1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * ZynqMP R5 Remote Processor driver
4 *
5 */
6
7 #include <dt-bindings/power/xlnx-zynqmp-power.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/firmware/xlnx-zynqmp.h>
10 #include <linux/kernel.h>
11 #include <linux/mailbox_client.h>
12 #include <linux/mailbox/zynqmp-ipi-message.h>
13 #include <linux/module.h>
14 #include <linux/of_address.h>
15 #include <linux/of_platform.h>
16 #include <linux/of_reserved_mem.h>
17 #include <linux/platform_device.h>
18 #include <linux/remoteproc.h>
19
20 #include "remoteproc_internal.h"
21
22 /* IPI buffer MAX length */
23 #define IPI_BUF_LEN_MAX 32U
24
25 /* RX mailbox client buffer max length */
26 #define MBOX_CLIENT_BUF_MAX (IPI_BUF_LEN_MAX + \
27 sizeof(struct zynqmp_ipi_message))
28
29 #define RSC_TBL_XLNX_MAGIC ((uint32_t)'x' << 24 | (uint32_t)'a' << 16 | \
30 (uint32_t)'m' << 8 | (uint32_t)'p')
31
32 /*
33 * settings for RPU cluster mode which
34 * reflects possible values of xlnx,cluster-mode dt-property
35 */
36 enum zynqmp_r5_cluster_mode {
37 SPLIT_MODE = 0, /* When cores run as separate processor */
38 LOCKSTEP_MODE = 1, /* cores execute same code in lockstep,clk-for-clk */
39 SINGLE_CPU_MODE = 2, /* core0 is held in reset and only core1 runs */
40 };
41
42 /**
43 * struct mem_bank_data - Memory Bank description
44 *
45 * @addr: Start address of memory bank
46 * @da: device address
47 * @size: Size of Memory bank
48 * @pm_domain_id: Power-domains id of memory bank for firmware to turn on/off
49 * @bank_name: name of the bank for remoteproc framework
50 */
51 struct mem_bank_data {
52 phys_addr_t addr;
53 u32 da;
54 size_t size;
55 u32 pm_domain_id;
56 char *bank_name;
57 };
58
59 /**
60 * struct zynqmp_sram_bank - sram bank description
61 *
62 * @sram_res: sram address region information
63 * @da: device address of sram
64 */
65 struct zynqmp_sram_bank {
66 struct resource sram_res;
67 u32 da;
68 };
69
70 /**
71 * struct mbox_info - mailbox channel data
72 *
73 * @rx_mc_buf: to copy data from mailbox rx channel
74 * @tx_mc_buf: to copy data to mailbox tx channel
75 * @r5_core: this mailbox's corresponding r5_core pointer
76 * @mbox_work: schedule work after receiving data from mailbox
77 * @mbox_cl: mailbox client
78 * @tx_chan: mailbox tx channel
79 * @rx_chan: mailbox rx channel
80 */
81 struct mbox_info {
82 unsigned char rx_mc_buf[MBOX_CLIENT_BUF_MAX];
83 unsigned char tx_mc_buf[MBOX_CLIENT_BUF_MAX];
84 struct zynqmp_r5_core *r5_core;
85 struct work_struct mbox_work;
86 struct mbox_client mbox_cl;
87 struct mbox_chan *tx_chan;
88 struct mbox_chan *rx_chan;
89 };
90
91 /**
92 * struct rsc_tbl_data - resource table metadata
93 *
94 * Platform specific data structure used to sync resource table address.
95 * It's important to maintain order and size of each field on remote side.
96 *
97 * @version: version of data structure
98 * @magic_num: 32-bit magic number.
99 * @comp_magic_num: complement of above magic number
100 * @rsc_tbl_size: resource table size
101 * @rsc_tbl: resource table address
102 */
103 struct rsc_tbl_data {
104 const int version;
105 const u32 magic_num;
106 const u32 comp_magic_num;
107 const u32 rsc_tbl_size;
108 const uintptr_t rsc_tbl;
109 } __packed;
110
111 /*
112 * Hardcoded TCM bank values. This will stay in driver to maintain backward
113 * compatibility with device-tree that does not have TCM information.
114 */
115 static const struct mem_bank_data zynqmp_tcm_banks_split[] = {
116 {0xffe00000UL, 0x0, 0x10000UL, PD_R5_0_ATCM, "atcm0"}, /* TCM 64KB each */
117 {0xffe20000UL, 0x20000, 0x10000UL, PD_R5_0_BTCM, "btcm0"},
118 {0xffe90000UL, 0x0, 0x10000UL, PD_R5_1_ATCM, "atcm1"},
119 {0xffeb0000UL, 0x20000, 0x10000UL, PD_R5_1_BTCM, "btcm1"},
120 };
121
122 /* In lockstep mode cluster uses each 64KB TCM from second core as well */
123 static const struct mem_bank_data zynqmp_tcm_banks_lockstep[] = {
124 {0xffe00000UL, 0x0, 0x10000UL, PD_R5_0_ATCM, "atcm0"}, /* TCM 64KB each */
125 {0xffe20000UL, 0x20000, 0x10000UL, PD_R5_0_BTCM, "btcm0"},
126 {0xffe10000UL, 0x10000, 0x10000UL, PD_R5_1_ATCM, "atcm1"},
127 {0xffe30000UL, 0x30000, 0x10000UL, PD_R5_1_BTCM, "btcm1"},
128 };
129
130 /**
131 * struct zynqmp_r5_core - remoteproc core's internal data
132 *
133 * @rsc_tbl_va: resource table virtual address
134 * @sram: Array of sram memories assigned to this core
135 * @num_sram: number of sram for this core
136 * @dev: device of RPU instance
137 * @np: device node of RPU instance
138 * @tcm_bank_count: number TCM banks accessible to this RPU
139 * @tcm_banks: array of each TCM bank data
140 * @rproc: rproc handle
141 * @rsc_tbl_size: resource table size retrieved from remote
142 * @pm_domain_id: RPU CPU power domain id
143 * @ipi: pointer to mailbox information
144 */
145 struct zynqmp_r5_core {
146 void __iomem *rsc_tbl_va;
147 struct zynqmp_sram_bank *sram;
148 int num_sram;
149 struct device *dev;
150 struct device_node *np;
151 int tcm_bank_count;
152 struct mem_bank_data **tcm_banks;
153 struct rproc *rproc;
154 u32 rsc_tbl_size;
155 u32 pm_domain_id;
156 struct mbox_info *ipi;
157 };
158
159 /**
160 * struct zynqmp_r5_cluster - remoteproc cluster's internal data
161 *
162 * @dev: r5f subsystem cluster device node
163 * @mode: cluster mode of type zynqmp_r5_cluster_mode
164 * @core_count: number of r5 cores used for this cluster mode
165 * @r5_cores: Array of pointers pointing to r5 core
166 */
167 struct zynqmp_r5_cluster {
168 struct device *dev;
169 enum zynqmp_r5_cluster_mode mode;
170 int core_count;
171 struct zynqmp_r5_core **r5_cores;
172 };
173
174 /**
175 * event_notified_idr_cb() - callback for vq_interrupt per notifyid
176 * @id: rproc->notify id
177 * @ptr: pointer to idr private data
178 * @data: data passed to idr_for_each callback
179 *
180 * Pass notification to remoteproc virtio
181 *
182 * Return: 0. having return is to satisfy the idr_for_each() function
183 * pointer input argument requirement.
184 **/
event_notified_idr_cb(int id,void * ptr,void * data)185 static int event_notified_idr_cb(int id, void *ptr, void *data)
186 {
187 struct rproc *rproc = data;
188
189 if (rproc_vq_interrupt(rproc, id) == IRQ_NONE)
190 dev_dbg(&rproc->dev, "data not found for vqid=%d\n", id);
191
192 return 0;
193 }
194
195 /**
196 * handle_event_notified() - remoteproc notification work function
197 * @work: pointer to the work structure
198 *
199 * It checks each registered remoteproc notify IDs.
200 */
handle_event_notified(struct work_struct * work)201 static void handle_event_notified(struct work_struct *work)
202 {
203 struct mbox_info *ipi;
204 struct rproc *rproc;
205
206 ipi = container_of(work, struct mbox_info, mbox_work);
207 rproc = ipi->r5_core->rproc;
208
209 /*
210 * We only use IPI for interrupt. The RPU firmware side may or may
211 * not write the notifyid when it trigger IPI.
212 * And thus, we scan through all the registered notifyids and
213 * find which one is valid to get the message.
214 * Even if message from firmware is NULL, we attempt to get vqid
215 */
216 idr_for_each(&rproc->notifyids, event_notified_idr_cb, rproc);
217 }
218
219 /**
220 * zynqmp_r5_mb_rx_cb() - receive channel mailbox callback
221 * @cl: mailbox client
222 * @msg: message pointer
223 *
224 * Receive data from ipi buffer, ack interrupt and then
225 * it will schedule the R5 notification work.
226 */
zynqmp_r5_mb_rx_cb(struct mbox_client * cl,void * msg)227 static void zynqmp_r5_mb_rx_cb(struct mbox_client *cl, void *msg)
228 {
229 struct zynqmp_ipi_message *ipi_msg, *buf_msg;
230 struct mbox_info *ipi;
231 size_t len;
232
233 ipi = container_of(cl, struct mbox_info, mbox_cl);
234
235 /* copy data from ipi buffer to r5_core */
236 ipi_msg = (struct zynqmp_ipi_message *)msg;
237 buf_msg = (struct zynqmp_ipi_message *)ipi->rx_mc_buf;
238 len = ipi_msg->len;
239 if (len > IPI_BUF_LEN_MAX) {
240 dev_warn(cl->dev, "msg size exceeded than %d\n",
241 IPI_BUF_LEN_MAX);
242 len = IPI_BUF_LEN_MAX;
243 }
244 buf_msg->len = len;
245 memcpy(buf_msg->data, ipi_msg->data, len);
246
247 /* received and processed interrupt ack */
248 if (mbox_send_message(ipi->rx_chan, NULL) < 0)
249 dev_err(cl->dev, "ack failed to mbox rx_chan\n");
250
251 schedule_work(&ipi->mbox_work);
252 }
253
254 /**
255 * zynqmp_r5_setup_mbox() - Setup mailboxes related properties
256 * this is used for each individual R5 core
257 *
258 * @cdev: child node device
259 *
260 * Function to setup mailboxes related properties
261 * return : NULL if failed else pointer to mbox_info
262 */
zynqmp_r5_setup_mbox(struct device * cdev)263 static struct mbox_info *zynqmp_r5_setup_mbox(struct device *cdev)
264 {
265 struct mbox_client *mbox_cl;
266 struct mbox_info *ipi;
267
268 ipi = kzalloc(sizeof(*ipi), GFP_KERNEL);
269 if (!ipi)
270 return NULL;
271
272 mbox_cl = &ipi->mbox_cl;
273 mbox_cl->rx_callback = zynqmp_r5_mb_rx_cb;
274 mbox_cl->tx_block = false;
275 mbox_cl->knows_txdone = false;
276 mbox_cl->tx_done = NULL;
277 mbox_cl->dev = cdev;
278
279 /* Request TX and RX channels */
280 ipi->tx_chan = mbox_request_channel_byname(mbox_cl, "tx");
281 if (IS_ERR(ipi->tx_chan)) {
282 ipi->tx_chan = NULL;
283 kfree(ipi);
284 dev_warn(cdev, "mbox tx channel request failed\n");
285 return NULL;
286 }
287
288 ipi->rx_chan = mbox_request_channel_byname(mbox_cl, "rx");
289 if (IS_ERR(ipi->rx_chan)) {
290 mbox_free_channel(ipi->tx_chan);
291 ipi->rx_chan = NULL;
292 ipi->tx_chan = NULL;
293 kfree(ipi);
294 dev_warn(cdev, "mbox rx channel request failed\n");
295 return NULL;
296 }
297
298 INIT_WORK(&ipi->mbox_work, handle_event_notified);
299
300 return ipi;
301 }
302
zynqmp_r5_free_mbox(struct mbox_info * ipi)303 static void zynqmp_r5_free_mbox(struct mbox_info *ipi)
304 {
305 if (!ipi)
306 return;
307
308 if (ipi->tx_chan) {
309 mbox_free_channel(ipi->tx_chan);
310 ipi->tx_chan = NULL;
311 }
312
313 if (ipi->rx_chan) {
314 mbox_free_channel(ipi->rx_chan);
315 ipi->rx_chan = NULL;
316 }
317
318 kfree(ipi);
319 }
320
321 /*
322 * zynqmp_r5_core_kick() - kick a firmware if mbox is provided
323 * @rproc: r5 core's corresponding rproc structure
324 * @vqid: virtqueue ID
325 */
zynqmp_r5_rproc_kick(struct rproc * rproc,int vqid)326 static void zynqmp_r5_rproc_kick(struct rproc *rproc, int vqid)
327 {
328 struct zynqmp_r5_core *r5_core = rproc->priv;
329 struct device *dev = r5_core->dev;
330 struct zynqmp_ipi_message *mb_msg;
331 struct mbox_info *ipi;
332 int ret;
333
334 ipi = r5_core->ipi;
335 if (!ipi)
336 return;
337
338 mb_msg = (struct zynqmp_ipi_message *)ipi->tx_mc_buf;
339 memcpy(mb_msg->data, &vqid, sizeof(vqid));
340 mb_msg->len = sizeof(vqid);
341 ret = mbox_send_message(ipi->tx_chan, mb_msg);
342 if (ret < 0)
343 dev_warn(dev, "failed to send message\n");
344 }
345
346 /*
347 * zynqmp_r5_rproc_start()
348 * @rproc: single R5 core's corresponding rproc instance
349 *
350 * Start R5 Core from designated boot address.
351 *
352 * return 0 on success, otherwise non-zero value on failure
353 */
zynqmp_r5_rproc_start(struct rproc * rproc)354 static int zynqmp_r5_rproc_start(struct rproc *rproc)
355 {
356 struct zynqmp_r5_core *r5_core = rproc->priv;
357 enum rpu_boot_mem bootmem;
358 int ret;
359
360 /*
361 * The exception vector pointers (EVP) refer to the base-address of
362 * exception vectors (for reset, IRQ, FIQ, etc). The reset-vector
363 * starts at the base-address and subsequent vectors are on 4-byte
364 * boundaries.
365 *
366 * Exception vectors can start either from 0x0000_0000 (LOVEC) or
367 * from 0xFFFF_0000 (HIVEC) which is mapped in the OCM (On-Chip Memory)
368 *
369 * Usually firmware will put Exception vectors at LOVEC.
370 *
371 * It is not recommend that you change the exception vector.
372 * Changing the EVP to HIVEC will result in increased interrupt latency
373 * and jitter. Also, if the OCM is secured and the Cortex-R5F processor
374 * is non-secured, then the Cortex-R5F processor cannot access the
375 * HIVEC exception vectors in the OCM.
376 */
377 bootmem = (rproc->bootaddr >= 0xFFFC0000) ?
378 PM_RPU_BOOTMEM_HIVEC : PM_RPU_BOOTMEM_LOVEC;
379
380 dev_dbg(r5_core->dev, "RPU boot addr 0x%llx from %s.", rproc->bootaddr,
381 bootmem == PM_RPU_BOOTMEM_HIVEC ? "OCM" : "TCM");
382
383 /* Request node before starting RPU core if new version of API is supported */
384 if (zynqmp_pm_feature(PM_REQUEST_NODE) > 1) {
385 ret = zynqmp_pm_request_node(r5_core->pm_domain_id,
386 ZYNQMP_PM_CAPABILITY_ACCESS, 0,
387 ZYNQMP_PM_REQUEST_ACK_BLOCKING);
388 if (ret < 0) {
389 dev_err(r5_core->dev, "failed to request 0x%x",
390 r5_core->pm_domain_id);
391 return ret;
392 }
393 }
394
395 ret = zynqmp_pm_request_wake(r5_core->pm_domain_id, 1,
396 bootmem, ZYNQMP_PM_REQUEST_ACK_NO);
397 if (ret)
398 dev_err(r5_core->dev,
399 "failed to start RPU = 0x%x\n", r5_core->pm_domain_id);
400 return ret;
401 }
402
403 /*
404 * zynqmp_r5_rproc_stop()
405 * @rproc: single R5 core's corresponding rproc instance
406 *
407 * Power down R5 Core.
408 *
409 * return 0 on success, otherwise non-zero value on failure
410 */
zynqmp_r5_rproc_stop(struct rproc * rproc)411 static int zynqmp_r5_rproc_stop(struct rproc *rproc)
412 {
413 struct zynqmp_r5_core *r5_core = rproc->priv;
414 int ret;
415
416 /* Use release node API to stop core if new version of API is supported */
417 if (zynqmp_pm_feature(PM_RELEASE_NODE) > 1) {
418 ret = zynqmp_pm_release_node(r5_core->pm_domain_id);
419 if (ret)
420 dev_err(r5_core->dev, "failed to stop remoteproc RPU %d\n", ret);
421 return ret;
422 }
423
424 /*
425 * Check expected version of EEMI call before calling it. This avoids
426 * any error or warning prints from firmware as it is expected that fw
427 * doesn't support it.
428 */
429 if (zynqmp_pm_feature(PM_FORCE_POWERDOWN) != 1) {
430 dev_dbg(r5_core->dev, "EEMI interface %d ver 1 not supported\n",
431 PM_FORCE_POWERDOWN);
432 return -EOPNOTSUPP;
433 }
434
435 /* maintain force pwr down for backward compatibility */
436 ret = zynqmp_pm_force_pwrdwn(r5_core->pm_domain_id,
437 ZYNQMP_PM_REQUEST_ACK_BLOCKING);
438 if (ret)
439 dev_err(r5_core->dev, "core force power down failed\n");
440
441 return ret;
442 }
443
444 /*
445 * zynqmp_r5_mem_region_map()
446 * @rproc: single R5 core's corresponding rproc instance
447 * @mem: mem descriptor to map reserved memory-regions
448 *
449 * Callback to map va for memory-region's carveout.
450 *
451 * return 0 on success, otherwise non-zero value on failure
452 */
zynqmp_r5_mem_region_map(struct rproc * rproc,struct rproc_mem_entry * mem)453 static int zynqmp_r5_mem_region_map(struct rproc *rproc,
454 struct rproc_mem_entry *mem)
455 {
456 void __iomem *va;
457
458 va = ioremap_wc(mem->dma, mem->len);
459 if (IS_ERR_OR_NULL(va))
460 return -ENOMEM;
461
462 mem->va = (void *)va;
463
464 return 0;
465 }
466
467 /*
468 * zynqmp_r5_rproc_mem_unmap
469 * @rproc: single R5 core's corresponding rproc instance
470 * @mem: mem entry to unmap
471 *
472 * Unmap memory-region carveout
473 *
474 * return: always returns 0
475 */
zynqmp_r5_mem_region_unmap(struct rproc * rproc,struct rproc_mem_entry * mem)476 static int zynqmp_r5_mem_region_unmap(struct rproc *rproc,
477 struct rproc_mem_entry *mem)
478 {
479 iounmap((void __iomem *)mem->va);
480 return 0;
481 }
482
483 /*
484 * add_mem_regions_carveout()
485 * @rproc: single R5 core's corresponding rproc instance
486 *
487 * Construct rproc mem carveouts from memory-region property nodes
488 *
489 * return 0 on success, otherwise non-zero value on failure
490 */
add_mem_regions_carveout(struct rproc * rproc)491 static int add_mem_regions_carveout(struct rproc *rproc)
492 {
493 struct rproc_mem_entry *rproc_mem;
494 struct zynqmp_r5_core *r5_core;
495 int i = 0;
496
497 r5_core = rproc->priv;
498
499 /* Register associated reserved memory regions */
500 while (1) {
501 int err;
502 struct resource res;
503
504 err = of_reserved_mem_region_to_resource(r5_core->np, i, &res);
505 if (err)
506 return 0;
507
508 if (strstarts(res.name, "vdev0buffer")) {
509 /* Init reserved memory for vdev buffer */
510 rproc_mem = rproc_of_resm_mem_entry_init(&rproc->dev, i,
511 resource_size(&res),
512 res.start,
513 "vdev0buffer");
514 } else {
515 /* Register associated reserved memory regions */
516 rproc_mem = rproc_mem_entry_init(&rproc->dev, NULL,
517 (dma_addr_t)res.start,
518 resource_size(&res), res.start,
519 zynqmp_r5_mem_region_map,
520 zynqmp_r5_mem_region_unmap,
521 "%.*s",
522 strchrnul(res.name, '@') - res.name,
523 res.name);
524 }
525
526 if (!rproc_mem)
527 return -ENOMEM;
528
529 rproc_add_carveout(rproc, rproc_mem);
530 rproc_coredump_add_segment(rproc, res.start, resource_size(&res));
531
532 dev_dbg(&rproc->dev, "reserved mem carveout %pR\n", &res);
533 i++;
534 }
535 }
536
add_sram_carveouts(struct rproc * rproc)537 static int add_sram_carveouts(struct rproc *rproc)
538 {
539 struct zynqmp_r5_core *r5_core = rproc->priv;
540 struct rproc_mem_entry *rproc_mem;
541 struct zynqmp_sram_bank *sram;
542 dma_addr_t dma_addr;
543 size_t len;
544 int da, i;
545
546 for (i = 0; i < r5_core->num_sram; i++) {
547 sram = &r5_core->sram[i];
548
549 dma_addr = (dma_addr_t)sram->sram_res.start;
550
551 len = resource_size(&sram->sram_res);
552 da = sram->da;
553
554 rproc_mem = rproc_mem_entry_init(&rproc->dev, NULL,
555 dma_addr,
556 len, da,
557 zynqmp_r5_mem_region_map,
558 zynqmp_r5_mem_region_unmap,
559 sram->sram_res.name);
560 if (!rproc_mem) {
561 dev_err(&rproc->dev, "failed to add sram %s da=0x%x, size=0x%lx",
562 sram->sram_res.name, da, len);
563 return -ENOMEM;
564 }
565
566 rproc_add_carveout(rproc, rproc_mem);
567 rproc_coredump_add_segment(rproc, da, len);
568
569 dev_dbg(&rproc->dev, "sram carveout %s addr=%llx, da=0x%x, size=0x%lx",
570 sram->sram_res.name, dma_addr, da, len);
571 }
572
573 return 0;
574 }
575
576 /*
577 * tcm_mem_unmap()
578 * @rproc: single R5 core's corresponding rproc instance
579 * @mem: tcm mem entry to unmap
580 *
581 * Unmap TCM banks when powering down R5 core.
582 *
583 * return always 0
584 */
tcm_mem_unmap(struct rproc * rproc,struct rproc_mem_entry * mem)585 static int tcm_mem_unmap(struct rproc *rproc, struct rproc_mem_entry *mem)
586 {
587 iounmap((void __iomem *)mem->va);
588
589 return 0;
590 }
591
592 /*
593 * tcm_mem_map()
594 * @rproc: single R5 core's corresponding rproc instance
595 * @mem: tcm memory entry descriptor
596 *
597 * Given TCM bank entry, this func setup virtual address for TCM bank
598 * remoteproc carveout. It also takes care of va to da address translation
599 *
600 * return 0 on success, otherwise non-zero value on failure
601 */
tcm_mem_map(struct rproc * rproc,struct rproc_mem_entry * mem)602 static int tcm_mem_map(struct rproc *rproc,
603 struct rproc_mem_entry *mem)
604 {
605 void __iomem *va;
606
607 va = ioremap_wc(mem->dma, mem->len);
608 if (IS_ERR_OR_NULL(va))
609 return -ENOMEM;
610
611 /* Update memory entry va */
612 mem->va = (void *)va;
613
614 /* clear TCMs */
615 memset_io(va, 0, mem->len);
616
617 return 0;
618 }
619
620 /*
621 * add_tcm_banks()
622 * @rproc: single R5 core's corresponding rproc instance
623 *
624 * allocate and add remoteproc carveout for TCM memory
625 *
626 * return 0 on success, otherwise non-zero value on failure
627 */
add_tcm_banks(struct rproc * rproc)628 static int add_tcm_banks(struct rproc *rproc)
629 {
630 struct rproc_mem_entry *rproc_mem;
631 struct zynqmp_r5_core *r5_core;
632 int i, num_banks, ret;
633 phys_addr_t bank_addr;
634 struct device *dev;
635 u32 pm_domain_id;
636 size_t bank_size;
637 char *bank_name;
638 u32 da;
639
640 r5_core = rproc->priv;
641 dev = r5_core->dev;
642 num_banks = r5_core->tcm_bank_count;
643
644 /*
645 * Power-on Each 64KB TCM,
646 * register its address space, map and unmap functions
647 * and add carveouts accordingly
648 */
649 for (i = 0; i < num_banks; i++) {
650 bank_addr = r5_core->tcm_banks[i]->addr;
651 da = r5_core->tcm_banks[i]->da;
652 bank_name = r5_core->tcm_banks[i]->bank_name;
653 bank_size = r5_core->tcm_banks[i]->size;
654 pm_domain_id = r5_core->tcm_banks[i]->pm_domain_id;
655
656 ret = zynqmp_pm_request_node(pm_domain_id,
657 ZYNQMP_PM_CAPABILITY_ACCESS, 0,
658 ZYNQMP_PM_REQUEST_ACK_BLOCKING);
659 if (ret < 0) {
660 dev_err(dev, "failed to turn on TCM 0x%x", pm_domain_id);
661 goto release_tcm;
662 }
663
664 dev_dbg(dev, "TCM carveout %s addr=%llx, da=0x%x, size=0x%lx",
665 bank_name, bank_addr, da, bank_size);
666
667 /*
668 * In DETACHED state firmware is already running so no need to
669 * request add TCM registers. However, request TCM PD node to let
670 * platform management firmware know that TCM is in use.
671 */
672 if (rproc->state == RPROC_DETACHED)
673 continue;
674
675 rproc_mem = rproc_mem_entry_init(dev, NULL, bank_addr,
676 bank_size, da,
677 tcm_mem_map, tcm_mem_unmap,
678 bank_name);
679 if (!rproc_mem) {
680 ret = -ENOMEM;
681 zynqmp_pm_release_node(pm_domain_id);
682 goto release_tcm;
683 }
684
685 rproc_add_carveout(rproc, rproc_mem);
686 rproc_coredump_add_segment(rproc, da, bank_size);
687 }
688
689 return 0;
690
691 release_tcm:
692 /* If failed, Turn off all TCM banks turned on before */
693 for (i--; i >= 0; i--) {
694 pm_domain_id = r5_core->tcm_banks[i]->pm_domain_id;
695 zynqmp_pm_release_node(pm_domain_id);
696 }
697 return ret;
698 }
699
700 /*
701 * zynqmp_r5_parse_fw()
702 * @rproc: single R5 core's corresponding rproc instance
703 * @fw: ptr to firmware to be loaded onto r5 core
704 *
705 * get resource table if available
706 *
707 * return 0 on success, otherwise non-zero value on failure
708 */
zynqmp_r5_parse_fw(struct rproc * rproc,const struct firmware * fw)709 static int zynqmp_r5_parse_fw(struct rproc *rproc, const struct firmware *fw)
710 {
711 int ret;
712
713 ret = rproc_elf_load_rsc_table(rproc, fw);
714 if (ret == -EINVAL) {
715 /*
716 * resource table only required for IPC.
717 * if not present, this is not necessarily an error;
718 * for example, loading r5 hello world application
719 * so simply inform user and keep going.
720 */
721 dev_info(&rproc->dev, "no resource table found.\n");
722 ret = 0;
723 }
724 return ret;
725 }
726
727 /**
728 * zynqmp_r5_rproc_prepare() - prepare core to boot/attach
729 * adds carveouts for TCM bank and reserved memory regions
730 *
731 * @rproc: Device node of each rproc
732 *
733 * Return: 0 for success else < 0 error code
734 */
zynqmp_r5_rproc_prepare(struct rproc * rproc)735 static int zynqmp_r5_rproc_prepare(struct rproc *rproc)
736 {
737 int ret;
738
739 ret = add_tcm_banks(rproc);
740 if (ret) {
741 dev_err(&rproc->dev, "failed to get TCM banks, err %d\n", ret);
742 return ret;
743 }
744
745 ret = add_mem_regions_carveout(rproc);
746 if (ret) {
747 dev_err(&rproc->dev, "failed to get reserve mem regions %d\n", ret);
748 return ret;
749 }
750
751 ret = add_sram_carveouts(rproc);
752 if (ret) {
753 dev_err(&rproc->dev, "failed to get sram carveout %d\n", ret);
754 return ret;
755 }
756
757 return 0;
758 }
759
760 /**
761 * zynqmp_r5_rproc_unprepare() - programming sequence after stop/detach.
762 * Turns off TCM banks using power-domain id
763 *
764 * @rproc: Device node of each rproc
765 *
766 * Return: always 0
767 */
zynqmp_r5_rproc_unprepare(struct rproc * rproc)768 static int zynqmp_r5_rproc_unprepare(struct rproc *rproc)
769 {
770 struct zynqmp_r5_core *r5_core;
771 u32 pm_domain_id;
772 int i;
773
774 r5_core = rproc->priv;
775
776 for (i = 0; i < r5_core->tcm_bank_count; i++) {
777 pm_domain_id = r5_core->tcm_banks[i]->pm_domain_id;
778 if (zynqmp_pm_release_node(pm_domain_id))
779 dev_warn(r5_core->dev,
780 "can't turn off TCM bank 0x%x", pm_domain_id);
781 }
782
783 return 0;
784 }
785
zynqmp_r5_get_loaded_rsc_table(struct rproc * rproc,size_t * size)786 static struct resource_table *zynqmp_r5_get_loaded_rsc_table(struct rproc *rproc,
787 size_t *size)
788 {
789 struct zynqmp_r5_core *r5_core;
790
791 r5_core = rproc->priv;
792
793 *size = r5_core->rsc_tbl_size;
794
795 return (struct resource_table *)r5_core->rsc_tbl_va;
796 }
797
zynqmp_r5_get_rsc_table_va(struct zynqmp_r5_core * r5_core)798 static int zynqmp_r5_get_rsc_table_va(struct zynqmp_r5_core *r5_core)
799 {
800 struct resource_table *rsc_tbl_addr;
801 struct device *dev = r5_core->dev;
802 struct rsc_tbl_data *rsc_data_va;
803 struct resource res_mem;
804 int ret;
805
806 /*
807 * It is expected from remote processor firmware to provide resource
808 * table address via struct rsc_tbl_data data structure.
809 * Start address of first entry under "memory-region" property list
810 * contains that data structure which holds resource table address, size
811 * and some magic number to validate correct resource table entry.
812 */
813 ret = of_reserved_mem_region_to_resource(r5_core->np, 0, &res_mem);
814 if (ret) {
815 dev_err(dev, "failed to get memory-region resource addr\n");
816 return -EINVAL;
817 }
818
819 rsc_data_va = (struct rsc_tbl_data *)ioremap_wc(res_mem.start,
820 sizeof(struct rsc_tbl_data));
821 if (!rsc_data_va) {
822 dev_err(dev, "failed to map resource table data address\n");
823 return -EIO;
824 }
825
826 /*
827 * If RSC_TBL_XLNX_MAGIC number and its complement isn't found then
828 * do not consider resource table address valid and don't attach
829 */
830 if (rsc_data_va->magic_num != RSC_TBL_XLNX_MAGIC ||
831 rsc_data_va->comp_magic_num != ~RSC_TBL_XLNX_MAGIC) {
832 dev_dbg(dev, "invalid magic number, won't attach\n");
833 return -EINVAL;
834 }
835
836 r5_core->rsc_tbl_va = ioremap_wc(rsc_data_va->rsc_tbl,
837 rsc_data_va->rsc_tbl_size);
838 if (!r5_core->rsc_tbl_va) {
839 dev_err(dev, "failed to get resource table va\n");
840 return -EINVAL;
841 }
842
843 rsc_tbl_addr = (struct resource_table *)r5_core->rsc_tbl_va;
844
845 /*
846 * As of now resource table version 1 is expected. Don't fail to attach
847 * but warn users about it.
848 */
849 if (rsc_tbl_addr->ver != 1)
850 dev_warn(dev, "unexpected resource table version %d\n",
851 rsc_tbl_addr->ver);
852
853 r5_core->rsc_tbl_size = rsc_data_va->rsc_tbl_size;
854
855 iounmap((void __iomem *)rsc_data_va);
856
857 return 0;
858 }
859
zynqmp_r5_attach(struct rproc * rproc)860 static int zynqmp_r5_attach(struct rproc *rproc)
861 {
862 dev_dbg(&rproc->dev, "rproc %d attached\n", rproc->index);
863
864 return 0;
865 }
866
zynqmp_r5_detach(struct rproc * rproc)867 static int zynqmp_r5_detach(struct rproc *rproc)
868 {
869 /*
870 * Generate last notification to remote after clearing virtio flag.
871 * Remote can avoid polling on virtio reset flag if kick is generated
872 * during detach by host and check virtio reset flag on kick interrupt.
873 */
874 zynqmp_r5_rproc_kick(rproc, 0);
875
876 return 0;
877 }
878
879 static const struct rproc_ops zynqmp_r5_rproc_ops = {
880 .prepare = zynqmp_r5_rproc_prepare,
881 .unprepare = zynqmp_r5_rproc_unprepare,
882 .start = zynqmp_r5_rproc_start,
883 .stop = zynqmp_r5_rproc_stop,
884 .load = rproc_elf_load_segments,
885 .parse_fw = zynqmp_r5_parse_fw,
886 .find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table,
887 .sanity_check = rproc_elf_sanity_check,
888 .get_boot_addr = rproc_elf_get_boot_addr,
889 .kick = zynqmp_r5_rproc_kick,
890 .get_loaded_rsc_table = zynqmp_r5_get_loaded_rsc_table,
891 .attach = zynqmp_r5_attach,
892 .detach = zynqmp_r5_detach,
893 };
894
895 /**
896 * zynqmp_r5_add_rproc_core() - Add core data to framework.
897 * Allocate and add struct rproc object for each r5f core
898 * This is called for each individual r5f core
899 *
900 * @cdev: Device node of each r5 core
901 *
902 * Return: zynqmp_r5_core object for success else error code pointer
903 */
zynqmp_r5_add_rproc_core(struct device * cdev)904 static struct zynqmp_r5_core *zynqmp_r5_add_rproc_core(struct device *cdev)
905 {
906 struct zynqmp_r5_core *r5_core;
907 struct rproc *r5_rproc;
908 int ret;
909
910 /* Set up DMA mask */
911 ret = dma_set_coherent_mask(cdev, DMA_BIT_MASK(32));
912 if (ret)
913 return ERR_PTR(ret);
914
915 /* Allocate remoteproc instance */
916 r5_rproc = rproc_alloc(cdev, dev_name(cdev),
917 &zynqmp_r5_rproc_ops,
918 NULL, sizeof(struct zynqmp_r5_core));
919 if (!r5_rproc) {
920 dev_err(cdev, "failed to allocate memory for rproc instance\n");
921 return ERR_PTR(-ENOMEM);
922 }
923
924 rproc_coredump_set_elf_info(r5_rproc, ELFCLASS32, EM_ARM);
925
926 r5_rproc->recovery_disabled = true;
927 r5_rproc->has_iommu = false;
928 r5_rproc->auto_boot = false;
929 r5_core = r5_rproc->priv;
930 r5_core->dev = cdev;
931 r5_core->np = dev_of_node(cdev);
932 if (!r5_core->np) {
933 dev_err(cdev, "can't get device node for r5 core\n");
934 ret = -EINVAL;
935 goto free_rproc;
936 }
937
938 /* Add R5 remoteproc core */
939 ret = rproc_add(r5_rproc);
940 if (ret) {
941 dev_err(cdev, "failed to add r5 remoteproc\n");
942 goto free_rproc;
943 }
944
945 /*
946 * If firmware is already available in the memory then move rproc state
947 * to DETACHED. Firmware can be preloaded via debugger or by any other
948 * agent (processors) in the system.
949 * If firmware isn't available in the memory and resource table isn't
950 * found, then rproc state remains OFFLINE.
951 */
952 if (!zynqmp_r5_get_rsc_table_va(r5_core))
953 r5_rproc->state = RPROC_DETACHED;
954
955 r5_core->rproc = r5_rproc;
956 return r5_core;
957
958 free_rproc:
959 rproc_free(r5_rproc);
960 return ERR_PTR(ret);
961 }
962
zynqmp_r5_get_sram_banks(struct zynqmp_r5_core * r5_core)963 static int zynqmp_r5_get_sram_banks(struct zynqmp_r5_core *r5_core)
964 {
965 struct device_node *np = r5_core->np;
966 struct device *dev = r5_core->dev;
967 struct zynqmp_sram_bank *sram;
968 struct device_node *sram_np;
969 int num_sram, i, ret;
970 u64 abs_addr, size;
971
972 /* "sram" is optional property. Do not fail, if unavailable. */
973 if (!of_property_present(r5_core->np, "sram"))
974 return 0;
975
976 num_sram = of_property_count_elems_of_size(np, "sram", sizeof(phandle));
977 if (num_sram <= 0) {
978 dev_err(dev, "Invalid sram property, ret = %d\n",
979 num_sram);
980 return -EINVAL;
981 }
982
983 sram = devm_kcalloc(dev, num_sram,
984 sizeof(struct zynqmp_sram_bank), GFP_KERNEL);
985 if (!sram)
986 return -ENOMEM;
987
988 for (i = 0; i < num_sram; i++) {
989 sram_np = of_parse_phandle(np, "sram", i);
990 if (!sram_np) {
991 dev_err(dev, "failed to get sram %d phandle\n", i);
992 return -EINVAL;
993 }
994
995 if (!of_device_is_available(sram_np)) {
996 dev_err(dev, "sram device not available\n");
997 ret = -EINVAL;
998 goto fail_sram_get;
999 }
1000
1001 ret = of_address_to_resource(sram_np, 0, &sram[i].sram_res);
1002 if (ret) {
1003 dev_err(dev, "addr to res failed\n");
1004 goto fail_sram_get;
1005 }
1006
1007 /* Get SRAM device address */
1008 ret = of_property_read_reg(sram_np, i, &abs_addr, &size);
1009 if (ret) {
1010 dev_err(dev, "failed to get reg property\n");
1011 goto fail_sram_get;
1012 }
1013
1014 sram[i].da = (u32)abs_addr;
1015
1016 of_node_put(sram_np);
1017
1018 dev_dbg(dev, "sram %d: name=%s, addr=0x%llx, da=0x%x, size=0x%llx\n",
1019 i, sram[i].sram_res.name, sram[i].sram_res.start,
1020 sram[i].da, resource_size(&sram[i].sram_res));
1021 }
1022
1023 r5_core->sram = sram;
1024 r5_core->num_sram = num_sram;
1025
1026 return 0;
1027
1028 fail_sram_get:
1029 of_node_put(sram_np);
1030
1031 return ret;
1032 }
1033
zynqmp_r5_get_tcm_node_from_dt(struct zynqmp_r5_cluster * cluster)1034 static int zynqmp_r5_get_tcm_node_from_dt(struct zynqmp_r5_cluster *cluster)
1035 {
1036 int i, j, tcm_bank_count, ret, tcm_pd_idx, pd_count;
1037 struct of_phandle_args out_args;
1038 struct zynqmp_r5_core *r5_core;
1039 struct platform_device *cpdev;
1040 struct mem_bank_data *tcm;
1041 struct device_node *np;
1042 struct resource *res;
1043 u64 abs_addr, size;
1044 struct device *dev;
1045
1046 for (i = 0; i < cluster->core_count; i++) {
1047 r5_core = cluster->r5_cores[i];
1048 dev = r5_core->dev;
1049 np = r5_core->np;
1050
1051 pd_count = of_count_phandle_with_args(np, "power-domains",
1052 "#power-domain-cells");
1053
1054 if (pd_count <= 0) {
1055 dev_err(dev, "invalid power-domains property, %d\n", pd_count);
1056 return -EINVAL;
1057 }
1058
1059 /* First entry in power-domains list is for r5 core, rest for TCM. */
1060 tcm_bank_count = pd_count - 1;
1061
1062 if (tcm_bank_count <= 0) {
1063 dev_err(dev, "invalid TCM count %d\n", tcm_bank_count);
1064 return -EINVAL;
1065 }
1066
1067 r5_core->tcm_banks = devm_kcalloc(dev, tcm_bank_count,
1068 sizeof(struct mem_bank_data *),
1069 GFP_KERNEL);
1070 if (!r5_core->tcm_banks)
1071 return -ENOMEM;
1072
1073 r5_core->tcm_bank_count = tcm_bank_count;
1074 for (j = 0, tcm_pd_idx = 1; j < tcm_bank_count; j++, tcm_pd_idx++) {
1075 tcm = devm_kzalloc(dev, sizeof(struct mem_bank_data),
1076 GFP_KERNEL);
1077 if (!tcm)
1078 return -ENOMEM;
1079
1080 r5_core->tcm_banks[j] = tcm;
1081
1082 /* Get power-domains id of TCM. */
1083 ret = of_parse_phandle_with_args(np, "power-domains",
1084 "#power-domain-cells",
1085 tcm_pd_idx, &out_args);
1086 if (ret) {
1087 dev_err(r5_core->dev,
1088 "failed to get tcm %d pm domain, ret %d\n",
1089 tcm_pd_idx, ret);
1090 return ret;
1091 }
1092 tcm->pm_domain_id = out_args.args[0];
1093 of_node_put(out_args.np);
1094
1095 /* Get TCM address without translation. */
1096 ret = of_property_read_reg(np, j, &abs_addr, &size);
1097 if (ret) {
1098 dev_err(dev, "failed to get reg property\n");
1099 return ret;
1100 }
1101
1102 /*
1103 * Remote processor can address only 32 bits
1104 * so convert 64-bits into 32-bits. This will discard
1105 * any unwanted upper 32-bits.
1106 */
1107 tcm->da = (u32)abs_addr;
1108 tcm->size = (u32)size;
1109
1110 cpdev = to_platform_device(dev);
1111 res = platform_get_resource(cpdev, IORESOURCE_MEM, j);
1112 if (!res) {
1113 dev_err(dev, "failed to get tcm resource\n");
1114 return -EINVAL;
1115 }
1116
1117 tcm->addr = (u32)res->start;
1118 tcm->bank_name = (char *)res->name;
1119 res = devm_request_mem_region(dev, tcm->addr, tcm->size,
1120 tcm->bank_name);
1121 if (!res) {
1122 dev_err(dev, "failed to request tcm resource\n");
1123 return -EINVAL;
1124 }
1125 }
1126 }
1127
1128 return 0;
1129 }
1130
1131 /**
1132 * zynqmp_r5_get_tcm_node() - Get TCM info
1133 * Ideally this function should parse tcm node and store information
1134 * in r5_core instance. For now, Hardcoded TCM information is used.
1135 * This approach is used as TCM bindings for system-dt is being developed
1136 *
1137 * @cluster: pointer to zynqmp_r5_cluster type object
1138 *
1139 * Return: 0 for success and < 0 error code for failure.
1140 */
zynqmp_r5_get_tcm_node(struct zynqmp_r5_cluster * cluster)1141 static int zynqmp_r5_get_tcm_node(struct zynqmp_r5_cluster *cluster)
1142 {
1143 const struct mem_bank_data *zynqmp_tcm_banks;
1144 struct device *dev = cluster->dev;
1145 struct zynqmp_r5_core *r5_core;
1146 int tcm_bank_count, tcm_node;
1147 int i, j;
1148
1149 if (cluster->mode == SPLIT_MODE) {
1150 zynqmp_tcm_banks = zynqmp_tcm_banks_split;
1151 tcm_bank_count = ARRAY_SIZE(zynqmp_tcm_banks_split);
1152 } else {
1153 zynqmp_tcm_banks = zynqmp_tcm_banks_lockstep;
1154 tcm_bank_count = ARRAY_SIZE(zynqmp_tcm_banks_lockstep);
1155 }
1156
1157 /* count per core tcm banks */
1158 tcm_bank_count = tcm_bank_count / cluster->core_count;
1159
1160 /*
1161 * r5 core 0 will use all of TCM banks in lockstep mode.
1162 * In split mode, r5 core0 will use 128k and r5 core1 will use another
1163 * 128k. Assign TCM banks to each core accordingly
1164 */
1165 tcm_node = 0;
1166 for (i = 0; i < cluster->core_count; i++) {
1167 r5_core = cluster->r5_cores[i];
1168 r5_core->tcm_banks = devm_kcalloc(dev, tcm_bank_count,
1169 sizeof(struct mem_bank_data *),
1170 GFP_KERNEL);
1171 if (!r5_core->tcm_banks)
1172 return -ENOMEM;
1173
1174 for (j = 0; j < tcm_bank_count; j++) {
1175 /*
1176 * Use pre-defined TCM reg values.
1177 * Eventually this should be replaced by values
1178 * parsed from dts.
1179 */
1180 r5_core->tcm_banks[j] =
1181 (struct mem_bank_data *)&zynqmp_tcm_banks[tcm_node];
1182 tcm_node++;
1183 }
1184
1185 r5_core->tcm_bank_count = tcm_bank_count;
1186 }
1187
1188 return 0;
1189 }
1190
1191 /*
1192 * zynqmp_r5_core_init()
1193 * Create and initialize zynqmp_r5_core type object
1194 *
1195 * @cluster: pointer to zynqmp_r5_cluster type object
1196 * @fw_reg_val: value expected by firmware to configure RPU cluster mode
1197 * @tcm_mode: value expected by fw to configure TCM mode (lockstep or split)
1198 *
1199 * Return: 0 for success and error code for failure.
1200 */
zynqmp_r5_core_init(struct zynqmp_r5_cluster * cluster,enum rpu_oper_mode fw_reg_val,enum rpu_tcm_comb tcm_mode)1201 static int zynqmp_r5_core_init(struct zynqmp_r5_cluster *cluster,
1202 enum rpu_oper_mode fw_reg_val,
1203 enum rpu_tcm_comb tcm_mode)
1204 {
1205 struct device *dev = cluster->dev;
1206 struct zynqmp_r5_core *r5_core;
1207 int ret = -EINVAL, i;
1208
1209 r5_core = cluster->r5_cores[0];
1210
1211 /* Maintain backward compatibility for zynqmp by using hardcode TCM address. */
1212 if (of_property_present(r5_core->np, "reg"))
1213 ret = zynqmp_r5_get_tcm_node_from_dt(cluster);
1214 else if (device_is_compatible(dev, "xlnx,zynqmp-r5fss"))
1215 ret = zynqmp_r5_get_tcm_node(cluster);
1216
1217 if (ret) {
1218 dev_err(dev, "can't get tcm, err %d\n", ret);
1219 return ret;
1220 }
1221
1222 for (i = 0; i < cluster->core_count; i++) {
1223 r5_core = cluster->r5_cores[i];
1224
1225 /* Initialize r5 cores with power-domains parsed from dts */
1226 ret = of_property_read_u32_index(r5_core->np, "power-domains",
1227 1, &r5_core->pm_domain_id);
1228 if (ret) {
1229 dev_err(dev, "failed to get power-domains property\n");
1230 return ret;
1231 }
1232
1233 ret = zynqmp_pm_set_rpu_mode(r5_core->pm_domain_id, fw_reg_val);
1234 if (ret < 0) {
1235 dev_err(r5_core->dev, "failed to set RPU mode\n");
1236 return ret;
1237 }
1238
1239 if (of_property_present(dev_of_node(dev), "xlnx,tcm-mode") ||
1240 device_is_compatible(dev, "xlnx,zynqmp-r5fss")) {
1241 ret = zynqmp_pm_set_tcm_config(r5_core->pm_domain_id,
1242 tcm_mode);
1243 if (ret < 0) {
1244 dev_err(r5_core->dev, "failed to configure TCM\n");
1245 return ret;
1246 }
1247 }
1248
1249 ret = zynqmp_r5_get_sram_banks(r5_core);
1250 if (ret)
1251 return ret;
1252 }
1253
1254 return 0;
1255 }
1256
1257 /*
1258 * zynqmp_r5_cluster_init()
1259 * Create and initialize zynqmp_r5_cluster type object
1260 *
1261 * @cluster: pointer to zynqmp_r5_cluster type object
1262 *
1263 * Return: 0 for success and error code for failure.
1264 */
zynqmp_r5_cluster_init(struct zynqmp_r5_cluster * cluster)1265 static int zynqmp_r5_cluster_init(struct zynqmp_r5_cluster *cluster)
1266 {
1267 enum zynqmp_r5_cluster_mode cluster_mode = LOCKSTEP_MODE;
1268 struct device *dev = cluster->dev;
1269 struct device_node *dev_node = dev_of_node(dev);
1270 struct platform_device *child_pdev;
1271 struct zynqmp_r5_core **r5_cores;
1272 enum rpu_oper_mode fw_reg_val;
1273 struct device **child_devs;
1274 struct device_node *child;
1275 enum rpu_tcm_comb tcm_mode;
1276 int core_count, ret, i;
1277 struct mbox_info *ipi;
1278
1279 ret = of_property_read_u32(dev_node, "xlnx,cluster-mode", &cluster_mode);
1280
1281 /*
1282 * on success returns 0, if not defined then returns -EINVAL,
1283 * In that case, default is LOCKSTEP mode. Other than that
1284 * returns relative error code < 0.
1285 */
1286 if (ret != -EINVAL && ret != 0) {
1287 dev_err(dev, "Invalid xlnx,cluster-mode property\n");
1288 return ret;
1289 }
1290
1291 /*
1292 * For now driver only supports split mode and lockstep mode.
1293 * fail driver probe if either of that is not set in dts.
1294 */
1295 if (cluster_mode == LOCKSTEP_MODE) {
1296 fw_reg_val = PM_RPU_MODE_LOCKSTEP;
1297 } else if (cluster_mode == SPLIT_MODE) {
1298 fw_reg_val = PM_RPU_MODE_SPLIT;
1299 } else {
1300 dev_err(dev, "driver does not support cluster mode %d\n", cluster_mode);
1301 return -EINVAL;
1302 }
1303
1304 if (of_property_present(dev_node, "xlnx,tcm-mode")) {
1305 ret = of_property_read_u32(dev_node, "xlnx,tcm-mode", (u32 *)&tcm_mode);
1306 if (ret)
1307 return ret;
1308 } else if (device_is_compatible(dev, "xlnx,zynqmp-r5fss")) {
1309 if (cluster_mode == LOCKSTEP_MODE)
1310 tcm_mode = PM_RPU_TCM_COMB;
1311 else
1312 tcm_mode = PM_RPU_TCM_SPLIT;
1313 } else {
1314 tcm_mode = PM_RPU_TCM_COMB;
1315 }
1316
1317 /*
1318 * Number of cores is decided by number of child nodes of
1319 * r5f subsystem node in dts.
1320 * In split mode maximum two child nodes are expected.
1321 * However, only single core can be enabled too.
1322 * Driver can handle following configuration in split mode:
1323 * 1) core0 enabled, core1 disabled
1324 * 2) core0 disabled, core1 enabled
1325 * 3) core0 and core1 both are enabled.
1326 * For now, no more than two cores are expected per cluster
1327 * in split mode.
1328 * In lockstep mode if two child nodes are available,
1329 * only use first child node and consider it as core0
1330 * and ignore core1 dt node.
1331 */
1332 core_count = of_get_available_child_count(dev_node);
1333 if (core_count == 0 || core_count > 2) {
1334 dev_err(dev, "Invalid number of r5 cores %d", core_count);
1335 return -EINVAL;
1336 } else if (cluster_mode == LOCKSTEP_MODE && core_count == 2) {
1337 dev_warn(dev, "Only r5 core0 will be used\n");
1338 core_count = 1;
1339 }
1340
1341 child_devs = kcalloc(core_count, sizeof(struct device *), GFP_KERNEL);
1342 if (!child_devs)
1343 return -ENOMEM;
1344
1345 r5_cores = kcalloc(core_count,
1346 sizeof(struct zynqmp_r5_core *), GFP_KERNEL);
1347 if (!r5_cores) {
1348 kfree(child_devs);
1349 return -ENOMEM;
1350 }
1351
1352 i = 0;
1353 for_each_available_child_of_node(dev_node, child) {
1354 child_pdev = of_find_device_by_node(child);
1355 if (!child_pdev) {
1356 of_node_put(child);
1357 ret = -ENODEV;
1358 goto release_r5_cores;
1359 }
1360
1361 child_devs[i] = &child_pdev->dev;
1362
1363 /* create and add remoteproc instance of type struct rproc */
1364 r5_cores[i] = zynqmp_r5_add_rproc_core(&child_pdev->dev);
1365 if (IS_ERR(r5_cores[i])) {
1366 of_node_put(child);
1367 ret = PTR_ERR(r5_cores[i]);
1368 r5_cores[i] = NULL;
1369 goto release_r5_cores;
1370 }
1371
1372 /*
1373 * If mailbox nodes are disabled using "status" property then
1374 * setting up mailbox channels will fail.
1375 */
1376 ipi = zynqmp_r5_setup_mbox(&child_pdev->dev);
1377 if (ipi) {
1378 r5_cores[i]->ipi = ipi;
1379 ipi->r5_core = r5_cores[i];
1380 }
1381
1382 /*
1383 * If two child nodes are available in dts in lockstep mode,
1384 * then ignore second child node.
1385 */
1386 if (cluster_mode == LOCKSTEP_MODE) {
1387 of_node_put(child);
1388 break;
1389 }
1390
1391 i++;
1392 }
1393
1394 cluster->mode = cluster_mode;
1395 cluster->core_count = core_count;
1396 cluster->r5_cores = r5_cores;
1397
1398 ret = zynqmp_r5_core_init(cluster, fw_reg_val, tcm_mode);
1399 if (ret < 0) {
1400 dev_err(dev, "failed to init r5 core err %d\n", ret);
1401 cluster->core_count = 0;
1402 cluster->r5_cores = NULL;
1403
1404 /*
1405 * at this point rproc resources for each core are allocated.
1406 * adjust index to free resources in reverse order
1407 */
1408 i = core_count - 1;
1409 goto release_r5_cores;
1410 }
1411
1412 kfree(child_devs);
1413 return 0;
1414
1415 release_r5_cores:
1416 while (i >= 0) {
1417 put_device(child_devs[i]);
1418 if (r5_cores[i]) {
1419 zynqmp_r5_free_mbox(r5_cores[i]->ipi);
1420 of_reserved_mem_device_release(r5_cores[i]->dev);
1421 rproc_del(r5_cores[i]->rproc);
1422 rproc_free(r5_cores[i]->rproc);
1423 }
1424 i--;
1425 }
1426 kfree(r5_cores);
1427 kfree(child_devs);
1428 return ret;
1429 }
1430
zynqmp_r5_cluster_exit(void * data)1431 static void zynqmp_r5_cluster_exit(void *data)
1432 {
1433 struct platform_device *pdev = data;
1434 struct zynqmp_r5_cluster *cluster;
1435 struct zynqmp_r5_core *r5_core;
1436 int i;
1437
1438 cluster = platform_get_drvdata(pdev);
1439 if (!cluster)
1440 return;
1441
1442 for (i = 0; i < cluster->core_count; i++) {
1443 r5_core = cluster->r5_cores[i];
1444 zynqmp_r5_free_mbox(r5_core->ipi);
1445 iounmap(r5_core->rsc_tbl_va);
1446 of_reserved_mem_device_release(r5_core->dev);
1447 put_device(r5_core->dev);
1448 rproc_del(r5_core->rproc);
1449 rproc_free(r5_core->rproc);
1450 }
1451
1452 kfree(cluster->r5_cores);
1453 kfree(cluster);
1454 platform_set_drvdata(pdev, NULL);
1455 }
1456
1457 /*
1458 * zynqmp_r5_remoteproc_shutdown()
1459 * Follow shutdown sequence in case of kexec call.
1460 *
1461 * @pdev: domain platform device for cluster
1462 *
1463 * Return: None.
1464 */
zynqmp_r5_remoteproc_shutdown(struct platform_device * pdev)1465 static void zynqmp_r5_remoteproc_shutdown(struct platform_device *pdev)
1466 {
1467 const char *rproc_state_str = NULL;
1468 struct zynqmp_r5_cluster *cluster;
1469 struct zynqmp_r5_core *r5_core;
1470 struct rproc *rproc;
1471 int i, ret = 0;
1472
1473 cluster = platform_get_drvdata(pdev);
1474
1475 for (i = 0; i < cluster->core_count; i++) {
1476 r5_core = cluster->r5_cores[i];
1477 rproc = r5_core->rproc;
1478
1479 if (rproc->state == RPROC_RUNNING) {
1480 ret = rproc_shutdown(rproc);
1481 rproc_state_str = "shutdown";
1482 } else if (rproc->state == RPROC_ATTACHED) {
1483 ret = rproc_detach(rproc);
1484 rproc_state_str = "detach";
1485 } else {
1486 ret = 0;
1487 }
1488
1489 if (ret) {
1490 dev_err(cluster->dev, "failed to %s rproc %d\n",
1491 rproc_state_str, rproc->index);
1492 }
1493 }
1494 }
1495
1496 /*
1497 * zynqmp_r5_remoteproc_probe()
1498 * parse device-tree, initialize hardware and allocate required resources
1499 * and remoteproc ops
1500 *
1501 * @pdev: domain platform device for R5 cluster
1502 *
1503 * Return: 0 for success and < 0 for failure.
1504 */
zynqmp_r5_remoteproc_probe(struct platform_device * pdev)1505 static int zynqmp_r5_remoteproc_probe(struct platform_device *pdev)
1506 {
1507 struct zynqmp_r5_cluster *cluster;
1508 struct device *dev = &pdev->dev;
1509 int ret;
1510
1511 cluster = kzalloc(sizeof(*cluster), GFP_KERNEL);
1512 if (!cluster)
1513 return -ENOMEM;
1514
1515 cluster->dev = dev;
1516
1517 ret = devm_of_platform_populate(dev);
1518 if (ret) {
1519 dev_err_probe(dev, ret, "failed to populate platform dev\n");
1520 kfree(cluster);
1521 return ret;
1522 }
1523
1524 /* wire in so each core can be cleaned up at driver remove */
1525 platform_set_drvdata(pdev, cluster);
1526
1527 ret = zynqmp_r5_cluster_init(cluster);
1528 if (ret) {
1529 kfree(cluster);
1530 platform_set_drvdata(pdev, NULL);
1531 dev_err_probe(dev, ret, "Invalid r5f subsystem device tree\n");
1532 return ret;
1533 }
1534
1535 ret = devm_add_action_or_reset(dev, zynqmp_r5_cluster_exit, pdev);
1536 if (ret)
1537 return ret;
1538
1539 return 0;
1540 }
1541
1542 /* Match table for OF platform binding */
1543 static const struct of_device_id zynqmp_r5_remoteproc_match[] = {
1544 { .compatible = "xlnx,versal-net-r52fss", },
1545 { .compatible = "xlnx,versal-r5fss", },
1546 { .compatible = "xlnx,zynqmp-r5fss", },
1547 { /* end of list */ },
1548 };
1549 MODULE_DEVICE_TABLE(of, zynqmp_r5_remoteproc_match);
1550
1551 static struct platform_driver zynqmp_r5_remoteproc_driver = {
1552 .probe = zynqmp_r5_remoteproc_probe,
1553 .driver = {
1554 .name = "zynqmp_r5_remoteproc",
1555 .of_match_table = zynqmp_r5_remoteproc_match,
1556 },
1557 .shutdown = zynqmp_r5_remoteproc_shutdown,
1558 };
1559 module_platform_driver(zynqmp_r5_remoteproc_driver);
1560
1561 MODULE_DESCRIPTION("Xilinx R5F remote processor driver");
1562 MODULE_AUTHOR("Xilinx Inc.");
1563 MODULE_LICENSE("GPL");
1564