1 // SPDX-License-Identifier: LGPL-2.1 2 /* 3 * 4 * Copyright (C) International Business Machines Corp., 2002,2008 5 * Author(s): Steve French (sfrench@us.ibm.com) 6 * 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/ctype.h> 11 #include <linux/mempool.h> 12 #include <linux/vmalloc.h> 13 #include "cifsglob.h" 14 #include "cifsproto.h" 15 #include "cifs_debug.h" 16 #include "smberr.h" 17 #include "nterr.h" 18 #include "cifs_unicode.h" 19 #include "smb2pdu.h" 20 #include "smb2proto.h" 21 #include "smb1proto.h" 22 #include "cifsfs.h" 23 #ifdef CONFIG_CIFS_DFS_UPCALL 24 #include "dns_resolve.h" 25 #include "dfs_cache.h" 26 #include "dfs.h" 27 #endif 28 #include "fs_context.h" 29 #include "cached_dir.h" 30 31 /* The xid serves as a useful identifier for each incoming vfs request, 32 in a similar way to the mid which is useful to track each sent smb, 33 and CurrentXid can also provide a running counter (although it 34 will eventually wrap past zero) of the total vfs operations handled 35 since the cifs fs was mounted */ 36 37 unsigned int 38 _get_xid(void) 39 { 40 unsigned int xid; 41 42 spin_lock(&GlobalMid_Lock); 43 GlobalTotalActiveXid++; 44 45 /* keep high water mark for number of simultaneous ops in filesystem */ 46 if (GlobalTotalActiveXid > GlobalMaxActiveXid) 47 GlobalMaxActiveXid = GlobalTotalActiveXid; 48 if (GlobalTotalActiveXid > 65000) 49 cifs_dbg(FYI, "warning: more than 65000 requests active\n"); 50 xid = GlobalCurrentXid++; 51 spin_unlock(&GlobalMid_Lock); 52 return xid; 53 } 54 55 void 56 _free_xid(unsigned int xid) 57 { 58 spin_lock(&GlobalMid_Lock); 59 /* if (GlobalTotalActiveXid == 0) 60 BUG(); */ 61 GlobalTotalActiveXid--; 62 spin_unlock(&GlobalMid_Lock); 63 } 64 65 struct cifs_ses * 66 sesInfoAlloc(void) 67 { 68 struct cifs_ses *ret_buf; 69 70 ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL); 71 if (ret_buf) { 72 atomic_inc(&sesInfoAllocCount); 73 spin_lock_init(&ret_buf->ses_lock); 74 ret_buf->ses_status = SES_NEW; 75 ++ret_buf->ses_count; 76 INIT_LIST_HEAD(&ret_buf->smb_ses_list); 77 INIT_LIST_HEAD(&ret_buf->tcon_list); 78 mutex_init(&ret_buf->session_mutex); 79 spin_lock_init(&ret_buf->iface_lock); 80 INIT_LIST_HEAD(&ret_buf->iface_list); 81 spin_lock_init(&ret_buf->chan_lock); 82 } 83 return ret_buf; 84 } 85 86 void 87 sesInfoFree(struct cifs_ses *buf_to_free) 88 { 89 struct cifs_server_iface *iface = NULL, *niface = NULL; 90 91 if (buf_to_free == NULL) { 92 cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n"); 93 return; 94 } 95 96 unload_nls(buf_to_free->local_nls); 97 atomic_dec(&sesInfoAllocCount); 98 kfree(buf_to_free->serverOS); 99 kfree(buf_to_free->serverDomain); 100 kfree(buf_to_free->serverNOS); 101 kfree_sensitive(buf_to_free->password); 102 kfree_sensitive(buf_to_free->password2); 103 kfree(buf_to_free->user_name); 104 kfree(buf_to_free->domainName); 105 kfree(buf_to_free->dns_dom); 106 kfree_sensitive(buf_to_free->auth_key.response); 107 spin_lock(&buf_to_free->iface_lock); 108 list_for_each_entry_safe(iface, niface, &buf_to_free->iface_list, 109 iface_head) 110 kref_put(&iface->refcount, release_iface); 111 spin_unlock(&buf_to_free->iface_lock); 112 kfree_sensitive(buf_to_free); 113 } 114 115 struct cifs_tcon * 116 tcon_info_alloc(bool dir_leases_enabled, enum smb3_tcon_ref_trace trace) 117 { 118 struct cifs_tcon *ret_buf; 119 static atomic_t tcon_debug_id; 120 121 ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL); 122 if (!ret_buf) 123 return NULL; 124 125 if (dir_leases_enabled == true) { 126 ret_buf->cfids = init_cached_dirs(); 127 if (!ret_buf->cfids) { 128 kfree(ret_buf); 129 return NULL; 130 } 131 } 132 /* else ret_buf->cfids is already set to NULL above */ 133 134 atomic_inc(&tconInfoAllocCount); 135 ret_buf->status = TID_NEW; 136 ret_buf->debug_id = atomic_inc_return(&tcon_debug_id); 137 ret_buf->tc_count = 1; 138 spin_lock_init(&ret_buf->tc_lock); 139 INIT_LIST_HEAD(&ret_buf->openFileList); 140 INIT_LIST_HEAD(&ret_buf->tcon_list); 141 INIT_LIST_HEAD(&ret_buf->cifs_sb_list); 142 spin_lock_init(&ret_buf->open_file_lock); 143 spin_lock_init(&ret_buf->stat_lock); 144 spin_lock_init(&ret_buf->sb_list_lock); 145 atomic_set(&ret_buf->num_local_opens, 0); 146 atomic_set(&ret_buf->num_remote_opens, 0); 147 ret_buf->stats_from_time = ktime_get_real_seconds(); 148 #ifdef CONFIG_CIFS_FSCACHE 149 mutex_init(&ret_buf->fscache_lock); 150 #endif 151 trace_smb3_tcon_ref(ret_buf->debug_id, ret_buf->tc_count, trace); 152 #ifdef CONFIG_CIFS_DFS_UPCALL 153 INIT_LIST_HEAD(&ret_buf->dfs_ses_list); 154 #endif 155 INIT_LIST_HEAD(&ret_buf->pending_opens); 156 INIT_DELAYED_WORK(&ret_buf->query_interfaces, 157 smb2_query_server_interfaces); 158 #ifdef CONFIG_CIFS_DFS_UPCALL 159 INIT_DELAYED_WORK(&ret_buf->dfs_cache_work, dfs_cache_refresh); 160 #endif 161 162 return ret_buf; 163 } 164 165 void 166 tconInfoFree(struct cifs_tcon *tcon, enum smb3_tcon_ref_trace trace) 167 { 168 if (tcon == NULL) { 169 cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n"); 170 return; 171 } 172 trace_smb3_tcon_ref(tcon->debug_id, tcon->tc_count, trace); 173 free_cached_dirs(tcon->cfids); 174 atomic_dec(&tconInfoAllocCount); 175 kfree(tcon->nativeFileSystem); 176 kfree_sensitive(tcon->password); 177 kfree(tcon->origin_fullpath); 178 kfree(tcon); 179 } 180 181 void * 182 cifs_buf_get(void) 183 { 184 void *ret_buf = NULL; 185 /* 186 * SMB2 header is bigger than CIFS one - no problems to clean some 187 * more bytes for CIFS. 188 */ 189 size_t buf_size = sizeof(struct smb2_hdr); 190 191 /* 192 * We could use negotiated size instead of max_msgsize - 193 * but it may be more efficient to always alloc same size 194 * albeit slightly larger than necessary and maxbuffersize 195 * defaults to this and can not be bigger. 196 */ 197 ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS); 198 199 /* clear the first few header bytes */ 200 /* for most paths, more is cleared in header_assemble */ 201 memset(ret_buf, 0, buf_size + 3); 202 atomic_inc(&buf_alloc_count); 203 #ifdef CONFIG_CIFS_STATS2 204 atomic_inc(&total_buf_alloc_count); 205 #endif /* CONFIG_CIFS_STATS2 */ 206 207 return ret_buf; 208 } 209 210 void 211 cifs_buf_release(void *buf_to_free) 212 { 213 if (buf_to_free == NULL) { 214 /* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/ 215 return; 216 } 217 mempool_free(buf_to_free, cifs_req_poolp); 218 219 atomic_dec(&buf_alloc_count); 220 return; 221 } 222 223 void * 224 cifs_small_buf_get(void) 225 { 226 void *ret_buf = NULL; 227 228 /* We could use negotiated size instead of max_msgsize - 229 but it may be more efficient to always alloc same size 230 albeit slightly larger than necessary and maxbuffersize 231 defaults to this and can not be bigger */ 232 ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS); 233 /* No need to clear memory here, cleared in header assemble */ 234 atomic_inc(&small_buf_alloc_count); 235 #ifdef CONFIG_CIFS_STATS2 236 atomic_inc(&total_small_buf_alloc_count); 237 #endif /* CONFIG_CIFS_STATS2 */ 238 239 return ret_buf; 240 } 241 242 void 243 cifs_small_buf_release(void *buf_to_free) 244 { 245 246 if (buf_to_free == NULL) { 247 cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n"); 248 return; 249 } 250 mempool_free(buf_to_free, cifs_sm_req_poolp); 251 252 atomic_dec(&small_buf_alloc_count); 253 return; 254 } 255 256 void 257 free_rsp_buf(int resp_buftype, void *rsp) 258 { 259 if (resp_buftype == CIFS_SMALL_BUFFER) 260 cifs_small_buf_release(rsp); 261 else if (resp_buftype == CIFS_LARGE_BUFFER) 262 cifs_buf_release(rsp); 263 } 264 265 void 266 dump_smb(void *buf, int smb_buf_length) 267 { 268 if (traceSMB == 0) 269 return; 270 271 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf, 272 smb_buf_length, true); 273 } 274 275 void 276 cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb) 277 { 278 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) { 279 struct cifs_tcon *tcon = NULL; 280 281 if (cifs_sb->master_tlink) 282 tcon = cifs_sb_master_tcon(cifs_sb); 283 284 cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM; 285 cifs_sb->mnt_cifs_serverino_autodisabled = true; 286 cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n", 287 tcon ? tcon->tree_name : "new server"); 288 cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n"); 289 cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n"); 290 291 } 292 } 293 294 void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock) 295 { 296 oplock &= 0xF; 297 298 if (oplock == OPLOCK_EXCLUSIVE) { 299 cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG; 300 cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n", 301 &cinode->netfs.inode); 302 } else if (oplock == OPLOCK_READ) { 303 cinode->oplock = CIFS_CACHE_READ_FLG; 304 cifs_dbg(FYI, "Level II Oplock granted on inode %p\n", 305 &cinode->netfs.inode); 306 } else 307 cinode->oplock = 0; 308 } 309 310 /* 311 * We wait for oplock breaks to be processed before we attempt to perform 312 * writes. 313 */ 314 int cifs_get_writer(struct cifsInodeInfo *cinode) 315 { 316 int rc; 317 318 start: 319 rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK, 320 TASK_KILLABLE); 321 if (rc) 322 return rc; 323 324 spin_lock(&cinode->writers_lock); 325 if (!cinode->writers) 326 set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags); 327 cinode->writers++; 328 /* Check to see if we have started servicing an oplock break */ 329 if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) { 330 cinode->writers--; 331 if (cinode->writers == 0) { 332 clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags); 333 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS); 334 } 335 spin_unlock(&cinode->writers_lock); 336 goto start; 337 } 338 spin_unlock(&cinode->writers_lock); 339 return 0; 340 } 341 342 void cifs_put_writer(struct cifsInodeInfo *cinode) 343 { 344 spin_lock(&cinode->writers_lock); 345 cinode->writers--; 346 if (cinode->writers == 0) { 347 clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags); 348 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS); 349 } 350 spin_unlock(&cinode->writers_lock); 351 } 352 353 /** 354 * cifs_queue_oplock_break - queue the oplock break handler for cfile 355 * @cfile: The file to break the oplock on 356 * 357 * This function is called from the demultiplex thread when it 358 * receives an oplock break for @cfile. 359 * 360 * Assumes the tcon->open_file_lock is held. 361 * Assumes cfile->file_info_lock is NOT held. 362 */ 363 void cifs_queue_oplock_break(struct cifsFileInfo *cfile) 364 { 365 /* 366 * Bump the handle refcount now while we hold the 367 * open_file_lock to enforce the validity of it for the oplock 368 * break handler. The matching put is done at the end of the 369 * handler. 370 */ 371 cifsFileInfo_get(cfile); 372 373 queue_work(cifsoplockd_wq, &cfile->oplock_break); 374 } 375 376 void cifs_done_oplock_break(struct cifsInodeInfo *cinode) 377 { 378 clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags); 379 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK); 380 } 381 382 bool 383 backup_cred(struct cifs_sb_info *cifs_sb) 384 { 385 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) { 386 if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid())) 387 return true; 388 } 389 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) { 390 if (in_group_p(cifs_sb->ctx->backupgid)) 391 return true; 392 } 393 394 return false; 395 } 396 397 void 398 cifs_del_pending_open(struct cifs_pending_open *open) 399 { 400 spin_lock(&tlink_tcon(open->tlink)->open_file_lock); 401 list_del(&open->olist); 402 spin_unlock(&tlink_tcon(open->tlink)->open_file_lock); 403 } 404 405 void 406 cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink, 407 struct cifs_pending_open *open) 408 { 409 memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE); 410 open->oplock = CIFS_OPLOCK_NO_CHANGE; 411 open->tlink = tlink; 412 fid->pending_open = open; 413 list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens); 414 } 415 416 void 417 cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink, 418 struct cifs_pending_open *open) 419 { 420 spin_lock(&tlink_tcon(tlink)->open_file_lock); 421 cifs_add_pending_open_locked(fid, tlink, open); 422 spin_unlock(&tlink_tcon(open->tlink)->open_file_lock); 423 } 424 425 /* 426 * Critical section which runs after acquiring deferred_lock. 427 * As there is no reference count on cifs_deferred_close, pdclose 428 * should not be used outside deferred_lock. 429 */ 430 bool 431 cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose) 432 { 433 struct cifs_deferred_close *dclose; 434 435 list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) { 436 if ((dclose->netfid == cfile->fid.netfid) && 437 (dclose->persistent_fid == cfile->fid.persistent_fid) && 438 (dclose->volatile_fid == cfile->fid.volatile_fid)) { 439 *pdclose = dclose; 440 return true; 441 } 442 } 443 return false; 444 } 445 446 /* 447 * Critical section which runs after acquiring deferred_lock. 448 */ 449 void 450 cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose) 451 { 452 bool is_deferred = false; 453 struct cifs_deferred_close *pdclose; 454 455 is_deferred = cifs_is_deferred_close(cfile, &pdclose); 456 if (is_deferred) { 457 kfree(dclose); 458 return; 459 } 460 461 dclose->tlink = cfile->tlink; 462 dclose->netfid = cfile->fid.netfid; 463 dclose->persistent_fid = cfile->fid.persistent_fid; 464 dclose->volatile_fid = cfile->fid.volatile_fid; 465 list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes); 466 } 467 468 /* 469 * Critical section which runs after acquiring deferred_lock. 470 */ 471 void 472 cifs_del_deferred_close(struct cifsFileInfo *cfile) 473 { 474 bool is_deferred = false; 475 struct cifs_deferred_close *dclose; 476 477 is_deferred = cifs_is_deferred_close(cfile, &dclose); 478 if (!is_deferred) 479 return; 480 list_del(&dclose->dlist); 481 kfree(dclose); 482 } 483 484 void 485 cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode) 486 { 487 struct cifsFileInfo *cfile = NULL; 488 struct file_list *tmp_list, *tmp_next_list; 489 LIST_HEAD(file_head); 490 491 if (cifs_inode == NULL) 492 return; 493 494 spin_lock(&cifs_inode->open_file_lock); 495 list_for_each_entry(cfile, &cifs_inode->openFileList, flist) { 496 if (delayed_work_pending(&cfile->deferred)) { 497 if (cancel_delayed_work(&cfile->deferred)) { 498 spin_lock(&cifs_inode->deferred_lock); 499 cifs_del_deferred_close(cfile); 500 spin_unlock(&cifs_inode->deferred_lock); 501 502 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC); 503 if (tmp_list == NULL) 504 break; 505 tmp_list->cfile = cfile; 506 list_add_tail(&tmp_list->list, &file_head); 507 } 508 } 509 } 510 spin_unlock(&cifs_inode->open_file_lock); 511 512 list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) { 513 _cifsFileInfo_put(tmp_list->cfile, false, false); 514 list_del(&tmp_list->list); 515 kfree(tmp_list); 516 } 517 } 518 519 void 520 cifs_close_all_deferred_files(struct cifs_tcon *tcon) 521 { 522 struct cifsFileInfo *cfile; 523 struct file_list *tmp_list, *tmp_next_list; 524 LIST_HEAD(file_head); 525 526 spin_lock(&tcon->open_file_lock); 527 list_for_each_entry(cfile, &tcon->openFileList, tlist) { 528 if (delayed_work_pending(&cfile->deferred)) { 529 if (cancel_delayed_work(&cfile->deferred)) { 530 spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock); 531 cifs_del_deferred_close(cfile); 532 spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock); 533 534 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC); 535 if (tmp_list == NULL) 536 break; 537 tmp_list->cfile = cfile; 538 list_add_tail(&tmp_list->list, &file_head); 539 } 540 } 541 } 542 spin_unlock(&tcon->open_file_lock); 543 544 list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) { 545 _cifsFileInfo_put(tmp_list->cfile, true, false); 546 list_del(&tmp_list->list); 547 kfree(tmp_list); 548 } 549 } 550 551 void cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, 552 struct dentry *dentry) 553 { 554 struct file_list *tmp_list, *tmp_next_list; 555 struct cifsFileInfo *cfile; 556 LIST_HEAD(file_head); 557 558 spin_lock(&tcon->open_file_lock); 559 list_for_each_entry(cfile, &tcon->openFileList, tlist) { 560 if ((cfile->dentry == dentry) && 561 delayed_work_pending(&cfile->deferred) && 562 cancel_delayed_work(&cfile->deferred)) { 563 spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock); 564 cifs_del_deferred_close(cfile); 565 spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock); 566 567 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC); 568 if (tmp_list == NULL) 569 break; 570 tmp_list->cfile = cfile; 571 list_add_tail(&tmp_list->list, &file_head); 572 } 573 } 574 spin_unlock(&tcon->open_file_lock); 575 576 list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) { 577 _cifsFileInfo_put(tmp_list->cfile, true, false); 578 list_del(&tmp_list->list); 579 kfree(tmp_list); 580 } 581 } 582 583 /* 584 * If a dentry has been deleted, all corresponding open handles should know that 585 * so that we do not defer close them. 586 */ 587 void cifs_mark_open_handles_for_deleted_file(struct inode *inode, 588 const char *path) 589 { 590 struct cifsFileInfo *cfile; 591 void *page; 592 const char *full_path; 593 struct cifsInodeInfo *cinode = CIFS_I(inode); 594 595 page = alloc_dentry_path(); 596 spin_lock(&cinode->open_file_lock); 597 598 /* 599 * note: we need to construct path from dentry and compare only if the 600 * inode has any hardlinks. When number of hardlinks is 1, we can just 601 * mark all open handles since they are going to be from the same file. 602 */ 603 if (inode->i_nlink > 1) { 604 list_for_each_entry(cfile, &cinode->openFileList, flist) { 605 full_path = build_path_from_dentry(cfile->dentry, page); 606 if (!IS_ERR(full_path) && strcmp(full_path, path) == 0) 607 cfile->status_file_deleted = true; 608 } 609 } else { 610 list_for_each_entry(cfile, &cinode->openFileList, flist) 611 cfile->status_file_deleted = true; 612 } 613 spin_unlock(&cinode->open_file_lock); 614 free_dentry_path(page); 615 } 616 617 /* parses DFS referral V3 structure 618 * caller is responsible for freeing target_nodes 619 * returns: 620 * - on success - 0 621 * - on failure - errno 622 */ 623 int 624 parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size, 625 unsigned int *num_of_nodes, 626 struct dfs_info3_param **target_nodes, 627 const struct nls_table *nls_codepage, int remap, 628 const char *searchName, bool is_unicode) 629 { 630 int i, rc = 0; 631 char *data_end; 632 struct dfs_referral_level_3 *ref; 633 634 if (rsp_size < sizeof(*rsp)) { 635 cifs_dbg(VFS | ONCE, 636 "%s: header is malformed (size is %u, must be %zu)\n", 637 __func__, rsp_size, sizeof(*rsp)); 638 rc = -EINVAL; 639 goto parse_DFS_referrals_exit; 640 } 641 642 *num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals); 643 644 if (*num_of_nodes < 1) { 645 cifs_dbg(VFS | ONCE, "%s: [path=%s] num_referrals must be at least > 0, but we got %d\n", 646 __func__, searchName, *num_of_nodes); 647 rc = -ENOENT; 648 goto parse_DFS_referrals_exit; 649 } 650 651 if (sizeof(*rsp) + *num_of_nodes * sizeof(REFERRAL3) > rsp_size) { 652 cifs_dbg(VFS | ONCE, 653 "%s: malformed buffer (size is %u, must be at least %zu)\n", 654 __func__, rsp_size, 655 sizeof(*rsp) + *num_of_nodes * sizeof(REFERRAL3)); 656 rc = -EINVAL; 657 goto parse_DFS_referrals_exit; 658 } 659 660 ref = (struct dfs_referral_level_3 *) &(rsp->referrals); 661 if (ref->VersionNumber != cpu_to_le16(3)) { 662 cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n", 663 le16_to_cpu(ref->VersionNumber)); 664 rc = -EINVAL; 665 goto parse_DFS_referrals_exit; 666 } 667 668 /* get the upper boundary of the resp buffer */ 669 data_end = (char *)rsp + rsp_size; 670 671 cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n", 672 *num_of_nodes, le32_to_cpu(rsp->DFSFlags)); 673 674 *target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param), 675 GFP_KERNEL); 676 if (*target_nodes == NULL) { 677 rc = -ENOMEM; 678 goto parse_DFS_referrals_exit; 679 } 680 681 /* collect necessary data from referrals */ 682 for (i = 0; i < *num_of_nodes; i++) { 683 char *temp; 684 int max_len; 685 struct dfs_info3_param *node = (*target_nodes)+i; 686 687 node->flags = le32_to_cpu(rsp->DFSFlags); 688 if (is_unicode) { 689 __le16 *tmp = kmalloc(strlen(searchName)*2 + 2, 690 GFP_KERNEL); 691 if (tmp == NULL) { 692 rc = -ENOMEM; 693 goto parse_DFS_referrals_exit; 694 } 695 cifsConvertToUTF16((__le16 *) tmp, searchName, 696 PATH_MAX, nls_codepage, remap); 697 node->path_consumed = cifs_utf16_bytes(tmp, 698 le16_to_cpu(rsp->PathConsumed), 699 nls_codepage); 700 kfree(tmp); 701 } else 702 node->path_consumed = le16_to_cpu(rsp->PathConsumed); 703 704 node->server_type = le16_to_cpu(ref->ServerType); 705 node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags); 706 707 /* copy DfsPath */ 708 temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset); 709 max_len = data_end - temp; 710 node->path_name = cifs_strndup_from_utf16(temp, max_len, 711 is_unicode, nls_codepage); 712 if (!node->path_name) { 713 rc = -ENOMEM; 714 goto parse_DFS_referrals_exit; 715 } 716 717 /* copy link target UNC */ 718 temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset); 719 max_len = data_end - temp; 720 node->node_name = cifs_strndup_from_utf16(temp, max_len, 721 is_unicode, nls_codepage); 722 if (!node->node_name) { 723 rc = -ENOMEM; 724 goto parse_DFS_referrals_exit; 725 } 726 727 node->ttl = le32_to_cpu(ref->TimeToLive); 728 729 ref++; 730 } 731 732 parse_DFS_referrals_exit: 733 if (rc) { 734 free_dfs_info_array(*target_nodes, *num_of_nodes); 735 *target_nodes = NULL; 736 *num_of_nodes = 0; 737 } 738 return rc; 739 } 740 741 /** 742 * cifs_alloc_hash - allocate hash and hash context together 743 * @name: The name of the crypto hash algo 744 * @sdesc: SHASH descriptor where to put the pointer to the hash TFM 745 * 746 * The caller has to make sure @sdesc is initialized to either NULL or 747 * a valid context. It can be freed via cifs_free_hash(). 748 */ 749 int 750 cifs_alloc_hash(const char *name, struct shash_desc **sdesc) 751 { 752 int rc = 0; 753 struct crypto_shash *alg = NULL; 754 755 if (*sdesc) 756 return 0; 757 758 alg = crypto_alloc_shash(name, 0, 0); 759 if (IS_ERR(alg)) { 760 cifs_dbg(VFS, "Could not allocate shash TFM '%s'\n", name); 761 rc = PTR_ERR(alg); 762 *sdesc = NULL; 763 return rc; 764 } 765 766 *sdesc = kmalloc(sizeof(struct shash_desc) + crypto_shash_descsize(alg), GFP_KERNEL); 767 if (*sdesc == NULL) { 768 cifs_dbg(VFS, "no memory left to allocate shash TFM '%s'\n", name); 769 crypto_free_shash(alg); 770 return -ENOMEM; 771 } 772 773 (*sdesc)->tfm = alg; 774 return 0; 775 } 776 777 /** 778 * cifs_free_hash - free hash and hash context together 779 * @sdesc: Where to find the pointer to the hash TFM 780 * 781 * Freeing a NULL descriptor is safe. 782 */ 783 void 784 cifs_free_hash(struct shash_desc **sdesc) 785 { 786 if (unlikely(!sdesc) || !*sdesc) 787 return; 788 789 if ((*sdesc)->tfm) { 790 crypto_free_shash((*sdesc)->tfm); 791 (*sdesc)->tfm = NULL; 792 } 793 794 kfree_sensitive(*sdesc); 795 *sdesc = NULL; 796 } 797 798 void extract_unc_hostname(const char *unc, const char **h, size_t *len) 799 { 800 const char *end; 801 802 /* skip initial slashes */ 803 while (*unc && (*unc == '\\' || *unc == '/')) 804 unc++; 805 806 end = unc; 807 808 while (*end && !(*end == '\\' || *end == '/')) 809 end++; 810 811 *h = unc; 812 *len = end - unc; 813 } 814 815 /** 816 * copy_path_name - copy src path to dst, possibly truncating 817 * @dst: The destination buffer 818 * @src: The source name 819 * 820 * returns number of bytes written (including trailing nul) 821 */ 822 int copy_path_name(char *dst, const char *src) 823 { 824 int name_len; 825 826 /* 827 * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it 828 * will truncate and strlen(dst) will be PATH_MAX-1 829 */ 830 name_len = strscpy(dst, src, PATH_MAX); 831 if (WARN_ON_ONCE(name_len < 0)) 832 name_len = PATH_MAX-1; 833 834 /* we count the trailing nul */ 835 name_len++; 836 return name_len; 837 } 838 839 struct super_cb_data { 840 void *data; 841 struct super_block *sb; 842 }; 843 844 static void tcon_super_cb(struct super_block *sb, void *arg) 845 { 846 struct super_cb_data *sd = arg; 847 struct cifs_sb_info *cifs_sb; 848 struct cifs_tcon *t1 = sd->data, *t2; 849 850 if (sd->sb) 851 return; 852 853 cifs_sb = CIFS_SB(sb); 854 t2 = cifs_sb_master_tcon(cifs_sb); 855 856 spin_lock(&t2->tc_lock); 857 if ((t1->ses == t2->ses || 858 t1->ses->dfs_root_ses == t2->ses->dfs_root_ses) && 859 t1->ses->server == t2->ses->server && 860 t2->origin_fullpath && 861 dfs_src_pathname_equal(t2->origin_fullpath, t1->origin_fullpath)) 862 sd->sb = sb; 863 spin_unlock(&t2->tc_lock); 864 } 865 866 static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *), 867 void *data) 868 { 869 struct super_cb_data sd = { 870 .data = data, 871 .sb = NULL, 872 }; 873 struct file_system_type **fs_type = (struct file_system_type *[]) { 874 &cifs_fs_type, &smb3_fs_type, NULL, 875 }; 876 877 for (; *fs_type; fs_type++) { 878 iterate_supers_type(*fs_type, f, &sd); 879 if (sd.sb) { 880 /* 881 * Grab an active reference in order to prevent automounts (DFS links) 882 * of expiring and then freeing up our cifs superblock pointer while 883 * we're doing failover. 884 */ 885 cifs_sb_active(sd.sb); 886 return sd.sb; 887 } 888 } 889 pr_warn_once("%s: could not find dfs superblock\n", __func__); 890 return ERR_PTR(-EINVAL); 891 } 892 893 static void __cifs_put_super(struct super_block *sb) 894 { 895 if (!IS_ERR_OR_NULL(sb)) 896 cifs_sb_deactive(sb); 897 } 898 899 struct super_block *cifs_get_dfs_tcon_super(struct cifs_tcon *tcon) 900 { 901 spin_lock(&tcon->tc_lock); 902 if (!tcon->origin_fullpath) { 903 spin_unlock(&tcon->tc_lock); 904 return ERR_PTR(-ENOENT); 905 } 906 spin_unlock(&tcon->tc_lock); 907 return __cifs_get_super(tcon_super_cb, tcon); 908 } 909 910 void cifs_put_tcp_super(struct super_block *sb) 911 { 912 __cifs_put_super(sb); 913 } 914 915 #ifdef CONFIG_CIFS_DFS_UPCALL 916 int match_target_ip(struct TCP_Server_Info *server, 917 const char *host, size_t hostlen, 918 bool *result) 919 { 920 struct sockaddr_storage ss; 921 int rc; 922 923 cifs_dbg(FYI, "%s: hostname=%.*s\n", __func__, (int)hostlen, host); 924 925 *result = false; 926 927 rc = dns_resolve_name(server->dns_dom, host, hostlen, 928 (struct sockaddr *)&ss); 929 if (rc < 0) 930 return rc; 931 932 spin_lock(&server->srv_lock); 933 *result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr, (struct sockaddr *)&ss); 934 spin_unlock(&server->srv_lock); 935 cifs_dbg(FYI, "%s: ip addresses matched: %s\n", __func__, str_yes_no(*result)); 936 return 0; 937 } 938 939 int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix) 940 { 941 int rc; 942 943 kfree(cifs_sb->prepath); 944 cifs_sb->prepath = NULL; 945 946 if (prefix && *prefix) { 947 cifs_sb->prepath = cifs_sanitize_prepath(prefix, GFP_ATOMIC); 948 if (IS_ERR(cifs_sb->prepath)) { 949 rc = PTR_ERR(cifs_sb->prepath); 950 cifs_sb->prepath = NULL; 951 return rc; 952 } 953 if (cifs_sb->prepath) 954 convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb)); 955 } 956 957 cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH; 958 return 0; 959 } 960 961 /* 962 * Handle weird Windows SMB server behaviour. It responds with 963 * STATUS_OBJECT_NAME_INVALID code to SMB2 QUERY_INFO request for 964 * "\<server>\<dfsname>\<linkpath>" DFS reference, where <dfsname> contains 965 * non-ASCII unicode symbols. 966 */ 967 int cifs_inval_name_dfs_link_error(const unsigned int xid, 968 struct cifs_tcon *tcon, 969 struct cifs_sb_info *cifs_sb, 970 const char *full_path, 971 bool *islink) 972 { 973 struct TCP_Server_Info *server = tcon->ses->server; 974 struct cifs_ses *ses = tcon->ses; 975 size_t len; 976 char *path; 977 char *ref_path; 978 979 *islink = false; 980 981 /* 982 * Fast path - skip check when @full_path doesn't have a prefix path to 983 * look up or tcon is not DFS. 984 */ 985 if (strlen(full_path) < 2 || !cifs_sb || 986 (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NO_DFS) || 987 !is_tcon_dfs(tcon)) 988 return 0; 989 990 spin_lock(&server->srv_lock); 991 if (!server->leaf_fullpath) { 992 spin_unlock(&server->srv_lock); 993 return 0; 994 } 995 spin_unlock(&server->srv_lock); 996 997 /* 998 * Slow path - tcon is DFS and @full_path has prefix path, so attempt 999 * to get a referral to figure out whether it is an DFS link. 1000 */ 1001 len = strnlen(tcon->tree_name, MAX_TREE_SIZE + 1) + strlen(full_path) + 1; 1002 path = kmalloc(len, GFP_KERNEL); 1003 if (!path) 1004 return -ENOMEM; 1005 1006 scnprintf(path, len, "%s%s", tcon->tree_name, full_path); 1007 ref_path = dfs_cache_canonical_path(path + 1, cifs_sb->local_nls, 1008 cifs_remap(cifs_sb)); 1009 kfree(path); 1010 1011 if (IS_ERR(ref_path)) { 1012 if (PTR_ERR(ref_path) != -EINVAL) 1013 return PTR_ERR(ref_path); 1014 } else { 1015 struct dfs_info3_param *refs = NULL; 1016 int num_refs = 0; 1017 1018 /* 1019 * XXX: we are not using dfs_cache_find() here because we might 1020 * end up filling all the DFS cache and thus potentially 1021 * removing cached DFS targets that the client would eventually 1022 * need during failover. 1023 */ 1024 ses = CIFS_DFS_ROOT_SES(ses); 1025 if (ses->server->ops->get_dfs_refer && 1026 !ses->server->ops->get_dfs_refer(xid, ses, ref_path, &refs, 1027 &num_refs, cifs_sb->local_nls, 1028 cifs_remap(cifs_sb))) 1029 *islink = refs[0].server_type == DFS_TYPE_LINK; 1030 free_dfs_info_array(refs, num_refs); 1031 kfree(ref_path); 1032 } 1033 return 0; 1034 } 1035 #endif 1036 1037 int cifs_wait_for_server_reconnect(struct TCP_Server_Info *server, bool retry) 1038 { 1039 int timeout = 10; 1040 int rc; 1041 1042 spin_lock(&server->srv_lock); 1043 if (server->tcpStatus != CifsNeedReconnect) { 1044 spin_unlock(&server->srv_lock); 1045 return 0; 1046 } 1047 timeout *= server->nr_targets; 1048 spin_unlock(&server->srv_lock); 1049 1050 /* 1051 * Give demultiplex thread up to 10 seconds to each target available for 1052 * reconnect -- should be greater than cifs socket timeout which is 7 1053 * seconds. 1054 * 1055 * On "soft" mounts we wait once. Hard mounts keep retrying until 1056 * process is killed or server comes back on-line. 1057 */ 1058 do { 1059 rc = wait_event_interruptible_timeout(server->response_q, 1060 (server->tcpStatus != CifsNeedReconnect), 1061 timeout * HZ); 1062 if (rc < 0) { 1063 cifs_dbg(FYI, "%s: aborting reconnect due to received signal\n", 1064 __func__); 1065 return -ERESTARTSYS; 1066 } 1067 1068 /* are we still trying to reconnect? */ 1069 spin_lock(&server->srv_lock); 1070 if (server->tcpStatus != CifsNeedReconnect) { 1071 spin_unlock(&server->srv_lock); 1072 return 0; 1073 } 1074 spin_unlock(&server->srv_lock); 1075 } while (retry); 1076 1077 cifs_dbg(FYI, "%s: gave up waiting on reconnect\n", __func__); 1078 return -EHOSTDOWN; 1079 } 1080