1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
63 */
64
65 #define pr_fmt(fmt) "TCP: " fmt
66
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <linux/bitops.h>
74 #include <net/dst.h>
75 #include <net/tcp.h>
76 #include <net/tcp_ecn.h>
77 #include <net/proto_memory.h>
78 #include <net/inet_common.h>
79 #include <linux/ipsec.h>
80 #include <linux/unaligned.h>
81 #include <linux/errqueue.h>
82 #include <trace/events/tcp.h>
83 #include <linux/jump_label_ratelimit.h>
84 #include <net/busy_poll.h>
85 #include <net/mptcp.h>
86
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88
89 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
90 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
91 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
92 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
93 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
94 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
95 #define FLAG_ECE 0x40 /* ECE in this ACK */
96 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
97 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
98 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
99 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
100 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
101 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
102 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
103 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
104 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
105 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
106 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */
107 #define FLAG_TS_PROGRESS 0x40000 /* Positive timestamp delta */
108
109 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
112 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
113
114 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
115 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
116
117 #define REXMIT_NONE 0 /* no loss recovery to do */
118 #define REXMIT_LOST 1 /* retransmit packets marked lost */
119 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
120
121 #if IS_ENABLED(CONFIG_TLS_DEVICE)
122 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
123
clean_acked_data_enable(struct tcp_sock * tp,void (* cad)(struct sock * sk,u32 ack_seq))124 void clean_acked_data_enable(struct tcp_sock *tp,
125 void (*cad)(struct sock *sk, u32 ack_seq))
126 {
127 tp->tcp_clean_acked = cad;
128 static_branch_deferred_inc(&clean_acked_data_enabled);
129 }
130 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
131
clean_acked_data_disable(struct tcp_sock * tp)132 void clean_acked_data_disable(struct tcp_sock *tp)
133 {
134 static_branch_slow_dec_deferred(&clean_acked_data_enabled);
135 tp->tcp_clean_acked = NULL;
136 }
137 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
138
clean_acked_data_flush(void)139 void clean_acked_data_flush(void)
140 {
141 static_key_deferred_flush(&clean_acked_data_enabled);
142 }
143 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
144 #endif
145
146 #ifdef CONFIG_CGROUP_BPF
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)147 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
148 {
149 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
150 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
151 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
152 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
153 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
154 struct bpf_sock_ops_kern sock_ops;
155
156 if (likely(!unknown_opt && !parse_all_opt))
157 return;
158
159 /* The skb will be handled in the
160 * bpf_skops_established() or
161 * bpf_skops_write_hdr_opt().
162 */
163 switch (sk->sk_state) {
164 case TCP_SYN_RECV:
165 case TCP_SYN_SENT:
166 case TCP_LISTEN:
167 return;
168 }
169
170 sock_owned_by_me(sk);
171
172 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
173 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
174 sock_ops.is_fullsock = 1;
175 sock_ops.is_locked_tcp_sock = 1;
176 sock_ops.sk = sk;
177 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
178
179 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
180 }
181
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)182 static void bpf_skops_established(struct sock *sk, int bpf_op,
183 struct sk_buff *skb)
184 {
185 struct bpf_sock_ops_kern sock_ops;
186
187 sock_owned_by_me(sk);
188
189 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
190 sock_ops.op = bpf_op;
191 sock_ops.is_fullsock = 1;
192 sock_ops.is_locked_tcp_sock = 1;
193 sock_ops.sk = sk;
194 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
195 if (skb)
196 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
197
198 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
199 }
200 #else
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)201 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
202 {
203 }
204
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)205 static void bpf_skops_established(struct sock *sk, int bpf_op,
206 struct sk_buff *skb)
207 {
208 }
209 #endif
210
tcp_gro_dev_warn(const struct sock * sk,const struct sk_buff * skb,unsigned int len)211 static __cold void tcp_gro_dev_warn(const struct sock *sk, const struct sk_buff *skb,
212 unsigned int len)
213 {
214 struct net_device *dev;
215
216 rcu_read_lock();
217 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
218 if (!dev || len >= READ_ONCE(dev->mtu))
219 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
220 dev ? dev->name : "Unknown driver");
221 rcu_read_unlock();
222 }
223
224 /* Adapt the MSS value used to make delayed ack decision to the
225 * real world.
226 */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
228 {
229 struct inet_connection_sock *icsk = inet_csk(sk);
230 const unsigned int lss = icsk->icsk_ack.last_seg_size;
231 unsigned int len;
232
233 icsk->icsk_ack.last_seg_size = 0;
234
235 /* skb->len may jitter because of SACKs, even if peer
236 * sends good full-sized frames.
237 */
238 len = skb_shinfo(skb)->gso_size ? : skb->len;
239 if (len >= icsk->icsk_ack.rcv_mss) {
240 /* Note: divides are still a bit expensive.
241 * For the moment, only adjust scaling_ratio
242 * when we update icsk_ack.rcv_mss.
243 */
244 if (unlikely(len != icsk->icsk_ack.rcv_mss)) {
245 u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE;
246 u8 old_ratio = tcp_sk(sk)->scaling_ratio;
247
248 do_div(val, skb->truesize);
249 tcp_sk(sk)->scaling_ratio = val ? val : 1;
250
251 if (old_ratio != tcp_sk(sk)->scaling_ratio) {
252 struct tcp_sock *tp = tcp_sk(sk);
253
254 val = tcp_win_from_space(sk, sk->sk_rcvbuf);
255 tcp_set_window_clamp(sk, val);
256
257 if (tp->window_clamp < tp->rcvq_space.space)
258 tp->rcvq_space.space = tp->window_clamp;
259 }
260 }
261 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
262 tcp_sk(sk)->advmss);
263 /* Account for possibly-removed options */
264 DO_ONCE_LITE_IF(len > icsk->icsk_ack.rcv_mss + MAX_TCP_OPTION_SPACE,
265 tcp_gro_dev_warn, sk, skb, len);
266 /* If the skb has a len of exactly 1*MSS and has the PSH bit
267 * set then it is likely the end of an application write. So
268 * more data may not be arriving soon, and yet the data sender
269 * may be waiting for an ACK if cwnd-bound or using TX zero
270 * copy. So we set ICSK_ACK_PUSHED here so that
271 * tcp_cleanup_rbuf() will send an ACK immediately if the app
272 * reads all of the data and is not ping-pong. If len > MSS
273 * then this logic does not matter (and does not hurt) because
274 * tcp_cleanup_rbuf() will always ACK immediately if the app
275 * reads data and there is more than an MSS of unACKed data.
276 */
277 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
278 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
279 } else {
280 /* Otherwise, we make more careful check taking into account,
281 * that SACKs block is variable.
282 *
283 * "len" is invariant segment length, including TCP header.
284 */
285 len += skb->data - skb_transport_header(skb);
286 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
287 /* If PSH is not set, packet should be
288 * full sized, provided peer TCP is not badly broken.
289 * This observation (if it is correct 8)) allows
290 * to handle super-low mtu links fairly.
291 */
292 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
293 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
294 /* Subtract also invariant (if peer is RFC compliant),
295 * tcp header plus fixed timestamp option length.
296 * Resulting "len" is MSS free of SACK jitter.
297 */
298 len -= tcp_sk(sk)->tcp_header_len;
299 icsk->icsk_ack.last_seg_size = len;
300 if (len == lss) {
301 icsk->icsk_ack.rcv_mss = len;
302 return;
303 }
304 }
305 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
306 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
307 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
308 }
309 }
310
tcp_incr_quickack(struct sock * sk,unsigned int max_quickacks)311 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
312 {
313 struct inet_connection_sock *icsk = inet_csk(sk);
314 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
315
316 if (quickacks == 0)
317 quickacks = 2;
318 quickacks = min(quickacks, max_quickacks);
319 if (quickacks > icsk->icsk_ack.quick)
320 icsk->icsk_ack.quick = quickacks;
321 }
322
tcp_enter_quickack_mode(struct sock * sk,unsigned int max_quickacks)323 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
324 {
325 struct inet_connection_sock *icsk = inet_csk(sk);
326
327 tcp_incr_quickack(sk, max_quickacks);
328 inet_csk_exit_pingpong_mode(sk);
329 icsk->icsk_ack.ato = TCP_ATO_MIN;
330 }
331
332 /* Send ACKs quickly, if "quick" count is not exhausted
333 * and the session is not interactive.
334 */
335
tcp_in_quickack_mode(struct sock * sk)336 static bool tcp_in_quickack_mode(struct sock *sk)
337 {
338 const struct inet_connection_sock *icsk = inet_csk(sk);
339
340 return icsk->icsk_ack.dst_quick_ack ||
341 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
342 }
343
tcp_data_ecn_check(struct sock * sk,const struct sk_buff * skb)344 static void tcp_data_ecn_check(struct sock *sk, const struct sk_buff *skb)
345 {
346 struct tcp_sock *tp = tcp_sk(sk);
347
348 if (tcp_ecn_disabled(tp))
349 return;
350
351 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
352 case INET_ECN_NOT_ECT:
353 /* Funny extension: if ECT is not set on a segment,
354 * and we already seen ECT on a previous segment,
355 * it is probably a retransmit.
356 */
357 if (tp->ecn_flags & TCP_ECN_SEEN)
358 tcp_enter_quickack_mode(sk, 2);
359 break;
360 case INET_ECN_CE:
361 if (tcp_ca_needs_ecn(sk))
362 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
363
364 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR) &&
365 tcp_ecn_mode_rfc3168(tp)) {
366 /* Better not delay acks, sender can have a very low cwnd */
367 tcp_enter_quickack_mode(sk, 2);
368 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
369 }
370 /* As for RFC3168 ECN, the TCP_ECN_SEEN flag is set by
371 * tcp_data_ecn_check() when the ECN codepoint of
372 * received TCP data contains ECT(0), ECT(1), or CE.
373 */
374 if (!tcp_ecn_mode_rfc3168(tp))
375 break;
376 tp->ecn_flags |= TCP_ECN_SEEN;
377 break;
378 default:
379 if (tcp_ca_needs_ecn(sk))
380 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
381 if (!tcp_ecn_mode_rfc3168(tp))
382 break;
383 tp->ecn_flags |= TCP_ECN_SEEN;
384 break;
385 }
386 }
387
388 /* Returns true if the byte counters can be used */
tcp_accecn_process_option(struct tcp_sock * tp,const struct sk_buff * skb,u32 delivered_bytes,int flag)389 static bool tcp_accecn_process_option(struct tcp_sock *tp,
390 const struct sk_buff *skb,
391 u32 delivered_bytes, int flag)
392 {
393 u8 estimate_ecnfield = tp->est_ecnfield;
394 bool ambiguous_ecn_bytes_incr = false;
395 bool first_changed = false;
396 unsigned int optlen;
397 bool order1, res;
398 unsigned int i;
399 u8 *ptr;
400
401 if (tcp_accecn_opt_fail_recv(tp))
402 return false;
403
404 if (!(flag & FLAG_SLOWPATH) || !tp->rx_opt.accecn) {
405 if (!tp->saw_accecn_opt) {
406 /* Too late to enable after this point due to
407 * potential counter wraps
408 */
409 if (tp->bytes_sent >= (1 << 23) - 1) {
410 u8 saw_opt = TCP_ACCECN_OPT_FAIL_SEEN;
411
412 tcp_accecn_saw_opt_fail_recv(tp, saw_opt);
413 }
414 return false;
415 }
416
417 if (estimate_ecnfield) {
418 u8 ecnfield = estimate_ecnfield - 1;
419
420 tp->delivered_ecn_bytes[ecnfield] += delivered_bytes;
421 return true;
422 }
423 return false;
424 }
425
426 ptr = skb_transport_header(skb) + tp->rx_opt.accecn;
427 optlen = ptr[1] - 2;
428 if (WARN_ON_ONCE(ptr[0] != TCPOPT_ACCECN0 && ptr[0] != TCPOPT_ACCECN1))
429 return false;
430 order1 = (ptr[0] == TCPOPT_ACCECN1);
431 ptr += 2;
432
433 if (tp->saw_accecn_opt < TCP_ACCECN_OPT_COUNTER_SEEN) {
434 tp->saw_accecn_opt = tcp_accecn_option_init(skb,
435 tp->rx_opt.accecn);
436 if (tp->saw_accecn_opt == TCP_ACCECN_OPT_FAIL_SEEN)
437 tcp_accecn_fail_mode_set(tp, TCP_ACCECN_OPT_FAIL_RECV);
438 }
439
440 res = !!estimate_ecnfield;
441 for (i = 0; i < 3; i++) {
442 u32 init_offset;
443 u8 ecnfield;
444 s32 delta;
445 u32 *cnt;
446
447 if (optlen < TCPOLEN_ACCECN_PERFIELD)
448 break;
449
450 ecnfield = tcp_accecn_optfield_to_ecnfield(i, order1);
451 init_offset = tcp_accecn_field_init_offset(ecnfield);
452 cnt = &tp->delivered_ecn_bytes[ecnfield - 1];
453 delta = tcp_update_ecn_bytes(cnt, ptr, init_offset);
454 if (delta && delta < 0) {
455 res = false;
456 ambiguous_ecn_bytes_incr = true;
457 }
458 if (delta && ecnfield != estimate_ecnfield) {
459 if (!first_changed) {
460 tp->est_ecnfield = ecnfield;
461 first_changed = true;
462 } else {
463 res = false;
464 ambiguous_ecn_bytes_incr = true;
465 }
466 }
467
468 optlen -= TCPOLEN_ACCECN_PERFIELD;
469 ptr += TCPOLEN_ACCECN_PERFIELD;
470 }
471 if (ambiguous_ecn_bytes_incr)
472 tp->est_ecnfield = 0;
473
474 return res;
475 }
476
tcp_count_delivered_ce(struct tcp_sock * tp,u32 ecn_count)477 static void tcp_count_delivered_ce(struct tcp_sock *tp, u32 ecn_count)
478 {
479 tp->delivered_ce += ecn_count;
480 }
481
482 /* Updates the delivered and delivered_ce counts */
tcp_count_delivered(struct tcp_sock * tp,u32 delivered,bool ece_ack)483 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
484 bool ece_ack)
485 {
486 tp->delivered += delivered;
487 if (tcp_ecn_mode_rfc3168(tp) && ece_ack)
488 tcp_count_delivered_ce(tp, delivered);
489 }
490
491 /* Returns the ECN CE delta */
__tcp_accecn_process(struct sock * sk,const struct sk_buff * skb,u32 delivered_pkts,u32 delivered_bytes,int flag)492 static u32 __tcp_accecn_process(struct sock *sk, const struct sk_buff *skb,
493 u32 delivered_pkts, u32 delivered_bytes,
494 int flag)
495 {
496 u32 old_ceb = tcp_sk(sk)->delivered_ecn_bytes[INET_ECN_CE - 1];
497 const struct tcphdr *th = tcp_hdr(skb);
498 struct tcp_sock *tp = tcp_sk(sk);
499 u32 delta, safe_delta, d_ceb;
500 bool opt_deltas_valid;
501 u32 corrected_ace;
502
503 /* Reordered ACK or uncertain due to lack of data to send and ts */
504 if (!(flag & (FLAG_FORWARD_PROGRESS | FLAG_TS_PROGRESS)))
505 return 0;
506
507 opt_deltas_valid = tcp_accecn_process_option(tp, skb,
508 delivered_bytes, flag);
509
510 if (!(flag & FLAG_SLOWPATH)) {
511 /* AccECN counter might overflow on large ACKs */
512 if (delivered_pkts <= TCP_ACCECN_CEP_ACE_MASK)
513 return 0;
514 }
515
516 /* ACE field is not available during handshake */
517 if (flag & FLAG_SYN_ACKED)
518 return 0;
519
520 if (tp->received_ce_pending >= TCP_ACCECN_ACE_MAX_DELTA)
521 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
522
523 corrected_ace = tcp_accecn_ace(th) - TCP_ACCECN_CEP_INIT_OFFSET;
524 delta = (corrected_ace - tp->delivered_ce) & TCP_ACCECN_CEP_ACE_MASK;
525 if (delivered_pkts <= TCP_ACCECN_CEP_ACE_MASK)
526 return delta;
527
528 safe_delta = delivered_pkts -
529 ((delivered_pkts - delta) & TCP_ACCECN_CEP_ACE_MASK);
530
531 if (opt_deltas_valid) {
532 d_ceb = tp->delivered_ecn_bytes[INET_ECN_CE - 1] - old_ceb;
533 if (!d_ceb)
534 return delta;
535
536 if ((delivered_pkts >= (TCP_ACCECN_CEP_ACE_MASK + 1) * 2) &&
537 (tcp_is_sack(tp) ||
538 ((1 << inet_csk(sk)->icsk_ca_state) &
539 (TCPF_CA_Open | TCPF_CA_CWR)))) {
540 u32 est_d_cep;
541
542 if (delivered_bytes <= d_ceb)
543 return safe_delta;
544
545 est_d_cep = DIV_ROUND_UP_ULL((u64)d_ceb *
546 delivered_pkts,
547 delivered_bytes);
548 return min(safe_delta,
549 delta +
550 (est_d_cep & ~TCP_ACCECN_CEP_ACE_MASK));
551 }
552
553 if (d_ceb > delta * tp->mss_cache)
554 return safe_delta;
555 if (d_ceb <
556 safe_delta * tp->mss_cache >> TCP_ACCECN_SAFETY_SHIFT)
557 return delta;
558 }
559
560 return safe_delta;
561 }
562
tcp_accecn_process(struct sock * sk,const struct sk_buff * skb,u32 delivered_pkts,u32 delivered_bytes,int * flag)563 static u32 tcp_accecn_process(struct sock *sk, const struct sk_buff *skb,
564 u32 delivered_pkts, u32 delivered_bytes,
565 int *flag)
566 {
567 struct tcp_sock *tp = tcp_sk(sk);
568 u32 delta;
569
570 delta = __tcp_accecn_process(sk, skb, delivered_pkts,
571 delivered_bytes, *flag);
572 if (delta > 0) {
573 tcp_count_delivered_ce(tp, delta);
574 *flag |= FLAG_ECE;
575 /* Recalculate header predictor */
576 if (tp->pred_flags)
577 tcp_fast_path_on(tp);
578 }
579 return delta;
580 }
581
582 /* Buffer size and advertised window tuning.
583 *
584 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
585 */
586
tcp_sndbuf_expand(struct sock * sk)587 static void tcp_sndbuf_expand(struct sock *sk)
588 {
589 const struct tcp_sock *tp = tcp_sk(sk);
590 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
591 int sndmem, per_mss;
592 u32 nr_segs;
593
594 /* Worst case is non GSO/TSO : each frame consumes one skb
595 * and skb->head is kmalloced using power of two area of memory
596 */
597 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
598 MAX_TCP_HEADER +
599 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
600
601 per_mss = roundup_pow_of_two(per_mss) +
602 SKB_DATA_ALIGN(sizeof(struct sk_buff));
603
604 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
605 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
606
607 /* Fast Recovery (RFC 5681 3.2) :
608 * Cubic needs 1.7 factor, rounded to 2 to include
609 * extra cushion (application might react slowly to EPOLLOUT)
610 */
611 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
612 sndmem *= nr_segs * per_mss;
613
614 if (sk->sk_sndbuf < sndmem)
615 WRITE_ONCE(sk->sk_sndbuf,
616 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
617 }
618
619 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
620 *
621 * All tcp_full_space() is split to two parts: "network" buffer, allocated
622 * forward and advertised in receiver window (tp->rcv_wnd) and
623 * "application buffer", required to isolate scheduling/application
624 * latencies from network.
625 * window_clamp is maximal advertised window. It can be less than
626 * tcp_full_space(), in this case tcp_full_space() - window_clamp
627 * is reserved for "application" buffer. The less window_clamp is
628 * the smoother our behaviour from viewpoint of network, but the lower
629 * throughput and the higher sensitivity of the connection to losses. 8)
630 *
631 * rcv_ssthresh is more strict window_clamp used at "slow start"
632 * phase to predict further behaviour of this connection.
633 * It is used for two goals:
634 * - to enforce header prediction at sender, even when application
635 * requires some significant "application buffer". It is check #1.
636 * - to prevent pruning of receive queue because of misprediction
637 * of receiver window. Check #2.
638 *
639 * The scheme does not work when sender sends good segments opening
640 * window and then starts to feed us spaghetti. But it should work
641 * in common situations. Otherwise, we have to rely on queue collapsing.
642 */
643
644 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb,unsigned int skbtruesize)645 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
646 unsigned int skbtruesize)
647 {
648 const struct tcp_sock *tp = tcp_sk(sk);
649 /* Optimize this! */
650 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
651 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
652
653 while (tp->rcv_ssthresh <= window) {
654 if (truesize <= skb->len)
655 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
656
657 truesize >>= 1;
658 window >>= 1;
659 }
660 return 0;
661 }
662
663 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
664 * can play nice with us, as sk_buff and skb->head might be either
665 * freed or shared with up to MAX_SKB_FRAGS segments.
666 * Only give a boost to drivers using page frag(s) to hold the frame(s),
667 * and if no payload was pulled in skb->head before reaching us.
668 */
truesize_adjust(bool adjust,const struct sk_buff * skb)669 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
670 {
671 u32 truesize = skb->truesize;
672
673 if (adjust && !skb_headlen(skb)) {
674 truesize -= SKB_TRUESIZE(skb_end_offset(skb));
675 /* paranoid check, some drivers might be buggy */
676 if (unlikely((int)truesize < (int)skb->len))
677 truesize = skb->truesize;
678 }
679 return truesize;
680 }
681
tcp_grow_window(struct sock * sk,const struct sk_buff * skb,bool adjust)682 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
683 bool adjust)
684 {
685 struct tcp_sock *tp = tcp_sk(sk);
686 int room;
687
688 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
689
690 if (room <= 0)
691 return;
692
693 /* Check #1 */
694 if (!tcp_under_memory_pressure(sk)) {
695 unsigned int truesize = truesize_adjust(adjust, skb);
696 int incr;
697
698 /* Check #2. Increase window, if skb with such overhead
699 * will fit to rcvbuf in future.
700 */
701 if (tcp_win_from_space(sk, truesize) <= skb->len)
702 incr = 2 * tp->advmss;
703 else
704 incr = __tcp_grow_window(sk, skb, truesize);
705
706 if (incr) {
707 incr = max_t(int, incr, 2 * skb->len);
708 tp->rcv_ssthresh += min(room, incr);
709 inet_csk(sk)->icsk_ack.quick |= 1;
710 }
711 } else {
712 /* Under pressure:
713 * Adjust rcv_ssthresh according to reserved mem
714 */
715 tcp_adjust_rcv_ssthresh(sk);
716 }
717 }
718
719 /* 3. Try to fixup all. It is made immediately after connection enters
720 * established state.
721 */
tcp_init_buffer_space(struct sock * sk)722 static void tcp_init_buffer_space(struct sock *sk)
723 {
724 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
725 struct tcp_sock *tp = tcp_sk(sk);
726 int maxwin;
727
728 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
729 tcp_sndbuf_expand(sk);
730
731 tcp_mstamp_refresh(tp);
732 tp->rcvq_space.time = tp->tcp_mstamp;
733 tp->rcvq_space.seq = tp->copied_seq;
734
735 maxwin = tcp_full_space(sk);
736
737 if (tp->window_clamp >= maxwin) {
738 WRITE_ONCE(tp->window_clamp, maxwin);
739
740 if (tcp_app_win && maxwin > 4 * tp->advmss)
741 WRITE_ONCE(tp->window_clamp,
742 max(maxwin - (maxwin >> tcp_app_win),
743 4 * tp->advmss));
744 }
745
746 /* Force reservation of one segment. */
747 if (tcp_app_win &&
748 tp->window_clamp > 2 * tp->advmss &&
749 tp->window_clamp + tp->advmss > maxwin)
750 WRITE_ONCE(tp->window_clamp,
751 max(2 * tp->advmss, maxwin - tp->advmss));
752
753 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
754 tp->snd_cwnd_stamp = tcp_jiffies32;
755 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
756 (u32)TCP_INIT_CWND * tp->advmss);
757 }
758
759 /* 4. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)760 static void tcp_clamp_window(struct sock *sk)
761 {
762 struct tcp_sock *tp = tcp_sk(sk);
763 struct inet_connection_sock *icsk = inet_csk(sk);
764 struct net *net = sock_net(sk);
765 int rmem2;
766
767 icsk->icsk_ack.quick = 0;
768 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
769
770 if (sk->sk_rcvbuf < rmem2 &&
771 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
772 !tcp_under_memory_pressure(sk) &&
773 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
774 WRITE_ONCE(sk->sk_rcvbuf,
775 min(atomic_read(&sk->sk_rmem_alloc), rmem2));
776 }
777 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
778 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
779 }
780
781 /* Initialize RCV_MSS value.
782 * RCV_MSS is an our guess about MSS used by the peer.
783 * We haven't any direct information about the MSS.
784 * It's better to underestimate the RCV_MSS rather than overestimate.
785 * Overestimations make us ACKing less frequently than needed.
786 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
787 */
tcp_initialize_rcv_mss(struct sock * sk)788 void tcp_initialize_rcv_mss(struct sock *sk)
789 {
790 const struct tcp_sock *tp = tcp_sk(sk);
791 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
792
793 hint = min(hint, tp->rcv_wnd / 2);
794 hint = min(hint, TCP_MSS_DEFAULT);
795 hint = max(hint, TCP_MIN_MSS);
796
797 inet_csk(sk)->icsk_ack.rcv_mss = hint;
798 }
799 EXPORT_IPV6_MOD(tcp_initialize_rcv_mss);
800
801 /* Receiver "autotuning" code.
802 *
803 * The algorithm for RTT estimation w/o timestamps is based on
804 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
805 * <https://public.lanl.gov/radiant/pubs.html#DRS>
806 *
807 * More detail on this code can be found at
808 * <http://staff.psc.edu/jheffner/>,
809 * though this reference is out of date. A new paper
810 * is pending.
811 */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)812 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
813 {
814 u32 new_sample, old_sample = tp->rcv_rtt_est.rtt_us;
815 long m = sample << 3;
816
817 if (old_sample == 0 || m < old_sample) {
818 new_sample = m;
819 } else {
820 /* If we sample in larger samples in the non-timestamp
821 * case, we could grossly overestimate the RTT especially
822 * with chatty applications or bulk transfer apps which
823 * are stalled on filesystem I/O.
824 *
825 * Also, since we are only going for a minimum in the
826 * non-timestamp case, we do not smooth things out
827 * else with timestamps disabled convergence takes too
828 * long.
829 */
830 if (win_dep)
831 return;
832 /* Do not use this sample if receive queue is not empty. */
833 if (tp->rcv_nxt != tp->copied_seq)
834 return;
835 new_sample = old_sample - (old_sample >> 3) + sample;
836 }
837
838 tp->rcv_rtt_est.rtt_us = new_sample;
839 }
840
tcp_rcv_rtt_measure(struct tcp_sock * tp)841 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
842 {
843 u32 delta_us;
844
845 if (tp->rcv_rtt_est.time == 0)
846 goto new_measure;
847 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
848 return;
849 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
850 if (!delta_us)
851 delta_us = 1;
852 tcp_rcv_rtt_update(tp, delta_us, 1);
853
854 new_measure:
855 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
856 tp->rcv_rtt_est.time = tp->tcp_mstamp;
857 }
858
tcp_rtt_tsopt_us(const struct tcp_sock * tp,u32 min_delta)859 static s32 tcp_rtt_tsopt_us(const struct tcp_sock *tp, u32 min_delta)
860 {
861 u32 delta, delta_us;
862
863 delta = tcp_time_stamp_ts(tp) - tp->rx_opt.rcv_tsecr;
864 if (tp->tcp_usec_ts)
865 return delta;
866
867 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
868 if (!delta)
869 delta = min_delta;
870 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
871 return delta_us;
872 }
873 return -1;
874 }
875
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)876 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
877 const struct sk_buff *skb)
878 {
879 struct tcp_sock *tp = tcp_sk(sk);
880
881 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
882 return;
883 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
884
885 if (TCP_SKB_CB(skb)->end_seq -
886 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
887 s32 delta = tcp_rtt_tsopt_us(tp, 0);
888
889 if (delta > 0)
890 tcp_rcv_rtt_update(tp, delta, 0);
891 }
892 }
893
tcp_rcvbuf_grow(struct sock * sk,u32 newval)894 void tcp_rcvbuf_grow(struct sock *sk, u32 newval)
895 {
896 const struct net *net = sock_net(sk);
897 struct tcp_sock *tp = tcp_sk(sk);
898 u32 rcvwin, rcvbuf, cap, oldval;
899 u64 grow;
900
901 oldval = tp->rcvq_space.space;
902 tp->rcvq_space.space = newval;
903
904 if (!READ_ONCE(net->ipv4.sysctl_tcp_moderate_rcvbuf) ||
905 (sk->sk_userlocks & SOCK_RCVBUF_LOCK))
906 return;
907
908 /* DRS is always one RTT late. */
909 rcvwin = newval << 1;
910
911 /* slow start: allow the sender to double its rate. */
912 grow = (u64)rcvwin * (newval - oldval);
913 do_div(grow, oldval);
914 rcvwin += grow << 1;
915
916 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue))
917 rcvwin += TCP_SKB_CB(tp->ooo_last_skb)->end_seq - tp->rcv_nxt;
918
919 cap = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
920
921 rcvbuf = min_t(u32, tcp_space_from_win(sk, rcvwin), cap);
922 if (rcvbuf > sk->sk_rcvbuf) {
923 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
924 /* Make the window clamp follow along. */
925 WRITE_ONCE(tp->window_clamp,
926 tcp_win_from_space(sk, rcvbuf));
927 }
928 }
929 /*
930 * This function should be called every time data is copied to user space.
931 * It calculates the appropriate TCP receive buffer space.
932 */
tcp_rcv_space_adjust(struct sock * sk)933 void tcp_rcv_space_adjust(struct sock *sk)
934 {
935 struct tcp_sock *tp = tcp_sk(sk);
936 int time, inq, copied;
937
938 trace_tcp_rcv_space_adjust(sk);
939
940 tcp_mstamp_refresh(tp);
941 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
942 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
943 return;
944
945 /* Number of bytes copied to user in last RTT */
946 copied = tp->copied_seq - tp->rcvq_space.seq;
947 /* Number of bytes in receive queue. */
948 inq = tp->rcv_nxt - tp->copied_seq;
949 copied -= inq;
950 if (copied <= tp->rcvq_space.space)
951 goto new_measure;
952
953 trace_tcp_rcvbuf_grow(sk, time);
954
955 tcp_rcvbuf_grow(sk, copied);
956
957 new_measure:
958 tp->rcvq_space.seq = tp->copied_seq;
959 tp->rcvq_space.time = tp->tcp_mstamp;
960 }
961
tcp_save_lrcv_flowlabel(struct sock * sk,const struct sk_buff * skb)962 static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb)
963 {
964 #if IS_ENABLED(CONFIG_IPV6)
965 struct inet_connection_sock *icsk = inet_csk(sk);
966
967 if (skb->protocol == htons(ETH_P_IPV6))
968 icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb)));
969 #endif
970 }
971
972 /* There is something which you must keep in mind when you analyze the
973 * behavior of the tp->ato delayed ack timeout interval. When a
974 * connection starts up, we want to ack as quickly as possible. The
975 * problem is that "good" TCP's do slow start at the beginning of data
976 * transmission. The means that until we send the first few ACK's the
977 * sender will sit on his end and only queue most of his data, because
978 * he can only send snd_cwnd unacked packets at any given time. For
979 * each ACK we send, he increments snd_cwnd and transmits more of his
980 * queue. -DaveM
981 */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)982 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
983 {
984 struct tcp_sock *tp = tcp_sk(sk);
985 struct inet_connection_sock *icsk = inet_csk(sk);
986 u32 now;
987
988 inet_csk_schedule_ack(sk);
989
990 tcp_measure_rcv_mss(sk, skb);
991
992 tcp_rcv_rtt_measure(tp);
993
994 now = tcp_jiffies32;
995
996 if (!icsk->icsk_ack.ato) {
997 /* The _first_ data packet received, initialize
998 * delayed ACK engine.
999 */
1000 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
1001 icsk->icsk_ack.ato = TCP_ATO_MIN;
1002 } else {
1003 int m = now - icsk->icsk_ack.lrcvtime;
1004
1005 if (m <= TCP_ATO_MIN / 2) {
1006 /* The fastest case is the first. */
1007 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
1008 } else if (m < icsk->icsk_ack.ato) {
1009 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
1010 if (icsk->icsk_ack.ato > icsk->icsk_rto)
1011 icsk->icsk_ack.ato = icsk->icsk_rto;
1012 } else if (m > icsk->icsk_rto) {
1013 /* Too long gap. Apparently sender failed to
1014 * restart window, so that we send ACKs quickly.
1015 */
1016 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
1017 }
1018 }
1019 icsk->icsk_ack.lrcvtime = now;
1020 tcp_save_lrcv_flowlabel(sk, skb);
1021
1022 tcp_data_ecn_check(sk, skb);
1023
1024 if (skb->len >= 128)
1025 tcp_grow_window(sk, skb, true);
1026 }
1027
1028 /* Called to compute a smoothed rtt estimate. The data fed to this
1029 * routine either comes from timestamps, or from segments that were
1030 * known _not_ to have been retransmitted [see Karn/Partridge
1031 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
1032 * piece by Van Jacobson.
1033 * NOTE: the next three routines used to be one big routine.
1034 * To save cycles in the RFC 1323 implementation it was better to break
1035 * it up into three procedures. -- erics
1036 */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)1037 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
1038 {
1039 struct tcp_sock *tp = tcp_sk(sk);
1040 long m = mrtt_us; /* RTT */
1041 u32 srtt = tp->srtt_us;
1042
1043 /* The following amusing code comes from Jacobson's
1044 * article in SIGCOMM '88. Note that rtt and mdev
1045 * are scaled versions of rtt and mean deviation.
1046 * This is designed to be as fast as possible
1047 * m stands for "measurement".
1048 *
1049 * On a 1990 paper the rto value is changed to:
1050 * RTO = rtt + 4 * mdev
1051 *
1052 * Funny. This algorithm seems to be very broken.
1053 * These formulae increase RTO, when it should be decreased, increase
1054 * too slowly, when it should be increased quickly, decrease too quickly
1055 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
1056 * does not matter how to _calculate_ it. Seems, it was trap
1057 * that VJ failed to avoid. 8)
1058 */
1059 if (srtt != 0) {
1060 m -= (srtt >> 3); /* m is now error in rtt est */
1061 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
1062 if (m < 0) {
1063 m = -m; /* m is now abs(error) */
1064 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1065 /* This is similar to one of Eifel findings.
1066 * Eifel blocks mdev updates when rtt decreases.
1067 * This solution is a bit different: we use finer gain
1068 * for mdev in this case (alpha*beta).
1069 * Like Eifel it also prevents growth of rto,
1070 * but also it limits too fast rto decreases,
1071 * happening in pure Eifel.
1072 */
1073 if (m > 0)
1074 m >>= 3;
1075 } else {
1076 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1077 }
1078 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
1079 if (tp->mdev_us > tp->mdev_max_us) {
1080 tp->mdev_max_us = tp->mdev_us;
1081 if (tp->mdev_max_us > tp->rttvar_us)
1082 tp->rttvar_us = tp->mdev_max_us;
1083 }
1084 if (after(tp->snd_una, tp->rtt_seq)) {
1085 if (tp->mdev_max_us < tp->rttvar_us)
1086 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
1087 tp->rtt_seq = tp->snd_nxt;
1088 tp->mdev_max_us = tcp_rto_min_us(sk);
1089
1090 tcp_bpf_rtt(sk, mrtt_us, srtt);
1091 }
1092 } else {
1093 /* no previous measure. */
1094 srtt = m << 3; /* take the measured time to be rtt */
1095 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
1096 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
1097 tp->mdev_max_us = tp->rttvar_us;
1098 tp->rtt_seq = tp->snd_nxt;
1099
1100 tcp_bpf_rtt(sk, mrtt_us, srtt);
1101 }
1102 tp->srtt_us = max(1U, srtt);
1103 }
1104
tcp_update_pacing_rate(struct sock * sk)1105 static void tcp_update_pacing_rate(struct sock *sk)
1106 {
1107 const struct tcp_sock *tp = tcp_sk(sk);
1108 u64 rate;
1109
1110 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
1111 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
1112
1113 /* current rate is (cwnd * mss) / srtt
1114 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
1115 * In Congestion Avoidance phase, set it to 120 % the current rate.
1116 *
1117 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
1118 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
1119 * end of slow start and should slow down.
1120 */
1121 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
1122 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
1123 else
1124 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
1125
1126 rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
1127
1128 if (likely(tp->srtt_us))
1129 do_div(rate, tp->srtt_us);
1130
1131 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
1132 * without any lock. We want to make sure compiler wont store
1133 * intermediate values in this location.
1134 */
1135 WRITE_ONCE(sk->sk_pacing_rate,
1136 min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate)));
1137 }
1138
1139 /* Calculate rto without backoff. This is the second half of Van Jacobson's
1140 * routine referred to above.
1141 */
tcp_set_rto(struct sock * sk)1142 static void tcp_set_rto(struct sock *sk)
1143 {
1144 const struct tcp_sock *tp = tcp_sk(sk);
1145 /* Old crap is replaced with new one. 8)
1146 *
1147 * More seriously:
1148 * 1. If rtt variance happened to be less 50msec, it is hallucination.
1149 * It cannot be less due to utterly erratic ACK generation made
1150 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
1151 * to do with delayed acks, because at cwnd>2 true delack timeout
1152 * is invisible. Actually, Linux-2.4 also generates erratic
1153 * ACKs in some circumstances.
1154 */
1155 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1156
1157 /* 2. Fixups made earlier cannot be right.
1158 * If we do not estimate RTO correctly without them,
1159 * all the algo is pure shit and should be replaced
1160 * with correct one. It is exactly, which we pretend to do.
1161 */
1162
1163 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
1164 * guarantees that rto is higher.
1165 */
1166 tcp_bound_rto(sk);
1167 }
1168
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)1169 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1170 {
1171 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
1172
1173 if (!cwnd)
1174 cwnd = TCP_INIT_CWND;
1175 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
1176 }
1177
1178 struct tcp_sacktag_state {
1179 /* Timestamps for earliest and latest never-retransmitted segment
1180 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1181 * but congestion control should still get an accurate delay signal.
1182 */
1183 u64 first_sackt;
1184 u64 last_sackt;
1185 u32 reord;
1186 u32 sack_delivered;
1187 u32 delivered_bytes;
1188 int flag;
1189 unsigned int mss_now;
1190 struct rate_sample *rate;
1191 };
1192
1193 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
1194 * and spurious retransmission information if this DSACK is unlikely caused by
1195 * sender's action:
1196 * - DSACKed sequence range is larger than maximum receiver's window.
1197 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
1198 */
tcp_dsack_seen(struct tcp_sock * tp,u32 start_seq,u32 end_seq,struct tcp_sacktag_state * state)1199 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
1200 u32 end_seq, struct tcp_sacktag_state *state)
1201 {
1202 u32 seq_len, dup_segs = 1;
1203
1204 if (!before(start_seq, end_seq))
1205 return 0;
1206
1207 seq_len = end_seq - start_seq;
1208 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1209 if (seq_len > tp->max_window)
1210 return 0;
1211 if (seq_len > tp->mss_cache)
1212 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1213 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1214 state->flag |= FLAG_DSACK_TLP;
1215
1216 tp->dsack_dups += dup_segs;
1217 /* Skip the DSACK if dup segs weren't retransmitted by sender */
1218 if (tp->dsack_dups > tp->total_retrans)
1219 return 0;
1220
1221 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1222 /* We increase the RACK ordering window in rounds where we receive
1223 * DSACKs that may have been due to reordering causing RACK to trigger
1224 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1225 * without having seen reordering, or that match TLP probes (TLP
1226 * is timer-driven, not triggered by RACK).
1227 */
1228 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1229 tp->rack.dsack_seen = 1;
1230
1231 state->flag |= FLAG_DSACKING_ACK;
1232 /* A spurious retransmission is delivered */
1233 state->sack_delivered += dup_segs;
1234
1235 return dup_segs;
1236 }
1237
1238 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1239 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1240 * distance is approximated in full-mss packet distance ("reordering").
1241 */
tcp_check_sack_reordering(struct sock * sk,const u32 low_seq,const int ts)1242 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1243 const int ts)
1244 {
1245 struct tcp_sock *tp = tcp_sk(sk);
1246 const u32 mss = tp->mss_cache;
1247 u32 fack, metric;
1248
1249 fack = tcp_highest_sack_seq(tp);
1250 if (!before(low_seq, fack))
1251 return;
1252
1253 metric = fack - low_seq;
1254 if ((metric > tp->reordering * mss) && mss) {
1255 #if FASTRETRANS_DEBUG > 1
1256 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1257 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1258 tp->reordering,
1259 0,
1260 tp->sacked_out,
1261 tp->undo_marker ? tp->undo_retrans : 0);
1262 #endif
1263 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1264 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1265 }
1266
1267 /* This exciting event is worth to be remembered. 8) */
1268 tp->reord_seen++;
1269 NET_INC_STATS(sock_net(sk),
1270 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1271 }
1272
1273 /* This must be called before lost_out or retrans_out are updated
1274 * on a new loss, because we want to know if all skbs previously
1275 * known to be lost have already been retransmitted, indicating
1276 * that this newly lost skb is our next skb to retransmit.
1277 */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)1278 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1279 {
1280 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1281 (tp->retransmit_skb_hint &&
1282 before(TCP_SKB_CB(skb)->seq,
1283 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1284 tp->retransmit_skb_hint = skb;
1285 }
1286
1287 /* Sum the number of packets on the wire we have marked as lost, and
1288 * notify the congestion control module that the given skb was marked lost.
1289 */
tcp_notify_skb_loss_event(struct tcp_sock * tp,const struct sk_buff * skb)1290 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1291 {
1292 tp->lost += tcp_skb_pcount(skb);
1293 }
1294
tcp_mark_skb_lost(struct sock * sk,struct sk_buff * skb)1295 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1296 {
1297 __u8 sacked = TCP_SKB_CB(skb)->sacked;
1298 struct tcp_sock *tp = tcp_sk(sk);
1299
1300 if (sacked & TCPCB_SACKED_ACKED)
1301 return;
1302
1303 tcp_verify_retransmit_hint(tp, skb);
1304 if (sacked & TCPCB_LOST) {
1305 if (sacked & TCPCB_SACKED_RETRANS) {
1306 /* Account for retransmits that are lost again */
1307 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1308 tp->retrans_out -= tcp_skb_pcount(skb);
1309 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1310 tcp_skb_pcount(skb));
1311 tcp_notify_skb_loss_event(tp, skb);
1312 }
1313 } else {
1314 tp->lost_out += tcp_skb_pcount(skb);
1315 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1316 tcp_notify_skb_loss_event(tp, skb);
1317 }
1318 }
1319
1320 /* This procedure tags the retransmission queue when SACKs arrive.
1321 *
1322 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1323 * Packets in queue with these bits set are counted in variables
1324 * sacked_out, retrans_out and lost_out, correspondingly.
1325 *
1326 * Valid combinations are:
1327 * Tag InFlight Description
1328 * 0 1 - orig segment is in flight.
1329 * S 0 - nothing flies, orig reached receiver.
1330 * L 0 - nothing flies, orig lost by net.
1331 * R 2 - both orig and retransmit are in flight.
1332 * L|R 1 - orig is lost, retransmit is in flight.
1333 * S|R 1 - orig reached receiver, retrans is still in flight.
1334 * (L|S|R is logically valid, it could occur when L|R is sacked,
1335 * but it is equivalent to plain S and code short-circuits it to S.
1336 * L|S is logically invalid, it would mean -1 packet in flight 8))
1337 *
1338 * These 6 states form finite state machine, controlled by the following events:
1339 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1340 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1341 * 3. Loss detection event of two flavors:
1342 * A. Scoreboard estimator decided the packet is lost.
1343 * A'. Reno "three dupacks" marks head of queue lost.
1344 * B. SACK arrives sacking SND.NXT at the moment, when the
1345 * segment was retransmitted.
1346 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1347 *
1348 * It is pleasant to note, that state diagram turns out to be commutative,
1349 * so that we are allowed not to be bothered by order of our actions,
1350 * when multiple events arrive simultaneously. (see the function below).
1351 *
1352 * Reordering detection.
1353 * --------------------
1354 * Reordering metric is maximal distance, which a packet can be displaced
1355 * in packet stream. With SACKs we can estimate it:
1356 *
1357 * 1. SACK fills old hole and the corresponding segment was not
1358 * ever retransmitted -> reordering. Alas, we cannot use it
1359 * when segment was retransmitted.
1360 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1361 * for retransmitted and already SACKed segment -> reordering..
1362 * Both of these heuristics are not used in Loss state, when we cannot
1363 * account for retransmits accurately.
1364 *
1365 * SACK block validation.
1366 * ----------------------
1367 *
1368 * SACK block range validation checks that the received SACK block fits to
1369 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1370 * Note that SND.UNA is not included to the range though being valid because
1371 * it means that the receiver is rather inconsistent with itself reporting
1372 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1373 * perfectly valid, however, in light of RFC2018 which explicitly states
1374 * that "SACK block MUST reflect the newest segment. Even if the newest
1375 * segment is going to be discarded ...", not that it looks very clever
1376 * in case of head skb. Due to potentional receiver driven attacks, we
1377 * choose to avoid immediate execution of a walk in write queue due to
1378 * reneging and defer head skb's loss recovery to standard loss recovery
1379 * procedure that will eventually trigger (nothing forbids us doing this).
1380 *
1381 * Implements also blockage to start_seq wrap-around. Problem lies in the
1382 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1383 * there's no guarantee that it will be before snd_nxt (n). The problem
1384 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1385 * wrap (s_w):
1386 *
1387 * <- outs wnd -> <- wrapzone ->
1388 * u e n u_w e_w s n_w
1389 * | | | | | | |
1390 * |<------------+------+----- TCP seqno space --------------+---------->|
1391 * ...-- <2^31 ->| |<--------...
1392 * ...---- >2^31 ------>| |<--------...
1393 *
1394 * Current code wouldn't be vulnerable but it's better still to discard such
1395 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1396 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1397 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1398 * equal to the ideal case (infinite seqno space without wrap caused issues).
1399 *
1400 * With D-SACK the lower bound is extended to cover sequence space below
1401 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1402 * again, D-SACK block must not to go across snd_una (for the same reason as
1403 * for the normal SACK blocks, explained above). But there all simplicity
1404 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1405 * fully below undo_marker they do not affect behavior in anyway and can
1406 * therefore be safely ignored. In rare cases (which are more or less
1407 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1408 * fragmentation and packet reordering past skb's retransmission. To consider
1409 * them correctly, the acceptable range must be extended even more though
1410 * the exact amount is rather hard to quantify. However, tp->max_window can
1411 * be used as an exaggerated estimate.
1412 */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)1413 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1414 u32 start_seq, u32 end_seq)
1415 {
1416 /* Too far in future, or reversed (interpretation is ambiguous) */
1417 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1418 return false;
1419
1420 /* Nasty start_seq wrap-around check (see comments above) */
1421 if (!before(start_seq, tp->snd_nxt))
1422 return false;
1423
1424 /* In outstanding window? ...This is valid exit for D-SACKs too.
1425 * start_seq == snd_una is non-sensical (see comments above)
1426 */
1427 if (after(start_seq, tp->snd_una))
1428 return true;
1429
1430 if (!is_dsack || !tp->undo_marker)
1431 return false;
1432
1433 /* ...Then it's D-SACK, and must reside below snd_una completely */
1434 if (after(end_seq, tp->snd_una))
1435 return false;
1436
1437 if (!before(start_seq, tp->undo_marker))
1438 return true;
1439
1440 /* Too old */
1441 if (!after(end_seq, tp->undo_marker))
1442 return false;
1443
1444 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1445 * start_seq < undo_marker and end_seq >= undo_marker.
1446 */
1447 return !before(start_seq, end_seq - tp->max_window);
1448 }
1449
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una,struct tcp_sacktag_state * state)1450 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1451 struct tcp_sack_block_wire *sp, int num_sacks,
1452 u32 prior_snd_una, struct tcp_sacktag_state *state)
1453 {
1454 struct tcp_sock *tp = tcp_sk(sk);
1455 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1456 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1457 u32 dup_segs;
1458
1459 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1460 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1461 } else if (num_sacks > 1) {
1462 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1463 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1464
1465 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1466 return false;
1467 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1468 } else {
1469 return false;
1470 }
1471
1472 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1473 if (!dup_segs) { /* Skip dubious DSACK */
1474 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1475 return false;
1476 }
1477
1478 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1479
1480 /* D-SACK for already forgotten data... Do dumb counting. */
1481 if (tp->undo_marker && tp->undo_retrans > 0 &&
1482 !after(end_seq_0, prior_snd_una) &&
1483 after(end_seq_0, tp->undo_marker))
1484 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1485
1486 return true;
1487 }
1488
1489 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1490 * the incoming SACK may not exactly match but we can find smaller MSS
1491 * aligned portion of it that matches. Therefore we might need to fragment
1492 * which may fail and creates some hassle (caller must handle error case
1493 * returns).
1494 *
1495 * FIXME: this could be merged to shift decision code
1496 */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1497 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1498 u32 start_seq, u32 end_seq)
1499 {
1500 int err;
1501 bool in_sack;
1502 unsigned int pkt_len;
1503 unsigned int mss;
1504
1505 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1506 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1507
1508 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1509 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1510 mss = tcp_skb_mss(skb);
1511 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1512
1513 if (!in_sack) {
1514 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1515 if (pkt_len < mss)
1516 pkt_len = mss;
1517 } else {
1518 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1519 if (pkt_len < mss)
1520 return -EINVAL;
1521 }
1522
1523 /* Round if necessary so that SACKs cover only full MSSes
1524 * and/or the remaining small portion (if present)
1525 */
1526 if (pkt_len > mss) {
1527 unsigned int new_len = (pkt_len / mss) * mss;
1528 if (!in_sack && new_len < pkt_len)
1529 new_len += mss;
1530 pkt_len = new_len;
1531 }
1532
1533 if (pkt_len >= skb->len && !in_sack)
1534 return 0;
1535
1536 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1537 pkt_len, mss, GFP_ATOMIC);
1538 if (err < 0)
1539 return err;
1540 }
1541
1542 return in_sack;
1543 }
1544
1545 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,u32 plen,u64 xmit_time)1546 static u8 tcp_sacktag_one(struct sock *sk,
1547 struct tcp_sacktag_state *state, u8 sacked,
1548 u32 start_seq, u32 end_seq,
1549 int dup_sack, int pcount, u32 plen,
1550 u64 xmit_time)
1551 {
1552 struct tcp_sock *tp = tcp_sk(sk);
1553
1554 /* Account D-SACK for retransmitted packet. */
1555 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1556 if (tp->undo_marker && tp->undo_retrans > 0 &&
1557 after(end_seq, tp->undo_marker))
1558 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1559 if ((sacked & TCPCB_SACKED_ACKED) &&
1560 before(start_seq, state->reord))
1561 state->reord = start_seq;
1562 }
1563
1564 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1565 if (!after(end_seq, tp->snd_una))
1566 return sacked;
1567
1568 if (!(sacked & TCPCB_SACKED_ACKED)) {
1569 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1570
1571 if (sacked & TCPCB_SACKED_RETRANS) {
1572 /* If the segment is not tagged as lost,
1573 * we do not clear RETRANS, believing
1574 * that retransmission is still in flight.
1575 */
1576 if (sacked & TCPCB_LOST) {
1577 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1578 tp->lost_out -= pcount;
1579 tp->retrans_out -= pcount;
1580 }
1581 } else {
1582 if (!(sacked & TCPCB_RETRANS)) {
1583 /* New sack for not retransmitted frame,
1584 * which was in hole. It is reordering.
1585 */
1586 if (before(start_seq,
1587 tcp_highest_sack_seq(tp)) &&
1588 before(start_seq, state->reord))
1589 state->reord = start_seq;
1590
1591 if (!after(end_seq, tp->high_seq))
1592 state->flag |= FLAG_ORIG_SACK_ACKED;
1593 if (state->first_sackt == 0)
1594 state->first_sackt = xmit_time;
1595 state->last_sackt = xmit_time;
1596 }
1597
1598 if (sacked & TCPCB_LOST) {
1599 sacked &= ~TCPCB_LOST;
1600 tp->lost_out -= pcount;
1601 }
1602 }
1603
1604 sacked |= TCPCB_SACKED_ACKED;
1605 state->flag |= FLAG_DATA_SACKED;
1606 tp->sacked_out += pcount;
1607 /* Out-of-order packets delivered */
1608 state->sack_delivered += pcount;
1609 state->delivered_bytes += plen;
1610 }
1611
1612 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1613 * frames and clear it. undo_retrans is decreased above, L|R frames
1614 * are accounted above as well.
1615 */
1616 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1617 sacked &= ~TCPCB_SACKED_RETRANS;
1618 tp->retrans_out -= pcount;
1619 }
1620
1621 return sacked;
1622 }
1623
1624 /* Shift newly-SACKed bytes from this skb to the immediately previous
1625 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1626 */
tcp_shifted_skb(struct sock * sk,struct sk_buff * prev,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1627 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1628 struct sk_buff *skb,
1629 struct tcp_sacktag_state *state,
1630 unsigned int pcount, int shifted, int mss,
1631 bool dup_sack)
1632 {
1633 struct tcp_sock *tp = tcp_sk(sk);
1634 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1635 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1636
1637 BUG_ON(!pcount);
1638
1639 /* Adjust counters and hints for the newly sacked sequence
1640 * range but discard the return value since prev is already
1641 * marked. We must tag the range first because the seq
1642 * advancement below implicitly advances
1643 * tcp_highest_sack_seq() when skb is highest_sack.
1644 */
1645 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1646 start_seq, end_seq, dup_sack, pcount, skb->len,
1647 tcp_skb_timestamp_us(skb));
1648 tcp_rate_skb_delivered(sk, skb, state->rate);
1649
1650 TCP_SKB_CB(prev)->end_seq += shifted;
1651 TCP_SKB_CB(skb)->seq += shifted;
1652
1653 tcp_skb_pcount_add(prev, pcount);
1654 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1655 tcp_skb_pcount_add(skb, -pcount);
1656
1657 /* When we're adding to gso_segs == 1, gso_size will be zero,
1658 * in theory this shouldn't be necessary but as long as DSACK
1659 * code can come after this skb later on it's better to keep
1660 * setting gso_size to something.
1661 */
1662 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1663 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1664
1665 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1666 if (tcp_skb_pcount(skb) <= 1)
1667 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1668
1669 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1670 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1671
1672 if (skb->len > 0) {
1673 BUG_ON(!tcp_skb_pcount(skb));
1674 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1675 return false;
1676 }
1677
1678 /* Whole SKB was eaten :-) */
1679
1680 if (skb == tp->retransmit_skb_hint)
1681 tp->retransmit_skb_hint = prev;
1682
1683 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1684 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1685 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1686 TCP_SKB_CB(prev)->end_seq++;
1687
1688 if (skb == tcp_highest_sack(sk))
1689 tcp_advance_highest_sack(sk, skb);
1690
1691 tcp_skb_collapse_tstamp(prev, skb);
1692 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1693 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1694
1695 tcp_rtx_queue_unlink_and_free(skb, sk);
1696
1697 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1698
1699 return true;
1700 }
1701
1702 /* I wish gso_size would have a bit more sane initialization than
1703 * something-or-zero which complicates things
1704 */
tcp_skb_seglen(const struct sk_buff * skb)1705 static int tcp_skb_seglen(const struct sk_buff *skb)
1706 {
1707 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1708 }
1709
1710 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1711 static int skb_can_shift(const struct sk_buff *skb)
1712 {
1713 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1714 }
1715
tcp_skb_shift(struct sk_buff * to,struct sk_buff * from,int pcount,int shiftlen)1716 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1717 int pcount, int shiftlen)
1718 {
1719 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1720 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1721 * to make sure not storing more than 65535 * 8 bytes per skb,
1722 * even if current MSS is bigger.
1723 */
1724 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1725 return 0;
1726 if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1727 return 0;
1728 return skb_shift(to, from, shiftlen);
1729 }
1730
1731 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1732 * skb.
1733 */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1734 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1735 struct tcp_sacktag_state *state,
1736 u32 start_seq, u32 end_seq,
1737 bool dup_sack)
1738 {
1739 struct tcp_sock *tp = tcp_sk(sk);
1740 struct sk_buff *prev;
1741 int mss;
1742 int pcount = 0;
1743 int len;
1744 int in_sack;
1745
1746 /* Normally R but no L won't result in plain S */
1747 if (!dup_sack &&
1748 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1749 goto fallback;
1750 if (!skb_can_shift(skb))
1751 goto fallback;
1752 /* This frame is about to be dropped (was ACKed). */
1753 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1754 goto fallback;
1755
1756 /* Can only happen with delayed DSACK + discard craziness */
1757 prev = skb_rb_prev(skb);
1758 if (!prev)
1759 goto fallback;
1760
1761 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1762 goto fallback;
1763
1764 if (!tcp_skb_can_collapse(prev, skb))
1765 goto fallback;
1766
1767 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1768 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1769
1770 if (in_sack) {
1771 len = skb->len;
1772 pcount = tcp_skb_pcount(skb);
1773 mss = tcp_skb_seglen(skb);
1774
1775 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1776 * drop this restriction as unnecessary
1777 */
1778 if (mss != tcp_skb_seglen(prev))
1779 goto fallback;
1780 } else {
1781 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1782 goto noop;
1783 /* CHECKME: This is non-MSS split case only?, this will
1784 * cause skipped skbs due to advancing loop btw, original
1785 * has that feature too
1786 */
1787 if (tcp_skb_pcount(skb) <= 1)
1788 goto noop;
1789
1790 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1791 if (!in_sack) {
1792 /* TODO: head merge to next could be attempted here
1793 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1794 * though it might not be worth of the additional hassle
1795 *
1796 * ...we can probably just fallback to what was done
1797 * previously. We could try merging non-SACKed ones
1798 * as well but it probably isn't going to buy off
1799 * because later SACKs might again split them, and
1800 * it would make skb timestamp tracking considerably
1801 * harder problem.
1802 */
1803 goto fallback;
1804 }
1805
1806 len = end_seq - TCP_SKB_CB(skb)->seq;
1807 BUG_ON(len < 0);
1808 BUG_ON(len > skb->len);
1809
1810 /* MSS boundaries should be honoured or else pcount will
1811 * severely break even though it makes things bit trickier.
1812 * Optimize common case to avoid most of the divides
1813 */
1814 mss = tcp_skb_mss(skb);
1815
1816 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1817 * drop this restriction as unnecessary
1818 */
1819 if (mss != tcp_skb_seglen(prev))
1820 goto fallback;
1821
1822 if (len == mss) {
1823 pcount = 1;
1824 } else if (len < mss) {
1825 goto noop;
1826 } else {
1827 pcount = len / mss;
1828 len = pcount * mss;
1829 }
1830 }
1831
1832 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1833 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1834 goto fallback;
1835
1836 if (!tcp_skb_shift(prev, skb, pcount, len))
1837 goto fallback;
1838 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1839 goto out;
1840
1841 /* Hole filled allows collapsing with the next as well, this is very
1842 * useful when hole on every nth skb pattern happens
1843 */
1844 skb = skb_rb_next(prev);
1845 if (!skb)
1846 goto out;
1847
1848 if (!skb_can_shift(skb) ||
1849 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1850 (mss != tcp_skb_seglen(skb)))
1851 goto out;
1852
1853 if (!tcp_skb_can_collapse(prev, skb))
1854 goto out;
1855 len = skb->len;
1856 pcount = tcp_skb_pcount(skb);
1857 if (tcp_skb_shift(prev, skb, pcount, len))
1858 tcp_shifted_skb(sk, prev, skb, state, pcount,
1859 len, mss, 0);
1860
1861 out:
1862 return prev;
1863
1864 noop:
1865 return skb;
1866
1867 fallback:
1868 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1869 return NULL;
1870 }
1871
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1872 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1873 struct tcp_sack_block *next_dup,
1874 struct tcp_sacktag_state *state,
1875 u32 start_seq, u32 end_seq,
1876 bool dup_sack_in)
1877 {
1878 struct tcp_sock *tp = tcp_sk(sk);
1879 struct sk_buff *tmp;
1880
1881 skb_rbtree_walk_from(skb) {
1882 int in_sack = 0;
1883 bool dup_sack = dup_sack_in;
1884
1885 /* queue is in-order => we can short-circuit the walk early */
1886 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1887 break;
1888
1889 if (next_dup &&
1890 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1891 in_sack = tcp_match_skb_to_sack(sk, skb,
1892 next_dup->start_seq,
1893 next_dup->end_seq);
1894 if (in_sack > 0)
1895 dup_sack = true;
1896 }
1897
1898 /* skb reference here is a bit tricky to get right, since
1899 * shifting can eat and free both this skb and the next,
1900 * so not even _safe variant of the loop is enough.
1901 */
1902 if (in_sack <= 0) {
1903 tmp = tcp_shift_skb_data(sk, skb, state,
1904 start_seq, end_seq, dup_sack);
1905 if (tmp) {
1906 if (tmp != skb) {
1907 skb = tmp;
1908 continue;
1909 }
1910
1911 in_sack = 0;
1912 } else {
1913 in_sack = tcp_match_skb_to_sack(sk, skb,
1914 start_seq,
1915 end_seq);
1916 }
1917 }
1918
1919 if (unlikely(in_sack < 0))
1920 break;
1921
1922 if (in_sack) {
1923 TCP_SKB_CB(skb)->sacked =
1924 tcp_sacktag_one(sk,
1925 state,
1926 TCP_SKB_CB(skb)->sacked,
1927 TCP_SKB_CB(skb)->seq,
1928 TCP_SKB_CB(skb)->end_seq,
1929 dup_sack,
1930 tcp_skb_pcount(skb),
1931 skb->len,
1932 tcp_skb_timestamp_us(skb));
1933 tcp_rate_skb_delivered(sk, skb, state->rate);
1934 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1935 list_del_init(&skb->tcp_tsorted_anchor);
1936
1937 if (!before(TCP_SKB_CB(skb)->seq,
1938 tcp_highest_sack_seq(tp)))
1939 tcp_advance_highest_sack(sk, skb);
1940 }
1941 }
1942 return skb;
1943 }
1944
tcp_sacktag_bsearch(struct sock * sk,u32 seq)1945 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1946 {
1947 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1948 struct sk_buff *skb;
1949
1950 while (*p) {
1951 parent = *p;
1952 skb = rb_to_skb(parent);
1953 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1954 p = &parent->rb_left;
1955 continue;
1956 }
1957 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1958 p = &parent->rb_right;
1959 continue;
1960 }
1961 return skb;
1962 }
1963 return NULL;
1964 }
1965
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,u32 skip_to_seq)1966 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1967 u32 skip_to_seq)
1968 {
1969 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1970 return skb;
1971
1972 return tcp_sacktag_bsearch(sk, skip_to_seq);
1973 }
1974
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1975 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1976 struct sock *sk,
1977 struct tcp_sack_block *next_dup,
1978 struct tcp_sacktag_state *state,
1979 u32 skip_to_seq)
1980 {
1981 if (!next_dup)
1982 return skb;
1983
1984 if (before(next_dup->start_seq, skip_to_seq)) {
1985 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1986 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1987 next_dup->start_seq, next_dup->end_seq,
1988 1);
1989 }
1990
1991 return skb;
1992 }
1993
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1994 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1995 {
1996 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1997 }
1998
1999 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,struct tcp_sacktag_state * state)2000 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
2001 u32 prior_snd_una, struct tcp_sacktag_state *state)
2002 {
2003 struct tcp_sock *tp = tcp_sk(sk);
2004 const unsigned char *ptr = (skb_transport_header(ack_skb) +
2005 TCP_SKB_CB(ack_skb)->sacked);
2006 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
2007 struct tcp_sack_block sp[TCP_NUM_SACKS];
2008 struct tcp_sack_block *cache;
2009 struct sk_buff *skb;
2010 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
2011 int used_sacks;
2012 bool found_dup_sack = false;
2013 int i, j;
2014 int first_sack_index;
2015
2016 state->flag = 0;
2017 state->reord = tp->snd_nxt;
2018
2019 if (!tp->sacked_out)
2020 tcp_highest_sack_reset(sk);
2021
2022 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
2023 num_sacks, prior_snd_una, state);
2024
2025 /* Eliminate too old ACKs, but take into
2026 * account more or less fresh ones, they can
2027 * contain valid SACK info.
2028 */
2029 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
2030 return 0;
2031
2032 if (!tp->packets_out)
2033 goto out;
2034
2035 used_sacks = 0;
2036 first_sack_index = 0;
2037 for (i = 0; i < num_sacks; i++) {
2038 bool dup_sack = !i && found_dup_sack;
2039
2040 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
2041 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
2042
2043 if (!tcp_is_sackblock_valid(tp, dup_sack,
2044 sp[used_sacks].start_seq,
2045 sp[used_sacks].end_seq)) {
2046 int mib_idx;
2047
2048 if (dup_sack) {
2049 if (!tp->undo_marker)
2050 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
2051 else
2052 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
2053 } else {
2054 /* Don't count olds caused by ACK reordering */
2055 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
2056 !after(sp[used_sacks].end_seq, tp->snd_una))
2057 continue;
2058 mib_idx = LINUX_MIB_TCPSACKDISCARD;
2059 }
2060
2061 NET_INC_STATS(sock_net(sk), mib_idx);
2062 if (i == 0)
2063 first_sack_index = -1;
2064 continue;
2065 }
2066
2067 /* Ignore very old stuff early */
2068 if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
2069 if (i == 0)
2070 first_sack_index = -1;
2071 continue;
2072 }
2073
2074 used_sacks++;
2075 }
2076
2077 /* order SACK blocks to allow in order walk of the retrans queue */
2078 for (i = used_sacks - 1; i > 0; i--) {
2079 for (j = 0; j < i; j++) {
2080 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
2081 swap(sp[j], sp[j + 1]);
2082
2083 /* Track where the first SACK block goes to */
2084 if (j == first_sack_index)
2085 first_sack_index = j + 1;
2086 }
2087 }
2088 }
2089
2090 state->mss_now = tcp_current_mss(sk);
2091 skb = NULL;
2092 i = 0;
2093
2094 if (!tp->sacked_out) {
2095 /* It's already past, so skip checking against it */
2096 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
2097 } else {
2098 cache = tp->recv_sack_cache;
2099 /* Skip empty blocks in at head of the cache */
2100 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
2101 !cache->end_seq)
2102 cache++;
2103 }
2104
2105 while (i < used_sacks) {
2106 u32 start_seq = sp[i].start_seq;
2107 u32 end_seq = sp[i].end_seq;
2108 bool dup_sack = (found_dup_sack && (i == first_sack_index));
2109 struct tcp_sack_block *next_dup = NULL;
2110
2111 if (found_dup_sack && ((i + 1) == first_sack_index))
2112 next_dup = &sp[i + 1];
2113
2114 /* Skip too early cached blocks */
2115 while (tcp_sack_cache_ok(tp, cache) &&
2116 !before(start_seq, cache->end_seq))
2117 cache++;
2118
2119 /* Can skip some work by looking recv_sack_cache? */
2120 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
2121 after(end_seq, cache->start_seq)) {
2122
2123 /* Head todo? */
2124 if (before(start_seq, cache->start_seq)) {
2125 skb = tcp_sacktag_skip(skb, sk, start_seq);
2126 skb = tcp_sacktag_walk(skb, sk, next_dup,
2127 state,
2128 start_seq,
2129 cache->start_seq,
2130 dup_sack);
2131 }
2132
2133 /* Rest of the block already fully processed? */
2134 if (!after(end_seq, cache->end_seq))
2135 goto advance_sp;
2136
2137 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
2138 state,
2139 cache->end_seq);
2140
2141 /* ...tail remains todo... */
2142 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
2143 /* ...but better entrypoint exists! */
2144 skb = tcp_highest_sack(sk);
2145 if (!skb)
2146 break;
2147 cache++;
2148 goto walk;
2149 }
2150
2151 skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
2152 /* Check overlap against next cached too (past this one already) */
2153 cache++;
2154 continue;
2155 }
2156
2157 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
2158 skb = tcp_highest_sack(sk);
2159 if (!skb)
2160 break;
2161 }
2162 skb = tcp_sacktag_skip(skb, sk, start_seq);
2163
2164 walk:
2165 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
2166 start_seq, end_seq, dup_sack);
2167
2168 advance_sp:
2169 i++;
2170 }
2171
2172 /* Clear the head of the cache sack blocks so we can skip it next time */
2173 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
2174 tp->recv_sack_cache[i].start_seq = 0;
2175 tp->recv_sack_cache[i].end_seq = 0;
2176 }
2177 for (j = 0; j < used_sacks; j++)
2178 tp->recv_sack_cache[i++] = sp[j];
2179
2180 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
2181 tcp_check_sack_reordering(sk, state->reord, 0);
2182
2183 tcp_verify_left_out(tp);
2184 out:
2185
2186 #if FASTRETRANS_DEBUG > 0
2187 WARN_ON((int)tp->sacked_out < 0);
2188 WARN_ON((int)tp->lost_out < 0);
2189 WARN_ON((int)tp->retrans_out < 0);
2190 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2191 #endif
2192 return state->flag;
2193 }
2194
2195 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2196 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2197 */
tcp_limit_reno_sacked(struct tcp_sock * tp)2198 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2199 {
2200 u32 holes;
2201
2202 holes = max(tp->lost_out, 1U);
2203 holes = min(holes, tp->packets_out);
2204
2205 if ((tp->sacked_out + holes) > tp->packets_out) {
2206 tp->sacked_out = tp->packets_out - holes;
2207 return true;
2208 }
2209 return false;
2210 }
2211
2212 /* If we receive more dupacks than we expected counting segments
2213 * in assumption of absent reordering, interpret this as reordering.
2214 * The only another reason could be bug in receiver TCP.
2215 */
tcp_check_reno_reordering(struct sock * sk,const int addend)2216 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2217 {
2218 struct tcp_sock *tp = tcp_sk(sk);
2219
2220 if (!tcp_limit_reno_sacked(tp))
2221 return;
2222
2223 tp->reordering = min_t(u32, tp->packets_out + addend,
2224 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2225 tp->reord_seen++;
2226 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2227 }
2228
2229 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2230
tcp_add_reno_sack(struct sock * sk,int num_dupack,bool ece_ack)2231 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2232 {
2233 if (num_dupack) {
2234 struct tcp_sock *tp = tcp_sk(sk);
2235 u32 prior_sacked = tp->sacked_out;
2236 s32 delivered;
2237
2238 tp->sacked_out += num_dupack;
2239 tcp_check_reno_reordering(sk, 0);
2240 delivered = tp->sacked_out - prior_sacked;
2241 if (delivered > 0)
2242 tcp_count_delivered(tp, delivered, ece_ack);
2243 tcp_verify_left_out(tp);
2244 }
2245 }
2246
2247 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2248
tcp_remove_reno_sacks(struct sock * sk,int acked,bool ece_ack)2249 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2250 {
2251 struct tcp_sock *tp = tcp_sk(sk);
2252
2253 if (acked > 0) {
2254 /* One ACK acked hole. The rest eat duplicate ACKs. */
2255 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2256 ece_ack);
2257 if (acked - 1 >= tp->sacked_out)
2258 tp->sacked_out = 0;
2259 else
2260 tp->sacked_out -= acked - 1;
2261 }
2262 tcp_check_reno_reordering(sk, acked);
2263 tcp_verify_left_out(tp);
2264 }
2265
tcp_reset_reno_sack(struct tcp_sock * tp)2266 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2267 {
2268 tp->sacked_out = 0;
2269 }
2270
tcp_clear_retrans(struct tcp_sock * tp)2271 void tcp_clear_retrans(struct tcp_sock *tp)
2272 {
2273 tp->retrans_out = 0;
2274 tp->lost_out = 0;
2275 tp->undo_marker = 0;
2276 tp->undo_retrans = -1;
2277 tp->sacked_out = 0;
2278 tp->rto_stamp = 0;
2279 tp->total_rto = 0;
2280 tp->total_rto_recoveries = 0;
2281 tp->total_rto_time = 0;
2282 }
2283
tcp_init_undo(struct tcp_sock * tp)2284 static inline void tcp_init_undo(struct tcp_sock *tp)
2285 {
2286 tp->undo_marker = tp->snd_una;
2287
2288 /* Retransmission still in flight may cause DSACKs later. */
2289 /* First, account for regular retransmits in flight: */
2290 tp->undo_retrans = tp->retrans_out;
2291 /* Next, account for TLP retransmits in flight: */
2292 if (tp->tlp_high_seq && tp->tlp_retrans)
2293 tp->undo_retrans++;
2294 /* Finally, avoid 0, because undo_retrans==0 means "can undo now": */
2295 if (!tp->undo_retrans)
2296 tp->undo_retrans = -1;
2297 }
2298
2299 /* If we detect SACK reneging, forget all SACK information
2300 * and reset tags completely, otherwise preserve SACKs. If receiver
2301 * dropped its ofo queue, we will know this due to reneging detection.
2302 */
tcp_timeout_mark_lost(struct sock * sk)2303 static void tcp_timeout_mark_lost(struct sock *sk)
2304 {
2305 struct tcp_sock *tp = tcp_sk(sk);
2306 struct sk_buff *skb, *head;
2307 bool is_reneg; /* is receiver reneging on SACKs? */
2308
2309 head = tcp_rtx_queue_head(sk);
2310 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2311 if (is_reneg) {
2312 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2313 tp->sacked_out = 0;
2314 /* Mark SACK reneging until we recover from this loss event. */
2315 tp->is_sack_reneg = 1;
2316 } else if (tcp_is_reno(tp)) {
2317 tcp_reset_reno_sack(tp);
2318 }
2319
2320 skb = head;
2321 skb_rbtree_walk_from(skb) {
2322 if (is_reneg)
2323 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2324 else if (skb != head && tcp_rack_skb_timeout(tp, skb, 0) > 0)
2325 continue; /* Don't mark recently sent ones lost yet */
2326 tcp_mark_skb_lost(sk, skb);
2327 }
2328 tcp_verify_left_out(tp);
2329 tcp_clear_all_retrans_hints(tp);
2330 }
2331
2332 /* Enter Loss state. */
tcp_enter_loss(struct sock * sk)2333 void tcp_enter_loss(struct sock *sk)
2334 {
2335 const struct inet_connection_sock *icsk = inet_csk(sk);
2336 struct tcp_sock *tp = tcp_sk(sk);
2337 struct net *net = sock_net(sk);
2338 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2339 u8 reordering;
2340
2341 tcp_timeout_mark_lost(sk);
2342
2343 /* Reduce ssthresh if it has not yet been made inside this window. */
2344 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2345 !after(tp->high_seq, tp->snd_una) ||
2346 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2347 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2348 tp->prior_cwnd = tcp_snd_cwnd(tp);
2349 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2350 tcp_ca_event(sk, CA_EVENT_LOSS);
2351 tcp_init_undo(tp);
2352 }
2353 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2354 tp->snd_cwnd_cnt = 0;
2355 tp->snd_cwnd_stamp = tcp_jiffies32;
2356
2357 /* Timeout in disordered state after receiving substantial DUPACKs
2358 * suggests that the degree of reordering is over-estimated.
2359 */
2360 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2361 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2362 tp->sacked_out >= reordering)
2363 tp->reordering = min_t(unsigned int, tp->reordering,
2364 reordering);
2365
2366 tcp_set_ca_state(sk, TCP_CA_Loss);
2367 tp->high_seq = tp->snd_nxt;
2368 tp->tlp_high_seq = 0;
2369 tcp_ecn_queue_cwr(tp);
2370
2371 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2372 * loss recovery is underway except recurring timeout(s) on
2373 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2374 */
2375 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2376 (new_recovery || icsk->icsk_retransmits) &&
2377 !inet_csk(sk)->icsk_mtup.probe_size;
2378 }
2379
2380 /* If ACK arrived pointing to a remembered SACK, it means that our
2381 * remembered SACKs do not reflect real state of receiver i.e.
2382 * receiver _host_ is heavily congested (or buggy).
2383 *
2384 * To avoid big spurious retransmission bursts due to transient SACK
2385 * scoreboard oddities that look like reneging, we give the receiver a
2386 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2387 * restore sanity to the SACK scoreboard. If the apparent reneging
2388 * persists until this RTO then we'll clear the SACK scoreboard.
2389 */
tcp_check_sack_reneging(struct sock * sk,int * ack_flag)2390 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2391 {
2392 if (*ack_flag & FLAG_SACK_RENEGING &&
2393 *ack_flag & FLAG_SND_UNA_ADVANCED) {
2394 struct tcp_sock *tp = tcp_sk(sk);
2395 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2396 msecs_to_jiffies(10));
2397
2398 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, false);
2399 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
2400 return true;
2401 }
2402 return false;
2403 }
2404
2405 /* Linux NewReno/SACK/ECN state machine.
2406 * --------------------------------------
2407 *
2408 * "Open" Normal state, no dubious events, fast path.
2409 * "Disorder" In all the respects it is "Open",
2410 * but requires a bit more attention. It is entered when
2411 * we see some SACKs or dupacks. It is split of "Open"
2412 * mainly to move some processing from fast path to slow one.
2413 * "CWR" CWND was reduced due to some Congestion Notification event.
2414 * It can be ECN, ICMP source quench, local device congestion.
2415 * "Recovery" CWND was reduced, we are fast-retransmitting.
2416 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2417 *
2418 * tcp_fastretrans_alert() is entered:
2419 * - each incoming ACK, if state is not "Open"
2420 * - when arrived ACK is unusual, namely:
2421 * * SACK
2422 * * Duplicate ACK.
2423 * * ECN ECE.
2424 *
2425 * Counting packets in flight is pretty simple.
2426 *
2427 * in_flight = packets_out - left_out + retrans_out
2428 *
2429 * packets_out is SND.NXT-SND.UNA counted in packets.
2430 *
2431 * retrans_out is number of retransmitted segments.
2432 *
2433 * left_out is number of segments left network, but not ACKed yet.
2434 *
2435 * left_out = sacked_out + lost_out
2436 *
2437 * sacked_out: Packets, which arrived to receiver out of order
2438 * and hence not ACKed. With SACKs this number is simply
2439 * amount of SACKed data. Even without SACKs
2440 * it is easy to give pretty reliable estimate of this number,
2441 * counting duplicate ACKs.
2442 *
2443 * lost_out: Packets lost by network. TCP has no explicit
2444 * "loss notification" feedback from network (for now).
2445 * It means that this number can be only _guessed_.
2446 * Actually, it is the heuristics to predict lossage that
2447 * distinguishes different algorithms.
2448 *
2449 * F.e. after RTO, when all the queue is considered as lost,
2450 * lost_out = packets_out and in_flight = retrans_out.
2451 *
2452 * Essentially, we have now a few algorithms detecting
2453 * lost packets.
2454 *
2455 * If the receiver supports SACK:
2456 *
2457 * RACK (RFC8985): RACK is a newer loss detection algorithm
2458 * (2017-) that checks timing instead of counting DUPACKs.
2459 * Essentially a packet is considered lost if it's not S/ACKed
2460 * after RTT + reordering_window, where both metrics are
2461 * dynamically measured and adjusted. This is implemented in
2462 * tcp_rack_mark_lost.
2463 *
2464 * If the receiver does not support SACK:
2465 *
2466 * NewReno (RFC6582): in Recovery we assume that one segment
2467 * is lost (classic Reno). While we are in Recovery and
2468 * a partial ACK arrives, we assume that one more packet
2469 * is lost (NewReno). This heuristics are the same in NewReno
2470 * and SACK.
2471 *
2472 * The really tricky (and requiring careful tuning) part of the algorithm
2473 * is hidden in the RACK code in tcp_recovery.c and tcp_xmit_retransmit_queue().
2474 * The first determines the moment _when_ we should reduce CWND and,
2475 * hence, slow down forward transmission. In fact, it determines the moment
2476 * when we decide that hole is caused by loss, rather than by a reorder.
2477 *
2478 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2479 * holes, caused by lost packets.
2480 *
2481 * And the most logically complicated part of algorithm is undo
2482 * heuristics. We detect false retransmits due to both too early
2483 * fast retransmit (reordering) and underestimated RTO, analyzing
2484 * timestamps and D-SACKs. When we detect that some segments were
2485 * retransmitted by mistake and CWND reduction was wrong, we undo
2486 * window reduction and abort recovery phase. This logic is hidden
2487 * inside several functions named tcp_try_undo_<something>.
2488 */
2489
2490 /* This function decides, when we should leave Disordered state
2491 * and enter Recovery phase, reducing congestion window.
2492 *
2493 * Main question: may we further continue forward transmission
2494 * with the same cwnd?
2495 */
tcp_time_to_recover(const struct tcp_sock * tp)2496 static bool tcp_time_to_recover(const struct tcp_sock *tp)
2497 {
2498 /* Has loss detection marked at least one packet lost? */
2499 return tp->lost_out != 0;
2500 }
2501
tcp_tsopt_ecr_before(const struct tcp_sock * tp,u32 when)2502 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2503 {
2504 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2505 before(tp->rx_opt.rcv_tsecr, when);
2506 }
2507
2508 /* skb is spurious retransmitted if the returned timestamp echo
2509 * reply is prior to the skb transmission time
2510 */
tcp_skb_spurious_retrans(const struct tcp_sock * tp,const struct sk_buff * skb)2511 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2512 const struct sk_buff *skb)
2513 {
2514 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2515 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb));
2516 }
2517
2518 /* Nothing was retransmitted or returned timestamp is less
2519 * than timestamp of the first retransmission.
2520 */
tcp_packet_delayed(const struct tcp_sock * tp)2521 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2522 {
2523 const struct sock *sk = (const struct sock *)tp;
2524
2525 /* Received an echoed timestamp before the first retransmission? */
2526 if (tp->retrans_stamp)
2527 return tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2528
2529 /* We set tp->retrans_stamp upon the first retransmission of a loss
2530 * recovery episode, so normally if tp->retrans_stamp is 0 then no
2531 * retransmission has happened yet (likely due to TSQ, which can cause
2532 * fast retransmits to be delayed). So if snd_una advanced while
2533 * (tp->retrans_stamp is 0 then apparently a packet was merely delayed,
2534 * not lost. But there are exceptions where we retransmit but then
2535 * clear tp->retrans_stamp, so we check for those exceptions.
2536 */
2537
2538 /* (1) For non-SACK connections, tcp_is_non_sack_preventing_reopen()
2539 * clears tp->retrans_stamp when snd_una == high_seq.
2540 */
2541 if (!tcp_is_sack(tp) && !before(tp->snd_una, tp->high_seq))
2542 return false;
2543
2544 /* (2) In TCP_SYN_SENT tcp_clean_rtx_queue() clears tp->retrans_stamp
2545 * when setting FLAG_SYN_ACKED is set, even if the SYN was
2546 * retransmitted.
2547 */
2548 if (sk->sk_state == TCP_SYN_SENT)
2549 return false;
2550
2551 return true; /* tp->retrans_stamp is zero; no retransmit yet */
2552 }
2553
2554 /* Undo procedures. */
2555
2556 /* We can clear retrans_stamp when there are no retransmissions in the
2557 * window. It would seem that it is trivially available for us in
2558 * tp->retrans_out, however, that kind of assumptions doesn't consider
2559 * what will happen if errors occur when sending retransmission for the
2560 * second time. ...It could the that such segment has only
2561 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2562 * the head skb is enough except for some reneging corner cases that
2563 * are not worth the effort.
2564 *
2565 * Main reason for all this complexity is the fact that connection dying
2566 * time now depends on the validity of the retrans_stamp, in particular,
2567 * that successive retransmissions of a segment must not advance
2568 * retrans_stamp under any conditions.
2569 */
tcp_any_retrans_done(const struct sock * sk)2570 static bool tcp_any_retrans_done(const struct sock *sk)
2571 {
2572 const struct tcp_sock *tp = tcp_sk(sk);
2573 struct sk_buff *skb;
2574
2575 if (tp->retrans_out)
2576 return true;
2577
2578 skb = tcp_rtx_queue_head(sk);
2579 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2580 return true;
2581
2582 return false;
2583 }
2584
2585 /* If loss recovery is finished and there are no retransmits out in the
2586 * network, then we clear retrans_stamp so that upon the next loss recovery
2587 * retransmits_timed_out() and timestamp-undo are using the correct value.
2588 */
tcp_retrans_stamp_cleanup(struct sock * sk)2589 static void tcp_retrans_stamp_cleanup(struct sock *sk)
2590 {
2591 if (!tcp_any_retrans_done(sk))
2592 tcp_sk(sk)->retrans_stamp = 0;
2593 }
2594
DBGUNDO(struct sock * sk,const char * msg)2595 static void DBGUNDO(struct sock *sk, const char *msg)
2596 {
2597 #if FASTRETRANS_DEBUG > 1
2598 struct tcp_sock *tp = tcp_sk(sk);
2599 struct inet_sock *inet = inet_sk(sk);
2600
2601 if (sk->sk_family == AF_INET) {
2602 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2603 msg,
2604 &inet->inet_daddr, ntohs(inet->inet_dport),
2605 tcp_snd_cwnd(tp), tcp_left_out(tp),
2606 tp->snd_ssthresh, tp->prior_ssthresh,
2607 tp->packets_out);
2608 }
2609 #if IS_ENABLED(CONFIG_IPV6)
2610 else if (sk->sk_family == AF_INET6) {
2611 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2612 msg,
2613 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2614 tcp_snd_cwnd(tp), tcp_left_out(tp),
2615 tp->snd_ssthresh, tp->prior_ssthresh,
2616 tp->packets_out);
2617 }
2618 #endif
2619 #endif
2620 }
2621
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2622 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2623 {
2624 struct tcp_sock *tp = tcp_sk(sk);
2625
2626 if (unmark_loss) {
2627 struct sk_buff *skb;
2628
2629 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2630 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2631 }
2632 tp->lost_out = 0;
2633 tcp_clear_all_retrans_hints(tp);
2634 }
2635
2636 if (tp->prior_ssthresh) {
2637 const struct inet_connection_sock *icsk = inet_csk(sk);
2638
2639 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2640
2641 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2642 tp->snd_ssthresh = tp->prior_ssthresh;
2643 tcp_ecn_withdraw_cwr(tp);
2644 }
2645 }
2646 tp->snd_cwnd_stamp = tcp_jiffies32;
2647 tp->undo_marker = 0;
2648 tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2649 }
2650
tcp_may_undo(const struct tcp_sock * tp)2651 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2652 {
2653 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2654 }
2655
tcp_is_non_sack_preventing_reopen(struct sock * sk)2656 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2657 {
2658 struct tcp_sock *tp = tcp_sk(sk);
2659
2660 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2661 /* Hold old state until something *above* high_seq
2662 * is ACKed. For Reno it is MUST to prevent false
2663 * fast retransmits (RFC2582). SACK TCP is safe. */
2664 if (!tcp_any_retrans_done(sk))
2665 tp->retrans_stamp = 0;
2666 return true;
2667 }
2668 return false;
2669 }
2670
2671 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2672 static bool tcp_try_undo_recovery(struct sock *sk)
2673 {
2674 struct tcp_sock *tp = tcp_sk(sk);
2675
2676 if (tcp_may_undo(tp)) {
2677 int mib_idx;
2678
2679 /* Happy end! We did not retransmit anything
2680 * or our original transmission succeeded.
2681 */
2682 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2683 tcp_undo_cwnd_reduction(sk, false);
2684 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2685 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2686 else
2687 mib_idx = LINUX_MIB_TCPFULLUNDO;
2688
2689 NET_INC_STATS(sock_net(sk), mib_idx);
2690 } else if (tp->rack.reo_wnd_persist) {
2691 tp->rack.reo_wnd_persist--;
2692 }
2693 if (tcp_is_non_sack_preventing_reopen(sk))
2694 return true;
2695 tcp_set_ca_state(sk, TCP_CA_Open);
2696 tp->is_sack_reneg = 0;
2697 return false;
2698 }
2699
2700 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2701 static bool tcp_try_undo_dsack(struct sock *sk)
2702 {
2703 struct tcp_sock *tp = tcp_sk(sk);
2704
2705 if (tp->undo_marker && !tp->undo_retrans) {
2706 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2707 tp->rack.reo_wnd_persist + 1);
2708 DBGUNDO(sk, "D-SACK");
2709 tcp_undo_cwnd_reduction(sk, false);
2710 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2711 return true;
2712 }
2713 return false;
2714 }
2715
2716 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2717 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2718 {
2719 struct tcp_sock *tp = tcp_sk(sk);
2720
2721 if (frto_undo || tcp_may_undo(tp)) {
2722 tcp_undo_cwnd_reduction(sk, true);
2723
2724 DBGUNDO(sk, "partial loss");
2725 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2726 if (frto_undo)
2727 NET_INC_STATS(sock_net(sk),
2728 LINUX_MIB_TCPSPURIOUSRTOS);
2729 WRITE_ONCE(inet_csk(sk)->icsk_retransmits, 0);
2730 if (tcp_is_non_sack_preventing_reopen(sk))
2731 return true;
2732 if (frto_undo || tcp_is_sack(tp)) {
2733 tcp_set_ca_state(sk, TCP_CA_Open);
2734 tp->is_sack_reneg = 0;
2735 }
2736 return true;
2737 }
2738 return false;
2739 }
2740
2741 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2742 * It computes the number of packets to send (sndcnt) based on packets newly
2743 * delivered:
2744 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2745 * cwnd reductions across a full RTT.
2746 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2747 * But when SND_UNA is acked without further losses,
2748 * slow starts cwnd up to ssthresh to speed up the recovery.
2749 */
tcp_init_cwnd_reduction(struct sock * sk)2750 static void tcp_init_cwnd_reduction(struct sock *sk)
2751 {
2752 struct tcp_sock *tp = tcp_sk(sk);
2753
2754 tp->high_seq = tp->snd_nxt;
2755 tp->tlp_high_seq = 0;
2756 tp->snd_cwnd_cnt = 0;
2757 tp->prior_cwnd = tcp_snd_cwnd(tp);
2758 tp->prr_delivered = 0;
2759 tp->prr_out = 0;
2760 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2761 tcp_ecn_queue_cwr(tp);
2762 }
2763
tcp_cwnd_reduction(struct sock * sk,int newly_acked_sacked,int newly_lost,int flag)2764 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2765 {
2766 struct tcp_sock *tp = tcp_sk(sk);
2767 int sndcnt = 0;
2768 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2769
2770 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2771 return;
2772
2773 trace_tcp_cwnd_reduction_tp(sk, newly_acked_sacked, newly_lost, flag);
2774
2775 tp->prr_delivered += newly_acked_sacked;
2776 if (delta < 0) {
2777 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2778 tp->prior_cwnd - 1;
2779 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2780 } else {
2781 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2782 newly_acked_sacked);
2783 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2784 sndcnt++;
2785 sndcnt = min(delta, sndcnt);
2786 }
2787 /* Force a fast retransmit upon entering fast recovery */
2788 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2789 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2790 }
2791
tcp_end_cwnd_reduction(struct sock * sk)2792 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2793 {
2794 struct tcp_sock *tp = tcp_sk(sk);
2795
2796 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2797 return;
2798
2799 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2800 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2801 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2802 tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2803 tp->snd_cwnd_stamp = tcp_jiffies32;
2804 }
2805 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2806 }
2807
2808 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2809 void tcp_enter_cwr(struct sock *sk)
2810 {
2811 struct tcp_sock *tp = tcp_sk(sk);
2812
2813 tp->prior_ssthresh = 0;
2814 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2815 tp->undo_marker = 0;
2816 tcp_init_cwnd_reduction(sk);
2817 tcp_set_ca_state(sk, TCP_CA_CWR);
2818 }
2819 }
2820 EXPORT_SYMBOL(tcp_enter_cwr);
2821
tcp_try_keep_open(struct sock * sk)2822 static void tcp_try_keep_open(struct sock *sk)
2823 {
2824 struct tcp_sock *tp = tcp_sk(sk);
2825 int state = TCP_CA_Open;
2826
2827 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2828 state = TCP_CA_Disorder;
2829
2830 if (inet_csk(sk)->icsk_ca_state != state) {
2831 tcp_set_ca_state(sk, state);
2832 tp->high_seq = tp->snd_nxt;
2833 }
2834 }
2835
tcp_try_to_open(struct sock * sk,int flag)2836 static void tcp_try_to_open(struct sock *sk, int flag)
2837 {
2838 struct tcp_sock *tp = tcp_sk(sk);
2839
2840 tcp_verify_left_out(tp);
2841
2842 if (!tcp_any_retrans_done(sk))
2843 tp->retrans_stamp = 0;
2844
2845 if (flag & FLAG_ECE)
2846 tcp_enter_cwr(sk);
2847
2848 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2849 tcp_try_keep_open(sk);
2850 }
2851 }
2852
tcp_mtup_probe_failed(struct sock * sk)2853 static void tcp_mtup_probe_failed(struct sock *sk)
2854 {
2855 struct inet_connection_sock *icsk = inet_csk(sk);
2856
2857 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2858 icsk->icsk_mtup.probe_size = 0;
2859 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2860 }
2861
tcp_mtup_probe_success(struct sock * sk)2862 static void tcp_mtup_probe_success(struct sock *sk)
2863 {
2864 struct tcp_sock *tp = tcp_sk(sk);
2865 struct inet_connection_sock *icsk = inet_csk(sk);
2866 u64 val;
2867
2868 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2869
2870 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2871 do_div(val, icsk->icsk_mtup.probe_size);
2872 DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2873 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2874
2875 tp->snd_cwnd_cnt = 0;
2876 tp->snd_cwnd_stamp = tcp_jiffies32;
2877 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2878
2879 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2880 icsk->icsk_mtup.probe_size = 0;
2881 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2882 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2883 }
2884
2885 /* Sometimes we deduce that packets have been dropped due to reasons other than
2886 * congestion, like path MTU reductions or failed client TFO attempts. In these
2887 * cases we call this function to retransmit as many packets as cwnd allows,
2888 * without reducing cwnd. Given that retransmits will set retrans_stamp to a
2889 * non-zero value (and may do so in a later calling context due to TSQ), we
2890 * also enter CA_Loss so that we track when all retransmitted packets are ACKed
2891 * and clear retrans_stamp when that happens (to ensure later recurring RTOs
2892 * are using the correct retrans_stamp and don't declare ETIMEDOUT
2893 * prematurely).
2894 */
tcp_non_congestion_loss_retransmit(struct sock * sk)2895 static void tcp_non_congestion_loss_retransmit(struct sock *sk)
2896 {
2897 const struct inet_connection_sock *icsk = inet_csk(sk);
2898 struct tcp_sock *tp = tcp_sk(sk);
2899
2900 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2901 tp->high_seq = tp->snd_nxt;
2902 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2903 tp->prior_ssthresh = 0;
2904 tp->undo_marker = 0;
2905 tcp_set_ca_state(sk, TCP_CA_Loss);
2906 }
2907 tcp_xmit_retransmit_queue(sk);
2908 }
2909
2910 /* Do a simple retransmit without using the backoff mechanisms in
2911 * tcp_timer. This is used for path mtu discovery.
2912 * The socket is already locked here.
2913 */
tcp_simple_retransmit(struct sock * sk)2914 void tcp_simple_retransmit(struct sock *sk)
2915 {
2916 struct tcp_sock *tp = tcp_sk(sk);
2917 struct sk_buff *skb;
2918 int mss;
2919
2920 /* A fastopen SYN request is stored as two separate packets within
2921 * the retransmit queue, this is done by tcp_send_syn_data().
2922 * As a result simply checking the MSS of the frames in the queue
2923 * will not work for the SYN packet.
2924 *
2925 * Us being here is an indication of a path MTU issue so we can
2926 * assume that the fastopen SYN was lost and just mark all the
2927 * frames in the retransmit queue as lost. We will use an MSS of
2928 * -1 to mark all frames as lost, otherwise compute the current MSS.
2929 */
2930 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2931 mss = -1;
2932 else
2933 mss = tcp_current_mss(sk);
2934
2935 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2936 if (tcp_skb_seglen(skb) > mss)
2937 tcp_mark_skb_lost(sk, skb);
2938 }
2939
2940 if (!tp->lost_out)
2941 return;
2942
2943 if (tcp_is_reno(tp))
2944 tcp_limit_reno_sacked(tp);
2945
2946 tcp_verify_left_out(tp);
2947
2948 /* Don't muck with the congestion window here.
2949 * Reason is that we do not increase amount of _data_
2950 * in network, but units changed and effective
2951 * cwnd/ssthresh really reduced now.
2952 */
2953 tcp_non_congestion_loss_retransmit(sk);
2954 }
2955 EXPORT_IPV6_MOD(tcp_simple_retransmit);
2956
tcp_enter_recovery(struct sock * sk,bool ece_ack)2957 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2958 {
2959 struct tcp_sock *tp = tcp_sk(sk);
2960 int mib_idx;
2961
2962 /* Start the clock with our fast retransmit, for undo and ETIMEDOUT. */
2963 tcp_retrans_stamp_cleanup(sk);
2964
2965 if (tcp_is_reno(tp))
2966 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2967 else
2968 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2969
2970 NET_INC_STATS(sock_net(sk), mib_idx);
2971
2972 tp->prior_ssthresh = 0;
2973 tcp_init_undo(tp);
2974
2975 if (!tcp_in_cwnd_reduction(sk)) {
2976 if (!ece_ack)
2977 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2978 tcp_init_cwnd_reduction(sk);
2979 }
2980 tcp_set_ca_state(sk, TCP_CA_Recovery);
2981 }
2982
tcp_update_rto_time(struct tcp_sock * tp)2983 static void tcp_update_rto_time(struct tcp_sock *tp)
2984 {
2985 if (tp->rto_stamp) {
2986 tp->total_rto_time += tcp_time_stamp_ms(tp) - tp->rto_stamp;
2987 tp->rto_stamp = 0;
2988 }
2989 }
2990
2991 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2992 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2993 */
tcp_process_loss(struct sock * sk,int flag,int num_dupack,int * rexmit)2994 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2995 int *rexmit)
2996 {
2997 struct tcp_sock *tp = tcp_sk(sk);
2998 bool recovered = !before(tp->snd_una, tp->high_seq);
2999
3000 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
3001 tcp_try_undo_loss(sk, false))
3002 return;
3003
3004 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
3005 /* Step 3.b. A timeout is spurious if not all data are
3006 * lost, i.e., never-retransmitted data are (s)acked.
3007 */
3008 if ((flag & FLAG_ORIG_SACK_ACKED) &&
3009 tcp_try_undo_loss(sk, true))
3010 return;
3011
3012 if (after(tp->snd_nxt, tp->high_seq)) {
3013 if (flag & FLAG_DATA_SACKED || num_dupack)
3014 tp->frto = 0; /* Step 3.a. loss was real */
3015 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
3016 tp->high_seq = tp->snd_nxt;
3017 /* Step 2.b. Try send new data (but deferred until cwnd
3018 * is updated in tcp_ack()). Otherwise fall back to
3019 * the conventional recovery.
3020 */
3021 if (!tcp_write_queue_empty(sk) &&
3022 after(tcp_wnd_end(tp), tp->snd_nxt)) {
3023 *rexmit = REXMIT_NEW;
3024 return;
3025 }
3026 tp->frto = 0;
3027 }
3028 }
3029
3030 if (recovered) {
3031 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
3032 tcp_try_undo_recovery(sk);
3033 return;
3034 }
3035 if (tcp_is_reno(tp)) {
3036 /* A Reno DUPACK means new data in F-RTO step 2.b above are
3037 * delivered. Lower inflight to clock out (re)transmissions.
3038 */
3039 if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
3040 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
3041 else if (flag & FLAG_SND_UNA_ADVANCED)
3042 tcp_reset_reno_sack(tp);
3043 }
3044 *rexmit = REXMIT_LOST;
3045 }
3046
3047 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,u32 prior_snd_una)3048 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
3049 {
3050 struct tcp_sock *tp = tcp_sk(sk);
3051
3052 if (tp->undo_marker && tcp_packet_delayed(tp)) {
3053 /* Plain luck! Hole if filled with delayed
3054 * packet, rather than with a retransmit. Check reordering.
3055 */
3056 tcp_check_sack_reordering(sk, prior_snd_una, 1);
3057
3058 /* We are getting evidence that the reordering degree is higher
3059 * than we realized. If there are no retransmits out then we
3060 * can undo. Otherwise we clock out new packets but do not
3061 * mark more packets lost or retransmit more.
3062 */
3063 if (tp->retrans_out)
3064 return true;
3065
3066 if (!tcp_any_retrans_done(sk))
3067 tp->retrans_stamp = 0;
3068
3069 DBGUNDO(sk, "partial recovery");
3070 tcp_undo_cwnd_reduction(sk, true);
3071 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
3072 tcp_try_keep_open(sk);
3073 }
3074 return false;
3075 }
3076
tcp_identify_packet_loss(struct sock * sk,int * ack_flag)3077 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
3078 {
3079 struct tcp_sock *tp = tcp_sk(sk);
3080
3081 if (tcp_rtx_queue_empty(sk))
3082 return;
3083
3084 if (unlikely(tcp_is_reno(tp))) {
3085 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
3086 } else {
3087 u32 prior_retrans = tp->retrans_out;
3088
3089 if (tcp_rack_mark_lost(sk))
3090 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
3091 if (prior_retrans > tp->retrans_out)
3092 *ack_flag |= FLAG_LOST_RETRANS;
3093 }
3094 }
3095
3096 /* Process an event, which can update packets-in-flight not trivially.
3097 * Main goal of this function is to calculate new estimate for left_out,
3098 * taking into account both packets sitting in receiver's buffer and
3099 * packets lost by network.
3100 *
3101 * Besides that it updates the congestion state when packet loss or ECN
3102 * is detected. But it does not reduce the cwnd, it is done by the
3103 * congestion control later.
3104 *
3105 * It does _not_ decide what to send, it is made in function
3106 * tcp_xmit_retransmit_queue().
3107 */
tcp_fastretrans_alert(struct sock * sk,const u32 prior_snd_una,int num_dupack,int * ack_flag,int * rexmit)3108 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
3109 int num_dupack, int *ack_flag, int *rexmit)
3110 {
3111 struct inet_connection_sock *icsk = inet_csk(sk);
3112 struct tcp_sock *tp = tcp_sk(sk);
3113 int flag = *ack_flag;
3114 bool ece_ack = flag & FLAG_ECE;
3115
3116 if (!tp->packets_out && tp->sacked_out)
3117 tp->sacked_out = 0;
3118
3119 /* Now state machine starts.
3120 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3121 if (ece_ack)
3122 tp->prior_ssthresh = 0;
3123
3124 /* B. In all the states check for reneging SACKs. */
3125 if (tcp_check_sack_reneging(sk, ack_flag))
3126 return;
3127
3128 /* C. Check consistency of the current state. */
3129 tcp_verify_left_out(tp);
3130
3131 /* D. Check state exit conditions. State can be terminated
3132 * when high_seq is ACKed. */
3133 if (icsk->icsk_ca_state == TCP_CA_Open) {
3134 WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
3135 tp->retrans_stamp = 0;
3136 } else if (!before(tp->snd_una, tp->high_seq)) {
3137 switch (icsk->icsk_ca_state) {
3138 case TCP_CA_CWR:
3139 /* CWR is to be held something *above* high_seq
3140 * is ACKed for CWR bit to reach receiver. */
3141 if (tp->snd_una != tp->high_seq) {
3142 tcp_end_cwnd_reduction(sk);
3143 tcp_set_ca_state(sk, TCP_CA_Open);
3144 }
3145 break;
3146
3147 case TCP_CA_Recovery:
3148 if (tcp_is_reno(tp))
3149 tcp_reset_reno_sack(tp);
3150 if (tcp_try_undo_recovery(sk))
3151 return;
3152 tcp_end_cwnd_reduction(sk);
3153 break;
3154 }
3155 }
3156
3157 /* E. Process state. */
3158 switch (icsk->icsk_ca_state) {
3159 case TCP_CA_Recovery:
3160 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3161 if (tcp_is_reno(tp))
3162 tcp_add_reno_sack(sk, num_dupack, ece_ack);
3163 } else if (tcp_try_undo_partial(sk, prior_snd_una))
3164 return;
3165
3166 if (tcp_try_undo_dsack(sk))
3167 tcp_try_to_open(sk, flag);
3168
3169 tcp_identify_packet_loss(sk, ack_flag);
3170 if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3171 if (!tcp_time_to_recover(tp))
3172 return;
3173 /* Undo reverts the recovery state. If loss is evident,
3174 * starts a new recovery (e.g. reordering then loss);
3175 */
3176 tcp_enter_recovery(sk, ece_ack);
3177 }
3178 break;
3179 case TCP_CA_Loss:
3180 tcp_process_loss(sk, flag, num_dupack, rexmit);
3181 if (icsk->icsk_ca_state != TCP_CA_Loss)
3182 tcp_update_rto_time(tp);
3183 tcp_identify_packet_loss(sk, ack_flag);
3184 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3185 (*ack_flag & FLAG_LOST_RETRANS)))
3186 return;
3187 /* Change state if cwnd is undone or retransmits are lost */
3188 fallthrough;
3189 default:
3190 if (tcp_is_reno(tp)) {
3191 if (flag & FLAG_SND_UNA_ADVANCED)
3192 tcp_reset_reno_sack(tp);
3193 tcp_add_reno_sack(sk, num_dupack, ece_ack);
3194 }
3195
3196 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3197 tcp_try_undo_dsack(sk);
3198
3199 tcp_identify_packet_loss(sk, ack_flag);
3200 if (!tcp_time_to_recover(tp)) {
3201 tcp_try_to_open(sk, flag);
3202 return;
3203 }
3204
3205 /* MTU probe failure: don't reduce cwnd */
3206 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3207 icsk->icsk_mtup.probe_size &&
3208 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3209 tcp_mtup_probe_failed(sk);
3210 /* Restores the reduction we did in tcp_mtup_probe() */
3211 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3212 tcp_simple_retransmit(sk);
3213 return;
3214 }
3215
3216 /* Otherwise enter Recovery state */
3217 tcp_enter_recovery(sk, ece_ack);
3218 }
3219
3220 *rexmit = REXMIT_LOST;
3221 }
3222
tcp_update_rtt_min(struct sock * sk,u32 rtt_us,const int flag)3223 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3224 {
3225 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3226 struct tcp_sock *tp = tcp_sk(sk);
3227
3228 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3229 /* If the remote keeps returning delayed ACKs, eventually
3230 * the min filter would pick it up and overestimate the
3231 * prop. delay when it expires. Skip suspected delayed ACKs.
3232 */
3233 return;
3234 }
3235 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3236 rtt_us ? : jiffies_to_usecs(1));
3237 }
3238
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us,long ca_rtt_us,struct rate_sample * rs)3239 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3240 long seq_rtt_us, long sack_rtt_us,
3241 long ca_rtt_us, struct rate_sample *rs)
3242 {
3243 const struct tcp_sock *tp = tcp_sk(sk);
3244
3245 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3246 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3247 * Karn's algorithm forbids taking RTT if some retransmitted data
3248 * is acked (RFC6298).
3249 */
3250 if (seq_rtt_us < 0)
3251 seq_rtt_us = sack_rtt_us;
3252
3253 /* RTTM Rule: A TSecr value received in a segment is used to
3254 * update the averaged RTT measurement only if the segment
3255 * acknowledges some new data, i.e., only if it advances the
3256 * left edge of the send window.
3257 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3258 */
3259 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp &&
3260 tp->rx_opt.rcv_tsecr && flag & FLAG_ACKED)
3261 seq_rtt_us = ca_rtt_us = tcp_rtt_tsopt_us(tp, 1);
3262
3263 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3264 if (seq_rtt_us < 0)
3265 return false;
3266
3267 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3268 * always taken together with ACK, SACK, or TS-opts. Any negative
3269 * values will be skipped with the seq_rtt_us < 0 check above.
3270 */
3271 tcp_update_rtt_min(sk, ca_rtt_us, flag);
3272 tcp_rtt_estimator(sk, seq_rtt_us);
3273 tcp_set_rto(sk);
3274
3275 /* RFC6298: only reset backoff on valid RTT measurement. */
3276 inet_csk(sk)->icsk_backoff = 0;
3277 return true;
3278 }
3279
3280 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,struct request_sock * req)3281 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3282 {
3283 struct rate_sample rs;
3284 long rtt_us = -1L;
3285
3286 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3287 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3288
3289 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3290 }
3291
3292
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)3293 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3294 {
3295 const struct inet_connection_sock *icsk = inet_csk(sk);
3296
3297 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3298 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3299 }
3300
3301 /* Restart timer after forward progress on connection.
3302 * RFC2988 recommends to restart timer to now+rto.
3303 */
tcp_rearm_rto(struct sock * sk)3304 void tcp_rearm_rto(struct sock *sk)
3305 {
3306 const struct inet_connection_sock *icsk = inet_csk(sk);
3307 struct tcp_sock *tp = tcp_sk(sk);
3308
3309 /* If the retrans timer is currently being used by Fast Open
3310 * for SYN-ACK retrans purpose, stay put.
3311 */
3312 if (rcu_access_pointer(tp->fastopen_rsk))
3313 return;
3314
3315 if (!tp->packets_out) {
3316 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3317 } else {
3318 u32 rto = inet_csk(sk)->icsk_rto;
3319 /* Offset the time elapsed after installing regular RTO */
3320 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3321 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3322 s64 delta_us = tcp_rto_delta_us(sk);
3323 /* delta_us may not be positive if the socket is locked
3324 * when the retrans timer fires and is rescheduled.
3325 */
3326 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3327 }
3328 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, true);
3329 }
3330 }
3331
3332 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
tcp_set_xmit_timer(struct sock * sk)3333 static void tcp_set_xmit_timer(struct sock *sk)
3334 {
3335 if (!tcp_schedule_loss_probe(sk, true))
3336 tcp_rearm_rto(sk);
3337 }
3338
3339 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3340 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3341 {
3342 struct tcp_sock *tp = tcp_sk(sk);
3343 u32 packets_acked;
3344
3345 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3346
3347 packets_acked = tcp_skb_pcount(skb);
3348 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3349 return 0;
3350 packets_acked -= tcp_skb_pcount(skb);
3351
3352 if (packets_acked) {
3353 BUG_ON(tcp_skb_pcount(skb) == 0);
3354 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3355 }
3356
3357 return packets_acked;
3358 }
3359
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,const struct sk_buff * ack_skb,u32 prior_snd_una)3360 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3361 const struct sk_buff *ack_skb, u32 prior_snd_una)
3362 {
3363 const struct skb_shared_info *shinfo;
3364
3365 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3366 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3367 return;
3368
3369 shinfo = skb_shinfo(skb);
3370 if (!before(shinfo->tskey, prior_snd_una) &&
3371 before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3372 tcp_skb_tsorted_save(skb) {
3373 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3374 } tcp_skb_tsorted_restore(skb);
3375 }
3376 }
3377
3378 /* Remove acknowledged frames from the retransmission queue. If our packet
3379 * is before the ack sequence we can discard it as it's confirmed to have
3380 * arrived at the other end.
3381 */
tcp_clean_rtx_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_fack,u32 prior_snd_una,struct tcp_sacktag_state * sack,bool ece_ack)3382 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3383 u32 prior_fack, u32 prior_snd_una,
3384 struct tcp_sacktag_state *sack, bool ece_ack)
3385 {
3386 const struct inet_connection_sock *icsk = inet_csk(sk);
3387 u64 first_ackt, last_ackt;
3388 struct tcp_sock *tp = tcp_sk(sk);
3389 u32 prior_sacked = tp->sacked_out;
3390 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3391 struct sk_buff *skb, *next;
3392 bool fully_acked = true;
3393 long sack_rtt_us = -1L;
3394 long seq_rtt_us = -1L;
3395 long ca_rtt_us = -1L;
3396 u32 pkts_acked = 0;
3397 bool rtt_update;
3398 int flag = 0;
3399
3400 first_ackt = 0;
3401
3402 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3403 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3404 const u32 start_seq = scb->seq;
3405 u8 sacked = scb->sacked;
3406 u32 acked_pcount;
3407
3408 /* Determine how many packets and what bytes were acked, tso and else */
3409 if (after(scb->end_seq, tp->snd_una)) {
3410 if (tcp_skb_pcount(skb) == 1 ||
3411 !after(tp->snd_una, scb->seq))
3412 break;
3413
3414 acked_pcount = tcp_tso_acked(sk, skb);
3415 if (!acked_pcount)
3416 break;
3417 fully_acked = false;
3418 } else {
3419 acked_pcount = tcp_skb_pcount(skb);
3420 }
3421
3422 if (unlikely(sacked & TCPCB_RETRANS)) {
3423 if (sacked & TCPCB_SACKED_RETRANS)
3424 tp->retrans_out -= acked_pcount;
3425 flag |= FLAG_RETRANS_DATA_ACKED;
3426 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3427 last_ackt = tcp_skb_timestamp_us(skb);
3428 WARN_ON_ONCE(last_ackt == 0);
3429 if (!first_ackt)
3430 first_ackt = last_ackt;
3431
3432 if (before(start_seq, reord))
3433 reord = start_seq;
3434 if (!after(scb->end_seq, tp->high_seq))
3435 flag |= FLAG_ORIG_SACK_ACKED;
3436 }
3437
3438 if (sacked & TCPCB_SACKED_ACKED) {
3439 tp->sacked_out -= acked_pcount;
3440 /* snd_una delta covers these skbs */
3441 sack->delivered_bytes -= skb->len;
3442 } else if (tcp_is_sack(tp)) {
3443 tcp_count_delivered(tp, acked_pcount, ece_ack);
3444 if (!tcp_skb_spurious_retrans(tp, skb))
3445 tcp_rack_advance(tp, sacked, scb->end_seq,
3446 tcp_skb_timestamp_us(skb));
3447 }
3448 if (sacked & TCPCB_LOST)
3449 tp->lost_out -= acked_pcount;
3450
3451 tp->packets_out -= acked_pcount;
3452 pkts_acked += acked_pcount;
3453 tcp_rate_skb_delivered(sk, skb, sack->rate);
3454
3455 /* Initial outgoing SYN's get put onto the write_queue
3456 * just like anything else we transmit. It is not
3457 * true data, and if we misinform our callers that
3458 * this ACK acks real data, we will erroneously exit
3459 * connection startup slow start one packet too
3460 * quickly. This is severely frowned upon behavior.
3461 */
3462 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3463 flag |= FLAG_DATA_ACKED;
3464 } else {
3465 flag |= FLAG_SYN_ACKED;
3466 tp->retrans_stamp = 0;
3467 }
3468
3469 if (!fully_acked)
3470 break;
3471
3472 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3473
3474 next = skb_rb_next(skb);
3475 if (unlikely(skb == tp->retransmit_skb_hint))
3476 tp->retransmit_skb_hint = NULL;
3477 tcp_highest_sack_replace(sk, skb, next);
3478 tcp_rtx_queue_unlink_and_free(skb, sk);
3479 }
3480
3481 if (!skb)
3482 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3483
3484 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3485 tp->snd_up = tp->snd_una;
3486
3487 if (skb) {
3488 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3489 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3490 flag |= FLAG_SACK_RENEGING;
3491 }
3492
3493 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3494 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3495 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3496
3497 if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3498 (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3499 sack->rate->prior_delivered + 1 == tp->delivered &&
3500 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3501 /* Conservatively mark a delayed ACK. It's typically
3502 * from a lone runt packet over the round trip to
3503 * a receiver w/o out-of-order or CE events.
3504 */
3505 flag |= FLAG_ACK_MAYBE_DELAYED;
3506 }
3507 }
3508 if (sack->first_sackt) {
3509 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3510 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3511 }
3512 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3513 ca_rtt_us, sack->rate);
3514
3515 if (flag & FLAG_ACKED) {
3516 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3517 if (unlikely(icsk->icsk_mtup.probe_size &&
3518 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3519 tcp_mtup_probe_success(sk);
3520 }
3521
3522 if (tcp_is_reno(tp)) {
3523 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3524
3525 /* If any of the cumulatively ACKed segments was
3526 * retransmitted, non-SACK case cannot confirm that
3527 * progress was due to original transmission due to
3528 * lack of TCPCB_SACKED_ACKED bits even if some of
3529 * the packets may have been never retransmitted.
3530 */
3531 if (flag & FLAG_RETRANS_DATA_ACKED)
3532 flag &= ~FLAG_ORIG_SACK_ACKED;
3533 } else {
3534 /* Non-retransmitted hole got filled? That's reordering */
3535 if (before(reord, prior_fack))
3536 tcp_check_sack_reordering(sk, reord, 0);
3537 }
3538
3539 sack->delivered_bytes = (skb ?
3540 TCP_SKB_CB(skb)->seq : tp->snd_una) -
3541 prior_snd_una;
3542 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3543 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3544 tcp_skb_timestamp_us(skb))) {
3545 /* Do not re-arm RTO if the sack RTT is measured from data sent
3546 * after when the head was last (re)transmitted. Otherwise the
3547 * timeout may continue to extend in loss recovery.
3548 */
3549 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3550 }
3551
3552 if (icsk->icsk_ca_ops->pkts_acked) {
3553 struct ack_sample sample = { .pkts_acked = pkts_acked,
3554 .rtt_us = sack->rate->rtt_us };
3555
3556 sample.in_flight = tp->mss_cache *
3557 (tp->delivered - sack->rate->prior_delivered);
3558 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3559 }
3560
3561 #if FASTRETRANS_DEBUG > 0
3562 WARN_ON((int)tp->sacked_out < 0);
3563 WARN_ON((int)tp->lost_out < 0);
3564 WARN_ON((int)tp->retrans_out < 0);
3565 if (!tp->packets_out && tcp_is_sack(tp)) {
3566 icsk = inet_csk(sk);
3567 if (tp->lost_out) {
3568 pr_debug("Leak l=%u %d\n",
3569 tp->lost_out, icsk->icsk_ca_state);
3570 tp->lost_out = 0;
3571 }
3572 if (tp->sacked_out) {
3573 pr_debug("Leak s=%u %d\n",
3574 tp->sacked_out, icsk->icsk_ca_state);
3575 tp->sacked_out = 0;
3576 }
3577 if (tp->retrans_out) {
3578 pr_debug("Leak r=%u %d\n",
3579 tp->retrans_out, icsk->icsk_ca_state);
3580 tp->retrans_out = 0;
3581 }
3582 }
3583 #endif
3584 return flag;
3585 }
3586
tcp_ack_probe(struct sock * sk)3587 static void tcp_ack_probe(struct sock *sk)
3588 {
3589 struct inet_connection_sock *icsk = inet_csk(sk);
3590 struct sk_buff *head = tcp_send_head(sk);
3591 const struct tcp_sock *tp = tcp_sk(sk);
3592
3593 /* Was it a usable window open? */
3594 if (!head)
3595 return;
3596 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3597 icsk->icsk_backoff = 0;
3598 icsk->icsk_probes_tstamp = 0;
3599 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3600 /* Socket must be waked up by subsequent tcp_data_snd_check().
3601 * This function is not for random using!
3602 */
3603 } else {
3604 unsigned long when = tcp_probe0_when(sk, tcp_rto_max(sk));
3605
3606 when = tcp_clamp_probe0_to_user_timeout(sk, when);
3607 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, true);
3608 }
3609 }
3610
tcp_ack_is_dubious(const struct sock * sk,const int flag)3611 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3612 {
3613 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3614 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3615 }
3616
3617 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3618 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3619 {
3620 /* If reordering is high then always grow cwnd whenever data is
3621 * delivered regardless of its ordering. Otherwise stay conservative
3622 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3623 * new SACK or ECE mark may first advance cwnd here and later reduce
3624 * cwnd in tcp_fastretrans_alert() based on more states.
3625 */
3626 if (tcp_sk(sk)->reordering >
3627 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3628 return flag & FLAG_FORWARD_PROGRESS;
3629
3630 return flag & FLAG_DATA_ACKED;
3631 }
3632
3633 /* The "ultimate" congestion control function that aims to replace the rigid
3634 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3635 * It's called toward the end of processing an ACK with precise rate
3636 * information. All transmission or retransmission are delayed afterwards.
3637 */
tcp_cong_control(struct sock * sk,u32 ack,u32 acked_sacked,int flag,const struct rate_sample * rs)3638 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3639 int flag, const struct rate_sample *rs)
3640 {
3641 const struct inet_connection_sock *icsk = inet_csk(sk);
3642
3643 if (icsk->icsk_ca_ops->cong_control) {
3644 icsk->icsk_ca_ops->cong_control(sk, ack, flag, rs);
3645 return;
3646 }
3647
3648 if (tcp_in_cwnd_reduction(sk)) {
3649 /* Reduce cwnd if state mandates */
3650 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3651 } else if (tcp_may_raise_cwnd(sk, flag)) {
3652 /* Advance cwnd if state allows */
3653 tcp_cong_avoid(sk, ack, acked_sacked);
3654 }
3655 tcp_update_pacing_rate(sk);
3656 }
3657
3658 /* Check that window update is acceptable.
3659 * The function assumes that snd_una<=ack<=snd_next.
3660 */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3661 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3662 const u32 ack, const u32 ack_seq,
3663 const u32 nwin)
3664 {
3665 return after(ack, tp->snd_una) ||
3666 after(ack_seq, tp->snd_wl1) ||
3667 (ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin));
3668 }
3669
tcp_snd_sne_update(struct tcp_sock * tp,u32 ack)3670 static void tcp_snd_sne_update(struct tcp_sock *tp, u32 ack)
3671 {
3672 #ifdef CONFIG_TCP_AO
3673 struct tcp_ao_info *ao;
3674
3675 if (!static_branch_unlikely(&tcp_ao_needed.key))
3676 return;
3677
3678 ao = rcu_dereference_protected(tp->ao_info,
3679 lockdep_sock_is_held((struct sock *)tp));
3680 if (ao && ack < tp->snd_una) {
3681 ao->snd_sne++;
3682 trace_tcp_ao_snd_sne_update((struct sock *)tp, ao->snd_sne);
3683 }
3684 #endif
3685 }
3686
3687 /* If we update tp->snd_una, also update tp->bytes_acked */
tcp_snd_una_update(struct tcp_sock * tp,u32 ack)3688 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3689 {
3690 u32 delta = ack - tp->snd_una;
3691
3692 sock_owned_by_me((struct sock *)tp);
3693 tp->bytes_acked += delta;
3694 tcp_snd_sne_update(tp, ack);
3695 tp->snd_una = ack;
3696 }
3697
tcp_rcv_sne_update(struct tcp_sock * tp,u32 seq)3698 static void tcp_rcv_sne_update(struct tcp_sock *tp, u32 seq)
3699 {
3700 #ifdef CONFIG_TCP_AO
3701 struct tcp_ao_info *ao;
3702
3703 if (!static_branch_unlikely(&tcp_ao_needed.key))
3704 return;
3705
3706 ao = rcu_dereference_protected(tp->ao_info,
3707 lockdep_sock_is_held((struct sock *)tp));
3708 if (ao && seq < tp->rcv_nxt) {
3709 ao->rcv_sne++;
3710 trace_tcp_ao_rcv_sne_update((struct sock *)tp, ao->rcv_sne);
3711 }
3712 #endif
3713 }
3714
3715 /* If we update tp->rcv_nxt, also update tp->bytes_received */
tcp_rcv_nxt_update(struct tcp_sock * tp,u32 seq)3716 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3717 {
3718 u32 delta = seq - tp->rcv_nxt;
3719
3720 sock_owned_by_me((struct sock *)tp);
3721 tp->bytes_received += delta;
3722 tcp_rcv_sne_update(tp, seq);
3723 WRITE_ONCE(tp->rcv_nxt, seq);
3724 }
3725
3726 /* Update our send window.
3727 *
3728 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3729 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3730 */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3731 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3732 u32 ack_seq)
3733 {
3734 struct tcp_sock *tp = tcp_sk(sk);
3735 int flag = 0;
3736 u32 nwin = ntohs(tcp_hdr(skb)->window);
3737
3738 if (likely(!tcp_hdr(skb)->syn))
3739 nwin <<= tp->rx_opt.snd_wscale;
3740
3741 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3742 flag |= FLAG_WIN_UPDATE;
3743 tcp_update_wl(tp, ack_seq);
3744
3745 if (tp->snd_wnd != nwin) {
3746 tp->snd_wnd = nwin;
3747
3748 /* Note, it is the only place, where
3749 * fast path is recovered for sending TCP.
3750 */
3751 tp->pred_flags = 0;
3752 tcp_fast_path_check(sk);
3753
3754 if (!tcp_write_queue_empty(sk))
3755 tcp_slow_start_after_idle_check(sk);
3756
3757 if (nwin > tp->max_window) {
3758 tp->max_window = nwin;
3759 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3760 }
3761 }
3762 }
3763
3764 tcp_snd_una_update(tp, ack);
3765
3766 return flag;
3767 }
3768
__tcp_oow_rate_limited(struct net * net,int mib_idx,u32 * last_oow_ack_time)3769 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3770 u32 *last_oow_ack_time)
3771 {
3772 /* Paired with the WRITE_ONCE() in this function. */
3773 u32 val = READ_ONCE(*last_oow_ack_time);
3774
3775 if (val) {
3776 s32 elapsed = (s32)(tcp_jiffies32 - val);
3777
3778 if (0 <= elapsed &&
3779 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3780 NET_INC_STATS(net, mib_idx);
3781 return true; /* rate-limited: don't send yet! */
3782 }
3783 }
3784
3785 /* Paired with the prior READ_ONCE() and with itself,
3786 * as we might be lockless.
3787 */
3788 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3789
3790 return false; /* not rate-limited: go ahead, send dupack now! */
3791 }
3792
3793 /* Return true if we're currently rate-limiting out-of-window ACKs and
3794 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3795 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3796 * attacks that send repeated SYNs or ACKs for the same connection. To
3797 * do this, we do not send a duplicate SYNACK or ACK if the remote
3798 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3799 */
tcp_oow_rate_limited(struct net * net,const struct sk_buff * skb,int mib_idx,u32 * last_oow_ack_time)3800 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3801 int mib_idx, u32 *last_oow_ack_time)
3802 {
3803 /* Data packets without SYNs are not likely part of an ACK loop. */
3804 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3805 !tcp_hdr(skb)->syn)
3806 return false;
3807
3808 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3809 }
3810
tcp_send_ack_reflect_ect(struct sock * sk,bool accecn_reflector)3811 static void tcp_send_ack_reflect_ect(struct sock *sk, bool accecn_reflector)
3812 {
3813 struct tcp_sock *tp = tcp_sk(sk);
3814 u16 flags = 0;
3815
3816 if (accecn_reflector)
3817 flags = tcp_accecn_reflector_flags(tp->syn_ect_rcv);
3818 __tcp_send_ack(sk, tp->rcv_nxt, flags);
3819 }
3820
3821 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk,bool accecn_reflector)3822 static void tcp_send_challenge_ack(struct sock *sk, bool accecn_reflector)
3823 {
3824 struct tcp_sock *tp = tcp_sk(sk);
3825 struct net *net = sock_net(sk);
3826 u32 count, now, ack_limit;
3827
3828 /* First check our per-socket dupack rate limit. */
3829 if (__tcp_oow_rate_limited(net,
3830 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3831 &tp->last_oow_ack_time))
3832 return;
3833
3834 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3835 if (ack_limit == INT_MAX)
3836 goto send_ack;
3837
3838 /* Then check host-wide RFC 5961 rate limit. */
3839 now = jiffies / HZ;
3840 if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) {
3841 u32 half = (ack_limit + 1) >> 1;
3842
3843 WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now);
3844 WRITE_ONCE(net->ipv4.tcp_challenge_count,
3845 get_random_u32_inclusive(half, ack_limit + half - 1));
3846 }
3847 count = READ_ONCE(net->ipv4.tcp_challenge_count);
3848 if (count > 0) {
3849 WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1);
3850 send_ack:
3851 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3852 tcp_send_ack_reflect_ect(sk, accecn_reflector);
3853 }
3854 }
3855
tcp_store_ts_recent(struct tcp_sock * tp)3856 static void tcp_store_ts_recent(struct tcp_sock *tp)
3857 {
3858 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3859 tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3860 }
3861
__tcp_replace_ts_recent(struct tcp_sock * tp,s32 tstamp_delta)3862 static int __tcp_replace_ts_recent(struct tcp_sock *tp, s32 tstamp_delta)
3863 {
3864 tcp_store_ts_recent(tp);
3865 return tstamp_delta > 0 ? FLAG_TS_PROGRESS : 0;
3866 }
3867
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3868 static int tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3869 {
3870 s32 delta;
3871
3872 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3873 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3874 * extra check below makes sure this can only happen
3875 * for pure ACK frames. -DaveM
3876 *
3877 * Not only, also it occurs for expired timestamps.
3878 */
3879
3880 if (tcp_paws_check(&tp->rx_opt, 0)) {
3881 delta = tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent;
3882 return __tcp_replace_ts_recent(tp, delta);
3883 }
3884 }
3885
3886 return 0;
3887 }
3888
3889 /* This routine deals with acks during a TLP episode and ends an episode by
3890 * resetting tlp_high_seq. Ref: TLP algorithm in RFC8985
3891 */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3892 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3893 {
3894 struct tcp_sock *tp = tcp_sk(sk);
3895
3896 if (before(ack, tp->tlp_high_seq))
3897 return;
3898
3899 if (!tp->tlp_retrans) {
3900 /* TLP of new data has been acknowledged */
3901 tp->tlp_high_seq = 0;
3902 } else if (flag & FLAG_DSACK_TLP) {
3903 /* This DSACK means original and TLP probe arrived; no loss */
3904 tp->tlp_high_seq = 0;
3905 } else if (after(ack, tp->tlp_high_seq)) {
3906 /* ACK advances: there was a loss, so reduce cwnd. Reset
3907 * tlp_high_seq in tcp_init_cwnd_reduction()
3908 */
3909 tcp_init_cwnd_reduction(sk);
3910 tcp_set_ca_state(sk, TCP_CA_CWR);
3911 tcp_end_cwnd_reduction(sk);
3912 tcp_try_keep_open(sk);
3913 NET_INC_STATS(sock_net(sk),
3914 LINUX_MIB_TCPLOSSPROBERECOVERY);
3915 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3916 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3917 /* Pure dupack: original and TLP probe arrived; no loss */
3918 tp->tlp_high_seq = 0;
3919 }
3920 }
3921
tcp_in_ack_event(struct sock * sk,int flag)3922 static void tcp_in_ack_event(struct sock *sk, int flag)
3923 {
3924 const struct inet_connection_sock *icsk = inet_csk(sk);
3925
3926 if (icsk->icsk_ca_ops->in_ack_event) {
3927 u32 ack_ev_flags = 0;
3928
3929 if (flag & FLAG_WIN_UPDATE)
3930 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3931 if (flag & FLAG_SLOWPATH) {
3932 ack_ev_flags |= CA_ACK_SLOWPATH;
3933 if (flag & FLAG_ECE)
3934 ack_ev_flags |= CA_ACK_ECE;
3935 }
3936
3937 icsk->icsk_ca_ops->in_ack_event(sk, ack_ev_flags);
3938 }
3939 }
3940
3941 /* Congestion control has updated the cwnd already. So if we're in
3942 * loss recovery then now we do any new sends (for FRTO) or
3943 * retransmits (for CA_Loss or CA_recovery) that make sense.
3944 */
tcp_xmit_recovery(struct sock * sk,int rexmit)3945 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3946 {
3947 struct tcp_sock *tp = tcp_sk(sk);
3948
3949 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3950 return;
3951
3952 if (unlikely(rexmit == REXMIT_NEW)) {
3953 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3954 TCP_NAGLE_OFF);
3955 if (after(tp->snd_nxt, tp->high_seq))
3956 return;
3957 tp->frto = 0;
3958 }
3959 tcp_xmit_retransmit_queue(sk);
3960 }
3961
3962 /* Returns the number of packets newly acked or sacked by the current ACK */
tcp_newly_delivered(struct sock * sk,u32 prior_delivered,u32 ecn_count,int flag)3963 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered,
3964 u32 ecn_count, int flag)
3965 {
3966 const struct net *net = sock_net(sk);
3967 struct tcp_sock *tp = tcp_sk(sk);
3968 u32 delivered;
3969
3970 delivered = tp->delivered - prior_delivered;
3971 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3972
3973 if (flag & FLAG_ECE) {
3974 if (tcp_ecn_mode_rfc3168(tp))
3975 ecn_count = delivered;
3976 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, ecn_count);
3977 }
3978
3979 return delivered;
3980 }
3981
3982 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3983 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3984 {
3985 struct inet_connection_sock *icsk = inet_csk(sk);
3986 struct tcp_sock *tp = tcp_sk(sk);
3987 struct tcp_sacktag_state sack_state;
3988 struct rate_sample rs = { .prior_delivered = 0 };
3989 u32 prior_snd_una = tp->snd_una;
3990 bool is_sack_reneg = tp->is_sack_reneg;
3991 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3992 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3993 int num_dupack = 0;
3994 int prior_packets = tp->packets_out;
3995 u32 delivered = tp->delivered;
3996 u32 lost = tp->lost;
3997 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3998 u32 ecn_count = 0; /* Did we receive ECE/an AccECN ACE update? */
3999 u32 prior_fack;
4000
4001 sack_state.first_sackt = 0;
4002 sack_state.rate = &rs;
4003 sack_state.sack_delivered = 0;
4004 sack_state.delivered_bytes = 0;
4005
4006 /* We very likely will need to access rtx queue. */
4007 prefetch(sk->tcp_rtx_queue.rb_node);
4008
4009 /* If the ack is older than previous acks
4010 * then we can probably ignore it.
4011 */
4012 if (before(ack, prior_snd_una)) {
4013 u32 max_window;
4014
4015 /* do not accept ACK for bytes we never sent. */
4016 max_window = min_t(u64, tp->max_window, tp->bytes_acked);
4017 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
4018 if (before(ack, prior_snd_una - max_window)) {
4019 if (!(flag & FLAG_NO_CHALLENGE_ACK))
4020 tcp_send_challenge_ack(sk, false);
4021 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
4022 }
4023 goto old_ack;
4024 }
4025
4026 /* If the ack includes data we haven't sent yet, discard
4027 * this segment (RFC793 Section 3.9).
4028 */
4029 if (after(ack, tp->snd_nxt))
4030 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
4031
4032 if (after(ack, prior_snd_una)) {
4033 flag |= FLAG_SND_UNA_ADVANCED;
4034 WRITE_ONCE(icsk->icsk_retransmits, 0);
4035
4036 #if IS_ENABLED(CONFIG_TLS_DEVICE)
4037 if (static_branch_unlikely(&clean_acked_data_enabled.key))
4038 if (tp->tcp_clean_acked)
4039 tp->tcp_clean_acked(sk, ack);
4040 #endif
4041 }
4042
4043 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
4044 rs.prior_in_flight = tcp_packets_in_flight(tp);
4045
4046 /* ts_recent update must be made after we are sure that the packet
4047 * is in window.
4048 */
4049 if (flag & FLAG_UPDATE_TS_RECENT)
4050 flag |= tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4051
4052 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
4053 FLAG_SND_UNA_ADVANCED) {
4054 /* Window is constant, pure forward advance.
4055 * No more checks are required.
4056 * Note, we use the fact that SND.UNA>=SND.WL2.
4057 */
4058 tcp_update_wl(tp, ack_seq);
4059 tcp_snd_una_update(tp, ack);
4060 flag |= FLAG_WIN_UPDATE;
4061
4062 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
4063 } else {
4064 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
4065 flag |= FLAG_DATA;
4066 else
4067 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
4068
4069 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
4070
4071 if (TCP_SKB_CB(skb)->sacked)
4072 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
4073 &sack_state);
4074
4075 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb)))
4076 flag |= FLAG_ECE;
4077
4078 if (sack_state.sack_delivered)
4079 tcp_count_delivered(tp, sack_state.sack_delivered,
4080 flag & FLAG_ECE);
4081 }
4082
4083 /* This is a deviation from RFC3168 since it states that:
4084 * "When the TCP data sender is ready to set the CWR bit after reducing
4085 * the congestion window, it SHOULD set the CWR bit only on the first
4086 * new data packet that it transmits."
4087 * We accept CWR on pure ACKs to be more robust
4088 * with widely-deployed TCP implementations that do this.
4089 */
4090 tcp_ecn_accept_cwr(sk, skb);
4091
4092 /* We passed data and got it acked, remove any soft error
4093 * log. Something worked...
4094 */
4095 if (READ_ONCE(sk->sk_err_soft))
4096 WRITE_ONCE(sk->sk_err_soft, 0);
4097 WRITE_ONCE(icsk->icsk_probes_out, 0);
4098 tp->rcv_tstamp = tcp_jiffies32;
4099 if (!prior_packets)
4100 goto no_queue;
4101
4102 /* See if we can take anything off of the retransmit queue. */
4103 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
4104 &sack_state, flag & FLAG_ECE);
4105
4106 tcp_rack_update_reo_wnd(sk, &rs);
4107
4108 if (tcp_ecn_mode_accecn(tp))
4109 ecn_count = tcp_accecn_process(sk, skb,
4110 tp->delivered - delivered,
4111 sack_state.delivered_bytes,
4112 &flag);
4113
4114 tcp_in_ack_event(sk, flag);
4115
4116 if (tp->tlp_high_seq)
4117 tcp_process_tlp_ack(sk, ack, flag);
4118
4119 if (tcp_ack_is_dubious(sk, flag)) {
4120 if (!(flag & (FLAG_SND_UNA_ADVANCED |
4121 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
4122 num_dupack = 1;
4123 /* Consider if pure acks were aggregated in tcp_add_backlog() */
4124 if (!(flag & FLAG_DATA))
4125 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4126 }
4127 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4128 &rexmit);
4129 }
4130
4131 /* If needed, reset TLP/RTO timer when RACK doesn't set. */
4132 if (flag & FLAG_SET_XMIT_TIMER)
4133 tcp_set_xmit_timer(sk);
4134
4135 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
4136 sk_dst_confirm(sk);
4137
4138 delivered = tcp_newly_delivered(sk, delivered, ecn_count, flag);
4139
4140 lost = tp->lost - lost; /* freshly marked lost */
4141 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
4142 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
4143 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
4144 tcp_xmit_recovery(sk, rexmit);
4145 return 1;
4146
4147 no_queue:
4148 if (tcp_ecn_mode_accecn(tp))
4149 ecn_count = tcp_accecn_process(sk, skb,
4150 tp->delivered - delivered,
4151 sack_state.delivered_bytes,
4152 &flag);
4153 tcp_in_ack_event(sk, flag);
4154 /* If data was DSACKed, see if we can undo a cwnd reduction. */
4155 if (flag & FLAG_DSACKING_ACK) {
4156 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4157 &rexmit);
4158 tcp_newly_delivered(sk, delivered, ecn_count, flag);
4159 }
4160 /* If this ack opens up a zero window, clear backoff. It was
4161 * being used to time the probes, and is probably far higher than
4162 * it needs to be for normal retransmission.
4163 */
4164 tcp_ack_probe(sk);
4165
4166 if (tp->tlp_high_seq)
4167 tcp_process_tlp_ack(sk, ack, flag);
4168 return 1;
4169
4170 old_ack:
4171 /* If data was SACKed, tag it and see if we should send more data.
4172 * If data was DSACKed, see if we can undo a cwnd reduction.
4173 */
4174 if (TCP_SKB_CB(skb)->sacked) {
4175 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
4176 &sack_state);
4177 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4178 &rexmit);
4179 tcp_newly_delivered(sk, delivered, ecn_count, flag);
4180 tcp_xmit_recovery(sk, rexmit);
4181 }
4182
4183 return 0;
4184 }
4185
tcp_parse_fastopen_option(int len,const unsigned char * cookie,bool syn,struct tcp_fastopen_cookie * foc,bool exp_opt)4186 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
4187 bool syn, struct tcp_fastopen_cookie *foc,
4188 bool exp_opt)
4189 {
4190 /* Valid only in SYN or SYN-ACK with an even length. */
4191 if (!foc || !syn || len < 0 || (len & 1))
4192 return;
4193
4194 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
4195 len <= TCP_FASTOPEN_COOKIE_MAX)
4196 memcpy(foc->val, cookie, len);
4197 else if (len != 0)
4198 len = -1;
4199 foc->len = len;
4200 foc->exp = exp_opt;
4201 }
4202
smc_parse_options(const struct tcphdr * th,struct tcp_options_received * opt_rx,const unsigned char * ptr,int opsize)4203 static bool smc_parse_options(const struct tcphdr *th,
4204 struct tcp_options_received *opt_rx,
4205 const unsigned char *ptr,
4206 int opsize)
4207 {
4208 #if IS_ENABLED(CONFIG_SMC)
4209 if (static_branch_unlikely(&tcp_have_smc)) {
4210 if (th->syn && !(opsize & 1) &&
4211 opsize >= TCPOLEN_EXP_SMC_BASE &&
4212 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
4213 opt_rx->smc_ok = 1;
4214 return true;
4215 }
4216 }
4217 #endif
4218 return false;
4219 }
4220
4221 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
4222 * value on success.
4223 */
tcp_parse_mss_option(const struct tcphdr * th,u16 user_mss)4224 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
4225 {
4226 const unsigned char *ptr = (const unsigned char *)(th + 1);
4227 int length = (th->doff * 4) - sizeof(struct tcphdr);
4228 u16 mss = 0;
4229
4230 while (length > 0) {
4231 int opcode = *ptr++;
4232 int opsize;
4233
4234 switch (opcode) {
4235 case TCPOPT_EOL:
4236 return mss;
4237 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
4238 length--;
4239 continue;
4240 default:
4241 if (length < 2)
4242 return mss;
4243 opsize = *ptr++;
4244 if (opsize < 2) /* "silly options" */
4245 return mss;
4246 if (opsize > length)
4247 return mss; /* fail on partial options */
4248 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4249 u16 in_mss = get_unaligned_be16(ptr);
4250
4251 if (in_mss) {
4252 if (user_mss && user_mss < in_mss)
4253 in_mss = user_mss;
4254 mss = in_mss;
4255 }
4256 }
4257 ptr += opsize - 2;
4258 length -= opsize;
4259 }
4260 }
4261 return mss;
4262 }
4263
4264 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4265 * But, this can also be called on packets in the established flow when
4266 * the fast version below fails.
4267 */
tcp_parse_options(const struct net * net,const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)4268 void tcp_parse_options(const struct net *net,
4269 const struct sk_buff *skb,
4270 struct tcp_options_received *opt_rx, int estab,
4271 struct tcp_fastopen_cookie *foc)
4272 {
4273 const unsigned char *ptr;
4274 const struct tcphdr *th = tcp_hdr(skb);
4275 int length = (th->doff * 4) - sizeof(struct tcphdr);
4276
4277 ptr = (const unsigned char *)(th + 1);
4278 opt_rx->saw_tstamp = 0;
4279 opt_rx->accecn = 0;
4280 opt_rx->saw_unknown = 0;
4281
4282 while (length > 0) {
4283 int opcode = *ptr++;
4284 int opsize;
4285
4286 switch (opcode) {
4287 case TCPOPT_EOL:
4288 return;
4289 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
4290 length--;
4291 continue;
4292 default:
4293 if (length < 2)
4294 return;
4295 opsize = *ptr++;
4296 if (opsize < 2) /* "silly options" */
4297 return;
4298 if (opsize > length)
4299 return; /* don't parse partial options */
4300 switch (opcode) {
4301 case TCPOPT_MSS:
4302 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4303 u16 in_mss = get_unaligned_be16(ptr);
4304 if (in_mss) {
4305 if (opt_rx->user_mss &&
4306 opt_rx->user_mss < in_mss)
4307 in_mss = opt_rx->user_mss;
4308 opt_rx->mss_clamp = in_mss;
4309 }
4310 }
4311 break;
4312 case TCPOPT_WINDOW:
4313 if (opsize == TCPOLEN_WINDOW && th->syn &&
4314 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4315 __u8 snd_wscale = *(__u8 *)ptr;
4316 opt_rx->wscale_ok = 1;
4317 if (snd_wscale > TCP_MAX_WSCALE) {
4318 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4319 __func__,
4320 snd_wscale,
4321 TCP_MAX_WSCALE);
4322 snd_wscale = TCP_MAX_WSCALE;
4323 }
4324 opt_rx->snd_wscale = snd_wscale;
4325 }
4326 break;
4327 case TCPOPT_TIMESTAMP:
4328 if ((opsize == TCPOLEN_TIMESTAMP) &&
4329 ((estab && opt_rx->tstamp_ok) ||
4330 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4331 opt_rx->saw_tstamp = 1;
4332 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4333 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4334 }
4335 break;
4336 case TCPOPT_SACK_PERM:
4337 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4338 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4339 opt_rx->sack_ok = TCP_SACK_SEEN;
4340 tcp_sack_reset(opt_rx);
4341 }
4342 break;
4343
4344 case TCPOPT_SACK:
4345 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4346 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4347 opt_rx->sack_ok) {
4348 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4349 }
4350 break;
4351 #ifdef CONFIG_TCP_MD5SIG
4352 case TCPOPT_MD5SIG:
4353 /* The MD5 Hash has already been
4354 * checked (see tcp_v{4,6}_rcv()).
4355 */
4356 break;
4357 #endif
4358 #ifdef CONFIG_TCP_AO
4359 case TCPOPT_AO:
4360 /* TCP AO has already been checked
4361 * (see tcp_inbound_ao_hash()).
4362 */
4363 break;
4364 #endif
4365 case TCPOPT_FASTOPEN:
4366 tcp_parse_fastopen_option(
4367 opsize - TCPOLEN_FASTOPEN_BASE,
4368 ptr, th->syn, foc, false);
4369 break;
4370
4371 case TCPOPT_ACCECN0:
4372 case TCPOPT_ACCECN1:
4373 /* Save offset of AccECN option in TCP header */
4374 opt_rx->accecn = (ptr - 2) - (__u8 *)th;
4375 break;
4376
4377 case TCPOPT_EXP:
4378 /* Fast Open option shares code 254 using a
4379 * 16 bits magic number.
4380 */
4381 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4382 get_unaligned_be16(ptr) ==
4383 TCPOPT_FASTOPEN_MAGIC) {
4384 tcp_parse_fastopen_option(opsize -
4385 TCPOLEN_EXP_FASTOPEN_BASE,
4386 ptr + 2, th->syn, foc, true);
4387 break;
4388 }
4389
4390 if (smc_parse_options(th, opt_rx, ptr, opsize))
4391 break;
4392
4393 opt_rx->saw_unknown = 1;
4394 break;
4395
4396 default:
4397 opt_rx->saw_unknown = 1;
4398 }
4399 ptr += opsize-2;
4400 length -= opsize;
4401 }
4402 }
4403 }
4404 EXPORT_SYMBOL(tcp_parse_options);
4405
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)4406 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4407 {
4408 const __be32 *ptr = (const __be32 *)(th + 1);
4409
4410 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4411 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4412 tp->rx_opt.saw_tstamp = 1;
4413 ++ptr;
4414 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4415 ++ptr;
4416 if (*ptr)
4417 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4418 else
4419 tp->rx_opt.rcv_tsecr = 0;
4420 return true;
4421 }
4422 return false;
4423 }
4424
4425 /* Fast parse options. This hopes to only see timestamps.
4426 * If it is wrong it falls back on tcp_parse_options().
4427 */
tcp_fast_parse_options(const struct net * net,const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)4428 static bool tcp_fast_parse_options(const struct net *net,
4429 const struct sk_buff *skb,
4430 const struct tcphdr *th, struct tcp_sock *tp)
4431 {
4432 /* In the spirit of fast parsing, compare doff directly to constant
4433 * values. Because equality is used, short doff can be ignored here.
4434 */
4435 if (th->doff == (sizeof(*th) / 4)) {
4436 tp->rx_opt.saw_tstamp = 0;
4437 tp->rx_opt.accecn = 0;
4438 return false;
4439 } else if (tp->rx_opt.tstamp_ok &&
4440 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4441 if (tcp_parse_aligned_timestamp(tp, th)) {
4442 tp->rx_opt.accecn = 0;
4443 return true;
4444 }
4445 }
4446
4447 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4448 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4449 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4450
4451 return true;
4452 }
4453
4454 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
4455 /*
4456 * Parse Signature options
4457 */
tcp_do_parse_auth_options(const struct tcphdr * th,const u8 ** md5_hash,const u8 ** ao_hash)4458 int tcp_do_parse_auth_options(const struct tcphdr *th,
4459 const u8 **md5_hash, const u8 **ao_hash)
4460 {
4461 int length = (th->doff << 2) - sizeof(*th);
4462 const u8 *ptr = (const u8 *)(th + 1);
4463 unsigned int minlen = TCPOLEN_MD5SIG;
4464
4465 if (IS_ENABLED(CONFIG_TCP_AO))
4466 minlen = sizeof(struct tcp_ao_hdr) + 1;
4467
4468 *md5_hash = NULL;
4469 *ao_hash = NULL;
4470
4471 /* If not enough data remaining, we can short cut */
4472 while (length >= minlen) {
4473 int opcode = *ptr++;
4474 int opsize;
4475
4476 switch (opcode) {
4477 case TCPOPT_EOL:
4478 return 0;
4479 case TCPOPT_NOP:
4480 length--;
4481 continue;
4482 default:
4483 opsize = *ptr++;
4484 if (opsize < 2 || opsize > length)
4485 return -EINVAL;
4486 if (opcode == TCPOPT_MD5SIG) {
4487 if (opsize != TCPOLEN_MD5SIG)
4488 return -EINVAL;
4489 if (unlikely(*md5_hash || *ao_hash))
4490 return -EEXIST;
4491 *md5_hash = ptr;
4492 } else if (opcode == TCPOPT_AO) {
4493 if (opsize <= sizeof(struct tcp_ao_hdr))
4494 return -EINVAL;
4495 if (unlikely(*md5_hash || *ao_hash))
4496 return -EEXIST;
4497 *ao_hash = ptr;
4498 }
4499 }
4500 ptr += opsize - 2;
4501 length -= opsize;
4502 }
4503 return 0;
4504 }
4505 EXPORT_SYMBOL(tcp_do_parse_auth_options);
4506 #endif
4507
4508 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4509 *
4510 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4511 * it can pass through stack. So, the following predicate verifies that
4512 * this segment is not used for anything but congestion avoidance or
4513 * fast retransmit. Moreover, we even are able to eliminate most of such
4514 * second order effects, if we apply some small "replay" window (~RTO)
4515 * to timestamp space.
4516 *
4517 * All these measures still do not guarantee that we reject wrapped ACKs
4518 * on networks with high bandwidth, when sequence space is recycled fastly,
4519 * but it guarantees that such events will be very rare and do not affect
4520 * connection seriously. This doesn't look nice, but alas, PAWS is really
4521 * buggy extension.
4522 *
4523 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4524 * states that events when retransmit arrives after original data are rare.
4525 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4526 * the biggest problem on large power networks even with minor reordering.
4527 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4528 * up to bandwidth of 18Gigabit/sec. 8) ]
4529 */
4530
4531 /* Estimates max number of increments of remote peer TSval in
4532 * a replay window (based on our current RTO estimation).
4533 */
tcp_tsval_replay(const struct sock * sk)4534 static u32 tcp_tsval_replay(const struct sock *sk)
4535 {
4536 /* If we use usec TS resolution,
4537 * then expect the remote peer to use the same resolution.
4538 */
4539 if (tcp_sk(sk)->tcp_usec_ts)
4540 return inet_csk(sk)->icsk_rto * (USEC_PER_SEC / HZ);
4541
4542 /* RFC 7323 recommends a TSval clock between 1ms and 1sec.
4543 * We know that some OS (including old linux) can use 1200 Hz.
4544 */
4545 return inet_csk(sk)->icsk_rto * 1200 / HZ;
4546 }
4547
tcp_disordered_ack_check(const struct sock * sk,const struct sk_buff * skb)4548 static enum skb_drop_reason tcp_disordered_ack_check(const struct sock *sk,
4549 const struct sk_buff *skb)
4550 {
4551 const struct tcp_sock *tp = tcp_sk(sk);
4552 const struct tcphdr *th = tcp_hdr(skb);
4553 SKB_DR_INIT(reason, TCP_RFC7323_PAWS);
4554 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4555 u32 seq = TCP_SKB_CB(skb)->seq;
4556
4557 /* 1. Is this not a pure ACK ? */
4558 if (!th->ack || seq != TCP_SKB_CB(skb)->end_seq)
4559 return reason;
4560
4561 /* 2. Is its sequence not the expected one ? */
4562 if (seq != tp->rcv_nxt)
4563 return before(seq, tp->rcv_nxt) ?
4564 SKB_DROP_REASON_TCP_RFC7323_PAWS_ACK :
4565 reason;
4566
4567 /* 3. Is this not a duplicate ACK ? */
4568 if (ack != tp->snd_una)
4569 return reason;
4570
4571 /* 4. Is this updating the window ? */
4572 if (tcp_may_update_window(tp, ack, seq, ntohs(th->window) <<
4573 tp->rx_opt.snd_wscale))
4574 return reason;
4575
4576 /* 5. Is this not in the replay window ? */
4577 if ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) >
4578 tcp_tsval_replay(sk))
4579 return reason;
4580
4581 return 0;
4582 }
4583
4584 /* Check segment sequence number for validity.
4585 *
4586 * Segment controls are considered valid, if the segment
4587 * fits to the window after truncation to the window. Acceptability
4588 * of data (and SYN, FIN, of course) is checked separately.
4589 * See tcp_data_queue(), for example.
4590 *
4591 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4592 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4593 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4594 * (borrowed from freebsd)
4595 */
4596
tcp_sequence(const struct sock * sk,u32 seq,u32 end_seq)4597 static enum skb_drop_reason tcp_sequence(const struct sock *sk,
4598 u32 seq, u32 end_seq)
4599 {
4600 const struct tcp_sock *tp = tcp_sk(sk);
4601
4602 if (before(end_seq, tp->rcv_wup))
4603 return SKB_DROP_REASON_TCP_OLD_SEQUENCE;
4604
4605 if (after(end_seq, tp->rcv_nxt + tcp_receive_window(tp))) {
4606 if (after(seq, tp->rcv_nxt + tcp_receive_window(tp)))
4607 return SKB_DROP_REASON_TCP_INVALID_SEQUENCE;
4608
4609 /* Only accept this packet if receive queue is empty. */
4610 if (skb_queue_len(&sk->sk_receive_queue))
4611 return SKB_DROP_REASON_TCP_INVALID_END_SEQUENCE;
4612 }
4613
4614 return SKB_NOT_DROPPED_YET;
4615 }
4616
4617
tcp_done_with_error(struct sock * sk,int err)4618 void tcp_done_with_error(struct sock *sk, int err)
4619 {
4620 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4621 WRITE_ONCE(sk->sk_err, err);
4622 smp_wmb();
4623
4624 tcp_write_queue_purge(sk);
4625 tcp_done(sk);
4626
4627 if (!sock_flag(sk, SOCK_DEAD))
4628 sk_error_report(sk);
4629 }
4630 EXPORT_IPV6_MOD(tcp_done_with_error);
4631
4632 /* When we get a reset we do this. */
tcp_reset(struct sock * sk,struct sk_buff * skb)4633 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4634 {
4635 int err;
4636
4637 trace_tcp_receive_reset(sk);
4638
4639 /* mptcp can't tell us to ignore reset pkts,
4640 * so just ignore the return value of mptcp_incoming_options().
4641 */
4642 if (sk_is_mptcp(sk))
4643 mptcp_incoming_options(sk, skb);
4644
4645 /* We want the right error as BSD sees it (and indeed as we do). */
4646 switch (sk->sk_state) {
4647 case TCP_SYN_SENT:
4648 err = ECONNREFUSED;
4649 break;
4650 case TCP_CLOSE_WAIT:
4651 err = EPIPE;
4652 break;
4653 case TCP_CLOSE:
4654 return;
4655 default:
4656 err = ECONNRESET;
4657 }
4658 tcp_done_with_error(sk, err);
4659 }
4660
4661 /*
4662 * Process the FIN bit. This now behaves as it is supposed to work
4663 * and the FIN takes effect when it is validly part of sequence
4664 * space. Not before when we get holes.
4665 *
4666 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4667 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4668 * TIME-WAIT)
4669 *
4670 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4671 * close and we go into CLOSING (and later onto TIME-WAIT)
4672 *
4673 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4674 */
tcp_fin(struct sock * sk)4675 void tcp_fin(struct sock *sk)
4676 {
4677 struct tcp_sock *tp = tcp_sk(sk);
4678
4679 inet_csk_schedule_ack(sk);
4680
4681 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4682 sock_set_flag(sk, SOCK_DONE);
4683
4684 switch (sk->sk_state) {
4685 case TCP_SYN_RECV:
4686 case TCP_ESTABLISHED:
4687 /* Move to CLOSE_WAIT */
4688 tcp_set_state(sk, TCP_CLOSE_WAIT);
4689 inet_csk_enter_pingpong_mode(sk);
4690 break;
4691
4692 case TCP_CLOSE_WAIT:
4693 case TCP_CLOSING:
4694 /* Received a retransmission of the FIN, do
4695 * nothing.
4696 */
4697 break;
4698 case TCP_LAST_ACK:
4699 /* RFC793: Remain in the LAST-ACK state. */
4700 break;
4701
4702 case TCP_FIN_WAIT1:
4703 /* This case occurs when a simultaneous close
4704 * happens, we must ack the received FIN and
4705 * enter the CLOSING state.
4706 */
4707 tcp_send_ack(sk);
4708 tcp_set_state(sk, TCP_CLOSING);
4709 break;
4710 case TCP_FIN_WAIT2:
4711 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4712 tcp_send_ack(sk);
4713 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4714 break;
4715 default:
4716 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4717 * cases we should never reach this piece of code.
4718 */
4719 pr_err("%s: Impossible, sk->sk_state=%d\n",
4720 __func__, sk->sk_state);
4721 break;
4722 }
4723
4724 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4725 * Probably, we should reset in this case. For now drop them.
4726 */
4727 skb_rbtree_purge(&tp->out_of_order_queue);
4728 if (tcp_is_sack(tp))
4729 tcp_sack_reset(&tp->rx_opt);
4730
4731 if (!sock_flag(sk, SOCK_DEAD)) {
4732 sk->sk_state_change(sk);
4733
4734 /* Do not send POLL_HUP for half duplex close. */
4735 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4736 sk->sk_state == TCP_CLOSE)
4737 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4738 else
4739 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4740 }
4741 }
4742
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4743 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4744 u32 end_seq)
4745 {
4746 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4747 if (before(seq, sp->start_seq))
4748 sp->start_seq = seq;
4749 if (after(end_seq, sp->end_seq))
4750 sp->end_seq = end_seq;
4751 return true;
4752 }
4753 return false;
4754 }
4755
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4756 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4757 {
4758 struct tcp_sock *tp = tcp_sk(sk);
4759
4760 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4761 int mib_idx;
4762
4763 if (before(seq, tp->rcv_nxt))
4764 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4765 else
4766 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4767
4768 NET_INC_STATS(sock_net(sk), mib_idx);
4769
4770 tp->rx_opt.dsack = 1;
4771 tp->duplicate_sack[0].start_seq = seq;
4772 tp->duplicate_sack[0].end_seq = end_seq;
4773 }
4774 }
4775
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4776 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4777 {
4778 struct tcp_sock *tp = tcp_sk(sk);
4779
4780 if (!tp->rx_opt.dsack)
4781 tcp_dsack_set(sk, seq, end_seq);
4782 else
4783 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4784 }
4785
tcp_rcv_spurious_retrans(struct sock * sk,const struct sk_buff * skb)4786 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4787 {
4788 /* When the ACK path fails or drops most ACKs, the sender would
4789 * timeout and spuriously retransmit the same segment repeatedly.
4790 * If it seems our ACKs are not reaching the other side,
4791 * based on receiving a duplicate data segment with new flowlabel
4792 * (suggesting the sender suffered an RTO), and we are not already
4793 * repathing due to our own RTO, then rehash the socket to repath our
4794 * packets.
4795 */
4796 #if IS_ENABLED(CONFIG_IPV6)
4797 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss &&
4798 skb->protocol == htons(ETH_P_IPV6) &&
4799 (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel !=
4800 ntohl(ip6_flowlabel(ipv6_hdr(skb)))) &&
4801 sk_rethink_txhash(sk))
4802 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4803
4804 /* Save last flowlabel after a spurious retrans. */
4805 tcp_save_lrcv_flowlabel(sk, skb);
4806 #endif
4807 }
4808
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4809 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4810 {
4811 struct tcp_sock *tp = tcp_sk(sk);
4812
4813 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4814 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4815 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4816 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4817
4818 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4819 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4820
4821 tcp_rcv_spurious_retrans(sk, skb);
4822 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4823 end_seq = tp->rcv_nxt;
4824 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4825 }
4826 }
4827
4828 tcp_send_ack(sk);
4829 }
4830
4831 /* These routines update the SACK block as out-of-order packets arrive or
4832 * in-order packets close up the sequence space.
4833 */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4834 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4835 {
4836 int this_sack;
4837 struct tcp_sack_block *sp = &tp->selective_acks[0];
4838 struct tcp_sack_block *swalk = sp + 1;
4839
4840 /* See if the recent change to the first SACK eats into
4841 * or hits the sequence space of other SACK blocks, if so coalesce.
4842 */
4843 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4844 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4845 int i;
4846
4847 /* Zap SWALK, by moving every further SACK up by one slot.
4848 * Decrease num_sacks.
4849 */
4850 tp->rx_opt.num_sacks--;
4851 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4852 sp[i] = sp[i + 1];
4853 continue;
4854 }
4855 this_sack++;
4856 swalk++;
4857 }
4858 }
4859
tcp_sack_compress_send_ack(struct sock * sk)4860 void tcp_sack_compress_send_ack(struct sock *sk)
4861 {
4862 struct tcp_sock *tp = tcp_sk(sk);
4863
4864 if (!tp->compressed_ack)
4865 return;
4866
4867 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4868 __sock_put(sk);
4869
4870 /* Since we have to send one ack finally,
4871 * substract one from tp->compressed_ack to keep
4872 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4873 */
4874 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4875 tp->compressed_ack - 1);
4876
4877 tp->compressed_ack = 0;
4878 tcp_send_ack(sk);
4879 }
4880
4881 /* Reasonable amount of sack blocks included in TCP SACK option
4882 * The max is 4, but this becomes 3 if TCP timestamps are there.
4883 * Given that SACK packets might be lost, be conservative and use 2.
4884 */
4885 #define TCP_SACK_BLOCKS_EXPECTED 2
4886
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4887 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4888 {
4889 struct tcp_sock *tp = tcp_sk(sk);
4890 struct tcp_sack_block *sp = &tp->selective_acks[0];
4891 int cur_sacks = tp->rx_opt.num_sacks;
4892 int this_sack;
4893
4894 if (!cur_sacks)
4895 goto new_sack;
4896
4897 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4898 if (tcp_sack_extend(sp, seq, end_seq)) {
4899 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4900 tcp_sack_compress_send_ack(sk);
4901 /* Rotate this_sack to the first one. */
4902 for (; this_sack > 0; this_sack--, sp--)
4903 swap(*sp, *(sp - 1));
4904 if (cur_sacks > 1)
4905 tcp_sack_maybe_coalesce(tp);
4906 return;
4907 }
4908 }
4909
4910 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4911 tcp_sack_compress_send_ack(sk);
4912
4913 /* Could not find an adjacent existing SACK, build a new one,
4914 * put it at the front, and shift everyone else down. We
4915 * always know there is at least one SACK present already here.
4916 *
4917 * If the sack array is full, forget about the last one.
4918 */
4919 if (this_sack >= TCP_NUM_SACKS) {
4920 this_sack--;
4921 tp->rx_opt.num_sacks--;
4922 sp--;
4923 }
4924 for (; this_sack > 0; this_sack--, sp--)
4925 *sp = *(sp - 1);
4926
4927 new_sack:
4928 /* Build the new head SACK, and we're done. */
4929 sp->start_seq = seq;
4930 sp->end_seq = end_seq;
4931 tp->rx_opt.num_sacks++;
4932 }
4933
4934 /* RCV.NXT advances, some SACKs should be eaten. */
4935
tcp_sack_remove(struct tcp_sock * tp)4936 static void tcp_sack_remove(struct tcp_sock *tp)
4937 {
4938 struct tcp_sack_block *sp = &tp->selective_acks[0];
4939 int num_sacks = tp->rx_opt.num_sacks;
4940 int this_sack;
4941
4942 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4943 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4944 tp->rx_opt.num_sacks = 0;
4945 return;
4946 }
4947
4948 for (this_sack = 0; this_sack < num_sacks;) {
4949 /* Check if the start of the sack is covered by RCV.NXT. */
4950 if (!before(tp->rcv_nxt, sp->start_seq)) {
4951 int i;
4952
4953 /* RCV.NXT must cover all the block! */
4954 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4955
4956 /* Zap this SACK, by moving forward any other SACKS. */
4957 for (i = this_sack+1; i < num_sacks; i++)
4958 tp->selective_acks[i-1] = tp->selective_acks[i];
4959 num_sacks--;
4960 continue;
4961 }
4962 this_sack++;
4963 sp++;
4964 }
4965 tp->rx_opt.num_sacks = num_sacks;
4966 }
4967
4968 /**
4969 * tcp_try_coalesce - try to merge skb to prior one
4970 * @sk: socket
4971 * @to: prior buffer
4972 * @from: buffer to add in queue
4973 * @fragstolen: pointer to boolean
4974 *
4975 * Before queueing skb @from after @to, try to merge them
4976 * to reduce overall memory use and queue lengths, if cost is small.
4977 * Packets in ofo or receive queues can stay a long time.
4978 * Better try to coalesce them right now to avoid future collapses.
4979 * Returns true if caller should free @from instead of queueing it
4980 */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4981 static bool tcp_try_coalesce(struct sock *sk,
4982 struct sk_buff *to,
4983 struct sk_buff *from,
4984 bool *fragstolen)
4985 {
4986 int delta;
4987
4988 *fragstolen = false;
4989
4990 /* Its possible this segment overlaps with prior segment in queue */
4991 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4992 return false;
4993
4994 if (!tcp_skb_can_collapse_rx(to, from))
4995 return false;
4996
4997 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4998 return false;
4999
5000 atomic_add(delta, &sk->sk_rmem_alloc);
5001 sk_mem_charge(sk, delta);
5002 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
5003 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
5004 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
5005 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
5006
5007 if (TCP_SKB_CB(from)->has_rxtstamp) {
5008 TCP_SKB_CB(to)->has_rxtstamp = true;
5009 to->tstamp = from->tstamp;
5010 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
5011 }
5012
5013 return true;
5014 }
5015
tcp_ooo_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)5016 static bool tcp_ooo_try_coalesce(struct sock *sk,
5017 struct sk_buff *to,
5018 struct sk_buff *from,
5019 bool *fragstolen)
5020 {
5021 bool res = tcp_try_coalesce(sk, to, from, fragstolen);
5022
5023 /* In case tcp_drop_reason() is called later, update to->gso_segs */
5024 if (res) {
5025 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
5026 max_t(u16, 1, skb_shinfo(from)->gso_segs);
5027
5028 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
5029 }
5030 return res;
5031 }
5032
5033 noinline_for_tracing static void
tcp_drop_reason(struct sock * sk,struct sk_buff * skb,enum skb_drop_reason reason)5034 tcp_drop_reason(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason)
5035 {
5036 sk_drops_skbadd(sk, skb);
5037 sk_skb_reason_drop(sk, skb, reason);
5038 }
5039
5040 /* This one checks to see if we can put data from the
5041 * out_of_order queue into the receive_queue.
5042 */
tcp_ofo_queue(struct sock * sk)5043 static void tcp_ofo_queue(struct sock *sk)
5044 {
5045 struct tcp_sock *tp = tcp_sk(sk);
5046 __u32 dsack_high = tp->rcv_nxt;
5047 bool fin, fragstolen, eaten;
5048 struct sk_buff *skb, *tail;
5049 struct rb_node *p;
5050
5051 p = rb_first(&tp->out_of_order_queue);
5052 while (p) {
5053 skb = rb_to_skb(p);
5054 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5055 break;
5056
5057 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
5058 __u32 dsack = dsack_high;
5059
5060 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
5061 dsack = TCP_SKB_CB(skb)->end_seq;
5062 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
5063 }
5064 p = rb_next(p);
5065 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
5066
5067 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
5068 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
5069 continue;
5070 }
5071
5072 tail = skb_peek_tail(&sk->sk_receive_queue);
5073 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
5074 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5075 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
5076 if (!eaten)
5077 tcp_add_receive_queue(sk, skb);
5078 else
5079 kfree_skb_partial(skb, fragstolen);
5080
5081 if (unlikely(fin)) {
5082 tcp_fin(sk);
5083 /* tcp_fin() purges tp->out_of_order_queue,
5084 * so we must end this loop right now.
5085 */
5086 break;
5087 }
5088 }
5089 }
5090
5091 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb);
5092 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb);
5093
5094 /* Check if this incoming skb can be added to socket receive queues
5095 * while satisfying sk->sk_rcvbuf limit.
5096 *
5097 * In theory we should use skb->truesize, but this can cause problems
5098 * when applications use too small SO_RCVBUF values.
5099 * When LRO / hw gro is used, the socket might have a high tp->scaling_ratio,
5100 * allowing RWIN to be close to available space.
5101 * Whenever the receive queue gets full, we can receive a small packet
5102 * filling RWIN, but with a high skb->truesize, because most NIC use 4K page
5103 * plus sk_buff metadata even when receiving less than 1500 bytes of payload.
5104 *
5105 * Note that we use skb->len to decide to accept or drop this packet,
5106 * but sk->sk_rmem_alloc is the sum of all skb->truesize.
5107 */
tcp_can_ingest(const struct sock * sk,const struct sk_buff * skb)5108 static bool tcp_can_ingest(const struct sock *sk, const struct sk_buff *skb)
5109 {
5110 unsigned int rmem = atomic_read(&sk->sk_rmem_alloc);
5111
5112 return rmem + skb->len <= sk->sk_rcvbuf;
5113 }
5114
tcp_try_rmem_schedule(struct sock * sk,const struct sk_buff * skb,unsigned int size)5115 static int tcp_try_rmem_schedule(struct sock *sk, const struct sk_buff *skb,
5116 unsigned int size)
5117 {
5118 if (!tcp_can_ingest(sk, skb) ||
5119 !sk_rmem_schedule(sk, skb, size)) {
5120
5121 if (tcp_prune_queue(sk, skb) < 0)
5122 return -1;
5123
5124 while (!sk_rmem_schedule(sk, skb, size)) {
5125 if (!tcp_prune_ofo_queue(sk, skb))
5126 return -1;
5127 }
5128 }
5129 return 0;
5130 }
5131
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)5132 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
5133 {
5134 struct tcp_sock *tp = tcp_sk(sk);
5135 struct rb_node **p, *parent;
5136 struct sk_buff *skb1;
5137 u32 seq, end_seq;
5138 bool fragstolen;
5139
5140 tcp_save_lrcv_flowlabel(sk, skb);
5141 tcp_data_ecn_check(sk, skb);
5142
5143 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
5144 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
5145 sk->sk_data_ready(sk);
5146 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
5147 return;
5148 }
5149
5150 tcp_measure_rcv_mss(sk, skb);
5151 /* Disable header prediction. */
5152 tp->pred_flags = 0;
5153 inet_csk_schedule_ack(sk);
5154
5155 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
5156 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
5157 seq = TCP_SKB_CB(skb)->seq;
5158 end_seq = TCP_SKB_CB(skb)->end_seq;
5159
5160 p = &tp->out_of_order_queue.rb_node;
5161 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5162 /* Initial out of order segment, build 1 SACK. */
5163 if (tcp_is_sack(tp)) {
5164 tp->rx_opt.num_sacks = 1;
5165 tp->selective_acks[0].start_seq = seq;
5166 tp->selective_acks[0].end_seq = end_seq;
5167 }
5168 rb_link_node(&skb->rbnode, NULL, p);
5169 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5170 tp->ooo_last_skb = skb;
5171 goto end;
5172 }
5173
5174 /* In the typical case, we are adding an skb to the end of the list.
5175 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
5176 */
5177 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
5178 skb, &fragstolen)) {
5179 coalesce_done:
5180 /* For non sack flows, do not grow window to force DUPACK
5181 * and trigger fast retransmit.
5182 */
5183 if (tcp_is_sack(tp))
5184 tcp_grow_window(sk, skb, true);
5185 kfree_skb_partial(skb, fragstolen);
5186 skb = NULL;
5187 goto add_sack;
5188 }
5189 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
5190 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
5191 parent = &tp->ooo_last_skb->rbnode;
5192 p = &parent->rb_right;
5193 goto insert;
5194 }
5195
5196 /* Find place to insert this segment. Handle overlaps on the way. */
5197 parent = NULL;
5198 while (*p) {
5199 parent = *p;
5200 skb1 = rb_to_skb(parent);
5201 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
5202 p = &parent->rb_left;
5203 continue;
5204 }
5205 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
5206 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5207 /* All the bits are present. Drop. */
5208 NET_INC_STATS(sock_net(sk),
5209 LINUX_MIB_TCPOFOMERGE);
5210 tcp_drop_reason(sk, skb,
5211 SKB_DROP_REASON_TCP_OFOMERGE);
5212 skb = NULL;
5213 tcp_dsack_set(sk, seq, end_seq);
5214 goto add_sack;
5215 }
5216 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
5217 /* Partial overlap. */
5218 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
5219 } else {
5220 /* skb's seq == skb1's seq and skb covers skb1.
5221 * Replace skb1 with skb.
5222 */
5223 rb_replace_node(&skb1->rbnode, &skb->rbnode,
5224 &tp->out_of_order_queue);
5225 tcp_dsack_extend(sk,
5226 TCP_SKB_CB(skb1)->seq,
5227 TCP_SKB_CB(skb1)->end_seq);
5228 NET_INC_STATS(sock_net(sk),
5229 LINUX_MIB_TCPOFOMERGE);
5230 tcp_drop_reason(sk, skb1,
5231 SKB_DROP_REASON_TCP_OFOMERGE);
5232 goto merge_right;
5233 }
5234 } else if (tcp_ooo_try_coalesce(sk, skb1,
5235 skb, &fragstolen)) {
5236 goto coalesce_done;
5237 }
5238 p = &parent->rb_right;
5239 }
5240 insert:
5241 /* Insert segment into RB tree. */
5242 rb_link_node(&skb->rbnode, parent, p);
5243 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5244
5245 merge_right:
5246 /* Remove other segments covered by skb. */
5247 while ((skb1 = skb_rb_next(skb)) != NULL) {
5248 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
5249 break;
5250 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5251 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5252 end_seq);
5253 break;
5254 }
5255 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
5256 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5257 TCP_SKB_CB(skb1)->end_seq);
5258 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
5259 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
5260 }
5261 /* If there is no skb after us, we are the last_skb ! */
5262 if (!skb1)
5263 tp->ooo_last_skb = skb;
5264
5265 add_sack:
5266 if (tcp_is_sack(tp))
5267 tcp_sack_new_ofo_skb(sk, seq, end_seq);
5268 end:
5269 if (skb) {
5270 /* For non sack flows, do not grow window to force DUPACK
5271 * and trigger fast retransmit.
5272 */
5273 if (tcp_is_sack(tp))
5274 tcp_grow_window(sk, skb, false);
5275 skb_condense(skb);
5276 skb_set_owner_r(skb, sk);
5277 }
5278 /* do not grow rcvbuf for not-yet-accepted or orphaned sockets. */
5279 if (sk->sk_socket)
5280 tcp_rcvbuf_grow(sk, tp->rcvq_space.space);
5281 }
5282
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,bool * fragstolen)5283 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
5284 bool *fragstolen)
5285 {
5286 int eaten;
5287 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
5288
5289 eaten = (tail &&
5290 tcp_try_coalesce(sk, tail,
5291 skb, fragstolen)) ? 1 : 0;
5292 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
5293 if (!eaten) {
5294 tcp_add_receive_queue(sk, skb);
5295 skb_set_owner_r(skb, sk);
5296 }
5297 return eaten;
5298 }
5299
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)5300 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
5301 {
5302 struct sk_buff *skb;
5303 int err = -ENOMEM;
5304 int data_len = 0;
5305 bool fragstolen;
5306
5307 if (size == 0)
5308 return 0;
5309
5310 if (size > PAGE_SIZE) {
5311 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
5312
5313 data_len = npages << PAGE_SHIFT;
5314 size = data_len + (size & ~PAGE_MASK);
5315 }
5316 skb = alloc_skb_with_frags(size - data_len, data_len,
5317 PAGE_ALLOC_COSTLY_ORDER,
5318 &err, sk->sk_allocation);
5319 if (!skb)
5320 goto err;
5321
5322 skb_put(skb, size - data_len);
5323 skb->data_len = data_len;
5324 skb->len = size;
5325
5326 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5327 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5328 goto err_free;
5329 }
5330
5331 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
5332 if (err)
5333 goto err_free;
5334
5335 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
5336 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
5337 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
5338
5339 if (tcp_queue_rcv(sk, skb, &fragstolen)) {
5340 WARN_ON_ONCE(fragstolen); /* should not happen */
5341 __kfree_skb(skb);
5342 }
5343 return size;
5344
5345 err_free:
5346 kfree_skb(skb);
5347 err:
5348 return err;
5349
5350 }
5351
tcp_data_ready(struct sock * sk)5352 void tcp_data_ready(struct sock *sk)
5353 {
5354 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5355 sk->sk_data_ready(sk);
5356 }
5357
tcp_data_queue(struct sock * sk,struct sk_buff * skb)5358 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5359 {
5360 struct tcp_sock *tp = tcp_sk(sk);
5361 enum skb_drop_reason reason;
5362 bool fragstolen;
5363 int eaten;
5364
5365 /* If a subflow has been reset, the packet should not continue
5366 * to be processed, drop the packet.
5367 */
5368 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5369 __kfree_skb(skb);
5370 return;
5371 }
5372
5373 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5374 __kfree_skb(skb);
5375 return;
5376 }
5377 tcp_cleanup_skb(skb);
5378 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
5379
5380 reason = SKB_DROP_REASON_NOT_SPECIFIED;
5381 tp->rx_opt.dsack = 0;
5382
5383 /* Queue data for delivery to the user.
5384 * Packets in sequence go to the receive queue.
5385 * Out of sequence packets to the out_of_order_queue.
5386 */
5387 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5388 if (tcp_receive_window(tp) == 0) {
5389 /* Some stacks are known to send bare FIN packets
5390 * in a loop even if we send RWIN 0 in our ACK.
5391 * Accepting this FIN does not hurt memory pressure
5392 * because the FIN flag will simply be merged to the
5393 * receive queue tail skb in most cases.
5394 */
5395 if (!skb->len &&
5396 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
5397 goto queue_and_out;
5398
5399 reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5400 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5401 goto out_of_window;
5402 }
5403
5404 /* Ok. In sequence. In window. */
5405 queue_and_out:
5406 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5407 /* TODO: maybe ratelimit these WIN 0 ACK ? */
5408 inet_csk(sk)->icsk_ack.pending |=
5409 (ICSK_ACK_NOMEM | ICSK_ACK_NOW);
5410 inet_csk_schedule_ack(sk);
5411 sk->sk_data_ready(sk);
5412
5413 if (skb_queue_len(&sk->sk_receive_queue) && skb->len) {
5414 reason = SKB_DROP_REASON_PROTO_MEM;
5415 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5416 goto drop;
5417 }
5418 sk_forced_mem_schedule(sk, skb->truesize);
5419 }
5420
5421 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5422 if (skb->len)
5423 tcp_event_data_recv(sk, skb);
5424 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5425 tcp_fin(sk);
5426
5427 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5428 tcp_ofo_queue(sk);
5429
5430 /* RFC5681. 4.2. SHOULD send immediate ACK, when
5431 * gap in queue is filled.
5432 */
5433 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5434 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5435 }
5436
5437 if (tp->rx_opt.num_sacks)
5438 tcp_sack_remove(tp);
5439
5440 tcp_fast_path_check(sk);
5441
5442 if (eaten > 0)
5443 kfree_skb_partial(skb, fragstolen);
5444 if (!sock_flag(sk, SOCK_DEAD))
5445 tcp_data_ready(sk);
5446 return;
5447 }
5448
5449 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5450 tcp_rcv_spurious_retrans(sk, skb);
5451 /* A retransmit, 2nd most common case. Force an immediate ack. */
5452 reason = SKB_DROP_REASON_TCP_OLD_DATA;
5453 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5454 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5455
5456 out_of_window:
5457 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5458 inet_csk_schedule_ack(sk);
5459 drop:
5460 tcp_drop_reason(sk, skb, reason);
5461 return;
5462 }
5463
5464 /* Out of window. F.e. zero window probe. */
5465 if (!before(TCP_SKB_CB(skb)->seq,
5466 tp->rcv_nxt + tcp_receive_window(tp))) {
5467 reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5468 goto out_of_window;
5469 }
5470
5471 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5472 /* Partial packet, seq < rcv_next < end_seq */
5473 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5474
5475 /* If window is closed, drop tail of packet. But after
5476 * remembering D-SACK for its head made in previous line.
5477 */
5478 if (!tcp_receive_window(tp)) {
5479 reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5480 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5481 goto out_of_window;
5482 }
5483 goto queue_and_out;
5484 }
5485
5486 tcp_data_queue_ofo(sk, skb);
5487 }
5488
tcp_skb_next(struct sk_buff * skb,struct sk_buff_head * list)5489 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5490 {
5491 if (list)
5492 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5493
5494 return skb_rb_next(skb);
5495 }
5496
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list,struct rb_root * root)5497 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5498 struct sk_buff_head *list,
5499 struct rb_root *root)
5500 {
5501 struct sk_buff *next = tcp_skb_next(skb, list);
5502
5503 if (list)
5504 __skb_unlink(skb, list);
5505 else
5506 rb_erase(&skb->rbnode, root);
5507
5508 __kfree_skb(skb);
5509 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5510
5511 return next;
5512 }
5513
5514 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp_rbtree_insert(struct rb_root * root,struct sk_buff * skb)5515 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5516 {
5517 struct rb_node **p = &root->rb_node;
5518 struct rb_node *parent = NULL;
5519 struct sk_buff *skb1;
5520
5521 while (*p) {
5522 parent = *p;
5523 skb1 = rb_to_skb(parent);
5524 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5525 p = &parent->rb_left;
5526 else
5527 p = &parent->rb_right;
5528 }
5529 rb_link_node(&skb->rbnode, parent, p);
5530 rb_insert_color(&skb->rbnode, root);
5531 }
5532
5533 /* Collapse contiguous sequence of skbs head..tail with
5534 * sequence numbers start..end.
5535 *
5536 * If tail is NULL, this means until the end of the queue.
5537 *
5538 * Segments with FIN/SYN are not collapsed (only because this
5539 * simplifies code)
5540 */
5541 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct rb_root * root,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)5542 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5543 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5544 {
5545 struct sk_buff *skb = head, *n;
5546 struct sk_buff_head tmp;
5547 bool end_of_skbs;
5548
5549 /* First, check that queue is collapsible and find
5550 * the point where collapsing can be useful.
5551 */
5552 restart:
5553 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5554 n = tcp_skb_next(skb, list);
5555
5556 if (!skb_frags_readable(skb))
5557 goto skip_this;
5558
5559 /* No new bits? It is possible on ofo queue. */
5560 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5561 skb = tcp_collapse_one(sk, skb, list, root);
5562 if (!skb)
5563 break;
5564 goto restart;
5565 }
5566
5567 /* The first skb to collapse is:
5568 * - not SYN/FIN and
5569 * - bloated or contains data before "start" or
5570 * overlaps to the next one and mptcp allow collapsing.
5571 */
5572 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5573 (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5574 before(TCP_SKB_CB(skb)->seq, start))) {
5575 end_of_skbs = false;
5576 break;
5577 }
5578
5579 if (n && n != tail && skb_frags_readable(n) &&
5580 tcp_skb_can_collapse_rx(skb, n) &&
5581 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5582 end_of_skbs = false;
5583 break;
5584 }
5585
5586 skip_this:
5587 /* Decided to skip this, advance start seq. */
5588 start = TCP_SKB_CB(skb)->end_seq;
5589 }
5590 if (end_of_skbs ||
5591 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) ||
5592 !skb_frags_readable(skb))
5593 return;
5594
5595 __skb_queue_head_init(&tmp);
5596
5597 while (before(start, end)) {
5598 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5599 struct sk_buff *nskb;
5600
5601 nskb = alloc_skb(copy, GFP_ATOMIC);
5602 if (!nskb)
5603 break;
5604
5605 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5606 skb_copy_decrypted(nskb, skb);
5607 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5608 if (list)
5609 __skb_queue_before(list, skb, nskb);
5610 else
5611 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5612 skb_set_owner_r(nskb, sk);
5613 mptcp_skb_ext_move(nskb, skb);
5614
5615 /* Copy data, releasing collapsed skbs. */
5616 while (copy > 0) {
5617 int offset = start - TCP_SKB_CB(skb)->seq;
5618 int size = TCP_SKB_CB(skb)->end_seq - start;
5619
5620 BUG_ON(offset < 0);
5621 if (size > 0) {
5622 size = min(copy, size);
5623 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5624 BUG();
5625 TCP_SKB_CB(nskb)->end_seq += size;
5626 copy -= size;
5627 start += size;
5628 }
5629 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5630 skb = tcp_collapse_one(sk, skb, list, root);
5631 if (!skb ||
5632 skb == tail ||
5633 !tcp_skb_can_collapse_rx(nskb, skb) ||
5634 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) ||
5635 !skb_frags_readable(skb))
5636 goto end;
5637 }
5638 }
5639 }
5640 end:
5641 skb_queue_walk_safe(&tmp, skb, n)
5642 tcp_rbtree_insert(root, skb);
5643 }
5644
5645 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5646 * and tcp_collapse() them until all the queue is collapsed.
5647 */
tcp_collapse_ofo_queue(struct sock * sk)5648 static void tcp_collapse_ofo_queue(struct sock *sk)
5649 {
5650 struct tcp_sock *tp = tcp_sk(sk);
5651 u32 range_truesize, sum_tiny = 0;
5652 struct sk_buff *skb, *head;
5653 u32 start, end;
5654
5655 skb = skb_rb_first(&tp->out_of_order_queue);
5656 new_range:
5657 if (!skb) {
5658 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5659 return;
5660 }
5661 start = TCP_SKB_CB(skb)->seq;
5662 end = TCP_SKB_CB(skb)->end_seq;
5663 range_truesize = skb->truesize;
5664
5665 for (head = skb;;) {
5666 skb = skb_rb_next(skb);
5667
5668 /* Range is terminated when we see a gap or when
5669 * we are at the queue end.
5670 */
5671 if (!skb ||
5672 after(TCP_SKB_CB(skb)->seq, end) ||
5673 before(TCP_SKB_CB(skb)->end_seq, start)) {
5674 /* Do not attempt collapsing tiny skbs */
5675 if (range_truesize != head->truesize ||
5676 end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5677 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5678 head, skb, start, end);
5679 } else {
5680 sum_tiny += range_truesize;
5681 if (sum_tiny > sk->sk_rcvbuf >> 3)
5682 return;
5683 }
5684 goto new_range;
5685 }
5686
5687 range_truesize += skb->truesize;
5688 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5689 start = TCP_SKB_CB(skb)->seq;
5690 if (after(TCP_SKB_CB(skb)->end_seq, end))
5691 end = TCP_SKB_CB(skb)->end_seq;
5692 }
5693 }
5694
5695 /*
5696 * Clean the out-of-order queue to make room.
5697 * We drop high sequences packets to :
5698 * 1) Let a chance for holes to be filled.
5699 * This means we do not drop packets from ooo queue if their sequence
5700 * is before incoming packet sequence.
5701 * 2) not add too big latencies if thousands of packets sit there.
5702 * (But if application shrinks SO_RCVBUF, we could still end up
5703 * freeing whole queue here)
5704 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5705 *
5706 * Return true if queue has shrunk.
5707 */
tcp_prune_ofo_queue(struct sock * sk,const struct sk_buff * in_skb)5708 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb)
5709 {
5710 struct tcp_sock *tp = tcp_sk(sk);
5711 struct rb_node *node, *prev;
5712 bool pruned = false;
5713 int goal;
5714
5715 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5716 return false;
5717
5718 goal = sk->sk_rcvbuf >> 3;
5719 node = &tp->ooo_last_skb->rbnode;
5720
5721 do {
5722 struct sk_buff *skb = rb_to_skb(node);
5723
5724 /* If incoming skb would land last in ofo queue, stop pruning. */
5725 if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq))
5726 break;
5727 pruned = true;
5728 prev = rb_prev(node);
5729 rb_erase(node, &tp->out_of_order_queue);
5730 goal -= skb->truesize;
5731 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5732 tp->ooo_last_skb = rb_to_skb(prev);
5733 if (!prev || goal <= 0) {
5734 if (tcp_can_ingest(sk, in_skb) &&
5735 !tcp_under_memory_pressure(sk))
5736 break;
5737 goal = sk->sk_rcvbuf >> 3;
5738 }
5739 node = prev;
5740 } while (node);
5741
5742 if (pruned) {
5743 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5744 /* Reset SACK state. A conforming SACK implementation will
5745 * do the same at a timeout based retransmit. When a connection
5746 * is in a sad state like this, we care only about integrity
5747 * of the connection not performance.
5748 */
5749 if (tp->rx_opt.sack_ok)
5750 tcp_sack_reset(&tp->rx_opt);
5751 }
5752 return pruned;
5753 }
5754
5755 /* Reduce allocated memory if we can, trying to get
5756 * the socket within its memory limits again.
5757 *
5758 * Return less than zero if we should start dropping frames
5759 * until the socket owning process reads some of the data
5760 * to stabilize the situation.
5761 */
tcp_prune_queue(struct sock * sk,const struct sk_buff * in_skb)5762 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb)
5763 {
5764 struct tcp_sock *tp = tcp_sk(sk);
5765
5766 /* Do nothing if our queues are empty. */
5767 if (!atomic_read(&sk->sk_rmem_alloc))
5768 return -1;
5769
5770 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5771
5772 if (!tcp_can_ingest(sk, in_skb))
5773 tcp_clamp_window(sk);
5774 else if (tcp_under_memory_pressure(sk))
5775 tcp_adjust_rcv_ssthresh(sk);
5776
5777 if (tcp_can_ingest(sk, in_skb))
5778 return 0;
5779
5780 tcp_collapse_ofo_queue(sk);
5781 if (!skb_queue_empty(&sk->sk_receive_queue))
5782 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5783 skb_peek(&sk->sk_receive_queue),
5784 NULL,
5785 tp->copied_seq, tp->rcv_nxt);
5786
5787 if (tcp_can_ingest(sk, in_skb))
5788 return 0;
5789
5790 /* Collapsing did not help, destructive actions follow.
5791 * This must not ever occur. */
5792
5793 tcp_prune_ofo_queue(sk, in_skb);
5794
5795 if (tcp_can_ingest(sk, in_skb))
5796 return 0;
5797
5798 /* If we are really being abused, tell the caller to silently
5799 * drop receive data on the floor. It will get retransmitted
5800 * and hopefully then we'll have sufficient space.
5801 */
5802 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5803
5804 /* Massive buffer overcommit. */
5805 tp->pred_flags = 0;
5806 return -1;
5807 }
5808
tcp_should_expand_sndbuf(struct sock * sk)5809 static bool tcp_should_expand_sndbuf(struct sock *sk)
5810 {
5811 const struct tcp_sock *tp = tcp_sk(sk);
5812
5813 /* If the user specified a specific send buffer setting, do
5814 * not modify it.
5815 */
5816 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5817 return false;
5818
5819 /* If we are under global TCP memory pressure, do not expand. */
5820 if (tcp_under_memory_pressure(sk)) {
5821 int unused_mem = sk_unused_reserved_mem(sk);
5822
5823 /* Adjust sndbuf according to reserved mem. But make sure
5824 * it never goes below SOCK_MIN_SNDBUF.
5825 * See sk_stream_moderate_sndbuf() for more details.
5826 */
5827 if (unused_mem > SOCK_MIN_SNDBUF)
5828 WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5829
5830 return false;
5831 }
5832
5833 /* If we are under soft global TCP memory pressure, do not expand. */
5834 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5835 return false;
5836
5837 /* If we filled the congestion window, do not expand. */
5838 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5839 return false;
5840
5841 return true;
5842 }
5843
tcp_new_space(struct sock * sk)5844 static void tcp_new_space(struct sock *sk)
5845 {
5846 struct tcp_sock *tp = tcp_sk(sk);
5847
5848 if (tcp_should_expand_sndbuf(sk)) {
5849 tcp_sndbuf_expand(sk);
5850 tp->snd_cwnd_stamp = tcp_jiffies32;
5851 }
5852
5853 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5854 }
5855
5856 /* Caller made space either from:
5857 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5858 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5859 *
5860 * We might be able to generate EPOLLOUT to the application if:
5861 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5862 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5863 * small enough that tcp_stream_memory_free() decides it
5864 * is time to generate EPOLLOUT.
5865 */
tcp_check_space(struct sock * sk)5866 void tcp_check_space(struct sock *sk)
5867 {
5868 /* pairs with tcp_poll() */
5869 smp_mb();
5870 if (sk->sk_socket &&
5871 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5872 tcp_new_space(sk);
5873 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5874 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5875 }
5876 }
5877
tcp_data_snd_check(struct sock * sk)5878 static inline void tcp_data_snd_check(struct sock *sk)
5879 {
5880 tcp_push_pending_frames(sk);
5881 tcp_check_space(sk);
5882 }
5883
5884 /*
5885 * Check if sending an ack is needed.
5886 */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5887 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5888 {
5889 struct tcp_sock *tp = tcp_sk(sk);
5890 unsigned long rtt, delay;
5891
5892 /* More than one full frame received... */
5893 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5894 /* ... and right edge of window advances far enough.
5895 * (tcp_recvmsg() will send ACK otherwise).
5896 * If application uses SO_RCVLOWAT, we want send ack now if
5897 * we have not received enough bytes to satisfy the condition.
5898 */
5899 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5900 __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5901 /* We ACK each frame or... */
5902 tcp_in_quickack_mode(sk) ||
5903 /* Protocol state mandates a one-time immediate ACK */
5904 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5905 /* If we are running from __release_sock() in user context,
5906 * Defer the ack until tcp_release_cb().
5907 */
5908 if (sock_owned_by_user_nocheck(sk) &&
5909 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_backlog_ack_defer)) {
5910 set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags);
5911 return;
5912 }
5913 send_now:
5914 tcp_send_ack(sk);
5915 return;
5916 }
5917
5918 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5919 tcp_send_delayed_ack(sk);
5920 return;
5921 }
5922
5923 if (!tcp_is_sack(tp) ||
5924 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5925 goto send_now;
5926
5927 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5928 tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5929 tp->dup_ack_counter = 0;
5930 }
5931 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5932 tp->dup_ack_counter++;
5933 goto send_now;
5934 }
5935 tp->compressed_ack++;
5936 if (hrtimer_is_queued(&tp->compressed_ack_timer))
5937 return;
5938
5939 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5940
5941 rtt = tp->rcv_rtt_est.rtt_us;
5942 if (tp->srtt_us && tp->srtt_us < rtt)
5943 rtt = tp->srtt_us;
5944
5945 delay = min_t(unsigned long,
5946 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5947 rtt * (NSEC_PER_USEC >> 3)/20);
5948 sock_hold(sk);
5949 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5950 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5951 HRTIMER_MODE_REL_PINNED_SOFT);
5952 }
5953
tcp_ack_snd_check(struct sock * sk)5954 static inline void tcp_ack_snd_check(struct sock *sk)
5955 {
5956 if (!inet_csk_ack_scheduled(sk)) {
5957 /* We sent a data segment already. */
5958 return;
5959 }
5960 __tcp_ack_snd_check(sk, 1);
5961 }
5962
5963 /*
5964 * This routine is only called when we have urgent data
5965 * signaled. Its the 'slow' part of tcp_urg. It could be
5966 * moved inline now as tcp_urg is only called from one
5967 * place. We handle URGent data wrong. We have to - as
5968 * BSD still doesn't use the correction from RFC961.
5969 * For 1003.1g we should support a new option TCP_STDURG to permit
5970 * either form (or just set the sysctl tcp_stdurg).
5971 */
5972
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5973 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5974 {
5975 struct tcp_sock *tp = tcp_sk(sk);
5976 u32 ptr = ntohs(th->urg_ptr);
5977
5978 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5979 ptr--;
5980 ptr += ntohl(th->seq);
5981
5982 /* Ignore urgent data that we've already seen and read. */
5983 if (after(tp->copied_seq, ptr))
5984 return;
5985
5986 /* Do not replay urg ptr.
5987 *
5988 * NOTE: interesting situation not covered by specs.
5989 * Misbehaving sender may send urg ptr, pointing to segment,
5990 * which we already have in ofo queue. We are not able to fetch
5991 * such data and will stay in TCP_URG_NOTYET until will be eaten
5992 * by recvmsg(). Seems, we are not obliged to handle such wicked
5993 * situations. But it is worth to think about possibility of some
5994 * DoSes using some hypothetical application level deadlock.
5995 */
5996 if (before(ptr, tp->rcv_nxt))
5997 return;
5998
5999 /* Do we already have a newer (or duplicate) urgent pointer? */
6000 if (tp->urg_data && !after(ptr, tp->urg_seq))
6001 return;
6002
6003 /* Tell the world about our new urgent pointer. */
6004 sk_send_sigurg(sk);
6005
6006 /* We may be adding urgent data when the last byte read was
6007 * urgent. To do this requires some care. We cannot just ignore
6008 * tp->copied_seq since we would read the last urgent byte again
6009 * as data, nor can we alter copied_seq until this data arrives
6010 * or we break the semantics of SIOCATMARK (and thus sockatmark())
6011 *
6012 * NOTE. Double Dutch. Rendering to plain English: author of comment
6013 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
6014 * and expect that both A and B disappear from stream. This is _wrong_.
6015 * Though this happens in BSD with high probability, this is occasional.
6016 * Any application relying on this is buggy. Note also, that fix "works"
6017 * only in this artificial test. Insert some normal data between A and B and we will
6018 * decline of BSD again. Verdict: it is better to remove to trap
6019 * buggy users.
6020 */
6021 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
6022 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
6023 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
6024 tp->copied_seq++;
6025 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
6026 __skb_unlink(skb, &sk->sk_receive_queue);
6027 __kfree_skb(skb);
6028 }
6029 }
6030
6031 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
6032 WRITE_ONCE(tp->urg_seq, ptr);
6033
6034 /* Disable header prediction. */
6035 tp->pred_flags = 0;
6036 }
6037
6038 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)6039 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
6040 {
6041 struct tcp_sock *tp = tcp_sk(sk);
6042
6043 /* Check if we get a new urgent pointer - normally not. */
6044 if (unlikely(th->urg))
6045 tcp_check_urg(sk, th);
6046
6047 /* Do we wait for any urgent data? - normally not... */
6048 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
6049 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
6050 th->syn;
6051
6052 /* Is the urgent pointer pointing into this packet? */
6053 if (ptr < skb->len) {
6054 u8 tmp;
6055 if (skb_copy_bits(skb, ptr, &tmp, 1))
6056 BUG();
6057 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
6058 if (!sock_flag(sk, SOCK_DEAD))
6059 sk->sk_data_ready(sk);
6060 }
6061 }
6062 }
6063
6064 /* Accept RST for rcv_nxt - 1 after a FIN.
6065 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
6066 * FIN is sent followed by a RST packet. The RST is sent with the same
6067 * sequence number as the FIN, and thus according to RFC 5961 a challenge
6068 * ACK should be sent. However, Mac OSX rate limits replies to challenge
6069 * ACKs on the closed socket. In addition middleboxes can drop either the
6070 * challenge ACK or a subsequent RST.
6071 */
tcp_reset_check(const struct sock * sk,const struct sk_buff * skb)6072 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
6073 {
6074 const struct tcp_sock *tp = tcp_sk(sk);
6075
6076 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
6077 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
6078 TCPF_CLOSING));
6079 }
6080
6081 /* Does PAWS and seqno based validation of an incoming segment, flags will
6082 * play significant role here.
6083 */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)6084 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
6085 const struct tcphdr *th, int syn_inerr)
6086 {
6087 struct tcp_sock *tp = tcp_sk(sk);
6088 bool accecn_reflector = false;
6089 SKB_DR(reason);
6090
6091 /* RFC1323: H1. Apply PAWS check first. */
6092 if (!tcp_fast_parse_options(sock_net(sk), skb, th, tp) ||
6093 !tp->rx_opt.saw_tstamp ||
6094 tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW))
6095 goto step1;
6096
6097 reason = tcp_disordered_ack_check(sk, skb);
6098 if (!reason)
6099 goto step1;
6100 /* Reset is accepted even if it did not pass PAWS. */
6101 if (th->rst)
6102 goto step1;
6103 if (unlikely(th->syn))
6104 goto syn_challenge;
6105
6106 /* Old ACK are common, increment PAWS_OLD_ACK
6107 * and do not send a dupack.
6108 */
6109 if (reason == SKB_DROP_REASON_TCP_RFC7323_PAWS_ACK) {
6110 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWS_OLD_ACK);
6111 goto discard;
6112 }
6113 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
6114 if (!tcp_oow_rate_limited(sock_net(sk), skb,
6115 LINUX_MIB_TCPACKSKIPPEDPAWS,
6116 &tp->last_oow_ack_time))
6117 tcp_send_dupack(sk, skb);
6118 goto discard;
6119
6120 step1:
6121 /* Step 1: check sequence number */
6122 reason = tcp_sequence(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
6123 if (reason) {
6124 /* RFC793, page 37: "In all states except SYN-SENT, all reset
6125 * (RST) segments are validated by checking their SEQ-fields."
6126 * And page 69: "If an incoming segment is not acceptable,
6127 * an acknowledgment should be sent in reply (unless the RST
6128 * bit is set, if so drop the segment and return)".
6129 */
6130 if (!th->rst) {
6131 if (th->syn)
6132 goto syn_challenge;
6133
6134 if (reason == SKB_DROP_REASON_TCP_INVALID_SEQUENCE ||
6135 reason == SKB_DROP_REASON_TCP_INVALID_END_SEQUENCE)
6136 NET_INC_STATS(sock_net(sk),
6137 LINUX_MIB_BEYOND_WINDOW);
6138 if (!tcp_oow_rate_limited(sock_net(sk), skb,
6139 LINUX_MIB_TCPACKSKIPPEDSEQ,
6140 &tp->last_oow_ack_time))
6141 tcp_send_dupack(sk, skb);
6142 } else if (tcp_reset_check(sk, skb)) {
6143 goto reset;
6144 }
6145 goto discard;
6146 }
6147
6148 /* Step 2: check RST bit */
6149 if (th->rst) {
6150 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
6151 * FIN and SACK too if available):
6152 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
6153 * the right-most SACK block,
6154 * then
6155 * RESET the connection
6156 * else
6157 * Send a challenge ACK
6158 */
6159 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
6160 tcp_reset_check(sk, skb))
6161 goto reset;
6162
6163 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
6164 struct tcp_sack_block *sp = &tp->selective_acks[0];
6165 int max_sack = sp[0].end_seq;
6166 int this_sack;
6167
6168 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
6169 ++this_sack) {
6170 max_sack = after(sp[this_sack].end_seq,
6171 max_sack) ?
6172 sp[this_sack].end_seq : max_sack;
6173 }
6174
6175 if (TCP_SKB_CB(skb)->seq == max_sack)
6176 goto reset;
6177 }
6178
6179 /* Disable TFO if RST is out-of-order
6180 * and no data has been received
6181 * for current active TFO socket
6182 */
6183 if (tp->syn_fastopen && !tp->data_segs_in &&
6184 sk->sk_state == TCP_ESTABLISHED)
6185 tcp_fastopen_active_disable(sk);
6186 tcp_send_challenge_ack(sk, false);
6187 SKB_DR_SET(reason, TCP_RESET);
6188 goto discard;
6189 }
6190
6191 /* step 3: check security and precedence [ignored] */
6192
6193 /* step 4: Check for a SYN
6194 * RFC 5961 4.2 : Send a challenge ack
6195 */
6196 if (th->syn) {
6197 if (tcp_ecn_mode_accecn(tp)) {
6198 accecn_reflector = true;
6199 if (tp->rx_opt.accecn &&
6200 tp->saw_accecn_opt < TCP_ACCECN_OPT_COUNTER_SEEN) {
6201 u8 saw_opt = tcp_accecn_option_init(skb, tp->rx_opt.accecn);
6202
6203 tcp_accecn_saw_opt_fail_recv(tp, saw_opt);
6204 tcp_accecn_opt_demand_min(sk, 1);
6205 }
6206 }
6207 if (sk->sk_state == TCP_SYN_RECV && sk->sk_socket && th->ack &&
6208 TCP_SKB_CB(skb)->seq + 1 == TCP_SKB_CB(skb)->end_seq &&
6209 TCP_SKB_CB(skb)->seq + 1 == tp->rcv_nxt &&
6210 TCP_SKB_CB(skb)->ack_seq == tp->snd_nxt)
6211 goto pass;
6212 syn_challenge:
6213 if (syn_inerr)
6214 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6215 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
6216 tcp_send_challenge_ack(sk, accecn_reflector);
6217 SKB_DR_SET(reason, TCP_INVALID_SYN);
6218 goto discard;
6219 }
6220
6221 pass:
6222 bpf_skops_parse_hdr(sk, skb);
6223
6224 return true;
6225
6226 discard:
6227 tcp_drop_reason(sk, skb, reason);
6228 return false;
6229
6230 reset:
6231 tcp_reset(sk, skb);
6232 __kfree_skb(skb);
6233 return false;
6234 }
6235
6236 /*
6237 * TCP receive function for the ESTABLISHED state.
6238 *
6239 * It is split into a fast path and a slow path. The fast path is
6240 * disabled when:
6241 * - A zero window was announced from us - zero window probing
6242 * is only handled properly in the slow path.
6243 * - Out of order segments arrived.
6244 * - Urgent data is expected.
6245 * - There is no buffer space left
6246 * - Unexpected TCP flags/window values/header lengths are received
6247 * (detected by checking the TCP header against pred_flags)
6248 * - Data is sent in both directions. Fast path only supports pure senders
6249 * or pure receivers (this means either the sequence number or the ack
6250 * value must stay constant)
6251 * - Unexpected TCP option.
6252 *
6253 * When these conditions are not satisfied it drops into a standard
6254 * receive procedure patterned after RFC793 to handle all cases.
6255 * The first three cases are guaranteed by proper pred_flags setting,
6256 * the rest is checked inline. Fast processing is turned on in
6257 * tcp_data_queue when everything is OK.
6258 */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb)6259 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
6260 {
6261 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
6262 const struct tcphdr *th = (const struct tcphdr *)skb->data;
6263 struct tcp_sock *tp = tcp_sk(sk);
6264 unsigned int len = skb->len;
6265
6266 /* TCP congestion window tracking */
6267 trace_tcp_probe(sk, skb);
6268
6269 tcp_mstamp_refresh(tp);
6270 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
6271 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
6272 /*
6273 * Header prediction.
6274 * The code loosely follows the one in the famous
6275 * "30 instruction TCP receive" Van Jacobson mail.
6276 *
6277 * Van's trick is to deposit buffers into socket queue
6278 * on a device interrupt, to call tcp_recv function
6279 * on the receive process context and checksum and copy
6280 * the buffer to user space. smart...
6281 *
6282 * Our current scheme is not silly either but we take the
6283 * extra cost of the net_bh soft interrupt processing...
6284 * We do checksum and copy also but from device to kernel.
6285 */
6286
6287 tp->rx_opt.saw_tstamp = 0;
6288 tp->rx_opt.accecn = 0;
6289
6290 /* pred_flags is 0xS?10 << 16 + snd_wnd
6291 * if header_prediction is to be made
6292 * 'S' will always be tp->tcp_header_len >> 2
6293 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
6294 * turn it off (when there are holes in the receive
6295 * space for instance)
6296 * PSH flag is ignored.
6297 */
6298
6299 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
6300 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
6301 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6302 int tcp_header_len = tp->tcp_header_len;
6303 s32 delta = 0;
6304 int flag = 0;
6305
6306 /* Timestamp header prediction: tcp_header_len
6307 * is automatically equal to th->doff*4 due to pred_flags
6308 * match.
6309 */
6310
6311 /* Check timestamp */
6312 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
6313 /* No? Slow path! */
6314 if (!tcp_parse_aligned_timestamp(tp, th))
6315 goto slow_path;
6316
6317 delta = tp->rx_opt.rcv_tsval -
6318 tp->rx_opt.ts_recent;
6319 /* If PAWS failed, check it more carefully in slow path */
6320 if (delta < 0)
6321 goto slow_path;
6322
6323 /* DO NOT update ts_recent here, if checksum fails
6324 * and timestamp was corrupted part, it will result
6325 * in a hung connection since we will drop all
6326 * future packets due to the PAWS test.
6327 */
6328 }
6329
6330 if (len <= tcp_header_len) {
6331 /* Bulk data transfer: sender */
6332 if (len == tcp_header_len) {
6333 /* Predicted packet is in window by definition.
6334 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6335 * Hence, check seq<=rcv_wup reduces to:
6336 */
6337 if (tcp_header_len ==
6338 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6339 tp->rcv_nxt == tp->rcv_wup)
6340 flag |= __tcp_replace_ts_recent(tp,
6341 delta);
6342
6343 tcp_ecn_received_counters(sk, skb, 0);
6344
6345 /* We know that such packets are checksummed
6346 * on entry.
6347 */
6348 tcp_ack(sk, skb, flag);
6349 __kfree_skb(skb);
6350 tcp_data_snd_check(sk);
6351 /* When receiving pure ack in fast path, update
6352 * last ts ecr directly instead of calling
6353 * tcp_rcv_rtt_measure_ts()
6354 */
6355 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
6356 return;
6357 } else { /* Header too small */
6358 reason = SKB_DROP_REASON_PKT_TOO_SMALL;
6359 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6360 goto discard;
6361 }
6362 } else {
6363 int eaten = 0;
6364 bool fragstolen = false;
6365
6366 if (tcp_checksum_complete(skb))
6367 goto csum_error;
6368
6369 if (after(TCP_SKB_CB(skb)->end_seq,
6370 tp->rcv_nxt + tcp_receive_window(tp)))
6371 goto validate;
6372
6373 if ((int)skb->truesize > sk->sk_forward_alloc)
6374 goto step5;
6375
6376 /* Predicted packet is in window by definition.
6377 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6378 * Hence, check seq<=rcv_wup reduces to:
6379 */
6380 if (tcp_header_len ==
6381 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6382 tp->rcv_nxt == tp->rcv_wup)
6383 flag |= __tcp_replace_ts_recent(tp,
6384 delta);
6385
6386 tcp_rcv_rtt_measure_ts(sk, skb);
6387
6388 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
6389
6390 /* Bulk data transfer: receiver */
6391 tcp_cleanup_skb(skb);
6392 __skb_pull(skb, tcp_header_len);
6393 tcp_ecn_received_counters(sk, skb,
6394 len - tcp_header_len);
6395 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
6396
6397 tcp_event_data_recv(sk, skb);
6398
6399 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
6400 /* Well, only one small jumplet in fast path... */
6401 tcp_ack(sk, skb, flag | FLAG_DATA);
6402 tcp_data_snd_check(sk);
6403 if (!inet_csk_ack_scheduled(sk))
6404 goto no_ack;
6405 } else {
6406 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
6407 }
6408
6409 __tcp_ack_snd_check(sk, 0);
6410 no_ack:
6411 if (eaten)
6412 kfree_skb_partial(skb, fragstolen);
6413 tcp_data_ready(sk);
6414 return;
6415 }
6416 }
6417
6418 slow_path:
6419 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
6420 goto csum_error;
6421
6422 if (!th->ack && !th->rst && !th->syn) {
6423 reason = SKB_DROP_REASON_TCP_FLAGS;
6424 goto discard;
6425 }
6426
6427 /*
6428 * Standard slow path.
6429 */
6430 validate:
6431 if (!tcp_validate_incoming(sk, skb, th, 1))
6432 return;
6433
6434 step5:
6435 tcp_ecn_received_counters_payload(sk, skb);
6436
6437 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
6438 if ((int)reason < 0) {
6439 reason = -reason;
6440 goto discard;
6441 }
6442 tcp_rcv_rtt_measure_ts(sk, skb);
6443
6444 /* Process urgent data. */
6445 tcp_urg(sk, skb, th);
6446
6447 /* step 7: process the segment text */
6448 tcp_data_queue(sk, skb);
6449
6450 tcp_data_snd_check(sk);
6451 tcp_ack_snd_check(sk);
6452 return;
6453
6454 csum_error:
6455 reason = SKB_DROP_REASON_TCP_CSUM;
6456 trace_tcp_bad_csum(skb);
6457 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6458 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6459
6460 discard:
6461 tcp_drop_reason(sk, skb, reason);
6462 }
6463 EXPORT_IPV6_MOD(tcp_rcv_established);
6464
tcp_init_transfer(struct sock * sk,int bpf_op,struct sk_buff * skb)6465 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6466 {
6467 struct inet_connection_sock *icsk = inet_csk(sk);
6468 struct tcp_sock *tp = tcp_sk(sk);
6469
6470 tcp_mtup_init(sk);
6471 icsk->icsk_af_ops->rebuild_header(sk);
6472 tcp_init_metrics(sk);
6473
6474 /* Initialize the congestion window to start the transfer.
6475 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6476 * retransmitted. In light of RFC6298 more aggressive 1sec
6477 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6478 * retransmission has occurred.
6479 */
6480 if (tp->total_retrans > 1 && tp->undo_marker)
6481 tcp_snd_cwnd_set(tp, 1);
6482 else
6483 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6484 tp->snd_cwnd_stamp = tcp_jiffies32;
6485
6486 bpf_skops_established(sk, bpf_op, skb);
6487 /* Initialize congestion control unless BPF initialized it already: */
6488 if (!icsk->icsk_ca_initialized)
6489 tcp_init_congestion_control(sk);
6490 tcp_init_buffer_space(sk);
6491 }
6492
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)6493 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6494 {
6495 struct tcp_sock *tp = tcp_sk(sk);
6496 struct inet_connection_sock *icsk = inet_csk(sk);
6497
6498 tcp_ao_finish_connect(sk, skb);
6499 tcp_set_state(sk, TCP_ESTABLISHED);
6500 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6501
6502 if (skb) {
6503 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6504 security_inet_conn_established(sk, skb);
6505 sk_mark_napi_id(sk, skb);
6506 }
6507
6508 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6509
6510 /* Prevent spurious tcp_cwnd_restart() on first data
6511 * packet.
6512 */
6513 tp->lsndtime = tcp_jiffies32;
6514
6515 if (sock_flag(sk, SOCK_KEEPOPEN))
6516 tcp_reset_keepalive_timer(sk, keepalive_time_when(tp));
6517
6518 if (!tp->rx_opt.snd_wscale)
6519 __tcp_fast_path_on(tp, tp->snd_wnd);
6520 else
6521 tp->pred_flags = 0;
6522 }
6523
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)6524 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6525 struct tcp_fastopen_cookie *cookie)
6526 {
6527 struct tcp_sock *tp = tcp_sk(sk);
6528 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6529 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6530 bool syn_drop = false;
6531
6532 if (mss == READ_ONCE(tp->rx_opt.user_mss)) {
6533 struct tcp_options_received opt;
6534
6535 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
6536 tcp_clear_options(&opt);
6537 opt.user_mss = opt.mss_clamp = 0;
6538 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6539 mss = opt.mss_clamp;
6540 }
6541
6542 if (!tp->syn_fastopen) {
6543 /* Ignore an unsolicited cookie */
6544 cookie->len = -1;
6545 } else if (tp->total_retrans) {
6546 /* SYN timed out and the SYN-ACK neither has a cookie nor
6547 * acknowledges data. Presumably the remote received only
6548 * the retransmitted (regular) SYNs: either the original
6549 * SYN-data or the corresponding SYN-ACK was dropped.
6550 */
6551 syn_drop = (cookie->len < 0 && data);
6552 } else if (cookie->len < 0 && !tp->syn_data) {
6553 /* We requested a cookie but didn't get it. If we did not use
6554 * the (old) exp opt format then try so next time (try_exp=1).
6555 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6556 */
6557 try_exp = tp->syn_fastopen_exp ? 2 : 1;
6558 }
6559
6560 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6561
6562 if (data) { /* Retransmit unacked data in SYN */
6563 if (tp->total_retrans)
6564 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6565 else
6566 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6567 skb_rbtree_walk_from(data)
6568 tcp_mark_skb_lost(sk, data);
6569 tcp_non_congestion_loss_retransmit(sk);
6570 NET_INC_STATS(sock_net(sk),
6571 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6572 return true;
6573 }
6574 tp->syn_data_acked = tp->syn_data;
6575 if (tp->syn_data_acked) {
6576 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6577 /* SYN-data is counted as two separate packets in tcp_ack() */
6578 if (tp->delivered > 1)
6579 --tp->delivered;
6580 }
6581
6582 tcp_fastopen_add_skb(sk, synack);
6583
6584 return false;
6585 }
6586
smc_check_reset_syn(struct tcp_sock * tp)6587 static void smc_check_reset_syn(struct tcp_sock *tp)
6588 {
6589 #if IS_ENABLED(CONFIG_SMC)
6590 if (static_branch_unlikely(&tcp_have_smc)) {
6591 if (tp->syn_smc && !tp->rx_opt.smc_ok)
6592 tp->syn_smc = 0;
6593 }
6594 #endif
6595 }
6596
tcp_try_undo_spurious_syn(struct sock * sk)6597 static void tcp_try_undo_spurious_syn(struct sock *sk)
6598 {
6599 struct tcp_sock *tp = tcp_sk(sk);
6600 u32 syn_stamp;
6601
6602 /* undo_marker is set when SYN or SYNACK times out. The timeout is
6603 * spurious if the ACK's timestamp option echo value matches the
6604 * original SYN timestamp.
6605 */
6606 syn_stamp = tp->retrans_stamp;
6607 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6608 syn_stamp == tp->rx_opt.rcv_tsecr)
6609 tp->undo_marker = 0;
6610 }
6611
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)6612 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6613 const struct tcphdr *th)
6614 {
6615 struct inet_connection_sock *icsk = inet_csk(sk);
6616 struct tcp_sock *tp = tcp_sk(sk);
6617 struct tcp_fastopen_cookie foc = { .len = -1 };
6618 int saved_clamp = tp->rx_opt.mss_clamp;
6619 bool fastopen_fail;
6620 SKB_DR(reason);
6621
6622 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6623 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6624 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6625
6626 if (th->ack) {
6627 /* rfc793:
6628 * "If the state is SYN-SENT then
6629 * first check the ACK bit
6630 * If the ACK bit is set
6631 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6632 * a reset (unless the RST bit is set, if so drop
6633 * the segment and return)"
6634 */
6635 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6636 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6637 /* Previous FIN/ACK or RST/ACK might be ignored. */
6638 if (icsk->icsk_retransmits == 0)
6639 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
6640 TCP_TIMEOUT_MIN, false);
6641 SKB_DR_SET(reason, TCP_INVALID_ACK_SEQUENCE);
6642 goto reset_and_undo;
6643 }
6644
6645 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6646 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6647 tcp_time_stamp_ts(tp))) {
6648 NET_INC_STATS(sock_net(sk),
6649 LINUX_MIB_PAWSACTIVEREJECTED);
6650 SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6651 goto reset_and_undo;
6652 }
6653
6654 /* Now ACK is acceptable.
6655 *
6656 * "If the RST bit is set
6657 * If the ACK was acceptable then signal the user "error:
6658 * connection reset", drop the segment, enter CLOSED state,
6659 * delete TCB, and return."
6660 */
6661
6662 if (th->rst) {
6663 tcp_reset(sk, skb);
6664 consume:
6665 __kfree_skb(skb);
6666 return 0;
6667 }
6668
6669 /* rfc793:
6670 * "fifth, if neither of the SYN or RST bits is set then
6671 * drop the segment and return."
6672 *
6673 * See note below!
6674 * --ANK(990513)
6675 */
6676 if (!th->syn) {
6677 SKB_DR_SET(reason, TCP_FLAGS);
6678 goto discard_and_undo;
6679 }
6680 /* rfc793:
6681 * "If the SYN bit is on ...
6682 * are acceptable then ...
6683 * (our SYN has been ACKed), change the connection
6684 * state to ESTABLISHED..."
6685 */
6686
6687 if (tcp_ecn_mode_any(tp))
6688 tcp_ecn_rcv_synack(sk, skb, th,
6689 TCP_SKB_CB(skb)->ip_dsfield);
6690
6691 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6692 tcp_try_undo_spurious_syn(sk);
6693 tcp_ack(sk, skb, FLAG_SLOWPATH);
6694
6695 /* Ok.. it's good. Set up sequence numbers and
6696 * move to established.
6697 */
6698 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6699 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6700
6701 /* RFC1323: The window in SYN & SYN/ACK segments is
6702 * never scaled.
6703 */
6704 tp->snd_wnd = ntohs(th->window);
6705
6706 if (!tp->rx_opt.wscale_ok) {
6707 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6708 WRITE_ONCE(tp->window_clamp,
6709 min(tp->window_clamp, 65535U));
6710 }
6711
6712 if (tp->rx_opt.saw_tstamp) {
6713 tp->rx_opt.tstamp_ok = 1;
6714 tp->tcp_header_len =
6715 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6716 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6717 tcp_store_ts_recent(tp);
6718 } else {
6719 tp->tcp_header_len = sizeof(struct tcphdr);
6720 }
6721
6722 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6723 tcp_initialize_rcv_mss(sk);
6724
6725 /* Remember, tcp_poll() does not lock socket!
6726 * Change state from SYN-SENT only after copied_seq
6727 * is initialized. */
6728 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6729
6730 smc_check_reset_syn(tp);
6731
6732 smp_mb();
6733
6734 tcp_finish_connect(sk, skb);
6735
6736 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6737 tcp_rcv_fastopen_synack(sk, skb, &foc);
6738
6739 if (!sock_flag(sk, SOCK_DEAD)) {
6740 sk->sk_state_change(sk);
6741 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6742 }
6743 if (fastopen_fail)
6744 return -1;
6745 if (sk->sk_write_pending ||
6746 READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) ||
6747 inet_csk_in_pingpong_mode(sk)) {
6748 /* Save one ACK. Data will be ready after
6749 * several ticks, if write_pending is set.
6750 *
6751 * It may be deleted, but with this feature tcpdumps
6752 * look so _wonderfully_ clever, that I was not able
6753 * to stand against the temptation 8) --ANK
6754 */
6755 inet_csk_schedule_ack(sk);
6756 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6757 tcp_reset_xmit_timer(sk, ICSK_TIME_DACK,
6758 TCP_DELACK_MAX, false);
6759 goto consume;
6760 }
6761 tcp_send_ack_reflect_ect(sk, tcp_ecn_mode_accecn(tp));
6762 return -1;
6763 }
6764
6765 /* No ACK in the segment */
6766
6767 if (th->rst) {
6768 /* rfc793:
6769 * "If the RST bit is set
6770 *
6771 * Otherwise (no ACK) drop the segment and return."
6772 */
6773 SKB_DR_SET(reason, TCP_RESET);
6774 goto discard_and_undo;
6775 }
6776
6777 /* PAWS check. */
6778 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6779 tcp_paws_reject(&tp->rx_opt, 0)) {
6780 SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6781 goto discard_and_undo;
6782 }
6783 if (th->syn) {
6784 /* We see SYN without ACK. It is attempt of
6785 * simultaneous connect with crossed SYNs.
6786 * Particularly, it can be connect to self.
6787 */
6788 #ifdef CONFIG_TCP_AO
6789 struct tcp_ao_info *ao;
6790
6791 ao = rcu_dereference_protected(tp->ao_info,
6792 lockdep_sock_is_held(sk));
6793 if (ao) {
6794 WRITE_ONCE(ao->risn, th->seq);
6795 ao->rcv_sne = 0;
6796 }
6797 #endif
6798 tcp_set_state(sk, TCP_SYN_RECV);
6799
6800 if (tp->rx_opt.saw_tstamp) {
6801 tp->rx_opt.tstamp_ok = 1;
6802 tcp_store_ts_recent(tp);
6803 tp->tcp_header_len =
6804 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6805 } else {
6806 tp->tcp_header_len = sizeof(struct tcphdr);
6807 }
6808
6809 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6810 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6811 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6812
6813 /* RFC1323: The window in SYN & SYN/ACK segments is
6814 * never scaled.
6815 */
6816 tp->snd_wnd = ntohs(th->window);
6817 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
6818 tp->max_window = tp->snd_wnd;
6819
6820 tcp_ecn_rcv_syn(tp, th, skb);
6821
6822 tcp_mtup_init(sk);
6823 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6824 tcp_initialize_rcv_mss(sk);
6825
6826 tcp_send_synack(sk);
6827 #if 0
6828 /* Note, we could accept data and URG from this segment.
6829 * There are no obstacles to make this (except that we must
6830 * either change tcp_recvmsg() to prevent it from returning data
6831 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6832 *
6833 * However, if we ignore data in ACKless segments sometimes,
6834 * we have no reasons to accept it sometimes.
6835 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6836 * is not flawless. So, discard packet for sanity.
6837 * Uncomment this return to process the data.
6838 */
6839 return -1;
6840 #else
6841 goto consume;
6842 #endif
6843 }
6844 /* "fifth, if neither of the SYN or RST bits is set then
6845 * drop the segment and return."
6846 */
6847
6848 discard_and_undo:
6849 tcp_clear_options(&tp->rx_opt);
6850 tp->rx_opt.mss_clamp = saved_clamp;
6851 tcp_drop_reason(sk, skb, reason);
6852 return 0;
6853
6854 reset_and_undo:
6855 tcp_clear_options(&tp->rx_opt);
6856 tp->rx_opt.mss_clamp = saved_clamp;
6857 /* we can reuse/return @reason to its caller to handle the exception */
6858 return reason;
6859 }
6860
tcp_rcv_synrecv_state_fastopen(struct sock * sk)6861 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6862 {
6863 struct tcp_sock *tp = tcp_sk(sk);
6864 struct request_sock *req;
6865
6866 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6867 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6868 */
6869 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6870 tcp_try_undo_recovery(sk);
6871
6872 tcp_update_rto_time(tp);
6873 WRITE_ONCE(inet_csk(sk)->icsk_retransmits, 0);
6874 /* In tcp_fastopen_synack_timer() on the first SYNACK RTO we set
6875 * retrans_stamp but don't enter CA_Loss, so in case that happened we
6876 * need to zero retrans_stamp here to prevent spurious
6877 * retransmits_timed_out(). However, if the ACK of our SYNACK caused us
6878 * to enter CA_Recovery then we need to leave retrans_stamp as it was
6879 * set entering CA_Recovery, for correct retransmits_timed_out() and
6880 * undo behavior.
6881 */
6882 tcp_retrans_stamp_cleanup(sk);
6883
6884 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6885 * we no longer need req so release it.
6886 */
6887 req = rcu_dereference_protected(tp->fastopen_rsk,
6888 lockdep_sock_is_held(sk));
6889 reqsk_fastopen_remove(sk, req, false);
6890
6891 /* Re-arm the timer because data may have been sent out.
6892 * This is similar to the regular data transmission case
6893 * when new data has just been ack'ed.
6894 *
6895 * (TFO) - we could try to be more aggressive and
6896 * retransmitting any data sooner based on when they
6897 * are sent out.
6898 */
6899 tcp_rearm_rto(sk);
6900 }
6901
6902 /*
6903 * This function implements the receiving procedure of RFC 793 for
6904 * all states except ESTABLISHED and TIME_WAIT.
6905 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6906 * address independent.
6907 */
6908
6909 enum skb_drop_reason
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb)6910 tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6911 {
6912 struct tcp_sock *tp = tcp_sk(sk);
6913 struct inet_connection_sock *icsk = inet_csk(sk);
6914 const struct tcphdr *th = tcp_hdr(skb);
6915 struct request_sock *req;
6916 int queued = 0;
6917 SKB_DR(reason);
6918
6919 switch (sk->sk_state) {
6920 case TCP_CLOSE:
6921 SKB_DR_SET(reason, TCP_CLOSE);
6922 goto discard;
6923
6924 case TCP_LISTEN:
6925 if (th->ack)
6926 return SKB_DROP_REASON_TCP_FLAGS;
6927
6928 if (th->rst) {
6929 SKB_DR_SET(reason, TCP_RESET);
6930 goto discard;
6931 }
6932 if (th->syn) {
6933 if (th->fin) {
6934 SKB_DR_SET(reason, TCP_FLAGS);
6935 goto discard;
6936 }
6937 /* It is possible that we process SYN packets from backlog,
6938 * so we need to make sure to disable BH and RCU right there.
6939 */
6940 rcu_read_lock();
6941 local_bh_disable();
6942 icsk->icsk_af_ops->conn_request(sk, skb);
6943 local_bh_enable();
6944 rcu_read_unlock();
6945
6946 consume_skb(skb);
6947 return 0;
6948 }
6949 SKB_DR_SET(reason, TCP_FLAGS);
6950 goto discard;
6951
6952 case TCP_SYN_SENT:
6953 tp->rx_opt.saw_tstamp = 0;
6954 tcp_mstamp_refresh(tp);
6955 queued = tcp_rcv_synsent_state_process(sk, skb, th);
6956 if (queued >= 0)
6957 return queued;
6958
6959 /* Do step6 onward by hand. */
6960 tcp_urg(sk, skb, th);
6961 __kfree_skb(skb);
6962 tcp_data_snd_check(sk);
6963 return 0;
6964 }
6965
6966 tcp_mstamp_refresh(tp);
6967 tp->rx_opt.saw_tstamp = 0;
6968 req = rcu_dereference_protected(tp->fastopen_rsk,
6969 lockdep_sock_is_held(sk));
6970 if (req) {
6971 bool req_stolen;
6972
6973 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6974 sk->sk_state != TCP_FIN_WAIT1);
6975
6976 SKB_DR_SET(reason, TCP_FASTOPEN);
6977 if (!tcp_check_req(sk, skb, req, true, &req_stolen, &reason))
6978 goto discard;
6979 }
6980
6981 if (!th->ack && !th->rst && !th->syn) {
6982 SKB_DR_SET(reason, TCP_FLAGS);
6983 goto discard;
6984 }
6985 if (!tcp_validate_incoming(sk, skb, th, 0))
6986 return 0;
6987
6988 /* step 5: check the ACK field */
6989 reason = tcp_ack(sk, skb, FLAG_SLOWPATH |
6990 FLAG_UPDATE_TS_RECENT |
6991 FLAG_NO_CHALLENGE_ACK);
6992
6993 if ((int)reason <= 0) {
6994 if (sk->sk_state == TCP_SYN_RECV) {
6995 /* send one RST */
6996 if (!reason)
6997 return SKB_DROP_REASON_TCP_OLD_ACK;
6998 return -reason;
6999 }
7000 /* accept old ack during closing */
7001 if ((int)reason < 0) {
7002 tcp_send_challenge_ack(sk, false);
7003 reason = -reason;
7004 goto discard;
7005 }
7006 }
7007 SKB_DR_SET(reason, NOT_SPECIFIED);
7008 switch (sk->sk_state) {
7009 case TCP_SYN_RECV:
7010 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
7011 if (!tp->srtt_us)
7012 tcp_synack_rtt_meas(sk, req);
7013
7014 if (tp->rx_opt.tstamp_ok)
7015 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
7016
7017 if (req) {
7018 tcp_rcv_synrecv_state_fastopen(sk);
7019 } else {
7020 tcp_try_undo_spurious_syn(sk);
7021 tp->retrans_stamp = 0;
7022 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
7023 skb);
7024 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
7025 }
7026 tcp_ao_established(sk);
7027 smp_mb();
7028 tcp_set_state(sk, TCP_ESTABLISHED);
7029 sk->sk_state_change(sk);
7030
7031 /* Note, that this wakeup is only for marginal crossed SYN case.
7032 * Passively open sockets are not waked up, because
7033 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
7034 */
7035 if (sk->sk_socket)
7036 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
7037
7038 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
7039 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
7040 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
7041
7042 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
7043 tcp_update_pacing_rate(sk);
7044
7045 /* Prevent spurious tcp_cwnd_restart() on first data packet */
7046 tp->lsndtime = tcp_jiffies32;
7047
7048 tcp_initialize_rcv_mss(sk);
7049 if (tcp_ecn_mode_accecn(tp))
7050 tcp_accecn_third_ack(sk, skb, tp->syn_ect_snt);
7051 tcp_fast_path_on(tp);
7052 if (sk->sk_shutdown & SEND_SHUTDOWN)
7053 tcp_shutdown(sk, SEND_SHUTDOWN);
7054
7055 break;
7056
7057 case TCP_FIN_WAIT1: {
7058 int tmo;
7059
7060 if (req)
7061 tcp_rcv_synrecv_state_fastopen(sk);
7062
7063 if (tp->snd_una != tp->write_seq)
7064 break;
7065
7066 tcp_set_state(sk, TCP_FIN_WAIT2);
7067 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
7068
7069 sk_dst_confirm(sk);
7070
7071 if (!sock_flag(sk, SOCK_DEAD)) {
7072 /* Wake up lingering close() */
7073 sk->sk_state_change(sk);
7074 break;
7075 }
7076
7077 if (READ_ONCE(tp->linger2) < 0) {
7078 tcp_done(sk);
7079 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
7080 return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
7081 }
7082 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
7083 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
7084 /* Receive out of order FIN after close() */
7085 if (tp->syn_fastopen && th->fin)
7086 tcp_fastopen_active_disable(sk);
7087 tcp_done(sk);
7088 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
7089 return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
7090 }
7091
7092 tmo = tcp_fin_time(sk);
7093 if (tmo > TCP_TIMEWAIT_LEN) {
7094 tcp_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
7095 } else if (th->fin || sock_owned_by_user(sk)) {
7096 /* Bad case. We could lose such FIN otherwise.
7097 * It is not a big problem, but it looks confusing
7098 * and not so rare event. We still can lose it now,
7099 * if it spins in bh_lock_sock(), but it is really
7100 * marginal case.
7101 */
7102 tcp_reset_keepalive_timer(sk, tmo);
7103 } else {
7104 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
7105 goto consume;
7106 }
7107 break;
7108 }
7109
7110 case TCP_CLOSING:
7111 if (tp->snd_una == tp->write_seq) {
7112 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
7113 goto consume;
7114 }
7115 break;
7116
7117 case TCP_LAST_ACK:
7118 if (tp->snd_una == tp->write_seq) {
7119 tcp_update_metrics(sk);
7120 tcp_done(sk);
7121 goto consume;
7122 }
7123 break;
7124 }
7125
7126 /* step 6: check the URG bit */
7127 tcp_urg(sk, skb, th);
7128
7129 /* step 7: process the segment text */
7130 switch (sk->sk_state) {
7131 case TCP_CLOSE_WAIT:
7132 case TCP_CLOSING:
7133 case TCP_LAST_ACK:
7134 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
7135 /* If a subflow has been reset, the packet should not
7136 * continue to be processed, drop the packet.
7137 */
7138 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
7139 goto discard;
7140 break;
7141 }
7142 fallthrough;
7143 case TCP_FIN_WAIT1:
7144 case TCP_FIN_WAIT2:
7145 /* RFC 793 says to queue data in these states,
7146 * RFC 1122 says we MUST send a reset.
7147 * BSD 4.4 also does reset.
7148 */
7149 if (sk->sk_shutdown & RCV_SHUTDOWN) {
7150 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
7151 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
7152 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
7153 tcp_reset(sk, skb);
7154 return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
7155 }
7156 }
7157 fallthrough;
7158 case TCP_ESTABLISHED:
7159 tcp_data_queue(sk, skb);
7160 queued = 1;
7161 break;
7162 }
7163
7164 /* tcp_data could move socket to TIME-WAIT */
7165 if (sk->sk_state != TCP_CLOSE) {
7166 tcp_data_snd_check(sk);
7167 tcp_ack_snd_check(sk);
7168 }
7169
7170 if (!queued) {
7171 discard:
7172 tcp_drop_reason(sk, skb, reason);
7173 }
7174 return 0;
7175
7176 consume:
7177 __kfree_skb(skb);
7178 return 0;
7179 }
7180 EXPORT_IPV6_MOD(tcp_rcv_state_process);
7181
pr_drop_req(struct request_sock * req,__u16 port,int family)7182 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
7183 {
7184 struct inet_request_sock *ireq = inet_rsk(req);
7185
7186 if (family == AF_INET)
7187 net_dbg_ratelimited("drop open request from %pI4/%u\n",
7188 &ireq->ir_rmt_addr, port);
7189 #if IS_ENABLED(CONFIG_IPV6)
7190 else if (family == AF_INET6)
7191 net_dbg_ratelimited("drop open request from %pI6/%u\n",
7192 &ireq->ir_v6_rmt_addr, port);
7193 #endif
7194 }
7195
7196 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
7197 *
7198 * If we receive a SYN packet with these bits set, it means a
7199 * network is playing bad games with TOS bits. In order to
7200 * avoid possible false congestion notifications, we disable
7201 * TCP ECN negotiation.
7202 *
7203 * Exception: tcp_ca wants ECN. This is required for DCTCP
7204 * congestion control: Linux DCTCP asserts ECT on all packets,
7205 * including SYN, which is most optimal solution; however,
7206 * others, such as FreeBSD do not.
7207 *
7208 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
7209 * set, indicating the use of a future TCP extension (such as AccECN). See
7210 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
7211 * extensions.
7212 */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk,const struct dst_entry * dst)7213 static void tcp_ecn_create_request(struct request_sock *req,
7214 const struct sk_buff *skb,
7215 const struct sock *listen_sk,
7216 const struct dst_entry *dst)
7217 {
7218 const struct tcphdr *th = tcp_hdr(skb);
7219 const struct net *net = sock_net(listen_sk);
7220 bool th_ecn = th->ece && th->cwr;
7221 bool ect, ecn_ok;
7222 u32 ecn_ok_dst;
7223
7224 if (tcp_accecn_syn_requested(th) &&
7225 READ_ONCE(net->ipv4.sysctl_tcp_ecn) >= 3) {
7226 inet_rsk(req)->ecn_ok = 1;
7227 tcp_rsk(req)->accecn_ok = 1;
7228 tcp_rsk(req)->syn_ect_rcv = TCP_SKB_CB(skb)->ip_dsfield &
7229 INET_ECN_MASK;
7230 return;
7231 }
7232
7233 if (!th_ecn)
7234 return;
7235
7236 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
7237 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
7238 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
7239
7240 if (((!ect || th->res1 || th->ae) && ecn_ok) ||
7241 tcp_ca_needs_ecn(listen_sk) ||
7242 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
7243 tcp_bpf_ca_needs_ecn((struct sock *)req))
7244 inet_rsk(req)->ecn_ok = 1;
7245 }
7246
tcp_openreq_init(struct request_sock * req,const struct tcp_options_received * rx_opt,struct sk_buff * skb,const struct sock * sk)7247 static void tcp_openreq_init(struct request_sock *req,
7248 const struct tcp_options_received *rx_opt,
7249 struct sk_buff *skb, const struct sock *sk)
7250 {
7251 struct inet_request_sock *ireq = inet_rsk(req);
7252
7253 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
7254 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
7255 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
7256 tcp_rsk(req)->snt_synack = 0;
7257 tcp_rsk(req)->snt_tsval_first = 0;
7258 tcp_rsk(req)->last_oow_ack_time = 0;
7259 tcp_rsk(req)->accecn_ok = 0;
7260 tcp_rsk(req)->saw_accecn_opt = TCP_ACCECN_OPT_NOT_SEEN;
7261 tcp_rsk(req)->accecn_fail_mode = 0;
7262 tcp_rsk(req)->syn_ect_rcv = 0;
7263 tcp_rsk(req)->syn_ect_snt = 0;
7264 req->mss = rx_opt->mss_clamp;
7265 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
7266 ireq->tstamp_ok = rx_opt->tstamp_ok;
7267 ireq->sack_ok = rx_opt->sack_ok;
7268 ireq->snd_wscale = rx_opt->snd_wscale;
7269 ireq->wscale_ok = rx_opt->wscale_ok;
7270 ireq->acked = 0;
7271 ireq->ecn_ok = 0;
7272 ireq->ir_rmt_port = tcp_hdr(skb)->source;
7273 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
7274 ireq->ir_mark = inet_request_mark(sk, skb);
7275 #if IS_ENABLED(CONFIG_SMC)
7276 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
7277 tcp_sk(sk)->smc_hs_congested(sk));
7278 #endif
7279 }
7280
7281 /*
7282 * Return true if a syncookie should be sent
7283 */
tcp_syn_flood_action(struct sock * sk,const char * proto)7284 static bool tcp_syn_flood_action(struct sock *sk, const char *proto)
7285 {
7286 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
7287 const char *msg = "Dropping request";
7288 struct net *net = sock_net(sk);
7289 bool want_cookie = false;
7290 u8 syncookies;
7291
7292 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7293
7294 #ifdef CONFIG_SYN_COOKIES
7295 if (syncookies) {
7296 msg = "Sending cookies";
7297 want_cookie = true;
7298 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
7299 } else
7300 #endif
7301 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
7302
7303 if (syncookies != 2 && !READ_ONCE(queue->synflood_warned)) {
7304 WRITE_ONCE(queue->synflood_warned, 1);
7305 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) {
7306 net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n",
7307 proto, inet6_rcv_saddr(sk),
7308 sk->sk_num, msg);
7309 } else {
7310 net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n",
7311 proto, &sk->sk_rcv_saddr,
7312 sk->sk_num, msg);
7313 }
7314 }
7315
7316 return want_cookie;
7317 }
7318
tcp_reqsk_record_syn(const struct sock * sk,struct request_sock * req,const struct sk_buff * skb)7319 static void tcp_reqsk_record_syn(const struct sock *sk,
7320 struct request_sock *req,
7321 const struct sk_buff *skb)
7322 {
7323 if (tcp_sk(sk)->save_syn) {
7324 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
7325 struct saved_syn *saved_syn;
7326 u32 mac_hdrlen;
7327 void *base;
7328
7329 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */
7330 base = skb_mac_header(skb);
7331 mac_hdrlen = skb_mac_header_len(skb);
7332 len += mac_hdrlen;
7333 } else {
7334 base = skb_network_header(skb);
7335 mac_hdrlen = 0;
7336 }
7337
7338 saved_syn = kmalloc(struct_size(saved_syn, data, len),
7339 GFP_ATOMIC);
7340 if (saved_syn) {
7341 saved_syn->mac_hdrlen = mac_hdrlen;
7342 saved_syn->network_hdrlen = skb_network_header_len(skb);
7343 saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
7344 memcpy(saved_syn->data, base, len);
7345 req->saved_syn = saved_syn;
7346 }
7347 }
7348 }
7349
7350 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
7351 * used for SYN cookie generation.
7352 */
tcp_get_syncookie_mss(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct tcphdr * th)7353 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
7354 const struct tcp_request_sock_ops *af_ops,
7355 struct sock *sk, struct tcphdr *th)
7356 {
7357 struct tcp_sock *tp = tcp_sk(sk);
7358 u16 mss;
7359
7360 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
7361 !inet_csk_reqsk_queue_is_full(sk))
7362 return 0;
7363
7364 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
7365 return 0;
7366
7367 if (sk_acceptq_is_full(sk)) {
7368 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7369 return 0;
7370 }
7371
7372 mss = tcp_parse_mss_option(th, READ_ONCE(tp->rx_opt.user_mss));
7373 if (!mss)
7374 mss = af_ops->mss_clamp;
7375
7376 return mss;
7377 }
7378 EXPORT_IPV6_MOD_GPL(tcp_get_syncookie_mss);
7379
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)7380 int tcp_conn_request(struct request_sock_ops *rsk_ops,
7381 const struct tcp_request_sock_ops *af_ops,
7382 struct sock *sk, struct sk_buff *skb)
7383 {
7384 struct tcp_fastopen_cookie foc = { .len = -1 };
7385 struct tcp_options_received tmp_opt;
7386 const struct tcp_sock *tp = tcp_sk(sk);
7387 struct net *net = sock_net(sk);
7388 struct sock *fastopen_sk = NULL;
7389 struct request_sock *req;
7390 bool want_cookie = false;
7391 struct dst_entry *dst;
7392 struct flowi fl;
7393 u8 syncookies;
7394 u32 isn;
7395
7396 #ifdef CONFIG_TCP_AO
7397 const struct tcp_ao_hdr *aoh;
7398 #endif
7399
7400 isn = __this_cpu_read(tcp_tw_isn);
7401 if (isn) {
7402 /* TW buckets are converted to open requests without
7403 * limitations, they conserve resources and peer is
7404 * evidently real one.
7405 */
7406 __this_cpu_write(tcp_tw_isn, 0);
7407 } else {
7408 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7409
7410 if (syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) {
7411 want_cookie = tcp_syn_flood_action(sk,
7412 rsk_ops->slab_name);
7413 if (!want_cookie)
7414 goto drop;
7415 }
7416 }
7417
7418 if (sk_acceptq_is_full(sk)) {
7419 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7420 goto drop;
7421 }
7422
7423 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
7424 if (!req)
7425 goto drop;
7426
7427 req->syncookie = want_cookie;
7428 tcp_rsk(req)->af_specific = af_ops;
7429 tcp_rsk(req)->ts_off = 0;
7430 tcp_rsk(req)->req_usec_ts = false;
7431 #if IS_ENABLED(CONFIG_MPTCP)
7432 tcp_rsk(req)->is_mptcp = 0;
7433 #endif
7434
7435 tcp_clear_options(&tmp_opt);
7436 tmp_opt.mss_clamp = af_ops->mss_clamp;
7437 tmp_opt.user_mss = READ_ONCE(tp->rx_opt.user_mss);
7438 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
7439 want_cookie ? NULL : &foc);
7440
7441 if (want_cookie && !tmp_opt.saw_tstamp)
7442 tcp_clear_options(&tmp_opt);
7443
7444 if (IS_ENABLED(CONFIG_SMC) && want_cookie)
7445 tmp_opt.smc_ok = 0;
7446
7447 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
7448 tcp_openreq_init(req, &tmp_opt, skb, sk);
7449 inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk);
7450
7451 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
7452 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
7453
7454 dst = af_ops->route_req(sk, skb, &fl, req, isn);
7455 if (!dst)
7456 goto drop_and_free;
7457
7458 if (tmp_opt.tstamp_ok) {
7459 tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst);
7460 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
7461 }
7462 if (!want_cookie && !isn) {
7463 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
7464
7465 /* Kill the following clause, if you dislike this way. */
7466 if (!syncookies &&
7467 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
7468 (max_syn_backlog >> 2)) &&
7469 !tcp_peer_is_proven(req, dst)) {
7470 /* Without syncookies last quarter of
7471 * backlog is filled with destinations,
7472 * proven to be alive.
7473 * It means that we continue to communicate
7474 * to destinations, already remembered
7475 * to the moment of synflood.
7476 */
7477 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
7478 rsk_ops->family);
7479 goto drop_and_release;
7480 }
7481
7482 isn = af_ops->init_seq(skb);
7483 }
7484
7485 tcp_ecn_create_request(req, skb, sk, dst);
7486
7487 if (want_cookie) {
7488 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
7489 if (!tmp_opt.tstamp_ok)
7490 inet_rsk(req)->ecn_ok = 0;
7491 }
7492
7493 #ifdef CONFIG_TCP_AO
7494 if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh))
7495 goto drop_and_release; /* Invalid TCP options */
7496 if (aoh) {
7497 tcp_rsk(req)->used_tcp_ao = true;
7498 tcp_rsk(req)->ao_rcv_next = aoh->keyid;
7499 tcp_rsk(req)->ao_keyid = aoh->rnext_keyid;
7500
7501 } else {
7502 tcp_rsk(req)->used_tcp_ao = false;
7503 }
7504 #endif
7505 tcp_rsk(req)->snt_isn = isn;
7506 tcp_rsk(req)->txhash = net_tx_rndhash();
7507 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
7508 tcp_openreq_init_rwin(req, sk, dst);
7509 sk_rx_queue_set(req_to_sk(req), skb);
7510 if (!want_cookie) {
7511 tcp_reqsk_record_syn(sk, req, skb);
7512 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
7513 }
7514 if (fastopen_sk) {
7515 af_ops->send_synack(fastopen_sk, dst, &fl, req,
7516 &foc, TCP_SYNACK_FASTOPEN, skb);
7517 /* Add the child socket directly into the accept queue */
7518 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7519 bh_unlock_sock(fastopen_sk);
7520 sock_put(fastopen_sk);
7521 goto drop_and_free;
7522 }
7523 sk->sk_data_ready(sk);
7524 bh_unlock_sock(fastopen_sk);
7525 sock_put(fastopen_sk);
7526 } else {
7527 tcp_rsk(req)->tfo_listener = false;
7528 if (!want_cookie) {
7529 req->timeout = tcp_timeout_init((struct sock *)req);
7530 if (unlikely(!inet_csk_reqsk_queue_hash_add(sk, req,
7531 req->timeout))) {
7532 reqsk_free(req);
7533 dst_release(dst);
7534 return 0;
7535 }
7536
7537 }
7538 af_ops->send_synack(sk, dst, &fl, req, &foc,
7539 !want_cookie ? TCP_SYNACK_NORMAL :
7540 TCP_SYNACK_COOKIE,
7541 skb);
7542 if (want_cookie) {
7543 reqsk_free(req);
7544 return 0;
7545 }
7546 }
7547 reqsk_put(req);
7548 return 0;
7549
7550 drop_and_release:
7551 dst_release(dst);
7552 drop_and_free:
7553 __reqsk_free(req);
7554 drop:
7555 tcp_listendrop(sk);
7556 return 0;
7557 }
7558 EXPORT_IPV6_MOD(tcp_conn_request);
7559