xref: /linux/kernel/fork.c (revision 02baaa67d9afc2e56c6e1ac6a1fb1f1dd2be366f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/user.h>
20 #include <linux/sched/numa_balancing.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/sched/cputime.h>
25 #include <linux/sched/ext.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/memblock.h>
48 #include <linux/nsproxy.h>
49 #include <linux/capability.h>
50 #include <linux/cpu.h>
51 #include <linux/cgroup.h>
52 #include <linux/security.h>
53 #include <linux/hugetlb.h>
54 #include <linux/seccomp.h>
55 #include <linux/swap.h>
56 #include <linux/syscalls.h>
57 #include <linux/syscall_user_dispatch.h>
58 #include <linux/jiffies.h>
59 #include <linux/futex.h>
60 #include <linux/compat.h>
61 #include <linux/kthread.h>
62 #include <linux/task_io_accounting_ops.h>
63 #include <linux/rcupdate.h>
64 #include <linux/ptrace.h>
65 #include <linux/mount.h>
66 #include <linux/audit.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/proc_fs.h>
70 #include <linux/profile.h>
71 #include <linux/rmap.h>
72 #include <linux/ksm.h>
73 #include <linux/acct.h>
74 #include <linux/userfaultfd_k.h>
75 #include <linux/tsacct_kern.h>
76 #include <linux/cn_proc.h>
77 #include <linux/freezer.h>
78 #include <linux/delayacct.h>
79 #include <linux/taskstats_kern.h>
80 #include <linux/tty.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/kstack_erase.h>
97 #include <linux/kasan.h>
98 #include <linux/scs.h>
99 #include <linux/io_uring.h>
100 #include <linux/bpf.h>
101 #include <linux/stackprotector.h>
102 #include <linux/user_events.h>
103 #include <linux/iommu.h>
104 #include <linux/rseq.h>
105 #include <uapi/linux/pidfd.h>
106 #include <linux/pidfs.h>
107 #include <linux/tick.h>
108 #include <linux/unwind_deferred.h>
109 
110 #include <asm/pgalloc.h>
111 #include <linux/uaccess.h>
112 #include <asm/mmu_context.h>
113 #include <asm/cacheflush.h>
114 #include <asm/tlbflush.h>
115 
116 /* For dup_mmap(). */
117 #include "../mm/internal.h"
118 
119 #include <trace/events/sched.h>
120 
121 #define CREATE_TRACE_POINTS
122 #include <trace/events/task.h>
123 
124 #include <kunit/visibility.h>
125 
126 /*
127  * Minimum number of threads to boot the kernel
128  */
129 #define MIN_THREADS 20
130 
131 /*
132  * Maximum number of threads
133  */
134 #define MAX_THREADS FUTEX_TID_MASK
135 
136 /*
137  * Protected counters by write_lock_irq(&tasklist_lock)
138  */
139 unsigned long total_forks;	/* Handle normal Linux uptimes. */
140 int nr_threads;			/* The idle threads do not count.. */
141 
142 static int max_threads;		/* tunable limit on nr_threads */
143 
144 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
145 
146 static const char * const resident_page_types[] = {
147 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
148 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
149 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
150 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
151 };
152 
153 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
154 
155 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
156 
157 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)158 int lockdep_tasklist_lock_is_held(void)
159 {
160 	return lockdep_is_held(&tasklist_lock);
161 }
162 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
163 #endif /* #ifdef CONFIG_PROVE_RCU */
164 
nr_processes(void)165 int nr_processes(void)
166 {
167 	int cpu;
168 	int total = 0;
169 
170 	for_each_possible_cpu(cpu)
171 		total += per_cpu(process_counts, cpu);
172 
173 	return total;
174 }
175 
arch_release_task_struct(struct task_struct * tsk)176 void __weak arch_release_task_struct(struct task_struct *tsk)
177 {
178 }
179 
180 static struct kmem_cache *task_struct_cachep;
181 
alloc_task_struct_node(int node)182 static inline struct task_struct *alloc_task_struct_node(int node)
183 {
184 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
185 }
186 
free_task_struct(struct task_struct * tsk)187 static inline void free_task_struct(struct task_struct *tsk)
188 {
189 	kmem_cache_free(task_struct_cachep, tsk);
190 }
191 
192 #ifdef CONFIG_VMAP_STACK
193 /*
194  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
195  * flush.  Try to minimize the number of calls by caching stacks.
196  */
197 #define NR_CACHED_STACKS 2
198 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
199 /*
200  * Allocated stacks are cached and later reused by new threads, so memcg
201  * accounting is performed by the code assigning/releasing stacks to tasks.
202  * We need a zeroed memory without __GFP_ACCOUNT.
203  */
204 #define GFP_VMAP_STACK (GFP_KERNEL | __GFP_ZERO)
205 
206 struct vm_stack {
207 	struct rcu_head rcu;
208 	struct vm_struct *stack_vm_area;
209 };
210 
try_release_thread_stack_to_cache(struct vm_struct * vm_area)211 static bool try_release_thread_stack_to_cache(struct vm_struct *vm_area)
212 {
213 	unsigned int i;
214 
215 	for (i = 0; i < NR_CACHED_STACKS; i++) {
216 		struct vm_struct *tmp = NULL;
217 
218 		if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm_area))
219 			return true;
220 	}
221 	return false;
222 }
223 
thread_stack_free_rcu(struct rcu_head * rh)224 static void thread_stack_free_rcu(struct rcu_head *rh)
225 {
226 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
227 	struct vm_struct *vm_area = vm_stack->stack_vm_area;
228 
229 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
230 		return;
231 
232 	vfree(vm_area->addr);
233 }
234 
thread_stack_delayed_free(struct task_struct * tsk)235 static void thread_stack_delayed_free(struct task_struct *tsk)
236 {
237 	struct vm_stack *vm_stack = tsk->stack;
238 
239 	vm_stack->stack_vm_area = tsk->stack_vm_area;
240 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
241 }
242 
free_vm_stack_cache(unsigned int cpu)243 static int free_vm_stack_cache(unsigned int cpu)
244 {
245 	struct vm_struct **cached_vm_stack_areas = per_cpu_ptr(cached_stacks, cpu);
246 	int i;
247 
248 	for (i = 0; i < NR_CACHED_STACKS; i++) {
249 		struct vm_struct *vm_area = cached_vm_stack_areas[i];
250 
251 		if (!vm_area)
252 			continue;
253 
254 		vfree(vm_area->addr);
255 		cached_vm_stack_areas[i] = NULL;
256 	}
257 
258 	return 0;
259 }
260 
memcg_charge_kernel_stack(struct vm_struct * vm_area)261 static int memcg_charge_kernel_stack(struct vm_struct *vm_area)
262 {
263 	int i;
264 	int ret;
265 	int nr_charged = 0;
266 
267 	BUG_ON(vm_area->nr_pages != THREAD_SIZE / PAGE_SIZE);
268 
269 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
270 		ret = memcg_kmem_charge_page(vm_area->pages[i], GFP_KERNEL, 0);
271 		if (ret)
272 			goto err;
273 		nr_charged++;
274 	}
275 	return 0;
276 err:
277 	for (i = 0; i < nr_charged; i++)
278 		memcg_kmem_uncharge_page(vm_area->pages[i], 0);
279 	return ret;
280 }
281 
alloc_thread_stack_node(struct task_struct * tsk,int node)282 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
283 {
284 	struct vm_struct *vm_area;
285 	void *stack;
286 	int i;
287 
288 	for (i = 0; i < NR_CACHED_STACKS; i++) {
289 		vm_area = this_cpu_xchg(cached_stacks[i], NULL);
290 		if (!vm_area)
291 			continue;
292 
293 		if (memcg_charge_kernel_stack(vm_area)) {
294 			vfree(vm_area->addr);
295 			return -ENOMEM;
296 		}
297 
298 		/* Reset stack metadata. */
299 		kasan_unpoison_range(vm_area->addr, THREAD_SIZE);
300 
301 		stack = kasan_reset_tag(vm_area->addr);
302 
303 		/* Clear stale pointers from reused stack. */
304 		memset(stack, 0, THREAD_SIZE);
305 
306 		tsk->stack_vm_area = vm_area;
307 		tsk->stack = stack;
308 		return 0;
309 	}
310 
311 	stack = __vmalloc_node(THREAD_SIZE, THREAD_ALIGN,
312 				     GFP_VMAP_STACK,
313 				     node, __builtin_return_address(0));
314 	if (!stack)
315 		return -ENOMEM;
316 
317 	vm_area = find_vm_area(stack);
318 	if (memcg_charge_kernel_stack(vm_area)) {
319 		vfree(stack);
320 		return -ENOMEM;
321 	}
322 	/*
323 	 * We can't call find_vm_area() in interrupt context, and
324 	 * free_thread_stack() can be called in interrupt context,
325 	 * so cache the vm_struct.
326 	 */
327 	tsk->stack_vm_area = vm_area;
328 	stack = kasan_reset_tag(stack);
329 	tsk->stack = stack;
330 	return 0;
331 }
332 
free_thread_stack(struct task_struct * tsk)333 static void free_thread_stack(struct task_struct *tsk)
334 {
335 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
336 		thread_stack_delayed_free(tsk);
337 
338 	tsk->stack = NULL;
339 	tsk->stack_vm_area = NULL;
340 }
341 
342 #else /* !CONFIG_VMAP_STACK */
343 
344 /*
345  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
346  * kmemcache based allocator.
347  */
348 #if THREAD_SIZE >= PAGE_SIZE
349 
thread_stack_free_rcu(struct rcu_head * rh)350 static void thread_stack_free_rcu(struct rcu_head *rh)
351 {
352 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
353 }
354 
thread_stack_delayed_free(struct task_struct * tsk)355 static void thread_stack_delayed_free(struct task_struct *tsk)
356 {
357 	struct rcu_head *rh = tsk->stack;
358 
359 	call_rcu(rh, thread_stack_free_rcu);
360 }
361 
alloc_thread_stack_node(struct task_struct * tsk,int node)362 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
363 {
364 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
365 					     THREAD_SIZE_ORDER);
366 
367 	if (likely(page)) {
368 		tsk->stack = kasan_reset_tag(page_address(page));
369 		return 0;
370 	}
371 	return -ENOMEM;
372 }
373 
free_thread_stack(struct task_struct * tsk)374 static void free_thread_stack(struct task_struct *tsk)
375 {
376 	thread_stack_delayed_free(tsk);
377 	tsk->stack = NULL;
378 }
379 
380 #else /* !(THREAD_SIZE >= PAGE_SIZE) */
381 
382 static struct kmem_cache *thread_stack_cache;
383 
thread_stack_free_rcu(struct rcu_head * rh)384 static void thread_stack_free_rcu(struct rcu_head *rh)
385 {
386 	kmem_cache_free(thread_stack_cache, rh);
387 }
388 
thread_stack_delayed_free(struct task_struct * tsk)389 static void thread_stack_delayed_free(struct task_struct *tsk)
390 {
391 	struct rcu_head *rh = tsk->stack;
392 
393 	call_rcu(rh, thread_stack_free_rcu);
394 }
395 
alloc_thread_stack_node(struct task_struct * tsk,int node)396 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
397 {
398 	unsigned long *stack;
399 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
400 	stack = kasan_reset_tag(stack);
401 	tsk->stack = stack;
402 	return stack ? 0 : -ENOMEM;
403 }
404 
free_thread_stack(struct task_struct * tsk)405 static void free_thread_stack(struct task_struct *tsk)
406 {
407 	thread_stack_delayed_free(tsk);
408 	tsk->stack = NULL;
409 }
410 
thread_stack_cache_init(void)411 void thread_stack_cache_init(void)
412 {
413 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
414 					THREAD_SIZE, THREAD_SIZE, 0, 0,
415 					THREAD_SIZE, NULL);
416 	BUG_ON(thread_stack_cache == NULL);
417 }
418 
419 #endif /* THREAD_SIZE >= PAGE_SIZE */
420 #endif /* CONFIG_VMAP_STACK */
421 
422 /* SLAB cache for signal_struct structures (tsk->signal) */
423 static struct kmem_cache *signal_cachep;
424 
425 /* SLAB cache for sighand_struct structures (tsk->sighand) */
426 struct kmem_cache *sighand_cachep;
427 
428 /* SLAB cache for files_struct structures (tsk->files) */
429 struct kmem_cache *files_cachep;
430 
431 /* SLAB cache for fs_struct structures (tsk->fs) */
432 struct kmem_cache *fs_cachep;
433 
434 /* SLAB cache for mm_struct structures (tsk->mm) */
435 static struct kmem_cache *mm_cachep;
436 
account_kernel_stack(struct task_struct * tsk,int account)437 static void account_kernel_stack(struct task_struct *tsk, int account)
438 {
439 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
440 		struct vm_struct *vm_area = task_stack_vm_area(tsk);
441 		int i;
442 
443 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
444 			mod_lruvec_page_state(vm_area->pages[i], NR_KERNEL_STACK_KB,
445 					      account * (PAGE_SIZE / 1024));
446 	} else {
447 		void *stack = task_stack_page(tsk);
448 
449 		/* All stack pages are in the same node. */
450 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
451 				      account * (THREAD_SIZE / 1024));
452 	}
453 }
454 
exit_task_stack_account(struct task_struct * tsk)455 void exit_task_stack_account(struct task_struct *tsk)
456 {
457 	account_kernel_stack(tsk, -1);
458 
459 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
460 		struct vm_struct *vm_area;
461 		int i;
462 
463 		vm_area = task_stack_vm_area(tsk);
464 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
465 			memcg_kmem_uncharge_page(vm_area->pages[i], 0);
466 	}
467 }
468 
release_task_stack(struct task_struct * tsk)469 static void release_task_stack(struct task_struct *tsk)
470 {
471 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
472 		return;  /* Better to leak the stack than to free prematurely */
473 
474 	free_thread_stack(tsk);
475 }
476 
477 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)478 void put_task_stack(struct task_struct *tsk)
479 {
480 	if (refcount_dec_and_test(&tsk->stack_refcount))
481 		release_task_stack(tsk);
482 }
483 #endif
484 
free_task(struct task_struct * tsk)485 void free_task(struct task_struct *tsk)
486 {
487 #ifdef CONFIG_SECCOMP
488 	WARN_ON_ONCE(tsk->seccomp.filter);
489 #endif
490 	release_user_cpus_ptr(tsk);
491 	scs_release(tsk);
492 
493 #ifndef CONFIG_THREAD_INFO_IN_TASK
494 	/*
495 	 * The task is finally done with both the stack and thread_info,
496 	 * so free both.
497 	 */
498 	release_task_stack(tsk);
499 #else
500 	/*
501 	 * If the task had a separate stack allocation, it should be gone
502 	 * by now.
503 	 */
504 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
505 #endif
506 	rt_mutex_debug_task_free(tsk);
507 	ftrace_graph_exit_task(tsk);
508 	arch_release_task_struct(tsk);
509 	if (tsk->flags & PF_KTHREAD)
510 		free_kthread_struct(tsk);
511 	bpf_task_storage_free(tsk);
512 	free_task_struct(tsk);
513 }
514 EXPORT_SYMBOL(free_task);
515 
dup_mm_exe_file(struct mm_struct * mm,struct mm_struct * oldmm)516 void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
517 {
518 	struct file *exe_file;
519 
520 	exe_file = get_mm_exe_file(oldmm);
521 	RCU_INIT_POINTER(mm->exe_file, exe_file);
522 	/*
523 	 * We depend on the oldmm having properly denied write access to the
524 	 * exe_file already.
525 	 */
526 	if (exe_file && exe_file_deny_write_access(exe_file))
527 		pr_warn_once("exe_file_deny_write_access() failed in %s\n", __func__);
528 }
529 
530 #ifdef CONFIG_MMU
mm_alloc_pgd(struct mm_struct * mm)531 static inline int mm_alloc_pgd(struct mm_struct *mm)
532 {
533 	mm->pgd = pgd_alloc(mm);
534 	if (unlikely(!mm->pgd))
535 		return -ENOMEM;
536 	return 0;
537 }
538 
mm_free_pgd(struct mm_struct * mm)539 static inline void mm_free_pgd(struct mm_struct *mm)
540 {
541 	pgd_free(mm, mm->pgd);
542 }
543 #else
544 #define mm_alloc_pgd(mm)	(0)
545 #define mm_free_pgd(mm)
546 #endif /* CONFIG_MMU */
547 
548 #ifdef CONFIG_MM_ID
549 static DEFINE_IDA(mm_ida);
550 
mm_alloc_id(struct mm_struct * mm)551 static inline int mm_alloc_id(struct mm_struct *mm)
552 {
553 	int ret;
554 
555 	ret = ida_alloc_range(&mm_ida, MM_ID_MIN, MM_ID_MAX, GFP_KERNEL);
556 	if (ret < 0)
557 		return ret;
558 	mm->mm_id = ret;
559 	return 0;
560 }
561 
mm_free_id(struct mm_struct * mm)562 static inline void mm_free_id(struct mm_struct *mm)
563 {
564 	const mm_id_t id = mm->mm_id;
565 
566 	mm->mm_id = MM_ID_DUMMY;
567 	if (id == MM_ID_DUMMY)
568 		return;
569 	if (WARN_ON_ONCE(id < MM_ID_MIN || id > MM_ID_MAX))
570 		return;
571 	ida_free(&mm_ida, id);
572 }
573 #else /* !CONFIG_MM_ID */
mm_alloc_id(struct mm_struct * mm)574 static inline int mm_alloc_id(struct mm_struct *mm) { return 0; }
mm_free_id(struct mm_struct * mm)575 static inline void mm_free_id(struct mm_struct *mm) {}
576 #endif /* CONFIG_MM_ID */
577 
check_mm(struct mm_struct * mm)578 static void check_mm(struct mm_struct *mm)
579 {
580 	int i;
581 
582 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
583 			 "Please make sure 'struct resident_page_types[]' is updated as well");
584 
585 	for (i = 0; i < NR_MM_COUNTERS; i++) {
586 		long x = percpu_counter_sum(&mm->rss_stat[i]);
587 
588 		if (unlikely(x)) {
589 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld Comm:%s Pid:%d\n",
590 				 mm, resident_page_types[i], x,
591 				 current->comm,
592 				 task_pid_nr(current));
593 		}
594 	}
595 
596 	if (mm_pgtables_bytes(mm))
597 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
598 				mm_pgtables_bytes(mm));
599 
600 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
601 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
602 #endif
603 }
604 
605 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
606 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
607 
do_check_lazy_tlb(void * arg)608 static void do_check_lazy_tlb(void *arg)
609 {
610 	struct mm_struct *mm = arg;
611 
612 	WARN_ON_ONCE(current->active_mm == mm);
613 }
614 
do_shoot_lazy_tlb(void * arg)615 static void do_shoot_lazy_tlb(void *arg)
616 {
617 	struct mm_struct *mm = arg;
618 
619 	if (current->active_mm == mm) {
620 		WARN_ON_ONCE(current->mm);
621 		current->active_mm = &init_mm;
622 		switch_mm(mm, &init_mm, current);
623 	}
624 }
625 
cleanup_lazy_tlbs(struct mm_struct * mm)626 static void cleanup_lazy_tlbs(struct mm_struct *mm)
627 {
628 	if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
629 		/*
630 		 * In this case, lazy tlb mms are refounted and would not reach
631 		 * __mmdrop until all CPUs have switched away and mmdrop()ed.
632 		 */
633 		return;
634 	}
635 
636 	/*
637 	 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
638 	 * requires lazy mm users to switch to another mm when the refcount
639 	 * drops to zero, before the mm is freed. This requires IPIs here to
640 	 * switch kernel threads to init_mm.
641 	 *
642 	 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
643 	 * switch with the final userspace teardown TLB flush which leaves the
644 	 * mm lazy on this CPU but no others, reducing the need for additional
645 	 * IPIs here. There are cases where a final IPI is still required here,
646 	 * such as the final mmdrop being performed on a different CPU than the
647 	 * one exiting, or kernel threads using the mm when userspace exits.
648 	 *
649 	 * IPI overheads have not found to be expensive, but they could be
650 	 * reduced in a number of possible ways, for example (roughly
651 	 * increasing order of complexity):
652 	 * - The last lazy reference created by exit_mm() could instead switch
653 	 *   to init_mm, however it's probable this will run on the same CPU
654 	 *   immediately afterwards, so this may not reduce IPIs much.
655 	 * - A batch of mms requiring IPIs could be gathered and freed at once.
656 	 * - CPUs store active_mm where it can be remotely checked without a
657 	 *   lock, to filter out false-positives in the cpumask.
658 	 * - After mm_users or mm_count reaches zero, switching away from the
659 	 *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
660 	 *   with some batching or delaying of the final IPIs.
661 	 * - A delayed freeing and RCU-like quiescing sequence based on mm
662 	 *   switching to avoid IPIs completely.
663 	 */
664 	on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
665 	if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
666 		on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
667 }
668 
669 /*
670  * Called when the last reference to the mm
671  * is dropped: either by a lazy thread or by
672  * mmput. Free the page directory and the mm.
673  */
__mmdrop(struct mm_struct * mm)674 void __mmdrop(struct mm_struct *mm)
675 {
676 	BUG_ON(mm == &init_mm);
677 	WARN_ON_ONCE(mm == current->mm);
678 
679 	/* Ensure no CPUs are using this as their lazy tlb mm */
680 	cleanup_lazy_tlbs(mm);
681 
682 	WARN_ON_ONCE(mm == current->active_mm);
683 	mm_free_pgd(mm);
684 	mm_free_id(mm);
685 	destroy_context(mm);
686 	mmu_notifier_subscriptions_destroy(mm);
687 	check_mm(mm);
688 	put_user_ns(mm->user_ns);
689 	mm_pasid_drop(mm);
690 	mm_destroy_cid(mm);
691 	percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
692 
693 	free_mm(mm);
694 }
695 EXPORT_SYMBOL_GPL(__mmdrop);
696 
mmdrop_async_fn(struct work_struct * work)697 static void mmdrop_async_fn(struct work_struct *work)
698 {
699 	struct mm_struct *mm;
700 
701 	mm = container_of(work, struct mm_struct, async_put_work);
702 	__mmdrop(mm);
703 }
704 
mmdrop_async(struct mm_struct * mm)705 static void mmdrop_async(struct mm_struct *mm)
706 {
707 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
708 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
709 		schedule_work(&mm->async_put_work);
710 	}
711 }
712 
free_signal_struct(struct signal_struct * sig)713 static inline void free_signal_struct(struct signal_struct *sig)
714 {
715 	taskstats_tgid_free(sig);
716 	sched_autogroup_exit(sig);
717 	/*
718 	 * __mmdrop is not safe to call from softirq context on x86 due to
719 	 * pgd_dtor so postpone it to the async context
720 	 */
721 	if (sig->oom_mm)
722 		mmdrop_async(sig->oom_mm);
723 	kmem_cache_free(signal_cachep, sig);
724 }
725 
put_signal_struct(struct signal_struct * sig)726 static inline void put_signal_struct(struct signal_struct *sig)
727 {
728 	if (refcount_dec_and_test(&sig->sigcnt))
729 		free_signal_struct(sig);
730 }
731 
__put_task_struct(struct task_struct * tsk)732 void __put_task_struct(struct task_struct *tsk)
733 {
734 	WARN_ON(!tsk->exit_state);
735 	WARN_ON(refcount_read(&tsk->usage));
736 	WARN_ON(tsk == current);
737 
738 	unwind_task_free(tsk);
739 	io_uring_free(tsk);
740 	cgroup_task_free(tsk);
741 	task_numa_free(tsk, true);
742 	security_task_free(tsk);
743 	exit_creds(tsk);
744 	delayacct_tsk_free(tsk);
745 	put_signal_struct(tsk->signal);
746 	sched_core_free(tsk);
747 	free_task(tsk);
748 }
749 EXPORT_SYMBOL_GPL(__put_task_struct);
750 
__put_task_struct_rcu_cb(struct rcu_head * rhp)751 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
752 {
753 	struct task_struct *task = container_of(rhp, struct task_struct, rcu);
754 
755 	__put_task_struct(task);
756 }
757 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
758 
arch_task_cache_init(void)759 void __init __weak arch_task_cache_init(void) { }
760 
761 /*
762  * set_max_threads
763  */
set_max_threads(unsigned int max_threads_suggested)764 static void __init set_max_threads(unsigned int max_threads_suggested)
765 {
766 	u64 threads;
767 	unsigned long nr_pages = memblock_estimated_nr_free_pages();
768 
769 	/*
770 	 * The number of threads shall be limited such that the thread
771 	 * structures may only consume a small part of the available memory.
772 	 */
773 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
774 		threads = MAX_THREADS;
775 	else
776 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
777 				    (u64) THREAD_SIZE * 8UL);
778 
779 	if (threads > max_threads_suggested)
780 		threads = max_threads_suggested;
781 
782 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
783 }
784 
785 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
786 /* Initialized by the architecture: */
787 int arch_task_struct_size __read_mostly;
788 #endif
789 
task_struct_whitelist(unsigned long * offset,unsigned long * size)790 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size)
791 {
792 	/* Fetch thread_struct whitelist for the architecture. */
793 	arch_thread_struct_whitelist(offset, size);
794 
795 	/*
796 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
797 	 * adjust offset to position of thread_struct in task_struct.
798 	 */
799 	if (unlikely(*size == 0))
800 		*offset = 0;
801 	else
802 		*offset += offsetof(struct task_struct, thread);
803 }
804 
fork_init(void)805 void __init fork_init(void)
806 {
807 	int i;
808 #ifndef ARCH_MIN_TASKALIGN
809 #define ARCH_MIN_TASKALIGN	0
810 #endif
811 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
812 	unsigned long useroffset, usersize;
813 
814 	/* create a slab on which task_structs can be allocated */
815 	task_struct_whitelist(&useroffset, &usersize);
816 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
817 			arch_task_struct_size, align,
818 			SLAB_PANIC|SLAB_ACCOUNT,
819 			useroffset, usersize, NULL);
820 
821 	/* do the arch specific task caches init */
822 	arch_task_cache_init();
823 
824 	set_max_threads(MAX_THREADS);
825 
826 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
827 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
828 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
829 		init_task.signal->rlim[RLIMIT_NPROC];
830 
831 	for (i = 0; i < UCOUNT_COUNTS; i++)
832 		init_user_ns.ucount_max[i] = max_threads/2;
833 
834 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
835 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
836 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
837 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
838 
839 #ifdef CONFIG_VMAP_STACK
840 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
841 			  NULL, free_vm_stack_cache);
842 #endif
843 
844 	scs_init();
845 
846 	lockdep_init_task(&init_task);
847 	uprobes_init();
848 }
849 
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)850 int __weak arch_dup_task_struct(struct task_struct *dst,
851 					       struct task_struct *src)
852 {
853 	*dst = *src;
854 	return 0;
855 }
856 
set_task_stack_end_magic(struct task_struct * tsk)857 void set_task_stack_end_magic(struct task_struct *tsk)
858 {
859 	unsigned long *stackend;
860 
861 	stackend = end_of_stack(tsk);
862 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
863 }
864 
dup_task_struct(struct task_struct * orig,int node)865 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
866 {
867 	struct task_struct *tsk;
868 	int err;
869 
870 	if (node == NUMA_NO_NODE)
871 		node = tsk_fork_get_node(orig);
872 	tsk = alloc_task_struct_node(node);
873 	if (!tsk)
874 		return NULL;
875 
876 	err = arch_dup_task_struct(tsk, orig);
877 	if (err)
878 		goto free_tsk;
879 
880 	err = alloc_thread_stack_node(tsk, node);
881 	if (err)
882 		goto free_tsk;
883 
884 #ifdef CONFIG_THREAD_INFO_IN_TASK
885 	refcount_set(&tsk->stack_refcount, 1);
886 #endif
887 	account_kernel_stack(tsk, 1);
888 
889 	err = scs_prepare(tsk, node);
890 	if (err)
891 		goto free_stack;
892 
893 #ifdef CONFIG_SECCOMP
894 	/*
895 	 * We must handle setting up seccomp filters once we're under
896 	 * the sighand lock in case orig has changed between now and
897 	 * then. Until then, filter must be NULL to avoid messing up
898 	 * the usage counts on the error path calling free_task.
899 	 */
900 	tsk->seccomp.filter = NULL;
901 #endif
902 
903 	setup_thread_stack(tsk, orig);
904 	clear_user_return_notifier(tsk);
905 	clear_tsk_need_resched(tsk);
906 	set_task_stack_end_magic(tsk);
907 	clear_syscall_work_syscall_user_dispatch(tsk);
908 
909 #ifdef CONFIG_STACKPROTECTOR
910 	tsk->stack_canary = get_random_canary();
911 #endif
912 	if (orig->cpus_ptr == &orig->cpus_mask)
913 		tsk->cpus_ptr = &tsk->cpus_mask;
914 	dup_user_cpus_ptr(tsk, orig, node);
915 
916 	/*
917 	 * One for the user space visible state that goes away when reaped.
918 	 * One for the scheduler.
919 	 */
920 	refcount_set(&tsk->rcu_users, 2);
921 	/* One for the rcu users */
922 	refcount_set(&tsk->usage, 1);
923 #ifdef CONFIG_BLK_DEV_IO_TRACE
924 	tsk->btrace_seq = 0;
925 #endif
926 	tsk->splice_pipe = NULL;
927 	tsk->task_frag.page = NULL;
928 	tsk->wake_q.next = NULL;
929 	tsk->worker_private = NULL;
930 
931 	kcov_task_init(tsk);
932 	kmsan_task_create(tsk);
933 	kmap_local_fork(tsk);
934 
935 #ifdef CONFIG_FAULT_INJECTION
936 	tsk->fail_nth = 0;
937 #endif
938 
939 #ifdef CONFIG_BLK_CGROUP
940 	tsk->throttle_disk = NULL;
941 	tsk->use_memdelay = 0;
942 #endif
943 
944 #ifdef CONFIG_ARCH_HAS_CPU_PASID
945 	tsk->pasid_activated = 0;
946 #endif
947 
948 #ifdef CONFIG_MEMCG
949 	tsk->active_memcg = NULL;
950 #endif
951 
952 #ifdef CONFIG_X86_BUS_LOCK_DETECT
953 	tsk->reported_split_lock = 0;
954 #endif
955 
956 #ifdef CONFIG_SCHED_MM_CID
957 	tsk->mm_cid.cid = MM_CID_UNSET;
958 	tsk->mm_cid.active = 0;
959 #endif
960 	return tsk;
961 
962 free_stack:
963 	exit_task_stack_account(tsk);
964 	free_thread_stack(tsk);
965 free_tsk:
966 	free_task_struct(tsk);
967 	return NULL;
968 }
969 
970 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
971 
972 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
973 
coredump_filter_setup(char * s)974 static int __init coredump_filter_setup(char *s)
975 {
976 	default_dump_filter =
977 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
978 		MMF_DUMP_FILTER_MASK;
979 	return 1;
980 }
981 
982 __setup("coredump_filter=", coredump_filter_setup);
983 
984 #include <linux/init_task.h>
985 
mm_init_aio(struct mm_struct * mm)986 static void mm_init_aio(struct mm_struct *mm)
987 {
988 #ifdef CONFIG_AIO
989 	spin_lock_init(&mm->ioctx_lock);
990 	mm->ioctx_table = NULL;
991 #endif
992 }
993 
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)994 static __always_inline void mm_clear_owner(struct mm_struct *mm,
995 					   struct task_struct *p)
996 {
997 #ifdef CONFIG_MEMCG
998 	if (mm->owner == p)
999 		WRITE_ONCE(mm->owner, NULL);
1000 #endif
1001 }
1002 
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1003 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1004 {
1005 #ifdef CONFIG_MEMCG
1006 	mm->owner = p;
1007 #endif
1008 }
1009 
mm_init_uprobes_state(struct mm_struct * mm)1010 static void mm_init_uprobes_state(struct mm_struct *mm)
1011 {
1012 #ifdef CONFIG_UPROBES
1013 	mm->uprobes_state.xol_area = NULL;
1014 	arch_uprobe_init_state(mm);
1015 #endif
1016 }
1017 
mmap_init_lock(struct mm_struct * mm)1018 static void mmap_init_lock(struct mm_struct *mm)
1019 {
1020 	init_rwsem(&mm->mmap_lock);
1021 	mm_lock_seqcount_init(mm);
1022 #ifdef CONFIG_PER_VMA_LOCK
1023 	rcuwait_init(&mm->vma_writer_wait);
1024 #endif
1025 }
1026 
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1027 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1028 	struct user_namespace *user_ns)
1029 {
1030 	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1031 	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1032 	atomic_set(&mm->mm_users, 1);
1033 	atomic_set(&mm->mm_count, 1);
1034 	seqcount_init(&mm->write_protect_seq);
1035 	mmap_init_lock(mm);
1036 	INIT_LIST_HEAD(&mm->mmlist);
1037 	mm_pgtables_bytes_init(mm);
1038 	mm->map_count = 0;
1039 	mm->locked_vm = 0;
1040 	atomic64_set(&mm->pinned_vm, 0);
1041 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1042 	spin_lock_init(&mm->page_table_lock);
1043 	spin_lock_init(&mm->arg_lock);
1044 	mm_init_cpumask(mm);
1045 	mm_init_aio(mm);
1046 	mm_init_owner(mm, p);
1047 	mm_pasid_init(mm);
1048 	RCU_INIT_POINTER(mm->exe_file, NULL);
1049 	mmu_notifier_subscriptions_init(mm);
1050 	init_tlb_flush_pending(mm);
1051 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
1052 	mm->pmd_huge_pte = NULL;
1053 #endif
1054 	mm_init_uprobes_state(mm);
1055 	hugetlb_count_init(mm);
1056 
1057 	mm_flags_clear_all(mm);
1058 	if (current->mm) {
1059 		unsigned long flags = __mm_flags_get_word(current->mm);
1060 
1061 		__mm_flags_set_word(mm, mmf_init_legacy_flags(flags));
1062 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1063 	} else {
1064 		__mm_flags_set_word(mm, default_dump_filter);
1065 		mm->def_flags = 0;
1066 	}
1067 
1068 	if (futex_mm_init(mm))
1069 		goto fail_mm_init;
1070 
1071 	if (mm_alloc_pgd(mm))
1072 		goto fail_nopgd;
1073 
1074 	if (mm_alloc_id(mm))
1075 		goto fail_noid;
1076 
1077 	if (init_new_context(p, mm))
1078 		goto fail_nocontext;
1079 
1080 	if (mm_alloc_cid(mm, p))
1081 		goto fail_cid;
1082 
1083 	if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1084 				     NR_MM_COUNTERS))
1085 		goto fail_pcpu;
1086 
1087 	mm->user_ns = get_user_ns(user_ns);
1088 	lru_gen_init_mm(mm);
1089 	return mm;
1090 
1091 fail_pcpu:
1092 	mm_destroy_cid(mm);
1093 fail_cid:
1094 	destroy_context(mm);
1095 fail_nocontext:
1096 	mm_free_id(mm);
1097 fail_noid:
1098 	mm_free_pgd(mm);
1099 fail_nopgd:
1100 	futex_hash_free(mm);
1101 fail_mm_init:
1102 	free_mm(mm);
1103 	return NULL;
1104 }
1105 
1106 /*
1107  * Allocate and initialize an mm_struct.
1108  */
mm_alloc(void)1109 struct mm_struct *mm_alloc(void)
1110 {
1111 	struct mm_struct *mm;
1112 
1113 	mm = allocate_mm();
1114 	if (!mm)
1115 		return NULL;
1116 
1117 	memset(mm, 0, sizeof(*mm));
1118 	return mm_init(mm, current, current_user_ns());
1119 }
1120 EXPORT_SYMBOL_IF_KUNIT(mm_alloc);
1121 
__mmput(struct mm_struct * mm)1122 static inline void __mmput(struct mm_struct *mm)
1123 {
1124 	VM_BUG_ON(atomic_read(&mm->mm_users));
1125 
1126 	uprobe_clear_state(mm);
1127 	exit_aio(mm);
1128 	ksm_exit(mm);
1129 	khugepaged_exit(mm); /* must run before exit_mmap */
1130 	exit_mmap(mm);
1131 	mm_put_huge_zero_folio(mm);
1132 	set_mm_exe_file(mm, NULL);
1133 	if (!list_empty(&mm->mmlist)) {
1134 		spin_lock(&mmlist_lock);
1135 		list_del(&mm->mmlist);
1136 		spin_unlock(&mmlist_lock);
1137 	}
1138 	if (mm->binfmt)
1139 		module_put(mm->binfmt->module);
1140 	lru_gen_del_mm(mm);
1141 	futex_hash_free(mm);
1142 	mmdrop(mm);
1143 }
1144 
1145 /*
1146  * Decrement the use count and release all resources for an mm.
1147  */
mmput(struct mm_struct * mm)1148 void mmput(struct mm_struct *mm)
1149 {
1150 	might_sleep();
1151 
1152 	if (atomic_dec_and_test(&mm->mm_users))
1153 		__mmput(mm);
1154 }
1155 EXPORT_SYMBOL_GPL(mmput);
1156 
1157 #if defined(CONFIG_MMU) || defined(CONFIG_FUTEX_PRIVATE_HASH)
mmput_async_fn(struct work_struct * work)1158 static void mmput_async_fn(struct work_struct *work)
1159 {
1160 	struct mm_struct *mm = container_of(work, struct mm_struct,
1161 					    async_put_work);
1162 
1163 	__mmput(mm);
1164 }
1165 
mmput_async(struct mm_struct * mm)1166 void mmput_async(struct mm_struct *mm)
1167 {
1168 	if (atomic_dec_and_test(&mm->mm_users)) {
1169 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1170 		schedule_work(&mm->async_put_work);
1171 	}
1172 }
1173 EXPORT_SYMBOL_GPL(mmput_async);
1174 #endif
1175 
1176 /**
1177  * set_mm_exe_file - change a reference to the mm's executable file
1178  * @mm: The mm to change.
1179  * @new_exe_file: The new file to use.
1180  *
1181  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1182  *
1183  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1184  * invocations: in mmput() nobody alive left, in execve it happens before
1185  * the new mm is made visible to anyone.
1186  *
1187  * Can only fail if new_exe_file != NULL.
1188  */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1189 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1190 {
1191 	struct file *old_exe_file;
1192 
1193 	/*
1194 	 * It is safe to dereference the exe_file without RCU as
1195 	 * this function is only called if nobody else can access
1196 	 * this mm -- see comment above for justification.
1197 	 */
1198 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1199 
1200 	if (new_exe_file) {
1201 		/*
1202 		 * We expect the caller (i.e., sys_execve) to already denied
1203 		 * write access, so this is unlikely to fail.
1204 		 */
1205 		if (unlikely(exe_file_deny_write_access(new_exe_file)))
1206 			return -EACCES;
1207 		get_file(new_exe_file);
1208 	}
1209 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1210 	if (old_exe_file) {
1211 		exe_file_allow_write_access(old_exe_file);
1212 		fput(old_exe_file);
1213 	}
1214 	return 0;
1215 }
1216 
1217 /**
1218  * replace_mm_exe_file - replace a reference to the mm's executable file
1219  * @mm: The mm to change.
1220  * @new_exe_file: The new file to use.
1221  *
1222  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1223  *
1224  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1225  */
replace_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1226 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1227 {
1228 	struct vm_area_struct *vma;
1229 	struct file *old_exe_file;
1230 	int ret = 0;
1231 
1232 	/* Forbid mm->exe_file change if old file still mapped. */
1233 	old_exe_file = get_mm_exe_file(mm);
1234 	if (old_exe_file) {
1235 		VMA_ITERATOR(vmi, mm, 0);
1236 		mmap_read_lock(mm);
1237 		for_each_vma(vmi, vma) {
1238 			if (!vma->vm_file)
1239 				continue;
1240 			if (path_equal(&vma->vm_file->f_path,
1241 				       &old_exe_file->f_path)) {
1242 				ret = -EBUSY;
1243 				break;
1244 			}
1245 		}
1246 		mmap_read_unlock(mm);
1247 		fput(old_exe_file);
1248 		if (ret)
1249 			return ret;
1250 	}
1251 
1252 	ret = exe_file_deny_write_access(new_exe_file);
1253 	if (ret)
1254 		return -EACCES;
1255 	get_file(new_exe_file);
1256 
1257 	/* set the new file */
1258 	mmap_write_lock(mm);
1259 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1260 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1261 	mmap_write_unlock(mm);
1262 
1263 	if (old_exe_file) {
1264 		exe_file_allow_write_access(old_exe_file);
1265 		fput(old_exe_file);
1266 	}
1267 	return 0;
1268 }
1269 
1270 /**
1271  * get_mm_exe_file - acquire a reference to the mm's executable file
1272  * @mm: The mm of interest.
1273  *
1274  * Returns %NULL if mm has no associated executable file.
1275  * User must release file via fput().
1276  */
get_mm_exe_file(struct mm_struct * mm)1277 struct file *get_mm_exe_file(struct mm_struct *mm)
1278 {
1279 	struct file *exe_file;
1280 
1281 	rcu_read_lock();
1282 	exe_file = get_file_rcu(&mm->exe_file);
1283 	rcu_read_unlock();
1284 	return exe_file;
1285 }
1286 
1287 /**
1288  * get_task_exe_file - acquire a reference to the task's executable file
1289  * @task: The task.
1290  *
1291  * Returns %NULL if task's mm (if any) has no associated executable file or
1292  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1293  * User must release file via fput().
1294  */
get_task_exe_file(struct task_struct * task)1295 struct file *get_task_exe_file(struct task_struct *task)
1296 {
1297 	struct file *exe_file = NULL;
1298 	struct mm_struct *mm;
1299 
1300 	if (task->flags & PF_KTHREAD)
1301 		return NULL;
1302 
1303 	task_lock(task);
1304 	mm = task->mm;
1305 	if (mm)
1306 		exe_file = get_mm_exe_file(mm);
1307 	task_unlock(task);
1308 	return exe_file;
1309 }
1310 
1311 /**
1312  * get_task_mm - acquire a reference to the task's mm
1313  * @task: The task.
1314  *
1315  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1316  * this kernel workthread has transiently adopted a user mm with use_mm,
1317  * to do its AIO) is not set and if so returns a reference to it, after
1318  * bumping up the use count.  User must release the mm via mmput()
1319  * after use.  Typically used by /proc and ptrace.
1320  */
get_task_mm(struct task_struct * task)1321 struct mm_struct *get_task_mm(struct task_struct *task)
1322 {
1323 	struct mm_struct *mm;
1324 
1325 	if (task->flags & PF_KTHREAD)
1326 		return NULL;
1327 
1328 	task_lock(task);
1329 	mm = task->mm;
1330 	if (mm)
1331 		mmget(mm);
1332 	task_unlock(task);
1333 	return mm;
1334 }
1335 EXPORT_SYMBOL_GPL(get_task_mm);
1336 
may_access_mm(struct mm_struct * mm,struct task_struct * task,unsigned int mode)1337 static bool may_access_mm(struct mm_struct *mm, struct task_struct *task, unsigned int mode)
1338 {
1339 	if (mm == current->mm)
1340 		return true;
1341 	if (ptrace_may_access(task, mode))
1342 		return true;
1343 	if ((mode & PTRACE_MODE_READ) && perfmon_capable())
1344 		return true;
1345 	return false;
1346 }
1347 
mm_access(struct task_struct * task,unsigned int mode)1348 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1349 {
1350 	struct mm_struct *mm;
1351 	int err;
1352 
1353 	err =  down_read_killable(&task->signal->exec_update_lock);
1354 	if (err)
1355 		return ERR_PTR(err);
1356 
1357 	mm = get_task_mm(task);
1358 	if (!mm) {
1359 		mm = ERR_PTR(-ESRCH);
1360 	} else if (!may_access_mm(mm, task, mode)) {
1361 		mmput(mm);
1362 		mm = ERR_PTR(-EACCES);
1363 	}
1364 	up_read(&task->signal->exec_update_lock);
1365 
1366 	return mm;
1367 }
1368 
complete_vfork_done(struct task_struct * tsk)1369 static void complete_vfork_done(struct task_struct *tsk)
1370 {
1371 	struct completion *vfork;
1372 
1373 	task_lock(tsk);
1374 	vfork = tsk->vfork_done;
1375 	if (likely(vfork)) {
1376 		tsk->vfork_done = NULL;
1377 		complete(vfork);
1378 	}
1379 	task_unlock(tsk);
1380 }
1381 
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1382 static int wait_for_vfork_done(struct task_struct *child,
1383 				struct completion *vfork)
1384 {
1385 	unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1386 	int killed;
1387 
1388 	cgroup_enter_frozen();
1389 	killed = wait_for_completion_state(vfork, state);
1390 	cgroup_leave_frozen(false);
1391 
1392 	if (killed) {
1393 		task_lock(child);
1394 		child->vfork_done = NULL;
1395 		task_unlock(child);
1396 	}
1397 
1398 	put_task_struct(child);
1399 	return killed;
1400 }
1401 
1402 /* Please note the differences between mmput and mm_release.
1403  * mmput is called whenever we stop holding onto a mm_struct,
1404  * error success whatever.
1405  *
1406  * mm_release is called after a mm_struct has been removed
1407  * from the current process.
1408  *
1409  * This difference is important for error handling, when we
1410  * only half set up a mm_struct for a new process and need to restore
1411  * the old one.  Because we mmput the new mm_struct before
1412  * restoring the old one. . .
1413  * Eric Biederman 10 January 1998
1414  */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1415 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1416 {
1417 	uprobe_free_utask(tsk);
1418 
1419 	/* Get rid of any cached register state */
1420 	deactivate_mm(tsk, mm);
1421 
1422 	/*
1423 	 * Signal userspace if we're not exiting with a core dump
1424 	 * because we want to leave the value intact for debugging
1425 	 * purposes.
1426 	 */
1427 	if (tsk->clear_child_tid) {
1428 		if (atomic_read(&mm->mm_users) > 1) {
1429 			/*
1430 			 * We don't check the error code - if userspace has
1431 			 * not set up a proper pointer then tough luck.
1432 			 */
1433 			put_user(0, tsk->clear_child_tid);
1434 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1435 					1, NULL, NULL, 0, 0);
1436 		}
1437 		tsk->clear_child_tid = NULL;
1438 	}
1439 
1440 	/*
1441 	 * All done, finally we can wake up parent and return this mm to him.
1442 	 * Also kthread_stop() uses this completion for synchronization.
1443 	 */
1444 	if (tsk->vfork_done)
1445 		complete_vfork_done(tsk);
1446 }
1447 
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1448 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1449 {
1450 	futex_exit_release(tsk);
1451 	mm_release(tsk, mm);
1452 }
1453 
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1454 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1455 {
1456 	futex_exec_release(tsk);
1457 	mm_release(tsk, mm);
1458 }
1459 
1460 /**
1461  * dup_mm() - duplicates an existing mm structure
1462  * @tsk: the task_struct with which the new mm will be associated.
1463  * @oldmm: the mm to duplicate.
1464  *
1465  * Allocates a new mm structure and duplicates the provided @oldmm structure
1466  * content into it.
1467  *
1468  * Return: the duplicated mm or NULL on failure.
1469  */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1470 static struct mm_struct *dup_mm(struct task_struct *tsk,
1471 				struct mm_struct *oldmm)
1472 {
1473 	struct mm_struct *mm;
1474 	int err;
1475 
1476 	mm = allocate_mm();
1477 	if (!mm)
1478 		goto fail_nomem;
1479 
1480 	memcpy(mm, oldmm, sizeof(*mm));
1481 
1482 	if (!mm_init(mm, tsk, mm->user_ns))
1483 		goto fail_nomem;
1484 
1485 	uprobe_start_dup_mmap();
1486 	err = dup_mmap(mm, oldmm);
1487 	if (err)
1488 		goto free_pt;
1489 	uprobe_end_dup_mmap();
1490 
1491 	mm->hiwater_rss = get_mm_rss(mm);
1492 	mm->hiwater_vm = mm->total_vm;
1493 
1494 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1495 		goto free_pt;
1496 
1497 	return mm;
1498 
1499 free_pt:
1500 	/* don't put binfmt in mmput, we haven't got module yet */
1501 	mm->binfmt = NULL;
1502 	mm_init_owner(mm, NULL);
1503 	mmput(mm);
1504 	if (err)
1505 		uprobe_end_dup_mmap();
1506 
1507 fail_nomem:
1508 	return NULL;
1509 }
1510 
copy_mm(u64 clone_flags,struct task_struct * tsk)1511 static int copy_mm(u64 clone_flags, struct task_struct *tsk)
1512 {
1513 	struct mm_struct *mm, *oldmm;
1514 
1515 	tsk->min_flt = tsk->maj_flt = 0;
1516 	tsk->nvcsw = tsk->nivcsw = 0;
1517 #ifdef CONFIG_DETECT_HUNG_TASK
1518 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1519 	tsk->last_switch_time = 0;
1520 #endif
1521 
1522 	tsk->mm = NULL;
1523 	tsk->active_mm = NULL;
1524 
1525 	/*
1526 	 * Are we cloning a kernel thread?
1527 	 *
1528 	 * We need to steal a active VM for that..
1529 	 */
1530 	oldmm = current->mm;
1531 	if (!oldmm)
1532 		return 0;
1533 
1534 	if (clone_flags & CLONE_VM) {
1535 		mmget(oldmm);
1536 		mm = oldmm;
1537 	} else {
1538 		mm = dup_mm(tsk, current->mm);
1539 		if (!mm)
1540 			return -ENOMEM;
1541 	}
1542 
1543 	tsk->mm = mm;
1544 	tsk->active_mm = mm;
1545 	sched_mm_cid_fork(tsk);
1546 	return 0;
1547 }
1548 
copy_fs(u64 clone_flags,struct task_struct * tsk)1549 static int copy_fs(u64 clone_flags, struct task_struct *tsk)
1550 {
1551 	struct fs_struct *fs = current->fs;
1552 	if (clone_flags & CLONE_FS) {
1553 		/* tsk->fs is already what we want */
1554 		read_seqlock_excl(&fs->seq);
1555 		/* "users" and "in_exec" locked for check_unsafe_exec() */
1556 		if (fs->in_exec) {
1557 			read_sequnlock_excl(&fs->seq);
1558 			return -EAGAIN;
1559 		}
1560 		fs->users++;
1561 		read_sequnlock_excl(&fs->seq);
1562 		return 0;
1563 	}
1564 	tsk->fs = copy_fs_struct(fs);
1565 	if (!tsk->fs)
1566 		return -ENOMEM;
1567 	return 0;
1568 }
1569 
copy_files(u64 clone_flags,struct task_struct * tsk,int no_files)1570 static int copy_files(u64 clone_flags, struct task_struct *tsk,
1571 		      int no_files)
1572 {
1573 	struct files_struct *oldf, *newf;
1574 
1575 	/*
1576 	 * A background process may not have any files ...
1577 	 */
1578 	oldf = current->files;
1579 	if (!oldf)
1580 		return 0;
1581 
1582 	if (no_files) {
1583 		tsk->files = NULL;
1584 		return 0;
1585 	}
1586 
1587 	if (clone_flags & CLONE_FILES) {
1588 		atomic_inc(&oldf->count);
1589 		return 0;
1590 	}
1591 
1592 	newf = dup_fd(oldf, NULL);
1593 	if (IS_ERR(newf))
1594 		return PTR_ERR(newf);
1595 
1596 	tsk->files = newf;
1597 	return 0;
1598 }
1599 
copy_sighand(u64 clone_flags,struct task_struct * tsk)1600 static int copy_sighand(u64 clone_flags, struct task_struct *tsk)
1601 {
1602 	struct sighand_struct *sig;
1603 
1604 	if (clone_flags & CLONE_SIGHAND) {
1605 		refcount_inc(&current->sighand->count);
1606 		return 0;
1607 	}
1608 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1609 	RCU_INIT_POINTER(tsk->sighand, sig);
1610 	if (!sig)
1611 		return -ENOMEM;
1612 
1613 	refcount_set(&sig->count, 1);
1614 	spin_lock_irq(&current->sighand->siglock);
1615 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1616 	spin_unlock_irq(&current->sighand->siglock);
1617 
1618 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1619 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1620 		flush_signal_handlers(tsk, 0);
1621 
1622 	return 0;
1623 }
1624 
__cleanup_sighand(struct sighand_struct * sighand)1625 void __cleanup_sighand(struct sighand_struct *sighand)
1626 {
1627 	if (refcount_dec_and_test(&sighand->count)) {
1628 		signalfd_cleanup(sighand);
1629 		/*
1630 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1631 		 * without an RCU grace period, see __lock_task_sighand().
1632 		 */
1633 		kmem_cache_free(sighand_cachep, sighand);
1634 	}
1635 }
1636 
1637 /*
1638  * Initialize POSIX timer handling for a thread group.
1639  */
posix_cpu_timers_init_group(struct signal_struct * sig)1640 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1641 {
1642 	struct posix_cputimers *pct = &sig->posix_cputimers;
1643 	unsigned long cpu_limit;
1644 
1645 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1646 	posix_cputimers_group_init(pct, cpu_limit);
1647 }
1648 
copy_signal(u64 clone_flags,struct task_struct * tsk)1649 static int copy_signal(u64 clone_flags, struct task_struct *tsk)
1650 {
1651 	struct signal_struct *sig;
1652 
1653 	if (clone_flags & CLONE_THREAD)
1654 		return 0;
1655 
1656 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1657 	tsk->signal = sig;
1658 	if (!sig)
1659 		return -ENOMEM;
1660 
1661 	sig->nr_threads = 1;
1662 	sig->quick_threads = 1;
1663 	atomic_set(&sig->live, 1);
1664 	refcount_set(&sig->sigcnt, 1);
1665 
1666 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1667 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1668 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1669 
1670 	init_waitqueue_head(&sig->wait_chldexit);
1671 	sig->curr_target = tsk;
1672 	init_sigpending(&sig->shared_pending);
1673 	INIT_HLIST_HEAD(&sig->multiprocess);
1674 	seqlock_init(&sig->stats_lock);
1675 	prev_cputime_init(&sig->prev_cputime);
1676 
1677 #ifdef CONFIG_POSIX_TIMERS
1678 	INIT_HLIST_HEAD(&sig->posix_timers);
1679 	INIT_HLIST_HEAD(&sig->ignored_posix_timers);
1680 	hrtimer_setup(&sig->real_timer, it_real_fn, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1681 #endif
1682 
1683 	task_lock(current->group_leader);
1684 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1685 	task_unlock(current->group_leader);
1686 
1687 	posix_cpu_timers_init_group(sig);
1688 
1689 	tty_audit_fork(sig);
1690 	sched_autogroup_fork(sig);
1691 
1692 #ifdef CONFIG_CGROUPS
1693 	init_rwsem(&sig->cgroup_threadgroup_rwsem);
1694 #endif
1695 
1696 	sig->oom_score_adj = current->signal->oom_score_adj;
1697 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1698 
1699 	mutex_init(&sig->cred_guard_mutex);
1700 	init_rwsem(&sig->exec_update_lock);
1701 
1702 	return 0;
1703 }
1704 
copy_seccomp(struct task_struct * p)1705 static void copy_seccomp(struct task_struct *p)
1706 {
1707 #ifdef CONFIG_SECCOMP
1708 	/*
1709 	 * Must be called with sighand->lock held, which is common to
1710 	 * all threads in the group. Holding cred_guard_mutex is not
1711 	 * needed because this new task is not yet running and cannot
1712 	 * be racing exec.
1713 	 */
1714 	assert_spin_locked(&current->sighand->siglock);
1715 
1716 	/* Ref-count the new filter user, and assign it. */
1717 	get_seccomp_filter(current);
1718 	p->seccomp = current->seccomp;
1719 
1720 	/*
1721 	 * Explicitly enable no_new_privs here in case it got set
1722 	 * between the task_struct being duplicated and holding the
1723 	 * sighand lock. The seccomp state and nnp must be in sync.
1724 	 */
1725 	if (task_no_new_privs(current))
1726 		task_set_no_new_privs(p);
1727 
1728 	/*
1729 	 * If the parent gained a seccomp mode after copying thread
1730 	 * flags and between before we held the sighand lock, we have
1731 	 * to manually enable the seccomp thread flag here.
1732 	 */
1733 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1734 		set_task_syscall_work(p, SECCOMP);
1735 #endif
1736 }
1737 
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1738 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1739 {
1740 	current->clear_child_tid = tidptr;
1741 
1742 	return task_pid_vnr(current);
1743 }
1744 
rt_mutex_init_task(struct task_struct * p)1745 static void rt_mutex_init_task(struct task_struct *p)
1746 {
1747 	raw_spin_lock_init(&p->pi_lock);
1748 #ifdef CONFIG_RT_MUTEXES
1749 	p->pi_waiters = RB_ROOT_CACHED;
1750 	p->pi_top_task = NULL;
1751 	p->pi_blocked_on = NULL;
1752 #endif
1753 }
1754 
init_task_pid_links(struct task_struct * task)1755 static inline void init_task_pid_links(struct task_struct *task)
1756 {
1757 	enum pid_type type;
1758 
1759 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1760 		INIT_HLIST_NODE(&task->pid_links[type]);
1761 }
1762 
1763 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1764 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1765 {
1766 	if (type == PIDTYPE_PID)
1767 		task->thread_pid = pid;
1768 	else
1769 		task->signal->pids[type] = pid;
1770 }
1771 
rcu_copy_process(struct task_struct * p)1772 static inline void rcu_copy_process(struct task_struct *p)
1773 {
1774 #ifdef CONFIG_PREEMPT_RCU
1775 	p->rcu_read_lock_nesting = 0;
1776 	p->rcu_read_unlock_special.s = 0;
1777 	p->rcu_blocked_node = NULL;
1778 	INIT_LIST_HEAD(&p->rcu_node_entry);
1779 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1780 #ifdef CONFIG_TASKS_RCU
1781 	p->rcu_tasks_holdout = false;
1782 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1783 	p->rcu_tasks_idle_cpu = -1;
1784 	INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
1785 #endif /* #ifdef CONFIG_TASKS_RCU */
1786 #ifdef CONFIG_TASKS_TRACE_RCU
1787 	p->trc_reader_nesting = 0;
1788 	p->trc_reader_special.s = 0;
1789 	INIT_LIST_HEAD(&p->trc_holdout_list);
1790 	INIT_LIST_HEAD(&p->trc_blkd_node);
1791 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1792 }
1793 
1794 /**
1795  * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
1796  * @pid:   the struct pid for which to create a pidfd
1797  * @flags: flags of the new @pidfd
1798  * @ret_file: return the new pidfs file
1799  *
1800  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
1801  * caller's file descriptor table. The pidfd is reserved but not installed yet.
1802  *
1803  * The helper verifies that @pid is still in use, without PIDFD_THREAD the
1804  * task identified by @pid must be a thread-group leader.
1805  *
1806  * If this function returns successfully the caller is responsible to either
1807  * call fd_install() passing the returned pidfd and pidfd file as arguments in
1808  * order to install the pidfd into its file descriptor table or they must use
1809  * put_unused_fd() and fput() on the returned pidfd and pidfd file
1810  * respectively.
1811  *
1812  * This function is useful when a pidfd must already be reserved but there
1813  * might still be points of failure afterwards and the caller wants to ensure
1814  * that no pidfd is leaked into its file descriptor table.
1815  *
1816  * Return: On success, a reserved pidfd is returned from the function and a new
1817  *         pidfd file is returned in the last argument to the function. On
1818  *         error, a negative error code is returned from the function and the
1819  *         last argument remains unchanged.
1820  */
pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret_file)1821 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret_file)
1822 {
1823 	struct file *pidfs_file;
1824 
1825 	/*
1826 	 * PIDFD_STALE is only allowed to be passed if the caller knows
1827 	 * that @pid is already registered in pidfs and thus
1828 	 * PIDFD_INFO_EXIT information is guaranteed to be available.
1829 	 */
1830 	if (!(flags & PIDFD_STALE)) {
1831 		/*
1832 		 * While holding the pidfd waitqueue lock removing the
1833 		 * task linkage for the thread-group leader pid
1834 		 * (PIDTYPE_TGID) isn't possible. Thus, if there's still
1835 		 * task linkage for PIDTYPE_PID not having thread-group
1836 		 * leader linkage for the pid means it wasn't a
1837 		 * thread-group leader in the first place.
1838 		 */
1839 		guard(spinlock_irq)(&pid->wait_pidfd.lock);
1840 
1841 		/* Task has already been reaped. */
1842 		if (!pid_has_task(pid, PIDTYPE_PID))
1843 			return -ESRCH;
1844 		/*
1845 		 * If this struct pid isn't used as a thread-group
1846 		 * leader but the caller requested to create a
1847 		 * thread-group leader pidfd then report ENOENT.
1848 		 */
1849 		if (!(flags & PIDFD_THREAD) && !pid_has_task(pid, PIDTYPE_TGID))
1850 			return -ENOENT;
1851 	}
1852 
1853 	CLASS(get_unused_fd, pidfd)(O_CLOEXEC);
1854 	if (pidfd < 0)
1855 		return pidfd;
1856 
1857 	pidfs_file = pidfs_alloc_file(pid, flags | O_RDWR);
1858 	if (IS_ERR(pidfs_file))
1859 		return PTR_ERR(pidfs_file);
1860 
1861 	*ret_file = pidfs_file;
1862 	return take_fd(pidfd);
1863 }
1864 
__delayed_free_task(struct rcu_head * rhp)1865 static void __delayed_free_task(struct rcu_head *rhp)
1866 {
1867 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1868 
1869 	free_task(tsk);
1870 }
1871 
delayed_free_task(struct task_struct * tsk)1872 static __always_inline void delayed_free_task(struct task_struct *tsk)
1873 {
1874 	if (IS_ENABLED(CONFIG_MEMCG))
1875 		call_rcu(&tsk->rcu, __delayed_free_task);
1876 	else
1877 		free_task(tsk);
1878 }
1879 
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)1880 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1881 {
1882 	/* Skip if kernel thread */
1883 	if (!tsk->mm)
1884 		return;
1885 
1886 	/* Skip if spawning a thread or using vfork */
1887 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1888 		return;
1889 
1890 	/* We need to synchronize with __set_oom_adj */
1891 	mutex_lock(&oom_adj_mutex);
1892 	mm_flags_set(MMF_MULTIPROCESS, tsk->mm);
1893 	/* Update the values in case they were changed after copy_signal */
1894 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1895 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1896 	mutex_unlock(&oom_adj_mutex);
1897 }
1898 
1899 #ifdef CONFIG_RV
rv_task_fork(struct task_struct * p)1900 static void rv_task_fork(struct task_struct *p)
1901 {
1902 	memset(&p->rv, 0, sizeof(p->rv));
1903 }
1904 #else
1905 #define rv_task_fork(p) do {} while (0)
1906 #endif
1907 
need_futex_hash_allocate_default(u64 clone_flags)1908 static bool need_futex_hash_allocate_default(u64 clone_flags)
1909 {
1910 	if ((clone_flags & (CLONE_THREAD | CLONE_VM)) != (CLONE_THREAD | CLONE_VM))
1911 		return false;
1912 	return true;
1913 }
1914 
1915 /*
1916  * This creates a new process as a copy of the old one,
1917  * but does not actually start it yet.
1918  *
1919  * It copies the registers, and all the appropriate
1920  * parts of the process environment (as per the clone
1921  * flags). The actual kick-off is left to the caller.
1922  */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)1923 __latent_entropy struct task_struct *copy_process(
1924 					struct pid *pid,
1925 					int trace,
1926 					int node,
1927 					struct kernel_clone_args *args)
1928 {
1929 	int pidfd = -1, retval;
1930 	struct task_struct *p;
1931 	struct multiprocess_signals delayed;
1932 	struct file *pidfile = NULL;
1933 	const u64 clone_flags = args->flags;
1934 	struct nsproxy *nsp = current->nsproxy;
1935 
1936 	/*
1937 	 * Don't allow sharing the root directory with processes in a different
1938 	 * namespace
1939 	 */
1940 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1941 		return ERR_PTR(-EINVAL);
1942 
1943 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1944 		return ERR_PTR(-EINVAL);
1945 
1946 	/*
1947 	 * Thread groups must share signals as well, and detached threads
1948 	 * can only be started up within the thread group.
1949 	 */
1950 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1951 		return ERR_PTR(-EINVAL);
1952 
1953 	/*
1954 	 * Shared signal handlers imply shared VM. By way of the above,
1955 	 * thread groups also imply shared VM. Blocking this case allows
1956 	 * for various simplifications in other code.
1957 	 */
1958 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1959 		return ERR_PTR(-EINVAL);
1960 
1961 	/*
1962 	 * Siblings of global init remain as zombies on exit since they are
1963 	 * not reaped by their parent (swapper). To solve this and to avoid
1964 	 * multi-rooted process trees, prevent global and container-inits
1965 	 * from creating siblings.
1966 	 */
1967 	if ((clone_flags & CLONE_PARENT) &&
1968 				current->signal->flags & SIGNAL_UNKILLABLE)
1969 		return ERR_PTR(-EINVAL);
1970 
1971 	/*
1972 	 * If the new process will be in a different pid or user namespace
1973 	 * do not allow it to share a thread group with the forking task.
1974 	 */
1975 	if (clone_flags & CLONE_THREAD) {
1976 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1977 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1978 			return ERR_PTR(-EINVAL);
1979 	}
1980 
1981 	if (clone_flags & CLONE_PIDFD) {
1982 		/*
1983 		 * - CLONE_DETACHED is blocked so that we can potentially
1984 		 *   reuse it later for CLONE_PIDFD.
1985 		 */
1986 		if (clone_flags & CLONE_DETACHED)
1987 			return ERR_PTR(-EINVAL);
1988 	}
1989 
1990 	/*
1991 	 * Force any signals received before this point to be delivered
1992 	 * before the fork happens.  Collect up signals sent to multiple
1993 	 * processes that happen during the fork and delay them so that
1994 	 * they appear to happen after the fork.
1995 	 */
1996 	sigemptyset(&delayed.signal);
1997 	INIT_HLIST_NODE(&delayed.node);
1998 
1999 	spin_lock_irq(&current->sighand->siglock);
2000 	if (!(clone_flags & CLONE_THREAD))
2001 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2002 	recalc_sigpending();
2003 	spin_unlock_irq(&current->sighand->siglock);
2004 	retval = -ERESTARTNOINTR;
2005 	if (task_sigpending(current))
2006 		goto fork_out;
2007 
2008 	retval = -ENOMEM;
2009 	p = dup_task_struct(current, node);
2010 	if (!p)
2011 		goto fork_out;
2012 	p->flags &= ~PF_KTHREAD;
2013 	if (args->kthread)
2014 		p->flags |= PF_KTHREAD;
2015 	if (args->user_worker) {
2016 		/*
2017 		 * Mark us a user worker, and block any signal that isn't
2018 		 * fatal or STOP
2019 		 */
2020 		p->flags |= PF_USER_WORKER;
2021 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2022 	}
2023 	if (args->io_thread)
2024 		p->flags |= PF_IO_WORKER;
2025 
2026 	if (args->name)
2027 		strscpy_pad(p->comm, args->name, sizeof(p->comm));
2028 
2029 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2030 	/*
2031 	 * Clear TID on mm_release()?
2032 	 */
2033 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2034 
2035 	ftrace_graph_init_task(p);
2036 
2037 	rt_mutex_init_task(p);
2038 
2039 	lockdep_assert_irqs_enabled();
2040 #ifdef CONFIG_PROVE_LOCKING
2041 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2042 #endif
2043 	retval = copy_creds(p, clone_flags);
2044 	if (retval < 0)
2045 		goto bad_fork_free;
2046 
2047 	retval = -EAGAIN;
2048 	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2049 		if (p->real_cred->user != INIT_USER &&
2050 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2051 			goto bad_fork_cleanup_count;
2052 	}
2053 	current->flags &= ~PF_NPROC_EXCEEDED;
2054 
2055 	/*
2056 	 * If multiple threads are within copy_process(), then this check
2057 	 * triggers too late. This doesn't hurt, the check is only there
2058 	 * to stop root fork bombs.
2059 	 */
2060 	retval = -EAGAIN;
2061 	if (data_race(nr_threads >= max_threads))
2062 		goto bad_fork_cleanup_count;
2063 
2064 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2065 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2066 	p->flags |= PF_FORKNOEXEC;
2067 	INIT_LIST_HEAD(&p->children);
2068 	INIT_LIST_HEAD(&p->sibling);
2069 	rcu_copy_process(p);
2070 	p->vfork_done = NULL;
2071 	spin_lock_init(&p->alloc_lock);
2072 
2073 	init_sigpending(&p->pending);
2074 
2075 	p->utime = p->stime = p->gtime = 0;
2076 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2077 	p->utimescaled = p->stimescaled = 0;
2078 #endif
2079 	prev_cputime_init(&p->prev_cputime);
2080 
2081 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2082 	seqcount_init(&p->vtime.seqcount);
2083 	p->vtime.starttime = 0;
2084 	p->vtime.state = VTIME_INACTIVE;
2085 #endif
2086 
2087 #ifdef CONFIG_IO_URING
2088 	p->io_uring = NULL;
2089 #endif
2090 
2091 	p->default_timer_slack_ns = current->timer_slack_ns;
2092 
2093 #ifdef CONFIG_PSI
2094 	p->psi_flags = 0;
2095 #endif
2096 
2097 	task_io_accounting_init(&p->ioac);
2098 	acct_clear_integrals(p);
2099 
2100 	posix_cputimers_init(&p->posix_cputimers);
2101 	tick_dep_init_task(p);
2102 
2103 	p->io_context = NULL;
2104 	audit_set_context(p, NULL);
2105 	cgroup_fork(p);
2106 	if (args->kthread) {
2107 		if (!set_kthread_struct(p))
2108 			goto bad_fork_cleanup_delayacct;
2109 	}
2110 #ifdef CONFIG_NUMA
2111 	p->mempolicy = mpol_dup(p->mempolicy);
2112 	if (IS_ERR(p->mempolicy)) {
2113 		retval = PTR_ERR(p->mempolicy);
2114 		p->mempolicy = NULL;
2115 		goto bad_fork_cleanup_delayacct;
2116 	}
2117 #endif
2118 #ifdef CONFIG_CPUSETS
2119 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2120 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2121 #endif
2122 #ifdef CONFIG_TRACE_IRQFLAGS
2123 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2124 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2125 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2126 	p->softirqs_enabled		= 1;
2127 	p->softirq_context		= 0;
2128 #endif
2129 
2130 	p->pagefault_disabled = 0;
2131 
2132 	lockdep_init_task(p);
2133 
2134 	p->blocked_on = NULL; /* not blocked yet */
2135 
2136 #ifdef CONFIG_BCACHE
2137 	p->sequential_io	= 0;
2138 	p->sequential_io_avg	= 0;
2139 #endif
2140 #ifdef CONFIG_BPF_SYSCALL
2141 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2142 	p->bpf_ctx = NULL;
2143 #endif
2144 
2145 	unwind_task_init(p);
2146 
2147 	/* Perform scheduler related setup. Assign this task to a CPU. */
2148 	retval = sched_fork(clone_flags, p);
2149 	if (retval)
2150 		goto bad_fork_cleanup_policy;
2151 
2152 	retval = perf_event_init_task(p, clone_flags);
2153 	if (retval)
2154 		goto bad_fork_sched_cancel_fork;
2155 	retval = audit_alloc(p);
2156 	if (retval)
2157 		goto bad_fork_cleanup_perf;
2158 	/* copy all the process information */
2159 	shm_init_task(p);
2160 	retval = security_task_alloc(p, clone_flags);
2161 	if (retval)
2162 		goto bad_fork_cleanup_audit;
2163 	retval = copy_semundo(clone_flags, p);
2164 	if (retval)
2165 		goto bad_fork_cleanup_security;
2166 	retval = copy_files(clone_flags, p, args->no_files);
2167 	if (retval)
2168 		goto bad_fork_cleanup_semundo;
2169 	retval = copy_fs(clone_flags, p);
2170 	if (retval)
2171 		goto bad_fork_cleanup_files;
2172 	retval = copy_sighand(clone_flags, p);
2173 	if (retval)
2174 		goto bad_fork_cleanup_fs;
2175 	retval = copy_signal(clone_flags, p);
2176 	if (retval)
2177 		goto bad_fork_cleanup_sighand;
2178 	retval = copy_mm(clone_flags, p);
2179 	if (retval)
2180 		goto bad_fork_cleanup_signal;
2181 	retval = copy_namespaces(clone_flags, p);
2182 	if (retval)
2183 		goto bad_fork_cleanup_mm;
2184 	retval = copy_io(clone_flags, p);
2185 	if (retval)
2186 		goto bad_fork_cleanup_namespaces;
2187 	retval = copy_thread(p, args);
2188 	if (retval)
2189 		goto bad_fork_cleanup_io;
2190 
2191 	stackleak_task_init(p);
2192 
2193 	if (pid != &init_struct_pid) {
2194 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2195 				args->set_tid_size);
2196 		if (IS_ERR(pid)) {
2197 			retval = PTR_ERR(pid);
2198 			goto bad_fork_cleanup_thread;
2199 		}
2200 	}
2201 
2202 	/*
2203 	 * This has to happen after we've potentially unshared the file
2204 	 * descriptor table (so that the pidfd doesn't leak into the child
2205 	 * if the fd table isn't shared).
2206 	 */
2207 	if (clone_flags & CLONE_PIDFD) {
2208 		int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0;
2209 
2210 		/*
2211 		 * Note that no task has been attached to @pid yet indicate
2212 		 * that via CLONE_PIDFD.
2213 		 */
2214 		retval = pidfd_prepare(pid, flags | PIDFD_STALE, &pidfile);
2215 		if (retval < 0)
2216 			goto bad_fork_free_pid;
2217 		pidfd = retval;
2218 
2219 		retval = put_user(pidfd, args->pidfd);
2220 		if (retval)
2221 			goto bad_fork_put_pidfd;
2222 	}
2223 
2224 #ifdef CONFIG_BLOCK
2225 	p->plug = NULL;
2226 #endif
2227 	futex_init_task(p);
2228 
2229 	/*
2230 	 * sigaltstack should be cleared when sharing the same VM
2231 	 */
2232 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2233 		sas_ss_reset(p);
2234 
2235 	/*
2236 	 * Syscall tracing and stepping should be turned off in the
2237 	 * child regardless of CLONE_PTRACE.
2238 	 */
2239 	user_disable_single_step(p);
2240 	clear_task_syscall_work(p, SYSCALL_TRACE);
2241 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2242 	clear_task_syscall_work(p, SYSCALL_EMU);
2243 #endif
2244 	clear_tsk_latency_tracing(p);
2245 
2246 	/* ok, now we should be set up.. */
2247 	p->pid = pid_nr(pid);
2248 	if (clone_flags & CLONE_THREAD) {
2249 		p->group_leader = current->group_leader;
2250 		p->tgid = current->tgid;
2251 	} else {
2252 		p->group_leader = p;
2253 		p->tgid = p->pid;
2254 	}
2255 
2256 	p->nr_dirtied = 0;
2257 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2258 	p->dirty_paused_when = 0;
2259 
2260 	p->pdeath_signal = 0;
2261 	p->task_works = NULL;
2262 	clear_posix_cputimers_work(p);
2263 
2264 #ifdef CONFIG_KRETPROBES
2265 	p->kretprobe_instances.first = NULL;
2266 #endif
2267 #ifdef CONFIG_RETHOOK
2268 	p->rethooks.first = NULL;
2269 #endif
2270 
2271 	/*
2272 	 * Ensure that the cgroup subsystem policies allow the new process to be
2273 	 * forked. It should be noted that the new process's css_set can be changed
2274 	 * between here and cgroup_post_fork() if an organisation operation is in
2275 	 * progress.
2276 	 */
2277 	retval = cgroup_can_fork(p, args);
2278 	if (retval)
2279 		goto bad_fork_put_pidfd;
2280 
2281 	/*
2282 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2283 	 * the new task on the correct runqueue. All this *before* the task
2284 	 * becomes visible.
2285 	 *
2286 	 * This isn't part of ->can_fork() because while the re-cloning is
2287 	 * cgroup specific, it unconditionally needs to place the task on a
2288 	 * runqueue.
2289 	 */
2290 	retval = sched_cgroup_fork(p, args);
2291 	if (retval)
2292 		goto bad_fork_cancel_cgroup;
2293 
2294 	/*
2295 	 * Allocate a default futex hash for the user process once the first
2296 	 * thread spawns.
2297 	 */
2298 	if (need_futex_hash_allocate_default(clone_flags)) {
2299 		retval = futex_hash_allocate_default();
2300 		if (retval)
2301 			goto bad_fork_cancel_cgroup;
2302 		/*
2303 		 * If we fail beyond this point we don't free the allocated
2304 		 * futex hash map. We assume that another thread will be created
2305 		 * and makes use of it. The hash map will be freed once the main
2306 		 * thread terminates.
2307 		 */
2308 	}
2309 	/*
2310 	 * From this point on we must avoid any synchronous user-space
2311 	 * communication until we take the tasklist-lock. In particular, we do
2312 	 * not want user-space to be able to predict the process start-time by
2313 	 * stalling fork(2) after we recorded the start_time but before it is
2314 	 * visible to the system.
2315 	 */
2316 
2317 	p->start_time = ktime_get_ns();
2318 	p->start_boottime = ktime_get_boottime_ns();
2319 
2320 	/*
2321 	 * Make it visible to the rest of the system, but dont wake it up yet.
2322 	 * Need tasklist lock for parent etc handling!
2323 	 */
2324 	write_lock_irq(&tasklist_lock);
2325 
2326 	/* CLONE_PARENT re-uses the old parent */
2327 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2328 		p->real_parent = current->real_parent;
2329 		p->parent_exec_id = current->parent_exec_id;
2330 		if (clone_flags & CLONE_THREAD)
2331 			p->exit_signal = -1;
2332 		else
2333 			p->exit_signal = current->group_leader->exit_signal;
2334 	} else {
2335 		p->real_parent = current;
2336 		p->parent_exec_id = current->self_exec_id;
2337 		p->exit_signal = args->exit_signal;
2338 	}
2339 
2340 	klp_copy_process(p);
2341 
2342 	sched_core_fork(p);
2343 
2344 	spin_lock(&current->sighand->siglock);
2345 
2346 	rv_task_fork(p);
2347 
2348 	rseq_fork(p, clone_flags);
2349 
2350 	/* Don't start children in a dying pid namespace */
2351 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2352 		retval = -ENOMEM;
2353 		goto bad_fork_core_free;
2354 	}
2355 
2356 	/* Let kill terminate clone/fork in the middle */
2357 	if (fatal_signal_pending(current)) {
2358 		retval = -EINTR;
2359 		goto bad_fork_core_free;
2360 	}
2361 
2362 	/* No more failure paths after this point. */
2363 
2364 	/*
2365 	 * Copy seccomp details explicitly here, in case they were changed
2366 	 * before holding sighand lock.
2367 	 */
2368 	copy_seccomp(p);
2369 
2370 	init_task_pid_links(p);
2371 	if (likely(p->pid)) {
2372 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2373 
2374 		init_task_pid(p, PIDTYPE_PID, pid);
2375 		if (thread_group_leader(p)) {
2376 			init_task_pid(p, PIDTYPE_TGID, pid);
2377 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2378 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2379 
2380 			if (is_child_reaper(pid)) {
2381 				ns_of_pid(pid)->child_reaper = p;
2382 				p->signal->flags |= SIGNAL_UNKILLABLE;
2383 			}
2384 			p->signal->shared_pending.signal = delayed.signal;
2385 			p->signal->tty = tty_kref_get(current->signal->tty);
2386 			/*
2387 			 * Inherit has_child_subreaper flag under the same
2388 			 * tasklist_lock with adding child to the process tree
2389 			 * for propagate_has_child_subreaper optimization.
2390 			 */
2391 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2392 							 p->real_parent->signal->is_child_subreaper;
2393 			list_add_tail(&p->sibling, &p->real_parent->children);
2394 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2395 			attach_pid(p, PIDTYPE_TGID);
2396 			attach_pid(p, PIDTYPE_PGID);
2397 			attach_pid(p, PIDTYPE_SID);
2398 			__this_cpu_inc(process_counts);
2399 		} else {
2400 			current->signal->nr_threads++;
2401 			current->signal->quick_threads++;
2402 			atomic_inc(&current->signal->live);
2403 			refcount_inc(&current->signal->sigcnt);
2404 			task_join_group_stop(p);
2405 			list_add_tail_rcu(&p->thread_node,
2406 					  &p->signal->thread_head);
2407 		}
2408 		attach_pid(p, PIDTYPE_PID);
2409 		nr_threads++;
2410 	}
2411 	total_forks++;
2412 	hlist_del_init(&delayed.node);
2413 	spin_unlock(&current->sighand->siglock);
2414 	syscall_tracepoint_update(p);
2415 	write_unlock_irq(&tasklist_lock);
2416 
2417 	if (pidfile)
2418 		fd_install(pidfd, pidfile);
2419 
2420 	proc_fork_connector(p);
2421 	sched_post_fork(p);
2422 	cgroup_post_fork(p, args);
2423 	perf_event_fork(p);
2424 
2425 	trace_task_newtask(p, clone_flags);
2426 	uprobe_copy_process(p, clone_flags);
2427 	user_events_fork(p, clone_flags);
2428 
2429 	copy_oom_score_adj(clone_flags, p);
2430 
2431 	return p;
2432 
2433 bad_fork_core_free:
2434 	sched_core_free(p);
2435 	spin_unlock(&current->sighand->siglock);
2436 	write_unlock_irq(&tasklist_lock);
2437 bad_fork_cancel_cgroup:
2438 	cgroup_cancel_fork(p, args);
2439 bad_fork_put_pidfd:
2440 	if (clone_flags & CLONE_PIDFD) {
2441 		fput(pidfile);
2442 		put_unused_fd(pidfd);
2443 	}
2444 bad_fork_free_pid:
2445 	if (pid != &init_struct_pid)
2446 		free_pid(pid);
2447 bad_fork_cleanup_thread:
2448 	exit_thread(p);
2449 bad_fork_cleanup_io:
2450 	if (p->io_context)
2451 		exit_io_context(p);
2452 bad_fork_cleanup_namespaces:
2453 	exit_nsproxy_namespaces(p);
2454 bad_fork_cleanup_mm:
2455 	if (p->mm) {
2456 		sched_mm_cid_exit(p);
2457 		mm_clear_owner(p->mm, p);
2458 		mmput(p->mm);
2459 	}
2460 bad_fork_cleanup_signal:
2461 	if (!(clone_flags & CLONE_THREAD))
2462 		free_signal_struct(p->signal);
2463 bad_fork_cleanup_sighand:
2464 	__cleanup_sighand(p->sighand);
2465 bad_fork_cleanup_fs:
2466 	exit_fs(p); /* blocking */
2467 bad_fork_cleanup_files:
2468 	exit_files(p); /* blocking */
2469 bad_fork_cleanup_semundo:
2470 	exit_sem(p);
2471 bad_fork_cleanup_security:
2472 	security_task_free(p);
2473 bad_fork_cleanup_audit:
2474 	audit_free(p);
2475 bad_fork_cleanup_perf:
2476 	perf_event_free_task(p);
2477 bad_fork_sched_cancel_fork:
2478 	sched_cancel_fork(p);
2479 bad_fork_cleanup_policy:
2480 	lockdep_free_task(p);
2481 #ifdef CONFIG_NUMA
2482 	mpol_put(p->mempolicy);
2483 #endif
2484 bad_fork_cleanup_delayacct:
2485 	delayacct_tsk_free(p);
2486 bad_fork_cleanup_count:
2487 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2488 	exit_cred_namespaces(p);
2489 	exit_creds(p);
2490 bad_fork_free:
2491 	WRITE_ONCE(p->__state, TASK_DEAD);
2492 	exit_task_stack_account(p);
2493 	put_task_stack(p);
2494 	delayed_free_task(p);
2495 fork_out:
2496 	spin_lock_irq(&current->sighand->siglock);
2497 	hlist_del_init(&delayed.node);
2498 	spin_unlock_irq(&current->sighand->siglock);
2499 	return ERR_PTR(retval);
2500 }
2501 
init_idle_pids(struct task_struct * idle)2502 static inline void init_idle_pids(struct task_struct *idle)
2503 {
2504 	enum pid_type type;
2505 
2506 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2507 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2508 		init_task_pid(idle, type, &init_struct_pid);
2509 	}
2510 }
2511 
idle_dummy(void * dummy)2512 static int idle_dummy(void *dummy)
2513 {
2514 	/* This function is never called */
2515 	return 0;
2516 }
2517 
fork_idle(int cpu)2518 struct task_struct * __init fork_idle(int cpu)
2519 {
2520 	struct task_struct *task;
2521 	struct kernel_clone_args args = {
2522 		.flags		= CLONE_VM,
2523 		.fn		= &idle_dummy,
2524 		.fn_arg		= NULL,
2525 		.kthread	= 1,
2526 		.idle		= 1,
2527 	};
2528 
2529 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2530 	if (!IS_ERR(task)) {
2531 		init_idle_pids(task);
2532 		init_idle(task, cpu);
2533 	}
2534 
2535 	return task;
2536 }
2537 
2538 /*
2539  * This is like kernel_clone(), but shaved down and tailored to just
2540  * creating io_uring workers. It returns a created task, or an error pointer.
2541  * The returned task is inactive, and the caller must fire it up through
2542  * wake_up_new_task(p). All signals are blocked in the created task.
2543  */
create_io_thread(int (* fn)(void *),void * arg,int node)2544 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2545 {
2546 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2547 			      CLONE_IO|CLONE_VM|CLONE_UNTRACED;
2548 	struct kernel_clone_args args = {
2549 		.flags		= flags,
2550 		.fn		= fn,
2551 		.fn_arg		= arg,
2552 		.io_thread	= 1,
2553 		.user_worker	= 1,
2554 	};
2555 
2556 	return copy_process(NULL, 0, node, &args);
2557 }
2558 
2559 /*
2560  *  Ok, this is the main fork-routine.
2561  *
2562  * It copies the process, and if successful kick-starts
2563  * it and waits for it to finish using the VM if required.
2564  *
2565  * args->exit_signal is expected to be checked for sanity by the caller.
2566  */
kernel_clone(struct kernel_clone_args * args)2567 pid_t kernel_clone(struct kernel_clone_args *args)
2568 {
2569 	u64 clone_flags = args->flags;
2570 	struct completion vfork;
2571 	struct pid *pid;
2572 	struct task_struct *p;
2573 	int trace = 0;
2574 	pid_t nr;
2575 
2576 	/*
2577 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2578 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2579 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2580 	 * field in struct clone_args and it still doesn't make sense to have
2581 	 * them both point at the same memory location. Performing this check
2582 	 * here has the advantage that we don't need to have a separate helper
2583 	 * to check for legacy clone().
2584 	 */
2585 	if ((clone_flags & CLONE_PIDFD) &&
2586 	    (clone_flags & CLONE_PARENT_SETTID) &&
2587 	    (args->pidfd == args->parent_tid))
2588 		return -EINVAL;
2589 
2590 	/*
2591 	 * Determine whether and which event to report to ptracer.  When
2592 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2593 	 * requested, no event is reported; otherwise, report if the event
2594 	 * for the type of forking is enabled.
2595 	 */
2596 	if (!(clone_flags & CLONE_UNTRACED)) {
2597 		if (clone_flags & CLONE_VFORK)
2598 			trace = PTRACE_EVENT_VFORK;
2599 		else if (args->exit_signal != SIGCHLD)
2600 			trace = PTRACE_EVENT_CLONE;
2601 		else
2602 			trace = PTRACE_EVENT_FORK;
2603 
2604 		if (likely(!ptrace_event_enabled(current, trace)))
2605 			trace = 0;
2606 	}
2607 
2608 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2609 	add_latent_entropy();
2610 
2611 	if (IS_ERR(p))
2612 		return PTR_ERR(p);
2613 
2614 	/*
2615 	 * Do this prior waking up the new thread - the thread pointer
2616 	 * might get invalid after that point, if the thread exits quickly.
2617 	 */
2618 	trace_sched_process_fork(current, p);
2619 
2620 	pid = get_task_pid(p, PIDTYPE_PID);
2621 	nr = pid_vnr(pid);
2622 
2623 	if (clone_flags & CLONE_PARENT_SETTID)
2624 		put_user(nr, args->parent_tid);
2625 
2626 	if (clone_flags & CLONE_VFORK) {
2627 		p->vfork_done = &vfork;
2628 		init_completion(&vfork);
2629 		get_task_struct(p);
2630 	}
2631 
2632 	if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2633 		/* lock the task to synchronize with memcg migration */
2634 		task_lock(p);
2635 		lru_gen_add_mm(p->mm);
2636 		task_unlock(p);
2637 	}
2638 
2639 	wake_up_new_task(p);
2640 
2641 	/* forking complete and child started to run, tell ptracer */
2642 	if (unlikely(trace))
2643 		ptrace_event_pid(trace, pid);
2644 
2645 	if (clone_flags & CLONE_VFORK) {
2646 		if (!wait_for_vfork_done(p, &vfork))
2647 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2648 	}
2649 
2650 	put_pid(pid);
2651 	return nr;
2652 }
2653 
2654 /*
2655  * Create a kernel thread.
2656  */
kernel_thread(int (* fn)(void *),void * arg,const char * name,unsigned long flags)2657 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2658 		    unsigned long flags)
2659 {
2660 	struct kernel_clone_args args = {
2661 		.flags		= ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL),
2662 		.exit_signal	= (flags & CSIGNAL),
2663 		.fn		= fn,
2664 		.fn_arg		= arg,
2665 		.name		= name,
2666 		.kthread	= 1,
2667 	};
2668 
2669 	return kernel_clone(&args);
2670 }
2671 
2672 /*
2673  * Create a user mode thread.
2674  */
user_mode_thread(int (* fn)(void *),void * arg,unsigned long flags)2675 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2676 {
2677 	struct kernel_clone_args args = {
2678 		.flags		= ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL),
2679 		.exit_signal	= (flags & CSIGNAL),
2680 		.fn		= fn,
2681 		.fn_arg		= arg,
2682 	};
2683 
2684 	return kernel_clone(&args);
2685 }
2686 
2687 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2688 SYSCALL_DEFINE0(fork)
2689 {
2690 #ifdef CONFIG_MMU
2691 	struct kernel_clone_args args = {
2692 		.exit_signal = SIGCHLD,
2693 	};
2694 
2695 	return kernel_clone(&args);
2696 #else
2697 	/* can not support in nommu mode */
2698 	return -EINVAL;
2699 #endif
2700 }
2701 #endif
2702 
2703 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)2704 SYSCALL_DEFINE0(vfork)
2705 {
2706 	struct kernel_clone_args args = {
2707 		.flags		= CLONE_VFORK | CLONE_VM,
2708 		.exit_signal	= SIGCHLD,
2709 	};
2710 
2711 	return kernel_clone(&args);
2712 }
2713 #endif
2714 
2715 #ifdef __ARCH_WANT_SYS_CLONE
2716 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)2717 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2718 		 int __user *, parent_tidptr,
2719 		 unsigned long, tls,
2720 		 int __user *, child_tidptr)
2721 #elif defined(CONFIG_CLONE_BACKWARDS2)
2722 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2723 		 int __user *, parent_tidptr,
2724 		 int __user *, child_tidptr,
2725 		 unsigned long, tls)
2726 #elif defined(CONFIG_CLONE_BACKWARDS3)
2727 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2728 		int, stack_size,
2729 		int __user *, parent_tidptr,
2730 		int __user *, child_tidptr,
2731 		unsigned long, tls)
2732 #else
2733 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2734 		 int __user *, parent_tidptr,
2735 		 int __user *, child_tidptr,
2736 		 unsigned long, tls)
2737 #endif
2738 {
2739 	struct kernel_clone_args args = {
2740 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2741 		.pidfd		= parent_tidptr,
2742 		.child_tid	= child_tidptr,
2743 		.parent_tid	= parent_tidptr,
2744 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2745 		.stack		= newsp,
2746 		.tls		= tls,
2747 	};
2748 
2749 	return kernel_clone(&args);
2750 }
2751 #endif
2752 
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)2753 static noinline int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2754 					      struct clone_args __user *uargs,
2755 					      size_t usize)
2756 {
2757 	int err;
2758 	struct clone_args args;
2759 	pid_t *kset_tid = kargs->set_tid;
2760 
2761 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2762 		     CLONE_ARGS_SIZE_VER0);
2763 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2764 		     CLONE_ARGS_SIZE_VER1);
2765 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2766 		     CLONE_ARGS_SIZE_VER2);
2767 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2768 
2769 	if (unlikely(usize > PAGE_SIZE))
2770 		return -E2BIG;
2771 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2772 		return -EINVAL;
2773 
2774 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2775 	if (err)
2776 		return err;
2777 
2778 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2779 		return -EINVAL;
2780 
2781 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2782 		return -EINVAL;
2783 
2784 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2785 		return -EINVAL;
2786 
2787 	/*
2788 	 * Verify that higher 32bits of exit_signal are unset and that
2789 	 * it is a valid signal
2790 	 */
2791 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2792 		     !valid_signal(args.exit_signal)))
2793 		return -EINVAL;
2794 
2795 	if ((args.flags & CLONE_INTO_CGROUP) &&
2796 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2797 		return -EINVAL;
2798 
2799 	*kargs = (struct kernel_clone_args){
2800 		.flags		= args.flags,
2801 		.pidfd		= u64_to_user_ptr(args.pidfd),
2802 		.child_tid	= u64_to_user_ptr(args.child_tid),
2803 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2804 		.exit_signal	= args.exit_signal,
2805 		.stack		= args.stack,
2806 		.stack_size	= args.stack_size,
2807 		.tls		= args.tls,
2808 		.set_tid_size	= args.set_tid_size,
2809 		.cgroup		= args.cgroup,
2810 	};
2811 
2812 	if (args.set_tid &&
2813 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2814 			(kargs->set_tid_size * sizeof(pid_t))))
2815 		return -EFAULT;
2816 
2817 	kargs->set_tid = kset_tid;
2818 
2819 	return 0;
2820 }
2821 
2822 /**
2823  * clone3_stack_valid - check and prepare stack
2824  * @kargs: kernel clone args
2825  *
2826  * Verify that the stack arguments userspace gave us are sane.
2827  * In addition, set the stack direction for userspace since it's easy for us to
2828  * determine.
2829  */
clone3_stack_valid(struct kernel_clone_args * kargs)2830 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2831 {
2832 	if (kargs->stack == 0) {
2833 		if (kargs->stack_size > 0)
2834 			return false;
2835 	} else {
2836 		if (kargs->stack_size == 0)
2837 			return false;
2838 
2839 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2840 			return false;
2841 
2842 #if !defined(CONFIG_STACK_GROWSUP)
2843 		kargs->stack += kargs->stack_size;
2844 #endif
2845 	}
2846 
2847 	return true;
2848 }
2849 
clone3_args_valid(struct kernel_clone_args * kargs)2850 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2851 {
2852 	/* Verify that no unknown flags are passed along. */
2853 	if (kargs->flags &
2854 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2855 		return false;
2856 
2857 	/*
2858 	 * - make the CLONE_DETACHED bit reusable for clone3
2859 	 * - make the CSIGNAL bits reusable for clone3
2860 	 */
2861 	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
2862 		return false;
2863 
2864 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2865 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2866 		return false;
2867 
2868 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2869 	    kargs->exit_signal)
2870 		return false;
2871 
2872 	if (!clone3_stack_valid(kargs))
2873 		return false;
2874 
2875 	return true;
2876 }
2877 
2878 /**
2879  * sys_clone3 - create a new process with specific properties
2880  * @uargs: argument structure
2881  * @size:  size of @uargs
2882  *
2883  * clone3() is the extensible successor to clone()/clone2().
2884  * It takes a struct as argument that is versioned by its size.
2885  *
2886  * Return: On success, a positive PID for the child process.
2887  *         On error, a negative errno number.
2888  */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)2889 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2890 {
2891 	int err;
2892 
2893 	struct kernel_clone_args kargs;
2894 	pid_t set_tid[MAX_PID_NS_LEVEL];
2895 
2896 #ifdef __ARCH_BROKEN_SYS_CLONE3
2897 #warning clone3() entry point is missing, please fix
2898 	return -ENOSYS;
2899 #endif
2900 
2901 	kargs.set_tid = set_tid;
2902 
2903 	err = copy_clone_args_from_user(&kargs, uargs, size);
2904 	if (err)
2905 		return err;
2906 
2907 	if (!clone3_args_valid(&kargs))
2908 		return -EINVAL;
2909 
2910 	return kernel_clone(&kargs);
2911 }
2912 
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)2913 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2914 {
2915 	struct task_struct *leader, *parent, *child;
2916 	int res;
2917 
2918 	read_lock(&tasklist_lock);
2919 	leader = top = top->group_leader;
2920 down:
2921 	for_each_thread(leader, parent) {
2922 		list_for_each_entry(child, &parent->children, sibling) {
2923 			res = visitor(child, data);
2924 			if (res) {
2925 				if (res < 0)
2926 					goto out;
2927 				leader = child;
2928 				goto down;
2929 			}
2930 up:
2931 			;
2932 		}
2933 	}
2934 
2935 	if (leader != top) {
2936 		child = leader;
2937 		parent = child->real_parent;
2938 		leader = parent->group_leader;
2939 		goto up;
2940 	}
2941 out:
2942 	read_unlock(&tasklist_lock);
2943 }
2944 
2945 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2946 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2947 #endif
2948 
sighand_ctor(void * data)2949 static void sighand_ctor(void *data)
2950 {
2951 	struct sighand_struct *sighand = data;
2952 
2953 	spin_lock_init(&sighand->siglock);
2954 	init_waitqueue_head(&sighand->signalfd_wqh);
2955 }
2956 
mm_cache_init(void)2957 void __init mm_cache_init(void)
2958 {
2959 	unsigned int mm_size;
2960 
2961 	/*
2962 	 * The mm_cpumask is located at the end of mm_struct, and is
2963 	 * dynamically sized based on the maximum CPU number this system
2964 	 * can have, taking hotplug into account (nr_cpu_ids).
2965 	 */
2966 	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
2967 
2968 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2969 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2970 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2971 			offsetof(struct mm_struct, saved_auxv),
2972 			sizeof_field(struct mm_struct, saved_auxv),
2973 			NULL);
2974 }
2975 
proc_caches_init(void)2976 void __init proc_caches_init(void)
2977 {
2978 	sighand_cachep = kmem_cache_create("sighand_cache",
2979 			sizeof(struct sighand_struct), 0,
2980 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2981 			SLAB_ACCOUNT, sighand_ctor);
2982 	signal_cachep = kmem_cache_create("signal_cache",
2983 			sizeof(struct signal_struct), 0,
2984 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2985 			NULL);
2986 	files_cachep = kmem_cache_create("files_cache",
2987 			sizeof(struct files_struct), 0,
2988 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2989 			NULL);
2990 	fs_cachep = kmem_cache_create("fs_cache",
2991 			sizeof(struct fs_struct), 0,
2992 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2993 			NULL);
2994 	mmap_init();
2995 	nsproxy_cache_init();
2996 }
2997 
2998 /*
2999  * Check constraints on flags passed to the unshare system call.
3000  */
check_unshare_flags(unsigned long unshare_flags)3001 static int check_unshare_flags(unsigned long unshare_flags)
3002 {
3003 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3004 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3005 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3006 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3007 				CLONE_NEWTIME))
3008 		return -EINVAL;
3009 	/*
3010 	 * Not implemented, but pretend it works if there is nothing
3011 	 * to unshare.  Note that unsharing the address space or the
3012 	 * signal handlers also need to unshare the signal queues (aka
3013 	 * CLONE_THREAD).
3014 	 */
3015 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3016 		if (!thread_group_empty(current))
3017 			return -EINVAL;
3018 	}
3019 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3020 		if (refcount_read(&current->sighand->count) > 1)
3021 			return -EINVAL;
3022 	}
3023 	if (unshare_flags & CLONE_VM) {
3024 		if (!current_is_single_threaded())
3025 			return -EINVAL;
3026 	}
3027 
3028 	return 0;
3029 }
3030 
3031 /*
3032  * Unshare the filesystem structure if it is being shared
3033  */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)3034 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3035 {
3036 	struct fs_struct *fs = current->fs;
3037 
3038 	if (!(unshare_flags & CLONE_FS) || !fs)
3039 		return 0;
3040 
3041 	/* don't need lock here; in the worst case we'll do useless copy */
3042 	if (fs->users == 1)
3043 		return 0;
3044 
3045 	*new_fsp = copy_fs_struct(fs);
3046 	if (!*new_fsp)
3047 		return -ENOMEM;
3048 
3049 	return 0;
3050 }
3051 
3052 /*
3053  * Unshare file descriptor table if it is being shared
3054  */
unshare_fd(unsigned long unshare_flags,struct files_struct ** new_fdp)3055 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
3056 {
3057 	struct files_struct *fd = current->files;
3058 
3059 	if ((unshare_flags & CLONE_FILES) &&
3060 	    (fd && atomic_read(&fd->count) > 1)) {
3061 		fd = dup_fd(fd, NULL);
3062 		if (IS_ERR(fd))
3063 			return PTR_ERR(fd);
3064 		*new_fdp = fd;
3065 	}
3066 
3067 	return 0;
3068 }
3069 
3070 /*
3071  * unshare allows a process to 'unshare' part of the process
3072  * context which was originally shared using clone.  copy_*
3073  * functions used by kernel_clone() cannot be used here directly
3074  * because they modify an inactive task_struct that is being
3075  * constructed. Here we are modifying the current, active,
3076  * task_struct.
3077  */
ksys_unshare(unsigned long unshare_flags)3078 int ksys_unshare(unsigned long unshare_flags)
3079 {
3080 	struct fs_struct *fs, *new_fs = NULL;
3081 	struct files_struct *new_fd = NULL;
3082 	struct cred *new_cred = NULL;
3083 	struct nsproxy *new_nsproxy = NULL;
3084 	int do_sysvsem = 0;
3085 	int err;
3086 
3087 	/*
3088 	 * If unsharing a user namespace must also unshare the thread group
3089 	 * and unshare the filesystem root and working directories.
3090 	 */
3091 	if (unshare_flags & CLONE_NEWUSER)
3092 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3093 	/*
3094 	 * If unsharing vm, must also unshare signal handlers.
3095 	 */
3096 	if (unshare_flags & CLONE_VM)
3097 		unshare_flags |= CLONE_SIGHAND;
3098 	/*
3099 	 * If unsharing a signal handlers, must also unshare the signal queues.
3100 	 */
3101 	if (unshare_flags & CLONE_SIGHAND)
3102 		unshare_flags |= CLONE_THREAD;
3103 	/*
3104 	 * If unsharing namespace, must also unshare filesystem information.
3105 	 */
3106 	if (unshare_flags & CLONE_NEWNS)
3107 		unshare_flags |= CLONE_FS;
3108 
3109 	err = check_unshare_flags(unshare_flags);
3110 	if (err)
3111 		goto bad_unshare_out;
3112 	/*
3113 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3114 	 * to a new ipc namespace, the semaphore arrays from the old
3115 	 * namespace are unreachable.
3116 	 */
3117 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3118 		do_sysvsem = 1;
3119 	err = unshare_fs(unshare_flags, &new_fs);
3120 	if (err)
3121 		goto bad_unshare_out;
3122 	err = unshare_fd(unshare_flags, &new_fd);
3123 	if (err)
3124 		goto bad_unshare_cleanup_fs;
3125 	err = unshare_userns(unshare_flags, &new_cred);
3126 	if (err)
3127 		goto bad_unshare_cleanup_fd;
3128 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3129 					 new_cred, new_fs);
3130 	if (err)
3131 		goto bad_unshare_cleanup_cred;
3132 
3133 	if (new_cred) {
3134 		err = set_cred_ucounts(new_cred);
3135 		if (err)
3136 			goto bad_unshare_cleanup_cred;
3137 	}
3138 
3139 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3140 		if (do_sysvsem) {
3141 			/*
3142 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3143 			 */
3144 			exit_sem(current);
3145 		}
3146 		if (unshare_flags & CLONE_NEWIPC) {
3147 			/* Orphan segments in old ns (see sem above). */
3148 			exit_shm(current);
3149 			shm_init_task(current);
3150 		}
3151 
3152 		if (new_nsproxy)
3153 			switch_task_namespaces(current, new_nsproxy);
3154 
3155 		task_lock(current);
3156 
3157 		if (new_fs) {
3158 			fs = current->fs;
3159 			read_seqlock_excl(&fs->seq);
3160 			current->fs = new_fs;
3161 			if (--fs->users)
3162 				new_fs = NULL;
3163 			else
3164 				new_fs = fs;
3165 			read_sequnlock_excl(&fs->seq);
3166 		}
3167 
3168 		if (new_fd)
3169 			swap(current->files, new_fd);
3170 
3171 		task_unlock(current);
3172 
3173 		if (new_cred) {
3174 			/* Install the new user namespace */
3175 			commit_creds(new_cred);
3176 			new_cred = NULL;
3177 		}
3178 	}
3179 
3180 	perf_event_namespaces(current);
3181 
3182 bad_unshare_cleanup_cred:
3183 	if (new_cred)
3184 		put_cred(new_cred);
3185 bad_unshare_cleanup_fd:
3186 	if (new_fd)
3187 		put_files_struct(new_fd);
3188 
3189 bad_unshare_cleanup_fs:
3190 	if (new_fs)
3191 		free_fs_struct(new_fs);
3192 
3193 bad_unshare_out:
3194 	return err;
3195 }
3196 
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)3197 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3198 {
3199 	return ksys_unshare(unshare_flags);
3200 }
3201 
3202 /*
3203  *	Helper to unshare the files of the current task.
3204  *	We don't want to expose copy_files internals to
3205  *	the exec layer of the kernel.
3206  */
3207 
unshare_files(void)3208 int unshare_files(void)
3209 {
3210 	struct task_struct *task = current;
3211 	struct files_struct *old, *copy = NULL;
3212 	int error;
3213 
3214 	error = unshare_fd(CLONE_FILES, &copy);
3215 	if (error || !copy)
3216 		return error;
3217 
3218 	old = task->files;
3219 	task_lock(task);
3220 	task->files = copy;
3221 	task_unlock(task);
3222 	put_files_struct(old);
3223 	return 0;
3224 }
3225 
sysctl_max_threads(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3226 static int sysctl_max_threads(const struct ctl_table *table, int write,
3227 		       void *buffer, size_t *lenp, loff_t *ppos)
3228 {
3229 	struct ctl_table t;
3230 	int ret;
3231 	int threads = max_threads;
3232 	int min = 1;
3233 	int max = MAX_THREADS;
3234 
3235 	t = *table;
3236 	t.data = &threads;
3237 	t.extra1 = &min;
3238 	t.extra2 = &max;
3239 
3240 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3241 	if (ret || !write)
3242 		return ret;
3243 
3244 	max_threads = threads;
3245 
3246 	return 0;
3247 }
3248 
3249 static const struct ctl_table fork_sysctl_table[] = {
3250 	{
3251 		.procname	= "threads-max",
3252 		.data		= NULL,
3253 		.maxlen		= sizeof(int),
3254 		.mode		= 0644,
3255 		.proc_handler	= sysctl_max_threads,
3256 	},
3257 };
3258 
init_fork_sysctl(void)3259 static int __init init_fork_sysctl(void)
3260 {
3261 	register_sysctl_init("kernel", fork_sysctl_table);
3262 	return 0;
3263 }
3264 
3265 subsys_initcall(init_fork_sysctl);
3266