xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_cs.c (revision dfd4b508c8c6106083698a0dd5e35aecc7c48725)
1 /*
2  * Copyright 2008 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  *
24  * Authors:
25  *    Jerome Glisse <glisse@freedesktop.org>
26  */
27 
28 #include <linux/file.h>
29 #include <linux/pagemap.h>
30 #include <linux/sync_file.h>
31 #include <linux/dma-buf.h>
32 
33 #include <drm/amdgpu_drm.h>
34 #include <drm/drm_syncobj.h>
35 #include <drm/ttm/ttm_tt.h>
36 
37 #include "amdgpu_cs.h"
38 #include "amdgpu.h"
39 #include "amdgpu_trace.h"
40 #include "amdgpu_gmc.h"
41 #include "amdgpu_gem.h"
42 #include "amdgpu_ras.h"
43 
amdgpu_cs_parser_init(struct amdgpu_cs_parser * p,struct amdgpu_device * adev,struct drm_file * filp,union drm_amdgpu_cs * cs)44 static int amdgpu_cs_parser_init(struct amdgpu_cs_parser *p,
45 				 struct amdgpu_device *adev,
46 				 struct drm_file *filp,
47 				 union drm_amdgpu_cs *cs)
48 {
49 	struct amdgpu_fpriv *fpriv = filp->driver_priv;
50 
51 	if (cs->in.num_chunks == 0)
52 		return -EINVAL;
53 
54 	memset(p, 0, sizeof(*p));
55 	p->adev = adev;
56 	p->filp = filp;
57 
58 	p->ctx = amdgpu_ctx_get(fpriv, cs->in.ctx_id);
59 	if (!p->ctx)
60 		return -EINVAL;
61 
62 	if (atomic_read(&p->ctx->guilty)) {
63 		amdgpu_ctx_put(p->ctx);
64 		return -ECANCELED;
65 	}
66 
67 	amdgpu_sync_create(&p->sync);
68 	drm_exec_init(&p->exec, DRM_EXEC_INTERRUPTIBLE_WAIT |
69 		      DRM_EXEC_IGNORE_DUPLICATES, 0);
70 	return 0;
71 }
72 
amdgpu_cs_job_idx(struct amdgpu_cs_parser * p,struct drm_amdgpu_cs_chunk_ib * chunk_ib)73 static int amdgpu_cs_job_idx(struct amdgpu_cs_parser *p,
74 			     struct drm_amdgpu_cs_chunk_ib *chunk_ib)
75 {
76 	struct drm_sched_entity *entity;
77 	unsigned int i;
78 	int r;
79 
80 	r = amdgpu_ctx_get_entity(p->ctx, chunk_ib->ip_type,
81 				  chunk_ib->ip_instance,
82 				  chunk_ib->ring, &entity);
83 	if (r)
84 		return r;
85 
86 	/*
87 	 * Abort if there is no run queue associated with this entity.
88 	 * Possibly because of disabled HW IP.
89 	 */
90 	if (entity->rq == NULL)
91 		return -EINVAL;
92 
93 	/* Check if we can add this IB to some existing job */
94 	for (i = 0; i < p->gang_size; ++i)
95 		if (p->entities[i] == entity)
96 			return i;
97 
98 	/* If not increase the gang size if possible */
99 	if (i == AMDGPU_CS_GANG_SIZE)
100 		return -EINVAL;
101 
102 	p->entities[i] = entity;
103 	p->gang_size = i + 1;
104 	return i;
105 }
106 
amdgpu_cs_p1_ib(struct amdgpu_cs_parser * p,struct drm_amdgpu_cs_chunk_ib * chunk_ib,unsigned int * num_ibs)107 static int amdgpu_cs_p1_ib(struct amdgpu_cs_parser *p,
108 			   struct drm_amdgpu_cs_chunk_ib *chunk_ib,
109 			   unsigned int *num_ibs)
110 {
111 	int r;
112 
113 	r = amdgpu_cs_job_idx(p, chunk_ib);
114 	if (r < 0)
115 		return r;
116 
117 	if (num_ibs[r] >= amdgpu_ring_max_ibs(chunk_ib->ip_type))
118 		return -EINVAL;
119 
120 	++(num_ibs[r]);
121 	p->gang_leader_idx = r;
122 	return 0;
123 }
124 
amdgpu_cs_p1_user_fence(struct amdgpu_cs_parser * p,struct drm_amdgpu_cs_chunk_fence * data,uint32_t * offset)125 static int amdgpu_cs_p1_user_fence(struct amdgpu_cs_parser *p,
126 				   struct drm_amdgpu_cs_chunk_fence *data,
127 				   uint32_t *offset)
128 {
129 	struct drm_gem_object *gobj;
130 	unsigned long size;
131 
132 	gobj = drm_gem_object_lookup(p->filp, data->handle);
133 	if (gobj == NULL)
134 		return -EINVAL;
135 
136 	p->uf_bo = amdgpu_bo_ref(gem_to_amdgpu_bo(gobj));
137 	drm_gem_object_put(gobj);
138 
139 	size = amdgpu_bo_size(p->uf_bo);
140 	if (size != PAGE_SIZE || data->offset > (size - 8))
141 		return -EINVAL;
142 
143 	if (amdgpu_ttm_tt_get_usermm(p->uf_bo->tbo.ttm))
144 		return -EINVAL;
145 
146 	*offset = data->offset;
147 	return 0;
148 }
149 
amdgpu_cs_p1_bo_handles(struct amdgpu_cs_parser * p,struct drm_amdgpu_bo_list_in * data)150 static int amdgpu_cs_p1_bo_handles(struct amdgpu_cs_parser *p,
151 				   struct drm_amdgpu_bo_list_in *data)
152 {
153 	struct drm_amdgpu_bo_list_entry *info;
154 	int r;
155 
156 	r = amdgpu_bo_create_list_entry_array(data, &info);
157 	if (r)
158 		return r;
159 
160 	r = amdgpu_bo_list_create(p->adev, p->filp, info, data->bo_number,
161 				  &p->bo_list);
162 	if (r)
163 		goto error_free;
164 
165 	kvfree(info);
166 	return 0;
167 
168 error_free:
169 	kvfree(info);
170 
171 	return r;
172 }
173 
174 /* Copy the data from userspace and go over it the first time */
amdgpu_cs_pass1(struct amdgpu_cs_parser * p,union drm_amdgpu_cs * cs)175 static int amdgpu_cs_pass1(struct amdgpu_cs_parser *p,
176 			   union drm_amdgpu_cs *cs)
177 {
178 	struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
179 	unsigned int num_ibs[AMDGPU_CS_GANG_SIZE] = { };
180 	struct amdgpu_vm *vm = &fpriv->vm;
181 	uint64_t *chunk_array_user;
182 	uint64_t *chunk_array;
183 	uint32_t uf_offset = 0;
184 	size_t size;
185 	int ret;
186 	int i;
187 
188 	chunk_array = kvmalloc_array(cs->in.num_chunks, sizeof(uint64_t),
189 				     GFP_KERNEL);
190 	if (!chunk_array)
191 		return -ENOMEM;
192 
193 	/* get chunks */
194 	chunk_array_user = u64_to_user_ptr(cs->in.chunks);
195 	if (copy_from_user(chunk_array, chunk_array_user,
196 			   sizeof(uint64_t)*cs->in.num_chunks)) {
197 		ret = -EFAULT;
198 		goto free_chunk;
199 	}
200 
201 	p->nchunks = cs->in.num_chunks;
202 	p->chunks = kvmalloc_array(p->nchunks, sizeof(struct amdgpu_cs_chunk),
203 			    GFP_KERNEL);
204 	if (!p->chunks) {
205 		ret = -ENOMEM;
206 		goto free_chunk;
207 	}
208 
209 	for (i = 0; i < p->nchunks; i++) {
210 		struct drm_amdgpu_cs_chunk __user *chunk_ptr = NULL;
211 		struct drm_amdgpu_cs_chunk user_chunk;
212 		uint32_t __user *cdata;
213 
214 		chunk_ptr = u64_to_user_ptr(chunk_array[i]);
215 		if (copy_from_user(&user_chunk, chunk_ptr,
216 				       sizeof(struct drm_amdgpu_cs_chunk))) {
217 			ret = -EFAULT;
218 			i--;
219 			goto free_partial_kdata;
220 		}
221 		p->chunks[i].chunk_id = user_chunk.chunk_id;
222 		p->chunks[i].length_dw = user_chunk.length_dw;
223 
224 		size = p->chunks[i].length_dw;
225 		cdata = u64_to_user_ptr(user_chunk.chunk_data);
226 
227 		p->chunks[i].kdata = kvmalloc_array(size, sizeof(uint32_t),
228 						    GFP_KERNEL);
229 		if (p->chunks[i].kdata == NULL) {
230 			ret = -ENOMEM;
231 			i--;
232 			goto free_partial_kdata;
233 		}
234 		size *= sizeof(uint32_t);
235 		if (copy_from_user(p->chunks[i].kdata, cdata, size)) {
236 			ret = -EFAULT;
237 			goto free_partial_kdata;
238 		}
239 
240 		/* Assume the worst on the following checks */
241 		ret = -EINVAL;
242 		switch (p->chunks[i].chunk_id) {
243 		case AMDGPU_CHUNK_ID_IB:
244 			if (size < sizeof(struct drm_amdgpu_cs_chunk_ib))
245 				goto free_partial_kdata;
246 
247 			ret = amdgpu_cs_p1_ib(p, p->chunks[i].kdata, num_ibs);
248 			if (ret)
249 				goto free_partial_kdata;
250 			break;
251 
252 		case AMDGPU_CHUNK_ID_FENCE:
253 			if (size < sizeof(struct drm_amdgpu_cs_chunk_fence))
254 				goto free_partial_kdata;
255 
256 			ret = amdgpu_cs_p1_user_fence(p, p->chunks[i].kdata,
257 						      &uf_offset);
258 			if (ret)
259 				goto free_partial_kdata;
260 			break;
261 
262 		case AMDGPU_CHUNK_ID_BO_HANDLES:
263 			if (size < sizeof(struct drm_amdgpu_bo_list_in))
264 				goto free_partial_kdata;
265 
266 			/* Only a single BO list is allowed to simplify handling. */
267 			if (p->bo_list)
268 				goto free_partial_kdata;
269 
270 			ret = amdgpu_cs_p1_bo_handles(p, p->chunks[i].kdata);
271 			if (ret)
272 				goto free_partial_kdata;
273 			break;
274 
275 		case AMDGPU_CHUNK_ID_DEPENDENCIES:
276 		case AMDGPU_CHUNK_ID_SYNCOBJ_IN:
277 		case AMDGPU_CHUNK_ID_SYNCOBJ_OUT:
278 		case AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES:
279 		case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT:
280 		case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL:
281 		case AMDGPU_CHUNK_ID_CP_GFX_SHADOW:
282 			break;
283 
284 		default:
285 			goto free_partial_kdata;
286 		}
287 	}
288 
289 	if (!p->gang_size) {
290 		ret = -EINVAL;
291 		goto free_all_kdata;
292 	}
293 
294 	for (i = 0; i < p->gang_size; ++i) {
295 		ret = amdgpu_job_alloc(p->adev, vm, p->entities[i], vm,
296 				       num_ibs[i], &p->jobs[i],
297 				       p->filp->client_id);
298 		if (ret)
299 			goto free_all_kdata;
300 		switch (p->adev->enforce_isolation[fpriv->xcp_id]) {
301 		case AMDGPU_ENFORCE_ISOLATION_DISABLE:
302 		default:
303 			p->jobs[i]->enforce_isolation = false;
304 			p->jobs[i]->run_cleaner_shader = false;
305 			break;
306 		case AMDGPU_ENFORCE_ISOLATION_ENABLE:
307 			p->jobs[i]->enforce_isolation = true;
308 			p->jobs[i]->run_cleaner_shader = true;
309 			break;
310 		case AMDGPU_ENFORCE_ISOLATION_ENABLE_LEGACY:
311 			p->jobs[i]->enforce_isolation = true;
312 			p->jobs[i]->run_cleaner_shader = false;
313 			break;
314 		case AMDGPU_ENFORCE_ISOLATION_NO_CLEANER_SHADER:
315 			p->jobs[i]->enforce_isolation = true;
316 			p->jobs[i]->run_cleaner_shader = false;
317 			break;
318 		}
319 	}
320 	p->gang_leader = p->jobs[p->gang_leader_idx];
321 
322 	if (p->ctx->generation != p->gang_leader->generation) {
323 		ret = -ECANCELED;
324 		goto free_all_kdata;
325 	}
326 
327 	if (p->uf_bo)
328 		p->gang_leader->uf_addr = uf_offset;
329 	kvfree(chunk_array);
330 
331 	/* Use this opportunity to fill in task info for the vm */
332 	amdgpu_vm_set_task_info(vm);
333 
334 	return 0;
335 
336 free_all_kdata:
337 	i = p->nchunks - 1;
338 free_partial_kdata:
339 	for (; i >= 0; i--)
340 		kvfree(p->chunks[i].kdata);
341 	kvfree(p->chunks);
342 	p->chunks = NULL;
343 	p->nchunks = 0;
344 free_chunk:
345 	kvfree(chunk_array);
346 
347 	return ret;
348 }
349 
amdgpu_cs_p2_ib(struct amdgpu_cs_parser * p,struct amdgpu_cs_chunk * chunk,unsigned int * ce_preempt,unsigned int * de_preempt)350 static int amdgpu_cs_p2_ib(struct amdgpu_cs_parser *p,
351 			   struct amdgpu_cs_chunk *chunk,
352 			   unsigned int *ce_preempt,
353 			   unsigned int *de_preempt)
354 {
355 	struct drm_amdgpu_cs_chunk_ib *chunk_ib = chunk->kdata;
356 	struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
357 	struct amdgpu_vm *vm = &fpriv->vm;
358 	struct amdgpu_ring *ring;
359 	struct amdgpu_job *job;
360 	struct amdgpu_ib *ib;
361 	int r;
362 
363 	r = amdgpu_cs_job_idx(p, chunk_ib);
364 	if (r < 0)
365 		return r;
366 
367 	job = p->jobs[r];
368 	ring = amdgpu_job_ring(job);
369 	ib = &job->ibs[job->num_ibs++];
370 
371 	/* submissions to kernel queues are disabled */
372 	if (ring->no_user_submission)
373 		return -EINVAL;
374 
375 	/* MM engine doesn't support user fences */
376 	if (p->uf_bo && ring->funcs->no_user_fence)
377 		return -EINVAL;
378 
379 	if (chunk_ib->ip_type == AMDGPU_HW_IP_GFX &&
380 	    chunk_ib->flags & AMDGPU_IB_FLAG_PREEMPT) {
381 		if (chunk_ib->flags & AMDGPU_IB_FLAG_CE)
382 			(*ce_preempt)++;
383 		else
384 			(*de_preempt)++;
385 
386 		/* Each GFX command submit allows only 1 IB max
387 		 * preemptible for CE & DE */
388 		if (*ce_preempt > 1 || *de_preempt > 1)
389 			return -EINVAL;
390 	}
391 
392 	if (chunk_ib->flags & AMDGPU_IB_FLAG_PREAMBLE)
393 		job->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT;
394 
395 	r =  amdgpu_ib_get(p->adev, vm, ring->funcs->parse_cs ?
396 			   chunk_ib->ib_bytes : 0,
397 			   AMDGPU_IB_POOL_DELAYED, ib);
398 	if (r) {
399 		DRM_ERROR("Failed to get ib !\n");
400 		return r;
401 	}
402 
403 	ib->gpu_addr = chunk_ib->va_start;
404 	ib->length_dw = chunk_ib->ib_bytes / 4;
405 	ib->flags = chunk_ib->flags;
406 	return 0;
407 }
408 
amdgpu_cs_p2_dependencies(struct amdgpu_cs_parser * p,struct amdgpu_cs_chunk * chunk)409 static int amdgpu_cs_p2_dependencies(struct amdgpu_cs_parser *p,
410 				     struct amdgpu_cs_chunk *chunk)
411 {
412 	struct drm_amdgpu_cs_chunk_dep *deps = chunk->kdata;
413 	struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
414 	unsigned int num_deps;
415 	int i, r;
416 
417 	num_deps = chunk->length_dw * 4 /
418 		sizeof(struct drm_amdgpu_cs_chunk_dep);
419 
420 	for (i = 0; i < num_deps; ++i) {
421 		struct amdgpu_ctx *ctx;
422 		struct drm_sched_entity *entity;
423 		struct dma_fence *fence;
424 
425 		ctx = amdgpu_ctx_get(fpriv, deps[i].ctx_id);
426 		if (ctx == NULL)
427 			return -EINVAL;
428 
429 		r = amdgpu_ctx_get_entity(ctx, deps[i].ip_type,
430 					  deps[i].ip_instance,
431 					  deps[i].ring, &entity);
432 		if (r) {
433 			amdgpu_ctx_put(ctx);
434 			return r;
435 		}
436 
437 		fence = amdgpu_ctx_get_fence(ctx, entity, deps[i].handle);
438 		amdgpu_ctx_put(ctx);
439 
440 		if (IS_ERR(fence))
441 			return PTR_ERR(fence);
442 		else if (!fence)
443 			continue;
444 
445 		if (chunk->chunk_id == AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES) {
446 			struct drm_sched_fence *s_fence;
447 			struct dma_fence *old = fence;
448 
449 			s_fence = to_drm_sched_fence(fence);
450 			fence = dma_fence_get(&s_fence->scheduled);
451 			dma_fence_put(old);
452 		}
453 
454 		r = amdgpu_sync_fence(&p->sync, fence, GFP_KERNEL);
455 		dma_fence_put(fence);
456 		if (r)
457 			return r;
458 	}
459 	return 0;
460 }
461 
amdgpu_syncobj_lookup_and_add(struct amdgpu_cs_parser * p,uint32_t handle,u64 point,u64 flags)462 static int amdgpu_syncobj_lookup_and_add(struct amdgpu_cs_parser *p,
463 					 uint32_t handle, u64 point,
464 					 u64 flags)
465 {
466 	struct dma_fence *fence;
467 	int r;
468 
469 	r = drm_syncobj_find_fence(p->filp, handle, point, flags, &fence);
470 	if (r) {
471 		DRM_ERROR("syncobj %u failed to find fence @ %llu (%d)!\n",
472 			  handle, point, r);
473 		return r;
474 	}
475 
476 	r = amdgpu_sync_fence(&p->sync, fence, GFP_KERNEL);
477 	dma_fence_put(fence);
478 	return r;
479 }
480 
amdgpu_cs_p2_syncobj_in(struct amdgpu_cs_parser * p,struct amdgpu_cs_chunk * chunk)481 static int amdgpu_cs_p2_syncobj_in(struct amdgpu_cs_parser *p,
482 				   struct amdgpu_cs_chunk *chunk)
483 {
484 	struct drm_amdgpu_cs_chunk_sem *deps = chunk->kdata;
485 	unsigned int num_deps;
486 	int i, r;
487 
488 	num_deps = chunk->length_dw * 4 /
489 		sizeof(struct drm_amdgpu_cs_chunk_sem);
490 	for (i = 0; i < num_deps; ++i) {
491 		r = amdgpu_syncobj_lookup_and_add(p, deps[i].handle, 0, 0);
492 		if (r)
493 			return r;
494 	}
495 
496 	return 0;
497 }
498 
amdgpu_cs_p2_syncobj_timeline_wait(struct amdgpu_cs_parser * p,struct amdgpu_cs_chunk * chunk)499 static int amdgpu_cs_p2_syncobj_timeline_wait(struct amdgpu_cs_parser *p,
500 					      struct amdgpu_cs_chunk *chunk)
501 {
502 	struct drm_amdgpu_cs_chunk_syncobj *syncobj_deps = chunk->kdata;
503 	unsigned int num_deps;
504 	int i, r;
505 
506 	num_deps = chunk->length_dw * 4 /
507 		sizeof(struct drm_amdgpu_cs_chunk_syncobj);
508 	for (i = 0; i < num_deps; ++i) {
509 		r = amdgpu_syncobj_lookup_and_add(p, syncobj_deps[i].handle,
510 						  syncobj_deps[i].point,
511 						  syncobj_deps[i].flags);
512 		if (r)
513 			return r;
514 	}
515 
516 	return 0;
517 }
518 
amdgpu_cs_p2_syncobj_out(struct amdgpu_cs_parser * p,struct amdgpu_cs_chunk * chunk)519 static int amdgpu_cs_p2_syncobj_out(struct amdgpu_cs_parser *p,
520 				    struct amdgpu_cs_chunk *chunk)
521 {
522 	struct drm_amdgpu_cs_chunk_sem *deps = chunk->kdata;
523 	unsigned int num_deps;
524 	int i;
525 
526 	num_deps = chunk->length_dw * 4 /
527 		sizeof(struct drm_amdgpu_cs_chunk_sem);
528 
529 	if (p->post_deps)
530 		return -EINVAL;
531 
532 	p->post_deps = kmalloc_array(num_deps, sizeof(*p->post_deps),
533 				     GFP_KERNEL);
534 	p->num_post_deps = 0;
535 
536 	if (!p->post_deps)
537 		return -ENOMEM;
538 
539 
540 	for (i = 0; i < num_deps; ++i) {
541 		p->post_deps[i].syncobj =
542 			drm_syncobj_find(p->filp, deps[i].handle);
543 		if (!p->post_deps[i].syncobj)
544 			return -EINVAL;
545 		p->post_deps[i].chain = NULL;
546 		p->post_deps[i].point = 0;
547 		p->num_post_deps++;
548 	}
549 
550 	return 0;
551 }
552 
amdgpu_cs_p2_syncobj_timeline_signal(struct amdgpu_cs_parser * p,struct amdgpu_cs_chunk * chunk)553 static int amdgpu_cs_p2_syncobj_timeline_signal(struct amdgpu_cs_parser *p,
554 						struct amdgpu_cs_chunk *chunk)
555 {
556 	struct drm_amdgpu_cs_chunk_syncobj *syncobj_deps = chunk->kdata;
557 	unsigned int num_deps;
558 	int i;
559 
560 	num_deps = chunk->length_dw * 4 /
561 		sizeof(struct drm_amdgpu_cs_chunk_syncobj);
562 
563 	if (p->post_deps)
564 		return -EINVAL;
565 
566 	p->post_deps = kmalloc_array(num_deps, sizeof(*p->post_deps),
567 				     GFP_KERNEL);
568 	p->num_post_deps = 0;
569 
570 	if (!p->post_deps)
571 		return -ENOMEM;
572 
573 	for (i = 0; i < num_deps; ++i) {
574 		struct amdgpu_cs_post_dep *dep = &p->post_deps[i];
575 
576 		dep->chain = NULL;
577 		if (syncobj_deps[i].point) {
578 			dep->chain = dma_fence_chain_alloc();
579 			if (!dep->chain)
580 				return -ENOMEM;
581 		}
582 
583 		dep->syncobj = drm_syncobj_find(p->filp,
584 						syncobj_deps[i].handle);
585 		if (!dep->syncobj) {
586 			dma_fence_chain_free(dep->chain);
587 			return -EINVAL;
588 		}
589 		dep->point = syncobj_deps[i].point;
590 		p->num_post_deps++;
591 	}
592 
593 	return 0;
594 }
595 
amdgpu_cs_p2_shadow(struct amdgpu_cs_parser * p,struct amdgpu_cs_chunk * chunk)596 static int amdgpu_cs_p2_shadow(struct amdgpu_cs_parser *p,
597 			       struct amdgpu_cs_chunk *chunk)
598 {
599 	struct drm_amdgpu_cs_chunk_cp_gfx_shadow *shadow = chunk->kdata;
600 	int i;
601 
602 	if (shadow->flags & ~AMDGPU_CS_CHUNK_CP_GFX_SHADOW_FLAGS_INIT_SHADOW)
603 		return -EINVAL;
604 
605 	for (i = 0; i < p->gang_size; ++i) {
606 		p->jobs[i]->shadow_va = shadow->shadow_va;
607 		p->jobs[i]->csa_va = shadow->csa_va;
608 		p->jobs[i]->gds_va = shadow->gds_va;
609 		p->jobs[i]->init_shadow =
610 			shadow->flags & AMDGPU_CS_CHUNK_CP_GFX_SHADOW_FLAGS_INIT_SHADOW;
611 	}
612 
613 	return 0;
614 }
615 
amdgpu_cs_pass2(struct amdgpu_cs_parser * p)616 static int amdgpu_cs_pass2(struct amdgpu_cs_parser *p)
617 {
618 	unsigned int ce_preempt = 0, de_preempt = 0;
619 	int i, r;
620 
621 	for (i = 0; i < p->nchunks; ++i) {
622 		struct amdgpu_cs_chunk *chunk;
623 
624 		chunk = &p->chunks[i];
625 
626 		switch (chunk->chunk_id) {
627 		case AMDGPU_CHUNK_ID_IB:
628 			r = amdgpu_cs_p2_ib(p, chunk, &ce_preempt, &de_preempt);
629 			if (r)
630 				return r;
631 			break;
632 		case AMDGPU_CHUNK_ID_DEPENDENCIES:
633 		case AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES:
634 			r = amdgpu_cs_p2_dependencies(p, chunk);
635 			if (r)
636 				return r;
637 			break;
638 		case AMDGPU_CHUNK_ID_SYNCOBJ_IN:
639 			r = amdgpu_cs_p2_syncobj_in(p, chunk);
640 			if (r)
641 				return r;
642 			break;
643 		case AMDGPU_CHUNK_ID_SYNCOBJ_OUT:
644 			r = amdgpu_cs_p2_syncobj_out(p, chunk);
645 			if (r)
646 				return r;
647 			break;
648 		case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT:
649 			r = amdgpu_cs_p2_syncobj_timeline_wait(p, chunk);
650 			if (r)
651 				return r;
652 			break;
653 		case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL:
654 			r = amdgpu_cs_p2_syncobj_timeline_signal(p, chunk);
655 			if (r)
656 				return r;
657 			break;
658 		case AMDGPU_CHUNK_ID_CP_GFX_SHADOW:
659 			r = amdgpu_cs_p2_shadow(p, chunk);
660 			if (r)
661 				return r;
662 			break;
663 		}
664 	}
665 
666 	return 0;
667 }
668 
669 /* Convert microseconds to bytes. */
us_to_bytes(struct amdgpu_device * adev,s64 us)670 static u64 us_to_bytes(struct amdgpu_device *adev, s64 us)
671 {
672 	if (us <= 0 || !adev->mm_stats.log2_max_MBps)
673 		return 0;
674 
675 	/* Since accum_us is incremented by a million per second, just
676 	 * multiply it by the number of MB/s to get the number of bytes.
677 	 */
678 	return us << adev->mm_stats.log2_max_MBps;
679 }
680 
bytes_to_us(struct amdgpu_device * adev,u64 bytes)681 static s64 bytes_to_us(struct amdgpu_device *adev, u64 bytes)
682 {
683 	if (!adev->mm_stats.log2_max_MBps)
684 		return 0;
685 
686 	return bytes >> adev->mm_stats.log2_max_MBps;
687 }
688 
689 /* Returns how many bytes TTM can move right now. If no bytes can be moved,
690  * it returns 0. If it returns non-zero, it's OK to move at least one buffer,
691  * which means it can go over the threshold once. If that happens, the driver
692  * will be in debt and no other buffer migrations can be done until that debt
693  * is repaid.
694  *
695  * This approach allows moving a buffer of any size (it's important to allow
696  * that).
697  *
698  * The currency is simply time in microseconds and it increases as the clock
699  * ticks. The accumulated microseconds (us) are converted to bytes and
700  * returned.
701  */
amdgpu_cs_get_threshold_for_moves(struct amdgpu_device * adev,u64 * max_bytes,u64 * max_vis_bytes)702 static void amdgpu_cs_get_threshold_for_moves(struct amdgpu_device *adev,
703 					      u64 *max_bytes,
704 					      u64 *max_vis_bytes)
705 {
706 	s64 time_us, increment_us;
707 	u64 free_vram, total_vram, used_vram;
708 	/* Allow a maximum of 200 accumulated ms. This is basically per-IB
709 	 * throttling.
710 	 *
711 	 * It means that in order to get full max MBps, at least 5 IBs per
712 	 * second must be submitted and not more than 200ms apart from each
713 	 * other.
714 	 */
715 	const s64 us_upper_bound = 200000;
716 
717 	if (!adev->mm_stats.log2_max_MBps) {
718 		*max_bytes = 0;
719 		*max_vis_bytes = 0;
720 		return;
721 	}
722 
723 	total_vram = adev->gmc.real_vram_size - atomic64_read(&adev->vram_pin_size);
724 	used_vram = ttm_resource_manager_usage(&adev->mman.vram_mgr.manager);
725 	free_vram = used_vram >= total_vram ? 0 : total_vram - used_vram;
726 
727 	spin_lock(&adev->mm_stats.lock);
728 
729 	/* Increase the amount of accumulated us. */
730 	time_us = ktime_to_us(ktime_get());
731 	increment_us = time_us - adev->mm_stats.last_update_us;
732 	adev->mm_stats.last_update_us = time_us;
733 	adev->mm_stats.accum_us = min(adev->mm_stats.accum_us + increment_us,
734 				      us_upper_bound);
735 
736 	/* This prevents the short period of low performance when the VRAM
737 	 * usage is low and the driver is in debt or doesn't have enough
738 	 * accumulated us to fill VRAM quickly.
739 	 *
740 	 * The situation can occur in these cases:
741 	 * - a lot of VRAM is freed by userspace
742 	 * - the presence of a big buffer causes a lot of evictions
743 	 *   (solution: split buffers into smaller ones)
744 	 *
745 	 * If 128 MB or 1/8th of VRAM is free, start filling it now by setting
746 	 * accum_us to a positive number.
747 	 */
748 	if (free_vram >= 128 * 1024 * 1024 || free_vram >= total_vram / 8) {
749 		s64 min_us;
750 
751 		/* Be more aggressive on dGPUs. Try to fill a portion of free
752 		 * VRAM now.
753 		 */
754 		if (!(adev->flags & AMD_IS_APU))
755 			min_us = bytes_to_us(adev, free_vram / 4);
756 		else
757 			min_us = 0; /* Reset accum_us on APUs. */
758 
759 		adev->mm_stats.accum_us = max(min_us, adev->mm_stats.accum_us);
760 	}
761 
762 	/* This is set to 0 if the driver is in debt to disallow (optional)
763 	 * buffer moves.
764 	 */
765 	*max_bytes = us_to_bytes(adev, adev->mm_stats.accum_us);
766 
767 	/* Do the same for visible VRAM if half of it is free */
768 	if (!amdgpu_gmc_vram_full_visible(&adev->gmc)) {
769 		u64 total_vis_vram = adev->gmc.visible_vram_size;
770 		u64 used_vis_vram =
771 		  amdgpu_vram_mgr_vis_usage(&adev->mman.vram_mgr);
772 
773 		if (used_vis_vram < total_vis_vram) {
774 			u64 free_vis_vram = total_vis_vram - used_vis_vram;
775 
776 			adev->mm_stats.accum_us_vis = min(adev->mm_stats.accum_us_vis +
777 							  increment_us, us_upper_bound);
778 
779 			if (free_vis_vram >= total_vis_vram / 2)
780 				adev->mm_stats.accum_us_vis =
781 					max(bytes_to_us(adev, free_vis_vram / 2),
782 					    adev->mm_stats.accum_us_vis);
783 		}
784 
785 		*max_vis_bytes = us_to_bytes(adev, adev->mm_stats.accum_us_vis);
786 	} else {
787 		*max_vis_bytes = 0;
788 	}
789 
790 	spin_unlock(&adev->mm_stats.lock);
791 }
792 
793 /* Report how many bytes have really been moved for the last command
794  * submission. This can result in a debt that can stop buffer migrations
795  * temporarily.
796  */
amdgpu_cs_report_moved_bytes(struct amdgpu_device * adev,u64 num_bytes,u64 num_vis_bytes)797 void amdgpu_cs_report_moved_bytes(struct amdgpu_device *adev, u64 num_bytes,
798 				  u64 num_vis_bytes)
799 {
800 	spin_lock(&adev->mm_stats.lock);
801 	adev->mm_stats.accum_us -= bytes_to_us(adev, num_bytes);
802 	adev->mm_stats.accum_us_vis -= bytes_to_us(adev, num_vis_bytes);
803 	spin_unlock(&adev->mm_stats.lock);
804 }
805 
amdgpu_cs_bo_validate(void * param,struct amdgpu_bo * bo)806 static int amdgpu_cs_bo_validate(void *param, struct amdgpu_bo *bo)
807 {
808 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
809 	struct amdgpu_cs_parser *p = param;
810 	struct ttm_operation_ctx ctx = {
811 		.interruptible = true,
812 		.no_wait_gpu = false,
813 		.resv = bo->tbo.base.resv
814 	};
815 	uint32_t domain;
816 	int r;
817 
818 	if (bo->tbo.pin_count)
819 		return 0;
820 
821 	/* Don't move this buffer if we have depleted our allowance
822 	 * to move it. Don't move anything if the threshold is zero.
823 	 */
824 	if (p->bytes_moved < p->bytes_moved_threshold &&
825 	    (!bo->tbo.base.dma_buf ||
826 	    list_empty(&bo->tbo.base.dma_buf->attachments))) {
827 		if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
828 		    (bo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED)) {
829 			/* And don't move a CPU_ACCESS_REQUIRED BO to limited
830 			 * visible VRAM if we've depleted our allowance to do
831 			 * that.
832 			 */
833 			if (p->bytes_moved_vis < p->bytes_moved_vis_threshold)
834 				domain = bo->preferred_domains;
835 			else
836 				domain = bo->allowed_domains;
837 		} else {
838 			domain = bo->preferred_domains;
839 		}
840 	} else {
841 		domain = bo->allowed_domains;
842 	}
843 
844 retry:
845 	amdgpu_bo_placement_from_domain(bo, domain);
846 	r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
847 
848 	p->bytes_moved += ctx.bytes_moved;
849 	if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
850 	    amdgpu_res_cpu_visible(adev, bo->tbo.resource))
851 		p->bytes_moved_vis += ctx.bytes_moved;
852 
853 	if (unlikely(r == -ENOMEM) && domain != bo->allowed_domains) {
854 		domain = bo->allowed_domains;
855 		goto retry;
856 	}
857 
858 	return r;
859 }
860 
amdgpu_cs_parser_bos(struct amdgpu_cs_parser * p,union drm_amdgpu_cs * cs)861 static int amdgpu_cs_parser_bos(struct amdgpu_cs_parser *p,
862 				union drm_amdgpu_cs *cs)
863 {
864 	struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
865 	struct ttm_operation_ctx ctx = { true, false };
866 	struct amdgpu_vm *vm = &fpriv->vm;
867 	struct amdgpu_bo_list_entry *e;
868 	struct drm_gem_object *obj;
869 	unsigned long index;
870 	unsigned int i;
871 	int r;
872 
873 	/* p->bo_list could already be assigned if AMDGPU_CHUNK_ID_BO_HANDLES is present */
874 	if (cs->in.bo_list_handle) {
875 		if (p->bo_list)
876 			return -EINVAL;
877 
878 		r = amdgpu_bo_list_get(fpriv, cs->in.bo_list_handle,
879 				       &p->bo_list);
880 		if (r)
881 			return r;
882 	} else if (!p->bo_list) {
883 		/* Create a empty bo_list when no handle is provided */
884 		r = amdgpu_bo_list_create(p->adev, p->filp, NULL, 0,
885 					  &p->bo_list);
886 		if (r)
887 			return r;
888 	}
889 
890 	mutex_lock(&p->bo_list->bo_list_mutex);
891 
892 	/* Get userptr backing pages. If pages are updated after registered
893 	 * in amdgpu_gem_userptr_ioctl(), amdgpu_cs_list_validate() will do
894 	 * amdgpu_ttm_backend_bind() to flush and invalidate new pages
895 	 */
896 	amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) {
897 		bool userpage_invalidated = false;
898 		struct amdgpu_bo *bo = e->bo;
899 		int i;
900 
901 		e->user_pages = kvcalloc(bo->tbo.ttm->num_pages,
902 					 sizeof(struct page *),
903 					 GFP_KERNEL);
904 		if (!e->user_pages) {
905 			DRM_ERROR("kvmalloc_array failure\n");
906 			r = -ENOMEM;
907 			goto out_free_user_pages;
908 		}
909 
910 		r = amdgpu_ttm_tt_get_user_pages(bo, e->user_pages, &e->range);
911 		if (r) {
912 			kvfree(e->user_pages);
913 			e->user_pages = NULL;
914 			goto out_free_user_pages;
915 		}
916 
917 		for (i = 0; i < bo->tbo.ttm->num_pages; i++) {
918 			if (bo->tbo.ttm->pages[i] != e->user_pages[i]) {
919 				userpage_invalidated = true;
920 				break;
921 			}
922 		}
923 		e->user_invalidated = userpage_invalidated;
924 	}
925 
926 	drm_exec_until_all_locked(&p->exec) {
927 		r = amdgpu_vm_lock_pd(&fpriv->vm, &p->exec, 1 + p->gang_size);
928 		drm_exec_retry_on_contention(&p->exec);
929 		if (unlikely(r))
930 			goto out_free_user_pages;
931 
932 		amdgpu_bo_list_for_each_entry(e, p->bo_list) {
933 			/* One fence for TTM and one for each CS job */
934 			r = drm_exec_prepare_obj(&p->exec, &e->bo->tbo.base,
935 						 1 + p->gang_size);
936 			drm_exec_retry_on_contention(&p->exec);
937 			if (unlikely(r))
938 				goto out_free_user_pages;
939 
940 			e->bo_va = amdgpu_vm_bo_find(vm, e->bo);
941 		}
942 
943 		if (p->uf_bo) {
944 			r = drm_exec_prepare_obj(&p->exec, &p->uf_bo->tbo.base,
945 						 1 + p->gang_size);
946 			drm_exec_retry_on_contention(&p->exec);
947 			if (unlikely(r))
948 				goto out_free_user_pages;
949 		}
950 	}
951 
952 	amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) {
953 		struct mm_struct *usermm;
954 
955 		usermm = amdgpu_ttm_tt_get_usermm(e->bo->tbo.ttm);
956 		if (usermm && usermm != current->mm) {
957 			r = -EPERM;
958 			goto out_free_user_pages;
959 		}
960 
961 		if (amdgpu_ttm_tt_is_userptr(e->bo->tbo.ttm) &&
962 		    e->user_invalidated && e->user_pages) {
963 			amdgpu_bo_placement_from_domain(e->bo,
964 							AMDGPU_GEM_DOMAIN_CPU);
965 			r = ttm_bo_validate(&e->bo->tbo, &e->bo->placement,
966 					    &ctx);
967 			if (r)
968 				goto out_free_user_pages;
969 
970 			amdgpu_ttm_tt_set_user_pages(e->bo->tbo.ttm,
971 						     e->user_pages);
972 		}
973 
974 		kvfree(e->user_pages);
975 		e->user_pages = NULL;
976 	}
977 
978 	amdgpu_cs_get_threshold_for_moves(p->adev, &p->bytes_moved_threshold,
979 					  &p->bytes_moved_vis_threshold);
980 	p->bytes_moved = 0;
981 	p->bytes_moved_vis = 0;
982 
983 	r = amdgpu_vm_validate(p->adev, &fpriv->vm, NULL,
984 			       amdgpu_cs_bo_validate, p);
985 	if (r) {
986 		DRM_ERROR("amdgpu_vm_validate() failed.\n");
987 		goto out_free_user_pages;
988 	}
989 
990 	drm_exec_for_each_locked_object(&p->exec, index, obj) {
991 		r = amdgpu_cs_bo_validate(p, gem_to_amdgpu_bo(obj));
992 		if (unlikely(r))
993 			goto out_free_user_pages;
994 	}
995 
996 	if (p->uf_bo) {
997 		r = amdgpu_ttm_alloc_gart(&p->uf_bo->tbo);
998 		if (unlikely(r))
999 			goto out_free_user_pages;
1000 
1001 		p->gang_leader->uf_addr += amdgpu_bo_gpu_offset(p->uf_bo);
1002 	}
1003 
1004 	amdgpu_cs_report_moved_bytes(p->adev, p->bytes_moved,
1005 				     p->bytes_moved_vis);
1006 
1007 	for (i = 0; i < p->gang_size; ++i)
1008 		amdgpu_job_set_resources(p->jobs[i], p->bo_list->gds_obj,
1009 					 p->bo_list->gws_obj,
1010 					 p->bo_list->oa_obj);
1011 	return 0;
1012 
1013 out_free_user_pages:
1014 	amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) {
1015 		struct amdgpu_bo *bo = e->bo;
1016 
1017 		if (!e->user_pages)
1018 			continue;
1019 		amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm, e->range);
1020 		kvfree(e->user_pages);
1021 		e->user_pages = NULL;
1022 		e->range = NULL;
1023 	}
1024 	mutex_unlock(&p->bo_list->bo_list_mutex);
1025 	return r;
1026 }
1027 
trace_amdgpu_cs_ibs(struct amdgpu_cs_parser * p)1028 static void trace_amdgpu_cs_ibs(struct amdgpu_cs_parser *p)
1029 {
1030 	int i, j;
1031 
1032 	if (!trace_amdgpu_cs_enabled())
1033 		return;
1034 
1035 	for (i = 0; i < p->gang_size; ++i) {
1036 		struct amdgpu_job *job = p->jobs[i];
1037 
1038 		for (j = 0; j < job->num_ibs; ++j)
1039 			trace_amdgpu_cs(p, job, &job->ibs[j]);
1040 	}
1041 }
1042 
amdgpu_cs_patch_ibs(struct amdgpu_cs_parser * p,struct amdgpu_job * job)1043 static int amdgpu_cs_patch_ibs(struct amdgpu_cs_parser *p,
1044 			       struct amdgpu_job *job)
1045 {
1046 	struct amdgpu_ring *ring = amdgpu_job_ring(job);
1047 	unsigned int i;
1048 	int r;
1049 
1050 	/* Only for UVD/VCE VM emulation */
1051 	if (!ring->funcs->parse_cs && !ring->funcs->patch_cs_in_place)
1052 		return 0;
1053 
1054 	for (i = 0; i < job->num_ibs; ++i) {
1055 		struct amdgpu_ib *ib = &job->ibs[i];
1056 		struct amdgpu_bo_va_mapping *m;
1057 		struct amdgpu_bo *aobj;
1058 		uint64_t va_start;
1059 		uint8_t *kptr;
1060 
1061 		va_start = ib->gpu_addr & AMDGPU_GMC_HOLE_MASK;
1062 		r = amdgpu_cs_find_mapping(p, va_start, &aobj, &m);
1063 		if (r) {
1064 			DRM_ERROR("IB va_start is invalid\n");
1065 			return r;
1066 		}
1067 
1068 		if ((va_start + ib->length_dw * 4) >
1069 		    (m->last + 1) * AMDGPU_GPU_PAGE_SIZE) {
1070 			DRM_ERROR("IB va_start+ib_bytes is invalid\n");
1071 			return -EINVAL;
1072 		}
1073 
1074 		/* the IB should be reserved at this point */
1075 		r = amdgpu_bo_kmap(aobj, (void **)&kptr);
1076 		if (r)
1077 			return r;
1078 
1079 		kptr += va_start - (m->start * AMDGPU_GPU_PAGE_SIZE);
1080 
1081 		if (ring->funcs->parse_cs) {
1082 			memcpy(ib->ptr, kptr, ib->length_dw * 4);
1083 			amdgpu_bo_kunmap(aobj);
1084 
1085 			r = amdgpu_ring_parse_cs(ring, p, job, ib);
1086 			if (r)
1087 				return r;
1088 
1089 			if (ib->sa_bo)
1090 				ib->gpu_addr =  amdgpu_sa_bo_gpu_addr(ib->sa_bo);
1091 		} else {
1092 			ib->ptr = (uint32_t *)kptr;
1093 			r = amdgpu_ring_patch_cs_in_place(ring, p, job, ib);
1094 			amdgpu_bo_kunmap(aobj);
1095 			if (r)
1096 				return r;
1097 		}
1098 	}
1099 
1100 	return 0;
1101 }
1102 
amdgpu_cs_patch_jobs(struct amdgpu_cs_parser * p)1103 static int amdgpu_cs_patch_jobs(struct amdgpu_cs_parser *p)
1104 {
1105 	unsigned int i;
1106 	int r;
1107 
1108 	for (i = 0; i < p->gang_size; ++i) {
1109 		r = amdgpu_cs_patch_ibs(p, p->jobs[i]);
1110 		if (r)
1111 			return r;
1112 	}
1113 	return 0;
1114 }
1115 
amdgpu_cs_vm_handling(struct amdgpu_cs_parser * p)1116 static int amdgpu_cs_vm_handling(struct amdgpu_cs_parser *p)
1117 {
1118 	struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
1119 	struct amdgpu_job *job = p->gang_leader;
1120 	struct amdgpu_device *adev = p->adev;
1121 	struct amdgpu_vm *vm = &fpriv->vm;
1122 	struct amdgpu_bo_list_entry *e;
1123 	struct amdgpu_bo_va *bo_va;
1124 	unsigned int i;
1125 	int r;
1126 
1127 	/*
1128 	 * We can't use gang submit on with reserved VMIDs when the VM changes
1129 	 * can't be invalidated by more than one engine at the same time.
1130 	 */
1131 	if (p->gang_size > 1 && !adev->vm_manager.concurrent_flush) {
1132 		for (i = 0; i < p->gang_size; ++i) {
1133 			struct drm_sched_entity *entity = p->entities[i];
1134 			struct drm_gpu_scheduler *sched = entity->rq->sched;
1135 			struct amdgpu_ring *ring = to_amdgpu_ring(sched);
1136 
1137 			if (amdgpu_vmid_uses_reserved(vm, ring->vm_hub))
1138 				return -EINVAL;
1139 		}
1140 	}
1141 
1142 	if (!amdgpu_vm_ready(vm))
1143 		return -EINVAL;
1144 
1145 	r = amdgpu_vm_clear_freed(adev, vm, NULL);
1146 	if (r)
1147 		return r;
1148 
1149 	r = amdgpu_vm_bo_update(adev, fpriv->prt_va, false);
1150 	if (r)
1151 		return r;
1152 
1153 	r = amdgpu_sync_fence(&p->sync, fpriv->prt_va->last_pt_update,
1154 			      GFP_KERNEL);
1155 	if (r)
1156 		return r;
1157 
1158 	if (fpriv->csa_va) {
1159 		bo_va = fpriv->csa_va;
1160 		BUG_ON(!bo_va);
1161 		r = amdgpu_vm_bo_update(adev, bo_va, false);
1162 		if (r)
1163 			return r;
1164 
1165 		r = amdgpu_sync_fence(&p->sync, bo_va->last_pt_update,
1166 				      GFP_KERNEL);
1167 		if (r)
1168 			return r;
1169 	}
1170 
1171 	/* FIXME: In theory this loop shouldn't be needed any more when
1172 	 * amdgpu_vm_handle_moved handles all moved BOs that are reserved
1173 	 * with p->ticket. But removing it caused test regressions, so I'm
1174 	 * leaving it here for now.
1175 	 */
1176 	amdgpu_bo_list_for_each_entry(e, p->bo_list) {
1177 		bo_va = e->bo_va;
1178 		if (bo_va == NULL)
1179 			continue;
1180 
1181 		r = amdgpu_vm_bo_update(adev, bo_va, false);
1182 		if (r)
1183 			return r;
1184 
1185 		r = amdgpu_sync_fence(&p->sync, bo_va->last_pt_update,
1186 				      GFP_KERNEL);
1187 		if (r)
1188 			return r;
1189 	}
1190 
1191 	r = amdgpu_vm_handle_moved(adev, vm, &p->exec.ticket);
1192 	if (r)
1193 		return r;
1194 
1195 	r = amdgpu_vm_update_pdes(adev, vm, false);
1196 	if (r)
1197 		return r;
1198 
1199 	r = amdgpu_sync_fence(&p->sync, vm->last_update, GFP_KERNEL);
1200 	if (r)
1201 		return r;
1202 
1203 	for (i = 0; i < p->gang_size; ++i) {
1204 		job = p->jobs[i];
1205 
1206 		if (!job->vm)
1207 			continue;
1208 
1209 		job->vm_pd_addr = amdgpu_gmc_pd_addr(vm->root.bo);
1210 	}
1211 
1212 	if (adev->debug_vm) {
1213 		/* Invalidate all BOs to test for userspace bugs */
1214 		amdgpu_bo_list_for_each_entry(e, p->bo_list) {
1215 			struct amdgpu_bo *bo = e->bo;
1216 
1217 			/* ignore duplicates */
1218 			if (!bo)
1219 				continue;
1220 
1221 			amdgpu_vm_bo_invalidate(bo, false);
1222 		}
1223 	}
1224 
1225 	return 0;
1226 }
1227 
amdgpu_cs_sync_rings(struct amdgpu_cs_parser * p)1228 static int amdgpu_cs_sync_rings(struct amdgpu_cs_parser *p)
1229 {
1230 	struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
1231 	struct drm_gpu_scheduler *sched;
1232 	struct drm_gem_object *obj;
1233 	struct dma_fence *fence;
1234 	unsigned long index;
1235 	unsigned int i;
1236 	int r;
1237 
1238 	r = amdgpu_ctx_wait_prev_fence(p->ctx, p->entities[p->gang_leader_idx]);
1239 	if (r) {
1240 		if (r != -ERESTARTSYS)
1241 			DRM_ERROR("amdgpu_ctx_wait_prev_fence failed.\n");
1242 		return r;
1243 	}
1244 
1245 	drm_exec_for_each_locked_object(&p->exec, index, obj) {
1246 		struct amdgpu_bo *bo = gem_to_amdgpu_bo(obj);
1247 
1248 		struct dma_resv *resv = bo->tbo.base.resv;
1249 		enum amdgpu_sync_mode sync_mode;
1250 
1251 		sync_mode = amdgpu_bo_explicit_sync(bo) ?
1252 			AMDGPU_SYNC_EXPLICIT : AMDGPU_SYNC_NE_OWNER;
1253 		r = amdgpu_sync_resv(p->adev, &p->sync, resv, sync_mode,
1254 				     &fpriv->vm);
1255 		if (r)
1256 			return r;
1257 	}
1258 
1259 	for (i = 0; i < p->gang_size; ++i) {
1260 		r = amdgpu_sync_push_to_job(&p->sync, p->jobs[i]);
1261 		if (r)
1262 			return r;
1263 	}
1264 
1265 	sched = p->gang_leader->base.entity->rq->sched;
1266 	while ((fence = amdgpu_sync_get_fence(&p->sync))) {
1267 		struct drm_sched_fence *s_fence = to_drm_sched_fence(fence);
1268 
1269 		/*
1270 		 * When we have an dependency it might be necessary to insert a
1271 		 * pipeline sync to make sure that all caches etc are flushed and the
1272 		 * next job actually sees the results from the previous one
1273 		 * before we start executing on the same scheduler ring.
1274 		 */
1275 		if (!s_fence || s_fence->sched != sched) {
1276 			dma_fence_put(fence);
1277 			continue;
1278 		}
1279 
1280 		r = amdgpu_sync_fence(&p->gang_leader->explicit_sync, fence,
1281 				      GFP_KERNEL);
1282 		dma_fence_put(fence);
1283 		if (r)
1284 			return r;
1285 	}
1286 	return 0;
1287 }
1288 
amdgpu_cs_post_dependencies(struct amdgpu_cs_parser * p)1289 static void amdgpu_cs_post_dependencies(struct amdgpu_cs_parser *p)
1290 {
1291 	int i;
1292 
1293 	for (i = 0; i < p->num_post_deps; ++i) {
1294 		if (p->post_deps[i].chain && p->post_deps[i].point) {
1295 			drm_syncobj_add_point(p->post_deps[i].syncobj,
1296 					      p->post_deps[i].chain,
1297 					      p->fence, p->post_deps[i].point);
1298 			p->post_deps[i].chain = NULL;
1299 		} else {
1300 			drm_syncobj_replace_fence(p->post_deps[i].syncobj,
1301 						  p->fence);
1302 		}
1303 	}
1304 }
1305 
amdgpu_cs_submit(struct amdgpu_cs_parser * p,union drm_amdgpu_cs * cs)1306 static int amdgpu_cs_submit(struct amdgpu_cs_parser *p,
1307 			    union drm_amdgpu_cs *cs)
1308 {
1309 	struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
1310 	struct amdgpu_job *leader = p->gang_leader;
1311 	struct amdgpu_bo_list_entry *e;
1312 	struct drm_gem_object *gobj;
1313 	unsigned long index;
1314 	unsigned int i;
1315 	uint64_t seq;
1316 	int r;
1317 
1318 	for (i = 0; i < p->gang_size; ++i)
1319 		drm_sched_job_arm(&p->jobs[i]->base);
1320 
1321 	for (i = 0; i < p->gang_size; ++i) {
1322 		struct dma_fence *fence;
1323 
1324 		if (p->jobs[i] == leader)
1325 			continue;
1326 
1327 		fence = &p->jobs[i]->base.s_fence->scheduled;
1328 		dma_fence_get(fence);
1329 		r = drm_sched_job_add_dependency(&leader->base, fence);
1330 		if (r) {
1331 			dma_fence_put(fence);
1332 			return r;
1333 		}
1334 	}
1335 
1336 	if (p->gang_size > 1) {
1337 		for (i = 0; i < p->gang_size; ++i)
1338 			amdgpu_job_set_gang_leader(p->jobs[i], leader);
1339 	}
1340 
1341 	/* No memory allocation is allowed while holding the notifier lock.
1342 	 * The lock is held until amdgpu_cs_submit is finished and fence is
1343 	 * added to BOs.
1344 	 */
1345 	mutex_lock(&p->adev->notifier_lock);
1346 
1347 	/* If userptr are invalidated after amdgpu_cs_parser_bos(), return
1348 	 * -EAGAIN, drmIoctl in libdrm will restart the amdgpu_cs_ioctl.
1349 	 */
1350 	r = 0;
1351 	amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) {
1352 		r |= !amdgpu_ttm_tt_get_user_pages_done(e->bo->tbo.ttm,
1353 							e->range);
1354 		e->range = NULL;
1355 	}
1356 	if (r) {
1357 		r = -EAGAIN;
1358 		mutex_unlock(&p->adev->notifier_lock);
1359 		return r;
1360 	}
1361 
1362 	p->fence = dma_fence_get(&leader->base.s_fence->finished);
1363 	drm_exec_for_each_locked_object(&p->exec, index, gobj) {
1364 
1365 		ttm_bo_move_to_lru_tail_unlocked(&gem_to_amdgpu_bo(gobj)->tbo);
1366 
1367 		/* Everybody except for the gang leader uses READ */
1368 		for (i = 0; i < p->gang_size; ++i) {
1369 			if (p->jobs[i] == leader)
1370 				continue;
1371 
1372 			dma_resv_add_fence(gobj->resv,
1373 					   &p->jobs[i]->base.s_fence->finished,
1374 					   DMA_RESV_USAGE_READ);
1375 		}
1376 
1377 		/* The gang leader as remembered as writer */
1378 		dma_resv_add_fence(gobj->resv, p->fence, DMA_RESV_USAGE_WRITE);
1379 	}
1380 
1381 	seq = amdgpu_ctx_add_fence(p->ctx, p->entities[p->gang_leader_idx],
1382 				   p->fence);
1383 	amdgpu_cs_post_dependencies(p);
1384 
1385 	if ((leader->preamble_status & AMDGPU_PREAMBLE_IB_PRESENT) &&
1386 	    !p->ctx->preamble_presented) {
1387 		leader->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT_FIRST;
1388 		p->ctx->preamble_presented = true;
1389 	}
1390 
1391 	cs->out.handle = seq;
1392 	leader->uf_sequence = seq;
1393 
1394 	amdgpu_vm_bo_trace_cs(&fpriv->vm, &p->exec.ticket);
1395 	for (i = 0; i < p->gang_size; ++i) {
1396 		amdgpu_job_free_resources(p->jobs[i]);
1397 		trace_amdgpu_cs_ioctl(p->jobs[i]);
1398 		drm_sched_entity_push_job(&p->jobs[i]->base);
1399 		p->jobs[i] = NULL;
1400 	}
1401 
1402 	amdgpu_vm_move_to_lru_tail(p->adev, &fpriv->vm);
1403 
1404 	mutex_unlock(&p->adev->notifier_lock);
1405 	mutex_unlock(&p->bo_list->bo_list_mutex);
1406 	return 0;
1407 }
1408 
1409 /* Cleanup the parser structure */
amdgpu_cs_parser_fini(struct amdgpu_cs_parser * parser)1410 static void amdgpu_cs_parser_fini(struct amdgpu_cs_parser *parser)
1411 {
1412 	unsigned int i;
1413 
1414 	amdgpu_sync_free(&parser->sync);
1415 	drm_exec_fini(&parser->exec);
1416 
1417 	for (i = 0; i < parser->num_post_deps; i++) {
1418 		drm_syncobj_put(parser->post_deps[i].syncobj);
1419 		kfree(parser->post_deps[i].chain);
1420 	}
1421 	kfree(parser->post_deps);
1422 
1423 	dma_fence_put(parser->fence);
1424 
1425 	if (parser->ctx)
1426 		amdgpu_ctx_put(parser->ctx);
1427 	if (parser->bo_list)
1428 		amdgpu_bo_list_put(parser->bo_list);
1429 
1430 	for (i = 0; i < parser->nchunks; i++)
1431 		kvfree(parser->chunks[i].kdata);
1432 	kvfree(parser->chunks);
1433 	for (i = 0; i < parser->gang_size; ++i) {
1434 		if (parser->jobs[i])
1435 			amdgpu_job_free(parser->jobs[i]);
1436 	}
1437 	amdgpu_bo_unref(&parser->uf_bo);
1438 }
1439 
amdgpu_cs_ioctl(struct drm_device * dev,void * data,struct drm_file * filp)1440 int amdgpu_cs_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
1441 {
1442 	struct amdgpu_device *adev = drm_to_adev(dev);
1443 	struct amdgpu_cs_parser parser;
1444 	int r;
1445 
1446 	if (amdgpu_ras_intr_triggered())
1447 		return -EHWPOISON;
1448 
1449 	if (!adev->accel_working)
1450 		return -EBUSY;
1451 
1452 	r = amdgpu_cs_parser_init(&parser, adev, filp, data);
1453 	if (r) {
1454 		DRM_ERROR_RATELIMITED("Failed to initialize parser %d!\n", r);
1455 		return r;
1456 	}
1457 
1458 	r = amdgpu_cs_pass1(&parser, data);
1459 	if (r)
1460 		goto error_fini;
1461 
1462 	r = amdgpu_cs_pass2(&parser);
1463 	if (r)
1464 		goto error_fini;
1465 
1466 	r = amdgpu_cs_parser_bos(&parser, data);
1467 	if (r) {
1468 		if (r == -ENOMEM)
1469 			DRM_ERROR("Not enough memory for command submission!\n");
1470 		else if (r != -ERESTARTSYS && r != -EAGAIN)
1471 			DRM_DEBUG("Failed to process the buffer list %d!\n", r);
1472 		goto error_fini;
1473 	}
1474 
1475 	r = amdgpu_cs_patch_jobs(&parser);
1476 	if (r)
1477 		goto error_backoff;
1478 
1479 	r = amdgpu_cs_vm_handling(&parser);
1480 	if (r)
1481 		goto error_backoff;
1482 
1483 	r = amdgpu_cs_sync_rings(&parser);
1484 	if (r)
1485 		goto error_backoff;
1486 
1487 	trace_amdgpu_cs_ibs(&parser);
1488 
1489 	r = amdgpu_cs_submit(&parser, data);
1490 	if (r)
1491 		goto error_backoff;
1492 
1493 	amdgpu_cs_parser_fini(&parser);
1494 	return 0;
1495 
1496 error_backoff:
1497 	mutex_unlock(&parser.bo_list->bo_list_mutex);
1498 
1499 error_fini:
1500 	amdgpu_cs_parser_fini(&parser);
1501 	return r;
1502 }
1503 
1504 /**
1505  * amdgpu_cs_wait_ioctl - wait for a command submission to finish
1506  *
1507  * @dev: drm device
1508  * @data: data from userspace
1509  * @filp: file private
1510  *
1511  * Wait for the command submission identified by handle to finish.
1512  */
amdgpu_cs_wait_ioctl(struct drm_device * dev,void * data,struct drm_file * filp)1513 int amdgpu_cs_wait_ioctl(struct drm_device *dev, void *data,
1514 			 struct drm_file *filp)
1515 {
1516 	union drm_amdgpu_wait_cs *wait = data;
1517 	unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout);
1518 	struct drm_sched_entity *entity;
1519 	struct amdgpu_ctx *ctx;
1520 	struct dma_fence *fence;
1521 	long r;
1522 
1523 	ctx = amdgpu_ctx_get(filp->driver_priv, wait->in.ctx_id);
1524 	if (ctx == NULL)
1525 		return -EINVAL;
1526 
1527 	r = amdgpu_ctx_get_entity(ctx, wait->in.ip_type, wait->in.ip_instance,
1528 				  wait->in.ring, &entity);
1529 	if (r) {
1530 		amdgpu_ctx_put(ctx);
1531 		return r;
1532 	}
1533 
1534 	fence = amdgpu_ctx_get_fence(ctx, entity, wait->in.handle);
1535 	if (IS_ERR(fence))
1536 		r = PTR_ERR(fence);
1537 	else if (fence) {
1538 		r = dma_fence_wait_timeout(fence, true, timeout);
1539 		if (r > 0 && fence->error)
1540 			r = fence->error;
1541 		dma_fence_put(fence);
1542 	} else
1543 		r = 1;
1544 
1545 	amdgpu_ctx_put(ctx);
1546 	if (r < 0)
1547 		return r;
1548 
1549 	memset(wait, 0, sizeof(*wait));
1550 	wait->out.status = (r == 0);
1551 
1552 	return 0;
1553 }
1554 
1555 /**
1556  * amdgpu_cs_get_fence - helper to get fence from drm_amdgpu_fence
1557  *
1558  * @adev: amdgpu device
1559  * @filp: file private
1560  * @user: drm_amdgpu_fence copied from user space
1561  */
amdgpu_cs_get_fence(struct amdgpu_device * adev,struct drm_file * filp,struct drm_amdgpu_fence * user)1562 static struct dma_fence *amdgpu_cs_get_fence(struct amdgpu_device *adev,
1563 					     struct drm_file *filp,
1564 					     struct drm_amdgpu_fence *user)
1565 {
1566 	struct drm_sched_entity *entity;
1567 	struct amdgpu_ctx *ctx;
1568 	struct dma_fence *fence;
1569 	int r;
1570 
1571 	ctx = amdgpu_ctx_get(filp->driver_priv, user->ctx_id);
1572 	if (ctx == NULL)
1573 		return ERR_PTR(-EINVAL);
1574 
1575 	r = amdgpu_ctx_get_entity(ctx, user->ip_type, user->ip_instance,
1576 				  user->ring, &entity);
1577 	if (r) {
1578 		amdgpu_ctx_put(ctx);
1579 		return ERR_PTR(r);
1580 	}
1581 
1582 	fence = amdgpu_ctx_get_fence(ctx, entity, user->seq_no);
1583 	amdgpu_ctx_put(ctx);
1584 
1585 	return fence;
1586 }
1587 
amdgpu_cs_fence_to_handle_ioctl(struct drm_device * dev,void * data,struct drm_file * filp)1588 int amdgpu_cs_fence_to_handle_ioctl(struct drm_device *dev, void *data,
1589 				    struct drm_file *filp)
1590 {
1591 	struct amdgpu_device *adev = drm_to_adev(dev);
1592 	union drm_amdgpu_fence_to_handle *info = data;
1593 	struct dma_fence *fence;
1594 	struct drm_syncobj *syncobj;
1595 	struct sync_file *sync_file;
1596 	int fd, r;
1597 
1598 	fence = amdgpu_cs_get_fence(adev, filp, &info->in.fence);
1599 	if (IS_ERR(fence))
1600 		return PTR_ERR(fence);
1601 
1602 	if (!fence)
1603 		fence = dma_fence_get_stub();
1604 
1605 	switch (info->in.what) {
1606 	case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ:
1607 		r = drm_syncobj_create(&syncobj, 0, fence);
1608 		dma_fence_put(fence);
1609 		if (r)
1610 			return r;
1611 		r = drm_syncobj_get_handle(filp, syncobj, &info->out.handle);
1612 		drm_syncobj_put(syncobj);
1613 		return r;
1614 
1615 	case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ_FD:
1616 		r = drm_syncobj_create(&syncobj, 0, fence);
1617 		dma_fence_put(fence);
1618 		if (r)
1619 			return r;
1620 		r = drm_syncobj_get_fd(syncobj, (int *)&info->out.handle);
1621 		drm_syncobj_put(syncobj);
1622 		return r;
1623 
1624 	case AMDGPU_FENCE_TO_HANDLE_GET_SYNC_FILE_FD:
1625 		fd = get_unused_fd_flags(O_CLOEXEC);
1626 		if (fd < 0) {
1627 			dma_fence_put(fence);
1628 			return fd;
1629 		}
1630 
1631 		sync_file = sync_file_create(fence);
1632 		dma_fence_put(fence);
1633 		if (!sync_file) {
1634 			put_unused_fd(fd);
1635 			return -ENOMEM;
1636 		}
1637 
1638 		fd_install(fd, sync_file->file);
1639 		info->out.handle = fd;
1640 		return 0;
1641 
1642 	default:
1643 		dma_fence_put(fence);
1644 		return -EINVAL;
1645 	}
1646 }
1647 
1648 /**
1649  * amdgpu_cs_wait_all_fences - wait on all fences to signal
1650  *
1651  * @adev: amdgpu device
1652  * @filp: file private
1653  * @wait: wait parameters
1654  * @fences: array of drm_amdgpu_fence
1655  */
amdgpu_cs_wait_all_fences(struct amdgpu_device * adev,struct drm_file * filp,union drm_amdgpu_wait_fences * wait,struct drm_amdgpu_fence * fences)1656 static int amdgpu_cs_wait_all_fences(struct amdgpu_device *adev,
1657 				     struct drm_file *filp,
1658 				     union drm_amdgpu_wait_fences *wait,
1659 				     struct drm_amdgpu_fence *fences)
1660 {
1661 	uint32_t fence_count = wait->in.fence_count;
1662 	unsigned int i;
1663 	long r = 1;
1664 
1665 	for (i = 0; i < fence_count; i++) {
1666 		struct dma_fence *fence;
1667 		unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns);
1668 
1669 		fence = amdgpu_cs_get_fence(adev, filp, &fences[i]);
1670 		if (IS_ERR(fence))
1671 			return PTR_ERR(fence);
1672 		else if (!fence)
1673 			continue;
1674 
1675 		r = dma_fence_wait_timeout(fence, true, timeout);
1676 		if (r > 0 && fence->error)
1677 			r = fence->error;
1678 
1679 		dma_fence_put(fence);
1680 		if (r < 0)
1681 			return r;
1682 
1683 		if (r == 0)
1684 			break;
1685 	}
1686 
1687 	memset(wait, 0, sizeof(*wait));
1688 	wait->out.status = (r > 0);
1689 
1690 	return 0;
1691 }
1692 
1693 /**
1694  * amdgpu_cs_wait_any_fence - wait on any fence to signal
1695  *
1696  * @adev: amdgpu device
1697  * @filp: file private
1698  * @wait: wait parameters
1699  * @fences: array of drm_amdgpu_fence
1700  */
amdgpu_cs_wait_any_fence(struct amdgpu_device * adev,struct drm_file * filp,union drm_amdgpu_wait_fences * wait,struct drm_amdgpu_fence * fences)1701 static int amdgpu_cs_wait_any_fence(struct amdgpu_device *adev,
1702 				    struct drm_file *filp,
1703 				    union drm_amdgpu_wait_fences *wait,
1704 				    struct drm_amdgpu_fence *fences)
1705 {
1706 	unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns);
1707 	uint32_t fence_count = wait->in.fence_count;
1708 	uint32_t first = ~0;
1709 	struct dma_fence **array;
1710 	unsigned int i;
1711 	long r;
1712 
1713 	/* Prepare the fence array */
1714 	array = kcalloc(fence_count, sizeof(struct dma_fence *), GFP_KERNEL);
1715 
1716 	if (array == NULL)
1717 		return -ENOMEM;
1718 
1719 	for (i = 0; i < fence_count; i++) {
1720 		struct dma_fence *fence;
1721 
1722 		fence = amdgpu_cs_get_fence(adev, filp, &fences[i]);
1723 		if (IS_ERR(fence)) {
1724 			r = PTR_ERR(fence);
1725 			goto err_free_fence_array;
1726 		} else if (fence) {
1727 			array[i] = fence;
1728 		} else { /* NULL, the fence has been already signaled */
1729 			r = 1;
1730 			first = i;
1731 			goto out;
1732 		}
1733 	}
1734 
1735 	r = dma_fence_wait_any_timeout(array, fence_count, true, timeout,
1736 				       &first);
1737 	if (r < 0)
1738 		goto err_free_fence_array;
1739 
1740 out:
1741 	memset(wait, 0, sizeof(*wait));
1742 	wait->out.status = (r > 0);
1743 	wait->out.first_signaled = first;
1744 
1745 	if (first < fence_count && array[first])
1746 		r = array[first]->error;
1747 	else
1748 		r = 0;
1749 
1750 err_free_fence_array:
1751 	for (i = 0; i < fence_count; i++)
1752 		dma_fence_put(array[i]);
1753 	kfree(array);
1754 
1755 	return r;
1756 }
1757 
1758 /**
1759  * amdgpu_cs_wait_fences_ioctl - wait for multiple command submissions to finish
1760  *
1761  * @dev: drm device
1762  * @data: data from userspace
1763  * @filp: file private
1764  */
amdgpu_cs_wait_fences_ioctl(struct drm_device * dev,void * data,struct drm_file * filp)1765 int amdgpu_cs_wait_fences_ioctl(struct drm_device *dev, void *data,
1766 				struct drm_file *filp)
1767 {
1768 	struct amdgpu_device *adev = drm_to_adev(dev);
1769 	union drm_amdgpu_wait_fences *wait = data;
1770 	uint32_t fence_count = wait->in.fence_count;
1771 	struct drm_amdgpu_fence *fences_user;
1772 	struct drm_amdgpu_fence *fences;
1773 	int r;
1774 
1775 	/* Get the fences from userspace */
1776 	fences = kmalloc_array(fence_count, sizeof(struct drm_amdgpu_fence),
1777 			GFP_KERNEL);
1778 	if (fences == NULL)
1779 		return -ENOMEM;
1780 
1781 	fences_user = u64_to_user_ptr(wait->in.fences);
1782 	if (copy_from_user(fences, fences_user,
1783 		sizeof(struct drm_amdgpu_fence) * fence_count)) {
1784 		r = -EFAULT;
1785 		goto err_free_fences;
1786 	}
1787 
1788 	if (wait->in.wait_all)
1789 		r = amdgpu_cs_wait_all_fences(adev, filp, wait, fences);
1790 	else
1791 		r = amdgpu_cs_wait_any_fence(adev, filp, wait, fences);
1792 
1793 err_free_fences:
1794 	kfree(fences);
1795 
1796 	return r;
1797 }
1798 
1799 /**
1800  * amdgpu_cs_find_mapping - find bo_va for VM address
1801  *
1802  * @parser: command submission parser context
1803  * @addr: VM address
1804  * @bo: resulting BO of the mapping found
1805  * @map: Placeholder to return found BO mapping
1806  *
1807  * Search the buffer objects in the command submission context for a certain
1808  * virtual memory address. Returns allocation structure when found, NULL
1809  * otherwise.
1810  */
amdgpu_cs_find_mapping(struct amdgpu_cs_parser * parser,uint64_t addr,struct amdgpu_bo ** bo,struct amdgpu_bo_va_mapping ** map)1811 int amdgpu_cs_find_mapping(struct amdgpu_cs_parser *parser,
1812 			   uint64_t addr, struct amdgpu_bo **bo,
1813 			   struct amdgpu_bo_va_mapping **map)
1814 {
1815 	struct amdgpu_fpriv *fpriv = parser->filp->driver_priv;
1816 	struct ttm_operation_ctx ctx = { false, false };
1817 	struct amdgpu_vm *vm = &fpriv->vm;
1818 	struct amdgpu_bo_va_mapping *mapping;
1819 	int i, r;
1820 
1821 	addr /= AMDGPU_GPU_PAGE_SIZE;
1822 
1823 	mapping = amdgpu_vm_bo_lookup_mapping(vm, addr);
1824 	if (!mapping || !mapping->bo_va || !mapping->bo_va->base.bo)
1825 		return -EINVAL;
1826 
1827 	*bo = mapping->bo_va->base.bo;
1828 	*map = mapping;
1829 
1830 	/* Double check that the BO is reserved by this CS */
1831 	if (dma_resv_locking_ctx((*bo)->tbo.base.resv) != &parser->exec.ticket)
1832 		return -EINVAL;
1833 
1834 	/* Make sure VRAM is allocated contigiously */
1835 	(*bo)->flags |= AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
1836 	if ((*bo)->tbo.resource->mem_type == TTM_PL_VRAM &&
1837 	    !((*bo)->tbo.resource->placement & TTM_PL_FLAG_CONTIGUOUS)) {
1838 
1839 		amdgpu_bo_placement_from_domain(*bo, (*bo)->allowed_domains);
1840 		for (i = 0; i < (*bo)->placement.num_placement; i++)
1841 			(*bo)->placements[i].flags |= TTM_PL_FLAG_CONTIGUOUS;
1842 		r = ttm_bo_validate(&(*bo)->tbo, &(*bo)->placement, &ctx);
1843 		if (r)
1844 			return r;
1845 	}
1846 
1847 	return amdgpu_ttm_alloc_gart(&(*bo)->tbo);
1848 }
1849