3426 ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr,
3427 0, 0, 0, htonl(1));
3428 break;
3429 }
3430 }
3431
cma_bind_loopback(struct rdma_id_private * id_priv)3432 static int cma_bind_loopback(struct rdma_id_private *id_priv)
3433 {
3434 struct cma_device *cma_dev, *cur_dev;
3435 union ib_gid gid;
3436 enum ib_port_state port_state;
3437 unsigned int p;
3438 u16 pkey;
3439 int ret;
3440
3441 cma_dev = NULL;
3442 mutex_lock(&lock);
3443 list_for_each_entry(cur_dev, &dev_list, list) {
3444 if (cma_family(id_priv) == AF_IB &&
3445 !rdma_cap_ib_cm(cur_dev->device, 1))
3446 continue;
3447
3448 if (!cma_dev)
3449 cma_dev = cur_dev;
3450
3451 rdma_for_each_port (cur_dev->device, p) {
3452 if (!ib_get_cached_port_state(cur_dev->device, p, &port_state) &&
3453 port_state == IB_PORT_ACTIVE) {
3454 cma_dev = cur_dev;
3455 goto port_found;
3456 }
3457 }
3458 }
3459
3460 if (!cma_dev) {
3461 ret = -ENODEV;
3462 goto out;
3463 }
3464
3465 p = 1;
3466
3467 port_found:
3468 ret = rdma_query_gid(cma_dev->device, p, 0, &gid);
3469 if (ret)
3470 goto out;
3471
3472 ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey);
3473 if (ret)
3474 goto out;
3475
3476 id_priv->id.route.addr.dev_addr.dev_type =
3477 (rdma_protocol_ib(cma_dev->device, p)) ?
3478 ARPHRD_INFINIBAND : ARPHRD_ETHER;
3479
3480 rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid);
3481 ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey);
3482 id_priv->id.port_num = p;
3483 cma_attach_to_dev(id_priv, cma_dev);
3484 rdma_restrack_add(&id_priv->res);
3485 cma_set_loopback(cma_src_addr(id_priv));
3486 out:
3487 mutex_unlock(&lock);
3488 return ret;
3489 }
3490
addr_handler(int status,struct sockaddr * src_addr,struct rdma_dev_addr * dev_addr,void * context)3491 static void addr_handler(int status, struct sockaddr *src_addr,
3492 struct rdma_dev_addr *dev_addr, void *context)
3493 {
3494 struct rdma_id_private *id_priv = context;
3495 struct rdma_cm_event event = {};
3496 struct sockaddr *addr;
3497 struct sockaddr_storage old_addr;
3498
3499 mutex_lock(&id_priv->handler_mutex);
3500 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY,
3501 RDMA_CM_ADDR_RESOLVED))
3502 goto out;
3503
3504 /*
3505 * Store the previous src address, so that if we fail to acquire
3506 * matching rdma device, old address can be restored back, which helps
3507 * to cancel the cma listen operation correctly.
3508 */
3509 addr = cma_src_addr(id_priv);
3510 memcpy(&old_addr, addr, rdma_addr_size(addr));
3511 memcpy(addr, src_addr, rdma_addr_size(src_addr));
3512 if (!status && !id_priv->cma_dev) {
3513 status = cma_acquire_dev_by_src_ip(id_priv);
3514 if (status)
3515 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to acquire device. status %d\n",
3516 status);
3517 rdma_restrack_add(&id_priv->res);
3518 } else if (status) {
3519 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to resolve IP. status %d\n", status);
3520 }
3521
3522 if (status) {
3523 memcpy(addr, &old_addr,
3524 rdma_addr_size((struct sockaddr *)&old_addr));
3525 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
3526 RDMA_CM_ADDR_BOUND))
3527 goto out;
3528 event.event = RDMA_CM_EVENT_ADDR_ERROR;
3529 event.status = status;
3530 } else
3531 event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
3532
3533 if (cma_cm_event_handler(id_priv, &event)) {
3534 destroy_id_handler_unlock(id_priv);
3535 return;
3536 }
3537 out:
3538 mutex_unlock(&id_priv->handler_mutex);
3539 }
3540
cma_resolve_loopback(struct rdma_id_private * id_priv)3541 static int cma_resolve_loopback(struct rdma_id_private *id_priv)
3542 {
3543 struct cma_work *work;
3544 union ib_gid gid;
3545 int ret;
3546
3547 work = kzalloc(sizeof *work, GFP_KERNEL);
3548 if (!work)
3549 return -ENOMEM;
3550
3551 if (!id_priv->cma_dev) {
3552 ret = cma_bind_loopback(id_priv);
3553 if (ret)
3554 goto err;
3555 }
3556
3557 rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid);
3558 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid);
3559
3560 enqueue_resolve_addr_work(work, id_priv);
3561 return 0;
3562 err:
3563 kfree(work);
3564 return ret;
3565 }
3566
cma_resolve_ib_addr(struct rdma_id_private * id_priv)3567 static int cma_resolve_ib_addr(struct rdma_id_private *id_priv)
3568 {
3569 struct cma_work *work;
3570 int ret;
3571
3572 work = kzalloc(sizeof *work, GFP_KERNEL);
3573 if (!work)
3574 return -ENOMEM;
3575
3576 if (!id_priv->cma_dev) {
3577 ret = cma_resolve_ib_dev(id_priv);
3578 if (ret)
3579 goto err;
3580 }
3581
3582 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *)
3583 &(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr));
3584
3585 enqueue_resolve_addr_work(work, id_priv);
3586 return 0;
3587 err:
3588 kfree(work);
3589 return ret;
3590 }
3591
rdma_set_reuseaddr(struct rdma_cm_id * id,int reuse)3592 int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse)
3593 {
3594 struct rdma_id_private *id_priv;
3595 unsigned long flags;
3596 int ret;
3597
3598 id_priv = container_of(id, struct rdma_id_private, id);
3599 spin_lock_irqsave(&id_priv->lock, flags);
3600 if ((reuse && id_priv->state != RDMA_CM_LISTEN) ||
3601 id_priv->state == RDMA_CM_IDLE) {
3602 id_priv->reuseaddr = reuse;
3603 ret = 0;
3604 } else {
3605 ret = -EINVAL;
3606 }
3607 spin_unlock_irqrestore(&id_priv->lock, flags);
3608 return ret;
3609 }
3610 EXPORT_SYMBOL(rdma_set_reuseaddr);
3611
rdma_set_afonly(struct rdma_cm_id * id,int afonly)3612 int rdma_set_afonly(struct rdma_cm_id *id, int afonly)
3613 {
3614 struct rdma_id_private *id_priv;
3615 unsigned long flags;
3616 int ret;
3617
3618 id_priv = container_of(id, struct rdma_id_private, id);
3619 spin_lock_irqsave(&id_priv->lock, flags);
3620 if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) {
3621 id_priv->options |= (1 << CMA_OPTION_AFONLY);
3622 id_priv->afonly = afonly;
3623 ret = 0;
3624 } else {
3625 ret = -EINVAL;
3626 }
3627 spin_unlock_irqrestore(&id_priv->lock, flags);
3628 return ret;
3629 }
3630 EXPORT_SYMBOL(rdma_set_afonly);
3631
cma_bind_port(struct rdma_bind_list * bind_list,struct rdma_id_private * id_priv)3632 static void cma_bind_port(struct rdma_bind_list *bind_list,
3633 struct rdma_id_private *id_priv)
3634 {
3635 struct sockaddr *addr;
3636 struct sockaddr_ib *sib;
3637 u64 sid, mask;
3638 __be16 port;
3639
3640 lockdep_assert_held(&lock);
3641
3642 addr = cma_src_addr(id_priv);
3643 port = htons(bind_list->port);
3644
3645 switch (addr->sa_family) {
3646 case AF_INET:
3647 ((struct sockaddr_in *) addr)->sin_port = port;
3648 break;
3649 case AF_INET6:
3650 ((struct sockaddr_in6 *) addr)->sin6_port = port;
3651 break;
3652 case AF_IB:
3653 sib = (struct sockaddr_ib *) addr;
3654 sid = be64_to_cpu(sib->sib_sid);
3655 mask = be64_to_cpu(sib->sib_sid_mask);
3656 sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port));
3657 sib->sib_sid_mask = cpu_to_be64(~0ULL);
3658 break;
3659 }
3660 id_priv->bind_list = bind_list;
3661 hlist_add_head(&id_priv->node, &bind_list->owners);
3662 }
3663
cma_alloc_port(enum rdma_ucm_port_space ps,struct rdma_id_private * id_priv,unsigned short snum)3664 static int cma_alloc_port(enum rdma_ucm_port_space ps,
3665 struct rdma_id_private *id_priv, unsigned short snum)
3666 {
3667 struct rdma_bind_list *bind_list;
3668 int ret;
3669
3670 lockdep_assert_held(&lock);
3671
3672 bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL);
3673 if (!bind_list)
3674 return -ENOMEM;
3675
3676 ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list,
3677 snum);
3678 if (ret < 0)
3679 goto err;
3680
3681 bind_list->ps = ps;
3682 bind_list->port = snum;
3683 cma_bind_port(bind_list, id_priv);
3684 return 0;
3685 err:
3686 kfree(bind_list);
3687 return ret == -ENOSPC ? -EADDRNOTAVAIL : ret;
3688 }
3689
cma_port_is_unique(struct rdma_bind_list * bind_list,struct rdma_id_private * id_priv)3690 static int cma_port_is_unique(struct rdma_bind_list *bind_list,
3691 struct rdma_id_private *id_priv)
3692 {
3693 struct rdma_id_private *cur_id;
3694 struct sockaddr *daddr = cma_dst_addr(id_priv);
3695 struct sockaddr *saddr = cma_src_addr(id_priv);
3696 __be16 dport = cma_port(daddr);
3697
3698 lockdep_assert_held(&lock);
3699
3700 hlist_for_each_entry(cur_id, &bind_list->owners, node) {
3701 struct sockaddr *cur_daddr = cma_dst_addr(cur_id);
3702 struct sockaddr *cur_saddr = cma_src_addr(cur_id);
3703 __be16 cur_dport = cma_port(cur_daddr);
3704
3705 if (id_priv == cur_id)
3706 continue;
3707
3708 /* different dest port -> unique */
3709 if (!cma_any_port(daddr) &&
3710 !cma_any_port(cur_daddr) &&
3711 (dport != cur_dport))
3712 continue;
3713
3714 /* different src address -> unique */
3715 if (!cma_any_addr(saddr) &&
3716 !cma_any_addr(cur_saddr) &&
3717 cma_addr_cmp(saddr, cur_saddr))
3718 continue;
3719
3720 /* different dst address -> unique */
3721 if (!cma_any_addr(daddr) &&
3722 !cma_any_addr(cur_daddr) &&
3723 cma_addr_cmp(daddr, cur_daddr))
3724 continue;
3725
3726 return -EADDRNOTAVAIL;
3727 }
3728 return 0;
3729 }
3730
cma_alloc_any_port(enum rdma_ucm_port_space ps,struct rdma_id_private * id_priv)3731 static int cma_alloc_any_port(enum rdma_ucm_port_space ps,
3732 struct rdma_id_private *id_priv)
3733 {
3734 static unsigned int last_used_port;
3735 int low, high, remaining;
3736 unsigned int rover;
3737 struct net *net = id_priv->id.route.addr.dev_addr.net;
3738
3739 lockdep_assert_held(&lock);
3740
3741 inet_get_local_port_range(net, &low, &high);
3742 remaining = (high - low) + 1;
3743 rover = get_random_u32_inclusive(low, remaining + low - 1);
3744 retry:
3745 if (last_used_port != rover) {
3746 struct rdma_bind_list *bind_list;
3747 int ret;
3748
3749 bind_list = cma_ps_find(net, ps, (unsigned short)rover);
3750
3751 if (!bind_list) {
3752 ret = cma_alloc_port(ps, id_priv, rover);
3753 } else {
3754 ret = cma_port_is_unique(bind_list, id_priv);
3755 if (!ret)
3756 cma_bind_port(bind_list, id_priv);
3757 }
3758 /*
3759 * Remember previously used port number in order to avoid
3760 * re-using same port immediately after it is closed.
3761 */
3762 if (!ret)
3763 last_used_port = rover;
3764 if (ret != -EADDRNOTAVAIL)
3765 return ret;
3766 }
3767 if (--remaining) {
3768 rover++;
3769 if ((rover < low) || (rover > high))
3770 rover = low;
3771 goto retry;
3772 }
3773 return -EADDRNOTAVAIL;
3774 }
3775
3776 /*
3777 * Check that the requested port is available. This is called when trying to
3778 * bind to a specific port, or when trying to listen on a bound port. In
3779 * the latter case, the provided id_priv may already be on the bind_list, but
3780 * we still need to check that it's okay to start listening.
3781 */
cma_check_port(struct rdma_bind_list * bind_list,struct rdma_id_private * id_priv,uint8_t reuseaddr)3782 static int cma_check_port(struct rdma_bind_list *bind_list,
3783 struct rdma_id_private *id_priv, uint8_t reuseaddr)
3784 {
3785 struct rdma_id_private *cur_id;
3786 struct sockaddr *addr, *cur_addr;
3787
3788 lockdep_assert_held(&lock);
3789
3790 addr = cma_src_addr(id_priv);
3791 hlist_for_each_entry(cur_id, &bind_list->owners, node) {
3792 if (id_priv == cur_id)
3793 continue;
3794
3795 if (reuseaddr && cur_id->reuseaddr)
3796 continue;
3797
3798 cur_addr = cma_src_addr(cur_id);
3799 if (id_priv->afonly && cur_id->afonly &&
3800 (addr->sa_family != cur_addr->sa_family))
3801 continue;
3802
3803 if (cma_any_addr(addr) || cma_any_addr(cur_addr))
3804 return -EADDRNOTAVAIL;
3805
3806 if (!cma_addr_cmp(addr, cur_addr))
3807 return -EADDRINUSE;
3808 }
3809 return 0;
3810 }
3811
cma_use_port(enum rdma_ucm_port_space ps,struct rdma_id_private * id_priv)3812 static int cma_use_port(enum rdma_ucm_port_space ps,
3813 struct rdma_id_private *id_priv)
3814 {
3815 struct rdma_bind_list *bind_list;
3816 unsigned short snum;
3817 int ret;
3818
3819 lockdep_assert_held(&lock);
3820
3821 snum = ntohs(cma_port(cma_src_addr(id_priv)));
3822 if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
3823 return -EACCES;
3824
3825 bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum);
3826 if (!bind_list) {
3827 ret = cma_alloc_port(ps, id_priv, snum);
3828 } else {
3829 ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr);
3830 if (!ret)
3831 cma_bind_port(bind_list, id_priv);
3832 }
3833 return ret;
3834 }
3835
3836 static enum rdma_ucm_port_space
cma_select_inet_ps(struct rdma_id_private * id_priv)3837 cma_select_inet_ps(struct rdma_id_private *id_priv)
3838 {
3839 switch (id_priv->id.ps) {
3840 case RDMA_PS_TCP:
3841 case RDMA_PS_UDP:
3842 case RDMA_PS_IPOIB:
3843 case RDMA_PS_IB:
3844 return id_priv->id.ps;
3845 default:
3846
3847 return 0;
3848 }
3849 }
3850
3851 static enum rdma_ucm_port_space
cma_select_ib_ps(struct rdma_id_private * id_priv)3852 cma_select_ib_ps(struct rdma_id_private *id_priv)
3853 {
3854 enum rdma_ucm_port_space ps = 0;
3855 struct sockaddr_ib *sib;
3856 u64 sid_ps, mask, sid;
3857
3858 sib = (struct sockaddr_ib *) cma_src_addr(id_priv);
3859 mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK;
3860 sid = be64_to_cpu(sib->sib_sid) & mask;
3861
3862 if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) {
3863 sid_ps = RDMA_IB_IP_PS_IB;
3864 ps = RDMA_PS_IB;
3865 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) &&
3866 (sid == (RDMA_IB_IP_PS_TCP & mask))) {
3867 sid_ps = RDMA_IB_IP_PS_TCP;
3868 ps = RDMA_PS_TCP;
3869 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) &&
3870 (sid == (RDMA_IB_IP_PS_UDP & mask))) {
3871 sid_ps = RDMA_IB_IP_PS_UDP;
3872 ps = RDMA_PS_UDP;
3873 }
3874
3875 if (ps) {
3876 sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib)));
3877 sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK |
3878 be64_to_cpu(sib->sib_sid_mask));
3879 }
3880 return ps;
3881 }
3882
cma_get_port(struct rdma_id_private * id_priv)3883 static int cma_get_port(struct rdma_id_private *id_priv)
3884 {
3885 enum rdma_ucm_port_space ps;
3886 int ret;
3887
3888 if (cma_family(id_priv) != AF_IB)
3889 ps = cma_select_inet_ps(id_priv);
3890 else
3891 ps = cma_select_ib_ps(id_priv);
3892 if (!ps)
3893 return -EPROTONOSUPPORT;
3894
3895 mutex_lock(&lock);
3896 if (cma_any_port(cma_src_addr(id_priv)))
3897 ret = cma_alloc_any_port(ps, id_priv);
3898 else
3899 ret = cma_use_port(ps, id_priv);
3900 mutex_unlock(&lock);
3901
3902 return ret;
3903 }
3904
cma_check_linklocal(struct rdma_dev_addr * dev_addr,struct sockaddr * addr)3905 static int cma_check_linklocal(struct rdma_dev_addr *dev_addr,
3906 struct sockaddr *addr)
3907 {
3908 #if IS_ENABLED(CONFIG_IPV6)
3909 struct sockaddr_in6 *sin6;
3910
3911 if (addr->sa_family != AF_INET6)
3912 return 0;
3913
3914 sin6 = (struct sockaddr_in6 *) addr;
3915
3916 if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL))
3917 return 0;
3918
3919 if (!sin6->sin6_scope_id)
3920 return -EINVAL;
3921
3922 dev_addr->bound_dev_if = sin6->sin6_scope_id;
3923 #endif
3924 return 0;
3925 }
3926
rdma_listen(struct rdma_cm_id * id,int backlog)3927 int rdma_listen(struct rdma_cm_id *id, int backlog)
3928 {
3929 struct rdma_id_private *id_priv =
3930 container_of(id, struct rdma_id_private, id);
3931 int ret;
3932
3933 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) {
3934 struct sockaddr_in any_in = {
3935 .sin_family = AF_INET,
3936 .sin_addr.s_addr = htonl(INADDR_ANY),
3937 };
3938
3939 /* For a well behaved ULP state will be RDMA_CM_IDLE */
3940 ret = rdma_bind_addr(id, (struct sockaddr *)&any_in);
3941 if (ret)
3942 return ret;
3943 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND,
3944 RDMA_CM_LISTEN)))
3945 return -EINVAL;
3946 }
3947
3948 /*
3949 * Once the ID reaches RDMA_CM_LISTEN it is not allowed to be reusable
3950 * any more, and has to be unique in the bind list.
3951 */
3952 if (id_priv->reuseaddr) {
3953 mutex_lock(&lock);
3954 ret = cma_check_port(id_priv->bind_list, id_priv, 0);
3955 if (!ret)
3956 id_priv->reuseaddr = 0;
3957 mutex_unlock(&lock);
3958 if (ret)
3959 goto err;
3960 }
3961
3962 id_priv->backlog = backlog;
3963 if (id_priv->cma_dev) {
3964 if (rdma_cap_ib_cm(id->device, 1)) {
3965 ret = cma_ib_listen(id_priv);
3966 if (ret)
3967 goto err;
3968 } else if (rdma_cap_iw_cm(id->device, 1)) {
3969 ret = cma_iw_listen(id_priv, backlog);
3970 if (ret)
3971 goto err;
3972 } else {
3973 ret = -ENOSYS;
3974 goto err;
3975 }
3976 } else {
3977 ret = cma_listen_on_all(id_priv);
3978 if (ret)
3979 goto err;
3980 }
3981
3982 return 0;
3983 err:
3984 id_priv->backlog = 0;
3985 /*
3986 * All the failure paths that lead here will not allow the req_handler's
3987 * to have run.
3988 */
3989 cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND);
3990 return ret;
3991 }
3992 EXPORT_SYMBOL(rdma_listen);
3993
rdma_bind_addr_dst(struct rdma_id_private * id_priv,struct sockaddr * addr,const struct sockaddr * daddr)3994 static int rdma_bind_addr_dst(struct rdma_id_private *id_priv,
3995 struct sockaddr *addr, const struct sockaddr *daddr)
3996 {
3997 struct sockaddr *id_daddr;
3998 int ret;
3999
4000 if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 &&
4001 addr->sa_family != AF_IB)
4002 return -EAFNOSUPPORT;
4003
4004 if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND))
4005 return -EINVAL;
4006
4007 ret = cma_check_linklocal(&id_priv->id.route.addr.dev_addr, addr);
4008 if (ret)
4009 goto err1;
4010
4011 memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr));
4012 if (!cma_any_addr(addr)) {
4013 ret = cma_translate_addr(addr, &id_priv->id.route.addr.dev_addr);
4014 if (ret)
4015 goto err1;
4016
4017 ret = cma_acquire_dev_by_src_ip(id_priv);
4018 if (ret)
4019 goto err1;
4020 }
4021
4022 if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) {
4023 if (addr->sa_family == AF_INET)
4024 id_priv->afonly = 1;
4025 #if IS_ENABLED(CONFIG_IPV6)
4026 else if (addr->sa_family == AF_INET6) {
4027 struct net *net = id_priv->id.route.addr.dev_addr.net;
4028
4029 id_priv->afonly = net->ipv6.sysctl.bindv6only;
4030 }
4031 #endif
4032 }
4033 id_daddr = cma_dst_addr(id_priv);
4034 if (daddr != id_daddr)
4035 memcpy(id_daddr, daddr, rdma_addr_size(addr));
4036 id_daddr->sa_family = addr->sa_family;
4037
4038 ret = cma_get_port(id_priv);
4039 if (ret)
4040 goto err2;
4041
4042 if (!cma_any_addr(addr))
4043 rdma_restrack_add(&id_priv->res);
4044 return 0;
4045 err2:
4046 if (id_priv->cma_dev)
4047 cma_release_dev(id_priv);
4048 err1:
4049 cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE);
4050 return ret;
4051 }
4052
cma_bind_addr(struct rdma_cm_id * id,struct sockaddr * src_addr,const struct sockaddr * dst_addr)4053 static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
4054 const struct sockaddr *dst_addr)
4055 {
4056 struct rdma_id_private *id_priv =
4057 container_of(id, struct rdma_id_private, id);
4058 struct sockaddr_storage zero_sock = {};
4059
4060 if (src_addr && src_addr->sa_family)
4061 return rdma_bind_addr_dst(id_priv, src_addr, dst_addr);
4062
4063 /*
4064 * When the src_addr is not specified, automatically supply an any addr
4065 */
4066 zero_sock.ss_family = dst_addr->sa_family;
4067 if (IS_ENABLED(CONFIG_IPV6) && dst_addr->sa_family == AF_INET6) {
4068 struct sockaddr_in6 *src_addr6 =
4069 (struct sockaddr_in6 *)&zero_sock;
4070 struct sockaddr_in6 *dst_addr6 =
4071 (struct sockaddr_in6 *)dst_addr;
4072
4073 src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id;
4074 if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)
4075 id->route.addr.dev_addr.bound_dev_if =
4076 dst_addr6->sin6_scope_id;
4077 } else if (dst_addr->sa_family == AF_IB) {
4078 ((struct sockaddr_ib *)&zero_sock)->sib_pkey =
4079 ((struct sockaddr_ib *)dst_addr)->sib_pkey;
4080 }
4081 return rdma_bind_addr_dst(id_priv, (struct sockaddr *)&zero_sock, dst_addr);
4082 }
4083
4084 /*
4085 * If required, resolve the source address for bind and leave the id_priv in
4086 * state RDMA_CM_ADDR_BOUND. This oddly uses the state to determine the prior
4087 * calls made by ULP, a previously bound ID will not be re-bound and src_addr is
4088 * ignored.
4089 */
resolve_prepare_src(struct rdma_id_private * id_priv,struct sockaddr * src_addr,const struct sockaddr * dst_addr)4090 static int resolve_prepare_src(struct rdma_id_private *id_priv,
4091 struct sockaddr *src_addr,
4092 const struct sockaddr *dst_addr)
4093 {
4094 int ret;
4095
4096 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) {
4097 /* For a well behaved ULP state will be RDMA_CM_IDLE */
4098 ret = cma_bind_addr(&id_priv->id, src_addr, dst_addr);
4099 if (ret)
4100 return ret;
4101 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND,
4102 RDMA_CM_ADDR_QUERY)))
4103 return -EINVAL;
4104
4105 } else {
4106 memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr));
4107 }
4108
4109 if (cma_family(id_priv) != dst_addr->sa_family) {
4110 ret = -EINVAL;
4111 goto err_state;
4112 }
4113 return 0;
4114
4115 err_state:
4116 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND);
4117 return ret;
4118 }
4119
rdma_resolve_addr(struct rdma_cm_id * id,struct sockaddr * src_addr,const struct sockaddr * dst_addr,unsigned long timeout_ms)4120 int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
4121 const struct sockaddr *dst_addr, unsigned long timeout_ms)
4122 {
4123 struct rdma_id_private *id_priv =
4124 container_of(id, struct rdma_id_private, id);
4125 int ret;
4126
4127 ret = resolve_prepare_src(id_priv, src_addr, dst_addr);
4128 if (ret)
4129 return ret;
4130
4131 if (cma_any_addr(dst_addr)) {
4132 ret = cma_resolve_loopback(id_priv);
4133 } else {
4134 if (dst_addr->sa_family == AF_IB) {
4135 ret = cma_resolve_ib_addr(id_priv);
4136 } else {
4137 /*
4138 * The FSM can return back to RDMA_CM_ADDR_BOUND after
4139 * rdma_resolve_ip() is called, eg through the error
4140 * path in addr_handler(). If this happens the existing
4141 * request must be canceled before issuing a new one.
4142 * Since canceling a request is a bit slow and this
4143 * oddball path is rare, keep track once a request has
4144 * been issued. The track turns out to be a permanent
4145 * state since this is the only cancel as it is
4146 * immediately before rdma_resolve_ip().
4147 */
4148 if (id_priv->used_resolve_ip)
4149 rdma_addr_cancel(&id->route.addr.dev_addr);
4150 else
4151 id_priv->used_resolve_ip = 1;
4152 ret = rdma_resolve_ip(cma_src_addr(id_priv), dst_addr,
4153 &id->route.addr.dev_addr,
4154 timeout_ms, addr_handler,
4155 false, id_priv);
4156 }
4157 }
4158 if (ret)
4159 goto err;
4160
4161 return 0;
4162 err:
4163 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND);
4164 return ret;
4165 }
4166 EXPORT_SYMBOL(rdma_resolve_addr);
4167
rdma_bind_addr(struct rdma_cm_id * id,struct sockaddr * addr)4168 int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr)
4169 {
4170 struct rdma_id_private *id_priv =
4171 container_of(id, struct rdma_id_private, id);
4172
4173 return rdma_bind_addr_dst(id_priv, addr, cma_dst_addr(id_priv));
4174 }
4175 EXPORT_SYMBOL(rdma_bind_addr);
4176
cma_format_hdr(void * hdr,struct rdma_id_private * id_priv)4177 static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv)
4178 {
4179 struct cma_hdr *cma_hdr;
4180
4181 cma_hdr = hdr;
4182 cma_hdr->cma_version = CMA_VERSION;
4183 if (cma_family(id_priv) == AF_INET) {
4184 struct sockaddr_in *src4, *dst4;
4185
4186 src4 = (struct sockaddr_in *) cma_src_addr(id_priv);
4187 dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv);
4188
4189 cma_set_ip_ver(cma_hdr, 4);
4190 cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr;
4191 cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr;
4192 cma_hdr->port = src4->sin_port;
4193 } else if (cma_family(id_priv) == AF_INET6) {
4194 struct sockaddr_in6 *src6, *dst6;
4195
4196 src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv);
4197 dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv);
4198
4199 cma_set_ip_ver(cma_hdr, 6);
4200 cma_hdr->src_addr.ip6 = src6->sin6_addr;
4201 cma_hdr->dst_addr.ip6 = dst6->sin6_addr;
4202 cma_hdr->port = src6->sin6_port;
4203 }
4204 return 0;
4205 }
4206
cma_sidr_rep_handler(struct ib_cm_id * cm_id,const struct ib_cm_event * ib_event)4207 static int cma_sidr_rep_handler(struct ib_cm_id *cm_id,
4208 const struct ib_cm_event *ib_event)
4209 {
4210 struct rdma_id_private *id_priv = cm_id->context;
4211 struct rdma_cm_event event = {};
4212 const struct ib_cm_sidr_rep_event_param *rep =
4213 &ib_event->param.sidr_rep_rcvd;
4214 int ret;
4215
4216 mutex_lock(&id_priv->handler_mutex);
4217 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
4218 goto out;
4219
4220 switch (ib_event->event) {
4221 case IB_CM_SIDR_REQ_ERROR:
4222 event.event = RDMA_CM_EVENT_UNREACHABLE;
4223 event.status = -ETIMEDOUT;
4224 break;
4225 case IB_CM_SIDR_REP_RECEIVED:
4226 event.param.ud.private_data = ib_event->private_data;
4227 event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE;
4228 if (rep->status != IB_SIDR_SUCCESS) {
4229 event.event = RDMA_CM_EVENT_UNREACHABLE;
4230 event.status = ib_event->param.sidr_rep_rcvd.status;
4231 pr_debug_ratelimited("RDMA CM: UNREACHABLE: bad SIDR reply. status %d\n",
4232 event.status);
4233 break;
4234 }
4235 ret = cma_set_qkey(id_priv, rep->qkey);
4236 if (ret) {
4237 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to set qkey. status %d\n", ret);
4238 event.event = RDMA_CM_EVENT_ADDR_ERROR;
4239 event.status = ret;
4240 break;
4241 }
4242 ib_init_ah_attr_from_path(id_priv->id.device,
4243 id_priv->id.port_num,
4244 id_priv->id.route.path_rec,
4245 &event.param.ud.ah_attr,
4246 rep->sgid_attr);
4247 event.param.ud.qp_num = rep->qpn;
4248 event.param.ud.qkey = rep->qkey;
4249 event.event = RDMA_CM_EVENT_ESTABLISHED;
4250 event.status = 0;
4251 break;
4252 default:
4253 pr_err("RDMA CMA: unexpected IB CM event: %d\n",
4254 ib_event->event);
4255 goto out;
4256 }
4257
4258 ret = cma_cm_event_handler(id_priv, &event);
4259
4260 rdma_destroy_ah_attr(&event.param.ud.ah_attr);
4261 if (ret) {
4262 /* Destroy the CM ID by returning a non-zero value. */
4263 id_priv->cm_id.ib = NULL;
4264 destroy_id_handler_unlock(id_priv);
4265 return ret;
4266 }
4267 out:
4268 mutex_unlock(&id_priv->handler_mutex);
4269 return 0;
4270 }
4271
cma_resolve_ib_udp(struct rdma_id_private * id_priv,struct rdma_conn_param * conn_param)4272 static int cma_resolve_ib_udp(struct rdma_id_private *id_priv,
4273 struct rdma_conn_param *conn_param)
4274 {
4275 struct ib_cm_sidr_req_param req;
4276 struct ib_cm_id *id;
4277 void *private_data;
4278 u8 offset;
4279 int ret;
4280
4281 memset(&req, 0, sizeof req);
4282 offset = cma_user_data_offset(id_priv);
4283 if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len))
4284 return -EINVAL;
4285
4286 if (req.private_data_len) {
4287 private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
4288 if (!private_data)
4289 return -ENOMEM;
4290 } else {
4291 private_data = NULL;
4292 }
4293
4294 if (conn_param->private_data && conn_param->private_data_len)
4295 memcpy(private_data + offset, conn_param->private_data,
4296 conn_param->private_data_len);
4297
4298 if (private_data) {
4299 ret = cma_format_hdr(private_data, id_priv);
4300 if (ret)
4301 goto out;
4302 req.private_data = private_data;
4303 }
4304
4305 id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler,
4306 id_priv);
4307 if (IS_ERR(id)) {
4308 ret = PTR_ERR(id);
4309 goto out;
4310 }
4311 id_priv->cm_id.ib = id;
4312
4313 req.path = id_priv->id.route.path_rec;
4314 req.sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr;
4315 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
4316 req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8);
4317 req.max_cm_retries = CMA_MAX_CM_RETRIES;
4318
4319 trace_cm_send_sidr_req(id_priv);
4320 ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req);
4321 if (ret) {
4322 ib_destroy_cm_id(id_priv->cm_id.ib);
4323 id_priv->cm_id.ib = NULL;
4324 }
4325 out:
4326 kfree(private_data);
4327 return ret;
4328 }
4329
cma_connect_ib(struct rdma_id_private * id_priv,struct rdma_conn_param * conn_param)4330 static int cma_connect_ib(struct rdma_id_private *id_priv,
4331 struct rdma_conn_param *conn_param)
4332 {
4333 struct ib_cm_req_param req;
4334 struct rdma_route *route;
4335 void *private_data;
4336 struct ib_cm_id *id;
4337 u8 offset;
4338 int ret;
4339
4340 memset(&req, 0, sizeof req);
4341 offset = cma_user_data_offset(id_priv);
4342 if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len))
4343 return -EINVAL;
4344
4345 if (req.private_data_len) {
4346 private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
4347 if (!private_data)
4348 return -ENOMEM;
4349 } else {
4350 private_data = NULL;
4351 }
4352
4353 if (conn_param->private_data && conn_param->private_data_len)
4354 memcpy(private_data + offset, conn_param->private_data,
4355 conn_param->private_data_len);
4356
4357 id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv);
4358 if (IS_ERR(id)) {
4359 ret = PTR_ERR(id);
4360 goto out;
4361 }
4362 id_priv->cm_id.ib = id;
4363
4364 route = &id_priv->id.route;
4365 if (private_data) {
4366 ret = cma_format_hdr(private_data, id_priv);
4367 if (ret)
4368 goto out;
4369 req.private_data = private_data;
4370 }
4371
4372 req.primary_path = &route->path_rec[0];
4373 req.primary_path_inbound = route->path_rec_inbound;
4374 req.primary_path_outbound = route->path_rec_outbound;
4375 if (route->num_pri_alt_paths == 2)
4376 req.alternate_path = &route->path_rec[1];
4377
4378 req.ppath_sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr;
4379 /* Alternate path SGID attribute currently unsupported */
4380 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
4381 req.qp_num = id_priv->qp_num;
4382 req.qp_type = id_priv->id.qp_type;
4383 req.starting_psn = id_priv->seq_num;
4384 req.responder_resources = conn_param->responder_resources;
4385 req.initiator_depth = conn_param->initiator_depth;
4386 req.flow_control = conn_param->flow_control;
4387 req.retry_count = min_t(u8, 7, conn_param->retry_count);
4388 req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
4389 req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
4390 req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
4391 req.max_cm_retries = CMA_MAX_CM_RETRIES;
4392 req.srq = id_priv->srq ? 1 : 0;
4393 req.ece.vendor_id = id_priv->ece.vendor_id;
4394 req.ece.attr_mod = id_priv->ece.attr_mod;
4395
4396 trace_cm_send_req(id_priv);
4397 ret = ib_send_cm_req(id_priv->cm_id.ib, &req);
4398 out:
4399 if (ret && !IS_ERR(id)) {
4400 ib_destroy_cm_id(id);
4401 id_priv->cm_id.ib = NULL;
4402 }
4403
4404 kfree(private_data);
4405 return ret;
4406 }
4407
cma_connect_iw(struct rdma_id_private * id_priv,struct rdma_conn_param * conn_param)4408 static int cma_connect_iw(struct rdma_id_private *id_priv,
4409 struct rdma_conn_param *conn_param)
4410 {
4411 struct iw_cm_id *cm_id;
4412 int ret;
4413 struct iw_cm_conn_param iw_param;
4414
4415 cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv);
4416 if (IS_ERR(cm_id))
4417 return PTR_ERR(cm_id);
4418
4419 mutex_lock(&id_priv->qp_mutex);
4420 cm_id->tos = id_priv->tos;
4421 cm_id->tos_set = id_priv->tos_set;
4422 mutex_unlock(&id_priv->qp_mutex);
4423
4424 id_priv->cm_id.iw = cm_id;
4425
4426 memcpy(&cm_id->local_addr, cma_src_addr(id_priv),
4427 rdma_addr_size(cma_src_addr(id_priv)));
4428 memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv),
4429 rdma_addr_size(cma_dst_addr(id_priv)));
4430
4431 ret = cma_modify_qp_rtr(id_priv, conn_param);
4432 if (ret)
4433 goto out;
4434
4435 if (conn_param) {
4436 iw_param.ord = conn_param->initiator_depth;
4437 iw_param.ird = conn_param->responder_resources;
4438 iw_param.private_data = conn_param->private_data;
4439 iw_param.private_data_len = conn_param->private_data_len;
4440 iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num;
4441 } else {
4442 memset(&iw_param, 0, sizeof iw_param);
4443 iw_param.qpn = id_priv->qp_num;
4444 }
4445 ret = iw_cm_connect(cm_id, &iw_param);
4446 out:
4447 if (ret) {
4448 iw_destroy_cm_id(cm_id);
4449 id_priv->cm_id.iw = NULL;
4450 }
4451 return ret;
4452 }
4453
4454 /**
4455 * rdma_connect_locked - Initiate an active connection request.
4456 * @id: Connection identifier to connect.
4457 * @conn_param: Connection information used for connected QPs.
4458 *
4459 * Same as rdma_connect() but can only be called from the
4460 * RDMA_CM_EVENT_ROUTE_RESOLVED handler callback.
4461 */
rdma_connect_locked(struct rdma_cm_id * id,struct rdma_conn_param * conn_param)4462 int rdma_connect_locked(struct rdma_cm_id *id,
4463 struct rdma_conn_param *conn_param)
4464 {
4465 struct rdma_id_private *id_priv =
4466 container_of(id, struct rdma_id_private, id);
4467 int ret;
4468
4469 if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT))
4470 return -EINVAL;
4471
4472 if (!id->qp) {
4473 id_priv->qp_num = conn_param->qp_num;
4474 id_priv->srq = conn_param->srq;
4475 }
4476
4477 if (rdma_cap_ib_cm(id->device, id->port_num)) {
4478 if (id->qp_type == IB_QPT_UD)
4479 ret = cma_resolve_ib_udp(id_priv, conn_param);
4480 else
4481 ret = cma_connect_ib(id_priv, conn_param);
4482 } else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4483 ret = cma_connect_iw(id_priv, conn_param);
4484 } else {
4485 ret = -ENOSYS;
4486 }
4487 if (ret)
4488 goto err_state;
4489 return 0;
4490 err_state:
4491 cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED);
4492 return ret;
4493 }
4494 EXPORT_SYMBOL(rdma_connect_locked);
4495
4496 /**
4497 * rdma_connect - Initiate an active connection request.
4498 * @id: Connection identifier to connect.
4499 * @conn_param: Connection information used for connected QPs.
4500 *
4501 * Users must have resolved a route for the rdma_cm_id to connect with by having
4502 * called rdma_resolve_route before calling this routine.
4503 *
4504 * This call will either connect to a remote QP or obtain remote QP information
4505 * for unconnected rdma_cm_id's. The actual operation is based on the
4506 * rdma_cm_id's port space.
4507 */
rdma_connect(struct rdma_cm_id * id,struct rdma_conn_param * conn_param)4508 int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
4509 {
4510 struct rdma_id_private *id_priv =
4511 container_of(id, struct rdma_id_private, id);
4512 int ret;
4513
4514 mutex_lock(&id_priv->handler_mutex);
4515 ret = rdma_connect_locked(id, conn_param);
4516 mutex_unlock(&id_priv->handler_mutex);
4517 return ret;
4518 }
4519 EXPORT_SYMBOL(rdma_connect);
4520
4521 /**
4522 * rdma_connect_ece - Initiate an active connection request with ECE data.
4523 * @id: Connection identifier to connect.
4524 * @conn_param: Connection information used for connected QPs.
4525 * @ece: ECE parameters
4526 *
4527 * See rdma_connect() explanation.
4528 */
rdma_connect_ece(struct rdma_cm_id * id,struct rdma_conn_param * conn_param,struct rdma_ucm_ece * ece)4529 int rdma_connect_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param,
4530 struct rdma_ucm_ece *ece)
4531 {
4532 struct rdma_id_private *id_priv =
4533 container_of(id, struct rdma_id_private, id);
4534
4535 id_priv->ece.vendor_id = ece->vendor_id;
4536 id_priv->ece.attr_mod = ece->attr_mod;
4537
4538 return rdma_connect(id, conn_param);
4539 }
4540 EXPORT_SYMBOL(rdma_connect_ece);
4541
cma_accept_ib(struct rdma_id_private * id_priv,struct rdma_conn_param * conn_param)4542 static int cma_accept_ib(struct rdma_id_private *id_priv,
4543 struct rdma_conn_param *conn_param)
4544 {
4545 struct ib_cm_rep_param rep;
4546 int ret;
4547
4548 ret = cma_modify_qp_rtr(id_priv, conn_param);
4549 if (ret)
4550 goto out;
4551
4552 ret = cma_modify_qp_rts(id_priv, conn_param);
4553 if (ret)
4554 goto out;
4555
4556 memset(&rep, 0, sizeof rep);
4557 rep.qp_num = id_priv->qp_num;
4558 rep.starting_psn = id_priv->seq_num;
4559 rep.private_data = conn_param->private_data;
4560 rep.private_data_len = conn_param->private_data_len;
4561 rep.responder_resources = conn_param->responder_resources;
4562 rep.initiator_depth = conn_param->initiator_depth;
4563 rep.failover_accepted = 0;
4564 rep.flow_control = conn_param->flow_control;
4565 rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
4566 rep.srq = id_priv->srq ? 1 : 0;
4567 rep.ece.vendor_id = id_priv->ece.vendor_id;
4568 rep.ece.attr_mod = id_priv->ece.attr_mod;
4569
4570 trace_cm_send_rep(id_priv);
4571 ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep);
4572 out:
4573 return ret;
4574 }
4575
cma_accept_iw(struct rdma_id_private * id_priv,struct rdma_conn_param * conn_param)4576 static int cma_accept_iw(struct rdma_id_private *id_priv,
4577 struct rdma_conn_param *conn_param)
4578 {
4579 struct iw_cm_conn_param iw_param;
4580 int ret;
4581
4582 if (!conn_param)
4583 return -EINVAL;
4584
4585 ret = cma_modify_qp_rtr(id_priv, conn_param);
4586 if (ret)
4587 return ret;
4588
4589 iw_param.ord = conn_param->initiator_depth;
4590 iw_param.ird = conn_param->responder_resources;
4591 iw_param.private_data = conn_param->private_data;
4592 iw_param.private_data_len = conn_param->private_data_len;
4593 if (id_priv->id.qp)
4594 iw_param.qpn = id_priv->qp_num;
4595 else
4596 iw_param.qpn = conn_param->qp_num;
4597
4598 return iw_cm_accept(id_priv->cm_id.iw, &iw_param);
4599 }
4600
cma_send_sidr_rep(struct rdma_id_private * id_priv,enum ib_cm_sidr_status status,u32 qkey,const void * private_data,int private_data_len)4601 static int cma_send_sidr_rep(struct rdma_id_private *id_priv,
4602 enum ib_cm_sidr_status status, u32 qkey,
4603 const void *private_data, int private_data_len)
4604 {
4605 struct ib_cm_sidr_rep_param rep;
4606 int ret;
4607
4608 memset(&rep, 0, sizeof rep);
4609 rep.status = status;
4610 if (status == IB_SIDR_SUCCESS) {
4611 if (qkey)
4612 ret = cma_set_qkey(id_priv, qkey);
4613 else
4614 ret = cma_set_default_qkey(id_priv);
4615 if (ret)
4616 return ret;
4617 rep.qp_num = id_priv->qp_num;
4618 rep.qkey = id_priv->qkey;
4619
4620 rep.ece.vendor_id = id_priv->ece.vendor_id;
4621 rep.ece.attr_mod = id_priv->ece.attr_mod;
4622 }
4623
4624 rep.private_data = private_data;
4625 rep.private_data_len = private_data_len;
4626
4627 trace_cm_send_sidr_rep(id_priv);
4628 return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep);
4629 }
4630
4631 /**
4632 * rdma_accept - Called to accept a connection request or response.
4633 * @id: Connection identifier associated with the request.
4634 * @conn_param: Information needed to establish the connection. This must be
4635 * provided if accepting a connection request. If accepting a connection
4636 * response, this parameter must be NULL.
4637 *
4638 * Typically, this routine is only called by the listener to accept a connection
4639 * request. It must also be called on the active side of a connection if the
4640 * user is performing their own QP transitions.
4641 *
4642 * In the case of error, a reject message is sent to the remote side and the
4643 * state of the qp associated with the id is modified to error, such that any
4644 * previously posted receive buffers would be flushed.
4645 *
4646 * This function is for use by kernel ULPs and must be called from under the
4647 * handler callback.
4648 */
rdma_accept(struct rdma_cm_id * id,struct rdma_conn_param * conn_param)4649 int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
4650 {
4651 struct rdma_id_private *id_priv =
4652 container_of(id, struct rdma_id_private, id);
4653 int ret;
4654
4655 lockdep_assert_held(&id_priv->handler_mutex);
4656
4657 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
4658 return -EINVAL;
4659
4660 if (!id->qp && conn_param) {
4661 id_priv->qp_num = conn_param->qp_num;
4662 id_priv->srq = conn_param->srq;
4663 }
4664
4665 if (rdma_cap_ib_cm(id->device, id->port_num)) {
4666 if (id->qp_type == IB_QPT_UD) {
4667 if (conn_param)
4668 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
4669 conn_param->qkey,
4670 conn_param->private_data,
4671 conn_param->private_data_len);
4672 else
4673 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
4674 0, NULL, 0);
4675 } else {
4676 if (conn_param)
4677 ret = cma_accept_ib(id_priv, conn_param);
4678 else
4679 ret = cma_rep_recv(id_priv);
4680 }
4681 } else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4682 ret = cma_accept_iw(id_priv, conn_param);
4683 } else {
4684 ret = -ENOSYS;
4685 }
4686 if (ret)
4687 goto reject;
4688
4689 return 0;
4690 reject:
4691 cma_modify_qp_err(id_priv);
4692 rdma_reject(id, NULL, 0, IB_CM_REJ_CONSUMER_DEFINED);
4693 return ret;
4694 }
4695 EXPORT_SYMBOL(rdma_accept);
4696
rdma_accept_ece(struct rdma_cm_id * id,struct rdma_conn_param * conn_param,struct rdma_ucm_ece * ece)4697 int rdma_accept_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param,
4698 struct rdma_ucm_ece *ece)
4699 {
4700 struct rdma_id_private *id_priv =
4701 container_of(id, struct rdma_id_private, id);
4702
4703 id_priv->ece.vendor_id = ece->vendor_id;
4704 id_priv->ece.attr_mod = ece->attr_mod;
4705
4706 return rdma_accept(id, conn_param);
4707 }
4708 EXPORT_SYMBOL(rdma_accept_ece);
4709
rdma_lock_handler(struct rdma_cm_id * id)4710 void rdma_lock_handler(struct rdma_cm_id *id)
4711 {
4712 struct rdma_id_private *id_priv =
4713 container_of(id, struct rdma_id_private, id);
4714
4715 mutex_lock(&id_priv->handler_mutex);
4716 }
4717 EXPORT_SYMBOL(rdma_lock_handler);
4718
rdma_unlock_handler(struct rdma_cm_id * id)4719 void rdma_unlock_handler(struct rdma_cm_id *id)
4720 {
4721 struct rdma_id_private *id_priv =
4722 container_of(id, struct rdma_id_private, id);
4723
4724 mutex_unlock(&id_priv->handler_mutex);
4725 }
4726 EXPORT_SYMBOL(rdma_unlock_handler);
4727
rdma_notify(struct rdma_cm_id * id,enum ib_event_type event)4728 int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event)
4729 {
4730 struct rdma_id_private *id_priv;
4731 int ret;
4732
4733 id_priv = container_of(id, struct rdma_id_private, id);
4734 if (!id_priv->cm_id.ib)
4735 return -EINVAL;
4736
4737 switch (id->device->node_type) {
4738 case RDMA_NODE_IB_CA:
4739 ret = ib_cm_notify(id_priv->cm_id.ib, event);
4740 break;
4741 default:
4742 ret = 0;
4743 break;
4744 }
4745 return ret;
4746 }
4747 EXPORT_SYMBOL(rdma_notify);
4748
rdma_reject(struct rdma_cm_id * id,const void * private_data,u8 private_data_len,u8 reason)4749 int rdma_reject(struct rdma_cm_id *id, const void *private_data,
4750 u8 private_data_len, u8 reason)
4751 {
4752 struct rdma_id_private *id_priv;
4753 int ret;
4754
4755 id_priv = container_of(id, struct rdma_id_private, id);
4756 if (!id_priv->cm_id.ib)
4757 return -EINVAL;
4758
4759 if (rdma_cap_ib_cm(id->device, id->port_num)) {
4760 if (id->qp_type == IB_QPT_UD) {
4761 ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0,
4762 private_data, private_data_len);
4763 } else {
4764 trace_cm_send_rej(id_priv);
4765 ret = ib_send_cm_rej(id_priv->cm_id.ib, reason, NULL, 0,
4766 private_data, private_data_len);
4767 }
4768 } else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4769 ret = iw_cm_reject(id_priv->cm_id.iw,
4770 private_data, private_data_len);
4771 } else {
4772 ret = -ENOSYS;
4773 }
4774
4775 return ret;
4776 }
4777 EXPORT_SYMBOL(rdma_reject);
4778
rdma_disconnect(struct rdma_cm_id * id)4779 int rdma_disconnect(struct rdma_cm_id *id)
4780 {
4781 struct rdma_id_private *id_priv;
4782 int ret;
4783
4784 id_priv = container_of(id, struct rdma_id_private, id);
4785 if (!id_priv->cm_id.ib)
4786 return -EINVAL;
4787
4788 if (rdma_cap_ib_cm(id->device, id->port_num)) {
4789 ret = cma_modify_qp_err(id_priv);
4790 if (ret)
4791 goto out;
4792 /* Initiate or respond to a disconnect. */
4793 trace_cm_disconnect(id_priv);
4794 if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) {
4795 if (!ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0))
4796 trace_cm_sent_drep(id_priv);
4797 } else {
4798 trace_cm_sent_dreq(id_priv);
4799 }
4800 } else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4801 ret = iw_cm_disconnect(id_priv->cm_id.iw, 0);
4802 } else
4803 ret = -EINVAL;
4804
4805 out:
4806 return ret;
4807 }
4808 EXPORT_SYMBOL(rdma_disconnect);
4809
cma_make_mc_event(int status,struct rdma_id_private * id_priv,struct ib_sa_multicast * multicast,struct rdma_cm_event * event,struct cma_multicast * mc)4810 static void cma_make_mc_event(int status, struct rdma_id_private *id_priv,
4811 struct ib_sa_multicast *multicast,
4812 struct rdma_cm_event *event,
4813 struct cma_multicast *mc)
4814 {
4815 struct rdma_dev_addr *dev_addr;
4816 enum ib_gid_type gid_type;
4817 struct net_device *ndev;
4818
4819 if (status)
4820 pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to join multicast. status %d\n",
4821 status);
4822
4823 event->status = status;
4824 event->param.ud.private_data = mc->context;
4825 if (status) {
4826 event->event = RDMA_CM_EVENT_MULTICAST_ERROR;
4827 return;
4828 }
4829
4830 dev_addr = &id_priv->id.route.addr.dev_addr;
4831 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
4832 gid_type =
4833 id_priv->cma_dev
4834 ->default_gid_type[id_priv->id.port_num -
4835 rdma_start_port(
4836 id_priv->cma_dev->device)];
4837
4838 event->event = RDMA_CM_EVENT_MULTICAST_JOIN;
4839 if (ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num,
4840 &multicast->rec, ndev, gid_type,
4841 &event->param.ud.ah_attr)) {
4842 event->event = RDMA_CM_EVENT_MULTICAST_ERROR;
4843 goto out;
4844 }
4845
4846 event->param.ud.qp_num = 0xFFFFFF;
4847 event->param.ud.qkey = id_priv->qkey;
4848
4849 out:
4850 dev_put(ndev);
4851 }
4852
cma_ib_mc_handler(int status,struct ib_sa_multicast * multicast)4853 static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast)
4854 {
4855 struct cma_multicast *mc = multicast->context;
4856 struct rdma_id_private *id_priv = mc->id_priv;
4857 struct rdma_cm_event event = {};
4858 int ret = 0;
4859
4860 mutex_lock(&id_priv->handler_mutex);
4861 if (READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL ||
4862 READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING)
4863 goto out;
4864
4865 ret = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey));
4866 if (!ret) {
4867 cma_make_mc_event(status, id_priv, multicast, &event, mc);
4868 ret = cma_cm_event_handler(id_priv, &event);
4869 }
4870 rdma_destroy_ah_attr(&event.param.ud.ah_attr);
4871 WARN_ON(ret);
4872
4873 out:
4874 mutex_unlock(&id_priv->handler_mutex);
4875 return 0;
4876 }
4877
cma_set_mgid(struct rdma_id_private * id_priv,struct sockaddr * addr,union ib_gid * mgid)4878 static void cma_set_mgid(struct rdma_id_private *id_priv,
4879 struct sockaddr *addr, union ib_gid *mgid)
4880 {
4881 unsigned char mc_map[MAX_ADDR_LEN];
4882 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4883 struct sockaddr_in *sin = (struct sockaddr_in *) addr;
4884 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr;
4885
4886 if (cma_any_addr(addr)) {
4887 memset(mgid, 0, sizeof *mgid);
4888 } else if ((addr->sa_family == AF_INET6) &&
4889 ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) ==
4890 0xFF10A01B)) {
4891 /* IPv6 address is an SA assigned MGID. */
4892 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
4893 } else if (addr->sa_family == AF_IB) {
4894 memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid);
4895 } else if (addr->sa_family == AF_INET6) {
4896 ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map);
4897 if (id_priv->id.ps == RDMA_PS_UDP)
4898 mc_map[7] = 0x01; /* Use RDMA CM signature */
4899 *mgid = *(union ib_gid *) (mc_map + 4);
4900 } else {
4901 ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map);
4902 if (id_priv->id.ps == RDMA_PS_UDP)
4903 mc_map[7] = 0x01; /* Use RDMA CM signature */
4904 *mgid = *(union ib_gid *) (mc_map + 4);
4905 }
4906 }
4907
cma_join_ib_multicast(struct rdma_id_private * id_priv,struct cma_multicast * mc)4908 static int cma_join_ib_multicast(struct rdma_id_private *id_priv,
4909 struct cma_multicast *mc)
4910 {
4911 struct ib_sa_mcmember_rec rec;
4912 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4913 ib_sa_comp_mask comp_mask;
4914 int ret;
4915
4916 ib_addr_get_mgid(dev_addr, &rec.mgid);
4917 ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num,
4918 &rec.mgid, &rec);
4919 if (ret)
4920 return ret;
4921
4922 if (!id_priv->qkey) {
4923 ret = cma_set_default_qkey(id_priv);
4924 if (ret)
4925 return ret;
4926 }
4927
4928 cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid);
4929 rec.qkey = cpu_to_be32(id_priv->qkey);
4930 rdma_addr_get_sgid(dev_addr, &rec.port_gid);
4931 rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
4932 rec.join_state = mc->join_state;
4933
4934 comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID |
4935 IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE |
4936 IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL |
4937 IB_SA_MCMEMBER_REC_FLOW_LABEL |
4938 IB_SA_MCMEMBER_REC_TRAFFIC_CLASS;
4939
4940 if (id_priv->id.ps == RDMA_PS_IPOIB)
4941 comp_mask |= IB_SA_MCMEMBER_REC_RATE |
4942 IB_SA_MCMEMBER_REC_RATE_SELECTOR |
4943 IB_SA_MCMEMBER_REC_MTU_SELECTOR |
4944 IB_SA_MCMEMBER_REC_MTU |
4945 IB_SA_MCMEMBER_REC_HOP_LIMIT;
4946
4947 mc->sa_mc = ib_sa_join_multicast(&sa_client, id_priv->id.device,
4948 id_priv->id.port_num, &rec, comp_mask,
4949 GFP_KERNEL, cma_ib_mc_handler, mc);
4950 return PTR_ERR_OR_ZERO(mc->sa_mc);
4951 }
4952
cma_iboe_set_mgid(struct sockaddr * addr,union ib_gid * mgid,enum ib_gid_type gid_type)4953 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid,
4954 enum ib_gid_type gid_type)
4955 {
4956 struct sockaddr_in *sin = (struct sockaddr_in *)addr;
4957 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr;
4958
4959 if (cma_any_addr(addr)) {
4960 memset(mgid, 0, sizeof *mgid);
4961 } else if (addr->sa_family == AF_INET6) {
4962 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
4963 } else {
4964 mgid->raw[0] =
4965 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff;
4966 mgid->raw[1] =
4967 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e;
4968 mgid->raw[2] = 0;
4969 mgid->raw[3] = 0;
4970 mgid->raw[4] = 0;
4971 mgid->raw[5] = 0;
4972 mgid->raw[6] = 0;
4973 mgid->raw[7] = 0;
4974 mgid->raw[8] = 0;
4975 mgid->raw[9] = 0;
4976 mgid->raw[10] = 0xff;
4977 mgid->raw[11] = 0xff;
4978 *(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr;
4979 }
4980 }
4981
cma_iboe_join_multicast(struct rdma_id_private * id_priv,struct cma_multicast * mc)4982 static int cma_iboe_join_multicast(struct rdma_id_private *id_priv,
4983 struct cma_multicast *mc)
4984 {
4985 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4986 int err = 0;
4987 struct sockaddr *addr = (struct sockaddr *)&mc->addr;
4988 struct net_device *ndev = NULL;
4989 struct ib_sa_multicast ib = {};
4990 enum ib_gid_type gid_type;
4991 bool send_only;
4992
4993 send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN);
4994
4995 if (cma_zero_addr(addr))
4996 return -EINVAL;
4997
4998 gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num -
4999 rdma_start_port(id_priv->cma_dev->device)];
5000 cma_iboe_set_mgid(addr, &ib.rec.mgid, gid_type);
5001
5002 ib.rec.pkey = cpu_to_be16(0xffff);
5003 if (dev_addr->bound_dev_if)
5004 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
5005 if (!ndev)
5006 return -ENODEV;
5007
5008 ib.rec.rate = IB_RATE_PORT_CURRENT;
5009 ib.rec.hop_limit = 1;
5010 ib.rec.mtu = iboe_get_mtu(ndev->mtu);
5011
5012 if (addr->sa_family == AF_INET) {
5013 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) {
5014 ib.rec.hop_limit = IPV6_DEFAULT_HOPLIMIT;
5015 if (!send_only) {
5016 err = cma_igmp_send(ndev, &ib.rec.mgid,
5017 true);
5018 }
5019 }
5020 } else {
5021 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP)
5022 err = -ENOTSUPP;
5023 }
5024 dev_put(ndev);
5025 if (err || !ib.rec.mtu)
5026 return err ?: -EINVAL;
5027
5028 if (!id_priv->qkey)
5029 cma_set_default_qkey(id_priv);
5030
5031 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
5032 &ib.rec.port_gid);
5033 INIT_WORK(&mc->iboe_join.work, cma_iboe_join_work_handler);
5034 cma_make_mc_event(0, id_priv, &ib, &mc->iboe_join.event, mc);
5035 queue_work(cma_wq, &mc->iboe_join.work);
5036 return 0;
5037 }
5038
rdma_join_multicast(struct rdma_cm_id * id,struct sockaddr * addr,u8 join_state,void * context)5039 int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr,
5040 u8 join_state, void *context)
5041 {
5042 struct rdma_id_private *id_priv =
5043 container_of(id, struct rdma_id_private, id);
5044 struct cma_multicast *mc;
5045 int ret;
5046
5047 /* Not supported for kernel QPs */
5048 if (WARN_ON(id->qp))
5049 return -EINVAL;
5050
5051 /* ULP is calling this wrong. */
5052 if (!id->device || (READ_ONCE(id_priv->state) != RDMA_CM_ADDR_BOUND &&
5053 READ_ONCE(id_priv->state) != RDMA_CM_ADDR_RESOLVED))
5054 return -EINVAL;
5055
5056 if (id_priv->id.qp_type != IB_QPT_UD)
5057 return -EINVAL;
5058
5059 mc = kzalloc(sizeof(*mc), GFP_KERNEL);
5060 if (!mc)
5061 return -ENOMEM;
5062
5063 memcpy(&mc->addr, addr, rdma_addr_size(addr));
5064 mc->context = context;
5065 mc->id_priv = id_priv;
5066 mc->join_state = join_state;
5067
5068 if (rdma_protocol_roce(id->device, id->port_num)) {
5069 ret = cma_iboe_join_multicast(id_priv, mc);
5070 if (ret)
5071 goto out_err;
5072 } else if (rdma_cap_ib_mcast(id->device, id->port_num)) {
5073 ret = cma_join_ib_multicast(id_priv, mc);
5074 if (ret)
5075 goto out_err;
5076 } else {
5077 ret = -ENOSYS;
5078 goto out_err;
5079 }
5080
5081 spin_lock(&id_priv->lock);
5082 list_add(&mc->list, &id_priv->mc_list);
5083 spin_unlock(&id_priv->lock);
5084
5085 return 0;
5086 out_err:
5087 kfree(mc);
5088 return ret;
5089 }
5090 EXPORT_SYMBOL(rdma_join_multicast);
5091
rdma_leave_multicast(struct rdma_cm_id * id,struct sockaddr * addr)5092 void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr)
5093 {
5094 struct rdma_id_private *id_priv;
5095 struct cma_multicast *mc;
5096
5097 id_priv = container_of(id, struct rdma_id_private, id);
5098 spin_lock_irq(&id_priv->lock);
5099 list_for_each_entry(mc, &id_priv->mc_list, list) {
5100 if (memcmp(&mc->addr, addr, rdma_addr_size(addr)) != 0)
5101 continue;
5102 list_del(&mc->list);
5103 spin_unlock_irq(&id_priv->lock);
5104
5105 WARN_ON(id_priv->cma_dev->device != id->device);
5106 destroy_mc(id_priv, mc);
5107 return;
5108 }
5109 spin_unlock_irq(&id_priv->lock);
5110 }
5111 EXPORT_SYMBOL(rdma_leave_multicast);
5112
cma_netdev_change(struct net_device * ndev,struct rdma_id_private * id_priv)5113 static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv)
5114 {
5115 struct rdma_dev_addr *dev_addr;
5116 struct cma_work *work;
5117
5118 dev_addr = &id_priv->id.route.addr.dev_addr;
5119
5120 if ((dev_addr->bound_dev_if == ndev->ifindex) &&
5121 (net_eq(dev_net(ndev), dev_addr->net)) &&
5122 memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) {
5123 pr_info("RDMA CM addr change for ndev %s used by id %p\n",
5124 ndev->name, &id_priv->id);
5125 work = kzalloc(sizeof *work, GFP_KERNEL);
5126 if (!work)
5127 return -ENOMEM;
5128
5129 INIT_WORK(&work->work, cma_work_handler);
5130 work->id = id_priv;
5131 work->event.event = RDMA_CM_EVENT_ADDR_CHANGE;
5132 cma_id_get(id_priv);
5133 queue_work(cma_wq, &work->work);
5134 }
5135
5136 return 0;
5137 }
5138
cma_netdev_callback(struct notifier_block * self,unsigned long event,void * ptr)5139 static int cma_netdev_callback(struct notifier_block *self, unsigned long event,
5140 void *ptr)
5141 {
5142 struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
5143 struct cma_device *cma_dev;
5144 struct rdma_id_private *id_priv;
5145 int ret = NOTIFY_DONE;
5146
5147 if (event != NETDEV_BONDING_FAILOVER)
5148 return NOTIFY_DONE;
5149
5150 if (!netif_is_bond_master(ndev))
5151 return NOTIFY_DONE;
5152
5153 mutex_lock(&lock);
5154 list_for_each_entry(cma_dev, &dev_list, list)
5155 list_for_each_entry(id_priv, &cma_dev->id_list, device_item) {
5156 ret = cma_netdev_change(ndev, id_priv);
5157 if (ret)
5158 goto out;
5159 }
5160
5161 out:
5162 mutex_unlock(&lock);
5163 return ret;
5164 }
5165
cma_netevent_work_handler(struct work_struct * _work)5166 static void cma_netevent_work_handler(struct work_struct *_work)
5167 {
5168 struct rdma_id_private *id_priv =
5169 container_of(_work, struct rdma_id_private, id.net_work);
5170 struct rdma_cm_event event = {};
5171
5172 mutex_lock(&id_priv->handler_mutex);
5173
5174 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
5175 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
5176 goto out_unlock;
5177
5178 event.event = RDMA_CM_EVENT_UNREACHABLE;
5179 event.status = -ETIMEDOUT;
5180
5181 if (cma_cm_event_handler(id_priv, &event)) {
5182 __acquire(&id_priv->handler_mutex);
5183 id_priv->cm_id.ib = NULL;
5184 cma_id_put(id_priv);
5185 destroy_id_handler_unlock(id_priv);
5186 return;
5187 }
5188
5189 out_unlock:
5190 mutex_unlock(&id_priv->handler_mutex);
5191 cma_id_put(id_priv);
5192 }
5193
cma_netevent_callback(struct notifier_block * self,unsigned long event,void * ctx)5194 static int cma_netevent_callback(struct notifier_block *self,
5195 unsigned long event, void *ctx)
5196 {
5197 struct id_table_entry *ips_node = NULL;
5198 struct rdma_id_private *current_id;
5199 struct neighbour *neigh = ctx;
5200 unsigned long flags;
5201
5202 if (event != NETEVENT_NEIGH_UPDATE)
5203 return NOTIFY_DONE;
5204
5205 spin_lock_irqsave(&id_table_lock, flags);
5206 if (neigh->tbl->family == AF_INET6) {
5207 struct sockaddr_in6 neigh_sock_6;
5208
5209 neigh_sock_6.sin6_family = AF_INET6;
5210 neigh_sock_6.sin6_addr = *(struct in6_addr *)neigh->primary_key;
5211 ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex,
5212 (struct sockaddr *)&neigh_sock_6);
5213 } else if (neigh->tbl->family == AF_INET) {
5214 struct sockaddr_in neigh_sock_4;
5215
5216 neigh_sock_4.sin_family = AF_INET;
5217 neigh_sock_4.sin_addr.s_addr = *(__be32 *)(neigh->primary_key);
5218 ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex,
5219 (struct sockaddr *)&neigh_sock_4);
5220 } else
5221 goto out;
5222
5223 if (!ips_node)
5224 goto out;
5225
5226 list_for_each_entry(current_id, &ips_node->id_list, id_list_entry) {
5227 if (!memcmp(current_id->id.route.addr.dev_addr.dst_dev_addr,
5228 neigh->ha, ETH_ALEN))
5229 continue;
5230 INIT_WORK(¤t_id->id.net_work, cma_netevent_work_handler);
5231 cma_id_get(current_id);
5232 queue_work(cma_wq, ¤t_id->id.net_work);
5233 }
5234 out:
5235 spin_unlock_irqrestore(&id_table_lock, flags);
5236 return NOTIFY_DONE;
5237 }
5238
5239 static struct notifier_block cma_nb = {
5240 .notifier_call = cma_netdev_callback
5241 };
5242
5243 static struct notifier_block cma_netevent_cb = {
5244 .notifier_call = cma_netevent_callback
5245 };
5246
cma_send_device_removal_put(struct rdma_id_private * id_priv)5247 static void cma_send_device_removal_put(struct rdma_id_private *id_priv)
5248 {
5249 struct rdma_cm_event event = { .event = RDMA_CM_EVENT_DEVICE_REMOVAL };
5250 enum rdma_cm_state state;
5251 unsigned long flags;
5252
5253 mutex_lock(&id_priv->handler_mutex);
5254 /* Record that we want to remove the device */
5255 spin_lock_irqsave(&id_priv->lock, flags);
5256 state = id_priv->state;
5257 if (state == RDMA_CM_DESTROYING || state == RDMA_CM_DEVICE_REMOVAL) {
5258 spin_unlock_irqrestore(&id_priv->lock, flags);
5259 mutex_unlock(&id_priv->handler_mutex);
5260 cma_id_put(id_priv);
5261 return;
5262 }
5263 id_priv->state = RDMA_CM_DEVICE_REMOVAL;
5264 spin_unlock_irqrestore(&id_priv->lock, flags);
5265
5266 if (cma_cm_event_handler(id_priv, &event)) {
5267 /*
5268 * At this point the ULP promises it won't call
5269 * rdma_destroy_id() concurrently
5270 */
5271 cma_id_put(id_priv);
5272 mutex_unlock(&id_priv->handler_mutex);
5273 trace_cm_id_destroy(id_priv);
5274 _destroy_id(id_priv, state);
5275 return;
5276 }
5277 mutex_unlock(&id_priv->handler_mutex);
5278
5279 /*
5280 * If this races with destroy then the thread that first assigns state
5281 * to a destroying does the cancel.
5282 */
5283 cma_cancel_operation(id_priv, state);
5284 cma_id_put(id_priv);
5285 }
5286
cma_process_remove(struct cma_device * cma_dev)5287 static void cma_process_remove(struct cma_device *cma_dev)
5288 {
5289 mutex_lock(&lock);
5290 while (!list_empty(&cma_dev->id_list)) {
5291 struct rdma_id_private *id_priv = list_first_entry(
5292 &cma_dev->id_list, struct rdma_id_private, device_item);
5293
5294 list_del_init(&id_priv->listen_item);
5295 list_del_init(&id_priv->device_item);
5296 cma_id_get(id_priv);
5297 mutex_unlock(&lock);
5298
5299 cma_send_device_removal_put(id_priv);
5300
5301 mutex_lock(&lock);
5302 }
5303 mutex_unlock(&lock);
5304
5305 cma_dev_put(cma_dev);
5306 wait_for_completion(&cma_dev->comp);
5307 }
5308
cma_supported(struct ib_device * device)5309 static bool cma_supported(struct ib_device *device)
5310 {
5311 u32 i;
5312
5313 rdma_for_each_port(device, i) {
5314 if (rdma_cap_ib_cm(device, i) || rdma_cap_iw_cm(device, i))
5315 return true;
5316 }
5317 return false;
5318 }
5319
cma_add_one(struct ib_device * device)5320 static int cma_add_one(struct ib_device *device)
5321 {
5322 struct rdma_id_private *to_destroy;
5323 struct cma_device *cma_dev;
5324 struct rdma_id_private *id_priv;
5325 unsigned long supported_gids = 0;
5326 int ret;
5327 u32 i;
5328
5329 if (!cma_supported(device))
5330 return -EOPNOTSUPP;
5331
5332 cma_dev = kmalloc(sizeof(*cma_dev), GFP_KERNEL);
5333 if (!cma_dev)
5334 return -ENOMEM;
5335
5336 cma_dev->device = device;
5337 cma_dev->default_gid_type = kcalloc(device->phys_port_cnt,
5338 sizeof(*cma_dev->default_gid_type),
5339 GFP_KERNEL);
5340 if (!cma_dev->default_gid_type) {
5341 ret = -ENOMEM;
5342 goto free_cma_dev;
5343 }
5344
5345 cma_dev->default_roce_tos = kcalloc(device->phys_port_cnt,
5346 sizeof(*cma_dev->default_roce_tos),
5347 GFP_KERNEL);
5348 if (!cma_dev->default_roce_tos) {
5349 ret = -ENOMEM;
5350 goto free_gid_type;
5351 }
5352
5353 rdma_for_each_port (device, i) {
5354 supported_gids = roce_gid_type_mask_support(device, i);
5355 WARN_ON(!supported_gids);
5356 if (supported_gids & (1 << CMA_PREFERRED_ROCE_GID_TYPE))
5357 cma_dev->default_gid_type[i - rdma_start_port(device)] =
5358 CMA_PREFERRED_ROCE_GID_TYPE;
5359 else
5360 cma_dev->default_gid_type[i - rdma_start_port(device)] =
5361 find_first_bit(&supported_gids, BITS_PER_LONG);
5362 cma_dev->default_roce_tos[i - rdma_start_port(device)] = 0;
5363 }
5364
5365 init_completion(&cma_dev->comp);
5366 refcount_set(&cma_dev->refcount, 1);
5367 INIT_LIST_HEAD(&cma_dev->id_list);
5368 ib_set_client_data(device, &cma_client, cma_dev);
5369
5370 mutex_lock(&lock);
5371 list_add_tail(&cma_dev->list, &dev_list);
5372 list_for_each_entry(id_priv, &listen_any_list, listen_any_item) {
5373 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy);
5374 if (ret)
5375 goto free_listen;
5376 }
5377 mutex_unlock(&lock);
5378
5379 trace_cm_add_one(device);
5380 return 0;
5381
5382 free_listen:
5383 list_del(&cma_dev->list);
5384 mutex_unlock(&lock);
5385
5386 /* cma_process_remove() will delete to_destroy */
5387 cma_process_remove(cma_dev);
5388 kfree(cma_dev->default_roce_tos);
5389 free_gid_type:
5390 kfree(cma_dev->default_gid_type);
5391
5392 free_cma_dev:
5393 kfree(cma_dev);
5394 return ret;
5395 }
5396
cma_remove_one(struct ib_device * device,void * client_data)5397 static void cma_remove_one(struct ib_device *device, void *client_data)
5398 {
5399 struct cma_device *cma_dev = client_data;
5400
5401 trace_cm_remove_one(device);
5402
5403 mutex_lock(&lock);
5404 list_del(&cma_dev->list);
5405 mutex_unlock(&lock);
5406
5407 cma_process_remove(cma_dev);
5408 kfree(cma_dev->default_roce_tos);
5409 kfree(cma_dev->default_gid_type);
5410 kfree(cma_dev);
5411 }
5412
cma_init_net(struct net * net)5413 static int cma_init_net(struct net *net)
5414 {
5415 struct cma_pernet *pernet = cma_pernet(net);
5416
5417 xa_init(&pernet->tcp_ps);
5418 xa_init(&pernet->udp_ps);
5419 xa_init(&pernet->ipoib_ps);
5420 xa_init(&pernet->ib_ps);
5421
5422 return 0;
5423 }
5424
cma_exit_net(struct net * net)5425 static void cma_exit_net(struct net *net)
5426 {
5427 struct cma_pernet *pernet = cma_pernet(net);
5428
5429 WARN_ON(!xa_empty(&pernet->tcp_ps));
5430 WARN_ON(!xa_empty(&pernet->udp_ps));
5431 WARN_ON(!xa_empty(&pernet->ipoib_ps));
5432 WARN_ON(!xa_empty(&pernet->ib_ps));
5433 }
5434
5435 static struct pernet_operations cma_pernet_operations = {
5436 .init = cma_init_net,
5437 .exit = cma_exit_net,
5438 .id = &cma_pernet_id,
5439 .size = sizeof(struct cma_pernet),
5440 };
5441
cma_init(void)5442 static int __init cma_init(void)
5443 {
5444 int ret;
5445
5446 /*
5447 * There is a rare lock ordering dependency in cma_netdev_callback()
5448 * that only happens when bonding is enabled. Teach lockdep that rtnl
5449 * must never be nested under lock so it can find these without having
5450 * to test with bonding.
5451 */
5452 if (IS_ENABLED(CONFIG_LOCKDEP)) {
5453 rtnl_lock();
5454 mutex_lock(&lock);
5455 mutex_unlock(&lock);
5456 rtnl_unlock();
5457 }
5458
5459 cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM);
5460 if (!cma_wq)
5461 return -ENOMEM;
5462
5463 ret = register_pernet_subsys(&cma_pernet_operations);
5464 if (ret)
5465 goto err_wq;
5466
5467 ib_sa_register_client(&sa_client);
5468 register_netdevice_notifier(&cma_nb);
5469 register_netevent_notifier(&cma_netevent_cb);
5470
5471 ret = ib_register_client(&cma_client);
5472 if (ret)
5473 goto err;
5474
5475 ret = cma_configfs_init();
5476 if (ret)
5477 goto err_ib;
5478
5479 return 0;
5480
5481 err_ib:
5482 ib_unregister_client(&cma_client);
5483 err:
5484 unregister_netevent_notifier(&cma_netevent_cb);
5485 unregister_netdevice_notifier(&cma_nb);
5486 ib_sa_unregister_client(&sa_client);
5487 unregister_pernet_subsys(&cma_pernet_operations);
5488 err_wq:
5489 destroy_workqueue(cma_wq);
5490 return ret;
5491 }
5492
cma_cleanup(void)5493 static void __exit cma_cleanup(void)
5494 {
5495 cma_configfs_exit();
5496 ib_unregister_client(&cma_client);
5497 unregister_netevent_notifier(&cma_netevent_cb);
5498 unregister_netdevice_notifier(&cma_nb);
5499 ib_sa_unregister_client(&sa_client);
5500 unregister_pernet_subsys(&cma_pernet_operations);
5501 destroy_workqueue(cma_wq);
5502 }
5503
5504 module_init(cma_init);
5505 module_exit(cma_cleanup);
5506