1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * udc.c - ChipIdea UDC driver
4 *
5 * Copyright (C) 2008 Chipidea - MIPS Technologies, Inc. All rights reserved.
6 *
7 * Author: David Lopo
8 */
9
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmapool.h>
13 #include <linux/err.h>
14 #include <linux/irqreturn.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/pinctrl/consumer.h>
19 #include <linux/usb/ch9.h>
20 #include <linux/usb/gadget.h>
21 #include <linux/usb/otg-fsm.h>
22 #include <linux/usb/chipidea.h>
23
24 #include "ci.h"
25 #include "udc.h"
26 #include "bits.h"
27 #include "otg.h"
28 #include "otg_fsm.h"
29 #include "trace.h"
30
31 /* control endpoint description */
32 static const struct usb_endpoint_descriptor
33 ctrl_endpt_out_desc = {
34 .bLength = USB_DT_ENDPOINT_SIZE,
35 .bDescriptorType = USB_DT_ENDPOINT,
36
37 .bEndpointAddress = USB_DIR_OUT,
38 .bmAttributes = USB_ENDPOINT_XFER_CONTROL,
39 .wMaxPacketSize = cpu_to_le16(CTRL_PAYLOAD_MAX),
40 };
41
42 static const struct usb_endpoint_descriptor
43 ctrl_endpt_in_desc = {
44 .bLength = USB_DT_ENDPOINT_SIZE,
45 .bDescriptorType = USB_DT_ENDPOINT,
46
47 .bEndpointAddress = USB_DIR_IN,
48 .bmAttributes = USB_ENDPOINT_XFER_CONTROL,
49 .wMaxPacketSize = cpu_to_le16(CTRL_PAYLOAD_MAX),
50 };
51
52 static int reprime_dtd(struct ci_hdrc *ci, struct ci_hw_ep *hwep,
53 struct td_node *node);
54 /**
55 * hw_ep_bit: calculates the bit number
56 * @num: endpoint number
57 * @dir: endpoint direction
58 *
59 * This function returns bit number
60 */
hw_ep_bit(int num,int dir)61 static inline int hw_ep_bit(int num, int dir)
62 {
63 return num + ((dir == TX) ? 16 : 0);
64 }
65
ep_to_bit(struct ci_hdrc * ci,int n)66 static inline int ep_to_bit(struct ci_hdrc *ci, int n)
67 {
68 int fill = 16 - ci->hw_ep_max / 2;
69
70 if (n >= ci->hw_ep_max / 2)
71 n += fill;
72
73 return n;
74 }
75
76 /**
77 * hw_device_state: enables/disables interrupts (execute without interruption)
78 * @ci: the controller
79 * @dma: 0 => disable, !0 => enable and set dma engine
80 *
81 * This function returns an error code
82 */
hw_device_state(struct ci_hdrc * ci,u32 dma)83 static int hw_device_state(struct ci_hdrc *ci, u32 dma)
84 {
85 if (dma) {
86 hw_write(ci, OP_ENDPTLISTADDR, ~0, dma);
87 /* interrupt, error, port change, reset, sleep/suspend */
88 hw_write(ci, OP_USBINTR, ~0,
89 USBi_UI|USBi_UEI|USBi_PCI|USBi_URI);
90 } else {
91 hw_write(ci, OP_USBINTR, ~0, 0);
92 }
93 return 0;
94 }
95
96 /**
97 * hw_ep_flush: flush endpoint fifo (execute without interruption)
98 * @ci: the controller
99 * @num: endpoint number
100 * @dir: endpoint direction
101 *
102 * This function returns an error code
103 */
hw_ep_flush(struct ci_hdrc * ci,int num,int dir)104 static int hw_ep_flush(struct ci_hdrc *ci, int num, int dir)
105 {
106 int n = hw_ep_bit(num, dir);
107
108 do {
109 /* flush any pending transfer */
110 hw_write(ci, OP_ENDPTFLUSH, ~0, BIT(n));
111 while (hw_read(ci, OP_ENDPTFLUSH, BIT(n)))
112 cpu_relax();
113 } while (hw_read(ci, OP_ENDPTSTAT, BIT(n)));
114
115 return 0;
116 }
117
118 /**
119 * hw_ep_disable: disables endpoint (execute without interruption)
120 * @ci: the controller
121 * @num: endpoint number
122 * @dir: endpoint direction
123 *
124 * This function returns an error code
125 */
hw_ep_disable(struct ci_hdrc * ci,int num,int dir)126 static int hw_ep_disable(struct ci_hdrc *ci, int num, int dir)
127 {
128 hw_write(ci, OP_ENDPTCTRL + num,
129 (dir == TX) ? ENDPTCTRL_TXE : ENDPTCTRL_RXE, 0);
130 return 0;
131 }
132
133 /**
134 * hw_ep_enable: enables endpoint (execute without interruption)
135 * @ci: the controller
136 * @num: endpoint number
137 * @dir: endpoint direction
138 * @type: endpoint type
139 *
140 * This function returns an error code
141 */
hw_ep_enable(struct ci_hdrc * ci,int num,int dir,int type)142 static int hw_ep_enable(struct ci_hdrc *ci, int num, int dir, int type)
143 {
144 u32 mask, data;
145
146 if (dir == TX) {
147 mask = ENDPTCTRL_TXT; /* type */
148 data = type << __ffs(mask);
149
150 mask |= ENDPTCTRL_TXS; /* unstall */
151 mask |= ENDPTCTRL_TXR; /* reset data toggle */
152 data |= ENDPTCTRL_TXR;
153 mask |= ENDPTCTRL_TXE; /* enable */
154 data |= ENDPTCTRL_TXE;
155 } else {
156 mask = ENDPTCTRL_RXT; /* type */
157 data = type << __ffs(mask);
158
159 mask |= ENDPTCTRL_RXS; /* unstall */
160 mask |= ENDPTCTRL_RXR; /* reset data toggle */
161 data |= ENDPTCTRL_RXR;
162 mask |= ENDPTCTRL_RXE; /* enable */
163 data |= ENDPTCTRL_RXE;
164 }
165 hw_write(ci, OP_ENDPTCTRL + num, mask, data);
166 return 0;
167 }
168
169 /**
170 * hw_ep_get_halt: return endpoint halt status
171 * @ci: the controller
172 * @num: endpoint number
173 * @dir: endpoint direction
174 *
175 * This function returns 1 if endpoint halted
176 */
hw_ep_get_halt(struct ci_hdrc * ci,int num,int dir)177 static int hw_ep_get_halt(struct ci_hdrc *ci, int num, int dir)
178 {
179 u32 mask = (dir == TX) ? ENDPTCTRL_TXS : ENDPTCTRL_RXS;
180
181 return hw_read(ci, OP_ENDPTCTRL + num, mask) ? 1 : 0;
182 }
183
184 /**
185 * hw_ep_prime: primes endpoint (execute without interruption)
186 * @ci: the controller
187 * @num: endpoint number
188 * @dir: endpoint direction
189 * @is_ctrl: true if control endpoint
190 *
191 * This function returns an error code
192 */
hw_ep_prime(struct ci_hdrc * ci,int num,int dir,int is_ctrl)193 static int hw_ep_prime(struct ci_hdrc *ci, int num, int dir, int is_ctrl)
194 {
195 int n = hw_ep_bit(num, dir);
196
197 /* Synchronize before ep prime */
198 wmb();
199
200 if (is_ctrl && dir == RX && hw_read(ci, OP_ENDPTSETUPSTAT, BIT(num)))
201 return -EAGAIN;
202
203 hw_write(ci, OP_ENDPTPRIME, ~0, BIT(n));
204
205 while (hw_read(ci, OP_ENDPTPRIME, BIT(n)))
206 cpu_relax();
207 if (is_ctrl && dir == RX && hw_read(ci, OP_ENDPTSETUPSTAT, BIT(num)))
208 return -EAGAIN;
209
210 /* status shoult be tested according with manual but it doesn't work */
211 return 0;
212 }
213
214 /**
215 * hw_ep_set_halt: configures ep halt & resets data toggle after clear (execute
216 * without interruption)
217 * @ci: the controller
218 * @num: endpoint number
219 * @dir: endpoint direction
220 * @value: true => stall, false => unstall
221 *
222 * This function returns an error code
223 */
hw_ep_set_halt(struct ci_hdrc * ci,int num,int dir,int value)224 static int hw_ep_set_halt(struct ci_hdrc *ci, int num, int dir, int value)
225 {
226 if (value != 0 && value != 1)
227 return -EINVAL;
228
229 do {
230 enum ci_hw_regs reg = OP_ENDPTCTRL + num;
231 u32 mask_xs = (dir == TX) ? ENDPTCTRL_TXS : ENDPTCTRL_RXS;
232 u32 mask_xr = (dir == TX) ? ENDPTCTRL_TXR : ENDPTCTRL_RXR;
233
234 /* data toggle - reserved for EP0 but it's in ESS */
235 hw_write(ci, reg, mask_xs|mask_xr,
236 value ? mask_xs : mask_xr);
237 } while (value != hw_ep_get_halt(ci, num, dir));
238
239 return 0;
240 }
241
242 /**
243 * hw_port_is_high_speed: test if port is high speed
244 * @ci: the controller
245 *
246 * This function returns true if high speed port
247 */
hw_port_is_high_speed(struct ci_hdrc * ci)248 static int hw_port_is_high_speed(struct ci_hdrc *ci)
249 {
250 return ci->hw_bank.lpm ? hw_read(ci, OP_DEVLC, DEVLC_PSPD) :
251 hw_read(ci, OP_PORTSC, PORTSC_HSP);
252 }
253
254 /**
255 * hw_test_and_clear_complete: test & clear complete status (execute without
256 * interruption)
257 * @ci: the controller
258 * @n: endpoint number
259 *
260 * This function returns complete status
261 */
hw_test_and_clear_complete(struct ci_hdrc * ci,int n)262 static int hw_test_and_clear_complete(struct ci_hdrc *ci, int n)
263 {
264 n = ep_to_bit(ci, n);
265 return hw_test_and_clear(ci, OP_ENDPTCOMPLETE, BIT(n));
266 }
267
268 /**
269 * hw_test_and_clear_intr_active: test & clear active interrupts (execute
270 * without interruption)
271 * @ci: the controller
272 *
273 * This function returns active interrutps
274 */
hw_test_and_clear_intr_active(struct ci_hdrc * ci)275 static u32 hw_test_and_clear_intr_active(struct ci_hdrc *ci)
276 {
277 u32 reg = hw_read_intr_status(ci) & hw_read_intr_enable(ci);
278
279 hw_write(ci, OP_USBSTS, ~0, reg);
280 return reg;
281 }
282
283 /**
284 * hw_test_and_clear_setup_guard: test & clear setup guard (execute without
285 * interruption)
286 * @ci: the controller
287 *
288 * This function returns guard value
289 */
hw_test_and_clear_setup_guard(struct ci_hdrc * ci)290 static int hw_test_and_clear_setup_guard(struct ci_hdrc *ci)
291 {
292 return hw_test_and_write(ci, OP_USBCMD, USBCMD_SUTW, 0);
293 }
294
295 /**
296 * hw_test_and_set_setup_guard: test & set setup guard (execute without
297 * interruption)
298 * @ci: the controller
299 *
300 * This function returns guard value
301 */
hw_test_and_set_setup_guard(struct ci_hdrc * ci)302 static int hw_test_and_set_setup_guard(struct ci_hdrc *ci)
303 {
304 return hw_test_and_write(ci, OP_USBCMD, USBCMD_SUTW, USBCMD_SUTW);
305 }
306
307 /**
308 * hw_usb_set_address: configures USB address (execute without interruption)
309 * @ci: the controller
310 * @value: new USB address
311 *
312 * This function explicitly sets the address, without the "USBADRA" (advance)
313 * feature, which is not supported by older versions of the controller.
314 */
hw_usb_set_address(struct ci_hdrc * ci,u8 value)315 static void hw_usb_set_address(struct ci_hdrc *ci, u8 value)
316 {
317 hw_write(ci, OP_DEVICEADDR, DEVICEADDR_USBADR,
318 value << __ffs(DEVICEADDR_USBADR));
319 }
320
321 /**
322 * hw_usb_reset: restart device after a bus reset (execute without
323 * interruption)
324 * @ci: the controller
325 *
326 * This function returns an error code
327 */
hw_usb_reset(struct ci_hdrc * ci)328 static int hw_usb_reset(struct ci_hdrc *ci)
329 {
330 hw_usb_set_address(ci, 0);
331
332 /* ESS flushes only at end?!? */
333 hw_write(ci, OP_ENDPTFLUSH, ~0, ~0);
334
335 /* clear setup token semaphores */
336 hw_write(ci, OP_ENDPTSETUPSTAT, 0, 0);
337
338 /* clear complete status */
339 hw_write(ci, OP_ENDPTCOMPLETE, 0, 0);
340
341 /* wait until all bits cleared */
342 while (hw_read(ci, OP_ENDPTPRIME, ~0))
343 udelay(10); /* not RTOS friendly */
344
345 /* reset all endpoints ? */
346
347 /* reset internal status and wait for further instructions
348 no need to verify the port reset status (ESS does it) */
349
350 return 0;
351 }
352
353 /******************************************************************************
354 * UTIL block
355 *****************************************************************************/
356
add_td_to_list(struct ci_hw_ep * hwep,struct ci_hw_req * hwreq,unsigned int length,struct scatterlist * s)357 static int add_td_to_list(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq,
358 unsigned int length, struct scatterlist *s)
359 {
360 int i;
361 u32 temp;
362 struct td_node *lastnode, *node = kzalloc(sizeof(struct td_node),
363 GFP_ATOMIC);
364
365 if (node == NULL)
366 return -ENOMEM;
367
368 node->ptr = dma_pool_zalloc(hwep->td_pool, GFP_ATOMIC, &node->dma);
369 if (node->ptr == NULL) {
370 kfree(node);
371 return -ENOMEM;
372 }
373
374 node->ptr->token = cpu_to_le32(length << __ffs(TD_TOTAL_BYTES));
375 node->ptr->token &= cpu_to_le32(TD_TOTAL_BYTES);
376 node->ptr->token |= cpu_to_le32(TD_STATUS_ACTIVE);
377 if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == TX) {
378 u32 mul = hwreq->req.length / hwep->ep.maxpacket;
379
380 if (hwreq->req.length == 0
381 || hwreq->req.length % hwep->ep.maxpacket)
382 mul++;
383 node->ptr->token |= cpu_to_le32(mul << __ffs(TD_MULTO));
384 }
385
386 if (s) {
387 temp = (u32) (sg_dma_address(s) + hwreq->req.actual);
388 node->td_remaining_size = CI_MAX_BUF_SIZE - length;
389 } else {
390 temp = (u32) (hwreq->req.dma + hwreq->req.actual);
391 }
392
393 if (length) {
394 node->ptr->page[0] = cpu_to_le32(temp);
395 for (i = 1; i < TD_PAGE_COUNT; i++) {
396 u32 page = temp + i * CI_HDRC_PAGE_SIZE;
397 page &= ~TD_RESERVED_MASK;
398 node->ptr->page[i] = cpu_to_le32(page);
399 }
400 }
401
402 hwreq->req.actual += length;
403
404 if (!list_empty(&hwreq->tds)) {
405 /* get the last entry */
406 lastnode = list_entry(hwreq->tds.prev,
407 struct td_node, td);
408 lastnode->ptr->next = cpu_to_le32(node->dma);
409 }
410
411 INIT_LIST_HEAD(&node->td);
412 list_add_tail(&node->td, &hwreq->tds);
413
414 return 0;
415 }
416
417 /**
418 * _usb_addr: calculates endpoint address from direction & number
419 * @ep: endpoint
420 */
_usb_addr(struct ci_hw_ep * ep)421 static inline u8 _usb_addr(struct ci_hw_ep *ep)
422 {
423 return ((ep->dir == TX) ? USB_ENDPOINT_DIR_MASK : 0) | ep->num;
424 }
425
prepare_td_for_non_sg(struct ci_hw_ep * hwep,struct ci_hw_req * hwreq)426 static int prepare_td_for_non_sg(struct ci_hw_ep *hwep,
427 struct ci_hw_req *hwreq)
428 {
429 unsigned int rest = hwreq->req.length;
430 int pages = TD_PAGE_COUNT;
431 int ret = 0;
432
433 if (rest == 0) {
434 ret = add_td_to_list(hwep, hwreq, 0, NULL);
435 if (ret < 0)
436 return ret;
437 }
438
439 /*
440 * The first buffer could be not page aligned.
441 * In that case we have to span into one extra td.
442 */
443 if (hwreq->req.dma % PAGE_SIZE)
444 pages--;
445
446 while (rest > 0) {
447 unsigned int count = min(hwreq->req.length - hwreq->req.actual,
448 (unsigned int)(pages * CI_HDRC_PAGE_SIZE));
449
450 ret = add_td_to_list(hwep, hwreq, count, NULL);
451 if (ret < 0)
452 return ret;
453
454 rest -= count;
455 }
456
457 if (hwreq->req.zero && hwreq->req.length && hwep->dir == TX
458 && (hwreq->req.length % hwep->ep.maxpacket == 0)) {
459 ret = add_td_to_list(hwep, hwreq, 0, NULL);
460 if (ret < 0)
461 return ret;
462 }
463
464 return ret;
465 }
466
prepare_td_per_sg(struct ci_hw_ep * hwep,struct ci_hw_req * hwreq,struct scatterlist * s)467 static int prepare_td_per_sg(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq,
468 struct scatterlist *s)
469 {
470 unsigned int rest = sg_dma_len(s);
471 int ret = 0;
472
473 hwreq->req.actual = 0;
474 while (rest > 0) {
475 unsigned int count = min_t(unsigned int, rest,
476 CI_MAX_BUF_SIZE);
477
478 ret = add_td_to_list(hwep, hwreq, count, s);
479 if (ret < 0)
480 return ret;
481
482 rest -= count;
483 }
484
485 return ret;
486 }
487
ci_add_buffer_entry(struct td_node * node,struct scatterlist * s)488 static void ci_add_buffer_entry(struct td_node *node, struct scatterlist *s)
489 {
490 int empty_td_slot_index = (CI_MAX_BUF_SIZE - node->td_remaining_size)
491 / CI_HDRC_PAGE_SIZE;
492 int i;
493 u32 token;
494
495 token = le32_to_cpu(node->ptr->token) + (sg_dma_len(s) << __ffs(TD_TOTAL_BYTES));
496 node->ptr->token = cpu_to_le32(token);
497
498 for (i = empty_td_slot_index; i < TD_PAGE_COUNT; i++) {
499 u32 page = (u32) sg_dma_address(s) +
500 (i - empty_td_slot_index) * CI_HDRC_PAGE_SIZE;
501
502 page &= ~TD_RESERVED_MASK;
503 node->ptr->page[i] = cpu_to_le32(page);
504 }
505 }
506
prepare_td_for_sg(struct ci_hw_ep * hwep,struct ci_hw_req * hwreq)507 static int prepare_td_for_sg(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
508 {
509 struct usb_request *req = &hwreq->req;
510 struct scatterlist *s = req->sg;
511 int ret = 0, i = 0;
512 struct td_node *node = NULL;
513
514 if (!s || req->zero || req->length == 0) {
515 dev_err(hwep->ci->dev, "not supported operation for sg\n");
516 return -EINVAL;
517 }
518
519 while (i++ < req->num_mapped_sgs) {
520 if (sg_dma_address(s) % PAGE_SIZE) {
521 dev_err(hwep->ci->dev, "not page aligned sg buffer\n");
522 return -EINVAL;
523 }
524
525 if (node && (node->td_remaining_size >= sg_dma_len(s))) {
526 ci_add_buffer_entry(node, s);
527 node->td_remaining_size -= sg_dma_len(s);
528 } else {
529 ret = prepare_td_per_sg(hwep, hwreq, s);
530 if (ret)
531 return ret;
532
533 node = list_entry(hwreq->tds.prev,
534 struct td_node, td);
535 }
536
537 s = sg_next(s);
538 }
539
540 return ret;
541 }
542
543 /**
544 * _hardware_enqueue: configures a request at hardware level
545 * @hwep: endpoint
546 * @hwreq: request
547 *
548 * This function returns an error code
549 */
_hardware_enqueue(struct ci_hw_ep * hwep,struct ci_hw_req * hwreq)550 static int _hardware_enqueue(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
551 {
552 struct ci_hdrc *ci = hwep->ci;
553 int ret = 0;
554 struct td_node *firstnode, *lastnode;
555
556 /* don't queue twice */
557 if (hwreq->req.status == -EALREADY)
558 return -EALREADY;
559
560 hwreq->req.status = -EALREADY;
561
562 ret = usb_gadget_map_request_by_dev(ci->dev->parent,
563 &hwreq->req, hwep->dir);
564 if (ret)
565 return ret;
566
567 if (hwreq->req.num_mapped_sgs)
568 ret = prepare_td_for_sg(hwep, hwreq);
569 else
570 ret = prepare_td_for_non_sg(hwep, hwreq);
571
572 if (ret)
573 return ret;
574
575 lastnode = list_entry(hwreq->tds.prev,
576 struct td_node, td);
577
578 lastnode->ptr->next = cpu_to_le32(TD_TERMINATE);
579 if (!hwreq->req.no_interrupt)
580 lastnode->ptr->token |= cpu_to_le32(TD_IOC);
581
582 list_for_each_entry_safe(firstnode, lastnode, &hwreq->tds, td)
583 trace_ci_prepare_td(hwep, hwreq, firstnode);
584
585 firstnode = list_first_entry(&hwreq->tds, struct td_node, td);
586
587 wmb();
588
589 hwreq->req.actual = 0;
590 if (!list_empty(&hwep->qh.queue)) {
591 struct ci_hw_req *hwreqprev;
592 int n = hw_ep_bit(hwep->num, hwep->dir);
593 int tmp_stat;
594 struct td_node *prevlastnode;
595 u32 next = firstnode->dma & TD_ADDR_MASK;
596
597 hwreqprev = list_entry(hwep->qh.queue.prev,
598 struct ci_hw_req, queue);
599 prevlastnode = list_entry(hwreqprev->tds.prev,
600 struct td_node, td);
601
602 prevlastnode->ptr->next = cpu_to_le32(next);
603 wmb();
604
605 if (ci->rev == CI_REVISION_22) {
606 if (!hw_read(ci, OP_ENDPTSTAT, BIT(n)))
607 reprime_dtd(ci, hwep, prevlastnode);
608 }
609
610 if (hw_read(ci, OP_ENDPTPRIME, BIT(n)))
611 goto done;
612 do {
613 hw_write(ci, OP_USBCMD, USBCMD_ATDTW, USBCMD_ATDTW);
614 tmp_stat = hw_read(ci, OP_ENDPTSTAT, BIT(n));
615 } while (!hw_read(ci, OP_USBCMD, USBCMD_ATDTW));
616 hw_write(ci, OP_USBCMD, USBCMD_ATDTW, 0);
617 if (tmp_stat)
618 goto done;
619 }
620
621 /* QH configuration */
622 hwep->qh.ptr->td.next = cpu_to_le32(firstnode->dma);
623 hwep->qh.ptr->td.token &=
624 cpu_to_le32(~(TD_STATUS_HALTED|TD_STATUS_ACTIVE));
625
626 if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == RX) {
627 u32 mul = hwreq->req.length / hwep->ep.maxpacket;
628
629 if (hwreq->req.length == 0
630 || hwreq->req.length % hwep->ep.maxpacket)
631 mul++;
632 hwep->qh.ptr->cap |= cpu_to_le32(mul << __ffs(QH_MULT));
633 }
634
635 ret = hw_ep_prime(ci, hwep->num, hwep->dir,
636 hwep->type == USB_ENDPOINT_XFER_CONTROL);
637 done:
638 return ret;
639 }
640
641 /**
642 * free_pending_td: remove a pending request for the endpoint
643 * @hwep: endpoint
644 */
free_pending_td(struct ci_hw_ep * hwep)645 static void free_pending_td(struct ci_hw_ep *hwep)
646 {
647 struct td_node *pending = hwep->pending_td;
648
649 dma_pool_free(hwep->td_pool, pending->ptr, pending->dma);
650 hwep->pending_td = NULL;
651 kfree(pending);
652 }
653
reprime_dtd(struct ci_hdrc * ci,struct ci_hw_ep * hwep,struct td_node * node)654 static int reprime_dtd(struct ci_hdrc *ci, struct ci_hw_ep *hwep,
655 struct td_node *node)
656 {
657 hwep->qh.ptr->td.next = cpu_to_le32(node->dma);
658 hwep->qh.ptr->td.token &=
659 cpu_to_le32(~(TD_STATUS_HALTED | TD_STATUS_ACTIVE));
660
661 return hw_ep_prime(ci, hwep->num, hwep->dir,
662 hwep->type == USB_ENDPOINT_XFER_CONTROL);
663 }
664
665 /**
666 * _hardware_dequeue: handles a request at hardware level
667 * @hwep: endpoint
668 * @hwreq: request
669 *
670 * This function returns an error code
671 */
_hardware_dequeue(struct ci_hw_ep * hwep,struct ci_hw_req * hwreq)672 static int _hardware_dequeue(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
673 {
674 u32 tmptoken;
675 struct td_node *node, *tmpnode;
676 unsigned remaining_length;
677 unsigned actual = hwreq->req.length;
678 struct ci_hdrc *ci = hwep->ci;
679
680 if (hwreq->req.status != -EALREADY)
681 return -EINVAL;
682
683 hwreq->req.status = 0;
684
685 list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
686 tmptoken = le32_to_cpu(node->ptr->token);
687 trace_ci_complete_td(hwep, hwreq, node);
688 if ((TD_STATUS_ACTIVE & tmptoken) != 0) {
689 int n = hw_ep_bit(hwep->num, hwep->dir);
690
691 if (ci->rev == CI_REVISION_24 ||
692 ci->rev == CI_REVISION_22)
693 if (!hw_read(ci, OP_ENDPTSTAT, BIT(n)))
694 reprime_dtd(ci, hwep, node);
695 hwreq->req.status = -EALREADY;
696 return -EBUSY;
697 }
698
699 remaining_length = (tmptoken & TD_TOTAL_BYTES);
700 remaining_length >>= __ffs(TD_TOTAL_BYTES);
701 actual -= remaining_length;
702
703 hwreq->req.status = tmptoken & TD_STATUS;
704 if ((TD_STATUS_HALTED & hwreq->req.status)) {
705 hwreq->req.status = -EPIPE;
706 break;
707 } else if ((TD_STATUS_DT_ERR & hwreq->req.status)) {
708 hwreq->req.status = -EPROTO;
709 break;
710 } else if ((TD_STATUS_TR_ERR & hwreq->req.status)) {
711 hwreq->req.status = -EILSEQ;
712 break;
713 }
714
715 if (remaining_length) {
716 if (hwep->dir == TX) {
717 hwreq->req.status = -EPROTO;
718 break;
719 }
720 }
721 /*
722 * As the hardware could still address the freed td
723 * which will run the udc unusable, the cleanup of the
724 * td has to be delayed by one.
725 */
726 if (hwep->pending_td)
727 free_pending_td(hwep);
728
729 hwep->pending_td = node;
730 list_del_init(&node->td);
731 }
732
733 usb_gadget_unmap_request_by_dev(hwep->ci->dev->parent,
734 &hwreq->req, hwep->dir);
735
736 hwreq->req.actual += actual;
737
738 if (hwreq->req.status)
739 return hwreq->req.status;
740
741 return hwreq->req.actual;
742 }
743
744 /**
745 * _ep_nuke: dequeues all endpoint requests
746 * @hwep: endpoint
747 *
748 * This function returns an error code
749 * Caller must hold lock
750 */
_ep_nuke(struct ci_hw_ep * hwep)751 static int _ep_nuke(struct ci_hw_ep *hwep)
752 __releases(hwep->lock)
753 __acquires(hwep->lock)
754 {
755 struct td_node *node, *tmpnode;
756 if (hwep == NULL)
757 return -EINVAL;
758
759 hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
760
761 while (!list_empty(&hwep->qh.queue)) {
762
763 /* pop oldest request */
764 struct ci_hw_req *hwreq = list_entry(hwep->qh.queue.next,
765 struct ci_hw_req, queue);
766
767 list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
768 dma_pool_free(hwep->td_pool, node->ptr, node->dma);
769 list_del_init(&node->td);
770 node->ptr = NULL;
771 kfree(node);
772 }
773
774 list_del_init(&hwreq->queue);
775 hwreq->req.status = -ESHUTDOWN;
776
777 if (hwreq->req.complete != NULL) {
778 spin_unlock(hwep->lock);
779 usb_gadget_giveback_request(&hwep->ep, &hwreq->req);
780 spin_lock(hwep->lock);
781 }
782 }
783
784 if (hwep->pending_td)
785 free_pending_td(hwep);
786
787 return 0;
788 }
789
_ep_set_halt(struct usb_ep * ep,int value,bool check_transfer)790 static int _ep_set_halt(struct usb_ep *ep, int value, bool check_transfer)
791 {
792 struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
793 int direction, retval = 0;
794 unsigned long flags;
795
796 if (ep == NULL || hwep->ep.desc == NULL)
797 return -EINVAL;
798
799 if (usb_endpoint_xfer_isoc(hwep->ep.desc))
800 return -EOPNOTSUPP;
801
802 spin_lock_irqsave(hwep->lock, flags);
803
804 if (value && hwep->dir == TX && check_transfer &&
805 !list_empty(&hwep->qh.queue) &&
806 !usb_endpoint_xfer_control(hwep->ep.desc)) {
807 spin_unlock_irqrestore(hwep->lock, flags);
808 return -EAGAIN;
809 }
810
811 direction = hwep->dir;
812 do {
813 retval |= hw_ep_set_halt(hwep->ci, hwep->num, hwep->dir, value);
814
815 if (!value)
816 hwep->wedge = 0;
817
818 if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
819 hwep->dir = (hwep->dir == TX) ? RX : TX;
820
821 } while (hwep->dir != direction);
822
823 spin_unlock_irqrestore(hwep->lock, flags);
824 return retval;
825 }
826
827
828 /**
829 * _gadget_stop_activity: stops all USB activity, flushes & disables all endpts
830 * @gadget: gadget
831 *
832 * This function returns an error code
833 */
_gadget_stop_activity(struct usb_gadget * gadget)834 static int _gadget_stop_activity(struct usb_gadget *gadget)
835 {
836 struct usb_ep *ep;
837 struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
838 unsigned long flags;
839
840 /* flush all endpoints */
841 gadget_for_each_ep(ep, gadget) {
842 usb_ep_fifo_flush(ep);
843 }
844 usb_ep_fifo_flush(&ci->ep0out->ep);
845 usb_ep_fifo_flush(&ci->ep0in->ep);
846
847 /* make sure to disable all endpoints */
848 gadget_for_each_ep(ep, gadget) {
849 usb_ep_disable(ep);
850 }
851
852 if (ci->status != NULL) {
853 usb_ep_free_request(&ci->ep0in->ep, ci->status);
854 ci->status = NULL;
855 }
856
857 spin_lock_irqsave(&ci->lock, flags);
858 ci->gadget.speed = USB_SPEED_UNKNOWN;
859 ci->remote_wakeup = 0;
860 ci->suspended = 0;
861 spin_unlock_irqrestore(&ci->lock, flags);
862
863 return 0;
864 }
865
866 /******************************************************************************
867 * ISR block
868 *****************************************************************************/
869 /**
870 * isr_reset_handler: USB reset interrupt handler
871 * @ci: UDC device
872 *
873 * This function resets USB engine after a bus reset occurred
874 */
isr_reset_handler(struct ci_hdrc * ci)875 static void isr_reset_handler(struct ci_hdrc *ci)
876 __releases(ci->lock)
877 __acquires(ci->lock)
878 {
879 int retval;
880 u32 intr;
881
882 spin_unlock(&ci->lock);
883 if (ci->gadget.speed != USB_SPEED_UNKNOWN)
884 usb_gadget_udc_reset(&ci->gadget, ci->driver);
885
886 retval = _gadget_stop_activity(&ci->gadget);
887 if (retval)
888 goto done;
889
890 retval = hw_usb_reset(ci);
891 if (retval)
892 goto done;
893
894 /* clear SLI */
895 hw_write(ci, OP_USBSTS, USBi_SLI, USBi_SLI);
896 intr = hw_read(ci, OP_USBINTR, ~0);
897 hw_write(ci, OP_USBINTR, ~0, intr | USBi_SLI);
898
899 ci->status = usb_ep_alloc_request(&ci->ep0in->ep, GFP_ATOMIC);
900 if (ci->status == NULL)
901 retval = -ENOMEM;
902
903 done:
904 spin_lock(&ci->lock);
905
906 if (retval)
907 dev_err(ci->dev, "error: %i\n", retval);
908 }
909
910 /**
911 * isr_get_status_complete: get_status request complete function
912 * @ep: endpoint
913 * @req: request handled
914 *
915 * Caller must release lock
916 */
isr_get_status_complete(struct usb_ep * ep,struct usb_request * req)917 static void isr_get_status_complete(struct usb_ep *ep, struct usb_request *req)
918 {
919 if (ep == NULL || req == NULL)
920 return;
921
922 kfree(req->buf);
923 usb_ep_free_request(ep, req);
924 }
925
926 /**
927 * _ep_queue: queues (submits) an I/O request to an endpoint
928 * @ep: endpoint
929 * @req: request
930 * @gfp_flags: GFP flags (not used)
931 *
932 * Caller must hold lock
933 * This function returns an error code
934 */
_ep_queue(struct usb_ep * ep,struct usb_request * req,gfp_t __maybe_unused gfp_flags)935 static int _ep_queue(struct usb_ep *ep, struct usb_request *req,
936 gfp_t __maybe_unused gfp_flags)
937 {
938 struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
939 struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
940 struct ci_hdrc *ci = hwep->ci;
941 int retval = 0;
942
943 if (ep == NULL || req == NULL || hwep->ep.desc == NULL)
944 return -EINVAL;
945
946 if (hwep->type == USB_ENDPOINT_XFER_CONTROL) {
947 if (req->length)
948 hwep = (ci->ep0_dir == RX) ?
949 ci->ep0out : ci->ep0in;
950 if (!list_empty(&hwep->qh.queue)) {
951 _ep_nuke(hwep);
952 dev_warn(hwep->ci->dev, "endpoint ctrl %X nuked\n",
953 _usb_addr(hwep));
954 }
955 }
956
957 if (usb_endpoint_xfer_isoc(hwep->ep.desc) &&
958 hwreq->req.length > hwep->ep.mult * hwep->ep.maxpacket) {
959 dev_err(hwep->ci->dev, "request length too big for isochronous\n");
960 return -EMSGSIZE;
961 }
962
963 /* first nuke then test link, e.g. previous status has not sent */
964 if (!list_empty(&hwreq->queue)) {
965 dev_err(hwep->ci->dev, "request already in queue\n");
966 return -EBUSY;
967 }
968
969 /* push request */
970 hwreq->req.status = -EINPROGRESS;
971 hwreq->req.actual = 0;
972
973 retval = _hardware_enqueue(hwep, hwreq);
974
975 if (retval == -EALREADY)
976 retval = 0;
977 if (!retval)
978 list_add_tail(&hwreq->queue, &hwep->qh.queue);
979
980 return retval;
981 }
982
983 /**
984 * isr_get_status_response: get_status request response
985 * @ci: ci struct
986 * @setup: setup request packet
987 *
988 * This function returns an error code
989 */
isr_get_status_response(struct ci_hdrc * ci,struct usb_ctrlrequest * setup)990 static int isr_get_status_response(struct ci_hdrc *ci,
991 struct usb_ctrlrequest *setup)
992 __releases(hwep->lock)
993 __acquires(hwep->lock)
994 {
995 struct ci_hw_ep *hwep = ci->ep0in;
996 struct usb_request *req = NULL;
997 gfp_t gfp_flags = GFP_ATOMIC;
998 int dir, num, retval;
999
1000 if (hwep == NULL || setup == NULL)
1001 return -EINVAL;
1002
1003 spin_unlock(hwep->lock);
1004 req = usb_ep_alloc_request(&hwep->ep, gfp_flags);
1005 spin_lock(hwep->lock);
1006 if (req == NULL)
1007 return -ENOMEM;
1008
1009 req->complete = isr_get_status_complete;
1010 req->length = 2;
1011 req->buf = kzalloc(req->length, gfp_flags);
1012 if (req->buf == NULL) {
1013 retval = -ENOMEM;
1014 goto err_free_req;
1015 }
1016
1017 if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
1018 *(u16 *)req->buf = (ci->remote_wakeup << 1) |
1019 ci->gadget.is_selfpowered;
1020 } else if ((setup->bRequestType & USB_RECIP_MASK) \
1021 == USB_RECIP_ENDPOINT) {
1022 dir = (le16_to_cpu(setup->wIndex) & USB_ENDPOINT_DIR_MASK) ?
1023 TX : RX;
1024 num = le16_to_cpu(setup->wIndex) & USB_ENDPOINT_NUMBER_MASK;
1025 *(u16 *)req->buf = hw_ep_get_halt(ci, num, dir);
1026 }
1027 /* else do nothing; reserved for future use */
1028
1029 retval = _ep_queue(&hwep->ep, req, gfp_flags);
1030 if (retval)
1031 goto err_free_buf;
1032
1033 return 0;
1034
1035 err_free_buf:
1036 kfree(req->buf);
1037 err_free_req:
1038 spin_unlock(hwep->lock);
1039 usb_ep_free_request(&hwep->ep, req);
1040 spin_lock(hwep->lock);
1041 return retval;
1042 }
1043
1044 /**
1045 * isr_setup_status_complete: setup_status request complete function
1046 * @ep: endpoint
1047 * @req: request handled
1048 *
1049 * Caller must release lock. Put the port in test mode if test mode
1050 * feature is selected.
1051 */
1052 static void
isr_setup_status_complete(struct usb_ep * ep,struct usb_request * req)1053 isr_setup_status_complete(struct usb_ep *ep, struct usb_request *req)
1054 {
1055 struct ci_hdrc *ci = req->context;
1056 unsigned long flags;
1057
1058 if (req->status < 0)
1059 return;
1060
1061 if (ci->setaddr) {
1062 hw_usb_set_address(ci, ci->address);
1063 ci->setaddr = false;
1064 if (ci->address)
1065 usb_gadget_set_state(&ci->gadget, USB_STATE_ADDRESS);
1066 }
1067
1068 spin_lock_irqsave(&ci->lock, flags);
1069 if (ci->test_mode)
1070 hw_port_test_set(ci, ci->test_mode);
1071 spin_unlock_irqrestore(&ci->lock, flags);
1072 }
1073
1074 /**
1075 * isr_setup_status_phase: queues the status phase of a setup transation
1076 * @ci: ci struct
1077 *
1078 * This function returns an error code
1079 */
isr_setup_status_phase(struct ci_hdrc * ci)1080 static int isr_setup_status_phase(struct ci_hdrc *ci)
1081 {
1082 struct ci_hw_ep *hwep;
1083
1084 /*
1085 * Unexpected USB controller behavior, caused by bad signal integrity
1086 * or ground reference problems, can lead to isr_setup_status_phase
1087 * being called with ci->status equal to NULL.
1088 * If this situation occurs, you should review your USB hardware design.
1089 */
1090 if (WARN_ON_ONCE(!ci->status))
1091 return -EPIPE;
1092
1093 hwep = (ci->ep0_dir == TX) ? ci->ep0out : ci->ep0in;
1094 ci->status->context = ci;
1095 ci->status->complete = isr_setup_status_complete;
1096
1097 return _ep_queue(&hwep->ep, ci->status, GFP_ATOMIC);
1098 }
1099
1100 /**
1101 * isr_tr_complete_low: transaction complete low level handler
1102 * @hwep: endpoint
1103 *
1104 * This function returns an error code
1105 * Caller must hold lock
1106 */
isr_tr_complete_low(struct ci_hw_ep * hwep)1107 static int isr_tr_complete_low(struct ci_hw_ep *hwep)
1108 __releases(hwep->lock)
1109 __acquires(hwep->lock)
1110 {
1111 struct ci_hw_req *hwreq, *hwreqtemp;
1112 struct ci_hw_ep *hweptemp = hwep;
1113 int retval = 0;
1114
1115 list_for_each_entry_safe(hwreq, hwreqtemp, &hwep->qh.queue,
1116 queue) {
1117 retval = _hardware_dequeue(hwep, hwreq);
1118 if (retval < 0)
1119 break;
1120 list_del_init(&hwreq->queue);
1121 if (hwreq->req.complete != NULL) {
1122 spin_unlock(hwep->lock);
1123 if ((hwep->type == USB_ENDPOINT_XFER_CONTROL) &&
1124 hwreq->req.length)
1125 hweptemp = hwep->ci->ep0in;
1126 usb_gadget_giveback_request(&hweptemp->ep, &hwreq->req);
1127 spin_lock(hwep->lock);
1128 }
1129 }
1130
1131 if (retval == -EBUSY)
1132 retval = 0;
1133
1134 return retval;
1135 }
1136
otg_a_alt_hnp_support(struct ci_hdrc * ci)1137 static int otg_a_alt_hnp_support(struct ci_hdrc *ci)
1138 {
1139 dev_warn(&ci->gadget.dev,
1140 "connect the device to an alternate port if you want HNP\n");
1141 return isr_setup_status_phase(ci);
1142 }
1143
1144 /**
1145 * isr_setup_packet_handler: setup packet handler
1146 * @ci: UDC descriptor
1147 *
1148 * This function handles setup packet
1149 */
isr_setup_packet_handler(struct ci_hdrc * ci)1150 static void isr_setup_packet_handler(struct ci_hdrc *ci)
1151 __releases(ci->lock)
1152 __acquires(ci->lock)
1153 {
1154 struct ci_hw_ep *hwep = &ci->ci_hw_ep[0];
1155 struct usb_ctrlrequest req;
1156 int type, num, dir, err = -EINVAL;
1157 u8 tmode = 0;
1158
1159 /*
1160 * Flush data and handshake transactions of previous
1161 * setup packet.
1162 */
1163 _ep_nuke(ci->ep0out);
1164 _ep_nuke(ci->ep0in);
1165
1166 /* read_setup_packet */
1167 do {
1168 hw_test_and_set_setup_guard(ci);
1169 memcpy(&req, &hwep->qh.ptr->setup, sizeof(req));
1170 } while (!hw_test_and_clear_setup_guard(ci));
1171
1172 type = req.bRequestType;
1173
1174 ci->ep0_dir = (type & USB_DIR_IN) ? TX : RX;
1175
1176 switch (req.bRequest) {
1177 case USB_REQ_CLEAR_FEATURE:
1178 if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) &&
1179 le16_to_cpu(req.wValue) ==
1180 USB_ENDPOINT_HALT) {
1181 if (req.wLength != 0)
1182 break;
1183 num = le16_to_cpu(req.wIndex);
1184 dir = (num & USB_ENDPOINT_DIR_MASK) ? TX : RX;
1185 num &= USB_ENDPOINT_NUMBER_MASK;
1186 if (dir == TX)
1187 num += ci->hw_ep_max / 2;
1188 if (!ci->ci_hw_ep[num].wedge) {
1189 spin_unlock(&ci->lock);
1190 err = usb_ep_clear_halt(
1191 &ci->ci_hw_ep[num].ep);
1192 spin_lock(&ci->lock);
1193 if (err)
1194 break;
1195 }
1196 err = isr_setup_status_phase(ci);
1197 } else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE) &&
1198 le16_to_cpu(req.wValue) ==
1199 USB_DEVICE_REMOTE_WAKEUP) {
1200 if (req.wLength != 0)
1201 break;
1202 ci->remote_wakeup = 0;
1203 err = isr_setup_status_phase(ci);
1204 } else {
1205 goto delegate;
1206 }
1207 break;
1208 case USB_REQ_GET_STATUS:
1209 if ((type != (USB_DIR_IN|USB_RECIP_DEVICE) ||
1210 le16_to_cpu(req.wIndex) == OTG_STS_SELECTOR) &&
1211 type != (USB_DIR_IN|USB_RECIP_ENDPOINT) &&
1212 type != (USB_DIR_IN|USB_RECIP_INTERFACE))
1213 goto delegate;
1214 if (le16_to_cpu(req.wLength) != 2 ||
1215 le16_to_cpu(req.wValue) != 0)
1216 break;
1217 err = isr_get_status_response(ci, &req);
1218 break;
1219 case USB_REQ_SET_ADDRESS:
1220 if (type != (USB_DIR_OUT|USB_RECIP_DEVICE))
1221 goto delegate;
1222 if (le16_to_cpu(req.wLength) != 0 ||
1223 le16_to_cpu(req.wIndex) != 0)
1224 break;
1225 ci->address = (u8)le16_to_cpu(req.wValue);
1226 ci->setaddr = true;
1227 err = isr_setup_status_phase(ci);
1228 break;
1229 case USB_REQ_SET_FEATURE:
1230 if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) &&
1231 le16_to_cpu(req.wValue) ==
1232 USB_ENDPOINT_HALT) {
1233 if (req.wLength != 0)
1234 break;
1235 num = le16_to_cpu(req.wIndex);
1236 dir = (num & USB_ENDPOINT_DIR_MASK) ? TX : RX;
1237 num &= USB_ENDPOINT_NUMBER_MASK;
1238 if (dir == TX)
1239 num += ci->hw_ep_max / 2;
1240
1241 spin_unlock(&ci->lock);
1242 err = _ep_set_halt(&ci->ci_hw_ep[num].ep, 1, false);
1243 spin_lock(&ci->lock);
1244 if (!err)
1245 isr_setup_status_phase(ci);
1246 } else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE)) {
1247 if (req.wLength != 0)
1248 break;
1249 switch (le16_to_cpu(req.wValue)) {
1250 case USB_DEVICE_REMOTE_WAKEUP:
1251 ci->remote_wakeup = 1;
1252 err = isr_setup_status_phase(ci);
1253 break;
1254 case USB_DEVICE_TEST_MODE:
1255 tmode = le16_to_cpu(req.wIndex) >> 8;
1256 switch (tmode) {
1257 case USB_TEST_J:
1258 case USB_TEST_K:
1259 case USB_TEST_SE0_NAK:
1260 case USB_TEST_PACKET:
1261 case USB_TEST_FORCE_ENABLE:
1262 ci->test_mode = tmode;
1263 err = isr_setup_status_phase(
1264 ci);
1265 break;
1266 default:
1267 break;
1268 }
1269 break;
1270 case USB_DEVICE_B_HNP_ENABLE:
1271 if (ci_otg_is_fsm_mode(ci)) {
1272 ci->gadget.b_hnp_enable = 1;
1273 err = isr_setup_status_phase(
1274 ci);
1275 }
1276 break;
1277 case USB_DEVICE_A_ALT_HNP_SUPPORT:
1278 if (ci_otg_is_fsm_mode(ci))
1279 err = otg_a_alt_hnp_support(ci);
1280 break;
1281 case USB_DEVICE_A_HNP_SUPPORT:
1282 if (ci_otg_is_fsm_mode(ci)) {
1283 ci->gadget.a_hnp_support = 1;
1284 err = isr_setup_status_phase(
1285 ci);
1286 }
1287 break;
1288 default:
1289 goto delegate;
1290 }
1291 } else {
1292 goto delegate;
1293 }
1294 break;
1295 default:
1296 delegate:
1297 if (req.wLength == 0) /* no data phase */
1298 ci->ep0_dir = TX;
1299
1300 spin_unlock(&ci->lock);
1301 err = ci->driver->setup(&ci->gadget, &req);
1302 spin_lock(&ci->lock);
1303 break;
1304 }
1305
1306 if (err < 0) {
1307 spin_unlock(&ci->lock);
1308 if (_ep_set_halt(&hwep->ep, 1, false))
1309 dev_err(ci->dev, "error: _ep_set_halt\n");
1310 spin_lock(&ci->lock);
1311 }
1312 }
1313
1314 /**
1315 * isr_tr_complete_handler: transaction complete interrupt handler
1316 * @ci: UDC descriptor
1317 *
1318 * This function handles traffic events
1319 */
isr_tr_complete_handler(struct ci_hdrc * ci)1320 static void isr_tr_complete_handler(struct ci_hdrc *ci)
1321 __releases(ci->lock)
1322 __acquires(ci->lock)
1323 {
1324 unsigned i;
1325 int err;
1326
1327 for (i = 0; i < ci->hw_ep_max; i++) {
1328 struct ci_hw_ep *hwep = &ci->ci_hw_ep[i];
1329
1330 if (hwep->ep.desc == NULL)
1331 continue; /* not configured */
1332
1333 if (hw_test_and_clear_complete(ci, i)) {
1334 err = isr_tr_complete_low(hwep);
1335 if (hwep->type == USB_ENDPOINT_XFER_CONTROL) {
1336 if (err > 0) /* needs status phase */
1337 err = isr_setup_status_phase(ci);
1338 if (err < 0) {
1339 spin_unlock(&ci->lock);
1340 if (_ep_set_halt(&hwep->ep, 1, false))
1341 dev_err(ci->dev,
1342 "error: _ep_set_halt\n");
1343 spin_lock(&ci->lock);
1344 }
1345 }
1346 }
1347
1348 /* Only handle setup packet below */
1349 if (i == 0 &&
1350 hw_test_and_clear(ci, OP_ENDPTSETUPSTAT, BIT(0)))
1351 isr_setup_packet_handler(ci);
1352 }
1353 }
1354
1355 /******************************************************************************
1356 * ENDPT block
1357 *****************************************************************************/
1358 /*
1359 * ep_enable: configure endpoint, making it usable
1360 *
1361 * Check usb_ep_enable() at "usb_gadget.h" for details
1362 */
ep_enable(struct usb_ep * ep,const struct usb_endpoint_descriptor * desc)1363 static int ep_enable(struct usb_ep *ep,
1364 const struct usb_endpoint_descriptor *desc)
1365 {
1366 struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1367 int retval = 0;
1368 unsigned long flags;
1369 u32 cap = 0;
1370
1371 if (ep == NULL || desc == NULL)
1372 return -EINVAL;
1373
1374 spin_lock_irqsave(hwep->lock, flags);
1375
1376 /* only internal SW should enable ctrl endpts */
1377
1378 if (!list_empty(&hwep->qh.queue)) {
1379 dev_warn(hwep->ci->dev, "enabling a non-empty endpoint!\n");
1380 spin_unlock_irqrestore(hwep->lock, flags);
1381 return -EBUSY;
1382 }
1383
1384 hwep->ep.desc = desc;
1385
1386 hwep->dir = usb_endpoint_dir_in(desc) ? TX : RX;
1387 hwep->num = usb_endpoint_num(desc);
1388 hwep->type = usb_endpoint_type(desc);
1389
1390 hwep->ep.maxpacket = usb_endpoint_maxp(desc);
1391 hwep->ep.mult = usb_endpoint_maxp_mult(desc);
1392
1393 if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
1394 cap |= QH_IOS;
1395
1396 cap |= QH_ZLT;
1397 cap |= (hwep->ep.maxpacket << __ffs(QH_MAX_PKT)) & QH_MAX_PKT;
1398 /*
1399 * For ISO-TX, we set mult at QH as the largest value, and use
1400 * MultO at TD as real mult value.
1401 */
1402 if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == TX)
1403 cap |= 3 << __ffs(QH_MULT);
1404
1405 hwep->qh.ptr->cap = cpu_to_le32(cap);
1406
1407 hwep->qh.ptr->td.next |= cpu_to_le32(TD_TERMINATE); /* needed? */
1408
1409 if (hwep->num != 0 && hwep->type == USB_ENDPOINT_XFER_CONTROL) {
1410 dev_err(hwep->ci->dev, "Set control xfer at non-ep0\n");
1411 retval = -EINVAL;
1412 }
1413
1414 /*
1415 * Enable endpoints in the HW other than ep0 as ep0
1416 * is always enabled
1417 */
1418 if (hwep->num)
1419 retval |= hw_ep_enable(hwep->ci, hwep->num, hwep->dir,
1420 hwep->type);
1421
1422 spin_unlock_irqrestore(hwep->lock, flags);
1423 return retval;
1424 }
1425
1426 /*
1427 * ep_disable: endpoint is no longer usable
1428 *
1429 * Check usb_ep_disable() at "usb_gadget.h" for details
1430 */
ep_disable(struct usb_ep * ep)1431 static int ep_disable(struct usb_ep *ep)
1432 {
1433 struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1434 int direction, retval = 0;
1435 unsigned long flags;
1436
1437 if (ep == NULL)
1438 return -EINVAL;
1439 else if (hwep->ep.desc == NULL)
1440 return -EBUSY;
1441
1442 spin_lock_irqsave(hwep->lock, flags);
1443 if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) {
1444 spin_unlock_irqrestore(hwep->lock, flags);
1445 return 0;
1446 }
1447
1448 /* only internal SW should disable ctrl endpts */
1449
1450 direction = hwep->dir;
1451 do {
1452 retval |= _ep_nuke(hwep);
1453 retval |= hw_ep_disable(hwep->ci, hwep->num, hwep->dir);
1454
1455 if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
1456 hwep->dir = (hwep->dir == TX) ? RX : TX;
1457
1458 } while (hwep->dir != direction);
1459
1460 hwep->ep.desc = NULL;
1461
1462 spin_unlock_irqrestore(hwep->lock, flags);
1463 return retval;
1464 }
1465
1466 /*
1467 * ep_alloc_request: allocate a request object to use with this endpoint
1468 *
1469 * Check usb_ep_alloc_request() at "usb_gadget.h" for details
1470 */
ep_alloc_request(struct usb_ep * ep,gfp_t gfp_flags)1471 static struct usb_request *ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags)
1472 {
1473 struct ci_hw_req *hwreq;
1474
1475 if (ep == NULL)
1476 return NULL;
1477
1478 hwreq = kzalloc(sizeof(struct ci_hw_req), gfp_flags);
1479 if (hwreq != NULL) {
1480 INIT_LIST_HEAD(&hwreq->queue);
1481 INIT_LIST_HEAD(&hwreq->tds);
1482 }
1483
1484 return (hwreq == NULL) ? NULL : &hwreq->req;
1485 }
1486
1487 /*
1488 * ep_free_request: frees a request object
1489 *
1490 * Check usb_ep_free_request() at "usb_gadget.h" for details
1491 */
ep_free_request(struct usb_ep * ep,struct usb_request * req)1492 static void ep_free_request(struct usb_ep *ep, struct usb_request *req)
1493 {
1494 struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1495 struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
1496 struct td_node *node, *tmpnode;
1497 unsigned long flags;
1498
1499 if (ep == NULL || req == NULL) {
1500 return;
1501 } else if (!list_empty(&hwreq->queue)) {
1502 dev_err(hwep->ci->dev, "freeing queued request\n");
1503 return;
1504 }
1505
1506 spin_lock_irqsave(hwep->lock, flags);
1507
1508 list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
1509 dma_pool_free(hwep->td_pool, node->ptr, node->dma);
1510 list_del_init(&node->td);
1511 node->ptr = NULL;
1512 kfree(node);
1513 }
1514
1515 kfree(hwreq);
1516
1517 spin_unlock_irqrestore(hwep->lock, flags);
1518 }
1519
1520 /*
1521 * ep_queue: queues (submits) an I/O request to an endpoint
1522 *
1523 * Check usb_ep_queue()* at usb_gadget.h" for details
1524 */
ep_queue(struct usb_ep * ep,struct usb_request * req,gfp_t __maybe_unused gfp_flags)1525 static int ep_queue(struct usb_ep *ep, struct usb_request *req,
1526 gfp_t __maybe_unused gfp_flags)
1527 {
1528 struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1529 int retval = 0;
1530 unsigned long flags;
1531
1532 if (ep == NULL || req == NULL || hwep->ep.desc == NULL)
1533 return -EINVAL;
1534
1535 spin_lock_irqsave(hwep->lock, flags);
1536 if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) {
1537 spin_unlock_irqrestore(hwep->lock, flags);
1538 return 0;
1539 }
1540 retval = _ep_queue(ep, req, gfp_flags);
1541 spin_unlock_irqrestore(hwep->lock, flags);
1542 return retval;
1543 }
1544
1545 /*
1546 * ep_dequeue: dequeues (cancels, unlinks) an I/O request from an endpoint
1547 *
1548 * Check usb_ep_dequeue() at "usb_gadget.h" for details
1549 */
ep_dequeue(struct usb_ep * ep,struct usb_request * req)1550 static int ep_dequeue(struct usb_ep *ep, struct usb_request *req)
1551 {
1552 struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1553 struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
1554 unsigned long flags;
1555 struct td_node *node, *tmpnode;
1556
1557 if (ep == NULL || req == NULL || hwreq->req.status != -EALREADY ||
1558 hwep->ep.desc == NULL || list_empty(&hwreq->queue) ||
1559 list_empty(&hwep->qh.queue))
1560 return -EINVAL;
1561
1562 spin_lock_irqsave(hwep->lock, flags);
1563 if (hwep->ci->gadget.speed != USB_SPEED_UNKNOWN)
1564 hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
1565
1566 list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
1567 dma_pool_free(hwep->td_pool, node->ptr, node->dma);
1568 list_del(&node->td);
1569 kfree(node);
1570 }
1571
1572 /* pop request */
1573 list_del_init(&hwreq->queue);
1574
1575 usb_gadget_unmap_request(&hwep->ci->gadget, req, hwep->dir);
1576
1577 req->status = -ECONNRESET;
1578
1579 if (hwreq->req.complete != NULL) {
1580 spin_unlock(hwep->lock);
1581 usb_gadget_giveback_request(&hwep->ep, &hwreq->req);
1582 spin_lock(hwep->lock);
1583 }
1584
1585 spin_unlock_irqrestore(hwep->lock, flags);
1586 return 0;
1587 }
1588
1589 /*
1590 * ep_set_halt: sets the endpoint halt feature
1591 *
1592 * Check usb_ep_set_halt() at "usb_gadget.h" for details
1593 */
ep_set_halt(struct usb_ep * ep,int value)1594 static int ep_set_halt(struct usb_ep *ep, int value)
1595 {
1596 return _ep_set_halt(ep, value, true);
1597 }
1598
1599 /*
1600 * ep_set_wedge: sets the halt feature and ignores clear requests
1601 *
1602 * Check usb_ep_set_wedge() at "usb_gadget.h" for details
1603 */
ep_set_wedge(struct usb_ep * ep)1604 static int ep_set_wedge(struct usb_ep *ep)
1605 {
1606 struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1607 unsigned long flags;
1608
1609 if (ep == NULL || hwep->ep.desc == NULL)
1610 return -EINVAL;
1611
1612 spin_lock_irqsave(hwep->lock, flags);
1613 hwep->wedge = 1;
1614 spin_unlock_irqrestore(hwep->lock, flags);
1615
1616 return usb_ep_set_halt(ep);
1617 }
1618
1619 /*
1620 * ep_fifo_flush: flushes contents of a fifo
1621 *
1622 * Check usb_ep_fifo_flush() at "usb_gadget.h" for details
1623 */
ep_fifo_flush(struct usb_ep * ep)1624 static void ep_fifo_flush(struct usb_ep *ep)
1625 {
1626 struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1627 unsigned long flags;
1628
1629 if (ep == NULL) {
1630 dev_err(hwep->ci->dev, "%02X: -EINVAL\n", _usb_addr(hwep));
1631 return;
1632 }
1633
1634 spin_lock_irqsave(hwep->lock, flags);
1635 if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) {
1636 spin_unlock_irqrestore(hwep->lock, flags);
1637 return;
1638 }
1639
1640 hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
1641
1642 spin_unlock_irqrestore(hwep->lock, flags);
1643 }
1644
1645 /*
1646 * Endpoint-specific part of the API to the USB controller hardware
1647 * Check "usb_gadget.h" for details
1648 */
1649 static const struct usb_ep_ops usb_ep_ops = {
1650 .enable = ep_enable,
1651 .disable = ep_disable,
1652 .alloc_request = ep_alloc_request,
1653 .free_request = ep_free_request,
1654 .queue = ep_queue,
1655 .dequeue = ep_dequeue,
1656 .set_halt = ep_set_halt,
1657 .set_wedge = ep_set_wedge,
1658 .fifo_flush = ep_fifo_flush,
1659 };
1660
1661 /******************************************************************************
1662 * GADGET block
1663 *****************************************************************************/
1664
ci_udc_get_frame(struct usb_gadget * _gadget)1665 static int ci_udc_get_frame(struct usb_gadget *_gadget)
1666 {
1667 struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1668 unsigned long flags;
1669 int ret;
1670
1671 spin_lock_irqsave(&ci->lock, flags);
1672 ret = hw_read(ci, OP_FRINDEX, 0x3fff);
1673 spin_unlock_irqrestore(&ci->lock, flags);
1674 return ret >> 3;
1675 }
1676
1677 /*
1678 * ci_hdrc_gadget_connect: caller makes sure gadget driver is binded
1679 */
ci_hdrc_gadget_connect(struct usb_gadget * _gadget,int is_active)1680 static void ci_hdrc_gadget_connect(struct usb_gadget *_gadget, int is_active)
1681 {
1682 struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1683
1684 if (is_active) {
1685 pm_runtime_get_sync(ci->dev);
1686 hw_device_reset(ci);
1687 spin_lock_irq(&ci->lock);
1688 if (ci->driver) {
1689 hw_device_state(ci, ci->ep0out->qh.dma);
1690 usb_gadget_set_state(_gadget, USB_STATE_POWERED);
1691 spin_unlock_irq(&ci->lock);
1692 usb_udc_vbus_handler(_gadget, true);
1693 } else {
1694 spin_unlock_irq(&ci->lock);
1695 }
1696 } else {
1697 usb_udc_vbus_handler(_gadget, false);
1698 if (ci->driver)
1699 ci->driver->disconnect(&ci->gadget);
1700 hw_device_state(ci, 0);
1701 if (ci->platdata->notify_event)
1702 ci->platdata->notify_event(ci,
1703 CI_HDRC_CONTROLLER_STOPPED_EVENT);
1704 _gadget_stop_activity(&ci->gadget);
1705 pm_runtime_put_sync(ci->dev);
1706 usb_gadget_set_state(_gadget, USB_STATE_NOTATTACHED);
1707 }
1708 }
1709
ci_udc_vbus_session(struct usb_gadget * _gadget,int is_active)1710 static int ci_udc_vbus_session(struct usb_gadget *_gadget, int is_active)
1711 {
1712 struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1713 unsigned long flags;
1714 int ret = 0;
1715
1716 spin_lock_irqsave(&ci->lock, flags);
1717 ci->vbus_active = is_active;
1718 spin_unlock_irqrestore(&ci->lock, flags);
1719
1720 if (ci->usb_phy)
1721 usb_phy_set_charger_state(ci->usb_phy, is_active ?
1722 USB_CHARGER_PRESENT : USB_CHARGER_ABSENT);
1723
1724 if (ci->platdata->notify_event)
1725 ret = ci->platdata->notify_event(ci,
1726 CI_HDRC_CONTROLLER_VBUS_EVENT);
1727
1728 if (ci->usb_phy) {
1729 if (is_active)
1730 usb_phy_set_event(ci->usb_phy, USB_EVENT_VBUS);
1731 else
1732 usb_phy_set_event(ci->usb_phy, USB_EVENT_NONE);
1733 }
1734
1735 if (ci->driver)
1736 ci_hdrc_gadget_connect(_gadget, is_active);
1737
1738 return ret;
1739 }
1740
ci_udc_wakeup(struct usb_gadget * _gadget)1741 static int ci_udc_wakeup(struct usb_gadget *_gadget)
1742 {
1743 struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1744 unsigned long flags;
1745 int ret = 0;
1746
1747 spin_lock_irqsave(&ci->lock, flags);
1748 if (ci->gadget.speed == USB_SPEED_UNKNOWN) {
1749 spin_unlock_irqrestore(&ci->lock, flags);
1750 return 0;
1751 }
1752 if (!ci->remote_wakeup) {
1753 ret = -EOPNOTSUPP;
1754 goto out;
1755 }
1756 if (!hw_read(ci, OP_PORTSC, PORTSC_SUSP)) {
1757 ret = -EINVAL;
1758 goto out;
1759 }
1760 hw_write(ci, OP_PORTSC, PORTSC_FPR, PORTSC_FPR);
1761 out:
1762 spin_unlock_irqrestore(&ci->lock, flags);
1763 return ret;
1764 }
1765
ci_udc_vbus_draw(struct usb_gadget * _gadget,unsigned ma)1766 static int ci_udc_vbus_draw(struct usb_gadget *_gadget, unsigned ma)
1767 {
1768 struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1769
1770 if (ci->usb_phy)
1771 return usb_phy_set_power(ci->usb_phy, ma);
1772 return -ENOTSUPP;
1773 }
1774
ci_udc_selfpowered(struct usb_gadget * _gadget,int is_on)1775 static int ci_udc_selfpowered(struct usb_gadget *_gadget, int is_on)
1776 {
1777 struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1778 struct ci_hw_ep *hwep = ci->ep0in;
1779 unsigned long flags;
1780
1781 spin_lock_irqsave(hwep->lock, flags);
1782 _gadget->is_selfpowered = (is_on != 0);
1783 spin_unlock_irqrestore(hwep->lock, flags);
1784
1785 return 0;
1786 }
1787
1788 /* Change Data+ pullup status
1789 * this func is used by usb_gadget_connect/disconnect
1790 */
ci_udc_pullup(struct usb_gadget * _gadget,int is_on)1791 static int ci_udc_pullup(struct usb_gadget *_gadget, int is_on)
1792 {
1793 struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1794
1795 /*
1796 * Data+ pullup controlled by OTG state machine in OTG fsm mode;
1797 * and don't touch Data+ in host mode for dual role config.
1798 */
1799 if (ci_otg_is_fsm_mode(ci) || ci->role == CI_ROLE_HOST)
1800 return 0;
1801
1802 pm_runtime_get_sync(ci->dev);
1803 if (is_on)
1804 hw_write(ci, OP_USBCMD, USBCMD_RS, USBCMD_RS);
1805 else
1806 hw_write(ci, OP_USBCMD, USBCMD_RS, 0);
1807 pm_runtime_put_sync(ci->dev);
1808
1809 return 0;
1810 }
1811
1812 static int ci_udc_start(struct usb_gadget *gadget,
1813 struct usb_gadget_driver *driver);
1814 static int ci_udc_stop(struct usb_gadget *gadget);
1815
1816 /* Match ISOC IN from the highest endpoint */
ci_udc_match_ep(struct usb_gadget * gadget,struct usb_endpoint_descriptor * desc,struct usb_ss_ep_comp_descriptor * comp_desc)1817 static struct usb_ep *ci_udc_match_ep(struct usb_gadget *gadget,
1818 struct usb_endpoint_descriptor *desc,
1819 struct usb_ss_ep_comp_descriptor *comp_desc)
1820 {
1821 struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
1822 struct usb_ep *ep;
1823
1824 if (usb_endpoint_xfer_isoc(desc) && usb_endpoint_dir_in(desc)) {
1825 list_for_each_entry_reverse(ep, &ci->gadget.ep_list, ep_list) {
1826 if (ep->caps.dir_in && !ep->claimed)
1827 return ep;
1828 }
1829 }
1830
1831 return NULL;
1832 }
1833
1834 /*
1835 * Device operations part of the API to the USB controller hardware,
1836 * which don't involve endpoints (or i/o)
1837 * Check "usb_gadget.h" for details
1838 */
1839 static const struct usb_gadget_ops usb_gadget_ops = {
1840 .get_frame = ci_udc_get_frame,
1841 .vbus_session = ci_udc_vbus_session,
1842 .wakeup = ci_udc_wakeup,
1843 .set_selfpowered = ci_udc_selfpowered,
1844 .pullup = ci_udc_pullup,
1845 .vbus_draw = ci_udc_vbus_draw,
1846 .udc_start = ci_udc_start,
1847 .udc_stop = ci_udc_stop,
1848 .match_ep = ci_udc_match_ep,
1849 };
1850
init_eps(struct ci_hdrc * ci)1851 static int init_eps(struct ci_hdrc *ci)
1852 {
1853 int retval = 0, i, j;
1854
1855 for (i = 0; i < ci->hw_ep_max/2; i++)
1856 for (j = RX; j <= TX; j++) {
1857 int k = i + j * ci->hw_ep_max/2;
1858 struct ci_hw_ep *hwep = &ci->ci_hw_ep[k];
1859
1860 scnprintf(hwep->name, sizeof(hwep->name), "ep%i%s", i,
1861 (j == TX) ? "in" : "out");
1862
1863 hwep->ci = ci;
1864 hwep->lock = &ci->lock;
1865 hwep->td_pool = ci->td_pool;
1866
1867 hwep->ep.name = hwep->name;
1868 hwep->ep.ops = &usb_ep_ops;
1869
1870 if (i == 0) {
1871 hwep->ep.caps.type_control = true;
1872 } else {
1873 hwep->ep.caps.type_iso = true;
1874 hwep->ep.caps.type_bulk = true;
1875 hwep->ep.caps.type_int = true;
1876 }
1877
1878 if (j == TX)
1879 hwep->ep.caps.dir_in = true;
1880 else
1881 hwep->ep.caps.dir_out = true;
1882
1883 /*
1884 * for ep0: maxP defined in desc, for other
1885 * eps, maxP is set by epautoconfig() called
1886 * by gadget layer
1887 */
1888 usb_ep_set_maxpacket_limit(&hwep->ep, (unsigned short)~0);
1889
1890 INIT_LIST_HEAD(&hwep->qh.queue);
1891 hwep->qh.ptr = dma_pool_zalloc(ci->qh_pool, GFP_KERNEL,
1892 &hwep->qh.dma);
1893 if (hwep->qh.ptr == NULL)
1894 retval = -ENOMEM;
1895
1896 /*
1897 * set up shorthands for ep0 out and in endpoints,
1898 * don't add to gadget's ep_list
1899 */
1900 if (i == 0) {
1901 if (j == RX)
1902 ci->ep0out = hwep;
1903 else
1904 ci->ep0in = hwep;
1905
1906 usb_ep_set_maxpacket_limit(&hwep->ep, CTRL_PAYLOAD_MAX);
1907 continue;
1908 }
1909
1910 list_add_tail(&hwep->ep.ep_list, &ci->gadget.ep_list);
1911 }
1912
1913 return retval;
1914 }
1915
destroy_eps(struct ci_hdrc * ci)1916 static void destroy_eps(struct ci_hdrc *ci)
1917 {
1918 int i;
1919
1920 for (i = 0; i < ci->hw_ep_max; i++) {
1921 struct ci_hw_ep *hwep = &ci->ci_hw_ep[i];
1922
1923 if (hwep->pending_td)
1924 free_pending_td(hwep);
1925 dma_pool_free(ci->qh_pool, hwep->qh.ptr, hwep->qh.dma);
1926 }
1927 }
1928
1929 /**
1930 * ci_udc_start: register a gadget driver
1931 * @gadget: our gadget
1932 * @driver: the driver being registered
1933 *
1934 * Interrupts are enabled here.
1935 */
ci_udc_start(struct usb_gadget * gadget,struct usb_gadget_driver * driver)1936 static int ci_udc_start(struct usb_gadget *gadget,
1937 struct usb_gadget_driver *driver)
1938 {
1939 struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
1940 int retval;
1941
1942 if (driver->disconnect == NULL)
1943 return -EINVAL;
1944
1945 ci->ep0out->ep.desc = &ctrl_endpt_out_desc;
1946 retval = usb_ep_enable(&ci->ep0out->ep);
1947 if (retval)
1948 return retval;
1949
1950 ci->ep0in->ep.desc = &ctrl_endpt_in_desc;
1951 retval = usb_ep_enable(&ci->ep0in->ep);
1952 if (retval)
1953 return retval;
1954
1955 ci->driver = driver;
1956
1957 /* Start otg fsm for B-device */
1958 if (ci_otg_is_fsm_mode(ci) && ci->fsm.id) {
1959 ci_hdrc_otg_fsm_start(ci);
1960 return retval;
1961 }
1962
1963 if (ci->vbus_active)
1964 ci_hdrc_gadget_connect(gadget, 1);
1965 else
1966 usb_udc_vbus_handler(&ci->gadget, false);
1967
1968 return retval;
1969 }
1970
ci_udc_stop_for_otg_fsm(struct ci_hdrc * ci)1971 static void ci_udc_stop_for_otg_fsm(struct ci_hdrc *ci)
1972 {
1973 if (!ci_otg_is_fsm_mode(ci))
1974 return;
1975
1976 mutex_lock(&ci->fsm.lock);
1977 if (ci->fsm.otg->state == OTG_STATE_A_PERIPHERAL) {
1978 ci->fsm.a_bidl_adis_tmout = 1;
1979 ci_hdrc_otg_fsm_start(ci);
1980 } else if (ci->fsm.otg->state == OTG_STATE_B_PERIPHERAL) {
1981 ci->fsm.protocol = PROTO_UNDEF;
1982 ci->fsm.otg->state = OTG_STATE_UNDEFINED;
1983 }
1984 mutex_unlock(&ci->fsm.lock);
1985 }
1986
1987 /*
1988 * ci_udc_stop: unregister a gadget driver
1989 */
ci_udc_stop(struct usb_gadget * gadget)1990 static int ci_udc_stop(struct usb_gadget *gadget)
1991 {
1992 struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
1993 unsigned long flags;
1994
1995 spin_lock_irqsave(&ci->lock, flags);
1996 ci->driver = NULL;
1997
1998 if (ci->vbus_active) {
1999 hw_device_state(ci, 0);
2000 spin_unlock_irqrestore(&ci->lock, flags);
2001 if (ci->platdata->notify_event)
2002 ci->platdata->notify_event(ci,
2003 CI_HDRC_CONTROLLER_STOPPED_EVENT);
2004 _gadget_stop_activity(&ci->gadget);
2005 spin_lock_irqsave(&ci->lock, flags);
2006 pm_runtime_put(ci->dev);
2007 }
2008
2009 spin_unlock_irqrestore(&ci->lock, flags);
2010
2011 ci_udc_stop_for_otg_fsm(ci);
2012 return 0;
2013 }
2014
2015 /******************************************************************************
2016 * BUS block
2017 *****************************************************************************/
2018 /*
2019 * udc_irq: ci interrupt handler
2020 *
2021 * This function returns IRQ_HANDLED if the IRQ has been handled
2022 * It locks access to registers
2023 */
udc_irq(struct ci_hdrc * ci)2024 static irqreturn_t udc_irq(struct ci_hdrc *ci)
2025 {
2026 irqreturn_t retval;
2027 u32 intr;
2028
2029 if (ci == NULL)
2030 return IRQ_HANDLED;
2031
2032 spin_lock(&ci->lock);
2033
2034 if (ci->platdata->flags & CI_HDRC_REGS_SHARED) {
2035 if (hw_read(ci, OP_USBMODE, USBMODE_CM) !=
2036 USBMODE_CM_DC) {
2037 spin_unlock(&ci->lock);
2038 return IRQ_NONE;
2039 }
2040 }
2041 intr = hw_test_and_clear_intr_active(ci);
2042
2043 if (intr) {
2044 /* order defines priority - do NOT change it */
2045 if (USBi_URI & intr)
2046 isr_reset_handler(ci);
2047
2048 if (USBi_PCI & intr) {
2049 ci->gadget.speed = hw_port_is_high_speed(ci) ?
2050 USB_SPEED_HIGH : USB_SPEED_FULL;
2051 if (ci->usb_phy)
2052 usb_phy_set_event(ci->usb_phy,
2053 USB_EVENT_ENUMERATED);
2054 if (ci->suspended) {
2055 if (ci->driver->resume) {
2056 spin_unlock(&ci->lock);
2057 ci->driver->resume(&ci->gadget);
2058 spin_lock(&ci->lock);
2059 }
2060 ci->suspended = 0;
2061 usb_gadget_set_state(&ci->gadget,
2062 ci->resume_state);
2063 }
2064 }
2065
2066 if (USBi_UI & intr)
2067 isr_tr_complete_handler(ci);
2068
2069 if ((USBi_SLI & intr) && !(ci->suspended)) {
2070 ci->suspended = 1;
2071 ci->resume_state = ci->gadget.state;
2072 if (ci->gadget.speed != USB_SPEED_UNKNOWN &&
2073 ci->driver->suspend) {
2074 spin_unlock(&ci->lock);
2075 ci->driver->suspend(&ci->gadget);
2076 spin_lock(&ci->lock);
2077 }
2078 usb_gadget_set_state(&ci->gadget,
2079 USB_STATE_SUSPENDED);
2080 }
2081 retval = IRQ_HANDLED;
2082 } else {
2083 retval = IRQ_NONE;
2084 }
2085 spin_unlock(&ci->lock);
2086
2087 return retval;
2088 }
2089
2090 /**
2091 * udc_start: initialize gadget role
2092 * @ci: chipidea controller
2093 */
udc_start(struct ci_hdrc * ci)2094 static int udc_start(struct ci_hdrc *ci)
2095 {
2096 struct device *dev = ci->dev;
2097 struct usb_otg_caps *otg_caps = &ci->platdata->ci_otg_caps;
2098 int retval = 0;
2099
2100 ci->gadget.ops = &usb_gadget_ops;
2101 ci->gadget.speed = USB_SPEED_UNKNOWN;
2102 ci->gadget.max_speed = USB_SPEED_HIGH;
2103 ci->gadget.name = ci->platdata->name;
2104 ci->gadget.otg_caps = otg_caps;
2105 ci->gadget.sg_supported = 1;
2106 ci->gadget.irq = ci->irq;
2107
2108 if (ci->platdata->flags & CI_HDRC_REQUIRES_ALIGNED_DMA)
2109 ci->gadget.quirk_avoids_skb_reserve = 1;
2110
2111 if (ci->is_otg && (otg_caps->hnp_support || otg_caps->srp_support ||
2112 otg_caps->adp_support))
2113 ci->gadget.is_otg = 1;
2114
2115 INIT_LIST_HEAD(&ci->gadget.ep_list);
2116
2117 /* alloc resources */
2118 ci->qh_pool = dma_pool_create("ci_hw_qh", dev->parent,
2119 sizeof(struct ci_hw_qh),
2120 64, CI_HDRC_PAGE_SIZE);
2121 if (ci->qh_pool == NULL)
2122 return -ENOMEM;
2123
2124 ci->td_pool = dma_pool_create("ci_hw_td", dev->parent,
2125 sizeof(struct ci_hw_td),
2126 64, CI_HDRC_PAGE_SIZE);
2127 if (ci->td_pool == NULL) {
2128 retval = -ENOMEM;
2129 goto free_qh_pool;
2130 }
2131
2132 retval = init_eps(ci);
2133 if (retval)
2134 goto free_pools;
2135
2136 ci->gadget.ep0 = &ci->ep0in->ep;
2137
2138 retval = usb_add_gadget_udc(dev, &ci->gadget);
2139 if (retval)
2140 goto destroy_eps;
2141
2142 return retval;
2143
2144 destroy_eps:
2145 destroy_eps(ci);
2146 free_pools:
2147 dma_pool_destroy(ci->td_pool);
2148 free_qh_pool:
2149 dma_pool_destroy(ci->qh_pool);
2150 return retval;
2151 }
2152
2153 /*
2154 * ci_hdrc_gadget_destroy: parent remove must call this to remove UDC
2155 *
2156 * No interrupts active, the IRQ has been released
2157 */
ci_hdrc_gadget_destroy(struct ci_hdrc * ci)2158 void ci_hdrc_gadget_destroy(struct ci_hdrc *ci)
2159 {
2160 if (!ci->roles[CI_ROLE_GADGET])
2161 return;
2162
2163 usb_del_gadget_udc(&ci->gadget);
2164
2165 destroy_eps(ci);
2166
2167 dma_pool_destroy(ci->td_pool);
2168 dma_pool_destroy(ci->qh_pool);
2169 }
2170
udc_id_switch_for_device(struct ci_hdrc * ci)2171 static int udc_id_switch_for_device(struct ci_hdrc *ci)
2172 {
2173 if (ci->platdata->pins_device)
2174 pinctrl_select_state(ci->platdata->pctl,
2175 ci->platdata->pins_device);
2176
2177 if (ci->is_otg)
2178 /* Clear and enable BSV irq */
2179 hw_write_otgsc(ci, OTGSC_BSVIS | OTGSC_BSVIE,
2180 OTGSC_BSVIS | OTGSC_BSVIE);
2181
2182 return 0;
2183 }
2184
udc_id_switch_for_host(struct ci_hdrc * ci)2185 static void udc_id_switch_for_host(struct ci_hdrc *ci)
2186 {
2187 /*
2188 * host doesn't care B_SESSION_VALID event
2189 * so clear and disable BSV irq
2190 */
2191 if (ci->is_otg)
2192 hw_write_otgsc(ci, OTGSC_BSVIE | OTGSC_BSVIS, OTGSC_BSVIS);
2193
2194 ci->vbus_active = 0;
2195
2196 if (ci->platdata->pins_device && ci->platdata->pins_default)
2197 pinctrl_select_state(ci->platdata->pctl,
2198 ci->platdata->pins_default);
2199 }
2200
2201 #ifdef CONFIG_PM_SLEEP
udc_suspend(struct ci_hdrc * ci)2202 static void udc_suspend(struct ci_hdrc *ci)
2203 {
2204 /*
2205 * Set OP_ENDPTLISTADDR to be non-zero for
2206 * checking if controller resume from power lost
2207 * in non-host mode.
2208 */
2209 if (hw_read(ci, OP_ENDPTLISTADDR, ~0) == 0)
2210 hw_write(ci, OP_ENDPTLISTADDR, ~0, ~0);
2211 }
2212
udc_resume(struct ci_hdrc * ci,bool power_lost)2213 static void udc_resume(struct ci_hdrc *ci, bool power_lost)
2214 {
2215 if (power_lost) {
2216 if (ci->is_otg)
2217 hw_write_otgsc(ci, OTGSC_BSVIS | OTGSC_BSVIE,
2218 OTGSC_BSVIS | OTGSC_BSVIE);
2219 if (ci->vbus_active)
2220 usb_gadget_vbus_disconnect(&ci->gadget);
2221 }
2222
2223 /* Restore value 0 if it was set for power lost check */
2224 if (hw_read(ci, OP_ENDPTLISTADDR, ~0) == 0xFFFFFFFF)
2225 hw_write(ci, OP_ENDPTLISTADDR, ~0, 0);
2226 }
2227 #endif
2228
2229 /**
2230 * ci_hdrc_gadget_init - initialize device related bits
2231 * @ci: the controller
2232 *
2233 * This function initializes the gadget, if the device is "device capable".
2234 */
ci_hdrc_gadget_init(struct ci_hdrc * ci)2235 int ci_hdrc_gadget_init(struct ci_hdrc *ci)
2236 {
2237 struct ci_role_driver *rdrv;
2238 int ret;
2239
2240 if (!hw_read(ci, CAP_DCCPARAMS, DCCPARAMS_DC))
2241 return -ENXIO;
2242
2243 rdrv = devm_kzalloc(ci->dev, sizeof(*rdrv), GFP_KERNEL);
2244 if (!rdrv)
2245 return -ENOMEM;
2246
2247 rdrv->start = udc_id_switch_for_device;
2248 rdrv->stop = udc_id_switch_for_host;
2249 #ifdef CONFIG_PM_SLEEP
2250 rdrv->suspend = udc_suspend;
2251 rdrv->resume = udc_resume;
2252 #endif
2253 rdrv->irq = udc_irq;
2254 rdrv->name = "gadget";
2255
2256 ret = udc_start(ci);
2257 if (!ret)
2258 ci->roles[CI_ROLE_GADGET] = rdrv;
2259
2260 return ret;
2261 }
2262