xref: /linux/fs/inode.c (revision 56e7b310717697109998966cb3c4d3e490d09200)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * (C) 1997 Linus Torvalds
4  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5  */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/filelock.h>
9 #include <linux/mm.h>
10 #include <linux/backing-dev.h>
11 #include <linux/hash.h>
12 #include <linux/swap.h>
13 #include <linux/security.h>
14 #include <linux/cdev.h>
15 #include <linux/memblock.h>
16 #include <linux/fsnotify.h>
17 #include <linux/mount.h>
18 #include <linux/posix_acl.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <linux/rw_hint.h>
24 #include <linux/seq_file.h>
25 #include <linux/debugfs.h>
26 #include <trace/events/writeback.h>
27 #define CREATE_TRACE_POINTS
28 #include <trace/events/timestamp.h>
29 
30 #include "internal.h"
31 
32 /*
33  * Inode locking rules:
34  *
35  * inode->i_lock protects:
36  *   inode->i_state, inode->i_hash, __iget(), inode->i_io_list
37  * Inode LRU list locks protect:
38  *   inode->i_sb->s_inode_lru, inode->i_lru
39  * inode->i_sb->s_inode_list_lock protects:
40  *   inode->i_sb->s_inodes, inode->i_sb_list
41  * bdi->wb.list_lock protects:
42  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
43  * inode_hash_lock protects:
44  *   inode_hashtable, inode->i_hash
45  *
46  * Lock ordering:
47  *
48  * inode->i_sb->s_inode_list_lock
49  *   inode->i_lock
50  *     Inode LRU list locks
51  *
52  * bdi->wb.list_lock
53  *   inode->i_lock
54  *
55  * inode_hash_lock
56  *   inode->i_sb->s_inode_list_lock
57  *   inode->i_lock
58  *
59  * iunique_lock
60  *   inode_hash_lock
61  */
62 
63 static unsigned int i_hash_mask __ro_after_init;
64 static unsigned int i_hash_shift __ro_after_init;
65 static struct hlist_head *inode_hashtable __ro_after_init;
66 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
67 
68 /*
69  * Empty aops. Can be used for the cases where the user does not
70  * define any of the address_space operations.
71  */
72 const struct address_space_operations empty_aops = {
73 };
74 EXPORT_SYMBOL(empty_aops);
75 
76 static DEFINE_PER_CPU(unsigned long, nr_inodes);
77 static DEFINE_PER_CPU(unsigned long, nr_unused);
78 
79 static struct kmem_cache *inode_cachep __ro_after_init;
80 
get_nr_inodes(void)81 static long get_nr_inodes(void)
82 {
83 	int i;
84 	long sum = 0;
85 	for_each_possible_cpu(i)
86 		sum += per_cpu(nr_inodes, i);
87 	return sum < 0 ? 0 : sum;
88 }
89 
get_nr_inodes_unused(void)90 static inline long get_nr_inodes_unused(void)
91 {
92 	int i;
93 	long sum = 0;
94 	for_each_possible_cpu(i)
95 		sum += per_cpu(nr_unused, i);
96 	return sum < 0 ? 0 : sum;
97 }
98 
get_nr_dirty_inodes(void)99 long get_nr_dirty_inodes(void)
100 {
101 	/* not actually dirty inodes, but a wild approximation */
102 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
103 	return nr_dirty > 0 ? nr_dirty : 0;
104 }
105 
106 #ifdef CONFIG_DEBUG_FS
107 static DEFINE_PER_CPU(long, mg_ctime_updates);
108 static DEFINE_PER_CPU(long, mg_fine_stamps);
109 static DEFINE_PER_CPU(long, mg_ctime_swaps);
110 
get_mg_ctime_updates(void)111 static unsigned long get_mg_ctime_updates(void)
112 {
113 	unsigned long sum = 0;
114 	int i;
115 
116 	for_each_possible_cpu(i)
117 		sum += data_race(per_cpu(mg_ctime_updates, i));
118 	return sum;
119 }
120 
get_mg_fine_stamps(void)121 static unsigned long get_mg_fine_stamps(void)
122 {
123 	unsigned long sum = 0;
124 	int i;
125 
126 	for_each_possible_cpu(i)
127 		sum += data_race(per_cpu(mg_fine_stamps, i));
128 	return sum;
129 }
130 
get_mg_ctime_swaps(void)131 static unsigned long get_mg_ctime_swaps(void)
132 {
133 	unsigned long sum = 0;
134 	int i;
135 
136 	for_each_possible_cpu(i)
137 		sum += data_race(per_cpu(mg_ctime_swaps, i));
138 	return sum;
139 }
140 
141 #define mgtime_counter_inc(__var)	this_cpu_inc(__var)
142 
mgts_show(struct seq_file * s,void * p)143 static int mgts_show(struct seq_file *s, void *p)
144 {
145 	unsigned long ctime_updates = get_mg_ctime_updates();
146 	unsigned long ctime_swaps = get_mg_ctime_swaps();
147 	unsigned long fine_stamps = get_mg_fine_stamps();
148 	unsigned long floor_swaps = timekeeping_get_mg_floor_swaps();
149 
150 	seq_printf(s, "%lu %lu %lu %lu\n",
151 		   ctime_updates, ctime_swaps, fine_stamps, floor_swaps);
152 	return 0;
153 }
154 
155 DEFINE_SHOW_ATTRIBUTE(mgts);
156 
mg_debugfs_init(void)157 static int __init mg_debugfs_init(void)
158 {
159 	debugfs_create_file("multigrain_timestamps", S_IFREG | S_IRUGO, NULL, NULL, &mgts_fops);
160 	return 0;
161 }
162 late_initcall(mg_debugfs_init);
163 
164 #else /* ! CONFIG_DEBUG_FS */
165 
166 #define mgtime_counter_inc(__var)	do { } while (0)
167 
168 #endif /* CONFIG_DEBUG_FS */
169 
170 /*
171  * Handle nr_inode sysctl
172  */
173 #ifdef CONFIG_SYSCTL
174 /*
175  * Statistics gathering..
176  */
177 static struct inodes_stat_t inodes_stat;
178 
proc_nr_inodes(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)179 static int proc_nr_inodes(const struct ctl_table *table, int write, void *buffer,
180 			  size_t *lenp, loff_t *ppos)
181 {
182 	inodes_stat.nr_inodes = get_nr_inodes();
183 	inodes_stat.nr_unused = get_nr_inodes_unused();
184 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
185 }
186 
187 static const struct ctl_table inodes_sysctls[] = {
188 	{
189 		.procname	= "inode-nr",
190 		.data		= &inodes_stat,
191 		.maxlen		= 2*sizeof(long),
192 		.mode		= 0444,
193 		.proc_handler	= proc_nr_inodes,
194 	},
195 	{
196 		.procname	= "inode-state",
197 		.data		= &inodes_stat,
198 		.maxlen		= 7*sizeof(long),
199 		.mode		= 0444,
200 		.proc_handler	= proc_nr_inodes,
201 	},
202 };
203 
init_fs_inode_sysctls(void)204 static int __init init_fs_inode_sysctls(void)
205 {
206 	register_sysctl_init("fs", inodes_sysctls);
207 	return 0;
208 }
209 early_initcall(init_fs_inode_sysctls);
210 #endif
211 
no_open(struct inode * inode,struct file * file)212 static int no_open(struct inode *inode, struct file *file)
213 {
214 	return -ENXIO;
215 }
216 
217 /**
218  * inode_init_always_gfp - perform inode structure initialisation
219  * @sb: superblock inode belongs to
220  * @inode: inode to initialise
221  * @gfp: allocation flags
222  *
223  * These are initializations that need to be done on every inode
224  * allocation as the fields are not initialised by slab allocation.
225  * If there are additional allocations required @gfp is used.
226  */
inode_init_always_gfp(struct super_block * sb,struct inode * inode,gfp_t gfp)227 int inode_init_always_gfp(struct super_block *sb, struct inode *inode, gfp_t gfp)
228 {
229 	static const struct inode_operations empty_iops;
230 	static const struct file_operations no_open_fops = {.open = no_open};
231 	struct address_space *const mapping = &inode->i_data;
232 
233 	inode->i_sb = sb;
234 	inode->i_blkbits = sb->s_blocksize_bits;
235 	inode->i_flags = 0;
236 	inode->i_state = 0;
237 	atomic64_set(&inode->i_sequence, 0);
238 	atomic_set(&inode->i_count, 1);
239 	inode->i_op = &empty_iops;
240 	inode->i_fop = &no_open_fops;
241 	inode->i_ino = 0;
242 	inode->__i_nlink = 1;
243 	inode->i_opflags = 0;
244 	if (sb->s_xattr)
245 		inode->i_opflags |= IOP_XATTR;
246 	if (sb->s_type->fs_flags & FS_MGTIME)
247 		inode->i_opflags |= IOP_MGTIME;
248 	i_uid_write(inode, 0);
249 	i_gid_write(inode, 0);
250 	atomic_set(&inode->i_writecount, 0);
251 	inode->i_size = 0;
252 	inode->i_write_hint = WRITE_LIFE_NOT_SET;
253 	inode->i_blocks = 0;
254 	inode->i_bytes = 0;
255 	inode->i_generation = 0;
256 	inode->i_pipe = NULL;
257 	inode->i_cdev = NULL;
258 	inode->i_link = NULL;
259 	inode->i_dir_seq = 0;
260 	inode->i_rdev = 0;
261 	inode->dirtied_when = 0;
262 
263 #ifdef CONFIG_CGROUP_WRITEBACK
264 	inode->i_wb_frn_winner = 0;
265 	inode->i_wb_frn_avg_time = 0;
266 	inode->i_wb_frn_history = 0;
267 #endif
268 
269 	spin_lock_init(&inode->i_lock);
270 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
271 
272 	init_rwsem(&inode->i_rwsem);
273 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
274 
275 	atomic_set(&inode->i_dio_count, 0);
276 
277 	mapping->a_ops = &empty_aops;
278 	mapping->host = inode;
279 	mapping->flags = 0;
280 	mapping->wb_err = 0;
281 	atomic_set(&mapping->i_mmap_writable, 0);
282 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
283 	atomic_set(&mapping->nr_thps, 0);
284 #endif
285 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
286 	mapping->i_private_data = NULL;
287 	mapping->writeback_index = 0;
288 	init_rwsem(&mapping->invalidate_lock);
289 	lockdep_set_class_and_name(&mapping->invalidate_lock,
290 				   &sb->s_type->invalidate_lock_key,
291 				   "mapping.invalidate_lock");
292 	if (sb->s_iflags & SB_I_STABLE_WRITES)
293 		mapping_set_stable_writes(mapping);
294 	inode->i_private = NULL;
295 	inode->i_mapping = mapping;
296 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
297 #ifdef CONFIG_FS_POSIX_ACL
298 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
299 #endif
300 
301 #ifdef CONFIG_FSNOTIFY
302 	inode->i_fsnotify_mask = 0;
303 #endif
304 	inode->i_flctx = NULL;
305 
306 	if (unlikely(security_inode_alloc(inode, gfp)))
307 		return -ENOMEM;
308 
309 	this_cpu_inc(nr_inodes);
310 
311 	return 0;
312 }
313 EXPORT_SYMBOL(inode_init_always_gfp);
314 
free_inode_nonrcu(struct inode * inode)315 void free_inode_nonrcu(struct inode *inode)
316 {
317 	kmem_cache_free(inode_cachep, inode);
318 }
319 EXPORT_SYMBOL(free_inode_nonrcu);
320 
i_callback(struct rcu_head * head)321 static void i_callback(struct rcu_head *head)
322 {
323 	struct inode *inode = container_of(head, struct inode, i_rcu);
324 	if (inode->free_inode)
325 		inode->free_inode(inode);
326 	else
327 		free_inode_nonrcu(inode);
328 }
329 
330 /**
331  *	alloc_inode 	- obtain an inode
332  *	@sb: superblock
333  *
334  *	Allocates a new inode for given superblock.
335  *	Inode wont be chained in superblock s_inodes list
336  *	This means :
337  *	- fs can't be unmount
338  *	- quotas, fsnotify, writeback can't work
339  */
alloc_inode(struct super_block * sb)340 struct inode *alloc_inode(struct super_block *sb)
341 {
342 	const struct super_operations *ops = sb->s_op;
343 	struct inode *inode;
344 
345 	if (ops->alloc_inode)
346 		inode = ops->alloc_inode(sb);
347 	else
348 		inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL);
349 
350 	if (!inode)
351 		return NULL;
352 
353 	if (unlikely(inode_init_always(sb, inode))) {
354 		if (ops->destroy_inode) {
355 			ops->destroy_inode(inode);
356 			if (!ops->free_inode)
357 				return NULL;
358 		}
359 		inode->free_inode = ops->free_inode;
360 		i_callback(&inode->i_rcu);
361 		return NULL;
362 	}
363 
364 	return inode;
365 }
366 
__destroy_inode(struct inode * inode)367 void __destroy_inode(struct inode *inode)
368 {
369 	BUG_ON(inode_has_buffers(inode));
370 	inode_detach_wb(inode);
371 	security_inode_free(inode);
372 	fsnotify_inode_delete(inode);
373 	locks_free_lock_context(inode);
374 	if (!inode->i_nlink) {
375 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
376 		atomic_long_dec(&inode->i_sb->s_remove_count);
377 	}
378 
379 #ifdef CONFIG_FS_POSIX_ACL
380 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
381 		posix_acl_release(inode->i_acl);
382 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
383 		posix_acl_release(inode->i_default_acl);
384 #endif
385 	this_cpu_dec(nr_inodes);
386 }
387 EXPORT_SYMBOL(__destroy_inode);
388 
destroy_inode(struct inode * inode)389 static void destroy_inode(struct inode *inode)
390 {
391 	const struct super_operations *ops = inode->i_sb->s_op;
392 
393 	BUG_ON(!list_empty(&inode->i_lru));
394 	__destroy_inode(inode);
395 	if (ops->destroy_inode) {
396 		ops->destroy_inode(inode);
397 		if (!ops->free_inode)
398 			return;
399 	}
400 	inode->free_inode = ops->free_inode;
401 	call_rcu(&inode->i_rcu, i_callback);
402 }
403 
404 /**
405  * drop_nlink - directly drop an inode's link count
406  * @inode: inode
407  *
408  * This is a low-level filesystem helper to replace any
409  * direct filesystem manipulation of i_nlink.  In cases
410  * where we are attempting to track writes to the
411  * filesystem, a decrement to zero means an imminent
412  * write when the file is truncated and actually unlinked
413  * on the filesystem.
414  */
drop_nlink(struct inode * inode)415 void drop_nlink(struct inode *inode)
416 {
417 	WARN_ON(inode->i_nlink == 0);
418 	inode->__i_nlink--;
419 	if (!inode->i_nlink)
420 		atomic_long_inc(&inode->i_sb->s_remove_count);
421 }
422 EXPORT_SYMBOL(drop_nlink);
423 
424 /**
425  * clear_nlink - directly zero an inode's link count
426  * @inode: inode
427  *
428  * This is a low-level filesystem helper to replace any
429  * direct filesystem manipulation of i_nlink.  See
430  * drop_nlink() for why we care about i_nlink hitting zero.
431  */
clear_nlink(struct inode * inode)432 void clear_nlink(struct inode *inode)
433 {
434 	if (inode->i_nlink) {
435 		inode->__i_nlink = 0;
436 		atomic_long_inc(&inode->i_sb->s_remove_count);
437 	}
438 }
439 EXPORT_SYMBOL(clear_nlink);
440 
441 /**
442  * set_nlink - directly set an inode's link count
443  * @inode: inode
444  * @nlink: new nlink (should be non-zero)
445  *
446  * This is a low-level filesystem helper to replace any
447  * direct filesystem manipulation of i_nlink.
448  */
set_nlink(struct inode * inode,unsigned int nlink)449 void set_nlink(struct inode *inode, unsigned int nlink)
450 {
451 	if (!nlink) {
452 		clear_nlink(inode);
453 	} else {
454 		/* Yes, some filesystems do change nlink from zero to one */
455 		if (inode->i_nlink == 0)
456 			atomic_long_dec(&inode->i_sb->s_remove_count);
457 
458 		inode->__i_nlink = nlink;
459 	}
460 }
461 EXPORT_SYMBOL(set_nlink);
462 
463 /**
464  * inc_nlink - directly increment an inode's link count
465  * @inode: inode
466  *
467  * This is a low-level filesystem helper to replace any
468  * direct filesystem manipulation of i_nlink.  Currently,
469  * it is only here for parity with dec_nlink().
470  */
inc_nlink(struct inode * inode)471 void inc_nlink(struct inode *inode)
472 {
473 	if (unlikely(inode->i_nlink == 0)) {
474 		WARN_ON(!(inode->i_state & I_LINKABLE));
475 		atomic_long_dec(&inode->i_sb->s_remove_count);
476 	}
477 
478 	inode->__i_nlink++;
479 }
480 EXPORT_SYMBOL(inc_nlink);
481 
__address_space_init_once(struct address_space * mapping)482 static void __address_space_init_once(struct address_space *mapping)
483 {
484 	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
485 	init_rwsem(&mapping->i_mmap_rwsem);
486 	INIT_LIST_HEAD(&mapping->i_private_list);
487 	spin_lock_init(&mapping->i_private_lock);
488 	mapping->i_mmap = RB_ROOT_CACHED;
489 }
490 
address_space_init_once(struct address_space * mapping)491 void address_space_init_once(struct address_space *mapping)
492 {
493 	memset(mapping, 0, sizeof(*mapping));
494 	__address_space_init_once(mapping);
495 }
496 EXPORT_SYMBOL(address_space_init_once);
497 
498 /*
499  * These are initializations that only need to be done
500  * once, because the fields are idempotent across use
501  * of the inode, so let the slab aware of that.
502  */
inode_init_once(struct inode * inode)503 void inode_init_once(struct inode *inode)
504 {
505 	memset(inode, 0, sizeof(*inode));
506 	INIT_HLIST_NODE(&inode->i_hash);
507 	INIT_LIST_HEAD(&inode->i_devices);
508 	INIT_LIST_HEAD(&inode->i_io_list);
509 	INIT_LIST_HEAD(&inode->i_wb_list);
510 	INIT_LIST_HEAD(&inode->i_lru);
511 	INIT_LIST_HEAD(&inode->i_sb_list);
512 	__address_space_init_once(&inode->i_data);
513 	i_size_ordered_init(inode);
514 }
515 EXPORT_SYMBOL(inode_init_once);
516 
init_once(void * foo)517 static void init_once(void *foo)
518 {
519 	struct inode *inode = (struct inode *) foo;
520 
521 	inode_init_once(inode);
522 }
523 
524 /*
525  * get additional reference to inode; caller must already hold one.
526  */
ihold(struct inode * inode)527 void ihold(struct inode *inode)
528 {
529 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
530 }
531 EXPORT_SYMBOL(ihold);
532 
__inode_add_lru(struct inode * inode,bool rotate)533 static void __inode_add_lru(struct inode *inode, bool rotate)
534 {
535 	if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
536 		return;
537 	if (icount_read(inode))
538 		return;
539 	if (!(inode->i_sb->s_flags & SB_ACTIVE))
540 		return;
541 	if (!mapping_shrinkable(&inode->i_data))
542 		return;
543 
544 	if (list_lru_add_obj(&inode->i_sb->s_inode_lru, &inode->i_lru))
545 		this_cpu_inc(nr_unused);
546 	else if (rotate)
547 		inode->i_state |= I_REFERENCED;
548 }
549 
inode_bit_waitqueue(struct wait_bit_queue_entry * wqe,struct inode * inode,u32 bit)550 struct wait_queue_head *inode_bit_waitqueue(struct wait_bit_queue_entry *wqe,
551 					    struct inode *inode, u32 bit)
552 {
553 	void *bit_address;
554 
555 	bit_address = inode_state_wait_address(inode, bit);
556 	init_wait_var_entry(wqe, bit_address, 0);
557 	return __var_waitqueue(bit_address);
558 }
559 EXPORT_SYMBOL(inode_bit_waitqueue);
560 
561 /*
562  * Add inode to LRU if needed (inode is unused and clean).
563  *
564  * Needs inode->i_lock held.
565  */
inode_add_lru(struct inode * inode)566 void inode_add_lru(struct inode *inode)
567 {
568 	__inode_add_lru(inode, false);
569 }
570 
inode_lru_list_del(struct inode * inode)571 static void inode_lru_list_del(struct inode *inode)
572 {
573 	if (list_lru_del_obj(&inode->i_sb->s_inode_lru, &inode->i_lru))
574 		this_cpu_dec(nr_unused);
575 }
576 
inode_pin_lru_isolating(struct inode * inode)577 static void inode_pin_lru_isolating(struct inode *inode)
578 {
579 	lockdep_assert_held(&inode->i_lock);
580 	WARN_ON(inode->i_state & (I_LRU_ISOLATING | I_FREEING | I_WILL_FREE));
581 	inode->i_state |= I_LRU_ISOLATING;
582 }
583 
inode_unpin_lru_isolating(struct inode * inode)584 static void inode_unpin_lru_isolating(struct inode *inode)
585 {
586 	spin_lock(&inode->i_lock);
587 	WARN_ON(!(inode->i_state & I_LRU_ISOLATING));
588 	inode->i_state &= ~I_LRU_ISOLATING;
589 	/* Called with inode->i_lock which ensures memory ordering. */
590 	inode_wake_up_bit(inode, __I_LRU_ISOLATING);
591 	spin_unlock(&inode->i_lock);
592 }
593 
inode_wait_for_lru_isolating(struct inode * inode)594 static void inode_wait_for_lru_isolating(struct inode *inode)
595 {
596 	struct wait_bit_queue_entry wqe;
597 	struct wait_queue_head *wq_head;
598 
599 	lockdep_assert_held(&inode->i_lock);
600 	if (!(inode->i_state & I_LRU_ISOLATING))
601 		return;
602 
603 	wq_head = inode_bit_waitqueue(&wqe, inode, __I_LRU_ISOLATING);
604 	for (;;) {
605 		prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
606 		/*
607 		 * Checking I_LRU_ISOLATING with inode->i_lock guarantees
608 		 * memory ordering.
609 		 */
610 		if (!(inode->i_state & I_LRU_ISOLATING))
611 			break;
612 		spin_unlock(&inode->i_lock);
613 		schedule();
614 		spin_lock(&inode->i_lock);
615 	}
616 	finish_wait(wq_head, &wqe.wq_entry);
617 	WARN_ON(inode->i_state & I_LRU_ISOLATING);
618 }
619 
620 /**
621  * inode_sb_list_add - add inode to the superblock list of inodes
622  * @inode: inode to add
623  */
inode_sb_list_add(struct inode * inode)624 void inode_sb_list_add(struct inode *inode)
625 {
626 	struct super_block *sb = inode->i_sb;
627 
628 	spin_lock(&sb->s_inode_list_lock);
629 	list_add(&inode->i_sb_list, &sb->s_inodes);
630 	spin_unlock(&sb->s_inode_list_lock);
631 }
632 EXPORT_SYMBOL_GPL(inode_sb_list_add);
633 
inode_sb_list_del(struct inode * inode)634 static inline void inode_sb_list_del(struct inode *inode)
635 {
636 	struct super_block *sb = inode->i_sb;
637 
638 	if (!list_empty(&inode->i_sb_list)) {
639 		spin_lock(&sb->s_inode_list_lock);
640 		list_del_init(&inode->i_sb_list);
641 		spin_unlock(&sb->s_inode_list_lock);
642 	}
643 }
644 
hash(struct super_block * sb,unsigned long hashval)645 static unsigned long hash(struct super_block *sb, unsigned long hashval)
646 {
647 	unsigned long tmp;
648 
649 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
650 			L1_CACHE_BYTES;
651 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
652 	return tmp & i_hash_mask;
653 }
654 
655 /**
656  *	__insert_inode_hash - hash an inode
657  *	@inode: unhashed inode
658  *	@hashval: unsigned long value used to locate this object in the
659  *		inode_hashtable.
660  *
661  *	Add an inode to the inode hash for this superblock.
662  */
__insert_inode_hash(struct inode * inode,unsigned long hashval)663 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
664 {
665 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
666 
667 	spin_lock(&inode_hash_lock);
668 	spin_lock(&inode->i_lock);
669 	hlist_add_head_rcu(&inode->i_hash, b);
670 	spin_unlock(&inode->i_lock);
671 	spin_unlock(&inode_hash_lock);
672 }
673 EXPORT_SYMBOL(__insert_inode_hash);
674 
675 /**
676  *	__remove_inode_hash - remove an inode from the hash
677  *	@inode: inode to unhash
678  *
679  *	Remove an inode from the superblock.
680  */
__remove_inode_hash(struct inode * inode)681 void __remove_inode_hash(struct inode *inode)
682 {
683 	spin_lock(&inode_hash_lock);
684 	spin_lock(&inode->i_lock);
685 	hlist_del_init_rcu(&inode->i_hash);
686 	spin_unlock(&inode->i_lock);
687 	spin_unlock(&inode_hash_lock);
688 }
689 EXPORT_SYMBOL(__remove_inode_hash);
690 
dump_mapping(const struct address_space * mapping)691 void dump_mapping(const struct address_space *mapping)
692 {
693 	struct inode *host;
694 	const struct address_space_operations *a_ops;
695 	struct hlist_node *dentry_first;
696 	struct dentry *dentry_ptr;
697 	struct dentry dentry;
698 	char fname[64] = {};
699 	unsigned long ino;
700 
701 	/*
702 	 * If mapping is an invalid pointer, we don't want to crash
703 	 * accessing it, so probe everything depending on it carefully.
704 	 */
705 	if (get_kernel_nofault(host, &mapping->host) ||
706 	    get_kernel_nofault(a_ops, &mapping->a_ops)) {
707 		pr_warn("invalid mapping:%px\n", mapping);
708 		return;
709 	}
710 
711 	if (!host) {
712 		pr_warn("aops:%ps\n", a_ops);
713 		return;
714 	}
715 
716 	if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
717 	    get_kernel_nofault(ino, &host->i_ino)) {
718 		pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
719 		return;
720 	}
721 
722 	if (!dentry_first) {
723 		pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
724 		return;
725 	}
726 
727 	dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
728 	if (get_kernel_nofault(dentry, dentry_ptr) ||
729 	    !dentry.d_parent || !dentry.d_name.name) {
730 		pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
731 				a_ops, ino, dentry_ptr);
732 		return;
733 	}
734 
735 	if (strncpy_from_kernel_nofault(fname, dentry.d_name.name, 63) < 0)
736 		strscpy(fname, "<invalid>");
737 	/*
738 	 * Even if strncpy_from_kernel_nofault() succeeded,
739 	 * the fname could be unreliable
740 	 */
741 	pr_warn("aops:%ps ino:%lx dentry name(?):\"%s\"\n",
742 		a_ops, ino, fname);
743 }
744 
clear_inode(struct inode * inode)745 void clear_inode(struct inode *inode)
746 {
747 	/*
748 	 * We have to cycle the i_pages lock here because reclaim can be in the
749 	 * process of removing the last page (in __filemap_remove_folio())
750 	 * and we must not free the mapping under it.
751 	 */
752 	xa_lock_irq(&inode->i_data.i_pages);
753 	BUG_ON(inode->i_data.nrpages);
754 	/*
755 	 * Almost always, mapping_empty(&inode->i_data) here; but there are
756 	 * two known and long-standing ways in which nodes may get left behind
757 	 * (when deep radix-tree node allocation failed partway; or when THP
758 	 * collapse_file() failed). Until those two known cases are cleaned up,
759 	 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
760 	 * nor even WARN_ON(!mapping_empty).
761 	 */
762 	xa_unlock_irq(&inode->i_data.i_pages);
763 	BUG_ON(!list_empty(&inode->i_data.i_private_list));
764 	BUG_ON(!(inode->i_state & I_FREEING));
765 	BUG_ON(inode->i_state & I_CLEAR);
766 	BUG_ON(!list_empty(&inode->i_wb_list));
767 	/* don't need i_lock here, no concurrent mods to i_state */
768 	inode->i_state = I_FREEING | I_CLEAR;
769 }
770 EXPORT_SYMBOL(clear_inode);
771 
772 /*
773  * Free the inode passed in, removing it from the lists it is still connected
774  * to. We remove any pages still attached to the inode and wait for any IO that
775  * is still in progress before finally destroying the inode.
776  *
777  * An inode must already be marked I_FREEING so that we avoid the inode being
778  * moved back onto lists if we race with other code that manipulates the lists
779  * (e.g. writeback_single_inode). The caller is responsible for setting this.
780  *
781  * An inode must already be removed from the LRU list before being evicted from
782  * the cache. This should occur atomically with setting the I_FREEING state
783  * flag, so no inodes here should ever be on the LRU when being evicted.
784  */
evict(struct inode * inode)785 static void evict(struct inode *inode)
786 {
787 	const struct super_operations *op = inode->i_sb->s_op;
788 
789 	BUG_ON(!(inode->i_state & I_FREEING));
790 	BUG_ON(!list_empty(&inode->i_lru));
791 
792 	if (!list_empty(&inode->i_io_list))
793 		inode_io_list_del(inode);
794 
795 	inode_sb_list_del(inode);
796 
797 	spin_lock(&inode->i_lock);
798 	inode_wait_for_lru_isolating(inode);
799 
800 	/*
801 	 * Wait for flusher thread to be done with the inode so that filesystem
802 	 * does not start destroying it while writeback is still running. Since
803 	 * the inode has I_FREEING set, flusher thread won't start new work on
804 	 * the inode.  We just have to wait for running writeback to finish.
805 	 */
806 	inode_wait_for_writeback(inode);
807 	spin_unlock(&inode->i_lock);
808 
809 	if (op->evict_inode) {
810 		op->evict_inode(inode);
811 	} else {
812 		truncate_inode_pages_final(&inode->i_data);
813 		clear_inode(inode);
814 	}
815 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
816 		cd_forget(inode);
817 
818 	remove_inode_hash(inode);
819 
820 	/*
821 	 * Wake up waiters in __wait_on_freeing_inode().
822 	 *
823 	 * It is an invariant that any thread we need to wake up is already
824 	 * accounted for before remove_inode_hash() acquires ->i_lock -- both
825 	 * sides take the lock and sleep is aborted if the inode is found
826 	 * unhashed. Thus either the sleeper wins and goes off CPU, or removal
827 	 * wins and the sleeper aborts after testing with the lock.
828 	 *
829 	 * This also means we don't need any fences for the call below.
830 	 */
831 	inode_wake_up_bit(inode, __I_NEW);
832 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
833 
834 	destroy_inode(inode);
835 }
836 
837 /*
838  * dispose_list - dispose of the contents of a local list
839  * @head: the head of the list to free
840  *
841  * Dispose-list gets a local list with local inodes in it, so it doesn't
842  * need to worry about list corruption and SMP locks.
843  */
dispose_list(struct list_head * head)844 static void dispose_list(struct list_head *head)
845 {
846 	while (!list_empty(head)) {
847 		struct inode *inode;
848 
849 		inode = list_first_entry(head, struct inode, i_lru);
850 		list_del_init(&inode->i_lru);
851 
852 		evict(inode);
853 		cond_resched();
854 	}
855 }
856 
857 /**
858  * evict_inodes	- evict all evictable inodes for a superblock
859  * @sb:		superblock to operate on
860  *
861  * Make sure that no inodes with zero refcount are retained.  This is
862  * called by superblock shutdown after having SB_ACTIVE flag removed,
863  * so any inode reaching zero refcount during or after that call will
864  * be immediately evicted.
865  */
evict_inodes(struct super_block * sb)866 void evict_inodes(struct super_block *sb)
867 {
868 	struct inode *inode;
869 	LIST_HEAD(dispose);
870 
871 again:
872 	spin_lock(&sb->s_inode_list_lock);
873 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
874 		if (icount_read(inode))
875 			continue;
876 
877 		spin_lock(&inode->i_lock);
878 		if (icount_read(inode)) {
879 			spin_unlock(&inode->i_lock);
880 			continue;
881 		}
882 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
883 			spin_unlock(&inode->i_lock);
884 			continue;
885 		}
886 
887 		inode->i_state |= I_FREEING;
888 		inode_lru_list_del(inode);
889 		spin_unlock(&inode->i_lock);
890 		list_add(&inode->i_lru, &dispose);
891 
892 		/*
893 		 * We can have a ton of inodes to evict at unmount time given
894 		 * enough memory, check to see if we need to go to sleep for a
895 		 * bit so we don't livelock.
896 		 */
897 		if (need_resched()) {
898 			spin_unlock(&sb->s_inode_list_lock);
899 			cond_resched();
900 			dispose_list(&dispose);
901 			goto again;
902 		}
903 	}
904 	spin_unlock(&sb->s_inode_list_lock);
905 
906 	dispose_list(&dispose);
907 }
908 EXPORT_SYMBOL_GPL(evict_inodes);
909 
910 /*
911  * Isolate the inode from the LRU in preparation for freeing it.
912  *
913  * If the inode has the I_REFERENCED flag set, then it means that it has been
914  * used recently - the flag is set in iput_final(). When we encounter such an
915  * inode, clear the flag and move it to the back of the LRU so it gets another
916  * pass through the LRU before it gets reclaimed. This is necessary because of
917  * the fact we are doing lazy LRU updates to minimise lock contention so the
918  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
919  * with this flag set because they are the inodes that are out of order.
920  */
inode_lru_isolate(struct list_head * item,struct list_lru_one * lru,void * arg)921 static enum lru_status inode_lru_isolate(struct list_head *item,
922 		struct list_lru_one *lru, void *arg)
923 {
924 	struct list_head *freeable = arg;
925 	struct inode	*inode = container_of(item, struct inode, i_lru);
926 
927 	/*
928 	 * We are inverting the lru lock/inode->i_lock here, so use a
929 	 * trylock. If we fail to get the lock, just skip it.
930 	 */
931 	if (!spin_trylock(&inode->i_lock))
932 		return LRU_SKIP;
933 
934 	/*
935 	 * Inodes can get referenced, redirtied, or repopulated while
936 	 * they're already on the LRU, and this can make them
937 	 * unreclaimable for a while. Remove them lazily here; iput,
938 	 * sync, or the last page cache deletion will requeue them.
939 	 */
940 	if (icount_read(inode) ||
941 	    (inode->i_state & ~I_REFERENCED) ||
942 	    !mapping_shrinkable(&inode->i_data)) {
943 		list_lru_isolate(lru, &inode->i_lru);
944 		spin_unlock(&inode->i_lock);
945 		this_cpu_dec(nr_unused);
946 		return LRU_REMOVED;
947 	}
948 
949 	/* Recently referenced inodes get one more pass */
950 	if (inode->i_state & I_REFERENCED) {
951 		inode->i_state &= ~I_REFERENCED;
952 		spin_unlock(&inode->i_lock);
953 		return LRU_ROTATE;
954 	}
955 
956 	/*
957 	 * On highmem systems, mapping_shrinkable() permits dropping
958 	 * page cache in order to free up struct inodes: lowmem might
959 	 * be under pressure before the cache inside the highmem zone.
960 	 */
961 	if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
962 		inode_pin_lru_isolating(inode);
963 		spin_unlock(&inode->i_lock);
964 		spin_unlock(&lru->lock);
965 		if (remove_inode_buffers(inode)) {
966 			unsigned long reap;
967 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
968 			if (current_is_kswapd())
969 				__count_vm_events(KSWAPD_INODESTEAL, reap);
970 			else
971 				__count_vm_events(PGINODESTEAL, reap);
972 			mm_account_reclaimed_pages(reap);
973 		}
974 		inode_unpin_lru_isolating(inode);
975 		return LRU_RETRY;
976 	}
977 
978 	WARN_ON(inode->i_state & I_NEW);
979 	inode->i_state |= I_FREEING;
980 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
981 	spin_unlock(&inode->i_lock);
982 
983 	this_cpu_dec(nr_unused);
984 	return LRU_REMOVED;
985 }
986 
987 /*
988  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
989  * This is called from the superblock shrinker function with a number of inodes
990  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
991  * then are freed outside inode_lock by dispose_list().
992  */
prune_icache_sb(struct super_block * sb,struct shrink_control * sc)993 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
994 {
995 	LIST_HEAD(freeable);
996 	long freed;
997 
998 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
999 				     inode_lru_isolate, &freeable);
1000 	dispose_list(&freeable);
1001 	return freed;
1002 }
1003 
1004 static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked);
1005 /*
1006  * Called with the inode lock held.
1007  */
find_inode(struct super_block * sb,struct hlist_head * head,int (* test)(struct inode *,void *),void * data,bool is_inode_hash_locked)1008 static struct inode *find_inode(struct super_block *sb,
1009 				struct hlist_head *head,
1010 				int (*test)(struct inode *, void *),
1011 				void *data, bool is_inode_hash_locked)
1012 {
1013 	struct inode *inode = NULL;
1014 
1015 	if (is_inode_hash_locked)
1016 		lockdep_assert_held(&inode_hash_lock);
1017 	else
1018 		lockdep_assert_not_held(&inode_hash_lock);
1019 
1020 	rcu_read_lock();
1021 repeat:
1022 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1023 		if (inode->i_sb != sb)
1024 			continue;
1025 		if (!test(inode, data))
1026 			continue;
1027 		spin_lock(&inode->i_lock);
1028 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
1029 			__wait_on_freeing_inode(inode, is_inode_hash_locked);
1030 			goto repeat;
1031 		}
1032 		if (unlikely(inode->i_state & I_CREATING)) {
1033 			spin_unlock(&inode->i_lock);
1034 			rcu_read_unlock();
1035 			return ERR_PTR(-ESTALE);
1036 		}
1037 		__iget(inode);
1038 		spin_unlock(&inode->i_lock);
1039 		rcu_read_unlock();
1040 		return inode;
1041 	}
1042 	rcu_read_unlock();
1043 	return NULL;
1044 }
1045 
1046 /*
1047  * find_inode_fast is the fast path version of find_inode, see the comment at
1048  * iget_locked for details.
1049  */
find_inode_fast(struct super_block * sb,struct hlist_head * head,unsigned long ino,bool is_inode_hash_locked)1050 static struct inode *find_inode_fast(struct super_block *sb,
1051 				struct hlist_head *head, unsigned long ino,
1052 				bool is_inode_hash_locked)
1053 {
1054 	struct inode *inode = NULL;
1055 
1056 	if (is_inode_hash_locked)
1057 		lockdep_assert_held(&inode_hash_lock);
1058 	else
1059 		lockdep_assert_not_held(&inode_hash_lock);
1060 
1061 	rcu_read_lock();
1062 repeat:
1063 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1064 		if (inode->i_ino != ino)
1065 			continue;
1066 		if (inode->i_sb != sb)
1067 			continue;
1068 		spin_lock(&inode->i_lock);
1069 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
1070 			__wait_on_freeing_inode(inode, is_inode_hash_locked);
1071 			goto repeat;
1072 		}
1073 		if (unlikely(inode->i_state & I_CREATING)) {
1074 			spin_unlock(&inode->i_lock);
1075 			rcu_read_unlock();
1076 			return ERR_PTR(-ESTALE);
1077 		}
1078 		__iget(inode);
1079 		spin_unlock(&inode->i_lock);
1080 		rcu_read_unlock();
1081 		return inode;
1082 	}
1083 	rcu_read_unlock();
1084 	return NULL;
1085 }
1086 
1087 /*
1088  * Each cpu owns a range of LAST_INO_BATCH numbers.
1089  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
1090  * to renew the exhausted range.
1091  *
1092  * This does not significantly increase overflow rate because every CPU can
1093  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
1094  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
1095  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
1096  * overflow rate by 2x, which does not seem too significant.
1097  *
1098  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1099  * error if st_ino won't fit in target struct field. Use 32bit counter
1100  * here to attempt to avoid that.
1101  */
1102 #define LAST_INO_BATCH 1024
1103 static DEFINE_PER_CPU(unsigned int, last_ino);
1104 
get_next_ino(void)1105 unsigned int get_next_ino(void)
1106 {
1107 	unsigned int *p = &get_cpu_var(last_ino);
1108 	unsigned int res = *p;
1109 
1110 #ifdef CONFIG_SMP
1111 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
1112 		static atomic_t shared_last_ino;
1113 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
1114 
1115 		res = next - LAST_INO_BATCH;
1116 	}
1117 #endif
1118 
1119 	res++;
1120 	/* get_next_ino should not provide a 0 inode number */
1121 	if (unlikely(!res))
1122 		res++;
1123 	*p = res;
1124 	put_cpu_var(last_ino);
1125 	return res;
1126 }
1127 EXPORT_SYMBOL(get_next_ino);
1128 
1129 /**
1130  *	new_inode 	- obtain an inode
1131  *	@sb: superblock
1132  *
1133  *	Allocates a new inode for given superblock. The default gfp_mask
1134  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1135  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
1136  *	for the page cache are not reclaimable or migratable,
1137  *	mapping_set_gfp_mask() must be called with suitable flags on the
1138  *	newly created inode's mapping
1139  *
1140  */
new_inode(struct super_block * sb)1141 struct inode *new_inode(struct super_block *sb)
1142 {
1143 	struct inode *inode;
1144 
1145 	inode = alloc_inode(sb);
1146 	if (inode)
1147 		inode_sb_list_add(inode);
1148 	return inode;
1149 }
1150 EXPORT_SYMBOL(new_inode);
1151 
1152 #ifdef CONFIG_DEBUG_LOCK_ALLOC
lockdep_annotate_inode_mutex_key(struct inode * inode)1153 void lockdep_annotate_inode_mutex_key(struct inode *inode)
1154 {
1155 	if (S_ISDIR(inode->i_mode)) {
1156 		struct file_system_type *type = inode->i_sb->s_type;
1157 
1158 		/* Set new key only if filesystem hasn't already changed it */
1159 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1160 			/*
1161 			 * ensure nobody is actually holding i_rwsem
1162 			 */
1163 			init_rwsem(&inode->i_rwsem);
1164 			lockdep_set_class(&inode->i_rwsem,
1165 					  &type->i_mutex_dir_key);
1166 		}
1167 	}
1168 }
1169 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1170 #endif
1171 
1172 /**
1173  * unlock_new_inode - clear the I_NEW state and wake up any waiters
1174  * @inode:	new inode to unlock
1175  *
1176  * Called when the inode is fully initialised to clear the new state of the
1177  * inode and wake up anyone waiting for the inode to finish initialisation.
1178  */
unlock_new_inode(struct inode * inode)1179 void unlock_new_inode(struct inode *inode)
1180 {
1181 	lockdep_annotate_inode_mutex_key(inode);
1182 	spin_lock(&inode->i_lock);
1183 	WARN_ON(!(inode->i_state & I_NEW));
1184 	inode->i_state &= ~I_NEW & ~I_CREATING;
1185 	/*
1186 	 * Pairs with the barrier in prepare_to_wait_event() to make sure
1187 	 * ___wait_var_event() either sees the bit cleared or
1188 	 * waitqueue_active() check in wake_up_var() sees the waiter.
1189 	 */
1190 	smp_mb();
1191 	inode_wake_up_bit(inode, __I_NEW);
1192 	spin_unlock(&inode->i_lock);
1193 }
1194 EXPORT_SYMBOL(unlock_new_inode);
1195 
discard_new_inode(struct inode * inode)1196 void discard_new_inode(struct inode *inode)
1197 {
1198 	lockdep_annotate_inode_mutex_key(inode);
1199 	spin_lock(&inode->i_lock);
1200 	WARN_ON(!(inode->i_state & I_NEW));
1201 	inode->i_state &= ~I_NEW;
1202 	/*
1203 	 * Pairs with the barrier in prepare_to_wait_event() to make sure
1204 	 * ___wait_var_event() either sees the bit cleared or
1205 	 * waitqueue_active() check in wake_up_var() sees the waiter.
1206 	 */
1207 	smp_mb();
1208 	inode_wake_up_bit(inode, __I_NEW);
1209 	spin_unlock(&inode->i_lock);
1210 	iput(inode);
1211 }
1212 EXPORT_SYMBOL(discard_new_inode);
1213 
1214 /**
1215  * lock_two_nondirectories - take two i_mutexes on non-directory objects
1216  *
1217  * Lock any non-NULL argument. Passed objects must not be directories.
1218  * Zero, one or two objects may be locked by this function.
1219  *
1220  * @inode1: first inode to lock
1221  * @inode2: second inode to lock
1222  */
lock_two_nondirectories(struct inode * inode1,struct inode * inode2)1223 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1224 {
1225 	if (inode1)
1226 		WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1227 	if (inode2)
1228 		WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1229 	if (inode1 > inode2)
1230 		swap(inode1, inode2);
1231 	if (inode1)
1232 		inode_lock(inode1);
1233 	if (inode2 && inode2 != inode1)
1234 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1235 }
1236 EXPORT_SYMBOL(lock_two_nondirectories);
1237 
1238 /**
1239  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1240  * @inode1: first inode to unlock
1241  * @inode2: second inode to unlock
1242  */
unlock_two_nondirectories(struct inode * inode1,struct inode * inode2)1243 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1244 {
1245 	if (inode1) {
1246 		WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1247 		inode_unlock(inode1);
1248 	}
1249 	if (inode2 && inode2 != inode1) {
1250 		WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1251 		inode_unlock(inode2);
1252 	}
1253 }
1254 EXPORT_SYMBOL(unlock_two_nondirectories);
1255 
1256 /**
1257  * inode_insert5 - obtain an inode from a mounted file system
1258  * @inode:	pre-allocated inode to use for insert to cache
1259  * @hashval:	hash value (usually inode number) to get
1260  * @test:	callback used for comparisons between inodes
1261  * @set:	callback used to initialize a new struct inode
1262  * @data:	opaque data pointer to pass to @test and @set
1263  *
1264  * Search for the inode specified by @hashval and @data in the inode cache,
1265  * and if present return it with an increased reference count. This is a
1266  * variant of iget5_locked() that doesn't allocate an inode.
1267  *
1268  * If the inode is not present in the cache, insert the pre-allocated inode and
1269  * return it locked, hashed, and with the I_NEW flag set. The file system gets
1270  * to fill it in before unlocking it via unlock_new_inode().
1271  *
1272  * Note that both @test and @set are called with the inode_hash_lock held, so
1273  * they can't sleep.
1274  */
inode_insert5(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1275 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1276 			    int (*test)(struct inode *, void *),
1277 			    int (*set)(struct inode *, void *), void *data)
1278 {
1279 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1280 	struct inode *old;
1281 
1282 	might_sleep();
1283 
1284 again:
1285 	spin_lock(&inode_hash_lock);
1286 	old = find_inode(inode->i_sb, head, test, data, true);
1287 	if (unlikely(old)) {
1288 		/*
1289 		 * Uhhuh, somebody else created the same inode under us.
1290 		 * Use the old inode instead of the preallocated one.
1291 		 */
1292 		spin_unlock(&inode_hash_lock);
1293 		if (IS_ERR(old))
1294 			return NULL;
1295 		wait_on_inode(old);
1296 		if (unlikely(inode_unhashed(old))) {
1297 			iput(old);
1298 			goto again;
1299 		}
1300 		return old;
1301 	}
1302 
1303 	if (set && unlikely(set(inode, data))) {
1304 		spin_unlock(&inode_hash_lock);
1305 		return NULL;
1306 	}
1307 
1308 	/*
1309 	 * Return the locked inode with I_NEW set, the
1310 	 * caller is responsible for filling in the contents
1311 	 */
1312 	spin_lock(&inode->i_lock);
1313 	inode->i_state |= I_NEW;
1314 	hlist_add_head_rcu(&inode->i_hash, head);
1315 	spin_unlock(&inode->i_lock);
1316 
1317 	spin_unlock(&inode_hash_lock);
1318 
1319 	/*
1320 	 * Add inode to the sb list if it's not already. It has I_NEW at this
1321 	 * point, so it should be safe to test i_sb_list locklessly.
1322 	 */
1323 	if (list_empty(&inode->i_sb_list))
1324 		inode_sb_list_add(inode);
1325 
1326 	return inode;
1327 }
1328 EXPORT_SYMBOL(inode_insert5);
1329 
1330 /**
1331  * iget5_locked - obtain an inode from a mounted file system
1332  * @sb:		super block of file system
1333  * @hashval:	hash value (usually inode number) to get
1334  * @test:	callback used for comparisons between inodes
1335  * @set:	callback used to initialize a new struct inode
1336  * @data:	opaque data pointer to pass to @test and @set
1337  *
1338  * Search for the inode specified by @hashval and @data in the inode cache,
1339  * and if present return it with an increased reference count. This is a
1340  * generalized version of iget_locked() for file systems where the inode
1341  * number is not sufficient for unique identification of an inode.
1342  *
1343  * If the inode is not present in the cache, allocate and insert a new inode
1344  * and return it locked, hashed, and with the I_NEW flag set. The file system
1345  * gets to fill it in before unlocking it via unlock_new_inode().
1346  *
1347  * Note that both @test and @set are called with the inode_hash_lock held, so
1348  * they can't sleep.
1349  */
iget5_locked(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1350 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1351 		int (*test)(struct inode *, void *),
1352 		int (*set)(struct inode *, void *), void *data)
1353 {
1354 	struct inode *inode = ilookup5(sb, hashval, test, data);
1355 
1356 	if (!inode) {
1357 		struct inode *new = alloc_inode(sb);
1358 
1359 		if (new) {
1360 			inode = inode_insert5(new, hashval, test, set, data);
1361 			if (unlikely(inode != new))
1362 				destroy_inode(new);
1363 		}
1364 	}
1365 	return inode;
1366 }
1367 EXPORT_SYMBOL(iget5_locked);
1368 
1369 /**
1370  * iget5_locked_rcu - obtain an inode from a mounted file system
1371  * @sb:		super block of file system
1372  * @hashval:	hash value (usually inode number) to get
1373  * @test:	callback used for comparisons between inodes
1374  * @set:	callback used to initialize a new struct inode
1375  * @data:	opaque data pointer to pass to @test and @set
1376  *
1377  * This is equivalent to iget5_locked, except the @test callback must
1378  * tolerate the inode not being stable, including being mid-teardown.
1379  */
iget5_locked_rcu(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1380 struct inode *iget5_locked_rcu(struct super_block *sb, unsigned long hashval,
1381 		int (*test)(struct inode *, void *),
1382 		int (*set)(struct inode *, void *), void *data)
1383 {
1384 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1385 	struct inode *inode, *new;
1386 
1387 	might_sleep();
1388 
1389 again:
1390 	inode = find_inode(sb, head, test, data, false);
1391 	if (inode) {
1392 		if (IS_ERR(inode))
1393 			return NULL;
1394 		wait_on_inode(inode);
1395 		if (unlikely(inode_unhashed(inode))) {
1396 			iput(inode);
1397 			goto again;
1398 		}
1399 		return inode;
1400 	}
1401 
1402 	new = alloc_inode(sb);
1403 	if (new) {
1404 		inode = inode_insert5(new, hashval, test, set, data);
1405 		if (unlikely(inode != new))
1406 			destroy_inode(new);
1407 	}
1408 	return inode;
1409 }
1410 EXPORT_SYMBOL_GPL(iget5_locked_rcu);
1411 
1412 /**
1413  * iget_locked - obtain an inode from a mounted file system
1414  * @sb:		super block of file system
1415  * @ino:	inode number to get
1416  *
1417  * Search for the inode specified by @ino in the inode cache and if present
1418  * return it with an increased reference count. This is for file systems
1419  * where the inode number is sufficient for unique identification of an inode.
1420  *
1421  * If the inode is not in cache, allocate a new inode and return it locked,
1422  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1423  * before unlocking it via unlock_new_inode().
1424  */
iget_locked(struct super_block * sb,unsigned long ino)1425 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1426 {
1427 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1428 	struct inode *inode;
1429 
1430 	might_sleep();
1431 
1432 again:
1433 	inode = find_inode_fast(sb, head, ino, false);
1434 	if (inode) {
1435 		if (IS_ERR(inode))
1436 			return NULL;
1437 		wait_on_inode(inode);
1438 		if (unlikely(inode_unhashed(inode))) {
1439 			iput(inode);
1440 			goto again;
1441 		}
1442 		return inode;
1443 	}
1444 
1445 	inode = alloc_inode(sb);
1446 	if (inode) {
1447 		struct inode *old;
1448 
1449 		spin_lock(&inode_hash_lock);
1450 		/* We released the lock, so.. */
1451 		old = find_inode_fast(sb, head, ino, true);
1452 		if (!old) {
1453 			inode->i_ino = ino;
1454 			spin_lock(&inode->i_lock);
1455 			inode->i_state = I_NEW;
1456 			hlist_add_head_rcu(&inode->i_hash, head);
1457 			spin_unlock(&inode->i_lock);
1458 			spin_unlock(&inode_hash_lock);
1459 			inode_sb_list_add(inode);
1460 
1461 			/* Return the locked inode with I_NEW set, the
1462 			 * caller is responsible for filling in the contents
1463 			 */
1464 			return inode;
1465 		}
1466 
1467 		/*
1468 		 * Uhhuh, somebody else created the same inode under
1469 		 * us. Use the old inode instead of the one we just
1470 		 * allocated.
1471 		 */
1472 		spin_unlock(&inode_hash_lock);
1473 		destroy_inode(inode);
1474 		if (IS_ERR(old))
1475 			return NULL;
1476 		inode = old;
1477 		wait_on_inode(inode);
1478 		if (unlikely(inode_unhashed(inode))) {
1479 			iput(inode);
1480 			goto again;
1481 		}
1482 	}
1483 	return inode;
1484 }
1485 EXPORT_SYMBOL(iget_locked);
1486 
1487 /*
1488  * search the inode cache for a matching inode number.
1489  * If we find one, then the inode number we are trying to
1490  * allocate is not unique and so we should not use it.
1491  *
1492  * Returns 1 if the inode number is unique, 0 if it is not.
1493  */
test_inode_iunique(struct super_block * sb,unsigned long ino)1494 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1495 {
1496 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1497 	struct inode *inode;
1498 
1499 	hlist_for_each_entry_rcu(inode, b, i_hash) {
1500 		if (inode->i_ino == ino && inode->i_sb == sb)
1501 			return 0;
1502 	}
1503 	return 1;
1504 }
1505 
1506 /**
1507  *	iunique - get a unique inode number
1508  *	@sb: superblock
1509  *	@max_reserved: highest reserved inode number
1510  *
1511  *	Obtain an inode number that is unique on the system for a given
1512  *	superblock. This is used by file systems that have no natural
1513  *	permanent inode numbering system. An inode number is returned that
1514  *	is higher than the reserved limit but unique.
1515  *
1516  *	BUGS:
1517  *	With a large number of inodes live on the file system this function
1518  *	currently becomes quite slow.
1519  */
iunique(struct super_block * sb,ino_t max_reserved)1520 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1521 {
1522 	/*
1523 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1524 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1525 	 * here to attempt to avoid that.
1526 	 */
1527 	static DEFINE_SPINLOCK(iunique_lock);
1528 	static unsigned int counter;
1529 	ino_t res;
1530 
1531 	rcu_read_lock();
1532 	spin_lock(&iunique_lock);
1533 	do {
1534 		if (counter <= max_reserved)
1535 			counter = max_reserved + 1;
1536 		res = counter++;
1537 	} while (!test_inode_iunique(sb, res));
1538 	spin_unlock(&iunique_lock);
1539 	rcu_read_unlock();
1540 
1541 	return res;
1542 }
1543 EXPORT_SYMBOL(iunique);
1544 
igrab(struct inode * inode)1545 struct inode *igrab(struct inode *inode)
1546 {
1547 	spin_lock(&inode->i_lock);
1548 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1549 		__iget(inode);
1550 		spin_unlock(&inode->i_lock);
1551 	} else {
1552 		spin_unlock(&inode->i_lock);
1553 		/*
1554 		 * Handle the case where s_op->clear_inode is not been
1555 		 * called yet, and somebody is calling igrab
1556 		 * while the inode is getting freed.
1557 		 */
1558 		inode = NULL;
1559 	}
1560 	return inode;
1561 }
1562 EXPORT_SYMBOL(igrab);
1563 
1564 /**
1565  * ilookup5_nowait - search for an inode in the inode cache
1566  * @sb:		super block of file system to search
1567  * @hashval:	hash value (usually inode number) to search for
1568  * @test:	callback used for comparisons between inodes
1569  * @data:	opaque data pointer to pass to @test
1570  *
1571  * Search for the inode specified by @hashval and @data in the inode cache.
1572  * If the inode is in the cache, the inode is returned with an incremented
1573  * reference count.
1574  *
1575  * Note: I_NEW is not waited upon so you have to be very careful what you do
1576  * with the returned inode.  You probably should be using ilookup5() instead.
1577  *
1578  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1579  */
ilookup5_nowait(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1580 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1581 		int (*test)(struct inode *, void *), void *data)
1582 {
1583 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1584 	struct inode *inode;
1585 
1586 	spin_lock(&inode_hash_lock);
1587 	inode = find_inode(sb, head, test, data, true);
1588 	spin_unlock(&inode_hash_lock);
1589 
1590 	return IS_ERR(inode) ? NULL : inode;
1591 }
1592 EXPORT_SYMBOL(ilookup5_nowait);
1593 
1594 /**
1595  * ilookup5 - search for an inode in the inode cache
1596  * @sb:		super block of file system to search
1597  * @hashval:	hash value (usually inode number) to search for
1598  * @test:	callback used for comparisons between inodes
1599  * @data:	opaque data pointer to pass to @test
1600  *
1601  * Search for the inode specified by @hashval and @data in the inode cache,
1602  * and if the inode is in the cache, return the inode with an incremented
1603  * reference count.  Waits on I_NEW before returning the inode.
1604  * returned with an incremented reference count.
1605  *
1606  * This is a generalized version of ilookup() for file systems where the
1607  * inode number is not sufficient for unique identification of an inode.
1608  *
1609  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1610  */
ilookup5(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1611 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1612 		int (*test)(struct inode *, void *), void *data)
1613 {
1614 	struct inode *inode;
1615 
1616 	might_sleep();
1617 
1618 again:
1619 	inode = ilookup5_nowait(sb, hashval, test, data);
1620 	if (inode) {
1621 		wait_on_inode(inode);
1622 		if (unlikely(inode_unhashed(inode))) {
1623 			iput(inode);
1624 			goto again;
1625 		}
1626 	}
1627 	return inode;
1628 }
1629 EXPORT_SYMBOL(ilookup5);
1630 
1631 /**
1632  * ilookup - search for an inode in the inode cache
1633  * @sb:		super block of file system to search
1634  * @ino:	inode number to search for
1635  *
1636  * Search for the inode @ino in the inode cache, and if the inode is in the
1637  * cache, the inode is returned with an incremented reference count.
1638  */
ilookup(struct super_block * sb,unsigned long ino)1639 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1640 {
1641 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1642 	struct inode *inode;
1643 
1644 	might_sleep();
1645 
1646 again:
1647 	inode = find_inode_fast(sb, head, ino, false);
1648 
1649 	if (inode) {
1650 		if (IS_ERR(inode))
1651 			return NULL;
1652 		wait_on_inode(inode);
1653 		if (unlikely(inode_unhashed(inode))) {
1654 			iput(inode);
1655 			goto again;
1656 		}
1657 	}
1658 	return inode;
1659 }
1660 EXPORT_SYMBOL(ilookup);
1661 
1662 /**
1663  * find_inode_nowait - find an inode in the inode cache
1664  * @sb:		super block of file system to search
1665  * @hashval:	hash value (usually inode number) to search for
1666  * @match:	callback used for comparisons between inodes
1667  * @data:	opaque data pointer to pass to @match
1668  *
1669  * Search for the inode specified by @hashval and @data in the inode
1670  * cache, where the helper function @match will return 0 if the inode
1671  * does not match, 1 if the inode does match, and -1 if the search
1672  * should be stopped.  The @match function must be responsible for
1673  * taking the i_lock spin_lock and checking i_state for an inode being
1674  * freed or being initialized, and incrementing the reference count
1675  * before returning 1.  It also must not sleep, since it is called with
1676  * the inode_hash_lock spinlock held.
1677  *
1678  * This is a even more generalized version of ilookup5() when the
1679  * function must never block --- find_inode() can block in
1680  * __wait_on_freeing_inode() --- or when the caller can not increment
1681  * the reference count because the resulting iput() might cause an
1682  * inode eviction.  The tradeoff is that the @match funtion must be
1683  * very carefully implemented.
1684  */
find_inode_nowait(struct super_block * sb,unsigned long hashval,int (* match)(struct inode *,unsigned long,void *),void * data)1685 struct inode *find_inode_nowait(struct super_block *sb,
1686 				unsigned long hashval,
1687 				int (*match)(struct inode *, unsigned long,
1688 					     void *),
1689 				void *data)
1690 {
1691 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1692 	struct inode *inode, *ret_inode = NULL;
1693 	int mval;
1694 
1695 	spin_lock(&inode_hash_lock);
1696 	hlist_for_each_entry(inode, head, i_hash) {
1697 		if (inode->i_sb != sb)
1698 			continue;
1699 		mval = match(inode, hashval, data);
1700 		if (mval == 0)
1701 			continue;
1702 		if (mval == 1)
1703 			ret_inode = inode;
1704 		goto out;
1705 	}
1706 out:
1707 	spin_unlock(&inode_hash_lock);
1708 	return ret_inode;
1709 }
1710 EXPORT_SYMBOL(find_inode_nowait);
1711 
1712 /**
1713  * find_inode_rcu - find an inode in the inode cache
1714  * @sb:		Super block of file system to search
1715  * @hashval:	Key to hash
1716  * @test:	Function to test match on an inode
1717  * @data:	Data for test function
1718  *
1719  * Search for the inode specified by @hashval and @data in the inode cache,
1720  * where the helper function @test will return 0 if the inode does not match
1721  * and 1 if it does.  The @test function must be responsible for taking the
1722  * i_lock spin_lock and checking i_state for an inode being freed or being
1723  * initialized.
1724  *
1725  * If successful, this will return the inode for which the @test function
1726  * returned 1 and NULL otherwise.
1727  *
1728  * The @test function is not permitted to take a ref on any inode presented.
1729  * It is also not permitted to sleep.
1730  *
1731  * The caller must hold the RCU read lock.
1732  */
find_inode_rcu(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1733 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1734 			     int (*test)(struct inode *, void *), void *data)
1735 {
1736 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1737 	struct inode *inode;
1738 
1739 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1740 			 "suspicious find_inode_rcu() usage");
1741 
1742 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1743 		if (inode->i_sb == sb &&
1744 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1745 		    test(inode, data))
1746 			return inode;
1747 	}
1748 	return NULL;
1749 }
1750 EXPORT_SYMBOL(find_inode_rcu);
1751 
1752 /**
1753  * find_inode_by_ino_rcu - Find an inode in the inode cache
1754  * @sb:		Super block of file system to search
1755  * @ino:	The inode number to match
1756  *
1757  * Search for the inode specified by @hashval and @data in the inode cache,
1758  * where the helper function @test will return 0 if the inode does not match
1759  * and 1 if it does.  The @test function must be responsible for taking the
1760  * i_lock spin_lock and checking i_state for an inode being freed or being
1761  * initialized.
1762  *
1763  * If successful, this will return the inode for which the @test function
1764  * returned 1 and NULL otherwise.
1765  *
1766  * The @test function is not permitted to take a ref on any inode presented.
1767  * It is also not permitted to sleep.
1768  *
1769  * The caller must hold the RCU read lock.
1770  */
find_inode_by_ino_rcu(struct super_block * sb,unsigned long ino)1771 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1772 				    unsigned long ino)
1773 {
1774 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1775 	struct inode *inode;
1776 
1777 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1778 			 "suspicious find_inode_by_ino_rcu() usage");
1779 
1780 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1781 		if (inode->i_ino == ino &&
1782 		    inode->i_sb == sb &&
1783 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1784 		    return inode;
1785 	}
1786 	return NULL;
1787 }
1788 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1789 
insert_inode_locked(struct inode * inode)1790 int insert_inode_locked(struct inode *inode)
1791 {
1792 	struct super_block *sb = inode->i_sb;
1793 	ino_t ino = inode->i_ino;
1794 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1795 
1796 	might_sleep();
1797 
1798 	while (1) {
1799 		struct inode *old = NULL;
1800 		spin_lock(&inode_hash_lock);
1801 		hlist_for_each_entry(old, head, i_hash) {
1802 			if (old->i_ino != ino)
1803 				continue;
1804 			if (old->i_sb != sb)
1805 				continue;
1806 			spin_lock(&old->i_lock);
1807 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1808 				spin_unlock(&old->i_lock);
1809 				continue;
1810 			}
1811 			break;
1812 		}
1813 		if (likely(!old)) {
1814 			spin_lock(&inode->i_lock);
1815 			inode->i_state |= I_NEW | I_CREATING;
1816 			hlist_add_head_rcu(&inode->i_hash, head);
1817 			spin_unlock(&inode->i_lock);
1818 			spin_unlock(&inode_hash_lock);
1819 			return 0;
1820 		}
1821 		if (unlikely(old->i_state & I_CREATING)) {
1822 			spin_unlock(&old->i_lock);
1823 			spin_unlock(&inode_hash_lock);
1824 			return -EBUSY;
1825 		}
1826 		__iget(old);
1827 		spin_unlock(&old->i_lock);
1828 		spin_unlock(&inode_hash_lock);
1829 		wait_on_inode(old);
1830 		if (unlikely(!inode_unhashed(old))) {
1831 			iput(old);
1832 			return -EBUSY;
1833 		}
1834 		iput(old);
1835 	}
1836 }
1837 EXPORT_SYMBOL(insert_inode_locked);
1838 
insert_inode_locked4(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1839 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1840 		int (*test)(struct inode *, void *), void *data)
1841 {
1842 	struct inode *old;
1843 
1844 	might_sleep();
1845 
1846 	inode->i_state |= I_CREATING;
1847 	old = inode_insert5(inode, hashval, test, NULL, data);
1848 
1849 	if (old != inode) {
1850 		iput(old);
1851 		return -EBUSY;
1852 	}
1853 	return 0;
1854 }
1855 EXPORT_SYMBOL(insert_inode_locked4);
1856 
1857 
inode_just_drop(struct inode * inode)1858 int inode_just_drop(struct inode *inode)
1859 {
1860 	return 1;
1861 }
1862 EXPORT_SYMBOL(inode_just_drop);
1863 
1864 /*
1865  * Called when we're dropping the last reference
1866  * to an inode.
1867  *
1868  * Call the FS "drop_inode()" function, defaulting to
1869  * the legacy UNIX filesystem behaviour.  If it tells
1870  * us to evict inode, do so.  Otherwise, retain inode
1871  * in cache if fs is alive, sync and evict if fs is
1872  * shutting down.
1873  */
iput_final(struct inode * inode)1874 static void iput_final(struct inode *inode)
1875 {
1876 	struct super_block *sb = inode->i_sb;
1877 	const struct super_operations *op = inode->i_sb->s_op;
1878 	unsigned long state;
1879 	int drop;
1880 
1881 	WARN_ON(inode->i_state & I_NEW);
1882 
1883 	if (op->drop_inode)
1884 		drop = op->drop_inode(inode);
1885 	else
1886 		drop = inode_generic_drop(inode);
1887 
1888 	if (!drop &&
1889 	    !(inode->i_state & I_DONTCACHE) &&
1890 	    (sb->s_flags & SB_ACTIVE)) {
1891 		__inode_add_lru(inode, true);
1892 		spin_unlock(&inode->i_lock);
1893 		return;
1894 	}
1895 
1896 	state = inode->i_state;
1897 	if (!drop) {
1898 		WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1899 		spin_unlock(&inode->i_lock);
1900 
1901 		write_inode_now(inode, 1);
1902 
1903 		spin_lock(&inode->i_lock);
1904 		state = inode->i_state;
1905 		WARN_ON(state & I_NEW);
1906 		state &= ~I_WILL_FREE;
1907 	}
1908 
1909 	WRITE_ONCE(inode->i_state, state | I_FREEING);
1910 	if (!list_empty(&inode->i_lru))
1911 		inode_lru_list_del(inode);
1912 	spin_unlock(&inode->i_lock);
1913 
1914 	evict(inode);
1915 }
1916 
1917 /**
1918  *	iput	- put an inode
1919  *	@inode: inode to put
1920  *
1921  *	Puts an inode, dropping its usage count. If the inode use count hits
1922  *	zero, the inode is then freed and may also be destroyed.
1923  *
1924  *	Consequently, iput() can sleep.
1925  */
iput(struct inode * inode)1926 void iput(struct inode *inode)
1927 {
1928 	might_sleep();
1929 	if (unlikely(!inode))
1930 		return;
1931 
1932 retry:
1933 	lockdep_assert_not_held(&inode->i_lock);
1934 	VFS_BUG_ON_INODE(inode->i_state & I_CLEAR, inode);
1935 	/*
1936 	 * Note this assert is technically racy as if the count is bogusly
1937 	 * equal to one, then two CPUs racing to further drop it can both
1938 	 * conclude it's fine.
1939 	 */
1940 	VFS_BUG_ON_INODE(atomic_read(&inode->i_count) < 1, inode);
1941 
1942 	if (atomic_add_unless(&inode->i_count, -1, 1))
1943 		return;
1944 
1945 	if ((inode->i_state & I_DIRTY_TIME) && inode->i_nlink) {
1946 		trace_writeback_lazytime_iput(inode);
1947 		mark_inode_dirty_sync(inode);
1948 		goto retry;
1949 	}
1950 
1951 	spin_lock(&inode->i_lock);
1952 	if (unlikely((inode->i_state & I_DIRTY_TIME) && inode->i_nlink)) {
1953 		spin_unlock(&inode->i_lock);
1954 		goto retry;
1955 	}
1956 
1957 	if (!atomic_dec_and_test(&inode->i_count)) {
1958 		spin_unlock(&inode->i_lock);
1959 		return;
1960 	}
1961 
1962 	/*
1963 	 * iput_final() drops ->i_lock, we can't assert on it as the inode may
1964 	 * be deallocated by the time the call returns.
1965 	 */
1966 	iput_final(inode);
1967 }
1968 EXPORT_SYMBOL(iput);
1969 
1970 #ifdef CONFIG_BLOCK
1971 /**
1972  *	bmap	- find a block number in a file
1973  *	@inode:  inode owning the block number being requested
1974  *	@block: pointer containing the block to find
1975  *
1976  *	Replaces the value in ``*block`` with the block number on the device holding
1977  *	corresponding to the requested block number in the file.
1978  *	That is, asked for block 4 of inode 1 the function will replace the
1979  *	4 in ``*block``, with disk block relative to the disk start that holds that
1980  *	block of the file.
1981  *
1982  *	Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1983  *	hole, returns 0 and ``*block`` is also set to 0.
1984  */
bmap(struct inode * inode,sector_t * block)1985 int bmap(struct inode *inode, sector_t *block)
1986 {
1987 	if (!inode->i_mapping->a_ops->bmap)
1988 		return -EINVAL;
1989 
1990 	*block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1991 	return 0;
1992 }
1993 EXPORT_SYMBOL(bmap);
1994 #endif
1995 
1996 /*
1997  * With relative atime, only update atime if the previous atime is
1998  * earlier than or equal to either the ctime or mtime,
1999  * or if at least a day has passed since the last atime update.
2000  */
relatime_need_update(struct vfsmount * mnt,struct inode * inode,struct timespec64 now)2001 static bool relatime_need_update(struct vfsmount *mnt, struct inode *inode,
2002 			     struct timespec64 now)
2003 {
2004 	struct timespec64 atime, mtime, ctime;
2005 
2006 	if (!(mnt->mnt_flags & MNT_RELATIME))
2007 		return true;
2008 	/*
2009 	 * Is mtime younger than or equal to atime? If yes, update atime:
2010 	 */
2011 	atime = inode_get_atime(inode);
2012 	mtime = inode_get_mtime(inode);
2013 	if (timespec64_compare(&mtime, &atime) >= 0)
2014 		return true;
2015 	/*
2016 	 * Is ctime younger than or equal to atime? If yes, update atime:
2017 	 */
2018 	ctime = inode_get_ctime(inode);
2019 	if (timespec64_compare(&ctime, &atime) >= 0)
2020 		return true;
2021 
2022 	/*
2023 	 * Is the previous atime value older than a day? If yes,
2024 	 * update atime:
2025 	 */
2026 	if ((long)(now.tv_sec - atime.tv_sec) >= 24*60*60)
2027 		return true;
2028 	/*
2029 	 * Good, we can skip the atime update:
2030 	 */
2031 	return false;
2032 }
2033 
2034 /**
2035  * inode_update_timestamps - update the timestamps on the inode
2036  * @inode: inode to be updated
2037  * @flags: S_* flags that needed to be updated
2038  *
2039  * The update_time function is called when an inode's timestamps need to be
2040  * updated for a read or write operation. This function handles updating the
2041  * actual timestamps. It's up to the caller to ensure that the inode is marked
2042  * dirty appropriately.
2043  *
2044  * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated,
2045  * attempt to update all three of them. S_ATIME updates can be handled
2046  * independently of the rest.
2047  *
2048  * Returns a set of S_* flags indicating which values changed.
2049  */
inode_update_timestamps(struct inode * inode,int flags)2050 int inode_update_timestamps(struct inode *inode, int flags)
2051 {
2052 	int updated = 0;
2053 	struct timespec64 now;
2054 
2055 	if (flags & (S_MTIME|S_CTIME|S_VERSION)) {
2056 		struct timespec64 ctime = inode_get_ctime(inode);
2057 		struct timespec64 mtime = inode_get_mtime(inode);
2058 
2059 		now = inode_set_ctime_current(inode);
2060 		if (!timespec64_equal(&now, &ctime))
2061 			updated |= S_CTIME;
2062 		if (!timespec64_equal(&now, &mtime)) {
2063 			inode_set_mtime_to_ts(inode, now);
2064 			updated |= S_MTIME;
2065 		}
2066 		if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated))
2067 			updated |= S_VERSION;
2068 	} else {
2069 		now = current_time(inode);
2070 	}
2071 
2072 	if (flags & S_ATIME) {
2073 		struct timespec64 atime = inode_get_atime(inode);
2074 
2075 		if (!timespec64_equal(&now, &atime)) {
2076 			inode_set_atime_to_ts(inode, now);
2077 			updated |= S_ATIME;
2078 		}
2079 	}
2080 	return updated;
2081 }
2082 EXPORT_SYMBOL(inode_update_timestamps);
2083 
2084 /**
2085  * generic_update_time - update the timestamps on the inode
2086  * @inode: inode to be updated
2087  * @flags: S_* flags that needed to be updated
2088  *
2089  * The update_time function is called when an inode's timestamps need to be
2090  * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME,
2091  * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME
2092  * updates can be handled done independently of the rest.
2093  *
2094  * Returns a S_* mask indicating which fields were updated.
2095  */
generic_update_time(struct inode * inode,int flags)2096 int generic_update_time(struct inode *inode, int flags)
2097 {
2098 	int updated = inode_update_timestamps(inode, flags);
2099 	int dirty_flags = 0;
2100 
2101 	if (updated & (S_ATIME|S_MTIME|S_CTIME))
2102 		dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC;
2103 	if (updated & S_VERSION)
2104 		dirty_flags |= I_DIRTY_SYNC;
2105 	__mark_inode_dirty(inode, dirty_flags);
2106 	return updated;
2107 }
2108 EXPORT_SYMBOL(generic_update_time);
2109 
2110 /*
2111  * This does the actual work of updating an inodes time or version.  Must have
2112  * had called mnt_want_write() before calling this.
2113  */
inode_update_time(struct inode * inode,int flags)2114 int inode_update_time(struct inode *inode, int flags)
2115 {
2116 	if (inode->i_op->update_time)
2117 		return inode->i_op->update_time(inode, flags);
2118 	generic_update_time(inode, flags);
2119 	return 0;
2120 }
2121 EXPORT_SYMBOL(inode_update_time);
2122 
2123 /**
2124  *	atime_needs_update	-	update the access time
2125  *	@path: the &struct path to update
2126  *	@inode: inode to update
2127  *
2128  *	Update the accessed time on an inode and mark it for writeback.
2129  *	This function automatically handles read only file systems and media,
2130  *	as well as the "noatime" flag and inode specific "noatime" markers.
2131  */
atime_needs_update(const struct path * path,struct inode * inode)2132 bool atime_needs_update(const struct path *path, struct inode *inode)
2133 {
2134 	struct vfsmount *mnt = path->mnt;
2135 	struct timespec64 now, atime;
2136 
2137 	if (inode->i_flags & S_NOATIME)
2138 		return false;
2139 
2140 	/* Atime updates will likely cause i_uid and i_gid to be written
2141 	 * back improprely if their true value is unknown to the vfs.
2142 	 */
2143 	if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode))
2144 		return false;
2145 
2146 	if (IS_NOATIME(inode))
2147 		return false;
2148 	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
2149 		return false;
2150 
2151 	if (mnt->mnt_flags & MNT_NOATIME)
2152 		return false;
2153 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
2154 		return false;
2155 
2156 	now = current_time(inode);
2157 
2158 	if (!relatime_need_update(mnt, inode, now))
2159 		return false;
2160 
2161 	atime = inode_get_atime(inode);
2162 	if (timespec64_equal(&atime, &now))
2163 		return false;
2164 
2165 	return true;
2166 }
2167 
touch_atime(const struct path * path)2168 void touch_atime(const struct path *path)
2169 {
2170 	struct vfsmount *mnt = path->mnt;
2171 	struct inode *inode = d_inode(path->dentry);
2172 
2173 	if (!atime_needs_update(path, inode))
2174 		return;
2175 
2176 	if (!sb_start_write_trylock(inode->i_sb))
2177 		return;
2178 
2179 	if (mnt_get_write_access(mnt) != 0)
2180 		goto skip_update;
2181 	/*
2182 	 * File systems can error out when updating inodes if they need to
2183 	 * allocate new space to modify an inode (such is the case for
2184 	 * Btrfs), but since we touch atime while walking down the path we
2185 	 * really don't care if we failed to update the atime of the file,
2186 	 * so just ignore the return value.
2187 	 * We may also fail on filesystems that have the ability to make parts
2188 	 * of the fs read only, e.g. subvolumes in Btrfs.
2189 	 */
2190 	inode_update_time(inode, S_ATIME);
2191 	mnt_put_write_access(mnt);
2192 skip_update:
2193 	sb_end_write(inode->i_sb);
2194 }
2195 EXPORT_SYMBOL(touch_atime);
2196 
2197 /*
2198  * Return mask of changes for notify_change() that need to be done as a
2199  * response to write or truncate. Return 0 if nothing has to be changed.
2200  * Negative value on error (change should be denied).
2201  */
dentry_needs_remove_privs(struct mnt_idmap * idmap,struct dentry * dentry)2202 int dentry_needs_remove_privs(struct mnt_idmap *idmap,
2203 			      struct dentry *dentry)
2204 {
2205 	struct inode *inode = d_inode(dentry);
2206 	int mask = 0;
2207 	int ret;
2208 
2209 	if (IS_NOSEC(inode))
2210 		return 0;
2211 
2212 	mask = setattr_should_drop_suidgid(idmap, inode);
2213 	ret = security_inode_need_killpriv(dentry);
2214 	if (ret < 0)
2215 		return ret;
2216 	if (ret)
2217 		mask |= ATTR_KILL_PRIV;
2218 	return mask;
2219 }
2220 
__remove_privs(struct mnt_idmap * idmap,struct dentry * dentry,int kill)2221 static int __remove_privs(struct mnt_idmap *idmap,
2222 			  struct dentry *dentry, int kill)
2223 {
2224 	struct iattr newattrs;
2225 
2226 	newattrs.ia_valid = ATTR_FORCE | kill;
2227 	/*
2228 	 * Note we call this on write, so notify_change will not
2229 	 * encounter any conflicting delegations:
2230 	 */
2231 	return notify_change(idmap, dentry, &newattrs, NULL);
2232 }
2233 
file_remove_privs_flags(struct file * file,unsigned int flags)2234 static int file_remove_privs_flags(struct file *file, unsigned int flags)
2235 {
2236 	struct dentry *dentry = file_dentry(file);
2237 	struct inode *inode = file_inode(file);
2238 	int error = 0;
2239 	int kill;
2240 
2241 	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
2242 		return 0;
2243 
2244 	kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry);
2245 	if (kill < 0)
2246 		return kill;
2247 
2248 	if (kill) {
2249 		if (flags & IOCB_NOWAIT)
2250 			return -EAGAIN;
2251 
2252 		error = __remove_privs(file_mnt_idmap(file), dentry, kill);
2253 	}
2254 
2255 	if (!error)
2256 		inode_has_no_xattr(inode);
2257 	return error;
2258 }
2259 
2260 /**
2261  * file_remove_privs - remove special file privileges (suid, capabilities)
2262  * @file: file to remove privileges from
2263  *
2264  * When file is modified by a write or truncation ensure that special
2265  * file privileges are removed.
2266  *
2267  * Return: 0 on success, negative errno on failure.
2268  */
file_remove_privs(struct file * file)2269 int file_remove_privs(struct file *file)
2270 {
2271 	return file_remove_privs_flags(file, 0);
2272 }
2273 EXPORT_SYMBOL(file_remove_privs);
2274 
2275 /**
2276  * current_time - Return FS time (possibly fine-grained)
2277  * @inode: inode.
2278  *
2279  * Return the current time truncated to the time granularity supported by
2280  * the fs, as suitable for a ctime/mtime change. If the ctime is flagged
2281  * as having been QUERIED, get a fine-grained timestamp, but don't update
2282  * the floor.
2283  *
2284  * For a multigrain inode, this is effectively an estimate of the timestamp
2285  * that a file would receive. An actual update must go through
2286  * inode_set_ctime_current().
2287  */
current_time(struct inode * inode)2288 struct timespec64 current_time(struct inode *inode)
2289 {
2290 	struct timespec64 now;
2291 	u32 cns;
2292 
2293 	ktime_get_coarse_real_ts64_mg(&now);
2294 
2295 	if (!is_mgtime(inode))
2296 		goto out;
2297 
2298 	/* If nothing has queried it, then coarse time is fine */
2299 	cns = smp_load_acquire(&inode->i_ctime_nsec);
2300 	if (cns & I_CTIME_QUERIED) {
2301 		/*
2302 		 * If there is no apparent change, then get a fine-grained
2303 		 * timestamp.
2304 		 */
2305 		if (now.tv_nsec == (cns & ~I_CTIME_QUERIED))
2306 			ktime_get_real_ts64(&now);
2307 	}
2308 out:
2309 	return timestamp_truncate(now, inode);
2310 }
2311 EXPORT_SYMBOL(current_time);
2312 
inode_needs_update_time(struct inode * inode)2313 static int inode_needs_update_time(struct inode *inode)
2314 {
2315 	struct timespec64 now, ts;
2316 	int sync_it = 0;
2317 
2318 	/* First try to exhaust all avenues to not sync */
2319 	if (IS_NOCMTIME(inode))
2320 		return 0;
2321 
2322 	now = current_time(inode);
2323 
2324 	ts = inode_get_mtime(inode);
2325 	if (!timespec64_equal(&ts, &now))
2326 		sync_it |= S_MTIME;
2327 
2328 	ts = inode_get_ctime(inode);
2329 	if (!timespec64_equal(&ts, &now))
2330 		sync_it |= S_CTIME;
2331 
2332 	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2333 		sync_it |= S_VERSION;
2334 
2335 	return sync_it;
2336 }
2337 
__file_update_time(struct file * file,int sync_mode)2338 static int __file_update_time(struct file *file, int sync_mode)
2339 {
2340 	int ret = 0;
2341 	struct inode *inode = file_inode(file);
2342 
2343 	/* try to update time settings */
2344 	if (!mnt_get_write_access_file(file)) {
2345 		ret = inode_update_time(inode, sync_mode);
2346 		mnt_put_write_access_file(file);
2347 	}
2348 
2349 	return ret;
2350 }
2351 
2352 /**
2353  * file_update_time - update mtime and ctime time
2354  * @file: file accessed
2355  *
2356  * Update the mtime and ctime members of an inode and mark the inode for
2357  * writeback. Note that this function is meant exclusively for usage in
2358  * the file write path of filesystems, and filesystems may choose to
2359  * explicitly ignore updates via this function with the _NOCMTIME inode
2360  * flag, e.g. for network filesystem where these imestamps are handled
2361  * by the server. This can return an error for file systems who need to
2362  * allocate space in order to update an inode.
2363  *
2364  * Return: 0 on success, negative errno on failure.
2365  */
file_update_time(struct file * file)2366 int file_update_time(struct file *file)
2367 {
2368 	int ret;
2369 	struct inode *inode = file_inode(file);
2370 
2371 	ret = inode_needs_update_time(inode);
2372 	if (ret <= 0)
2373 		return ret;
2374 
2375 	return __file_update_time(file, ret);
2376 }
2377 EXPORT_SYMBOL(file_update_time);
2378 
2379 /**
2380  * file_modified_flags - handle mandated vfs changes when modifying a file
2381  * @file: file that was modified
2382  * @flags: kiocb flags
2383  *
2384  * When file has been modified ensure that special
2385  * file privileges are removed and time settings are updated.
2386  *
2387  * If IOCB_NOWAIT is set, special file privileges will not be removed and
2388  * time settings will not be updated. It will return -EAGAIN.
2389  *
2390  * Context: Caller must hold the file's inode lock.
2391  *
2392  * Return: 0 on success, negative errno on failure.
2393  */
file_modified_flags(struct file * file,int flags)2394 static int file_modified_flags(struct file *file, int flags)
2395 {
2396 	int ret;
2397 	struct inode *inode = file_inode(file);
2398 
2399 	/*
2400 	 * Clear the security bits if the process is not being run by root.
2401 	 * This keeps people from modifying setuid and setgid binaries.
2402 	 */
2403 	ret = file_remove_privs_flags(file, flags);
2404 	if (ret)
2405 		return ret;
2406 
2407 	if (unlikely(file->f_mode & FMODE_NOCMTIME))
2408 		return 0;
2409 
2410 	ret = inode_needs_update_time(inode);
2411 	if (ret <= 0)
2412 		return ret;
2413 	if (flags & IOCB_NOWAIT)
2414 		return -EAGAIN;
2415 
2416 	return __file_update_time(file, ret);
2417 }
2418 
2419 /**
2420  * file_modified - handle mandated vfs changes when modifying a file
2421  * @file: file that was modified
2422  *
2423  * When file has been modified ensure that special
2424  * file privileges are removed and time settings are updated.
2425  *
2426  * Context: Caller must hold the file's inode lock.
2427  *
2428  * Return: 0 on success, negative errno on failure.
2429  */
file_modified(struct file * file)2430 int file_modified(struct file *file)
2431 {
2432 	return file_modified_flags(file, 0);
2433 }
2434 EXPORT_SYMBOL(file_modified);
2435 
2436 /**
2437  * kiocb_modified - handle mandated vfs changes when modifying a file
2438  * @iocb: iocb that was modified
2439  *
2440  * When file has been modified ensure that special
2441  * file privileges are removed and time settings are updated.
2442  *
2443  * Context: Caller must hold the file's inode lock.
2444  *
2445  * Return: 0 on success, negative errno on failure.
2446  */
kiocb_modified(struct kiocb * iocb)2447 int kiocb_modified(struct kiocb *iocb)
2448 {
2449 	return file_modified_flags(iocb->ki_filp, iocb->ki_flags);
2450 }
2451 EXPORT_SYMBOL_GPL(kiocb_modified);
2452 
inode_needs_sync(struct inode * inode)2453 int inode_needs_sync(struct inode *inode)
2454 {
2455 	if (IS_SYNC(inode))
2456 		return 1;
2457 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2458 		return 1;
2459 	return 0;
2460 }
2461 EXPORT_SYMBOL(inode_needs_sync);
2462 
2463 /*
2464  * If we try to find an inode in the inode hash while it is being
2465  * deleted, we have to wait until the filesystem completes its
2466  * deletion before reporting that it isn't found.  This function waits
2467  * until the deletion _might_ have completed.  Callers are responsible
2468  * to recheck inode state.
2469  *
2470  * It doesn't matter if I_NEW is not set initially, a call to
2471  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2472  * will DTRT.
2473  */
__wait_on_freeing_inode(struct inode * inode,bool is_inode_hash_locked)2474 static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked)
2475 {
2476 	struct wait_bit_queue_entry wqe;
2477 	struct wait_queue_head *wq_head;
2478 
2479 	/*
2480 	 * Handle racing against evict(), see that routine for more details.
2481 	 */
2482 	if (unlikely(inode_unhashed(inode))) {
2483 		WARN_ON(is_inode_hash_locked);
2484 		spin_unlock(&inode->i_lock);
2485 		return;
2486 	}
2487 
2488 	wq_head = inode_bit_waitqueue(&wqe, inode, __I_NEW);
2489 	prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
2490 	spin_unlock(&inode->i_lock);
2491 	rcu_read_unlock();
2492 	if (is_inode_hash_locked)
2493 		spin_unlock(&inode_hash_lock);
2494 	schedule();
2495 	finish_wait(wq_head, &wqe.wq_entry);
2496 	if (is_inode_hash_locked)
2497 		spin_lock(&inode_hash_lock);
2498 	rcu_read_lock();
2499 }
2500 
2501 static __initdata unsigned long ihash_entries;
set_ihash_entries(char * str)2502 static int __init set_ihash_entries(char *str)
2503 {
2504 	if (!str)
2505 		return 0;
2506 	ihash_entries = simple_strtoul(str, &str, 0);
2507 	return 1;
2508 }
2509 __setup("ihash_entries=", set_ihash_entries);
2510 
2511 /*
2512  * Initialize the waitqueues and inode hash table.
2513  */
inode_init_early(void)2514 void __init inode_init_early(void)
2515 {
2516 	/* If hashes are distributed across NUMA nodes, defer
2517 	 * hash allocation until vmalloc space is available.
2518 	 */
2519 	if (hashdist)
2520 		return;
2521 
2522 	inode_hashtable =
2523 		alloc_large_system_hash("Inode-cache",
2524 					sizeof(struct hlist_head),
2525 					ihash_entries,
2526 					14,
2527 					HASH_EARLY | HASH_ZERO,
2528 					&i_hash_shift,
2529 					&i_hash_mask,
2530 					0,
2531 					0);
2532 }
2533 
inode_init(void)2534 void __init inode_init(void)
2535 {
2536 	/* inode slab cache */
2537 	inode_cachep = kmem_cache_create("inode_cache",
2538 					 sizeof(struct inode),
2539 					 0,
2540 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2541 					 SLAB_ACCOUNT),
2542 					 init_once);
2543 
2544 	/* Hash may have been set up in inode_init_early */
2545 	if (!hashdist)
2546 		return;
2547 
2548 	inode_hashtable =
2549 		alloc_large_system_hash("Inode-cache",
2550 					sizeof(struct hlist_head),
2551 					ihash_entries,
2552 					14,
2553 					HASH_ZERO,
2554 					&i_hash_shift,
2555 					&i_hash_mask,
2556 					0,
2557 					0);
2558 }
2559 
init_special_inode(struct inode * inode,umode_t mode,dev_t rdev)2560 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2561 {
2562 	inode->i_mode = mode;
2563 	switch (inode->i_mode & S_IFMT) {
2564 	case S_IFCHR:
2565 		inode->i_fop = &def_chr_fops;
2566 		inode->i_rdev = rdev;
2567 		break;
2568 	case S_IFBLK:
2569 		if (IS_ENABLED(CONFIG_BLOCK))
2570 			inode->i_fop = &def_blk_fops;
2571 		inode->i_rdev = rdev;
2572 		break;
2573 	case S_IFIFO:
2574 		inode->i_fop = &pipefifo_fops;
2575 		break;
2576 	case S_IFSOCK:
2577 		/* leave it no_open_fops */
2578 		break;
2579 	default:
2580 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2581 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2582 				  inode->i_ino);
2583 		break;
2584 	}
2585 }
2586 EXPORT_SYMBOL(init_special_inode);
2587 
2588 /**
2589  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2590  * @idmap: idmap of the mount the inode was created from
2591  * @inode: New inode
2592  * @dir: Directory inode
2593  * @mode: mode of the new inode
2594  *
2595  * If the inode has been created through an idmapped mount the idmap of
2596  * the vfsmount must be passed through @idmap. This function will then take
2597  * care to map the inode according to @idmap before checking permissions
2598  * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2599  * checking is to be performed on the raw inode simply pass @nop_mnt_idmap.
2600  */
inode_init_owner(struct mnt_idmap * idmap,struct inode * inode,const struct inode * dir,umode_t mode)2601 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode,
2602 		      const struct inode *dir, umode_t mode)
2603 {
2604 	inode_fsuid_set(inode, idmap);
2605 	if (dir && dir->i_mode & S_ISGID) {
2606 		inode->i_gid = dir->i_gid;
2607 
2608 		/* Directories are special, and always inherit S_ISGID */
2609 		if (S_ISDIR(mode))
2610 			mode |= S_ISGID;
2611 	} else
2612 		inode_fsgid_set(inode, idmap);
2613 	inode->i_mode = mode;
2614 }
2615 EXPORT_SYMBOL(inode_init_owner);
2616 
2617 /**
2618  * inode_owner_or_capable - check current task permissions to inode
2619  * @idmap: idmap of the mount the inode was found from
2620  * @inode: inode being checked
2621  *
2622  * Return true if current either has CAP_FOWNER in a namespace with the
2623  * inode owner uid mapped, or owns the file.
2624  *
2625  * If the inode has been found through an idmapped mount the idmap of
2626  * the vfsmount must be passed through @idmap. This function will then take
2627  * care to map the inode according to @idmap before checking permissions.
2628  * On non-idmapped mounts or if permission checking is to be performed on the
2629  * raw inode simply pass @nop_mnt_idmap.
2630  */
inode_owner_or_capable(struct mnt_idmap * idmap,const struct inode * inode)2631 bool inode_owner_or_capable(struct mnt_idmap *idmap,
2632 			    const struct inode *inode)
2633 {
2634 	vfsuid_t vfsuid;
2635 	struct user_namespace *ns;
2636 
2637 	vfsuid = i_uid_into_vfsuid(idmap, inode);
2638 	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
2639 		return true;
2640 
2641 	ns = current_user_ns();
2642 	if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER))
2643 		return true;
2644 	return false;
2645 }
2646 EXPORT_SYMBOL(inode_owner_or_capable);
2647 
2648 /*
2649  * Direct i/o helper functions
2650  */
inode_dio_finished(const struct inode * inode)2651 bool inode_dio_finished(const struct inode *inode)
2652 {
2653 	return atomic_read(&inode->i_dio_count) == 0;
2654 }
2655 EXPORT_SYMBOL(inode_dio_finished);
2656 
2657 /**
2658  * inode_dio_wait - wait for outstanding DIO requests to finish
2659  * @inode: inode to wait for
2660  *
2661  * Waits for all pending direct I/O requests to finish so that we can
2662  * proceed with a truncate or equivalent operation.
2663  *
2664  * Must be called under a lock that serializes taking new references
2665  * to i_dio_count, usually by inode->i_rwsem.
2666  */
inode_dio_wait(struct inode * inode)2667 void inode_dio_wait(struct inode *inode)
2668 {
2669 	wait_var_event(&inode->i_dio_count, inode_dio_finished(inode));
2670 }
2671 EXPORT_SYMBOL(inode_dio_wait);
2672 
inode_dio_wait_interruptible(struct inode * inode)2673 void inode_dio_wait_interruptible(struct inode *inode)
2674 {
2675 	wait_var_event_interruptible(&inode->i_dio_count,
2676 				     inode_dio_finished(inode));
2677 }
2678 EXPORT_SYMBOL(inode_dio_wait_interruptible);
2679 
2680 /*
2681  * inode_set_flags - atomically set some inode flags
2682  *
2683  * Note: the caller should be holding i_rwsem exclusively, or else be sure that
2684  * they have exclusive access to the inode structure (i.e., while the
2685  * inode is being instantiated).  The reason for the cmpxchg() loop
2686  * --- which wouldn't be necessary if all code paths which modify
2687  * i_flags actually followed this rule, is that there is at least one
2688  * code path which doesn't today so we use cmpxchg() out of an abundance
2689  * of caution.
2690  *
2691  * In the long run, i_rwsem is overkill, and we should probably look
2692  * at using the i_lock spinlock to protect i_flags, and then make sure
2693  * it is so documented in include/linux/fs.h and that all code follows
2694  * the locking convention!!
2695  */
inode_set_flags(struct inode * inode,unsigned int flags,unsigned int mask)2696 void inode_set_flags(struct inode *inode, unsigned int flags,
2697 		     unsigned int mask)
2698 {
2699 	WARN_ON_ONCE(flags & ~mask);
2700 	set_mask_bits(&inode->i_flags, mask, flags);
2701 }
2702 EXPORT_SYMBOL(inode_set_flags);
2703 
inode_nohighmem(struct inode * inode)2704 void inode_nohighmem(struct inode *inode)
2705 {
2706 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2707 }
2708 EXPORT_SYMBOL(inode_nohighmem);
2709 
inode_set_ctime_to_ts(struct inode * inode,struct timespec64 ts)2710 struct timespec64 inode_set_ctime_to_ts(struct inode *inode, struct timespec64 ts)
2711 {
2712 	trace_inode_set_ctime_to_ts(inode, &ts);
2713 	set_normalized_timespec64(&ts, ts.tv_sec, ts.tv_nsec);
2714 	inode->i_ctime_sec = ts.tv_sec;
2715 	inode->i_ctime_nsec = ts.tv_nsec;
2716 	return ts;
2717 }
2718 EXPORT_SYMBOL(inode_set_ctime_to_ts);
2719 
2720 /**
2721  * timestamp_truncate - Truncate timespec to a granularity
2722  * @t: Timespec
2723  * @inode: inode being updated
2724  *
2725  * Truncate a timespec to the granularity supported by the fs
2726  * containing the inode. Always rounds down. gran must
2727  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2728  */
timestamp_truncate(struct timespec64 t,struct inode * inode)2729 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2730 {
2731 	struct super_block *sb = inode->i_sb;
2732 	unsigned int gran = sb->s_time_gran;
2733 
2734 	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2735 	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2736 		t.tv_nsec = 0;
2737 
2738 	/* Avoid division in the common cases 1 ns and 1 s. */
2739 	if (gran == 1)
2740 		; /* nothing */
2741 	else if (gran == NSEC_PER_SEC)
2742 		t.tv_nsec = 0;
2743 	else if (gran > 1 && gran < NSEC_PER_SEC)
2744 		t.tv_nsec -= t.tv_nsec % gran;
2745 	else
2746 		WARN(1, "invalid file time granularity: %u", gran);
2747 	return t;
2748 }
2749 EXPORT_SYMBOL(timestamp_truncate);
2750 
2751 /**
2752  * inode_set_ctime_current - set the ctime to current_time
2753  * @inode: inode
2754  *
2755  * Set the inode's ctime to the current value for the inode. Returns the
2756  * current value that was assigned. If this is not a multigrain inode, then we
2757  * set it to the later of the coarse time and floor value.
2758  *
2759  * If it is multigrain, then we first see if the coarse-grained timestamp is
2760  * distinct from what is already there. If so, then use that. Otherwise, get a
2761  * fine-grained timestamp.
2762  *
2763  * After that, try to swap the new value into i_ctime_nsec. Accept the
2764  * resulting ctime, regardless of the outcome of the swap. If it has
2765  * already been replaced, then that timestamp is later than the earlier
2766  * unacceptable one, and is thus acceptable.
2767  */
inode_set_ctime_current(struct inode * inode)2768 struct timespec64 inode_set_ctime_current(struct inode *inode)
2769 {
2770 	struct timespec64 now;
2771 	u32 cns, cur;
2772 
2773 	ktime_get_coarse_real_ts64_mg(&now);
2774 	now = timestamp_truncate(now, inode);
2775 
2776 	/* Just return that if this is not a multigrain fs */
2777 	if (!is_mgtime(inode)) {
2778 		inode_set_ctime_to_ts(inode, now);
2779 		goto out;
2780 	}
2781 
2782 	/*
2783 	 * A fine-grained time is only needed if someone has queried
2784 	 * for timestamps, and the current coarse grained time isn't
2785 	 * later than what's already there.
2786 	 */
2787 	cns = smp_load_acquire(&inode->i_ctime_nsec);
2788 	if (cns & I_CTIME_QUERIED) {
2789 		struct timespec64 ctime = { .tv_sec = inode->i_ctime_sec,
2790 					    .tv_nsec = cns & ~I_CTIME_QUERIED };
2791 
2792 		if (timespec64_compare(&now, &ctime) <= 0) {
2793 			ktime_get_real_ts64_mg(&now);
2794 			now = timestamp_truncate(now, inode);
2795 			mgtime_counter_inc(mg_fine_stamps);
2796 		}
2797 	}
2798 	mgtime_counter_inc(mg_ctime_updates);
2799 
2800 	/* No need to cmpxchg if it's exactly the same */
2801 	if (cns == now.tv_nsec && inode->i_ctime_sec == now.tv_sec) {
2802 		trace_ctime_xchg_skip(inode, &now);
2803 		goto out;
2804 	}
2805 	cur = cns;
2806 retry:
2807 	/* Try to swap the nsec value into place. */
2808 	if (try_cmpxchg(&inode->i_ctime_nsec, &cur, now.tv_nsec)) {
2809 		/* If swap occurred, then we're (mostly) done */
2810 		inode->i_ctime_sec = now.tv_sec;
2811 		trace_ctime_ns_xchg(inode, cns, now.tv_nsec, cur);
2812 		mgtime_counter_inc(mg_ctime_swaps);
2813 	} else {
2814 		/*
2815 		 * Was the change due to someone marking the old ctime QUERIED?
2816 		 * If so then retry the swap. This can only happen once since
2817 		 * the only way to clear I_CTIME_QUERIED is to stamp the inode
2818 		 * with a new ctime.
2819 		 */
2820 		if (!(cns & I_CTIME_QUERIED) && (cns | I_CTIME_QUERIED) == cur) {
2821 			cns = cur;
2822 			goto retry;
2823 		}
2824 		/* Otherwise, keep the existing ctime */
2825 		now.tv_sec = inode->i_ctime_sec;
2826 		now.tv_nsec = cur & ~I_CTIME_QUERIED;
2827 	}
2828 out:
2829 	return now;
2830 }
2831 EXPORT_SYMBOL(inode_set_ctime_current);
2832 
2833 /**
2834  * inode_set_ctime_deleg - try to update the ctime on a delegated inode
2835  * @inode: inode to update
2836  * @update: timespec64 to set the ctime
2837  *
2838  * Attempt to atomically update the ctime on behalf of a delegation holder.
2839  *
2840  * The nfs server can call back the holder of a delegation to get updated
2841  * inode attributes, including the mtime. When updating the mtime, update
2842  * the ctime to a value at least equal to that.
2843  *
2844  * This can race with concurrent updates to the inode, in which
2845  * case the update is skipped.
2846  *
2847  * Note that this works even when multigrain timestamps are not enabled,
2848  * so it is used in either case.
2849  */
inode_set_ctime_deleg(struct inode * inode,struct timespec64 update)2850 struct timespec64 inode_set_ctime_deleg(struct inode *inode, struct timespec64 update)
2851 {
2852 	struct timespec64 now, cur_ts;
2853 	u32 cur, old;
2854 
2855 	/* pairs with try_cmpxchg below */
2856 	cur = smp_load_acquire(&inode->i_ctime_nsec);
2857 	cur_ts.tv_nsec = cur & ~I_CTIME_QUERIED;
2858 	cur_ts.tv_sec = inode->i_ctime_sec;
2859 
2860 	/* If the update is older than the existing value, skip it. */
2861 	if (timespec64_compare(&update, &cur_ts) <= 0)
2862 		return cur_ts;
2863 
2864 	ktime_get_coarse_real_ts64_mg(&now);
2865 
2866 	/* Clamp the update to "now" if it's in the future */
2867 	if (timespec64_compare(&update, &now) > 0)
2868 		update = now;
2869 
2870 	update = timestamp_truncate(update, inode);
2871 
2872 	/* No need to update if the values are already the same */
2873 	if (timespec64_equal(&update, &cur_ts))
2874 		return cur_ts;
2875 
2876 	/*
2877 	 * Try to swap the nsec value into place. If it fails, that means
2878 	 * it raced with an update due to a write or similar activity. That
2879 	 * stamp takes precedence, so just skip the update.
2880 	 */
2881 retry:
2882 	old = cur;
2883 	if (try_cmpxchg(&inode->i_ctime_nsec, &cur, update.tv_nsec)) {
2884 		inode->i_ctime_sec = update.tv_sec;
2885 		mgtime_counter_inc(mg_ctime_swaps);
2886 		return update;
2887 	}
2888 
2889 	/*
2890 	 * Was the change due to another task marking the old ctime QUERIED?
2891 	 *
2892 	 * If so, then retry the swap. This can only happen once since
2893 	 * the only way to clear I_CTIME_QUERIED is to stamp the inode
2894 	 * with a new ctime.
2895 	 */
2896 	if (!(old & I_CTIME_QUERIED) && (cur == (old | I_CTIME_QUERIED)))
2897 		goto retry;
2898 
2899 	/* Otherwise, it was a new timestamp. */
2900 	cur_ts.tv_sec = inode->i_ctime_sec;
2901 	cur_ts.tv_nsec = cur & ~I_CTIME_QUERIED;
2902 	return cur_ts;
2903 }
2904 EXPORT_SYMBOL(inode_set_ctime_deleg);
2905 
2906 /**
2907  * in_group_or_capable - check whether caller is CAP_FSETID privileged
2908  * @idmap:	idmap of the mount @inode was found from
2909  * @inode:	inode to check
2910  * @vfsgid:	the new/current vfsgid of @inode
2911  *
2912  * Check whether @vfsgid is in the caller's group list or if the caller is
2913  * privileged with CAP_FSETID over @inode. This can be used to determine
2914  * whether the setgid bit can be kept or must be dropped.
2915  *
2916  * Return: true if the caller is sufficiently privileged, false if not.
2917  */
in_group_or_capable(struct mnt_idmap * idmap,const struct inode * inode,vfsgid_t vfsgid)2918 bool in_group_or_capable(struct mnt_idmap *idmap,
2919 			 const struct inode *inode, vfsgid_t vfsgid)
2920 {
2921 	if (vfsgid_in_group_p(vfsgid))
2922 		return true;
2923 	if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
2924 		return true;
2925 	return false;
2926 }
2927 EXPORT_SYMBOL(in_group_or_capable);
2928 
2929 /**
2930  * mode_strip_sgid - handle the sgid bit for non-directories
2931  * @idmap: idmap of the mount the inode was created from
2932  * @dir: parent directory inode
2933  * @mode: mode of the file to be created in @dir
2934  *
2935  * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2936  * raised and @dir has the S_ISGID bit raised ensure that the caller is
2937  * either in the group of the parent directory or they have CAP_FSETID
2938  * in their user namespace and are privileged over the parent directory.
2939  * In all other cases, strip the S_ISGID bit from @mode.
2940  *
2941  * Return: the new mode to use for the file
2942  */
mode_strip_sgid(struct mnt_idmap * idmap,const struct inode * dir,umode_t mode)2943 umode_t mode_strip_sgid(struct mnt_idmap *idmap,
2944 			const struct inode *dir, umode_t mode)
2945 {
2946 	if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2947 		return mode;
2948 	if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2949 		return mode;
2950 	if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir)))
2951 		return mode;
2952 	return mode & ~S_ISGID;
2953 }
2954 EXPORT_SYMBOL(mode_strip_sgid);
2955 
2956 #ifdef CONFIG_DEBUG_VFS
2957 /*
2958  * Dump an inode.
2959  *
2960  * TODO: add a proper inode dumping routine, this is a stub to get debug off the
2961  * ground.
2962  *
2963  * TODO: handle getting to fs type with get_kernel_nofault()?
2964  * See dump_mapping() above.
2965  */
dump_inode(struct inode * inode,const char * reason)2966 void dump_inode(struct inode *inode, const char *reason)
2967 {
2968 	struct super_block *sb = inode->i_sb;
2969 
2970 	pr_warn("%s encountered for inode %px\n"
2971 		"fs %s mode %ho opflags 0x%hx flags 0x%x state 0x%x count %d\n",
2972 		reason, inode, sb->s_type->name, inode->i_mode, inode->i_opflags,
2973 		inode->i_flags, inode->i_state, atomic_read(&inode->i_count));
2974 }
2975 
2976 EXPORT_SYMBOL(dump_inode);
2977 #endif
2978