1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/truncate.c - code for taking down pages from address_spaces
4 *
5 * Copyright (C) 2002, Linus Torvalds
6 *
7 * 10Sep2002 Andrew Morton
8 * Initial version.
9 */
10
11 #include <linux/kernel.h>
12 #include <linux/backing-dev.h>
13 #include <linux/dax.h>
14 #include <linux/gfp.h>
15 #include <linux/mm.h>
16 #include <linux/swap.h>
17 #include <linux/export.h>
18 #include <linux/pagemap.h>
19 #include <linux/highmem.h>
20 #include <linux/pagevec.h>
21 #include <linux/task_io_accounting_ops.h>
22 #include <linux/shmem_fs.h>
23 #include <linux/rmap.h>
24 #include "internal.h"
25
26 /*
27 * Regular page slots are stabilized by the page lock even without the tree
28 * itself locked. These unlocked entries need verification under the tree
29 * lock.
30 */
__clear_shadow_entry(struct address_space * mapping,pgoff_t index,void * entry)31 static inline void __clear_shadow_entry(struct address_space *mapping,
32 pgoff_t index, void *entry)
33 {
34 XA_STATE(xas, &mapping->i_pages, index);
35
36 xas_set_update(&xas, workingset_update_node);
37 if (xas_load(&xas) != entry)
38 return;
39 xas_store(&xas, NULL);
40 }
41
clear_shadow_entries(struct address_space * mapping,struct folio_batch * fbatch,pgoff_t * indices)42 static void clear_shadow_entries(struct address_space *mapping,
43 struct folio_batch *fbatch, pgoff_t *indices)
44 {
45 int i;
46
47 /* Handled by shmem itself, or for DAX we do nothing. */
48 if (shmem_mapping(mapping) || dax_mapping(mapping))
49 return;
50
51 spin_lock(&mapping->host->i_lock);
52 xa_lock_irq(&mapping->i_pages);
53
54 for (i = 0; i < folio_batch_count(fbatch); i++) {
55 struct folio *folio = fbatch->folios[i];
56
57 if (xa_is_value(folio))
58 __clear_shadow_entry(mapping, indices[i], folio);
59 }
60
61 xa_unlock_irq(&mapping->i_pages);
62 if (mapping_shrinkable(mapping))
63 inode_add_lru(mapping->host);
64 spin_unlock(&mapping->host->i_lock);
65 }
66
67 /*
68 * Unconditionally remove exceptional entries. Usually called from truncate
69 * path. Note that the folio_batch may be altered by this function by removing
70 * exceptional entries similar to what folio_batch_remove_exceptionals() does.
71 */
truncate_folio_batch_exceptionals(struct address_space * mapping,struct folio_batch * fbatch,pgoff_t * indices)72 static void truncate_folio_batch_exceptionals(struct address_space *mapping,
73 struct folio_batch *fbatch, pgoff_t *indices)
74 {
75 int i, j;
76 bool dax;
77
78 /* Handled by shmem itself */
79 if (shmem_mapping(mapping))
80 return;
81
82 for (j = 0; j < folio_batch_count(fbatch); j++)
83 if (xa_is_value(fbatch->folios[j]))
84 break;
85
86 if (j == folio_batch_count(fbatch))
87 return;
88
89 dax = dax_mapping(mapping);
90 if (!dax) {
91 spin_lock(&mapping->host->i_lock);
92 xa_lock_irq(&mapping->i_pages);
93 }
94
95 for (i = j; i < folio_batch_count(fbatch); i++) {
96 struct folio *folio = fbatch->folios[i];
97 pgoff_t index = indices[i];
98
99 if (!xa_is_value(folio)) {
100 fbatch->folios[j++] = folio;
101 continue;
102 }
103
104 if (unlikely(dax)) {
105 dax_delete_mapping_entry(mapping, index);
106 continue;
107 }
108
109 __clear_shadow_entry(mapping, index, folio);
110 }
111
112 if (!dax) {
113 xa_unlock_irq(&mapping->i_pages);
114 if (mapping_shrinkable(mapping))
115 inode_add_lru(mapping->host);
116 spin_unlock(&mapping->host->i_lock);
117 }
118 fbatch->nr = j;
119 }
120
121 /**
122 * folio_invalidate - Invalidate part or all of a folio.
123 * @folio: The folio which is affected.
124 * @offset: start of the range to invalidate
125 * @length: length of the range to invalidate
126 *
127 * folio_invalidate() is called when all or part of the folio has become
128 * invalidated by a truncate operation.
129 *
130 * folio_invalidate() does not have to release all buffers, but it must
131 * ensure that no dirty buffer is left outside @offset and that no I/O
132 * is underway against any of the blocks which are outside the truncation
133 * point. Because the caller is about to free (and possibly reuse) those
134 * blocks on-disk.
135 */
folio_invalidate(struct folio * folio,size_t offset,size_t length)136 void folio_invalidate(struct folio *folio, size_t offset, size_t length)
137 {
138 const struct address_space_operations *aops = folio->mapping->a_ops;
139
140 if (aops->invalidate_folio)
141 aops->invalidate_folio(folio, offset, length);
142 }
143 EXPORT_SYMBOL_GPL(folio_invalidate);
144
145 /*
146 * If truncate cannot remove the fs-private metadata from the page, the page
147 * becomes orphaned. It will be left on the LRU and may even be mapped into
148 * user pagetables if we're racing with filemap_fault().
149 *
150 * We need to bail out if page->mapping is no longer equal to the original
151 * mapping. This happens a) when the VM reclaimed the page while we waited on
152 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
153 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
154 */
truncate_cleanup_folio(struct folio * folio)155 static void truncate_cleanup_folio(struct folio *folio)
156 {
157 if (folio_mapped(folio))
158 unmap_mapping_folio(folio);
159
160 if (folio_needs_release(folio))
161 folio_invalidate(folio, 0, folio_size(folio));
162
163 /*
164 * Some filesystems seem to re-dirty the page even after
165 * the VM has canceled the dirty bit (eg ext3 journaling).
166 * Hence dirty accounting check is placed after invalidation.
167 */
168 folio_cancel_dirty(folio);
169 folio_clear_mappedtodisk(folio);
170 }
171
truncate_inode_folio(struct address_space * mapping,struct folio * folio)172 int truncate_inode_folio(struct address_space *mapping, struct folio *folio)
173 {
174 if (folio->mapping != mapping)
175 return -EIO;
176
177 truncate_cleanup_folio(folio);
178 filemap_remove_folio(folio);
179 return 0;
180 }
181
182 /*
183 * Handle partial folios. The folio may be entirely within the
184 * range if a split has raced with us. If not, we zero the part of the
185 * folio that's within the [start, end] range, and then split the folio if
186 * it's large. split_page_range() will discard pages which now lie beyond
187 * i_size, and we rely on the caller to discard pages which lie within a
188 * newly created hole.
189 *
190 * Returns false if splitting failed so the caller can avoid
191 * discarding the entire folio which is stubbornly unsplit.
192 */
truncate_inode_partial_folio(struct folio * folio,loff_t start,loff_t end)193 bool truncate_inode_partial_folio(struct folio *folio, loff_t start, loff_t end)
194 {
195 loff_t pos = folio_pos(folio);
196 unsigned int offset, length;
197
198 if (pos < start)
199 offset = start - pos;
200 else
201 offset = 0;
202 length = folio_size(folio);
203 if (pos + length <= (u64)end)
204 length = length - offset;
205 else
206 length = end + 1 - pos - offset;
207
208 folio_wait_writeback(folio);
209 if (length == folio_size(folio)) {
210 truncate_inode_folio(folio->mapping, folio);
211 return true;
212 }
213
214 /*
215 * We may be zeroing pages we're about to discard, but it avoids
216 * doing a complex calculation here, and then doing the zeroing
217 * anyway if the page split fails.
218 */
219 if (!mapping_inaccessible(folio->mapping))
220 folio_zero_range(folio, offset, length);
221
222 if (folio_needs_release(folio))
223 folio_invalidate(folio, offset, length);
224 if (!folio_test_large(folio))
225 return true;
226 if (split_folio(folio) == 0)
227 return true;
228 if (folio_test_dirty(folio))
229 return false;
230 truncate_inode_folio(folio->mapping, folio);
231 return true;
232 }
233
234 /*
235 * Used to get rid of pages on hardware memory corruption.
236 */
generic_error_remove_folio(struct address_space * mapping,struct folio * folio)237 int generic_error_remove_folio(struct address_space *mapping,
238 struct folio *folio)
239 {
240 if (!mapping)
241 return -EINVAL;
242 /*
243 * Only punch for normal data pages for now.
244 * Handling other types like directories would need more auditing.
245 */
246 if (!S_ISREG(mapping->host->i_mode))
247 return -EIO;
248 return truncate_inode_folio(mapping, folio);
249 }
250 EXPORT_SYMBOL(generic_error_remove_folio);
251
252 /**
253 * mapping_evict_folio() - Remove an unused folio from the page-cache.
254 * @mapping: The mapping this folio belongs to.
255 * @folio: The folio to remove.
256 *
257 * Safely remove one folio from the page cache.
258 * It only drops clean, unused folios.
259 *
260 * Context: Folio must be locked.
261 * Return: The number of pages successfully removed.
262 */
mapping_evict_folio(struct address_space * mapping,struct folio * folio)263 long mapping_evict_folio(struct address_space *mapping, struct folio *folio)
264 {
265 /* The page may have been truncated before it was locked */
266 if (!mapping)
267 return 0;
268 if (folio_test_dirty(folio) || folio_test_writeback(folio))
269 return 0;
270 /* The refcount will be elevated if any page in the folio is mapped */
271 if (folio_ref_count(folio) >
272 folio_nr_pages(folio) + folio_has_private(folio) + 1)
273 return 0;
274 if (!filemap_release_folio(folio, 0))
275 return 0;
276
277 return remove_mapping(mapping, folio);
278 }
279
280 /**
281 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
282 * @mapping: mapping to truncate
283 * @lstart: offset from which to truncate
284 * @lend: offset to which to truncate (inclusive)
285 *
286 * Truncate the page cache, removing the pages that are between
287 * specified offsets (and zeroing out partial pages
288 * if lstart or lend + 1 is not page aligned).
289 *
290 * Truncate takes two passes - the first pass is nonblocking. It will not
291 * block on page locks and it will not block on writeback. The second pass
292 * will wait. This is to prevent as much IO as possible in the affected region.
293 * The first pass will remove most pages, so the search cost of the second pass
294 * is low.
295 *
296 * We pass down the cache-hot hint to the page freeing code. Even if the
297 * mapping is large, it is probably the case that the final pages are the most
298 * recently touched, and freeing happens in ascending file offset order.
299 *
300 * Note that since ->invalidate_folio() accepts range to invalidate
301 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
302 * page aligned properly.
303 */
truncate_inode_pages_range(struct address_space * mapping,loff_t lstart,loff_t lend)304 void truncate_inode_pages_range(struct address_space *mapping,
305 loff_t lstart, loff_t lend)
306 {
307 pgoff_t start; /* inclusive */
308 pgoff_t end; /* exclusive */
309 struct folio_batch fbatch;
310 pgoff_t indices[PAGEVEC_SIZE];
311 pgoff_t index;
312 int i;
313 struct folio *folio;
314 bool same_folio;
315
316 if (mapping_empty(mapping))
317 return;
318
319 /*
320 * 'start' and 'end' always covers the range of pages to be fully
321 * truncated. Partial pages are covered with 'partial_start' at the
322 * start of the range and 'partial_end' at the end of the range.
323 * Note that 'end' is exclusive while 'lend' is inclusive.
324 */
325 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
326 if (lend == -1)
327 /*
328 * lend == -1 indicates end-of-file so we have to set 'end'
329 * to the highest possible pgoff_t and since the type is
330 * unsigned we're using -1.
331 */
332 end = -1;
333 else
334 end = (lend + 1) >> PAGE_SHIFT;
335
336 folio_batch_init(&fbatch);
337 index = start;
338 while (index < end && find_lock_entries(mapping, &index, end - 1,
339 &fbatch, indices)) {
340 truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
341 for (i = 0; i < folio_batch_count(&fbatch); i++)
342 truncate_cleanup_folio(fbatch.folios[i]);
343 delete_from_page_cache_batch(mapping, &fbatch);
344 for (i = 0; i < folio_batch_count(&fbatch); i++)
345 folio_unlock(fbatch.folios[i]);
346 folio_batch_release(&fbatch);
347 cond_resched();
348 }
349
350 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
351 folio = __filemap_get_folio(mapping, lstart >> PAGE_SHIFT, FGP_LOCK, 0);
352 if (!IS_ERR(folio)) {
353 same_folio = lend < folio_pos(folio) + folio_size(folio);
354 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
355 start = folio_next_index(folio);
356 if (same_folio)
357 end = folio->index;
358 }
359 folio_unlock(folio);
360 folio_put(folio);
361 folio = NULL;
362 }
363
364 if (!same_folio) {
365 folio = __filemap_get_folio(mapping, lend >> PAGE_SHIFT,
366 FGP_LOCK, 0);
367 if (!IS_ERR(folio)) {
368 if (!truncate_inode_partial_folio(folio, lstart, lend))
369 end = folio->index;
370 folio_unlock(folio);
371 folio_put(folio);
372 }
373 }
374
375 index = start;
376 while (index < end) {
377 cond_resched();
378 if (!find_get_entries(mapping, &index, end - 1, &fbatch,
379 indices)) {
380 /* If all gone from start onwards, we're done */
381 if (index == start)
382 break;
383 /* Otherwise restart to make sure all gone */
384 index = start;
385 continue;
386 }
387
388 for (i = 0; i < folio_batch_count(&fbatch); i++) {
389 struct folio *folio = fbatch.folios[i];
390
391 /* We rely upon deletion not changing page->index */
392
393 if (xa_is_value(folio))
394 continue;
395
396 folio_lock(folio);
397 VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio);
398 folio_wait_writeback(folio);
399 truncate_inode_folio(mapping, folio);
400 folio_unlock(folio);
401 }
402 truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
403 folio_batch_release(&fbatch);
404 }
405 }
406 EXPORT_SYMBOL(truncate_inode_pages_range);
407
408 /**
409 * truncate_inode_pages - truncate *all* the pages from an offset
410 * @mapping: mapping to truncate
411 * @lstart: offset from which to truncate
412 *
413 * Called under (and serialised by) inode->i_rwsem and
414 * mapping->invalidate_lock.
415 *
416 * Note: When this function returns, there can be a page in the process of
417 * deletion (inside __filemap_remove_folio()) in the specified range. Thus
418 * mapping->nrpages can be non-zero when this function returns even after
419 * truncation of the whole mapping.
420 */
truncate_inode_pages(struct address_space * mapping,loff_t lstart)421 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
422 {
423 truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
424 }
425 EXPORT_SYMBOL(truncate_inode_pages);
426
427 /**
428 * truncate_inode_pages_final - truncate *all* pages before inode dies
429 * @mapping: mapping to truncate
430 *
431 * Called under (and serialized by) inode->i_rwsem.
432 *
433 * Filesystems have to use this in the .evict_inode path to inform the
434 * VM that this is the final truncate and the inode is going away.
435 */
truncate_inode_pages_final(struct address_space * mapping)436 void truncate_inode_pages_final(struct address_space *mapping)
437 {
438 /*
439 * Page reclaim can not participate in regular inode lifetime
440 * management (can't call iput()) and thus can race with the
441 * inode teardown. Tell it when the address space is exiting,
442 * so that it does not install eviction information after the
443 * final truncate has begun.
444 */
445 mapping_set_exiting(mapping);
446
447 if (!mapping_empty(mapping)) {
448 /*
449 * As truncation uses a lockless tree lookup, cycle
450 * the tree lock to make sure any ongoing tree
451 * modification that does not see AS_EXITING is
452 * completed before starting the final truncate.
453 */
454 xa_lock_irq(&mapping->i_pages);
455 xa_unlock_irq(&mapping->i_pages);
456 }
457
458 truncate_inode_pages(mapping, 0);
459 }
460 EXPORT_SYMBOL(truncate_inode_pages_final);
461
462 /**
463 * mapping_try_invalidate - Invalidate all the evictable folios of one inode
464 * @mapping: the address_space which holds the folios to invalidate
465 * @start: the offset 'from' which to invalidate
466 * @end: the offset 'to' which to invalidate (inclusive)
467 * @nr_failed: How many folio invalidations failed
468 *
469 * This function is similar to invalidate_mapping_pages(), except that it
470 * returns the number of folios which could not be evicted in @nr_failed.
471 */
mapping_try_invalidate(struct address_space * mapping,pgoff_t start,pgoff_t end,unsigned long * nr_failed)472 unsigned long mapping_try_invalidate(struct address_space *mapping,
473 pgoff_t start, pgoff_t end, unsigned long *nr_failed)
474 {
475 pgoff_t indices[PAGEVEC_SIZE];
476 struct folio_batch fbatch;
477 pgoff_t index = start;
478 unsigned long ret;
479 unsigned long count = 0;
480 int i;
481 bool xa_has_values = false;
482
483 folio_batch_init(&fbatch);
484 while (find_lock_entries(mapping, &index, end, &fbatch, indices)) {
485 for (i = 0; i < folio_batch_count(&fbatch); i++) {
486 struct folio *folio = fbatch.folios[i];
487
488 /* We rely upon deletion not changing folio->index */
489
490 if (xa_is_value(folio)) {
491 xa_has_values = true;
492 count++;
493 continue;
494 }
495
496 ret = mapping_evict_folio(mapping, folio);
497 folio_unlock(folio);
498 /*
499 * Invalidation is a hint that the folio is no longer
500 * of interest and try to speed up its reclaim.
501 */
502 if (!ret) {
503 deactivate_file_folio(folio);
504 /* Likely in the lru cache of a remote CPU */
505 if (nr_failed)
506 (*nr_failed)++;
507 }
508 count += ret;
509 }
510
511 if (xa_has_values)
512 clear_shadow_entries(mapping, &fbatch, indices);
513
514 folio_batch_remove_exceptionals(&fbatch);
515 folio_batch_release(&fbatch);
516 cond_resched();
517 }
518 return count;
519 }
520
521 /**
522 * invalidate_mapping_pages - Invalidate all clean, unlocked cache of one inode
523 * @mapping: the address_space which holds the cache to invalidate
524 * @start: the offset 'from' which to invalidate
525 * @end: the offset 'to' which to invalidate (inclusive)
526 *
527 * This function removes pages that are clean, unmapped and unlocked,
528 * as well as shadow entries. It will not block on IO activity.
529 *
530 * If you want to remove all the pages of one inode, regardless of
531 * their use and writeback state, use truncate_inode_pages().
532 *
533 * Return: The number of indices that had their contents invalidated
534 */
invalidate_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t end)535 unsigned long invalidate_mapping_pages(struct address_space *mapping,
536 pgoff_t start, pgoff_t end)
537 {
538 return mapping_try_invalidate(mapping, start, end, NULL);
539 }
540 EXPORT_SYMBOL(invalidate_mapping_pages);
541
542 /*
543 * This is like mapping_evict_folio(), except it ignores the folio's
544 * refcount. We do this because invalidate_inode_pages2() needs stronger
545 * invalidation guarantees, and cannot afford to leave folios behind because
546 * shrink_folio_list() has a temp ref on them, or because they're transiently
547 * sitting in the folio_add_lru() caches.
548 */
invalidate_complete_folio2(struct address_space * mapping,struct folio * folio)549 static int invalidate_complete_folio2(struct address_space *mapping,
550 struct folio *folio)
551 {
552 if (folio->mapping != mapping)
553 return 0;
554
555 if (!filemap_release_folio(folio, GFP_KERNEL))
556 return 0;
557
558 spin_lock(&mapping->host->i_lock);
559 xa_lock_irq(&mapping->i_pages);
560 if (folio_test_dirty(folio))
561 goto failed;
562
563 BUG_ON(folio_has_private(folio));
564 __filemap_remove_folio(folio, NULL);
565 xa_unlock_irq(&mapping->i_pages);
566 if (mapping_shrinkable(mapping))
567 inode_add_lru(mapping->host);
568 spin_unlock(&mapping->host->i_lock);
569
570 filemap_free_folio(mapping, folio);
571 return 1;
572 failed:
573 xa_unlock_irq(&mapping->i_pages);
574 spin_unlock(&mapping->host->i_lock);
575 return 0;
576 }
577
folio_launder(struct address_space * mapping,struct folio * folio)578 static int folio_launder(struct address_space *mapping, struct folio *folio)
579 {
580 if (!folio_test_dirty(folio))
581 return 0;
582 if (folio->mapping != mapping || mapping->a_ops->launder_folio == NULL)
583 return 0;
584 return mapping->a_ops->launder_folio(folio);
585 }
586
587 /**
588 * invalidate_inode_pages2_range - remove range of pages from an address_space
589 * @mapping: the address_space
590 * @start: the page offset 'from' which to invalidate
591 * @end: the page offset 'to' which to invalidate (inclusive)
592 *
593 * Any pages which are found to be mapped into pagetables are unmapped prior to
594 * invalidation.
595 *
596 * Return: -EBUSY if any pages could not be invalidated.
597 */
invalidate_inode_pages2_range(struct address_space * mapping,pgoff_t start,pgoff_t end)598 int invalidate_inode_pages2_range(struct address_space *mapping,
599 pgoff_t start, pgoff_t end)
600 {
601 pgoff_t indices[PAGEVEC_SIZE];
602 struct folio_batch fbatch;
603 pgoff_t index;
604 int i;
605 int ret = 0;
606 int ret2 = 0;
607 int did_range_unmap = 0;
608 bool xa_has_values = false;
609
610 if (mapping_empty(mapping))
611 return 0;
612
613 folio_batch_init(&fbatch);
614 index = start;
615 while (find_get_entries(mapping, &index, end, &fbatch, indices)) {
616 for (i = 0; i < folio_batch_count(&fbatch); i++) {
617 struct folio *folio = fbatch.folios[i];
618
619 /* We rely upon deletion not changing folio->index */
620
621 if (xa_is_value(folio)) {
622 xa_has_values = true;
623 if (dax_mapping(mapping) &&
624 !dax_invalidate_mapping_entry_sync(mapping, indices[i]))
625 ret = -EBUSY;
626 continue;
627 }
628
629 if (!did_range_unmap && folio_mapped(folio)) {
630 /*
631 * If folio is mapped, before taking its lock,
632 * zap the rest of the file in one hit.
633 */
634 unmap_mapping_pages(mapping, indices[i],
635 (1 + end - indices[i]), false);
636 did_range_unmap = 1;
637 }
638
639 folio_lock(folio);
640 if (unlikely(folio->mapping != mapping)) {
641 folio_unlock(folio);
642 continue;
643 }
644 VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio);
645 folio_wait_writeback(folio);
646
647 if (folio_mapped(folio))
648 unmap_mapping_folio(folio);
649 BUG_ON(folio_mapped(folio));
650
651 ret2 = folio_launder(mapping, folio);
652 if (ret2 == 0) {
653 if (!invalidate_complete_folio2(mapping, folio))
654 ret2 = -EBUSY;
655 }
656 if (ret2 < 0)
657 ret = ret2;
658 folio_unlock(folio);
659 }
660
661 if (xa_has_values)
662 clear_shadow_entries(mapping, &fbatch, indices);
663
664 folio_batch_remove_exceptionals(&fbatch);
665 folio_batch_release(&fbatch);
666 cond_resched();
667 }
668 /*
669 * For DAX we invalidate page tables after invalidating page cache. We
670 * could invalidate page tables while invalidating each entry however
671 * that would be expensive. And doing range unmapping before doesn't
672 * work as we have no cheap way to find whether page cache entry didn't
673 * get remapped later.
674 */
675 if (dax_mapping(mapping)) {
676 unmap_mapping_pages(mapping, start, end - start + 1, false);
677 }
678 return ret;
679 }
680 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
681
682 /**
683 * invalidate_inode_pages2 - remove all pages from an address_space
684 * @mapping: the address_space
685 *
686 * Any pages which are found to be mapped into pagetables are unmapped prior to
687 * invalidation.
688 *
689 * Return: -EBUSY if any pages could not be invalidated.
690 */
invalidate_inode_pages2(struct address_space * mapping)691 int invalidate_inode_pages2(struct address_space *mapping)
692 {
693 return invalidate_inode_pages2_range(mapping, 0, -1);
694 }
695 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
696
697 /**
698 * truncate_pagecache - unmap and remove pagecache that has been truncated
699 * @inode: inode
700 * @newsize: new file size
701 *
702 * inode's new i_size must already be written before truncate_pagecache
703 * is called.
704 *
705 * This function should typically be called before the filesystem
706 * releases resources associated with the freed range (eg. deallocates
707 * blocks). This way, pagecache will always stay logically coherent
708 * with on-disk format, and the filesystem would not have to deal with
709 * situations such as writepage being called for a page that has already
710 * had its underlying blocks deallocated.
711 */
truncate_pagecache(struct inode * inode,loff_t newsize)712 void truncate_pagecache(struct inode *inode, loff_t newsize)
713 {
714 struct address_space *mapping = inode->i_mapping;
715 loff_t holebegin = round_up(newsize, PAGE_SIZE);
716
717 /*
718 * unmap_mapping_range is called twice, first simply for
719 * efficiency so that truncate_inode_pages does fewer
720 * single-page unmaps. However after this first call, and
721 * before truncate_inode_pages finishes, it is possible for
722 * private pages to be COWed, which remain after
723 * truncate_inode_pages finishes, hence the second
724 * unmap_mapping_range call must be made for correctness.
725 */
726 unmap_mapping_range(mapping, holebegin, 0, 1);
727 truncate_inode_pages(mapping, newsize);
728 unmap_mapping_range(mapping, holebegin, 0, 1);
729 }
730 EXPORT_SYMBOL(truncate_pagecache);
731
732 /**
733 * truncate_setsize - update inode and pagecache for a new file size
734 * @inode: inode
735 * @newsize: new file size
736 *
737 * truncate_setsize updates i_size and performs pagecache truncation (if
738 * necessary) to @newsize. It will be typically be called from the filesystem's
739 * setattr function when ATTR_SIZE is passed in.
740 *
741 * Must be called with a lock serializing truncates and writes (generally
742 * i_rwsem but e.g. xfs uses a different lock) and before all filesystem
743 * specific block truncation has been performed.
744 */
truncate_setsize(struct inode * inode,loff_t newsize)745 void truncate_setsize(struct inode *inode, loff_t newsize)
746 {
747 loff_t oldsize = inode->i_size;
748
749 i_size_write(inode, newsize);
750 if (newsize > oldsize)
751 pagecache_isize_extended(inode, oldsize, newsize);
752 truncate_pagecache(inode, newsize);
753 }
754 EXPORT_SYMBOL(truncate_setsize);
755
756 /**
757 * pagecache_isize_extended - update pagecache after extension of i_size
758 * @inode: inode for which i_size was extended
759 * @from: original inode size
760 * @to: new inode size
761 *
762 * Handle extension of inode size either caused by extending truncate or
763 * by write starting after current i_size. We mark the page straddling
764 * current i_size RO so that page_mkwrite() is called on the first
765 * write access to the page. The filesystem will update its per-block
766 * information before user writes to the page via mmap after the i_size
767 * has been changed.
768 *
769 * The function must be called after i_size is updated so that page fault
770 * coming after we unlock the folio will already see the new i_size.
771 * The function must be called while we still hold i_rwsem - this not only
772 * makes sure i_size is stable but also that userspace cannot observe new
773 * i_size value before we are prepared to store mmap writes at new inode size.
774 */
pagecache_isize_extended(struct inode * inode,loff_t from,loff_t to)775 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
776 {
777 int bsize = i_blocksize(inode);
778 loff_t rounded_from;
779 struct folio *folio;
780
781 WARN_ON(to > inode->i_size);
782
783 if (from >= to || bsize >= PAGE_SIZE)
784 return;
785 /* Page straddling @from will not have any hole block created? */
786 rounded_from = round_up(from, bsize);
787 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
788 return;
789
790 folio = filemap_lock_folio(inode->i_mapping, from / PAGE_SIZE);
791 /* Folio not cached? Nothing to do */
792 if (IS_ERR(folio))
793 return;
794 /*
795 * See folio_clear_dirty_for_io() for details why folio_mark_dirty()
796 * is needed.
797 */
798 if (folio_mkclean(folio))
799 folio_mark_dirty(folio);
800 folio_unlock(folio);
801 folio_put(folio);
802 }
803 EXPORT_SYMBOL(pagecache_isize_extended);
804
805 /**
806 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
807 * @inode: inode
808 * @lstart: offset of beginning of hole
809 * @lend: offset of last byte of hole
810 *
811 * This function should typically be called before the filesystem
812 * releases resources associated with the freed range (eg. deallocates
813 * blocks). This way, pagecache will always stay logically coherent
814 * with on-disk format, and the filesystem would not have to deal with
815 * situations such as writepage being called for a page that has already
816 * had its underlying blocks deallocated.
817 */
truncate_pagecache_range(struct inode * inode,loff_t lstart,loff_t lend)818 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
819 {
820 struct address_space *mapping = inode->i_mapping;
821 loff_t unmap_start = round_up(lstart, PAGE_SIZE);
822 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
823 /*
824 * This rounding is currently just for example: unmap_mapping_range
825 * expands its hole outwards, whereas we want it to contract the hole
826 * inwards. However, existing callers of truncate_pagecache_range are
827 * doing their own page rounding first. Note that unmap_mapping_range
828 * allows holelen 0 for all, and we allow lend -1 for end of file.
829 */
830
831 /*
832 * Unlike in truncate_pagecache, unmap_mapping_range is called only
833 * once (before truncating pagecache), and without "even_cows" flag:
834 * hole-punching should not remove private COWed pages from the hole.
835 */
836 if ((u64)unmap_end > (u64)unmap_start)
837 unmap_mapping_range(mapping, unmap_start,
838 1 + unmap_end - unmap_start, 0);
839 truncate_inode_pages_range(mapping, lstart, lend);
840 }
841 EXPORT_SYMBOL(truncate_pagecache_range);
842