1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2014 Intel Corporation
4 *
5 * Adjustable fractional divider clock implementation.
6 * Uses rational best approximation algorithm.
7 *
8 * Output is calculated as
9 *
10 * rate = (m / n) * parent_rate (1)
11 *
12 * This is useful when we have a prescaler block which asks for
13 * m (numerator) and n (denominator) values to be provided to satisfy
14 * the (1) as much as possible.
15 *
16 * Since m and n have the limitation by a range, e.g.
17 *
18 * n >= 1, n < N_width, where N_width = 2^nwidth (2)
19 *
20 * for some cases the output may be saturated. Hence, from (1) and (2),
21 * assuming the worst case when m = 1, the inequality
22 *
23 * floor(log2(parent_rate / rate)) <= nwidth (3)
24 *
25 * may be derived. Thus, in cases when
26 *
27 * (parent_rate / rate) >> N_width (4)
28 *
29 * we might scale up the rate by 2^scale (see the description of
30 * CLK_FRAC_DIVIDER_POWER_OF_TWO_PS for additional information), where
31 *
32 * scale = floor(log2(parent_rate / rate)) - nwidth (5)
33 *
34 * and assume that the IP, that needs m and n, has also its own
35 * prescaler, which is capable to divide by 2^scale. In this way
36 * we get the denominator to satisfy the desired range (2) and
37 * at the same time a much better result of m and n than simple
38 * saturated values.
39 */
40
41 #include <linux/debugfs.h>
42 #include <linux/device.h>
43 #include <linux/io.h>
44 #include <linux/math.h>
45 #include <linux/module.h>
46 #include <linux/rational.h>
47 #include <linux/slab.h>
48
49 #include <linux/clk-provider.h>
50
51 #include "clk-fractional-divider.h"
52
clk_fd_readl(struct clk_fractional_divider * fd)53 static inline u32 clk_fd_readl(struct clk_fractional_divider *fd)
54 {
55 if (fd->flags & CLK_FRAC_DIVIDER_BIG_ENDIAN)
56 return ioread32be(fd->reg);
57
58 return readl(fd->reg);
59 }
60
clk_fd_writel(struct clk_fractional_divider * fd,u32 val)61 static inline void clk_fd_writel(struct clk_fractional_divider *fd, u32 val)
62 {
63 if (fd->flags & CLK_FRAC_DIVIDER_BIG_ENDIAN)
64 iowrite32be(val, fd->reg);
65 else
66 writel(val, fd->reg);
67 }
68
clk_fd_get_div(struct clk_hw * hw,struct u32_fract * fract)69 static void clk_fd_get_div(struct clk_hw *hw, struct u32_fract *fract)
70 {
71 struct clk_fractional_divider *fd = to_clk_fd(hw);
72 unsigned long flags = 0;
73 unsigned long m, n;
74 u32 mmask, nmask;
75 u32 val;
76
77 if (fd->lock)
78 spin_lock_irqsave(fd->lock, flags);
79 else
80 __acquire(fd->lock);
81
82 val = clk_fd_readl(fd);
83
84 if (fd->lock)
85 spin_unlock_irqrestore(fd->lock, flags);
86 else
87 __release(fd->lock);
88
89 mmask = GENMASK(fd->mwidth - 1, 0) << fd->mshift;
90 nmask = GENMASK(fd->nwidth - 1, 0) << fd->nshift;
91
92 m = (val & mmask) >> fd->mshift;
93 n = (val & nmask) >> fd->nshift;
94
95 if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) {
96 m++;
97 n++;
98 }
99
100 fract->numerator = m;
101 fract->denominator = n;
102 }
103
clk_fd_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)104 static unsigned long clk_fd_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
105 {
106 struct u32_fract fract;
107 u64 ret;
108
109 clk_fd_get_div(hw, &fract);
110
111 if (!fract.numerator || !fract.denominator)
112 return parent_rate;
113
114 ret = (u64)parent_rate * fract.numerator;
115 do_div(ret, fract.denominator);
116
117 return ret;
118 }
119
clk_fractional_divider_general_approximation(struct clk_hw * hw,unsigned long rate,unsigned long * parent_rate,unsigned long * m,unsigned long * n)120 void clk_fractional_divider_general_approximation(struct clk_hw *hw,
121 unsigned long rate,
122 unsigned long *parent_rate,
123 unsigned long *m, unsigned long *n)
124 {
125 struct clk_fractional_divider *fd = to_clk_fd(hw);
126 unsigned long max_m, max_n;
127
128 /*
129 * Get rate closer to *parent_rate to guarantee there is no overflow
130 * for m and n. In the result it will be the nearest rate left shifted
131 * by (scale - fd->nwidth) bits.
132 *
133 * For the detailed explanation see the top comment in this file.
134 */
135 if (fd->flags & CLK_FRAC_DIVIDER_POWER_OF_TWO_PS) {
136 unsigned long scale = fls_long(*parent_rate / rate - 1);
137
138 if (scale > fd->nwidth)
139 rate <<= scale - fd->nwidth;
140 }
141
142 if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) {
143 max_m = BIT(fd->mwidth);
144 max_n = BIT(fd->nwidth);
145 } else {
146 max_m = GENMASK(fd->mwidth - 1, 0);
147 max_n = GENMASK(fd->nwidth - 1, 0);
148 }
149
150 rational_best_approximation(rate, *parent_rate, max_m, max_n, m, n);
151 }
152 EXPORT_SYMBOL_GPL(clk_fractional_divider_general_approximation);
153
clk_fd_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)154 static int clk_fd_determine_rate(struct clk_hw *hw,
155 struct clk_rate_request *req)
156 {
157 struct clk_fractional_divider *fd = to_clk_fd(hw);
158 unsigned long m, n;
159 u64 ret;
160
161 if (!req->rate || (!clk_hw_can_set_rate_parent(hw) && req->rate >= req->best_parent_rate)) {
162 req->rate = req->best_parent_rate;
163
164 return 0;
165 }
166
167 if (fd->approximation)
168 fd->approximation(hw, req->rate, &req->best_parent_rate, &m, &n);
169 else
170 clk_fractional_divider_general_approximation(hw, req->rate,
171 &req->best_parent_rate,
172 &m, &n);
173
174 ret = (u64)req->best_parent_rate * m;
175 do_div(ret, n);
176
177 req->rate = ret;
178
179 return 0;
180 }
181
clk_fd_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)182 static int clk_fd_set_rate(struct clk_hw *hw, unsigned long rate,
183 unsigned long parent_rate)
184 {
185 struct clk_fractional_divider *fd = to_clk_fd(hw);
186 unsigned long flags = 0;
187 unsigned long m, n, max_m, max_n;
188 u32 mmask, nmask;
189 u32 val;
190
191 if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) {
192 max_m = BIT(fd->mwidth);
193 max_n = BIT(fd->nwidth);
194 } else {
195 max_m = GENMASK(fd->mwidth - 1, 0);
196 max_n = GENMASK(fd->nwidth - 1, 0);
197 }
198 rational_best_approximation(rate, parent_rate, max_m, max_n, &m, &n);
199
200 if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) {
201 m--;
202 n--;
203 }
204
205 mmask = GENMASK(fd->mwidth - 1, 0) << fd->mshift;
206 nmask = GENMASK(fd->nwidth - 1, 0) << fd->nshift;
207
208 if (fd->lock)
209 spin_lock_irqsave(fd->lock, flags);
210 else
211 __acquire(fd->lock);
212
213 val = clk_fd_readl(fd);
214 val &= ~(mmask | nmask);
215 val |= (m << fd->mshift) | (n << fd->nshift);
216 clk_fd_writel(fd, val);
217
218 if (fd->lock)
219 spin_unlock_irqrestore(fd->lock, flags);
220 else
221 __release(fd->lock);
222
223 return 0;
224 }
225
226 #ifdef CONFIG_DEBUG_FS
clk_fd_numerator_get(void * hw,u64 * val)227 static int clk_fd_numerator_get(void *hw, u64 *val)
228 {
229 struct u32_fract fract;
230
231 clk_fd_get_div(hw, &fract);
232
233 *val = fract.numerator;
234
235 return 0;
236 }
237 DEFINE_DEBUGFS_ATTRIBUTE(clk_fd_numerator_fops, clk_fd_numerator_get, NULL, "%llu\n");
238
clk_fd_denominator_get(void * hw,u64 * val)239 static int clk_fd_denominator_get(void *hw, u64 *val)
240 {
241 struct u32_fract fract;
242
243 clk_fd_get_div(hw, &fract);
244
245 *val = fract.denominator;
246
247 return 0;
248 }
249 DEFINE_DEBUGFS_ATTRIBUTE(clk_fd_denominator_fops, clk_fd_denominator_get, NULL, "%llu\n");
250
clk_fd_debug_init(struct clk_hw * hw,struct dentry * dentry)251 static void clk_fd_debug_init(struct clk_hw *hw, struct dentry *dentry)
252 {
253 debugfs_create_file("numerator", 0444, dentry, hw, &clk_fd_numerator_fops);
254 debugfs_create_file("denominator", 0444, dentry, hw, &clk_fd_denominator_fops);
255 }
256 #endif
257
258 const struct clk_ops clk_fractional_divider_ops = {
259 .recalc_rate = clk_fd_recalc_rate,
260 .determine_rate = clk_fd_determine_rate,
261 .set_rate = clk_fd_set_rate,
262 #ifdef CONFIG_DEBUG_FS
263 .debug_init = clk_fd_debug_init,
264 #endif
265 };
266 EXPORT_SYMBOL_GPL(clk_fractional_divider_ops);
267
clk_hw_register_fractional_divider(struct device * dev,const char * name,const char * parent_name,unsigned long flags,void __iomem * reg,u8 mshift,u8 mwidth,u8 nshift,u8 nwidth,u8 clk_divider_flags,spinlock_t * lock)268 struct clk_hw *clk_hw_register_fractional_divider(struct device *dev,
269 const char *name, const char *parent_name, unsigned long flags,
270 void __iomem *reg, u8 mshift, u8 mwidth, u8 nshift, u8 nwidth,
271 u8 clk_divider_flags, spinlock_t *lock)
272 {
273 struct clk_fractional_divider *fd;
274 struct clk_init_data init;
275 struct clk_hw *hw;
276 int ret;
277
278 fd = kzalloc(sizeof(*fd), GFP_KERNEL);
279 if (!fd)
280 return ERR_PTR(-ENOMEM);
281
282 init.name = name;
283 init.ops = &clk_fractional_divider_ops;
284 init.flags = flags;
285 init.parent_names = parent_name ? &parent_name : NULL;
286 init.num_parents = parent_name ? 1 : 0;
287
288 fd->reg = reg;
289 fd->mshift = mshift;
290 fd->mwidth = mwidth;
291 fd->nshift = nshift;
292 fd->nwidth = nwidth;
293 fd->flags = clk_divider_flags;
294 fd->lock = lock;
295 fd->hw.init = &init;
296
297 hw = &fd->hw;
298 ret = clk_hw_register(dev, hw);
299 if (ret) {
300 kfree(fd);
301 hw = ERR_PTR(ret);
302 }
303
304 return hw;
305 }
306 EXPORT_SYMBOL_GPL(clk_hw_register_fractional_divider);
307
clk_register_fractional_divider(struct device * dev,const char * name,const char * parent_name,unsigned long flags,void __iomem * reg,u8 mshift,u8 mwidth,u8 nshift,u8 nwidth,u8 clk_divider_flags,spinlock_t * lock)308 struct clk *clk_register_fractional_divider(struct device *dev,
309 const char *name, const char *parent_name, unsigned long flags,
310 void __iomem *reg, u8 mshift, u8 mwidth, u8 nshift, u8 nwidth,
311 u8 clk_divider_flags, spinlock_t *lock)
312 {
313 struct clk_hw *hw;
314
315 hw = clk_hw_register_fractional_divider(dev, name, parent_name, flags,
316 reg, mshift, mwidth, nshift, nwidth, clk_divider_flags,
317 lock);
318 if (IS_ERR(hw))
319 return ERR_CAST(hw);
320 return hw->clk;
321 }
322 EXPORT_SYMBOL_GPL(clk_register_fractional_divider);
323
clk_hw_unregister_fractional_divider(struct clk_hw * hw)324 void clk_hw_unregister_fractional_divider(struct clk_hw *hw)
325 {
326 struct clk_fractional_divider *fd;
327
328 fd = to_clk_fd(hw);
329
330 clk_hw_unregister(hw);
331 kfree(fd);
332 }
333