1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Contiguous Memory Allocator 4 * 5 * Copyright (c) 2010-2011 by Samsung Electronics. 6 * Copyright IBM Corporation, 2013 7 * Copyright LG Electronics Inc., 2014 8 * Written by: 9 * Marek Szyprowski <m.szyprowski@samsung.com> 10 * Michal Nazarewicz <mina86@mina86.com> 11 * Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> 12 * Joonsoo Kim <iamjoonsoo.kim@lge.com> 13 */ 14 15 #define pr_fmt(fmt) "cma: " fmt 16 17 #define CREATE_TRACE_POINTS 18 19 #include <linux/memblock.h> 20 #include <linux/err.h> 21 #include <linux/list.h> 22 #include <linux/mm.h> 23 #include <linux/sizes.h> 24 #include <linux/slab.h> 25 #include <linux/string.h> 26 #include <linux/string_choices.h> 27 #include <linux/log2.h> 28 #include <linux/cma.h> 29 #include <linux/highmem.h> 30 #include <linux/io.h> 31 #include <linux/kmemleak.h> 32 #include <trace/events/cma.h> 33 34 #include "internal.h" 35 #include "cma.h" 36 37 struct cma cma_areas[MAX_CMA_AREAS]; 38 unsigned int cma_area_count; 39 40 phys_addr_t cma_get_base(const struct cma *cma) 41 { 42 WARN_ON_ONCE(cma->nranges != 1); 43 return PFN_PHYS(cma->ranges[0].base_pfn); 44 } 45 46 unsigned long cma_get_size(const struct cma *cma) 47 { 48 return cma->count << PAGE_SHIFT; 49 } 50 51 const char *cma_get_name(const struct cma *cma) 52 { 53 return cma->name; 54 } 55 56 static unsigned long cma_bitmap_aligned_mask(const struct cma *cma, 57 unsigned int align_order) 58 { 59 if (align_order <= cma->order_per_bit) 60 return 0; 61 return (1UL << (align_order - cma->order_per_bit)) - 1; 62 } 63 64 /* 65 * Find the offset of the base PFN from the specified align_order. 66 * The value returned is represented in order_per_bits. 67 */ 68 static unsigned long cma_bitmap_aligned_offset(const struct cma *cma, 69 const struct cma_memrange *cmr, 70 unsigned int align_order) 71 { 72 return (cmr->base_pfn & ((1UL << align_order) - 1)) 73 >> cma->order_per_bit; 74 } 75 76 static unsigned long cma_bitmap_pages_to_bits(const struct cma *cma, 77 unsigned long pages) 78 { 79 return ALIGN(pages, 1UL << cma->order_per_bit) >> cma->order_per_bit; 80 } 81 82 static void cma_clear_bitmap(struct cma *cma, const struct cma_memrange *cmr, 83 unsigned long pfn, unsigned long count) 84 { 85 unsigned long bitmap_no, bitmap_count; 86 unsigned long flags; 87 88 bitmap_no = (pfn - cmr->base_pfn) >> cma->order_per_bit; 89 bitmap_count = cma_bitmap_pages_to_bits(cma, count); 90 91 spin_lock_irqsave(&cma->lock, flags); 92 bitmap_clear(cmr->bitmap, bitmap_no, bitmap_count); 93 cma->available_count += count; 94 spin_unlock_irqrestore(&cma->lock, flags); 95 } 96 97 /* 98 * Check if a CMA area contains no ranges that intersect with 99 * multiple zones. Store the result in the flags in case 100 * this gets called more than once. 101 */ 102 bool cma_validate_zones(struct cma *cma) 103 { 104 int r; 105 unsigned long base_pfn; 106 struct cma_memrange *cmr; 107 bool valid_bit_set; 108 109 /* 110 * If already validated, return result of previous check. 111 * Either the valid or invalid bit will be set if this 112 * check has already been done. If neither is set, the 113 * check has not been performed yet. 114 */ 115 valid_bit_set = test_bit(CMA_ZONES_VALID, &cma->flags); 116 if (valid_bit_set || test_bit(CMA_ZONES_INVALID, &cma->flags)) 117 return valid_bit_set; 118 119 for (r = 0; r < cma->nranges; r++) { 120 cmr = &cma->ranges[r]; 121 base_pfn = cmr->base_pfn; 122 123 /* 124 * alloc_contig_range() requires the pfn range specified 125 * to be in the same zone. Simplify by forcing the entire 126 * CMA resv range to be in the same zone. 127 */ 128 WARN_ON_ONCE(!pfn_valid(base_pfn)); 129 if (pfn_range_intersects_zones(cma->nid, base_pfn, cmr->count)) { 130 set_bit(CMA_ZONES_INVALID, &cma->flags); 131 return false; 132 } 133 } 134 135 set_bit(CMA_ZONES_VALID, &cma->flags); 136 137 return true; 138 } 139 140 static void __init cma_activate_area(struct cma *cma) 141 { 142 unsigned long pfn, end_pfn, early_pfn[CMA_MAX_RANGES]; 143 int allocrange, r; 144 struct cma_memrange *cmr; 145 unsigned long bitmap_count, count; 146 147 for (allocrange = 0; allocrange < cma->nranges; allocrange++) { 148 cmr = &cma->ranges[allocrange]; 149 early_pfn[allocrange] = cmr->early_pfn; 150 cmr->bitmap = bitmap_zalloc(cma_bitmap_maxno(cma, cmr), 151 GFP_KERNEL); 152 if (!cmr->bitmap) 153 goto cleanup; 154 } 155 156 if (!cma_validate_zones(cma)) 157 goto cleanup; 158 159 for (r = 0; r < cma->nranges; r++) { 160 cmr = &cma->ranges[r]; 161 if (early_pfn[r] != cmr->base_pfn) { 162 count = early_pfn[r] - cmr->base_pfn; 163 bitmap_count = cma_bitmap_pages_to_bits(cma, count); 164 bitmap_set(cmr->bitmap, 0, bitmap_count); 165 } 166 167 for (pfn = early_pfn[r]; pfn < cmr->base_pfn + cmr->count; 168 pfn += pageblock_nr_pages) 169 init_cma_reserved_pageblock(pfn_to_page(pfn)); 170 } 171 172 spin_lock_init(&cma->lock); 173 174 mutex_init(&cma->alloc_mutex); 175 176 #ifdef CONFIG_CMA_DEBUGFS 177 INIT_HLIST_HEAD(&cma->mem_head); 178 spin_lock_init(&cma->mem_head_lock); 179 #endif 180 set_bit(CMA_ACTIVATED, &cma->flags); 181 182 return; 183 184 cleanup: 185 for (r = 0; r < allocrange; r++) 186 bitmap_free(cma->ranges[r].bitmap); 187 188 /* Expose all pages to the buddy, they are useless for CMA. */ 189 if (!test_bit(CMA_RESERVE_PAGES_ON_ERROR, &cma->flags)) { 190 for (r = 0; r < allocrange; r++) { 191 cmr = &cma->ranges[r]; 192 end_pfn = cmr->base_pfn + cmr->count; 193 for (pfn = early_pfn[r]; pfn < end_pfn; pfn++) 194 free_reserved_page(pfn_to_page(pfn)); 195 } 196 } 197 totalcma_pages -= cma->count; 198 cma->available_count = cma->count = 0; 199 pr_err("CMA area %s could not be activated\n", cma->name); 200 } 201 202 static int __init cma_init_reserved_areas(void) 203 { 204 int i; 205 206 for (i = 0; i < cma_area_count; i++) 207 cma_activate_area(&cma_areas[i]); 208 209 return 0; 210 } 211 core_initcall(cma_init_reserved_areas); 212 213 void __init cma_reserve_pages_on_error(struct cma *cma) 214 { 215 set_bit(CMA_RESERVE_PAGES_ON_ERROR, &cma->flags); 216 } 217 218 static int __init cma_new_area(const char *name, phys_addr_t size, 219 unsigned int order_per_bit, 220 struct cma **res_cma) 221 { 222 struct cma *cma; 223 224 if (cma_area_count == ARRAY_SIZE(cma_areas)) { 225 pr_err("Not enough slots for CMA reserved regions!\n"); 226 return -ENOSPC; 227 } 228 229 /* 230 * Each reserved area must be initialised later, when more kernel 231 * subsystems (like slab allocator) are available. 232 */ 233 cma = &cma_areas[cma_area_count]; 234 cma_area_count++; 235 236 if (name) 237 strscpy(cma->name, name); 238 else 239 snprintf(cma->name, CMA_MAX_NAME, "cma%d\n", cma_area_count); 240 241 cma->available_count = cma->count = size >> PAGE_SHIFT; 242 cma->order_per_bit = order_per_bit; 243 *res_cma = cma; 244 totalcma_pages += cma->count; 245 246 return 0; 247 } 248 249 static void __init cma_drop_area(struct cma *cma) 250 { 251 totalcma_pages -= cma->count; 252 cma_area_count--; 253 } 254 255 /** 256 * cma_init_reserved_mem() - create custom contiguous area from reserved memory 257 * @base: Base address of the reserved area 258 * @size: Size of the reserved area (in bytes), 259 * @order_per_bit: Order of pages represented by one bit on bitmap. 260 * @name: The name of the area. If this parameter is NULL, the name of 261 * the area will be set to "cmaN", where N is a running counter of 262 * used areas. 263 * @res_cma: Pointer to store the created cma region. 264 * 265 * This function creates custom contiguous area from already reserved memory. 266 */ 267 int __init cma_init_reserved_mem(phys_addr_t base, phys_addr_t size, 268 unsigned int order_per_bit, 269 const char *name, 270 struct cma **res_cma) 271 { 272 struct cma *cma; 273 int ret; 274 275 /* Sanity checks */ 276 if (!size || !memblock_is_region_reserved(base, size)) 277 return -EINVAL; 278 279 /* 280 * CMA uses CMA_MIN_ALIGNMENT_BYTES as alignment requirement which 281 * needs pageblock_order to be initialized. Let's enforce it. 282 */ 283 if (!pageblock_order) { 284 pr_err("pageblock_order not yet initialized. Called during early boot?\n"); 285 return -EINVAL; 286 } 287 288 /* ensure minimal alignment required by mm core */ 289 if (!IS_ALIGNED(base | size, CMA_MIN_ALIGNMENT_BYTES)) 290 return -EINVAL; 291 292 ret = cma_new_area(name, size, order_per_bit, &cma); 293 if (ret != 0) 294 return ret; 295 296 cma->ranges[0].base_pfn = PFN_DOWN(base); 297 cma->ranges[0].early_pfn = PFN_DOWN(base); 298 cma->ranges[0].count = cma->count; 299 cma->nranges = 1; 300 cma->nid = NUMA_NO_NODE; 301 302 *res_cma = cma; 303 304 return 0; 305 } 306 307 /* 308 * Structure used while walking physical memory ranges and finding out 309 * which one(s) to use for a CMA area. 310 */ 311 struct cma_init_memrange { 312 phys_addr_t base; 313 phys_addr_t size; 314 struct list_head list; 315 }; 316 317 /* 318 * Work array used during CMA initialization. 319 */ 320 static struct cma_init_memrange memranges[CMA_MAX_RANGES] __initdata; 321 322 static bool __init revsizecmp(struct cma_init_memrange *mlp, 323 struct cma_init_memrange *mrp) 324 { 325 return mlp->size > mrp->size; 326 } 327 328 static bool __init basecmp(struct cma_init_memrange *mlp, 329 struct cma_init_memrange *mrp) 330 { 331 return mlp->base < mrp->base; 332 } 333 334 /* 335 * Helper function to create sorted lists. 336 */ 337 static void __init list_insert_sorted( 338 struct list_head *ranges, 339 struct cma_init_memrange *mrp, 340 bool (*cmp)(struct cma_init_memrange *lh, struct cma_init_memrange *rh)) 341 { 342 struct list_head *mp; 343 struct cma_init_memrange *mlp; 344 345 if (list_empty(ranges)) 346 list_add(&mrp->list, ranges); 347 else { 348 list_for_each(mp, ranges) { 349 mlp = list_entry(mp, struct cma_init_memrange, list); 350 if (cmp(mlp, mrp)) 351 break; 352 } 353 __list_add(&mrp->list, mlp->list.prev, &mlp->list); 354 } 355 } 356 357 static int __init cma_fixed_reserve(phys_addr_t base, phys_addr_t size) 358 { 359 if (IS_ENABLED(CONFIG_HIGHMEM)) { 360 phys_addr_t highmem_start = __pa(high_memory - 1) + 1; 361 362 /* 363 * If allocating at a fixed base the request region must not 364 * cross the low/high memory boundary. 365 */ 366 if (base < highmem_start && base + size > highmem_start) { 367 pr_err("Region at %pa defined on low/high memory boundary (%pa)\n", 368 &base, &highmem_start); 369 return -EINVAL; 370 } 371 } 372 373 if (memblock_is_region_reserved(base, size) || 374 memblock_reserve(base, size) < 0) { 375 return -EBUSY; 376 } 377 378 return 0; 379 } 380 381 static phys_addr_t __init cma_alloc_mem(phys_addr_t base, phys_addr_t size, 382 phys_addr_t align, phys_addr_t limit, int nid) 383 { 384 phys_addr_t addr = 0; 385 386 /* 387 * If there is enough memory, try a bottom-up allocation first. 388 * It will place the new cma area close to the start of the node 389 * and guarantee that the compaction is moving pages out of the 390 * cma area and not into it. 391 * Avoid using first 4GB to not interfere with constrained zones 392 * like DMA/DMA32. 393 */ 394 #ifdef CONFIG_PHYS_ADDR_T_64BIT 395 if (!memblock_bottom_up() && limit >= SZ_4G + size) { 396 memblock_set_bottom_up(true); 397 addr = memblock_alloc_range_nid(size, align, SZ_4G, limit, 398 nid, true); 399 memblock_set_bottom_up(false); 400 } 401 #endif 402 403 /* 404 * On systems with HIGHMEM try allocating from there before consuming 405 * memory in lower zones. 406 */ 407 if (!addr && IS_ENABLED(CONFIG_HIGHMEM)) { 408 phys_addr_t highmem = __pa(high_memory - 1) + 1; 409 410 /* 411 * All pages in the reserved area must come from the same zone. 412 * If the requested region crosses the low/high memory boundary, 413 * try allocating from high memory first and fall back to low 414 * memory in case of failure. 415 */ 416 if (base < highmem && limit > highmem) { 417 addr = memblock_alloc_range_nid(size, align, highmem, 418 limit, nid, true); 419 limit = highmem; 420 } 421 } 422 423 if (!addr) 424 addr = memblock_alloc_range_nid(size, align, base, limit, nid, 425 true); 426 427 return addr; 428 } 429 430 static int __init __cma_declare_contiguous_nid(phys_addr_t *basep, 431 phys_addr_t size, phys_addr_t limit, 432 phys_addr_t alignment, unsigned int order_per_bit, 433 bool fixed, const char *name, struct cma **res_cma, 434 int nid) 435 { 436 phys_addr_t memblock_end = memblock_end_of_DRAM(); 437 phys_addr_t base = *basep; 438 int ret; 439 440 pr_debug("%s(size %pa, base %pa, limit %pa alignment %pa)\n", 441 __func__, &size, &base, &limit, &alignment); 442 443 if (cma_area_count == ARRAY_SIZE(cma_areas)) { 444 pr_err("Not enough slots for CMA reserved regions!\n"); 445 return -ENOSPC; 446 } 447 448 if (!size) 449 return -EINVAL; 450 451 if (alignment && !is_power_of_2(alignment)) 452 return -EINVAL; 453 454 if (!IS_ENABLED(CONFIG_NUMA)) 455 nid = NUMA_NO_NODE; 456 457 /* Sanitise input arguments. */ 458 alignment = max_t(phys_addr_t, alignment, CMA_MIN_ALIGNMENT_BYTES); 459 if (fixed && base & (alignment - 1)) { 460 pr_err("Region at %pa must be aligned to %pa bytes\n", 461 &base, &alignment); 462 return -EINVAL; 463 } 464 base = ALIGN(base, alignment); 465 size = ALIGN(size, alignment); 466 limit &= ~(alignment - 1); 467 468 if (!base) 469 fixed = false; 470 471 /* size should be aligned with order_per_bit */ 472 if (!IS_ALIGNED(size >> PAGE_SHIFT, 1 << order_per_bit)) 473 return -EINVAL; 474 475 476 /* 477 * If the limit is unspecified or above the memblock end, its effective 478 * value will be the memblock end. Set it explicitly to simplify further 479 * checks. 480 */ 481 if (limit == 0 || limit > memblock_end) 482 limit = memblock_end; 483 484 if (base + size > limit) { 485 pr_err("Size (%pa) of region at %pa exceeds limit (%pa)\n", 486 &size, &base, &limit); 487 return -EINVAL; 488 } 489 490 /* Reserve memory */ 491 if (fixed) { 492 ret = cma_fixed_reserve(base, size); 493 if (ret) 494 return ret; 495 } else { 496 base = cma_alloc_mem(base, size, alignment, limit, nid); 497 if (!base) 498 return -ENOMEM; 499 500 /* 501 * kmemleak scans/reads tracked objects for pointers to other 502 * objects but this address isn't mapped and accessible 503 */ 504 kmemleak_ignore_phys(base); 505 } 506 507 ret = cma_init_reserved_mem(base, size, order_per_bit, name, res_cma); 508 if (ret) { 509 memblock_phys_free(base, size); 510 return ret; 511 } 512 513 (*res_cma)->nid = nid; 514 *basep = base; 515 516 return 0; 517 } 518 519 /* 520 * Create CMA areas with a total size of @total_size. A normal allocation 521 * for one area is tried first. If that fails, the biggest memblock 522 * ranges above 4G are selected, and allocated bottom up. 523 * 524 * The complexity here is not great, but this function will only be 525 * called during boot, and the lists operated on have fewer than 526 * CMA_MAX_RANGES elements (default value: 8). 527 */ 528 int __init cma_declare_contiguous_multi(phys_addr_t total_size, 529 phys_addr_t align, unsigned int order_per_bit, 530 const char *name, struct cma **res_cma, int nid) 531 { 532 phys_addr_t start = 0, end; 533 phys_addr_t size, sizesum, sizeleft; 534 struct cma_init_memrange *mrp, *mlp, *failed; 535 struct cma_memrange *cmrp; 536 LIST_HEAD(ranges); 537 LIST_HEAD(final_ranges); 538 struct list_head *mp, *next; 539 int ret, nr = 1; 540 u64 i; 541 struct cma *cma; 542 543 /* 544 * First, try it the normal way, producing just one range. 545 */ 546 ret = __cma_declare_contiguous_nid(&start, total_size, 0, align, 547 order_per_bit, false, name, res_cma, nid); 548 if (ret != -ENOMEM) 549 goto out; 550 551 /* 552 * Couldn't find one range that fits our needs, so try multiple 553 * ranges. 554 * 555 * No need to do the alignment checks here, the call to 556 * cma_declare_contiguous_nid above would have caught 557 * any issues. With the checks, we know that: 558 * 559 * - @align is a power of 2 560 * - @align is >= pageblock alignment 561 * - @size is aligned to @align and to @order_per_bit 562 * 563 * So, as long as we create ranges that have a base 564 * aligned to @align, and a size that is aligned to 565 * both @align and @order_to_bit, things will work out. 566 */ 567 nr = 0; 568 sizesum = 0; 569 failed = NULL; 570 571 ret = cma_new_area(name, total_size, order_per_bit, &cma); 572 if (ret != 0) 573 goto out; 574 575 align = max_t(phys_addr_t, align, CMA_MIN_ALIGNMENT_BYTES); 576 /* 577 * Create a list of ranges above 4G, largest range first. 578 */ 579 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &start, &end, NULL) { 580 if (upper_32_bits(start) == 0) 581 continue; 582 583 start = ALIGN(start, align); 584 if (start >= end) 585 continue; 586 587 end = ALIGN_DOWN(end, align); 588 if (end <= start) 589 continue; 590 591 size = end - start; 592 size = ALIGN_DOWN(size, (PAGE_SIZE << order_per_bit)); 593 if (!size) 594 continue; 595 sizesum += size; 596 597 pr_debug("consider %016llx - %016llx\n", (u64)start, (u64)end); 598 599 /* 600 * If we don't yet have used the maximum number of 601 * areas, grab a new one. 602 * 603 * If we can't use anymore, see if this range is not 604 * smaller than the smallest one already recorded. If 605 * not, re-use the smallest element. 606 */ 607 if (nr < CMA_MAX_RANGES) 608 mrp = &memranges[nr++]; 609 else { 610 mrp = list_last_entry(&ranges, 611 struct cma_init_memrange, list); 612 if (size < mrp->size) 613 continue; 614 list_del(&mrp->list); 615 sizesum -= mrp->size; 616 pr_debug("deleted %016llx - %016llx from the list\n", 617 (u64)mrp->base, (u64)mrp->base + size); 618 } 619 mrp->base = start; 620 mrp->size = size; 621 622 /* 623 * Now do a sorted insert. 624 */ 625 list_insert_sorted(&ranges, mrp, revsizecmp); 626 pr_debug("added %016llx - %016llx to the list\n", 627 (u64)mrp->base, (u64)mrp->base + size); 628 pr_debug("total size now %llu\n", (u64)sizesum); 629 } 630 631 /* 632 * There is not enough room in the CMA_MAX_RANGES largest 633 * ranges, so bail out. 634 */ 635 if (sizesum < total_size) { 636 cma_drop_area(cma); 637 ret = -ENOMEM; 638 goto out; 639 } 640 641 /* 642 * Found ranges that provide enough combined space. 643 * Now, sorted them by address, smallest first, because we 644 * want to mimic a bottom-up memblock allocation. 645 */ 646 sizesum = 0; 647 list_for_each_safe(mp, next, &ranges) { 648 mlp = list_entry(mp, struct cma_init_memrange, list); 649 list_del(mp); 650 list_insert_sorted(&final_ranges, mlp, basecmp); 651 sizesum += mlp->size; 652 if (sizesum >= total_size) 653 break; 654 } 655 656 /* 657 * Walk the final list, and add a CMA range for 658 * each range, possibly not using the last one fully. 659 */ 660 nr = 0; 661 sizeleft = total_size; 662 list_for_each(mp, &final_ranges) { 663 mlp = list_entry(mp, struct cma_init_memrange, list); 664 size = min(sizeleft, mlp->size); 665 if (memblock_reserve(mlp->base, size)) { 666 /* 667 * Unexpected error. Could go on to 668 * the next one, but just abort to 669 * be safe. 670 */ 671 failed = mlp; 672 break; 673 } 674 675 pr_debug("created region %d: %016llx - %016llx\n", 676 nr, (u64)mlp->base, (u64)mlp->base + size); 677 cmrp = &cma->ranges[nr++]; 678 cmrp->base_pfn = PHYS_PFN(mlp->base); 679 cmrp->early_pfn = cmrp->base_pfn; 680 cmrp->count = size >> PAGE_SHIFT; 681 682 sizeleft -= size; 683 if (sizeleft == 0) 684 break; 685 } 686 687 if (failed) { 688 list_for_each(mp, &final_ranges) { 689 mlp = list_entry(mp, struct cma_init_memrange, list); 690 if (mlp == failed) 691 break; 692 memblock_phys_free(mlp->base, mlp->size); 693 } 694 cma_drop_area(cma); 695 ret = -ENOMEM; 696 goto out; 697 } 698 699 cma->nranges = nr; 700 cma->nid = nid; 701 *res_cma = cma; 702 703 out: 704 if (ret != 0) 705 pr_err("Failed to reserve %lu MiB\n", 706 (unsigned long)total_size / SZ_1M); 707 else 708 pr_info("Reserved %lu MiB in %d range%s\n", 709 (unsigned long)total_size / SZ_1M, nr, str_plural(nr)); 710 return ret; 711 } 712 713 /** 714 * cma_declare_contiguous_nid() - reserve custom contiguous area 715 * @base: Base address of the reserved area optional, use 0 for any 716 * @size: Size of the reserved area (in bytes), 717 * @limit: End address of the reserved memory (optional, 0 for any). 718 * @alignment: Alignment for the CMA area, should be power of 2 or zero 719 * @order_per_bit: Order of pages represented by one bit on bitmap. 720 * @fixed: hint about where to place the reserved area 721 * @name: The name of the area. See function cma_init_reserved_mem() 722 * @res_cma: Pointer to store the created cma region. 723 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 724 * 725 * This function reserves memory from early allocator. It should be 726 * called by arch specific code once the early allocator (memblock or bootmem) 727 * has been activated and all other subsystems have already allocated/reserved 728 * memory. This function allows to create custom reserved areas. 729 * 730 * If @fixed is true, reserve contiguous area at exactly @base. If false, 731 * reserve in range from @base to @limit. 732 */ 733 int __init cma_declare_contiguous_nid(phys_addr_t base, 734 phys_addr_t size, phys_addr_t limit, 735 phys_addr_t alignment, unsigned int order_per_bit, 736 bool fixed, const char *name, struct cma **res_cma, 737 int nid) 738 { 739 int ret; 740 741 ret = __cma_declare_contiguous_nid(&base, size, limit, alignment, 742 order_per_bit, fixed, name, res_cma, nid); 743 if (ret != 0) 744 pr_err("Failed to reserve %ld MiB\n", 745 (unsigned long)size / SZ_1M); 746 else 747 pr_info("Reserved %ld MiB at %pa\n", 748 (unsigned long)size / SZ_1M, &base); 749 750 return ret; 751 } 752 753 static void cma_debug_show_areas(struct cma *cma) 754 { 755 unsigned long start, end; 756 unsigned long nr_part; 757 unsigned long nbits; 758 int r; 759 struct cma_memrange *cmr; 760 761 spin_lock_irq(&cma->lock); 762 pr_info("number of available pages: "); 763 for (r = 0; r < cma->nranges; r++) { 764 cmr = &cma->ranges[r]; 765 766 nbits = cma_bitmap_maxno(cma, cmr); 767 768 pr_info("range %d: ", r); 769 for_each_clear_bitrange(start, end, cmr->bitmap, nbits) { 770 nr_part = (end - start) << cma->order_per_bit; 771 pr_cont("%s%lu@%lu", start ? "+" : "", nr_part, start); 772 } 773 pr_info("\n"); 774 } 775 pr_cont("=> %lu free of %lu total pages\n", cma->available_count, 776 cma->count); 777 spin_unlock_irq(&cma->lock); 778 } 779 780 static int cma_range_alloc(struct cma *cma, struct cma_memrange *cmr, 781 unsigned long count, unsigned int align, 782 struct page **pagep, gfp_t gfp) 783 { 784 unsigned long bitmap_maxno, bitmap_no, bitmap_count; 785 unsigned long start, pfn, mask, offset; 786 int ret = -EBUSY; 787 struct page *page = NULL; 788 789 mask = cma_bitmap_aligned_mask(cma, align); 790 offset = cma_bitmap_aligned_offset(cma, cmr, align); 791 bitmap_maxno = cma_bitmap_maxno(cma, cmr); 792 bitmap_count = cma_bitmap_pages_to_bits(cma, count); 793 794 if (bitmap_count > bitmap_maxno) 795 goto out; 796 797 for (start = 0; ; start = bitmap_no + mask + 1) { 798 spin_lock_irq(&cma->lock); 799 /* 800 * If the request is larger than the available number 801 * of pages, stop right away. 802 */ 803 if (count > cma->available_count) { 804 spin_unlock_irq(&cma->lock); 805 break; 806 } 807 bitmap_no = bitmap_find_next_zero_area_off(cmr->bitmap, 808 bitmap_maxno, start, bitmap_count, mask, 809 offset); 810 if (bitmap_no >= bitmap_maxno) { 811 spin_unlock_irq(&cma->lock); 812 break; 813 } 814 815 pfn = cmr->base_pfn + (bitmap_no << cma->order_per_bit); 816 page = pfn_to_page(pfn); 817 818 /* 819 * Do not hand out page ranges that are not contiguous, so 820 * callers can just iterate the pages without having to worry 821 * about these corner cases. 822 */ 823 if (!page_range_contiguous(page, count)) { 824 spin_unlock_irq(&cma->lock); 825 pr_warn_ratelimited("%s: %s: skipping incompatible area [0x%lx-0x%lx]", 826 __func__, cma->name, pfn, pfn + count - 1); 827 continue; 828 } 829 830 bitmap_set(cmr->bitmap, bitmap_no, bitmap_count); 831 cma->available_count -= count; 832 /* 833 * It's safe to drop the lock here. We've marked this region for 834 * our exclusive use. If the migration fails we will take the 835 * lock again and unmark it. 836 */ 837 spin_unlock_irq(&cma->lock); 838 839 mutex_lock(&cma->alloc_mutex); 840 ret = alloc_contig_frozen_range(pfn, pfn + count, ACR_FLAGS_CMA, gfp); 841 mutex_unlock(&cma->alloc_mutex); 842 if (!ret) 843 break; 844 845 cma_clear_bitmap(cma, cmr, pfn, count); 846 if (ret != -EBUSY) 847 break; 848 849 pr_debug("%s(): memory range at pfn 0x%lx %p is busy, retrying\n", 850 __func__, pfn, page); 851 852 trace_cma_alloc_busy_retry(cma->name, pfn, page, count, align); 853 } 854 out: 855 if (!ret) 856 *pagep = page; 857 return ret; 858 } 859 860 static struct page *__cma_alloc_frozen(struct cma *cma, 861 unsigned long count, unsigned int align, gfp_t gfp) 862 { 863 struct page *page = NULL; 864 int ret = -ENOMEM, r; 865 unsigned long i; 866 const char *name = cma ? cma->name : NULL; 867 868 if (!cma || !cma->count) 869 return page; 870 871 pr_debug("%s(cma %p, name: %s, count %lu, align %d)\n", __func__, 872 (void *)cma, cma->name, count, align); 873 874 if (!count) 875 return page; 876 877 trace_cma_alloc_start(name, count, cma->available_count, cma->count, align); 878 879 for (r = 0; r < cma->nranges; r++) { 880 page = NULL; 881 882 ret = cma_range_alloc(cma, &cma->ranges[r], count, align, 883 &page, gfp); 884 if (ret != -EBUSY || page) 885 break; 886 } 887 888 /* 889 * CMA can allocate multiple page blocks, which results in different 890 * blocks being marked with different tags. Reset the tags to ignore 891 * those page blocks. 892 */ 893 if (page) { 894 for (i = 0; i < count; i++) 895 page_kasan_tag_reset(page + i); 896 } 897 898 if (ret && !(gfp & __GFP_NOWARN)) { 899 pr_err_ratelimited("%s: %s: alloc failed, req-size: %lu pages, ret: %d\n", 900 __func__, cma->name, count, ret); 901 cma_debug_show_areas(cma); 902 } 903 904 pr_debug("%s(): returned %p\n", __func__, page); 905 trace_cma_alloc_finish(name, page ? page_to_pfn(page) : 0, 906 page, count, align, ret); 907 if (page) { 908 count_vm_event(CMA_ALLOC_SUCCESS); 909 cma_sysfs_account_success_pages(cma, count); 910 } else { 911 count_vm_event(CMA_ALLOC_FAIL); 912 cma_sysfs_account_fail_pages(cma, count); 913 } 914 915 return page; 916 } 917 918 struct page *cma_alloc_frozen(struct cma *cma, unsigned long count, 919 unsigned int align, bool no_warn) 920 { 921 gfp_t gfp = GFP_KERNEL | (no_warn ? __GFP_NOWARN : 0); 922 923 return __cma_alloc_frozen(cma, count, align, gfp); 924 } 925 926 struct page *cma_alloc_frozen_compound(struct cma *cma, unsigned int order) 927 { 928 gfp_t gfp = GFP_KERNEL | __GFP_COMP | __GFP_NOWARN; 929 930 return __cma_alloc_frozen(cma, 1 << order, order, gfp); 931 } 932 933 /** 934 * cma_alloc() - allocate pages from contiguous area 935 * @cma: Contiguous memory region for which the allocation is performed. 936 * @count: Requested number of pages. 937 * @align: Requested alignment of pages (in PAGE_SIZE order). 938 * @no_warn: Avoid printing message about failed allocation 939 * 940 * This function allocates part of contiguous memory on specific 941 * contiguous memory area. 942 */ 943 struct page *cma_alloc(struct cma *cma, unsigned long count, 944 unsigned int align, bool no_warn) 945 { 946 struct page *page; 947 948 page = cma_alloc_frozen(cma, count, align, no_warn); 949 if (page) 950 set_pages_refcounted(page, count); 951 952 return page; 953 } 954 955 static struct cma_memrange *find_cma_memrange(struct cma *cma, 956 const struct page *pages, unsigned long count) 957 { 958 struct cma_memrange *cmr = NULL; 959 unsigned long pfn, end_pfn; 960 int r; 961 962 pr_debug("%s(page %p, count %lu)\n", __func__, (void *)pages, count); 963 964 if (!cma || !pages || count > cma->count) 965 return NULL; 966 967 pfn = page_to_pfn(pages); 968 969 for (r = 0; r < cma->nranges; r++) { 970 cmr = &cma->ranges[r]; 971 end_pfn = cmr->base_pfn + cmr->count; 972 if (pfn >= cmr->base_pfn && pfn < end_pfn) { 973 if (pfn + count <= end_pfn) 974 break; 975 976 VM_WARN_ON_ONCE(1); 977 } 978 } 979 980 if (r == cma->nranges) { 981 pr_debug("%s(page %p, count %lu, no cma range matches the page range)\n", 982 __func__, (void *)pages, count); 983 return NULL; 984 } 985 986 return cmr; 987 } 988 989 static void __cma_release_frozen(struct cma *cma, struct cma_memrange *cmr, 990 const struct page *pages, unsigned long count) 991 { 992 unsigned long pfn = page_to_pfn(pages); 993 994 pr_debug("%s(page %p, count %lu)\n", __func__, (void *)pages, count); 995 996 free_contig_frozen_range(pfn, count); 997 cma_clear_bitmap(cma, cmr, pfn, count); 998 cma_sysfs_account_release_pages(cma, count); 999 trace_cma_release(cma->name, pfn, pages, count); 1000 } 1001 1002 /** 1003 * cma_release() - release allocated pages 1004 * @cma: Contiguous memory region for which the allocation is performed. 1005 * @pages: Allocated pages. 1006 * @count: Number of allocated pages. 1007 * 1008 * This function releases memory allocated by cma_alloc(). 1009 * It returns false when provided pages do not belong to contiguous area and 1010 * true otherwise. 1011 */ 1012 bool cma_release(struct cma *cma, const struct page *pages, 1013 unsigned long count) 1014 { 1015 struct cma_memrange *cmr; 1016 unsigned long i, pfn; 1017 1018 cmr = find_cma_memrange(cma, pages, count); 1019 if (!cmr) 1020 return false; 1021 1022 pfn = page_to_pfn(pages); 1023 for (i = 0; i < count; i++, pfn++) 1024 VM_WARN_ON(!put_page_testzero(pfn_to_page(pfn))); 1025 1026 __cma_release_frozen(cma, cmr, pages, count); 1027 1028 return true; 1029 } 1030 1031 bool cma_release_frozen(struct cma *cma, const struct page *pages, 1032 unsigned long count) 1033 { 1034 struct cma_memrange *cmr; 1035 1036 cmr = find_cma_memrange(cma, pages, count); 1037 if (!cmr) 1038 return false; 1039 1040 __cma_release_frozen(cma, cmr, pages, count); 1041 1042 return true; 1043 } 1044 1045 int cma_for_each_area(int (*it)(struct cma *cma, void *data), void *data) 1046 { 1047 int i; 1048 1049 for (i = 0; i < cma_area_count; i++) { 1050 int ret = it(&cma_areas[i], data); 1051 1052 if (ret) 1053 return ret; 1054 } 1055 1056 return 0; 1057 } 1058 1059 bool cma_intersects(struct cma *cma, unsigned long start, unsigned long end) 1060 { 1061 int r; 1062 struct cma_memrange *cmr; 1063 unsigned long rstart, rend; 1064 1065 for (r = 0; r < cma->nranges; r++) { 1066 cmr = &cma->ranges[r]; 1067 1068 rstart = PFN_PHYS(cmr->base_pfn); 1069 rend = PFN_PHYS(cmr->base_pfn + cmr->count); 1070 if (end < rstart) 1071 continue; 1072 if (start >= rend) 1073 continue; 1074 return true; 1075 } 1076 1077 return false; 1078 } 1079 1080 /* 1081 * Very basic function to reserve memory from a CMA area that has not 1082 * yet been activated. This is expected to be called early, when the 1083 * system is single-threaded, so there is no locking. The alignment 1084 * checking is restrictive - only pageblock-aligned areas 1085 * (CMA_MIN_ALIGNMENT_BYTES) may be reserved through this function. 1086 * This keeps things simple, and is enough for the current use case. 1087 * 1088 * The CMA bitmaps have not yet been allocated, so just start 1089 * reserving from the bottom up, using a PFN to keep track 1090 * of what has been reserved. Unreserving is not possible. 1091 * 1092 * The caller is responsible for initializing the page structures 1093 * in the area properly, since this just points to memblock-allocated 1094 * memory. The caller should subsequently use init_cma_pageblock to 1095 * set the migrate type and CMA stats the pageblocks that were reserved. 1096 * 1097 * If the CMA area fails to activate later, memory obtained through 1098 * this interface is not handed to the page allocator, this is 1099 * the responsibility of the caller (e.g. like normal memblock-allocated 1100 * memory). 1101 */ 1102 void __init *cma_reserve_early(struct cma *cma, unsigned long size) 1103 { 1104 int r; 1105 struct cma_memrange *cmr; 1106 unsigned long available; 1107 void *ret = NULL; 1108 1109 if (!cma || !cma->count) 1110 return NULL; 1111 /* 1112 * Can only be called early in init. 1113 */ 1114 if (test_bit(CMA_ACTIVATED, &cma->flags)) 1115 return NULL; 1116 1117 if (!IS_ALIGNED(size, CMA_MIN_ALIGNMENT_BYTES)) 1118 return NULL; 1119 1120 if (!IS_ALIGNED(size, (PAGE_SIZE << cma->order_per_bit))) 1121 return NULL; 1122 1123 size >>= PAGE_SHIFT; 1124 1125 if (size > cma->available_count) 1126 return NULL; 1127 1128 for (r = 0; r < cma->nranges; r++) { 1129 cmr = &cma->ranges[r]; 1130 available = cmr->count - (cmr->early_pfn - cmr->base_pfn); 1131 if (size <= available) { 1132 ret = phys_to_virt(PFN_PHYS(cmr->early_pfn)); 1133 cmr->early_pfn += size; 1134 cma->available_count -= size; 1135 return ret; 1136 } 1137 } 1138 1139 return ret; 1140 } 1141