xref: /linux/fs/btrfs/send.c (revision c059361673e487fe33bb736fb944f313024ad726)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Alexander Block.  All rights reserved.
4  */
5 
6 #include <linux/bsearch.h>
7 #include <linux/fs.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/radix-tree.h>
14 #include <linux/vmalloc.h>
15 #include <linux/string.h>
16 #include <linux/compat.h>
17 #include <linux/crc32c.h>
18 #include <linux/fsverity.h>
19 
20 #include "send.h"
21 #include "ctree.h"
22 #include "backref.h"
23 #include "locking.h"
24 #include "disk-io.h"
25 #include "btrfs_inode.h"
26 #include "transaction.h"
27 #include "compression.h"
28 #include "print-tree.h"
29 #include "accessors.h"
30 #include "dir-item.h"
31 #include "file-item.h"
32 #include "ioctl.h"
33 #include "verity.h"
34 #include "lru_cache.h"
35 
36 /*
37  * Maximum number of references an extent can have in order for us to attempt to
38  * issue clone operations instead of write operations. This currently exists to
39  * avoid hitting limitations of the backreference walking code (taking a lot of
40  * time and using too much memory for extents with large number of references).
41  */
42 #define SEND_MAX_EXTENT_REFS	1024
43 
44 /*
45  * A fs_path is a helper to dynamically build path names with unknown size.
46  * It reallocates the internal buffer on demand.
47  * It allows fast adding of path elements on the right side (normal path) and
48  * fast adding to the left side (reversed path). A reversed path can also be
49  * unreversed if needed.
50  */
51 struct fs_path {
52 	union {
53 		struct {
54 			char *start;
55 			char *end;
56 
57 			char *buf;
58 			unsigned short buf_len:15;
59 			unsigned short reversed:1;
60 			char inline_buf[];
61 		};
62 		/*
63 		 * Average path length does not exceed 200 bytes, we'll have
64 		 * better packing in the slab and higher chance to satisfy
65 		 * an allocation later during send.
66 		 */
67 		char pad[256];
68 	};
69 };
70 #define FS_PATH_INLINE_SIZE \
71 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
72 
73 
74 /* reused for each extent */
75 struct clone_root {
76 	struct btrfs_root *root;
77 	u64 ino;
78 	u64 offset;
79 	u64 num_bytes;
80 	bool found_ref;
81 };
82 
83 #define SEND_MAX_NAME_CACHE_SIZE			256
84 
85 /*
86  * Limit the root_ids array of struct backref_cache_entry to 17 elements.
87  * This makes the size of a cache entry to be exactly 192 bytes on x86_64, which
88  * can be satisfied from the kmalloc-192 slab, without wasting any space.
89  * The most common case is to have a single root for cloning, which corresponds
90  * to the send root. Having the user specify more than 16 clone roots is not
91  * common, and in such rare cases we simply don't use caching if the number of
92  * cloning roots that lead down to a leaf is more than 17.
93  */
94 #define SEND_MAX_BACKREF_CACHE_ROOTS			17
95 
96 /*
97  * Max number of entries in the cache.
98  * With SEND_MAX_BACKREF_CACHE_ROOTS as 17, the size in bytes, excluding
99  * maple tree's internal nodes, is 24K.
100  */
101 #define SEND_MAX_BACKREF_CACHE_SIZE 128
102 
103 /*
104  * A backref cache entry maps a leaf to a list of IDs of roots from which the
105  * leaf is accessible and we can use for clone operations.
106  * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on
107  * x86_64).
108  */
109 struct backref_cache_entry {
110 	struct btrfs_lru_cache_entry entry;
111 	u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS];
112 	/* Number of valid elements in the root_ids array. */
113 	int num_roots;
114 };
115 
116 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
117 static_assert(offsetof(struct backref_cache_entry, entry) == 0);
118 
119 /*
120  * Max number of entries in the cache that stores directories that were already
121  * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
122  * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
123  * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
124  */
125 #define SEND_MAX_DIR_CREATED_CACHE_SIZE			64
126 
127 /*
128  * Max number of entries in the cache that stores directories that were already
129  * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
130  * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
131  * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
132  */
133 #define SEND_MAX_DIR_UTIMES_CACHE_SIZE			64
134 
135 struct send_ctx {
136 	struct file *send_filp;
137 	loff_t send_off;
138 	char *send_buf;
139 	u32 send_size;
140 	u32 send_max_size;
141 	/*
142 	 * Whether BTRFS_SEND_A_DATA attribute was already added to current
143 	 * command (since protocol v2, data must be the last attribute).
144 	 */
145 	bool put_data;
146 	struct page **send_buf_pages;
147 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
148 	/* Protocol version compatibility requested */
149 	u32 proto;
150 
151 	struct btrfs_root *send_root;
152 	struct btrfs_root *parent_root;
153 	struct clone_root *clone_roots;
154 	int clone_roots_cnt;
155 
156 	/* current state of the compare_tree call */
157 	struct btrfs_path *left_path;
158 	struct btrfs_path *right_path;
159 	struct btrfs_key *cmp_key;
160 
161 	/*
162 	 * Keep track of the generation of the last transaction that was used
163 	 * for relocating a block group. This is periodically checked in order
164 	 * to detect if a relocation happened since the last check, so that we
165 	 * don't operate on stale extent buffers for nodes (level >= 1) or on
166 	 * stale disk_bytenr values of file extent items.
167 	 */
168 	u64 last_reloc_trans;
169 
170 	/*
171 	 * infos of the currently processed inode. In case of deleted inodes,
172 	 * these are the values from the deleted inode.
173 	 */
174 	u64 cur_ino;
175 	u64 cur_inode_gen;
176 	u64 cur_inode_size;
177 	u64 cur_inode_mode;
178 	u64 cur_inode_rdev;
179 	u64 cur_inode_last_extent;
180 	u64 cur_inode_next_write_offset;
181 	bool cur_inode_new;
182 	bool cur_inode_new_gen;
183 	bool cur_inode_deleted;
184 	bool ignore_cur_inode;
185 	bool cur_inode_needs_verity;
186 	void *verity_descriptor;
187 
188 	u64 send_progress;
189 
190 	struct list_head new_refs;
191 	struct list_head deleted_refs;
192 
193 	struct btrfs_lru_cache name_cache;
194 
195 	/*
196 	 * The inode we are currently processing. It's not NULL only when we
197 	 * need to issue write commands for data extents from this inode.
198 	 */
199 	struct inode *cur_inode;
200 	struct file_ra_state ra;
201 	u64 page_cache_clear_start;
202 	bool clean_page_cache;
203 
204 	/*
205 	 * We process inodes by their increasing order, so if before an
206 	 * incremental send we reverse the parent/child relationship of
207 	 * directories such that a directory with a lower inode number was
208 	 * the parent of a directory with a higher inode number, and the one
209 	 * becoming the new parent got renamed too, we can't rename/move the
210 	 * directory with lower inode number when we finish processing it - we
211 	 * must process the directory with higher inode number first, then
212 	 * rename/move it and then rename/move the directory with lower inode
213 	 * number. Example follows.
214 	 *
215 	 * Tree state when the first send was performed:
216 	 *
217 	 * .
218 	 * |-- a                   (ino 257)
219 	 *     |-- b               (ino 258)
220 	 *         |
221 	 *         |
222 	 *         |-- c           (ino 259)
223 	 *         |   |-- d       (ino 260)
224 	 *         |
225 	 *         |-- c2          (ino 261)
226 	 *
227 	 * Tree state when the second (incremental) send is performed:
228 	 *
229 	 * .
230 	 * |-- a                   (ino 257)
231 	 *     |-- b               (ino 258)
232 	 *         |-- c2          (ino 261)
233 	 *             |-- d2      (ino 260)
234 	 *                 |-- cc  (ino 259)
235 	 *
236 	 * The sequence of steps that lead to the second state was:
237 	 *
238 	 * mv /a/b/c/d /a/b/c2/d2
239 	 * mv /a/b/c /a/b/c2/d2/cc
240 	 *
241 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
242 	 * before we move "d", which has higher inode number.
243 	 *
244 	 * So we just memorize which move/rename operations must be performed
245 	 * later when their respective parent is processed and moved/renamed.
246 	 */
247 
248 	/* Indexed by parent directory inode number. */
249 	struct rb_root pending_dir_moves;
250 
251 	/*
252 	 * Reverse index, indexed by the inode number of a directory that
253 	 * is waiting for the move/rename of its immediate parent before its
254 	 * own move/rename can be performed.
255 	 */
256 	struct rb_root waiting_dir_moves;
257 
258 	/*
259 	 * A directory that is going to be rm'ed might have a child directory
260 	 * which is in the pending directory moves index above. In this case,
261 	 * the directory can only be removed after the move/rename of its child
262 	 * is performed. Example:
263 	 *
264 	 * Parent snapshot:
265 	 *
266 	 * .                        (ino 256)
267 	 * |-- a/                   (ino 257)
268 	 *     |-- b/               (ino 258)
269 	 *         |-- c/           (ino 259)
270 	 *         |   |-- x/       (ino 260)
271 	 *         |
272 	 *         |-- y/           (ino 261)
273 	 *
274 	 * Send snapshot:
275 	 *
276 	 * .                        (ino 256)
277 	 * |-- a/                   (ino 257)
278 	 *     |-- b/               (ino 258)
279 	 *         |-- YY/          (ino 261)
280 	 *              |-- x/      (ino 260)
281 	 *
282 	 * Sequence of steps that lead to the send snapshot:
283 	 * rm -f /a/b/c/foo.txt
284 	 * mv /a/b/y /a/b/YY
285 	 * mv /a/b/c/x /a/b/YY
286 	 * rmdir /a/b/c
287 	 *
288 	 * When the child is processed, its move/rename is delayed until its
289 	 * parent is processed (as explained above), but all other operations
290 	 * like update utimes, chown, chgrp, etc, are performed and the paths
291 	 * that it uses for those operations must use the orphanized name of
292 	 * its parent (the directory we're going to rm later), so we need to
293 	 * memorize that name.
294 	 *
295 	 * Indexed by the inode number of the directory to be deleted.
296 	 */
297 	struct rb_root orphan_dirs;
298 
299 	struct rb_root rbtree_new_refs;
300 	struct rb_root rbtree_deleted_refs;
301 
302 	struct btrfs_lru_cache backref_cache;
303 	u64 backref_cache_last_reloc_trans;
304 
305 	struct btrfs_lru_cache dir_created_cache;
306 	struct btrfs_lru_cache dir_utimes_cache;
307 };
308 
309 struct pending_dir_move {
310 	struct rb_node node;
311 	struct list_head list;
312 	u64 parent_ino;
313 	u64 ino;
314 	u64 gen;
315 	struct list_head update_refs;
316 };
317 
318 struct waiting_dir_move {
319 	struct rb_node node;
320 	u64 ino;
321 	/*
322 	 * There might be some directory that could not be removed because it
323 	 * was waiting for this directory inode to be moved first. Therefore
324 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
325 	 */
326 	u64 rmdir_ino;
327 	u64 rmdir_gen;
328 	bool orphanized;
329 };
330 
331 struct orphan_dir_info {
332 	struct rb_node node;
333 	u64 ino;
334 	u64 gen;
335 	u64 last_dir_index_offset;
336 	u64 dir_high_seq_ino;
337 };
338 
339 struct name_cache_entry {
340 	/*
341 	 * The key in the entry is an inode number, and the generation matches
342 	 * the inode's generation.
343 	 */
344 	struct btrfs_lru_cache_entry entry;
345 	u64 parent_ino;
346 	u64 parent_gen;
347 	int ret;
348 	int need_later_update;
349 	/* Name length without NUL terminator. */
350 	int name_len;
351 	/* Not NUL terminated. */
352 	char name[] __counted_by(name_len) __nonstring;
353 };
354 
355 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
356 static_assert(offsetof(struct name_cache_entry, entry) == 0);
357 
358 #define ADVANCE							1
359 #define ADVANCE_ONLY_NEXT					-1
360 
361 enum btrfs_compare_tree_result {
362 	BTRFS_COMPARE_TREE_NEW,
363 	BTRFS_COMPARE_TREE_DELETED,
364 	BTRFS_COMPARE_TREE_CHANGED,
365 	BTRFS_COMPARE_TREE_SAME,
366 };
367 
368 __cold
inconsistent_snapshot_error(struct send_ctx * sctx,enum btrfs_compare_tree_result result,const char * what)369 static void inconsistent_snapshot_error(struct send_ctx *sctx,
370 					enum btrfs_compare_tree_result result,
371 					const char *what)
372 {
373 	const char *result_string;
374 
375 	switch (result) {
376 	case BTRFS_COMPARE_TREE_NEW:
377 		result_string = "new";
378 		break;
379 	case BTRFS_COMPARE_TREE_DELETED:
380 		result_string = "deleted";
381 		break;
382 	case BTRFS_COMPARE_TREE_CHANGED:
383 		result_string = "updated";
384 		break;
385 	case BTRFS_COMPARE_TREE_SAME:
386 		ASSERT(0);
387 		result_string = "unchanged";
388 		break;
389 	default:
390 		ASSERT(0);
391 		result_string = "unexpected";
392 	}
393 
394 	btrfs_err(sctx->send_root->fs_info,
395 		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
396 		  result_string, what, sctx->cmp_key->objectid,
397 		  btrfs_root_id(sctx->send_root),
398 		  (sctx->parent_root ?  btrfs_root_id(sctx->parent_root) : 0));
399 }
400 
401 __maybe_unused
proto_cmd_ok(const struct send_ctx * sctx,int cmd)402 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd)
403 {
404 	switch (sctx->proto) {
405 	case 1:	 return cmd <= BTRFS_SEND_C_MAX_V1;
406 	case 2:	 return cmd <= BTRFS_SEND_C_MAX_V2;
407 	case 3:	 return cmd <= BTRFS_SEND_C_MAX_V3;
408 	default: return false;
409 	}
410 }
411 
412 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
413 
414 static struct waiting_dir_move *
415 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
416 
417 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
418 
need_send_hole(struct send_ctx * sctx)419 static int need_send_hole(struct send_ctx *sctx)
420 {
421 	return (sctx->parent_root && !sctx->cur_inode_new &&
422 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
423 		S_ISREG(sctx->cur_inode_mode));
424 }
425 
fs_path_reset(struct fs_path * p)426 static void fs_path_reset(struct fs_path *p)
427 {
428 	if (p->reversed) {
429 		p->start = p->buf + p->buf_len - 1;
430 		p->end = p->start;
431 		*p->start = 0;
432 	} else {
433 		p->start = p->buf;
434 		p->end = p->start;
435 		*p->start = 0;
436 	}
437 }
438 
fs_path_alloc(void)439 static struct fs_path *fs_path_alloc(void)
440 {
441 	struct fs_path *p;
442 
443 	p = kmalloc(sizeof(*p), GFP_KERNEL);
444 	if (!p)
445 		return NULL;
446 	p->reversed = 0;
447 	p->buf = p->inline_buf;
448 	p->buf_len = FS_PATH_INLINE_SIZE;
449 	fs_path_reset(p);
450 	return p;
451 }
452 
fs_path_alloc_reversed(void)453 static struct fs_path *fs_path_alloc_reversed(void)
454 {
455 	struct fs_path *p;
456 
457 	p = fs_path_alloc();
458 	if (!p)
459 		return NULL;
460 	p->reversed = 1;
461 	fs_path_reset(p);
462 	return p;
463 }
464 
fs_path_free(struct fs_path * p)465 static void fs_path_free(struct fs_path *p)
466 {
467 	if (!p)
468 		return;
469 	if (p->buf != p->inline_buf)
470 		kfree(p->buf);
471 	kfree(p);
472 }
473 
fs_path_len(struct fs_path * p)474 static int fs_path_len(struct fs_path *p)
475 {
476 	return p->end - p->start;
477 }
478 
fs_path_ensure_buf(struct fs_path * p,int len)479 static int fs_path_ensure_buf(struct fs_path *p, int len)
480 {
481 	char *tmp_buf;
482 	int path_len;
483 	int old_buf_len;
484 
485 	len++;
486 
487 	if (p->buf_len >= len)
488 		return 0;
489 
490 	if (len > PATH_MAX) {
491 		WARN_ON(1);
492 		return -ENOMEM;
493 	}
494 
495 	path_len = p->end - p->start;
496 	old_buf_len = p->buf_len;
497 
498 	/*
499 	 * Allocate to the next largest kmalloc bucket size, to let
500 	 * the fast path happen most of the time.
501 	 */
502 	len = kmalloc_size_roundup(len);
503 	/*
504 	 * First time the inline_buf does not suffice
505 	 */
506 	if (p->buf == p->inline_buf) {
507 		tmp_buf = kmalloc(len, GFP_KERNEL);
508 		if (tmp_buf)
509 			memcpy(tmp_buf, p->buf, old_buf_len);
510 	} else {
511 		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
512 	}
513 	if (!tmp_buf)
514 		return -ENOMEM;
515 	p->buf = tmp_buf;
516 	p->buf_len = len;
517 
518 	if (p->reversed) {
519 		tmp_buf = p->buf + old_buf_len - path_len - 1;
520 		p->end = p->buf + p->buf_len - 1;
521 		p->start = p->end - path_len;
522 		memmove(p->start, tmp_buf, path_len + 1);
523 	} else {
524 		p->start = p->buf;
525 		p->end = p->start + path_len;
526 	}
527 	return 0;
528 }
529 
fs_path_prepare_for_add(struct fs_path * p,int name_len,char ** prepared)530 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
531 				   char **prepared)
532 {
533 	int ret;
534 	int new_len;
535 
536 	new_len = p->end - p->start + name_len;
537 	if (p->start != p->end)
538 		new_len++;
539 	ret = fs_path_ensure_buf(p, new_len);
540 	if (ret < 0)
541 		goto out;
542 
543 	if (p->reversed) {
544 		if (p->start != p->end)
545 			*--p->start = '/';
546 		p->start -= name_len;
547 		*prepared = p->start;
548 	} else {
549 		if (p->start != p->end)
550 			*p->end++ = '/';
551 		*prepared = p->end;
552 		p->end += name_len;
553 		*p->end = 0;
554 	}
555 
556 out:
557 	return ret;
558 }
559 
fs_path_add(struct fs_path * p,const char * name,int name_len)560 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
561 {
562 	int ret;
563 	char *prepared;
564 
565 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
566 	if (ret < 0)
567 		goto out;
568 	memcpy(prepared, name, name_len);
569 
570 out:
571 	return ret;
572 }
573 
fs_path_add_path(struct fs_path * p,struct fs_path * p2)574 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
575 {
576 	int ret;
577 	char *prepared;
578 
579 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
580 	if (ret < 0)
581 		goto out;
582 	memcpy(prepared, p2->start, p2->end - p2->start);
583 
584 out:
585 	return ret;
586 }
587 
fs_path_add_from_extent_buffer(struct fs_path * p,struct extent_buffer * eb,unsigned long off,int len)588 static int fs_path_add_from_extent_buffer(struct fs_path *p,
589 					  struct extent_buffer *eb,
590 					  unsigned long off, int len)
591 {
592 	int ret;
593 	char *prepared;
594 
595 	ret = fs_path_prepare_for_add(p, len, &prepared);
596 	if (ret < 0)
597 		goto out;
598 
599 	read_extent_buffer(eb, prepared, off, len);
600 
601 out:
602 	return ret;
603 }
604 
fs_path_copy(struct fs_path * p,struct fs_path * from)605 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
606 {
607 	p->reversed = from->reversed;
608 	fs_path_reset(p);
609 
610 	return fs_path_add_path(p, from);
611 }
612 
fs_path_unreverse(struct fs_path * p)613 static void fs_path_unreverse(struct fs_path *p)
614 {
615 	char *tmp;
616 	int len;
617 
618 	if (!p->reversed)
619 		return;
620 
621 	tmp = p->start;
622 	len = p->end - p->start;
623 	p->start = p->buf;
624 	p->end = p->start + len;
625 	memmove(p->start, tmp, len + 1);
626 	p->reversed = 0;
627 }
628 
alloc_path_for_send(void)629 static struct btrfs_path *alloc_path_for_send(void)
630 {
631 	struct btrfs_path *path;
632 
633 	path = btrfs_alloc_path();
634 	if (!path)
635 		return NULL;
636 	path->search_commit_root = 1;
637 	path->skip_locking = 1;
638 	path->need_commit_sem = 1;
639 	return path;
640 }
641 
write_buf(struct file * filp,const void * buf,u32 len,loff_t * off)642 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
643 {
644 	int ret;
645 	u32 pos = 0;
646 
647 	while (pos < len) {
648 		ret = kernel_write(filp, buf + pos, len - pos, off);
649 		if (ret < 0)
650 			return ret;
651 		if (ret == 0)
652 			return -EIO;
653 		pos += ret;
654 	}
655 
656 	return 0;
657 }
658 
tlv_put(struct send_ctx * sctx,u16 attr,const void * data,int len)659 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
660 {
661 	struct btrfs_tlv_header *hdr;
662 	int total_len = sizeof(*hdr) + len;
663 	int left = sctx->send_max_size - sctx->send_size;
664 
665 	if (WARN_ON_ONCE(sctx->put_data))
666 		return -EINVAL;
667 
668 	if (unlikely(left < total_len))
669 		return -EOVERFLOW;
670 
671 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
672 	put_unaligned_le16(attr, &hdr->tlv_type);
673 	put_unaligned_le16(len, &hdr->tlv_len);
674 	memcpy(hdr + 1, data, len);
675 	sctx->send_size += total_len;
676 
677 	return 0;
678 }
679 
680 #define TLV_PUT_DEFINE_INT(bits) \
681 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
682 			u##bits attr, u##bits value)			\
683 	{								\
684 		__le##bits __tmp = cpu_to_le##bits(value);		\
685 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
686 	}
687 
688 TLV_PUT_DEFINE_INT(8)
689 TLV_PUT_DEFINE_INT(32)
690 TLV_PUT_DEFINE_INT(64)
691 
tlv_put_string(struct send_ctx * sctx,u16 attr,const char * str,int len)692 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
693 			  const char *str, int len)
694 {
695 	if (len == -1)
696 		len = strlen(str);
697 	return tlv_put(sctx, attr, str, len);
698 }
699 
tlv_put_uuid(struct send_ctx * sctx,u16 attr,const u8 * uuid)700 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
701 			const u8 *uuid)
702 {
703 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
704 }
705 
tlv_put_btrfs_timespec(struct send_ctx * sctx,u16 attr,struct extent_buffer * eb,struct btrfs_timespec * ts)706 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
707 				  struct extent_buffer *eb,
708 				  struct btrfs_timespec *ts)
709 {
710 	struct btrfs_timespec bts;
711 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
712 	return tlv_put(sctx, attr, &bts, sizeof(bts));
713 }
714 
715 
716 #define TLV_PUT(sctx, attrtype, data, attrlen) \
717 	do { \
718 		ret = tlv_put(sctx, attrtype, data, attrlen); \
719 		if (ret < 0) \
720 			goto tlv_put_failure; \
721 	} while (0)
722 
723 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
724 	do { \
725 		ret = tlv_put_u##bits(sctx, attrtype, value); \
726 		if (ret < 0) \
727 			goto tlv_put_failure; \
728 	} while (0)
729 
730 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
731 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
732 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
733 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
734 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
735 	do { \
736 		ret = tlv_put_string(sctx, attrtype, str, len); \
737 		if (ret < 0) \
738 			goto tlv_put_failure; \
739 	} while (0)
740 #define TLV_PUT_PATH(sctx, attrtype, p) \
741 	do { \
742 		ret = tlv_put_string(sctx, attrtype, p->start, \
743 			p->end - p->start); \
744 		if (ret < 0) \
745 			goto tlv_put_failure; \
746 	} while(0)
747 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
748 	do { \
749 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
750 		if (ret < 0) \
751 			goto tlv_put_failure; \
752 	} while (0)
753 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
754 	do { \
755 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
756 		if (ret < 0) \
757 			goto tlv_put_failure; \
758 	} while (0)
759 
send_header(struct send_ctx * sctx)760 static int send_header(struct send_ctx *sctx)
761 {
762 	struct btrfs_stream_header hdr;
763 
764 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
765 	hdr.version = cpu_to_le32(sctx->proto);
766 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
767 					&sctx->send_off);
768 }
769 
770 /*
771  * For each command/item we want to send to userspace, we call this function.
772  */
begin_cmd(struct send_ctx * sctx,int cmd)773 static int begin_cmd(struct send_ctx *sctx, int cmd)
774 {
775 	struct btrfs_cmd_header *hdr;
776 
777 	if (WARN_ON(!sctx->send_buf))
778 		return -EINVAL;
779 
780 	if (unlikely(sctx->send_size != 0)) {
781 		btrfs_err(sctx->send_root->fs_info,
782 			  "send: command header buffer not empty cmd %d offset %llu",
783 			  cmd, sctx->send_off);
784 		return -EINVAL;
785 	}
786 
787 	sctx->send_size += sizeof(*hdr);
788 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
789 	put_unaligned_le16(cmd, &hdr->cmd);
790 
791 	return 0;
792 }
793 
send_cmd(struct send_ctx * sctx)794 static int send_cmd(struct send_ctx *sctx)
795 {
796 	int ret;
797 	struct btrfs_cmd_header *hdr;
798 	u32 crc;
799 
800 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
801 	put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
802 	put_unaligned_le32(0, &hdr->crc);
803 
804 	crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
805 	put_unaligned_le32(crc, &hdr->crc);
806 
807 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
808 					&sctx->send_off);
809 
810 	sctx->send_size = 0;
811 	sctx->put_data = false;
812 
813 	return ret;
814 }
815 
816 /*
817  * Sends a move instruction to user space
818  */
send_rename(struct send_ctx * sctx,struct fs_path * from,struct fs_path * to)819 static int send_rename(struct send_ctx *sctx,
820 		     struct fs_path *from, struct fs_path *to)
821 {
822 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
823 	int ret;
824 
825 	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
826 
827 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
828 	if (ret < 0)
829 		goto out;
830 
831 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
832 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
833 
834 	ret = send_cmd(sctx);
835 
836 tlv_put_failure:
837 out:
838 	return ret;
839 }
840 
841 /*
842  * Sends a link instruction to user space
843  */
send_link(struct send_ctx * sctx,struct fs_path * path,struct fs_path * lnk)844 static int send_link(struct send_ctx *sctx,
845 		     struct fs_path *path, struct fs_path *lnk)
846 {
847 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
848 	int ret;
849 
850 	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
851 
852 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
853 	if (ret < 0)
854 		goto out;
855 
856 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
857 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
858 
859 	ret = send_cmd(sctx);
860 
861 tlv_put_failure:
862 out:
863 	return ret;
864 }
865 
866 /*
867  * Sends an unlink instruction to user space
868  */
send_unlink(struct send_ctx * sctx,struct fs_path * path)869 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
870 {
871 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
872 	int ret;
873 
874 	btrfs_debug(fs_info, "send_unlink %s", path->start);
875 
876 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
877 	if (ret < 0)
878 		goto out;
879 
880 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
881 
882 	ret = send_cmd(sctx);
883 
884 tlv_put_failure:
885 out:
886 	return ret;
887 }
888 
889 /*
890  * Sends a rmdir instruction to user space
891  */
send_rmdir(struct send_ctx * sctx,struct fs_path * path)892 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
893 {
894 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
895 	int ret;
896 
897 	btrfs_debug(fs_info, "send_rmdir %s", path->start);
898 
899 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
900 	if (ret < 0)
901 		goto out;
902 
903 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
904 
905 	ret = send_cmd(sctx);
906 
907 tlv_put_failure:
908 out:
909 	return ret;
910 }
911 
912 struct btrfs_inode_info {
913 	u64 size;
914 	u64 gen;
915 	u64 mode;
916 	u64 uid;
917 	u64 gid;
918 	u64 rdev;
919 	u64 fileattr;
920 	u64 nlink;
921 };
922 
923 /*
924  * Helper function to retrieve some fields from an inode item.
925  */
get_inode_info(struct btrfs_root * root,u64 ino,struct btrfs_inode_info * info)926 static int get_inode_info(struct btrfs_root *root, u64 ino,
927 			  struct btrfs_inode_info *info)
928 {
929 	int ret;
930 	struct btrfs_path *path;
931 	struct btrfs_inode_item *ii;
932 	struct btrfs_key key;
933 
934 	path = alloc_path_for_send();
935 	if (!path)
936 		return -ENOMEM;
937 
938 	key.objectid = ino;
939 	key.type = BTRFS_INODE_ITEM_KEY;
940 	key.offset = 0;
941 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
942 	if (ret) {
943 		if (ret > 0)
944 			ret = -ENOENT;
945 		goto out;
946 	}
947 
948 	if (!info)
949 		goto out;
950 
951 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
952 			struct btrfs_inode_item);
953 	info->size = btrfs_inode_size(path->nodes[0], ii);
954 	info->gen = btrfs_inode_generation(path->nodes[0], ii);
955 	info->mode = btrfs_inode_mode(path->nodes[0], ii);
956 	info->uid = btrfs_inode_uid(path->nodes[0], ii);
957 	info->gid = btrfs_inode_gid(path->nodes[0], ii);
958 	info->rdev = btrfs_inode_rdev(path->nodes[0], ii);
959 	info->nlink = btrfs_inode_nlink(path->nodes[0], ii);
960 	/*
961 	 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's
962 	 * otherwise logically split to 32/32 parts.
963 	 */
964 	info->fileattr = btrfs_inode_flags(path->nodes[0], ii);
965 
966 out:
967 	btrfs_free_path(path);
968 	return ret;
969 }
970 
get_inode_gen(struct btrfs_root * root,u64 ino,u64 * gen)971 static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen)
972 {
973 	int ret;
974 	struct btrfs_inode_info info = { 0 };
975 
976 	ASSERT(gen);
977 
978 	ret = get_inode_info(root, ino, &info);
979 	*gen = info.gen;
980 	return ret;
981 }
982 
983 typedef int (*iterate_inode_ref_t)(u64 dir, struct fs_path *p, void *ctx);
984 
985 /*
986  * Helper function to iterate the entries in ONE btrfs_inode_ref or
987  * btrfs_inode_extref.
988  * The iterate callback may return a non zero value to stop iteration. This can
989  * be a negative value for error codes or 1 to simply stop it.
990  *
991  * path must point to the INODE_REF or INODE_EXTREF when called.
992  */
iterate_inode_ref(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * found_key,int resolve,iterate_inode_ref_t iterate,void * ctx)993 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
994 			     struct btrfs_key *found_key, int resolve,
995 			     iterate_inode_ref_t iterate, void *ctx)
996 {
997 	struct extent_buffer *eb = path->nodes[0];
998 	struct btrfs_inode_ref *iref;
999 	struct btrfs_inode_extref *extref;
1000 	struct btrfs_path *tmp_path;
1001 	struct fs_path *p;
1002 	u32 cur = 0;
1003 	u32 total;
1004 	int slot = path->slots[0];
1005 	u32 name_len;
1006 	char *start;
1007 	int ret = 0;
1008 	u64 dir;
1009 	unsigned long name_off;
1010 	unsigned long elem_size;
1011 	unsigned long ptr;
1012 
1013 	p = fs_path_alloc_reversed();
1014 	if (!p)
1015 		return -ENOMEM;
1016 
1017 	tmp_path = alloc_path_for_send();
1018 	if (!tmp_path) {
1019 		fs_path_free(p);
1020 		return -ENOMEM;
1021 	}
1022 
1023 
1024 	if (found_key->type == BTRFS_INODE_REF_KEY) {
1025 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
1026 						    struct btrfs_inode_ref);
1027 		total = btrfs_item_size(eb, slot);
1028 		elem_size = sizeof(*iref);
1029 	} else {
1030 		ptr = btrfs_item_ptr_offset(eb, slot);
1031 		total = btrfs_item_size(eb, slot);
1032 		elem_size = sizeof(*extref);
1033 	}
1034 
1035 	while (cur < total) {
1036 		fs_path_reset(p);
1037 
1038 		if (found_key->type == BTRFS_INODE_REF_KEY) {
1039 			iref = (struct btrfs_inode_ref *)(ptr + cur);
1040 			name_len = btrfs_inode_ref_name_len(eb, iref);
1041 			name_off = (unsigned long)(iref + 1);
1042 			dir = found_key->offset;
1043 		} else {
1044 			extref = (struct btrfs_inode_extref *)(ptr + cur);
1045 			name_len = btrfs_inode_extref_name_len(eb, extref);
1046 			name_off = (unsigned long)&extref->name;
1047 			dir = btrfs_inode_extref_parent(eb, extref);
1048 		}
1049 
1050 		if (resolve) {
1051 			start = btrfs_ref_to_path(root, tmp_path, name_len,
1052 						  name_off, eb, dir,
1053 						  p->buf, p->buf_len);
1054 			if (IS_ERR(start)) {
1055 				ret = PTR_ERR(start);
1056 				goto out;
1057 			}
1058 			if (start < p->buf) {
1059 				/* overflow , try again with larger buffer */
1060 				ret = fs_path_ensure_buf(p,
1061 						p->buf_len + p->buf - start);
1062 				if (ret < 0)
1063 					goto out;
1064 				start = btrfs_ref_to_path(root, tmp_path,
1065 							  name_len, name_off,
1066 							  eb, dir,
1067 							  p->buf, p->buf_len);
1068 				if (IS_ERR(start)) {
1069 					ret = PTR_ERR(start);
1070 					goto out;
1071 				}
1072 				if (unlikely(start < p->buf)) {
1073 					btrfs_err(root->fs_info,
1074 			"send: path ref buffer underflow for key (%llu %u %llu)",
1075 						  found_key->objectid,
1076 						  found_key->type,
1077 						  found_key->offset);
1078 					ret = -EINVAL;
1079 					goto out;
1080 				}
1081 			}
1082 			p->start = start;
1083 		} else {
1084 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
1085 							     name_len);
1086 			if (ret < 0)
1087 				goto out;
1088 		}
1089 
1090 		cur += elem_size + name_len;
1091 		ret = iterate(dir, p, ctx);
1092 		if (ret)
1093 			goto out;
1094 	}
1095 
1096 out:
1097 	btrfs_free_path(tmp_path);
1098 	fs_path_free(p);
1099 	return ret;
1100 }
1101 
1102 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
1103 				  const char *name, int name_len,
1104 				  const char *data, int data_len,
1105 				  void *ctx);
1106 
1107 /*
1108  * Helper function to iterate the entries in ONE btrfs_dir_item.
1109  * The iterate callback may return a non zero value to stop iteration. This can
1110  * be a negative value for error codes or 1 to simply stop it.
1111  *
1112  * path must point to the dir item when called.
1113  */
iterate_dir_item(struct btrfs_root * root,struct btrfs_path * path,iterate_dir_item_t iterate,void * ctx)1114 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1115 			    iterate_dir_item_t iterate, void *ctx)
1116 {
1117 	int ret = 0;
1118 	struct extent_buffer *eb;
1119 	struct btrfs_dir_item *di;
1120 	struct btrfs_key di_key;
1121 	char *buf = NULL;
1122 	int buf_len;
1123 	u32 name_len;
1124 	u32 data_len;
1125 	u32 cur;
1126 	u32 len;
1127 	u32 total;
1128 	int slot;
1129 	int num;
1130 
1131 	/*
1132 	 * Start with a small buffer (1 page). If later we end up needing more
1133 	 * space, which can happen for xattrs on a fs with a leaf size greater
1134 	 * than the page size, attempt to increase the buffer. Typically xattr
1135 	 * values are small.
1136 	 */
1137 	buf_len = PATH_MAX;
1138 	buf = kmalloc(buf_len, GFP_KERNEL);
1139 	if (!buf) {
1140 		ret = -ENOMEM;
1141 		goto out;
1142 	}
1143 
1144 	eb = path->nodes[0];
1145 	slot = path->slots[0];
1146 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1147 	cur = 0;
1148 	len = 0;
1149 	total = btrfs_item_size(eb, slot);
1150 
1151 	num = 0;
1152 	while (cur < total) {
1153 		name_len = btrfs_dir_name_len(eb, di);
1154 		data_len = btrfs_dir_data_len(eb, di);
1155 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1156 
1157 		if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) {
1158 			if (name_len > XATTR_NAME_MAX) {
1159 				ret = -ENAMETOOLONG;
1160 				goto out;
1161 			}
1162 			if (name_len + data_len >
1163 					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1164 				ret = -E2BIG;
1165 				goto out;
1166 			}
1167 		} else {
1168 			/*
1169 			 * Path too long
1170 			 */
1171 			if (name_len + data_len > PATH_MAX) {
1172 				ret = -ENAMETOOLONG;
1173 				goto out;
1174 			}
1175 		}
1176 
1177 		if (name_len + data_len > buf_len) {
1178 			buf_len = name_len + data_len;
1179 			if (is_vmalloc_addr(buf)) {
1180 				vfree(buf);
1181 				buf = NULL;
1182 			} else {
1183 				char *tmp = krealloc(buf, buf_len,
1184 						GFP_KERNEL | __GFP_NOWARN);
1185 
1186 				if (!tmp)
1187 					kfree(buf);
1188 				buf = tmp;
1189 			}
1190 			if (!buf) {
1191 				buf = kvmalloc(buf_len, GFP_KERNEL);
1192 				if (!buf) {
1193 					ret = -ENOMEM;
1194 					goto out;
1195 				}
1196 			}
1197 		}
1198 
1199 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1200 				name_len + data_len);
1201 
1202 		len = sizeof(*di) + name_len + data_len;
1203 		di = (struct btrfs_dir_item *)((char *)di + len);
1204 		cur += len;
1205 
1206 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1207 			      data_len, ctx);
1208 		if (ret < 0)
1209 			goto out;
1210 		if (ret) {
1211 			ret = 0;
1212 			goto out;
1213 		}
1214 
1215 		num++;
1216 	}
1217 
1218 out:
1219 	kvfree(buf);
1220 	return ret;
1221 }
1222 
__copy_first_ref(u64 dir,struct fs_path * p,void * ctx)1223 static int __copy_first_ref(u64 dir, struct fs_path *p, void *ctx)
1224 {
1225 	int ret;
1226 	struct fs_path *pt = ctx;
1227 
1228 	ret = fs_path_copy(pt, p);
1229 	if (ret < 0)
1230 		return ret;
1231 
1232 	/* we want the first only */
1233 	return 1;
1234 }
1235 
1236 /*
1237  * Retrieve the first path of an inode. If an inode has more then one
1238  * ref/hardlink, this is ignored.
1239  */
get_inode_path(struct btrfs_root * root,u64 ino,struct fs_path * path)1240 static int get_inode_path(struct btrfs_root *root,
1241 			  u64 ino, struct fs_path *path)
1242 {
1243 	int ret;
1244 	struct btrfs_key key, found_key;
1245 	struct btrfs_path *p;
1246 
1247 	p = alloc_path_for_send();
1248 	if (!p)
1249 		return -ENOMEM;
1250 
1251 	fs_path_reset(path);
1252 
1253 	key.objectid = ino;
1254 	key.type = BTRFS_INODE_REF_KEY;
1255 	key.offset = 0;
1256 
1257 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1258 	if (ret < 0)
1259 		goto out;
1260 	if (ret) {
1261 		ret = 1;
1262 		goto out;
1263 	}
1264 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1265 	if (found_key.objectid != ino ||
1266 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1267 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1268 		ret = -ENOENT;
1269 		goto out;
1270 	}
1271 
1272 	ret = iterate_inode_ref(root, p, &found_key, 1,
1273 				__copy_first_ref, path);
1274 	if (ret < 0)
1275 		goto out;
1276 	ret = 0;
1277 
1278 out:
1279 	btrfs_free_path(p);
1280 	return ret;
1281 }
1282 
1283 struct backref_ctx {
1284 	struct send_ctx *sctx;
1285 
1286 	/* number of total found references */
1287 	u64 found;
1288 
1289 	/*
1290 	 * used for clones found in send_root. clones found behind cur_objectid
1291 	 * and cur_offset are not considered as allowed clones.
1292 	 */
1293 	u64 cur_objectid;
1294 	u64 cur_offset;
1295 
1296 	/* may be truncated in case it's the last extent in a file */
1297 	u64 extent_len;
1298 
1299 	/* The bytenr the file extent item we are processing refers to. */
1300 	u64 bytenr;
1301 	/* The owner (root id) of the data backref for the current extent. */
1302 	u64 backref_owner;
1303 	/* The offset of the data backref for the current extent. */
1304 	u64 backref_offset;
1305 };
1306 
__clone_root_cmp_bsearch(const void * key,const void * elt)1307 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1308 {
1309 	u64 root = (u64)(uintptr_t)key;
1310 	const struct clone_root *cr = elt;
1311 
1312 	if (root < btrfs_root_id(cr->root))
1313 		return -1;
1314 	if (root > btrfs_root_id(cr->root))
1315 		return 1;
1316 	return 0;
1317 }
1318 
__clone_root_cmp_sort(const void * e1,const void * e2)1319 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1320 {
1321 	const struct clone_root *cr1 = e1;
1322 	const struct clone_root *cr2 = e2;
1323 
1324 	if (btrfs_root_id(cr1->root) < btrfs_root_id(cr2->root))
1325 		return -1;
1326 	if (btrfs_root_id(cr1->root) > btrfs_root_id(cr2->root))
1327 		return 1;
1328 	return 0;
1329 }
1330 
1331 /*
1332  * Called for every backref that is found for the current extent.
1333  * Results are collected in sctx->clone_roots->ino/offset.
1334  */
iterate_backrefs(u64 ino,u64 offset,u64 num_bytes,u64 root_id,void * ctx_)1335 static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id,
1336 			    void *ctx_)
1337 {
1338 	struct backref_ctx *bctx = ctx_;
1339 	struct clone_root *clone_root;
1340 
1341 	/* First check if the root is in the list of accepted clone sources */
1342 	clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots,
1343 			     bctx->sctx->clone_roots_cnt,
1344 			     sizeof(struct clone_root),
1345 			     __clone_root_cmp_bsearch);
1346 	if (!clone_root)
1347 		return 0;
1348 
1349 	/* This is our own reference, bail out as we can't clone from it. */
1350 	if (clone_root->root == bctx->sctx->send_root &&
1351 	    ino == bctx->cur_objectid &&
1352 	    offset == bctx->cur_offset)
1353 		return 0;
1354 
1355 	/*
1356 	 * Make sure we don't consider clones from send_root that are
1357 	 * behind the current inode/offset.
1358 	 */
1359 	if (clone_root->root == bctx->sctx->send_root) {
1360 		/*
1361 		 * If the source inode was not yet processed we can't issue a
1362 		 * clone operation, as the source extent does not exist yet at
1363 		 * the destination of the stream.
1364 		 */
1365 		if (ino > bctx->cur_objectid)
1366 			return 0;
1367 		/*
1368 		 * We clone from the inode currently being sent as long as the
1369 		 * source extent is already processed, otherwise we could try
1370 		 * to clone from an extent that does not exist yet at the
1371 		 * destination of the stream.
1372 		 */
1373 		if (ino == bctx->cur_objectid &&
1374 		    offset + bctx->extent_len >
1375 		    bctx->sctx->cur_inode_next_write_offset)
1376 			return 0;
1377 	}
1378 
1379 	bctx->found++;
1380 	clone_root->found_ref = true;
1381 
1382 	/*
1383 	 * If the given backref refers to a file extent item with a larger
1384 	 * number of bytes than what we found before, use the new one so that
1385 	 * we clone more optimally and end up doing less writes and getting
1386 	 * less exclusive, non-shared extents at the destination.
1387 	 */
1388 	if (num_bytes > clone_root->num_bytes) {
1389 		clone_root->ino = ino;
1390 		clone_root->offset = offset;
1391 		clone_root->num_bytes = num_bytes;
1392 
1393 		/*
1394 		 * Found a perfect candidate, so there's no need to continue
1395 		 * backref walking.
1396 		 */
1397 		if (num_bytes >= bctx->extent_len)
1398 			return BTRFS_ITERATE_EXTENT_INODES_STOP;
1399 	}
1400 
1401 	return 0;
1402 }
1403 
lookup_backref_cache(u64 leaf_bytenr,void * ctx,const u64 ** root_ids_ret,int * root_count_ret)1404 static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx,
1405 				 const u64 **root_ids_ret, int *root_count_ret)
1406 {
1407 	struct backref_ctx *bctx = ctx;
1408 	struct send_ctx *sctx = bctx->sctx;
1409 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1410 	const u64 key = leaf_bytenr >> fs_info->sectorsize_bits;
1411 	struct btrfs_lru_cache_entry *raw_entry;
1412 	struct backref_cache_entry *entry;
1413 
1414 	if (sctx->backref_cache.size == 0)
1415 		return false;
1416 
1417 	/*
1418 	 * If relocation happened since we first filled the cache, then we must
1419 	 * empty the cache and can not use it, because even though we operate on
1420 	 * read-only roots, their leaves and nodes may have been reallocated and
1421 	 * now be used for different nodes/leaves of the same tree or some other
1422 	 * tree.
1423 	 *
1424 	 * We are called from iterate_extent_inodes() while either holding a
1425 	 * transaction handle or holding fs_info->commit_root_sem, so no need
1426 	 * to take any lock here.
1427 	 */
1428 	if (fs_info->last_reloc_trans > sctx->backref_cache_last_reloc_trans) {
1429 		btrfs_lru_cache_clear(&sctx->backref_cache);
1430 		return false;
1431 	}
1432 
1433 	raw_entry = btrfs_lru_cache_lookup(&sctx->backref_cache, key, 0);
1434 	if (!raw_entry)
1435 		return false;
1436 
1437 	entry = container_of(raw_entry, struct backref_cache_entry, entry);
1438 	*root_ids_ret = entry->root_ids;
1439 	*root_count_ret = entry->num_roots;
1440 
1441 	return true;
1442 }
1443 
store_backref_cache(u64 leaf_bytenr,const struct ulist * root_ids,void * ctx)1444 static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids,
1445 				void *ctx)
1446 {
1447 	struct backref_ctx *bctx = ctx;
1448 	struct send_ctx *sctx = bctx->sctx;
1449 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1450 	struct backref_cache_entry *new_entry;
1451 	struct ulist_iterator uiter;
1452 	struct ulist_node *node;
1453 	int ret;
1454 
1455 	/*
1456 	 * We're called while holding a transaction handle or while holding
1457 	 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a
1458 	 * NOFS allocation.
1459 	 */
1460 	new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS);
1461 	/* No worries, cache is optional. */
1462 	if (!new_entry)
1463 		return;
1464 
1465 	new_entry->entry.key = leaf_bytenr >> fs_info->sectorsize_bits;
1466 	new_entry->entry.gen = 0;
1467 	new_entry->num_roots = 0;
1468 	ULIST_ITER_INIT(&uiter);
1469 	while ((node = ulist_next(root_ids, &uiter)) != NULL) {
1470 		const u64 root_id = node->val;
1471 		struct clone_root *root;
1472 
1473 		root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots,
1474 			       sctx->clone_roots_cnt, sizeof(struct clone_root),
1475 			       __clone_root_cmp_bsearch);
1476 		if (!root)
1477 			continue;
1478 
1479 		/* Too many roots, just exit, no worries as caching is optional. */
1480 		if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) {
1481 			kfree(new_entry);
1482 			return;
1483 		}
1484 
1485 		new_entry->root_ids[new_entry->num_roots] = root_id;
1486 		new_entry->num_roots++;
1487 	}
1488 
1489 	/*
1490 	 * We may have not added any roots to the new cache entry, which means
1491 	 * none of the roots is part of the list of roots from which we are
1492 	 * allowed to clone. Cache the new entry as it's still useful to avoid
1493 	 * backref walking to determine which roots have a path to the leaf.
1494 	 *
1495 	 * Also use GFP_NOFS because we're called while holding a transaction
1496 	 * handle or while holding fs_info->commit_root_sem.
1497 	 */
1498 	ret = btrfs_lru_cache_store(&sctx->backref_cache, &new_entry->entry,
1499 				    GFP_NOFS);
1500 	ASSERT(ret == 0 || ret == -ENOMEM);
1501 	if (ret) {
1502 		/* Caching is optional, no worries. */
1503 		kfree(new_entry);
1504 		return;
1505 	}
1506 
1507 	/*
1508 	 * We are called from iterate_extent_inodes() while either holding a
1509 	 * transaction handle or holding fs_info->commit_root_sem, so no need
1510 	 * to take any lock here.
1511 	 */
1512 	if (sctx->backref_cache.size == 1)
1513 		sctx->backref_cache_last_reloc_trans = fs_info->last_reloc_trans;
1514 }
1515 
check_extent_item(u64 bytenr,const struct btrfs_extent_item * ei,const struct extent_buffer * leaf,void * ctx)1516 static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei,
1517 			     const struct extent_buffer *leaf, void *ctx)
1518 {
1519 	const u64 refs = btrfs_extent_refs(leaf, ei);
1520 	const struct backref_ctx *bctx = ctx;
1521 	const struct send_ctx *sctx = bctx->sctx;
1522 
1523 	if (bytenr == bctx->bytenr) {
1524 		const u64 flags = btrfs_extent_flags(leaf, ei);
1525 
1526 		if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
1527 			return -EUCLEAN;
1528 
1529 		/*
1530 		 * If we have only one reference and only the send root as a
1531 		 * clone source - meaning no clone roots were given in the
1532 		 * struct btrfs_ioctl_send_args passed to the send ioctl - then
1533 		 * it's our reference and there's no point in doing backref
1534 		 * walking which is expensive, so exit early.
1535 		 */
1536 		if (refs == 1 && sctx->clone_roots_cnt == 1)
1537 			return -ENOENT;
1538 	}
1539 
1540 	/*
1541 	 * Backreference walking (iterate_extent_inodes() below) is currently
1542 	 * too expensive when an extent has a large number of references, both
1543 	 * in time spent and used memory. So for now just fallback to write
1544 	 * operations instead of clone operations when an extent has more than
1545 	 * a certain amount of references.
1546 	 */
1547 	if (refs > SEND_MAX_EXTENT_REFS)
1548 		return -ENOENT;
1549 
1550 	return 0;
1551 }
1552 
skip_self_data_ref(u64 root,u64 ino,u64 offset,void * ctx)1553 static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx)
1554 {
1555 	const struct backref_ctx *bctx = ctx;
1556 
1557 	if (ino == bctx->cur_objectid &&
1558 	    root == bctx->backref_owner &&
1559 	    offset == bctx->backref_offset)
1560 		return true;
1561 
1562 	return false;
1563 }
1564 
1565 /*
1566  * Given an inode, offset and extent item, it finds a good clone for a clone
1567  * instruction. Returns -ENOENT when none could be found. The function makes
1568  * sure that the returned clone is usable at the point where sending is at the
1569  * moment. This means, that no clones are accepted which lie behind the current
1570  * inode+offset.
1571  *
1572  * path must point to the extent item when called.
1573  */
find_extent_clone(struct send_ctx * sctx,struct btrfs_path * path,u64 ino,u64 data_offset,u64 ino_size,struct clone_root ** found)1574 static int find_extent_clone(struct send_ctx *sctx,
1575 			     struct btrfs_path *path,
1576 			     u64 ino, u64 data_offset,
1577 			     u64 ino_size,
1578 			     struct clone_root **found)
1579 {
1580 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1581 	int ret;
1582 	int extent_type;
1583 	u64 logical;
1584 	u64 disk_byte;
1585 	u64 num_bytes;
1586 	struct btrfs_file_extent_item *fi;
1587 	struct extent_buffer *eb = path->nodes[0];
1588 	struct backref_ctx backref_ctx = { 0 };
1589 	struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 };
1590 	struct clone_root *cur_clone_root;
1591 	int compressed;
1592 	u32 i;
1593 
1594 	/*
1595 	 * With fallocate we can get prealloc extents beyond the inode's i_size,
1596 	 * so we don't do anything here because clone operations can not clone
1597 	 * to a range beyond i_size without increasing the i_size of the
1598 	 * destination inode.
1599 	 */
1600 	if (data_offset >= ino_size)
1601 		return 0;
1602 
1603 	fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item);
1604 	extent_type = btrfs_file_extent_type(eb, fi);
1605 	if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1606 		return -ENOENT;
1607 
1608 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1609 	if (disk_byte == 0)
1610 		return -ENOENT;
1611 
1612 	compressed = btrfs_file_extent_compression(eb, fi);
1613 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1614 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1615 
1616 	/*
1617 	 * Setup the clone roots.
1618 	 */
1619 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1620 		cur_clone_root = sctx->clone_roots + i;
1621 		cur_clone_root->ino = (u64)-1;
1622 		cur_clone_root->offset = 0;
1623 		cur_clone_root->num_bytes = 0;
1624 		cur_clone_root->found_ref = false;
1625 	}
1626 
1627 	backref_ctx.sctx = sctx;
1628 	backref_ctx.cur_objectid = ino;
1629 	backref_ctx.cur_offset = data_offset;
1630 	backref_ctx.bytenr = disk_byte;
1631 	/*
1632 	 * Use the header owner and not the send root's id, because in case of a
1633 	 * snapshot we can have shared subtrees.
1634 	 */
1635 	backref_ctx.backref_owner = btrfs_header_owner(eb);
1636 	backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi);
1637 
1638 	/*
1639 	 * The last extent of a file may be too large due to page alignment.
1640 	 * We need to adjust extent_len in this case so that the checks in
1641 	 * iterate_backrefs() work.
1642 	 */
1643 	if (data_offset + num_bytes >= ino_size)
1644 		backref_ctx.extent_len = ino_size - data_offset;
1645 	else
1646 		backref_ctx.extent_len = num_bytes;
1647 
1648 	/*
1649 	 * Now collect all backrefs.
1650 	 */
1651 	backref_walk_ctx.bytenr = disk_byte;
1652 	if (compressed == BTRFS_COMPRESS_NONE)
1653 		backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi);
1654 	backref_walk_ctx.fs_info = fs_info;
1655 	backref_walk_ctx.cache_lookup = lookup_backref_cache;
1656 	backref_walk_ctx.cache_store = store_backref_cache;
1657 	backref_walk_ctx.indirect_ref_iterator = iterate_backrefs;
1658 	backref_walk_ctx.check_extent_item = check_extent_item;
1659 	backref_walk_ctx.user_ctx = &backref_ctx;
1660 
1661 	/*
1662 	 * If have a single clone root, then it's the send root and we can tell
1663 	 * the backref walking code to skip our own backref and not resolve it,
1664 	 * since we can not use it for cloning - the source and destination
1665 	 * ranges can't overlap and in case the leaf is shared through a subtree
1666 	 * due to snapshots, we can't use those other roots since they are not
1667 	 * in the list of clone roots.
1668 	 */
1669 	if (sctx->clone_roots_cnt == 1)
1670 		backref_walk_ctx.skip_data_ref = skip_self_data_ref;
1671 
1672 	ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs,
1673 				    &backref_ctx);
1674 	if (ret < 0)
1675 		return ret;
1676 
1677 	down_read(&fs_info->commit_root_sem);
1678 	if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
1679 		/*
1680 		 * A transaction commit for a transaction in which block group
1681 		 * relocation was done just happened.
1682 		 * The disk_bytenr of the file extent item we processed is
1683 		 * possibly stale, referring to the extent's location before
1684 		 * relocation. So act as if we haven't found any clone sources
1685 		 * and fallback to write commands, which will read the correct
1686 		 * data from the new extent location. Otherwise we will fail
1687 		 * below because we haven't found our own back reference or we
1688 		 * could be getting incorrect sources in case the old extent
1689 		 * was already reallocated after the relocation.
1690 		 */
1691 		up_read(&fs_info->commit_root_sem);
1692 		return -ENOENT;
1693 	}
1694 	up_read(&fs_info->commit_root_sem);
1695 
1696 	btrfs_debug(fs_info,
1697 		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1698 		    data_offset, ino, num_bytes, logical);
1699 
1700 	if (!backref_ctx.found) {
1701 		btrfs_debug(fs_info, "no clones found");
1702 		return -ENOENT;
1703 	}
1704 
1705 	cur_clone_root = NULL;
1706 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1707 		struct clone_root *clone_root = &sctx->clone_roots[i];
1708 
1709 		if (!clone_root->found_ref)
1710 			continue;
1711 
1712 		/*
1713 		 * Choose the root from which we can clone more bytes, to
1714 		 * minimize write operations and therefore have more extent
1715 		 * sharing at the destination (the same as in the source).
1716 		 */
1717 		if (!cur_clone_root ||
1718 		    clone_root->num_bytes > cur_clone_root->num_bytes) {
1719 			cur_clone_root = clone_root;
1720 
1721 			/*
1722 			 * We found an optimal clone candidate (any inode from
1723 			 * any root is fine), so we're done.
1724 			 */
1725 			if (clone_root->num_bytes >= backref_ctx.extent_len)
1726 				break;
1727 		}
1728 	}
1729 
1730 	if (cur_clone_root) {
1731 		*found = cur_clone_root;
1732 		ret = 0;
1733 	} else {
1734 		ret = -ENOENT;
1735 	}
1736 
1737 	return ret;
1738 }
1739 
read_symlink(struct btrfs_root * root,u64 ino,struct fs_path * dest)1740 static int read_symlink(struct btrfs_root *root,
1741 			u64 ino,
1742 			struct fs_path *dest)
1743 {
1744 	int ret;
1745 	struct btrfs_path *path;
1746 	struct btrfs_key key;
1747 	struct btrfs_file_extent_item *ei;
1748 	u8 type;
1749 	u8 compression;
1750 	unsigned long off;
1751 	int len;
1752 
1753 	path = alloc_path_for_send();
1754 	if (!path)
1755 		return -ENOMEM;
1756 
1757 	key.objectid = ino;
1758 	key.type = BTRFS_EXTENT_DATA_KEY;
1759 	key.offset = 0;
1760 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1761 	if (ret < 0)
1762 		goto out;
1763 	if (ret) {
1764 		/*
1765 		 * An empty symlink inode. Can happen in rare error paths when
1766 		 * creating a symlink (transaction committed before the inode
1767 		 * eviction handler removed the symlink inode items and a crash
1768 		 * happened in between or the subvol was snapshoted in between).
1769 		 * Print an informative message to dmesg/syslog so that the user
1770 		 * can delete the symlink.
1771 		 */
1772 		btrfs_err(root->fs_info,
1773 			  "Found empty symlink inode %llu at root %llu",
1774 			  ino, btrfs_root_id(root));
1775 		ret = -EIO;
1776 		goto out;
1777 	}
1778 
1779 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1780 			struct btrfs_file_extent_item);
1781 	type = btrfs_file_extent_type(path->nodes[0], ei);
1782 	if (unlikely(type != BTRFS_FILE_EXTENT_INLINE)) {
1783 		ret = -EUCLEAN;
1784 		btrfs_crit(root->fs_info,
1785 "send: found symlink extent that is not inline, ino %llu root %llu extent type %d",
1786 			   ino, btrfs_root_id(root), type);
1787 		goto out;
1788 	}
1789 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1790 	if (unlikely(compression != BTRFS_COMPRESS_NONE)) {
1791 		ret = -EUCLEAN;
1792 		btrfs_crit(root->fs_info,
1793 "send: found symlink extent with compression, ino %llu root %llu compression type %d",
1794 			   ino, btrfs_root_id(root), compression);
1795 		goto out;
1796 	}
1797 
1798 	off = btrfs_file_extent_inline_start(ei);
1799 	len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1800 
1801 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1802 
1803 out:
1804 	btrfs_free_path(path);
1805 	return ret;
1806 }
1807 
1808 /*
1809  * Helper function to generate a file name that is unique in the root of
1810  * send_root and parent_root. This is used to generate names for orphan inodes.
1811  */
gen_unique_name(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * dest)1812 static int gen_unique_name(struct send_ctx *sctx,
1813 			   u64 ino, u64 gen,
1814 			   struct fs_path *dest)
1815 {
1816 	int ret = 0;
1817 	struct btrfs_path *path;
1818 	struct btrfs_dir_item *di;
1819 	char tmp[64];
1820 	int len;
1821 	u64 idx = 0;
1822 
1823 	path = alloc_path_for_send();
1824 	if (!path)
1825 		return -ENOMEM;
1826 
1827 	while (1) {
1828 		struct fscrypt_str tmp_name;
1829 
1830 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1831 				ino, gen, idx);
1832 		ASSERT(len < sizeof(tmp));
1833 		tmp_name.name = tmp;
1834 		tmp_name.len = strlen(tmp);
1835 
1836 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1837 				path, BTRFS_FIRST_FREE_OBJECTID,
1838 				&tmp_name, 0);
1839 		btrfs_release_path(path);
1840 		if (IS_ERR(di)) {
1841 			ret = PTR_ERR(di);
1842 			goto out;
1843 		}
1844 		if (di) {
1845 			/* not unique, try again */
1846 			idx++;
1847 			continue;
1848 		}
1849 
1850 		if (!sctx->parent_root) {
1851 			/* unique */
1852 			ret = 0;
1853 			break;
1854 		}
1855 
1856 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1857 				path, BTRFS_FIRST_FREE_OBJECTID,
1858 				&tmp_name, 0);
1859 		btrfs_release_path(path);
1860 		if (IS_ERR(di)) {
1861 			ret = PTR_ERR(di);
1862 			goto out;
1863 		}
1864 		if (di) {
1865 			/* not unique, try again */
1866 			idx++;
1867 			continue;
1868 		}
1869 		/* unique */
1870 		break;
1871 	}
1872 
1873 	ret = fs_path_add(dest, tmp, strlen(tmp));
1874 
1875 out:
1876 	btrfs_free_path(path);
1877 	return ret;
1878 }
1879 
1880 enum inode_state {
1881 	inode_state_no_change,
1882 	inode_state_will_create,
1883 	inode_state_did_create,
1884 	inode_state_will_delete,
1885 	inode_state_did_delete,
1886 };
1887 
get_cur_inode_state(struct send_ctx * sctx,u64 ino,u64 gen,u64 * send_gen,u64 * parent_gen)1888 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen,
1889 			       u64 *send_gen, u64 *parent_gen)
1890 {
1891 	int ret;
1892 	int left_ret;
1893 	int right_ret;
1894 	u64 left_gen;
1895 	u64 right_gen = 0;
1896 	struct btrfs_inode_info info;
1897 
1898 	ret = get_inode_info(sctx->send_root, ino, &info);
1899 	if (ret < 0 && ret != -ENOENT)
1900 		goto out;
1901 	left_ret = (info.nlink == 0) ? -ENOENT : ret;
1902 	left_gen = info.gen;
1903 	if (send_gen)
1904 		*send_gen = ((left_ret == -ENOENT) ? 0 : info.gen);
1905 
1906 	if (!sctx->parent_root) {
1907 		right_ret = -ENOENT;
1908 	} else {
1909 		ret = get_inode_info(sctx->parent_root, ino, &info);
1910 		if (ret < 0 && ret != -ENOENT)
1911 			goto out;
1912 		right_ret = (info.nlink == 0) ? -ENOENT : ret;
1913 		right_gen = info.gen;
1914 		if (parent_gen)
1915 			*parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen);
1916 	}
1917 
1918 	if (!left_ret && !right_ret) {
1919 		if (left_gen == gen && right_gen == gen) {
1920 			ret = inode_state_no_change;
1921 		} else if (left_gen == gen) {
1922 			if (ino < sctx->send_progress)
1923 				ret = inode_state_did_create;
1924 			else
1925 				ret = inode_state_will_create;
1926 		} else if (right_gen == gen) {
1927 			if (ino < sctx->send_progress)
1928 				ret = inode_state_did_delete;
1929 			else
1930 				ret = inode_state_will_delete;
1931 		} else  {
1932 			ret = -ENOENT;
1933 		}
1934 	} else if (!left_ret) {
1935 		if (left_gen == gen) {
1936 			if (ino < sctx->send_progress)
1937 				ret = inode_state_did_create;
1938 			else
1939 				ret = inode_state_will_create;
1940 		} else {
1941 			ret = -ENOENT;
1942 		}
1943 	} else if (!right_ret) {
1944 		if (right_gen == gen) {
1945 			if (ino < sctx->send_progress)
1946 				ret = inode_state_did_delete;
1947 			else
1948 				ret = inode_state_will_delete;
1949 		} else {
1950 			ret = -ENOENT;
1951 		}
1952 	} else {
1953 		ret = -ENOENT;
1954 	}
1955 
1956 out:
1957 	return ret;
1958 }
1959 
is_inode_existent(struct send_ctx * sctx,u64 ino,u64 gen,u64 * send_gen,u64 * parent_gen)1960 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen,
1961 			     u64 *send_gen, u64 *parent_gen)
1962 {
1963 	int ret;
1964 
1965 	if (ino == BTRFS_FIRST_FREE_OBJECTID)
1966 		return 1;
1967 
1968 	ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen);
1969 	if (ret < 0)
1970 		goto out;
1971 
1972 	if (ret == inode_state_no_change ||
1973 	    ret == inode_state_did_create ||
1974 	    ret == inode_state_will_delete)
1975 		ret = 1;
1976 	else
1977 		ret = 0;
1978 
1979 out:
1980 	return ret;
1981 }
1982 
1983 /*
1984  * Helper function to lookup a dir item in a dir.
1985  */
lookup_dir_item_inode(struct btrfs_root * root,u64 dir,const char * name,int name_len,u64 * found_inode)1986 static int lookup_dir_item_inode(struct btrfs_root *root,
1987 				 u64 dir, const char *name, int name_len,
1988 				 u64 *found_inode)
1989 {
1990 	int ret = 0;
1991 	struct btrfs_dir_item *di;
1992 	struct btrfs_key key;
1993 	struct btrfs_path *path;
1994 	struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len);
1995 
1996 	path = alloc_path_for_send();
1997 	if (!path)
1998 		return -ENOMEM;
1999 
2000 	di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0);
2001 	if (IS_ERR_OR_NULL(di)) {
2002 		ret = di ? PTR_ERR(di) : -ENOENT;
2003 		goto out;
2004 	}
2005 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
2006 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
2007 		ret = -ENOENT;
2008 		goto out;
2009 	}
2010 	*found_inode = key.objectid;
2011 
2012 out:
2013 	btrfs_free_path(path);
2014 	return ret;
2015 }
2016 
2017 /*
2018  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
2019  * generation of the parent dir and the name of the dir entry.
2020  */
get_first_ref(struct btrfs_root * root,u64 ino,u64 * dir,u64 * dir_gen,struct fs_path * name)2021 static int get_first_ref(struct btrfs_root *root, u64 ino,
2022 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
2023 {
2024 	int ret;
2025 	struct btrfs_key key;
2026 	struct btrfs_key found_key;
2027 	struct btrfs_path *path;
2028 	int len;
2029 	u64 parent_dir;
2030 
2031 	path = alloc_path_for_send();
2032 	if (!path)
2033 		return -ENOMEM;
2034 
2035 	key.objectid = ino;
2036 	key.type = BTRFS_INODE_REF_KEY;
2037 	key.offset = 0;
2038 
2039 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2040 	if (ret < 0)
2041 		goto out;
2042 	if (!ret)
2043 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2044 				path->slots[0]);
2045 	if (ret || found_key.objectid != ino ||
2046 	    (found_key.type != BTRFS_INODE_REF_KEY &&
2047 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
2048 		ret = -ENOENT;
2049 		goto out;
2050 	}
2051 
2052 	if (found_key.type == BTRFS_INODE_REF_KEY) {
2053 		struct btrfs_inode_ref *iref;
2054 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2055 				      struct btrfs_inode_ref);
2056 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
2057 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2058 						     (unsigned long)(iref + 1),
2059 						     len);
2060 		parent_dir = found_key.offset;
2061 	} else {
2062 		struct btrfs_inode_extref *extref;
2063 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2064 					struct btrfs_inode_extref);
2065 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
2066 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2067 					(unsigned long)&extref->name, len);
2068 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
2069 	}
2070 	if (ret < 0)
2071 		goto out;
2072 	btrfs_release_path(path);
2073 
2074 	if (dir_gen) {
2075 		ret = get_inode_gen(root, parent_dir, dir_gen);
2076 		if (ret < 0)
2077 			goto out;
2078 	}
2079 
2080 	*dir = parent_dir;
2081 
2082 out:
2083 	btrfs_free_path(path);
2084 	return ret;
2085 }
2086 
is_first_ref(struct btrfs_root * root,u64 ino,u64 dir,const char * name,int name_len)2087 static int is_first_ref(struct btrfs_root *root,
2088 			u64 ino, u64 dir,
2089 			const char *name, int name_len)
2090 {
2091 	int ret;
2092 	struct fs_path *tmp_name;
2093 	u64 tmp_dir;
2094 
2095 	tmp_name = fs_path_alloc();
2096 	if (!tmp_name)
2097 		return -ENOMEM;
2098 
2099 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
2100 	if (ret < 0)
2101 		goto out;
2102 
2103 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
2104 		ret = 0;
2105 		goto out;
2106 	}
2107 
2108 	ret = !memcmp(tmp_name->start, name, name_len);
2109 
2110 out:
2111 	fs_path_free(tmp_name);
2112 	return ret;
2113 }
2114 
2115 /*
2116  * Used by process_recorded_refs to determine if a new ref would overwrite an
2117  * already existing ref. In case it detects an overwrite, it returns the
2118  * inode/gen in who_ino/who_gen.
2119  * When an overwrite is detected, process_recorded_refs does proper orphanizing
2120  * to make sure later references to the overwritten inode are possible.
2121  * Orphanizing is however only required for the first ref of an inode.
2122  * process_recorded_refs does an additional is_first_ref check to see if
2123  * orphanizing is really required.
2124  */
will_overwrite_ref(struct send_ctx * sctx,u64 dir,u64 dir_gen,const char * name,int name_len,u64 * who_ino,u64 * who_gen,u64 * who_mode)2125 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2126 			      const char *name, int name_len,
2127 			      u64 *who_ino, u64 *who_gen, u64 *who_mode)
2128 {
2129 	int ret;
2130 	u64 parent_root_dir_gen;
2131 	u64 other_inode = 0;
2132 	struct btrfs_inode_info info;
2133 
2134 	if (!sctx->parent_root)
2135 		return 0;
2136 
2137 	ret = is_inode_existent(sctx, dir, dir_gen, NULL, &parent_root_dir_gen);
2138 	if (ret <= 0)
2139 		return 0;
2140 
2141 	/*
2142 	 * If we have a parent root we need to verify that the parent dir was
2143 	 * not deleted and then re-created, if it was then we have no overwrite
2144 	 * and we can just unlink this entry.
2145 	 *
2146 	 * @parent_root_dir_gen was set to 0 if the inode does not exist in the
2147 	 * parent root.
2148 	 */
2149 	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID &&
2150 	    parent_root_dir_gen != dir_gen)
2151 		return 0;
2152 
2153 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
2154 				    &other_inode);
2155 	if (ret == -ENOENT)
2156 		return 0;
2157 	else if (ret < 0)
2158 		return ret;
2159 
2160 	/*
2161 	 * Check if the overwritten ref was already processed. If yes, the ref
2162 	 * was already unlinked/moved, so we can safely assume that we will not
2163 	 * overwrite anything at this point in time.
2164 	 */
2165 	if (other_inode > sctx->send_progress ||
2166 	    is_waiting_for_move(sctx, other_inode)) {
2167 		ret = get_inode_info(sctx->parent_root, other_inode, &info);
2168 		if (ret < 0)
2169 			return ret;
2170 
2171 		*who_ino = other_inode;
2172 		*who_gen = info.gen;
2173 		*who_mode = info.mode;
2174 		return 1;
2175 	}
2176 
2177 	return 0;
2178 }
2179 
2180 /*
2181  * Checks if the ref was overwritten by an already processed inode. This is
2182  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
2183  * thus the orphan name needs be used.
2184  * process_recorded_refs also uses it to avoid unlinking of refs that were
2185  * overwritten.
2186  */
did_overwrite_ref(struct send_ctx * sctx,u64 dir,u64 dir_gen,u64 ino,u64 ino_gen,const char * name,int name_len)2187 static int did_overwrite_ref(struct send_ctx *sctx,
2188 			    u64 dir, u64 dir_gen,
2189 			    u64 ino, u64 ino_gen,
2190 			    const char *name, int name_len)
2191 {
2192 	int ret;
2193 	u64 ow_inode;
2194 	u64 ow_gen = 0;
2195 	u64 send_root_dir_gen;
2196 
2197 	if (!sctx->parent_root)
2198 		return 0;
2199 
2200 	ret = is_inode_existent(sctx, dir, dir_gen, &send_root_dir_gen, NULL);
2201 	if (ret <= 0)
2202 		return ret;
2203 
2204 	/*
2205 	 * @send_root_dir_gen was set to 0 if the inode does not exist in the
2206 	 * send root.
2207 	 */
2208 	if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen)
2209 		return 0;
2210 
2211 	/* check if the ref was overwritten by another ref */
2212 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
2213 				    &ow_inode);
2214 	if (ret == -ENOENT) {
2215 		/* was never and will never be overwritten */
2216 		return 0;
2217 	} else if (ret < 0) {
2218 		return ret;
2219 	}
2220 
2221 	if (ow_inode == ino) {
2222 		ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2223 		if (ret < 0)
2224 			return ret;
2225 
2226 		/* It's the same inode, so no overwrite happened. */
2227 		if (ow_gen == ino_gen)
2228 			return 0;
2229 	}
2230 
2231 	/*
2232 	 * We know that it is or will be overwritten. Check this now.
2233 	 * The current inode being processed might have been the one that caused
2234 	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
2235 	 * the current inode being processed.
2236 	 */
2237 	if (ow_inode < sctx->send_progress)
2238 		return 1;
2239 
2240 	if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) {
2241 		if (ow_gen == 0) {
2242 			ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2243 			if (ret < 0)
2244 				return ret;
2245 		}
2246 		if (ow_gen == sctx->cur_inode_gen)
2247 			return 1;
2248 	}
2249 
2250 	return 0;
2251 }
2252 
2253 /*
2254  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
2255  * that got overwritten. This is used by process_recorded_refs to determine
2256  * if it has to use the path as returned by get_cur_path or the orphan name.
2257  */
did_overwrite_first_ref(struct send_ctx * sctx,u64 ino,u64 gen)2258 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
2259 {
2260 	int ret = 0;
2261 	struct fs_path *name = NULL;
2262 	u64 dir;
2263 	u64 dir_gen;
2264 
2265 	if (!sctx->parent_root)
2266 		goto out;
2267 
2268 	name = fs_path_alloc();
2269 	if (!name)
2270 		return -ENOMEM;
2271 
2272 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2273 	if (ret < 0)
2274 		goto out;
2275 
2276 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2277 			name->start, fs_path_len(name));
2278 
2279 out:
2280 	fs_path_free(name);
2281 	return ret;
2282 }
2283 
name_cache_search(struct send_ctx * sctx,u64 ino,u64 gen)2284 static inline struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2285 							 u64 ino, u64 gen)
2286 {
2287 	struct btrfs_lru_cache_entry *entry;
2288 
2289 	entry = btrfs_lru_cache_lookup(&sctx->name_cache, ino, gen);
2290 	if (!entry)
2291 		return NULL;
2292 
2293 	return container_of(entry, struct name_cache_entry, entry);
2294 }
2295 
2296 /*
2297  * Used by get_cur_path for each ref up to the root.
2298  * Returns 0 if it succeeded.
2299  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2300  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2301  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2302  * Returns <0 in case of error.
2303  */
__get_cur_name_and_parent(struct send_ctx * sctx,u64 ino,u64 gen,u64 * parent_ino,u64 * parent_gen,struct fs_path * dest)2304 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2305 				     u64 ino, u64 gen,
2306 				     u64 *parent_ino,
2307 				     u64 *parent_gen,
2308 				     struct fs_path *dest)
2309 {
2310 	int ret;
2311 	int nce_ret;
2312 	struct name_cache_entry *nce;
2313 
2314 	/*
2315 	 * First check if we already did a call to this function with the same
2316 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2317 	 * return the cached result.
2318 	 */
2319 	nce = name_cache_search(sctx, ino, gen);
2320 	if (nce) {
2321 		if (ino < sctx->send_progress && nce->need_later_update) {
2322 			btrfs_lru_cache_remove(&sctx->name_cache, &nce->entry);
2323 			nce = NULL;
2324 		} else {
2325 			*parent_ino = nce->parent_ino;
2326 			*parent_gen = nce->parent_gen;
2327 			ret = fs_path_add(dest, nce->name, nce->name_len);
2328 			if (ret < 0)
2329 				goto out;
2330 			ret = nce->ret;
2331 			goto out;
2332 		}
2333 	}
2334 
2335 	/*
2336 	 * If the inode is not existent yet, add the orphan name and return 1.
2337 	 * This should only happen for the parent dir that we determine in
2338 	 * record_new_ref_if_needed().
2339 	 */
2340 	ret = is_inode_existent(sctx, ino, gen, NULL, NULL);
2341 	if (ret < 0)
2342 		goto out;
2343 
2344 	if (!ret) {
2345 		ret = gen_unique_name(sctx, ino, gen, dest);
2346 		if (ret < 0)
2347 			goto out;
2348 		ret = 1;
2349 		goto out_cache;
2350 	}
2351 
2352 	/*
2353 	 * Depending on whether the inode was already processed or not, use
2354 	 * send_root or parent_root for ref lookup.
2355 	 */
2356 	if (ino < sctx->send_progress)
2357 		ret = get_first_ref(sctx->send_root, ino,
2358 				    parent_ino, parent_gen, dest);
2359 	else
2360 		ret = get_first_ref(sctx->parent_root, ino,
2361 				    parent_ino, parent_gen, dest);
2362 	if (ret < 0)
2363 		goto out;
2364 
2365 	/*
2366 	 * Check if the ref was overwritten by an inode's ref that was processed
2367 	 * earlier. If yes, treat as orphan and return 1.
2368 	 */
2369 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2370 			dest->start, dest->end - dest->start);
2371 	if (ret < 0)
2372 		goto out;
2373 	if (ret) {
2374 		fs_path_reset(dest);
2375 		ret = gen_unique_name(sctx, ino, gen, dest);
2376 		if (ret < 0)
2377 			goto out;
2378 		ret = 1;
2379 	}
2380 
2381 out_cache:
2382 	/*
2383 	 * Store the result of the lookup in the name cache.
2384 	 */
2385 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest), GFP_KERNEL);
2386 	if (!nce) {
2387 		ret = -ENOMEM;
2388 		goto out;
2389 	}
2390 
2391 	nce->entry.key = ino;
2392 	nce->entry.gen = gen;
2393 	nce->parent_ino = *parent_ino;
2394 	nce->parent_gen = *parent_gen;
2395 	nce->name_len = fs_path_len(dest);
2396 	nce->ret = ret;
2397 	memcpy(nce->name, dest->start, nce->name_len);
2398 
2399 	if (ino < sctx->send_progress)
2400 		nce->need_later_update = 0;
2401 	else
2402 		nce->need_later_update = 1;
2403 
2404 	nce_ret = btrfs_lru_cache_store(&sctx->name_cache, &nce->entry, GFP_KERNEL);
2405 	if (nce_ret < 0) {
2406 		kfree(nce);
2407 		ret = nce_ret;
2408 	}
2409 
2410 out:
2411 	return ret;
2412 }
2413 
2414 /*
2415  * Magic happens here. This function returns the first ref to an inode as it
2416  * would look like while receiving the stream at this point in time.
2417  * We walk the path up to the root. For every inode in between, we check if it
2418  * was already processed/sent. If yes, we continue with the parent as found
2419  * in send_root. If not, we continue with the parent as found in parent_root.
2420  * If we encounter an inode that was deleted at this point in time, we use the
2421  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2422  * that were not created yet and overwritten inodes/refs.
2423  *
2424  * When do we have orphan inodes:
2425  * 1. When an inode is freshly created and thus no valid refs are available yet
2426  * 2. When a directory lost all it's refs (deleted) but still has dir items
2427  *    inside which were not processed yet (pending for move/delete). If anyone
2428  *    tried to get the path to the dir items, it would get a path inside that
2429  *    orphan directory.
2430  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2431  *    of an unprocessed inode. If in that case the first ref would be
2432  *    overwritten, the overwritten inode gets "orphanized". Later when we
2433  *    process this overwritten inode, it is restored at a new place by moving
2434  *    the orphan inode.
2435  *
2436  * sctx->send_progress tells this function at which point in time receiving
2437  * would be.
2438  */
get_cur_path(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * dest)2439 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2440 			struct fs_path *dest)
2441 {
2442 	int ret = 0;
2443 	struct fs_path *name = NULL;
2444 	u64 parent_inode = 0;
2445 	u64 parent_gen = 0;
2446 	int stop = 0;
2447 
2448 	name = fs_path_alloc();
2449 	if (!name) {
2450 		ret = -ENOMEM;
2451 		goto out;
2452 	}
2453 
2454 	dest->reversed = 1;
2455 	fs_path_reset(dest);
2456 
2457 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2458 		struct waiting_dir_move *wdm;
2459 
2460 		fs_path_reset(name);
2461 
2462 		if (is_waiting_for_rm(sctx, ino, gen)) {
2463 			ret = gen_unique_name(sctx, ino, gen, name);
2464 			if (ret < 0)
2465 				goto out;
2466 			ret = fs_path_add_path(dest, name);
2467 			break;
2468 		}
2469 
2470 		wdm = get_waiting_dir_move(sctx, ino);
2471 		if (wdm && wdm->orphanized) {
2472 			ret = gen_unique_name(sctx, ino, gen, name);
2473 			stop = 1;
2474 		} else if (wdm) {
2475 			ret = get_first_ref(sctx->parent_root, ino,
2476 					    &parent_inode, &parent_gen, name);
2477 		} else {
2478 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2479 							&parent_inode,
2480 							&parent_gen, name);
2481 			if (ret)
2482 				stop = 1;
2483 		}
2484 
2485 		if (ret < 0)
2486 			goto out;
2487 
2488 		ret = fs_path_add_path(dest, name);
2489 		if (ret < 0)
2490 			goto out;
2491 
2492 		ino = parent_inode;
2493 		gen = parent_gen;
2494 	}
2495 
2496 out:
2497 	fs_path_free(name);
2498 	if (!ret)
2499 		fs_path_unreverse(dest);
2500 	return ret;
2501 }
2502 
2503 /*
2504  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2505  */
send_subvol_begin(struct send_ctx * sctx)2506 static int send_subvol_begin(struct send_ctx *sctx)
2507 {
2508 	int ret;
2509 	struct btrfs_root *send_root = sctx->send_root;
2510 	struct btrfs_root *parent_root = sctx->parent_root;
2511 	struct btrfs_path *path;
2512 	struct btrfs_key key;
2513 	struct btrfs_root_ref *ref;
2514 	struct extent_buffer *leaf;
2515 	char *name = NULL;
2516 	int namelen;
2517 
2518 	path = btrfs_alloc_path();
2519 	if (!path)
2520 		return -ENOMEM;
2521 
2522 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2523 	if (!name) {
2524 		btrfs_free_path(path);
2525 		return -ENOMEM;
2526 	}
2527 
2528 	key.objectid = btrfs_root_id(send_root);
2529 	key.type = BTRFS_ROOT_BACKREF_KEY;
2530 	key.offset = 0;
2531 
2532 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2533 				&key, path, 1, 0);
2534 	if (ret < 0)
2535 		goto out;
2536 	if (ret) {
2537 		ret = -ENOENT;
2538 		goto out;
2539 	}
2540 
2541 	leaf = path->nodes[0];
2542 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2543 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2544 	    key.objectid != btrfs_root_id(send_root)) {
2545 		ret = -ENOENT;
2546 		goto out;
2547 	}
2548 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2549 	namelen = btrfs_root_ref_name_len(leaf, ref);
2550 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2551 	btrfs_release_path(path);
2552 
2553 	if (parent_root) {
2554 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2555 		if (ret < 0)
2556 			goto out;
2557 	} else {
2558 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2559 		if (ret < 0)
2560 			goto out;
2561 	}
2562 
2563 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2564 
2565 	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2566 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2567 			    sctx->send_root->root_item.received_uuid);
2568 	else
2569 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2570 			    sctx->send_root->root_item.uuid);
2571 
2572 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2573 		    btrfs_root_ctransid(&sctx->send_root->root_item));
2574 	if (parent_root) {
2575 		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2576 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2577 				     parent_root->root_item.received_uuid);
2578 		else
2579 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2580 				     parent_root->root_item.uuid);
2581 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2582 			    btrfs_root_ctransid(&sctx->parent_root->root_item));
2583 	}
2584 
2585 	ret = send_cmd(sctx);
2586 
2587 tlv_put_failure:
2588 out:
2589 	btrfs_free_path(path);
2590 	kfree(name);
2591 	return ret;
2592 }
2593 
send_truncate(struct send_ctx * sctx,u64 ino,u64 gen,u64 size)2594 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2595 {
2596 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2597 	int ret = 0;
2598 	struct fs_path *p;
2599 
2600 	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2601 
2602 	p = fs_path_alloc();
2603 	if (!p)
2604 		return -ENOMEM;
2605 
2606 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2607 	if (ret < 0)
2608 		goto out;
2609 
2610 	ret = get_cur_path(sctx, ino, gen, p);
2611 	if (ret < 0)
2612 		goto out;
2613 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2614 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2615 
2616 	ret = send_cmd(sctx);
2617 
2618 tlv_put_failure:
2619 out:
2620 	fs_path_free(p);
2621 	return ret;
2622 }
2623 
send_chmod(struct send_ctx * sctx,u64 ino,u64 gen,u64 mode)2624 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2625 {
2626 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2627 	int ret = 0;
2628 	struct fs_path *p;
2629 
2630 	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2631 
2632 	p = fs_path_alloc();
2633 	if (!p)
2634 		return -ENOMEM;
2635 
2636 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2637 	if (ret < 0)
2638 		goto out;
2639 
2640 	ret = get_cur_path(sctx, ino, gen, p);
2641 	if (ret < 0)
2642 		goto out;
2643 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2644 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2645 
2646 	ret = send_cmd(sctx);
2647 
2648 tlv_put_failure:
2649 out:
2650 	fs_path_free(p);
2651 	return ret;
2652 }
2653 
send_fileattr(struct send_ctx * sctx,u64 ino,u64 gen,u64 fileattr)2654 static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr)
2655 {
2656 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2657 	int ret = 0;
2658 	struct fs_path *p;
2659 
2660 	if (sctx->proto < 2)
2661 		return 0;
2662 
2663 	btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr);
2664 
2665 	p = fs_path_alloc();
2666 	if (!p)
2667 		return -ENOMEM;
2668 
2669 	ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR);
2670 	if (ret < 0)
2671 		goto out;
2672 
2673 	ret = get_cur_path(sctx, ino, gen, p);
2674 	if (ret < 0)
2675 		goto out;
2676 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2677 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr);
2678 
2679 	ret = send_cmd(sctx);
2680 
2681 tlv_put_failure:
2682 out:
2683 	fs_path_free(p);
2684 	return ret;
2685 }
2686 
send_chown(struct send_ctx * sctx,u64 ino,u64 gen,u64 uid,u64 gid)2687 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2688 {
2689 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2690 	int ret = 0;
2691 	struct fs_path *p;
2692 
2693 	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2694 		    ino, uid, gid);
2695 
2696 	p = fs_path_alloc();
2697 	if (!p)
2698 		return -ENOMEM;
2699 
2700 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2701 	if (ret < 0)
2702 		goto out;
2703 
2704 	ret = get_cur_path(sctx, ino, gen, p);
2705 	if (ret < 0)
2706 		goto out;
2707 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2708 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2709 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2710 
2711 	ret = send_cmd(sctx);
2712 
2713 tlv_put_failure:
2714 out:
2715 	fs_path_free(p);
2716 	return ret;
2717 }
2718 
send_utimes(struct send_ctx * sctx,u64 ino,u64 gen)2719 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2720 {
2721 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2722 	int ret = 0;
2723 	struct fs_path *p = NULL;
2724 	struct btrfs_inode_item *ii;
2725 	struct btrfs_path *path = NULL;
2726 	struct extent_buffer *eb;
2727 	struct btrfs_key key;
2728 	int slot;
2729 
2730 	btrfs_debug(fs_info, "send_utimes %llu", ino);
2731 
2732 	p = fs_path_alloc();
2733 	if (!p)
2734 		return -ENOMEM;
2735 
2736 	path = alloc_path_for_send();
2737 	if (!path) {
2738 		ret = -ENOMEM;
2739 		goto out;
2740 	}
2741 
2742 	key.objectid = ino;
2743 	key.type = BTRFS_INODE_ITEM_KEY;
2744 	key.offset = 0;
2745 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2746 	if (ret > 0)
2747 		ret = -ENOENT;
2748 	if (ret < 0)
2749 		goto out;
2750 
2751 	eb = path->nodes[0];
2752 	slot = path->slots[0];
2753 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2754 
2755 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2756 	if (ret < 0)
2757 		goto out;
2758 
2759 	ret = get_cur_path(sctx, ino, gen, p);
2760 	if (ret < 0)
2761 		goto out;
2762 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2763 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2764 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2765 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2766 	if (sctx->proto >= 2)
2767 		TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime);
2768 
2769 	ret = send_cmd(sctx);
2770 
2771 tlv_put_failure:
2772 out:
2773 	fs_path_free(p);
2774 	btrfs_free_path(path);
2775 	return ret;
2776 }
2777 
2778 /*
2779  * If the cache is full, we can't remove entries from it and do a call to
2780  * send_utimes() for each respective inode, because we might be finishing
2781  * processing an inode that is a directory and it just got renamed, and existing
2782  * entries in the cache may refer to inodes that have the directory in their
2783  * full path - in which case we would generate outdated paths (pre-rename)
2784  * for the inodes that the cache entries point to. Instead of prunning the
2785  * cache when inserting, do it after we finish processing each inode at
2786  * finish_inode_if_needed().
2787  */
cache_dir_utimes(struct send_ctx * sctx,u64 dir,u64 gen)2788 static int cache_dir_utimes(struct send_ctx *sctx, u64 dir, u64 gen)
2789 {
2790 	struct btrfs_lru_cache_entry *entry;
2791 	int ret;
2792 
2793 	entry = btrfs_lru_cache_lookup(&sctx->dir_utimes_cache, dir, gen);
2794 	if (entry != NULL)
2795 		return 0;
2796 
2797 	/* Caching is optional, don't fail if we can't allocate memory. */
2798 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2799 	if (!entry)
2800 		return send_utimes(sctx, dir, gen);
2801 
2802 	entry->key = dir;
2803 	entry->gen = gen;
2804 
2805 	ret = btrfs_lru_cache_store(&sctx->dir_utimes_cache, entry, GFP_KERNEL);
2806 	ASSERT(ret != -EEXIST);
2807 	if (ret) {
2808 		kfree(entry);
2809 		return send_utimes(sctx, dir, gen);
2810 	}
2811 
2812 	return 0;
2813 }
2814 
trim_dir_utimes_cache(struct send_ctx * sctx)2815 static int trim_dir_utimes_cache(struct send_ctx *sctx)
2816 {
2817 	while (sctx->dir_utimes_cache.size > SEND_MAX_DIR_UTIMES_CACHE_SIZE) {
2818 		struct btrfs_lru_cache_entry *lru;
2819 		int ret;
2820 
2821 		lru = btrfs_lru_cache_lru_entry(&sctx->dir_utimes_cache);
2822 		ASSERT(lru != NULL);
2823 
2824 		ret = send_utimes(sctx, lru->key, lru->gen);
2825 		if (ret)
2826 			return ret;
2827 
2828 		btrfs_lru_cache_remove(&sctx->dir_utimes_cache, lru);
2829 	}
2830 
2831 	return 0;
2832 }
2833 
2834 /*
2835  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2836  * a valid path yet because we did not process the refs yet. So, the inode
2837  * is created as orphan.
2838  */
send_create_inode(struct send_ctx * sctx,u64 ino)2839 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2840 {
2841 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2842 	int ret = 0;
2843 	struct fs_path *p;
2844 	int cmd;
2845 	struct btrfs_inode_info info;
2846 	u64 gen;
2847 	u64 mode;
2848 	u64 rdev;
2849 
2850 	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2851 
2852 	p = fs_path_alloc();
2853 	if (!p)
2854 		return -ENOMEM;
2855 
2856 	if (ino != sctx->cur_ino) {
2857 		ret = get_inode_info(sctx->send_root, ino, &info);
2858 		if (ret < 0)
2859 			goto out;
2860 		gen = info.gen;
2861 		mode = info.mode;
2862 		rdev = info.rdev;
2863 	} else {
2864 		gen = sctx->cur_inode_gen;
2865 		mode = sctx->cur_inode_mode;
2866 		rdev = sctx->cur_inode_rdev;
2867 	}
2868 
2869 	if (S_ISREG(mode)) {
2870 		cmd = BTRFS_SEND_C_MKFILE;
2871 	} else if (S_ISDIR(mode)) {
2872 		cmd = BTRFS_SEND_C_MKDIR;
2873 	} else if (S_ISLNK(mode)) {
2874 		cmd = BTRFS_SEND_C_SYMLINK;
2875 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2876 		cmd = BTRFS_SEND_C_MKNOD;
2877 	} else if (S_ISFIFO(mode)) {
2878 		cmd = BTRFS_SEND_C_MKFIFO;
2879 	} else if (S_ISSOCK(mode)) {
2880 		cmd = BTRFS_SEND_C_MKSOCK;
2881 	} else {
2882 		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2883 				(int)(mode & S_IFMT));
2884 		ret = -EOPNOTSUPP;
2885 		goto out;
2886 	}
2887 
2888 	ret = begin_cmd(sctx, cmd);
2889 	if (ret < 0)
2890 		goto out;
2891 
2892 	ret = gen_unique_name(sctx, ino, gen, p);
2893 	if (ret < 0)
2894 		goto out;
2895 
2896 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2897 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2898 
2899 	if (S_ISLNK(mode)) {
2900 		fs_path_reset(p);
2901 		ret = read_symlink(sctx->send_root, ino, p);
2902 		if (ret < 0)
2903 			goto out;
2904 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2905 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2906 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2907 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2908 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2909 	}
2910 
2911 	ret = send_cmd(sctx);
2912 	if (ret < 0)
2913 		goto out;
2914 
2915 
2916 tlv_put_failure:
2917 out:
2918 	fs_path_free(p);
2919 	return ret;
2920 }
2921 
cache_dir_created(struct send_ctx * sctx,u64 dir)2922 static void cache_dir_created(struct send_ctx *sctx, u64 dir)
2923 {
2924 	struct btrfs_lru_cache_entry *entry;
2925 	int ret;
2926 
2927 	/* Caching is optional, ignore any failures. */
2928 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2929 	if (!entry)
2930 		return;
2931 
2932 	entry->key = dir;
2933 	entry->gen = 0;
2934 	ret = btrfs_lru_cache_store(&sctx->dir_created_cache, entry, GFP_KERNEL);
2935 	if (ret < 0)
2936 		kfree(entry);
2937 }
2938 
2939 /*
2940  * We need some special handling for inodes that get processed before the parent
2941  * directory got created. See process_recorded_refs for details.
2942  * This function does the check if we already created the dir out of order.
2943  */
did_create_dir(struct send_ctx * sctx,u64 dir)2944 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2945 {
2946 	int ret = 0;
2947 	int iter_ret = 0;
2948 	struct btrfs_path *path = NULL;
2949 	struct btrfs_key key;
2950 	struct btrfs_key found_key;
2951 	struct btrfs_key di_key;
2952 	struct btrfs_dir_item *di;
2953 
2954 	if (btrfs_lru_cache_lookup(&sctx->dir_created_cache, dir, 0))
2955 		return 1;
2956 
2957 	path = alloc_path_for_send();
2958 	if (!path)
2959 		return -ENOMEM;
2960 
2961 	key.objectid = dir;
2962 	key.type = BTRFS_DIR_INDEX_KEY;
2963 	key.offset = 0;
2964 
2965 	btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) {
2966 		struct extent_buffer *eb = path->nodes[0];
2967 
2968 		if (found_key.objectid != key.objectid ||
2969 		    found_key.type != key.type) {
2970 			ret = 0;
2971 			break;
2972 		}
2973 
2974 		di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item);
2975 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2976 
2977 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2978 		    di_key.objectid < sctx->send_progress) {
2979 			ret = 1;
2980 			cache_dir_created(sctx, dir);
2981 			break;
2982 		}
2983 	}
2984 	/* Catch error found during iteration */
2985 	if (iter_ret < 0)
2986 		ret = iter_ret;
2987 
2988 	btrfs_free_path(path);
2989 	return ret;
2990 }
2991 
2992 /*
2993  * Only creates the inode if it is:
2994  * 1. Not a directory
2995  * 2. Or a directory which was not created already due to out of order
2996  *    directories. See did_create_dir and process_recorded_refs for details.
2997  */
send_create_inode_if_needed(struct send_ctx * sctx)2998 static int send_create_inode_if_needed(struct send_ctx *sctx)
2999 {
3000 	int ret;
3001 
3002 	if (S_ISDIR(sctx->cur_inode_mode)) {
3003 		ret = did_create_dir(sctx, sctx->cur_ino);
3004 		if (ret < 0)
3005 			return ret;
3006 		else if (ret > 0)
3007 			return 0;
3008 	}
3009 
3010 	ret = send_create_inode(sctx, sctx->cur_ino);
3011 
3012 	if (ret == 0 && S_ISDIR(sctx->cur_inode_mode))
3013 		cache_dir_created(sctx, sctx->cur_ino);
3014 
3015 	return ret;
3016 }
3017 
3018 struct recorded_ref {
3019 	struct list_head list;
3020 	char *name;
3021 	struct fs_path *full_path;
3022 	u64 dir;
3023 	u64 dir_gen;
3024 	int name_len;
3025 	struct rb_node node;
3026 	struct rb_root *root;
3027 };
3028 
recorded_ref_alloc(void)3029 static struct recorded_ref *recorded_ref_alloc(void)
3030 {
3031 	struct recorded_ref *ref;
3032 
3033 	ref = kzalloc(sizeof(*ref), GFP_KERNEL);
3034 	if (!ref)
3035 		return NULL;
3036 	RB_CLEAR_NODE(&ref->node);
3037 	INIT_LIST_HEAD(&ref->list);
3038 	return ref;
3039 }
3040 
recorded_ref_free(struct recorded_ref * ref)3041 static void recorded_ref_free(struct recorded_ref *ref)
3042 {
3043 	if (!ref)
3044 		return;
3045 	if (!RB_EMPTY_NODE(&ref->node))
3046 		rb_erase(&ref->node, ref->root);
3047 	list_del(&ref->list);
3048 	fs_path_free(ref->full_path);
3049 	kfree(ref);
3050 }
3051 
set_ref_path(struct recorded_ref * ref,struct fs_path * path)3052 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
3053 {
3054 	ref->full_path = path;
3055 	ref->name = (char *)kbasename(ref->full_path->start);
3056 	ref->name_len = ref->full_path->end - ref->name;
3057 }
3058 
dup_ref(struct recorded_ref * ref,struct list_head * list)3059 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
3060 {
3061 	struct recorded_ref *new;
3062 
3063 	new = recorded_ref_alloc();
3064 	if (!new)
3065 		return -ENOMEM;
3066 
3067 	new->dir = ref->dir;
3068 	new->dir_gen = ref->dir_gen;
3069 	list_add_tail(&new->list, list);
3070 	return 0;
3071 }
3072 
__free_recorded_refs(struct list_head * head)3073 static void __free_recorded_refs(struct list_head *head)
3074 {
3075 	struct recorded_ref *cur;
3076 
3077 	while (!list_empty(head)) {
3078 		cur = list_entry(head->next, struct recorded_ref, list);
3079 		recorded_ref_free(cur);
3080 	}
3081 }
3082 
free_recorded_refs(struct send_ctx * sctx)3083 static void free_recorded_refs(struct send_ctx *sctx)
3084 {
3085 	__free_recorded_refs(&sctx->new_refs);
3086 	__free_recorded_refs(&sctx->deleted_refs);
3087 }
3088 
3089 /*
3090  * Renames/moves a file/dir to its orphan name. Used when the first
3091  * ref of an unprocessed inode gets overwritten and for all non empty
3092  * directories.
3093  */
orphanize_inode(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * path)3094 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
3095 			  struct fs_path *path)
3096 {
3097 	int ret;
3098 	struct fs_path *orphan;
3099 
3100 	orphan = fs_path_alloc();
3101 	if (!orphan)
3102 		return -ENOMEM;
3103 
3104 	ret = gen_unique_name(sctx, ino, gen, orphan);
3105 	if (ret < 0)
3106 		goto out;
3107 
3108 	ret = send_rename(sctx, path, orphan);
3109 
3110 out:
3111 	fs_path_free(orphan);
3112 	return ret;
3113 }
3114 
add_orphan_dir_info(struct send_ctx * sctx,u64 dir_ino,u64 dir_gen)3115 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
3116 						   u64 dir_ino, u64 dir_gen)
3117 {
3118 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
3119 	struct rb_node *parent = NULL;
3120 	struct orphan_dir_info *entry, *odi;
3121 
3122 	while (*p) {
3123 		parent = *p;
3124 		entry = rb_entry(parent, struct orphan_dir_info, node);
3125 		if (dir_ino < entry->ino)
3126 			p = &(*p)->rb_left;
3127 		else if (dir_ino > entry->ino)
3128 			p = &(*p)->rb_right;
3129 		else if (dir_gen < entry->gen)
3130 			p = &(*p)->rb_left;
3131 		else if (dir_gen > entry->gen)
3132 			p = &(*p)->rb_right;
3133 		else
3134 			return entry;
3135 	}
3136 
3137 	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
3138 	if (!odi)
3139 		return ERR_PTR(-ENOMEM);
3140 	odi->ino = dir_ino;
3141 	odi->gen = dir_gen;
3142 	odi->last_dir_index_offset = 0;
3143 	odi->dir_high_seq_ino = 0;
3144 
3145 	rb_link_node(&odi->node, parent, p);
3146 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
3147 	return odi;
3148 }
3149 
get_orphan_dir_info(struct send_ctx * sctx,u64 dir_ino,u64 gen)3150 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
3151 						   u64 dir_ino, u64 gen)
3152 {
3153 	struct rb_node *n = sctx->orphan_dirs.rb_node;
3154 	struct orphan_dir_info *entry;
3155 
3156 	while (n) {
3157 		entry = rb_entry(n, struct orphan_dir_info, node);
3158 		if (dir_ino < entry->ino)
3159 			n = n->rb_left;
3160 		else if (dir_ino > entry->ino)
3161 			n = n->rb_right;
3162 		else if (gen < entry->gen)
3163 			n = n->rb_left;
3164 		else if (gen > entry->gen)
3165 			n = n->rb_right;
3166 		else
3167 			return entry;
3168 	}
3169 	return NULL;
3170 }
3171 
is_waiting_for_rm(struct send_ctx * sctx,u64 dir_ino,u64 gen)3172 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
3173 {
3174 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
3175 
3176 	return odi != NULL;
3177 }
3178 
free_orphan_dir_info(struct send_ctx * sctx,struct orphan_dir_info * odi)3179 static void free_orphan_dir_info(struct send_ctx *sctx,
3180 				 struct orphan_dir_info *odi)
3181 {
3182 	if (!odi)
3183 		return;
3184 	rb_erase(&odi->node, &sctx->orphan_dirs);
3185 	kfree(odi);
3186 }
3187 
3188 /*
3189  * Returns 1 if a directory can be removed at this point in time.
3190  * We check this by iterating all dir items and checking if the inode behind
3191  * the dir item was already processed.
3192  */
can_rmdir(struct send_ctx * sctx,u64 dir,u64 dir_gen)3193 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen)
3194 {
3195 	int ret = 0;
3196 	int iter_ret = 0;
3197 	struct btrfs_root *root = sctx->parent_root;
3198 	struct btrfs_path *path;
3199 	struct btrfs_key key;
3200 	struct btrfs_key found_key;
3201 	struct btrfs_key loc;
3202 	struct btrfs_dir_item *di;
3203 	struct orphan_dir_info *odi = NULL;
3204 	u64 dir_high_seq_ino = 0;
3205 	u64 last_dir_index_offset = 0;
3206 
3207 	/*
3208 	 * Don't try to rmdir the top/root subvolume dir.
3209 	 */
3210 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
3211 		return 0;
3212 
3213 	odi = get_orphan_dir_info(sctx, dir, dir_gen);
3214 	if (odi && sctx->cur_ino < odi->dir_high_seq_ino)
3215 		return 0;
3216 
3217 	path = alloc_path_for_send();
3218 	if (!path)
3219 		return -ENOMEM;
3220 
3221 	if (!odi) {
3222 		/*
3223 		 * Find the inode number associated with the last dir index
3224 		 * entry. This is very likely the inode with the highest number
3225 		 * of all inodes that have an entry in the directory. We can
3226 		 * then use it to avoid future calls to can_rmdir(), when
3227 		 * processing inodes with a lower number, from having to search
3228 		 * the parent root b+tree for dir index keys.
3229 		 */
3230 		key.objectid = dir;
3231 		key.type = BTRFS_DIR_INDEX_KEY;
3232 		key.offset = (u64)-1;
3233 
3234 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3235 		if (ret < 0) {
3236 			goto out;
3237 		} else if (ret > 0) {
3238 			/* Can't happen, the root is never empty. */
3239 			ASSERT(path->slots[0] > 0);
3240 			if (WARN_ON(path->slots[0] == 0)) {
3241 				ret = -EUCLEAN;
3242 				goto out;
3243 			}
3244 			path->slots[0]--;
3245 		}
3246 
3247 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3248 		if (key.objectid != dir || key.type != BTRFS_DIR_INDEX_KEY) {
3249 			/* No index keys, dir can be removed. */
3250 			ret = 1;
3251 			goto out;
3252 		}
3253 
3254 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3255 				    struct btrfs_dir_item);
3256 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3257 		dir_high_seq_ino = loc.objectid;
3258 		if (sctx->cur_ino < dir_high_seq_ino) {
3259 			ret = 0;
3260 			goto out;
3261 		}
3262 
3263 		btrfs_release_path(path);
3264 	}
3265 
3266 	key.objectid = dir;
3267 	key.type = BTRFS_DIR_INDEX_KEY;
3268 	key.offset = (odi ? odi->last_dir_index_offset : 0);
3269 
3270 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
3271 		struct waiting_dir_move *dm;
3272 
3273 		if (found_key.objectid != key.objectid ||
3274 		    found_key.type != key.type)
3275 			break;
3276 
3277 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3278 				struct btrfs_dir_item);
3279 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3280 
3281 		dir_high_seq_ino = max(dir_high_seq_ino, loc.objectid);
3282 		last_dir_index_offset = found_key.offset;
3283 
3284 		dm = get_waiting_dir_move(sctx, loc.objectid);
3285 		if (dm) {
3286 			dm->rmdir_ino = dir;
3287 			dm->rmdir_gen = dir_gen;
3288 			ret = 0;
3289 			goto out;
3290 		}
3291 
3292 		if (loc.objectid > sctx->cur_ino) {
3293 			ret = 0;
3294 			goto out;
3295 		}
3296 	}
3297 	if (iter_ret < 0) {
3298 		ret = iter_ret;
3299 		goto out;
3300 	}
3301 	free_orphan_dir_info(sctx, odi);
3302 
3303 	ret = 1;
3304 
3305 out:
3306 	btrfs_free_path(path);
3307 
3308 	if (ret)
3309 		return ret;
3310 
3311 	if (!odi) {
3312 		odi = add_orphan_dir_info(sctx, dir, dir_gen);
3313 		if (IS_ERR(odi))
3314 			return PTR_ERR(odi);
3315 
3316 		odi->gen = dir_gen;
3317 	}
3318 
3319 	odi->last_dir_index_offset = last_dir_index_offset;
3320 	odi->dir_high_seq_ino = max(odi->dir_high_seq_ino, dir_high_seq_ino);
3321 
3322 	return 0;
3323 }
3324 
is_waiting_for_move(struct send_ctx * sctx,u64 ino)3325 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3326 {
3327 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3328 
3329 	return entry != NULL;
3330 }
3331 
add_waiting_dir_move(struct send_ctx * sctx,u64 ino,bool orphanized)3332 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3333 {
3334 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3335 	struct rb_node *parent = NULL;
3336 	struct waiting_dir_move *entry, *dm;
3337 
3338 	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3339 	if (!dm)
3340 		return -ENOMEM;
3341 	dm->ino = ino;
3342 	dm->rmdir_ino = 0;
3343 	dm->rmdir_gen = 0;
3344 	dm->orphanized = orphanized;
3345 
3346 	while (*p) {
3347 		parent = *p;
3348 		entry = rb_entry(parent, struct waiting_dir_move, node);
3349 		if (ino < entry->ino) {
3350 			p = &(*p)->rb_left;
3351 		} else if (ino > entry->ino) {
3352 			p = &(*p)->rb_right;
3353 		} else {
3354 			kfree(dm);
3355 			return -EEXIST;
3356 		}
3357 	}
3358 
3359 	rb_link_node(&dm->node, parent, p);
3360 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3361 	return 0;
3362 }
3363 
3364 static struct waiting_dir_move *
get_waiting_dir_move(struct send_ctx * sctx,u64 ino)3365 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3366 {
3367 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3368 	struct waiting_dir_move *entry;
3369 
3370 	while (n) {
3371 		entry = rb_entry(n, struct waiting_dir_move, node);
3372 		if (ino < entry->ino)
3373 			n = n->rb_left;
3374 		else if (ino > entry->ino)
3375 			n = n->rb_right;
3376 		else
3377 			return entry;
3378 	}
3379 	return NULL;
3380 }
3381 
free_waiting_dir_move(struct send_ctx * sctx,struct waiting_dir_move * dm)3382 static void free_waiting_dir_move(struct send_ctx *sctx,
3383 				  struct waiting_dir_move *dm)
3384 {
3385 	if (!dm)
3386 		return;
3387 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3388 	kfree(dm);
3389 }
3390 
add_pending_dir_move(struct send_ctx * sctx,u64 ino,u64 ino_gen,u64 parent_ino,struct list_head * new_refs,struct list_head * deleted_refs,const bool is_orphan)3391 static int add_pending_dir_move(struct send_ctx *sctx,
3392 				u64 ino,
3393 				u64 ino_gen,
3394 				u64 parent_ino,
3395 				struct list_head *new_refs,
3396 				struct list_head *deleted_refs,
3397 				const bool is_orphan)
3398 {
3399 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3400 	struct rb_node *parent = NULL;
3401 	struct pending_dir_move *entry = NULL, *pm;
3402 	struct recorded_ref *cur;
3403 	int exists = 0;
3404 	int ret;
3405 
3406 	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3407 	if (!pm)
3408 		return -ENOMEM;
3409 	pm->parent_ino = parent_ino;
3410 	pm->ino = ino;
3411 	pm->gen = ino_gen;
3412 	INIT_LIST_HEAD(&pm->list);
3413 	INIT_LIST_HEAD(&pm->update_refs);
3414 	RB_CLEAR_NODE(&pm->node);
3415 
3416 	while (*p) {
3417 		parent = *p;
3418 		entry = rb_entry(parent, struct pending_dir_move, node);
3419 		if (parent_ino < entry->parent_ino) {
3420 			p = &(*p)->rb_left;
3421 		} else if (parent_ino > entry->parent_ino) {
3422 			p = &(*p)->rb_right;
3423 		} else {
3424 			exists = 1;
3425 			break;
3426 		}
3427 	}
3428 
3429 	list_for_each_entry(cur, deleted_refs, list) {
3430 		ret = dup_ref(cur, &pm->update_refs);
3431 		if (ret < 0)
3432 			goto out;
3433 	}
3434 	list_for_each_entry(cur, new_refs, list) {
3435 		ret = dup_ref(cur, &pm->update_refs);
3436 		if (ret < 0)
3437 			goto out;
3438 	}
3439 
3440 	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3441 	if (ret)
3442 		goto out;
3443 
3444 	if (exists) {
3445 		list_add_tail(&pm->list, &entry->list);
3446 	} else {
3447 		rb_link_node(&pm->node, parent, p);
3448 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3449 	}
3450 	ret = 0;
3451 out:
3452 	if (ret) {
3453 		__free_recorded_refs(&pm->update_refs);
3454 		kfree(pm);
3455 	}
3456 	return ret;
3457 }
3458 
get_pending_dir_moves(struct send_ctx * sctx,u64 parent_ino)3459 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3460 						      u64 parent_ino)
3461 {
3462 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3463 	struct pending_dir_move *entry;
3464 
3465 	while (n) {
3466 		entry = rb_entry(n, struct pending_dir_move, node);
3467 		if (parent_ino < entry->parent_ino)
3468 			n = n->rb_left;
3469 		else if (parent_ino > entry->parent_ino)
3470 			n = n->rb_right;
3471 		else
3472 			return entry;
3473 	}
3474 	return NULL;
3475 }
3476 
path_loop(struct send_ctx * sctx,struct fs_path * name,u64 ino,u64 gen,u64 * ancestor_ino)3477 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3478 		     u64 ino, u64 gen, u64 *ancestor_ino)
3479 {
3480 	int ret = 0;
3481 	u64 parent_inode = 0;
3482 	u64 parent_gen = 0;
3483 	u64 start_ino = ino;
3484 
3485 	*ancestor_ino = 0;
3486 	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3487 		fs_path_reset(name);
3488 
3489 		if (is_waiting_for_rm(sctx, ino, gen))
3490 			break;
3491 		if (is_waiting_for_move(sctx, ino)) {
3492 			if (*ancestor_ino == 0)
3493 				*ancestor_ino = ino;
3494 			ret = get_first_ref(sctx->parent_root, ino,
3495 					    &parent_inode, &parent_gen, name);
3496 		} else {
3497 			ret = __get_cur_name_and_parent(sctx, ino, gen,
3498 							&parent_inode,
3499 							&parent_gen, name);
3500 			if (ret > 0) {
3501 				ret = 0;
3502 				break;
3503 			}
3504 		}
3505 		if (ret < 0)
3506 			break;
3507 		if (parent_inode == start_ino) {
3508 			ret = 1;
3509 			if (*ancestor_ino == 0)
3510 				*ancestor_ino = ino;
3511 			break;
3512 		}
3513 		ino = parent_inode;
3514 		gen = parent_gen;
3515 	}
3516 	return ret;
3517 }
3518 
apply_dir_move(struct send_ctx * sctx,struct pending_dir_move * pm)3519 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3520 {
3521 	struct fs_path *from_path = NULL;
3522 	struct fs_path *to_path = NULL;
3523 	struct fs_path *name = NULL;
3524 	u64 orig_progress = sctx->send_progress;
3525 	struct recorded_ref *cur;
3526 	u64 parent_ino, parent_gen;
3527 	struct waiting_dir_move *dm = NULL;
3528 	u64 rmdir_ino = 0;
3529 	u64 rmdir_gen;
3530 	u64 ancestor;
3531 	bool is_orphan;
3532 	int ret;
3533 
3534 	name = fs_path_alloc();
3535 	from_path = fs_path_alloc();
3536 	if (!name || !from_path) {
3537 		ret = -ENOMEM;
3538 		goto out;
3539 	}
3540 
3541 	dm = get_waiting_dir_move(sctx, pm->ino);
3542 	ASSERT(dm);
3543 	rmdir_ino = dm->rmdir_ino;
3544 	rmdir_gen = dm->rmdir_gen;
3545 	is_orphan = dm->orphanized;
3546 	free_waiting_dir_move(sctx, dm);
3547 
3548 	if (is_orphan) {
3549 		ret = gen_unique_name(sctx, pm->ino,
3550 				      pm->gen, from_path);
3551 	} else {
3552 		ret = get_first_ref(sctx->parent_root, pm->ino,
3553 				    &parent_ino, &parent_gen, name);
3554 		if (ret < 0)
3555 			goto out;
3556 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3557 				   from_path);
3558 		if (ret < 0)
3559 			goto out;
3560 		ret = fs_path_add_path(from_path, name);
3561 	}
3562 	if (ret < 0)
3563 		goto out;
3564 
3565 	sctx->send_progress = sctx->cur_ino + 1;
3566 	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3567 	if (ret < 0)
3568 		goto out;
3569 	if (ret) {
3570 		LIST_HEAD(deleted_refs);
3571 		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3572 		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3573 					   &pm->update_refs, &deleted_refs,
3574 					   is_orphan);
3575 		if (ret < 0)
3576 			goto out;
3577 		if (rmdir_ino) {
3578 			dm = get_waiting_dir_move(sctx, pm->ino);
3579 			ASSERT(dm);
3580 			dm->rmdir_ino = rmdir_ino;
3581 			dm->rmdir_gen = rmdir_gen;
3582 		}
3583 		goto out;
3584 	}
3585 	fs_path_reset(name);
3586 	to_path = name;
3587 	name = NULL;
3588 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3589 	if (ret < 0)
3590 		goto out;
3591 
3592 	ret = send_rename(sctx, from_path, to_path);
3593 	if (ret < 0)
3594 		goto out;
3595 
3596 	if (rmdir_ino) {
3597 		struct orphan_dir_info *odi;
3598 		u64 gen;
3599 
3600 		odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3601 		if (!odi) {
3602 			/* already deleted */
3603 			goto finish;
3604 		}
3605 		gen = odi->gen;
3606 
3607 		ret = can_rmdir(sctx, rmdir_ino, gen);
3608 		if (ret < 0)
3609 			goto out;
3610 		if (!ret)
3611 			goto finish;
3612 
3613 		name = fs_path_alloc();
3614 		if (!name) {
3615 			ret = -ENOMEM;
3616 			goto out;
3617 		}
3618 		ret = get_cur_path(sctx, rmdir_ino, gen, name);
3619 		if (ret < 0)
3620 			goto out;
3621 		ret = send_rmdir(sctx, name);
3622 		if (ret < 0)
3623 			goto out;
3624 	}
3625 
3626 finish:
3627 	ret = cache_dir_utimes(sctx, pm->ino, pm->gen);
3628 	if (ret < 0)
3629 		goto out;
3630 
3631 	/*
3632 	 * After rename/move, need to update the utimes of both new parent(s)
3633 	 * and old parent(s).
3634 	 */
3635 	list_for_each_entry(cur, &pm->update_refs, list) {
3636 		/*
3637 		 * The parent inode might have been deleted in the send snapshot
3638 		 */
3639 		ret = get_inode_info(sctx->send_root, cur->dir, NULL);
3640 		if (ret == -ENOENT) {
3641 			ret = 0;
3642 			continue;
3643 		}
3644 		if (ret < 0)
3645 			goto out;
3646 
3647 		ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
3648 		if (ret < 0)
3649 			goto out;
3650 	}
3651 
3652 out:
3653 	fs_path_free(name);
3654 	fs_path_free(from_path);
3655 	fs_path_free(to_path);
3656 	sctx->send_progress = orig_progress;
3657 
3658 	return ret;
3659 }
3660 
free_pending_move(struct send_ctx * sctx,struct pending_dir_move * m)3661 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3662 {
3663 	if (!list_empty(&m->list))
3664 		list_del(&m->list);
3665 	if (!RB_EMPTY_NODE(&m->node))
3666 		rb_erase(&m->node, &sctx->pending_dir_moves);
3667 	__free_recorded_refs(&m->update_refs);
3668 	kfree(m);
3669 }
3670 
tail_append_pending_moves(struct send_ctx * sctx,struct pending_dir_move * moves,struct list_head * stack)3671 static void tail_append_pending_moves(struct send_ctx *sctx,
3672 				      struct pending_dir_move *moves,
3673 				      struct list_head *stack)
3674 {
3675 	if (list_empty(&moves->list)) {
3676 		list_add_tail(&moves->list, stack);
3677 	} else {
3678 		LIST_HEAD(list);
3679 		list_splice_init(&moves->list, &list);
3680 		list_add_tail(&moves->list, stack);
3681 		list_splice_tail(&list, stack);
3682 	}
3683 	if (!RB_EMPTY_NODE(&moves->node)) {
3684 		rb_erase(&moves->node, &sctx->pending_dir_moves);
3685 		RB_CLEAR_NODE(&moves->node);
3686 	}
3687 }
3688 
apply_children_dir_moves(struct send_ctx * sctx)3689 static int apply_children_dir_moves(struct send_ctx *sctx)
3690 {
3691 	struct pending_dir_move *pm;
3692 	LIST_HEAD(stack);
3693 	u64 parent_ino = sctx->cur_ino;
3694 	int ret = 0;
3695 
3696 	pm = get_pending_dir_moves(sctx, parent_ino);
3697 	if (!pm)
3698 		return 0;
3699 
3700 	tail_append_pending_moves(sctx, pm, &stack);
3701 
3702 	while (!list_empty(&stack)) {
3703 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3704 		parent_ino = pm->ino;
3705 		ret = apply_dir_move(sctx, pm);
3706 		free_pending_move(sctx, pm);
3707 		if (ret)
3708 			goto out;
3709 		pm = get_pending_dir_moves(sctx, parent_ino);
3710 		if (pm)
3711 			tail_append_pending_moves(sctx, pm, &stack);
3712 	}
3713 	return 0;
3714 
3715 out:
3716 	while (!list_empty(&stack)) {
3717 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3718 		free_pending_move(sctx, pm);
3719 	}
3720 	return ret;
3721 }
3722 
3723 /*
3724  * We might need to delay a directory rename even when no ancestor directory
3725  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3726  * renamed. This happens when we rename a directory to the old name (the name
3727  * in the parent root) of some other unrelated directory that got its rename
3728  * delayed due to some ancestor with higher number that got renamed.
3729  *
3730  * Example:
3731  *
3732  * Parent snapshot:
3733  * .                                       (ino 256)
3734  * |---- a/                                (ino 257)
3735  * |     |---- file                        (ino 260)
3736  * |
3737  * |---- b/                                (ino 258)
3738  * |---- c/                                (ino 259)
3739  *
3740  * Send snapshot:
3741  * .                                       (ino 256)
3742  * |---- a/                                (ino 258)
3743  * |---- x/                                (ino 259)
3744  *       |---- y/                          (ino 257)
3745  *             |----- file                 (ino 260)
3746  *
3747  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3748  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3749  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3750  * must issue is:
3751  *
3752  * 1 - rename 259 from 'c' to 'x'
3753  * 2 - rename 257 from 'a' to 'x/y'
3754  * 3 - rename 258 from 'b' to 'a'
3755  *
3756  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3757  * be done right away and < 0 on error.
3758  */
wait_for_dest_dir_move(struct send_ctx * sctx,struct recorded_ref * parent_ref,const bool is_orphan)3759 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3760 				  struct recorded_ref *parent_ref,
3761 				  const bool is_orphan)
3762 {
3763 	struct btrfs_path *path;
3764 	struct btrfs_key key;
3765 	struct btrfs_key di_key;
3766 	struct btrfs_dir_item *di;
3767 	u64 left_gen;
3768 	u64 right_gen;
3769 	int ret = 0;
3770 	struct waiting_dir_move *wdm;
3771 
3772 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3773 		return 0;
3774 
3775 	path = alloc_path_for_send();
3776 	if (!path)
3777 		return -ENOMEM;
3778 
3779 	key.objectid = parent_ref->dir;
3780 	key.type = BTRFS_DIR_ITEM_KEY;
3781 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3782 
3783 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3784 	if (ret < 0) {
3785 		goto out;
3786 	} else if (ret > 0) {
3787 		ret = 0;
3788 		goto out;
3789 	}
3790 
3791 	di = btrfs_match_dir_item_name(path, parent_ref->name,
3792 				       parent_ref->name_len);
3793 	if (!di) {
3794 		ret = 0;
3795 		goto out;
3796 	}
3797 	/*
3798 	 * di_key.objectid has the number of the inode that has a dentry in the
3799 	 * parent directory with the same name that sctx->cur_ino is being
3800 	 * renamed to. We need to check if that inode is in the send root as
3801 	 * well and if it is currently marked as an inode with a pending rename,
3802 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3803 	 * that it happens after that other inode is renamed.
3804 	 */
3805 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3806 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3807 		ret = 0;
3808 		goto out;
3809 	}
3810 
3811 	ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen);
3812 	if (ret < 0)
3813 		goto out;
3814 	ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen);
3815 	if (ret < 0) {
3816 		if (ret == -ENOENT)
3817 			ret = 0;
3818 		goto out;
3819 	}
3820 
3821 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3822 	if (right_gen != left_gen) {
3823 		ret = 0;
3824 		goto out;
3825 	}
3826 
3827 	wdm = get_waiting_dir_move(sctx, di_key.objectid);
3828 	if (wdm && !wdm->orphanized) {
3829 		ret = add_pending_dir_move(sctx,
3830 					   sctx->cur_ino,
3831 					   sctx->cur_inode_gen,
3832 					   di_key.objectid,
3833 					   &sctx->new_refs,
3834 					   &sctx->deleted_refs,
3835 					   is_orphan);
3836 		if (!ret)
3837 			ret = 1;
3838 	}
3839 out:
3840 	btrfs_free_path(path);
3841 	return ret;
3842 }
3843 
3844 /*
3845  * Check if inode ino2, or any of its ancestors, is inode ino1.
3846  * Return 1 if true, 0 if false and < 0 on error.
3847  */
check_ino_in_path(struct btrfs_root * root,const u64 ino1,const u64 ino1_gen,const u64 ino2,const u64 ino2_gen,struct fs_path * fs_path)3848 static int check_ino_in_path(struct btrfs_root *root,
3849 			     const u64 ino1,
3850 			     const u64 ino1_gen,
3851 			     const u64 ino2,
3852 			     const u64 ino2_gen,
3853 			     struct fs_path *fs_path)
3854 {
3855 	u64 ino = ino2;
3856 
3857 	if (ino1 == ino2)
3858 		return ino1_gen == ino2_gen;
3859 
3860 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3861 		u64 parent;
3862 		u64 parent_gen;
3863 		int ret;
3864 
3865 		fs_path_reset(fs_path);
3866 		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3867 		if (ret < 0)
3868 			return ret;
3869 		if (parent == ino1)
3870 			return parent_gen == ino1_gen;
3871 		ino = parent;
3872 	}
3873 	return 0;
3874 }
3875 
3876 /*
3877  * Check if inode ino1 is an ancestor of inode ino2 in the given root for any
3878  * possible path (in case ino2 is not a directory and has multiple hard links).
3879  * Return 1 if true, 0 if false and < 0 on error.
3880  */
is_ancestor(struct btrfs_root * root,const u64 ino1,const u64 ino1_gen,const u64 ino2,struct fs_path * fs_path)3881 static int is_ancestor(struct btrfs_root *root,
3882 		       const u64 ino1,
3883 		       const u64 ino1_gen,
3884 		       const u64 ino2,
3885 		       struct fs_path *fs_path)
3886 {
3887 	bool free_fs_path = false;
3888 	int ret = 0;
3889 	int iter_ret = 0;
3890 	struct btrfs_path *path = NULL;
3891 	struct btrfs_key key;
3892 
3893 	if (!fs_path) {
3894 		fs_path = fs_path_alloc();
3895 		if (!fs_path)
3896 			return -ENOMEM;
3897 		free_fs_path = true;
3898 	}
3899 
3900 	path = alloc_path_for_send();
3901 	if (!path) {
3902 		ret = -ENOMEM;
3903 		goto out;
3904 	}
3905 
3906 	key.objectid = ino2;
3907 	key.type = BTRFS_INODE_REF_KEY;
3908 	key.offset = 0;
3909 
3910 	btrfs_for_each_slot(root, &key, &key, path, iter_ret) {
3911 		struct extent_buffer *leaf = path->nodes[0];
3912 		int slot = path->slots[0];
3913 		u32 cur_offset = 0;
3914 		u32 item_size;
3915 
3916 		if (key.objectid != ino2)
3917 			break;
3918 		if (key.type != BTRFS_INODE_REF_KEY &&
3919 		    key.type != BTRFS_INODE_EXTREF_KEY)
3920 			break;
3921 
3922 		item_size = btrfs_item_size(leaf, slot);
3923 		while (cur_offset < item_size) {
3924 			u64 parent;
3925 			u64 parent_gen;
3926 
3927 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
3928 				unsigned long ptr;
3929 				struct btrfs_inode_extref *extref;
3930 
3931 				ptr = btrfs_item_ptr_offset(leaf, slot);
3932 				extref = (struct btrfs_inode_extref *)
3933 					(ptr + cur_offset);
3934 				parent = btrfs_inode_extref_parent(leaf,
3935 								   extref);
3936 				cur_offset += sizeof(*extref);
3937 				cur_offset += btrfs_inode_extref_name_len(leaf,
3938 								  extref);
3939 			} else {
3940 				parent = key.offset;
3941 				cur_offset = item_size;
3942 			}
3943 
3944 			ret = get_inode_gen(root, parent, &parent_gen);
3945 			if (ret < 0)
3946 				goto out;
3947 			ret = check_ino_in_path(root, ino1, ino1_gen,
3948 						parent, parent_gen, fs_path);
3949 			if (ret)
3950 				goto out;
3951 		}
3952 	}
3953 	ret = 0;
3954 	if (iter_ret < 0)
3955 		ret = iter_ret;
3956 
3957 out:
3958 	btrfs_free_path(path);
3959 	if (free_fs_path)
3960 		fs_path_free(fs_path);
3961 	return ret;
3962 }
3963 
wait_for_parent_move(struct send_ctx * sctx,struct recorded_ref * parent_ref,const bool is_orphan)3964 static int wait_for_parent_move(struct send_ctx *sctx,
3965 				struct recorded_ref *parent_ref,
3966 				const bool is_orphan)
3967 {
3968 	int ret = 0;
3969 	u64 ino = parent_ref->dir;
3970 	u64 ino_gen = parent_ref->dir_gen;
3971 	u64 parent_ino_before, parent_ino_after;
3972 	struct fs_path *path_before = NULL;
3973 	struct fs_path *path_after = NULL;
3974 	int len1, len2;
3975 
3976 	path_after = fs_path_alloc();
3977 	path_before = fs_path_alloc();
3978 	if (!path_after || !path_before) {
3979 		ret = -ENOMEM;
3980 		goto out;
3981 	}
3982 
3983 	/*
3984 	 * Our current directory inode may not yet be renamed/moved because some
3985 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3986 	 * such ancestor exists and make sure our own rename/move happens after
3987 	 * that ancestor is processed to avoid path build infinite loops (done
3988 	 * at get_cur_path()).
3989 	 */
3990 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3991 		u64 parent_ino_after_gen;
3992 
3993 		if (is_waiting_for_move(sctx, ino)) {
3994 			/*
3995 			 * If the current inode is an ancestor of ino in the
3996 			 * parent root, we need to delay the rename of the
3997 			 * current inode, otherwise don't delayed the rename
3998 			 * because we can end up with a circular dependency
3999 			 * of renames, resulting in some directories never
4000 			 * getting the respective rename operations issued in
4001 			 * the send stream or getting into infinite path build
4002 			 * loops.
4003 			 */
4004 			ret = is_ancestor(sctx->parent_root,
4005 					  sctx->cur_ino, sctx->cur_inode_gen,
4006 					  ino, path_before);
4007 			if (ret)
4008 				break;
4009 		}
4010 
4011 		fs_path_reset(path_before);
4012 		fs_path_reset(path_after);
4013 
4014 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
4015 				    &parent_ino_after_gen, path_after);
4016 		if (ret < 0)
4017 			goto out;
4018 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
4019 				    NULL, path_before);
4020 		if (ret < 0 && ret != -ENOENT) {
4021 			goto out;
4022 		} else if (ret == -ENOENT) {
4023 			ret = 0;
4024 			break;
4025 		}
4026 
4027 		len1 = fs_path_len(path_before);
4028 		len2 = fs_path_len(path_after);
4029 		if (ino > sctx->cur_ino &&
4030 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
4031 		     memcmp(path_before->start, path_after->start, len1))) {
4032 			u64 parent_ino_gen;
4033 
4034 			ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen);
4035 			if (ret < 0)
4036 				goto out;
4037 			if (ino_gen == parent_ino_gen) {
4038 				ret = 1;
4039 				break;
4040 			}
4041 		}
4042 		ino = parent_ino_after;
4043 		ino_gen = parent_ino_after_gen;
4044 	}
4045 
4046 out:
4047 	fs_path_free(path_before);
4048 	fs_path_free(path_after);
4049 
4050 	if (ret == 1) {
4051 		ret = add_pending_dir_move(sctx,
4052 					   sctx->cur_ino,
4053 					   sctx->cur_inode_gen,
4054 					   ino,
4055 					   &sctx->new_refs,
4056 					   &sctx->deleted_refs,
4057 					   is_orphan);
4058 		if (!ret)
4059 			ret = 1;
4060 	}
4061 
4062 	return ret;
4063 }
4064 
update_ref_path(struct send_ctx * sctx,struct recorded_ref * ref)4065 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4066 {
4067 	int ret;
4068 	struct fs_path *new_path;
4069 
4070 	/*
4071 	 * Our reference's name member points to its full_path member string, so
4072 	 * we use here a new path.
4073 	 */
4074 	new_path = fs_path_alloc();
4075 	if (!new_path)
4076 		return -ENOMEM;
4077 
4078 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
4079 	if (ret < 0) {
4080 		fs_path_free(new_path);
4081 		return ret;
4082 	}
4083 	ret = fs_path_add(new_path, ref->name, ref->name_len);
4084 	if (ret < 0) {
4085 		fs_path_free(new_path);
4086 		return ret;
4087 	}
4088 
4089 	fs_path_free(ref->full_path);
4090 	set_ref_path(ref, new_path);
4091 
4092 	return 0;
4093 }
4094 
4095 /*
4096  * When processing the new references for an inode we may orphanize an existing
4097  * directory inode because its old name conflicts with one of the new references
4098  * of the current inode. Later, when processing another new reference of our
4099  * inode, we might need to orphanize another inode, but the path we have in the
4100  * reference reflects the pre-orphanization name of the directory we previously
4101  * orphanized. For example:
4102  *
4103  * parent snapshot looks like:
4104  *
4105  * .                                     (ino 256)
4106  * |----- f1                             (ino 257)
4107  * |----- f2                             (ino 258)
4108  * |----- d1/                            (ino 259)
4109  *        |----- d2/                     (ino 260)
4110  *
4111  * send snapshot looks like:
4112  *
4113  * .                                     (ino 256)
4114  * |----- d1                             (ino 258)
4115  * |----- f2/                            (ino 259)
4116  *        |----- f2_link/                (ino 260)
4117  *        |       |----- f1              (ino 257)
4118  *        |
4119  *        |----- d2                      (ino 258)
4120  *
4121  * When processing inode 257 we compute the name for inode 259 as "d1", and we
4122  * cache it in the name cache. Later when we start processing inode 258, when
4123  * collecting all its new references we set a full path of "d1/d2" for its new
4124  * reference with name "d2". When we start processing the new references we
4125  * start by processing the new reference with name "d1", and this results in
4126  * orphanizing inode 259, since its old reference causes a conflict. Then we
4127  * move on the next new reference, with name "d2", and we find out we must
4128  * orphanize inode 260, as its old reference conflicts with ours - but for the
4129  * orphanization we use a source path corresponding to the path we stored in the
4130  * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
4131  * receiver fail since the path component "d1/" no longer exists, it was renamed
4132  * to "o259-6-0/" when processing the previous new reference. So in this case we
4133  * must recompute the path in the new reference and use it for the new
4134  * orphanization operation.
4135  */
refresh_ref_path(struct send_ctx * sctx,struct recorded_ref * ref)4136 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4137 {
4138 	char *name;
4139 	int ret;
4140 
4141 	name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
4142 	if (!name)
4143 		return -ENOMEM;
4144 
4145 	fs_path_reset(ref->full_path);
4146 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
4147 	if (ret < 0)
4148 		goto out;
4149 
4150 	ret = fs_path_add(ref->full_path, name, ref->name_len);
4151 	if (ret < 0)
4152 		goto out;
4153 
4154 	/* Update the reference's base name pointer. */
4155 	set_ref_path(ref, ref->full_path);
4156 out:
4157 	kfree(name);
4158 	return ret;
4159 }
4160 
4161 /*
4162  * This does all the move/link/unlink/rmdir magic.
4163  */
process_recorded_refs(struct send_ctx * sctx,int * pending_move)4164 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
4165 {
4166 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4167 	int ret = 0;
4168 	struct recorded_ref *cur;
4169 	struct recorded_ref *cur2;
4170 	LIST_HEAD(check_dirs);
4171 	struct fs_path *valid_path = NULL;
4172 	u64 ow_inode = 0;
4173 	u64 ow_gen;
4174 	u64 ow_mode;
4175 	int did_overwrite = 0;
4176 	int is_orphan = 0;
4177 	u64 last_dir_ino_rm = 0;
4178 	bool can_rename = true;
4179 	bool orphanized_dir = false;
4180 	bool orphanized_ancestor = false;
4181 
4182 	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
4183 
4184 	/*
4185 	 * This should never happen as the root dir always has the same ref
4186 	 * which is always '..'
4187 	 */
4188 	if (unlikely(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID)) {
4189 		btrfs_err(fs_info,
4190 			  "send: unexpected inode %llu in process_recorded_refs()",
4191 			  sctx->cur_ino);
4192 		ret = -EINVAL;
4193 		goto out;
4194 	}
4195 
4196 	valid_path = fs_path_alloc();
4197 	if (!valid_path) {
4198 		ret = -ENOMEM;
4199 		goto out;
4200 	}
4201 
4202 	/*
4203 	 * First, check if the first ref of the current inode was overwritten
4204 	 * before. If yes, we know that the current inode was already orphanized
4205 	 * and thus use the orphan name. If not, we can use get_cur_path to
4206 	 * get the path of the first ref as it would like while receiving at
4207 	 * this point in time.
4208 	 * New inodes are always orphan at the beginning, so force to use the
4209 	 * orphan name in this case.
4210 	 * The first ref is stored in valid_path and will be updated if it
4211 	 * gets moved around.
4212 	 */
4213 	if (!sctx->cur_inode_new) {
4214 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
4215 				sctx->cur_inode_gen);
4216 		if (ret < 0)
4217 			goto out;
4218 		if (ret)
4219 			did_overwrite = 1;
4220 	}
4221 	if (sctx->cur_inode_new || did_overwrite) {
4222 		ret = gen_unique_name(sctx, sctx->cur_ino,
4223 				sctx->cur_inode_gen, valid_path);
4224 		if (ret < 0)
4225 			goto out;
4226 		is_orphan = 1;
4227 	} else {
4228 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4229 				valid_path);
4230 		if (ret < 0)
4231 			goto out;
4232 	}
4233 
4234 	/*
4235 	 * Before doing any rename and link operations, do a first pass on the
4236 	 * new references to orphanize any unprocessed inodes that may have a
4237 	 * reference that conflicts with one of the new references of the current
4238 	 * inode. This needs to happen first because a new reference may conflict
4239 	 * with the old reference of a parent directory, so we must make sure
4240 	 * that the path used for link and rename commands don't use an
4241 	 * orphanized name when an ancestor was not yet orphanized.
4242 	 *
4243 	 * Example:
4244 	 *
4245 	 * Parent snapshot:
4246 	 *
4247 	 * .                                                      (ino 256)
4248 	 * |----- testdir/                                        (ino 259)
4249 	 * |          |----- a                                    (ino 257)
4250 	 * |
4251 	 * |----- b                                               (ino 258)
4252 	 *
4253 	 * Send snapshot:
4254 	 *
4255 	 * .                                                      (ino 256)
4256 	 * |----- testdir_2/                                      (ino 259)
4257 	 * |          |----- a                                    (ino 260)
4258 	 * |
4259 	 * |----- testdir                                         (ino 257)
4260 	 * |----- b                                               (ino 257)
4261 	 * |----- b2                                              (ino 258)
4262 	 *
4263 	 * Processing the new reference for inode 257 with name "b" may happen
4264 	 * before processing the new reference with name "testdir". If so, we
4265 	 * must make sure that by the time we send a link command to create the
4266 	 * hard link "b", inode 259 was already orphanized, since the generated
4267 	 * path in "valid_path" already contains the orphanized name for 259.
4268 	 * We are processing inode 257, so only later when processing 259 we do
4269 	 * the rename operation to change its temporary (orphanized) name to
4270 	 * "testdir_2".
4271 	 */
4272 	list_for_each_entry(cur, &sctx->new_refs, list) {
4273 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4274 		if (ret < 0)
4275 			goto out;
4276 		if (ret == inode_state_will_create)
4277 			continue;
4278 
4279 		/*
4280 		 * Check if this new ref would overwrite the first ref of another
4281 		 * unprocessed inode. If yes, orphanize the overwritten inode.
4282 		 * If we find an overwritten ref that is not the first ref,
4283 		 * simply unlink it.
4284 		 */
4285 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4286 				cur->name, cur->name_len,
4287 				&ow_inode, &ow_gen, &ow_mode);
4288 		if (ret < 0)
4289 			goto out;
4290 		if (ret) {
4291 			ret = is_first_ref(sctx->parent_root,
4292 					   ow_inode, cur->dir, cur->name,
4293 					   cur->name_len);
4294 			if (ret < 0)
4295 				goto out;
4296 			if (ret) {
4297 				struct name_cache_entry *nce;
4298 				struct waiting_dir_move *wdm;
4299 
4300 				if (orphanized_dir) {
4301 					ret = refresh_ref_path(sctx, cur);
4302 					if (ret < 0)
4303 						goto out;
4304 				}
4305 
4306 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
4307 						cur->full_path);
4308 				if (ret < 0)
4309 					goto out;
4310 				if (S_ISDIR(ow_mode))
4311 					orphanized_dir = true;
4312 
4313 				/*
4314 				 * If ow_inode has its rename operation delayed
4315 				 * make sure that its orphanized name is used in
4316 				 * the source path when performing its rename
4317 				 * operation.
4318 				 */
4319 				wdm = get_waiting_dir_move(sctx, ow_inode);
4320 				if (wdm)
4321 					wdm->orphanized = true;
4322 
4323 				/*
4324 				 * Make sure we clear our orphanized inode's
4325 				 * name from the name cache. This is because the
4326 				 * inode ow_inode might be an ancestor of some
4327 				 * other inode that will be orphanized as well
4328 				 * later and has an inode number greater than
4329 				 * sctx->send_progress. We need to prevent
4330 				 * future name lookups from using the old name
4331 				 * and get instead the orphan name.
4332 				 */
4333 				nce = name_cache_search(sctx, ow_inode, ow_gen);
4334 				if (nce)
4335 					btrfs_lru_cache_remove(&sctx->name_cache,
4336 							       &nce->entry);
4337 
4338 				/*
4339 				 * ow_inode might currently be an ancestor of
4340 				 * cur_ino, therefore compute valid_path (the
4341 				 * current path of cur_ino) again because it
4342 				 * might contain the pre-orphanization name of
4343 				 * ow_inode, which is no longer valid.
4344 				 */
4345 				ret = is_ancestor(sctx->parent_root,
4346 						  ow_inode, ow_gen,
4347 						  sctx->cur_ino, NULL);
4348 				if (ret > 0) {
4349 					orphanized_ancestor = true;
4350 					fs_path_reset(valid_path);
4351 					ret = get_cur_path(sctx, sctx->cur_ino,
4352 							   sctx->cur_inode_gen,
4353 							   valid_path);
4354 				}
4355 				if (ret < 0)
4356 					goto out;
4357 			} else {
4358 				/*
4359 				 * If we previously orphanized a directory that
4360 				 * collided with a new reference that we already
4361 				 * processed, recompute the current path because
4362 				 * that directory may be part of the path.
4363 				 */
4364 				if (orphanized_dir) {
4365 					ret = refresh_ref_path(sctx, cur);
4366 					if (ret < 0)
4367 						goto out;
4368 				}
4369 				ret = send_unlink(sctx, cur->full_path);
4370 				if (ret < 0)
4371 					goto out;
4372 			}
4373 		}
4374 
4375 	}
4376 
4377 	list_for_each_entry(cur, &sctx->new_refs, list) {
4378 		/*
4379 		 * We may have refs where the parent directory does not exist
4380 		 * yet. This happens if the parent directories inum is higher
4381 		 * than the current inum. To handle this case, we create the
4382 		 * parent directory out of order. But we need to check if this
4383 		 * did already happen before due to other refs in the same dir.
4384 		 */
4385 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4386 		if (ret < 0)
4387 			goto out;
4388 		if (ret == inode_state_will_create) {
4389 			ret = 0;
4390 			/*
4391 			 * First check if any of the current inodes refs did
4392 			 * already create the dir.
4393 			 */
4394 			list_for_each_entry(cur2, &sctx->new_refs, list) {
4395 				if (cur == cur2)
4396 					break;
4397 				if (cur2->dir == cur->dir) {
4398 					ret = 1;
4399 					break;
4400 				}
4401 			}
4402 
4403 			/*
4404 			 * If that did not happen, check if a previous inode
4405 			 * did already create the dir.
4406 			 */
4407 			if (!ret)
4408 				ret = did_create_dir(sctx, cur->dir);
4409 			if (ret < 0)
4410 				goto out;
4411 			if (!ret) {
4412 				ret = send_create_inode(sctx, cur->dir);
4413 				if (ret < 0)
4414 					goto out;
4415 				cache_dir_created(sctx, cur->dir);
4416 			}
4417 		}
4418 
4419 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4420 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4421 			if (ret < 0)
4422 				goto out;
4423 			if (ret == 1) {
4424 				can_rename = false;
4425 				*pending_move = 1;
4426 			}
4427 		}
4428 
4429 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4430 		    can_rename) {
4431 			ret = wait_for_parent_move(sctx, cur, is_orphan);
4432 			if (ret < 0)
4433 				goto out;
4434 			if (ret == 1) {
4435 				can_rename = false;
4436 				*pending_move = 1;
4437 			}
4438 		}
4439 
4440 		/*
4441 		 * link/move the ref to the new place. If we have an orphan
4442 		 * inode, move it and update valid_path. If not, link or move
4443 		 * it depending on the inode mode.
4444 		 */
4445 		if (is_orphan && can_rename) {
4446 			ret = send_rename(sctx, valid_path, cur->full_path);
4447 			if (ret < 0)
4448 				goto out;
4449 			is_orphan = 0;
4450 			ret = fs_path_copy(valid_path, cur->full_path);
4451 			if (ret < 0)
4452 				goto out;
4453 		} else if (can_rename) {
4454 			if (S_ISDIR(sctx->cur_inode_mode)) {
4455 				/*
4456 				 * Dirs can't be linked, so move it. For moved
4457 				 * dirs, we always have one new and one deleted
4458 				 * ref. The deleted ref is ignored later.
4459 				 */
4460 				ret = send_rename(sctx, valid_path,
4461 						  cur->full_path);
4462 				if (!ret)
4463 					ret = fs_path_copy(valid_path,
4464 							   cur->full_path);
4465 				if (ret < 0)
4466 					goto out;
4467 			} else {
4468 				/*
4469 				 * We might have previously orphanized an inode
4470 				 * which is an ancestor of our current inode,
4471 				 * so our reference's full path, which was
4472 				 * computed before any such orphanizations, must
4473 				 * be updated.
4474 				 */
4475 				if (orphanized_dir) {
4476 					ret = update_ref_path(sctx, cur);
4477 					if (ret < 0)
4478 						goto out;
4479 				}
4480 				ret = send_link(sctx, cur->full_path,
4481 						valid_path);
4482 				if (ret < 0)
4483 					goto out;
4484 			}
4485 		}
4486 		ret = dup_ref(cur, &check_dirs);
4487 		if (ret < 0)
4488 			goto out;
4489 	}
4490 
4491 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4492 		/*
4493 		 * Check if we can already rmdir the directory. If not,
4494 		 * orphanize it. For every dir item inside that gets deleted
4495 		 * later, we do this check again and rmdir it then if possible.
4496 		 * See the use of check_dirs for more details.
4497 		 */
4498 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen);
4499 		if (ret < 0)
4500 			goto out;
4501 		if (ret) {
4502 			ret = send_rmdir(sctx, valid_path);
4503 			if (ret < 0)
4504 				goto out;
4505 		} else if (!is_orphan) {
4506 			ret = orphanize_inode(sctx, sctx->cur_ino,
4507 					sctx->cur_inode_gen, valid_path);
4508 			if (ret < 0)
4509 				goto out;
4510 			is_orphan = 1;
4511 		}
4512 
4513 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4514 			ret = dup_ref(cur, &check_dirs);
4515 			if (ret < 0)
4516 				goto out;
4517 		}
4518 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
4519 		   !list_empty(&sctx->deleted_refs)) {
4520 		/*
4521 		 * We have a moved dir. Add the old parent to check_dirs
4522 		 */
4523 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4524 				list);
4525 		ret = dup_ref(cur, &check_dirs);
4526 		if (ret < 0)
4527 			goto out;
4528 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
4529 		/*
4530 		 * We have a non dir inode. Go through all deleted refs and
4531 		 * unlink them if they were not already overwritten by other
4532 		 * inodes.
4533 		 */
4534 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4535 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4536 					sctx->cur_ino, sctx->cur_inode_gen,
4537 					cur->name, cur->name_len);
4538 			if (ret < 0)
4539 				goto out;
4540 			if (!ret) {
4541 				/*
4542 				 * If we orphanized any ancestor before, we need
4543 				 * to recompute the full path for deleted names,
4544 				 * since any such path was computed before we
4545 				 * processed any references and orphanized any
4546 				 * ancestor inode.
4547 				 */
4548 				if (orphanized_ancestor) {
4549 					ret = update_ref_path(sctx, cur);
4550 					if (ret < 0)
4551 						goto out;
4552 				}
4553 				ret = send_unlink(sctx, cur->full_path);
4554 				if (ret < 0)
4555 					goto out;
4556 			}
4557 			ret = dup_ref(cur, &check_dirs);
4558 			if (ret < 0)
4559 				goto out;
4560 		}
4561 		/*
4562 		 * If the inode is still orphan, unlink the orphan. This may
4563 		 * happen when a previous inode did overwrite the first ref
4564 		 * of this inode and no new refs were added for the current
4565 		 * inode. Unlinking does not mean that the inode is deleted in
4566 		 * all cases. There may still be links to this inode in other
4567 		 * places.
4568 		 */
4569 		if (is_orphan) {
4570 			ret = send_unlink(sctx, valid_path);
4571 			if (ret < 0)
4572 				goto out;
4573 		}
4574 	}
4575 
4576 	/*
4577 	 * We did collect all parent dirs where cur_inode was once located. We
4578 	 * now go through all these dirs and check if they are pending for
4579 	 * deletion and if it's finally possible to perform the rmdir now.
4580 	 * We also update the inode stats of the parent dirs here.
4581 	 */
4582 	list_for_each_entry(cur, &check_dirs, list) {
4583 		/*
4584 		 * In case we had refs into dirs that were not processed yet,
4585 		 * we don't need to do the utime and rmdir logic for these dirs.
4586 		 * The dir will be processed later.
4587 		 */
4588 		if (cur->dir > sctx->cur_ino)
4589 			continue;
4590 
4591 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4592 		if (ret < 0)
4593 			goto out;
4594 
4595 		if (ret == inode_state_did_create ||
4596 		    ret == inode_state_no_change) {
4597 			ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
4598 			if (ret < 0)
4599 				goto out;
4600 		} else if (ret == inode_state_did_delete &&
4601 			   cur->dir != last_dir_ino_rm) {
4602 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen);
4603 			if (ret < 0)
4604 				goto out;
4605 			if (ret) {
4606 				ret = get_cur_path(sctx, cur->dir,
4607 						   cur->dir_gen, valid_path);
4608 				if (ret < 0)
4609 					goto out;
4610 				ret = send_rmdir(sctx, valid_path);
4611 				if (ret < 0)
4612 					goto out;
4613 				last_dir_ino_rm = cur->dir;
4614 			}
4615 		}
4616 	}
4617 
4618 	ret = 0;
4619 
4620 out:
4621 	__free_recorded_refs(&check_dirs);
4622 	free_recorded_refs(sctx);
4623 	fs_path_free(valid_path);
4624 	return ret;
4625 }
4626 
rbtree_ref_comp(const void * k,const struct rb_node * node)4627 static int rbtree_ref_comp(const void *k, const struct rb_node *node)
4628 {
4629 	const struct recorded_ref *data = k;
4630 	const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node);
4631 	int result;
4632 
4633 	if (data->dir > ref->dir)
4634 		return 1;
4635 	if (data->dir < ref->dir)
4636 		return -1;
4637 	if (data->dir_gen > ref->dir_gen)
4638 		return 1;
4639 	if (data->dir_gen < ref->dir_gen)
4640 		return -1;
4641 	if (data->name_len > ref->name_len)
4642 		return 1;
4643 	if (data->name_len < ref->name_len)
4644 		return -1;
4645 	result = strcmp(data->name, ref->name);
4646 	if (result > 0)
4647 		return 1;
4648 	if (result < 0)
4649 		return -1;
4650 	return 0;
4651 }
4652 
rbtree_ref_less(struct rb_node * node,const struct rb_node * parent)4653 static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent)
4654 {
4655 	const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node);
4656 
4657 	return rbtree_ref_comp(entry, parent) < 0;
4658 }
4659 
record_ref_in_tree(struct rb_root * root,struct list_head * refs,struct fs_path * name,u64 dir,u64 dir_gen,struct send_ctx * sctx)4660 static int record_ref_in_tree(struct rb_root *root, struct list_head *refs,
4661 			      struct fs_path *name, u64 dir, u64 dir_gen,
4662 			      struct send_ctx *sctx)
4663 {
4664 	int ret = 0;
4665 	struct fs_path *path = NULL;
4666 	struct recorded_ref *ref = NULL;
4667 
4668 	path = fs_path_alloc();
4669 	if (!path) {
4670 		ret = -ENOMEM;
4671 		goto out;
4672 	}
4673 
4674 	ref = recorded_ref_alloc();
4675 	if (!ref) {
4676 		ret = -ENOMEM;
4677 		goto out;
4678 	}
4679 
4680 	ret = get_cur_path(sctx, dir, dir_gen, path);
4681 	if (ret < 0)
4682 		goto out;
4683 	ret = fs_path_add_path(path, name);
4684 	if (ret < 0)
4685 		goto out;
4686 
4687 	ref->dir = dir;
4688 	ref->dir_gen = dir_gen;
4689 	set_ref_path(ref, path);
4690 	list_add_tail(&ref->list, refs);
4691 	rb_add(&ref->node, root, rbtree_ref_less);
4692 	ref->root = root;
4693 out:
4694 	if (ret) {
4695 		if (path && (!ref || !ref->full_path))
4696 			fs_path_free(path);
4697 		recorded_ref_free(ref);
4698 	}
4699 	return ret;
4700 }
4701 
record_new_ref_if_needed(u64 dir,struct fs_path * name,void * ctx)4702 static int record_new_ref_if_needed(u64 dir, struct fs_path *name, void *ctx)
4703 {
4704 	int ret = 0;
4705 	struct send_ctx *sctx = ctx;
4706 	struct rb_node *node = NULL;
4707 	struct recorded_ref data;
4708 	struct recorded_ref *ref;
4709 	u64 dir_gen;
4710 
4711 	ret = get_inode_gen(sctx->send_root, dir, &dir_gen);
4712 	if (ret < 0)
4713 		goto out;
4714 
4715 	data.dir = dir;
4716 	data.dir_gen = dir_gen;
4717 	set_ref_path(&data, name);
4718 	node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp);
4719 	if (node) {
4720 		ref = rb_entry(node, struct recorded_ref, node);
4721 		recorded_ref_free(ref);
4722 	} else {
4723 		ret = record_ref_in_tree(&sctx->rbtree_new_refs,
4724 					 &sctx->new_refs, name, dir, dir_gen,
4725 					 sctx);
4726 	}
4727 out:
4728 	return ret;
4729 }
4730 
record_deleted_ref_if_needed(u64 dir,struct fs_path * name,void * ctx)4731 static int record_deleted_ref_if_needed(u64 dir, struct fs_path *name, void *ctx)
4732 {
4733 	int ret = 0;
4734 	struct send_ctx *sctx = ctx;
4735 	struct rb_node *node = NULL;
4736 	struct recorded_ref data;
4737 	struct recorded_ref *ref;
4738 	u64 dir_gen;
4739 
4740 	ret = get_inode_gen(sctx->parent_root, dir, &dir_gen);
4741 	if (ret < 0)
4742 		goto out;
4743 
4744 	data.dir = dir;
4745 	data.dir_gen = dir_gen;
4746 	set_ref_path(&data, name);
4747 	node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp);
4748 	if (node) {
4749 		ref = rb_entry(node, struct recorded_ref, node);
4750 		recorded_ref_free(ref);
4751 	} else {
4752 		ret = record_ref_in_tree(&sctx->rbtree_deleted_refs,
4753 					 &sctx->deleted_refs, name, dir,
4754 					 dir_gen, sctx);
4755 	}
4756 out:
4757 	return ret;
4758 }
4759 
record_new_ref(struct send_ctx * sctx)4760 static int record_new_ref(struct send_ctx *sctx)
4761 {
4762 	int ret;
4763 
4764 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4765 				sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4766 	if (ret < 0)
4767 		goto out;
4768 	ret = 0;
4769 
4770 out:
4771 	return ret;
4772 }
4773 
record_deleted_ref(struct send_ctx * sctx)4774 static int record_deleted_ref(struct send_ctx *sctx)
4775 {
4776 	int ret;
4777 
4778 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4779 				sctx->cmp_key, 0, record_deleted_ref_if_needed,
4780 				sctx);
4781 	if (ret < 0)
4782 		goto out;
4783 	ret = 0;
4784 
4785 out:
4786 	return ret;
4787 }
4788 
record_changed_ref(struct send_ctx * sctx)4789 static int record_changed_ref(struct send_ctx *sctx)
4790 {
4791 	int ret = 0;
4792 
4793 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4794 			sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4795 	if (ret < 0)
4796 		goto out;
4797 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4798 			sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx);
4799 	if (ret < 0)
4800 		goto out;
4801 	ret = 0;
4802 
4803 out:
4804 	return ret;
4805 }
4806 
4807 /*
4808  * Record and process all refs at once. Needed when an inode changes the
4809  * generation number, which means that it was deleted and recreated.
4810  */
process_all_refs(struct send_ctx * sctx,enum btrfs_compare_tree_result cmd)4811 static int process_all_refs(struct send_ctx *sctx,
4812 			    enum btrfs_compare_tree_result cmd)
4813 {
4814 	int ret = 0;
4815 	int iter_ret = 0;
4816 	struct btrfs_root *root;
4817 	struct btrfs_path *path;
4818 	struct btrfs_key key;
4819 	struct btrfs_key found_key;
4820 	iterate_inode_ref_t cb;
4821 	int pending_move = 0;
4822 
4823 	path = alloc_path_for_send();
4824 	if (!path)
4825 		return -ENOMEM;
4826 
4827 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4828 		root = sctx->send_root;
4829 		cb = record_new_ref_if_needed;
4830 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4831 		root = sctx->parent_root;
4832 		cb = record_deleted_ref_if_needed;
4833 	} else {
4834 		btrfs_err(sctx->send_root->fs_info,
4835 				"Wrong command %d in process_all_refs", cmd);
4836 		ret = -EINVAL;
4837 		goto out;
4838 	}
4839 
4840 	key.objectid = sctx->cmp_key->objectid;
4841 	key.type = BTRFS_INODE_REF_KEY;
4842 	key.offset = 0;
4843 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
4844 		if (found_key.objectid != key.objectid ||
4845 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4846 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4847 			break;
4848 
4849 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4850 		if (ret < 0)
4851 			goto out;
4852 	}
4853 	/* Catch error found during iteration */
4854 	if (iter_ret < 0) {
4855 		ret = iter_ret;
4856 		goto out;
4857 	}
4858 	btrfs_release_path(path);
4859 
4860 	/*
4861 	 * We don't actually care about pending_move as we are simply
4862 	 * re-creating this inode and will be rename'ing it into place once we
4863 	 * rename the parent directory.
4864 	 */
4865 	ret = process_recorded_refs(sctx, &pending_move);
4866 out:
4867 	btrfs_free_path(path);
4868 	return ret;
4869 }
4870 
send_set_xattr(struct send_ctx * sctx,struct fs_path * path,const char * name,int name_len,const char * data,int data_len)4871 static int send_set_xattr(struct send_ctx *sctx,
4872 			  struct fs_path *path,
4873 			  const char *name, int name_len,
4874 			  const char *data, int data_len)
4875 {
4876 	int ret = 0;
4877 
4878 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4879 	if (ret < 0)
4880 		goto out;
4881 
4882 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4883 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4884 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4885 
4886 	ret = send_cmd(sctx);
4887 
4888 tlv_put_failure:
4889 out:
4890 	return ret;
4891 }
4892 
send_remove_xattr(struct send_ctx * sctx,struct fs_path * path,const char * name,int name_len)4893 static int send_remove_xattr(struct send_ctx *sctx,
4894 			  struct fs_path *path,
4895 			  const char *name, int name_len)
4896 {
4897 	int ret = 0;
4898 
4899 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4900 	if (ret < 0)
4901 		goto out;
4902 
4903 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4904 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4905 
4906 	ret = send_cmd(sctx);
4907 
4908 tlv_put_failure:
4909 out:
4910 	return ret;
4911 }
4912 
__process_new_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)4913 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4914 			       const char *name, int name_len, const char *data,
4915 			       int data_len, void *ctx)
4916 {
4917 	int ret;
4918 	struct send_ctx *sctx = ctx;
4919 	struct fs_path *p;
4920 	struct posix_acl_xattr_header dummy_acl;
4921 
4922 	/* Capabilities are emitted by finish_inode_if_needed */
4923 	if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4924 		return 0;
4925 
4926 	p = fs_path_alloc();
4927 	if (!p)
4928 		return -ENOMEM;
4929 
4930 	/*
4931 	 * This hack is needed because empty acls are stored as zero byte
4932 	 * data in xattrs. Problem with that is, that receiving these zero byte
4933 	 * acls will fail later. To fix this, we send a dummy acl list that
4934 	 * only contains the version number and no entries.
4935 	 */
4936 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4937 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4938 		if (data_len == 0) {
4939 			dummy_acl.a_version =
4940 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4941 			data = (char *)&dummy_acl;
4942 			data_len = sizeof(dummy_acl);
4943 		}
4944 	}
4945 
4946 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4947 	if (ret < 0)
4948 		goto out;
4949 
4950 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4951 
4952 out:
4953 	fs_path_free(p);
4954 	return ret;
4955 }
4956 
__process_deleted_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)4957 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4958 				   const char *name, int name_len,
4959 				   const char *data, int data_len, void *ctx)
4960 {
4961 	int ret;
4962 	struct send_ctx *sctx = ctx;
4963 	struct fs_path *p;
4964 
4965 	p = fs_path_alloc();
4966 	if (!p)
4967 		return -ENOMEM;
4968 
4969 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4970 	if (ret < 0)
4971 		goto out;
4972 
4973 	ret = send_remove_xattr(sctx, p, name, name_len);
4974 
4975 out:
4976 	fs_path_free(p);
4977 	return ret;
4978 }
4979 
process_new_xattr(struct send_ctx * sctx)4980 static int process_new_xattr(struct send_ctx *sctx)
4981 {
4982 	int ret = 0;
4983 
4984 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4985 			       __process_new_xattr, sctx);
4986 
4987 	return ret;
4988 }
4989 
process_deleted_xattr(struct send_ctx * sctx)4990 static int process_deleted_xattr(struct send_ctx *sctx)
4991 {
4992 	return iterate_dir_item(sctx->parent_root, sctx->right_path,
4993 				__process_deleted_xattr, sctx);
4994 }
4995 
4996 struct find_xattr_ctx {
4997 	const char *name;
4998 	int name_len;
4999 	int found_idx;
5000 	char *found_data;
5001 	int found_data_len;
5002 };
5003 
__find_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * vctx)5004 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name,
5005 			int name_len, const char *data, int data_len, void *vctx)
5006 {
5007 	struct find_xattr_ctx *ctx = vctx;
5008 
5009 	if (name_len == ctx->name_len &&
5010 	    strncmp(name, ctx->name, name_len) == 0) {
5011 		ctx->found_idx = num;
5012 		ctx->found_data_len = data_len;
5013 		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
5014 		if (!ctx->found_data)
5015 			return -ENOMEM;
5016 		return 1;
5017 	}
5018 	return 0;
5019 }
5020 
find_xattr(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,const char * name,int name_len,char ** data,int * data_len)5021 static int find_xattr(struct btrfs_root *root,
5022 		      struct btrfs_path *path,
5023 		      struct btrfs_key *key,
5024 		      const char *name, int name_len,
5025 		      char **data, int *data_len)
5026 {
5027 	int ret;
5028 	struct find_xattr_ctx ctx;
5029 
5030 	ctx.name = name;
5031 	ctx.name_len = name_len;
5032 	ctx.found_idx = -1;
5033 	ctx.found_data = NULL;
5034 	ctx.found_data_len = 0;
5035 
5036 	ret = iterate_dir_item(root, path, __find_xattr, &ctx);
5037 	if (ret < 0)
5038 		return ret;
5039 
5040 	if (ctx.found_idx == -1)
5041 		return -ENOENT;
5042 	if (data) {
5043 		*data = ctx.found_data;
5044 		*data_len = ctx.found_data_len;
5045 	} else {
5046 		kfree(ctx.found_data);
5047 	}
5048 	return ctx.found_idx;
5049 }
5050 
5051 
__process_changed_new_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)5052 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
5053 				       const char *name, int name_len,
5054 				       const char *data, int data_len,
5055 				       void *ctx)
5056 {
5057 	int ret;
5058 	struct send_ctx *sctx = ctx;
5059 	char *found_data = NULL;
5060 	int found_data_len  = 0;
5061 
5062 	ret = find_xattr(sctx->parent_root, sctx->right_path,
5063 			 sctx->cmp_key, name, name_len, &found_data,
5064 			 &found_data_len);
5065 	if (ret == -ENOENT) {
5066 		ret = __process_new_xattr(num, di_key, name, name_len, data,
5067 					  data_len, ctx);
5068 	} else if (ret >= 0) {
5069 		if (data_len != found_data_len ||
5070 		    memcmp(data, found_data, data_len)) {
5071 			ret = __process_new_xattr(num, di_key, name, name_len,
5072 						  data, data_len, ctx);
5073 		} else {
5074 			ret = 0;
5075 		}
5076 	}
5077 
5078 	kfree(found_data);
5079 	return ret;
5080 }
5081 
__process_changed_deleted_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)5082 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
5083 					   const char *name, int name_len,
5084 					   const char *data, int data_len,
5085 					   void *ctx)
5086 {
5087 	int ret;
5088 	struct send_ctx *sctx = ctx;
5089 
5090 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
5091 			 name, name_len, NULL, NULL);
5092 	if (ret == -ENOENT)
5093 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
5094 					      data_len, ctx);
5095 	else if (ret >= 0)
5096 		ret = 0;
5097 
5098 	return ret;
5099 }
5100 
process_changed_xattr(struct send_ctx * sctx)5101 static int process_changed_xattr(struct send_ctx *sctx)
5102 {
5103 	int ret = 0;
5104 
5105 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
5106 			__process_changed_new_xattr, sctx);
5107 	if (ret < 0)
5108 		goto out;
5109 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
5110 			__process_changed_deleted_xattr, sctx);
5111 
5112 out:
5113 	return ret;
5114 }
5115 
process_all_new_xattrs(struct send_ctx * sctx)5116 static int process_all_new_xattrs(struct send_ctx *sctx)
5117 {
5118 	int ret = 0;
5119 	int iter_ret = 0;
5120 	struct btrfs_root *root;
5121 	struct btrfs_path *path;
5122 	struct btrfs_key key;
5123 	struct btrfs_key found_key;
5124 
5125 	path = alloc_path_for_send();
5126 	if (!path)
5127 		return -ENOMEM;
5128 
5129 	root = sctx->send_root;
5130 
5131 	key.objectid = sctx->cmp_key->objectid;
5132 	key.type = BTRFS_XATTR_ITEM_KEY;
5133 	key.offset = 0;
5134 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
5135 		if (found_key.objectid != key.objectid ||
5136 		    found_key.type != key.type) {
5137 			ret = 0;
5138 			break;
5139 		}
5140 
5141 		ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
5142 		if (ret < 0)
5143 			break;
5144 	}
5145 	/* Catch error found during iteration */
5146 	if (iter_ret < 0)
5147 		ret = iter_ret;
5148 
5149 	btrfs_free_path(path);
5150 	return ret;
5151 }
5152 
send_verity(struct send_ctx * sctx,struct fs_path * path,struct fsverity_descriptor * desc)5153 static int send_verity(struct send_ctx *sctx, struct fs_path *path,
5154 		       struct fsverity_descriptor *desc)
5155 {
5156 	int ret;
5157 
5158 	ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY);
5159 	if (ret < 0)
5160 		goto out;
5161 
5162 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
5163 	TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM,
5164 			le8_to_cpu(desc->hash_algorithm));
5165 	TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE,
5166 			1U << le8_to_cpu(desc->log_blocksize));
5167 	TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt,
5168 			le8_to_cpu(desc->salt_size));
5169 	TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature,
5170 			le32_to_cpu(desc->sig_size));
5171 
5172 	ret = send_cmd(sctx);
5173 
5174 tlv_put_failure:
5175 out:
5176 	return ret;
5177 }
5178 
process_verity(struct send_ctx * sctx)5179 static int process_verity(struct send_ctx *sctx)
5180 {
5181 	int ret = 0;
5182 	struct inode *inode;
5183 	struct fs_path *p;
5184 
5185 	inode = btrfs_iget(sctx->cur_ino, sctx->send_root);
5186 	if (IS_ERR(inode))
5187 		return PTR_ERR(inode);
5188 
5189 	ret = btrfs_get_verity_descriptor(inode, NULL, 0);
5190 	if (ret < 0)
5191 		goto iput;
5192 
5193 	if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) {
5194 		ret = -EMSGSIZE;
5195 		goto iput;
5196 	}
5197 	if (!sctx->verity_descriptor) {
5198 		sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE,
5199 						   GFP_KERNEL);
5200 		if (!sctx->verity_descriptor) {
5201 			ret = -ENOMEM;
5202 			goto iput;
5203 		}
5204 	}
5205 
5206 	ret = btrfs_get_verity_descriptor(inode, sctx->verity_descriptor, ret);
5207 	if (ret < 0)
5208 		goto iput;
5209 
5210 	p = fs_path_alloc();
5211 	if (!p) {
5212 		ret = -ENOMEM;
5213 		goto iput;
5214 	}
5215 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5216 	if (ret < 0)
5217 		goto free_path;
5218 
5219 	ret = send_verity(sctx, p, sctx->verity_descriptor);
5220 	if (ret < 0)
5221 		goto free_path;
5222 
5223 free_path:
5224 	fs_path_free(p);
5225 iput:
5226 	iput(inode);
5227 	return ret;
5228 }
5229 
max_send_read_size(const struct send_ctx * sctx)5230 static inline u64 max_send_read_size(const struct send_ctx *sctx)
5231 {
5232 	return sctx->send_max_size - SZ_16K;
5233 }
5234 
put_data_header(struct send_ctx * sctx,u32 len)5235 static int put_data_header(struct send_ctx *sctx, u32 len)
5236 {
5237 	if (WARN_ON_ONCE(sctx->put_data))
5238 		return -EINVAL;
5239 	sctx->put_data = true;
5240 	if (sctx->proto >= 2) {
5241 		/*
5242 		 * Since v2, the data attribute header doesn't include a length,
5243 		 * it is implicitly to the end of the command.
5244 		 */
5245 		if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len)
5246 			return -EOVERFLOW;
5247 		put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size);
5248 		sctx->send_size += sizeof(__le16);
5249 	} else {
5250 		struct btrfs_tlv_header *hdr;
5251 
5252 		if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
5253 			return -EOVERFLOW;
5254 		hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
5255 		put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
5256 		put_unaligned_le16(len, &hdr->tlv_len);
5257 		sctx->send_size += sizeof(*hdr);
5258 	}
5259 	return 0;
5260 }
5261 
put_file_data(struct send_ctx * sctx,u64 offset,u32 len)5262 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
5263 {
5264 	struct btrfs_root *root = sctx->send_root;
5265 	struct btrfs_fs_info *fs_info = root->fs_info;
5266 	struct folio *folio;
5267 	pgoff_t index = offset >> PAGE_SHIFT;
5268 	pgoff_t last_index;
5269 	unsigned pg_offset = offset_in_page(offset);
5270 	struct address_space *mapping = sctx->cur_inode->i_mapping;
5271 	int ret;
5272 
5273 	ret = put_data_header(sctx, len);
5274 	if (ret)
5275 		return ret;
5276 
5277 	last_index = (offset + len - 1) >> PAGE_SHIFT;
5278 
5279 	while (index <= last_index) {
5280 		unsigned cur_len = min_t(unsigned, len,
5281 					 PAGE_SIZE - pg_offset);
5282 
5283 again:
5284 		folio = filemap_lock_folio(mapping, index);
5285 		if (IS_ERR(folio)) {
5286 			page_cache_sync_readahead(mapping,
5287 						  &sctx->ra, NULL, index,
5288 						  last_index + 1 - index);
5289 
5290 	                folio = filemap_grab_folio(mapping, index);
5291 			if (IS_ERR(folio)) {
5292 				ret = PTR_ERR(folio);
5293 				break;
5294 			}
5295 		}
5296 
5297 		WARN_ON(folio_order(folio));
5298 
5299 		if (folio_test_readahead(folio))
5300 			page_cache_async_readahead(mapping, &sctx->ra, NULL, folio,
5301 						   last_index + 1 - index);
5302 
5303 		if (!folio_test_uptodate(folio)) {
5304 			btrfs_read_folio(NULL, folio);
5305 			folio_lock(folio);
5306 			if (!folio_test_uptodate(folio)) {
5307 				folio_unlock(folio);
5308 				btrfs_err(fs_info,
5309 			"send: IO error at offset %llu for inode %llu root %llu",
5310 					folio_pos(folio), sctx->cur_ino,
5311 					btrfs_root_id(sctx->send_root));
5312 				folio_put(folio);
5313 				ret = -EIO;
5314 				break;
5315 			}
5316 			if (folio->mapping != mapping) {
5317 				folio_unlock(folio);
5318 				folio_put(folio);
5319 				goto again;
5320 			}
5321 		}
5322 
5323 		memcpy_from_folio(sctx->send_buf + sctx->send_size, folio,
5324 				  pg_offset, cur_len);
5325 		folio_unlock(folio);
5326 		folio_put(folio);
5327 		index++;
5328 		pg_offset = 0;
5329 		len -= cur_len;
5330 		sctx->send_size += cur_len;
5331 	}
5332 
5333 	return ret;
5334 }
5335 
5336 /*
5337  * Read some bytes from the current inode/file and send a write command to
5338  * user space.
5339  */
send_write(struct send_ctx * sctx,u64 offset,u32 len)5340 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5341 {
5342 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5343 	int ret = 0;
5344 	struct fs_path *p;
5345 
5346 	p = fs_path_alloc();
5347 	if (!p)
5348 		return -ENOMEM;
5349 
5350 	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
5351 
5352 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5353 	if (ret < 0)
5354 		goto out;
5355 
5356 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5357 	if (ret < 0)
5358 		goto out;
5359 
5360 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5361 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5362 	ret = put_file_data(sctx, offset, len);
5363 	if (ret < 0)
5364 		goto out;
5365 
5366 	ret = send_cmd(sctx);
5367 
5368 tlv_put_failure:
5369 out:
5370 	fs_path_free(p);
5371 	return ret;
5372 }
5373 
5374 /*
5375  * Send a clone command to user space.
5376  */
send_clone(struct send_ctx * sctx,u64 offset,u32 len,struct clone_root * clone_root)5377 static int send_clone(struct send_ctx *sctx,
5378 		      u64 offset, u32 len,
5379 		      struct clone_root *clone_root)
5380 {
5381 	int ret = 0;
5382 	struct fs_path *p;
5383 	u64 gen;
5384 
5385 	btrfs_debug(sctx->send_root->fs_info,
5386 		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
5387 		    offset, len, btrfs_root_id(clone_root->root),
5388 		    clone_root->ino, clone_root->offset);
5389 
5390 	p = fs_path_alloc();
5391 	if (!p)
5392 		return -ENOMEM;
5393 
5394 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5395 	if (ret < 0)
5396 		goto out;
5397 
5398 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5399 	if (ret < 0)
5400 		goto out;
5401 
5402 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5403 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5404 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5405 
5406 	if (clone_root->root == sctx->send_root) {
5407 		ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen);
5408 		if (ret < 0)
5409 			goto out;
5410 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
5411 	} else {
5412 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
5413 	}
5414 	if (ret < 0)
5415 		goto out;
5416 
5417 	/*
5418 	 * If the parent we're using has a received_uuid set then use that as
5419 	 * our clone source as that is what we will look for when doing a
5420 	 * receive.
5421 	 *
5422 	 * This covers the case that we create a snapshot off of a received
5423 	 * subvolume and then use that as the parent and try to receive on a
5424 	 * different host.
5425 	 */
5426 	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5427 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5428 			     clone_root->root->root_item.received_uuid);
5429 	else
5430 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5431 			     clone_root->root->root_item.uuid);
5432 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5433 		    btrfs_root_ctransid(&clone_root->root->root_item));
5434 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5435 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5436 			clone_root->offset);
5437 
5438 	ret = send_cmd(sctx);
5439 
5440 tlv_put_failure:
5441 out:
5442 	fs_path_free(p);
5443 	return ret;
5444 }
5445 
5446 /*
5447  * Send an update extent command to user space.
5448  */
send_update_extent(struct send_ctx * sctx,u64 offset,u32 len)5449 static int send_update_extent(struct send_ctx *sctx,
5450 			      u64 offset, u32 len)
5451 {
5452 	int ret = 0;
5453 	struct fs_path *p;
5454 
5455 	p = fs_path_alloc();
5456 	if (!p)
5457 		return -ENOMEM;
5458 
5459 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5460 	if (ret < 0)
5461 		goto out;
5462 
5463 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5464 	if (ret < 0)
5465 		goto out;
5466 
5467 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5468 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5469 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5470 
5471 	ret = send_cmd(sctx);
5472 
5473 tlv_put_failure:
5474 out:
5475 	fs_path_free(p);
5476 	return ret;
5477 }
5478 
send_hole(struct send_ctx * sctx,u64 end)5479 static int send_hole(struct send_ctx *sctx, u64 end)
5480 {
5481 	struct fs_path *p = NULL;
5482 	u64 read_size = max_send_read_size(sctx);
5483 	u64 offset = sctx->cur_inode_last_extent;
5484 	int ret = 0;
5485 
5486 	/*
5487 	 * A hole that starts at EOF or beyond it. Since we do not yet support
5488 	 * fallocate (for extent preallocation and hole punching), sending a
5489 	 * write of zeroes starting at EOF or beyond would later require issuing
5490 	 * a truncate operation which would undo the write and achieve nothing.
5491 	 */
5492 	if (offset >= sctx->cur_inode_size)
5493 		return 0;
5494 
5495 	/*
5496 	 * Don't go beyond the inode's i_size due to prealloc extents that start
5497 	 * after the i_size.
5498 	 */
5499 	end = min_t(u64, end, sctx->cur_inode_size);
5500 
5501 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5502 		return send_update_extent(sctx, offset, end - offset);
5503 
5504 	p = fs_path_alloc();
5505 	if (!p)
5506 		return -ENOMEM;
5507 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5508 	if (ret < 0)
5509 		goto tlv_put_failure;
5510 	while (offset < end) {
5511 		u64 len = min(end - offset, read_size);
5512 
5513 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5514 		if (ret < 0)
5515 			break;
5516 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5517 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5518 		ret = put_data_header(sctx, len);
5519 		if (ret < 0)
5520 			break;
5521 		memset(sctx->send_buf + sctx->send_size, 0, len);
5522 		sctx->send_size += len;
5523 		ret = send_cmd(sctx);
5524 		if (ret < 0)
5525 			break;
5526 		offset += len;
5527 	}
5528 	sctx->cur_inode_next_write_offset = offset;
5529 tlv_put_failure:
5530 	fs_path_free(p);
5531 	return ret;
5532 }
5533 
send_encoded_inline_extent(struct send_ctx * sctx,struct btrfs_path * path,u64 offset,u64 len)5534 static int send_encoded_inline_extent(struct send_ctx *sctx,
5535 				      struct btrfs_path *path, u64 offset,
5536 				      u64 len)
5537 {
5538 	struct btrfs_root *root = sctx->send_root;
5539 	struct btrfs_fs_info *fs_info = root->fs_info;
5540 	struct inode *inode;
5541 	struct fs_path *fspath;
5542 	struct extent_buffer *leaf = path->nodes[0];
5543 	struct btrfs_key key;
5544 	struct btrfs_file_extent_item *ei;
5545 	u64 ram_bytes;
5546 	size_t inline_size;
5547 	int ret;
5548 
5549 	inode = btrfs_iget(sctx->cur_ino, root);
5550 	if (IS_ERR(inode))
5551 		return PTR_ERR(inode);
5552 
5553 	fspath = fs_path_alloc();
5554 	if (!fspath) {
5555 		ret = -ENOMEM;
5556 		goto out;
5557 	}
5558 
5559 	ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5560 	if (ret < 0)
5561 		goto out;
5562 
5563 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5564 	if (ret < 0)
5565 		goto out;
5566 
5567 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5568 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5569 	ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei);
5570 	inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
5571 
5572 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5573 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5574 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5575 		    min(key.offset + ram_bytes - offset, len));
5576 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes);
5577 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset);
5578 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
5579 				btrfs_file_extent_compression(leaf, ei));
5580 	if (ret < 0)
5581 		goto out;
5582 	TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5583 
5584 	ret = put_data_header(sctx, inline_size);
5585 	if (ret < 0)
5586 		goto out;
5587 	read_extent_buffer(leaf, sctx->send_buf + sctx->send_size,
5588 			   btrfs_file_extent_inline_start(ei), inline_size);
5589 	sctx->send_size += inline_size;
5590 
5591 	ret = send_cmd(sctx);
5592 
5593 tlv_put_failure:
5594 out:
5595 	fs_path_free(fspath);
5596 	iput(inode);
5597 	return ret;
5598 }
5599 
send_encoded_extent(struct send_ctx * sctx,struct btrfs_path * path,u64 offset,u64 len)5600 static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path,
5601 			       u64 offset, u64 len)
5602 {
5603 	struct btrfs_root *root = sctx->send_root;
5604 	struct btrfs_fs_info *fs_info = root->fs_info;
5605 	struct inode *inode;
5606 	struct fs_path *fspath;
5607 	struct extent_buffer *leaf = path->nodes[0];
5608 	struct btrfs_key key;
5609 	struct btrfs_file_extent_item *ei;
5610 	u64 disk_bytenr, disk_num_bytes;
5611 	u32 data_offset;
5612 	struct btrfs_cmd_header *hdr;
5613 	u32 crc;
5614 	int ret;
5615 
5616 	inode = btrfs_iget(sctx->cur_ino, root);
5617 	if (IS_ERR(inode))
5618 		return PTR_ERR(inode);
5619 
5620 	fspath = fs_path_alloc();
5621 	if (!fspath) {
5622 		ret = -ENOMEM;
5623 		goto out;
5624 	}
5625 
5626 	ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5627 	if (ret < 0)
5628 		goto out;
5629 
5630 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5631 	if (ret < 0)
5632 		goto out;
5633 
5634 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5635 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5636 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
5637 	disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei);
5638 
5639 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5640 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5641 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5642 		    min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset,
5643 			len));
5644 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN,
5645 		    btrfs_file_extent_ram_bytes(leaf, ei));
5646 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET,
5647 		    offset - key.offset + btrfs_file_extent_offset(leaf, ei));
5648 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
5649 				btrfs_file_extent_compression(leaf, ei));
5650 	if (ret < 0)
5651 		goto out;
5652 	TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5653 	TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0);
5654 
5655 	ret = put_data_header(sctx, disk_num_bytes);
5656 	if (ret < 0)
5657 		goto out;
5658 
5659 	/*
5660 	 * We want to do I/O directly into the send buffer, so get the next page
5661 	 * boundary in the send buffer. This means that there may be a gap
5662 	 * between the beginning of the command and the file data.
5663 	 */
5664 	data_offset = PAGE_ALIGN(sctx->send_size);
5665 	if (data_offset > sctx->send_max_size ||
5666 	    sctx->send_max_size - data_offset < disk_num_bytes) {
5667 		ret = -EOVERFLOW;
5668 		goto out;
5669 	}
5670 
5671 	/*
5672 	 * Note that send_buf is a mapping of send_buf_pages, so this is really
5673 	 * reading into send_buf.
5674 	 */
5675 	ret = btrfs_encoded_read_regular_fill_pages(BTRFS_I(inode),
5676 						    disk_bytenr, disk_num_bytes,
5677 						    sctx->send_buf_pages +
5678 						    (data_offset >> PAGE_SHIFT),
5679 						    NULL);
5680 	if (ret)
5681 		goto out;
5682 
5683 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
5684 	hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr));
5685 	hdr->crc = 0;
5686 	crc = crc32c(0, sctx->send_buf, sctx->send_size);
5687 	crc = crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes);
5688 	hdr->crc = cpu_to_le32(crc);
5689 
5690 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
5691 			&sctx->send_off);
5692 	if (!ret) {
5693 		ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset,
5694 				disk_num_bytes, &sctx->send_off);
5695 	}
5696 	sctx->send_size = 0;
5697 	sctx->put_data = false;
5698 
5699 tlv_put_failure:
5700 out:
5701 	fs_path_free(fspath);
5702 	iput(inode);
5703 	return ret;
5704 }
5705 
send_extent_data(struct send_ctx * sctx,struct btrfs_path * path,const u64 offset,const u64 len)5706 static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path,
5707 			    const u64 offset, const u64 len)
5708 {
5709 	const u64 end = offset + len;
5710 	struct extent_buffer *leaf = path->nodes[0];
5711 	struct btrfs_file_extent_item *ei;
5712 	u64 read_size = max_send_read_size(sctx);
5713 	u64 sent = 0;
5714 
5715 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5716 		return send_update_extent(sctx, offset, len);
5717 
5718 	ei = btrfs_item_ptr(leaf, path->slots[0],
5719 			    struct btrfs_file_extent_item);
5720 	if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) &&
5721 	    btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
5722 		bool is_inline = (btrfs_file_extent_type(leaf, ei) ==
5723 				  BTRFS_FILE_EXTENT_INLINE);
5724 
5725 		/*
5726 		 * Send the compressed extent unless the compressed data is
5727 		 * larger than the decompressed data. This can happen if we're
5728 		 * not sending the entire extent, either because it has been
5729 		 * partially overwritten/truncated or because this is a part of
5730 		 * the extent that we couldn't clone in clone_range().
5731 		 */
5732 		if (is_inline &&
5733 		    btrfs_file_extent_inline_item_len(leaf,
5734 						      path->slots[0]) <= len) {
5735 			return send_encoded_inline_extent(sctx, path, offset,
5736 							  len);
5737 		} else if (!is_inline &&
5738 			   btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) {
5739 			return send_encoded_extent(sctx, path, offset, len);
5740 		}
5741 	}
5742 
5743 	if (sctx->cur_inode == NULL) {
5744 		struct btrfs_root *root = sctx->send_root;
5745 
5746 		sctx->cur_inode = btrfs_iget(sctx->cur_ino, root);
5747 		if (IS_ERR(sctx->cur_inode)) {
5748 			int err = PTR_ERR(sctx->cur_inode);
5749 
5750 			sctx->cur_inode = NULL;
5751 			return err;
5752 		}
5753 		memset(&sctx->ra, 0, sizeof(struct file_ra_state));
5754 		file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping);
5755 
5756 		/*
5757 		 * It's very likely there are no pages from this inode in the page
5758 		 * cache, so after reading extents and sending their data, we clean
5759 		 * the page cache to avoid trashing the page cache (adding pressure
5760 		 * to the page cache and forcing eviction of other data more useful
5761 		 * for applications).
5762 		 *
5763 		 * We decide if we should clean the page cache simply by checking
5764 		 * if the inode's mapping nrpages is 0 when we first open it, and
5765 		 * not by using something like filemap_range_has_page() before
5766 		 * reading an extent because when we ask the readahead code to
5767 		 * read a given file range, it may (and almost always does) read
5768 		 * pages from beyond that range (see the documentation for
5769 		 * page_cache_sync_readahead()), so it would not be reliable,
5770 		 * because after reading the first extent future calls to
5771 		 * filemap_range_has_page() would return true because the readahead
5772 		 * on the previous extent resulted in reading pages of the current
5773 		 * extent as well.
5774 		 */
5775 		sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0);
5776 		sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE);
5777 	}
5778 
5779 	while (sent < len) {
5780 		u64 size = min(len - sent, read_size);
5781 		int ret;
5782 
5783 		ret = send_write(sctx, offset + sent, size);
5784 		if (ret < 0)
5785 			return ret;
5786 		sent += size;
5787 	}
5788 
5789 	if (sctx->clean_page_cache && PAGE_ALIGNED(end)) {
5790 		/*
5791 		 * Always operate only on ranges that are a multiple of the page
5792 		 * size. This is not only to prevent zeroing parts of a page in
5793 		 * the case of subpage sector size, but also to guarantee we evict
5794 		 * pages, as passing a range that is smaller than page size does
5795 		 * not evict the respective page (only zeroes part of its content).
5796 		 *
5797 		 * Always start from the end offset of the last range cleared.
5798 		 * This is because the readahead code may (and very often does)
5799 		 * reads pages beyond the range we request for readahead. So if
5800 		 * we have an extent layout like this:
5801 		 *
5802 		 *            [ extent A ] [ extent B ] [ extent C ]
5803 		 *
5804 		 * When we ask page_cache_sync_readahead() to read extent A, it
5805 		 * may also trigger reads for pages of extent B. If we are doing
5806 		 * an incremental send and extent B has not changed between the
5807 		 * parent and send snapshots, some or all of its pages may end
5808 		 * up being read and placed in the page cache. So when truncating
5809 		 * the page cache we always start from the end offset of the
5810 		 * previously processed extent up to the end of the current
5811 		 * extent.
5812 		 */
5813 		truncate_inode_pages_range(&sctx->cur_inode->i_data,
5814 					   sctx->page_cache_clear_start,
5815 					   end - 1);
5816 		sctx->page_cache_clear_start = end;
5817 	}
5818 
5819 	return 0;
5820 }
5821 
5822 /*
5823  * Search for a capability xattr related to sctx->cur_ino. If the capability is
5824  * found, call send_set_xattr function to emit it.
5825  *
5826  * Return 0 if there isn't a capability, or when the capability was emitted
5827  * successfully, or < 0 if an error occurred.
5828  */
send_capabilities(struct send_ctx * sctx)5829 static int send_capabilities(struct send_ctx *sctx)
5830 {
5831 	struct fs_path *fspath = NULL;
5832 	struct btrfs_path *path;
5833 	struct btrfs_dir_item *di;
5834 	struct extent_buffer *leaf;
5835 	unsigned long data_ptr;
5836 	char *buf = NULL;
5837 	int buf_len;
5838 	int ret = 0;
5839 
5840 	path = alloc_path_for_send();
5841 	if (!path)
5842 		return -ENOMEM;
5843 
5844 	di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5845 				XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5846 	if (!di) {
5847 		/* There is no xattr for this inode */
5848 		goto out;
5849 	} else if (IS_ERR(di)) {
5850 		ret = PTR_ERR(di);
5851 		goto out;
5852 	}
5853 
5854 	leaf = path->nodes[0];
5855 	buf_len = btrfs_dir_data_len(leaf, di);
5856 
5857 	fspath = fs_path_alloc();
5858 	buf = kmalloc(buf_len, GFP_KERNEL);
5859 	if (!fspath || !buf) {
5860 		ret = -ENOMEM;
5861 		goto out;
5862 	}
5863 
5864 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5865 	if (ret < 0)
5866 		goto out;
5867 
5868 	data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5869 	read_extent_buffer(leaf, buf, data_ptr, buf_len);
5870 
5871 	ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5872 			strlen(XATTR_NAME_CAPS), buf, buf_len);
5873 out:
5874 	kfree(buf);
5875 	fs_path_free(fspath);
5876 	btrfs_free_path(path);
5877 	return ret;
5878 }
5879 
clone_range(struct send_ctx * sctx,struct btrfs_path * dst_path,struct clone_root * clone_root,const u64 disk_byte,u64 data_offset,u64 offset,u64 len)5880 static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path,
5881 		       struct clone_root *clone_root, const u64 disk_byte,
5882 		       u64 data_offset, u64 offset, u64 len)
5883 {
5884 	struct btrfs_path *path;
5885 	struct btrfs_key key;
5886 	int ret;
5887 	struct btrfs_inode_info info;
5888 	u64 clone_src_i_size = 0;
5889 
5890 	/*
5891 	 * Prevent cloning from a zero offset with a length matching the sector
5892 	 * size because in some scenarios this will make the receiver fail.
5893 	 *
5894 	 * For example, if in the source filesystem the extent at offset 0
5895 	 * has a length of sectorsize and it was written using direct IO, then
5896 	 * it can never be an inline extent (even if compression is enabled).
5897 	 * Then this extent can be cloned in the original filesystem to a non
5898 	 * zero file offset, but it may not be possible to clone in the
5899 	 * destination filesystem because it can be inlined due to compression
5900 	 * on the destination filesystem (as the receiver's write operations are
5901 	 * always done using buffered IO). The same happens when the original
5902 	 * filesystem does not have compression enabled but the destination
5903 	 * filesystem has.
5904 	 */
5905 	if (clone_root->offset == 0 &&
5906 	    len == sctx->send_root->fs_info->sectorsize)
5907 		return send_extent_data(sctx, dst_path, offset, len);
5908 
5909 	path = alloc_path_for_send();
5910 	if (!path)
5911 		return -ENOMEM;
5912 
5913 	/*
5914 	 * There are inodes that have extents that lie behind its i_size. Don't
5915 	 * accept clones from these extents.
5916 	 */
5917 	ret = get_inode_info(clone_root->root, clone_root->ino, &info);
5918 	btrfs_release_path(path);
5919 	if (ret < 0)
5920 		goto out;
5921 	clone_src_i_size = info.size;
5922 
5923 	/*
5924 	 * We can't send a clone operation for the entire range if we find
5925 	 * extent items in the respective range in the source file that
5926 	 * refer to different extents or if we find holes.
5927 	 * So check for that and do a mix of clone and regular write/copy
5928 	 * operations if needed.
5929 	 *
5930 	 * Example:
5931 	 *
5932 	 * mkfs.btrfs -f /dev/sda
5933 	 * mount /dev/sda /mnt
5934 	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5935 	 * cp --reflink=always /mnt/foo /mnt/bar
5936 	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5937 	 * btrfs subvolume snapshot -r /mnt /mnt/snap
5938 	 *
5939 	 * If when we send the snapshot and we are processing file bar (which
5940 	 * has a higher inode number than foo) we blindly send a clone operation
5941 	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5942 	 * a file bar that matches the content of file foo - iow, doesn't match
5943 	 * the content from bar in the original filesystem.
5944 	 */
5945 	key.objectid = clone_root->ino;
5946 	key.type = BTRFS_EXTENT_DATA_KEY;
5947 	key.offset = clone_root->offset;
5948 	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5949 	if (ret < 0)
5950 		goto out;
5951 	if (ret > 0 && path->slots[0] > 0) {
5952 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5953 		if (key.objectid == clone_root->ino &&
5954 		    key.type == BTRFS_EXTENT_DATA_KEY)
5955 			path->slots[0]--;
5956 	}
5957 
5958 	while (true) {
5959 		struct extent_buffer *leaf = path->nodes[0];
5960 		int slot = path->slots[0];
5961 		struct btrfs_file_extent_item *ei;
5962 		u8 type;
5963 		u64 ext_len;
5964 		u64 clone_len;
5965 		u64 clone_data_offset;
5966 		bool crossed_src_i_size = false;
5967 
5968 		if (slot >= btrfs_header_nritems(leaf)) {
5969 			ret = btrfs_next_leaf(clone_root->root, path);
5970 			if (ret < 0)
5971 				goto out;
5972 			else if (ret > 0)
5973 				break;
5974 			continue;
5975 		}
5976 
5977 		btrfs_item_key_to_cpu(leaf, &key, slot);
5978 
5979 		/*
5980 		 * We might have an implicit trailing hole (NO_HOLES feature
5981 		 * enabled). We deal with it after leaving this loop.
5982 		 */
5983 		if (key.objectid != clone_root->ino ||
5984 		    key.type != BTRFS_EXTENT_DATA_KEY)
5985 			break;
5986 
5987 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5988 		type = btrfs_file_extent_type(leaf, ei);
5989 		if (type == BTRFS_FILE_EXTENT_INLINE) {
5990 			ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5991 			ext_len = PAGE_ALIGN(ext_len);
5992 		} else {
5993 			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5994 		}
5995 
5996 		if (key.offset + ext_len <= clone_root->offset)
5997 			goto next;
5998 
5999 		if (key.offset > clone_root->offset) {
6000 			/* Implicit hole, NO_HOLES feature enabled. */
6001 			u64 hole_len = key.offset - clone_root->offset;
6002 
6003 			if (hole_len > len)
6004 				hole_len = len;
6005 			ret = send_extent_data(sctx, dst_path, offset,
6006 					       hole_len);
6007 			if (ret < 0)
6008 				goto out;
6009 
6010 			len -= hole_len;
6011 			if (len == 0)
6012 				break;
6013 			offset += hole_len;
6014 			clone_root->offset += hole_len;
6015 			data_offset += hole_len;
6016 		}
6017 
6018 		if (key.offset >= clone_root->offset + len)
6019 			break;
6020 
6021 		if (key.offset >= clone_src_i_size)
6022 			break;
6023 
6024 		if (key.offset + ext_len > clone_src_i_size) {
6025 			ext_len = clone_src_i_size - key.offset;
6026 			crossed_src_i_size = true;
6027 		}
6028 
6029 		clone_data_offset = btrfs_file_extent_offset(leaf, ei);
6030 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
6031 			clone_root->offset = key.offset;
6032 			if (clone_data_offset < data_offset &&
6033 				clone_data_offset + ext_len > data_offset) {
6034 				u64 extent_offset;
6035 
6036 				extent_offset = data_offset - clone_data_offset;
6037 				ext_len -= extent_offset;
6038 				clone_data_offset += extent_offset;
6039 				clone_root->offset += extent_offset;
6040 			}
6041 		}
6042 
6043 		clone_len = min_t(u64, ext_len, len);
6044 
6045 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
6046 		    clone_data_offset == data_offset) {
6047 			const u64 src_end = clone_root->offset + clone_len;
6048 			const u64 sectorsize = SZ_64K;
6049 
6050 			/*
6051 			 * We can't clone the last block, when its size is not
6052 			 * sector size aligned, into the middle of a file. If we
6053 			 * do so, the receiver will get a failure (-EINVAL) when
6054 			 * trying to clone or will silently corrupt the data in
6055 			 * the destination file if it's on a kernel without the
6056 			 * fix introduced by commit ac765f83f1397646
6057 			 * ("Btrfs: fix data corruption due to cloning of eof
6058 			 * block).
6059 			 *
6060 			 * So issue a clone of the aligned down range plus a
6061 			 * regular write for the eof block, if we hit that case.
6062 			 *
6063 			 * Also, we use the maximum possible sector size, 64K,
6064 			 * because we don't know what's the sector size of the
6065 			 * filesystem that receives the stream, so we have to
6066 			 * assume the largest possible sector size.
6067 			 */
6068 			if (src_end == clone_src_i_size &&
6069 			    !IS_ALIGNED(src_end, sectorsize) &&
6070 			    offset + clone_len < sctx->cur_inode_size) {
6071 				u64 slen;
6072 
6073 				slen = ALIGN_DOWN(src_end - clone_root->offset,
6074 						  sectorsize);
6075 				if (slen > 0) {
6076 					ret = send_clone(sctx, offset, slen,
6077 							 clone_root);
6078 					if (ret < 0)
6079 						goto out;
6080 				}
6081 				ret = send_extent_data(sctx, dst_path,
6082 						       offset + slen,
6083 						       clone_len - slen);
6084 			} else {
6085 				ret = send_clone(sctx, offset, clone_len,
6086 						 clone_root);
6087 			}
6088 		} else if (crossed_src_i_size && clone_len < len) {
6089 			/*
6090 			 * If we are at i_size of the clone source inode and we
6091 			 * can not clone from it, terminate the loop. This is
6092 			 * to avoid sending two write operations, one with a
6093 			 * length matching clone_len and the final one after
6094 			 * this loop with a length of len - clone_len.
6095 			 *
6096 			 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED
6097 			 * was passed to the send ioctl), this helps avoid
6098 			 * sending an encoded write for an offset that is not
6099 			 * sector size aligned, in case the i_size of the source
6100 			 * inode is not sector size aligned. That will make the
6101 			 * receiver fallback to decompression of the data and
6102 			 * writing it using regular buffered IO, therefore while
6103 			 * not incorrect, it's not optimal due decompression and
6104 			 * possible re-compression at the receiver.
6105 			 */
6106 			break;
6107 		} else {
6108 			ret = send_extent_data(sctx, dst_path, offset,
6109 					       clone_len);
6110 		}
6111 
6112 		if (ret < 0)
6113 			goto out;
6114 
6115 		len -= clone_len;
6116 		if (len == 0)
6117 			break;
6118 		offset += clone_len;
6119 		clone_root->offset += clone_len;
6120 
6121 		/*
6122 		 * If we are cloning from the file we are currently processing,
6123 		 * and using the send root as the clone root, we must stop once
6124 		 * the current clone offset reaches the current eof of the file
6125 		 * at the receiver, otherwise we would issue an invalid clone
6126 		 * operation (source range going beyond eof) and cause the
6127 		 * receiver to fail. So if we reach the current eof, bail out
6128 		 * and fallback to a regular write.
6129 		 */
6130 		if (clone_root->root == sctx->send_root &&
6131 		    clone_root->ino == sctx->cur_ino &&
6132 		    clone_root->offset >= sctx->cur_inode_next_write_offset)
6133 			break;
6134 
6135 		data_offset += clone_len;
6136 next:
6137 		path->slots[0]++;
6138 	}
6139 
6140 	if (len > 0)
6141 		ret = send_extent_data(sctx, dst_path, offset, len);
6142 	else
6143 		ret = 0;
6144 out:
6145 	btrfs_free_path(path);
6146 	return ret;
6147 }
6148 
send_write_or_clone(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key,struct clone_root * clone_root)6149 static int send_write_or_clone(struct send_ctx *sctx,
6150 			       struct btrfs_path *path,
6151 			       struct btrfs_key *key,
6152 			       struct clone_root *clone_root)
6153 {
6154 	int ret = 0;
6155 	u64 offset = key->offset;
6156 	u64 end;
6157 	u64 bs = sctx->send_root->fs_info->sectorsize;
6158 	struct btrfs_file_extent_item *ei;
6159 	u64 disk_byte;
6160 	u64 data_offset;
6161 	u64 num_bytes;
6162 	struct btrfs_inode_info info = { 0 };
6163 
6164 	end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
6165 	if (offset >= end)
6166 		return 0;
6167 
6168 	num_bytes = end - offset;
6169 
6170 	if (!clone_root)
6171 		goto write_data;
6172 
6173 	if (IS_ALIGNED(end, bs))
6174 		goto clone_data;
6175 
6176 	/*
6177 	 * If the extent end is not aligned, we can clone if the extent ends at
6178 	 * the i_size of the inode and the clone range ends at the i_size of the
6179 	 * source inode, otherwise the clone operation fails with -EINVAL.
6180 	 */
6181 	if (end != sctx->cur_inode_size)
6182 		goto write_data;
6183 
6184 	ret = get_inode_info(clone_root->root, clone_root->ino, &info);
6185 	if (ret < 0)
6186 		return ret;
6187 
6188 	if (clone_root->offset + num_bytes == info.size) {
6189 		/*
6190 		 * The final size of our file matches the end offset, but it may
6191 		 * be that its current size is larger, so we have to truncate it
6192 		 * to any value between the start offset of the range and the
6193 		 * final i_size, otherwise the clone operation is invalid
6194 		 * because it's unaligned and it ends before the current EOF.
6195 		 * We do this truncate to the final i_size when we finish
6196 		 * processing the inode, but it's too late by then. And here we
6197 		 * truncate to the start offset of the range because it's always
6198 		 * sector size aligned while if it were the final i_size it
6199 		 * would result in dirtying part of a page, filling part of a
6200 		 * page with zeroes and then having the clone operation at the
6201 		 * receiver trigger IO and wait for it due to the dirty page.
6202 		 */
6203 		if (sctx->parent_root != NULL) {
6204 			ret = send_truncate(sctx, sctx->cur_ino,
6205 					    sctx->cur_inode_gen, offset);
6206 			if (ret < 0)
6207 				return ret;
6208 		}
6209 		goto clone_data;
6210 	}
6211 
6212 write_data:
6213 	ret = send_extent_data(sctx, path, offset, num_bytes);
6214 	sctx->cur_inode_next_write_offset = end;
6215 	return ret;
6216 
6217 clone_data:
6218 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6219 			    struct btrfs_file_extent_item);
6220 	disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
6221 	data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
6222 	ret = clone_range(sctx, path, clone_root, disk_byte, data_offset, offset,
6223 			  num_bytes);
6224 	sctx->cur_inode_next_write_offset = end;
6225 	return ret;
6226 }
6227 
is_extent_unchanged(struct send_ctx * sctx,struct btrfs_path * left_path,struct btrfs_key * ekey)6228 static int is_extent_unchanged(struct send_ctx *sctx,
6229 			       struct btrfs_path *left_path,
6230 			       struct btrfs_key *ekey)
6231 {
6232 	int ret = 0;
6233 	struct btrfs_key key;
6234 	struct btrfs_path *path = NULL;
6235 	struct extent_buffer *eb;
6236 	int slot;
6237 	struct btrfs_key found_key;
6238 	struct btrfs_file_extent_item *ei;
6239 	u64 left_disknr;
6240 	u64 right_disknr;
6241 	u64 left_offset;
6242 	u64 right_offset;
6243 	u64 left_offset_fixed;
6244 	u64 left_len;
6245 	u64 right_len;
6246 	u64 left_gen;
6247 	u64 right_gen;
6248 	u8 left_type;
6249 	u8 right_type;
6250 
6251 	path = alloc_path_for_send();
6252 	if (!path)
6253 		return -ENOMEM;
6254 
6255 	eb = left_path->nodes[0];
6256 	slot = left_path->slots[0];
6257 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6258 	left_type = btrfs_file_extent_type(eb, ei);
6259 
6260 	if (left_type != BTRFS_FILE_EXTENT_REG) {
6261 		ret = 0;
6262 		goto out;
6263 	}
6264 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6265 	left_len = btrfs_file_extent_num_bytes(eb, ei);
6266 	left_offset = btrfs_file_extent_offset(eb, ei);
6267 	left_gen = btrfs_file_extent_generation(eb, ei);
6268 
6269 	/*
6270 	 * Following comments will refer to these graphics. L is the left
6271 	 * extents which we are checking at the moment. 1-8 are the right
6272 	 * extents that we iterate.
6273 	 *
6274 	 *       |-----L-----|
6275 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
6276 	 *
6277 	 *       |-----L-----|
6278 	 * |--1--|-2b-|...(same as above)
6279 	 *
6280 	 * Alternative situation. Happens on files where extents got split.
6281 	 *       |-----L-----|
6282 	 * |-----------7-----------|-6-|
6283 	 *
6284 	 * Alternative situation. Happens on files which got larger.
6285 	 *       |-----L-----|
6286 	 * |-8-|
6287 	 * Nothing follows after 8.
6288 	 */
6289 
6290 	key.objectid = ekey->objectid;
6291 	key.type = BTRFS_EXTENT_DATA_KEY;
6292 	key.offset = ekey->offset;
6293 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
6294 	if (ret < 0)
6295 		goto out;
6296 	if (ret) {
6297 		ret = 0;
6298 		goto out;
6299 	}
6300 
6301 	/*
6302 	 * Handle special case where the right side has no extents at all.
6303 	 */
6304 	eb = path->nodes[0];
6305 	slot = path->slots[0];
6306 	btrfs_item_key_to_cpu(eb, &found_key, slot);
6307 	if (found_key.objectid != key.objectid ||
6308 	    found_key.type != key.type) {
6309 		/* If we're a hole then just pretend nothing changed */
6310 		ret = (left_disknr) ? 0 : 1;
6311 		goto out;
6312 	}
6313 
6314 	/*
6315 	 * We're now on 2a, 2b or 7.
6316 	 */
6317 	key = found_key;
6318 	while (key.offset < ekey->offset + left_len) {
6319 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6320 		right_type = btrfs_file_extent_type(eb, ei);
6321 		if (right_type != BTRFS_FILE_EXTENT_REG &&
6322 		    right_type != BTRFS_FILE_EXTENT_INLINE) {
6323 			ret = 0;
6324 			goto out;
6325 		}
6326 
6327 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6328 			right_len = btrfs_file_extent_ram_bytes(eb, ei);
6329 			right_len = PAGE_ALIGN(right_len);
6330 		} else {
6331 			right_len = btrfs_file_extent_num_bytes(eb, ei);
6332 		}
6333 
6334 		/*
6335 		 * Are we at extent 8? If yes, we know the extent is changed.
6336 		 * This may only happen on the first iteration.
6337 		 */
6338 		if (found_key.offset + right_len <= ekey->offset) {
6339 			/* If we're a hole just pretend nothing changed */
6340 			ret = (left_disknr) ? 0 : 1;
6341 			goto out;
6342 		}
6343 
6344 		/*
6345 		 * We just wanted to see if when we have an inline extent, what
6346 		 * follows it is a regular extent (wanted to check the above
6347 		 * condition for inline extents too). This should normally not
6348 		 * happen but it's possible for example when we have an inline
6349 		 * compressed extent representing data with a size matching
6350 		 * the page size (currently the same as sector size).
6351 		 */
6352 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6353 			ret = 0;
6354 			goto out;
6355 		}
6356 
6357 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6358 		right_offset = btrfs_file_extent_offset(eb, ei);
6359 		right_gen = btrfs_file_extent_generation(eb, ei);
6360 
6361 		left_offset_fixed = left_offset;
6362 		if (key.offset < ekey->offset) {
6363 			/* Fix the right offset for 2a and 7. */
6364 			right_offset += ekey->offset - key.offset;
6365 		} else {
6366 			/* Fix the left offset for all behind 2a and 2b */
6367 			left_offset_fixed += key.offset - ekey->offset;
6368 		}
6369 
6370 		/*
6371 		 * Check if we have the same extent.
6372 		 */
6373 		if (left_disknr != right_disknr ||
6374 		    left_offset_fixed != right_offset ||
6375 		    left_gen != right_gen) {
6376 			ret = 0;
6377 			goto out;
6378 		}
6379 
6380 		/*
6381 		 * Go to the next extent.
6382 		 */
6383 		ret = btrfs_next_item(sctx->parent_root, path);
6384 		if (ret < 0)
6385 			goto out;
6386 		if (!ret) {
6387 			eb = path->nodes[0];
6388 			slot = path->slots[0];
6389 			btrfs_item_key_to_cpu(eb, &found_key, slot);
6390 		}
6391 		if (ret || found_key.objectid != key.objectid ||
6392 		    found_key.type != key.type) {
6393 			key.offset += right_len;
6394 			break;
6395 		}
6396 		if (found_key.offset != key.offset + right_len) {
6397 			ret = 0;
6398 			goto out;
6399 		}
6400 		key = found_key;
6401 	}
6402 
6403 	/*
6404 	 * We're now behind the left extent (treat as unchanged) or at the end
6405 	 * of the right side (treat as changed).
6406 	 */
6407 	if (key.offset >= ekey->offset + left_len)
6408 		ret = 1;
6409 	else
6410 		ret = 0;
6411 
6412 
6413 out:
6414 	btrfs_free_path(path);
6415 	return ret;
6416 }
6417 
get_last_extent(struct send_ctx * sctx,u64 offset)6418 static int get_last_extent(struct send_ctx *sctx, u64 offset)
6419 {
6420 	struct btrfs_path *path;
6421 	struct btrfs_root *root = sctx->send_root;
6422 	struct btrfs_key key;
6423 	int ret;
6424 
6425 	path = alloc_path_for_send();
6426 	if (!path)
6427 		return -ENOMEM;
6428 
6429 	sctx->cur_inode_last_extent = 0;
6430 
6431 	key.objectid = sctx->cur_ino;
6432 	key.type = BTRFS_EXTENT_DATA_KEY;
6433 	key.offset = offset;
6434 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
6435 	if (ret < 0)
6436 		goto out;
6437 	ret = 0;
6438 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
6439 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
6440 		goto out;
6441 
6442 	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6443 out:
6444 	btrfs_free_path(path);
6445 	return ret;
6446 }
6447 
range_is_hole_in_parent(struct send_ctx * sctx,const u64 start,const u64 end)6448 static int range_is_hole_in_parent(struct send_ctx *sctx,
6449 				   const u64 start,
6450 				   const u64 end)
6451 {
6452 	struct btrfs_path *path;
6453 	struct btrfs_key key;
6454 	struct btrfs_root *root = sctx->parent_root;
6455 	u64 search_start = start;
6456 	int ret;
6457 
6458 	path = alloc_path_for_send();
6459 	if (!path)
6460 		return -ENOMEM;
6461 
6462 	key.objectid = sctx->cur_ino;
6463 	key.type = BTRFS_EXTENT_DATA_KEY;
6464 	key.offset = search_start;
6465 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6466 	if (ret < 0)
6467 		goto out;
6468 	if (ret > 0 && path->slots[0] > 0)
6469 		path->slots[0]--;
6470 
6471 	while (search_start < end) {
6472 		struct extent_buffer *leaf = path->nodes[0];
6473 		int slot = path->slots[0];
6474 		struct btrfs_file_extent_item *fi;
6475 		u64 extent_end;
6476 
6477 		if (slot >= btrfs_header_nritems(leaf)) {
6478 			ret = btrfs_next_leaf(root, path);
6479 			if (ret < 0)
6480 				goto out;
6481 			else if (ret > 0)
6482 				break;
6483 			continue;
6484 		}
6485 
6486 		btrfs_item_key_to_cpu(leaf, &key, slot);
6487 		if (key.objectid < sctx->cur_ino ||
6488 		    key.type < BTRFS_EXTENT_DATA_KEY)
6489 			goto next;
6490 		if (key.objectid > sctx->cur_ino ||
6491 		    key.type > BTRFS_EXTENT_DATA_KEY ||
6492 		    key.offset >= end)
6493 			break;
6494 
6495 		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6496 		extent_end = btrfs_file_extent_end(path);
6497 		if (extent_end <= start)
6498 			goto next;
6499 		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
6500 			search_start = extent_end;
6501 			goto next;
6502 		}
6503 		ret = 0;
6504 		goto out;
6505 next:
6506 		path->slots[0]++;
6507 	}
6508 	ret = 1;
6509 out:
6510 	btrfs_free_path(path);
6511 	return ret;
6512 }
6513 
maybe_send_hole(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)6514 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
6515 			   struct btrfs_key *key)
6516 {
6517 	int ret = 0;
6518 
6519 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
6520 		return 0;
6521 
6522 	/*
6523 	 * Get last extent's end offset (exclusive) if we haven't determined it
6524 	 * yet (we're processing the first file extent item that is new), or if
6525 	 * we're at the first slot of a leaf and the last extent's end is less
6526 	 * than the current extent's offset, because we might have skipped
6527 	 * entire leaves that contained only file extent items for our current
6528 	 * inode. These leaves have a generation number smaller (older) than the
6529 	 * one in the current leaf and the leaf our last extent came from, and
6530 	 * are located between these 2 leaves.
6531 	 */
6532 	if ((sctx->cur_inode_last_extent == (u64)-1) ||
6533 	    (path->slots[0] == 0 && sctx->cur_inode_last_extent < key->offset)) {
6534 		ret = get_last_extent(sctx, key->offset - 1);
6535 		if (ret)
6536 			return ret;
6537 	}
6538 
6539 	if (sctx->cur_inode_last_extent < key->offset) {
6540 		ret = range_is_hole_in_parent(sctx,
6541 					      sctx->cur_inode_last_extent,
6542 					      key->offset);
6543 		if (ret < 0)
6544 			return ret;
6545 		else if (ret == 0)
6546 			ret = send_hole(sctx, key->offset);
6547 		else
6548 			ret = 0;
6549 	}
6550 	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6551 	return ret;
6552 }
6553 
process_extent(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)6554 static int process_extent(struct send_ctx *sctx,
6555 			  struct btrfs_path *path,
6556 			  struct btrfs_key *key)
6557 {
6558 	struct clone_root *found_clone = NULL;
6559 	int ret = 0;
6560 
6561 	if (S_ISLNK(sctx->cur_inode_mode))
6562 		return 0;
6563 
6564 	if (sctx->parent_root && !sctx->cur_inode_new) {
6565 		ret = is_extent_unchanged(sctx, path, key);
6566 		if (ret < 0)
6567 			goto out;
6568 		if (ret) {
6569 			ret = 0;
6570 			goto out_hole;
6571 		}
6572 	} else {
6573 		struct btrfs_file_extent_item *ei;
6574 		u8 type;
6575 
6576 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6577 				    struct btrfs_file_extent_item);
6578 		type = btrfs_file_extent_type(path->nodes[0], ei);
6579 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
6580 		    type == BTRFS_FILE_EXTENT_REG) {
6581 			/*
6582 			 * The send spec does not have a prealloc command yet,
6583 			 * so just leave a hole for prealloc'ed extents until
6584 			 * we have enough commands queued up to justify rev'ing
6585 			 * the send spec.
6586 			 */
6587 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
6588 				ret = 0;
6589 				goto out;
6590 			}
6591 
6592 			/* Have a hole, just skip it. */
6593 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
6594 				ret = 0;
6595 				goto out;
6596 			}
6597 		}
6598 	}
6599 
6600 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
6601 			sctx->cur_inode_size, &found_clone);
6602 	if (ret != -ENOENT && ret < 0)
6603 		goto out;
6604 
6605 	ret = send_write_or_clone(sctx, path, key, found_clone);
6606 	if (ret)
6607 		goto out;
6608 out_hole:
6609 	ret = maybe_send_hole(sctx, path, key);
6610 out:
6611 	return ret;
6612 }
6613 
process_all_extents(struct send_ctx * sctx)6614 static int process_all_extents(struct send_ctx *sctx)
6615 {
6616 	int ret = 0;
6617 	int iter_ret = 0;
6618 	struct btrfs_root *root;
6619 	struct btrfs_path *path;
6620 	struct btrfs_key key;
6621 	struct btrfs_key found_key;
6622 
6623 	root = sctx->send_root;
6624 	path = alloc_path_for_send();
6625 	if (!path)
6626 		return -ENOMEM;
6627 
6628 	key.objectid = sctx->cmp_key->objectid;
6629 	key.type = BTRFS_EXTENT_DATA_KEY;
6630 	key.offset = 0;
6631 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
6632 		if (found_key.objectid != key.objectid ||
6633 		    found_key.type != key.type) {
6634 			ret = 0;
6635 			break;
6636 		}
6637 
6638 		ret = process_extent(sctx, path, &found_key);
6639 		if (ret < 0)
6640 			break;
6641 	}
6642 	/* Catch error found during iteration */
6643 	if (iter_ret < 0)
6644 		ret = iter_ret;
6645 
6646 	btrfs_free_path(path);
6647 	return ret;
6648 }
6649 
process_recorded_refs_if_needed(struct send_ctx * sctx,int at_end,int * pending_move,int * refs_processed)6650 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6651 					   int *pending_move,
6652 					   int *refs_processed)
6653 {
6654 	int ret = 0;
6655 
6656 	if (sctx->cur_ino == 0)
6657 		goto out;
6658 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6659 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6660 		goto out;
6661 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6662 		goto out;
6663 
6664 	ret = process_recorded_refs(sctx, pending_move);
6665 	if (ret < 0)
6666 		goto out;
6667 
6668 	*refs_processed = 1;
6669 out:
6670 	return ret;
6671 }
6672 
finish_inode_if_needed(struct send_ctx * sctx,int at_end)6673 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6674 {
6675 	int ret = 0;
6676 	struct btrfs_inode_info info;
6677 	u64 left_mode;
6678 	u64 left_uid;
6679 	u64 left_gid;
6680 	u64 left_fileattr;
6681 	u64 right_mode;
6682 	u64 right_uid;
6683 	u64 right_gid;
6684 	u64 right_fileattr;
6685 	int need_chmod = 0;
6686 	int need_chown = 0;
6687 	bool need_fileattr = false;
6688 	int need_truncate = 1;
6689 	int pending_move = 0;
6690 	int refs_processed = 0;
6691 
6692 	if (sctx->ignore_cur_inode)
6693 		return 0;
6694 
6695 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6696 					      &refs_processed);
6697 	if (ret < 0)
6698 		goto out;
6699 
6700 	/*
6701 	 * We have processed the refs and thus need to advance send_progress.
6702 	 * Now, calls to get_cur_xxx will take the updated refs of the current
6703 	 * inode into account.
6704 	 *
6705 	 * On the other hand, if our current inode is a directory and couldn't
6706 	 * be moved/renamed because its parent was renamed/moved too and it has
6707 	 * a higher inode number, we can only move/rename our current inode
6708 	 * after we moved/renamed its parent. Therefore in this case operate on
6709 	 * the old path (pre move/rename) of our current inode, and the
6710 	 * move/rename will be performed later.
6711 	 */
6712 	if (refs_processed && !pending_move)
6713 		sctx->send_progress = sctx->cur_ino + 1;
6714 
6715 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6716 		goto out;
6717 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6718 		goto out;
6719 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info);
6720 	if (ret < 0)
6721 		goto out;
6722 	left_mode = info.mode;
6723 	left_uid = info.uid;
6724 	left_gid = info.gid;
6725 	left_fileattr = info.fileattr;
6726 
6727 	if (!sctx->parent_root || sctx->cur_inode_new) {
6728 		need_chown = 1;
6729 		if (!S_ISLNK(sctx->cur_inode_mode))
6730 			need_chmod = 1;
6731 		if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6732 			need_truncate = 0;
6733 	} else {
6734 		u64 old_size;
6735 
6736 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info);
6737 		if (ret < 0)
6738 			goto out;
6739 		old_size = info.size;
6740 		right_mode = info.mode;
6741 		right_uid = info.uid;
6742 		right_gid = info.gid;
6743 		right_fileattr = info.fileattr;
6744 
6745 		if (left_uid != right_uid || left_gid != right_gid)
6746 			need_chown = 1;
6747 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6748 			need_chmod = 1;
6749 		if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr)
6750 			need_fileattr = true;
6751 		if ((old_size == sctx->cur_inode_size) ||
6752 		    (sctx->cur_inode_size > old_size &&
6753 		     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6754 			need_truncate = 0;
6755 	}
6756 
6757 	if (S_ISREG(sctx->cur_inode_mode)) {
6758 		if (need_send_hole(sctx)) {
6759 			if (sctx->cur_inode_last_extent == (u64)-1 ||
6760 			    sctx->cur_inode_last_extent <
6761 			    sctx->cur_inode_size) {
6762 				ret = get_last_extent(sctx, (u64)-1);
6763 				if (ret)
6764 					goto out;
6765 			}
6766 			if (sctx->cur_inode_last_extent < sctx->cur_inode_size) {
6767 				ret = range_is_hole_in_parent(sctx,
6768 						      sctx->cur_inode_last_extent,
6769 						      sctx->cur_inode_size);
6770 				if (ret < 0) {
6771 					goto out;
6772 				} else if (ret == 0) {
6773 					ret = send_hole(sctx, sctx->cur_inode_size);
6774 					if (ret < 0)
6775 						goto out;
6776 				} else {
6777 					/* Range is already a hole, skip. */
6778 					ret = 0;
6779 				}
6780 			}
6781 		}
6782 		if (need_truncate) {
6783 			ret = send_truncate(sctx, sctx->cur_ino,
6784 					    sctx->cur_inode_gen,
6785 					    sctx->cur_inode_size);
6786 			if (ret < 0)
6787 				goto out;
6788 		}
6789 	}
6790 
6791 	if (need_chown) {
6792 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6793 				left_uid, left_gid);
6794 		if (ret < 0)
6795 			goto out;
6796 	}
6797 	if (need_chmod) {
6798 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6799 				left_mode);
6800 		if (ret < 0)
6801 			goto out;
6802 	}
6803 	if (need_fileattr) {
6804 		ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6805 				    left_fileattr);
6806 		if (ret < 0)
6807 			goto out;
6808 	}
6809 
6810 	if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY)
6811 	    && sctx->cur_inode_needs_verity) {
6812 		ret = process_verity(sctx);
6813 		if (ret < 0)
6814 			goto out;
6815 	}
6816 
6817 	ret = send_capabilities(sctx);
6818 	if (ret < 0)
6819 		goto out;
6820 
6821 	/*
6822 	 * If other directory inodes depended on our current directory
6823 	 * inode's move/rename, now do their move/rename operations.
6824 	 */
6825 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6826 		ret = apply_children_dir_moves(sctx);
6827 		if (ret)
6828 			goto out;
6829 		/*
6830 		 * Need to send that every time, no matter if it actually
6831 		 * changed between the two trees as we have done changes to
6832 		 * the inode before. If our inode is a directory and it's
6833 		 * waiting to be moved/renamed, we will send its utimes when
6834 		 * it's moved/renamed, therefore we don't need to do it here.
6835 		 */
6836 		sctx->send_progress = sctx->cur_ino + 1;
6837 
6838 		/*
6839 		 * If the current inode is a non-empty directory, delay issuing
6840 		 * the utimes command for it, as it's very likely we have inodes
6841 		 * with an higher number inside it. We want to issue the utimes
6842 		 * command only after adding all dentries to it.
6843 		 */
6844 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_size > 0)
6845 			ret = cache_dir_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6846 		else
6847 			ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6848 
6849 		if (ret < 0)
6850 			goto out;
6851 	}
6852 
6853 out:
6854 	if (!ret)
6855 		ret = trim_dir_utimes_cache(sctx);
6856 
6857 	return ret;
6858 }
6859 
close_current_inode(struct send_ctx * sctx)6860 static void close_current_inode(struct send_ctx *sctx)
6861 {
6862 	u64 i_size;
6863 
6864 	if (sctx->cur_inode == NULL)
6865 		return;
6866 
6867 	i_size = i_size_read(sctx->cur_inode);
6868 
6869 	/*
6870 	 * If we are doing an incremental send, we may have extents between the
6871 	 * last processed extent and the i_size that have not been processed
6872 	 * because they haven't changed but we may have read some of their pages
6873 	 * through readahead, see the comments at send_extent_data().
6874 	 */
6875 	if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size)
6876 		truncate_inode_pages_range(&sctx->cur_inode->i_data,
6877 					   sctx->page_cache_clear_start,
6878 					   round_up(i_size, PAGE_SIZE) - 1);
6879 
6880 	iput(sctx->cur_inode);
6881 	sctx->cur_inode = NULL;
6882 }
6883 
changed_inode(struct send_ctx * sctx,enum btrfs_compare_tree_result result)6884 static int changed_inode(struct send_ctx *sctx,
6885 			 enum btrfs_compare_tree_result result)
6886 {
6887 	int ret = 0;
6888 	struct btrfs_key *key = sctx->cmp_key;
6889 	struct btrfs_inode_item *left_ii = NULL;
6890 	struct btrfs_inode_item *right_ii = NULL;
6891 	u64 left_gen = 0;
6892 	u64 right_gen = 0;
6893 
6894 	close_current_inode(sctx);
6895 
6896 	sctx->cur_ino = key->objectid;
6897 	sctx->cur_inode_new_gen = false;
6898 	sctx->cur_inode_last_extent = (u64)-1;
6899 	sctx->cur_inode_next_write_offset = 0;
6900 	sctx->ignore_cur_inode = false;
6901 
6902 	/*
6903 	 * Set send_progress to current inode. This will tell all get_cur_xxx
6904 	 * functions that the current inode's refs are not updated yet. Later,
6905 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6906 	 */
6907 	sctx->send_progress = sctx->cur_ino;
6908 
6909 	if (result == BTRFS_COMPARE_TREE_NEW ||
6910 	    result == BTRFS_COMPARE_TREE_CHANGED) {
6911 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6912 				sctx->left_path->slots[0],
6913 				struct btrfs_inode_item);
6914 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6915 				left_ii);
6916 	} else {
6917 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6918 				sctx->right_path->slots[0],
6919 				struct btrfs_inode_item);
6920 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6921 				right_ii);
6922 	}
6923 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
6924 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6925 				sctx->right_path->slots[0],
6926 				struct btrfs_inode_item);
6927 
6928 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6929 				right_ii);
6930 
6931 		/*
6932 		 * The cur_ino = root dir case is special here. We can't treat
6933 		 * the inode as deleted+reused because it would generate a
6934 		 * stream that tries to delete/mkdir the root dir.
6935 		 */
6936 		if (left_gen != right_gen &&
6937 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6938 			sctx->cur_inode_new_gen = true;
6939 	}
6940 
6941 	/*
6942 	 * Normally we do not find inodes with a link count of zero (orphans)
6943 	 * because the most common case is to create a snapshot and use it
6944 	 * for a send operation. However other less common use cases involve
6945 	 * using a subvolume and send it after turning it to RO mode just
6946 	 * after deleting all hard links of a file while holding an open
6947 	 * file descriptor against it or turning a RO snapshot into RW mode,
6948 	 * keep an open file descriptor against a file, delete it and then
6949 	 * turn the snapshot back to RO mode before using it for a send
6950 	 * operation. The former is what the receiver operation does.
6951 	 * Therefore, if we want to send these snapshots soon after they're
6952 	 * received, we need to handle orphan inodes as well. Moreover, orphans
6953 	 * can appear not only in the send snapshot but also in the parent
6954 	 * snapshot. Here are several cases:
6955 	 *
6956 	 * Case 1: BTRFS_COMPARE_TREE_NEW
6957 	 *       |  send snapshot  | action
6958 	 * --------------------------------
6959 	 * nlink |        0        | ignore
6960 	 *
6961 	 * Case 2: BTRFS_COMPARE_TREE_DELETED
6962 	 *       | parent snapshot | action
6963 	 * ----------------------------------
6964 	 * nlink |        0        | as usual
6965 	 * Note: No unlinks will be sent because there're no paths for it.
6966 	 *
6967 	 * Case 3: BTRFS_COMPARE_TREE_CHANGED
6968 	 *           |       | parent snapshot | send snapshot | action
6969 	 * -----------------------------------------------------------------------
6970 	 * subcase 1 | nlink |        0        |       0       | ignore
6971 	 * subcase 2 | nlink |       >0        |       0       | new_gen(deletion)
6972 	 * subcase 3 | nlink |        0        |      >0       | new_gen(creation)
6973 	 *
6974 	 */
6975 	if (result == BTRFS_COMPARE_TREE_NEW) {
6976 		if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) {
6977 			sctx->ignore_cur_inode = true;
6978 			goto out;
6979 		}
6980 		sctx->cur_inode_gen = left_gen;
6981 		sctx->cur_inode_new = true;
6982 		sctx->cur_inode_deleted = false;
6983 		sctx->cur_inode_size = btrfs_inode_size(
6984 				sctx->left_path->nodes[0], left_ii);
6985 		sctx->cur_inode_mode = btrfs_inode_mode(
6986 				sctx->left_path->nodes[0], left_ii);
6987 		sctx->cur_inode_rdev = btrfs_inode_rdev(
6988 				sctx->left_path->nodes[0], left_ii);
6989 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6990 			ret = send_create_inode_if_needed(sctx);
6991 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
6992 		sctx->cur_inode_gen = right_gen;
6993 		sctx->cur_inode_new = false;
6994 		sctx->cur_inode_deleted = true;
6995 		sctx->cur_inode_size = btrfs_inode_size(
6996 				sctx->right_path->nodes[0], right_ii);
6997 		sctx->cur_inode_mode = btrfs_inode_mode(
6998 				sctx->right_path->nodes[0], right_ii);
6999 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
7000 		u32 new_nlinks, old_nlinks;
7001 
7002 		new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
7003 		old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii);
7004 		if (new_nlinks == 0 && old_nlinks == 0) {
7005 			sctx->ignore_cur_inode = true;
7006 			goto out;
7007 		} else if (new_nlinks == 0 || old_nlinks == 0) {
7008 			sctx->cur_inode_new_gen = 1;
7009 		}
7010 		/*
7011 		 * We need to do some special handling in case the inode was
7012 		 * reported as changed with a changed generation number. This
7013 		 * means that the original inode was deleted and new inode
7014 		 * reused the same inum. So we have to treat the old inode as
7015 		 * deleted and the new one as new.
7016 		 */
7017 		if (sctx->cur_inode_new_gen) {
7018 			/*
7019 			 * First, process the inode as if it was deleted.
7020 			 */
7021 			if (old_nlinks > 0) {
7022 				sctx->cur_inode_gen = right_gen;
7023 				sctx->cur_inode_new = false;
7024 				sctx->cur_inode_deleted = true;
7025 				sctx->cur_inode_size = btrfs_inode_size(
7026 						sctx->right_path->nodes[0], right_ii);
7027 				sctx->cur_inode_mode = btrfs_inode_mode(
7028 						sctx->right_path->nodes[0], right_ii);
7029 				ret = process_all_refs(sctx,
7030 						BTRFS_COMPARE_TREE_DELETED);
7031 				if (ret < 0)
7032 					goto out;
7033 			}
7034 
7035 			/*
7036 			 * Now process the inode as if it was new.
7037 			 */
7038 			if (new_nlinks > 0) {
7039 				sctx->cur_inode_gen = left_gen;
7040 				sctx->cur_inode_new = true;
7041 				sctx->cur_inode_deleted = false;
7042 				sctx->cur_inode_size = btrfs_inode_size(
7043 						sctx->left_path->nodes[0],
7044 						left_ii);
7045 				sctx->cur_inode_mode = btrfs_inode_mode(
7046 						sctx->left_path->nodes[0],
7047 						left_ii);
7048 				sctx->cur_inode_rdev = btrfs_inode_rdev(
7049 						sctx->left_path->nodes[0],
7050 						left_ii);
7051 				ret = send_create_inode_if_needed(sctx);
7052 				if (ret < 0)
7053 					goto out;
7054 
7055 				ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
7056 				if (ret < 0)
7057 					goto out;
7058 				/*
7059 				 * Advance send_progress now as we did not get
7060 				 * into process_recorded_refs_if_needed in the
7061 				 * new_gen case.
7062 				 */
7063 				sctx->send_progress = sctx->cur_ino + 1;
7064 
7065 				/*
7066 				 * Now process all extents and xattrs of the
7067 				 * inode as if they were all new.
7068 				 */
7069 				ret = process_all_extents(sctx);
7070 				if (ret < 0)
7071 					goto out;
7072 				ret = process_all_new_xattrs(sctx);
7073 				if (ret < 0)
7074 					goto out;
7075 			}
7076 		} else {
7077 			sctx->cur_inode_gen = left_gen;
7078 			sctx->cur_inode_new = false;
7079 			sctx->cur_inode_new_gen = false;
7080 			sctx->cur_inode_deleted = false;
7081 			sctx->cur_inode_size = btrfs_inode_size(
7082 					sctx->left_path->nodes[0], left_ii);
7083 			sctx->cur_inode_mode = btrfs_inode_mode(
7084 					sctx->left_path->nodes[0], left_ii);
7085 		}
7086 	}
7087 
7088 out:
7089 	return ret;
7090 }
7091 
7092 /*
7093  * We have to process new refs before deleted refs, but compare_trees gives us
7094  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
7095  * first and later process them in process_recorded_refs.
7096  * For the cur_inode_new_gen case, we skip recording completely because
7097  * changed_inode did already initiate processing of refs. The reason for this is
7098  * that in this case, compare_tree actually compares the refs of 2 different
7099  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
7100  * refs of the right tree as deleted and all refs of the left tree as new.
7101  */
changed_ref(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7102 static int changed_ref(struct send_ctx *sctx,
7103 		       enum btrfs_compare_tree_result result)
7104 {
7105 	int ret = 0;
7106 
7107 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
7108 		inconsistent_snapshot_error(sctx, result, "reference");
7109 		return -EIO;
7110 	}
7111 
7112 	if (!sctx->cur_inode_new_gen &&
7113 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
7114 		if (result == BTRFS_COMPARE_TREE_NEW)
7115 			ret = record_new_ref(sctx);
7116 		else if (result == BTRFS_COMPARE_TREE_DELETED)
7117 			ret = record_deleted_ref(sctx);
7118 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
7119 			ret = record_changed_ref(sctx);
7120 	}
7121 
7122 	return ret;
7123 }
7124 
7125 /*
7126  * Process new/deleted/changed xattrs. We skip processing in the
7127  * cur_inode_new_gen case because changed_inode did already initiate processing
7128  * of xattrs. The reason is the same as in changed_ref
7129  */
changed_xattr(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7130 static int changed_xattr(struct send_ctx *sctx,
7131 			 enum btrfs_compare_tree_result result)
7132 {
7133 	int ret = 0;
7134 
7135 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
7136 		inconsistent_snapshot_error(sctx, result, "xattr");
7137 		return -EIO;
7138 	}
7139 
7140 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7141 		if (result == BTRFS_COMPARE_TREE_NEW)
7142 			ret = process_new_xattr(sctx);
7143 		else if (result == BTRFS_COMPARE_TREE_DELETED)
7144 			ret = process_deleted_xattr(sctx);
7145 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
7146 			ret = process_changed_xattr(sctx);
7147 	}
7148 
7149 	return ret;
7150 }
7151 
7152 /*
7153  * Process new/deleted/changed extents. We skip processing in the
7154  * cur_inode_new_gen case because changed_inode did already initiate processing
7155  * of extents. The reason is the same as in changed_ref
7156  */
changed_extent(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7157 static int changed_extent(struct send_ctx *sctx,
7158 			  enum btrfs_compare_tree_result result)
7159 {
7160 	int ret = 0;
7161 
7162 	/*
7163 	 * We have found an extent item that changed without the inode item
7164 	 * having changed. This can happen either after relocation (where the
7165 	 * disk_bytenr of an extent item is replaced at
7166 	 * relocation.c:replace_file_extents()) or after deduplication into a
7167 	 * file in both the parent and send snapshots (where an extent item can
7168 	 * get modified or replaced with a new one). Note that deduplication
7169 	 * updates the inode item, but it only changes the iversion (sequence
7170 	 * field in the inode item) of the inode, so if a file is deduplicated
7171 	 * the same amount of times in both the parent and send snapshots, its
7172 	 * iversion becomes the same in both snapshots, whence the inode item is
7173 	 * the same on both snapshots.
7174 	 */
7175 	if (sctx->cur_ino != sctx->cmp_key->objectid)
7176 		return 0;
7177 
7178 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7179 		if (result != BTRFS_COMPARE_TREE_DELETED)
7180 			ret = process_extent(sctx, sctx->left_path,
7181 					sctx->cmp_key);
7182 	}
7183 
7184 	return ret;
7185 }
7186 
changed_verity(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7187 static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result)
7188 {
7189 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7190 		if (result == BTRFS_COMPARE_TREE_NEW)
7191 			sctx->cur_inode_needs_verity = true;
7192 	}
7193 	return 0;
7194 }
7195 
dir_changed(struct send_ctx * sctx,u64 dir)7196 static int dir_changed(struct send_ctx *sctx, u64 dir)
7197 {
7198 	u64 orig_gen, new_gen;
7199 	int ret;
7200 
7201 	ret = get_inode_gen(sctx->send_root, dir, &new_gen);
7202 	if (ret)
7203 		return ret;
7204 
7205 	ret = get_inode_gen(sctx->parent_root, dir, &orig_gen);
7206 	if (ret)
7207 		return ret;
7208 
7209 	return (orig_gen != new_gen) ? 1 : 0;
7210 }
7211 
compare_refs(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)7212 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
7213 			struct btrfs_key *key)
7214 {
7215 	struct btrfs_inode_extref *extref;
7216 	struct extent_buffer *leaf;
7217 	u64 dirid = 0, last_dirid = 0;
7218 	unsigned long ptr;
7219 	u32 item_size;
7220 	u32 cur_offset = 0;
7221 	int ref_name_len;
7222 	int ret = 0;
7223 
7224 	/* Easy case, just check this one dirid */
7225 	if (key->type == BTRFS_INODE_REF_KEY) {
7226 		dirid = key->offset;
7227 
7228 		ret = dir_changed(sctx, dirid);
7229 		goto out;
7230 	}
7231 
7232 	leaf = path->nodes[0];
7233 	item_size = btrfs_item_size(leaf, path->slots[0]);
7234 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
7235 	while (cur_offset < item_size) {
7236 		extref = (struct btrfs_inode_extref *)(ptr +
7237 						       cur_offset);
7238 		dirid = btrfs_inode_extref_parent(leaf, extref);
7239 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
7240 		cur_offset += ref_name_len + sizeof(*extref);
7241 		if (dirid == last_dirid)
7242 			continue;
7243 		ret = dir_changed(sctx, dirid);
7244 		if (ret)
7245 			break;
7246 		last_dirid = dirid;
7247 	}
7248 out:
7249 	return ret;
7250 }
7251 
7252 /*
7253  * Updates compare related fields in sctx and simply forwards to the actual
7254  * changed_xxx functions.
7255  */
changed_cb(struct btrfs_path * left_path,struct btrfs_path * right_path,struct btrfs_key * key,enum btrfs_compare_tree_result result,struct send_ctx * sctx)7256 static int changed_cb(struct btrfs_path *left_path,
7257 		      struct btrfs_path *right_path,
7258 		      struct btrfs_key *key,
7259 		      enum btrfs_compare_tree_result result,
7260 		      struct send_ctx *sctx)
7261 {
7262 	int ret = 0;
7263 
7264 	/*
7265 	 * We can not hold the commit root semaphore here. This is because in
7266 	 * the case of sending and receiving to the same filesystem, using a
7267 	 * pipe, could result in a deadlock:
7268 	 *
7269 	 * 1) The task running send blocks on the pipe because it's full;
7270 	 *
7271 	 * 2) The task running receive, which is the only consumer of the pipe,
7272 	 *    is waiting for a transaction commit (for example due to a space
7273 	 *    reservation when doing a write or triggering a transaction commit
7274 	 *    when creating a subvolume);
7275 	 *
7276 	 * 3) The transaction is waiting to write lock the commit root semaphore,
7277 	 *    but can not acquire it since it's being held at 1).
7278 	 *
7279 	 * Down this call chain we write to the pipe through kernel_write().
7280 	 * The same type of problem can also happen when sending to a file that
7281 	 * is stored in the same filesystem - when reserving space for a write
7282 	 * into the file, we can trigger a transaction commit.
7283 	 *
7284 	 * Our caller has supplied us with clones of leaves from the send and
7285 	 * parent roots, so we're safe here from a concurrent relocation and
7286 	 * further reallocation of metadata extents while we are here. Below we
7287 	 * also assert that the leaves are clones.
7288 	 */
7289 	lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem);
7290 
7291 	/*
7292 	 * We always have a send root, so left_path is never NULL. We will not
7293 	 * have a leaf when we have reached the end of the send root but have
7294 	 * not yet reached the end of the parent root.
7295 	 */
7296 	if (left_path->nodes[0])
7297 		ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7298 				&left_path->nodes[0]->bflags));
7299 	/*
7300 	 * When doing a full send we don't have a parent root, so right_path is
7301 	 * NULL. When doing an incremental send, we may have reached the end of
7302 	 * the parent root already, so we don't have a leaf at right_path.
7303 	 */
7304 	if (right_path && right_path->nodes[0])
7305 		ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7306 				&right_path->nodes[0]->bflags));
7307 
7308 	if (result == BTRFS_COMPARE_TREE_SAME) {
7309 		if (key->type == BTRFS_INODE_REF_KEY ||
7310 		    key->type == BTRFS_INODE_EXTREF_KEY) {
7311 			ret = compare_refs(sctx, left_path, key);
7312 			if (!ret)
7313 				return 0;
7314 			if (ret < 0)
7315 				return ret;
7316 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
7317 			return maybe_send_hole(sctx, left_path, key);
7318 		} else {
7319 			return 0;
7320 		}
7321 		result = BTRFS_COMPARE_TREE_CHANGED;
7322 		ret = 0;
7323 	}
7324 
7325 	sctx->left_path = left_path;
7326 	sctx->right_path = right_path;
7327 	sctx->cmp_key = key;
7328 
7329 	ret = finish_inode_if_needed(sctx, 0);
7330 	if (ret < 0)
7331 		goto out;
7332 
7333 	/* Ignore non-FS objects */
7334 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
7335 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
7336 		goto out;
7337 
7338 	if (key->type == BTRFS_INODE_ITEM_KEY) {
7339 		ret = changed_inode(sctx, result);
7340 	} else if (!sctx->ignore_cur_inode) {
7341 		if (key->type == BTRFS_INODE_REF_KEY ||
7342 		    key->type == BTRFS_INODE_EXTREF_KEY)
7343 			ret = changed_ref(sctx, result);
7344 		else if (key->type == BTRFS_XATTR_ITEM_KEY)
7345 			ret = changed_xattr(sctx, result);
7346 		else if (key->type == BTRFS_EXTENT_DATA_KEY)
7347 			ret = changed_extent(sctx, result);
7348 		else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY &&
7349 			 key->offset == 0)
7350 			ret = changed_verity(sctx, result);
7351 	}
7352 
7353 out:
7354 	return ret;
7355 }
7356 
search_key_again(const struct send_ctx * sctx,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * key)7357 static int search_key_again(const struct send_ctx *sctx,
7358 			    struct btrfs_root *root,
7359 			    struct btrfs_path *path,
7360 			    const struct btrfs_key *key)
7361 {
7362 	int ret;
7363 
7364 	if (!path->need_commit_sem)
7365 		lockdep_assert_held_read(&root->fs_info->commit_root_sem);
7366 
7367 	/*
7368 	 * Roots used for send operations are readonly and no one can add,
7369 	 * update or remove keys from them, so we should be able to find our
7370 	 * key again. The only exception is deduplication, which can operate on
7371 	 * readonly roots and add, update or remove keys to/from them - but at
7372 	 * the moment we don't allow it to run in parallel with send.
7373 	 */
7374 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7375 	ASSERT(ret <= 0);
7376 	if (ret > 0) {
7377 		btrfs_print_tree(path->nodes[path->lowest_level], false);
7378 		btrfs_err(root->fs_info,
7379 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d",
7380 			  key->objectid, key->type, key->offset,
7381 			  (root == sctx->parent_root ? "parent" : "send"),
7382 			  btrfs_root_id(root), path->lowest_level,
7383 			  path->slots[path->lowest_level]);
7384 		return -EUCLEAN;
7385 	}
7386 
7387 	return ret;
7388 }
7389 
full_send_tree(struct send_ctx * sctx)7390 static int full_send_tree(struct send_ctx *sctx)
7391 {
7392 	int ret;
7393 	struct btrfs_root *send_root = sctx->send_root;
7394 	struct btrfs_key key;
7395 	struct btrfs_fs_info *fs_info = send_root->fs_info;
7396 	struct btrfs_path *path;
7397 
7398 	path = alloc_path_for_send();
7399 	if (!path)
7400 		return -ENOMEM;
7401 	path->reada = READA_FORWARD_ALWAYS;
7402 
7403 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
7404 	key.type = BTRFS_INODE_ITEM_KEY;
7405 	key.offset = 0;
7406 
7407 	down_read(&fs_info->commit_root_sem);
7408 	sctx->last_reloc_trans = fs_info->last_reloc_trans;
7409 	up_read(&fs_info->commit_root_sem);
7410 
7411 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
7412 	if (ret < 0)
7413 		goto out;
7414 	if (ret)
7415 		goto out_finish;
7416 
7417 	while (1) {
7418 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
7419 
7420 		ret = changed_cb(path, NULL, &key,
7421 				 BTRFS_COMPARE_TREE_NEW, sctx);
7422 		if (ret < 0)
7423 			goto out;
7424 
7425 		down_read(&fs_info->commit_root_sem);
7426 		if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7427 			sctx->last_reloc_trans = fs_info->last_reloc_trans;
7428 			up_read(&fs_info->commit_root_sem);
7429 			/*
7430 			 * A transaction used for relocating a block group was
7431 			 * committed or is about to finish its commit. Release
7432 			 * our path (leaf) and restart the search, so that we
7433 			 * avoid operating on any file extent items that are
7434 			 * stale, with a disk_bytenr that reflects a pre
7435 			 * relocation value. This way we avoid as much as
7436 			 * possible to fallback to regular writes when checking
7437 			 * if we can clone file ranges.
7438 			 */
7439 			btrfs_release_path(path);
7440 			ret = search_key_again(sctx, send_root, path, &key);
7441 			if (ret < 0)
7442 				goto out;
7443 		} else {
7444 			up_read(&fs_info->commit_root_sem);
7445 		}
7446 
7447 		ret = btrfs_next_item(send_root, path);
7448 		if (ret < 0)
7449 			goto out;
7450 		if (ret) {
7451 			ret  = 0;
7452 			break;
7453 		}
7454 	}
7455 
7456 out_finish:
7457 	ret = finish_inode_if_needed(sctx, 1);
7458 
7459 out:
7460 	btrfs_free_path(path);
7461 	return ret;
7462 }
7463 
replace_node_with_clone(struct btrfs_path * path,int level)7464 static int replace_node_with_clone(struct btrfs_path *path, int level)
7465 {
7466 	struct extent_buffer *clone;
7467 
7468 	clone = btrfs_clone_extent_buffer(path->nodes[level]);
7469 	if (!clone)
7470 		return -ENOMEM;
7471 
7472 	free_extent_buffer(path->nodes[level]);
7473 	path->nodes[level] = clone;
7474 
7475 	return 0;
7476 }
7477 
tree_move_down(struct btrfs_path * path,int * level,u64 reada_min_gen)7478 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
7479 {
7480 	struct extent_buffer *eb;
7481 	struct extent_buffer *parent = path->nodes[*level];
7482 	int slot = path->slots[*level];
7483 	const int nritems = btrfs_header_nritems(parent);
7484 	u64 reada_max;
7485 	u64 reada_done = 0;
7486 
7487 	lockdep_assert_held_read(&parent->fs_info->commit_root_sem);
7488 	ASSERT(*level != 0);
7489 
7490 	eb = btrfs_read_node_slot(parent, slot);
7491 	if (IS_ERR(eb))
7492 		return PTR_ERR(eb);
7493 
7494 	/*
7495 	 * Trigger readahead for the next leaves we will process, so that it is
7496 	 * very likely that when we need them they are already in memory and we
7497 	 * will not block on disk IO. For nodes we only do readahead for one,
7498 	 * since the time window between processing nodes is typically larger.
7499 	 */
7500 	reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
7501 
7502 	for (slot++; slot < nritems && reada_done < reada_max; slot++) {
7503 		if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
7504 			btrfs_readahead_node_child(parent, slot);
7505 			reada_done += eb->fs_info->nodesize;
7506 		}
7507 	}
7508 
7509 	path->nodes[*level - 1] = eb;
7510 	path->slots[*level - 1] = 0;
7511 	(*level)--;
7512 
7513 	if (*level == 0)
7514 		return replace_node_with_clone(path, 0);
7515 
7516 	return 0;
7517 }
7518 
tree_move_next_or_upnext(struct btrfs_path * path,int * level,int root_level)7519 static int tree_move_next_or_upnext(struct btrfs_path *path,
7520 				    int *level, int root_level)
7521 {
7522 	int ret = 0;
7523 	int nritems;
7524 	nritems = btrfs_header_nritems(path->nodes[*level]);
7525 
7526 	path->slots[*level]++;
7527 
7528 	while (path->slots[*level] >= nritems) {
7529 		if (*level == root_level) {
7530 			path->slots[*level] = nritems - 1;
7531 			return -1;
7532 		}
7533 
7534 		/* move upnext */
7535 		path->slots[*level] = 0;
7536 		free_extent_buffer(path->nodes[*level]);
7537 		path->nodes[*level] = NULL;
7538 		(*level)++;
7539 		path->slots[*level]++;
7540 
7541 		nritems = btrfs_header_nritems(path->nodes[*level]);
7542 		ret = 1;
7543 	}
7544 	return ret;
7545 }
7546 
7547 /*
7548  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
7549  * or down.
7550  */
tree_advance(struct btrfs_path * path,int * level,int root_level,int allow_down,struct btrfs_key * key,u64 reada_min_gen)7551 static int tree_advance(struct btrfs_path *path,
7552 			int *level, int root_level,
7553 			int allow_down,
7554 			struct btrfs_key *key,
7555 			u64 reada_min_gen)
7556 {
7557 	int ret;
7558 
7559 	if (*level == 0 || !allow_down) {
7560 		ret = tree_move_next_or_upnext(path, level, root_level);
7561 	} else {
7562 		ret = tree_move_down(path, level, reada_min_gen);
7563 	}
7564 
7565 	/*
7566 	 * Even if we have reached the end of a tree, ret is -1, update the key
7567 	 * anyway, so that in case we need to restart due to a block group
7568 	 * relocation, we can assert that the last key of the root node still
7569 	 * exists in the tree.
7570 	 */
7571 	if (*level == 0)
7572 		btrfs_item_key_to_cpu(path->nodes[*level], key,
7573 				      path->slots[*level]);
7574 	else
7575 		btrfs_node_key_to_cpu(path->nodes[*level], key,
7576 				      path->slots[*level]);
7577 
7578 	return ret;
7579 }
7580 
tree_compare_item(struct btrfs_path * left_path,struct btrfs_path * right_path,char * tmp_buf)7581 static int tree_compare_item(struct btrfs_path *left_path,
7582 			     struct btrfs_path *right_path,
7583 			     char *tmp_buf)
7584 {
7585 	int cmp;
7586 	int len1, len2;
7587 	unsigned long off1, off2;
7588 
7589 	len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]);
7590 	len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]);
7591 	if (len1 != len2)
7592 		return 1;
7593 
7594 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
7595 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
7596 				right_path->slots[0]);
7597 
7598 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
7599 
7600 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
7601 	if (cmp)
7602 		return 1;
7603 	return 0;
7604 }
7605 
7606 /*
7607  * A transaction used for relocating a block group was committed or is about to
7608  * finish its commit. Release our paths and restart the search, so that we are
7609  * not using stale extent buffers:
7610  *
7611  * 1) For levels > 0, we are only holding references of extent buffers, without
7612  *    any locks on them, which does not prevent them from having been relocated
7613  *    and reallocated after the last time we released the commit root semaphore.
7614  *    The exception are the root nodes, for which we always have a clone, see
7615  *    the comment at btrfs_compare_trees();
7616  *
7617  * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so
7618  *    we are safe from the concurrent relocation and reallocation. However they
7619  *    can have file extent items with a pre relocation disk_bytenr value, so we
7620  *    restart the start from the current commit roots and clone the new leaves so
7621  *    that we get the post relocation disk_bytenr values. Not doing so, could
7622  *    make us clone the wrong data in case there are new extents using the old
7623  *    disk_bytenr that happen to be shared.
7624  */
restart_after_relocation(struct btrfs_path * left_path,struct btrfs_path * right_path,const struct btrfs_key * left_key,const struct btrfs_key * right_key,int left_level,int right_level,const struct send_ctx * sctx)7625 static int restart_after_relocation(struct btrfs_path *left_path,
7626 				    struct btrfs_path *right_path,
7627 				    const struct btrfs_key *left_key,
7628 				    const struct btrfs_key *right_key,
7629 				    int left_level,
7630 				    int right_level,
7631 				    const struct send_ctx *sctx)
7632 {
7633 	int root_level;
7634 	int ret;
7635 
7636 	lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem);
7637 
7638 	btrfs_release_path(left_path);
7639 	btrfs_release_path(right_path);
7640 
7641 	/*
7642 	 * Since keys can not be added or removed to/from our roots because they
7643 	 * are readonly and we do not allow deduplication to run in parallel
7644 	 * (which can add, remove or change keys), the layout of the trees should
7645 	 * not change.
7646 	 */
7647 	left_path->lowest_level = left_level;
7648 	ret = search_key_again(sctx, sctx->send_root, left_path, left_key);
7649 	if (ret < 0)
7650 		return ret;
7651 
7652 	right_path->lowest_level = right_level;
7653 	ret = search_key_again(sctx, sctx->parent_root, right_path, right_key);
7654 	if (ret < 0)
7655 		return ret;
7656 
7657 	/*
7658 	 * If the lowest level nodes are leaves, clone them so that they can be
7659 	 * safely used by changed_cb() while not under the protection of the
7660 	 * commit root semaphore, even if relocation and reallocation happens in
7661 	 * parallel.
7662 	 */
7663 	if (left_level == 0) {
7664 		ret = replace_node_with_clone(left_path, 0);
7665 		if (ret < 0)
7666 			return ret;
7667 	}
7668 
7669 	if (right_level == 0) {
7670 		ret = replace_node_with_clone(right_path, 0);
7671 		if (ret < 0)
7672 			return ret;
7673 	}
7674 
7675 	/*
7676 	 * Now clone the root nodes (unless they happen to be the leaves we have
7677 	 * already cloned). This is to protect against concurrent snapshotting of
7678 	 * the send and parent roots (see the comment at btrfs_compare_trees()).
7679 	 */
7680 	root_level = btrfs_header_level(sctx->send_root->commit_root);
7681 	if (root_level > 0) {
7682 		ret = replace_node_with_clone(left_path, root_level);
7683 		if (ret < 0)
7684 			return ret;
7685 	}
7686 
7687 	root_level = btrfs_header_level(sctx->parent_root->commit_root);
7688 	if (root_level > 0) {
7689 		ret = replace_node_with_clone(right_path, root_level);
7690 		if (ret < 0)
7691 			return ret;
7692 	}
7693 
7694 	return 0;
7695 }
7696 
7697 /*
7698  * This function compares two trees and calls the provided callback for
7699  * every changed/new/deleted item it finds.
7700  * If shared tree blocks are encountered, whole subtrees are skipped, making
7701  * the compare pretty fast on snapshotted subvolumes.
7702  *
7703  * This currently works on commit roots only. As commit roots are read only,
7704  * we don't do any locking. The commit roots are protected with transactions.
7705  * Transactions are ended and rejoined when a commit is tried in between.
7706  *
7707  * This function checks for modifications done to the trees while comparing.
7708  * If it detects a change, it aborts immediately.
7709  */
btrfs_compare_trees(struct btrfs_root * left_root,struct btrfs_root * right_root,struct send_ctx * sctx)7710 static int btrfs_compare_trees(struct btrfs_root *left_root,
7711 			struct btrfs_root *right_root, struct send_ctx *sctx)
7712 {
7713 	struct btrfs_fs_info *fs_info = left_root->fs_info;
7714 	int ret;
7715 	int cmp;
7716 	struct btrfs_path *left_path = NULL;
7717 	struct btrfs_path *right_path = NULL;
7718 	struct btrfs_key left_key;
7719 	struct btrfs_key right_key;
7720 	char *tmp_buf = NULL;
7721 	int left_root_level;
7722 	int right_root_level;
7723 	int left_level;
7724 	int right_level;
7725 	int left_end_reached = 0;
7726 	int right_end_reached = 0;
7727 	int advance_left = 0;
7728 	int advance_right = 0;
7729 	u64 left_blockptr;
7730 	u64 right_blockptr;
7731 	u64 left_gen;
7732 	u64 right_gen;
7733 	u64 reada_min_gen;
7734 
7735 	left_path = btrfs_alloc_path();
7736 	if (!left_path) {
7737 		ret = -ENOMEM;
7738 		goto out;
7739 	}
7740 	right_path = btrfs_alloc_path();
7741 	if (!right_path) {
7742 		ret = -ENOMEM;
7743 		goto out;
7744 	}
7745 
7746 	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7747 	if (!tmp_buf) {
7748 		ret = -ENOMEM;
7749 		goto out;
7750 	}
7751 
7752 	left_path->search_commit_root = 1;
7753 	left_path->skip_locking = 1;
7754 	right_path->search_commit_root = 1;
7755 	right_path->skip_locking = 1;
7756 
7757 	/*
7758 	 * Strategy: Go to the first items of both trees. Then do
7759 	 *
7760 	 * If both trees are at level 0
7761 	 *   Compare keys of current items
7762 	 *     If left < right treat left item as new, advance left tree
7763 	 *       and repeat
7764 	 *     If left > right treat right item as deleted, advance right tree
7765 	 *       and repeat
7766 	 *     If left == right do deep compare of items, treat as changed if
7767 	 *       needed, advance both trees and repeat
7768 	 * If both trees are at the same level but not at level 0
7769 	 *   Compare keys of current nodes/leafs
7770 	 *     If left < right advance left tree and repeat
7771 	 *     If left > right advance right tree and repeat
7772 	 *     If left == right compare blockptrs of the next nodes/leafs
7773 	 *       If they match advance both trees but stay at the same level
7774 	 *         and repeat
7775 	 *       If they don't match advance both trees while allowing to go
7776 	 *         deeper and repeat
7777 	 * If tree levels are different
7778 	 *   Advance the tree that needs it and repeat
7779 	 *
7780 	 * Advancing a tree means:
7781 	 *   If we are at level 0, try to go to the next slot. If that's not
7782 	 *   possible, go one level up and repeat. Stop when we found a level
7783 	 *   where we could go to the next slot. We may at this point be on a
7784 	 *   node or a leaf.
7785 	 *
7786 	 *   If we are not at level 0 and not on shared tree blocks, go one
7787 	 *   level deeper.
7788 	 *
7789 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
7790 	 *   the right if possible or go up and right.
7791 	 */
7792 
7793 	down_read(&fs_info->commit_root_sem);
7794 	left_level = btrfs_header_level(left_root->commit_root);
7795 	left_root_level = left_level;
7796 	/*
7797 	 * We clone the root node of the send and parent roots to prevent races
7798 	 * with snapshot creation of these roots. Snapshot creation COWs the
7799 	 * root node of a tree, so after the transaction is committed the old
7800 	 * extent can be reallocated while this send operation is still ongoing.
7801 	 * So we clone them, under the commit root semaphore, to be race free.
7802 	 */
7803 	left_path->nodes[left_level] =
7804 			btrfs_clone_extent_buffer(left_root->commit_root);
7805 	if (!left_path->nodes[left_level]) {
7806 		ret = -ENOMEM;
7807 		goto out_unlock;
7808 	}
7809 
7810 	right_level = btrfs_header_level(right_root->commit_root);
7811 	right_root_level = right_level;
7812 	right_path->nodes[right_level] =
7813 			btrfs_clone_extent_buffer(right_root->commit_root);
7814 	if (!right_path->nodes[right_level]) {
7815 		ret = -ENOMEM;
7816 		goto out_unlock;
7817 	}
7818 	/*
7819 	 * Our right root is the parent root, while the left root is the "send"
7820 	 * root. We know that all new nodes/leaves in the left root must have
7821 	 * a generation greater than the right root's generation, so we trigger
7822 	 * readahead for those nodes and leaves of the left root, as we know we
7823 	 * will need to read them at some point.
7824 	 */
7825 	reada_min_gen = btrfs_header_generation(right_root->commit_root);
7826 
7827 	if (left_level == 0)
7828 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
7829 				&left_key, left_path->slots[left_level]);
7830 	else
7831 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
7832 				&left_key, left_path->slots[left_level]);
7833 	if (right_level == 0)
7834 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
7835 				&right_key, right_path->slots[right_level]);
7836 	else
7837 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
7838 				&right_key, right_path->slots[right_level]);
7839 
7840 	sctx->last_reloc_trans = fs_info->last_reloc_trans;
7841 
7842 	while (1) {
7843 		if (need_resched() ||
7844 		    rwsem_is_contended(&fs_info->commit_root_sem)) {
7845 			up_read(&fs_info->commit_root_sem);
7846 			cond_resched();
7847 			down_read(&fs_info->commit_root_sem);
7848 		}
7849 
7850 		if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7851 			ret = restart_after_relocation(left_path, right_path,
7852 						       &left_key, &right_key,
7853 						       left_level, right_level,
7854 						       sctx);
7855 			if (ret < 0)
7856 				goto out_unlock;
7857 			sctx->last_reloc_trans = fs_info->last_reloc_trans;
7858 		}
7859 
7860 		if (advance_left && !left_end_reached) {
7861 			ret = tree_advance(left_path, &left_level,
7862 					left_root_level,
7863 					advance_left != ADVANCE_ONLY_NEXT,
7864 					&left_key, reada_min_gen);
7865 			if (ret == -1)
7866 				left_end_reached = ADVANCE;
7867 			else if (ret < 0)
7868 				goto out_unlock;
7869 			advance_left = 0;
7870 		}
7871 		if (advance_right && !right_end_reached) {
7872 			ret = tree_advance(right_path, &right_level,
7873 					right_root_level,
7874 					advance_right != ADVANCE_ONLY_NEXT,
7875 					&right_key, reada_min_gen);
7876 			if (ret == -1)
7877 				right_end_reached = ADVANCE;
7878 			else if (ret < 0)
7879 				goto out_unlock;
7880 			advance_right = 0;
7881 		}
7882 
7883 		if (left_end_reached && right_end_reached) {
7884 			ret = 0;
7885 			goto out_unlock;
7886 		} else if (left_end_reached) {
7887 			if (right_level == 0) {
7888 				up_read(&fs_info->commit_root_sem);
7889 				ret = changed_cb(left_path, right_path,
7890 						&right_key,
7891 						BTRFS_COMPARE_TREE_DELETED,
7892 						sctx);
7893 				if (ret < 0)
7894 					goto out;
7895 				down_read(&fs_info->commit_root_sem);
7896 			}
7897 			advance_right = ADVANCE;
7898 			continue;
7899 		} else if (right_end_reached) {
7900 			if (left_level == 0) {
7901 				up_read(&fs_info->commit_root_sem);
7902 				ret = changed_cb(left_path, right_path,
7903 						&left_key,
7904 						BTRFS_COMPARE_TREE_NEW,
7905 						sctx);
7906 				if (ret < 0)
7907 					goto out;
7908 				down_read(&fs_info->commit_root_sem);
7909 			}
7910 			advance_left = ADVANCE;
7911 			continue;
7912 		}
7913 
7914 		if (left_level == 0 && right_level == 0) {
7915 			up_read(&fs_info->commit_root_sem);
7916 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7917 			if (cmp < 0) {
7918 				ret = changed_cb(left_path, right_path,
7919 						&left_key,
7920 						BTRFS_COMPARE_TREE_NEW,
7921 						sctx);
7922 				advance_left = ADVANCE;
7923 			} else if (cmp > 0) {
7924 				ret = changed_cb(left_path, right_path,
7925 						&right_key,
7926 						BTRFS_COMPARE_TREE_DELETED,
7927 						sctx);
7928 				advance_right = ADVANCE;
7929 			} else {
7930 				enum btrfs_compare_tree_result result;
7931 
7932 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7933 				ret = tree_compare_item(left_path, right_path,
7934 							tmp_buf);
7935 				if (ret)
7936 					result = BTRFS_COMPARE_TREE_CHANGED;
7937 				else
7938 					result = BTRFS_COMPARE_TREE_SAME;
7939 				ret = changed_cb(left_path, right_path,
7940 						 &left_key, result, sctx);
7941 				advance_left = ADVANCE;
7942 				advance_right = ADVANCE;
7943 			}
7944 
7945 			if (ret < 0)
7946 				goto out;
7947 			down_read(&fs_info->commit_root_sem);
7948 		} else if (left_level == right_level) {
7949 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7950 			if (cmp < 0) {
7951 				advance_left = ADVANCE;
7952 			} else if (cmp > 0) {
7953 				advance_right = ADVANCE;
7954 			} else {
7955 				left_blockptr = btrfs_node_blockptr(
7956 						left_path->nodes[left_level],
7957 						left_path->slots[left_level]);
7958 				right_blockptr = btrfs_node_blockptr(
7959 						right_path->nodes[right_level],
7960 						right_path->slots[right_level]);
7961 				left_gen = btrfs_node_ptr_generation(
7962 						left_path->nodes[left_level],
7963 						left_path->slots[left_level]);
7964 				right_gen = btrfs_node_ptr_generation(
7965 						right_path->nodes[right_level],
7966 						right_path->slots[right_level]);
7967 				if (left_blockptr == right_blockptr &&
7968 				    left_gen == right_gen) {
7969 					/*
7970 					 * As we're on a shared block, don't
7971 					 * allow to go deeper.
7972 					 */
7973 					advance_left = ADVANCE_ONLY_NEXT;
7974 					advance_right = ADVANCE_ONLY_NEXT;
7975 				} else {
7976 					advance_left = ADVANCE;
7977 					advance_right = ADVANCE;
7978 				}
7979 			}
7980 		} else if (left_level < right_level) {
7981 			advance_right = ADVANCE;
7982 		} else {
7983 			advance_left = ADVANCE;
7984 		}
7985 	}
7986 
7987 out_unlock:
7988 	up_read(&fs_info->commit_root_sem);
7989 out:
7990 	btrfs_free_path(left_path);
7991 	btrfs_free_path(right_path);
7992 	kvfree(tmp_buf);
7993 	return ret;
7994 }
7995 
send_subvol(struct send_ctx * sctx)7996 static int send_subvol(struct send_ctx *sctx)
7997 {
7998 	int ret;
7999 
8000 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
8001 		ret = send_header(sctx);
8002 		if (ret < 0)
8003 			goto out;
8004 	}
8005 
8006 	ret = send_subvol_begin(sctx);
8007 	if (ret < 0)
8008 		goto out;
8009 
8010 	if (sctx->parent_root) {
8011 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
8012 		if (ret < 0)
8013 			goto out;
8014 		ret = finish_inode_if_needed(sctx, 1);
8015 		if (ret < 0)
8016 			goto out;
8017 	} else {
8018 		ret = full_send_tree(sctx);
8019 		if (ret < 0)
8020 			goto out;
8021 	}
8022 
8023 out:
8024 	free_recorded_refs(sctx);
8025 	return ret;
8026 }
8027 
8028 /*
8029  * If orphan cleanup did remove any orphans from a root, it means the tree
8030  * was modified and therefore the commit root is not the same as the current
8031  * root anymore. This is a problem, because send uses the commit root and
8032  * therefore can see inode items that don't exist in the current root anymore,
8033  * and for example make calls to btrfs_iget, which will do tree lookups based
8034  * on the current root and not on the commit root. Those lookups will fail,
8035  * returning a -ESTALE error, and making send fail with that error. So make
8036  * sure a send does not see any orphans we have just removed, and that it will
8037  * see the same inodes regardless of whether a transaction commit happened
8038  * before it started (meaning that the commit root will be the same as the
8039  * current root) or not.
8040  */
ensure_commit_roots_uptodate(struct send_ctx * sctx)8041 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
8042 {
8043 	struct btrfs_root *root = sctx->parent_root;
8044 
8045 	if (root && root->node != root->commit_root)
8046 		return btrfs_commit_current_transaction(root);
8047 
8048 	for (int i = 0; i < sctx->clone_roots_cnt; i++) {
8049 		root = sctx->clone_roots[i].root;
8050 		if (root->node != root->commit_root)
8051 			return btrfs_commit_current_transaction(root);
8052 	}
8053 
8054 	return 0;
8055 }
8056 
8057 /*
8058  * Make sure any existing dellaloc is flushed for any root used by a send
8059  * operation so that we do not miss any data and we do not race with writeback
8060  * finishing and changing a tree while send is using the tree. This could
8061  * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
8062  * a send operation then uses the subvolume.
8063  * After flushing delalloc ensure_commit_roots_uptodate() must be called.
8064  */
flush_delalloc_roots(struct send_ctx * sctx)8065 static int flush_delalloc_roots(struct send_ctx *sctx)
8066 {
8067 	struct btrfs_root *root = sctx->parent_root;
8068 	int ret;
8069 	int i;
8070 
8071 	if (root) {
8072 		ret = btrfs_start_delalloc_snapshot(root, false);
8073 		if (ret)
8074 			return ret;
8075 		btrfs_wait_ordered_extents(root, U64_MAX, NULL);
8076 	}
8077 
8078 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
8079 		root = sctx->clone_roots[i].root;
8080 		ret = btrfs_start_delalloc_snapshot(root, false);
8081 		if (ret)
8082 			return ret;
8083 		btrfs_wait_ordered_extents(root, U64_MAX, NULL);
8084 	}
8085 
8086 	return 0;
8087 }
8088 
btrfs_root_dec_send_in_progress(struct btrfs_root * root)8089 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
8090 {
8091 	spin_lock(&root->root_item_lock);
8092 	root->send_in_progress--;
8093 	/*
8094 	 * Not much left to do, we don't know why it's unbalanced and
8095 	 * can't blindly reset it to 0.
8096 	 */
8097 	if (root->send_in_progress < 0)
8098 		btrfs_err(root->fs_info,
8099 			  "send_in_progress unbalanced %d root %llu",
8100 			  root->send_in_progress, btrfs_root_id(root));
8101 	spin_unlock(&root->root_item_lock);
8102 }
8103 
dedupe_in_progress_warn(const struct btrfs_root * root)8104 static void dedupe_in_progress_warn(const struct btrfs_root *root)
8105 {
8106 	btrfs_warn_rl(root->fs_info,
8107 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
8108 		      btrfs_root_id(root), root->dedupe_in_progress);
8109 }
8110 
btrfs_ioctl_send(struct btrfs_inode * inode,const struct btrfs_ioctl_send_args * arg)8111 long btrfs_ioctl_send(struct btrfs_inode *inode, const struct btrfs_ioctl_send_args *arg)
8112 {
8113 	int ret = 0;
8114 	struct btrfs_root *send_root = inode->root;
8115 	struct btrfs_fs_info *fs_info = send_root->fs_info;
8116 	struct btrfs_root *clone_root;
8117 	struct send_ctx *sctx = NULL;
8118 	u32 i;
8119 	u64 *clone_sources_tmp = NULL;
8120 	int clone_sources_to_rollback = 0;
8121 	size_t alloc_size;
8122 	int sort_clone_roots = 0;
8123 	struct btrfs_lru_cache_entry *entry;
8124 	struct btrfs_lru_cache_entry *tmp;
8125 
8126 	if (!capable(CAP_SYS_ADMIN))
8127 		return -EPERM;
8128 
8129 	/*
8130 	 * The subvolume must remain read-only during send, protect against
8131 	 * making it RW. This also protects against deletion.
8132 	 */
8133 	spin_lock(&send_root->root_item_lock);
8134 	/*
8135 	 * Unlikely but possible, if the subvolume is marked for deletion but
8136 	 * is slow to remove the directory entry, send can still be started.
8137 	 */
8138 	if (btrfs_root_dead(send_root)) {
8139 		spin_unlock(&send_root->root_item_lock);
8140 		return -EPERM;
8141 	}
8142 	/* Userspace tools do the checks and warn the user if it's not RO. */
8143 	if (!btrfs_root_readonly(send_root)) {
8144 		spin_unlock(&send_root->root_item_lock);
8145 		return -EPERM;
8146 	}
8147 	if (send_root->dedupe_in_progress) {
8148 		dedupe_in_progress_warn(send_root);
8149 		spin_unlock(&send_root->root_item_lock);
8150 		return -EAGAIN;
8151 	}
8152 	send_root->send_in_progress++;
8153 	spin_unlock(&send_root->root_item_lock);
8154 
8155 	/*
8156 	 * Check that we don't overflow at later allocations, we request
8157 	 * clone_sources_count + 1 items, and compare to unsigned long inside
8158 	 * access_ok. Also set an upper limit for allocation size so this can't
8159 	 * easily exhaust memory. Max number of clone sources is about 200K.
8160 	 */
8161 	if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) {
8162 		ret = -EINVAL;
8163 		goto out;
8164 	}
8165 
8166 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
8167 		ret = -EOPNOTSUPP;
8168 		goto out;
8169 	}
8170 
8171 	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
8172 	if (!sctx) {
8173 		ret = -ENOMEM;
8174 		goto out;
8175 	}
8176 
8177 	INIT_LIST_HEAD(&sctx->new_refs);
8178 	INIT_LIST_HEAD(&sctx->deleted_refs);
8179 
8180 	btrfs_lru_cache_init(&sctx->name_cache, SEND_MAX_NAME_CACHE_SIZE);
8181 	btrfs_lru_cache_init(&sctx->backref_cache, SEND_MAX_BACKREF_CACHE_SIZE);
8182 	btrfs_lru_cache_init(&sctx->dir_created_cache,
8183 			     SEND_MAX_DIR_CREATED_CACHE_SIZE);
8184 	/*
8185 	 * This cache is periodically trimmed to a fixed size elsewhere, see
8186 	 * cache_dir_utimes() and trim_dir_utimes_cache().
8187 	 */
8188 	btrfs_lru_cache_init(&sctx->dir_utimes_cache, 0);
8189 
8190 	sctx->pending_dir_moves = RB_ROOT;
8191 	sctx->waiting_dir_moves = RB_ROOT;
8192 	sctx->orphan_dirs = RB_ROOT;
8193 	sctx->rbtree_new_refs = RB_ROOT;
8194 	sctx->rbtree_deleted_refs = RB_ROOT;
8195 
8196 	sctx->flags = arg->flags;
8197 
8198 	if (arg->flags & BTRFS_SEND_FLAG_VERSION) {
8199 		if (arg->version > BTRFS_SEND_STREAM_VERSION) {
8200 			ret = -EPROTO;
8201 			goto out;
8202 		}
8203 		/* Zero means "use the highest version" */
8204 		sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION;
8205 	} else {
8206 		sctx->proto = 1;
8207 	}
8208 	if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) {
8209 		ret = -EINVAL;
8210 		goto out;
8211 	}
8212 
8213 	sctx->send_filp = fget(arg->send_fd);
8214 	if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) {
8215 		ret = -EBADF;
8216 		goto out;
8217 	}
8218 
8219 	sctx->send_root = send_root;
8220 	sctx->clone_roots_cnt = arg->clone_sources_count;
8221 
8222 	if (sctx->proto >= 2) {
8223 		u32 send_buf_num_pages;
8224 
8225 		sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2;
8226 		sctx->send_buf = vmalloc(sctx->send_max_size);
8227 		if (!sctx->send_buf) {
8228 			ret = -ENOMEM;
8229 			goto out;
8230 		}
8231 		send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT;
8232 		sctx->send_buf_pages = kcalloc(send_buf_num_pages,
8233 					       sizeof(*sctx->send_buf_pages),
8234 					       GFP_KERNEL);
8235 		if (!sctx->send_buf_pages) {
8236 			ret = -ENOMEM;
8237 			goto out;
8238 		}
8239 		for (i = 0; i < send_buf_num_pages; i++) {
8240 			sctx->send_buf_pages[i] =
8241 				vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT));
8242 		}
8243 	} else {
8244 		sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1;
8245 		sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
8246 	}
8247 	if (!sctx->send_buf) {
8248 		ret = -ENOMEM;
8249 		goto out;
8250 	}
8251 
8252 	sctx->clone_roots = kvcalloc(arg->clone_sources_count + 1,
8253 				     sizeof(*sctx->clone_roots),
8254 				     GFP_KERNEL);
8255 	if (!sctx->clone_roots) {
8256 		ret = -ENOMEM;
8257 		goto out;
8258 	}
8259 
8260 	alloc_size = array_size(sizeof(*arg->clone_sources),
8261 				arg->clone_sources_count);
8262 
8263 	if (arg->clone_sources_count) {
8264 		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
8265 		if (!clone_sources_tmp) {
8266 			ret = -ENOMEM;
8267 			goto out;
8268 		}
8269 
8270 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
8271 				alloc_size);
8272 		if (ret) {
8273 			ret = -EFAULT;
8274 			goto out;
8275 		}
8276 
8277 		for (i = 0; i < arg->clone_sources_count; i++) {
8278 			clone_root = btrfs_get_fs_root(fs_info,
8279 						clone_sources_tmp[i], true);
8280 			if (IS_ERR(clone_root)) {
8281 				ret = PTR_ERR(clone_root);
8282 				goto out;
8283 			}
8284 			spin_lock(&clone_root->root_item_lock);
8285 			if (!btrfs_root_readonly(clone_root) ||
8286 			    btrfs_root_dead(clone_root)) {
8287 				spin_unlock(&clone_root->root_item_lock);
8288 				btrfs_put_root(clone_root);
8289 				ret = -EPERM;
8290 				goto out;
8291 			}
8292 			if (clone_root->dedupe_in_progress) {
8293 				dedupe_in_progress_warn(clone_root);
8294 				spin_unlock(&clone_root->root_item_lock);
8295 				btrfs_put_root(clone_root);
8296 				ret = -EAGAIN;
8297 				goto out;
8298 			}
8299 			clone_root->send_in_progress++;
8300 			spin_unlock(&clone_root->root_item_lock);
8301 
8302 			sctx->clone_roots[i].root = clone_root;
8303 			clone_sources_to_rollback = i + 1;
8304 		}
8305 		kvfree(clone_sources_tmp);
8306 		clone_sources_tmp = NULL;
8307 	}
8308 
8309 	if (arg->parent_root) {
8310 		sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
8311 						      true);
8312 		if (IS_ERR(sctx->parent_root)) {
8313 			ret = PTR_ERR(sctx->parent_root);
8314 			goto out;
8315 		}
8316 
8317 		spin_lock(&sctx->parent_root->root_item_lock);
8318 		sctx->parent_root->send_in_progress++;
8319 		if (!btrfs_root_readonly(sctx->parent_root) ||
8320 				btrfs_root_dead(sctx->parent_root)) {
8321 			spin_unlock(&sctx->parent_root->root_item_lock);
8322 			ret = -EPERM;
8323 			goto out;
8324 		}
8325 		if (sctx->parent_root->dedupe_in_progress) {
8326 			dedupe_in_progress_warn(sctx->parent_root);
8327 			spin_unlock(&sctx->parent_root->root_item_lock);
8328 			ret = -EAGAIN;
8329 			goto out;
8330 		}
8331 		spin_unlock(&sctx->parent_root->root_item_lock);
8332 	}
8333 
8334 	/*
8335 	 * Clones from send_root are allowed, but only if the clone source
8336 	 * is behind the current send position. This is checked while searching
8337 	 * for possible clone sources.
8338 	 */
8339 	sctx->clone_roots[sctx->clone_roots_cnt++].root =
8340 		btrfs_grab_root(sctx->send_root);
8341 
8342 	/* We do a bsearch later */
8343 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
8344 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
8345 			NULL);
8346 	sort_clone_roots = 1;
8347 
8348 	ret = flush_delalloc_roots(sctx);
8349 	if (ret)
8350 		goto out;
8351 
8352 	ret = ensure_commit_roots_uptodate(sctx);
8353 	if (ret)
8354 		goto out;
8355 
8356 	ret = send_subvol(sctx);
8357 	if (ret < 0)
8358 		goto out;
8359 
8360 	btrfs_lru_cache_for_each_entry_safe(&sctx->dir_utimes_cache, entry, tmp) {
8361 		ret = send_utimes(sctx, entry->key, entry->gen);
8362 		if (ret < 0)
8363 			goto out;
8364 		btrfs_lru_cache_remove(&sctx->dir_utimes_cache, entry);
8365 	}
8366 
8367 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
8368 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
8369 		if (ret < 0)
8370 			goto out;
8371 		ret = send_cmd(sctx);
8372 		if (ret < 0)
8373 			goto out;
8374 	}
8375 
8376 out:
8377 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
8378 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
8379 		struct rb_node *n;
8380 		struct pending_dir_move *pm;
8381 
8382 		n = rb_first(&sctx->pending_dir_moves);
8383 		pm = rb_entry(n, struct pending_dir_move, node);
8384 		while (!list_empty(&pm->list)) {
8385 			struct pending_dir_move *pm2;
8386 
8387 			pm2 = list_first_entry(&pm->list,
8388 					       struct pending_dir_move, list);
8389 			free_pending_move(sctx, pm2);
8390 		}
8391 		free_pending_move(sctx, pm);
8392 	}
8393 
8394 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
8395 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
8396 		struct rb_node *n;
8397 		struct waiting_dir_move *dm;
8398 
8399 		n = rb_first(&sctx->waiting_dir_moves);
8400 		dm = rb_entry(n, struct waiting_dir_move, node);
8401 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
8402 		kfree(dm);
8403 	}
8404 
8405 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
8406 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
8407 		struct rb_node *n;
8408 		struct orphan_dir_info *odi;
8409 
8410 		n = rb_first(&sctx->orphan_dirs);
8411 		odi = rb_entry(n, struct orphan_dir_info, node);
8412 		free_orphan_dir_info(sctx, odi);
8413 	}
8414 
8415 	if (sort_clone_roots) {
8416 		for (i = 0; i < sctx->clone_roots_cnt; i++) {
8417 			btrfs_root_dec_send_in_progress(
8418 					sctx->clone_roots[i].root);
8419 			btrfs_put_root(sctx->clone_roots[i].root);
8420 		}
8421 	} else {
8422 		for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
8423 			btrfs_root_dec_send_in_progress(
8424 					sctx->clone_roots[i].root);
8425 			btrfs_put_root(sctx->clone_roots[i].root);
8426 		}
8427 
8428 		btrfs_root_dec_send_in_progress(send_root);
8429 	}
8430 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
8431 		btrfs_root_dec_send_in_progress(sctx->parent_root);
8432 		btrfs_put_root(sctx->parent_root);
8433 	}
8434 
8435 	kvfree(clone_sources_tmp);
8436 
8437 	if (sctx) {
8438 		if (sctx->send_filp)
8439 			fput(sctx->send_filp);
8440 
8441 		kvfree(sctx->clone_roots);
8442 		kfree(sctx->send_buf_pages);
8443 		kvfree(sctx->send_buf);
8444 		kvfree(sctx->verity_descriptor);
8445 
8446 		close_current_inode(sctx);
8447 
8448 		btrfs_lru_cache_clear(&sctx->name_cache);
8449 		btrfs_lru_cache_clear(&sctx->backref_cache);
8450 		btrfs_lru_cache_clear(&sctx->dir_created_cache);
8451 		btrfs_lru_cache_clear(&sctx->dir_utimes_cache);
8452 
8453 		kfree(sctx);
8454 	}
8455 
8456 	return ret;
8457 }
8458