xref: /linux/drivers/mtd/ssfdc.c (revision 79790b6818e96c58fe2bffee1b418c16e64e7b80)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Linux driver for SSFDC Flash Translation Layer (Read only)
4  * © 2005 Eptar srl
5  * Author: Claudio Lanconelli <lanconelli.claudio@eptar.com>
6  *
7  * Based on NTFL and MTDBLOCK_RO drivers
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/hdreg.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/mtd/rawnand.h>
17 #include <linux/mtd/blktrans.h>
18 
19 struct ssfdcr_record {
20 	struct mtd_blktrans_dev mbd;
21 	unsigned char heads;
22 	unsigned char sectors;
23 	unsigned short cylinders;
24 	int cis_block;			/* block n. containing CIS/IDI */
25 	int erase_size;			/* phys_block_size */
26 	unsigned short *logic_block_map; /* all zones (max 8192 phys blocks on
27 					    the 128MiB) */
28 	int map_len;			/* n. phys_blocks on the card */
29 };
30 
31 #define SSFDCR_MAJOR		257
32 #define SSFDCR_PARTN_BITS	3
33 
34 #define SECTOR_SIZE		512
35 #define SECTOR_SHIFT		9
36 #define OOB_SIZE		16
37 
38 #define MAX_LOGIC_BLK_PER_ZONE	1000
39 #define MAX_PHYS_BLK_PER_ZONE	1024
40 
41 #define KiB(x)	( (x) * 1024L )
42 #define MiB(x)	( KiB(x) * 1024L )
43 
44 /** CHS Table
45 		1MiB	2MiB	4MiB	8MiB	16MiB	32MiB	64MiB	128MiB
46 NCylinder	125	125	250	250	500	500	500	500
47 NHead		4	4	4	4	4	8	8	16
48 NSector		4	8	8	16	16	16	32	32
49 SumSector	2,000	4,000	8,000	16,000	32,000	64,000	128,000	256,000
50 SectorSize	512	512	512	512	512	512	512	512
51 **/
52 
53 typedef struct {
54 	unsigned long size;
55 	unsigned short cyl;
56 	unsigned char head;
57 	unsigned char sec;
58 } chs_entry_t;
59 
60 /* Must be ordered by size */
61 static const chs_entry_t chs_table[] = {
62 	{ MiB(  1), 125,  4,  4 },
63 	{ MiB(  2), 125,  4,  8 },
64 	{ MiB(  4), 250,  4,  8 },
65 	{ MiB(  8), 250,  4, 16 },
66 	{ MiB( 16), 500,  4, 16 },
67 	{ MiB( 32), 500,  8, 16 },
68 	{ MiB( 64), 500,  8, 32 },
69 	{ MiB(128), 500, 16, 32 },
70 	{ 0 },
71 };
72 
get_chs(unsigned long size,unsigned short * cyl,unsigned char * head,unsigned char * sec)73 static int get_chs(unsigned long size, unsigned short *cyl, unsigned char *head,
74 			unsigned char *sec)
75 {
76 	int k;
77 	int found = 0;
78 
79 	k = 0;
80 	while (chs_table[k].size > 0 && size > chs_table[k].size)
81 		k++;
82 
83 	if (chs_table[k].size > 0) {
84 		if (cyl)
85 			*cyl = chs_table[k].cyl;
86 		if (head)
87 			*head = chs_table[k].head;
88 		if (sec)
89 			*sec = chs_table[k].sec;
90 		found = 1;
91 	}
92 
93 	return found;
94 }
95 
96 /* These bytes are the signature for the CIS/IDI sector */
97 static const uint8_t cis_numbers[] = {
98 	0x01, 0x03, 0xD9, 0x01, 0xFF, 0x18, 0x02, 0xDF, 0x01, 0x20
99 };
100 
101 /* Read and check for a valid CIS sector */
get_valid_cis_sector(struct mtd_info * mtd)102 static int get_valid_cis_sector(struct mtd_info *mtd)
103 {
104 	int ret, k, cis_sector;
105 	size_t retlen;
106 	loff_t offset;
107 	uint8_t *sect_buf;
108 
109 	cis_sector = -1;
110 
111 	sect_buf = kmalloc(SECTOR_SIZE, GFP_KERNEL);
112 	if (!sect_buf)
113 		goto out;
114 
115 	/*
116 	 * Look for CIS/IDI sector on the first GOOD block (give up after 4 bad
117 	 * blocks). If the first good block doesn't contain CIS number the flash
118 	 * is not SSFDC formatted
119 	 */
120 	for (k = 0, offset = 0; k < 4; k++, offset += mtd->erasesize) {
121 		if (mtd_block_isbad(mtd, offset)) {
122 			ret = mtd_read(mtd, offset, SECTOR_SIZE, &retlen,
123 				       sect_buf);
124 
125 			/* CIS pattern match on the sector buffer */
126 			if (ret < 0 || retlen != SECTOR_SIZE) {
127 				printk(KERN_WARNING
128 					"SSFDC_RO:can't read CIS/IDI sector\n");
129 			} else if (!memcmp(sect_buf, cis_numbers,
130 					sizeof(cis_numbers))) {
131 				/* Found */
132 				cis_sector = (int)(offset >> SECTOR_SHIFT);
133 			} else {
134 				pr_debug("SSFDC_RO: CIS/IDI sector not found"
135 					" on %s (mtd%d)\n", mtd->name,
136 					mtd->index);
137 			}
138 			break;
139 		}
140 	}
141 
142 	kfree(sect_buf);
143  out:
144 	return cis_sector;
145 }
146 
147 /* Read physical sector (wrapper to MTD_READ) */
read_physical_sector(struct mtd_info * mtd,uint8_t * sect_buf,int sect_no)148 static int read_physical_sector(struct mtd_info *mtd, uint8_t *sect_buf,
149 				int sect_no)
150 {
151 	int ret;
152 	size_t retlen;
153 	loff_t offset = (loff_t)sect_no << SECTOR_SHIFT;
154 
155 	ret = mtd_read(mtd, offset, SECTOR_SIZE, &retlen, sect_buf);
156 	if (ret < 0 || retlen != SECTOR_SIZE)
157 		return -1;
158 
159 	return 0;
160 }
161 
162 /* Read redundancy area (wrapper to MTD_READ_OOB */
read_raw_oob(struct mtd_info * mtd,loff_t offs,uint8_t * buf)163 static int read_raw_oob(struct mtd_info *mtd, loff_t offs, uint8_t *buf)
164 {
165 	struct mtd_oob_ops ops = { };
166 	int ret;
167 
168 	ops.mode = MTD_OPS_RAW;
169 	ops.ooboffs = 0;
170 	ops.ooblen = OOB_SIZE;
171 	ops.oobbuf = buf;
172 	ops.datbuf = NULL;
173 
174 	ret = mtd_read_oob(mtd, offs, &ops);
175 	if (ret < 0 || ops.oobretlen != OOB_SIZE)
176 		return -1;
177 
178 	return 0;
179 }
180 
181 /* Parity calculator on a word of n bit size */
get_parity(int number,int size)182 static int get_parity(int number, int size)
183 {
184  	int k;
185 	int parity;
186 
187 	parity = 1;
188 	for (k = 0; k < size; k++) {
189 		parity += (number >> k);
190 		parity &= 1;
191 	}
192 	return parity;
193 }
194 
195 /* Read and validate the logical block address field stored in the OOB */
get_logical_address(uint8_t * oob_buf)196 static int get_logical_address(uint8_t *oob_buf)
197 {
198 	int block_address, parity;
199 	int offset[2] = {6, 11}; /* offset of the 2 address fields within OOB */
200 	int j;
201 	int ok = 0;
202 
203 	/*
204 	 * Look for the first valid logical address
205 	 * Valid address has fixed pattern on most significant bits and
206 	 * parity check
207 	 */
208 	for (j = 0; j < ARRAY_SIZE(offset); j++) {
209 		block_address = ((int)oob_buf[offset[j]] << 8) |
210 			oob_buf[offset[j]+1];
211 
212 		/* Check for the signature bits in the address field (MSBits) */
213 		if ((block_address & ~0x7FF) == 0x1000) {
214 			parity = block_address & 0x01;
215 			block_address &= 0x7FF;
216 			block_address >>= 1;
217 
218 			if (get_parity(block_address, 10) != parity) {
219 				pr_debug("SSFDC_RO: logical address field%d"
220 					"parity error(0x%04X)\n", j+1,
221 					block_address);
222 			} else {
223 				ok = 1;
224 				break;
225 			}
226 		}
227 	}
228 
229 	if (!ok)
230 		block_address = -2;
231 
232 	pr_debug("SSFDC_RO: get_logical_address() %d\n",
233 		block_address);
234 
235 	return block_address;
236 }
237 
238 /* Build the logic block map */
build_logical_block_map(struct ssfdcr_record * ssfdc)239 static int build_logical_block_map(struct ssfdcr_record *ssfdc)
240 {
241 	unsigned long offset;
242 	uint8_t oob_buf[OOB_SIZE];
243 	int ret, block_address, phys_block;
244 	struct mtd_info *mtd = ssfdc->mbd.mtd;
245 
246 	pr_debug("SSFDC_RO: build_block_map() nblks=%d (%luK)\n",
247 	      ssfdc->map_len,
248 	      (unsigned long)ssfdc->map_len * ssfdc->erase_size / 1024);
249 
250 	/* Scan every physical block, skip CIS block */
251 	for (phys_block = ssfdc->cis_block + 1; phys_block < ssfdc->map_len;
252 			phys_block++) {
253 		offset = (unsigned long)phys_block * ssfdc->erase_size;
254 		if (mtd_block_isbad(mtd, offset))
255 			continue;	/* skip bad blocks */
256 
257 		ret = read_raw_oob(mtd, offset, oob_buf);
258 		if (ret < 0) {
259 			pr_debug("SSFDC_RO: mtd read_oob() failed at %lu\n",
260 				offset);
261 			return -1;
262 		}
263 		block_address = get_logical_address(oob_buf);
264 
265 		/* Skip invalid addresses */
266 		if (block_address >= 0 &&
267 				block_address < MAX_LOGIC_BLK_PER_ZONE) {
268 			int zone_index;
269 
270 			zone_index = phys_block / MAX_PHYS_BLK_PER_ZONE;
271 			block_address += zone_index * MAX_LOGIC_BLK_PER_ZONE;
272 			ssfdc->logic_block_map[block_address] =
273 				(unsigned short)phys_block;
274 
275 			pr_debug("SSFDC_RO: build_block_map() phys_block=%d,"
276 				"logic_block_addr=%d, zone=%d\n",
277 				phys_block, block_address, zone_index);
278 		}
279 	}
280 	return 0;
281 }
282 
ssfdcr_add_mtd(struct mtd_blktrans_ops * tr,struct mtd_info * mtd)283 static void ssfdcr_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd)
284 {
285 	struct ssfdcr_record *ssfdc;
286 	int cis_sector;
287 
288 	/* Check for small page NAND flash */
289 	if (!mtd_type_is_nand(mtd) || mtd->oobsize != OOB_SIZE ||
290 	    mtd->size > UINT_MAX)
291 		return;
292 
293 	/* Check for SSDFC format by reading CIS/IDI sector */
294 	cis_sector = get_valid_cis_sector(mtd);
295 	if (cis_sector == -1)
296 		return;
297 
298 	ssfdc = kzalloc(sizeof(*ssfdc), GFP_KERNEL);
299 	if (!ssfdc)
300 		return;
301 
302 	ssfdc->mbd.mtd = mtd;
303 	ssfdc->mbd.devnum = -1;
304 	ssfdc->mbd.tr = tr;
305 	ssfdc->mbd.readonly = 1;
306 
307 	ssfdc->cis_block = cis_sector / (mtd->erasesize >> SECTOR_SHIFT);
308 	ssfdc->erase_size = mtd->erasesize;
309 	ssfdc->map_len = (u32)mtd->size / mtd->erasesize;
310 
311 	pr_debug("SSFDC_RO: cis_block=%d,erase_size=%d,map_len=%d,n_zones=%d\n",
312 		ssfdc->cis_block, ssfdc->erase_size, ssfdc->map_len,
313 		DIV_ROUND_UP(ssfdc->map_len, MAX_PHYS_BLK_PER_ZONE));
314 
315 	/* Set geometry */
316 	ssfdc->heads = 16;
317 	ssfdc->sectors = 32;
318 	get_chs(mtd->size, NULL, &ssfdc->heads, &ssfdc->sectors);
319 	ssfdc->cylinders = (unsigned short)(((u32)mtd->size >> SECTOR_SHIFT) /
320 			((long)ssfdc->sectors * (long)ssfdc->heads));
321 
322 	pr_debug("SSFDC_RO: using C:%d H:%d S:%d == %ld sects\n",
323 		ssfdc->cylinders, ssfdc->heads , ssfdc->sectors,
324 		(long)ssfdc->cylinders * (long)ssfdc->heads *
325 		(long)ssfdc->sectors);
326 
327 	ssfdc->mbd.size = (long)ssfdc->heads * (long)ssfdc->cylinders *
328 				(long)ssfdc->sectors;
329 
330 	/* Allocate logical block map */
331 	ssfdc->logic_block_map =
332 		kmalloc_array(ssfdc->map_len,
333 			      sizeof(ssfdc->logic_block_map[0]), GFP_KERNEL);
334 	if (!ssfdc->logic_block_map)
335 		goto out_free_ssfdc;
336 	memset(ssfdc->logic_block_map, 0xff, sizeof(ssfdc->logic_block_map[0]) *
337 		ssfdc->map_len);
338 
339 	/* Build logical block map */
340 	if (build_logical_block_map(ssfdc) < 0)
341 		goto out_err;
342 
343 	/* Register device + partitions */
344 	if (add_mtd_blktrans_dev(&ssfdc->mbd))
345 		goto out_err;
346 
347 	printk(KERN_INFO "SSFDC_RO: Found ssfdc%c on mtd%d (%s)\n",
348 		ssfdc->mbd.devnum + 'a', mtd->index, mtd->name);
349 	return;
350 
351 out_err:
352 	kfree(ssfdc->logic_block_map);
353 out_free_ssfdc:
354 	kfree(ssfdc);
355 }
356 
ssfdcr_remove_dev(struct mtd_blktrans_dev * dev)357 static void ssfdcr_remove_dev(struct mtd_blktrans_dev *dev)
358 {
359 	struct ssfdcr_record *ssfdc = (struct ssfdcr_record *)dev;
360 
361 	pr_debug("SSFDC_RO: remove_dev (i=%d)\n", dev->devnum);
362 
363 	del_mtd_blktrans_dev(dev);
364 	kfree(ssfdc->logic_block_map);
365 }
366 
ssfdcr_readsect(struct mtd_blktrans_dev * dev,unsigned long logic_sect_no,char * buf)367 static int ssfdcr_readsect(struct mtd_blktrans_dev *dev,
368 				unsigned long logic_sect_no, char *buf)
369 {
370 	struct ssfdcr_record *ssfdc = (struct ssfdcr_record *)dev;
371 	int sectors_per_block, offset, block_address;
372 
373 	sectors_per_block = ssfdc->erase_size >> SECTOR_SHIFT;
374 	offset = (int)(logic_sect_no % sectors_per_block);
375 	block_address = (int)(logic_sect_no / sectors_per_block);
376 
377 	pr_debug("SSFDC_RO: ssfdcr_readsect(%lu) sec_per_blk=%d, ofst=%d,"
378 		" block_addr=%d\n", logic_sect_no, sectors_per_block, offset,
379 		block_address);
380 
381 	BUG_ON(block_address >= ssfdc->map_len);
382 
383 	block_address = ssfdc->logic_block_map[block_address];
384 
385 	pr_debug("SSFDC_RO: ssfdcr_readsect() phys_block_addr=%d\n",
386 		block_address);
387 
388 	if (block_address < 0xffff) {
389 		unsigned long sect_no;
390 
391 		sect_no = (unsigned long)block_address * sectors_per_block +
392 				offset;
393 
394 		pr_debug("SSFDC_RO: ssfdcr_readsect() phys_sect_no=%lu\n",
395 			sect_no);
396 
397 		if (read_physical_sector(ssfdc->mbd.mtd, buf, sect_no) < 0)
398 			return -EIO;
399 	} else {
400 		memset(buf, 0xff, SECTOR_SIZE);
401 	}
402 
403 	return 0;
404 }
405 
ssfdcr_getgeo(struct mtd_blktrans_dev * dev,struct hd_geometry * geo)406 static int ssfdcr_getgeo(struct mtd_blktrans_dev *dev,  struct hd_geometry *geo)
407 {
408 	struct ssfdcr_record *ssfdc = (struct ssfdcr_record *)dev;
409 
410 	pr_debug("SSFDC_RO: ssfdcr_getgeo() C=%d, H=%d, S=%d\n",
411 			ssfdc->cylinders, ssfdc->heads, ssfdc->sectors);
412 
413 	geo->heads = ssfdc->heads;
414 	geo->sectors = ssfdc->sectors;
415 	geo->cylinders = ssfdc->cylinders;
416 
417 	return 0;
418 }
419 
420 /****************************************************************************
421  *
422  * Module stuff
423  *
424  ****************************************************************************/
425 
426 static struct mtd_blktrans_ops ssfdcr_tr = {
427 	.name		= "ssfdc",
428 	.major		= SSFDCR_MAJOR,
429 	.part_bits	= SSFDCR_PARTN_BITS,
430 	.blksize	= SECTOR_SIZE,
431 	.getgeo		= ssfdcr_getgeo,
432 	.readsect	= ssfdcr_readsect,
433 	.add_mtd	= ssfdcr_add_mtd,
434 	.remove_dev	= ssfdcr_remove_dev,
435 	.owner		= THIS_MODULE,
436 };
437 
init_ssfdcr(void)438 static int __init init_ssfdcr(void)
439 {
440 	printk(KERN_INFO "SSFDC read-only Flash Translation layer\n");
441 
442 	return register_mtd_blktrans(&ssfdcr_tr);
443 }
444 
cleanup_ssfdcr(void)445 static void __exit cleanup_ssfdcr(void)
446 {
447 	deregister_mtd_blktrans(&ssfdcr_tr);
448 }
449 
450 module_init(init_ssfdcr);
451 module_exit(cleanup_ssfdcr);
452 
453 MODULE_LICENSE("GPL");
454 MODULE_AUTHOR("Claudio Lanconelli <lanconelli.claudio@eptar.com>");
455 MODULE_DESCRIPTION("Flash Translation Layer for read-only SSFDC SmartMedia card");
456