1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Contiguous Memory Allocator
4 *
5 * Copyright (c) 2010-2011 by Samsung Electronics.
6 * Copyright IBM Corporation, 2013
7 * Copyright LG Electronics Inc., 2014
8 * Written by:
9 * Marek Szyprowski <m.szyprowski@samsung.com>
10 * Michal Nazarewicz <mina86@mina86.com>
11 * Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
12 * Joonsoo Kim <iamjoonsoo.kim@lge.com>
13 */
14
15 #define pr_fmt(fmt) "cma: " fmt
16
17 #define CREATE_TRACE_POINTS
18
19 #include <linux/memblock.h>
20 #include <linux/err.h>
21 #include <linux/list.h>
22 #include <linux/mm.h>
23 #include <linux/sizes.h>
24 #include <linux/slab.h>
25 #include <linux/log2.h>
26 #include <linux/cma.h>
27 #include <linux/highmem.h>
28 #include <linux/io.h>
29 #include <linux/kmemleak.h>
30 #include <trace/events/cma.h>
31
32 #include "internal.h"
33 #include "cma.h"
34
35 struct cma cma_areas[MAX_CMA_AREAS];
36 unsigned int cma_area_count;
37
38 static int __init __cma_declare_contiguous_nid(phys_addr_t *basep,
39 phys_addr_t size, phys_addr_t limit,
40 phys_addr_t alignment, unsigned int order_per_bit,
41 bool fixed, const char *name, struct cma **res_cma,
42 int nid);
43
cma_get_base(const struct cma * cma)44 phys_addr_t cma_get_base(const struct cma *cma)
45 {
46 WARN_ON_ONCE(cma->nranges != 1);
47 return PFN_PHYS(cma->ranges[0].base_pfn);
48 }
49
cma_get_size(const struct cma * cma)50 unsigned long cma_get_size(const struct cma *cma)
51 {
52 return cma->count << PAGE_SHIFT;
53 }
54
cma_get_name(const struct cma * cma)55 const char *cma_get_name(const struct cma *cma)
56 {
57 return cma->name;
58 }
59
cma_bitmap_aligned_mask(const struct cma * cma,unsigned int align_order)60 static unsigned long cma_bitmap_aligned_mask(const struct cma *cma,
61 unsigned int align_order)
62 {
63 if (align_order <= cma->order_per_bit)
64 return 0;
65 return (1UL << (align_order - cma->order_per_bit)) - 1;
66 }
67
68 /*
69 * Find the offset of the base PFN from the specified align_order.
70 * The value returned is represented in order_per_bits.
71 */
cma_bitmap_aligned_offset(const struct cma * cma,const struct cma_memrange * cmr,unsigned int align_order)72 static unsigned long cma_bitmap_aligned_offset(const struct cma *cma,
73 const struct cma_memrange *cmr,
74 unsigned int align_order)
75 {
76 return (cmr->base_pfn & ((1UL << align_order) - 1))
77 >> cma->order_per_bit;
78 }
79
cma_bitmap_pages_to_bits(const struct cma * cma,unsigned long pages)80 static unsigned long cma_bitmap_pages_to_bits(const struct cma *cma,
81 unsigned long pages)
82 {
83 return ALIGN(pages, 1UL << cma->order_per_bit) >> cma->order_per_bit;
84 }
85
cma_clear_bitmap(struct cma * cma,const struct cma_memrange * cmr,unsigned long pfn,unsigned long count)86 static void cma_clear_bitmap(struct cma *cma, const struct cma_memrange *cmr,
87 unsigned long pfn, unsigned long count)
88 {
89 unsigned long bitmap_no, bitmap_count;
90 unsigned long flags;
91
92 bitmap_no = (pfn - cmr->base_pfn) >> cma->order_per_bit;
93 bitmap_count = cma_bitmap_pages_to_bits(cma, count);
94
95 spin_lock_irqsave(&cma->lock, flags);
96 bitmap_clear(cmr->bitmap, bitmap_no, bitmap_count);
97 cma->available_count += count;
98 spin_unlock_irqrestore(&cma->lock, flags);
99 }
100
101 /*
102 * Check if a CMA area contains no ranges that intersect with
103 * multiple zones. Store the result in the flags in case
104 * this gets called more than once.
105 */
cma_validate_zones(struct cma * cma)106 bool cma_validate_zones(struct cma *cma)
107 {
108 int r;
109 unsigned long base_pfn;
110 struct cma_memrange *cmr;
111 bool valid_bit_set;
112
113 /*
114 * If already validated, return result of previous check.
115 * Either the valid or invalid bit will be set if this
116 * check has already been done. If neither is set, the
117 * check has not been performed yet.
118 */
119 valid_bit_set = test_bit(CMA_ZONES_VALID, &cma->flags);
120 if (valid_bit_set || test_bit(CMA_ZONES_INVALID, &cma->flags))
121 return valid_bit_set;
122
123 for (r = 0; r < cma->nranges; r++) {
124 cmr = &cma->ranges[r];
125 base_pfn = cmr->base_pfn;
126
127 /*
128 * alloc_contig_range() requires the pfn range specified
129 * to be in the same zone. Simplify by forcing the entire
130 * CMA resv range to be in the same zone.
131 */
132 WARN_ON_ONCE(!pfn_valid(base_pfn));
133 if (pfn_range_intersects_zones(cma->nid, base_pfn, cmr->count)) {
134 set_bit(CMA_ZONES_INVALID, &cma->flags);
135 return false;
136 }
137 }
138
139 set_bit(CMA_ZONES_VALID, &cma->flags);
140
141 return true;
142 }
143
cma_activate_area(struct cma * cma)144 static void __init cma_activate_area(struct cma *cma)
145 {
146 unsigned long pfn, end_pfn, early_pfn[CMA_MAX_RANGES];
147 int allocrange, r;
148 struct cma_memrange *cmr;
149 unsigned long bitmap_count, count;
150
151 for (allocrange = 0; allocrange < cma->nranges; allocrange++) {
152 cmr = &cma->ranges[allocrange];
153 early_pfn[allocrange] = cmr->early_pfn;
154 cmr->bitmap = bitmap_zalloc(cma_bitmap_maxno(cma, cmr),
155 GFP_KERNEL);
156 if (!cmr->bitmap)
157 goto cleanup;
158 }
159
160 if (!cma_validate_zones(cma))
161 goto cleanup;
162
163 for (r = 0; r < cma->nranges; r++) {
164 cmr = &cma->ranges[r];
165 if (early_pfn[r] != cmr->base_pfn) {
166 count = early_pfn[r] - cmr->base_pfn;
167 bitmap_count = cma_bitmap_pages_to_bits(cma, count);
168 bitmap_set(cmr->bitmap, 0, bitmap_count);
169 }
170
171 for (pfn = early_pfn[r]; pfn < cmr->base_pfn + cmr->count;
172 pfn += pageblock_nr_pages)
173 init_cma_reserved_pageblock(pfn_to_page(pfn));
174 }
175
176 spin_lock_init(&cma->lock);
177
178 mutex_init(&cma->alloc_mutex);
179
180 #ifdef CONFIG_CMA_DEBUGFS
181 INIT_HLIST_HEAD(&cma->mem_head);
182 spin_lock_init(&cma->mem_head_lock);
183 #endif
184 set_bit(CMA_ACTIVATED, &cma->flags);
185
186 return;
187
188 cleanup:
189 for (r = 0; r < allocrange; r++)
190 bitmap_free(cma->ranges[r].bitmap);
191
192 /* Expose all pages to the buddy, they are useless for CMA. */
193 if (!test_bit(CMA_RESERVE_PAGES_ON_ERROR, &cma->flags)) {
194 for (r = 0; r < allocrange; r++) {
195 cmr = &cma->ranges[r];
196 end_pfn = cmr->base_pfn + cmr->count;
197 for (pfn = early_pfn[r]; pfn < end_pfn; pfn++)
198 free_reserved_page(pfn_to_page(pfn));
199 }
200 }
201 totalcma_pages -= cma->count;
202 cma->available_count = cma->count = 0;
203 pr_err("CMA area %s could not be activated\n", cma->name);
204 }
205
cma_init_reserved_areas(void)206 static int __init cma_init_reserved_areas(void)
207 {
208 int i;
209
210 for (i = 0; i < cma_area_count; i++)
211 cma_activate_area(&cma_areas[i]);
212
213 return 0;
214 }
215 core_initcall(cma_init_reserved_areas);
216
cma_reserve_pages_on_error(struct cma * cma)217 void __init cma_reserve_pages_on_error(struct cma *cma)
218 {
219 set_bit(CMA_RESERVE_PAGES_ON_ERROR, &cma->flags);
220 }
221
cma_new_area(const char * name,phys_addr_t size,unsigned int order_per_bit,struct cma ** res_cma)222 static int __init cma_new_area(const char *name, phys_addr_t size,
223 unsigned int order_per_bit,
224 struct cma **res_cma)
225 {
226 struct cma *cma;
227
228 if (cma_area_count == ARRAY_SIZE(cma_areas)) {
229 pr_err("Not enough slots for CMA reserved regions!\n");
230 return -ENOSPC;
231 }
232
233 /*
234 * Each reserved area must be initialised later, when more kernel
235 * subsystems (like slab allocator) are available.
236 */
237 cma = &cma_areas[cma_area_count];
238 cma_area_count++;
239
240 if (name)
241 snprintf(cma->name, CMA_MAX_NAME, "%s", name);
242 else
243 snprintf(cma->name, CMA_MAX_NAME, "cma%d\n", cma_area_count);
244
245 cma->available_count = cma->count = size >> PAGE_SHIFT;
246 cma->order_per_bit = order_per_bit;
247 *res_cma = cma;
248 totalcma_pages += cma->count;
249
250 return 0;
251 }
252
cma_drop_area(struct cma * cma)253 static void __init cma_drop_area(struct cma *cma)
254 {
255 totalcma_pages -= cma->count;
256 cma_area_count--;
257 }
258
259 /**
260 * cma_init_reserved_mem() - create custom contiguous area from reserved memory
261 * @base: Base address of the reserved area
262 * @size: Size of the reserved area (in bytes),
263 * @order_per_bit: Order of pages represented by one bit on bitmap.
264 * @name: The name of the area. If this parameter is NULL, the name of
265 * the area will be set to "cmaN", where N is a running counter of
266 * used areas.
267 * @res_cma: Pointer to store the created cma region.
268 *
269 * This function creates custom contiguous area from already reserved memory.
270 */
cma_init_reserved_mem(phys_addr_t base,phys_addr_t size,unsigned int order_per_bit,const char * name,struct cma ** res_cma)271 int __init cma_init_reserved_mem(phys_addr_t base, phys_addr_t size,
272 unsigned int order_per_bit,
273 const char *name,
274 struct cma **res_cma)
275 {
276 struct cma *cma;
277 int ret;
278
279 /* Sanity checks */
280 if (!size || !memblock_is_region_reserved(base, size))
281 return -EINVAL;
282
283 /*
284 * CMA uses CMA_MIN_ALIGNMENT_BYTES as alignment requirement which
285 * needs pageblock_order to be initialized. Let's enforce it.
286 */
287 if (!pageblock_order) {
288 pr_err("pageblock_order not yet initialized. Called during early boot?\n");
289 return -EINVAL;
290 }
291
292 /* ensure minimal alignment required by mm core */
293 if (!IS_ALIGNED(base | size, CMA_MIN_ALIGNMENT_BYTES))
294 return -EINVAL;
295
296 ret = cma_new_area(name, size, order_per_bit, &cma);
297 if (ret != 0)
298 return ret;
299
300 cma->ranges[0].base_pfn = PFN_DOWN(base);
301 cma->ranges[0].early_pfn = PFN_DOWN(base);
302 cma->ranges[0].count = cma->count;
303 cma->nranges = 1;
304 cma->nid = NUMA_NO_NODE;
305
306 *res_cma = cma;
307
308 return 0;
309 }
310
311 /*
312 * Structure used while walking physical memory ranges and finding out
313 * which one(s) to use for a CMA area.
314 */
315 struct cma_init_memrange {
316 phys_addr_t base;
317 phys_addr_t size;
318 struct list_head list;
319 };
320
321 /*
322 * Work array used during CMA initialization.
323 */
324 static struct cma_init_memrange memranges[CMA_MAX_RANGES] __initdata;
325
revsizecmp(struct cma_init_memrange * mlp,struct cma_init_memrange * mrp)326 static bool __init revsizecmp(struct cma_init_memrange *mlp,
327 struct cma_init_memrange *mrp)
328 {
329 return mlp->size > mrp->size;
330 }
331
basecmp(struct cma_init_memrange * mlp,struct cma_init_memrange * mrp)332 static bool __init basecmp(struct cma_init_memrange *mlp,
333 struct cma_init_memrange *mrp)
334 {
335 return mlp->base < mrp->base;
336 }
337
338 /*
339 * Helper function to create sorted lists.
340 */
list_insert_sorted(struct list_head * ranges,struct cma_init_memrange * mrp,bool (* cmp)(struct cma_init_memrange * lh,struct cma_init_memrange * rh))341 static void __init list_insert_sorted(
342 struct list_head *ranges,
343 struct cma_init_memrange *mrp,
344 bool (*cmp)(struct cma_init_memrange *lh, struct cma_init_memrange *rh))
345 {
346 struct list_head *mp;
347 struct cma_init_memrange *mlp;
348
349 if (list_empty(ranges))
350 list_add(&mrp->list, ranges);
351 else {
352 list_for_each(mp, ranges) {
353 mlp = list_entry(mp, struct cma_init_memrange, list);
354 if (cmp(mlp, mrp))
355 break;
356 }
357 __list_add(&mrp->list, mlp->list.prev, &mlp->list);
358 }
359 }
360
361 /*
362 * Create CMA areas with a total size of @total_size. A normal allocation
363 * for one area is tried first. If that fails, the biggest memblock
364 * ranges above 4G are selected, and allocated bottom up.
365 *
366 * The complexity here is not great, but this function will only be
367 * called during boot, and the lists operated on have fewer than
368 * CMA_MAX_RANGES elements (default value: 8).
369 */
cma_declare_contiguous_multi(phys_addr_t total_size,phys_addr_t align,unsigned int order_per_bit,const char * name,struct cma ** res_cma,int nid)370 int __init cma_declare_contiguous_multi(phys_addr_t total_size,
371 phys_addr_t align, unsigned int order_per_bit,
372 const char *name, struct cma **res_cma, int nid)
373 {
374 phys_addr_t start = 0, end;
375 phys_addr_t size, sizesum, sizeleft;
376 struct cma_init_memrange *mrp, *mlp, *failed;
377 struct cma_memrange *cmrp;
378 LIST_HEAD(ranges);
379 LIST_HEAD(final_ranges);
380 struct list_head *mp, *next;
381 int ret, nr = 1;
382 u64 i;
383 struct cma *cma;
384
385 /*
386 * First, try it the normal way, producing just one range.
387 */
388 ret = __cma_declare_contiguous_nid(&start, total_size, 0, align,
389 order_per_bit, false, name, res_cma, nid);
390 if (ret != -ENOMEM)
391 goto out;
392
393 /*
394 * Couldn't find one range that fits our needs, so try multiple
395 * ranges.
396 *
397 * No need to do the alignment checks here, the call to
398 * cma_declare_contiguous_nid above would have caught
399 * any issues. With the checks, we know that:
400 *
401 * - @align is a power of 2
402 * - @align is >= pageblock alignment
403 * - @size is aligned to @align and to @order_per_bit
404 *
405 * So, as long as we create ranges that have a base
406 * aligned to @align, and a size that is aligned to
407 * both @align and @order_to_bit, things will work out.
408 */
409 nr = 0;
410 sizesum = 0;
411 failed = NULL;
412
413 ret = cma_new_area(name, total_size, order_per_bit, &cma);
414 if (ret != 0)
415 goto out;
416
417 align = max_t(phys_addr_t, align, CMA_MIN_ALIGNMENT_BYTES);
418 /*
419 * Create a list of ranges above 4G, largest range first.
420 */
421 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &start, &end, NULL) {
422 if (upper_32_bits(start) == 0)
423 continue;
424
425 start = ALIGN(start, align);
426 if (start >= end)
427 continue;
428
429 end = ALIGN_DOWN(end, align);
430 if (end <= start)
431 continue;
432
433 size = end - start;
434 size = ALIGN_DOWN(size, (PAGE_SIZE << order_per_bit));
435 if (!size)
436 continue;
437 sizesum += size;
438
439 pr_debug("consider %016llx - %016llx\n", (u64)start, (u64)end);
440
441 /*
442 * If we don't yet have used the maximum number of
443 * areas, grab a new one.
444 *
445 * If we can't use anymore, see if this range is not
446 * smaller than the smallest one already recorded. If
447 * not, re-use the smallest element.
448 */
449 if (nr < CMA_MAX_RANGES)
450 mrp = &memranges[nr++];
451 else {
452 mrp = list_last_entry(&ranges,
453 struct cma_init_memrange, list);
454 if (size < mrp->size)
455 continue;
456 list_del(&mrp->list);
457 sizesum -= mrp->size;
458 pr_debug("deleted %016llx - %016llx from the list\n",
459 (u64)mrp->base, (u64)mrp->base + size);
460 }
461 mrp->base = start;
462 mrp->size = size;
463
464 /*
465 * Now do a sorted insert.
466 */
467 list_insert_sorted(&ranges, mrp, revsizecmp);
468 pr_debug("added %016llx - %016llx to the list\n",
469 (u64)mrp->base, (u64)mrp->base + size);
470 pr_debug("total size now %llu\n", (u64)sizesum);
471 }
472
473 /*
474 * There is not enough room in the CMA_MAX_RANGES largest
475 * ranges, so bail out.
476 */
477 if (sizesum < total_size) {
478 cma_drop_area(cma);
479 ret = -ENOMEM;
480 goto out;
481 }
482
483 /*
484 * Found ranges that provide enough combined space.
485 * Now, sorted them by address, smallest first, because we
486 * want to mimic a bottom-up memblock allocation.
487 */
488 sizesum = 0;
489 list_for_each_safe(mp, next, &ranges) {
490 mlp = list_entry(mp, struct cma_init_memrange, list);
491 list_del(mp);
492 list_insert_sorted(&final_ranges, mlp, basecmp);
493 sizesum += mlp->size;
494 if (sizesum >= total_size)
495 break;
496 }
497
498 /*
499 * Walk the final list, and add a CMA range for
500 * each range, possibly not using the last one fully.
501 */
502 nr = 0;
503 sizeleft = total_size;
504 list_for_each(mp, &final_ranges) {
505 mlp = list_entry(mp, struct cma_init_memrange, list);
506 size = min(sizeleft, mlp->size);
507 if (memblock_reserve(mlp->base, size)) {
508 /*
509 * Unexpected error. Could go on to
510 * the next one, but just abort to
511 * be safe.
512 */
513 failed = mlp;
514 break;
515 }
516
517 pr_debug("created region %d: %016llx - %016llx\n",
518 nr, (u64)mlp->base, (u64)mlp->base + size);
519 cmrp = &cma->ranges[nr++];
520 cmrp->base_pfn = PHYS_PFN(mlp->base);
521 cmrp->early_pfn = cmrp->base_pfn;
522 cmrp->count = size >> PAGE_SHIFT;
523
524 sizeleft -= size;
525 if (sizeleft == 0)
526 break;
527 }
528
529 if (failed) {
530 list_for_each(mp, &final_ranges) {
531 mlp = list_entry(mp, struct cma_init_memrange, list);
532 if (mlp == failed)
533 break;
534 memblock_phys_free(mlp->base, mlp->size);
535 }
536 cma_drop_area(cma);
537 ret = -ENOMEM;
538 goto out;
539 }
540
541 cma->nranges = nr;
542 cma->nid = nid;
543 *res_cma = cma;
544
545 out:
546 if (ret != 0)
547 pr_err("Failed to reserve %lu MiB\n",
548 (unsigned long)total_size / SZ_1M);
549 else
550 pr_info("Reserved %lu MiB in %d range%s\n",
551 (unsigned long)total_size / SZ_1M, nr,
552 nr > 1 ? "s" : "");
553 return ret;
554 }
555
556 /**
557 * cma_declare_contiguous_nid() - reserve custom contiguous area
558 * @base: Base address of the reserved area optional, use 0 for any
559 * @size: Size of the reserved area (in bytes),
560 * @limit: End address of the reserved memory (optional, 0 for any).
561 * @alignment: Alignment for the CMA area, should be power of 2 or zero
562 * @order_per_bit: Order of pages represented by one bit on bitmap.
563 * @fixed: hint about where to place the reserved area
564 * @name: The name of the area. See function cma_init_reserved_mem()
565 * @res_cma: Pointer to store the created cma region.
566 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
567 *
568 * This function reserves memory from early allocator. It should be
569 * called by arch specific code once the early allocator (memblock or bootmem)
570 * has been activated and all other subsystems have already allocated/reserved
571 * memory. This function allows to create custom reserved areas.
572 *
573 * If @fixed is true, reserve contiguous area at exactly @base. If false,
574 * reserve in range from @base to @limit.
575 */
cma_declare_contiguous_nid(phys_addr_t base,phys_addr_t size,phys_addr_t limit,phys_addr_t alignment,unsigned int order_per_bit,bool fixed,const char * name,struct cma ** res_cma,int nid)576 int __init cma_declare_contiguous_nid(phys_addr_t base,
577 phys_addr_t size, phys_addr_t limit,
578 phys_addr_t alignment, unsigned int order_per_bit,
579 bool fixed, const char *name, struct cma **res_cma,
580 int nid)
581 {
582 int ret;
583
584 ret = __cma_declare_contiguous_nid(&base, size, limit, alignment,
585 order_per_bit, fixed, name, res_cma, nid);
586 if (ret != 0)
587 pr_err("Failed to reserve %ld MiB\n",
588 (unsigned long)size / SZ_1M);
589 else
590 pr_info("Reserved %ld MiB at %pa\n",
591 (unsigned long)size / SZ_1M, &base);
592
593 return ret;
594 }
595
__cma_declare_contiguous_nid(phys_addr_t * basep,phys_addr_t size,phys_addr_t limit,phys_addr_t alignment,unsigned int order_per_bit,bool fixed,const char * name,struct cma ** res_cma,int nid)596 static int __init __cma_declare_contiguous_nid(phys_addr_t *basep,
597 phys_addr_t size, phys_addr_t limit,
598 phys_addr_t alignment, unsigned int order_per_bit,
599 bool fixed, const char *name, struct cma **res_cma,
600 int nid)
601 {
602 phys_addr_t memblock_end = memblock_end_of_DRAM();
603 phys_addr_t highmem_start, base = *basep;
604 int ret;
605
606 /*
607 * We can't use __pa(high_memory) directly, since high_memory
608 * isn't a valid direct map VA, and DEBUG_VIRTUAL will (validly)
609 * complain. Find the boundary by adding one to the last valid
610 * address.
611 */
612 if (IS_ENABLED(CONFIG_HIGHMEM))
613 highmem_start = __pa(high_memory - 1) + 1;
614 else
615 highmem_start = memblock_end_of_DRAM();
616 pr_debug("%s(size %pa, base %pa, limit %pa alignment %pa)\n",
617 __func__, &size, &base, &limit, &alignment);
618
619 if (cma_area_count == ARRAY_SIZE(cma_areas)) {
620 pr_err("Not enough slots for CMA reserved regions!\n");
621 return -ENOSPC;
622 }
623
624 if (!size)
625 return -EINVAL;
626
627 if (alignment && !is_power_of_2(alignment))
628 return -EINVAL;
629
630 if (!IS_ENABLED(CONFIG_NUMA))
631 nid = NUMA_NO_NODE;
632
633 /* Sanitise input arguments. */
634 alignment = max_t(phys_addr_t, alignment, CMA_MIN_ALIGNMENT_BYTES);
635 if (fixed && base & (alignment - 1)) {
636 pr_err("Region at %pa must be aligned to %pa bytes\n",
637 &base, &alignment);
638 return -EINVAL;
639 }
640 base = ALIGN(base, alignment);
641 size = ALIGN(size, alignment);
642 limit &= ~(alignment - 1);
643
644 if (!base)
645 fixed = false;
646
647 /* size should be aligned with order_per_bit */
648 if (!IS_ALIGNED(size >> PAGE_SHIFT, 1 << order_per_bit))
649 return -EINVAL;
650
651 /*
652 * If allocating at a fixed base the request region must not cross the
653 * low/high memory boundary.
654 */
655 if (fixed && base < highmem_start && base + size > highmem_start) {
656 pr_err("Region at %pa defined on low/high memory boundary (%pa)\n",
657 &base, &highmem_start);
658 return -EINVAL;
659 }
660
661 /*
662 * If the limit is unspecified or above the memblock end, its effective
663 * value will be the memblock end. Set it explicitly to simplify further
664 * checks.
665 */
666 if (limit == 0 || limit > memblock_end)
667 limit = memblock_end;
668
669 if (base + size > limit) {
670 pr_err("Size (%pa) of region at %pa exceeds limit (%pa)\n",
671 &size, &base, &limit);
672 return -EINVAL;
673 }
674
675 /* Reserve memory */
676 if (fixed) {
677 if (memblock_is_region_reserved(base, size) ||
678 memblock_reserve(base, size) < 0) {
679 return -EBUSY;
680 }
681 } else {
682 phys_addr_t addr = 0;
683
684 /*
685 * If there is enough memory, try a bottom-up allocation first.
686 * It will place the new cma area close to the start of the node
687 * and guarantee that the compaction is moving pages out of the
688 * cma area and not into it.
689 * Avoid using first 4GB to not interfere with constrained zones
690 * like DMA/DMA32.
691 */
692 #ifdef CONFIG_PHYS_ADDR_T_64BIT
693 if (!memblock_bottom_up() && memblock_end >= SZ_4G + size) {
694 memblock_set_bottom_up(true);
695 addr = memblock_alloc_range_nid(size, alignment, SZ_4G,
696 limit, nid, true);
697 memblock_set_bottom_up(false);
698 }
699 #endif
700
701 /*
702 * All pages in the reserved area must come from the same zone.
703 * If the requested region crosses the low/high memory boundary,
704 * try allocating from high memory first and fall back to low
705 * memory in case of failure.
706 */
707 if (!addr && base < highmem_start && limit > highmem_start) {
708 addr = memblock_alloc_range_nid(size, alignment,
709 highmem_start, limit, nid, true);
710 limit = highmem_start;
711 }
712
713 if (!addr) {
714 addr = memblock_alloc_range_nid(size, alignment, base,
715 limit, nid, true);
716 if (!addr)
717 return -ENOMEM;
718 }
719
720 /*
721 * kmemleak scans/reads tracked objects for pointers to other
722 * objects but this address isn't mapped and accessible
723 */
724 kmemleak_ignore_phys(addr);
725 base = addr;
726 }
727
728 ret = cma_init_reserved_mem(base, size, order_per_bit, name, res_cma);
729 if (ret) {
730 memblock_phys_free(base, size);
731 return ret;
732 }
733
734 (*res_cma)->nid = nid;
735 *basep = base;
736
737 return 0;
738 }
739
cma_debug_show_areas(struct cma * cma)740 static void cma_debug_show_areas(struct cma *cma)
741 {
742 unsigned long next_zero_bit, next_set_bit, nr_zero;
743 unsigned long start;
744 unsigned long nr_part;
745 unsigned long nbits;
746 int r;
747 struct cma_memrange *cmr;
748
749 spin_lock_irq(&cma->lock);
750 pr_info("number of available pages: ");
751 for (r = 0; r < cma->nranges; r++) {
752 cmr = &cma->ranges[r];
753
754 start = 0;
755 nbits = cma_bitmap_maxno(cma, cmr);
756
757 pr_info("range %d: ", r);
758 for (;;) {
759 next_zero_bit = find_next_zero_bit(cmr->bitmap,
760 nbits, start);
761 if (next_zero_bit >= nbits)
762 break;
763 next_set_bit = find_next_bit(cmr->bitmap, nbits,
764 next_zero_bit);
765 nr_zero = next_set_bit - next_zero_bit;
766 nr_part = nr_zero << cma->order_per_bit;
767 pr_cont("%s%lu@%lu", start ? "+" : "", nr_part,
768 next_zero_bit);
769 start = next_zero_bit + nr_zero;
770 }
771 pr_info("\n");
772 }
773 pr_cont("=> %lu free of %lu total pages\n", cma->available_count,
774 cma->count);
775 spin_unlock_irq(&cma->lock);
776 }
777
cma_range_alloc(struct cma * cma,struct cma_memrange * cmr,unsigned long count,unsigned int align,struct page ** pagep,gfp_t gfp)778 static int cma_range_alloc(struct cma *cma, struct cma_memrange *cmr,
779 unsigned long count, unsigned int align,
780 struct page **pagep, gfp_t gfp)
781 {
782 unsigned long mask, offset;
783 unsigned long pfn = -1;
784 unsigned long start = 0;
785 unsigned long bitmap_maxno, bitmap_no, bitmap_count;
786 int ret = -EBUSY;
787 struct page *page = NULL;
788
789 mask = cma_bitmap_aligned_mask(cma, align);
790 offset = cma_bitmap_aligned_offset(cma, cmr, align);
791 bitmap_maxno = cma_bitmap_maxno(cma, cmr);
792 bitmap_count = cma_bitmap_pages_to_bits(cma, count);
793
794 if (bitmap_count > bitmap_maxno)
795 goto out;
796
797 for (;;) {
798 spin_lock_irq(&cma->lock);
799 /*
800 * If the request is larger than the available number
801 * of pages, stop right away.
802 */
803 if (count > cma->available_count) {
804 spin_unlock_irq(&cma->lock);
805 break;
806 }
807 bitmap_no = bitmap_find_next_zero_area_off(cmr->bitmap,
808 bitmap_maxno, start, bitmap_count, mask,
809 offset);
810 if (bitmap_no >= bitmap_maxno) {
811 spin_unlock_irq(&cma->lock);
812 break;
813 }
814 bitmap_set(cmr->bitmap, bitmap_no, bitmap_count);
815 cma->available_count -= count;
816 /*
817 * It's safe to drop the lock here. We've marked this region for
818 * our exclusive use. If the migration fails we will take the
819 * lock again and unmark it.
820 */
821 spin_unlock_irq(&cma->lock);
822
823 pfn = cmr->base_pfn + (bitmap_no << cma->order_per_bit);
824 mutex_lock(&cma->alloc_mutex);
825 ret = alloc_contig_range(pfn, pfn + count, MIGRATE_CMA, gfp);
826 mutex_unlock(&cma->alloc_mutex);
827 if (ret == 0) {
828 page = pfn_to_page(pfn);
829 break;
830 }
831
832 cma_clear_bitmap(cma, cmr, pfn, count);
833 if (ret != -EBUSY)
834 break;
835
836 pr_debug("%s(): memory range at pfn 0x%lx %p is busy, retrying\n",
837 __func__, pfn, pfn_to_page(pfn));
838
839 trace_cma_alloc_busy_retry(cma->name, pfn, pfn_to_page(pfn),
840 count, align);
841 /* try again with a bit different memory target */
842 start = bitmap_no + mask + 1;
843 }
844 out:
845 *pagep = page;
846 return ret;
847 }
848
__cma_alloc(struct cma * cma,unsigned long count,unsigned int align,gfp_t gfp)849 static struct page *__cma_alloc(struct cma *cma, unsigned long count,
850 unsigned int align, gfp_t gfp)
851 {
852 struct page *page = NULL;
853 int ret = -ENOMEM, r;
854 unsigned long i;
855 const char *name = cma ? cma->name : NULL;
856
857 trace_cma_alloc_start(name, count, align);
858
859 if (!cma || !cma->count)
860 return page;
861
862 pr_debug("%s(cma %p, name: %s, count %lu, align %d)\n", __func__,
863 (void *)cma, cma->name, count, align);
864
865 if (!count)
866 return page;
867
868 for (r = 0; r < cma->nranges; r++) {
869 page = NULL;
870
871 ret = cma_range_alloc(cma, &cma->ranges[r], count, align,
872 &page, gfp);
873 if (ret != -EBUSY || page)
874 break;
875 }
876
877 /*
878 * CMA can allocate multiple page blocks, which results in different
879 * blocks being marked with different tags. Reset the tags to ignore
880 * those page blocks.
881 */
882 if (page) {
883 for (i = 0; i < count; i++)
884 page_kasan_tag_reset(nth_page(page, i));
885 }
886
887 if (ret && !(gfp & __GFP_NOWARN)) {
888 pr_err_ratelimited("%s: %s: alloc failed, req-size: %lu pages, ret: %d\n",
889 __func__, cma->name, count, ret);
890 cma_debug_show_areas(cma);
891 }
892
893 pr_debug("%s(): returned %p\n", __func__, page);
894 trace_cma_alloc_finish(name, page ? page_to_pfn(page) : 0,
895 page, count, align, ret);
896 if (page) {
897 count_vm_event(CMA_ALLOC_SUCCESS);
898 cma_sysfs_account_success_pages(cma, count);
899 } else {
900 count_vm_event(CMA_ALLOC_FAIL);
901 cma_sysfs_account_fail_pages(cma, count);
902 }
903
904 return page;
905 }
906
907 /**
908 * cma_alloc() - allocate pages from contiguous area
909 * @cma: Contiguous memory region for which the allocation is performed.
910 * @count: Requested number of pages.
911 * @align: Requested alignment of pages (in PAGE_SIZE order).
912 * @no_warn: Avoid printing message about failed allocation
913 *
914 * This function allocates part of contiguous memory on specific
915 * contiguous memory area.
916 */
cma_alloc(struct cma * cma,unsigned long count,unsigned int align,bool no_warn)917 struct page *cma_alloc(struct cma *cma, unsigned long count,
918 unsigned int align, bool no_warn)
919 {
920 return __cma_alloc(cma, count, align, GFP_KERNEL | (no_warn ? __GFP_NOWARN : 0));
921 }
922
cma_alloc_folio(struct cma * cma,int order,gfp_t gfp)923 struct folio *cma_alloc_folio(struct cma *cma, int order, gfp_t gfp)
924 {
925 struct page *page;
926
927 if (WARN_ON(!order || !(gfp & __GFP_COMP)))
928 return NULL;
929
930 page = __cma_alloc(cma, 1 << order, order, gfp);
931
932 return page ? page_folio(page) : NULL;
933 }
934
cma_pages_valid(struct cma * cma,const struct page * pages,unsigned long count)935 bool cma_pages_valid(struct cma *cma, const struct page *pages,
936 unsigned long count)
937 {
938 unsigned long pfn, end;
939 int r;
940 struct cma_memrange *cmr;
941 bool ret;
942
943 if (!cma || !pages || count > cma->count)
944 return false;
945
946 pfn = page_to_pfn(pages);
947 ret = false;
948
949 for (r = 0; r < cma->nranges; r++) {
950 cmr = &cma->ranges[r];
951 end = cmr->base_pfn + cmr->count;
952 if (pfn >= cmr->base_pfn && pfn < end) {
953 ret = pfn + count <= end;
954 break;
955 }
956 }
957
958 if (!ret)
959 pr_debug("%s(page %p, count %lu)\n",
960 __func__, (void *)pages, count);
961
962 return ret;
963 }
964
965 /**
966 * cma_release() - release allocated pages
967 * @cma: Contiguous memory region for which the allocation is performed.
968 * @pages: Allocated pages.
969 * @count: Number of allocated pages.
970 *
971 * This function releases memory allocated by cma_alloc().
972 * It returns false when provided pages do not belong to contiguous area and
973 * true otherwise.
974 */
cma_release(struct cma * cma,const struct page * pages,unsigned long count)975 bool cma_release(struct cma *cma, const struct page *pages,
976 unsigned long count)
977 {
978 struct cma_memrange *cmr;
979 unsigned long pfn, end_pfn;
980 int r;
981
982 pr_debug("%s(page %p, count %lu)\n", __func__, (void *)pages, count);
983
984 if (!cma_pages_valid(cma, pages, count))
985 return false;
986
987 pfn = page_to_pfn(pages);
988 end_pfn = pfn + count;
989
990 for (r = 0; r < cma->nranges; r++) {
991 cmr = &cma->ranges[r];
992 if (pfn >= cmr->base_pfn &&
993 pfn < (cmr->base_pfn + cmr->count)) {
994 VM_BUG_ON(end_pfn > cmr->base_pfn + cmr->count);
995 break;
996 }
997 }
998
999 if (r == cma->nranges)
1000 return false;
1001
1002 free_contig_range(pfn, count);
1003 cma_clear_bitmap(cma, cmr, pfn, count);
1004 cma_sysfs_account_release_pages(cma, count);
1005 trace_cma_release(cma->name, pfn, pages, count);
1006
1007 return true;
1008 }
1009
cma_free_folio(struct cma * cma,const struct folio * folio)1010 bool cma_free_folio(struct cma *cma, const struct folio *folio)
1011 {
1012 if (WARN_ON(!folio_test_large(folio)))
1013 return false;
1014
1015 return cma_release(cma, &folio->page, folio_nr_pages(folio));
1016 }
1017
cma_for_each_area(int (* it)(struct cma * cma,void * data),void * data)1018 int cma_for_each_area(int (*it)(struct cma *cma, void *data), void *data)
1019 {
1020 int i;
1021
1022 for (i = 0; i < cma_area_count; i++) {
1023 int ret = it(&cma_areas[i], data);
1024
1025 if (ret)
1026 return ret;
1027 }
1028
1029 return 0;
1030 }
1031
cma_intersects(struct cma * cma,unsigned long start,unsigned long end)1032 bool cma_intersects(struct cma *cma, unsigned long start, unsigned long end)
1033 {
1034 int r;
1035 struct cma_memrange *cmr;
1036 unsigned long rstart, rend;
1037
1038 for (r = 0; r < cma->nranges; r++) {
1039 cmr = &cma->ranges[r];
1040
1041 rstart = PFN_PHYS(cmr->base_pfn);
1042 rend = PFN_PHYS(cmr->base_pfn + cmr->count);
1043 if (end < rstart)
1044 continue;
1045 if (start >= rend)
1046 continue;
1047 return true;
1048 }
1049
1050 return false;
1051 }
1052
1053 /*
1054 * Very basic function to reserve memory from a CMA area that has not
1055 * yet been activated. This is expected to be called early, when the
1056 * system is single-threaded, so there is no locking. The alignment
1057 * checking is restrictive - only pageblock-aligned areas
1058 * (CMA_MIN_ALIGNMENT_BYTES) may be reserved through this function.
1059 * This keeps things simple, and is enough for the current use case.
1060 *
1061 * The CMA bitmaps have not yet been allocated, so just start
1062 * reserving from the bottom up, using a PFN to keep track
1063 * of what has been reserved. Unreserving is not possible.
1064 *
1065 * The caller is responsible for initializing the page structures
1066 * in the area properly, since this just points to memblock-allocated
1067 * memory. The caller should subsequently use init_cma_pageblock to
1068 * set the migrate type and CMA stats the pageblocks that were reserved.
1069 *
1070 * If the CMA area fails to activate later, memory obtained through
1071 * this interface is not handed to the page allocator, this is
1072 * the responsibility of the caller (e.g. like normal memblock-allocated
1073 * memory).
1074 */
cma_reserve_early(struct cma * cma,unsigned long size)1075 void __init *cma_reserve_early(struct cma *cma, unsigned long size)
1076 {
1077 int r;
1078 struct cma_memrange *cmr;
1079 unsigned long available;
1080 void *ret = NULL;
1081
1082 if (!cma || !cma->count)
1083 return NULL;
1084 /*
1085 * Can only be called early in init.
1086 */
1087 if (test_bit(CMA_ACTIVATED, &cma->flags))
1088 return NULL;
1089
1090 if (!IS_ALIGNED(size, CMA_MIN_ALIGNMENT_BYTES))
1091 return NULL;
1092
1093 if (!IS_ALIGNED(size, (PAGE_SIZE << cma->order_per_bit)))
1094 return NULL;
1095
1096 size >>= PAGE_SHIFT;
1097
1098 if (size > cma->available_count)
1099 return NULL;
1100
1101 for (r = 0; r < cma->nranges; r++) {
1102 cmr = &cma->ranges[r];
1103 available = cmr->count - (cmr->early_pfn - cmr->base_pfn);
1104 if (size <= available) {
1105 ret = phys_to_virt(PFN_PHYS(cmr->early_pfn));
1106 cmr->early_pfn += size;
1107 cma->available_count -= size;
1108 return ret;
1109 }
1110 }
1111
1112 return ret;
1113 }
1114