xref: /linux/arch/x86/mm/tlb.c (revision 58ac609b99db0b03f3b09299c8fa3a76face3370)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/init.h>
3 
4 #include <linux/mm.h>
5 #include <linux/spinlock.h>
6 #include <linux/smp.h>
7 #include <linux/interrupt.h>
8 #include <linux/export.h>
9 #include <linux/cpu.h>
10 #include <linux/debugfs.h>
11 #include <linux/sched/smt.h>
12 #include <linux/task_work.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/mmu_context.h>
15 
16 #include <asm/tlbflush.h>
17 #include <asm/mmu_context.h>
18 #include <asm/nospec-branch.h>
19 #include <asm/cache.h>
20 #include <asm/cacheflush.h>
21 #include <asm/apic.h>
22 #include <asm/perf_event.h>
23 #include <asm/tlb.h>
24 
25 #include "mm_internal.h"
26 
27 #ifdef CONFIG_PARAVIRT
28 # define STATIC_NOPV
29 #else
30 # define STATIC_NOPV			static
31 # define __flush_tlb_local		native_flush_tlb_local
32 # define __flush_tlb_global		native_flush_tlb_global
33 # define __flush_tlb_one_user(addr)	native_flush_tlb_one_user(addr)
34 # define __flush_tlb_multi(msk, info)	native_flush_tlb_multi(msk, info)
35 #endif
36 
37 /*
38  *	TLB flushing, formerly SMP-only
39  *		c/o Linus Torvalds.
40  *
41  *	These mean you can really definitely utterly forget about
42  *	writing to user space from interrupts. (Its not allowed anyway).
43  *
44  *	Optimizations Manfred Spraul <manfred@colorfullife.com>
45  *
46  *	More scalable flush, from Andi Kleen
47  *
48  *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
49  */
50 
51 /*
52  * Bits to mangle the TIF_SPEC_* state into the mm pointer which is
53  * stored in cpu_tlb_state.last_user_mm_spec.
54  */
55 #define LAST_USER_MM_IBPB	0x1UL
56 #define LAST_USER_MM_L1D_FLUSH	0x2UL
57 #define LAST_USER_MM_SPEC_MASK	(LAST_USER_MM_IBPB | LAST_USER_MM_L1D_FLUSH)
58 
59 /* Bits to set when tlbstate and flush is (re)initialized */
60 #define LAST_USER_MM_INIT	LAST_USER_MM_IBPB
61 
62 /*
63  * The x86 feature is called PCID (Process Context IDentifier). It is similar
64  * to what is traditionally called ASID on the RISC processors.
65  *
66  * We don't use the traditional ASID implementation, where each process/mm gets
67  * its own ASID and flush/restart when we run out of ASID space.
68  *
69  * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
70  * that came by on this CPU, allowing cheaper switch_mm between processes on
71  * this CPU.
72  *
73  * We end up with different spaces for different things. To avoid confusion we
74  * use different names for each of them:
75  *
76  * ASID  - [0, TLB_NR_DYN_ASIDS-1]
77  *         the canonical identifier for an mm
78  *
79  * kPCID - [1, TLB_NR_DYN_ASIDS]
80  *         the value we write into the PCID part of CR3; corresponds to the
81  *         ASID+1, because PCID 0 is special.
82  *
83  * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
84  *         for KPTI each mm has two address spaces and thus needs two
85  *         PCID values, but we can still do with a single ASID denomination
86  *         for each mm. Corresponds to kPCID + 2048.
87  *
88  */
89 
90 /*
91  * When enabled, MITIGATION_PAGE_TABLE_ISOLATION consumes a single bit for
92  * user/kernel switches
93  */
94 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
95 # define PTI_CONSUMED_PCID_BITS	1
96 #else
97 # define PTI_CONSUMED_PCID_BITS	0
98 #endif
99 
100 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
101 
102 /*
103  * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid.  -1 below to account
104  * for them being zero-based.  Another -1 is because PCID 0 is reserved for
105  * use by non-PCID-aware users.
106  */
107 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
108 
109 /*
110  * Given @asid, compute kPCID
111  */
kern_pcid(u16 asid)112 static inline u16 kern_pcid(u16 asid)
113 {
114 	VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
115 
116 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
117 	/*
118 	 * Make sure that the dynamic ASID space does not conflict with the
119 	 * bit we are using to switch between user and kernel ASIDs.
120 	 */
121 	BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
122 
123 	/*
124 	 * The ASID being passed in here should have respected the
125 	 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
126 	 */
127 	VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
128 #endif
129 	/*
130 	 * The dynamically-assigned ASIDs that get passed in are small
131 	 * (<TLB_NR_DYN_ASIDS).  They never have the high switch bit set,
132 	 * so do not bother to clear it.
133 	 *
134 	 * If PCID is on, ASID-aware code paths put the ASID+1 into the
135 	 * PCID bits.  This serves two purposes.  It prevents a nasty
136 	 * situation in which PCID-unaware code saves CR3, loads some other
137 	 * value (with PCID == 0), and then restores CR3, thus corrupting
138 	 * the TLB for ASID 0 if the saved ASID was nonzero.  It also means
139 	 * that any bugs involving loading a PCID-enabled CR3 with
140 	 * CR4.PCIDE off will trigger deterministically.
141 	 */
142 	return asid + 1;
143 }
144 
145 /*
146  * Given @asid, compute uPCID
147  */
user_pcid(u16 asid)148 static inline u16 user_pcid(u16 asid)
149 {
150 	u16 ret = kern_pcid(asid);
151 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
152 	ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
153 #endif
154 	return ret;
155 }
156 
build_cr3(pgd_t * pgd,u16 asid,unsigned long lam)157 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid, unsigned long lam)
158 {
159 	unsigned long cr3 = __sme_pa(pgd) | lam;
160 
161 	if (static_cpu_has(X86_FEATURE_PCID)) {
162 		cr3 |= kern_pcid(asid);
163 	} else {
164 		VM_WARN_ON_ONCE(asid != 0);
165 	}
166 
167 	return cr3;
168 }
169 
build_cr3_noflush(pgd_t * pgd,u16 asid,unsigned long lam)170 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid,
171 					      unsigned long lam)
172 {
173 	/*
174 	 * Use boot_cpu_has() instead of this_cpu_has() as this function
175 	 * might be called during early boot. This should work even after
176 	 * boot because all CPU's the have same capabilities:
177 	 */
178 	VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
179 	return build_cr3(pgd, asid, lam) | CR3_NOFLUSH;
180 }
181 
182 /*
183  * We get here when we do something requiring a TLB invalidation
184  * but could not go invalidate all of the contexts.  We do the
185  * necessary invalidation by clearing out the 'ctx_id' which
186  * forces a TLB flush when the context is loaded.
187  */
clear_asid_other(void)188 static void clear_asid_other(void)
189 {
190 	u16 asid;
191 
192 	/*
193 	 * This is only expected to be set if we have disabled
194 	 * kernel _PAGE_GLOBAL pages.
195 	 */
196 	if (!static_cpu_has(X86_FEATURE_PTI)) {
197 		WARN_ON_ONCE(1);
198 		return;
199 	}
200 
201 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
202 		/* Do not need to flush the current asid */
203 		if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
204 			continue;
205 		/*
206 		 * Make sure the next time we go to switch to
207 		 * this asid, we do a flush:
208 		 */
209 		this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
210 	}
211 	this_cpu_write(cpu_tlbstate.invalidate_other, false);
212 }
213 
214 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
215 
216 
choose_new_asid(struct mm_struct * next,u64 next_tlb_gen,u16 * new_asid,bool * need_flush)217 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
218 			    u16 *new_asid, bool *need_flush)
219 {
220 	u16 asid;
221 
222 	if (!static_cpu_has(X86_FEATURE_PCID)) {
223 		*new_asid = 0;
224 		*need_flush = true;
225 		return;
226 	}
227 
228 	if (this_cpu_read(cpu_tlbstate.invalidate_other))
229 		clear_asid_other();
230 
231 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
232 		if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
233 		    next->context.ctx_id)
234 			continue;
235 
236 		*new_asid = asid;
237 		*need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
238 			       next_tlb_gen);
239 		return;
240 	}
241 
242 	/*
243 	 * We don't currently own an ASID slot on this CPU.
244 	 * Allocate a slot.
245 	 */
246 	*new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
247 	if (*new_asid >= TLB_NR_DYN_ASIDS) {
248 		*new_asid = 0;
249 		this_cpu_write(cpu_tlbstate.next_asid, 1);
250 	}
251 	*need_flush = true;
252 }
253 
254 /*
255  * Given an ASID, flush the corresponding user ASID.  We can delay this
256  * until the next time we switch to it.
257  *
258  * See SWITCH_TO_USER_CR3.
259  */
invalidate_user_asid(u16 asid)260 static inline void invalidate_user_asid(u16 asid)
261 {
262 	/* There is no user ASID if address space separation is off */
263 	if (!IS_ENABLED(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION))
264 		return;
265 
266 	/*
267 	 * We only have a single ASID if PCID is off and the CR3
268 	 * write will have flushed it.
269 	 */
270 	if (!cpu_feature_enabled(X86_FEATURE_PCID))
271 		return;
272 
273 	if (!static_cpu_has(X86_FEATURE_PTI))
274 		return;
275 
276 	__set_bit(kern_pcid(asid),
277 		  (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
278 }
279 
load_new_mm_cr3(pgd_t * pgdir,u16 new_asid,unsigned long lam,bool need_flush)280 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, unsigned long lam,
281 			    bool need_flush)
282 {
283 	unsigned long new_mm_cr3;
284 
285 	if (need_flush) {
286 		invalidate_user_asid(new_asid);
287 		new_mm_cr3 = build_cr3(pgdir, new_asid, lam);
288 	} else {
289 		new_mm_cr3 = build_cr3_noflush(pgdir, new_asid, lam);
290 	}
291 
292 	/*
293 	 * Caution: many callers of this function expect
294 	 * that load_cr3() is serializing and orders TLB
295 	 * fills with respect to the mm_cpumask writes.
296 	 */
297 	write_cr3(new_mm_cr3);
298 }
299 
leave_mm(void)300 void leave_mm(void)
301 {
302 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
303 
304 	/*
305 	 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
306 	 * If so, our callers still expect us to flush the TLB, but there
307 	 * aren't any user TLB entries in init_mm to worry about.
308 	 *
309 	 * This needs to happen before any other sanity checks due to
310 	 * intel_idle's shenanigans.
311 	 */
312 	if (loaded_mm == &init_mm)
313 		return;
314 
315 	/* Warn if we're not lazy. */
316 	WARN_ON(!this_cpu_read(cpu_tlbstate_shared.is_lazy));
317 
318 	switch_mm(NULL, &init_mm, NULL);
319 }
320 EXPORT_SYMBOL_GPL(leave_mm);
321 
switch_mm(struct mm_struct * prev,struct mm_struct * next,struct task_struct * tsk)322 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
323 	       struct task_struct *tsk)
324 {
325 	unsigned long flags;
326 
327 	local_irq_save(flags);
328 	switch_mm_irqs_off(NULL, next, tsk);
329 	local_irq_restore(flags);
330 }
331 
332 /*
333  * Invoked from return to user/guest by a task that opted-in to L1D
334  * flushing but ended up running on an SMT enabled core due to wrong
335  * affinity settings or CPU hotplug. This is part of the paranoid L1D flush
336  * contract which this task requested.
337  */
l1d_flush_force_sigbus(struct callback_head * ch)338 static void l1d_flush_force_sigbus(struct callback_head *ch)
339 {
340 	force_sig(SIGBUS);
341 }
342 
l1d_flush_evaluate(unsigned long prev_mm,unsigned long next_mm,struct task_struct * next)343 static void l1d_flush_evaluate(unsigned long prev_mm, unsigned long next_mm,
344 				struct task_struct *next)
345 {
346 	/* Flush L1D if the outgoing task requests it */
347 	if (prev_mm & LAST_USER_MM_L1D_FLUSH)
348 		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
349 
350 	/* Check whether the incoming task opted in for L1D flush */
351 	if (likely(!(next_mm & LAST_USER_MM_L1D_FLUSH)))
352 		return;
353 
354 	/*
355 	 * Validate that it is not running on an SMT sibling as this would
356 	 * make the exercise pointless because the siblings share L1D. If
357 	 * it runs on a SMT sibling, notify it with SIGBUS on return to
358 	 * user/guest
359 	 */
360 	if (this_cpu_read(cpu_info.smt_active)) {
361 		clear_ti_thread_flag(&next->thread_info, TIF_SPEC_L1D_FLUSH);
362 		next->l1d_flush_kill.func = l1d_flush_force_sigbus;
363 		task_work_add(next, &next->l1d_flush_kill, TWA_RESUME);
364 	}
365 }
366 
mm_mangle_tif_spec_bits(struct task_struct * next)367 static unsigned long mm_mangle_tif_spec_bits(struct task_struct *next)
368 {
369 	unsigned long next_tif = read_task_thread_flags(next);
370 	unsigned long spec_bits = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_SPEC_MASK;
371 
372 	/*
373 	 * Ensure that the bit shift above works as expected and the two flags
374 	 * end up in bit 0 and 1.
375 	 */
376 	BUILD_BUG_ON(TIF_SPEC_L1D_FLUSH != TIF_SPEC_IB + 1);
377 
378 	return (unsigned long)next->mm | spec_bits;
379 }
380 
cond_mitigation(struct task_struct * next)381 static void cond_mitigation(struct task_struct *next)
382 {
383 	unsigned long prev_mm, next_mm;
384 
385 	if (!next || !next->mm)
386 		return;
387 
388 	next_mm = mm_mangle_tif_spec_bits(next);
389 	prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_spec);
390 
391 	/*
392 	 * Avoid user/user BTB poisoning by flushing the branch predictor
393 	 * when switching between processes. This stops one process from
394 	 * doing Spectre-v2 attacks on another.
395 	 *
396 	 * Both, the conditional and the always IBPB mode use the mm
397 	 * pointer to avoid the IBPB when switching between tasks of the
398 	 * same process. Using the mm pointer instead of mm->context.ctx_id
399 	 * opens a hypothetical hole vs. mm_struct reuse, which is more or
400 	 * less impossible to control by an attacker. Aside of that it
401 	 * would only affect the first schedule so the theoretically
402 	 * exposed data is not really interesting.
403 	 */
404 	if (static_branch_likely(&switch_mm_cond_ibpb)) {
405 		/*
406 		 * This is a bit more complex than the always mode because
407 		 * it has to handle two cases:
408 		 *
409 		 * 1) Switch from a user space task (potential attacker)
410 		 *    which has TIF_SPEC_IB set to a user space task
411 		 *    (potential victim) which has TIF_SPEC_IB not set.
412 		 *
413 		 * 2) Switch from a user space task (potential attacker)
414 		 *    which has TIF_SPEC_IB not set to a user space task
415 		 *    (potential victim) which has TIF_SPEC_IB set.
416 		 *
417 		 * This could be done by unconditionally issuing IBPB when
418 		 * a task which has TIF_SPEC_IB set is either scheduled in
419 		 * or out. Though that results in two flushes when:
420 		 *
421 		 * - the same user space task is scheduled out and later
422 		 *   scheduled in again and only a kernel thread ran in
423 		 *   between.
424 		 *
425 		 * - a user space task belonging to the same process is
426 		 *   scheduled in after a kernel thread ran in between
427 		 *
428 		 * - a user space task belonging to the same process is
429 		 *   scheduled in immediately.
430 		 *
431 		 * Optimize this with reasonably small overhead for the
432 		 * above cases. Mangle the TIF_SPEC_IB bit into the mm
433 		 * pointer of the incoming task which is stored in
434 		 * cpu_tlbstate.last_user_mm_spec for comparison.
435 		 *
436 		 * Issue IBPB only if the mm's are different and one or
437 		 * both have the IBPB bit set.
438 		 */
439 		if (next_mm != prev_mm &&
440 		    (next_mm | prev_mm) & LAST_USER_MM_IBPB)
441 			indirect_branch_prediction_barrier();
442 	}
443 
444 	if (static_branch_unlikely(&switch_mm_always_ibpb)) {
445 		/*
446 		 * Only flush when switching to a user space task with a
447 		 * different context than the user space task which ran
448 		 * last on this CPU.
449 		 */
450 		if ((prev_mm & ~LAST_USER_MM_SPEC_MASK) !=
451 					(unsigned long)next->mm)
452 			indirect_branch_prediction_barrier();
453 	}
454 
455 	if (static_branch_unlikely(&switch_mm_cond_l1d_flush)) {
456 		/*
457 		 * Flush L1D when the outgoing task requested it and/or
458 		 * check whether the incoming task requested L1D flushing
459 		 * and ended up on an SMT sibling.
460 		 */
461 		if (unlikely((prev_mm | next_mm) & LAST_USER_MM_L1D_FLUSH))
462 			l1d_flush_evaluate(prev_mm, next_mm, next);
463 	}
464 
465 	this_cpu_write(cpu_tlbstate.last_user_mm_spec, next_mm);
466 }
467 
468 #ifdef CONFIG_PERF_EVENTS
cr4_update_pce_mm(struct mm_struct * mm)469 static inline void cr4_update_pce_mm(struct mm_struct *mm)
470 {
471 	if (static_branch_unlikely(&rdpmc_always_available_key) ||
472 	    (!static_branch_unlikely(&rdpmc_never_available_key) &&
473 	     atomic_read(&mm->context.perf_rdpmc_allowed))) {
474 		/*
475 		 * Clear the existing dirty counters to
476 		 * prevent the leak for an RDPMC task.
477 		 */
478 		perf_clear_dirty_counters();
479 		cr4_set_bits_irqsoff(X86_CR4_PCE);
480 	} else
481 		cr4_clear_bits_irqsoff(X86_CR4_PCE);
482 }
483 
cr4_update_pce(void * ignored)484 void cr4_update_pce(void *ignored)
485 {
486 	cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm));
487 }
488 
489 #else
cr4_update_pce_mm(struct mm_struct * mm)490 static inline void cr4_update_pce_mm(struct mm_struct *mm) { }
491 #endif
492 
493 /*
494  * This optimizes when not actually switching mm's.  Some architectures use the
495  * 'unused' argument for this optimization, but x86 must use
496  * 'cpu_tlbstate.loaded_mm' instead because it does not always keep
497  * 'current->active_mm' up to date.
498  */
switch_mm_irqs_off(struct mm_struct * unused,struct mm_struct * next,struct task_struct * tsk)499 void switch_mm_irqs_off(struct mm_struct *unused, struct mm_struct *next,
500 			struct task_struct *tsk)
501 {
502 	struct mm_struct *prev = this_cpu_read(cpu_tlbstate.loaded_mm);
503 	u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
504 	bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy);
505 	unsigned cpu = smp_processor_id();
506 	unsigned long new_lam;
507 	u64 next_tlb_gen;
508 	bool need_flush;
509 	u16 new_asid;
510 
511 	/* We don't want flush_tlb_func() to run concurrently with us. */
512 	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
513 		WARN_ON_ONCE(!irqs_disabled());
514 
515 	/*
516 	 * Verify that CR3 is what we think it is.  This will catch
517 	 * hypothetical buggy code that directly switches to swapper_pg_dir
518 	 * without going through leave_mm() / switch_mm_irqs_off() or that
519 	 * does something like write_cr3(read_cr3_pa()).
520 	 *
521 	 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
522 	 * isn't free.
523 	 */
524 #ifdef CONFIG_DEBUG_VM
525 	if (WARN_ON_ONCE(__read_cr3() != build_cr3(prev->pgd, prev_asid,
526 						   tlbstate_lam_cr3_mask()))) {
527 		/*
528 		 * If we were to BUG here, we'd be very likely to kill
529 		 * the system so hard that we don't see the call trace.
530 		 * Try to recover instead by ignoring the error and doing
531 		 * a global flush to minimize the chance of corruption.
532 		 *
533 		 * (This is far from being a fully correct recovery.
534 		 *  Architecturally, the CPU could prefetch something
535 		 *  back into an incorrect ASID slot and leave it there
536 		 *  to cause trouble down the road.  It's better than
537 		 *  nothing, though.)
538 		 */
539 		__flush_tlb_all();
540 	}
541 #endif
542 	if (was_lazy)
543 		this_cpu_write(cpu_tlbstate_shared.is_lazy, false);
544 
545 	/*
546 	 * The membarrier system call requires a full memory barrier and
547 	 * core serialization before returning to user-space, after
548 	 * storing to rq->curr, when changing mm.  This is because
549 	 * membarrier() sends IPIs to all CPUs that are in the target mm
550 	 * to make them issue memory barriers.  However, if another CPU
551 	 * switches to/from the target mm concurrently with
552 	 * membarrier(), it can cause that CPU not to receive an IPI
553 	 * when it really should issue a memory barrier.  Writing to CR3
554 	 * provides that full memory barrier and core serializing
555 	 * instruction.
556 	 */
557 	if (prev == next) {
558 		/* Not actually switching mm's */
559 		VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
560 			   next->context.ctx_id);
561 
562 		/*
563 		 * If this races with another thread that enables lam, 'new_lam'
564 		 * might not match tlbstate_lam_cr3_mask().
565 		 */
566 
567 		/*
568 		 * Even in lazy TLB mode, the CPU should stay set in the
569 		 * mm_cpumask. The TLB shootdown code can figure out from
570 		 * cpu_tlbstate_shared.is_lazy whether or not to send an IPI.
571 		 */
572 		if (IS_ENABLED(CONFIG_DEBUG_VM) && WARN_ON_ONCE(prev != &init_mm &&
573 				 !cpumask_test_cpu(cpu, mm_cpumask(next))))
574 			cpumask_set_cpu(cpu, mm_cpumask(next));
575 
576 		/*
577 		 * If the CPU is not in lazy TLB mode, we are just switching
578 		 * from one thread in a process to another thread in the same
579 		 * process. No TLB flush required.
580 		 */
581 		if (!was_lazy)
582 			return;
583 
584 		/*
585 		 * Read the tlb_gen to check whether a flush is needed.
586 		 * If the TLB is up to date, just use it.
587 		 * The barrier synchronizes with the tlb_gen increment in
588 		 * the TLB shootdown code.
589 		 */
590 		smp_mb();
591 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
592 		if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
593 				next_tlb_gen)
594 			return;
595 
596 		/*
597 		 * TLB contents went out of date while we were in lazy
598 		 * mode. Fall through to the TLB switching code below.
599 		 */
600 		new_asid = prev_asid;
601 		need_flush = true;
602 	} else {
603 		/*
604 		 * Apply process to process speculation vulnerability
605 		 * mitigations if applicable.
606 		 */
607 		cond_mitigation(tsk);
608 
609 		/*
610 		 * Stop remote flushes for the previous mm.
611 		 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
612 		 * but the bitmap manipulation can cause cache line contention.
613 		 */
614 		if (prev != &init_mm) {
615 			VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
616 						mm_cpumask(prev)));
617 			cpumask_clear_cpu(cpu, mm_cpumask(prev));
618 		}
619 
620 		/* Start receiving IPIs and then read tlb_gen (and LAM below) */
621 		if (next != &init_mm)
622 			cpumask_set_cpu(cpu, mm_cpumask(next));
623 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
624 
625 		choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
626 
627 		/* Let nmi_uaccess_okay() know that we're changing CR3. */
628 		this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
629 		barrier();
630 	}
631 
632 	new_lam = mm_lam_cr3_mask(next);
633 	if (need_flush) {
634 		this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
635 		this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
636 		load_new_mm_cr3(next->pgd, new_asid, new_lam, true);
637 
638 		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
639 	} else {
640 		/* The new ASID is already up to date. */
641 		load_new_mm_cr3(next->pgd, new_asid, new_lam, false);
642 
643 		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
644 	}
645 
646 	/* Make sure we write CR3 before loaded_mm. */
647 	barrier();
648 
649 	this_cpu_write(cpu_tlbstate.loaded_mm, next);
650 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
651 	cpu_tlbstate_update_lam(new_lam, mm_untag_mask(next));
652 
653 	if (next != prev) {
654 		cr4_update_pce_mm(next);
655 		switch_ldt(prev, next);
656 	}
657 }
658 
659 /*
660  * Please ignore the name of this function.  It should be called
661  * switch_to_kernel_thread().
662  *
663  * enter_lazy_tlb() is a hint from the scheduler that we are entering a
664  * kernel thread or other context without an mm.  Acceptable implementations
665  * include doing nothing whatsoever, switching to init_mm, or various clever
666  * lazy tricks to try to minimize TLB flushes.
667  *
668  * The scheduler reserves the right to call enter_lazy_tlb() several times
669  * in a row.  It will notify us that we're going back to a real mm by
670  * calling switch_mm_irqs_off().
671  */
enter_lazy_tlb(struct mm_struct * mm,struct task_struct * tsk)672 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
673 {
674 	if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
675 		return;
676 
677 	this_cpu_write(cpu_tlbstate_shared.is_lazy, true);
678 }
679 
680 /*
681  * Call this when reinitializing a CPU.  It fixes the following potential
682  * problems:
683  *
684  * - The ASID changed from what cpu_tlbstate thinks it is (most likely
685  *   because the CPU was taken down and came back up with CR3's PCID
686  *   bits clear.  CPU hotplug can do this.
687  *
688  * - The TLB contains junk in slots corresponding to inactive ASIDs.
689  *
690  * - The CPU went so far out to lunch that it may have missed a TLB
691  *   flush.
692  */
initialize_tlbstate_and_flush(void)693 void initialize_tlbstate_and_flush(void)
694 {
695 	int i;
696 	struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
697 	u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
698 	unsigned long lam = mm_lam_cr3_mask(mm);
699 	unsigned long cr3 = __read_cr3();
700 
701 	/* Assert that CR3 already references the right mm. */
702 	WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
703 
704 	/* LAM expected to be disabled */
705 	WARN_ON(cr3 & (X86_CR3_LAM_U48 | X86_CR3_LAM_U57));
706 	WARN_ON(lam);
707 
708 	/*
709 	 * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
710 	 * doesn't work like other CR4 bits because it can only be set from
711 	 * long mode.)
712 	 */
713 	WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
714 		!(cr4_read_shadow() & X86_CR4_PCIDE));
715 
716 	/* Disable LAM, force ASID 0 and force a TLB flush. */
717 	write_cr3(build_cr3(mm->pgd, 0, 0));
718 
719 	/* Reinitialize tlbstate. */
720 	this_cpu_write(cpu_tlbstate.last_user_mm_spec, LAST_USER_MM_INIT);
721 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
722 	this_cpu_write(cpu_tlbstate.next_asid, 1);
723 	this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
724 	this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
725 	cpu_tlbstate_update_lam(lam, mm_untag_mask(mm));
726 
727 	for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
728 		this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
729 }
730 
731 /*
732  * flush_tlb_func()'s memory ordering requirement is that any
733  * TLB fills that happen after we flush the TLB are ordered after we
734  * read active_mm's tlb_gen.  We don't need any explicit barriers
735  * because all x86 flush operations are serializing and the
736  * atomic64_read operation won't be reordered by the compiler.
737  */
flush_tlb_func(void * info)738 static void flush_tlb_func(void *info)
739 {
740 	/*
741 	 * We have three different tlb_gen values in here.  They are:
742 	 *
743 	 * - mm_tlb_gen:     the latest generation.
744 	 * - local_tlb_gen:  the generation that this CPU has already caught
745 	 *                   up to.
746 	 * - f->new_tlb_gen: the generation that the requester of the flush
747 	 *                   wants us to catch up to.
748 	 */
749 	const struct flush_tlb_info *f = info;
750 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
751 	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
752 	u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
753 	bool local = smp_processor_id() == f->initiating_cpu;
754 	unsigned long nr_invalidate = 0;
755 	u64 mm_tlb_gen;
756 
757 	/* This code cannot presently handle being reentered. */
758 	VM_WARN_ON(!irqs_disabled());
759 
760 	if (!local) {
761 		inc_irq_stat(irq_tlb_count);
762 		count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
763 
764 		/* Can only happen on remote CPUs */
765 		if (f->mm && f->mm != loaded_mm)
766 			return;
767 	}
768 
769 	if (unlikely(loaded_mm == &init_mm))
770 		return;
771 
772 	VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
773 		   loaded_mm->context.ctx_id);
774 
775 	if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) {
776 		/*
777 		 * We're in lazy mode.  We need to at least flush our
778 		 * paging-structure cache to avoid speculatively reading
779 		 * garbage into our TLB.  Since switching to init_mm is barely
780 		 * slower than a minimal flush, just switch to init_mm.
781 		 *
782 		 * This should be rare, with native_flush_tlb_multi() skipping
783 		 * IPIs to lazy TLB mode CPUs.
784 		 */
785 		switch_mm_irqs_off(NULL, &init_mm, NULL);
786 		return;
787 	}
788 
789 	if (unlikely(f->new_tlb_gen != TLB_GENERATION_INVALID &&
790 		     f->new_tlb_gen <= local_tlb_gen)) {
791 		/*
792 		 * The TLB is already up to date in respect to f->new_tlb_gen.
793 		 * While the core might be still behind mm_tlb_gen, checking
794 		 * mm_tlb_gen unnecessarily would have negative caching effects
795 		 * so avoid it.
796 		 */
797 		return;
798 	}
799 
800 	/*
801 	 * Defer mm_tlb_gen reading as long as possible to avoid cache
802 	 * contention.
803 	 */
804 	mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
805 
806 	if (unlikely(local_tlb_gen == mm_tlb_gen)) {
807 		/*
808 		 * There's nothing to do: we're already up to date.  This can
809 		 * happen if two concurrent flushes happen -- the first flush to
810 		 * be handled can catch us all the way up, leaving no work for
811 		 * the second flush.
812 		 */
813 		goto done;
814 	}
815 
816 	WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
817 	WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
818 
819 	/*
820 	 * If we get to this point, we know that our TLB is out of date.
821 	 * This does not strictly imply that we need to flush (it's
822 	 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
823 	 * going to need to flush in the very near future, so we might
824 	 * as well get it over with.
825 	 *
826 	 * The only question is whether to do a full or partial flush.
827 	 *
828 	 * We do a partial flush if requested and two extra conditions
829 	 * are met:
830 	 *
831 	 * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
832 	 *    we've always done all needed flushes to catch up to
833 	 *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
834 	 *    f->new_tlb_gen == 3, then we know that the flush needed to bring
835 	 *    us up to date for tlb_gen 3 is the partial flush we're
836 	 *    processing.
837 	 *
838 	 *    As an example of why this check is needed, suppose that there
839 	 *    are two concurrent flushes.  The first is a full flush that
840 	 *    changes context.tlb_gen from 1 to 2.  The second is a partial
841 	 *    flush that changes context.tlb_gen from 2 to 3.  If they get
842 	 *    processed on this CPU in reverse order, we'll see
843 	 *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
844 	 *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
845 	 *    3, we'd be break the invariant: we'd update local_tlb_gen above
846 	 *    1 without the full flush that's needed for tlb_gen 2.
847 	 *
848 	 * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimization.
849 	 *    Partial TLB flushes are not all that much cheaper than full TLB
850 	 *    flushes, so it seems unlikely that it would be a performance win
851 	 *    to do a partial flush if that won't bring our TLB fully up to
852 	 *    date.  By doing a full flush instead, we can increase
853 	 *    local_tlb_gen all the way to mm_tlb_gen and we can probably
854 	 *    avoid another flush in the very near future.
855 	 */
856 	if (f->end != TLB_FLUSH_ALL &&
857 	    f->new_tlb_gen == local_tlb_gen + 1 &&
858 	    f->new_tlb_gen == mm_tlb_gen) {
859 		/* Partial flush */
860 		unsigned long addr = f->start;
861 
862 		/* Partial flush cannot have invalid generations */
863 		VM_WARN_ON(f->new_tlb_gen == TLB_GENERATION_INVALID);
864 
865 		/* Partial flush must have valid mm */
866 		VM_WARN_ON(f->mm == NULL);
867 
868 		nr_invalidate = (f->end - f->start) >> f->stride_shift;
869 
870 		while (addr < f->end) {
871 			flush_tlb_one_user(addr);
872 			addr += 1UL << f->stride_shift;
873 		}
874 		if (local)
875 			count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
876 	} else {
877 		/* Full flush. */
878 		nr_invalidate = TLB_FLUSH_ALL;
879 
880 		flush_tlb_local();
881 		if (local)
882 			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
883 	}
884 
885 	/* Both paths above update our state to mm_tlb_gen. */
886 	this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
887 
888 	/* Tracing is done in a unified manner to reduce the code size */
889 done:
890 	trace_tlb_flush(!local ? TLB_REMOTE_SHOOTDOWN :
891 				(f->mm == NULL) ? TLB_LOCAL_SHOOTDOWN :
892 						  TLB_LOCAL_MM_SHOOTDOWN,
893 			nr_invalidate);
894 }
895 
tlb_is_not_lazy(int cpu,void * data)896 static bool tlb_is_not_lazy(int cpu, void *data)
897 {
898 	return !per_cpu(cpu_tlbstate_shared.is_lazy, cpu);
899 }
900 
901 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared);
902 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate_shared);
903 
native_flush_tlb_multi(const struct cpumask * cpumask,const struct flush_tlb_info * info)904 STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask,
905 					 const struct flush_tlb_info *info)
906 {
907 	/*
908 	 * Do accounting and tracing. Note that there are (and have always been)
909 	 * cases in which a remote TLB flush will be traced, but eventually
910 	 * would not happen.
911 	 */
912 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
913 	if (info->end == TLB_FLUSH_ALL)
914 		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
915 	else
916 		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
917 				(info->end - info->start) >> PAGE_SHIFT);
918 
919 	/*
920 	 * If no page tables were freed, we can skip sending IPIs to
921 	 * CPUs in lazy TLB mode. They will flush the CPU themselves
922 	 * at the next context switch.
923 	 *
924 	 * However, if page tables are getting freed, we need to send the
925 	 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
926 	 * up on the new contents of what used to be page tables, while
927 	 * doing a speculative memory access.
928 	 */
929 	if (info->freed_tables)
930 		on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true);
931 	else
932 		on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func,
933 				(void *)info, 1, cpumask);
934 }
935 
flush_tlb_multi(const struct cpumask * cpumask,const struct flush_tlb_info * info)936 void flush_tlb_multi(const struct cpumask *cpumask,
937 		      const struct flush_tlb_info *info)
938 {
939 	__flush_tlb_multi(cpumask, info);
940 }
941 
942 /*
943  * See Documentation/arch/x86/tlb.rst for details.  We choose 33
944  * because it is large enough to cover the vast majority (at
945  * least 95%) of allocations, and is small enough that we are
946  * confident it will not cause too much overhead.  Each single
947  * flush is about 100 ns, so this caps the maximum overhead at
948  * _about_ 3,000 ns.
949  *
950  * This is in units of pages.
951  */
952 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
953 
954 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
955 
956 #ifdef CONFIG_DEBUG_VM
957 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
958 #endif
959 
get_flush_tlb_info(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned int stride_shift,bool freed_tables,u64 new_tlb_gen)960 static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
961 			unsigned long start, unsigned long end,
962 			unsigned int stride_shift, bool freed_tables,
963 			u64 new_tlb_gen)
964 {
965 	struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
966 
967 #ifdef CONFIG_DEBUG_VM
968 	/*
969 	 * Ensure that the following code is non-reentrant and flush_tlb_info
970 	 * is not overwritten. This means no TLB flushing is initiated by
971 	 * interrupt handlers and machine-check exception handlers.
972 	 */
973 	BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
974 #endif
975 
976 	info->start		= start;
977 	info->end		= end;
978 	info->mm		= mm;
979 	info->stride_shift	= stride_shift;
980 	info->freed_tables	= freed_tables;
981 	info->new_tlb_gen	= new_tlb_gen;
982 	info->initiating_cpu	= smp_processor_id();
983 
984 	return info;
985 }
986 
put_flush_tlb_info(void)987 static void put_flush_tlb_info(void)
988 {
989 #ifdef CONFIG_DEBUG_VM
990 	/* Complete reentrancy prevention checks */
991 	barrier();
992 	this_cpu_dec(flush_tlb_info_idx);
993 #endif
994 }
995 
flush_tlb_mm_range(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned int stride_shift,bool freed_tables)996 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
997 				unsigned long end, unsigned int stride_shift,
998 				bool freed_tables)
999 {
1000 	struct flush_tlb_info *info;
1001 	u64 new_tlb_gen;
1002 	int cpu;
1003 
1004 	cpu = get_cpu();
1005 
1006 	/* Should we flush just the requested range? */
1007 	if ((end == TLB_FLUSH_ALL) ||
1008 	    ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
1009 		start = 0;
1010 		end = TLB_FLUSH_ALL;
1011 	}
1012 
1013 	/* This is also a barrier that synchronizes with switch_mm(). */
1014 	new_tlb_gen = inc_mm_tlb_gen(mm);
1015 
1016 	info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
1017 				  new_tlb_gen);
1018 
1019 	/*
1020 	 * flush_tlb_multi() is not optimized for the common case in which only
1021 	 * a local TLB flush is needed. Optimize this use-case by calling
1022 	 * flush_tlb_func_local() directly in this case.
1023 	 */
1024 	if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) {
1025 		flush_tlb_multi(mm_cpumask(mm), info);
1026 	} else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
1027 		lockdep_assert_irqs_enabled();
1028 		local_irq_disable();
1029 		flush_tlb_func(info);
1030 		local_irq_enable();
1031 	}
1032 
1033 	put_flush_tlb_info();
1034 	put_cpu();
1035 	mmu_notifier_arch_invalidate_secondary_tlbs(mm, start, end);
1036 }
1037 
1038 
do_flush_tlb_all(void * info)1039 static void do_flush_tlb_all(void *info)
1040 {
1041 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
1042 	__flush_tlb_all();
1043 }
1044 
flush_tlb_all(void)1045 void flush_tlb_all(void)
1046 {
1047 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
1048 	on_each_cpu(do_flush_tlb_all, NULL, 1);
1049 }
1050 
do_kernel_range_flush(void * info)1051 static void do_kernel_range_flush(void *info)
1052 {
1053 	struct flush_tlb_info *f = info;
1054 	unsigned long addr;
1055 
1056 	/* flush range by one by one 'invlpg' */
1057 	for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
1058 		flush_tlb_one_kernel(addr);
1059 }
1060 
flush_tlb_kernel_range(unsigned long start,unsigned long end)1061 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
1062 {
1063 	/* Balance as user space task's flush, a bit conservative */
1064 	if (end == TLB_FLUSH_ALL ||
1065 	    (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
1066 		on_each_cpu(do_flush_tlb_all, NULL, 1);
1067 	} else {
1068 		struct flush_tlb_info *info;
1069 
1070 		preempt_disable();
1071 		info = get_flush_tlb_info(NULL, start, end, 0, false,
1072 					  TLB_GENERATION_INVALID);
1073 
1074 		on_each_cpu(do_kernel_range_flush, info, 1);
1075 
1076 		put_flush_tlb_info();
1077 		preempt_enable();
1078 	}
1079 }
1080 
1081 /*
1082  * This can be used from process context to figure out what the value of
1083  * CR3 is without needing to do a (slow) __read_cr3().
1084  *
1085  * It's intended to be used for code like KVM that sneakily changes CR3
1086  * and needs to restore it.  It needs to be used very carefully.
1087  */
__get_current_cr3_fast(void)1088 unsigned long __get_current_cr3_fast(void)
1089 {
1090 	unsigned long cr3 =
1091 		build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
1092 			  this_cpu_read(cpu_tlbstate.loaded_mm_asid),
1093 			  tlbstate_lam_cr3_mask());
1094 
1095 	/* For now, be very restrictive about when this can be called. */
1096 	VM_WARN_ON(in_nmi() || preemptible());
1097 
1098 	VM_BUG_ON(cr3 != __read_cr3());
1099 	return cr3;
1100 }
1101 EXPORT_SYMBOL_GPL(__get_current_cr3_fast);
1102 
1103 /*
1104  * Flush one page in the kernel mapping
1105  */
flush_tlb_one_kernel(unsigned long addr)1106 void flush_tlb_one_kernel(unsigned long addr)
1107 {
1108 	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
1109 
1110 	/*
1111 	 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
1112 	 * paravirt equivalent.  Even with PCID, this is sufficient: we only
1113 	 * use PCID if we also use global PTEs for the kernel mapping, and
1114 	 * INVLPG flushes global translations across all address spaces.
1115 	 *
1116 	 * If PTI is on, then the kernel is mapped with non-global PTEs, and
1117 	 * __flush_tlb_one_user() will flush the given address for the current
1118 	 * kernel address space and for its usermode counterpart, but it does
1119 	 * not flush it for other address spaces.
1120 	 */
1121 	flush_tlb_one_user(addr);
1122 
1123 	if (!static_cpu_has(X86_FEATURE_PTI))
1124 		return;
1125 
1126 	/*
1127 	 * See above.  We need to propagate the flush to all other address
1128 	 * spaces.  In principle, we only need to propagate it to kernelmode
1129 	 * address spaces, but the extra bookkeeping we would need is not
1130 	 * worth it.
1131 	 */
1132 	this_cpu_write(cpu_tlbstate.invalidate_other, true);
1133 }
1134 
1135 /*
1136  * Flush one page in the user mapping
1137  */
native_flush_tlb_one_user(unsigned long addr)1138 STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr)
1139 {
1140 	u32 loaded_mm_asid;
1141 	bool cpu_pcide;
1142 
1143 	/* Flush 'addr' from the kernel PCID: */
1144 	invlpg(addr);
1145 
1146 	/* If PTI is off there is no user PCID and nothing to flush. */
1147 	if (!static_cpu_has(X86_FEATURE_PTI))
1148 		return;
1149 
1150 	loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1151 	cpu_pcide      = this_cpu_read(cpu_tlbstate.cr4) & X86_CR4_PCIDE;
1152 
1153 	/*
1154 	 * invpcid_flush_one(pcid>0) will #GP if CR4.PCIDE==0.  Check
1155 	 * 'cpu_pcide' to ensure that *this* CPU will not trigger those
1156 	 * #GP's even if called before CR4.PCIDE has been initialized.
1157 	 */
1158 	if (boot_cpu_has(X86_FEATURE_INVPCID) && cpu_pcide)
1159 		invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
1160 	else
1161 		invalidate_user_asid(loaded_mm_asid);
1162 }
1163 
flush_tlb_one_user(unsigned long addr)1164 void flush_tlb_one_user(unsigned long addr)
1165 {
1166 	__flush_tlb_one_user(addr);
1167 }
1168 
1169 /*
1170  * Flush everything
1171  */
native_flush_tlb_global(void)1172 STATIC_NOPV void native_flush_tlb_global(void)
1173 {
1174 	unsigned long flags;
1175 
1176 	if (static_cpu_has(X86_FEATURE_INVPCID)) {
1177 		/*
1178 		 * Using INVPCID is considerably faster than a pair of writes
1179 		 * to CR4 sandwiched inside an IRQ flag save/restore.
1180 		 *
1181 		 * Note, this works with CR4.PCIDE=0 or 1.
1182 		 */
1183 		invpcid_flush_all();
1184 		return;
1185 	}
1186 
1187 	/*
1188 	 * Read-modify-write to CR4 - protect it from preemption and
1189 	 * from interrupts. (Use the raw variant because this code can
1190 	 * be called from deep inside debugging code.)
1191 	 */
1192 	raw_local_irq_save(flags);
1193 
1194 	__native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4));
1195 
1196 	raw_local_irq_restore(flags);
1197 }
1198 
1199 /*
1200  * Flush the entire current user mapping
1201  */
native_flush_tlb_local(void)1202 STATIC_NOPV void native_flush_tlb_local(void)
1203 {
1204 	/*
1205 	 * Preemption or interrupts must be disabled to protect the access
1206 	 * to the per CPU variable and to prevent being preempted between
1207 	 * read_cr3() and write_cr3().
1208 	 */
1209 	WARN_ON_ONCE(preemptible());
1210 
1211 	invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
1212 
1213 	/* If current->mm == NULL then the read_cr3() "borrows" an mm */
1214 	native_write_cr3(__native_read_cr3());
1215 }
1216 
flush_tlb_local(void)1217 void flush_tlb_local(void)
1218 {
1219 	__flush_tlb_local();
1220 }
1221 
1222 /*
1223  * Flush everything
1224  */
__flush_tlb_all(void)1225 void __flush_tlb_all(void)
1226 {
1227 	/*
1228 	 * This is to catch users with enabled preemption and the PGE feature
1229 	 * and don't trigger the warning in __native_flush_tlb().
1230 	 */
1231 	VM_WARN_ON_ONCE(preemptible());
1232 
1233 	if (cpu_feature_enabled(X86_FEATURE_PGE)) {
1234 		__flush_tlb_global();
1235 	} else {
1236 		/*
1237 		 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
1238 		 */
1239 		flush_tlb_local();
1240 	}
1241 }
1242 EXPORT_SYMBOL_GPL(__flush_tlb_all);
1243 
arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch * batch)1244 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
1245 {
1246 	struct flush_tlb_info *info;
1247 
1248 	int cpu = get_cpu();
1249 
1250 	info = get_flush_tlb_info(NULL, 0, TLB_FLUSH_ALL, 0, false,
1251 				  TLB_GENERATION_INVALID);
1252 	/*
1253 	 * flush_tlb_multi() is not optimized for the common case in which only
1254 	 * a local TLB flush is needed. Optimize this use-case by calling
1255 	 * flush_tlb_func_local() directly in this case.
1256 	 */
1257 	if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) {
1258 		flush_tlb_multi(&batch->cpumask, info);
1259 	} else if (cpumask_test_cpu(cpu, &batch->cpumask)) {
1260 		lockdep_assert_irqs_enabled();
1261 		local_irq_disable();
1262 		flush_tlb_func(info);
1263 		local_irq_enable();
1264 	}
1265 
1266 	cpumask_clear(&batch->cpumask);
1267 
1268 	put_flush_tlb_info();
1269 	put_cpu();
1270 }
1271 
1272 /*
1273  * Blindly accessing user memory from NMI context can be dangerous
1274  * if we're in the middle of switching the current user task or
1275  * switching the loaded mm.  It can also be dangerous if we
1276  * interrupted some kernel code that was temporarily using a
1277  * different mm.
1278  */
nmi_uaccess_okay(void)1279 bool nmi_uaccess_okay(void)
1280 {
1281 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1282 	struct mm_struct *current_mm = current->mm;
1283 
1284 	VM_WARN_ON_ONCE(!loaded_mm);
1285 
1286 	/*
1287 	 * The condition we want to check is
1288 	 * current_mm->pgd == __va(read_cr3_pa()).  This may be slow, though,
1289 	 * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
1290 	 * is supposed to be reasonably fast.
1291 	 *
1292 	 * Instead, we check the almost equivalent but somewhat conservative
1293 	 * condition below, and we rely on the fact that switch_mm_irqs_off()
1294 	 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
1295 	 */
1296 	if (loaded_mm != current_mm)
1297 		return false;
1298 
1299 	VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
1300 
1301 	return true;
1302 }
1303 
tlbflush_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)1304 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
1305 			     size_t count, loff_t *ppos)
1306 {
1307 	char buf[32];
1308 	unsigned int len;
1309 
1310 	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
1311 	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
1312 }
1313 
tlbflush_write_file(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)1314 static ssize_t tlbflush_write_file(struct file *file,
1315 		 const char __user *user_buf, size_t count, loff_t *ppos)
1316 {
1317 	char buf[32];
1318 	ssize_t len;
1319 	int ceiling;
1320 
1321 	len = min(count, sizeof(buf) - 1);
1322 	if (copy_from_user(buf, user_buf, len))
1323 		return -EFAULT;
1324 
1325 	buf[len] = '\0';
1326 	if (kstrtoint(buf, 0, &ceiling))
1327 		return -EINVAL;
1328 
1329 	if (ceiling < 0)
1330 		return -EINVAL;
1331 
1332 	tlb_single_page_flush_ceiling = ceiling;
1333 	return count;
1334 }
1335 
1336 static const struct file_operations fops_tlbflush = {
1337 	.read = tlbflush_read_file,
1338 	.write = tlbflush_write_file,
1339 	.llseek = default_llseek,
1340 };
1341 
create_tlb_single_page_flush_ceiling(void)1342 static int __init create_tlb_single_page_flush_ceiling(void)
1343 {
1344 	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
1345 			    arch_debugfs_dir, NULL, &fops_tlbflush);
1346 	return 0;
1347 }
1348 late_initcall(create_tlb_single_page_flush_ceiling);
1349