xref: /linux/fs/btrfs/transaction.c (revision 3a1f4264daed4b419c325a7fe35e756cada3cf82)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/writeback.h>
11 #include <linux/pagemap.h>
12 #include <linux/blkdev.h>
13 #include <linux/uuid.h>
14 #include <linux/timekeeping.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "transaction.h"
19 #include "locking.h"
20 #include "tree-log.h"
21 #include "volumes.h"
22 #include "dev-replace.h"
23 #include "qgroup.h"
24 #include "block-group.h"
25 #include "space-info.h"
26 #include "fs.h"
27 #include "accessors.h"
28 #include "extent-tree.h"
29 #include "root-tree.h"
30 #include "dir-item.h"
31 #include "uuid-tree.h"
32 #include "ioctl.h"
33 #include "relocation.h"
34 #include "scrub.h"
35 #include "ordered-data.h"
36 #include "delayed-inode.h"
37 
38 static struct kmem_cache *btrfs_trans_handle_cachep;
39 
40 /*
41  * Transaction states and transitions
42  *
43  * No running transaction (fs tree blocks are not modified)
44  * |
45  * | To next stage:
46  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
47  * V
48  * Transaction N [[TRANS_STATE_RUNNING]]
49  * |
50  * | New trans handles can be attached to transaction N by calling all
51  * | start_transaction() variants.
52  * |
53  * | To next stage:
54  * |  Call btrfs_commit_transaction() on any trans handle attached to
55  * |  transaction N
56  * V
57  * Transaction N [[TRANS_STATE_COMMIT_PREP]]
58  * |
59  * | If there are simultaneous calls to btrfs_commit_transaction() one will win
60  * | the race and the rest will wait for the winner to commit the transaction.
61  * |
62  * | The winner will wait for previous running transaction to completely finish
63  * | if there is one.
64  * |
65  * Transaction N [[TRANS_STATE_COMMIT_START]]
66  * |
67  * | Then one of the following happens:
68  * | - Wait for all other trans handle holders to release.
69  * |   The btrfs_commit_transaction() caller will do the commit work.
70  * | - Wait for current transaction to be committed by others.
71  * |   Other btrfs_commit_transaction() caller will do the commit work.
72  * |
73  * | At this stage, only btrfs_join_transaction*() variants can attach
74  * | to this running transaction.
75  * | All other variants will wait for current one to finish and attach to
76  * | transaction N+1.
77  * |
78  * | To next stage:
79  * |  Caller is chosen to commit transaction N, and all other trans handle
80  * |  haven been released.
81  * V
82  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
83  * |
84  * | The heavy lifting transaction work is started.
85  * | From running delayed refs (modifying extent tree) to creating pending
86  * | snapshots, running qgroups.
87  * | In short, modify supporting trees to reflect modifications of subvolume
88  * | trees.
89  * |
90  * | At this stage, all start_transaction() calls will wait for this
91  * | transaction to finish and attach to transaction N+1.
92  * |
93  * | To next stage:
94  * |  Until all supporting trees are updated.
95  * V
96  * Transaction N [[TRANS_STATE_UNBLOCKED]]
97  * |						    Transaction N+1
98  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
99  * | need to write them back to disk and update	    |
100  * | super blocks.				    |
101  * |						    |
102  * | At this stage, new transaction is allowed to   |
103  * | start.					    |
104  * | All new start_transaction() calls will be	    |
105  * | attached to transid N+1.			    |
106  * |						    |
107  * | To next stage:				    |
108  * |  Until all tree blocks and super blocks are    |
109  * |  written to block devices			    |
110  * V						    |
111  * Transaction N [[TRANS_STATE_COMPLETED]]	    V
112  *   All tree blocks and super blocks are written.  Transaction N+1
113  *   This transaction is finished and all its	    [[TRANS_STATE_COMMIT_START]]
114  *   data structures will be cleaned up.	    | Life goes on
115  */
116 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
117 	[TRANS_STATE_RUNNING]		= 0U,
118 	[TRANS_STATE_COMMIT_PREP]	= 0U,
119 	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
120 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
121 					   __TRANS_ATTACH |
122 					   __TRANS_JOIN |
123 					   __TRANS_JOIN_NOSTART),
124 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
125 					   __TRANS_ATTACH |
126 					   __TRANS_JOIN |
127 					   __TRANS_JOIN_NOLOCK |
128 					   __TRANS_JOIN_NOSTART),
129 	[TRANS_STATE_SUPER_COMMITTED]	= (__TRANS_START |
130 					   __TRANS_ATTACH |
131 					   __TRANS_JOIN |
132 					   __TRANS_JOIN_NOLOCK |
133 					   __TRANS_JOIN_NOSTART),
134 	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
135 					   __TRANS_ATTACH |
136 					   __TRANS_JOIN |
137 					   __TRANS_JOIN_NOLOCK |
138 					   __TRANS_JOIN_NOSTART),
139 };
140 
141 void btrfs_put_transaction(struct btrfs_transaction *transaction)
142 {
143 	if (refcount_dec_and_test(&transaction->use_count)) {
144 		BUG_ON(!list_empty(&transaction->list));
145 		WARN_ON(!xa_empty(&transaction->delayed_refs.head_refs));
146 		WARN_ON(!xa_empty(&transaction->delayed_refs.dirty_extents));
147 		if (transaction->delayed_refs.pending_csums)
148 			btrfs_err(transaction->fs_info,
149 				  "pending csums is %llu",
150 				  transaction->delayed_refs.pending_csums);
151 		/*
152 		 * If any block groups are found in ->deleted_bgs then it's
153 		 * because the transaction was aborted and a commit did not
154 		 * happen (things failed before writing the new superblock
155 		 * and calling btrfs_finish_extent_commit()), so we can not
156 		 * discard the physical locations of the block groups.
157 		 */
158 		while (!list_empty(&transaction->deleted_bgs)) {
159 			struct btrfs_block_group *cache;
160 
161 			cache = list_first_entry(&transaction->deleted_bgs,
162 						 struct btrfs_block_group,
163 						 bg_list);
164 			/*
165 			 * Not strictly necessary to lock, as no other task will be using a
166 			 * block_group on the deleted_bgs list during a transaction abort.
167 			 */
168 			spin_lock(&transaction->fs_info->unused_bgs_lock);
169 			list_del_init(&cache->bg_list);
170 			spin_unlock(&transaction->fs_info->unused_bgs_lock);
171 			btrfs_unfreeze_block_group(cache);
172 			btrfs_put_block_group(cache);
173 		}
174 		WARN_ON(!list_empty(&transaction->dev_update_list));
175 		kfree(transaction);
176 	}
177 }
178 
179 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
180 {
181 	struct btrfs_transaction *cur_trans = trans->transaction;
182 	struct btrfs_fs_info *fs_info = trans->fs_info;
183 	struct btrfs_root *root, *tmp;
184 
185 	/*
186 	 * At this point no one can be using this transaction to modify any tree
187 	 * and no one can start another transaction to modify any tree either.
188 	 */
189 	ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING,
190 	       "cur_trans->state=%d", cur_trans->state);
191 
192 	down_write(&fs_info->commit_root_sem);
193 
194 	if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
195 		fs_info->last_reloc_trans = trans->transid;
196 
197 	list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
198 				 dirty_list) {
199 		list_del_init(&root->dirty_list);
200 		free_extent_buffer(root->commit_root);
201 		root->commit_root = btrfs_root_node(root);
202 		btrfs_extent_io_tree_release(&root->dirty_log_pages);
203 		btrfs_qgroup_clean_swapped_blocks(root);
204 	}
205 
206 	/* We can free old roots now. */
207 	spin_lock(&cur_trans->dropped_roots_lock);
208 	while (!list_empty(&cur_trans->dropped_roots)) {
209 		root = list_first_entry(&cur_trans->dropped_roots,
210 					struct btrfs_root, root_list);
211 		list_del_init(&root->root_list);
212 		spin_unlock(&cur_trans->dropped_roots_lock);
213 		btrfs_free_log(trans, root);
214 		btrfs_drop_and_free_fs_root(fs_info, root);
215 		spin_lock(&cur_trans->dropped_roots_lock);
216 	}
217 	spin_unlock(&cur_trans->dropped_roots_lock);
218 
219 	up_write(&fs_info->commit_root_sem);
220 }
221 
222 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
223 					 unsigned int type)
224 {
225 	if (type & TRANS_EXTWRITERS)
226 		atomic_inc(&trans->num_extwriters);
227 }
228 
229 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
230 					 unsigned int type)
231 {
232 	if (type & TRANS_EXTWRITERS)
233 		atomic_dec(&trans->num_extwriters);
234 }
235 
236 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
237 					  unsigned int type)
238 {
239 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
240 }
241 
242 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
243 {
244 	return atomic_read(&trans->num_extwriters);
245 }
246 
247 /*
248  * To be called after doing the chunk btree updates right after allocating a new
249  * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
250  * chunk after all chunk btree updates and after finishing the second phase of
251  * chunk allocation (btrfs_create_pending_block_groups()) in case some block
252  * group had its chunk item insertion delayed to the second phase.
253  */
254 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
255 {
256 	struct btrfs_fs_info *fs_info = trans->fs_info;
257 
258 	if (!trans->chunk_bytes_reserved)
259 		return;
260 
261 	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
262 				trans->chunk_bytes_reserved, NULL);
263 	trans->chunk_bytes_reserved = 0;
264 }
265 
266 /*
267  * either allocate a new transaction or hop into the existing one
268  */
269 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
270 				     unsigned int type)
271 {
272 	struct btrfs_transaction *cur_trans;
273 
274 	spin_lock(&fs_info->trans_lock);
275 loop:
276 	/* The file system has been taken offline. No new transactions. */
277 	if (BTRFS_FS_ERROR(fs_info)) {
278 		spin_unlock(&fs_info->trans_lock);
279 		return -EROFS;
280 	}
281 
282 	cur_trans = fs_info->running_transaction;
283 	if (cur_trans) {
284 		if (TRANS_ABORTED(cur_trans)) {
285 			const int abort_error = cur_trans->aborted;
286 
287 			spin_unlock(&fs_info->trans_lock);
288 			return abort_error;
289 		}
290 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
291 			spin_unlock(&fs_info->trans_lock);
292 			return -EBUSY;
293 		}
294 		refcount_inc(&cur_trans->use_count);
295 		atomic_inc(&cur_trans->num_writers);
296 		extwriter_counter_inc(cur_trans, type);
297 		spin_unlock(&fs_info->trans_lock);
298 		btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
299 		btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
300 		return 0;
301 	}
302 	spin_unlock(&fs_info->trans_lock);
303 
304 	/*
305 	 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
306 	 * current transaction, and commit it. If there is no transaction, just
307 	 * return ENOENT.
308 	 */
309 	if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
310 		return -ENOENT;
311 
312 	/*
313 	 * JOIN_NOLOCK only happens during the transaction commit, so
314 	 * it is impossible that ->running_transaction is NULL
315 	 */
316 	BUG_ON(type == TRANS_JOIN_NOLOCK);
317 
318 	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
319 	if (!cur_trans)
320 		return -ENOMEM;
321 
322 	btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
323 	btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
324 
325 	spin_lock(&fs_info->trans_lock);
326 	if (fs_info->running_transaction) {
327 		/*
328 		 * someone started a transaction after we unlocked.  Make sure
329 		 * to redo the checks above
330 		 */
331 		btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
332 		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
333 		kfree(cur_trans);
334 		goto loop;
335 	} else if (BTRFS_FS_ERROR(fs_info)) {
336 		spin_unlock(&fs_info->trans_lock);
337 		btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
338 		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
339 		kfree(cur_trans);
340 		return -EROFS;
341 	}
342 
343 	cur_trans->fs_info = fs_info;
344 	atomic_set(&cur_trans->pending_ordered, 0);
345 	init_waitqueue_head(&cur_trans->pending_wait);
346 	atomic_set(&cur_trans->num_writers, 1);
347 	extwriter_counter_init(cur_trans, type);
348 	init_waitqueue_head(&cur_trans->writer_wait);
349 	init_waitqueue_head(&cur_trans->commit_wait);
350 	cur_trans->state = TRANS_STATE_RUNNING;
351 	/*
352 	 * One for this trans handle, one so it will live on until we
353 	 * commit the transaction.
354 	 */
355 	refcount_set(&cur_trans->use_count, 2);
356 	cur_trans->flags = 0;
357 	cur_trans->start_time = ktime_get_seconds();
358 
359 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
360 
361 	xa_init(&cur_trans->delayed_refs.head_refs);
362 	xa_init(&cur_trans->delayed_refs.dirty_extents);
363 
364 	/*
365 	 * although the tree mod log is per file system and not per transaction,
366 	 * the log must never go across transaction boundaries.
367 	 */
368 	smp_mb();
369 	if (!list_empty(&fs_info->tree_mod_seq_list))
370 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
371 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
372 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
373 	atomic64_set(&fs_info->tree_mod_seq, 0);
374 
375 	spin_lock_init(&cur_trans->delayed_refs.lock);
376 
377 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
378 	INIT_LIST_HEAD(&cur_trans->dev_update_list);
379 	INIT_LIST_HEAD(&cur_trans->switch_commits);
380 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
381 	INIT_LIST_HEAD(&cur_trans->io_bgs);
382 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
383 	mutex_init(&cur_trans->cache_write_mutex);
384 	spin_lock_init(&cur_trans->dirty_bgs_lock);
385 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
386 	spin_lock_init(&cur_trans->dropped_roots_lock);
387 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
388 	btrfs_extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
389 				  IO_TREE_TRANS_DIRTY_PAGES);
390 	btrfs_extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
391 				  IO_TREE_FS_PINNED_EXTENTS);
392 	btrfs_set_fs_generation(fs_info, fs_info->generation + 1);
393 	cur_trans->transid = fs_info->generation;
394 	fs_info->running_transaction = cur_trans;
395 	cur_trans->aborted = 0;
396 	spin_unlock(&fs_info->trans_lock);
397 
398 	return 0;
399 }
400 
401 /*
402  * This does all the record keeping required to make sure that a shareable root
403  * is properly recorded in a given transaction.  This is required to make sure
404  * the old root from before we joined the transaction is deleted when the
405  * transaction commits.
406  */
407 static int record_root_in_trans(struct btrfs_trans_handle *trans,
408 			       struct btrfs_root *root,
409 			       bool force)
410 {
411 	struct btrfs_fs_info *fs_info = root->fs_info;
412 	int ret = 0;
413 
414 	if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
415 	    btrfs_get_root_last_trans(root) < trans->transid) || force) {
416 		WARN_ON(!force && root->commit_root != root->node);
417 
418 		/*
419 		 * see below for IN_TRANS_SETUP usage rules
420 		 * we have the reloc mutex held now, so there
421 		 * is only one writer in this function
422 		 */
423 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
424 
425 		/* make sure readers find IN_TRANS_SETUP before
426 		 * they find our root->last_trans update
427 		 */
428 		smp_wmb();
429 
430 		spin_lock(&fs_info->fs_roots_radix_lock);
431 		if (btrfs_get_root_last_trans(root) == trans->transid && !force) {
432 			spin_unlock(&fs_info->fs_roots_radix_lock);
433 			return 0;
434 		}
435 		radix_tree_tag_set(&fs_info->fs_roots_radix,
436 				   (unsigned long)btrfs_root_id(root),
437 				   BTRFS_ROOT_TRANS_TAG);
438 		spin_unlock(&fs_info->fs_roots_radix_lock);
439 		btrfs_set_root_last_trans(root, trans->transid);
440 
441 		/* this is pretty tricky.  We don't want to
442 		 * take the relocation lock in btrfs_record_root_in_trans
443 		 * unless we're really doing the first setup for this root in
444 		 * this transaction.
445 		 *
446 		 * Normally we'd use root->last_trans as a flag to decide
447 		 * if we want to take the expensive mutex.
448 		 *
449 		 * But, we have to set root->last_trans before we
450 		 * init the relocation root, otherwise, we trip over warnings
451 		 * in ctree.c.  The solution used here is to flag ourselves
452 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
453 		 * fixing up the reloc trees and everyone must wait.
454 		 *
455 		 * When this is zero, they can trust root->last_trans and fly
456 		 * through btrfs_record_root_in_trans without having to take the
457 		 * lock.  smp_wmb() makes sure that all the writes above are
458 		 * done before we pop in the zero below
459 		 */
460 		ret = btrfs_init_reloc_root(trans, root);
461 		smp_mb__before_atomic();
462 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
463 	}
464 	return ret;
465 }
466 
467 
468 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
469 			    struct btrfs_root *root)
470 {
471 	struct btrfs_fs_info *fs_info = root->fs_info;
472 	struct btrfs_transaction *cur_trans = trans->transaction;
473 
474 	/* Add ourselves to the transaction dropped list */
475 	spin_lock(&cur_trans->dropped_roots_lock);
476 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
477 	spin_unlock(&cur_trans->dropped_roots_lock);
478 
479 	/* Make sure we don't try to update the root at commit time */
480 	spin_lock(&fs_info->fs_roots_radix_lock);
481 	radix_tree_tag_clear(&fs_info->fs_roots_radix,
482 			     (unsigned long)btrfs_root_id(root),
483 			     BTRFS_ROOT_TRANS_TAG);
484 	spin_unlock(&fs_info->fs_roots_radix_lock);
485 }
486 
487 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
488 			       struct btrfs_root *root)
489 {
490 	struct btrfs_fs_info *fs_info = root->fs_info;
491 	int ret;
492 
493 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
494 		return 0;
495 
496 	/*
497 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
498 	 * and barriers
499 	 */
500 	smp_rmb();
501 	if (btrfs_get_root_last_trans(root) == trans->transid &&
502 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
503 		return 0;
504 
505 	mutex_lock(&fs_info->reloc_mutex);
506 	ret = record_root_in_trans(trans, root, 0);
507 	mutex_unlock(&fs_info->reloc_mutex);
508 
509 	return ret;
510 }
511 
512 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
513 {
514 	return (trans->state >= TRANS_STATE_COMMIT_START &&
515 		trans->state < TRANS_STATE_UNBLOCKED &&
516 		!TRANS_ABORTED(trans));
517 }
518 
519 /* wait for commit against the current transaction to become unblocked
520  * when this is done, it is safe to start a new transaction, but the current
521  * transaction might not be fully on disk.
522  */
523 static void wait_current_trans(struct btrfs_fs_info *fs_info, unsigned int type)
524 {
525 	struct btrfs_transaction *cur_trans;
526 
527 	spin_lock(&fs_info->trans_lock);
528 	cur_trans = fs_info->running_transaction;
529 	if (cur_trans && is_transaction_blocked(cur_trans) &&
530 	    (btrfs_blocked_trans_types[cur_trans->state] & type)) {
531 		refcount_inc(&cur_trans->use_count);
532 		spin_unlock(&fs_info->trans_lock);
533 
534 		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
535 		wait_event(fs_info->transaction_wait,
536 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
537 			   TRANS_ABORTED(cur_trans));
538 		btrfs_put_transaction(cur_trans);
539 	} else {
540 		spin_unlock(&fs_info->trans_lock);
541 	}
542 }
543 
544 static bool may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
545 {
546 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
547 		return false;
548 
549 	if (type == TRANS_START)
550 		return true;
551 
552 	return false;
553 }
554 
555 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
556 {
557 	struct btrfs_fs_info *fs_info = root->fs_info;
558 
559 	if (!fs_info->reloc_ctl ||
560 	    !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
561 	    btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
562 	    root->reloc_root)
563 		return false;
564 
565 	return true;
566 }
567 
568 static int btrfs_reserve_trans_metadata(struct btrfs_fs_info *fs_info,
569 					enum btrfs_reserve_flush_enum flush,
570 					u64 num_bytes,
571 					u64 *delayed_refs_bytes)
572 {
573 	struct btrfs_space_info *si = fs_info->trans_block_rsv.space_info;
574 	u64 bytes = num_bytes + *delayed_refs_bytes;
575 	int ret;
576 
577 	/*
578 	 * We want to reserve all the bytes we may need all at once, so we only
579 	 * do 1 enospc flushing cycle per transaction start.
580 	 */
581 	ret = btrfs_reserve_metadata_bytes(si, bytes, flush);
582 
583 	/*
584 	 * If we are an emergency flush, which can steal from the global block
585 	 * reserve, then attempt to not reserve space for the delayed refs, as
586 	 * we will consume space for them from the global block reserve.
587 	 */
588 	if (ret && flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) {
589 		bytes -= *delayed_refs_bytes;
590 		*delayed_refs_bytes = 0;
591 		ret = btrfs_reserve_metadata_bytes(si, bytes, flush);
592 	}
593 
594 	return ret;
595 }
596 
597 static struct btrfs_trans_handle *
598 start_transaction(struct btrfs_root *root, unsigned int num_items,
599 		  unsigned int type, enum btrfs_reserve_flush_enum flush,
600 		  bool enforce_qgroups)
601 {
602 	struct btrfs_fs_info *fs_info = root->fs_info;
603 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
604 	struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
605 	struct btrfs_trans_handle *h;
606 	struct btrfs_transaction *cur_trans;
607 	u64 num_bytes = 0;
608 	u64 qgroup_reserved = 0;
609 	u64 delayed_refs_bytes = 0;
610 	bool reloc_reserved = false;
611 	bool do_chunk_alloc = false;
612 	int ret;
613 
614 	if (BTRFS_FS_ERROR(fs_info))
615 		return ERR_PTR(-EROFS);
616 
617 	if (current->journal_info) {
618 		WARN_ON(type & TRANS_EXTWRITERS);
619 		h = current->journal_info;
620 		refcount_inc(&h->use_count);
621 		WARN_ON(refcount_read(&h->use_count) > 2);
622 		h->orig_rsv = h->block_rsv;
623 		h->block_rsv = NULL;
624 		goto got_it;
625 	}
626 
627 	/*
628 	 * Do the reservation before we join the transaction so we can do all
629 	 * the appropriate flushing if need be.
630 	 */
631 	if (num_items && root != fs_info->chunk_root) {
632 		qgroup_reserved = num_items * fs_info->nodesize;
633 		/*
634 		 * Use prealloc for now, as there might be a currently running
635 		 * transaction that could free this reserved space prematurely
636 		 * by committing.
637 		 */
638 		ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved,
639 							 enforce_qgroups, false);
640 		if (ret)
641 			return ERR_PTR(ret);
642 
643 		num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
644 		/*
645 		 * If we plan to insert/update/delete "num_items" from a btree,
646 		 * we will also generate delayed refs for extent buffers in the
647 		 * respective btree paths, so reserve space for the delayed refs
648 		 * that will be generated by the caller as it modifies btrees.
649 		 * Try to reserve them to avoid excessive use of the global
650 		 * block reserve.
651 		 */
652 		delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, num_items);
653 
654 		/*
655 		 * Do the reservation for the relocation root creation
656 		 */
657 		if (need_reserve_reloc_root(root)) {
658 			num_bytes += fs_info->nodesize;
659 			reloc_reserved = true;
660 		}
661 
662 		ret = btrfs_reserve_trans_metadata(fs_info, flush, num_bytes,
663 						   &delayed_refs_bytes);
664 		if (ret)
665 			goto reserve_fail;
666 
667 		btrfs_block_rsv_add_bytes(trans_rsv, num_bytes, true);
668 
669 		if (trans_rsv->space_info->force_alloc)
670 			do_chunk_alloc = true;
671 	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
672 		   !btrfs_block_rsv_full(delayed_refs_rsv)) {
673 		/*
674 		 * Some people call with btrfs_start_transaction(root, 0)
675 		 * because they can be throttled, but have some other mechanism
676 		 * for reserving space.  We still want these guys to refill the
677 		 * delayed block_rsv so just add 1 items worth of reservation
678 		 * here.
679 		 */
680 		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
681 		if (ret)
682 			goto reserve_fail;
683 	}
684 again:
685 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
686 	if (!h) {
687 		ret = -ENOMEM;
688 		goto alloc_fail;
689 	}
690 
691 	/*
692 	 * If we are JOIN_NOLOCK we're already committing a transaction and
693 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
694 	 * because we're already holding a ref.  We need this because we could
695 	 * have raced in and did an fsync() on a file which can kick a commit
696 	 * and then we deadlock with somebody doing a freeze.
697 	 *
698 	 * If we are ATTACH, it means we just want to catch the current
699 	 * transaction and commit it, so we needn't do sb_start_intwrite().
700 	 */
701 	if (type & __TRANS_FREEZABLE)
702 		sb_start_intwrite(fs_info->sb);
703 
704 	if (may_wait_transaction(fs_info, type))
705 		wait_current_trans(fs_info, type);
706 
707 	do {
708 		ret = join_transaction(fs_info, type);
709 		if (ret == -EBUSY) {
710 			wait_current_trans(fs_info, type);
711 			if (unlikely(type == TRANS_ATTACH ||
712 				     type == TRANS_JOIN_NOSTART))
713 				ret = -ENOENT;
714 		}
715 	} while (ret == -EBUSY);
716 
717 	if (ret < 0)
718 		goto join_fail;
719 
720 	cur_trans = fs_info->running_transaction;
721 
722 	h->transid = cur_trans->transid;
723 	h->transaction = cur_trans;
724 	refcount_set(&h->use_count, 1);
725 	h->fs_info = root->fs_info;
726 
727 	h->type = type;
728 	INIT_LIST_HEAD(&h->new_bgs);
729 	btrfs_init_metadata_block_rsv(fs_info, &h->delayed_rsv, BTRFS_BLOCK_RSV_DELOPS);
730 
731 	smp_mb();
732 	if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
733 	    may_wait_transaction(fs_info, type)) {
734 		current->journal_info = h;
735 		btrfs_commit_transaction(h);
736 		goto again;
737 	}
738 
739 	if (num_bytes) {
740 		trace_btrfs_space_reservation(fs_info, "transaction",
741 					      h->transid, num_bytes, 1);
742 		h->block_rsv = trans_rsv;
743 		h->bytes_reserved = num_bytes;
744 		if (delayed_refs_bytes > 0) {
745 			trace_btrfs_space_reservation(fs_info,
746 						      "local_delayed_refs_rsv",
747 						      h->transid,
748 						      delayed_refs_bytes, 1);
749 			h->delayed_refs_bytes_reserved = delayed_refs_bytes;
750 			btrfs_block_rsv_add_bytes(&h->delayed_rsv, delayed_refs_bytes, true);
751 			delayed_refs_bytes = 0;
752 		}
753 		h->reloc_reserved = reloc_reserved;
754 	}
755 
756 got_it:
757 	if (!current->journal_info)
758 		current->journal_info = h;
759 
760 	/*
761 	 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
762 	 * ALLOC_FORCE the first run through, and then we won't allocate for
763 	 * anybody else who races in later.  We don't care about the return
764 	 * value here.
765 	 */
766 	if (do_chunk_alloc && num_bytes) {
767 		struct btrfs_space_info *space_info = h->block_rsv->space_info;
768 		u64 flags = space_info->flags;
769 
770 		btrfs_chunk_alloc(h, space_info, btrfs_get_alloc_profile(fs_info, flags),
771 				  CHUNK_ALLOC_NO_FORCE);
772 	}
773 
774 	/*
775 	 * btrfs_record_root_in_trans() needs to alloc new extents, and may
776 	 * call btrfs_join_transaction() while we're also starting a
777 	 * transaction.
778 	 *
779 	 * Thus it need to be called after current->journal_info initialized,
780 	 * or we can deadlock.
781 	 */
782 	ret = btrfs_record_root_in_trans(h, root);
783 	if (ret) {
784 		/*
785 		 * The transaction handle is fully initialized and linked with
786 		 * other structures so it needs to be ended in case of errors,
787 		 * not just freed.
788 		 */
789 		btrfs_end_transaction(h);
790 		goto reserve_fail;
791 	}
792 	/*
793 	 * Now that we have found a transaction to be a part of, convert the
794 	 * qgroup reservation from prealloc to pertrans. A different transaction
795 	 * can't race in and free our pertrans out from under us.
796 	 */
797 	if (qgroup_reserved)
798 		btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
799 
800 	return h;
801 
802 join_fail:
803 	if (type & __TRANS_FREEZABLE)
804 		sb_end_intwrite(fs_info->sb);
805 	kmem_cache_free(btrfs_trans_handle_cachep, h);
806 alloc_fail:
807 	if (num_bytes)
808 		btrfs_block_rsv_release(fs_info, trans_rsv, num_bytes, NULL);
809 	if (delayed_refs_bytes)
810 		btrfs_space_info_free_bytes_may_use(trans_rsv->space_info, delayed_refs_bytes);
811 reserve_fail:
812 	btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
813 	return ERR_PTR(ret);
814 }
815 
816 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
817 						   unsigned int num_items)
818 {
819 	return start_transaction(root, num_items, TRANS_START,
820 				 BTRFS_RESERVE_FLUSH_ALL, true);
821 }
822 
823 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
824 					struct btrfs_root *root,
825 					unsigned int num_items)
826 {
827 	return start_transaction(root, num_items, TRANS_START,
828 				 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
829 }
830 
831 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
832 {
833 	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
834 				 true);
835 }
836 
837 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
838 {
839 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
840 				 BTRFS_RESERVE_NO_FLUSH, true);
841 }
842 
843 /*
844  * Similar to regular join but it never starts a transaction when none is
845  * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED.
846  * This is similar to btrfs_attach_transaction() but it allows the join to
847  * happen if the transaction commit already started but it's not yet in the
848  * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING).
849  */
850 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
851 {
852 	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
853 				 BTRFS_RESERVE_NO_FLUSH, true);
854 }
855 
856 /*
857  * Catch the running transaction.
858  *
859  * It is used when we want to commit the current the transaction, but
860  * don't want to start a new one.
861  *
862  * Note: If this function return -ENOENT, it just means there is no
863  * running transaction. But it is possible that the inactive transaction
864  * is still in the memory, not fully on disk. If you hope there is no
865  * inactive transaction in the fs when -ENOENT is returned, you should
866  * invoke
867  *     btrfs_attach_transaction_barrier()
868  */
869 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
870 {
871 	return start_transaction(root, 0, TRANS_ATTACH,
872 				 BTRFS_RESERVE_NO_FLUSH, true);
873 }
874 
875 /*
876  * Catch the running transaction.
877  *
878  * It is similar to the above function, the difference is this one
879  * will wait for all the inactive transactions until they fully
880  * complete.
881  */
882 struct btrfs_trans_handle *
883 btrfs_attach_transaction_barrier(struct btrfs_root *root)
884 {
885 	struct btrfs_trans_handle *trans;
886 
887 	trans = start_transaction(root, 0, TRANS_ATTACH,
888 				  BTRFS_RESERVE_NO_FLUSH, true);
889 	if (trans == ERR_PTR(-ENOENT)) {
890 		int ret;
891 
892 		ret = btrfs_wait_for_commit(root->fs_info, 0);
893 		if (ret)
894 			return ERR_PTR(ret);
895 	}
896 
897 	return trans;
898 }
899 
900 /* Wait for a transaction commit to reach at least the given state. */
901 static noinline void wait_for_commit(struct btrfs_transaction *commit,
902 				     const enum btrfs_trans_state min_state)
903 {
904 	struct btrfs_fs_info *fs_info = commit->fs_info;
905 	u64 transid = commit->transid;
906 	bool put = false;
907 
908 	/*
909 	 * At the moment this function is called with min_state either being
910 	 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
911 	 */
912 	if (min_state == TRANS_STATE_COMPLETED)
913 		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
914 	else
915 		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
916 
917 	while (1) {
918 		wait_event(commit->commit_wait, commit->state >= min_state);
919 		if (put)
920 			btrfs_put_transaction(commit);
921 
922 		if (min_state < TRANS_STATE_COMPLETED)
923 			break;
924 
925 		/*
926 		 * A transaction isn't really completed until all of the
927 		 * previous transactions are completed, but with fsync we can
928 		 * end up with SUPER_COMMITTED transactions before a COMPLETED
929 		 * transaction. Wait for those.
930 		 */
931 
932 		spin_lock(&fs_info->trans_lock);
933 		commit = list_first_entry_or_null(&fs_info->trans_list,
934 						  struct btrfs_transaction,
935 						  list);
936 		if (!commit || commit->transid > transid) {
937 			spin_unlock(&fs_info->trans_lock);
938 			break;
939 		}
940 		refcount_inc(&commit->use_count);
941 		put = true;
942 		spin_unlock(&fs_info->trans_lock);
943 	}
944 }
945 
946 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
947 {
948 	struct btrfs_transaction *cur_trans = NULL, *t;
949 	int ret = 0;
950 
951 	if (transid) {
952 		if (transid <= btrfs_get_last_trans_committed(fs_info))
953 			return 0;
954 
955 		/* find specified transaction */
956 		spin_lock(&fs_info->trans_lock);
957 		list_for_each_entry(t, &fs_info->trans_list, list) {
958 			if (t->transid == transid) {
959 				cur_trans = t;
960 				refcount_inc(&cur_trans->use_count);
961 				ret = 0;
962 				break;
963 			}
964 			if (t->transid > transid) {
965 				ret = 0;
966 				break;
967 			}
968 		}
969 		spin_unlock(&fs_info->trans_lock);
970 
971 		/*
972 		 * The specified transaction doesn't exist, or we
973 		 * raced with btrfs_commit_transaction
974 		 */
975 		if (!cur_trans) {
976 			if (transid > btrfs_get_last_trans_committed(fs_info))
977 				ret = -EINVAL;
978 			return ret;
979 		}
980 	} else {
981 		/* find newest transaction that is committing | committed */
982 		spin_lock(&fs_info->trans_lock);
983 		list_for_each_entry_reverse(t, &fs_info->trans_list,
984 					    list) {
985 			if (t->state >= TRANS_STATE_COMMIT_START) {
986 				if (t->state == TRANS_STATE_COMPLETED)
987 					break;
988 				cur_trans = t;
989 				refcount_inc(&cur_trans->use_count);
990 				break;
991 			}
992 		}
993 		spin_unlock(&fs_info->trans_lock);
994 		/* Nothing committing or committed. */
995 		if (!cur_trans)
996 			return ret;
997 	}
998 
999 	wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
1000 	ret = cur_trans->aborted;
1001 	btrfs_put_transaction(cur_trans);
1002 
1003 	return ret;
1004 }
1005 
1006 void btrfs_throttle(struct btrfs_fs_info *fs_info)
1007 {
1008 	wait_current_trans(fs_info, TRANS_START);
1009 }
1010 
1011 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
1012 {
1013 	struct btrfs_transaction *cur_trans = trans->transaction;
1014 
1015 	if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
1016 	    test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
1017 		return true;
1018 
1019 	if (btrfs_check_space_for_delayed_refs(trans->fs_info))
1020 		return true;
1021 
1022 	return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
1023 }
1024 
1025 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
1026 
1027 {
1028 	struct btrfs_fs_info *fs_info = trans->fs_info;
1029 
1030 	if (!trans->block_rsv) {
1031 		ASSERT(trans->bytes_reserved == 0,
1032 		       "trans->bytes_reserved=%llu", trans->bytes_reserved);
1033 		ASSERT(trans->delayed_refs_bytes_reserved == 0,
1034 		       "trans->delayed_refs_bytes_reserved=%llu",
1035 		       trans->delayed_refs_bytes_reserved);
1036 		return;
1037 	}
1038 
1039 	if (!trans->bytes_reserved) {
1040 		ASSERT(trans->delayed_refs_bytes_reserved == 0,
1041 		       "trans->delayed_refs_bytes_reserved=%llu",
1042 		       trans->delayed_refs_bytes_reserved);
1043 		return;
1044 	}
1045 
1046 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
1047 	trace_btrfs_space_reservation(fs_info, "transaction",
1048 				      trans->transid, trans->bytes_reserved, 0);
1049 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
1050 				trans->bytes_reserved, NULL);
1051 	trans->bytes_reserved = 0;
1052 
1053 	if (!trans->delayed_refs_bytes_reserved)
1054 		return;
1055 
1056 	trace_btrfs_space_reservation(fs_info, "local_delayed_refs_rsv",
1057 				      trans->transid,
1058 				      trans->delayed_refs_bytes_reserved, 0);
1059 	btrfs_block_rsv_release(fs_info, &trans->delayed_rsv,
1060 				trans->delayed_refs_bytes_reserved, NULL);
1061 	trans->delayed_refs_bytes_reserved = 0;
1062 }
1063 
1064 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
1065 				   int throttle)
1066 {
1067 	struct btrfs_fs_info *info = trans->fs_info;
1068 	struct btrfs_transaction *cur_trans = trans->transaction;
1069 	int ret = 0;
1070 
1071 	if (refcount_read(&trans->use_count) > 1) {
1072 		refcount_dec(&trans->use_count);
1073 		trans->block_rsv = trans->orig_rsv;
1074 		return 0;
1075 	}
1076 
1077 	btrfs_trans_release_metadata(trans);
1078 	trans->block_rsv = NULL;
1079 
1080 	btrfs_create_pending_block_groups(trans);
1081 
1082 	btrfs_trans_release_chunk_metadata(trans);
1083 
1084 	if (trans->type & __TRANS_FREEZABLE)
1085 		sb_end_intwrite(info->sb);
1086 
1087 	WARN_ON(cur_trans != info->running_transaction);
1088 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1089 	atomic_dec(&cur_trans->num_writers);
1090 	extwriter_counter_dec(cur_trans, trans->type);
1091 
1092 	cond_wake_up(&cur_trans->writer_wait);
1093 
1094 	btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1095 	btrfs_lockdep_release(info, btrfs_trans_num_writers);
1096 
1097 	btrfs_put_transaction(cur_trans);
1098 
1099 	if (current->journal_info == trans)
1100 		current->journal_info = NULL;
1101 
1102 	if (throttle)
1103 		btrfs_run_delayed_iputs(info);
1104 
1105 	if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1106 		wake_up_process(info->transaction_kthread);
1107 		if (TRANS_ABORTED(trans))
1108 			ret = trans->aborted;
1109 		else
1110 			ret = -EROFS;
1111 	}
1112 
1113 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1114 	return ret;
1115 }
1116 
1117 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1118 {
1119 	return __btrfs_end_transaction(trans, 0);
1120 }
1121 
1122 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1123 {
1124 	return __btrfs_end_transaction(trans, 1);
1125 }
1126 
1127 /*
1128  * when btree blocks are allocated, they have some corresponding bits set for
1129  * them in one of two extent_io trees.  This is used to make sure all of
1130  * those extents are sent to disk but does not wait on them
1131  */
1132 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1133 			       struct extent_io_tree *dirty_pages, int mark)
1134 {
1135 	int ret = 0;
1136 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1137 	struct extent_state *cached_state = NULL;
1138 	u64 start = 0;
1139 	u64 end;
1140 
1141 	while (btrfs_find_first_extent_bit(dirty_pages, start, &start, &end,
1142 					   mark, &cached_state)) {
1143 		bool wait_writeback = false;
1144 
1145 		ret = btrfs_convert_extent_bit(dirty_pages, start, end,
1146 					       EXTENT_NEED_WAIT,
1147 					       mark, &cached_state);
1148 		/*
1149 		 * convert_extent_bit can return -ENOMEM, which is most of the
1150 		 * time a temporary error. So when it happens, ignore the error
1151 		 * and wait for writeback of this range to finish - because we
1152 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1153 		 * to __btrfs_wait_marked_extents() would not know that
1154 		 * writeback for this range started and therefore wouldn't
1155 		 * wait for it to finish - we don't want to commit a
1156 		 * superblock that points to btree nodes/leafs for which
1157 		 * writeback hasn't finished yet (and without errors).
1158 		 * We cleanup any entries left in the io tree when committing
1159 		 * the transaction (through extent_io_tree_release()).
1160 		 */
1161 		if (ret == -ENOMEM) {
1162 			ret = 0;
1163 			wait_writeback = true;
1164 		}
1165 		if (!ret)
1166 			ret = filemap_fdatawrite_range(mapping, start, end);
1167 		if (!ret && wait_writeback)
1168 			btrfs_btree_wait_writeback_range(fs_info, start, end);
1169 		btrfs_free_extent_state(cached_state);
1170 		if (ret)
1171 			break;
1172 		cached_state = NULL;
1173 		cond_resched();
1174 		start = end + 1;
1175 	}
1176 	return ret;
1177 }
1178 
1179 /*
1180  * when btree blocks are allocated, they have some corresponding bits set for
1181  * them in one of two extent_io trees.  This is used to make sure all of
1182  * those extents are on disk for transaction or log commit.  We wait
1183  * on all the pages and clear them from the dirty pages state tree
1184  */
1185 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1186 				       struct extent_io_tree *dirty_pages)
1187 {
1188 	struct extent_state *cached_state = NULL;
1189 	u64 start = 0;
1190 	u64 end;
1191 	int ret = 0;
1192 
1193 	while (btrfs_find_first_extent_bit(dirty_pages, start, &start, &end,
1194 					   EXTENT_NEED_WAIT, &cached_state)) {
1195 		/*
1196 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1197 		 * When committing the transaction, we'll remove any entries
1198 		 * left in the io tree. For a log commit, we don't remove them
1199 		 * after committing the log because the tree can be accessed
1200 		 * concurrently - we do it only at transaction commit time when
1201 		 * it's safe to do it (through extent_io_tree_release()).
1202 		 */
1203 		ret = btrfs_clear_extent_bit(dirty_pages, start, end,
1204 					     EXTENT_NEED_WAIT, &cached_state);
1205 		if (ret == -ENOMEM)
1206 			ret = 0;
1207 		if (!ret)
1208 			btrfs_btree_wait_writeback_range(fs_info, start, end);
1209 		btrfs_free_extent_state(cached_state);
1210 		if (ret)
1211 			break;
1212 		cached_state = NULL;
1213 		cond_resched();
1214 		start = end + 1;
1215 	}
1216 	return ret;
1217 }
1218 
1219 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1220 		       struct extent_io_tree *dirty_pages)
1221 {
1222 	bool errors = false;
1223 	int ret;
1224 
1225 	ret = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1226 	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1227 		errors = true;
1228 
1229 	if (errors && !ret)
1230 		ret = -EIO;
1231 	return ret;
1232 }
1233 
1234 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1235 {
1236 	struct btrfs_fs_info *fs_info = log_root->fs_info;
1237 	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1238 	bool errors = false;
1239 	int ret;
1240 
1241 	ASSERT(btrfs_root_id(log_root) == BTRFS_TREE_LOG_OBJECTID,
1242 	       "root_id(log_root)=%llu", btrfs_root_id(log_root));
1243 
1244 	ret = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1245 	if ((mark & EXTENT_DIRTY_LOG1) &&
1246 	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1247 		errors = true;
1248 
1249 	if ((mark & EXTENT_DIRTY_LOG2) &&
1250 	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1251 		errors = true;
1252 
1253 	if (errors && !ret)
1254 		ret = -EIO;
1255 	return ret;
1256 }
1257 
1258 /*
1259  * When btree blocks are allocated the corresponding extents are marked dirty.
1260  * This function ensures such extents are persisted on disk for transaction or
1261  * log commit.
1262  *
1263  * @trans: transaction whose dirty pages we'd like to write
1264  */
1265 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1266 {
1267 	int ret;
1268 	int ret2;
1269 	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1270 	struct btrfs_fs_info *fs_info = trans->fs_info;
1271 	struct blk_plug plug;
1272 
1273 	blk_start_plug(&plug);
1274 	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1275 	blk_finish_plug(&plug);
1276 	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1277 
1278 	btrfs_extent_io_tree_release(&trans->transaction->dirty_pages);
1279 
1280 	if (ret)
1281 		return ret;
1282 	else if (ret2)
1283 		return ret2;
1284 	else
1285 		return 0;
1286 }
1287 
1288 /*
1289  * this is used to update the root pointer in the tree of tree roots.
1290  *
1291  * But, in the case of the extent allocation tree, updating the root
1292  * pointer may allocate blocks which may change the root of the extent
1293  * allocation tree.
1294  *
1295  * So, this loops and repeats and makes sure the cowonly root didn't
1296  * change while the root pointer was being updated in the metadata.
1297  */
1298 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1299 			       struct btrfs_root *root)
1300 {
1301 	int ret;
1302 	u64 old_root_bytenr;
1303 	u64 old_root_used;
1304 	struct btrfs_fs_info *fs_info = root->fs_info;
1305 	struct btrfs_root *tree_root = fs_info->tree_root;
1306 
1307 	old_root_used = btrfs_root_used(&root->root_item);
1308 
1309 	while (1) {
1310 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1311 		if (old_root_bytenr == root->node->start &&
1312 		    old_root_used == btrfs_root_used(&root->root_item))
1313 			break;
1314 
1315 		btrfs_set_root_node(&root->root_item, root->node);
1316 		ret = btrfs_update_root(trans, tree_root,
1317 					&root->root_key,
1318 					&root->root_item);
1319 		if (ret)
1320 			return ret;
1321 
1322 		old_root_used = btrfs_root_used(&root->root_item);
1323 	}
1324 
1325 	return 0;
1326 }
1327 
1328 /*
1329  * update all the cowonly tree roots on disk
1330  *
1331  * The error handling in this function may not be obvious. Any of the
1332  * failures will cause the file system to go offline. We still need
1333  * to clean up the delayed refs.
1334  */
1335 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1336 {
1337 	struct btrfs_fs_info *fs_info = trans->fs_info;
1338 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1339 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1340 	struct extent_buffer *eb;
1341 	int ret;
1342 
1343 	/*
1344 	 * At this point no one can be using this transaction to modify any tree
1345 	 * and no one can start another transaction to modify any tree either.
1346 	 */
1347 	ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING,
1348 	       "trans->transaction->state=%d", trans->transaction->state);
1349 
1350 	eb = btrfs_lock_root_node(fs_info->tree_root);
1351 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1352 			      0, &eb, BTRFS_NESTING_COW);
1353 	btrfs_tree_unlock(eb);
1354 	free_extent_buffer(eb);
1355 
1356 	if (ret)
1357 		return ret;
1358 
1359 	ret = btrfs_run_dev_stats(trans);
1360 	if (ret)
1361 		return ret;
1362 	ret = btrfs_run_dev_replace(trans);
1363 	if (ret)
1364 		return ret;
1365 	ret = btrfs_run_qgroups(trans);
1366 	if (ret)
1367 		return ret;
1368 
1369 	ret = btrfs_setup_space_cache(trans);
1370 	if (ret)
1371 		return ret;
1372 
1373 again:
1374 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1375 		struct btrfs_root *root;
1376 
1377 		root = list_first_entry(&fs_info->dirty_cowonly_roots,
1378 					struct btrfs_root, dirty_list);
1379 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1380 		list_move_tail(&root->dirty_list,
1381 			       &trans->transaction->switch_commits);
1382 
1383 		ret = update_cowonly_root(trans, root);
1384 		if (ret)
1385 			return ret;
1386 	}
1387 
1388 	/* Now flush any delayed refs generated by updating all of the roots */
1389 	ret = btrfs_run_delayed_refs(trans, U64_MAX);
1390 	if (ret)
1391 		return ret;
1392 
1393 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1394 		ret = btrfs_write_dirty_block_groups(trans);
1395 		if (ret)
1396 			return ret;
1397 
1398 		/*
1399 		 * We're writing the dirty block groups, which could generate
1400 		 * delayed refs, which could generate more dirty block groups,
1401 		 * so we want to keep this flushing in this loop to make sure
1402 		 * everything gets run.
1403 		 */
1404 		ret = btrfs_run_delayed_refs(trans, U64_MAX);
1405 		if (ret)
1406 			return ret;
1407 	}
1408 
1409 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1410 		goto again;
1411 
1412 	/* Update dev-replace pointer once everything is committed */
1413 	fs_info->dev_replace.committed_cursor_left =
1414 		fs_info->dev_replace.cursor_left_last_write_of_item;
1415 
1416 	return 0;
1417 }
1418 
1419 /*
1420  * If we had a pending drop we need to see if there are any others left in our
1421  * dead roots list, and if not clear our bit and wake any waiters.
1422  */
1423 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1424 {
1425 	/*
1426 	 * We put the drop in progress roots at the front of the list, so if the
1427 	 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1428 	 * up.
1429 	 */
1430 	spin_lock(&fs_info->trans_lock);
1431 	if (!list_empty(&fs_info->dead_roots)) {
1432 		struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1433 							   struct btrfs_root,
1434 							   root_list);
1435 		if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1436 			spin_unlock(&fs_info->trans_lock);
1437 			return;
1438 		}
1439 	}
1440 	spin_unlock(&fs_info->trans_lock);
1441 
1442 	btrfs_wake_unfinished_drop(fs_info);
1443 }
1444 
1445 /*
1446  * dead roots are old snapshots that need to be deleted.  This allocates
1447  * a dirty root struct and adds it into the list of dead roots that need to
1448  * be deleted
1449  */
1450 void btrfs_add_dead_root(struct btrfs_root *root)
1451 {
1452 	struct btrfs_fs_info *fs_info = root->fs_info;
1453 
1454 	spin_lock(&fs_info->trans_lock);
1455 	if (list_empty(&root->root_list)) {
1456 		btrfs_grab_root(root);
1457 
1458 		/* We want to process the partially complete drops first. */
1459 		if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1460 			list_add(&root->root_list, &fs_info->dead_roots);
1461 		else
1462 			list_add_tail(&root->root_list, &fs_info->dead_roots);
1463 	}
1464 	spin_unlock(&fs_info->trans_lock);
1465 }
1466 
1467 /*
1468  * Update each subvolume root and its relocation root, if it exists, in the tree
1469  * of tree roots. Also free log roots if they exist.
1470  */
1471 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1472 {
1473 	struct btrfs_fs_info *fs_info = trans->fs_info;
1474 	struct btrfs_root *gang[8];
1475 	int i;
1476 	int ret;
1477 
1478 	/*
1479 	 * At this point no one can be using this transaction to modify any tree
1480 	 * and no one can start another transaction to modify any tree either.
1481 	 */
1482 	ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING,
1483 	       "trans->transaction->state=%d", trans->transaction->state);
1484 
1485 	spin_lock(&fs_info->fs_roots_radix_lock);
1486 	while (1) {
1487 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1488 						 (void **)gang, 0,
1489 						 ARRAY_SIZE(gang),
1490 						 BTRFS_ROOT_TRANS_TAG);
1491 		if (ret == 0)
1492 			break;
1493 		for (i = 0; i < ret; i++) {
1494 			struct btrfs_root *root = gang[i];
1495 			int ret2;
1496 
1497 			/*
1498 			 * At this point we can neither have tasks logging inodes
1499 			 * from a root nor trying to commit a log tree.
1500 			 */
1501 			ASSERT(atomic_read(&root->log_writers) == 0,
1502 			       "atomic_read(&root->log_writers)=%d",
1503 			       atomic_read(&root->log_writers));
1504 			ASSERT(atomic_read(&root->log_commit[0]) == 0,
1505 			       "atomic_read(&root->log_commit[0])=%d",
1506 			       atomic_read(&root->log_commit[0]));
1507 			ASSERT(atomic_read(&root->log_commit[1]) == 0,
1508 			       "atomic_read(&root->log_commit[1])=%d",
1509 			       atomic_read(&root->log_commit[1]));
1510 
1511 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1512 					(unsigned long)btrfs_root_id(root),
1513 					BTRFS_ROOT_TRANS_TAG);
1514 			btrfs_qgroup_free_meta_all_pertrans(root);
1515 			spin_unlock(&fs_info->fs_roots_radix_lock);
1516 
1517 			btrfs_free_log(trans, root);
1518 			ret2 = btrfs_update_reloc_root(trans, root);
1519 			if (unlikely(ret2))
1520 				return ret2;
1521 
1522 			/* see comments in should_cow_block() */
1523 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1524 			smp_mb__after_atomic();
1525 
1526 			if (root->commit_root != root->node) {
1527 				list_add_tail(&root->dirty_list,
1528 					&trans->transaction->switch_commits);
1529 				btrfs_set_root_node(&root->root_item,
1530 						    root->node);
1531 			}
1532 
1533 			ret2 = btrfs_update_root(trans, fs_info->tree_root,
1534 						&root->root_key,
1535 						&root->root_item);
1536 			if (unlikely(ret2))
1537 				return ret2;
1538 			spin_lock(&fs_info->fs_roots_radix_lock);
1539 		}
1540 	}
1541 	spin_unlock(&fs_info->fs_roots_radix_lock);
1542 	return 0;
1543 }
1544 
1545 /*
1546  * Do all special snapshot related qgroup dirty hack.
1547  *
1548  * Will do all needed qgroup inherit and dirty hack like switch commit
1549  * roots inside one transaction and write all btree into disk, to make
1550  * qgroup works.
1551  */
1552 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1553 				   struct btrfs_root *src,
1554 				   struct btrfs_root *parent,
1555 				   struct btrfs_qgroup_inherit *inherit,
1556 				   u64 dst_objectid)
1557 {
1558 	struct btrfs_fs_info *fs_info = src->fs_info;
1559 	int ret;
1560 
1561 	/*
1562 	 * Save some performance in the case that qgroups are not enabled. If
1563 	 * this check races with the ioctl, rescan will kick in anyway.
1564 	 */
1565 	if (!btrfs_qgroup_full_accounting(fs_info))
1566 		return 0;
1567 
1568 	/*
1569 	 * Ensure dirty @src will be committed.  Or, after coming
1570 	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1571 	 * recorded root will never be updated again, causing an outdated root
1572 	 * item.
1573 	 */
1574 	ret = record_root_in_trans(trans, src, 1);
1575 	if (ret)
1576 		return ret;
1577 
1578 	/*
1579 	 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1580 	 * src root, so we must run the delayed refs here.
1581 	 *
1582 	 * However this isn't particularly fool proof, because there's no
1583 	 * synchronization keeping us from changing the tree after this point
1584 	 * before we do the qgroup_inherit, or even from making changes while
1585 	 * we're doing the qgroup_inherit.  But that's a problem for the future,
1586 	 * for now flush the delayed refs to narrow the race window where the
1587 	 * qgroup counters could end up wrong.
1588 	 */
1589 	ret = btrfs_run_delayed_refs(trans, U64_MAX);
1590 	if (unlikely(ret)) {
1591 		btrfs_abort_transaction(trans, ret);
1592 		return ret;
1593 	}
1594 
1595 	ret = commit_fs_roots(trans);
1596 	if (ret)
1597 		goto out;
1598 	ret = btrfs_qgroup_account_extents(trans);
1599 	if (ret < 0)
1600 		goto out;
1601 
1602 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1603 	ret = btrfs_qgroup_inherit(trans, btrfs_root_id(src), dst_objectid,
1604 				   btrfs_root_id(parent), inherit);
1605 	if (ret < 0)
1606 		goto out;
1607 
1608 	/*
1609 	 * Now we do a simplified commit transaction, which will:
1610 	 * 1) commit all subvolume and extent tree
1611 	 *    To ensure all subvolume and extent tree have a valid
1612 	 *    commit_root to accounting later insert_dir_item()
1613 	 * 2) write all btree blocks onto disk
1614 	 *    This is to make sure later btree modification will be cowed
1615 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1616 	 * In this simplified commit, we don't really care about other trees
1617 	 * like chunk and root tree, as they won't affect qgroup.
1618 	 * And we don't write super to avoid half committed status.
1619 	 */
1620 	ret = commit_cowonly_roots(trans);
1621 	if (ret)
1622 		goto out;
1623 	switch_commit_roots(trans);
1624 	ret = btrfs_write_and_wait_transaction(trans);
1625 	if (unlikely(ret))
1626 		btrfs_err(fs_info,
1627 "error while writing out transaction during qgroup snapshot accounting: %d", ret);
1628 
1629 out:
1630 	/*
1631 	 * Force parent root to be updated, as we recorded it before so its
1632 	 * last_trans == cur_transid.
1633 	 * Or it won't be committed again onto disk after later
1634 	 * insert_dir_item()
1635 	 */
1636 	if (!ret)
1637 		ret = record_root_in_trans(trans, parent, 1);
1638 	return ret;
1639 }
1640 
1641 /*
1642  * new snapshots need to be created at a very specific time in the
1643  * transaction commit.  This does the actual creation.
1644  *
1645  * Note:
1646  * If the error which may affect the commitment of the current transaction
1647  * happens, we should return the error number. If the error which just affect
1648  * the creation of the pending snapshots, just return 0.
1649  */
1650 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1651 				   struct btrfs_pending_snapshot *pending)
1652 {
1653 
1654 	struct btrfs_fs_info *fs_info = trans->fs_info;
1655 	struct btrfs_key key;
1656 	struct btrfs_root_item *new_root_item;
1657 	struct btrfs_root *tree_root = fs_info->tree_root;
1658 	struct btrfs_root *root = pending->root;
1659 	struct btrfs_root *parent_root;
1660 	struct btrfs_block_rsv *rsv;
1661 	struct btrfs_inode *parent_inode = pending->dir;
1662 	BTRFS_PATH_AUTO_FREE(path);
1663 	struct btrfs_dir_item *dir_item;
1664 	struct extent_buffer *tmp;
1665 	struct extent_buffer *old;
1666 	struct timespec64 cur_time;
1667 	int ret = 0;
1668 	u64 to_reserve = 0;
1669 	u64 index = 0;
1670 	u64 objectid;
1671 	u64 root_flags;
1672 	unsigned int nofs_flags;
1673 	struct fscrypt_name fname;
1674 
1675 	ASSERT(pending->path);
1676 	path = pending->path;
1677 
1678 	ASSERT(pending->root_item);
1679 	new_root_item = pending->root_item;
1680 
1681 	/*
1682 	 * We're inside a transaction and must make sure that any potential
1683 	 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1684 	 * filesystem.
1685 	 */
1686 	nofs_flags = memalloc_nofs_save();
1687 	pending->error = fscrypt_setup_filename(&parent_inode->vfs_inode,
1688 						&pending->dentry->d_name, 0,
1689 						&fname);
1690 	memalloc_nofs_restore(nofs_flags);
1691 	if (unlikely(pending->error))
1692 		goto free_pending;
1693 
1694 	pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1695 	if (unlikely(pending->error))
1696 		goto free_fname;
1697 
1698 	/*
1699 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1700 	 * accounted by later btrfs_qgroup_inherit().
1701 	 */
1702 	btrfs_set_skip_qgroup(trans, objectid);
1703 
1704 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1705 
1706 	if (to_reserve > 0) {
1707 		pending->error = btrfs_block_rsv_add(fs_info,
1708 						     &pending->block_rsv,
1709 						     to_reserve,
1710 						     BTRFS_RESERVE_NO_FLUSH);
1711 		if (unlikely(pending->error))
1712 			goto clear_skip_qgroup;
1713 	}
1714 
1715 	rsv = trans->block_rsv;
1716 	trans->block_rsv = &pending->block_rsv;
1717 	trans->bytes_reserved = trans->block_rsv->reserved;
1718 	trace_btrfs_space_reservation(fs_info, "transaction",
1719 				      trans->transid,
1720 				      trans->bytes_reserved, 1);
1721 	parent_root = parent_inode->root;
1722 	ret = record_root_in_trans(trans, parent_root, 0);
1723 	if (unlikely(ret))
1724 		goto fail;
1725 	cur_time = current_time(&parent_inode->vfs_inode);
1726 
1727 	/*
1728 	 * insert the directory item
1729 	 */
1730 	ret = btrfs_set_inode_index(parent_inode, &index);
1731 	if (unlikely(ret)) {
1732 		btrfs_abort_transaction(trans, ret);
1733 		goto fail;
1734 	}
1735 
1736 	/* check if there is a file/dir which has the same name. */
1737 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1738 					 btrfs_ino(parent_inode),
1739 					 &fname.disk_name, 0);
1740 	if (unlikely(dir_item != NULL && !IS_ERR(dir_item))) {
1741 		pending->error = -EEXIST;
1742 		goto dir_item_existed;
1743 	} else if (IS_ERR(dir_item)) {
1744 		ret = PTR_ERR(dir_item);
1745 		btrfs_abort_transaction(trans, ret);
1746 		goto fail;
1747 	}
1748 	btrfs_release_path(path);
1749 
1750 	ret = btrfs_create_qgroup(trans, objectid);
1751 	if (ret && ret != -EEXIST) {
1752 		if (unlikely(ret != -ENOTCONN || btrfs_qgroup_enabled(fs_info))) {
1753 			btrfs_abort_transaction(trans, ret);
1754 			goto fail;
1755 		}
1756 	}
1757 
1758 	/*
1759 	 * pull in the delayed directory update
1760 	 * and the delayed inode item
1761 	 * otherwise we corrupt the FS during
1762 	 * snapshot
1763 	 */
1764 	ret = btrfs_run_delayed_items(trans);
1765 	if (unlikely(ret)) {
1766 		btrfs_abort_transaction(trans, ret);
1767 		goto fail;
1768 	}
1769 
1770 	ret = record_root_in_trans(trans, root, 0);
1771 	if (unlikely(ret)) {
1772 		btrfs_abort_transaction(trans, ret);
1773 		goto fail;
1774 	}
1775 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1776 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1777 	btrfs_check_and_init_root_item(new_root_item);
1778 
1779 	root_flags = btrfs_root_flags(new_root_item);
1780 	if (pending->readonly)
1781 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1782 	else
1783 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1784 	btrfs_set_root_flags(new_root_item, root_flags);
1785 
1786 	btrfs_set_root_generation_v2(new_root_item,
1787 			trans->transid);
1788 	generate_random_guid(new_root_item->uuid);
1789 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1790 			BTRFS_UUID_SIZE);
1791 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1792 		memset(new_root_item->received_uuid, 0,
1793 		       sizeof(new_root_item->received_uuid));
1794 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1795 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1796 		btrfs_set_root_stransid(new_root_item, 0);
1797 		btrfs_set_root_rtransid(new_root_item, 0);
1798 	}
1799 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1800 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1801 	btrfs_set_root_otransid(new_root_item, trans->transid);
1802 
1803 	old = btrfs_lock_root_node(root);
1804 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1805 			      BTRFS_NESTING_COW);
1806 	if (unlikely(ret)) {
1807 		btrfs_tree_unlock(old);
1808 		free_extent_buffer(old);
1809 		btrfs_abort_transaction(trans, ret);
1810 		goto fail;
1811 	}
1812 
1813 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1814 	/* clean up in any case */
1815 	btrfs_tree_unlock(old);
1816 	free_extent_buffer(old);
1817 	if (unlikely(ret)) {
1818 		btrfs_abort_transaction(trans, ret);
1819 		goto fail;
1820 	}
1821 	/* see comments in should_cow_block() */
1822 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1823 	smp_mb__after_atomic();
1824 
1825 	btrfs_set_root_node(new_root_item, tmp);
1826 	/* record when the snapshot was created in key.offset */
1827 	key.objectid = objectid;
1828 	key.type = BTRFS_ROOT_ITEM_KEY;
1829 	key.offset = trans->transid;
1830 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1831 	btrfs_tree_unlock(tmp);
1832 	free_extent_buffer(tmp);
1833 	if (unlikely(ret)) {
1834 		btrfs_abort_transaction(trans, ret);
1835 		goto fail;
1836 	}
1837 
1838 	/*
1839 	 * insert root back/forward references
1840 	 */
1841 	ret = btrfs_add_root_ref(trans, objectid,
1842 				 btrfs_root_id(parent_root),
1843 				 btrfs_ino(parent_inode), index,
1844 				 &fname.disk_name);
1845 	if (unlikely(ret)) {
1846 		btrfs_abort_transaction(trans, ret);
1847 		goto fail;
1848 	}
1849 
1850 	key.offset = (u64)-1;
1851 	pending->snap = btrfs_get_new_fs_root(fs_info, objectid, &pending->anon_dev);
1852 	if (IS_ERR(pending->snap)) {
1853 		ret = PTR_ERR(pending->snap);
1854 		pending->snap = NULL;
1855 		btrfs_abort_transaction(trans, ret);
1856 		goto fail;
1857 	}
1858 
1859 	ret = btrfs_reloc_post_snapshot(trans, pending);
1860 	if (unlikely(ret)) {
1861 		btrfs_abort_transaction(trans, ret);
1862 		goto fail;
1863 	}
1864 
1865 	/*
1866 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1867 	 * snapshot hack to do fast snapshot.
1868 	 * To co-operate with that hack, we do hack again.
1869 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1870 	 */
1871 	if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_FULL)
1872 		ret = qgroup_account_snapshot(trans, root, parent_root,
1873 					      pending->inherit, objectid);
1874 	else if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE)
1875 		ret = btrfs_qgroup_inherit(trans, btrfs_root_id(root), objectid,
1876 					   btrfs_root_id(parent_root), pending->inherit);
1877 	if (unlikely(ret < 0))
1878 		goto fail;
1879 
1880 	ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1881 				    parent_inode, &key, BTRFS_FT_DIR,
1882 				    index);
1883 	if (unlikely(ret)) {
1884 		btrfs_abort_transaction(trans, ret);
1885 		goto fail;
1886 	}
1887 
1888 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
1889 						  fname.disk_name.len * 2);
1890 	inode_set_mtime_to_ts(&parent_inode->vfs_inode,
1891 			      inode_set_ctime_current(&parent_inode->vfs_inode));
1892 	ret = btrfs_update_inode_fallback(trans, parent_inode);
1893 	if (unlikely(ret)) {
1894 		btrfs_abort_transaction(trans, ret);
1895 		goto fail;
1896 	}
1897 	ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1898 				  BTRFS_UUID_KEY_SUBVOL,
1899 				  objectid);
1900 	if (unlikely(ret)) {
1901 		btrfs_abort_transaction(trans, ret);
1902 		goto fail;
1903 	}
1904 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1905 		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1906 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1907 					  objectid);
1908 		if (unlikely(ret && ret != -EEXIST)) {
1909 			btrfs_abort_transaction(trans, ret);
1910 			goto fail;
1911 		}
1912 	}
1913 
1914 fail:
1915 	pending->error = ret;
1916 dir_item_existed:
1917 	trans->block_rsv = rsv;
1918 	trans->bytes_reserved = 0;
1919 clear_skip_qgroup:
1920 	btrfs_clear_skip_qgroup(trans);
1921 free_fname:
1922 	fscrypt_free_filename(&fname);
1923 free_pending:
1924 	kfree(new_root_item);
1925 	pending->root_item = NULL;
1926 	pending->path = NULL;
1927 
1928 	return ret;
1929 }
1930 
1931 /*
1932  * create all the snapshots we've scheduled for creation
1933  */
1934 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1935 {
1936 	struct btrfs_pending_snapshot *pending, *next;
1937 	struct list_head *head = &trans->transaction->pending_snapshots;
1938 	int ret = 0;
1939 
1940 	list_for_each_entry_safe(pending, next, head, list) {
1941 		list_del(&pending->list);
1942 		ret = create_pending_snapshot(trans, pending);
1943 		if (unlikely(ret))
1944 			break;
1945 	}
1946 	return ret;
1947 }
1948 
1949 static void update_super_roots(struct btrfs_fs_info *fs_info)
1950 {
1951 	struct btrfs_root_item *root_item;
1952 	struct btrfs_super_block *super;
1953 
1954 	super = fs_info->super_copy;
1955 
1956 	root_item = &fs_info->chunk_root->root_item;
1957 	super->chunk_root = root_item->bytenr;
1958 	super->chunk_root_generation = root_item->generation;
1959 	super->chunk_root_level = root_item->level;
1960 
1961 	root_item = &fs_info->tree_root->root_item;
1962 	super->root = root_item->bytenr;
1963 	super->generation = root_item->generation;
1964 	super->root_level = root_item->level;
1965 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1966 		super->cache_generation = root_item->generation;
1967 	else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1968 		super->cache_generation = 0;
1969 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1970 		super->uuid_tree_generation = root_item->generation;
1971 
1972 	if (btrfs_fs_incompat(fs_info, REMAP_TREE)) {
1973 		root_item = &fs_info->remap_root->root_item;
1974 		super->remap_root = root_item->bytenr;
1975 		super->remap_root_generation = root_item->generation;
1976 		super->remap_root_level = root_item->level;
1977 	}
1978 }
1979 
1980 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1981 {
1982 	struct btrfs_transaction *trans;
1983 	int ret = 0;
1984 
1985 	spin_lock(&info->trans_lock);
1986 	trans = info->running_transaction;
1987 	if (trans)
1988 		ret = is_transaction_blocked(trans);
1989 	spin_unlock(&info->trans_lock);
1990 	return ret;
1991 }
1992 
1993 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1994 {
1995 	struct btrfs_fs_info *fs_info = trans->fs_info;
1996 	struct btrfs_transaction *cur_trans;
1997 
1998 	/* Kick the transaction kthread. */
1999 	set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2000 	wake_up_process(fs_info->transaction_kthread);
2001 
2002 	/* take transaction reference */
2003 	cur_trans = trans->transaction;
2004 	refcount_inc(&cur_trans->use_count);
2005 
2006 	btrfs_end_transaction(trans);
2007 
2008 	/*
2009 	 * Wait for the current transaction commit to start and block
2010 	 * subsequent transaction joins
2011 	 */
2012 	btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2013 	wait_event(fs_info->transaction_blocked_wait,
2014 		   cur_trans->state >= TRANS_STATE_COMMIT_START ||
2015 		   TRANS_ABORTED(cur_trans));
2016 	btrfs_put_transaction(cur_trans);
2017 }
2018 
2019 /*
2020  * If there is a running transaction commit it or if it's already committing,
2021  * wait for its commit to complete. Does not start and commit a new transaction
2022  * if there isn't any running.
2023  */
2024 int btrfs_commit_current_transaction(struct btrfs_root *root)
2025 {
2026 	struct btrfs_trans_handle *trans;
2027 
2028 	trans = btrfs_attach_transaction_barrier(root);
2029 	if (IS_ERR(trans)) {
2030 		int ret = PTR_ERR(trans);
2031 
2032 		return (ret == -ENOENT) ? 0 : ret;
2033 	}
2034 
2035 	return btrfs_commit_transaction(trans);
2036 }
2037 
2038 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
2039 {
2040 	struct btrfs_fs_info *fs_info = trans->fs_info;
2041 	struct btrfs_transaction *cur_trans = trans->transaction;
2042 
2043 	WARN_ON(refcount_read(&trans->use_count) > 1);
2044 
2045 	btrfs_abort_transaction(trans, err);
2046 
2047 	spin_lock(&fs_info->trans_lock);
2048 
2049 	/*
2050 	 * If the transaction is removed from the list, it means this
2051 	 * transaction has been committed successfully, so it is impossible
2052 	 * to call the cleanup function.
2053 	 */
2054 	BUG_ON(list_empty(&cur_trans->list));
2055 
2056 	if (cur_trans == fs_info->running_transaction) {
2057 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
2058 		spin_unlock(&fs_info->trans_lock);
2059 
2060 		/*
2061 		 * The thread has already released the lockdep map as reader
2062 		 * already in btrfs_commit_transaction().
2063 		 */
2064 		btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2065 		wait_event(cur_trans->writer_wait,
2066 			   atomic_read(&cur_trans->num_writers) == 1);
2067 
2068 		spin_lock(&fs_info->trans_lock);
2069 	}
2070 
2071 	/*
2072 	 * Now that we know no one else is still using the transaction we can
2073 	 * remove the transaction from the list of transactions. This avoids
2074 	 * the transaction kthread from cleaning up the transaction while some
2075 	 * other task is still using it, which could result in a use-after-free
2076 	 * on things like log trees, as it forces the transaction kthread to
2077 	 * wait for this transaction to be cleaned up by us.
2078 	 */
2079 	list_del_init(&cur_trans->list);
2080 
2081 	spin_unlock(&fs_info->trans_lock);
2082 
2083 	btrfs_cleanup_one_transaction(trans->transaction);
2084 
2085 	spin_lock(&fs_info->trans_lock);
2086 	if (cur_trans == fs_info->running_transaction)
2087 		fs_info->running_transaction = NULL;
2088 	spin_unlock(&fs_info->trans_lock);
2089 
2090 	if (trans->type & __TRANS_FREEZABLE)
2091 		sb_end_intwrite(fs_info->sb);
2092 	btrfs_put_transaction(cur_trans);
2093 	btrfs_put_transaction(cur_trans);
2094 
2095 	trace_btrfs_transaction_commit(fs_info);
2096 
2097 	if (current->journal_info == trans)
2098 		current->journal_info = NULL;
2099 
2100 	/*
2101 	 * If relocation is running, we can't cancel scrub because that will
2102 	 * result in a deadlock. Before relocating a block group, relocation
2103 	 * pauses scrub, then starts and commits a transaction before unpausing
2104 	 * scrub. If the transaction commit is being done by the relocation
2105 	 * task or triggered by another task and the relocation task is waiting
2106 	 * for the commit, and we end up here due to an error in the commit
2107 	 * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2108 	 * asking for scrub to stop while having it asked to be paused higher
2109 	 * above in relocation code.
2110 	 */
2111 	if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2112 		btrfs_scrub_cancel(fs_info);
2113 
2114 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2115 }
2116 
2117 /*
2118  * Release reserved delayed ref space of all pending block groups of the
2119  * transaction and remove them from the list
2120  */
2121 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2122 {
2123        struct btrfs_fs_info *fs_info = trans->fs_info;
2124        struct btrfs_block_group *block_group, *tmp;
2125 
2126        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2127                btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
2128 		/*
2129 		* Not strictly necessary to lock, as no other task will be using a
2130 		* block_group on the new_bgs list during a transaction abort.
2131 		*/
2132 	       spin_lock(&fs_info->unused_bgs_lock);
2133                list_del_init(&block_group->bg_list);
2134 	       btrfs_put_block_group(block_group);
2135 	       spin_unlock(&fs_info->unused_bgs_lock);
2136        }
2137 }
2138 
2139 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2140 {
2141 	/*
2142 	 * We use try_to_writeback_inodes_sb() here because if we used
2143 	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2144 	 * Currently are holding the fs freeze lock, if we do an async flush
2145 	 * we'll do btrfs_join_transaction() and deadlock because we need to
2146 	 * wait for the fs freeze lock.  Using the direct flushing we benefit
2147 	 * from already being in a transaction and our join_transaction doesn't
2148 	 * have to re-take the fs freeze lock.
2149 	 *
2150 	 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2151 	 * if it can read lock sb->s_umount. It will always be able to lock it,
2152 	 * except when the filesystem is being unmounted or being frozen, but in
2153 	 * those cases sync_filesystem() is called, which results in calling
2154 	 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2155 	 * Note that we don't call writeback_inodes_sb() directly, because it
2156 	 * will emit a warning if sb->s_umount is not locked.
2157 	 */
2158 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2159 		try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2160 	return 0;
2161 }
2162 
2163 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2164 {
2165 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2166 		btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
2167 }
2168 
2169 /*
2170  * Add a pending snapshot associated with the given transaction handle to the
2171  * respective handle. This must be called after the transaction commit started
2172  * and while holding fs_info->trans_lock.
2173  * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2174  * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2175  * returns an error.
2176  */
2177 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2178 {
2179 	struct btrfs_transaction *cur_trans = trans->transaction;
2180 
2181 	if (!trans->pending_snapshot)
2182 		return;
2183 
2184 	lockdep_assert_held(&trans->fs_info->trans_lock);
2185 	ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP,
2186 	       "cur_trans->state=%d", cur_trans->state);
2187 
2188 	list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2189 }
2190 
2191 static void update_commit_stats(struct btrfs_fs_info *fs_info)
2192 {
2193 	ktime_t now = ktime_get_ns();
2194 	ktime_t interval = now - fs_info->commit_stats.critical_section_start_time;
2195 
2196 	ASSERT(fs_info->commit_stats.critical_section_start_time);
2197 
2198 	fs_info->commit_stats.commit_count++;
2199 	fs_info->commit_stats.last_commit_dur = interval;
2200 	fs_info->commit_stats.max_commit_dur =
2201 			max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2202 	fs_info->commit_stats.total_commit_dur += interval;
2203 	fs_info->commit_stats.critical_section_start_time = 0;
2204 }
2205 
2206 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2207 {
2208 	struct btrfs_fs_info *fs_info = trans->fs_info;
2209 	struct btrfs_transaction *cur_trans = trans->transaction;
2210 	struct btrfs_transaction *prev_trans = NULL;
2211 	int ret;
2212 
2213 	ASSERT(refcount_read(&trans->use_count) == 1,
2214 	       "refcount_read(&trans->use_count)=%d", refcount_read(&trans->use_count));
2215 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2216 
2217 	clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2218 
2219 	/* Stop the commit early if ->aborted is set */
2220 	if (TRANS_ABORTED(cur_trans)) {
2221 		ret = cur_trans->aborted;
2222 		goto lockdep_trans_commit_start_release;
2223 	}
2224 
2225 	btrfs_trans_release_metadata(trans);
2226 	trans->block_rsv = NULL;
2227 
2228 	/*
2229 	 * We only want one transaction commit doing the flushing so we do not
2230 	 * waste a bunch of time on lock contention on the extent root node.
2231 	 */
2232 	if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2233 			      &cur_trans->delayed_refs.flags)) {
2234 		/*
2235 		 * Make a pass through all the delayed refs we have so far.
2236 		 * Any running threads may add more while we are here.
2237 		 */
2238 		ret = btrfs_run_delayed_refs(trans, 0);
2239 		if (ret)
2240 			goto lockdep_trans_commit_start_release;
2241 	}
2242 
2243 	btrfs_create_pending_block_groups(trans);
2244 
2245 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2246 		int run_it = 0;
2247 
2248 		/* this mutex is also taken before trying to set
2249 		 * block groups readonly.  We need to make sure
2250 		 * that nobody has set a block group readonly
2251 		 * after a extents from that block group have been
2252 		 * allocated for cache files.  btrfs_set_block_group_ro
2253 		 * will wait for the transaction to commit if it
2254 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2255 		 *
2256 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2257 		 * only one process starts all the block group IO.  It wouldn't
2258 		 * hurt to have more than one go through, but there's no
2259 		 * real advantage to it either.
2260 		 */
2261 		mutex_lock(&fs_info->ro_block_group_mutex);
2262 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2263 				      &cur_trans->flags))
2264 			run_it = 1;
2265 		mutex_unlock(&fs_info->ro_block_group_mutex);
2266 
2267 		if (run_it) {
2268 			ret = btrfs_start_dirty_block_groups(trans);
2269 			if (unlikely(ret))
2270 				goto lockdep_trans_commit_start_release;
2271 		}
2272 	}
2273 
2274 	spin_lock(&fs_info->trans_lock);
2275 	if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) {
2276 		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2277 
2278 		add_pending_snapshot(trans);
2279 
2280 		spin_unlock(&fs_info->trans_lock);
2281 		refcount_inc(&cur_trans->use_count);
2282 
2283 		if (trans->in_fsync)
2284 			want_state = TRANS_STATE_SUPER_COMMITTED;
2285 
2286 		btrfs_trans_state_lockdep_release(fs_info,
2287 						  BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2288 		ret = btrfs_end_transaction(trans);
2289 		wait_for_commit(cur_trans, want_state);
2290 
2291 		if (TRANS_ABORTED(cur_trans))
2292 			ret = cur_trans->aborted;
2293 
2294 		btrfs_put_transaction(cur_trans);
2295 
2296 		return ret;
2297 	}
2298 
2299 	cur_trans->state = TRANS_STATE_COMMIT_PREP;
2300 	wake_up(&fs_info->transaction_blocked_wait);
2301 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2302 
2303 	if (!list_is_first(&cur_trans->list, &fs_info->trans_list)) {
2304 		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2305 
2306 		if (trans->in_fsync)
2307 			want_state = TRANS_STATE_SUPER_COMMITTED;
2308 
2309 		prev_trans = list_prev_entry(cur_trans, list);
2310 		if (prev_trans->state < want_state) {
2311 			refcount_inc(&prev_trans->use_count);
2312 			spin_unlock(&fs_info->trans_lock);
2313 
2314 			wait_for_commit(prev_trans, want_state);
2315 
2316 			ret = READ_ONCE(prev_trans->aborted);
2317 
2318 			btrfs_put_transaction(prev_trans);
2319 			if (unlikely(ret))
2320 				goto lockdep_release;
2321 			spin_lock(&fs_info->trans_lock);
2322 		}
2323 	} else {
2324 		/*
2325 		 * The previous transaction was aborted and was already removed
2326 		 * from the list of transactions at fs_info->trans_list. So we
2327 		 * abort to prevent writing a new superblock that reflects a
2328 		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2329 		 */
2330 		if (BTRFS_FS_ERROR(fs_info)) {
2331 			spin_unlock(&fs_info->trans_lock);
2332 			ret = -EROFS;
2333 			goto lockdep_release;
2334 		}
2335 	}
2336 
2337 	cur_trans->state = TRANS_STATE_COMMIT_START;
2338 	wake_up(&fs_info->transaction_blocked_wait);
2339 	spin_unlock(&fs_info->trans_lock);
2340 
2341 	/*
2342 	 * Get the time spent on the work done by the commit thread and not
2343 	 * the time spent waiting on a previous commit
2344 	 */
2345 	fs_info->commit_stats.critical_section_start_time = ktime_get_ns();
2346 	extwriter_counter_dec(cur_trans, trans->type);
2347 
2348 	ret = btrfs_start_delalloc_flush(fs_info);
2349 	if (unlikely(ret))
2350 		goto lockdep_release;
2351 
2352 	ret = btrfs_run_delayed_items(trans);
2353 	if (unlikely(ret))
2354 		goto lockdep_release;
2355 
2356 	/*
2357 	 * The thread has started/joined the transaction thus it holds the
2358 	 * lockdep map as a reader. It has to release it before acquiring the
2359 	 * lockdep map as a writer.
2360 	 */
2361 	btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2362 	btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2363 	wait_event(cur_trans->writer_wait,
2364 		   extwriter_counter_read(cur_trans) == 0);
2365 
2366 	/* some pending stuffs might be added after the previous flush. */
2367 	ret = btrfs_run_delayed_items(trans);
2368 	if (unlikely(ret)) {
2369 		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2370 		goto cleanup_transaction;
2371 	}
2372 
2373 	btrfs_wait_delalloc_flush(fs_info);
2374 
2375 	/*
2376 	 * Wait for all ordered extents started by a fast fsync that joined this
2377 	 * transaction. Otherwise if this transaction commits before the ordered
2378 	 * extents complete we lose logged data after a power failure.
2379 	 */
2380 	btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2381 	wait_event(cur_trans->pending_wait,
2382 		   atomic_read(&cur_trans->pending_ordered) == 0);
2383 
2384 	btrfs_scrub_pause(fs_info);
2385 	/*
2386 	 * Ok now we need to make sure to block out any other joins while we
2387 	 * commit the transaction.  We could have started a join before setting
2388 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2389 	 */
2390 	spin_lock(&fs_info->trans_lock);
2391 	add_pending_snapshot(trans);
2392 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2393 	spin_unlock(&fs_info->trans_lock);
2394 
2395 	/*
2396 	 * The thread has started/joined the transaction thus it holds the
2397 	 * lockdep map as a reader. It has to release it before acquiring the
2398 	 * lockdep map as a writer.
2399 	 */
2400 	btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2401 	btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2402 	wait_event(cur_trans->writer_wait,
2403 		   atomic_read(&cur_trans->num_writers) == 1);
2404 
2405 	/*
2406 	 * Make lockdep happy by acquiring the state locks after
2407 	 * btrfs_trans_num_writers is released. If we acquired the state locks
2408 	 * before releasing the btrfs_trans_num_writers lock then lockdep would
2409 	 * complain because we did not follow the reverse order unlocking rule.
2410 	 */
2411 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2412 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2413 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2414 
2415 	/*
2416 	 * We've started the commit, clear the flag in case we were triggered to
2417 	 * do an async commit but somebody else started before the transaction
2418 	 * kthread could do the work.
2419 	 */
2420 	clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2421 
2422 	if (TRANS_ABORTED(cur_trans)) {
2423 		ret = cur_trans->aborted;
2424 		btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2425 		goto scrub_continue;
2426 	}
2427 	/*
2428 	 * the reloc mutex makes sure that we stop
2429 	 * the balancing code from coming in and moving
2430 	 * extents around in the middle of the commit
2431 	 */
2432 	mutex_lock(&fs_info->reloc_mutex);
2433 
2434 	/*
2435 	 * We needn't worry about the delayed items because we will
2436 	 * deal with them in create_pending_snapshot(), which is the
2437 	 * core function of the snapshot creation.
2438 	 */
2439 	ret = create_pending_snapshots(trans);
2440 	if (unlikely(ret))
2441 		goto unlock_reloc;
2442 
2443 	/*
2444 	 * We insert the dir indexes of the snapshots and update the inode
2445 	 * of the snapshots' parents after the snapshot creation, so there
2446 	 * are some delayed items which are not dealt with. Now deal with
2447 	 * them.
2448 	 *
2449 	 * We needn't worry that this operation will corrupt the snapshots,
2450 	 * because all the tree which are snapshotted will be forced to COW
2451 	 * the nodes and leaves.
2452 	 */
2453 	ret = btrfs_run_delayed_items(trans);
2454 	if (unlikely(ret))
2455 		goto unlock_reloc;
2456 
2457 	ret = btrfs_run_delayed_refs(trans, U64_MAX);
2458 	if (unlikely(ret))
2459 		goto unlock_reloc;
2460 
2461 	/*
2462 	 * make sure none of the code above managed to slip in a
2463 	 * delayed item
2464 	 */
2465 	btrfs_assert_delayed_root_empty(fs_info);
2466 
2467 	WARN_ON(cur_trans != trans->transaction);
2468 
2469 	ret = commit_fs_roots(trans);
2470 	if (unlikely(ret))
2471 		goto unlock_reloc;
2472 
2473 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2474 	 * safe to free the root of tree log roots
2475 	 */
2476 	btrfs_free_log_root_tree(trans, fs_info);
2477 
2478 	/*
2479 	 * Since fs roots are all committed, we can get a quite accurate
2480 	 * new_roots. So let's do quota accounting.
2481 	 */
2482 	ret = btrfs_qgroup_account_extents(trans);
2483 	if (unlikely(ret < 0))
2484 		goto unlock_reloc;
2485 
2486 	ret = commit_cowonly_roots(trans);
2487 	if (unlikely(ret))
2488 		goto unlock_reloc;
2489 
2490 	/*
2491 	 * The tasks which save the space cache and inode cache may also
2492 	 * update ->aborted, check it.
2493 	 */
2494 	if (TRANS_ABORTED(cur_trans)) {
2495 		ret = cur_trans->aborted;
2496 		goto unlock_reloc;
2497 	}
2498 
2499 	cur_trans = fs_info->running_transaction;
2500 
2501 	btrfs_set_root_node(&fs_info->tree_root->root_item,
2502 			    fs_info->tree_root->node);
2503 	list_add_tail(&fs_info->tree_root->dirty_list,
2504 		      &cur_trans->switch_commits);
2505 
2506 	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2507 			    fs_info->chunk_root->node);
2508 	list_add_tail(&fs_info->chunk_root->dirty_list,
2509 		      &cur_trans->switch_commits);
2510 
2511 	switch_commit_roots(trans);
2512 
2513 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2514 	ASSERT(list_empty(&cur_trans->io_bgs));
2515 	update_super_roots(fs_info);
2516 
2517 	btrfs_set_super_log_root(fs_info->super_copy, 0);
2518 	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2519 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2520 	       sizeof(*fs_info->super_copy));
2521 
2522 	btrfs_commit_device_sizes(cur_trans);
2523 
2524 	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2525 	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2526 
2527 	btrfs_trans_release_chunk_metadata(trans);
2528 
2529 	/*
2530 	 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2531 	 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2532 	 * make sure that before we commit our superblock, no other task can
2533 	 * start a new transaction and commit a log tree before we commit our
2534 	 * superblock. Anyone trying to commit a log tree locks this mutex before
2535 	 * writing its superblock.
2536 	 */
2537 	mutex_lock(&fs_info->tree_log_mutex);
2538 
2539 	spin_lock(&fs_info->trans_lock);
2540 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2541 	fs_info->running_transaction = NULL;
2542 	spin_unlock(&fs_info->trans_lock);
2543 	mutex_unlock(&fs_info->reloc_mutex);
2544 
2545 	wake_up(&fs_info->transaction_wait);
2546 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2547 
2548 	/* If we have features changed, wake up the cleaner to update sysfs. */
2549 	if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2550 	    fs_info->cleaner_kthread)
2551 		wake_up_process(fs_info->cleaner_kthread);
2552 
2553 	ret = btrfs_write_and_wait_transaction(trans);
2554 	if (unlikely(ret)) {
2555 		btrfs_err(fs_info, "error while writing out transaction: %d", ret);
2556 		mutex_unlock(&fs_info->tree_log_mutex);
2557 		goto scrub_continue;
2558 	}
2559 
2560 	ret = write_all_supers(fs_info, 0);
2561 	/*
2562 	 * the super is written, we can safely allow the tree-loggers
2563 	 * to go about their business
2564 	 */
2565 	mutex_unlock(&fs_info->tree_log_mutex);
2566 	if (unlikely(ret))
2567 		goto scrub_continue;
2568 
2569 	update_commit_stats(fs_info);
2570 	/*
2571 	 * We needn't acquire the lock here because there is no other task
2572 	 * which can change it.
2573 	 */
2574 	cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2575 	wake_up(&cur_trans->commit_wait);
2576 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2577 
2578 	ret = btrfs_finish_extent_commit(trans);
2579 	if (unlikely(ret))
2580 		goto scrub_continue;
2581 
2582 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2583 		btrfs_clear_space_info_full(fs_info);
2584 
2585 	btrfs_set_last_trans_committed(fs_info, cur_trans->transid);
2586 	/*
2587 	 * We needn't acquire the lock here because there is no other task
2588 	 * which can change it.
2589 	 */
2590 	cur_trans->state = TRANS_STATE_COMPLETED;
2591 	wake_up(&cur_trans->commit_wait);
2592 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2593 
2594 	spin_lock(&fs_info->trans_lock);
2595 	list_del_init(&cur_trans->list);
2596 	spin_unlock(&fs_info->trans_lock);
2597 
2598 	btrfs_put_transaction(cur_trans);
2599 	btrfs_put_transaction(cur_trans);
2600 
2601 	if (trans->type & __TRANS_FREEZABLE)
2602 		sb_end_intwrite(fs_info->sb);
2603 
2604 	trace_btrfs_transaction_commit(fs_info);
2605 
2606 	btrfs_scrub_continue(fs_info);
2607 
2608 	if (current->journal_info == trans)
2609 		current->journal_info = NULL;
2610 
2611 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2612 
2613 	return ret;
2614 
2615 unlock_reloc:
2616 	mutex_unlock(&fs_info->reloc_mutex);
2617 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2618 scrub_continue:
2619 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2620 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2621 	btrfs_scrub_continue(fs_info);
2622 cleanup_transaction:
2623 	btrfs_trans_release_metadata(trans);
2624 	btrfs_cleanup_pending_block_groups(trans);
2625 	btrfs_trans_release_chunk_metadata(trans);
2626 	trans->block_rsv = NULL;
2627 	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2628 	if (current->journal_info == trans)
2629 		current->journal_info = NULL;
2630 	cleanup_transaction(trans, ret);
2631 
2632 	return ret;
2633 
2634 lockdep_release:
2635 	btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2636 	btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2637 	goto cleanup_transaction;
2638 
2639 lockdep_trans_commit_start_release:
2640 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2641 	btrfs_end_transaction(trans);
2642 	return ret;
2643 }
2644 
2645 /*
2646  * return < 0 if error
2647  * 0 if there are no more dead_roots at the time of call
2648  * 1 there are more to be processed, call me again
2649  *
2650  * The return value indicates there are certainly more snapshots to delete, but
2651  * if there comes a new one during processing, it may return 0. We don't mind,
2652  * because btrfs_commit_super will poke cleaner thread and it will process it a
2653  * few seconds later.
2654  */
2655 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2656 {
2657 	struct btrfs_root *root;
2658 	int ret;
2659 
2660 	spin_lock(&fs_info->trans_lock);
2661 	if (list_empty(&fs_info->dead_roots)) {
2662 		spin_unlock(&fs_info->trans_lock);
2663 		return 0;
2664 	}
2665 	root = list_first_entry(&fs_info->dead_roots,
2666 			struct btrfs_root, root_list);
2667 	list_del_init(&root->root_list);
2668 	spin_unlock(&fs_info->trans_lock);
2669 
2670 	btrfs_debug(fs_info, "cleaner removing %llu", btrfs_root_id(root));
2671 
2672 	btrfs_kill_all_delayed_nodes(root);
2673 
2674 	if (btrfs_header_backref_rev(root->node) <
2675 			BTRFS_MIXED_BACKREF_REV)
2676 		ret = btrfs_drop_snapshot(root, false, false);
2677 	else
2678 		ret = btrfs_drop_snapshot(root, true, false);
2679 
2680 	btrfs_put_root(root);
2681 	return (ret < 0) ? 0 : 1;
2682 }
2683 
2684 /*
2685  * We only mark the transaction aborted and then set the file system read-only.
2686  * This will prevent new transactions from starting or trying to join this
2687  * one.
2688  *
2689  * This means that error recovery at the call site is limited to freeing
2690  * any local memory allocations and passing the error code up without
2691  * further cleanup. The transaction should complete as it normally would
2692  * in the call path but will return -EIO.
2693  *
2694  * We'll complete the cleanup in btrfs_end_transaction and
2695  * btrfs_commit_transaction.
2696  */
2697 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2698 				      const char *function,
2699 				      unsigned int line, int error, bool first_hit)
2700 {
2701 	struct btrfs_fs_info *fs_info = trans->fs_info;
2702 
2703 	WRITE_ONCE(trans->aborted, error);
2704 	WRITE_ONCE(trans->transaction->aborted, error);
2705 	if (first_hit && error == -ENOSPC)
2706 		btrfs_dump_space_info_for_trans_abort(fs_info);
2707 	/* Wake up anybody who may be waiting on this transaction */
2708 	wake_up(&fs_info->transaction_wait);
2709 	wake_up(&fs_info->transaction_blocked_wait);
2710 	__btrfs_handle_fs_error(fs_info, function, line, error, NULL);
2711 }
2712 
2713 int __init btrfs_transaction_init(void)
2714 {
2715 	btrfs_trans_handle_cachep = KMEM_CACHE(btrfs_trans_handle, SLAB_TEMPORARY);
2716 	if (!btrfs_trans_handle_cachep)
2717 		return -ENOMEM;
2718 	return 0;
2719 }
2720 
2721 void __cold btrfs_transaction_exit(void)
2722 {
2723 	kmem_cache_destroy(btrfs_trans_handle_cachep);
2724 }
2725