1 // SPDX-License-Identifier: GPL-2.0-or-later
2
3 /*
4 * zsmalloc memory allocator
5 *
6 * Copyright (C) 2011 Nitin Gupta
7 * Copyright (C) 2012, 2013 Minchan Kim
8 *
9 * This code is released using a dual license strategy: BSD/GPL
10 * You can choose the license that better fits your requirements.
11 *
12 * Released under the terms of 3-clause BSD License
13 * Released under the terms of GNU General Public License Version 2.0
14 */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 /*
19 * lock ordering:
20 * page_lock
21 * pool->migrate_lock
22 * class->lock
23 * zspage->lock
24 */
25
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/bitops.h>
30 #include <linux/errno.h>
31 #include <linux/highmem.h>
32 #include <linux/string.h>
33 #include <linux/slab.h>
34 #include <linux/pgtable.h>
35 #include <asm/tlbflush.h>
36 #include <linux/cpumask.h>
37 #include <linux/cpu.h>
38 #include <linux/vmalloc.h>
39 #include <linux/preempt.h>
40 #include <linux/spinlock.h>
41 #include <linux/sprintf.h>
42 #include <linux/shrinker.h>
43 #include <linux/types.h>
44 #include <linux/debugfs.h>
45 #include <linux/zsmalloc.h>
46 #include <linux/zpool.h>
47 #include <linux/migrate.h>
48 #include <linux/wait.h>
49 #include <linux/pagemap.h>
50 #include <linux/fs.h>
51 #include <linux/local_lock.h>
52 #include "zpdesc.h"
53
54 #define ZSPAGE_MAGIC 0x58
55
56 /*
57 * This must be power of 2 and greater than or equal to sizeof(link_free).
58 * These two conditions ensure that any 'struct link_free' itself doesn't
59 * span more than 1 page which avoids complex case of mapping 2 pages simply
60 * to restore link_free pointer values.
61 */
62 #define ZS_ALIGN 8
63
64 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
65
66 /*
67 * Object location (<PFN>, <obj_idx>) is encoded as
68 * a single (unsigned long) handle value.
69 *
70 * Note that object index <obj_idx> starts from 0.
71 *
72 * This is made more complicated by various memory models and PAE.
73 */
74
75 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
76 #ifdef MAX_PHYSMEM_BITS
77 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
78 #else
79 /*
80 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
81 * be PAGE_SHIFT
82 */
83 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
84 #endif
85 #endif
86
87 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
88
89 /*
90 * Head in allocated object should have OBJ_ALLOCATED_TAG
91 * to identify the object was allocated or not.
92 * It's okay to add the status bit in the least bit because
93 * header keeps handle which is 4byte-aligned address so we
94 * have room for two bit at least.
95 */
96 #define OBJ_ALLOCATED_TAG 1
97
98 #define OBJ_TAG_BITS 1
99 #define OBJ_TAG_MASK OBJ_ALLOCATED_TAG
100
101 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS)
102 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
103
104 #define HUGE_BITS 1
105 #define FULLNESS_BITS 4
106 #define CLASS_BITS 8
107 #define MAGIC_VAL_BITS 8
108
109 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
110
111 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
112 #define ZS_MIN_ALLOC_SIZE \
113 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
114 /* each chunk includes extra space to keep handle */
115 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
116
117 /*
118 * On systems with 4K page size, this gives 255 size classes! There is a
119 * trader-off here:
120 * - Large number of size classes is potentially wasteful as free page are
121 * spread across these classes
122 * - Small number of size classes causes large internal fragmentation
123 * - Probably its better to use specific size classes (empirically
124 * determined). NOTE: all those class sizes must be set as multiple of
125 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
126 *
127 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
128 * (reason above)
129 */
130 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
131 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
132 ZS_SIZE_CLASS_DELTA) + 1)
133
134 /*
135 * Pages are distinguished by the ratio of used memory (that is the ratio
136 * of ->inuse objects to all objects that page can store). For example,
137 * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%.
138 *
139 * The number of fullness groups is not random. It allows us to keep
140 * difference between the least busy page in the group (minimum permitted
141 * number of ->inuse objects) and the most busy page (maximum permitted
142 * number of ->inuse objects) at a reasonable value.
143 */
144 enum fullness_group {
145 ZS_INUSE_RATIO_0,
146 ZS_INUSE_RATIO_10,
147 /* NOTE: 8 more fullness groups here */
148 ZS_INUSE_RATIO_99 = 10,
149 ZS_INUSE_RATIO_100,
150 NR_FULLNESS_GROUPS,
151 };
152
153 enum class_stat_type {
154 /* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */
155 ZS_OBJS_ALLOCATED = NR_FULLNESS_GROUPS,
156 ZS_OBJS_INUSE,
157 NR_CLASS_STAT_TYPES,
158 };
159
160 struct zs_size_stat {
161 unsigned long objs[NR_CLASS_STAT_TYPES];
162 };
163
164 #ifdef CONFIG_ZSMALLOC_STAT
165 static struct dentry *zs_stat_root;
166 #endif
167
168 static size_t huge_class_size;
169
170 struct size_class {
171 spinlock_t lock;
172 struct list_head fullness_list[NR_FULLNESS_GROUPS];
173 /*
174 * Size of objects stored in this class. Must be multiple
175 * of ZS_ALIGN.
176 */
177 int size;
178 int objs_per_zspage;
179 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
180 int pages_per_zspage;
181
182 unsigned int index;
183 struct zs_size_stat stats;
184 };
185
186 /*
187 * Placed within free objects to form a singly linked list.
188 * For every zspage, zspage->freeobj gives head of this list.
189 *
190 * This must be power of 2 and less than or equal to ZS_ALIGN
191 */
192 struct link_free {
193 union {
194 /*
195 * Free object index;
196 * It's valid for non-allocated object
197 */
198 unsigned long next;
199 /*
200 * Handle of allocated object.
201 */
202 unsigned long handle;
203 };
204 };
205
206 struct zs_pool {
207 const char *name;
208
209 struct size_class *size_class[ZS_SIZE_CLASSES];
210 struct kmem_cache *handle_cachep;
211 struct kmem_cache *zspage_cachep;
212
213 atomic_long_t pages_allocated;
214
215 struct zs_pool_stats stats;
216
217 /* Compact classes */
218 struct shrinker *shrinker;
219
220 #ifdef CONFIG_ZSMALLOC_STAT
221 struct dentry *stat_dentry;
222 #endif
223 #ifdef CONFIG_COMPACTION
224 struct work_struct free_work;
225 #endif
226 /* protect page/zspage migration */
227 rwlock_t migrate_lock;
228 atomic_t compaction_in_progress;
229 };
230
zpdesc_set_first(struct zpdesc * zpdesc)231 static inline void zpdesc_set_first(struct zpdesc *zpdesc)
232 {
233 SetPagePrivate(zpdesc_page(zpdesc));
234 }
235
zpdesc_inc_zone_page_state(struct zpdesc * zpdesc)236 static inline void zpdesc_inc_zone_page_state(struct zpdesc *zpdesc)
237 {
238 inc_zone_page_state(zpdesc_page(zpdesc), NR_ZSPAGES);
239 }
240
zpdesc_dec_zone_page_state(struct zpdesc * zpdesc)241 static inline void zpdesc_dec_zone_page_state(struct zpdesc *zpdesc)
242 {
243 dec_zone_page_state(zpdesc_page(zpdesc), NR_ZSPAGES);
244 }
245
alloc_zpdesc(gfp_t gfp)246 static inline struct zpdesc *alloc_zpdesc(gfp_t gfp)
247 {
248 struct page *page = alloc_page(gfp);
249
250 return page_zpdesc(page);
251 }
252
free_zpdesc(struct zpdesc * zpdesc)253 static inline void free_zpdesc(struct zpdesc *zpdesc)
254 {
255 struct page *page = zpdesc_page(zpdesc);
256
257 __free_page(page);
258 }
259
260 struct zspage {
261 struct {
262 unsigned int huge:HUGE_BITS;
263 unsigned int fullness:FULLNESS_BITS;
264 unsigned int class:CLASS_BITS + 1;
265 unsigned int magic:MAGIC_VAL_BITS;
266 };
267 unsigned int inuse;
268 unsigned int freeobj;
269 struct zpdesc *first_zpdesc;
270 struct list_head list; /* fullness list */
271 struct zs_pool *pool;
272 rwlock_t lock;
273 };
274
275 struct mapping_area {
276 local_lock_t lock;
277 char *vm_buf; /* copy buffer for objects that span pages */
278 char *vm_addr; /* address of kmap_local_page()'ed pages */
279 enum zs_mapmode vm_mm; /* mapping mode */
280 };
281
282 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
SetZsHugePage(struct zspage * zspage)283 static void SetZsHugePage(struct zspage *zspage)
284 {
285 zspage->huge = 1;
286 }
287
ZsHugePage(struct zspage * zspage)288 static bool ZsHugePage(struct zspage *zspage)
289 {
290 return zspage->huge;
291 }
292
293 static void migrate_lock_init(struct zspage *zspage);
294 static void migrate_read_lock(struct zspage *zspage);
295 static void migrate_read_unlock(struct zspage *zspage);
296 static void migrate_write_lock(struct zspage *zspage);
297 static void migrate_write_unlock(struct zspage *zspage);
298
299 #ifdef CONFIG_COMPACTION
300 static void kick_deferred_free(struct zs_pool *pool);
301 static void init_deferred_free(struct zs_pool *pool);
302 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
303 #else
kick_deferred_free(struct zs_pool * pool)304 static void kick_deferred_free(struct zs_pool *pool) {}
init_deferred_free(struct zs_pool * pool)305 static void init_deferred_free(struct zs_pool *pool) {}
SetZsPageMovable(struct zs_pool * pool,struct zspage * zspage)306 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
307 #endif
308
create_cache(struct zs_pool * pool)309 static int create_cache(struct zs_pool *pool)
310 {
311 char *name;
312
313 name = kasprintf(GFP_KERNEL, "zs_handle-%s", pool->name);
314 if (!name)
315 return -ENOMEM;
316 pool->handle_cachep = kmem_cache_create(name, ZS_HANDLE_SIZE,
317 0, 0, NULL);
318 kfree(name);
319 if (!pool->handle_cachep)
320 return -EINVAL;
321
322 name = kasprintf(GFP_KERNEL, "zspage-%s", pool->name);
323 if (!name)
324 return -ENOMEM;
325 pool->zspage_cachep = kmem_cache_create(name, sizeof(struct zspage),
326 0, 0, NULL);
327 kfree(name);
328 if (!pool->zspage_cachep) {
329 kmem_cache_destroy(pool->handle_cachep);
330 pool->handle_cachep = NULL;
331 return -EINVAL;
332 }
333
334 return 0;
335 }
336
destroy_cache(struct zs_pool * pool)337 static void destroy_cache(struct zs_pool *pool)
338 {
339 kmem_cache_destroy(pool->handle_cachep);
340 kmem_cache_destroy(pool->zspage_cachep);
341 }
342
cache_alloc_handle(struct zs_pool * pool,gfp_t gfp)343 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
344 {
345 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
346 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
347 }
348
cache_free_handle(struct zs_pool * pool,unsigned long handle)349 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
350 {
351 kmem_cache_free(pool->handle_cachep, (void *)handle);
352 }
353
cache_alloc_zspage(struct zs_pool * pool,gfp_t flags)354 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
355 {
356 return kmem_cache_zalloc(pool->zspage_cachep,
357 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
358 }
359
cache_free_zspage(struct zs_pool * pool,struct zspage * zspage)360 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
361 {
362 kmem_cache_free(pool->zspage_cachep, zspage);
363 }
364
365 /* class->lock(which owns the handle) synchronizes races */
record_obj(unsigned long handle,unsigned long obj)366 static void record_obj(unsigned long handle, unsigned long obj)
367 {
368 *(unsigned long *)handle = obj;
369 }
370
371 /* zpool driver */
372
373 #ifdef CONFIG_ZPOOL
374
zs_zpool_create(const char * name,gfp_t gfp)375 static void *zs_zpool_create(const char *name, gfp_t gfp)
376 {
377 /*
378 * Ignore global gfp flags: zs_malloc() may be invoked from
379 * different contexts and its caller must provide a valid
380 * gfp mask.
381 */
382 return zs_create_pool(name);
383 }
384
zs_zpool_destroy(void * pool)385 static void zs_zpool_destroy(void *pool)
386 {
387 zs_destroy_pool(pool);
388 }
389
zs_zpool_malloc(void * pool,size_t size,gfp_t gfp,unsigned long * handle)390 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
391 unsigned long *handle)
392 {
393 *handle = zs_malloc(pool, size, gfp);
394
395 if (IS_ERR_VALUE(*handle))
396 return PTR_ERR((void *)*handle);
397 return 0;
398 }
zs_zpool_free(void * pool,unsigned long handle)399 static void zs_zpool_free(void *pool, unsigned long handle)
400 {
401 zs_free(pool, handle);
402 }
403
zs_zpool_map(void * pool,unsigned long handle,enum zpool_mapmode mm)404 static void *zs_zpool_map(void *pool, unsigned long handle,
405 enum zpool_mapmode mm)
406 {
407 enum zs_mapmode zs_mm;
408
409 switch (mm) {
410 case ZPOOL_MM_RO:
411 zs_mm = ZS_MM_RO;
412 break;
413 case ZPOOL_MM_WO:
414 zs_mm = ZS_MM_WO;
415 break;
416 case ZPOOL_MM_RW:
417 default:
418 zs_mm = ZS_MM_RW;
419 break;
420 }
421
422 return zs_map_object(pool, handle, zs_mm);
423 }
zs_zpool_unmap(void * pool,unsigned long handle)424 static void zs_zpool_unmap(void *pool, unsigned long handle)
425 {
426 zs_unmap_object(pool, handle);
427 }
428
zs_zpool_total_pages(void * pool)429 static u64 zs_zpool_total_pages(void *pool)
430 {
431 return zs_get_total_pages(pool);
432 }
433
434 static struct zpool_driver zs_zpool_driver = {
435 .type = "zsmalloc",
436 .owner = THIS_MODULE,
437 .create = zs_zpool_create,
438 .destroy = zs_zpool_destroy,
439 .malloc_support_movable = true,
440 .malloc = zs_zpool_malloc,
441 .free = zs_zpool_free,
442 .map = zs_zpool_map,
443 .unmap = zs_zpool_unmap,
444 .total_pages = zs_zpool_total_pages,
445 };
446
447 MODULE_ALIAS("zpool-zsmalloc");
448 #endif /* CONFIG_ZPOOL */
449
450 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
451 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
452 .lock = INIT_LOCAL_LOCK(lock),
453 };
454
is_first_zpdesc(struct zpdesc * zpdesc)455 static inline bool __maybe_unused is_first_zpdesc(struct zpdesc *zpdesc)
456 {
457 return PagePrivate(zpdesc_page(zpdesc));
458 }
459
460 /* Protected by class->lock */
get_zspage_inuse(struct zspage * zspage)461 static inline int get_zspage_inuse(struct zspage *zspage)
462 {
463 return zspage->inuse;
464 }
465
mod_zspage_inuse(struct zspage * zspage,int val)466 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
467 {
468 zspage->inuse += val;
469 }
470
get_first_zpdesc(struct zspage * zspage)471 static struct zpdesc *get_first_zpdesc(struct zspage *zspage)
472 {
473 struct zpdesc *first_zpdesc = zspage->first_zpdesc;
474
475 VM_BUG_ON_PAGE(!is_first_zpdesc(first_zpdesc), zpdesc_page(first_zpdesc));
476 return first_zpdesc;
477 }
478
479 #define FIRST_OBJ_PAGE_TYPE_MASK 0xffffff
480
get_first_obj_offset(struct zpdesc * zpdesc)481 static inline unsigned int get_first_obj_offset(struct zpdesc *zpdesc)
482 {
483 VM_WARN_ON_ONCE(!PageZsmalloc(zpdesc_page(zpdesc)));
484 return zpdesc->first_obj_offset & FIRST_OBJ_PAGE_TYPE_MASK;
485 }
486
set_first_obj_offset(struct zpdesc * zpdesc,unsigned int offset)487 static inline void set_first_obj_offset(struct zpdesc *zpdesc, unsigned int offset)
488 {
489 /* With 24 bits available, we can support offsets into 16 MiB pages. */
490 BUILD_BUG_ON(PAGE_SIZE > SZ_16M);
491 VM_WARN_ON_ONCE(!PageZsmalloc(zpdesc_page(zpdesc)));
492 VM_WARN_ON_ONCE(offset & ~FIRST_OBJ_PAGE_TYPE_MASK);
493 zpdesc->first_obj_offset &= ~FIRST_OBJ_PAGE_TYPE_MASK;
494 zpdesc->first_obj_offset |= offset & FIRST_OBJ_PAGE_TYPE_MASK;
495 }
496
get_freeobj(struct zspage * zspage)497 static inline unsigned int get_freeobj(struct zspage *zspage)
498 {
499 return zspage->freeobj;
500 }
501
set_freeobj(struct zspage * zspage,unsigned int obj)502 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
503 {
504 zspage->freeobj = obj;
505 }
506
zspage_class(struct zs_pool * pool,struct zspage * zspage)507 static struct size_class *zspage_class(struct zs_pool *pool,
508 struct zspage *zspage)
509 {
510 return pool->size_class[zspage->class];
511 }
512
513 /*
514 * zsmalloc divides the pool into various size classes where each
515 * class maintains a list of zspages where each zspage is divided
516 * into equal sized chunks. Each allocation falls into one of these
517 * classes depending on its size. This function returns index of the
518 * size class which has chunk size big enough to hold the given size.
519 */
get_size_class_index(int size)520 static int get_size_class_index(int size)
521 {
522 int idx = 0;
523
524 if (likely(size > ZS_MIN_ALLOC_SIZE))
525 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
526 ZS_SIZE_CLASS_DELTA);
527
528 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
529 }
530
class_stat_add(struct size_class * class,int type,unsigned long cnt)531 static inline void class_stat_add(struct size_class *class, int type,
532 unsigned long cnt)
533 {
534 class->stats.objs[type] += cnt;
535 }
536
class_stat_sub(struct size_class * class,int type,unsigned long cnt)537 static inline void class_stat_sub(struct size_class *class, int type,
538 unsigned long cnt)
539 {
540 class->stats.objs[type] -= cnt;
541 }
542
class_stat_read(struct size_class * class,int type)543 static inline unsigned long class_stat_read(struct size_class *class, int type)
544 {
545 return class->stats.objs[type];
546 }
547
548 #ifdef CONFIG_ZSMALLOC_STAT
549
zs_stat_init(void)550 static void __init zs_stat_init(void)
551 {
552 if (!debugfs_initialized()) {
553 pr_warn("debugfs not available, stat dir not created\n");
554 return;
555 }
556
557 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
558 }
559
zs_stat_exit(void)560 static void __exit zs_stat_exit(void)
561 {
562 debugfs_remove_recursive(zs_stat_root);
563 }
564
565 static unsigned long zs_can_compact(struct size_class *class);
566
zs_stats_size_show(struct seq_file * s,void * v)567 static int zs_stats_size_show(struct seq_file *s, void *v)
568 {
569 int i, fg;
570 struct zs_pool *pool = s->private;
571 struct size_class *class;
572 int objs_per_zspage;
573 unsigned long obj_allocated, obj_used, pages_used, freeable;
574 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
575 unsigned long total_freeable = 0;
576 unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, };
577
578 seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n",
579 "class", "size", "10%", "20%", "30%", "40%",
580 "50%", "60%", "70%", "80%", "90%", "99%", "100%",
581 "obj_allocated", "obj_used", "pages_used",
582 "pages_per_zspage", "freeable");
583
584 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
585
586 class = pool->size_class[i];
587
588 if (class->index != i)
589 continue;
590
591 spin_lock(&class->lock);
592
593 seq_printf(s, " %5u %5u ", i, class->size);
594 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) {
595 inuse_totals[fg] += class_stat_read(class, fg);
596 seq_printf(s, "%9lu ", class_stat_read(class, fg));
597 }
598
599 obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
600 obj_used = class_stat_read(class, ZS_OBJS_INUSE);
601 freeable = zs_can_compact(class);
602 spin_unlock(&class->lock);
603
604 objs_per_zspage = class->objs_per_zspage;
605 pages_used = obj_allocated / objs_per_zspage *
606 class->pages_per_zspage;
607
608 seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n",
609 obj_allocated, obj_used, pages_used,
610 class->pages_per_zspage, freeable);
611
612 total_objs += obj_allocated;
613 total_used_objs += obj_used;
614 total_pages += pages_used;
615 total_freeable += freeable;
616 }
617
618 seq_puts(s, "\n");
619 seq_printf(s, " %5s %5s ", "Total", "");
620
621 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++)
622 seq_printf(s, "%9lu ", inuse_totals[fg]);
623
624 seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n",
625 total_objs, total_used_objs, total_pages, "",
626 total_freeable);
627
628 return 0;
629 }
630 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
631
zs_pool_stat_create(struct zs_pool * pool,const char * name)632 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
633 {
634 if (!zs_stat_root) {
635 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
636 return;
637 }
638
639 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
640
641 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
642 &zs_stats_size_fops);
643 }
644
zs_pool_stat_destroy(struct zs_pool * pool)645 static void zs_pool_stat_destroy(struct zs_pool *pool)
646 {
647 debugfs_remove_recursive(pool->stat_dentry);
648 }
649
650 #else /* CONFIG_ZSMALLOC_STAT */
zs_stat_init(void)651 static void __init zs_stat_init(void)
652 {
653 }
654
zs_stat_exit(void)655 static void __exit zs_stat_exit(void)
656 {
657 }
658
zs_pool_stat_create(struct zs_pool * pool,const char * name)659 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
660 {
661 }
662
zs_pool_stat_destroy(struct zs_pool * pool)663 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
664 {
665 }
666 #endif
667
668
669 /*
670 * For each size class, zspages are divided into different groups
671 * depending on their usage ratio. This function returns fullness
672 * status of the given page.
673 */
get_fullness_group(struct size_class * class,struct zspage * zspage)674 static int get_fullness_group(struct size_class *class, struct zspage *zspage)
675 {
676 int inuse, objs_per_zspage, ratio;
677
678 inuse = get_zspage_inuse(zspage);
679 objs_per_zspage = class->objs_per_zspage;
680
681 if (inuse == 0)
682 return ZS_INUSE_RATIO_0;
683 if (inuse == objs_per_zspage)
684 return ZS_INUSE_RATIO_100;
685
686 ratio = 100 * inuse / objs_per_zspage;
687 /*
688 * Take integer division into consideration: a page with one inuse
689 * object out of 127 possible, will end up having 0 usage ratio,
690 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group.
691 */
692 return ratio / 10 + 1;
693 }
694
695 /*
696 * Each size class maintains various freelists and zspages are assigned
697 * to one of these freelists based on the number of live objects they
698 * have. This functions inserts the given zspage into the freelist
699 * identified by <class, fullness_group>.
700 */
insert_zspage(struct size_class * class,struct zspage * zspage,int fullness)701 static void insert_zspage(struct size_class *class,
702 struct zspage *zspage,
703 int fullness)
704 {
705 class_stat_add(class, fullness, 1);
706 list_add(&zspage->list, &class->fullness_list[fullness]);
707 zspage->fullness = fullness;
708 }
709
710 /*
711 * This function removes the given zspage from the freelist identified
712 * by <class, fullness_group>.
713 */
remove_zspage(struct size_class * class,struct zspage * zspage)714 static void remove_zspage(struct size_class *class, struct zspage *zspage)
715 {
716 int fullness = zspage->fullness;
717
718 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
719
720 list_del_init(&zspage->list);
721 class_stat_sub(class, fullness, 1);
722 }
723
724 /*
725 * Each size class maintains zspages in different fullness groups depending
726 * on the number of live objects they contain. When allocating or freeing
727 * objects, the fullness status of the page can change, for instance, from
728 * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function
729 * checks if such a status change has occurred for the given page and
730 * accordingly moves the page from the list of the old fullness group to that
731 * of the new fullness group.
732 */
fix_fullness_group(struct size_class * class,struct zspage * zspage)733 static int fix_fullness_group(struct size_class *class, struct zspage *zspage)
734 {
735 int newfg;
736
737 newfg = get_fullness_group(class, zspage);
738 if (newfg == zspage->fullness)
739 goto out;
740
741 remove_zspage(class, zspage);
742 insert_zspage(class, zspage, newfg);
743 out:
744 return newfg;
745 }
746
get_zspage(struct zpdesc * zpdesc)747 static struct zspage *get_zspage(struct zpdesc *zpdesc)
748 {
749 struct zspage *zspage = zpdesc->zspage;
750
751 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
752 return zspage;
753 }
754
get_next_zpdesc(struct zpdesc * zpdesc)755 static struct zpdesc *get_next_zpdesc(struct zpdesc *zpdesc)
756 {
757 struct zspage *zspage = get_zspage(zpdesc);
758
759 if (unlikely(ZsHugePage(zspage)))
760 return NULL;
761
762 return zpdesc->next;
763 }
764
765 /**
766 * obj_to_location - get (<zpdesc>, <obj_idx>) from encoded object value
767 * @obj: the encoded object value
768 * @zpdesc: zpdesc object resides in zspage
769 * @obj_idx: object index
770 */
obj_to_location(unsigned long obj,struct zpdesc ** zpdesc,unsigned int * obj_idx)771 static void obj_to_location(unsigned long obj, struct zpdesc **zpdesc,
772 unsigned int *obj_idx)
773 {
774 *zpdesc = pfn_zpdesc(obj >> OBJ_INDEX_BITS);
775 *obj_idx = (obj & OBJ_INDEX_MASK);
776 }
777
obj_to_zpdesc(unsigned long obj,struct zpdesc ** zpdesc)778 static void obj_to_zpdesc(unsigned long obj, struct zpdesc **zpdesc)
779 {
780 *zpdesc = pfn_zpdesc(obj >> OBJ_INDEX_BITS);
781 }
782
783 /**
784 * location_to_obj - get obj value encoded from (<zpdesc>, <obj_idx>)
785 * @zpdesc: zpdesc object resides in zspage
786 * @obj_idx: object index
787 */
location_to_obj(struct zpdesc * zpdesc,unsigned int obj_idx)788 static unsigned long location_to_obj(struct zpdesc *zpdesc, unsigned int obj_idx)
789 {
790 unsigned long obj;
791
792 obj = zpdesc_pfn(zpdesc) << OBJ_INDEX_BITS;
793 obj |= obj_idx & OBJ_INDEX_MASK;
794
795 return obj;
796 }
797
handle_to_obj(unsigned long handle)798 static unsigned long handle_to_obj(unsigned long handle)
799 {
800 return *(unsigned long *)handle;
801 }
802
obj_allocated(struct zpdesc * zpdesc,void * obj,unsigned long * phandle)803 static inline bool obj_allocated(struct zpdesc *zpdesc, void *obj,
804 unsigned long *phandle)
805 {
806 unsigned long handle;
807 struct zspage *zspage = get_zspage(zpdesc);
808
809 if (unlikely(ZsHugePage(zspage))) {
810 VM_BUG_ON_PAGE(!is_first_zpdesc(zpdesc), zpdesc_page(zpdesc));
811 handle = zpdesc->handle;
812 } else
813 handle = *(unsigned long *)obj;
814
815 if (!(handle & OBJ_ALLOCATED_TAG))
816 return false;
817
818 /* Clear all tags before returning the handle */
819 *phandle = handle & ~OBJ_TAG_MASK;
820 return true;
821 }
822
reset_zpdesc(struct zpdesc * zpdesc)823 static void reset_zpdesc(struct zpdesc *zpdesc)
824 {
825 struct page *page = zpdesc_page(zpdesc);
826
827 __ClearPageMovable(page);
828 ClearPagePrivate(page);
829 zpdesc->zspage = NULL;
830 zpdesc->next = NULL;
831 __ClearPageZsmalloc(page);
832 }
833
trylock_zspage(struct zspage * zspage)834 static int trylock_zspage(struct zspage *zspage)
835 {
836 struct zpdesc *cursor, *fail;
837
838 for (cursor = get_first_zpdesc(zspage); cursor != NULL; cursor =
839 get_next_zpdesc(cursor)) {
840 if (!zpdesc_trylock(cursor)) {
841 fail = cursor;
842 goto unlock;
843 }
844 }
845
846 return 1;
847 unlock:
848 for (cursor = get_first_zpdesc(zspage); cursor != fail; cursor =
849 get_next_zpdesc(cursor))
850 zpdesc_unlock(cursor);
851
852 return 0;
853 }
854
__free_zspage(struct zs_pool * pool,struct size_class * class,struct zspage * zspage)855 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
856 struct zspage *zspage)
857 {
858 struct zpdesc *zpdesc, *next;
859
860 assert_spin_locked(&class->lock);
861
862 VM_BUG_ON(get_zspage_inuse(zspage));
863 VM_BUG_ON(zspage->fullness != ZS_INUSE_RATIO_0);
864
865 next = zpdesc = get_first_zpdesc(zspage);
866 do {
867 VM_BUG_ON_PAGE(!zpdesc_is_locked(zpdesc), zpdesc_page(zpdesc));
868 next = get_next_zpdesc(zpdesc);
869 reset_zpdesc(zpdesc);
870 zpdesc_unlock(zpdesc);
871 zpdesc_dec_zone_page_state(zpdesc);
872 zpdesc_put(zpdesc);
873 zpdesc = next;
874 } while (zpdesc != NULL);
875
876 cache_free_zspage(pool, zspage);
877
878 class_stat_sub(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
879 atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated);
880 }
881
free_zspage(struct zs_pool * pool,struct size_class * class,struct zspage * zspage)882 static void free_zspage(struct zs_pool *pool, struct size_class *class,
883 struct zspage *zspage)
884 {
885 VM_BUG_ON(get_zspage_inuse(zspage));
886 VM_BUG_ON(list_empty(&zspage->list));
887
888 /*
889 * Since zs_free couldn't be sleepable, this function cannot call
890 * lock_page. The page locks trylock_zspage got will be released
891 * by __free_zspage.
892 */
893 if (!trylock_zspage(zspage)) {
894 kick_deferred_free(pool);
895 return;
896 }
897
898 remove_zspage(class, zspage);
899 __free_zspage(pool, class, zspage);
900 }
901
902 /* Initialize a newly allocated zspage */
init_zspage(struct size_class * class,struct zspage * zspage)903 static void init_zspage(struct size_class *class, struct zspage *zspage)
904 {
905 unsigned int freeobj = 1;
906 unsigned long off = 0;
907 struct zpdesc *zpdesc = get_first_zpdesc(zspage);
908
909 while (zpdesc) {
910 struct zpdesc *next_zpdesc;
911 struct link_free *link;
912 void *vaddr;
913
914 set_first_obj_offset(zpdesc, off);
915
916 vaddr = kmap_local_zpdesc(zpdesc);
917 link = (struct link_free *)vaddr + off / sizeof(*link);
918
919 while ((off += class->size) < PAGE_SIZE) {
920 link->next = freeobj++ << OBJ_TAG_BITS;
921 link += class->size / sizeof(*link);
922 }
923
924 /*
925 * We now come to the last (full or partial) object on this
926 * page, which must point to the first object on the next
927 * page (if present)
928 */
929 next_zpdesc = get_next_zpdesc(zpdesc);
930 if (next_zpdesc) {
931 link->next = freeobj++ << OBJ_TAG_BITS;
932 } else {
933 /*
934 * Reset OBJ_TAG_BITS bit to last link to tell
935 * whether it's allocated object or not.
936 */
937 link->next = -1UL << OBJ_TAG_BITS;
938 }
939 kunmap_local(vaddr);
940 zpdesc = next_zpdesc;
941 off %= PAGE_SIZE;
942 }
943
944 set_freeobj(zspage, 0);
945 }
946
create_page_chain(struct size_class * class,struct zspage * zspage,struct zpdesc * zpdescs[])947 static void create_page_chain(struct size_class *class, struct zspage *zspage,
948 struct zpdesc *zpdescs[])
949 {
950 int i;
951 struct zpdesc *zpdesc;
952 struct zpdesc *prev_zpdesc = NULL;
953 int nr_zpdescs = class->pages_per_zspage;
954
955 /*
956 * Allocate individual pages and link them together as:
957 * 1. all pages are linked together using zpdesc->next
958 * 2. each sub-page point to zspage using zpdesc->zspage
959 *
960 * we set PG_private to identify the first zpdesc (i.e. no other zpdesc
961 * has this flag set).
962 */
963 for (i = 0; i < nr_zpdescs; i++) {
964 zpdesc = zpdescs[i];
965 zpdesc->zspage = zspage;
966 zpdesc->next = NULL;
967 if (i == 0) {
968 zspage->first_zpdesc = zpdesc;
969 zpdesc_set_first(zpdesc);
970 if (unlikely(class->objs_per_zspage == 1 &&
971 class->pages_per_zspage == 1))
972 SetZsHugePage(zspage);
973 } else {
974 prev_zpdesc->next = zpdesc;
975 }
976 prev_zpdesc = zpdesc;
977 }
978 }
979
980 /*
981 * Allocate a zspage for the given size class
982 */
alloc_zspage(struct zs_pool * pool,struct size_class * class,gfp_t gfp)983 static struct zspage *alloc_zspage(struct zs_pool *pool,
984 struct size_class *class,
985 gfp_t gfp)
986 {
987 int i;
988 struct zpdesc *zpdescs[ZS_MAX_PAGES_PER_ZSPAGE];
989 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
990
991 if (!zspage)
992 return NULL;
993
994 zspage->magic = ZSPAGE_MAGIC;
995 migrate_lock_init(zspage);
996
997 for (i = 0; i < class->pages_per_zspage; i++) {
998 struct zpdesc *zpdesc;
999
1000 zpdesc = alloc_zpdesc(gfp);
1001 if (!zpdesc) {
1002 while (--i >= 0) {
1003 zpdesc_dec_zone_page_state(zpdescs[i]);
1004 __zpdesc_clear_zsmalloc(zpdescs[i]);
1005 free_zpdesc(zpdescs[i]);
1006 }
1007 cache_free_zspage(pool, zspage);
1008 return NULL;
1009 }
1010 __zpdesc_set_zsmalloc(zpdesc);
1011
1012 zpdesc_inc_zone_page_state(zpdesc);
1013 zpdescs[i] = zpdesc;
1014 }
1015
1016 create_page_chain(class, zspage, zpdescs);
1017 init_zspage(class, zspage);
1018 zspage->pool = pool;
1019 zspage->class = class->index;
1020
1021 return zspage;
1022 }
1023
find_get_zspage(struct size_class * class)1024 static struct zspage *find_get_zspage(struct size_class *class)
1025 {
1026 int i;
1027 struct zspage *zspage;
1028
1029 for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) {
1030 zspage = list_first_entry_or_null(&class->fullness_list[i],
1031 struct zspage, list);
1032 if (zspage)
1033 break;
1034 }
1035
1036 return zspage;
1037 }
1038
__zs_cpu_up(struct mapping_area * area)1039 static inline int __zs_cpu_up(struct mapping_area *area)
1040 {
1041 /*
1042 * Make sure we don't leak memory if a cpu UP notification
1043 * and zs_init() race and both call zs_cpu_up() on the same cpu
1044 */
1045 if (area->vm_buf)
1046 return 0;
1047 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1048 if (!area->vm_buf)
1049 return -ENOMEM;
1050 return 0;
1051 }
1052
__zs_cpu_down(struct mapping_area * area)1053 static inline void __zs_cpu_down(struct mapping_area *area)
1054 {
1055 kfree(area->vm_buf);
1056 area->vm_buf = NULL;
1057 }
1058
__zs_map_object(struct mapping_area * area,struct zpdesc * zpdescs[2],int off,int size)1059 static void *__zs_map_object(struct mapping_area *area,
1060 struct zpdesc *zpdescs[2], int off, int size)
1061 {
1062 size_t sizes[2];
1063 char *buf = area->vm_buf;
1064
1065 /* disable page faults to match kmap_local_page() return conditions */
1066 pagefault_disable();
1067
1068 /* no read fastpath */
1069 if (area->vm_mm == ZS_MM_WO)
1070 goto out;
1071
1072 sizes[0] = PAGE_SIZE - off;
1073 sizes[1] = size - sizes[0];
1074
1075 /* copy object to per-cpu buffer */
1076 memcpy_from_page(buf, zpdesc_page(zpdescs[0]), off, sizes[0]);
1077 memcpy_from_page(buf + sizes[0], zpdesc_page(zpdescs[1]), 0, sizes[1]);
1078 out:
1079 return area->vm_buf;
1080 }
1081
__zs_unmap_object(struct mapping_area * area,struct zpdesc * zpdescs[2],int off,int size)1082 static void __zs_unmap_object(struct mapping_area *area,
1083 struct zpdesc *zpdescs[2], int off, int size)
1084 {
1085 size_t sizes[2];
1086 char *buf;
1087
1088 /* no write fastpath */
1089 if (area->vm_mm == ZS_MM_RO)
1090 goto out;
1091
1092 buf = area->vm_buf;
1093 buf = buf + ZS_HANDLE_SIZE;
1094 size -= ZS_HANDLE_SIZE;
1095 off += ZS_HANDLE_SIZE;
1096
1097 sizes[0] = PAGE_SIZE - off;
1098 sizes[1] = size - sizes[0];
1099
1100 /* copy per-cpu buffer to object */
1101 memcpy_to_page(zpdesc_page(zpdescs[0]), off, buf, sizes[0]);
1102 memcpy_to_page(zpdesc_page(zpdescs[1]), 0, buf + sizes[0], sizes[1]);
1103
1104 out:
1105 /* enable page faults to match kunmap_local() return conditions */
1106 pagefault_enable();
1107 }
1108
zs_cpu_prepare(unsigned int cpu)1109 static int zs_cpu_prepare(unsigned int cpu)
1110 {
1111 struct mapping_area *area;
1112
1113 area = &per_cpu(zs_map_area, cpu);
1114 return __zs_cpu_up(area);
1115 }
1116
zs_cpu_dead(unsigned int cpu)1117 static int zs_cpu_dead(unsigned int cpu)
1118 {
1119 struct mapping_area *area;
1120
1121 area = &per_cpu(zs_map_area, cpu);
1122 __zs_cpu_down(area);
1123 return 0;
1124 }
1125
can_merge(struct size_class * prev,int pages_per_zspage,int objs_per_zspage)1126 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1127 int objs_per_zspage)
1128 {
1129 if (prev->pages_per_zspage == pages_per_zspage &&
1130 prev->objs_per_zspage == objs_per_zspage)
1131 return true;
1132
1133 return false;
1134 }
1135
zspage_full(struct size_class * class,struct zspage * zspage)1136 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1137 {
1138 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1139 }
1140
zspage_empty(struct zspage * zspage)1141 static bool zspage_empty(struct zspage *zspage)
1142 {
1143 return get_zspage_inuse(zspage) == 0;
1144 }
1145
1146 /**
1147 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1148 * that hold objects of the provided size.
1149 * @pool: zsmalloc pool to use
1150 * @size: object size
1151 *
1152 * Context: Any context.
1153 *
1154 * Return: the index of the zsmalloc &size_class that hold objects of the
1155 * provided size.
1156 */
zs_lookup_class_index(struct zs_pool * pool,unsigned int size)1157 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1158 {
1159 struct size_class *class;
1160
1161 class = pool->size_class[get_size_class_index(size)];
1162
1163 return class->index;
1164 }
1165 EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1166
zs_get_total_pages(struct zs_pool * pool)1167 unsigned long zs_get_total_pages(struct zs_pool *pool)
1168 {
1169 return atomic_long_read(&pool->pages_allocated);
1170 }
1171 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1172
1173 /**
1174 * zs_map_object - get address of allocated object from handle.
1175 * @pool: pool from which the object was allocated
1176 * @handle: handle returned from zs_malloc
1177 * @mm: mapping mode to use
1178 *
1179 * Before using an object allocated from zs_malloc, it must be mapped using
1180 * this function. When done with the object, it must be unmapped using
1181 * zs_unmap_object.
1182 *
1183 * Only one object can be mapped per cpu at a time. There is no protection
1184 * against nested mappings.
1185 *
1186 * This function returns with preemption and page faults disabled.
1187 */
zs_map_object(struct zs_pool * pool,unsigned long handle,enum zs_mapmode mm)1188 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1189 enum zs_mapmode mm)
1190 {
1191 struct zspage *zspage;
1192 struct zpdesc *zpdesc;
1193 unsigned long obj, off;
1194 unsigned int obj_idx;
1195
1196 struct size_class *class;
1197 struct mapping_area *area;
1198 struct zpdesc *zpdescs[2];
1199 void *ret;
1200
1201 /*
1202 * Because we use per-cpu mapping areas shared among the
1203 * pools/users, we can't allow mapping in interrupt context
1204 * because it can corrupt another users mappings.
1205 */
1206 BUG_ON(in_interrupt());
1207
1208 /* It guarantees it can get zspage from handle safely */
1209 read_lock(&pool->migrate_lock);
1210 obj = handle_to_obj(handle);
1211 obj_to_location(obj, &zpdesc, &obj_idx);
1212 zspage = get_zspage(zpdesc);
1213
1214 /*
1215 * migration cannot move any zpages in this zspage. Here, class->lock
1216 * is too heavy since callers would take some time until they calls
1217 * zs_unmap_object API so delegate the locking from class to zspage
1218 * which is smaller granularity.
1219 */
1220 migrate_read_lock(zspage);
1221 read_unlock(&pool->migrate_lock);
1222
1223 class = zspage_class(pool, zspage);
1224 off = offset_in_page(class->size * obj_idx);
1225
1226 local_lock(&zs_map_area.lock);
1227 area = this_cpu_ptr(&zs_map_area);
1228 area->vm_mm = mm;
1229 if (off + class->size <= PAGE_SIZE) {
1230 /* this object is contained entirely within a page */
1231 area->vm_addr = kmap_local_zpdesc(zpdesc);
1232 ret = area->vm_addr + off;
1233 goto out;
1234 }
1235
1236 /* this object spans two pages */
1237 zpdescs[0] = zpdesc;
1238 zpdescs[1] = get_next_zpdesc(zpdesc);
1239 BUG_ON(!zpdescs[1]);
1240
1241 ret = __zs_map_object(area, zpdescs, off, class->size);
1242 out:
1243 if (likely(!ZsHugePage(zspage)))
1244 ret += ZS_HANDLE_SIZE;
1245
1246 return ret;
1247 }
1248 EXPORT_SYMBOL_GPL(zs_map_object);
1249
zs_unmap_object(struct zs_pool * pool,unsigned long handle)1250 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1251 {
1252 struct zspage *zspage;
1253 struct zpdesc *zpdesc;
1254 unsigned long obj, off;
1255 unsigned int obj_idx;
1256
1257 struct size_class *class;
1258 struct mapping_area *area;
1259
1260 obj = handle_to_obj(handle);
1261 obj_to_location(obj, &zpdesc, &obj_idx);
1262 zspage = get_zspage(zpdesc);
1263 class = zspage_class(pool, zspage);
1264 off = offset_in_page(class->size * obj_idx);
1265
1266 area = this_cpu_ptr(&zs_map_area);
1267 if (off + class->size <= PAGE_SIZE)
1268 kunmap_local(area->vm_addr);
1269 else {
1270 struct zpdesc *zpdescs[2];
1271
1272 zpdescs[0] = zpdesc;
1273 zpdescs[1] = get_next_zpdesc(zpdesc);
1274 BUG_ON(!zpdescs[1]);
1275
1276 __zs_unmap_object(area, zpdescs, off, class->size);
1277 }
1278 local_unlock(&zs_map_area.lock);
1279
1280 migrate_read_unlock(zspage);
1281 }
1282 EXPORT_SYMBOL_GPL(zs_unmap_object);
1283
1284 /**
1285 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1286 * zsmalloc &size_class.
1287 * @pool: zsmalloc pool to use
1288 *
1289 * The function returns the size of the first huge class - any object of equal
1290 * or bigger size will be stored in zspage consisting of a single physical
1291 * page.
1292 *
1293 * Context: Any context.
1294 *
1295 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1296 */
zs_huge_class_size(struct zs_pool * pool)1297 size_t zs_huge_class_size(struct zs_pool *pool)
1298 {
1299 return huge_class_size;
1300 }
1301 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1302
obj_malloc(struct zs_pool * pool,struct zspage * zspage,unsigned long handle)1303 static unsigned long obj_malloc(struct zs_pool *pool,
1304 struct zspage *zspage, unsigned long handle)
1305 {
1306 int i, nr_zpdesc, offset;
1307 unsigned long obj;
1308 struct link_free *link;
1309 struct size_class *class;
1310
1311 struct zpdesc *m_zpdesc;
1312 unsigned long m_offset;
1313 void *vaddr;
1314
1315 class = pool->size_class[zspage->class];
1316 obj = get_freeobj(zspage);
1317
1318 offset = obj * class->size;
1319 nr_zpdesc = offset >> PAGE_SHIFT;
1320 m_offset = offset_in_page(offset);
1321 m_zpdesc = get_first_zpdesc(zspage);
1322
1323 for (i = 0; i < nr_zpdesc; i++)
1324 m_zpdesc = get_next_zpdesc(m_zpdesc);
1325
1326 vaddr = kmap_local_zpdesc(m_zpdesc);
1327 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1328 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1329 if (likely(!ZsHugePage(zspage)))
1330 /* record handle in the header of allocated chunk */
1331 link->handle = handle | OBJ_ALLOCATED_TAG;
1332 else
1333 zspage->first_zpdesc->handle = handle | OBJ_ALLOCATED_TAG;
1334
1335 kunmap_local(vaddr);
1336 mod_zspage_inuse(zspage, 1);
1337
1338 obj = location_to_obj(m_zpdesc, obj);
1339 record_obj(handle, obj);
1340
1341 return obj;
1342 }
1343
1344
1345 /**
1346 * zs_malloc - Allocate block of given size from pool.
1347 * @pool: pool to allocate from
1348 * @size: size of block to allocate
1349 * @gfp: gfp flags when allocating object
1350 *
1351 * On success, handle to the allocated object is returned,
1352 * otherwise an ERR_PTR().
1353 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1354 */
zs_malloc(struct zs_pool * pool,size_t size,gfp_t gfp)1355 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1356 {
1357 unsigned long handle;
1358 struct size_class *class;
1359 int newfg;
1360 struct zspage *zspage;
1361
1362 if (unlikely(!size))
1363 return (unsigned long)ERR_PTR(-EINVAL);
1364
1365 if (unlikely(size > ZS_MAX_ALLOC_SIZE))
1366 return (unsigned long)ERR_PTR(-ENOSPC);
1367
1368 handle = cache_alloc_handle(pool, gfp);
1369 if (!handle)
1370 return (unsigned long)ERR_PTR(-ENOMEM);
1371
1372 /* extra space in chunk to keep the handle */
1373 size += ZS_HANDLE_SIZE;
1374 class = pool->size_class[get_size_class_index(size)];
1375
1376 /* class->lock effectively protects the zpage migration */
1377 spin_lock(&class->lock);
1378 zspage = find_get_zspage(class);
1379 if (likely(zspage)) {
1380 obj_malloc(pool, zspage, handle);
1381 /* Now move the zspage to another fullness group, if required */
1382 fix_fullness_group(class, zspage);
1383 class_stat_add(class, ZS_OBJS_INUSE, 1);
1384
1385 goto out;
1386 }
1387
1388 spin_unlock(&class->lock);
1389
1390 zspage = alloc_zspage(pool, class, gfp);
1391 if (!zspage) {
1392 cache_free_handle(pool, handle);
1393 return (unsigned long)ERR_PTR(-ENOMEM);
1394 }
1395
1396 spin_lock(&class->lock);
1397 obj_malloc(pool, zspage, handle);
1398 newfg = get_fullness_group(class, zspage);
1399 insert_zspage(class, zspage, newfg);
1400 atomic_long_add(class->pages_per_zspage, &pool->pages_allocated);
1401 class_stat_add(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
1402 class_stat_add(class, ZS_OBJS_INUSE, 1);
1403
1404 /* We completely set up zspage so mark them as movable */
1405 SetZsPageMovable(pool, zspage);
1406 out:
1407 spin_unlock(&class->lock);
1408
1409 return handle;
1410 }
1411 EXPORT_SYMBOL_GPL(zs_malloc);
1412
obj_free(int class_size,unsigned long obj)1413 static void obj_free(int class_size, unsigned long obj)
1414 {
1415 struct link_free *link;
1416 struct zspage *zspage;
1417 struct zpdesc *f_zpdesc;
1418 unsigned long f_offset;
1419 unsigned int f_objidx;
1420 void *vaddr;
1421
1422
1423 obj_to_location(obj, &f_zpdesc, &f_objidx);
1424 f_offset = offset_in_page(class_size * f_objidx);
1425 zspage = get_zspage(f_zpdesc);
1426
1427 vaddr = kmap_local_zpdesc(f_zpdesc);
1428 link = (struct link_free *)(vaddr + f_offset);
1429
1430 /* Insert this object in containing zspage's freelist */
1431 if (likely(!ZsHugePage(zspage)))
1432 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1433 else
1434 f_zpdesc->handle = 0;
1435 set_freeobj(zspage, f_objidx);
1436
1437 kunmap_local(vaddr);
1438 mod_zspage_inuse(zspage, -1);
1439 }
1440
zs_free(struct zs_pool * pool,unsigned long handle)1441 void zs_free(struct zs_pool *pool, unsigned long handle)
1442 {
1443 struct zspage *zspage;
1444 struct zpdesc *f_zpdesc;
1445 unsigned long obj;
1446 struct size_class *class;
1447 int fullness;
1448
1449 if (IS_ERR_OR_NULL((void *)handle))
1450 return;
1451
1452 /*
1453 * The pool->migrate_lock protects the race with zpage's migration
1454 * so it's safe to get the page from handle.
1455 */
1456 read_lock(&pool->migrate_lock);
1457 obj = handle_to_obj(handle);
1458 obj_to_zpdesc(obj, &f_zpdesc);
1459 zspage = get_zspage(f_zpdesc);
1460 class = zspage_class(pool, zspage);
1461 spin_lock(&class->lock);
1462 read_unlock(&pool->migrate_lock);
1463
1464 class_stat_sub(class, ZS_OBJS_INUSE, 1);
1465 obj_free(class->size, obj);
1466
1467 fullness = fix_fullness_group(class, zspage);
1468 if (fullness == ZS_INUSE_RATIO_0)
1469 free_zspage(pool, class, zspage);
1470
1471 spin_unlock(&class->lock);
1472 cache_free_handle(pool, handle);
1473 }
1474 EXPORT_SYMBOL_GPL(zs_free);
1475
zs_object_copy(struct size_class * class,unsigned long dst,unsigned long src)1476 static void zs_object_copy(struct size_class *class, unsigned long dst,
1477 unsigned long src)
1478 {
1479 struct zpdesc *s_zpdesc, *d_zpdesc;
1480 unsigned int s_objidx, d_objidx;
1481 unsigned long s_off, d_off;
1482 void *s_addr, *d_addr;
1483 int s_size, d_size, size;
1484 int written = 0;
1485
1486 s_size = d_size = class->size;
1487
1488 obj_to_location(src, &s_zpdesc, &s_objidx);
1489 obj_to_location(dst, &d_zpdesc, &d_objidx);
1490
1491 s_off = offset_in_page(class->size * s_objidx);
1492 d_off = offset_in_page(class->size * d_objidx);
1493
1494 if (s_off + class->size > PAGE_SIZE)
1495 s_size = PAGE_SIZE - s_off;
1496
1497 if (d_off + class->size > PAGE_SIZE)
1498 d_size = PAGE_SIZE - d_off;
1499
1500 s_addr = kmap_local_zpdesc(s_zpdesc);
1501 d_addr = kmap_local_zpdesc(d_zpdesc);
1502
1503 while (1) {
1504 size = min(s_size, d_size);
1505 memcpy(d_addr + d_off, s_addr + s_off, size);
1506 written += size;
1507
1508 if (written == class->size)
1509 break;
1510
1511 s_off += size;
1512 s_size -= size;
1513 d_off += size;
1514 d_size -= size;
1515
1516 /*
1517 * Calling kunmap_local(d_addr) is necessary. kunmap_local()
1518 * calls must occurs in reverse order of calls to kmap_local_page().
1519 * So, to call kunmap_local(s_addr) we should first call
1520 * kunmap_local(d_addr). For more details see
1521 * Documentation/mm/highmem.rst.
1522 */
1523 if (s_off >= PAGE_SIZE) {
1524 kunmap_local(d_addr);
1525 kunmap_local(s_addr);
1526 s_zpdesc = get_next_zpdesc(s_zpdesc);
1527 s_addr = kmap_local_zpdesc(s_zpdesc);
1528 d_addr = kmap_local_zpdesc(d_zpdesc);
1529 s_size = class->size - written;
1530 s_off = 0;
1531 }
1532
1533 if (d_off >= PAGE_SIZE) {
1534 kunmap_local(d_addr);
1535 d_zpdesc = get_next_zpdesc(d_zpdesc);
1536 d_addr = kmap_local_zpdesc(d_zpdesc);
1537 d_size = class->size - written;
1538 d_off = 0;
1539 }
1540 }
1541
1542 kunmap_local(d_addr);
1543 kunmap_local(s_addr);
1544 }
1545
1546 /*
1547 * Find alloced object in zspage from index object and
1548 * return handle.
1549 */
find_alloced_obj(struct size_class * class,struct zpdesc * zpdesc,int * obj_idx)1550 static unsigned long find_alloced_obj(struct size_class *class,
1551 struct zpdesc *zpdesc, int *obj_idx)
1552 {
1553 unsigned int offset;
1554 int index = *obj_idx;
1555 unsigned long handle = 0;
1556 void *addr = kmap_local_zpdesc(zpdesc);
1557
1558 offset = get_first_obj_offset(zpdesc);
1559 offset += class->size * index;
1560
1561 while (offset < PAGE_SIZE) {
1562 if (obj_allocated(zpdesc, addr + offset, &handle))
1563 break;
1564
1565 offset += class->size;
1566 index++;
1567 }
1568
1569 kunmap_local(addr);
1570
1571 *obj_idx = index;
1572
1573 return handle;
1574 }
1575
migrate_zspage(struct zs_pool * pool,struct zspage * src_zspage,struct zspage * dst_zspage)1576 static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage,
1577 struct zspage *dst_zspage)
1578 {
1579 unsigned long used_obj, free_obj;
1580 unsigned long handle;
1581 int obj_idx = 0;
1582 struct zpdesc *s_zpdesc = get_first_zpdesc(src_zspage);
1583 struct size_class *class = pool->size_class[src_zspage->class];
1584
1585 while (1) {
1586 handle = find_alloced_obj(class, s_zpdesc, &obj_idx);
1587 if (!handle) {
1588 s_zpdesc = get_next_zpdesc(s_zpdesc);
1589 if (!s_zpdesc)
1590 break;
1591 obj_idx = 0;
1592 continue;
1593 }
1594
1595 used_obj = handle_to_obj(handle);
1596 free_obj = obj_malloc(pool, dst_zspage, handle);
1597 zs_object_copy(class, free_obj, used_obj);
1598 obj_idx++;
1599 obj_free(class->size, used_obj);
1600
1601 /* Stop if there is no more space */
1602 if (zspage_full(class, dst_zspage))
1603 break;
1604
1605 /* Stop if there are no more objects to migrate */
1606 if (zspage_empty(src_zspage))
1607 break;
1608 }
1609 }
1610
isolate_src_zspage(struct size_class * class)1611 static struct zspage *isolate_src_zspage(struct size_class *class)
1612 {
1613 struct zspage *zspage;
1614 int fg;
1615
1616 for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) {
1617 zspage = list_first_entry_or_null(&class->fullness_list[fg],
1618 struct zspage, list);
1619 if (zspage) {
1620 remove_zspage(class, zspage);
1621 return zspage;
1622 }
1623 }
1624
1625 return zspage;
1626 }
1627
isolate_dst_zspage(struct size_class * class)1628 static struct zspage *isolate_dst_zspage(struct size_class *class)
1629 {
1630 struct zspage *zspage;
1631 int fg;
1632
1633 for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) {
1634 zspage = list_first_entry_or_null(&class->fullness_list[fg],
1635 struct zspage, list);
1636 if (zspage) {
1637 remove_zspage(class, zspage);
1638 return zspage;
1639 }
1640 }
1641
1642 return zspage;
1643 }
1644
1645 /*
1646 * putback_zspage - add @zspage into right class's fullness list
1647 * @class: destination class
1648 * @zspage: target page
1649 *
1650 * Return @zspage's fullness status
1651 */
putback_zspage(struct size_class * class,struct zspage * zspage)1652 static int putback_zspage(struct size_class *class, struct zspage *zspage)
1653 {
1654 int fullness;
1655
1656 fullness = get_fullness_group(class, zspage);
1657 insert_zspage(class, zspage, fullness);
1658
1659 return fullness;
1660 }
1661
1662 #ifdef CONFIG_COMPACTION
1663 /*
1664 * To prevent zspage destroy during migration, zspage freeing should
1665 * hold locks of all pages in the zspage.
1666 */
lock_zspage(struct zspage * zspage)1667 static void lock_zspage(struct zspage *zspage)
1668 {
1669 struct zpdesc *curr_zpdesc, *zpdesc;
1670
1671 /*
1672 * Pages we haven't locked yet can be migrated off the list while we're
1673 * trying to lock them, so we need to be careful and only attempt to
1674 * lock each page under migrate_read_lock(). Otherwise, the page we lock
1675 * may no longer belong to the zspage. This means that we may wait for
1676 * the wrong page to unlock, so we must take a reference to the page
1677 * prior to waiting for it to unlock outside migrate_read_lock().
1678 */
1679 while (1) {
1680 migrate_read_lock(zspage);
1681 zpdesc = get_first_zpdesc(zspage);
1682 if (zpdesc_trylock(zpdesc))
1683 break;
1684 zpdesc_get(zpdesc);
1685 migrate_read_unlock(zspage);
1686 zpdesc_wait_locked(zpdesc);
1687 zpdesc_put(zpdesc);
1688 }
1689
1690 curr_zpdesc = zpdesc;
1691 while ((zpdesc = get_next_zpdesc(curr_zpdesc))) {
1692 if (zpdesc_trylock(zpdesc)) {
1693 curr_zpdesc = zpdesc;
1694 } else {
1695 zpdesc_get(zpdesc);
1696 migrate_read_unlock(zspage);
1697 zpdesc_wait_locked(zpdesc);
1698 zpdesc_put(zpdesc);
1699 migrate_read_lock(zspage);
1700 }
1701 }
1702 migrate_read_unlock(zspage);
1703 }
1704 #endif /* CONFIG_COMPACTION */
1705
migrate_lock_init(struct zspage * zspage)1706 static void migrate_lock_init(struct zspage *zspage)
1707 {
1708 rwlock_init(&zspage->lock);
1709 }
1710
migrate_read_lock(struct zspage * zspage)1711 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1712 {
1713 read_lock(&zspage->lock);
1714 }
1715
migrate_read_unlock(struct zspage * zspage)1716 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1717 {
1718 read_unlock(&zspage->lock);
1719 }
1720
migrate_write_lock(struct zspage * zspage)1721 static void migrate_write_lock(struct zspage *zspage)
1722 {
1723 write_lock(&zspage->lock);
1724 }
1725
migrate_write_unlock(struct zspage * zspage)1726 static void migrate_write_unlock(struct zspage *zspage)
1727 {
1728 write_unlock(&zspage->lock);
1729 }
1730
1731 #ifdef CONFIG_COMPACTION
1732
1733 static const struct movable_operations zsmalloc_mops;
1734
replace_sub_page(struct size_class * class,struct zspage * zspage,struct zpdesc * newzpdesc,struct zpdesc * oldzpdesc)1735 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1736 struct zpdesc *newzpdesc, struct zpdesc *oldzpdesc)
1737 {
1738 struct zpdesc *zpdesc;
1739 struct zpdesc *zpdescs[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1740 unsigned int first_obj_offset;
1741 int idx = 0;
1742
1743 zpdesc = get_first_zpdesc(zspage);
1744 do {
1745 if (zpdesc == oldzpdesc)
1746 zpdescs[idx] = newzpdesc;
1747 else
1748 zpdescs[idx] = zpdesc;
1749 idx++;
1750 } while ((zpdesc = get_next_zpdesc(zpdesc)) != NULL);
1751
1752 create_page_chain(class, zspage, zpdescs);
1753 first_obj_offset = get_first_obj_offset(oldzpdesc);
1754 set_first_obj_offset(newzpdesc, first_obj_offset);
1755 if (unlikely(ZsHugePage(zspage)))
1756 newzpdesc->handle = oldzpdesc->handle;
1757 __zpdesc_set_movable(newzpdesc, &zsmalloc_mops);
1758 }
1759
zs_page_isolate(struct page * page,isolate_mode_t mode)1760 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1761 {
1762 /*
1763 * Page is locked so zspage couldn't be destroyed. For detail, look at
1764 * lock_zspage in free_zspage.
1765 */
1766 VM_BUG_ON_PAGE(PageIsolated(page), page);
1767
1768 return true;
1769 }
1770
zs_page_migrate(struct page * newpage,struct page * page,enum migrate_mode mode)1771 static int zs_page_migrate(struct page *newpage, struct page *page,
1772 enum migrate_mode mode)
1773 {
1774 struct zs_pool *pool;
1775 struct size_class *class;
1776 struct zspage *zspage;
1777 struct zpdesc *dummy;
1778 struct zpdesc *newzpdesc = page_zpdesc(newpage);
1779 struct zpdesc *zpdesc = page_zpdesc(page);
1780 void *s_addr, *d_addr, *addr;
1781 unsigned int offset;
1782 unsigned long handle;
1783 unsigned long old_obj, new_obj;
1784 unsigned int obj_idx;
1785
1786 VM_BUG_ON_PAGE(!zpdesc_is_isolated(zpdesc), zpdesc_page(zpdesc));
1787
1788 /* We're committed, tell the world that this is a Zsmalloc page. */
1789 __zpdesc_set_zsmalloc(newzpdesc);
1790
1791 /* The page is locked, so this pointer must remain valid */
1792 zspage = get_zspage(zpdesc);
1793 pool = zspage->pool;
1794
1795 /*
1796 * The pool migrate_lock protects the race between zpage migration
1797 * and zs_free.
1798 */
1799 write_lock(&pool->migrate_lock);
1800 class = zspage_class(pool, zspage);
1801
1802 /*
1803 * the class lock protects zpage alloc/free in the zspage.
1804 */
1805 spin_lock(&class->lock);
1806 /* the migrate_write_lock protects zpage access via zs_map_object */
1807 migrate_write_lock(zspage);
1808
1809 offset = get_first_obj_offset(zpdesc);
1810 s_addr = kmap_local_zpdesc(zpdesc);
1811
1812 /*
1813 * Here, any user cannot access all objects in the zspage so let's move.
1814 */
1815 d_addr = kmap_local_zpdesc(newzpdesc);
1816 copy_page(d_addr, s_addr);
1817 kunmap_local(d_addr);
1818
1819 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
1820 addr += class->size) {
1821 if (obj_allocated(zpdesc, addr, &handle)) {
1822
1823 old_obj = handle_to_obj(handle);
1824 obj_to_location(old_obj, &dummy, &obj_idx);
1825 new_obj = (unsigned long)location_to_obj(newzpdesc, obj_idx);
1826 record_obj(handle, new_obj);
1827 }
1828 }
1829 kunmap_local(s_addr);
1830
1831 replace_sub_page(class, zspage, newzpdesc, zpdesc);
1832 /*
1833 * Since we complete the data copy and set up new zspage structure,
1834 * it's okay to release migration_lock.
1835 */
1836 write_unlock(&pool->migrate_lock);
1837 spin_unlock(&class->lock);
1838 migrate_write_unlock(zspage);
1839
1840 zpdesc_get(newzpdesc);
1841 if (zpdesc_zone(newzpdesc) != zpdesc_zone(zpdesc)) {
1842 zpdesc_dec_zone_page_state(zpdesc);
1843 zpdesc_inc_zone_page_state(newzpdesc);
1844 }
1845
1846 reset_zpdesc(zpdesc);
1847 zpdesc_put(zpdesc);
1848
1849 return MIGRATEPAGE_SUCCESS;
1850 }
1851
zs_page_putback(struct page * page)1852 static void zs_page_putback(struct page *page)
1853 {
1854 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1855 }
1856
1857 static const struct movable_operations zsmalloc_mops = {
1858 .isolate_page = zs_page_isolate,
1859 .migrate_page = zs_page_migrate,
1860 .putback_page = zs_page_putback,
1861 };
1862
1863 /*
1864 * Caller should hold page_lock of all pages in the zspage
1865 * In here, we cannot use zspage meta data.
1866 */
async_free_zspage(struct work_struct * work)1867 static void async_free_zspage(struct work_struct *work)
1868 {
1869 int i;
1870 struct size_class *class;
1871 struct zspage *zspage, *tmp;
1872 LIST_HEAD(free_pages);
1873 struct zs_pool *pool = container_of(work, struct zs_pool,
1874 free_work);
1875
1876 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
1877 class = pool->size_class[i];
1878 if (class->index != i)
1879 continue;
1880
1881 spin_lock(&class->lock);
1882 list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0],
1883 &free_pages);
1884 spin_unlock(&class->lock);
1885 }
1886
1887 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
1888 list_del(&zspage->list);
1889 lock_zspage(zspage);
1890
1891 class = zspage_class(pool, zspage);
1892 spin_lock(&class->lock);
1893 class_stat_sub(class, ZS_INUSE_RATIO_0, 1);
1894 __free_zspage(pool, class, zspage);
1895 spin_unlock(&class->lock);
1896 }
1897 };
1898
kick_deferred_free(struct zs_pool * pool)1899 static void kick_deferred_free(struct zs_pool *pool)
1900 {
1901 schedule_work(&pool->free_work);
1902 }
1903
zs_flush_migration(struct zs_pool * pool)1904 static void zs_flush_migration(struct zs_pool *pool)
1905 {
1906 flush_work(&pool->free_work);
1907 }
1908
init_deferred_free(struct zs_pool * pool)1909 static void init_deferred_free(struct zs_pool *pool)
1910 {
1911 INIT_WORK(&pool->free_work, async_free_zspage);
1912 }
1913
SetZsPageMovable(struct zs_pool * pool,struct zspage * zspage)1914 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
1915 {
1916 struct zpdesc *zpdesc = get_first_zpdesc(zspage);
1917
1918 do {
1919 WARN_ON(!zpdesc_trylock(zpdesc));
1920 __zpdesc_set_movable(zpdesc, &zsmalloc_mops);
1921 zpdesc_unlock(zpdesc);
1922 } while ((zpdesc = get_next_zpdesc(zpdesc)) != NULL);
1923 }
1924 #else
zs_flush_migration(struct zs_pool * pool)1925 static inline void zs_flush_migration(struct zs_pool *pool) { }
1926 #endif
1927
1928 /*
1929 *
1930 * Based on the number of unused allocated objects calculate
1931 * and return the number of pages that we can free.
1932 */
zs_can_compact(struct size_class * class)1933 static unsigned long zs_can_compact(struct size_class *class)
1934 {
1935 unsigned long obj_wasted;
1936 unsigned long obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
1937 unsigned long obj_used = class_stat_read(class, ZS_OBJS_INUSE);
1938
1939 if (obj_allocated <= obj_used)
1940 return 0;
1941
1942 obj_wasted = obj_allocated - obj_used;
1943 obj_wasted /= class->objs_per_zspage;
1944
1945 return obj_wasted * class->pages_per_zspage;
1946 }
1947
__zs_compact(struct zs_pool * pool,struct size_class * class)1948 static unsigned long __zs_compact(struct zs_pool *pool,
1949 struct size_class *class)
1950 {
1951 struct zspage *src_zspage = NULL;
1952 struct zspage *dst_zspage = NULL;
1953 unsigned long pages_freed = 0;
1954
1955 /*
1956 * protect the race between zpage migration and zs_free
1957 * as well as zpage allocation/free
1958 */
1959 write_lock(&pool->migrate_lock);
1960 spin_lock(&class->lock);
1961 while (zs_can_compact(class)) {
1962 int fg;
1963
1964 if (!dst_zspage) {
1965 dst_zspage = isolate_dst_zspage(class);
1966 if (!dst_zspage)
1967 break;
1968 }
1969
1970 src_zspage = isolate_src_zspage(class);
1971 if (!src_zspage)
1972 break;
1973
1974 migrate_write_lock(src_zspage);
1975 migrate_zspage(pool, src_zspage, dst_zspage);
1976 migrate_write_unlock(src_zspage);
1977
1978 fg = putback_zspage(class, src_zspage);
1979 if (fg == ZS_INUSE_RATIO_0) {
1980 free_zspage(pool, class, src_zspage);
1981 pages_freed += class->pages_per_zspage;
1982 }
1983 src_zspage = NULL;
1984
1985 if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100
1986 || rwlock_is_contended(&pool->migrate_lock)) {
1987 putback_zspage(class, dst_zspage);
1988 dst_zspage = NULL;
1989
1990 spin_unlock(&class->lock);
1991 write_unlock(&pool->migrate_lock);
1992 cond_resched();
1993 write_lock(&pool->migrate_lock);
1994 spin_lock(&class->lock);
1995 }
1996 }
1997
1998 if (src_zspage)
1999 putback_zspage(class, src_zspage);
2000
2001 if (dst_zspage)
2002 putback_zspage(class, dst_zspage);
2003
2004 spin_unlock(&class->lock);
2005 write_unlock(&pool->migrate_lock);
2006
2007 return pages_freed;
2008 }
2009
zs_compact(struct zs_pool * pool)2010 unsigned long zs_compact(struct zs_pool *pool)
2011 {
2012 int i;
2013 struct size_class *class;
2014 unsigned long pages_freed = 0;
2015
2016 /*
2017 * Pool compaction is performed under pool->migrate_lock so it is basically
2018 * single-threaded. Having more than one thread in __zs_compact()
2019 * will increase pool->migrate_lock contention, which will impact other
2020 * zsmalloc operations that need pool->migrate_lock.
2021 */
2022 if (atomic_xchg(&pool->compaction_in_progress, 1))
2023 return 0;
2024
2025 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2026 class = pool->size_class[i];
2027 if (class->index != i)
2028 continue;
2029 pages_freed += __zs_compact(pool, class);
2030 }
2031 atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2032 atomic_set(&pool->compaction_in_progress, 0);
2033
2034 return pages_freed;
2035 }
2036 EXPORT_SYMBOL_GPL(zs_compact);
2037
zs_pool_stats(struct zs_pool * pool,struct zs_pool_stats * stats)2038 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2039 {
2040 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2041 }
2042 EXPORT_SYMBOL_GPL(zs_pool_stats);
2043
zs_shrinker_scan(struct shrinker * shrinker,struct shrink_control * sc)2044 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2045 struct shrink_control *sc)
2046 {
2047 unsigned long pages_freed;
2048 struct zs_pool *pool = shrinker->private_data;
2049
2050 /*
2051 * Compact classes and calculate compaction delta.
2052 * Can run concurrently with a manually triggered
2053 * (by user) compaction.
2054 */
2055 pages_freed = zs_compact(pool);
2056
2057 return pages_freed ? pages_freed : SHRINK_STOP;
2058 }
2059
zs_shrinker_count(struct shrinker * shrinker,struct shrink_control * sc)2060 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2061 struct shrink_control *sc)
2062 {
2063 int i;
2064 struct size_class *class;
2065 unsigned long pages_to_free = 0;
2066 struct zs_pool *pool = shrinker->private_data;
2067
2068 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2069 class = pool->size_class[i];
2070 if (class->index != i)
2071 continue;
2072
2073 pages_to_free += zs_can_compact(class);
2074 }
2075
2076 return pages_to_free;
2077 }
2078
zs_unregister_shrinker(struct zs_pool * pool)2079 static void zs_unregister_shrinker(struct zs_pool *pool)
2080 {
2081 shrinker_free(pool->shrinker);
2082 }
2083
zs_register_shrinker(struct zs_pool * pool)2084 static int zs_register_shrinker(struct zs_pool *pool)
2085 {
2086 pool->shrinker = shrinker_alloc(0, "mm-zspool:%s", pool->name);
2087 if (!pool->shrinker)
2088 return -ENOMEM;
2089
2090 pool->shrinker->scan_objects = zs_shrinker_scan;
2091 pool->shrinker->count_objects = zs_shrinker_count;
2092 pool->shrinker->batch = 0;
2093 pool->shrinker->private_data = pool;
2094
2095 shrinker_register(pool->shrinker);
2096
2097 return 0;
2098 }
2099
calculate_zspage_chain_size(int class_size)2100 static int calculate_zspage_chain_size(int class_size)
2101 {
2102 int i, min_waste = INT_MAX;
2103 int chain_size = 1;
2104
2105 if (is_power_of_2(class_size))
2106 return chain_size;
2107
2108 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
2109 int waste;
2110
2111 waste = (i * PAGE_SIZE) % class_size;
2112 if (waste < min_waste) {
2113 min_waste = waste;
2114 chain_size = i;
2115 }
2116 }
2117
2118 return chain_size;
2119 }
2120
2121 /**
2122 * zs_create_pool - Creates an allocation pool to work from.
2123 * @name: pool name to be created
2124 *
2125 * This function must be called before anything when using
2126 * the zsmalloc allocator.
2127 *
2128 * On success, a pointer to the newly created pool is returned,
2129 * otherwise NULL.
2130 */
zs_create_pool(const char * name)2131 struct zs_pool *zs_create_pool(const char *name)
2132 {
2133 int i;
2134 struct zs_pool *pool;
2135 struct size_class *prev_class = NULL;
2136
2137 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2138 if (!pool)
2139 return NULL;
2140
2141 init_deferred_free(pool);
2142 rwlock_init(&pool->migrate_lock);
2143 atomic_set(&pool->compaction_in_progress, 0);
2144
2145 pool->name = kstrdup(name, GFP_KERNEL);
2146 if (!pool->name)
2147 goto err;
2148
2149 if (create_cache(pool))
2150 goto err;
2151
2152 /*
2153 * Iterate reversely, because, size of size_class that we want to use
2154 * for merging should be larger or equal to current size.
2155 */
2156 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2157 int size;
2158 int pages_per_zspage;
2159 int objs_per_zspage;
2160 struct size_class *class;
2161 int fullness;
2162
2163 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2164 if (size > ZS_MAX_ALLOC_SIZE)
2165 size = ZS_MAX_ALLOC_SIZE;
2166 pages_per_zspage = calculate_zspage_chain_size(size);
2167 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2168
2169 /*
2170 * We iterate from biggest down to smallest classes,
2171 * so huge_class_size holds the size of the first huge
2172 * class. Any object bigger than or equal to that will
2173 * endup in the huge class.
2174 */
2175 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2176 !huge_class_size) {
2177 huge_class_size = size;
2178 /*
2179 * The object uses ZS_HANDLE_SIZE bytes to store the
2180 * handle. We need to subtract it, because zs_malloc()
2181 * unconditionally adds handle size before it performs
2182 * size class search - so object may be smaller than
2183 * huge class size, yet it still can end up in the huge
2184 * class because it grows by ZS_HANDLE_SIZE extra bytes
2185 * right before class lookup.
2186 */
2187 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2188 }
2189
2190 /*
2191 * size_class is used for normal zsmalloc operation such
2192 * as alloc/free for that size. Although it is natural that we
2193 * have one size_class for each size, there is a chance that we
2194 * can get more memory utilization if we use one size_class for
2195 * many different sizes whose size_class have same
2196 * characteristics. So, we makes size_class point to
2197 * previous size_class if possible.
2198 */
2199 if (prev_class) {
2200 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2201 pool->size_class[i] = prev_class;
2202 continue;
2203 }
2204 }
2205
2206 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2207 if (!class)
2208 goto err;
2209
2210 class->size = size;
2211 class->index = i;
2212 class->pages_per_zspage = pages_per_zspage;
2213 class->objs_per_zspage = objs_per_zspage;
2214 spin_lock_init(&class->lock);
2215 pool->size_class[i] = class;
2216
2217 fullness = ZS_INUSE_RATIO_0;
2218 while (fullness < NR_FULLNESS_GROUPS) {
2219 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2220 fullness++;
2221 }
2222
2223 prev_class = class;
2224 }
2225
2226 /* debug only, don't abort if it fails */
2227 zs_pool_stat_create(pool, name);
2228
2229 /*
2230 * Not critical since shrinker is only used to trigger internal
2231 * defragmentation of the pool which is pretty optional thing. If
2232 * registration fails we still can use the pool normally and user can
2233 * trigger compaction manually. Thus, ignore return code.
2234 */
2235 zs_register_shrinker(pool);
2236
2237 return pool;
2238
2239 err:
2240 zs_destroy_pool(pool);
2241 return NULL;
2242 }
2243 EXPORT_SYMBOL_GPL(zs_create_pool);
2244
zs_destroy_pool(struct zs_pool * pool)2245 void zs_destroy_pool(struct zs_pool *pool)
2246 {
2247 int i;
2248
2249 zs_unregister_shrinker(pool);
2250 zs_flush_migration(pool);
2251 zs_pool_stat_destroy(pool);
2252
2253 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2254 int fg;
2255 struct size_class *class = pool->size_class[i];
2256
2257 if (!class)
2258 continue;
2259
2260 if (class->index != i)
2261 continue;
2262
2263 for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) {
2264 if (list_empty(&class->fullness_list[fg]))
2265 continue;
2266
2267 pr_err("Class-%d fullness group %d is not empty\n",
2268 class->size, fg);
2269 }
2270 kfree(class);
2271 }
2272
2273 destroy_cache(pool);
2274 kfree(pool->name);
2275 kfree(pool);
2276 }
2277 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2278
zs_init(void)2279 static int __init zs_init(void)
2280 {
2281 int ret;
2282
2283 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2284 zs_cpu_prepare, zs_cpu_dead);
2285 if (ret)
2286 goto out;
2287
2288 #ifdef CONFIG_ZPOOL
2289 zpool_register_driver(&zs_zpool_driver);
2290 #endif
2291
2292 zs_stat_init();
2293
2294 return 0;
2295
2296 out:
2297 return ret;
2298 }
2299
zs_exit(void)2300 static void __exit zs_exit(void)
2301 {
2302 #ifdef CONFIG_ZPOOL
2303 zpool_unregister_driver(&zs_zpool_driver);
2304 #endif
2305 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2306
2307 zs_stat_exit();
2308 }
2309
2310 module_init(zs_init);
2311 module_exit(zs_exit);
2312
2313 MODULE_LICENSE("Dual BSD/GPL");
2314 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2315 MODULE_DESCRIPTION("zsmalloc memory allocator");
2316