1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/user.h>
20 #include <linux/sched/numa_balancing.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/sched/cputime.h>
25 #include <linux/sched/ext.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/memblock.h>
48 #include <linux/nsproxy.h>
49 #include <linux/capability.h>
50 #include <linux/cpu.h>
51 #include <linux/cgroup.h>
52 #include <linux/security.h>
53 #include <linux/hugetlb.h>
54 #include <linux/seccomp.h>
55 #include <linux/swap.h>
56 #include <linux/syscalls.h>
57 #include <linux/syscall_user_dispatch.h>
58 #include <linux/jiffies.h>
59 #include <linux/futex.h>
60 #include <linux/compat.h>
61 #include <linux/kthread.h>
62 #include <linux/task_io_accounting_ops.h>
63 #include <linux/rcupdate.h>
64 #include <linux/ptrace.h>
65 #include <linux/mount.h>
66 #include <linux/audit.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/proc_fs.h>
70 #include <linux/profile.h>
71 #include <linux/rmap.h>
72 #include <linux/ksm.h>
73 #include <linux/acct.h>
74 #include <linux/userfaultfd_k.h>
75 #include <linux/tsacct_kern.h>
76 #include <linux/cn_proc.h>
77 #include <linux/freezer.h>
78 #include <linux/delayacct.h>
79 #include <linux/taskstats_kern.h>
80 #include <linux/tty.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/kstack_erase.h>
97 #include <linux/kasan.h>
98 #include <linux/scs.h>
99 #include <linux/io_uring.h>
100 #include <linux/bpf.h>
101 #include <linux/stackprotector.h>
102 #include <linux/user_events.h>
103 #include <linux/iommu.h>
104 #include <linux/rseq.h>
105 #include <uapi/linux/pidfd.h>
106 #include <linux/pidfs.h>
107 #include <linux/tick.h>
108 #include <linux/unwind_deferred.h>
109
110 #include <asm/pgalloc.h>
111 #include <linux/uaccess.h>
112 #include <asm/mmu_context.h>
113 #include <asm/cacheflush.h>
114 #include <asm/tlbflush.h>
115
116 /* For dup_mmap(). */
117 #include "../mm/internal.h"
118
119 #include <trace/events/sched.h>
120
121 #define CREATE_TRACE_POINTS
122 #include <trace/events/task.h>
123
124 #include <kunit/visibility.h>
125
126 /*
127 * Minimum number of threads to boot the kernel
128 */
129 #define MIN_THREADS 20
130
131 /*
132 * Maximum number of threads
133 */
134 #define MAX_THREADS FUTEX_TID_MASK
135
136 /*
137 * Protected counters by write_lock_irq(&tasklist_lock)
138 */
139 unsigned long total_forks; /* Handle normal Linux uptimes. */
140 int nr_threads; /* The idle threads do not count.. */
141
142 static int max_threads; /* tunable limit on nr_threads */
143
144 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
145
146 static const char * const resident_page_types[] = {
147 NAMED_ARRAY_INDEX(MM_FILEPAGES),
148 NAMED_ARRAY_INDEX(MM_ANONPAGES),
149 NAMED_ARRAY_INDEX(MM_SWAPENTS),
150 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
151 };
152
153 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
154
155 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
156
157 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)158 int lockdep_tasklist_lock_is_held(void)
159 {
160 return lockdep_is_held(&tasklist_lock);
161 }
162 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
163 #endif /* #ifdef CONFIG_PROVE_RCU */
164
nr_processes(void)165 int nr_processes(void)
166 {
167 int cpu;
168 int total = 0;
169
170 for_each_possible_cpu(cpu)
171 total += per_cpu(process_counts, cpu);
172
173 return total;
174 }
175
arch_release_task_struct(struct task_struct * tsk)176 void __weak arch_release_task_struct(struct task_struct *tsk)
177 {
178 }
179
180 static struct kmem_cache *task_struct_cachep;
181
alloc_task_struct_node(int node)182 static inline struct task_struct *alloc_task_struct_node(int node)
183 {
184 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
185 }
186
free_task_struct(struct task_struct * tsk)187 static inline void free_task_struct(struct task_struct *tsk)
188 {
189 kmem_cache_free(task_struct_cachep, tsk);
190 }
191
192 #ifdef CONFIG_VMAP_STACK
193 /*
194 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
195 * flush. Try to minimize the number of calls by caching stacks.
196 */
197 #define NR_CACHED_STACKS 2
198 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
199 /*
200 * Allocated stacks are cached and later reused by new threads, so memcg
201 * accounting is performed by the code assigning/releasing stacks to tasks.
202 * We need a zeroed memory without __GFP_ACCOUNT.
203 */
204 #define GFP_VMAP_STACK (GFP_KERNEL | __GFP_ZERO)
205
206 struct vm_stack {
207 struct rcu_head rcu;
208 struct vm_struct *stack_vm_area;
209 };
210
try_release_thread_stack_to_cache(struct vm_struct * vm_area)211 static bool try_release_thread_stack_to_cache(struct vm_struct *vm_area)
212 {
213 unsigned int i;
214
215 for (i = 0; i < NR_CACHED_STACKS; i++) {
216 struct vm_struct *tmp = NULL;
217
218 if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm_area))
219 return true;
220 }
221 return false;
222 }
223
thread_stack_free_rcu(struct rcu_head * rh)224 static void thread_stack_free_rcu(struct rcu_head *rh)
225 {
226 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
227 struct vm_struct *vm_area = vm_stack->stack_vm_area;
228
229 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
230 return;
231
232 vfree(vm_area->addr);
233 }
234
thread_stack_delayed_free(struct task_struct * tsk)235 static void thread_stack_delayed_free(struct task_struct *tsk)
236 {
237 struct vm_stack *vm_stack = tsk->stack;
238
239 vm_stack->stack_vm_area = tsk->stack_vm_area;
240 call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
241 }
242
free_vm_stack_cache(unsigned int cpu)243 static int free_vm_stack_cache(unsigned int cpu)
244 {
245 struct vm_struct **cached_vm_stack_areas = per_cpu_ptr(cached_stacks, cpu);
246 int i;
247
248 for (i = 0; i < NR_CACHED_STACKS; i++) {
249 struct vm_struct *vm_area = cached_vm_stack_areas[i];
250
251 if (!vm_area)
252 continue;
253
254 vfree(vm_area->addr);
255 cached_vm_stack_areas[i] = NULL;
256 }
257
258 return 0;
259 }
260
memcg_charge_kernel_stack(struct vm_struct * vm_area)261 static int memcg_charge_kernel_stack(struct vm_struct *vm_area)
262 {
263 int i;
264 int ret;
265 int nr_charged = 0;
266
267 BUG_ON(vm_area->nr_pages != THREAD_SIZE / PAGE_SIZE);
268
269 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
270 ret = memcg_kmem_charge_page(vm_area->pages[i], GFP_KERNEL, 0);
271 if (ret)
272 goto err;
273 nr_charged++;
274 }
275 return 0;
276 err:
277 for (i = 0; i < nr_charged; i++)
278 memcg_kmem_uncharge_page(vm_area->pages[i], 0);
279 return ret;
280 }
281
alloc_thread_stack_node(struct task_struct * tsk,int node)282 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
283 {
284 struct vm_struct *vm_area;
285 void *stack;
286 int i;
287
288 for (i = 0; i < NR_CACHED_STACKS; i++) {
289 vm_area = this_cpu_xchg(cached_stacks[i], NULL);
290 if (!vm_area)
291 continue;
292
293 if (memcg_charge_kernel_stack(vm_area)) {
294 vfree(vm_area->addr);
295 return -ENOMEM;
296 }
297
298 /* Reset stack metadata. */
299 kasan_unpoison_range(vm_area->addr, THREAD_SIZE);
300
301 stack = kasan_reset_tag(vm_area->addr);
302
303 /* Clear stale pointers from reused stack. */
304 memset(stack, 0, THREAD_SIZE);
305
306 tsk->stack_vm_area = vm_area;
307 tsk->stack = stack;
308 return 0;
309 }
310
311 stack = __vmalloc_node(THREAD_SIZE, THREAD_ALIGN,
312 GFP_VMAP_STACK,
313 node, __builtin_return_address(0));
314 if (!stack)
315 return -ENOMEM;
316
317 vm_area = find_vm_area(stack);
318 if (memcg_charge_kernel_stack(vm_area)) {
319 vfree(stack);
320 return -ENOMEM;
321 }
322 /*
323 * We can't call find_vm_area() in interrupt context, and
324 * free_thread_stack() can be called in interrupt context,
325 * so cache the vm_struct.
326 */
327 tsk->stack_vm_area = vm_area;
328 stack = kasan_reset_tag(stack);
329 tsk->stack = stack;
330 return 0;
331 }
332
free_thread_stack(struct task_struct * tsk)333 static void free_thread_stack(struct task_struct *tsk)
334 {
335 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
336 thread_stack_delayed_free(tsk);
337
338 tsk->stack = NULL;
339 tsk->stack_vm_area = NULL;
340 }
341
342 #else /* !CONFIG_VMAP_STACK */
343
344 /*
345 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
346 * kmemcache based allocator.
347 */
348 #if THREAD_SIZE >= PAGE_SIZE
349
thread_stack_free_rcu(struct rcu_head * rh)350 static void thread_stack_free_rcu(struct rcu_head *rh)
351 {
352 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
353 }
354
thread_stack_delayed_free(struct task_struct * tsk)355 static void thread_stack_delayed_free(struct task_struct *tsk)
356 {
357 struct rcu_head *rh = tsk->stack;
358
359 call_rcu(rh, thread_stack_free_rcu);
360 }
361
alloc_thread_stack_node(struct task_struct * tsk,int node)362 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
363 {
364 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
365 THREAD_SIZE_ORDER);
366
367 if (likely(page)) {
368 tsk->stack = kasan_reset_tag(page_address(page));
369 return 0;
370 }
371 return -ENOMEM;
372 }
373
free_thread_stack(struct task_struct * tsk)374 static void free_thread_stack(struct task_struct *tsk)
375 {
376 thread_stack_delayed_free(tsk);
377 tsk->stack = NULL;
378 }
379
380 #else /* !(THREAD_SIZE >= PAGE_SIZE) */
381
382 static struct kmem_cache *thread_stack_cache;
383
thread_stack_free_rcu(struct rcu_head * rh)384 static void thread_stack_free_rcu(struct rcu_head *rh)
385 {
386 kmem_cache_free(thread_stack_cache, rh);
387 }
388
thread_stack_delayed_free(struct task_struct * tsk)389 static void thread_stack_delayed_free(struct task_struct *tsk)
390 {
391 struct rcu_head *rh = tsk->stack;
392
393 call_rcu(rh, thread_stack_free_rcu);
394 }
395
alloc_thread_stack_node(struct task_struct * tsk,int node)396 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
397 {
398 unsigned long *stack;
399 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
400 stack = kasan_reset_tag(stack);
401 tsk->stack = stack;
402 return stack ? 0 : -ENOMEM;
403 }
404
free_thread_stack(struct task_struct * tsk)405 static void free_thread_stack(struct task_struct *tsk)
406 {
407 thread_stack_delayed_free(tsk);
408 tsk->stack = NULL;
409 }
410
thread_stack_cache_init(void)411 void thread_stack_cache_init(void)
412 {
413 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
414 THREAD_SIZE, THREAD_SIZE, 0, 0,
415 THREAD_SIZE, NULL);
416 BUG_ON(thread_stack_cache == NULL);
417 }
418
419 #endif /* THREAD_SIZE >= PAGE_SIZE */
420 #endif /* CONFIG_VMAP_STACK */
421
422 /* SLAB cache for signal_struct structures (tsk->signal) */
423 static struct kmem_cache *signal_cachep;
424
425 /* SLAB cache for sighand_struct structures (tsk->sighand) */
426 struct kmem_cache *sighand_cachep;
427
428 /* SLAB cache for files_struct structures (tsk->files) */
429 struct kmem_cache *files_cachep;
430
431 /* SLAB cache for fs_struct structures (tsk->fs) */
432 struct kmem_cache *fs_cachep;
433
434 /* SLAB cache for mm_struct structures (tsk->mm) */
435 static struct kmem_cache *mm_cachep;
436
account_kernel_stack(struct task_struct * tsk,int account)437 static void account_kernel_stack(struct task_struct *tsk, int account)
438 {
439 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
440 struct vm_struct *vm_area = task_stack_vm_area(tsk);
441 int i;
442
443 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
444 mod_lruvec_page_state(vm_area->pages[i], NR_KERNEL_STACK_KB,
445 account * (PAGE_SIZE / 1024));
446 } else {
447 void *stack = task_stack_page(tsk);
448
449 /* All stack pages are in the same node. */
450 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
451 account * (THREAD_SIZE / 1024));
452 }
453 }
454
exit_task_stack_account(struct task_struct * tsk)455 void exit_task_stack_account(struct task_struct *tsk)
456 {
457 account_kernel_stack(tsk, -1);
458
459 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
460 struct vm_struct *vm_area;
461 int i;
462
463 vm_area = task_stack_vm_area(tsk);
464 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
465 memcg_kmem_uncharge_page(vm_area->pages[i], 0);
466 }
467 }
468
release_task_stack(struct task_struct * tsk)469 static void release_task_stack(struct task_struct *tsk)
470 {
471 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
472 return; /* Better to leak the stack than to free prematurely */
473
474 free_thread_stack(tsk);
475 }
476
477 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)478 void put_task_stack(struct task_struct *tsk)
479 {
480 if (refcount_dec_and_test(&tsk->stack_refcount))
481 release_task_stack(tsk);
482 }
483 #endif
484
free_task(struct task_struct * tsk)485 void free_task(struct task_struct *tsk)
486 {
487 #ifdef CONFIG_SECCOMP
488 WARN_ON_ONCE(tsk->seccomp.filter);
489 #endif
490 release_user_cpus_ptr(tsk);
491 scs_release(tsk);
492
493 #ifndef CONFIG_THREAD_INFO_IN_TASK
494 /*
495 * The task is finally done with both the stack and thread_info,
496 * so free both.
497 */
498 release_task_stack(tsk);
499 #else
500 /*
501 * If the task had a separate stack allocation, it should be gone
502 * by now.
503 */
504 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
505 #endif
506 rt_mutex_debug_task_free(tsk);
507 ftrace_graph_exit_task(tsk);
508 arch_release_task_struct(tsk);
509 if (tsk->flags & PF_KTHREAD)
510 free_kthread_struct(tsk);
511 bpf_task_storage_free(tsk);
512 free_task_struct(tsk);
513 }
514 EXPORT_SYMBOL(free_task);
515
dup_mm_exe_file(struct mm_struct * mm,struct mm_struct * oldmm)516 void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
517 {
518 struct file *exe_file;
519
520 exe_file = get_mm_exe_file(oldmm);
521 RCU_INIT_POINTER(mm->exe_file, exe_file);
522 /*
523 * We depend on the oldmm having properly denied write access to the
524 * exe_file already.
525 */
526 if (exe_file && exe_file_deny_write_access(exe_file))
527 pr_warn_once("exe_file_deny_write_access() failed in %s\n", __func__);
528 }
529
530 #ifdef CONFIG_MMU
mm_alloc_pgd(struct mm_struct * mm)531 static inline int mm_alloc_pgd(struct mm_struct *mm)
532 {
533 mm->pgd = pgd_alloc(mm);
534 if (unlikely(!mm->pgd))
535 return -ENOMEM;
536 return 0;
537 }
538
mm_free_pgd(struct mm_struct * mm)539 static inline void mm_free_pgd(struct mm_struct *mm)
540 {
541 pgd_free(mm, mm->pgd);
542 }
543 #else
544 #define mm_alloc_pgd(mm) (0)
545 #define mm_free_pgd(mm)
546 #endif /* CONFIG_MMU */
547
548 #ifdef CONFIG_MM_ID
549 static DEFINE_IDA(mm_ida);
550
mm_alloc_id(struct mm_struct * mm)551 static inline int mm_alloc_id(struct mm_struct *mm)
552 {
553 int ret;
554
555 ret = ida_alloc_range(&mm_ida, MM_ID_MIN, MM_ID_MAX, GFP_KERNEL);
556 if (ret < 0)
557 return ret;
558 mm->mm_id = ret;
559 return 0;
560 }
561
mm_free_id(struct mm_struct * mm)562 static inline void mm_free_id(struct mm_struct *mm)
563 {
564 const mm_id_t id = mm->mm_id;
565
566 mm->mm_id = MM_ID_DUMMY;
567 if (id == MM_ID_DUMMY)
568 return;
569 if (WARN_ON_ONCE(id < MM_ID_MIN || id > MM_ID_MAX))
570 return;
571 ida_free(&mm_ida, id);
572 }
573 #else /* !CONFIG_MM_ID */
mm_alloc_id(struct mm_struct * mm)574 static inline int mm_alloc_id(struct mm_struct *mm) { return 0; }
mm_free_id(struct mm_struct * mm)575 static inline void mm_free_id(struct mm_struct *mm) {}
576 #endif /* CONFIG_MM_ID */
577
check_mm(struct mm_struct * mm)578 static void check_mm(struct mm_struct *mm)
579 {
580 int i;
581
582 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
583 "Please make sure 'struct resident_page_types[]' is updated as well");
584
585 for (i = 0; i < NR_MM_COUNTERS; i++) {
586 long x = percpu_counter_sum(&mm->rss_stat[i]);
587
588 if (unlikely(x)) {
589 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld Comm:%s Pid:%d\n",
590 mm, resident_page_types[i], x,
591 current->comm,
592 task_pid_nr(current));
593 }
594 }
595
596 if (mm_pgtables_bytes(mm))
597 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
598 mm_pgtables_bytes(mm));
599
600 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
601 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
602 #endif
603 }
604
605 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
606 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
607
do_check_lazy_tlb(void * arg)608 static void do_check_lazy_tlb(void *arg)
609 {
610 struct mm_struct *mm = arg;
611
612 WARN_ON_ONCE(current->active_mm == mm);
613 }
614
do_shoot_lazy_tlb(void * arg)615 static void do_shoot_lazy_tlb(void *arg)
616 {
617 struct mm_struct *mm = arg;
618
619 if (current->active_mm == mm) {
620 WARN_ON_ONCE(current->mm);
621 current->active_mm = &init_mm;
622 switch_mm(mm, &init_mm, current);
623 }
624 }
625
cleanup_lazy_tlbs(struct mm_struct * mm)626 static void cleanup_lazy_tlbs(struct mm_struct *mm)
627 {
628 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
629 /*
630 * In this case, lazy tlb mms are refounted and would not reach
631 * __mmdrop until all CPUs have switched away and mmdrop()ed.
632 */
633 return;
634 }
635
636 /*
637 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
638 * requires lazy mm users to switch to another mm when the refcount
639 * drops to zero, before the mm is freed. This requires IPIs here to
640 * switch kernel threads to init_mm.
641 *
642 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
643 * switch with the final userspace teardown TLB flush which leaves the
644 * mm lazy on this CPU but no others, reducing the need for additional
645 * IPIs here. There are cases where a final IPI is still required here,
646 * such as the final mmdrop being performed on a different CPU than the
647 * one exiting, or kernel threads using the mm when userspace exits.
648 *
649 * IPI overheads have not found to be expensive, but they could be
650 * reduced in a number of possible ways, for example (roughly
651 * increasing order of complexity):
652 * - The last lazy reference created by exit_mm() could instead switch
653 * to init_mm, however it's probable this will run on the same CPU
654 * immediately afterwards, so this may not reduce IPIs much.
655 * - A batch of mms requiring IPIs could be gathered and freed at once.
656 * - CPUs store active_mm where it can be remotely checked without a
657 * lock, to filter out false-positives in the cpumask.
658 * - After mm_users or mm_count reaches zero, switching away from the
659 * mm could clear mm_cpumask to reduce some IPIs, perhaps together
660 * with some batching or delaying of the final IPIs.
661 * - A delayed freeing and RCU-like quiescing sequence based on mm
662 * switching to avoid IPIs completely.
663 */
664 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
665 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
666 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
667 }
668
669 /*
670 * Called when the last reference to the mm
671 * is dropped: either by a lazy thread or by
672 * mmput. Free the page directory and the mm.
673 */
__mmdrop(struct mm_struct * mm)674 void __mmdrop(struct mm_struct *mm)
675 {
676 BUG_ON(mm == &init_mm);
677 WARN_ON_ONCE(mm == current->mm);
678
679 /* Ensure no CPUs are using this as their lazy tlb mm */
680 cleanup_lazy_tlbs(mm);
681
682 WARN_ON_ONCE(mm == current->active_mm);
683 mm_free_pgd(mm);
684 mm_free_id(mm);
685 destroy_context(mm);
686 mmu_notifier_subscriptions_destroy(mm);
687 check_mm(mm);
688 put_user_ns(mm->user_ns);
689 mm_pasid_drop(mm);
690 mm_destroy_cid(mm);
691 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
692
693 free_mm(mm);
694 }
695 EXPORT_SYMBOL_GPL(__mmdrop);
696
mmdrop_async_fn(struct work_struct * work)697 static void mmdrop_async_fn(struct work_struct *work)
698 {
699 struct mm_struct *mm;
700
701 mm = container_of(work, struct mm_struct, async_put_work);
702 __mmdrop(mm);
703 }
704
mmdrop_async(struct mm_struct * mm)705 static void mmdrop_async(struct mm_struct *mm)
706 {
707 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
708 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
709 schedule_work(&mm->async_put_work);
710 }
711 }
712
free_signal_struct(struct signal_struct * sig)713 static inline void free_signal_struct(struct signal_struct *sig)
714 {
715 taskstats_tgid_free(sig);
716 sched_autogroup_exit(sig);
717 /*
718 * __mmdrop is not safe to call from softirq context on x86 due to
719 * pgd_dtor so postpone it to the async context
720 */
721 if (sig->oom_mm)
722 mmdrop_async(sig->oom_mm);
723 kmem_cache_free(signal_cachep, sig);
724 }
725
put_signal_struct(struct signal_struct * sig)726 static inline void put_signal_struct(struct signal_struct *sig)
727 {
728 if (refcount_dec_and_test(&sig->sigcnt))
729 free_signal_struct(sig);
730 }
731
__put_task_struct(struct task_struct * tsk)732 void __put_task_struct(struct task_struct *tsk)
733 {
734 WARN_ON(!tsk->exit_state);
735 WARN_ON(refcount_read(&tsk->usage));
736 WARN_ON(tsk == current);
737
738 unwind_task_free(tsk);
739 io_uring_free(tsk);
740 cgroup_task_free(tsk);
741 task_numa_free(tsk, true);
742 security_task_free(tsk);
743 exit_creds(tsk);
744 delayacct_tsk_free(tsk);
745 put_signal_struct(tsk->signal);
746 sched_core_free(tsk);
747 free_task(tsk);
748 }
749 EXPORT_SYMBOL_GPL(__put_task_struct);
750
__put_task_struct_rcu_cb(struct rcu_head * rhp)751 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
752 {
753 struct task_struct *task = container_of(rhp, struct task_struct, rcu);
754
755 __put_task_struct(task);
756 }
757 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
758
arch_task_cache_init(void)759 void __init __weak arch_task_cache_init(void) { }
760
761 /*
762 * set_max_threads
763 */
set_max_threads(unsigned int max_threads_suggested)764 static void __init set_max_threads(unsigned int max_threads_suggested)
765 {
766 u64 threads;
767 unsigned long nr_pages = memblock_estimated_nr_free_pages();
768
769 /*
770 * The number of threads shall be limited such that the thread
771 * structures may only consume a small part of the available memory.
772 */
773 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
774 threads = MAX_THREADS;
775 else
776 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
777 (u64) THREAD_SIZE * 8UL);
778
779 if (threads > max_threads_suggested)
780 threads = max_threads_suggested;
781
782 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
783 }
784
785 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
786 /* Initialized by the architecture: */
787 int arch_task_struct_size __read_mostly;
788 #endif
789
task_struct_whitelist(unsigned long * offset,unsigned long * size)790 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size)
791 {
792 /* Fetch thread_struct whitelist for the architecture. */
793 arch_thread_struct_whitelist(offset, size);
794
795 /*
796 * Handle zero-sized whitelist or empty thread_struct, otherwise
797 * adjust offset to position of thread_struct in task_struct.
798 */
799 if (unlikely(*size == 0))
800 *offset = 0;
801 else
802 *offset += offsetof(struct task_struct, thread);
803 }
804
fork_init(void)805 void __init fork_init(void)
806 {
807 int i;
808 #ifndef ARCH_MIN_TASKALIGN
809 #define ARCH_MIN_TASKALIGN 0
810 #endif
811 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
812 unsigned long useroffset, usersize;
813
814 /* create a slab on which task_structs can be allocated */
815 task_struct_whitelist(&useroffset, &usersize);
816 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
817 arch_task_struct_size, align,
818 SLAB_PANIC|SLAB_ACCOUNT,
819 useroffset, usersize, NULL);
820
821 /* do the arch specific task caches init */
822 arch_task_cache_init();
823
824 set_max_threads(MAX_THREADS);
825
826 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
827 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
828 init_task.signal->rlim[RLIMIT_SIGPENDING] =
829 init_task.signal->rlim[RLIMIT_NPROC];
830
831 for (i = 0; i < UCOUNT_COUNTS; i++)
832 init_user_ns.ucount_max[i] = max_threads/2;
833
834 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY);
835 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY);
836 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
837 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY);
838
839 #ifdef CONFIG_VMAP_STACK
840 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
841 NULL, free_vm_stack_cache);
842 #endif
843
844 scs_init();
845
846 lockdep_init_task(&init_task);
847 uprobes_init();
848 }
849
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)850 int __weak arch_dup_task_struct(struct task_struct *dst,
851 struct task_struct *src)
852 {
853 *dst = *src;
854 return 0;
855 }
856
set_task_stack_end_magic(struct task_struct * tsk)857 void set_task_stack_end_magic(struct task_struct *tsk)
858 {
859 unsigned long *stackend;
860
861 stackend = end_of_stack(tsk);
862 *stackend = STACK_END_MAGIC; /* for overflow detection */
863 }
864
dup_task_struct(struct task_struct * orig,int node)865 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
866 {
867 struct task_struct *tsk;
868 int err;
869
870 if (node == NUMA_NO_NODE)
871 node = tsk_fork_get_node(orig);
872 tsk = alloc_task_struct_node(node);
873 if (!tsk)
874 return NULL;
875
876 err = arch_dup_task_struct(tsk, orig);
877 if (err)
878 goto free_tsk;
879
880 err = alloc_thread_stack_node(tsk, node);
881 if (err)
882 goto free_tsk;
883
884 #ifdef CONFIG_THREAD_INFO_IN_TASK
885 refcount_set(&tsk->stack_refcount, 1);
886 #endif
887 account_kernel_stack(tsk, 1);
888
889 err = scs_prepare(tsk, node);
890 if (err)
891 goto free_stack;
892
893 #ifdef CONFIG_SECCOMP
894 /*
895 * We must handle setting up seccomp filters once we're under
896 * the sighand lock in case orig has changed between now and
897 * then. Until then, filter must be NULL to avoid messing up
898 * the usage counts on the error path calling free_task.
899 */
900 tsk->seccomp.filter = NULL;
901 #endif
902
903 setup_thread_stack(tsk, orig);
904 clear_user_return_notifier(tsk);
905 clear_tsk_need_resched(tsk);
906 set_task_stack_end_magic(tsk);
907 clear_syscall_work_syscall_user_dispatch(tsk);
908
909 #ifdef CONFIG_STACKPROTECTOR
910 tsk->stack_canary = get_random_canary();
911 #endif
912 if (orig->cpus_ptr == &orig->cpus_mask)
913 tsk->cpus_ptr = &tsk->cpus_mask;
914 dup_user_cpus_ptr(tsk, orig, node);
915
916 /*
917 * One for the user space visible state that goes away when reaped.
918 * One for the scheduler.
919 */
920 refcount_set(&tsk->rcu_users, 2);
921 /* One for the rcu users */
922 refcount_set(&tsk->usage, 1);
923 #ifdef CONFIG_BLK_DEV_IO_TRACE
924 tsk->btrace_seq = 0;
925 #endif
926 tsk->splice_pipe = NULL;
927 tsk->task_frag.page = NULL;
928 tsk->wake_q.next = NULL;
929 tsk->worker_private = NULL;
930
931 kcov_task_init(tsk);
932 kmsan_task_create(tsk);
933 kmap_local_fork(tsk);
934
935 #ifdef CONFIG_FAULT_INJECTION
936 tsk->fail_nth = 0;
937 #endif
938
939 #ifdef CONFIG_BLK_CGROUP
940 tsk->throttle_disk = NULL;
941 tsk->use_memdelay = 0;
942 #endif
943
944 #ifdef CONFIG_ARCH_HAS_CPU_PASID
945 tsk->pasid_activated = 0;
946 #endif
947
948 #ifdef CONFIG_MEMCG
949 tsk->active_memcg = NULL;
950 #endif
951
952 #ifdef CONFIG_X86_BUS_LOCK_DETECT
953 tsk->reported_split_lock = 0;
954 #endif
955
956 #ifdef CONFIG_SCHED_MM_CID
957 tsk->mm_cid.cid = MM_CID_UNSET;
958 tsk->mm_cid.active = 0;
959 #endif
960 return tsk;
961
962 free_stack:
963 exit_task_stack_account(tsk);
964 free_thread_stack(tsk);
965 free_tsk:
966 free_task_struct(tsk);
967 return NULL;
968 }
969
970 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
971
972 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
973
coredump_filter_setup(char * s)974 static int __init coredump_filter_setup(char *s)
975 {
976 default_dump_filter =
977 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
978 MMF_DUMP_FILTER_MASK;
979 return 1;
980 }
981
982 __setup("coredump_filter=", coredump_filter_setup);
983
984 #include <linux/init_task.h>
985
mm_init_aio(struct mm_struct * mm)986 static void mm_init_aio(struct mm_struct *mm)
987 {
988 #ifdef CONFIG_AIO
989 spin_lock_init(&mm->ioctx_lock);
990 mm->ioctx_table = NULL;
991 #endif
992 }
993
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)994 static __always_inline void mm_clear_owner(struct mm_struct *mm,
995 struct task_struct *p)
996 {
997 #ifdef CONFIG_MEMCG
998 if (mm->owner == p)
999 WRITE_ONCE(mm->owner, NULL);
1000 #endif
1001 }
1002
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1003 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1004 {
1005 #ifdef CONFIG_MEMCG
1006 mm->owner = p;
1007 #endif
1008 }
1009
mm_init_uprobes_state(struct mm_struct * mm)1010 static void mm_init_uprobes_state(struct mm_struct *mm)
1011 {
1012 #ifdef CONFIG_UPROBES
1013 mm->uprobes_state.xol_area = NULL;
1014 arch_uprobe_init_state(mm);
1015 #endif
1016 }
1017
mmap_init_lock(struct mm_struct * mm)1018 static void mmap_init_lock(struct mm_struct *mm)
1019 {
1020 init_rwsem(&mm->mmap_lock);
1021 mm_lock_seqcount_init(mm);
1022 #ifdef CONFIG_PER_VMA_LOCK
1023 rcuwait_init(&mm->vma_writer_wait);
1024 #endif
1025 }
1026
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1027 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1028 struct user_namespace *user_ns)
1029 {
1030 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1031 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1032 atomic_set(&mm->mm_users, 1);
1033 atomic_set(&mm->mm_count, 1);
1034 seqcount_init(&mm->write_protect_seq);
1035 mmap_init_lock(mm);
1036 INIT_LIST_HEAD(&mm->mmlist);
1037 mm_pgtables_bytes_init(mm);
1038 mm->map_count = 0;
1039 mm->locked_vm = 0;
1040 atomic64_set(&mm->pinned_vm, 0);
1041 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1042 spin_lock_init(&mm->page_table_lock);
1043 spin_lock_init(&mm->arg_lock);
1044 mm_init_cpumask(mm);
1045 mm_init_aio(mm);
1046 mm_init_owner(mm, p);
1047 mm_pasid_init(mm);
1048 RCU_INIT_POINTER(mm->exe_file, NULL);
1049 mmu_notifier_subscriptions_init(mm);
1050 init_tlb_flush_pending(mm);
1051 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
1052 mm->pmd_huge_pte = NULL;
1053 #endif
1054 mm_init_uprobes_state(mm);
1055 hugetlb_count_init(mm);
1056
1057 mm_flags_clear_all(mm);
1058 if (current->mm) {
1059 unsigned long flags = __mm_flags_get_word(current->mm);
1060
1061 __mm_flags_set_word(mm, mmf_init_legacy_flags(flags));
1062 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1063 } else {
1064 __mm_flags_set_word(mm, default_dump_filter);
1065 mm->def_flags = 0;
1066 }
1067
1068 if (futex_mm_init(mm))
1069 goto fail_mm_init;
1070
1071 if (mm_alloc_pgd(mm))
1072 goto fail_nopgd;
1073
1074 if (mm_alloc_id(mm))
1075 goto fail_noid;
1076
1077 if (init_new_context(p, mm))
1078 goto fail_nocontext;
1079
1080 if (mm_alloc_cid(mm, p))
1081 goto fail_cid;
1082
1083 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1084 NR_MM_COUNTERS))
1085 goto fail_pcpu;
1086
1087 mm->user_ns = get_user_ns(user_ns);
1088 lru_gen_init_mm(mm);
1089 return mm;
1090
1091 fail_pcpu:
1092 mm_destroy_cid(mm);
1093 fail_cid:
1094 destroy_context(mm);
1095 fail_nocontext:
1096 mm_free_id(mm);
1097 fail_noid:
1098 mm_free_pgd(mm);
1099 fail_nopgd:
1100 futex_hash_free(mm);
1101 fail_mm_init:
1102 free_mm(mm);
1103 return NULL;
1104 }
1105
1106 /*
1107 * Allocate and initialize an mm_struct.
1108 */
mm_alloc(void)1109 struct mm_struct *mm_alloc(void)
1110 {
1111 struct mm_struct *mm;
1112
1113 mm = allocate_mm();
1114 if (!mm)
1115 return NULL;
1116
1117 memset(mm, 0, sizeof(*mm));
1118 return mm_init(mm, current, current_user_ns());
1119 }
1120 EXPORT_SYMBOL_IF_KUNIT(mm_alloc);
1121
__mmput(struct mm_struct * mm)1122 static inline void __mmput(struct mm_struct *mm)
1123 {
1124 VM_BUG_ON(atomic_read(&mm->mm_users));
1125
1126 uprobe_clear_state(mm);
1127 exit_aio(mm);
1128 ksm_exit(mm);
1129 khugepaged_exit(mm); /* must run before exit_mmap */
1130 exit_mmap(mm);
1131 mm_put_huge_zero_folio(mm);
1132 set_mm_exe_file(mm, NULL);
1133 if (!list_empty(&mm->mmlist)) {
1134 spin_lock(&mmlist_lock);
1135 list_del(&mm->mmlist);
1136 spin_unlock(&mmlist_lock);
1137 }
1138 if (mm->binfmt)
1139 module_put(mm->binfmt->module);
1140 lru_gen_del_mm(mm);
1141 futex_hash_free(mm);
1142 mmdrop(mm);
1143 }
1144
1145 /*
1146 * Decrement the use count and release all resources for an mm.
1147 */
mmput(struct mm_struct * mm)1148 void mmput(struct mm_struct *mm)
1149 {
1150 might_sleep();
1151
1152 if (atomic_dec_and_test(&mm->mm_users))
1153 __mmput(mm);
1154 }
1155 EXPORT_SYMBOL_GPL(mmput);
1156
1157 #if defined(CONFIG_MMU) || defined(CONFIG_FUTEX_PRIVATE_HASH)
mmput_async_fn(struct work_struct * work)1158 static void mmput_async_fn(struct work_struct *work)
1159 {
1160 struct mm_struct *mm = container_of(work, struct mm_struct,
1161 async_put_work);
1162
1163 __mmput(mm);
1164 }
1165
mmput_async(struct mm_struct * mm)1166 void mmput_async(struct mm_struct *mm)
1167 {
1168 if (atomic_dec_and_test(&mm->mm_users)) {
1169 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1170 schedule_work(&mm->async_put_work);
1171 }
1172 }
1173 EXPORT_SYMBOL_GPL(mmput_async);
1174 #endif
1175
1176 /**
1177 * set_mm_exe_file - change a reference to the mm's executable file
1178 * @mm: The mm to change.
1179 * @new_exe_file: The new file to use.
1180 *
1181 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1182 *
1183 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1184 * invocations: in mmput() nobody alive left, in execve it happens before
1185 * the new mm is made visible to anyone.
1186 *
1187 * Can only fail if new_exe_file != NULL.
1188 */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1189 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1190 {
1191 struct file *old_exe_file;
1192
1193 /*
1194 * It is safe to dereference the exe_file without RCU as
1195 * this function is only called if nobody else can access
1196 * this mm -- see comment above for justification.
1197 */
1198 old_exe_file = rcu_dereference_raw(mm->exe_file);
1199
1200 if (new_exe_file) {
1201 /*
1202 * We expect the caller (i.e., sys_execve) to already denied
1203 * write access, so this is unlikely to fail.
1204 */
1205 if (unlikely(exe_file_deny_write_access(new_exe_file)))
1206 return -EACCES;
1207 get_file(new_exe_file);
1208 }
1209 rcu_assign_pointer(mm->exe_file, new_exe_file);
1210 if (old_exe_file) {
1211 exe_file_allow_write_access(old_exe_file);
1212 fput(old_exe_file);
1213 }
1214 return 0;
1215 }
1216
1217 /**
1218 * replace_mm_exe_file - replace a reference to the mm's executable file
1219 * @mm: The mm to change.
1220 * @new_exe_file: The new file to use.
1221 *
1222 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1223 *
1224 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1225 */
replace_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1226 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1227 {
1228 struct vm_area_struct *vma;
1229 struct file *old_exe_file;
1230 int ret = 0;
1231
1232 /* Forbid mm->exe_file change if old file still mapped. */
1233 old_exe_file = get_mm_exe_file(mm);
1234 if (old_exe_file) {
1235 VMA_ITERATOR(vmi, mm, 0);
1236 mmap_read_lock(mm);
1237 for_each_vma(vmi, vma) {
1238 if (!vma->vm_file)
1239 continue;
1240 if (path_equal(&vma->vm_file->f_path,
1241 &old_exe_file->f_path)) {
1242 ret = -EBUSY;
1243 break;
1244 }
1245 }
1246 mmap_read_unlock(mm);
1247 fput(old_exe_file);
1248 if (ret)
1249 return ret;
1250 }
1251
1252 ret = exe_file_deny_write_access(new_exe_file);
1253 if (ret)
1254 return -EACCES;
1255 get_file(new_exe_file);
1256
1257 /* set the new file */
1258 mmap_write_lock(mm);
1259 old_exe_file = rcu_dereference_raw(mm->exe_file);
1260 rcu_assign_pointer(mm->exe_file, new_exe_file);
1261 mmap_write_unlock(mm);
1262
1263 if (old_exe_file) {
1264 exe_file_allow_write_access(old_exe_file);
1265 fput(old_exe_file);
1266 }
1267 return 0;
1268 }
1269
1270 /**
1271 * get_mm_exe_file - acquire a reference to the mm's executable file
1272 * @mm: The mm of interest.
1273 *
1274 * Returns %NULL if mm has no associated executable file.
1275 * User must release file via fput().
1276 */
get_mm_exe_file(struct mm_struct * mm)1277 struct file *get_mm_exe_file(struct mm_struct *mm)
1278 {
1279 struct file *exe_file;
1280
1281 rcu_read_lock();
1282 exe_file = get_file_rcu(&mm->exe_file);
1283 rcu_read_unlock();
1284 return exe_file;
1285 }
1286
1287 /**
1288 * get_task_exe_file - acquire a reference to the task's executable file
1289 * @task: The task.
1290 *
1291 * Returns %NULL if task's mm (if any) has no associated executable file or
1292 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1293 * User must release file via fput().
1294 */
get_task_exe_file(struct task_struct * task)1295 struct file *get_task_exe_file(struct task_struct *task)
1296 {
1297 struct file *exe_file = NULL;
1298 struct mm_struct *mm;
1299
1300 if (task->flags & PF_KTHREAD)
1301 return NULL;
1302
1303 task_lock(task);
1304 mm = task->mm;
1305 if (mm)
1306 exe_file = get_mm_exe_file(mm);
1307 task_unlock(task);
1308 return exe_file;
1309 }
1310
1311 /**
1312 * get_task_mm - acquire a reference to the task's mm
1313 * @task: The task.
1314 *
1315 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1316 * this kernel workthread has transiently adopted a user mm with use_mm,
1317 * to do its AIO) is not set and if so returns a reference to it, after
1318 * bumping up the use count. User must release the mm via mmput()
1319 * after use. Typically used by /proc and ptrace.
1320 */
get_task_mm(struct task_struct * task)1321 struct mm_struct *get_task_mm(struct task_struct *task)
1322 {
1323 struct mm_struct *mm;
1324
1325 if (task->flags & PF_KTHREAD)
1326 return NULL;
1327
1328 task_lock(task);
1329 mm = task->mm;
1330 if (mm)
1331 mmget(mm);
1332 task_unlock(task);
1333 return mm;
1334 }
1335 EXPORT_SYMBOL_GPL(get_task_mm);
1336
may_access_mm(struct mm_struct * mm,struct task_struct * task,unsigned int mode)1337 static bool may_access_mm(struct mm_struct *mm, struct task_struct *task, unsigned int mode)
1338 {
1339 if (mm == current->mm)
1340 return true;
1341 if (ptrace_may_access(task, mode))
1342 return true;
1343 if ((mode & PTRACE_MODE_READ) && perfmon_capable())
1344 return true;
1345 return false;
1346 }
1347
mm_access(struct task_struct * task,unsigned int mode)1348 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1349 {
1350 struct mm_struct *mm;
1351 int err;
1352
1353 err = down_read_killable(&task->signal->exec_update_lock);
1354 if (err)
1355 return ERR_PTR(err);
1356
1357 mm = get_task_mm(task);
1358 if (!mm) {
1359 mm = ERR_PTR(-ESRCH);
1360 } else if (!may_access_mm(mm, task, mode)) {
1361 mmput(mm);
1362 mm = ERR_PTR(-EACCES);
1363 }
1364 up_read(&task->signal->exec_update_lock);
1365
1366 return mm;
1367 }
1368
complete_vfork_done(struct task_struct * tsk)1369 static void complete_vfork_done(struct task_struct *tsk)
1370 {
1371 struct completion *vfork;
1372
1373 task_lock(tsk);
1374 vfork = tsk->vfork_done;
1375 if (likely(vfork)) {
1376 tsk->vfork_done = NULL;
1377 complete(vfork);
1378 }
1379 task_unlock(tsk);
1380 }
1381
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1382 static int wait_for_vfork_done(struct task_struct *child,
1383 struct completion *vfork)
1384 {
1385 unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1386 int killed;
1387
1388 cgroup_enter_frozen();
1389 killed = wait_for_completion_state(vfork, state);
1390 cgroup_leave_frozen(false);
1391
1392 if (killed) {
1393 task_lock(child);
1394 child->vfork_done = NULL;
1395 task_unlock(child);
1396 }
1397
1398 put_task_struct(child);
1399 return killed;
1400 }
1401
1402 /* Please note the differences between mmput and mm_release.
1403 * mmput is called whenever we stop holding onto a mm_struct,
1404 * error success whatever.
1405 *
1406 * mm_release is called after a mm_struct has been removed
1407 * from the current process.
1408 *
1409 * This difference is important for error handling, when we
1410 * only half set up a mm_struct for a new process and need to restore
1411 * the old one. Because we mmput the new mm_struct before
1412 * restoring the old one. . .
1413 * Eric Biederman 10 January 1998
1414 */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1415 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1416 {
1417 uprobe_free_utask(tsk);
1418
1419 /* Get rid of any cached register state */
1420 deactivate_mm(tsk, mm);
1421
1422 /*
1423 * Signal userspace if we're not exiting with a core dump
1424 * because we want to leave the value intact for debugging
1425 * purposes.
1426 */
1427 if (tsk->clear_child_tid) {
1428 if (atomic_read(&mm->mm_users) > 1) {
1429 /*
1430 * We don't check the error code - if userspace has
1431 * not set up a proper pointer then tough luck.
1432 */
1433 put_user(0, tsk->clear_child_tid);
1434 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1435 1, NULL, NULL, 0, 0);
1436 }
1437 tsk->clear_child_tid = NULL;
1438 }
1439
1440 /*
1441 * All done, finally we can wake up parent and return this mm to him.
1442 * Also kthread_stop() uses this completion for synchronization.
1443 */
1444 if (tsk->vfork_done)
1445 complete_vfork_done(tsk);
1446 }
1447
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1448 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1449 {
1450 futex_exit_release(tsk);
1451 mm_release(tsk, mm);
1452 }
1453
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1454 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1455 {
1456 futex_exec_release(tsk);
1457 mm_release(tsk, mm);
1458 }
1459
1460 /**
1461 * dup_mm() - duplicates an existing mm structure
1462 * @tsk: the task_struct with which the new mm will be associated.
1463 * @oldmm: the mm to duplicate.
1464 *
1465 * Allocates a new mm structure and duplicates the provided @oldmm structure
1466 * content into it.
1467 *
1468 * Return: the duplicated mm or NULL on failure.
1469 */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1470 static struct mm_struct *dup_mm(struct task_struct *tsk,
1471 struct mm_struct *oldmm)
1472 {
1473 struct mm_struct *mm;
1474 int err;
1475
1476 mm = allocate_mm();
1477 if (!mm)
1478 goto fail_nomem;
1479
1480 memcpy(mm, oldmm, sizeof(*mm));
1481
1482 if (!mm_init(mm, tsk, mm->user_ns))
1483 goto fail_nomem;
1484
1485 uprobe_start_dup_mmap();
1486 err = dup_mmap(mm, oldmm);
1487 if (err)
1488 goto free_pt;
1489 uprobe_end_dup_mmap();
1490
1491 mm->hiwater_rss = get_mm_rss(mm);
1492 mm->hiwater_vm = mm->total_vm;
1493
1494 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1495 goto free_pt;
1496
1497 return mm;
1498
1499 free_pt:
1500 /* don't put binfmt in mmput, we haven't got module yet */
1501 mm->binfmt = NULL;
1502 mm_init_owner(mm, NULL);
1503 mmput(mm);
1504 if (err)
1505 uprobe_end_dup_mmap();
1506
1507 fail_nomem:
1508 return NULL;
1509 }
1510
copy_mm(u64 clone_flags,struct task_struct * tsk)1511 static int copy_mm(u64 clone_flags, struct task_struct *tsk)
1512 {
1513 struct mm_struct *mm, *oldmm;
1514
1515 tsk->min_flt = tsk->maj_flt = 0;
1516 tsk->nvcsw = tsk->nivcsw = 0;
1517 #ifdef CONFIG_DETECT_HUNG_TASK
1518 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1519 tsk->last_switch_time = 0;
1520 #endif
1521
1522 tsk->mm = NULL;
1523 tsk->active_mm = NULL;
1524
1525 /*
1526 * Are we cloning a kernel thread?
1527 *
1528 * We need to steal a active VM for that..
1529 */
1530 oldmm = current->mm;
1531 if (!oldmm)
1532 return 0;
1533
1534 if (clone_flags & CLONE_VM) {
1535 mmget(oldmm);
1536 mm = oldmm;
1537 } else {
1538 mm = dup_mm(tsk, current->mm);
1539 if (!mm)
1540 return -ENOMEM;
1541 }
1542
1543 tsk->mm = mm;
1544 tsk->active_mm = mm;
1545 sched_mm_cid_fork(tsk);
1546 return 0;
1547 }
1548
copy_fs(u64 clone_flags,struct task_struct * tsk)1549 static int copy_fs(u64 clone_flags, struct task_struct *tsk)
1550 {
1551 struct fs_struct *fs = current->fs;
1552 if (clone_flags & CLONE_FS) {
1553 /* tsk->fs is already what we want */
1554 read_seqlock_excl(&fs->seq);
1555 /* "users" and "in_exec" locked for check_unsafe_exec() */
1556 if (fs->in_exec) {
1557 read_sequnlock_excl(&fs->seq);
1558 return -EAGAIN;
1559 }
1560 fs->users++;
1561 read_sequnlock_excl(&fs->seq);
1562 return 0;
1563 }
1564 tsk->fs = copy_fs_struct(fs);
1565 if (!tsk->fs)
1566 return -ENOMEM;
1567 return 0;
1568 }
1569
copy_files(u64 clone_flags,struct task_struct * tsk,int no_files)1570 static int copy_files(u64 clone_flags, struct task_struct *tsk,
1571 int no_files)
1572 {
1573 struct files_struct *oldf, *newf;
1574
1575 /*
1576 * A background process may not have any files ...
1577 */
1578 oldf = current->files;
1579 if (!oldf)
1580 return 0;
1581
1582 if (no_files) {
1583 tsk->files = NULL;
1584 return 0;
1585 }
1586
1587 if (clone_flags & CLONE_FILES) {
1588 atomic_inc(&oldf->count);
1589 return 0;
1590 }
1591
1592 newf = dup_fd(oldf, NULL);
1593 if (IS_ERR(newf))
1594 return PTR_ERR(newf);
1595
1596 tsk->files = newf;
1597 return 0;
1598 }
1599
copy_sighand(u64 clone_flags,struct task_struct * tsk)1600 static int copy_sighand(u64 clone_flags, struct task_struct *tsk)
1601 {
1602 struct sighand_struct *sig;
1603
1604 if (clone_flags & CLONE_SIGHAND) {
1605 refcount_inc(¤t->sighand->count);
1606 return 0;
1607 }
1608 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1609 RCU_INIT_POINTER(tsk->sighand, sig);
1610 if (!sig)
1611 return -ENOMEM;
1612
1613 refcount_set(&sig->count, 1);
1614 spin_lock_irq(¤t->sighand->siglock);
1615 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1616 spin_unlock_irq(¤t->sighand->siglock);
1617
1618 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1619 if (clone_flags & CLONE_CLEAR_SIGHAND)
1620 flush_signal_handlers(tsk, 0);
1621
1622 return 0;
1623 }
1624
__cleanup_sighand(struct sighand_struct * sighand)1625 void __cleanup_sighand(struct sighand_struct *sighand)
1626 {
1627 if (refcount_dec_and_test(&sighand->count)) {
1628 signalfd_cleanup(sighand);
1629 /*
1630 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1631 * without an RCU grace period, see __lock_task_sighand().
1632 */
1633 kmem_cache_free(sighand_cachep, sighand);
1634 }
1635 }
1636
1637 /*
1638 * Initialize POSIX timer handling for a thread group.
1639 */
posix_cpu_timers_init_group(struct signal_struct * sig)1640 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1641 {
1642 struct posix_cputimers *pct = &sig->posix_cputimers;
1643 unsigned long cpu_limit;
1644
1645 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1646 posix_cputimers_group_init(pct, cpu_limit);
1647 }
1648
copy_signal(u64 clone_flags,struct task_struct * tsk)1649 static int copy_signal(u64 clone_flags, struct task_struct *tsk)
1650 {
1651 struct signal_struct *sig;
1652
1653 if (clone_flags & CLONE_THREAD)
1654 return 0;
1655
1656 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1657 tsk->signal = sig;
1658 if (!sig)
1659 return -ENOMEM;
1660
1661 sig->nr_threads = 1;
1662 sig->quick_threads = 1;
1663 atomic_set(&sig->live, 1);
1664 refcount_set(&sig->sigcnt, 1);
1665
1666 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1667 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1668 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1669
1670 init_waitqueue_head(&sig->wait_chldexit);
1671 sig->curr_target = tsk;
1672 init_sigpending(&sig->shared_pending);
1673 INIT_HLIST_HEAD(&sig->multiprocess);
1674 seqlock_init(&sig->stats_lock);
1675 prev_cputime_init(&sig->prev_cputime);
1676
1677 #ifdef CONFIG_POSIX_TIMERS
1678 INIT_HLIST_HEAD(&sig->posix_timers);
1679 INIT_HLIST_HEAD(&sig->ignored_posix_timers);
1680 hrtimer_setup(&sig->real_timer, it_real_fn, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1681 #endif
1682
1683 task_lock(current->group_leader);
1684 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1685 task_unlock(current->group_leader);
1686
1687 posix_cpu_timers_init_group(sig);
1688
1689 tty_audit_fork(sig);
1690 sched_autogroup_fork(sig);
1691
1692 #ifdef CONFIG_CGROUPS
1693 init_rwsem(&sig->cgroup_threadgroup_rwsem);
1694 #endif
1695
1696 sig->oom_score_adj = current->signal->oom_score_adj;
1697 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1698
1699 mutex_init(&sig->cred_guard_mutex);
1700 init_rwsem(&sig->exec_update_lock);
1701
1702 return 0;
1703 }
1704
copy_seccomp(struct task_struct * p)1705 static void copy_seccomp(struct task_struct *p)
1706 {
1707 #ifdef CONFIG_SECCOMP
1708 /*
1709 * Must be called with sighand->lock held, which is common to
1710 * all threads in the group. Holding cred_guard_mutex is not
1711 * needed because this new task is not yet running and cannot
1712 * be racing exec.
1713 */
1714 assert_spin_locked(¤t->sighand->siglock);
1715
1716 /* Ref-count the new filter user, and assign it. */
1717 get_seccomp_filter(current);
1718 p->seccomp = current->seccomp;
1719
1720 /*
1721 * Explicitly enable no_new_privs here in case it got set
1722 * between the task_struct being duplicated and holding the
1723 * sighand lock. The seccomp state and nnp must be in sync.
1724 */
1725 if (task_no_new_privs(current))
1726 task_set_no_new_privs(p);
1727
1728 /*
1729 * If the parent gained a seccomp mode after copying thread
1730 * flags and between before we held the sighand lock, we have
1731 * to manually enable the seccomp thread flag here.
1732 */
1733 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1734 set_task_syscall_work(p, SECCOMP);
1735 #endif
1736 }
1737
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1738 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1739 {
1740 current->clear_child_tid = tidptr;
1741
1742 return task_pid_vnr(current);
1743 }
1744
rt_mutex_init_task(struct task_struct * p)1745 static void rt_mutex_init_task(struct task_struct *p)
1746 {
1747 raw_spin_lock_init(&p->pi_lock);
1748 #ifdef CONFIG_RT_MUTEXES
1749 p->pi_waiters = RB_ROOT_CACHED;
1750 p->pi_top_task = NULL;
1751 p->pi_blocked_on = NULL;
1752 #endif
1753 }
1754
init_task_pid_links(struct task_struct * task)1755 static inline void init_task_pid_links(struct task_struct *task)
1756 {
1757 enum pid_type type;
1758
1759 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1760 INIT_HLIST_NODE(&task->pid_links[type]);
1761 }
1762
1763 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1764 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1765 {
1766 if (type == PIDTYPE_PID)
1767 task->thread_pid = pid;
1768 else
1769 task->signal->pids[type] = pid;
1770 }
1771
rcu_copy_process(struct task_struct * p)1772 static inline void rcu_copy_process(struct task_struct *p)
1773 {
1774 #ifdef CONFIG_PREEMPT_RCU
1775 p->rcu_read_lock_nesting = 0;
1776 p->rcu_read_unlock_special.s = 0;
1777 p->rcu_blocked_node = NULL;
1778 INIT_LIST_HEAD(&p->rcu_node_entry);
1779 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1780 #ifdef CONFIG_TASKS_RCU
1781 p->rcu_tasks_holdout = false;
1782 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1783 p->rcu_tasks_idle_cpu = -1;
1784 INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
1785 #endif /* #ifdef CONFIG_TASKS_RCU */
1786 #ifdef CONFIG_TASKS_TRACE_RCU
1787 p->trc_reader_nesting = 0;
1788 p->trc_reader_special.s = 0;
1789 INIT_LIST_HEAD(&p->trc_holdout_list);
1790 INIT_LIST_HEAD(&p->trc_blkd_node);
1791 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1792 }
1793
1794 /**
1795 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
1796 * @pid: the struct pid for which to create a pidfd
1797 * @flags: flags of the new @pidfd
1798 * @ret_file: return the new pidfs file
1799 *
1800 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
1801 * caller's file descriptor table. The pidfd is reserved but not installed yet.
1802 *
1803 * The helper verifies that @pid is still in use, without PIDFD_THREAD the
1804 * task identified by @pid must be a thread-group leader.
1805 *
1806 * If this function returns successfully the caller is responsible to either
1807 * call fd_install() passing the returned pidfd and pidfd file as arguments in
1808 * order to install the pidfd into its file descriptor table or they must use
1809 * put_unused_fd() and fput() on the returned pidfd and pidfd file
1810 * respectively.
1811 *
1812 * This function is useful when a pidfd must already be reserved but there
1813 * might still be points of failure afterwards and the caller wants to ensure
1814 * that no pidfd is leaked into its file descriptor table.
1815 *
1816 * Return: On success, a reserved pidfd is returned from the function and a new
1817 * pidfd file is returned in the last argument to the function. On
1818 * error, a negative error code is returned from the function and the
1819 * last argument remains unchanged.
1820 */
pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret_file)1821 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret_file)
1822 {
1823 struct file *pidfs_file;
1824
1825 /*
1826 * PIDFD_STALE is only allowed to be passed if the caller knows
1827 * that @pid is already registered in pidfs and thus
1828 * PIDFD_INFO_EXIT information is guaranteed to be available.
1829 */
1830 if (!(flags & PIDFD_STALE)) {
1831 /*
1832 * While holding the pidfd waitqueue lock removing the
1833 * task linkage for the thread-group leader pid
1834 * (PIDTYPE_TGID) isn't possible. Thus, if there's still
1835 * task linkage for PIDTYPE_PID not having thread-group
1836 * leader linkage for the pid means it wasn't a
1837 * thread-group leader in the first place.
1838 */
1839 guard(spinlock_irq)(&pid->wait_pidfd.lock);
1840
1841 /* Task has already been reaped. */
1842 if (!pid_has_task(pid, PIDTYPE_PID))
1843 return -ESRCH;
1844 /*
1845 * If this struct pid isn't used as a thread-group
1846 * leader but the caller requested to create a
1847 * thread-group leader pidfd then report ENOENT.
1848 */
1849 if (!(flags & PIDFD_THREAD) && !pid_has_task(pid, PIDTYPE_TGID))
1850 return -ENOENT;
1851 }
1852
1853 CLASS(get_unused_fd, pidfd)(O_CLOEXEC);
1854 if (pidfd < 0)
1855 return pidfd;
1856
1857 pidfs_file = pidfs_alloc_file(pid, flags | O_RDWR);
1858 if (IS_ERR(pidfs_file))
1859 return PTR_ERR(pidfs_file);
1860
1861 *ret_file = pidfs_file;
1862 return take_fd(pidfd);
1863 }
1864
__delayed_free_task(struct rcu_head * rhp)1865 static void __delayed_free_task(struct rcu_head *rhp)
1866 {
1867 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1868
1869 free_task(tsk);
1870 }
1871
delayed_free_task(struct task_struct * tsk)1872 static __always_inline void delayed_free_task(struct task_struct *tsk)
1873 {
1874 if (IS_ENABLED(CONFIG_MEMCG))
1875 call_rcu(&tsk->rcu, __delayed_free_task);
1876 else
1877 free_task(tsk);
1878 }
1879
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)1880 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1881 {
1882 /* Skip if kernel thread */
1883 if (!tsk->mm)
1884 return;
1885
1886 /* Skip if spawning a thread or using vfork */
1887 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1888 return;
1889
1890 /* We need to synchronize with __set_oom_adj */
1891 mutex_lock(&oom_adj_mutex);
1892 mm_flags_set(MMF_MULTIPROCESS, tsk->mm);
1893 /* Update the values in case they were changed after copy_signal */
1894 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1895 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1896 mutex_unlock(&oom_adj_mutex);
1897 }
1898
1899 #ifdef CONFIG_RV
rv_task_fork(struct task_struct * p)1900 static void rv_task_fork(struct task_struct *p)
1901 {
1902 memset(&p->rv, 0, sizeof(p->rv));
1903 }
1904 #else
1905 #define rv_task_fork(p) do {} while (0)
1906 #endif
1907
need_futex_hash_allocate_default(u64 clone_flags)1908 static bool need_futex_hash_allocate_default(u64 clone_flags)
1909 {
1910 if ((clone_flags & (CLONE_THREAD | CLONE_VM)) != (CLONE_THREAD | CLONE_VM))
1911 return false;
1912 return true;
1913 }
1914
1915 /*
1916 * This creates a new process as a copy of the old one,
1917 * but does not actually start it yet.
1918 *
1919 * It copies the registers, and all the appropriate
1920 * parts of the process environment (as per the clone
1921 * flags). The actual kick-off is left to the caller.
1922 */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)1923 __latent_entropy struct task_struct *copy_process(
1924 struct pid *pid,
1925 int trace,
1926 int node,
1927 struct kernel_clone_args *args)
1928 {
1929 int pidfd = -1, retval;
1930 struct task_struct *p;
1931 struct multiprocess_signals delayed;
1932 struct file *pidfile = NULL;
1933 const u64 clone_flags = args->flags;
1934 struct nsproxy *nsp = current->nsproxy;
1935
1936 /*
1937 * Don't allow sharing the root directory with processes in a different
1938 * namespace
1939 */
1940 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1941 return ERR_PTR(-EINVAL);
1942
1943 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1944 return ERR_PTR(-EINVAL);
1945
1946 /*
1947 * Thread groups must share signals as well, and detached threads
1948 * can only be started up within the thread group.
1949 */
1950 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1951 return ERR_PTR(-EINVAL);
1952
1953 /*
1954 * Shared signal handlers imply shared VM. By way of the above,
1955 * thread groups also imply shared VM. Blocking this case allows
1956 * for various simplifications in other code.
1957 */
1958 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1959 return ERR_PTR(-EINVAL);
1960
1961 /*
1962 * Siblings of global init remain as zombies on exit since they are
1963 * not reaped by their parent (swapper). To solve this and to avoid
1964 * multi-rooted process trees, prevent global and container-inits
1965 * from creating siblings.
1966 */
1967 if ((clone_flags & CLONE_PARENT) &&
1968 current->signal->flags & SIGNAL_UNKILLABLE)
1969 return ERR_PTR(-EINVAL);
1970
1971 /*
1972 * If the new process will be in a different pid or user namespace
1973 * do not allow it to share a thread group with the forking task.
1974 */
1975 if (clone_flags & CLONE_THREAD) {
1976 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1977 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1978 return ERR_PTR(-EINVAL);
1979 }
1980
1981 if (clone_flags & CLONE_PIDFD) {
1982 /*
1983 * - CLONE_DETACHED is blocked so that we can potentially
1984 * reuse it later for CLONE_PIDFD.
1985 */
1986 if (clone_flags & CLONE_DETACHED)
1987 return ERR_PTR(-EINVAL);
1988 }
1989
1990 /*
1991 * Force any signals received before this point to be delivered
1992 * before the fork happens. Collect up signals sent to multiple
1993 * processes that happen during the fork and delay them so that
1994 * they appear to happen after the fork.
1995 */
1996 sigemptyset(&delayed.signal);
1997 INIT_HLIST_NODE(&delayed.node);
1998
1999 spin_lock_irq(¤t->sighand->siglock);
2000 if (!(clone_flags & CLONE_THREAD))
2001 hlist_add_head(&delayed.node, ¤t->signal->multiprocess);
2002 recalc_sigpending();
2003 spin_unlock_irq(¤t->sighand->siglock);
2004 retval = -ERESTARTNOINTR;
2005 if (task_sigpending(current))
2006 goto fork_out;
2007
2008 retval = -ENOMEM;
2009 p = dup_task_struct(current, node);
2010 if (!p)
2011 goto fork_out;
2012 p->flags &= ~PF_KTHREAD;
2013 if (args->kthread)
2014 p->flags |= PF_KTHREAD;
2015 if (args->user_worker) {
2016 /*
2017 * Mark us a user worker, and block any signal that isn't
2018 * fatal or STOP
2019 */
2020 p->flags |= PF_USER_WORKER;
2021 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2022 }
2023 if (args->io_thread)
2024 p->flags |= PF_IO_WORKER;
2025
2026 if (args->name)
2027 strscpy_pad(p->comm, args->name, sizeof(p->comm));
2028
2029 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2030 /*
2031 * Clear TID on mm_release()?
2032 */
2033 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2034
2035 ftrace_graph_init_task(p);
2036
2037 rt_mutex_init_task(p);
2038
2039 lockdep_assert_irqs_enabled();
2040 #ifdef CONFIG_PROVE_LOCKING
2041 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2042 #endif
2043 retval = copy_creds(p, clone_flags);
2044 if (retval < 0)
2045 goto bad_fork_free;
2046
2047 retval = -EAGAIN;
2048 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2049 if (p->real_cred->user != INIT_USER &&
2050 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2051 goto bad_fork_cleanup_count;
2052 }
2053 current->flags &= ~PF_NPROC_EXCEEDED;
2054
2055 /*
2056 * If multiple threads are within copy_process(), then this check
2057 * triggers too late. This doesn't hurt, the check is only there
2058 * to stop root fork bombs.
2059 */
2060 retval = -EAGAIN;
2061 if (data_race(nr_threads >= max_threads))
2062 goto bad_fork_cleanup_count;
2063
2064 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
2065 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2066 p->flags |= PF_FORKNOEXEC;
2067 INIT_LIST_HEAD(&p->children);
2068 INIT_LIST_HEAD(&p->sibling);
2069 rcu_copy_process(p);
2070 p->vfork_done = NULL;
2071 spin_lock_init(&p->alloc_lock);
2072
2073 init_sigpending(&p->pending);
2074
2075 p->utime = p->stime = p->gtime = 0;
2076 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2077 p->utimescaled = p->stimescaled = 0;
2078 #endif
2079 prev_cputime_init(&p->prev_cputime);
2080
2081 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2082 seqcount_init(&p->vtime.seqcount);
2083 p->vtime.starttime = 0;
2084 p->vtime.state = VTIME_INACTIVE;
2085 #endif
2086
2087 #ifdef CONFIG_IO_URING
2088 p->io_uring = NULL;
2089 #endif
2090
2091 p->default_timer_slack_ns = current->timer_slack_ns;
2092
2093 #ifdef CONFIG_PSI
2094 p->psi_flags = 0;
2095 #endif
2096
2097 task_io_accounting_init(&p->ioac);
2098 acct_clear_integrals(p);
2099
2100 posix_cputimers_init(&p->posix_cputimers);
2101 tick_dep_init_task(p);
2102
2103 p->io_context = NULL;
2104 audit_set_context(p, NULL);
2105 cgroup_fork(p);
2106 if (args->kthread) {
2107 if (!set_kthread_struct(p))
2108 goto bad_fork_cleanup_delayacct;
2109 }
2110 #ifdef CONFIG_NUMA
2111 p->mempolicy = mpol_dup(p->mempolicy);
2112 if (IS_ERR(p->mempolicy)) {
2113 retval = PTR_ERR(p->mempolicy);
2114 p->mempolicy = NULL;
2115 goto bad_fork_cleanup_delayacct;
2116 }
2117 #endif
2118 #ifdef CONFIG_CPUSETS
2119 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2120 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2121 #endif
2122 #ifdef CONFIG_TRACE_IRQFLAGS
2123 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2124 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2125 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2126 p->softirqs_enabled = 1;
2127 p->softirq_context = 0;
2128 #endif
2129
2130 p->pagefault_disabled = 0;
2131
2132 lockdep_init_task(p);
2133
2134 p->blocked_on = NULL; /* not blocked yet */
2135
2136 #ifdef CONFIG_BCACHE
2137 p->sequential_io = 0;
2138 p->sequential_io_avg = 0;
2139 #endif
2140 #ifdef CONFIG_BPF_SYSCALL
2141 RCU_INIT_POINTER(p->bpf_storage, NULL);
2142 p->bpf_ctx = NULL;
2143 #endif
2144
2145 unwind_task_init(p);
2146
2147 /* Perform scheduler related setup. Assign this task to a CPU. */
2148 retval = sched_fork(clone_flags, p);
2149 if (retval)
2150 goto bad_fork_cleanup_policy;
2151
2152 retval = perf_event_init_task(p, clone_flags);
2153 if (retval)
2154 goto bad_fork_sched_cancel_fork;
2155 retval = audit_alloc(p);
2156 if (retval)
2157 goto bad_fork_cleanup_perf;
2158 /* copy all the process information */
2159 shm_init_task(p);
2160 retval = security_task_alloc(p, clone_flags);
2161 if (retval)
2162 goto bad_fork_cleanup_audit;
2163 retval = copy_semundo(clone_flags, p);
2164 if (retval)
2165 goto bad_fork_cleanup_security;
2166 retval = copy_files(clone_flags, p, args->no_files);
2167 if (retval)
2168 goto bad_fork_cleanup_semundo;
2169 retval = copy_fs(clone_flags, p);
2170 if (retval)
2171 goto bad_fork_cleanup_files;
2172 retval = copy_sighand(clone_flags, p);
2173 if (retval)
2174 goto bad_fork_cleanup_fs;
2175 retval = copy_signal(clone_flags, p);
2176 if (retval)
2177 goto bad_fork_cleanup_sighand;
2178 retval = copy_mm(clone_flags, p);
2179 if (retval)
2180 goto bad_fork_cleanup_signal;
2181 retval = copy_namespaces(clone_flags, p);
2182 if (retval)
2183 goto bad_fork_cleanup_mm;
2184 retval = copy_io(clone_flags, p);
2185 if (retval)
2186 goto bad_fork_cleanup_namespaces;
2187 retval = copy_thread(p, args);
2188 if (retval)
2189 goto bad_fork_cleanup_io;
2190
2191 stackleak_task_init(p);
2192
2193 if (pid != &init_struct_pid) {
2194 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2195 args->set_tid_size);
2196 if (IS_ERR(pid)) {
2197 retval = PTR_ERR(pid);
2198 goto bad_fork_cleanup_thread;
2199 }
2200 }
2201
2202 /*
2203 * This has to happen after we've potentially unshared the file
2204 * descriptor table (so that the pidfd doesn't leak into the child
2205 * if the fd table isn't shared).
2206 */
2207 if (clone_flags & CLONE_PIDFD) {
2208 int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0;
2209
2210 /*
2211 * Note that no task has been attached to @pid yet indicate
2212 * that via CLONE_PIDFD.
2213 */
2214 retval = pidfd_prepare(pid, flags | PIDFD_STALE, &pidfile);
2215 if (retval < 0)
2216 goto bad_fork_free_pid;
2217 pidfd = retval;
2218
2219 retval = put_user(pidfd, args->pidfd);
2220 if (retval)
2221 goto bad_fork_put_pidfd;
2222 }
2223
2224 #ifdef CONFIG_BLOCK
2225 p->plug = NULL;
2226 #endif
2227 futex_init_task(p);
2228
2229 /*
2230 * sigaltstack should be cleared when sharing the same VM
2231 */
2232 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2233 sas_ss_reset(p);
2234
2235 /*
2236 * Syscall tracing and stepping should be turned off in the
2237 * child regardless of CLONE_PTRACE.
2238 */
2239 user_disable_single_step(p);
2240 clear_task_syscall_work(p, SYSCALL_TRACE);
2241 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2242 clear_task_syscall_work(p, SYSCALL_EMU);
2243 #endif
2244 clear_tsk_latency_tracing(p);
2245
2246 /* ok, now we should be set up.. */
2247 p->pid = pid_nr(pid);
2248 if (clone_flags & CLONE_THREAD) {
2249 p->group_leader = current->group_leader;
2250 p->tgid = current->tgid;
2251 } else {
2252 p->group_leader = p;
2253 p->tgid = p->pid;
2254 }
2255
2256 p->nr_dirtied = 0;
2257 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2258 p->dirty_paused_when = 0;
2259
2260 p->pdeath_signal = 0;
2261 p->task_works = NULL;
2262 clear_posix_cputimers_work(p);
2263
2264 #ifdef CONFIG_KRETPROBES
2265 p->kretprobe_instances.first = NULL;
2266 #endif
2267 #ifdef CONFIG_RETHOOK
2268 p->rethooks.first = NULL;
2269 #endif
2270
2271 /*
2272 * Ensure that the cgroup subsystem policies allow the new process to be
2273 * forked. It should be noted that the new process's css_set can be changed
2274 * between here and cgroup_post_fork() if an organisation operation is in
2275 * progress.
2276 */
2277 retval = cgroup_can_fork(p, args);
2278 if (retval)
2279 goto bad_fork_put_pidfd;
2280
2281 /*
2282 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2283 * the new task on the correct runqueue. All this *before* the task
2284 * becomes visible.
2285 *
2286 * This isn't part of ->can_fork() because while the re-cloning is
2287 * cgroup specific, it unconditionally needs to place the task on a
2288 * runqueue.
2289 */
2290 retval = sched_cgroup_fork(p, args);
2291 if (retval)
2292 goto bad_fork_cancel_cgroup;
2293
2294 /*
2295 * Allocate a default futex hash for the user process once the first
2296 * thread spawns.
2297 */
2298 if (need_futex_hash_allocate_default(clone_flags)) {
2299 retval = futex_hash_allocate_default();
2300 if (retval)
2301 goto bad_fork_cancel_cgroup;
2302 /*
2303 * If we fail beyond this point we don't free the allocated
2304 * futex hash map. We assume that another thread will be created
2305 * and makes use of it. The hash map will be freed once the main
2306 * thread terminates.
2307 */
2308 }
2309 /*
2310 * From this point on we must avoid any synchronous user-space
2311 * communication until we take the tasklist-lock. In particular, we do
2312 * not want user-space to be able to predict the process start-time by
2313 * stalling fork(2) after we recorded the start_time but before it is
2314 * visible to the system.
2315 */
2316
2317 p->start_time = ktime_get_ns();
2318 p->start_boottime = ktime_get_boottime_ns();
2319
2320 /*
2321 * Make it visible to the rest of the system, but dont wake it up yet.
2322 * Need tasklist lock for parent etc handling!
2323 */
2324 write_lock_irq(&tasklist_lock);
2325
2326 /* CLONE_PARENT re-uses the old parent */
2327 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2328 p->real_parent = current->real_parent;
2329 p->parent_exec_id = current->parent_exec_id;
2330 if (clone_flags & CLONE_THREAD)
2331 p->exit_signal = -1;
2332 else
2333 p->exit_signal = current->group_leader->exit_signal;
2334 } else {
2335 p->real_parent = current;
2336 p->parent_exec_id = current->self_exec_id;
2337 p->exit_signal = args->exit_signal;
2338 }
2339
2340 klp_copy_process(p);
2341
2342 sched_core_fork(p);
2343
2344 spin_lock(¤t->sighand->siglock);
2345
2346 rv_task_fork(p);
2347
2348 rseq_fork(p, clone_flags);
2349
2350 /* Don't start children in a dying pid namespace */
2351 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2352 retval = -ENOMEM;
2353 goto bad_fork_core_free;
2354 }
2355
2356 /* Let kill terminate clone/fork in the middle */
2357 if (fatal_signal_pending(current)) {
2358 retval = -EINTR;
2359 goto bad_fork_core_free;
2360 }
2361
2362 /* No more failure paths after this point. */
2363
2364 /*
2365 * Copy seccomp details explicitly here, in case they were changed
2366 * before holding sighand lock.
2367 */
2368 copy_seccomp(p);
2369
2370 init_task_pid_links(p);
2371 if (likely(p->pid)) {
2372 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2373
2374 init_task_pid(p, PIDTYPE_PID, pid);
2375 if (thread_group_leader(p)) {
2376 init_task_pid(p, PIDTYPE_TGID, pid);
2377 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2378 init_task_pid(p, PIDTYPE_SID, task_session(current));
2379
2380 if (is_child_reaper(pid)) {
2381 ns_of_pid(pid)->child_reaper = p;
2382 p->signal->flags |= SIGNAL_UNKILLABLE;
2383 }
2384 p->signal->shared_pending.signal = delayed.signal;
2385 p->signal->tty = tty_kref_get(current->signal->tty);
2386 /*
2387 * Inherit has_child_subreaper flag under the same
2388 * tasklist_lock with adding child to the process tree
2389 * for propagate_has_child_subreaper optimization.
2390 */
2391 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2392 p->real_parent->signal->is_child_subreaper;
2393 list_add_tail(&p->sibling, &p->real_parent->children);
2394 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2395 attach_pid(p, PIDTYPE_TGID);
2396 attach_pid(p, PIDTYPE_PGID);
2397 attach_pid(p, PIDTYPE_SID);
2398 __this_cpu_inc(process_counts);
2399 } else {
2400 current->signal->nr_threads++;
2401 current->signal->quick_threads++;
2402 atomic_inc(¤t->signal->live);
2403 refcount_inc(¤t->signal->sigcnt);
2404 task_join_group_stop(p);
2405 list_add_tail_rcu(&p->thread_node,
2406 &p->signal->thread_head);
2407 }
2408 attach_pid(p, PIDTYPE_PID);
2409 nr_threads++;
2410 }
2411 total_forks++;
2412 hlist_del_init(&delayed.node);
2413 spin_unlock(¤t->sighand->siglock);
2414 syscall_tracepoint_update(p);
2415 write_unlock_irq(&tasklist_lock);
2416
2417 if (pidfile)
2418 fd_install(pidfd, pidfile);
2419
2420 proc_fork_connector(p);
2421 sched_post_fork(p);
2422 cgroup_post_fork(p, args);
2423 perf_event_fork(p);
2424
2425 trace_task_newtask(p, clone_flags);
2426 uprobe_copy_process(p, clone_flags);
2427 user_events_fork(p, clone_flags);
2428
2429 copy_oom_score_adj(clone_flags, p);
2430
2431 return p;
2432
2433 bad_fork_core_free:
2434 sched_core_free(p);
2435 spin_unlock(¤t->sighand->siglock);
2436 write_unlock_irq(&tasklist_lock);
2437 bad_fork_cancel_cgroup:
2438 cgroup_cancel_fork(p, args);
2439 bad_fork_put_pidfd:
2440 if (clone_flags & CLONE_PIDFD) {
2441 fput(pidfile);
2442 put_unused_fd(pidfd);
2443 }
2444 bad_fork_free_pid:
2445 if (pid != &init_struct_pid)
2446 free_pid(pid);
2447 bad_fork_cleanup_thread:
2448 exit_thread(p);
2449 bad_fork_cleanup_io:
2450 if (p->io_context)
2451 exit_io_context(p);
2452 bad_fork_cleanup_namespaces:
2453 exit_nsproxy_namespaces(p);
2454 bad_fork_cleanup_mm:
2455 if (p->mm) {
2456 sched_mm_cid_exit(p);
2457 mm_clear_owner(p->mm, p);
2458 mmput(p->mm);
2459 }
2460 bad_fork_cleanup_signal:
2461 if (!(clone_flags & CLONE_THREAD))
2462 free_signal_struct(p->signal);
2463 bad_fork_cleanup_sighand:
2464 __cleanup_sighand(p->sighand);
2465 bad_fork_cleanup_fs:
2466 exit_fs(p); /* blocking */
2467 bad_fork_cleanup_files:
2468 exit_files(p); /* blocking */
2469 bad_fork_cleanup_semundo:
2470 exit_sem(p);
2471 bad_fork_cleanup_security:
2472 security_task_free(p);
2473 bad_fork_cleanup_audit:
2474 audit_free(p);
2475 bad_fork_cleanup_perf:
2476 perf_event_free_task(p);
2477 bad_fork_sched_cancel_fork:
2478 sched_cancel_fork(p);
2479 bad_fork_cleanup_policy:
2480 lockdep_free_task(p);
2481 #ifdef CONFIG_NUMA
2482 mpol_put(p->mempolicy);
2483 #endif
2484 bad_fork_cleanup_delayacct:
2485 delayacct_tsk_free(p);
2486 bad_fork_cleanup_count:
2487 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2488 exit_cred_namespaces(p);
2489 exit_creds(p);
2490 bad_fork_free:
2491 WRITE_ONCE(p->__state, TASK_DEAD);
2492 exit_task_stack_account(p);
2493 put_task_stack(p);
2494 delayed_free_task(p);
2495 fork_out:
2496 spin_lock_irq(¤t->sighand->siglock);
2497 hlist_del_init(&delayed.node);
2498 spin_unlock_irq(¤t->sighand->siglock);
2499 return ERR_PTR(retval);
2500 }
2501
init_idle_pids(struct task_struct * idle)2502 static inline void init_idle_pids(struct task_struct *idle)
2503 {
2504 enum pid_type type;
2505
2506 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2507 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2508 init_task_pid(idle, type, &init_struct_pid);
2509 }
2510 }
2511
idle_dummy(void * dummy)2512 static int idle_dummy(void *dummy)
2513 {
2514 /* This function is never called */
2515 return 0;
2516 }
2517
fork_idle(int cpu)2518 struct task_struct * __init fork_idle(int cpu)
2519 {
2520 struct task_struct *task;
2521 struct kernel_clone_args args = {
2522 .flags = CLONE_VM,
2523 .fn = &idle_dummy,
2524 .fn_arg = NULL,
2525 .kthread = 1,
2526 .idle = 1,
2527 };
2528
2529 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2530 if (!IS_ERR(task)) {
2531 init_idle_pids(task);
2532 init_idle(task, cpu);
2533 }
2534
2535 return task;
2536 }
2537
2538 /*
2539 * This is like kernel_clone(), but shaved down and tailored to just
2540 * creating io_uring workers. It returns a created task, or an error pointer.
2541 * The returned task is inactive, and the caller must fire it up through
2542 * wake_up_new_task(p). All signals are blocked in the created task.
2543 */
create_io_thread(int (* fn)(void *),void * arg,int node)2544 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2545 {
2546 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2547 CLONE_IO|CLONE_VM|CLONE_UNTRACED;
2548 struct kernel_clone_args args = {
2549 .flags = flags,
2550 .fn = fn,
2551 .fn_arg = arg,
2552 .io_thread = 1,
2553 .user_worker = 1,
2554 };
2555
2556 return copy_process(NULL, 0, node, &args);
2557 }
2558
2559 /*
2560 * Ok, this is the main fork-routine.
2561 *
2562 * It copies the process, and if successful kick-starts
2563 * it and waits for it to finish using the VM if required.
2564 *
2565 * args->exit_signal is expected to be checked for sanity by the caller.
2566 */
kernel_clone(struct kernel_clone_args * args)2567 pid_t kernel_clone(struct kernel_clone_args *args)
2568 {
2569 u64 clone_flags = args->flags;
2570 struct completion vfork;
2571 struct pid *pid;
2572 struct task_struct *p;
2573 int trace = 0;
2574 pid_t nr;
2575
2576 /*
2577 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2578 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2579 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2580 * field in struct clone_args and it still doesn't make sense to have
2581 * them both point at the same memory location. Performing this check
2582 * here has the advantage that we don't need to have a separate helper
2583 * to check for legacy clone().
2584 */
2585 if ((clone_flags & CLONE_PIDFD) &&
2586 (clone_flags & CLONE_PARENT_SETTID) &&
2587 (args->pidfd == args->parent_tid))
2588 return -EINVAL;
2589
2590 /*
2591 * Determine whether and which event to report to ptracer. When
2592 * called from kernel_thread or CLONE_UNTRACED is explicitly
2593 * requested, no event is reported; otherwise, report if the event
2594 * for the type of forking is enabled.
2595 */
2596 if (!(clone_flags & CLONE_UNTRACED)) {
2597 if (clone_flags & CLONE_VFORK)
2598 trace = PTRACE_EVENT_VFORK;
2599 else if (args->exit_signal != SIGCHLD)
2600 trace = PTRACE_EVENT_CLONE;
2601 else
2602 trace = PTRACE_EVENT_FORK;
2603
2604 if (likely(!ptrace_event_enabled(current, trace)))
2605 trace = 0;
2606 }
2607
2608 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2609 add_latent_entropy();
2610
2611 if (IS_ERR(p))
2612 return PTR_ERR(p);
2613
2614 /*
2615 * Do this prior waking up the new thread - the thread pointer
2616 * might get invalid after that point, if the thread exits quickly.
2617 */
2618 trace_sched_process_fork(current, p);
2619
2620 pid = get_task_pid(p, PIDTYPE_PID);
2621 nr = pid_vnr(pid);
2622
2623 if (clone_flags & CLONE_PARENT_SETTID)
2624 put_user(nr, args->parent_tid);
2625
2626 if (clone_flags & CLONE_VFORK) {
2627 p->vfork_done = &vfork;
2628 init_completion(&vfork);
2629 get_task_struct(p);
2630 }
2631
2632 if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2633 /* lock the task to synchronize with memcg migration */
2634 task_lock(p);
2635 lru_gen_add_mm(p->mm);
2636 task_unlock(p);
2637 }
2638
2639 wake_up_new_task(p);
2640
2641 /* forking complete and child started to run, tell ptracer */
2642 if (unlikely(trace))
2643 ptrace_event_pid(trace, pid);
2644
2645 if (clone_flags & CLONE_VFORK) {
2646 if (!wait_for_vfork_done(p, &vfork))
2647 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2648 }
2649
2650 put_pid(pid);
2651 return nr;
2652 }
2653
2654 /*
2655 * Create a kernel thread.
2656 */
kernel_thread(int (* fn)(void *),void * arg,const char * name,unsigned long flags)2657 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2658 unsigned long flags)
2659 {
2660 struct kernel_clone_args args = {
2661 .flags = ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL),
2662 .exit_signal = (flags & CSIGNAL),
2663 .fn = fn,
2664 .fn_arg = arg,
2665 .name = name,
2666 .kthread = 1,
2667 };
2668
2669 return kernel_clone(&args);
2670 }
2671
2672 /*
2673 * Create a user mode thread.
2674 */
user_mode_thread(int (* fn)(void *),void * arg,unsigned long flags)2675 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2676 {
2677 struct kernel_clone_args args = {
2678 .flags = ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL),
2679 .exit_signal = (flags & CSIGNAL),
2680 .fn = fn,
2681 .fn_arg = arg,
2682 };
2683
2684 return kernel_clone(&args);
2685 }
2686
2687 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2688 SYSCALL_DEFINE0(fork)
2689 {
2690 #ifdef CONFIG_MMU
2691 struct kernel_clone_args args = {
2692 .exit_signal = SIGCHLD,
2693 };
2694
2695 return kernel_clone(&args);
2696 #else
2697 /* can not support in nommu mode */
2698 return -EINVAL;
2699 #endif
2700 }
2701 #endif
2702
2703 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)2704 SYSCALL_DEFINE0(vfork)
2705 {
2706 struct kernel_clone_args args = {
2707 .flags = CLONE_VFORK | CLONE_VM,
2708 .exit_signal = SIGCHLD,
2709 };
2710
2711 return kernel_clone(&args);
2712 }
2713 #endif
2714
2715 #ifdef __ARCH_WANT_SYS_CLONE
2716 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)2717 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2718 int __user *, parent_tidptr,
2719 unsigned long, tls,
2720 int __user *, child_tidptr)
2721 #elif defined(CONFIG_CLONE_BACKWARDS2)
2722 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2723 int __user *, parent_tidptr,
2724 int __user *, child_tidptr,
2725 unsigned long, tls)
2726 #elif defined(CONFIG_CLONE_BACKWARDS3)
2727 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2728 int, stack_size,
2729 int __user *, parent_tidptr,
2730 int __user *, child_tidptr,
2731 unsigned long, tls)
2732 #else
2733 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2734 int __user *, parent_tidptr,
2735 int __user *, child_tidptr,
2736 unsigned long, tls)
2737 #endif
2738 {
2739 struct kernel_clone_args args = {
2740 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2741 .pidfd = parent_tidptr,
2742 .child_tid = child_tidptr,
2743 .parent_tid = parent_tidptr,
2744 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2745 .stack = newsp,
2746 .tls = tls,
2747 };
2748
2749 return kernel_clone(&args);
2750 }
2751 #endif
2752
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)2753 static noinline int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2754 struct clone_args __user *uargs,
2755 size_t usize)
2756 {
2757 int err;
2758 struct clone_args args;
2759 pid_t *kset_tid = kargs->set_tid;
2760
2761 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2762 CLONE_ARGS_SIZE_VER0);
2763 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2764 CLONE_ARGS_SIZE_VER1);
2765 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2766 CLONE_ARGS_SIZE_VER2);
2767 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2768
2769 if (unlikely(usize > PAGE_SIZE))
2770 return -E2BIG;
2771 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2772 return -EINVAL;
2773
2774 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2775 if (err)
2776 return err;
2777
2778 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2779 return -EINVAL;
2780
2781 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2782 return -EINVAL;
2783
2784 if (unlikely(args.set_tid && args.set_tid_size == 0))
2785 return -EINVAL;
2786
2787 /*
2788 * Verify that higher 32bits of exit_signal are unset and that
2789 * it is a valid signal
2790 */
2791 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2792 !valid_signal(args.exit_signal)))
2793 return -EINVAL;
2794
2795 if ((args.flags & CLONE_INTO_CGROUP) &&
2796 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2797 return -EINVAL;
2798
2799 *kargs = (struct kernel_clone_args){
2800 .flags = args.flags,
2801 .pidfd = u64_to_user_ptr(args.pidfd),
2802 .child_tid = u64_to_user_ptr(args.child_tid),
2803 .parent_tid = u64_to_user_ptr(args.parent_tid),
2804 .exit_signal = args.exit_signal,
2805 .stack = args.stack,
2806 .stack_size = args.stack_size,
2807 .tls = args.tls,
2808 .set_tid_size = args.set_tid_size,
2809 .cgroup = args.cgroup,
2810 };
2811
2812 if (args.set_tid &&
2813 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2814 (kargs->set_tid_size * sizeof(pid_t))))
2815 return -EFAULT;
2816
2817 kargs->set_tid = kset_tid;
2818
2819 return 0;
2820 }
2821
2822 /**
2823 * clone3_stack_valid - check and prepare stack
2824 * @kargs: kernel clone args
2825 *
2826 * Verify that the stack arguments userspace gave us are sane.
2827 * In addition, set the stack direction for userspace since it's easy for us to
2828 * determine.
2829 */
clone3_stack_valid(struct kernel_clone_args * kargs)2830 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2831 {
2832 if (kargs->stack == 0) {
2833 if (kargs->stack_size > 0)
2834 return false;
2835 } else {
2836 if (kargs->stack_size == 0)
2837 return false;
2838
2839 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2840 return false;
2841
2842 #if !defined(CONFIG_STACK_GROWSUP)
2843 kargs->stack += kargs->stack_size;
2844 #endif
2845 }
2846
2847 return true;
2848 }
2849
clone3_args_valid(struct kernel_clone_args * kargs)2850 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2851 {
2852 /* Verify that no unknown flags are passed along. */
2853 if (kargs->flags &
2854 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2855 return false;
2856
2857 /*
2858 * - make the CLONE_DETACHED bit reusable for clone3
2859 * - make the CSIGNAL bits reusable for clone3
2860 */
2861 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
2862 return false;
2863
2864 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2865 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2866 return false;
2867
2868 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2869 kargs->exit_signal)
2870 return false;
2871
2872 if (!clone3_stack_valid(kargs))
2873 return false;
2874
2875 return true;
2876 }
2877
2878 /**
2879 * sys_clone3 - create a new process with specific properties
2880 * @uargs: argument structure
2881 * @size: size of @uargs
2882 *
2883 * clone3() is the extensible successor to clone()/clone2().
2884 * It takes a struct as argument that is versioned by its size.
2885 *
2886 * Return: On success, a positive PID for the child process.
2887 * On error, a negative errno number.
2888 */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)2889 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2890 {
2891 int err;
2892
2893 struct kernel_clone_args kargs;
2894 pid_t set_tid[MAX_PID_NS_LEVEL];
2895
2896 #ifdef __ARCH_BROKEN_SYS_CLONE3
2897 #warning clone3() entry point is missing, please fix
2898 return -ENOSYS;
2899 #endif
2900
2901 kargs.set_tid = set_tid;
2902
2903 err = copy_clone_args_from_user(&kargs, uargs, size);
2904 if (err)
2905 return err;
2906
2907 if (!clone3_args_valid(&kargs))
2908 return -EINVAL;
2909
2910 return kernel_clone(&kargs);
2911 }
2912
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)2913 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2914 {
2915 struct task_struct *leader, *parent, *child;
2916 int res;
2917
2918 read_lock(&tasklist_lock);
2919 leader = top = top->group_leader;
2920 down:
2921 for_each_thread(leader, parent) {
2922 list_for_each_entry(child, &parent->children, sibling) {
2923 res = visitor(child, data);
2924 if (res) {
2925 if (res < 0)
2926 goto out;
2927 leader = child;
2928 goto down;
2929 }
2930 up:
2931 ;
2932 }
2933 }
2934
2935 if (leader != top) {
2936 child = leader;
2937 parent = child->real_parent;
2938 leader = parent->group_leader;
2939 goto up;
2940 }
2941 out:
2942 read_unlock(&tasklist_lock);
2943 }
2944
2945 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2946 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2947 #endif
2948
sighand_ctor(void * data)2949 static void sighand_ctor(void *data)
2950 {
2951 struct sighand_struct *sighand = data;
2952
2953 spin_lock_init(&sighand->siglock);
2954 init_waitqueue_head(&sighand->signalfd_wqh);
2955 }
2956
mm_cache_init(void)2957 void __init mm_cache_init(void)
2958 {
2959 unsigned int mm_size;
2960
2961 /*
2962 * The mm_cpumask is located at the end of mm_struct, and is
2963 * dynamically sized based on the maximum CPU number this system
2964 * can have, taking hotplug into account (nr_cpu_ids).
2965 */
2966 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
2967
2968 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2969 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2970 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2971 offsetof(struct mm_struct, saved_auxv),
2972 sizeof_field(struct mm_struct, saved_auxv),
2973 NULL);
2974 }
2975
proc_caches_init(void)2976 void __init proc_caches_init(void)
2977 {
2978 sighand_cachep = kmem_cache_create("sighand_cache",
2979 sizeof(struct sighand_struct), 0,
2980 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2981 SLAB_ACCOUNT, sighand_ctor);
2982 signal_cachep = kmem_cache_create("signal_cache",
2983 sizeof(struct signal_struct), 0,
2984 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2985 NULL);
2986 files_cachep = kmem_cache_create("files_cache",
2987 sizeof(struct files_struct), 0,
2988 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2989 NULL);
2990 fs_cachep = kmem_cache_create("fs_cache",
2991 sizeof(struct fs_struct), 0,
2992 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2993 NULL);
2994 mmap_init();
2995 nsproxy_cache_init();
2996 }
2997
2998 /*
2999 * Check constraints on flags passed to the unshare system call.
3000 */
check_unshare_flags(unsigned long unshare_flags)3001 static int check_unshare_flags(unsigned long unshare_flags)
3002 {
3003 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3004 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3005 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3006 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3007 CLONE_NEWTIME))
3008 return -EINVAL;
3009 /*
3010 * Not implemented, but pretend it works if there is nothing
3011 * to unshare. Note that unsharing the address space or the
3012 * signal handlers also need to unshare the signal queues (aka
3013 * CLONE_THREAD).
3014 */
3015 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3016 if (!thread_group_empty(current))
3017 return -EINVAL;
3018 }
3019 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3020 if (refcount_read(¤t->sighand->count) > 1)
3021 return -EINVAL;
3022 }
3023 if (unshare_flags & CLONE_VM) {
3024 if (!current_is_single_threaded())
3025 return -EINVAL;
3026 }
3027
3028 return 0;
3029 }
3030
3031 /*
3032 * Unshare the filesystem structure if it is being shared
3033 */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)3034 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3035 {
3036 struct fs_struct *fs = current->fs;
3037
3038 if (!(unshare_flags & CLONE_FS) || !fs)
3039 return 0;
3040
3041 /* don't need lock here; in the worst case we'll do useless copy */
3042 if (fs->users == 1)
3043 return 0;
3044
3045 *new_fsp = copy_fs_struct(fs);
3046 if (!*new_fsp)
3047 return -ENOMEM;
3048
3049 return 0;
3050 }
3051
3052 /*
3053 * Unshare file descriptor table if it is being shared
3054 */
unshare_fd(unsigned long unshare_flags,struct files_struct ** new_fdp)3055 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
3056 {
3057 struct files_struct *fd = current->files;
3058
3059 if ((unshare_flags & CLONE_FILES) &&
3060 (fd && atomic_read(&fd->count) > 1)) {
3061 fd = dup_fd(fd, NULL);
3062 if (IS_ERR(fd))
3063 return PTR_ERR(fd);
3064 *new_fdp = fd;
3065 }
3066
3067 return 0;
3068 }
3069
3070 /*
3071 * unshare allows a process to 'unshare' part of the process
3072 * context which was originally shared using clone. copy_*
3073 * functions used by kernel_clone() cannot be used here directly
3074 * because they modify an inactive task_struct that is being
3075 * constructed. Here we are modifying the current, active,
3076 * task_struct.
3077 */
ksys_unshare(unsigned long unshare_flags)3078 int ksys_unshare(unsigned long unshare_flags)
3079 {
3080 struct fs_struct *fs, *new_fs = NULL;
3081 struct files_struct *new_fd = NULL;
3082 struct cred *new_cred = NULL;
3083 struct nsproxy *new_nsproxy = NULL;
3084 int do_sysvsem = 0;
3085 int err;
3086
3087 /*
3088 * If unsharing a user namespace must also unshare the thread group
3089 * and unshare the filesystem root and working directories.
3090 */
3091 if (unshare_flags & CLONE_NEWUSER)
3092 unshare_flags |= CLONE_THREAD | CLONE_FS;
3093 /*
3094 * If unsharing vm, must also unshare signal handlers.
3095 */
3096 if (unshare_flags & CLONE_VM)
3097 unshare_flags |= CLONE_SIGHAND;
3098 /*
3099 * If unsharing a signal handlers, must also unshare the signal queues.
3100 */
3101 if (unshare_flags & CLONE_SIGHAND)
3102 unshare_flags |= CLONE_THREAD;
3103 /*
3104 * If unsharing namespace, must also unshare filesystem information.
3105 */
3106 if (unshare_flags & CLONE_NEWNS)
3107 unshare_flags |= CLONE_FS;
3108
3109 err = check_unshare_flags(unshare_flags);
3110 if (err)
3111 goto bad_unshare_out;
3112 /*
3113 * CLONE_NEWIPC must also detach from the undolist: after switching
3114 * to a new ipc namespace, the semaphore arrays from the old
3115 * namespace are unreachable.
3116 */
3117 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3118 do_sysvsem = 1;
3119 err = unshare_fs(unshare_flags, &new_fs);
3120 if (err)
3121 goto bad_unshare_out;
3122 err = unshare_fd(unshare_flags, &new_fd);
3123 if (err)
3124 goto bad_unshare_cleanup_fs;
3125 err = unshare_userns(unshare_flags, &new_cred);
3126 if (err)
3127 goto bad_unshare_cleanup_fd;
3128 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3129 new_cred, new_fs);
3130 if (err)
3131 goto bad_unshare_cleanup_cred;
3132
3133 if (new_cred) {
3134 err = set_cred_ucounts(new_cred);
3135 if (err)
3136 goto bad_unshare_cleanup_cred;
3137 }
3138
3139 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3140 if (do_sysvsem) {
3141 /*
3142 * CLONE_SYSVSEM is equivalent to sys_exit().
3143 */
3144 exit_sem(current);
3145 }
3146 if (unshare_flags & CLONE_NEWIPC) {
3147 /* Orphan segments in old ns (see sem above). */
3148 exit_shm(current);
3149 shm_init_task(current);
3150 }
3151
3152 if (new_nsproxy)
3153 switch_task_namespaces(current, new_nsproxy);
3154
3155 task_lock(current);
3156
3157 if (new_fs) {
3158 fs = current->fs;
3159 read_seqlock_excl(&fs->seq);
3160 current->fs = new_fs;
3161 if (--fs->users)
3162 new_fs = NULL;
3163 else
3164 new_fs = fs;
3165 read_sequnlock_excl(&fs->seq);
3166 }
3167
3168 if (new_fd)
3169 swap(current->files, new_fd);
3170
3171 task_unlock(current);
3172
3173 if (new_cred) {
3174 /* Install the new user namespace */
3175 commit_creds(new_cred);
3176 new_cred = NULL;
3177 }
3178 }
3179
3180 perf_event_namespaces(current);
3181
3182 bad_unshare_cleanup_cred:
3183 if (new_cred)
3184 put_cred(new_cred);
3185 bad_unshare_cleanup_fd:
3186 if (new_fd)
3187 put_files_struct(new_fd);
3188
3189 bad_unshare_cleanup_fs:
3190 if (new_fs)
3191 free_fs_struct(new_fs);
3192
3193 bad_unshare_out:
3194 return err;
3195 }
3196
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)3197 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3198 {
3199 return ksys_unshare(unshare_flags);
3200 }
3201
3202 /*
3203 * Helper to unshare the files of the current task.
3204 * We don't want to expose copy_files internals to
3205 * the exec layer of the kernel.
3206 */
3207
unshare_files(void)3208 int unshare_files(void)
3209 {
3210 struct task_struct *task = current;
3211 struct files_struct *old, *copy = NULL;
3212 int error;
3213
3214 error = unshare_fd(CLONE_FILES, ©);
3215 if (error || !copy)
3216 return error;
3217
3218 old = task->files;
3219 task_lock(task);
3220 task->files = copy;
3221 task_unlock(task);
3222 put_files_struct(old);
3223 return 0;
3224 }
3225
sysctl_max_threads(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3226 static int sysctl_max_threads(const struct ctl_table *table, int write,
3227 void *buffer, size_t *lenp, loff_t *ppos)
3228 {
3229 struct ctl_table t;
3230 int ret;
3231 int threads = max_threads;
3232 int min = 1;
3233 int max = MAX_THREADS;
3234
3235 t = *table;
3236 t.data = &threads;
3237 t.extra1 = &min;
3238 t.extra2 = &max;
3239
3240 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3241 if (ret || !write)
3242 return ret;
3243
3244 max_threads = threads;
3245
3246 return 0;
3247 }
3248
3249 static const struct ctl_table fork_sysctl_table[] = {
3250 {
3251 .procname = "threads-max",
3252 .data = NULL,
3253 .maxlen = sizeof(int),
3254 .mode = 0644,
3255 .proc_handler = sysctl_max_threads,
3256 },
3257 };
3258
init_fork_sysctl(void)3259 static int __init init_fork_sysctl(void)
3260 {
3261 register_sysctl_init("kernel", fork_sysctl_table);
3262 return 0;
3263 }
3264
3265 subsys_initcall(init_fork_sysctl);
3266