xref: /linux/arch/arm64/include/asm/pgtable.h (revision 266ee584e55eed108583ab4f45b5de734522502d)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012 ARM Ltd.
4  */
5 #ifndef __ASM_PGTABLE_H
6 #define __ASM_PGTABLE_H
7 
8 #include <asm/bug.h>
9 #include <asm/proc-fns.h>
10 
11 #include <asm/memory.h>
12 #include <asm/mte.h>
13 #include <asm/pgtable-hwdef.h>
14 #include <asm/pgtable-prot.h>
15 #include <asm/tlbflush.h>
16 
17 /*
18  * VMALLOC range.
19  *
20  * VMALLOC_START: beginning of the kernel vmalloc space
21  * VMALLOC_END: extends to the available space below vmemmap
22  */
23 #define VMALLOC_START		(MODULES_END)
24 #if VA_BITS == VA_BITS_MIN
25 #define VMALLOC_END		(VMEMMAP_START - SZ_8M)
26 #else
27 #define VMEMMAP_UNUSED_NPAGES	((_PAGE_OFFSET(vabits_actual) - PAGE_OFFSET) >> PAGE_SHIFT)
28 #define VMALLOC_END		(VMEMMAP_START + VMEMMAP_UNUSED_NPAGES * sizeof(struct page) - SZ_8M)
29 #endif
30 
31 #define vmemmap			((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT))
32 
33 #ifndef __ASSEMBLY__
34 
35 #include <asm/cmpxchg.h>
36 #include <asm/fixmap.h>
37 #include <asm/por.h>
38 #include <linux/mmdebug.h>
39 #include <linux/mm_types.h>
40 #include <linux/sched.h>
41 #include <linux/page_table_check.h>
42 
emit_pte_barriers(void)43 static inline void emit_pte_barriers(void)
44 {
45 	/*
46 	 * These barriers are emitted under certain conditions after a pte entry
47 	 * was modified (see e.g. __set_pte_complete()). The dsb makes the store
48 	 * visible to the table walker. The isb ensures that any previous
49 	 * speculative "invalid translation" marker that is in the CPU's
50 	 * pipeline gets cleared, so that any access to that address after
51 	 * setting the pte to valid won't cause a spurious fault. If the thread
52 	 * gets preempted after storing to the pgtable but before emitting these
53 	 * barriers, __switch_to() emits a dsb which ensure the walker gets to
54 	 * see the store. There is no guarantee of an isb being issued though.
55 	 * This is safe because it will still get issued (albeit on a
56 	 * potentially different CPU) when the thread starts running again,
57 	 * before any access to the address.
58 	 */
59 	dsb(ishst);
60 	isb();
61 }
62 
queue_pte_barriers(void)63 static inline void queue_pte_barriers(void)
64 {
65 	unsigned long flags;
66 
67 	if (in_interrupt()) {
68 		emit_pte_barriers();
69 		return;
70 	}
71 
72 	flags = read_thread_flags();
73 
74 	if (flags & BIT(TIF_LAZY_MMU)) {
75 		/* Avoid the atomic op if already set. */
76 		if (!(flags & BIT(TIF_LAZY_MMU_PENDING)))
77 			set_thread_flag(TIF_LAZY_MMU_PENDING);
78 	} else {
79 		emit_pte_barriers();
80 	}
81 }
82 
83 #define  __HAVE_ARCH_ENTER_LAZY_MMU_MODE
arch_enter_lazy_mmu_mode(void)84 static inline void arch_enter_lazy_mmu_mode(void)
85 {
86 	/*
87 	 * lazy_mmu_mode is not supposed to permit nesting. But in practice this
88 	 * does happen with CONFIG_DEBUG_PAGEALLOC, where a page allocation
89 	 * inside a lazy_mmu_mode section (such as zap_pte_range()) will change
90 	 * permissions on the linear map with apply_to_page_range(), which
91 	 * re-enters lazy_mmu_mode. So we tolerate nesting in our
92 	 * implementation. The first call to arch_leave_lazy_mmu_mode() will
93 	 * flush and clear the flag such that the remainder of the work in the
94 	 * outer nest behaves as if outside of lazy mmu mode. This is safe and
95 	 * keeps tracking simple.
96 	 */
97 
98 	if (in_interrupt())
99 		return;
100 
101 	set_thread_flag(TIF_LAZY_MMU);
102 }
103 
arch_flush_lazy_mmu_mode(void)104 static inline void arch_flush_lazy_mmu_mode(void)
105 {
106 	if (in_interrupt())
107 		return;
108 
109 	if (test_and_clear_thread_flag(TIF_LAZY_MMU_PENDING))
110 		emit_pte_barriers();
111 }
112 
arch_leave_lazy_mmu_mode(void)113 static inline void arch_leave_lazy_mmu_mode(void)
114 {
115 	if (in_interrupt())
116 		return;
117 
118 	arch_flush_lazy_mmu_mode();
119 	clear_thread_flag(TIF_LAZY_MMU);
120 }
121 
122 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
123 #define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
124 
125 /* Set stride and tlb_level in flush_*_tlb_range */
126 #define flush_pmd_tlb_range(vma, addr, end)	\
127 	__flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2)
128 #define flush_pud_tlb_range(vma, addr, end)	\
129 	__flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1)
130 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
131 
132 /*
133  * Outside of a few very special situations (e.g. hibernation), we always
134  * use broadcast TLB invalidation instructions, therefore a spurious page
135  * fault on one CPU which has been handled concurrently by another CPU
136  * does not need to perform additional invalidation.
137  */
138 #define flush_tlb_fix_spurious_fault(vma, address, ptep) do { } while (0)
139 
140 /*
141  * ZERO_PAGE is a global shared page that is always zero: used
142  * for zero-mapped memory areas etc..
143  */
144 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
145 #define ZERO_PAGE(vaddr)	phys_to_page(__pa_symbol(empty_zero_page))
146 
147 #define pte_ERROR(e)	\
148 	pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e))
149 
150 #ifdef CONFIG_ARM64_PA_BITS_52
__pte_to_phys(pte_t pte)151 static inline phys_addr_t __pte_to_phys(pte_t pte)
152 {
153 	pte_val(pte) &= ~PTE_MAYBE_SHARED;
154 	return (pte_val(pte) & PTE_ADDR_LOW) |
155 		((pte_val(pte) & PTE_ADDR_HIGH) << PTE_ADDR_HIGH_SHIFT);
156 }
__phys_to_pte_val(phys_addr_t phys)157 static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
158 {
159 	return (phys | (phys >> PTE_ADDR_HIGH_SHIFT)) & PHYS_TO_PTE_ADDR_MASK;
160 }
161 #else
__pte_to_phys(pte_t pte)162 static inline phys_addr_t __pte_to_phys(pte_t pte)
163 {
164 	return pte_val(pte) & PTE_ADDR_LOW;
165 }
166 
__phys_to_pte_val(phys_addr_t phys)167 static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
168 {
169 	return phys;
170 }
171 #endif
172 
173 #define pte_pfn(pte)		(__pte_to_phys(pte) >> PAGE_SHIFT)
174 #define pfn_pte(pfn,prot)	\
175 	__pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
176 
177 #define pte_none(pte)		(!pte_val(pte))
178 #define __pte_clear(mm, addr, ptep) \
179 				__set_pte(ptep, __pte(0))
180 #define pte_page(pte)		(pfn_to_page(pte_pfn(pte)))
181 
182 /*
183  * The following only work if pte_present(). Undefined behaviour otherwise.
184  */
185 #define pte_present(pte)	(pte_valid(pte) || pte_present_invalid(pte))
186 #define pte_young(pte)		(!!(pte_val(pte) & PTE_AF))
187 #define pte_special(pte)	(!!(pte_val(pte) & PTE_SPECIAL))
188 #define pte_write(pte)		(!!(pte_val(pte) & PTE_WRITE))
189 #define pte_rdonly(pte)		(!!(pte_val(pte) & PTE_RDONLY))
190 #define pte_user(pte)		(!!(pte_val(pte) & PTE_USER))
191 #define pte_user_exec(pte)	(!(pte_val(pte) & PTE_UXN))
192 #define pte_cont(pte)		(!!(pte_val(pte) & PTE_CONT))
193 #define pte_tagged(pte)		((pte_val(pte) & PTE_ATTRINDX_MASK) == \
194 				 PTE_ATTRINDX(MT_NORMAL_TAGGED))
195 
196 #define pte_cont_addr_end(addr, end)						\
197 ({	unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK;	\
198 	(__boundary - 1 < (end) - 1) ? __boundary : (end);			\
199 })
200 
201 #define pmd_cont_addr_end(addr, end)						\
202 ({	unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK;	\
203 	(__boundary - 1 < (end) - 1) ? __boundary : (end);			\
204 })
205 
206 #define pte_hw_dirty(pte)	(pte_write(pte) && !pte_rdonly(pte))
207 #define pte_sw_dirty(pte)	(!!(pte_val(pte) & PTE_DIRTY))
208 #define pte_dirty(pte)		(pte_sw_dirty(pte) || pte_hw_dirty(pte))
209 
210 #define pte_valid(pte)		(!!(pte_val(pte) & PTE_VALID))
211 #define pte_present_invalid(pte) \
212 	((pte_val(pte) & (PTE_VALID | PTE_PRESENT_INVALID)) == PTE_PRESENT_INVALID)
213 /*
214  * Execute-only user mappings do not have the PTE_USER bit set. All valid
215  * kernel mappings have the PTE_UXN bit set.
216  */
217 #define pte_valid_not_user(pte) \
218 	((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN))
219 /*
220  * Returns true if the pte is valid and has the contiguous bit set.
221  */
222 #define pte_valid_cont(pte)	(pte_valid(pte) && pte_cont(pte))
223 /*
224  * Could the pte be present in the TLB? We must check mm_tlb_flush_pending
225  * so that we don't erroneously return false for pages that have been
226  * remapped as PROT_NONE but are yet to be flushed from the TLB.
227  * Note that we can't make any assumptions based on the state of the access
228  * flag, since __ptep_clear_flush_young() elides a DSB when invalidating the
229  * TLB.
230  */
231 #define pte_accessible(mm, pte)	\
232 	(mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
233 
por_el0_allows_pkey(u8 pkey,bool write,bool execute)234 static inline bool por_el0_allows_pkey(u8 pkey, bool write, bool execute)
235 {
236 	u64 por;
237 
238 	if (!system_supports_poe())
239 		return true;
240 
241 	por = read_sysreg_s(SYS_POR_EL0);
242 
243 	if (write)
244 		return por_elx_allows_write(por, pkey);
245 
246 	if (execute)
247 		return por_elx_allows_exec(por, pkey);
248 
249 	return por_elx_allows_read(por, pkey);
250 }
251 
252 /*
253  * p??_access_permitted() is true for valid user mappings (PTE_USER
254  * bit set, subject to the write permission check). For execute-only
255  * mappings, like PROT_EXEC with EPAN (both PTE_USER and PTE_UXN bits
256  * not set) must return false. PROT_NONE mappings do not have the
257  * PTE_VALID bit set.
258  */
259 #define pte_access_permitted_no_overlay(pte, write) \
260 	(((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) && (!(write) || pte_write(pte)))
261 #define pte_access_permitted(pte, write) \
262 	(pte_access_permitted_no_overlay(pte, write) && \
263 	por_el0_allows_pkey(FIELD_GET(PTE_PO_IDX_MASK, pte_val(pte)), write, false))
264 #define pmd_access_permitted(pmd, write) \
265 	(pte_access_permitted(pmd_pte(pmd), (write)))
266 #define pud_access_permitted(pud, write) \
267 	(pte_access_permitted(pud_pte(pud), (write)))
268 
clear_pte_bit(pte_t pte,pgprot_t prot)269 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
270 {
271 	pte_val(pte) &= ~pgprot_val(prot);
272 	return pte;
273 }
274 
set_pte_bit(pte_t pte,pgprot_t prot)275 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
276 {
277 	pte_val(pte) |= pgprot_val(prot);
278 	return pte;
279 }
280 
clear_pmd_bit(pmd_t pmd,pgprot_t prot)281 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
282 {
283 	pmd_val(pmd) &= ~pgprot_val(prot);
284 	return pmd;
285 }
286 
set_pmd_bit(pmd_t pmd,pgprot_t prot)287 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
288 {
289 	pmd_val(pmd) |= pgprot_val(prot);
290 	return pmd;
291 }
292 
pte_mkwrite_novma(pte_t pte)293 static inline pte_t pte_mkwrite_novma(pte_t pte)
294 {
295 	pte = set_pte_bit(pte, __pgprot(PTE_WRITE));
296 	if (pte_sw_dirty(pte))
297 		pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
298 	return pte;
299 }
300 
pte_mkclean(pte_t pte)301 static inline pte_t pte_mkclean(pte_t pte)
302 {
303 	pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY));
304 	pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
305 
306 	return pte;
307 }
308 
pte_mkdirty(pte_t pte)309 static inline pte_t pte_mkdirty(pte_t pte)
310 {
311 	pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
312 
313 	if (pte_write(pte))
314 		pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
315 
316 	return pte;
317 }
318 
pte_wrprotect(pte_t pte)319 static inline pte_t pte_wrprotect(pte_t pte)
320 {
321 	/*
322 	 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY
323 	 * clear), set the PTE_DIRTY bit.
324 	 */
325 	if (pte_hw_dirty(pte))
326 		pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
327 
328 	pte = clear_pte_bit(pte, __pgprot(PTE_WRITE));
329 	pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
330 	return pte;
331 }
332 
pte_mkold(pte_t pte)333 static inline pte_t pte_mkold(pte_t pte)
334 {
335 	return clear_pte_bit(pte, __pgprot(PTE_AF));
336 }
337 
pte_mkyoung(pte_t pte)338 static inline pte_t pte_mkyoung(pte_t pte)
339 {
340 	return set_pte_bit(pte, __pgprot(PTE_AF));
341 }
342 
pte_mkspecial(pte_t pte)343 static inline pte_t pte_mkspecial(pte_t pte)
344 {
345 	return set_pte_bit(pte, __pgprot(PTE_SPECIAL));
346 }
347 
pte_mkcont(pte_t pte)348 static inline pte_t pte_mkcont(pte_t pte)
349 {
350 	return set_pte_bit(pte, __pgprot(PTE_CONT));
351 }
352 
pte_mknoncont(pte_t pte)353 static inline pte_t pte_mknoncont(pte_t pte)
354 {
355 	return clear_pte_bit(pte, __pgprot(PTE_CONT));
356 }
357 
pte_mkvalid(pte_t pte)358 static inline pte_t pte_mkvalid(pte_t pte)
359 {
360 	return set_pte_bit(pte, __pgprot(PTE_VALID));
361 }
362 
pte_mkinvalid(pte_t pte)363 static inline pte_t pte_mkinvalid(pte_t pte)
364 {
365 	pte = set_pte_bit(pte, __pgprot(PTE_PRESENT_INVALID));
366 	pte = clear_pte_bit(pte, __pgprot(PTE_VALID));
367 	return pte;
368 }
369 
pmd_mkcont(pmd_t pmd)370 static inline pmd_t pmd_mkcont(pmd_t pmd)
371 {
372 	return __pmd(pmd_val(pmd) | PMD_SECT_CONT);
373 }
374 
pmd_mknoncont(pmd_t pmd)375 static inline pmd_t pmd_mknoncont(pmd_t pmd)
376 {
377 	return __pmd(pmd_val(pmd) & ~PMD_SECT_CONT);
378 }
379 
380 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
pte_uffd_wp(pte_t pte)381 static inline int pte_uffd_wp(pte_t pte)
382 {
383 	return !!(pte_val(pte) & PTE_UFFD_WP);
384 }
385 
pte_mkuffd_wp(pte_t pte)386 static inline pte_t pte_mkuffd_wp(pte_t pte)
387 {
388 	return pte_wrprotect(set_pte_bit(pte, __pgprot(PTE_UFFD_WP)));
389 }
390 
pte_clear_uffd_wp(pte_t pte)391 static inline pte_t pte_clear_uffd_wp(pte_t pte)
392 {
393 	return clear_pte_bit(pte, __pgprot(PTE_UFFD_WP));
394 }
395 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
396 
__set_pte_nosync(pte_t * ptep,pte_t pte)397 static inline void __set_pte_nosync(pte_t *ptep, pte_t pte)
398 {
399 	WRITE_ONCE(*ptep, pte);
400 }
401 
__set_pte_complete(pte_t pte)402 static inline void __set_pte_complete(pte_t pte)
403 {
404 	/*
405 	 * Only if the new pte is valid and kernel, otherwise TLB maintenance
406 	 * has the necessary barriers.
407 	 */
408 	if (pte_valid_not_user(pte))
409 		queue_pte_barriers();
410 }
411 
__set_pte(pte_t * ptep,pte_t pte)412 static inline void __set_pte(pte_t *ptep, pte_t pte)
413 {
414 	__set_pte_nosync(ptep, pte);
415 	__set_pte_complete(pte);
416 }
417 
__ptep_get(pte_t * ptep)418 static inline pte_t __ptep_get(pte_t *ptep)
419 {
420 	return READ_ONCE(*ptep);
421 }
422 
423 extern void __sync_icache_dcache(pte_t pteval);
424 bool pgattr_change_is_safe(pteval_t old, pteval_t new);
425 
426 /*
427  * PTE bits configuration in the presence of hardware Dirty Bit Management
428  * (PTE_WRITE == PTE_DBM):
429  *
430  * Dirty  Writable | PTE_RDONLY  PTE_WRITE  PTE_DIRTY (sw)
431  *   0      0      |   1           0          0
432  *   0      1      |   1           1          0
433  *   1      0      |   1           0          1
434  *   1      1      |   0           1          x
435  *
436  * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via
437  * the page fault mechanism. Checking the dirty status of a pte becomes:
438  *
439  *   PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
440  */
441 
__check_safe_pte_update(struct mm_struct * mm,pte_t * ptep,pte_t pte)442 static inline void __check_safe_pte_update(struct mm_struct *mm, pte_t *ptep,
443 					   pte_t pte)
444 {
445 	pte_t old_pte;
446 
447 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
448 		return;
449 
450 	old_pte = __ptep_get(ptep);
451 
452 	if (!pte_valid(old_pte) || !pte_valid(pte))
453 		return;
454 	if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1)
455 		return;
456 
457 	/*
458 	 * Check for potential race with hardware updates of the pte
459 	 * (__ptep_set_access_flags safely changes valid ptes without going
460 	 * through an invalid entry).
461 	 */
462 	VM_WARN_ONCE(!pte_young(pte),
463 		     "%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
464 		     __func__, pte_val(old_pte), pte_val(pte));
465 	VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte),
466 		     "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
467 		     __func__, pte_val(old_pte), pte_val(pte));
468 	VM_WARN_ONCE(!pgattr_change_is_safe(pte_val(old_pte), pte_val(pte)),
469 		     "%s: unsafe attribute change: 0x%016llx -> 0x%016llx",
470 		     __func__, pte_val(old_pte), pte_val(pte));
471 }
472 
__sync_cache_and_tags(pte_t pte,unsigned int nr_pages)473 static inline void __sync_cache_and_tags(pte_t pte, unsigned int nr_pages)
474 {
475 	if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte))
476 		__sync_icache_dcache(pte);
477 
478 	/*
479 	 * If the PTE would provide user space access to the tags associated
480 	 * with it then ensure that the MTE tags are synchronised.  Although
481 	 * pte_access_permitted_no_overlay() returns false for exec only
482 	 * mappings, they don't expose tags (instruction fetches don't check
483 	 * tags).
484 	 */
485 	if (system_supports_mte() && pte_access_permitted_no_overlay(pte, false) &&
486 	    !pte_special(pte) && pte_tagged(pte))
487 		mte_sync_tags(pte, nr_pages);
488 }
489 
490 /*
491  * Select all bits except the pfn
492  */
493 #define pte_pgprot pte_pgprot
pte_pgprot(pte_t pte)494 static inline pgprot_t pte_pgprot(pte_t pte)
495 {
496 	unsigned long pfn = pte_pfn(pte);
497 
498 	return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte));
499 }
500 
501 #define pte_advance_pfn pte_advance_pfn
pte_advance_pfn(pte_t pte,unsigned long nr)502 static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
503 {
504 	return pfn_pte(pte_pfn(pte) + nr, pte_pgprot(pte));
505 }
506 
507 /*
508  * Hugetlb definitions.
509  */
510 #define HUGE_MAX_HSTATE		4
511 #define HPAGE_SHIFT		PMD_SHIFT
512 #define HPAGE_SIZE		(_AC(1, UL) << HPAGE_SHIFT)
513 #define HPAGE_MASK		(~(HPAGE_SIZE - 1))
514 #define HUGETLB_PAGE_ORDER	(HPAGE_SHIFT - PAGE_SHIFT)
515 
pgd_pte(pgd_t pgd)516 static inline pte_t pgd_pte(pgd_t pgd)
517 {
518 	return __pte(pgd_val(pgd));
519 }
520 
p4d_pte(p4d_t p4d)521 static inline pte_t p4d_pte(p4d_t p4d)
522 {
523 	return __pte(p4d_val(p4d));
524 }
525 
pud_pte(pud_t pud)526 static inline pte_t pud_pte(pud_t pud)
527 {
528 	return __pte(pud_val(pud));
529 }
530 
pte_pud(pte_t pte)531 static inline pud_t pte_pud(pte_t pte)
532 {
533 	return __pud(pte_val(pte));
534 }
535 
pud_pmd(pud_t pud)536 static inline pmd_t pud_pmd(pud_t pud)
537 {
538 	return __pmd(pud_val(pud));
539 }
540 
pmd_pte(pmd_t pmd)541 static inline pte_t pmd_pte(pmd_t pmd)
542 {
543 	return __pte(pmd_val(pmd));
544 }
545 
pte_pmd(pte_t pte)546 static inline pmd_t pte_pmd(pte_t pte)
547 {
548 	return __pmd(pte_val(pte));
549 }
550 
mk_pud_sect_prot(pgprot_t prot)551 static inline pgprot_t mk_pud_sect_prot(pgprot_t prot)
552 {
553 	return __pgprot((pgprot_val(prot) & ~PUD_TYPE_MASK) | PUD_TYPE_SECT);
554 }
555 
mk_pmd_sect_prot(pgprot_t prot)556 static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot)
557 {
558 	return __pgprot((pgprot_val(prot) & ~PMD_TYPE_MASK) | PMD_TYPE_SECT);
559 }
560 
pte_swp_mkexclusive(pte_t pte)561 static inline pte_t pte_swp_mkexclusive(pte_t pte)
562 {
563 	return set_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
564 }
565 
pte_swp_exclusive(pte_t pte)566 static inline bool pte_swp_exclusive(pte_t pte)
567 {
568 	return pte_val(pte) & PTE_SWP_EXCLUSIVE;
569 }
570 
pte_swp_clear_exclusive(pte_t pte)571 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
572 {
573 	return clear_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
574 }
575 
576 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
pte_swp_mkuffd_wp(pte_t pte)577 static inline pte_t pte_swp_mkuffd_wp(pte_t pte)
578 {
579 	return set_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP));
580 }
581 
pte_swp_uffd_wp(pte_t pte)582 static inline int pte_swp_uffd_wp(pte_t pte)
583 {
584 	return !!(pte_val(pte) & PTE_SWP_UFFD_WP);
585 }
586 
pte_swp_clear_uffd_wp(pte_t pte)587 static inline pte_t pte_swp_clear_uffd_wp(pte_t pte)
588 {
589 	return clear_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP));
590 }
591 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
592 
593 #ifdef CONFIG_NUMA_BALANCING
594 /*
595  * See the comment in include/linux/pgtable.h
596  */
pte_protnone(pte_t pte)597 static inline int pte_protnone(pte_t pte)
598 {
599 	/*
600 	 * pte_present_invalid() tells us that the pte is invalid from HW
601 	 * perspective but present from SW perspective, so the fields are to be
602 	 * interpretted as per the HW layout. The second 2 checks are the unique
603 	 * encoding that we use for PROT_NONE. It is insufficient to only use
604 	 * the first check because we share the same encoding scheme with pmds
605 	 * which support pmd_mkinvalid(), so can be present-invalid without
606 	 * being PROT_NONE.
607 	 */
608 	return pte_present_invalid(pte) && !pte_user(pte) && !pte_user_exec(pte);
609 }
610 
pmd_protnone(pmd_t pmd)611 static inline int pmd_protnone(pmd_t pmd)
612 {
613 	return pte_protnone(pmd_pte(pmd));
614 }
615 #endif
616 
617 #define pmd_present(pmd)	pte_present(pmd_pte(pmd))
618 #define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
619 #define pmd_young(pmd)		pte_young(pmd_pte(pmd))
620 #define pmd_valid(pmd)		pte_valid(pmd_pte(pmd))
621 #define pmd_user(pmd)		pte_user(pmd_pte(pmd))
622 #define pmd_user_exec(pmd)	pte_user_exec(pmd_pte(pmd))
623 #define pmd_cont(pmd)		pte_cont(pmd_pte(pmd))
624 #define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
625 #define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
626 #define pmd_mkwrite_novma(pmd)	pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)))
627 #define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
628 #define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
629 #define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
630 #define pmd_mkinvalid(pmd)	pte_pmd(pte_mkinvalid(pmd_pte(pmd)))
631 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
632 #define pmd_uffd_wp(pmd)	pte_uffd_wp(pmd_pte(pmd))
633 #define pmd_mkuffd_wp(pmd)	pte_pmd(pte_mkuffd_wp(pmd_pte(pmd)))
634 #define pmd_clear_uffd_wp(pmd)	pte_pmd(pte_clear_uffd_wp(pmd_pte(pmd)))
635 #define pmd_swp_uffd_wp(pmd)	pte_swp_uffd_wp(pmd_pte(pmd))
636 #define pmd_swp_mkuffd_wp(pmd)	pte_pmd(pte_swp_mkuffd_wp(pmd_pte(pmd)))
637 #define pmd_swp_clear_uffd_wp(pmd) \
638 				pte_pmd(pte_swp_clear_uffd_wp(pmd_pte(pmd)))
639 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
640 
641 #define pmd_write(pmd)		pte_write(pmd_pte(pmd))
642 
pmd_mkhuge(pmd_t pmd)643 static inline pmd_t pmd_mkhuge(pmd_t pmd)
644 {
645 	/*
646 	 * It's possible that the pmd is present-invalid on entry
647 	 * and in that case it needs to remain present-invalid on
648 	 * exit. So ensure the VALID bit does not get modified.
649 	 */
650 	pmdval_t mask = PMD_TYPE_MASK & ~PTE_VALID;
651 	pmdval_t val = PMD_TYPE_SECT & ~PTE_VALID;
652 
653 	return __pmd((pmd_val(pmd) & ~mask) | val);
654 }
655 
656 #ifdef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
657 #define pmd_special(pte)	(!!((pmd_val(pte) & PTE_SPECIAL)))
pmd_mkspecial(pmd_t pmd)658 static inline pmd_t pmd_mkspecial(pmd_t pmd)
659 {
660 	return set_pmd_bit(pmd, __pgprot(PTE_SPECIAL));
661 }
662 #endif
663 
664 #define __pmd_to_phys(pmd)	__pte_to_phys(pmd_pte(pmd))
665 #define __phys_to_pmd_val(phys)	__phys_to_pte_val(phys)
666 #define pmd_pfn(pmd)		((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT)
667 #define pfn_pmd(pfn,prot)	__pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
668 
669 #define pud_young(pud)		pte_young(pud_pte(pud))
670 #define pud_mkyoung(pud)	pte_pud(pte_mkyoung(pud_pte(pud)))
671 #define pud_write(pud)		pte_write(pud_pte(pud))
672 
pud_mkhuge(pud_t pud)673 static inline pud_t pud_mkhuge(pud_t pud)
674 {
675 	/*
676 	 * It's possible that the pud is present-invalid on entry
677 	 * and in that case it needs to remain present-invalid on
678 	 * exit. So ensure the VALID bit does not get modified.
679 	 */
680 	pudval_t mask = PUD_TYPE_MASK & ~PTE_VALID;
681 	pudval_t val = PUD_TYPE_SECT & ~PTE_VALID;
682 
683 	return __pud((pud_val(pud) & ~mask) | val);
684 }
685 
686 #define __pud_to_phys(pud)	__pte_to_phys(pud_pte(pud))
687 #define __phys_to_pud_val(phys)	__phys_to_pte_val(phys)
688 #define pud_pfn(pud)		((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT)
689 #define pfn_pud(pfn,prot)	__pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
690 
691 #define pmd_pgprot pmd_pgprot
pmd_pgprot(pmd_t pmd)692 static inline pgprot_t pmd_pgprot(pmd_t pmd)
693 {
694 	unsigned long pfn = pmd_pfn(pmd);
695 
696 	return __pgprot(pmd_val(pfn_pmd(pfn, __pgprot(0))) ^ pmd_val(pmd));
697 }
698 
699 #define pud_pgprot pud_pgprot
pud_pgprot(pud_t pud)700 static inline pgprot_t pud_pgprot(pud_t pud)
701 {
702 	unsigned long pfn = pud_pfn(pud);
703 
704 	return __pgprot(pud_val(pfn_pud(pfn, __pgprot(0))) ^ pud_val(pud));
705 }
706 
__set_ptes_anysz(struct mm_struct * mm,pte_t * ptep,pte_t pte,unsigned int nr,unsigned long pgsize)707 static inline void __set_ptes_anysz(struct mm_struct *mm, pte_t *ptep,
708 				    pte_t pte, unsigned int nr,
709 				    unsigned long pgsize)
710 {
711 	unsigned long stride = pgsize >> PAGE_SHIFT;
712 
713 	switch (pgsize) {
714 	case PAGE_SIZE:
715 		page_table_check_ptes_set(mm, ptep, pte, nr);
716 		break;
717 	case PMD_SIZE:
718 		page_table_check_pmds_set(mm, (pmd_t *)ptep, pte_pmd(pte), nr);
719 		break;
720 #ifndef __PAGETABLE_PMD_FOLDED
721 	case PUD_SIZE:
722 		page_table_check_puds_set(mm, (pud_t *)ptep, pte_pud(pte), nr);
723 		break;
724 #endif
725 	default:
726 		VM_WARN_ON(1);
727 	}
728 
729 	__sync_cache_and_tags(pte, nr * stride);
730 
731 	for (;;) {
732 		__check_safe_pte_update(mm, ptep, pte);
733 		__set_pte_nosync(ptep, pte);
734 		if (--nr == 0)
735 			break;
736 		ptep++;
737 		pte = pte_advance_pfn(pte, stride);
738 	}
739 
740 	__set_pte_complete(pte);
741 }
742 
__set_ptes(struct mm_struct * mm,unsigned long __always_unused addr,pte_t * ptep,pte_t pte,unsigned int nr)743 static inline void __set_ptes(struct mm_struct *mm,
744 			      unsigned long __always_unused addr,
745 			      pte_t *ptep, pte_t pte, unsigned int nr)
746 {
747 	__set_ptes_anysz(mm, ptep, pte, nr, PAGE_SIZE);
748 }
749 
__set_pmds(struct mm_struct * mm,unsigned long __always_unused addr,pmd_t * pmdp,pmd_t pmd,unsigned int nr)750 static inline void __set_pmds(struct mm_struct *mm,
751 			      unsigned long __always_unused addr,
752 			      pmd_t *pmdp, pmd_t pmd, unsigned int nr)
753 {
754 	__set_ptes_anysz(mm, (pte_t *)pmdp, pmd_pte(pmd), nr, PMD_SIZE);
755 }
756 #define set_pmd_at(mm, addr, pmdp, pmd) __set_pmds(mm, addr, pmdp, pmd, 1)
757 
__set_puds(struct mm_struct * mm,unsigned long __always_unused addr,pud_t * pudp,pud_t pud,unsigned int nr)758 static inline void __set_puds(struct mm_struct *mm,
759 			      unsigned long __always_unused addr,
760 			      pud_t *pudp, pud_t pud, unsigned int nr)
761 {
762 	__set_ptes_anysz(mm, (pte_t *)pudp, pud_pte(pud), nr, PUD_SIZE);
763 }
764 #define set_pud_at(mm, addr, pudp, pud) __set_puds(mm, addr, pudp, pud, 1)
765 
766 #define __p4d_to_phys(p4d)	__pte_to_phys(p4d_pte(p4d))
767 #define __phys_to_p4d_val(phys)	__phys_to_pte_val(phys)
768 
769 #define __pgd_to_phys(pgd)	__pte_to_phys(pgd_pte(pgd))
770 #define __phys_to_pgd_val(phys)	__phys_to_pte_val(phys)
771 
772 #define __pgprot_modify(prot,mask,bits) \
773 	__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
774 
775 #define pgprot_nx(prot) \
776 	__pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN)
777 
778 #define pgprot_decrypted(prot) \
779 	__pgprot_modify(prot, PROT_NS_SHARED, PROT_NS_SHARED)
780 #define pgprot_encrypted(prot) \
781 	__pgprot_modify(prot, PROT_NS_SHARED, 0)
782 
783 /*
784  * Mark the prot value as uncacheable and unbufferable.
785  */
786 #define pgprot_noncached(prot) \
787 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
788 #define pgprot_writecombine(prot) \
789 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
790 #define pgprot_device(prot) \
791 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
792 #define pgprot_tagged(prot) \
793 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED))
794 #define pgprot_mhp	pgprot_tagged
795 /*
796  * DMA allocations for non-coherent devices use what the Arm architecture calls
797  * "Normal non-cacheable" memory, which permits speculation, unaligned accesses
798  * and merging of writes.  This is different from "Device-nGnR[nE]" memory which
799  * is intended for MMIO and thus forbids speculation, preserves access size,
800  * requires strict alignment and can also force write responses to come from the
801  * endpoint.
802  */
803 #define pgprot_dmacoherent(prot) \
804 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, \
805 			PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
806 
807 #define __HAVE_PHYS_MEM_ACCESS_PROT
808 struct file;
809 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
810 				     unsigned long size, pgprot_t vma_prot);
811 
812 #define pmd_none(pmd)		(!pmd_val(pmd))
813 
814 #define pmd_table(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
815 				 PMD_TYPE_TABLE)
816 #define pmd_sect(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
817 				 PMD_TYPE_SECT)
818 #define pmd_leaf(pmd)		(pmd_present(pmd) && !pmd_table(pmd))
819 #define pmd_bad(pmd)		(!pmd_table(pmd))
820 
821 #define pmd_leaf_size(pmd)	(pmd_cont(pmd) ? CONT_PMD_SIZE : PMD_SIZE)
822 #define pte_leaf_size(pte)	(pte_cont(pte) ? CONT_PTE_SIZE : PAGE_SIZE)
823 
824 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmd_trans_huge(pmd_t pmd)825 static inline int pmd_trans_huge(pmd_t pmd)
826 {
827 	/*
828 	 * If pmd is present-invalid, pmd_table() won't detect it
829 	 * as a table, so force the valid bit for the comparison.
830 	 */
831 	return pmd_present(pmd) && !pmd_table(__pmd(pmd_val(pmd) | PTE_VALID));
832 }
833 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
834 
835 #if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3
pud_sect(pud_t pud)836 static inline bool pud_sect(pud_t pud) { return false; }
pud_table(pud_t pud)837 static inline bool pud_table(pud_t pud) { return true; }
838 #else
839 #define pud_sect(pud)		((pud_val(pud) & PUD_TYPE_MASK) == \
840 				 PUD_TYPE_SECT)
841 #define pud_table(pud)		((pud_val(pud) & PUD_TYPE_MASK) == \
842 				 PUD_TYPE_TABLE)
843 #endif
844 
845 extern pgd_t swapper_pg_dir[];
846 extern pgd_t idmap_pg_dir[];
847 extern pgd_t tramp_pg_dir[];
848 extern pgd_t reserved_pg_dir[];
849 
850 extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd);
851 
in_swapper_pgdir(void * addr)852 static inline bool in_swapper_pgdir(void *addr)
853 {
854 	return ((unsigned long)addr & PAGE_MASK) ==
855 	        ((unsigned long)swapper_pg_dir & PAGE_MASK);
856 }
857 
set_pmd(pmd_t * pmdp,pmd_t pmd)858 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
859 {
860 #ifdef __PAGETABLE_PMD_FOLDED
861 	if (in_swapper_pgdir(pmdp)) {
862 		set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd)));
863 		return;
864 	}
865 #endif /* __PAGETABLE_PMD_FOLDED */
866 
867 	WRITE_ONCE(*pmdp, pmd);
868 
869 	if (pmd_valid(pmd))
870 		queue_pte_barriers();
871 }
872 
pmd_clear(pmd_t * pmdp)873 static inline void pmd_clear(pmd_t *pmdp)
874 {
875 	set_pmd(pmdp, __pmd(0));
876 }
877 
pmd_page_paddr(pmd_t pmd)878 static inline phys_addr_t pmd_page_paddr(pmd_t pmd)
879 {
880 	return __pmd_to_phys(pmd);
881 }
882 
pmd_page_vaddr(pmd_t pmd)883 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
884 {
885 	return (unsigned long)__va(pmd_page_paddr(pmd));
886 }
887 
888 /* Find an entry in the third-level page table. */
889 #define pte_offset_phys(dir,addr)	(pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))
890 
891 #define pte_set_fixmap(addr)		((pte_t *)set_fixmap_offset(FIX_PTE, addr))
892 #define pte_set_fixmap_offset(pmd, addr)	pte_set_fixmap(pte_offset_phys(pmd, addr))
893 #define pte_clear_fixmap()		clear_fixmap(FIX_PTE)
894 
895 #define pmd_page(pmd)			phys_to_page(__pmd_to_phys(pmd))
896 
897 /* use ONLY for statically allocated translation tables */
898 #define pte_offset_kimg(dir,addr)	((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr))))
899 
900 #if CONFIG_PGTABLE_LEVELS > 2
901 
902 #define pmd_ERROR(e)	\
903 	pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e))
904 
905 #define pud_none(pud)		(!pud_val(pud))
906 #define pud_bad(pud)		((pud_val(pud) & PUD_TYPE_MASK) != \
907 				 PUD_TYPE_TABLE)
908 #define pud_present(pud)	pte_present(pud_pte(pud))
909 #ifndef __PAGETABLE_PMD_FOLDED
910 #define pud_leaf(pud)		(pud_present(pud) && !pud_table(pud))
911 #else
912 #define pud_leaf(pud)		false
913 #endif
914 #define pud_valid(pud)		pte_valid(pud_pte(pud))
915 #define pud_user(pud)		pte_user(pud_pte(pud))
916 #define pud_user_exec(pud)	pte_user_exec(pud_pte(pud))
917 
918 static inline bool pgtable_l4_enabled(void);
919 
set_pud(pud_t * pudp,pud_t pud)920 static inline void set_pud(pud_t *pudp, pud_t pud)
921 {
922 	if (!pgtable_l4_enabled() && in_swapper_pgdir(pudp)) {
923 		set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud)));
924 		return;
925 	}
926 
927 	WRITE_ONCE(*pudp, pud);
928 
929 	if (pud_valid(pud))
930 		queue_pte_barriers();
931 }
932 
pud_clear(pud_t * pudp)933 static inline void pud_clear(pud_t *pudp)
934 {
935 	set_pud(pudp, __pud(0));
936 }
937 
pud_page_paddr(pud_t pud)938 static inline phys_addr_t pud_page_paddr(pud_t pud)
939 {
940 	return __pud_to_phys(pud);
941 }
942 
pud_pgtable(pud_t pud)943 static inline pmd_t *pud_pgtable(pud_t pud)
944 {
945 	return (pmd_t *)__va(pud_page_paddr(pud));
946 }
947 
948 /* Find an entry in the second-level page table. */
949 #define pmd_offset_phys(dir, addr)	(pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t))
950 
951 #define pmd_set_fixmap(addr)		((pmd_t *)set_fixmap_offset(FIX_PMD, addr))
952 #define pmd_set_fixmap_offset(pud, addr)	pmd_set_fixmap(pmd_offset_phys(pud, addr))
953 #define pmd_clear_fixmap()		clear_fixmap(FIX_PMD)
954 
955 #define pud_page(pud)			phys_to_page(__pud_to_phys(pud))
956 
957 /* use ONLY for statically allocated translation tables */
958 #define pmd_offset_kimg(dir,addr)	((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr))))
959 
960 #else
961 
962 #define pud_valid(pud)		false
963 #define pud_page_paddr(pud)	({ BUILD_BUG(); 0; })
964 #define pud_user_exec(pud)	pud_user(pud) /* Always 0 with folding */
965 
966 /* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */
967 #define pmd_set_fixmap(addr)		NULL
968 #define pmd_set_fixmap_offset(pudp, addr)	((pmd_t *)pudp)
969 #define pmd_clear_fixmap()
970 
971 #define pmd_offset_kimg(dir,addr)	((pmd_t *)dir)
972 
973 #endif	/* CONFIG_PGTABLE_LEVELS > 2 */
974 
975 #if CONFIG_PGTABLE_LEVELS > 3
976 
pgtable_l4_enabled(void)977 static __always_inline bool pgtable_l4_enabled(void)
978 {
979 	if (CONFIG_PGTABLE_LEVELS > 4 || !IS_ENABLED(CONFIG_ARM64_LPA2))
980 		return true;
981 	if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
982 		return vabits_actual == VA_BITS;
983 	return alternative_has_cap_unlikely(ARM64_HAS_VA52);
984 }
985 
mm_pud_folded(const struct mm_struct * mm)986 static inline bool mm_pud_folded(const struct mm_struct *mm)
987 {
988 	return !pgtable_l4_enabled();
989 }
990 #define mm_pud_folded  mm_pud_folded
991 
992 #define pud_ERROR(e)	\
993 	pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e))
994 
995 #define p4d_none(p4d)		(pgtable_l4_enabled() && !p4d_val(p4d))
996 #define p4d_bad(p4d)		(pgtable_l4_enabled() && \
997 				((p4d_val(p4d) & P4D_TYPE_MASK) != \
998 				 P4D_TYPE_TABLE))
999 #define p4d_present(p4d)	(!p4d_none(p4d))
1000 
set_p4d(p4d_t * p4dp,p4d_t p4d)1001 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
1002 {
1003 	if (in_swapper_pgdir(p4dp)) {
1004 		set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d)));
1005 		return;
1006 	}
1007 
1008 	WRITE_ONCE(*p4dp, p4d);
1009 	queue_pte_barriers();
1010 }
1011 
p4d_clear(p4d_t * p4dp)1012 static inline void p4d_clear(p4d_t *p4dp)
1013 {
1014 	if (pgtable_l4_enabled())
1015 		set_p4d(p4dp, __p4d(0));
1016 }
1017 
p4d_page_paddr(p4d_t p4d)1018 static inline phys_addr_t p4d_page_paddr(p4d_t p4d)
1019 {
1020 	return __p4d_to_phys(p4d);
1021 }
1022 
1023 #define pud_index(addr)		(((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1))
1024 
p4d_to_folded_pud(p4d_t * p4dp,unsigned long addr)1025 static inline pud_t *p4d_to_folded_pud(p4d_t *p4dp, unsigned long addr)
1026 {
1027 	/* Ensure that 'p4dp' indexes a page table according to 'addr' */
1028 	VM_BUG_ON(((addr >> P4D_SHIFT) ^ ((u64)p4dp >> 3)) % PTRS_PER_P4D);
1029 
1030 	return (pud_t *)PTR_ALIGN_DOWN(p4dp, PAGE_SIZE) + pud_index(addr);
1031 }
1032 
p4d_pgtable(p4d_t p4d)1033 static inline pud_t *p4d_pgtable(p4d_t p4d)
1034 {
1035 	return (pud_t *)__va(p4d_page_paddr(p4d));
1036 }
1037 
pud_offset_phys(p4d_t * p4dp,unsigned long addr)1038 static inline phys_addr_t pud_offset_phys(p4d_t *p4dp, unsigned long addr)
1039 {
1040 	BUG_ON(!pgtable_l4_enabled());
1041 
1042 	return p4d_page_paddr(READ_ONCE(*p4dp)) + pud_index(addr) * sizeof(pud_t);
1043 }
1044 
1045 static inline
pud_offset_lockless(p4d_t * p4dp,p4d_t p4d,unsigned long addr)1046 pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long addr)
1047 {
1048 	if (!pgtable_l4_enabled())
1049 		return p4d_to_folded_pud(p4dp, addr);
1050 	return (pud_t *)__va(p4d_page_paddr(p4d)) + pud_index(addr);
1051 }
1052 #define pud_offset_lockless pud_offset_lockless
1053 
pud_offset(p4d_t * p4dp,unsigned long addr)1054 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long addr)
1055 {
1056 	return pud_offset_lockless(p4dp, READ_ONCE(*p4dp), addr);
1057 }
1058 #define pud_offset	pud_offset
1059 
pud_set_fixmap(unsigned long addr)1060 static inline pud_t *pud_set_fixmap(unsigned long addr)
1061 {
1062 	if (!pgtable_l4_enabled())
1063 		return NULL;
1064 	return (pud_t *)set_fixmap_offset(FIX_PUD, addr);
1065 }
1066 
pud_set_fixmap_offset(p4d_t * p4dp,unsigned long addr)1067 static inline pud_t *pud_set_fixmap_offset(p4d_t *p4dp, unsigned long addr)
1068 {
1069 	if (!pgtable_l4_enabled())
1070 		return p4d_to_folded_pud(p4dp, addr);
1071 	return pud_set_fixmap(pud_offset_phys(p4dp, addr));
1072 }
1073 
pud_clear_fixmap(void)1074 static inline void pud_clear_fixmap(void)
1075 {
1076 	if (pgtable_l4_enabled())
1077 		clear_fixmap(FIX_PUD);
1078 }
1079 
1080 /* use ONLY for statically allocated translation tables */
pud_offset_kimg(p4d_t * p4dp,u64 addr)1081 static inline pud_t *pud_offset_kimg(p4d_t *p4dp, u64 addr)
1082 {
1083 	if (!pgtable_l4_enabled())
1084 		return p4d_to_folded_pud(p4dp, addr);
1085 	return (pud_t *)__phys_to_kimg(pud_offset_phys(p4dp, addr));
1086 }
1087 
1088 #define p4d_page(p4d)		pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d)))
1089 
1090 #else
1091 
pgtable_l4_enabled(void)1092 static inline bool pgtable_l4_enabled(void) { return false; }
1093 
1094 #define p4d_page_paddr(p4d)	({ BUILD_BUG(); 0;})
1095 
1096 /* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */
1097 #define pud_set_fixmap(addr)		NULL
1098 #define pud_set_fixmap_offset(pgdp, addr)	((pud_t *)pgdp)
1099 #define pud_clear_fixmap()
1100 
1101 #define pud_offset_kimg(dir,addr)	((pud_t *)dir)
1102 
1103 #endif  /* CONFIG_PGTABLE_LEVELS > 3 */
1104 
1105 #if CONFIG_PGTABLE_LEVELS > 4
1106 
pgtable_l5_enabled(void)1107 static __always_inline bool pgtable_l5_enabled(void)
1108 {
1109 	if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
1110 		return vabits_actual == VA_BITS;
1111 	return alternative_has_cap_unlikely(ARM64_HAS_VA52);
1112 }
1113 
mm_p4d_folded(const struct mm_struct * mm)1114 static inline bool mm_p4d_folded(const struct mm_struct *mm)
1115 {
1116 	return !pgtable_l5_enabled();
1117 }
1118 #define mm_p4d_folded  mm_p4d_folded
1119 
1120 #define p4d_ERROR(e)	\
1121 	pr_err("%s:%d: bad p4d %016llx.\n", __FILE__, __LINE__, p4d_val(e))
1122 
1123 #define pgd_none(pgd)		(pgtable_l5_enabled() && !pgd_val(pgd))
1124 #define pgd_bad(pgd)		(pgtable_l5_enabled() && \
1125 				((pgd_val(pgd) & PGD_TYPE_MASK) != \
1126 				 PGD_TYPE_TABLE))
1127 #define pgd_present(pgd)	(!pgd_none(pgd))
1128 
set_pgd(pgd_t * pgdp,pgd_t pgd)1129 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
1130 {
1131 	if (in_swapper_pgdir(pgdp)) {
1132 		set_swapper_pgd(pgdp, __pgd(pgd_val(pgd)));
1133 		return;
1134 	}
1135 
1136 	WRITE_ONCE(*pgdp, pgd);
1137 	queue_pte_barriers();
1138 }
1139 
pgd_clear(pgd_t * pgdp)1140 static inline void pgd_clear(pgd_t *pgdp)
1141 {
1142 	if (pgtable_l5_enabled())
1143 		set_pgd(pgdp, __pgd(0));
1144 }
1145 
pgd_page_paddr(pgd_t pgd)1146 static inline phys_addr_t pgd_page_paddr(pgd_t pgd)
1147 {
1148 	return __pgd_to_phys(pgd);
1149 }
1150 
1151 #define p4d_index(addr)		(((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))
1152 
pgd_to_folded_p4d(pgd_t * pgdp,unsigned long addr)1153 static inline p4d_t *pgd_to_folded_p4d(pgd_t *pgdp, unsigned long addr)
1154 {
1155 	/* Ensure that 'pgdp' indexes a page table according to 'addr' */
1156 	VM_BUG_ON(((addr >> PGDIR_SHIFT) ^ ((u64)pgdp >> 3)) % PTRS_PER_PGD);
1157 
1158 	return (p4d_t *)PTR_ALIGN_DOWN(pgdp, PAGE_SIZE) + p4d_index(addr);
1159 }
1160 
p4d_offset_phys(pgd_t * pgdp,unsigned long addr)1161 static inline phys_addr_t p4d_offset_phys(pgd_t *pgdp, unsigned long addr)
1162 {
1163 	BUG_ON(!pgtable_l5_enabled());
1164 
1165 	return pgd_page_paddr(READ_ONCE(*pgdp)) + p4d_index(addr) * sizeof(p4d_t);
1166 }
1167 
1168 static inline
p4d_offset_lockless(pgd_t * pgdp,pgd_t pgd,unsigned long addr)1169 p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long addr)
1170 {
1171 	if (!pgtable_l5_enabled())
1172 		return pgd_to_folded_p4d(pgdp, addr);
1173 	return (p4d_t *)__va(pgd_page_paddr(pgd)) + p4d_index(addr);
1174 }
1175 #define p4d_offset_lockless p4d_offset_lockless
1176 
p4d_offset(pgd_t * pgdp,unsigned long addr)1177 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long addr)
1178 {
1179 	return p4d_offset_lockless(pgdp, READ_ONCE(*pgdp), addr);
1180 }
1181 
p4d_set_fixmap(unsigned long addr)1182 static inline p4d_t *p4d_set_fixmap(unsigned long addr)
1183 {
1184 	if (!pgtable_l5_enabled())
1185 		return NULL;
1186 	return (p4d_t *)set_fixmap_offset(FIX_P4D, addr);
1187 }
1188 
p4d_set_fixmap_offset(pgd_t * pgdp,unsigned long addr)1189 static inline p4d_t *p4d_set_fixmap_offset(pgd_t *pgdp, unsigned long addr)
1190 {
1191 	if (!pgtable_l5_enabled())
1192 		return pgd_to_folded_p4d(pgdp, addr);
1193 	return p4d_set_fixmap(p4d_offset_phys(pgdp, addr));
1194 }
1195 
p4d_clear_fixmap(void)1196 static inline void p4d_clear_fixmap(void)
1197 {
1198 	if (pgtable_l5_enabled())
1199 		clear_fixmap(FIX_P4D);
1200 }
1201 
1202 /* use ONLY for statically allocated translation tables */
p4d_offset_kimg(pgd_t * pgdp,u64 addr)1203 static inline p4d_t *p4d_offset_kimg(pgd_t *pgdp, u64 addr)
1204 {
1205 	if (!pgtable_l5_enabled())
1206 		return pgd_to_folded_p4d(pgdp, addr);
1207 	return (p4d_t *)__phys_to_kimg(p4d_offset_phys(pgdp, addr));
1208 }
1209 
1210 #define pgd_page(pgd)		pfn_to_page(__phys_to_pfn(__pgd_to_phys(pgd)))
1211 
1212 #else
1213 
pgtable_l5_enabled(void)1214 static inline bool pgtable_l5_enabled(void) { return false; }
1215 
1216 #define p4d_index(addr)		(((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))
1217 
1218 /* Match p4d_offset folding in <asm/generic/pgtable-nop4d.h> */
1219 #define p4d_set_fixmap(addr)		NULL
1220 #define p4d_set_fixmap_offset(p4dp, addr)	((p4d_t *)p4dp)
1221 #define p4d_clear_fixmap()
1222 
1223 #define p4d_offset_kimg(dir,addr)	((p4d_t *)dir)
1224 
1225 static inline
p4d_offset_lockless_folded(pgd_t * pgdp,pgd_t pgd,unsigned long addr)1226 p4d_t *p4d_offset_lockless_folded(pgd_t *pgdp, pgd_t pgd, unsigned long addr)
1227 {
1228 	/*
1229 	 * With runtime folding of the pud, pud_offset_lockless() passes
1230 	 * the 'pgd_t *' we return here to p4d_to_folded_pud(), which
1231 	 * will offset the pointer assuming that it points into
1232 	 * a page-table page. However, the fast GUP path passes us a
1233 	 * pgd_t allocated on the stack and so we must use the original
1234 	 * pointer in 'pgdp' to construct the p4d pointer instead of
1235 	 * using the generic p4d_offset_lockless() implementation.
1236 	 *
1237 	 * Note: reusing the original pointer means that we may
1238 	 * dereference the same (live) page-table entry multiple times.
1239 	 * This is safe because it is still only loaded once in the
1240 	 * context of each level and the CPU guarantees same-address
1241 	 * read-after-read ordering.
1242 	 */
1243 	return p4d_offset(pgdp, addr);
1244 }
1245 #define p4d_offset_lockless p4d_offset_lockless_folded
1246 
1247 #endif  /* CONFIG_PGTABLE_LEVELS > 4 */
1248 
1249 #define pgd_ERROR(e)	\
1250 	pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e))
1251 
1252 #define pgd_set_fixmap(addr)	((pgd_t *)set_fixmap_offset(FIX_PGD, addr))
1253 #define pgd_clear_fixmap()	clear_fixmap(FIX_PGD)
1254 
pte_modify(pte_t pte,pgprot_t newprot)1255 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
1256 {
1257 	/*
1258 	 * Normal and Normal-Tagged are two different memory types and indices
1259 	 * in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK.
1260 	 */
1261 	const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY |
1262 			      PTE_PRESENT_INVALID | PTE_VALID | PTE_WRITE |
1263 			      PTE_GP | PTE_ATTRINDX_MASK | PTE_PO_IDX_MASK;
1264 
1265 	/* preserve the hardware dirty information */
1266 	if (pte_hw_dirty(pte))
1267 		pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
1268 
1269 	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
1270 	/*
1271 	 * If we end up clearing hw dirtiness for a sw-dirty PTE, set hardware
1272 	 * dirtiness again.
1273 	 */
1274 	if (pte_sw_dirty(pte))
1275 		pte = pte_mkdirty(pte);
1276 	return pte;
1277 }
1278 
pmd_modify(pmd_t pmd,pgprot_t newprot)1279 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1280 {
1281 	return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
1282 }
1283 
1284 extern int __ptep_set_access_flags(struct vm_area_struct *vma,
1285 				 unsigned long address, pte_t *ptep,
1286 				 pte_t entry, int dirty);
1287 
1288 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1289 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)1290 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1291 					unsigned long address, pmd_t *pmdp,
1292 					pmd_t entry, int dirty)
1293 {
1294 	return __ptep_set_access_flags(vma, address, (pte_t *)pmdp,
1295 							pmd_pte(entry), dirty);
1296 }
1297 #endif
1298 
1299 #ifdef CONFIG_PAGE_TABLE_CHECK
pte_user_accessible_page(pte_t pte)1300 static inline bool pte_user_accessible_page(pte_t pte)
1301 {
1302 	return pte_valid(pte) && (pte_user(pte) || pte_user_exec(pte));
1303 }
1304 
pmd_user_accessible_page(pmd_t pmd)1305 static inline bool pmd_user_accessible_page(pmd_t pmd)
1306 {
1307 	return pmd_valid(pmd) && !pmd_table(pmd) && (pmd_user(pmd) || pmd_user_exec(pmd));
1308 }
1309 
pud_user_accessible_page(pud_t pud)1310 static inline bool pud_user_accessible_page(pud_t pud)
1311 {
1312 	return pud_valid(pud) && !pud_table(pud) && (pud_user(pud) || pud_user_exec(pud));
1313 }
1314 #endif
1315 
1316 /*
1317  * Atomic pte/pmd modifications.
1318  */
__ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1319 static inline int __ptep_test_and_clear_young(struct vm_area_struct *vma,
1320 					      unsigned long address,
1321 					      pte_t *ptep)
1322 {
1323 	pte_t old_pte, pte;
1324 
1325 	pte = __ptep_get(ptep);
1326 	do {
1327 		old_pte = pte;
1328 		pte = pte_mkold(pte);
1329 		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1330 					       pte_val(old_pte), pte_val(pte));
1331 	} while (pte_val(pte) != pte_val(old_pte));
1332 
1333 	return pte_young(pte);
1334 }
1335 
__ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1336 static inline int __ptep_clear_flush_young(struct vm_area_struct *vma,
1337 					 unsigned long address, pte_t *ptep)
1338 {
1339 	int young = __ptep_test_and_clear_young(vma, address, ptep);
1340 
1341 	if (young) {
1342 		/*
1343 		 * We can elide the trailing DSB here since the worst that can
1344 		 * happen is that a CPU continues to use the young entry in its
1345 		 * TLB and we mistakenly reclaim the associated page. The
1346 		 * window for such an event is bounded by the next
1347 		 * context-switch, which provides a DSB to complete the TLB
1348 		 * invalidation.
1349 		 */
1350 		flush_tlb_page_nosync(vma, address);
1351 	}
1352 
1353 	return young;
1354 }
1355 
1356 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
1357 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)1358 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1359 					    unsigned long address,
1360 					    pmd_t *pmdp)
1361 {
1362 	/* Operation applies to PMD table entry only if FEAT_HAFT is enabled */
1363 	VM_WARN_ON(pmd_table(READ_ONCE(*pmdp)) && !system_supports_haft());
1364 	return __ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
1365 }
1366 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
1367 
__ptep_get_and_clear_anysz(struct mm_struct * mm,pte_t * ptep,unsigned long pgsize)1368 static inline pte_t __ptep_get_and_clear_anysz(struct mm_struct *mm,
1369 					       pte_t *ptep,
1370 					       unsigned long pgsize)
1371 {
1372 	pte_t pte = __pte(xchg_relaxed(&pte_val(*ptep), 0));
1373 
1374 	switch (pgsize) {
1375 	case PAGE_SIZE:
1376 		page_table_check_pte_clear(mm, pte);
1377 		break;
1378 	case PMD_SIZE:
1379 		page_table_check_pmd_clear(mm, pte_pmd(pte));
1380 		break;
1381 #ifndef __PAGETABLE_PMD_FOLDED
1382 	case PUD_SIZE:
1383 		page_table_check_pud_clear(mm, pte_pud(pte));
1384 		break;
1385 #endif
1386 	default:
1387 		VM_WARN_ON(1);
1388 	}
1389 
1390 	return pte;
1391 }
1392 
__ptep_get_and_clear(struct mm_struct * mm,unsigned long address,pte_t * ptep)1393 static inline pte_t __ptep_get_and_clear(struct mm_struct *mm,
1394 				       unsigned long address, pte_t *ptep)
1395 {
1396 	return __ptep_get_and_clear_anysz(mm, ptep, PAGE_SIZE);
1397 }
1398 
__clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)1399 static inline void __clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1400 				pte_t *ptep, unsigned int nr, int full)
1401 {
1402 	for (;;) {
1403 		__ptep_get_and_clear(mm, addr, ptep);
1404 		if (--nr == 0)
1405 			break;
1406 		ptep++;
1407 		addr += PAGE_SIZE;
1408 	}
1409 }
1410 
__get_and_clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)1411 static inline pte_t __get_and_clear_full_ptes(struct mm_struct *mm,
1412 				unsigned long addr, pte_t *ptep,
1413 				unsigned int nr, int full)
1414 {
1415 	pte_t pte, tmp_pte;
1416 
1417 	pte = __ptep_get_and_clear(mm, addr, ptep);
1418 	while (--nr) {
1419 		ptep++;
1420 		addr += PAGE_SIZE;
1421 		tmp_pte = __ptep_get_and_clear(mm, addr, ptep);
1422 		if (pte_dirty(tmp_pte))
1423 			pte = pte_mkdirty(pte);
1424 		if (pte_young(tmp_pte))
1425 			pte = pte_mkyoung(pte);
1426 	}
1427 	return pte;
1428 }
1429 
1430 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1431 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)1432 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1433 					    unsigned long address, pmd_t *pmdp)
1434 {
1435 	return pte_pmd(__ptep_get_and_clear_anysz(mm, (pte_t *)pmdp, PMD_SIZE));
1436 }
1437 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1438 
___ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep,pte_t pte)1439 static inline void ___ptep_set_wrprotect(struct mm_struct *mm,
1440 					unsigned long address, pte_t *ptep,
1441 					pte_t pte)
1442 {
1443 	pte_t old_pte;
1444 
1445 	do {
1446 		old_pte = pte;
1447 		pte = pte_wrprotect(pte);
1448 		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1449 					       pte_val(old_pte), pte_val(pte));
1450 	} while (pte_val(pte) != pte_val(old_pte));
1451 }
1452 
1453 /*
1454  * __ptep_set_wrprotect - mark read-only while transferring potential hardware
1455  * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
1456  */
__ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep)1457 static inline void __ptep_set_wrprotect(struct mm_struct *mm,
1458 					unsigned long address, pte_t *ptep)
1459 {
1460 	___ptep_set_wrprotect(mm, address, ptep, __ptep_get(ptep));
1461 }
1462 
__wrprotect_ptes(struct mm_struct * mm,unsigned long address,pte_t * ptep,unsigned int nr)1463 static inline void __wrprotect_ptes(struct mm_struct *mm, unsigned long address,
1464 				pte_t *ptep, unsigned int nr)
1465 {
1466 	unsigned int i;
1467 
1468 	for (i = 0; i < nr; i++, address += PAGE_SIZE, ptep++)
1469 		__ptep_set_wrprotect(mm, address, ptep);
1470 }
1471 
__clear_young_dirty_pte(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t pte,cydp_t flags)1472 static inline void __clear_young_dirty_pte(struct vm_area_struct *vma,
1473 					   unsigned long addr, pte_t *ptep,
1474 					   pte_t pte, cydp_t flags)
1475 {
1476 	pte_t old_pte;
1477 
1478 	do {
1479 		old_pte = pte;
1480 
1481 		if (flags & CYDP_CLEAR_YOUNG)
1482 			pte = pte_mkold(pte);
1483 		if (flags & CYDP_CLEAR_DIRTY)
1484 			pte = pte_mkclean(pte);
1485 
1486 		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1487 					       pte_val(old_pte), pte_val(pte));
1488 	} while (pte_val(pte) != pte_val(old_pte));
1489 }
1490 
__clear_young_dirty_ptes(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr,cydp_t flags)1491 static inline void __clear_young_dirty_ptes(struct vm_area_struct *vma,
1492 					    unsigned long addr, pte_t *ptep,
1493 					    unsigned int nr, cydp_t flags)
1494 {
1495 	pte_t pte;
1496 
1497 	for (;;) {
1498 		pte = __ptep_get(ptep);
1499 
1500 		if (flags == (CYDP_CLEAR_YOUNG | CYDP_CLEAR_DIRTY))
1501 			__set_pte(ptep, pte_mkclean(pte_mkold(pte)));
1502 		else
1503 			__clear_young_dirty_pte(vma, addr, ptep, pte, flags);
1504 
1505 		if (--nr == 0)
1506 			break;
1507 		ptep++;
1508 		addr += PAGE_SIZE;
1509 	}
1510 }
1511 
1512 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1513 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)1514 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1515 				      unsigned long address, pmd_t *pmdp)
1516 {
1517 	__ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
1518 }
1519 
1520 #define pmdp_establish pmdp_establish
pmdp_establish(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t pmd)1521 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
1522 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
1523 {
1524 	page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
1525 	return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd)));
1526 }
1527 #endif
1528 
1529 /*
1530  * Encode and decode a swap entry:
1531  *	bits 0-1:	present (must be zero)
1532  *	bits 2:		remember PG_anon_exclusive
1533  *	bit  3:		remember uffd-wp state
1534  *	bits 6-10:	swap type
1535  *	bit  11:	PTE_PRESENT_INVALID (must be zero)
1536  *	bits 12-61:	swap offset
1537  */
1538 #define __SWP_TYPE_SHIFT	6
1539 #define __SWP_TYPE_BITS		5
1540 #define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
1541 #define __SWP_OFFSET_SHIFT	12
1542 #define __SWP_OFFSET_BITS	50
1543 #define __SWP_OFFSET_MASK	((1UL << __SWP_OFFSET_BITS) - 1)
1544 
1545 #define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
1546 #define __swp_offset(x)		(((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
1547 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
1548 
1549 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1550 #define __swp_entry_to_pte(swp)	((pte_t) { (swp).val })
1551 
1552 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1553 #define __pmd_to_swp_entry(pmd)		((swp_entry_t) { pmd_val(pmd) })
1554 #define __swp_entry_to_pmd(swp)		__pmd((swp).val)
1555 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
1556 
1557 /*
1558  * Ensure that there are not more swap files than can be encoded in the kernel
1559  * PTEs.
1560  */
1561 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
1562 
1563 #ifdef CONFIG_ARM64_MTE
1564 
1565 #define __HAVE_ARCH_PREPARE_TO_SWAP
1566 extern int arch_prepare_to_swap(struct folio *folio);
1567 
1568 #define __HAVE_ARCH_SWAP_INVALIDATE
arch_swap_invalidate_page(int type,pgoff_t offset)1569 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
1570 {
1571 	if (system_supports_mte())
1572 		mte_invalidate_tags(type, offset);
1573 }
1574 
arch_swap_invalidate_area(int type)1575 static inline void arch_swap_invalidate_area(int type)
1576 {
1577 	if (system_supports_mte())
1578 		mte_invalidate_tags_area(type);
1579 }
1580 
1581 #define __HAVE_ARCH_SWAP_RESTORE
1582 extern void arch_swap_restore(swp_entry_t entry, struct folio *folio);
1583 
1584 #endif /* CONFIG_ARM64_MTE */
1585 
1586 /*
1587  * On AArch64, the cache coherency is handled via the __set_ptes() function.
1588  */
update_mmu_cache_range(struct vm_fault * vmf,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr)1589 static inline void update_mmu_cache_range(struct vm_fault *vmf,
1590 		struct vm_area_struct *vma, unsigned long addr, pte_t *ptep,
1591 		unsigned int nr)
1592 {
1593 	/*
1594 	 * We don't do anything here, so there's a very small chance of
1595 	 * us retaking a user fault which we just fixed up. The alternative
1596 	 * is doing a dsb(ishst), but that penalises the fastpath.
1597 	 */
1598 }
1599 
1600 #define update_mmu_cache(vma, addr, ptep) \
1601 	update_mmu_cache_range(NULL, vma, addr, ptep, 1)
1602 #define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
1603 
1604 #ifdef CONFIG_ARM64_PA_BITS_52
1605 #define phys_to_ttbr(addr)	(((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52)
1606 #else
1607 #define phys_to_ttbr(addr)	(addr)
1608 #endif
1609 
1610 /*
1611  * On arm64 without hardware Access Flag, copying from user will fail because
1612  * the pte is old and cannot be marked young. So we always end up with zeroed
1613  * page after fork() + CoW for pfn mappings. We don't always have a
1614  * hardware-managed access flag on arm64.
1615  */
1616 #define arch_has_hw_pte_young		cpu_has_hw_af
1617 
1618 #ifdef CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG
1619 #define arch_has_hw_nonleaf_pmd_young	system_supports_haft
1620 #endif
1621 
1622 /*
1623  * Experimentally, it's cheap to set the access flag in hardware and we
1624  * benefit from prefaulting mappings as 'old' to start with.
1625  */
1626 #define arch_wants_old_prefaulted_pte	cpu_has_hw_af
1627 
1628 /*
1629  * Request exec memory is read into pagecache in at least 64K folios. This size
1630  * can be contpte-mapped when 4K base pages are in use (16 pages into 1 iTLB
1631  * entry), and HPA can coalesce it (4 pages into 1 TLB entry) when 16K base
1632  * pages are in use.
1633  */
1634 #define exec_folio_order() ilog2(SZ_64K >> PAGE_SHIFT)
1635 
pud_sect_supported(void)1636 static inline bool pud_sect_supported(void)
1637 {
1638 	return PAGE_SIZE == SZ_4K;
1639 }
1640 
1641 
1642 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1643 #define ptep_modify_prot_start ptep_modify_prot_start
1644 extern pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1645 				    unsigned long addr, pte_t *ptep);
1646 
1647 #define ptep_modify_prot_commit ptep_modify_prot_commit
1648 extern void ptep_modify_prot_commit(struct vm_area_struct *vma,
1649 				    unsigned long addr, pte_t *ptep,
1650 				    pte_t old_pte, pte_t new_pte);
1651 
1652 #define modify_prot_start_ptes modify_prot_start_ptes
1653 extern pte_t modify_prot_start_ptes(struct vm_area_struct *vma,
1654 				    unsigned long addr, pte_t *ptep,
1655 				    unsigned int nr);
1656 
1657 #define modify_prot_commit_ptes modify_prot_commit_ptes
1658 extern void modify_prot_commit_ptes(struct vm_area_struct *vma, unsigned long addr,
1659 				    pte_t *ptep, pte_t old_pte, pte_t pte,
1660 				    unsigned int nr);
1661 
1662 #ifdef CONFIG_ARM64_CONTPTE
1663 
1664 /*
1665  * The contpte APIs are used to transparently manage the contiguous bit in ptes
1666  * where it is possible and makes sense to do so. The PTE_CONT bit is considered
1667  * a private implementation detail of the public ptep API (see below).
1668  */
1669 extern void __contpte_try_fold(struct mm_struct *mm, unsigned long addr,
1670 				pte_t *ptep, pte_t pte);
1671 extern void __contpte_try_unfold(struct mm_struct *mm, unsigned long addr,
1672 				pte_t *ptep, pte_t pte);
1673 extern pte_t contpte_ptep_get(pte_t *ptep, pte_t orig_pte);
1674 extern pte_t contpte_ptep_get_lockless(pte_t *orig_ptep);
1675 extern void contpte_set_ptes(struct mm_struct *mm, unsigned long addr,
1676 				pte_t *ptep, pte_t pte, unsigned int nr);
1677 extern void contpte_clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1678 				pte_t *ptep, unsigned int nr, int full);
1679 extern pte_t contpte_get_and_clear_full_ptes(struct mm_struct *mm,
1680 				unsigned long addr, pte_t *ptep,
1681 				unsigned int nr, int full);
1682 extern int contpte_ptep_test_and_clear_young(struct vm_area_struct *vma,
1683 				unsigned long addr, pte_t *ptep);
1684 extern int contpte_ptep_clear_flush_young(struct vm_area_struct *vma,
1685 				unsigned long addr, pte_t *ptep);
1686 extern void contpte_wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
1687 				pte_t *ptep, unsigned int nr);
1688 extern int contpte_ptep_set_access_flags(struct vm_area_struct *vma,
1689 				unsigned long addr, pte_t *ptep,
1690 				pte_t entry, int dirty);
1691 extern void contpte_clear_young_dirty_ptes(struct vm_area_struct *vma,
1692 				unsigned long addr, pte_t *ptep,
1693 				unsigned int nr, cydp_t flags);
1694 
contpte_try_fold(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)1695 static __always_inline void contpte_try_fold(struct mm_struct *mm,
1696 				unsigned long addr, pte_t *ptep, pte_t pte)
1697 {
1698 	/*
1699 	 * Only bother trying if both the virtual and physical addresses are
1700 	 * aligned and correspond to the last entry in a contig range. The core
1701 	 * code mostly modifies ranges from low to high, so this is the likely
1702 	 * the last modification in the contig range, so a good time to fold.
1703 	 * We can't fold special mappings, because there is no associated folio.
1704 	 */
1705 
1706 	const unsigned long contmask = CONT_PTES - 1;
1707 	bool valign = ((addr >> PAGE_SHIFT) & contmask) == contmask;
1708 
1709 	if (unlikely(valign)) {
1710 		bool palign = (pte_pfn(pte) & contmask) == contmask;
1711 
1712 		if (unlikely(palign &&
1713 		    pte_valid(pte) && !pte_cont(pte) && !pte_special(pte)))
1714 			__contpte_try_fold(mm, addr, ptep, pte);
1715 	}
1716 }
1717 
contpte_try_unfold(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)1718 static __always_inline void contpte_try_unfold(struct mm_struct *mm,
1719 				unsigned long addr, pte_t *ptep, pte_t pte)
1720 {
1721 	if (unlikely(pte_valid_cont(pte)))
1722 		__contpte_try_unfold(mm, addr, ptep, pte);
1723 }
1724 
1725 #define pte_batch_hint pte_batch_hint
pte_batch_hint(pte_t * ptep,pte_t pte)1726 static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
1727 {
1728 	if (!pte_valid_cont(pte))
1729 		return 1;
1730 
1731 	return CONT_PTES - (((unsigned long)ptep >> 3) & (CONT_PTES - 1));
1732 }
1733 
1734 /*
1735  * The below functions constitute the public API that arm64 presents to the
1736  * core-mm to manipulate PTE entries within their page tables (or at least this
1737  * is the subset of the API that arm64 needs to implement). These public
1738  * versions will automatically and transparently apply the contiguous bit where
1739  * it makes sense to do so. Therefore any users that are contig-aware (e.g.
1740  * hugetlb, kernel mapper) should NOT use these APIs, but instead use the
1741  * private versions, which are prefixed with double underscore. All of these
1742  * APIs except for ptep_get_lockless() are expected to be called with the PTL
1743  * held. Although the contiguous bit is considered private to the
1744  * implementation, it is deliberately allowed to leak through the getters (e.g.
1745  * ptep_get()), back to core code. This is required so that pte_leaf_size() can
1746  * provide an accurate size for perf_get_pgtable_size(). But this leakage means
1747  * its possible a pte will be passed to a setter with the contiguous bit set, so
1748  * we explicitly clear the contiguous bit in those cases to prevent accidentally
1749  * setting it in the pgtable.
1750  */
1751 
1752 #define ptep_get ptep_get
ptep_get(pte_t * ptep)1753 static inline pte_t ptep_get(pte_t *ptep)
1754 {
1755 	pte_t pte = __ptep_get(ptep);
1756 
1757 	if (likely(!pte_valid_cont(pte)))
1758 		return pte;
1759 
1760 	return contpte_ptep_get(ptep, pte);
1761 }
1762 
1763 #define ptep_get_lockless ptep_get_lockless
ptep_get_lockless(pte_t * ptep)1764 static inline pte_t ptep_get_lockless(pte_t *ptep)
1765 {
1766 	pte_t pte = __ptep_get(ptep);
1767 
1768 	if (likely(!pte_valid_cont(pte)))
1769 		return pte;
1770 
1771 	return contpte_ptep_get_lockless(ptep);
1772 }
1773 
set_pte(pte_t * ptep,pte_t pte)1774 static inline void set_pte(pte_t *ptep, pte_t pte)
1775 {
1776 	/*
1777 	 * We don't have the mm or vaddr so cannot unfold contig entries (since
1778 	 * it requires tlb maintenance). set_pte() is not used in core code, so
1779 	 * this should never even be called. Regardless do our best to service
1780 	 * any call and emit a warning if there is any attempt to set a pte on
1781 	 * top of an existing contig range.
1782 	 */
1783 	pte_t orig_pte = __ptep_get(ptep);
1784 
1785 	WARN_ON_ONCE(pte_valid_cont(orig_pte));
1786 	__set_pte(ptep, pte_mknoncont(pte));
1787 }
1788 
1789 #define set_ptes set_ptes
set_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte,unsigned int nr)1790 static __always_inline void set_ptes(struct mm_struct *mm, unsigned long addr,
1791 				pte_t *ptep, pte_t pte, unsigned int nr)
1792 {
1793 	pte = pte_mknoncont(pte);
1794 
1795 	if (likely(nr == 1)) {
1796 		contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1797 		__set_ptes(mm, addr, ptep, pte, 1);
1798 		contpte_try_fold(mm, addr, ptep, pte);
1799 	} else {
1800 		contpte_set_ptes(mm, addr, ptep, pte, nr);
1801 	}
1802 }
1803 
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1804 static inline void pte_clear(struct mm_struct *mm,
1805 				unsigned long addr, pte_t *ptep)
1806 {
1807 	contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1808 	__pte_clear(mm, addr, ptep);
1809 }
1810 
1811 #define clear_full_ptes clear_full_ptes
clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)1812 static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1813 				pte_t *ptep, unsigned int nr, int full)
1814 {
1815 	if (likely(nr == 1)) {
1816 		contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1817 		__clear_full_ptes(mm, addr, ptep, nr, full);
1818 	} else {
1819 		contpte_clear_full_ptes(mm, addr, ptep, nr, full);
1820 	}
1821 }
1822 
1823 #define get_and_clear_full_ptes get_and_clear_full_ptes
get_and_clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)1824 static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
1825 				unsigned long addr, pte_t *ptep,
1826 				unsigned int nr, int full)
1827 {
1828 	pte_t pte;
1829 
1830 	if (likely(nr == 1)) {
1831 		contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1832 		pte = __get_and_clear_full_ptes(mm, addr, ptep, nr, full);
1833 	} else {
1834 		pte = contpte_get_and_clear_full_ptes(mm, addr, ptep, nr, full);
1835 	}
1836 
1837 	return pte;
1838 }
1839 
1840 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1841 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1842 				unsigned long addr, pte_t *ptep)
1843 {
1844 	contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1845 	return __ptep_get_and_clear(mm, addr, ptep);
1846 }
1847 
1848 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1849 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1850 				unsigned long addr, pte_t *ptep)
1851 {
1852 	pte_t orig_pte = __ptep_get(ptep);
1853 
1854 	if (likely(!pte_valid_cont(orig_pte)))
1855 		return __ptep_test_and_clear_young(vma, addr, ptep);
1856 
1857 	return contpte_ptep_test_and_clear_young(vma, addr, ptep);
1858 }
1859 
1860 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1861 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1862 				unsigned long addr, pte_t *ptep)
1863 {
1864 	pte_t orig_pte = __ptep_get(ptep);
1865 
1866 	if (likely(!pte_valid_cont(orig_pte)))
1867 		return __ptep_clear_flush_young(vma, addr, ptep);
1868 
1869 	return contpte_ptep_clear_flush_young(vma, addr, ptep);
1870 }
1871 
1872 #define wrprotect_ptes wrprotect_ptes
wrprotect_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr)1873 static __always_inline void wrprotect_ptes(struct mm_struct *mm,
1874 				unsigned long addr, pte_t *ptep, unsigned int nr)
1875 {
1876 	if (likely(nr == 1)) {
1877 		/*
1878 		 * Optimization: wrprotect_ptes() can only be called for present
1879 		 * ptes so we only need to check contig bit as condition for
1880 		 * unfold, and we can remove the contig bit from the pte we read
1881 		 * to avoid re-reading. This speeds up fork() which is sensitive
1882 		 * for order-0 folios. Equivalent to contpte_try_unfold().
1883 		 */
1884 		pte_t orig_pte = __ptep_get(ptep);
1885 
1886 		if (unlikely(pte_cont(orig_pte))) {
1887 			__contpte_try_unfold(mm, addr, ptep, orig_pte);
1888 			orig_pte = pte_mknoncont(orig_pte);
1889 		}
1890 		___ptep_set_wrprotect(mm, addr, ptep, orig_pte);
1891 	} else {
1892 		contpte_wrprotect_ptes(mm, addr, ptep, nr);
1893 	}
1894 }
1895 
1896 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1897 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1898 				unsigned long addr, pte_t *ptep)
1899 {
1900 	wrprotect_ptes(mm, addr, ptep, 1);
1901 }
1902 
1903 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t entry,int dirty)1904 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1905 				unsigned long addr, pte_t *ptep,
1906 				pte_t entry, int dirty)
1907 {
1908 	pte_t orig_pte = __ptep_get(ptep);
1909 
1910 	entry = pte_mknoncont(entry);
1911 
1912 	if (likely(!pte_valid_cont(orig_pte)))
1913 		return __ptep_set_access_flags(vma, addr, ptep, entry, dirty);
1914 
1915 	return contpte_ptep_set_access_flags(vma, addr, ptep, entry, dirty);
1916 }
1917 
1918 #define clear_young_dirty_ptes clear_young_dirty_ptes
clear_young_dirty_ptes(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr,cydp_t flags)1919 static inline void clear_young_dirty_ptes(struct vm_area_struct *vma,
1920 					  unsigned long addr, pte_t *ptep,
1921 					  unsigned int nr, cydp_t flags)
1922 {
1923 	if (likely(nr == 1 && !pte_cont(__ptep_get(ptep))))
1924 		__clear_young_dirty_ptes(vma, addr, ptep, nr, flags);
1925 	else
1926 		contpte_clear_young_dirty_ptes(vma, addr, ptep, nr, flags);
1927 }
1928 
1929 #else /* CONFIG_ARM64_CONTPTE */
1930 
1931 #define ptep_get				__ptep_get
1932 #define set_pte					__set_pte
1933 #define set_ptes				__set_ptes
1934 #define pte_clear				__pte_clear
1935 #define clear_full_ptes				__clear_full_ptes
1936 #define get_and_clear_full_ptes			__get_and_clear_full_ptes
1937 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1938 #define ptep_get_and_clear			__ptep_get_and_clear
1939 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1940 #define ptep_test_and_clear_young		__ptep_test_and_clear_young
1941 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1942 #define ptep_clear_flush_young			__ptep_clear_flush_young
1943 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1944 #define ptep_set_wrprotect			__ptep_set_wrprotect
1945 #define wrprotect_ptes				__wrprotect_ptes
1946 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1947 #define ptep_set_access_flags			__ptep_set_access_flags
1948 #define clear_young_dirty_ptes			__clear_young_dirty_ptes
1949 
1950 #endif /* CONFIG_ARM64_CONTPTE */
1951 
1952 #endif /* !__ASSEMBLY__ */
1953 
1954 #endif /* __ASM_PGTABLE_H */
1955