xref: /linux/kernel/bpf/verifier.c (revision c537e12daeecaecdcd322c56a5f70659d2de7bde)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 #include <linux/cpumask.h>
29 #include <linux/bpf_mem_alloc.h>
30 #include <net/xdp.h>
31 #include <linux/trace_events.h>
32 #include <linux/kallsyms.h>
33 
34 #include "disasm.h"
35 
36 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
37 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
38 	[_id] = & _name ## _verifier_ops,
39 #define BPF_MAP_TYPE(_id, _ops)
40 #define BPF_LINK_TYPE(_id, _name)
41 #include <linux/bpf_types.h>
42 #undef BPF_PROG_TYPE
43 #undef BPF_MAP_TYPE
44 #undef BPF_LINK_TYPE
45 };
46 
47 enum bpf_features {
48 	BPF_FEAT_RDONLY_CAST_TO_VOID = 0,
49 	BPF_FEAT_STREAMS	     = 1,
50 	__MAX_BPF_FEAT,
51 };
52 
53 struct bpf_mem_alloc bpf_global_percpu_ma;
54 static bool bpf_global_percpu_ma_set;
55 
56 /* bpf_check() is a static code analyzer that walks eBPF program
57  * instruction by instruction and updates register/stack state.
58  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
59  *
60  * The first pass is depth-first-search to check that the program is a DAG.
61  * It rejects the following programs:
62  * - larger than BPF_MAXINSNS insns
63  * - if loop is present (detected via back-edge)
64  * - unreachable insns exist (shouldn't be a forest. program = one function)
65  * - out of bounds or malformed jumps
66  * The second pass is all possible path descent from the 1st insn.
67  * Since it's analyzing all paths through the program, the length of the
68  * analysis is limited to 64k insn, which may be hit even if total number of
69  * insn is less then 4K, but there are too many branches that change stack/regs.
70  * Number of 'branches to be analyzed' is limited to 1k
71  *
72  * On entry to each instruction, each register has a type, and the instruction
73  * changes the types of the registers depending on instruction semantics.
74  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
75  * copied to R1.
76  *
77  * All registers are 64-bit.
78  * R0 - return register
79  * R1-R5 argument passing registers
80  * R6-R9 callee saved registers
81  * R10 - frame pointer read-only
82  *
83  * At the start of BPF program the register R1 contains a pointer to bpf_context
84  * and has type PTR_TO_CTX.
85  *
86  * Verifier tracks arithmetic operations on pointers in case:
87  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
88  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
89  * 1st insn copies R10 (which has FRAME_PTR) type into R1
90  * and 2nd arithmetic instruction is pattern matched to recognize
91  * that it wants to construct a pointer to some element within stack.
92  * So after 2nd insn, the register R1 has type PTR_TO_STACK
93  * (and -20 constant is saved for further stack bounds checking).
94  * Meaning that this reg is a pointer to stack plus known immediate constant.
95  *
96  * Most of the time the registers have SCALAR_VALUE type, which
97  * means the register has some value, but it's not a valid pointer.
98  * (like pointer plus pointer becomes SCALAR_VALUE type)
99  *
100  * When verifier sees load or store instructions the type of base register
101  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
102  * four pointer types recognized by check_mem_access() function.
103  *
104  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
105  * and the range of [ptr, ptr + map's value_size) is accessible.
106  *
107  * registers used to pass values to function calls are checked against
108  * function argument constraints.
109  *
110  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
111  * It means that the register type passed to this function must be
112  * PTR_TO_STACK and it will be used inside the function as
113  * 'pointer to map element key'
114  *
115  * For example the argument constraints for bpf_map_lookup_elem():
116  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
117  *   .arg1_type = ARG_CONST_MAP_PTR,
118  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
119  *
120  * ret_type says that this function returns 'pointer to map elem value or null'
121  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
122  * 2nd argument should be a pointer to stack, which will be used inside
123  * the helper function as a pointer to map element key.
124  *
125  * On the kernel side the helper function looks like:
126  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
127  * {
128  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
129  *    void *key = (void *) (unsigned long) r2;
130  *    void *value;
131  *
132  *    here kernel can access 'key' and 'map' pointers safely, knowing that
133  *    [key, key + map->key_size) bytes are valid and were initialized on
134  *    the stack of eBPF program.
135  * }
136  *
137  * Corresponding eBPF program may look like:
138  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
139  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
140  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
141  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
142  * here verifier looks at prototype of map_lookup_elem() and sees:
143  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
144  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
145  *
146  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
147  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
148  * and were initialized prior to this call.
149  * If it's ok, then verifier allows this BPF_CALL insn and looks at
150  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
151  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
152  * returns either pointer to map value or NULL.
153  *
154  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
155  * insn, the register holding that pointer in the true branch changes state to
156  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
157  * branch. See check_cond_jmp_op().
158  *
159  * After the call R0 is set to return type of the function and registers R1-R5
160  * are set to NOT_INIT to indicate that they are no longer readable.
161  *
162  * The following reference types represent a potential reference to a kernel
163  * resource which, after first being allocated, must be checked and freed by
164  * the BPF program:
165  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
166  *
167  * When the verifier sees a helper call return a reference type, it allocates a
168  * pointer id for the reference and stores it in the current function state.
169  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
170  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
171  * passes through a NULL-check conditional. For the branch wherein the state is
172  * changed to CONST_IMM, the verifier releases the reference.
173  *
174  * For each helper function that allocates a reference, such as
175  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
176  * bpf_sk_release(). When a reference type passes into the release function,
177  * the verifier also releases the reference. If any unchecked or unreleased
178  * reference remains at the end of the program, the verifier rejects it.
179  */
180 
181 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
182 struct bpf_verifier_stack_elem {
183 	/* verifier state is 'st'
184 	 * before processing instruction 'insn_idx'
185 	 * and after processing instruction 'prev_insn_idx'
186 	 */
187 	struct bpf_verifier_state st;
188 	int insn_idx;
189 	int prev_insn_idx;
190 	struct bpf_verifier_stack_elem *next;
191 	/* length of verifier log at the time this state was pushed on stack */
192 	u32 log_pos;
193 };
194 
195 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
196 #define BPF_COMPLEXITY_LIMIT_STATES	64
197 
198 #define BPF_MAP_KEY_POISON	(1ULL << 63)
199 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
200 
201 #define BPF_GLOBAL_PERCPU_MA_MAX_SIZE  512
202 
203 #define BPF_PRIV_STACK_MIN_SIZE		64
204 
205 static int acquire_reference(struct bpf_verifier_env *env, int insn_idx);
206 static int release_reference_nomark(struct bpf_verifier_state *state, int ref_obj_id);
207 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
208 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
209 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
210 static int ref_set_non_owning(struct bpf_verifier_env *env,
211 			      struct bpf_reg_state *reg);
212 static bool is_trusted_reg(const struct bpf_reg_state *reg);
213 
bpf_map_ptr_poisoned(const struct bpf_insn_aux_data * aux)214 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
215 {
216 	return aux->map_ptr_state.poison;
217 }
218 
bpf_map_ptr_unpriv(const struct bpf_insn_aux_data * aux)219 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
220 {
221 	return aux->map_ptr_state.unpriv;
222 }
223 
bpf_map_ptr_store(struct bpf_insn_aux_data * aux,struct bpf_map * map,bool unpriv,bool poison)224 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
225 			      struct bpf_map *map,
226 			      bool unpriv, bool poison)
227 {
228 	unpriv |= bpf_map_ptr_unpriv(aux);
229 	aux->map_ptr_state.unpriv = unpriv;
230 	aux->map_ptr_state.poison = poison;
231 	aux->map_ptr_state.map_ptr = map;
232 }
233 
bpf_map_key_poisoned(const struct bpf_insn_aux_data * aux)234 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
235 {
236 	return aux->map_key_state & BPF_MAP_KEY_POISON;
237 }
238 
bpf_map_key_unseen(const struct bpf_insn_aux_data * aux)239 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
240 {
241 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
242 }
243 
bpf_map_key_immediate(const struct bpf_insn_aux_data * aux)244 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
245 {
246 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
247 }
248 
bpf_map_key_store(struct bpf_insn_aux_data * aux,u64 state)249 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
250 {
251 	bool poisoned = bpf_map_key_poisoned(aux);
252 
253 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
254 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
255 }
256 
bpf_helper_call(const struct bpf_insn * insn)257 static bool bpf_helper_call(const struct bpf_insn *insn)
258 {
259 	return insn->code == (BPF_JMP | BPF_CALL) &&
260 	       insn->src_reg == 0;
261 }
262 
bpf_pseudo_call(const struct bpf_insn * insn)263 static bool bpf_pseudo_call(const struct bpf_insn *insn)
264 {
265 	return insn->code == (BPF_JMP | BPF_CALL) &&
266 	       insn->src_reg == BPF_PSEUDO_CALL;
267 }
268 
bpf_pseudo_kfunc_call(const struct bpf_insn * insn)269 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
270 {
271 	return insn->code == (BPF_JMP | BPF_CALL) &&
272 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
273 }
274 
275 struct bpf_call_arg_meta {
276 	struct bpf_map *map_ptr;
277 	bool raw_mode;
278 	bool pkt_access;
279 	u8 release_regno;
280 	int regno;
281 	int access_size;
282 	int mem_size;
283 	u64 msize_max_value;
284 	int ref_obj_id;
285 	int dynptr_id;
286 	int map_uid;
287 	int func_id;
288 	struct btf *btf;
289 	u32 btf_id;
290 	struct btf *ret_btf;
291 	u32 ret_btf_id;
292 	u32 subprogno;
293 	struct btf_field *kptr_field;
294 	s64 const_map_key;
295 };
296 
297 struct bpf_kfunc_call_arg_meta {
298 	/* In parameters */
299 	struct btf *btf;
300 	u32 func_id;
301 	u32 kfunc_flags;
302 	const struct btf_type *func_proto;
303 	const char *func_name;
304 	/* Out parameters */
305 	u32 ref_obj_id;
306 	u8 release_regno;
307 	bool r0_rdonly;
308 	u32 ret_btf_id;
309 	u64 r0_size;
310 	u32 subprogno;
311 	struct {
312 		u64 value;
313 		bool found;
314 	} arg_constant;
315 
316 	/* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
317 	 * generally to pass info about user-defined local kptr types to later
318 	 * verification logic
319 	 *   bpf_obj_drop/bpf_percpu_obj_drop
320 	 *     Record the local kptr type to be drop'd
321 	 *   bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
322 	 *     Record the local kptr type to be refcount_incr'd and use
323 	 *     arg_owning_ref to determine whether refcount_acquire should be
324 	 *     fallible
325 	 */
326 	struct btf *arg_btf;
327 	u32 arg_btf_id;
328 	bool arg_owning_ref;
329 	bool arg_prog;
330 
331 	struct {
332 		struct btf_field *field;
333 	} arg_list_head;
334 	struct {
335 		struct btf_field *field;
336 	} arg_rbtree_root;
337 	struct {
338 		enum bpf_dynptr_type type;
339 		u32 id;
340 		u32 ref_obj_id;
341 	} initialized_dynptr;
342 	struct {
343 		u8 spi;
344 		u8 frameno;
345 	} iter;
346 	struct {
347 		struct bpf_map *ptr;
348 		int uid;
349 	} map;
350 	u64 mem_size;
351 };
352 
353 struct btf *btf_vmlinux;
354 
btf_type_name(const struct btf * btf,u32 id)355 static const char *btf_type_name(const struct btf *btf, u32 id)
356 {
357 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
358 }
359 
360 static DEFINE_MUTEX(bpf_verifier_lock);
361 static DEFINE_MUTEX(bpf_percpu_ma_lock);
362 
verbose(void * private_data,const char * fmt,...)363 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
364 {
365 	struct bpf_verifier_env *env = private_data;
366 	va_list args;
367 
368 	if (!bpf_verifier_log_needed(&env->log))
369 		return;
370 
371 	va_start(args, fmt);
372 	bpf_verifier_vlog(&env->log, fmt, args);
373 	va_end(args);
374 }
375 
verbose_invalid_scalar(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct bpf_retval_range range,const char * ctx,const char * reg_name)376 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
377 				   struct bpf_reg_state *reg,
378 				   struct bpf_retval_range range, const char *ctx,
379 				   const char *reg_name)
380 {
381 	bool unknown = true;
382 
383 	verbose(env, "%s the register %s has", ctx, reg_name);
384 	if (reg->smin_value > S64_MIN) {
385 		verbose(env, " smin=%lld", reg->smin_value);
386 		unknown = false;
387 	}
388 	if (reg->smax_value < S64_MAX) {
389 		verbose(env, " smax=%lld", reg->smax_value);
390 		unknown = false;
391 	}
392 	if (unknown)
393 		verbose(env, " unknown scalar value");
394 	verbose(env, " should have been in [%d, %d]\n", range.minval, range.maxval);
395 }
396 
reg_not_null(const struct bpf_reg_state * reg)397 static bool reg_not_null(const struct bpf_reg_state *reg)
398 {
399 	enum bpf_reg_type type;
400 
401 	type = reg->type;
402 	if (type_may_be_null(type))
403 		return false;
404 
405 	type = base_type(type);
406 	return type == PTR_TO_SOCKET ||
407 		type == PTR_TO_TCP_SOCK ||
408 		type == PTR_TO_MAP_VALUE ||
409 		type == PTR_TO_MAP_KEY ||
410 		type == PTR_TO_SOCK_COMMON ||
411 		(type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
412 		(type == PTR_TO_MEM && !(reg->type & PTR_UNTRUSTED)) ||
413 		type == CONST_PTR_TO_MAP;
414 }
415 
reg_btf_record(const struct bpf_reg_state * reg)416 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
417 {
418 	struct btf_record *rec = NULL;
419 	struct btf_struct_meta *meta;
420 
421 	if (reg->type == PTR_TO_MAP_VALUE) {
422 		rec = reg->map_ptr->record;
423 	} else if (type_is_ptr_alloc_obj(reg->type)) {
424 		meta = btf_find_struct_meta(reg->btf, reg->btf_id);
425 		if (meta)
426 			rec = meta->record;
427 	}
428 	return rec;
429 }
430 
subprog_is_global(const struct bpf_verifier_env * env,int subprog)431 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
432 {
433 	struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
434 
435 	return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
436 }
437 
subprog_name(const struct bpf_verifier_env * env,int subprog)438 static const char *subprog_name(const struct bpf_verifier_env *env, int subprog)
439 {
440 	struct bpf_func_info *info;
441 
442 	if (!env->prog->aux->func_info)
443 		return "";
444 
445 	info = &env->prog->aux->func_info[subprog];
446 	return btf_type_name(env->prog->aux->btf, info->type_id);
447 }
448 
mark_subprog_exc_cb(struct bpf_verifier_env * env,int subprog)449 static void mark_subprog_exc_cb(struct bpf_verifier_env *env, int subprog)
450 {
451 	struct bpf_subprog_info *info = subprog_info(env, subprog);
452 
453 	info->is_cb = true;
454 	info->is_async_cb = true;
455 	info->is_exception_cb = true;
456 }
457 
subprog_is_exc_cb(struct bpf_verifier_env * env,int subprog)458 static bool subprog_is_exc_cb(struct bpf_verifier_env *env, int subprog)
459 {
460 	return subprog_info(env, subprog)->is_exception_cb;
461 }
462 
reg_may_point_to_spin_lock(const struct bpf_reg_state * reg)463 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
464 {
465 	return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK);
466 }
467 
type_is_rdonly_mem(u32 type)468 static bool type_is_rdonly_mem(u32 type)
469 {
470 	return type & MEM_RDONLY;
471 }
472 
is_acquire_function(enum bpf_func_id func_id,const struct bpf_map * map)473 static bool is_acquire_function(enum bpf_func_id func_id,
474 				const struct bpf_map *map)
475 {
476 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
477 
478 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
479 	    func_id == BPF_FUNC_sk_lookup_udp ||
480 	    func_id == BPF_FUNC_skc_lookup_tcp ||
481 	    func_id == BPF_FUNC_ringbuf_reserve ||
482 	    func_id == BPF_FUNC_kptr_xchg)
483 		return true;
484 
485 	if (func_id == BPF_FUNC_map_lookup_elem &&
486 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
487 	     map_type == BPF_MAP_TYPE_SOCKHASH))
488 		return true;
489 
490 	return false;
491 }
492 
is_ptr_cast_function(enum bpf_func_id func_id)493 static bool is_ptr_cast_function(enum bpf_func_id func_id)
494 {
495 	return func_id == BPF_FUNC_tcp_sock ||
496 		func_id == BPF_FUNC_sk_fullsock ||
497 		func_id == BPF_FUNC_skc_to_tcp_sock ||
498 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
499 		func_id == BPF_FUNC_skc_to_udp6_sock ||
500 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
501 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
502 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
503 }
504 
is_dynptr_ref_function(enum bpf_func_id func_id)505 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
506 {
507 	return func_id == BPF_FUNC_dynptr_data;
508 }
509 
510 static bool is_sync_callback_calling_kfunc(u32 btf_id);
511 static bool is_async_callback_calling_kfunc(u32 btf_id);
512 static bool is_callback_calling_kfunc(u32 btf_id);
513 static bool is_bpf_throw_kfunc(struct bpf_insn *insn);
514 
515 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id);
516 static bool is_task_work_add_kfunc(u32 func_id);
517 
is_sync_callback_calling_function(enum bpf_func_id func_id)518 static bool is_sync_callback_calling_function(enum bpf_func_id func_id)
519 {
520 	return func_id == BPF_FUNC_for_each_map_elem ||
521 	       func_id == BPF_FUNC_find_vma ||
522 	       func_id == BPF_FUNC_loop ||
523 	       func_id == BPF_FUNC_user_ringbuf_drain;
524 }
525 
is_async_callback_calling_function(enum bpf_func_id func_id)526 static bool is_async_callback_calling_function(enum bpf_func_id func_id)
527 {
528 	return func_id == BPF_FUNC_timer_set_callback;
529 }
530 
is_callback_calling_function(enum bpf_func_id func_id)531 static bool is_callback_calling_function(enum bpf_func_id func_id)
532 {
533 	return is_sync_callback_calling_function(func_id) ||
534 	       is_async_callback_calling_function(func_id);
535 }
536 
is_sync_callback_calling_insn(struct bpf_insn * insn)537 static bool is_sync_callback_calling_insn(struct bpf_insn *insn)
538 {
539 	return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) ||
540 	       (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm));
541 }
542 
is_async_callback_calling_insn(struct bpf_insn * insn)543 static bool is_async_callback_calling_insn(struct bpf_insn *insn)
544 {
545 	return (bpf_helper_call(insn) && is_async_callback_calling_function(insn->imm)) ||
546 	       (bpf_pseudo_kfunc_call(insn) && is_async_callback_calling_kfunc(insn->imm));
547 }
548 
is_async_cb_sleepable(struct bpf_verifier_env * env,struct bpf_insn * insn)549 static bool is_async_cb_sleepable(struct bpf_verifier_env *env, struct bpf_insn *insn)
550 {
551 	/* bpf_timer callbacks are never sleepable. */
552 	if (bpf_helper_call(insn) && insn->imm == BPF_FUNC_timer_set_callback)
553 		return false;
554 
555 	/* bpf_wq and bpf_task_work callbacks are always sleepable. */
556 	if (bpf_pseudo_kfunc_call(insn) && insn->off == 0 &&
557 	    (is_bpf_wq_set_callback_impl_kfunc(insn->imm) || is_task_work_add_kfunc(insn->imm)))
558 		return true;
559 
560 	verifier_bug(env, "unhandled async callback in is_async_cb_sleepable");
561 	return false;
562 }
563 
is_may_goto_insn(struct bpf_insn * insn)564 static bool is_may_goto_insn(struct bpf_insn *insn)
565 {
566 	return insn->code == (BPF_JMP | BPF_JCOND) && insn->src_reg == BPF_MAY_GOTO;
567 }
568 
is_may_goto_insn_at(struct bpf_verifier_env * env,int insn_idx)569 static bool is_may_goto_insn_at(struct bpf_verifier_env *env, int insn_idx)
570 {
571 	return is_may_goto_insn(&env->prog->insnsi[insn_idx]);
572 }
573 
is_storage_get_function(enum bpf_func_id func_id)574 static bool is_storage_get_function(enum bpf_func_id func_id)
575 {
576 	return func_id == BPF_FUNC_sk_storage_get ||
577 	       func_id == BPF_FUNC_inode_storage_get ||
578 	       func_id == BPF_FUNC_task_storage_get ||
579 	       func_id == BPF_FUNC_cgrp_storage_get;
580 }
581 
helper_multiple_ref_obj_use(enum bpf_func_id func_id,const struct bpf_map * map)582 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
583 					const struct bpf_map *map)
584 {
585 	int ref_obj_uses = 0;
586 
587 	if (is_ptr_cast_function(func_id))
588 		ref_obj_uses++;
589 	if (is_acquire_function(func_id, map))
590 		ref_obj_uses++;
591 	if (is_dynptr_ref_function(func_id))
592 		ref_obj_uses++;
593 
594 	return ref_obj_uses > 1;
595 }
596 
is_cmpxchg_insn(const struct bpf_insn * insn)597 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
598 {
599 	return BPF_CLASS(insn->code) == BPF_STX &&
600 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
601 	       insn->imm == BPF_CMPXCHG;
602 }
603 
is_atomic_load_insn(const struct bpf_insn * insn)604 static bool is_atomic_load_insn(const struct bpf_insn *insn)
605 {
606 	return BPF_CLASS(insn->code) == BPF_STX &&
607 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
608 	       insn->imm == BPF_LOAD_ACQ;
609 }
610 
__get_spi(s32 off)611 static int __get_spi(s32 off)
612 {
613 	return (-off - 1) / BPF_REG_SIZE;
614 }
615 
func(struct bpf_verifier_env * env,const struct bpf_reg_state * reg)616 static struct bpf_func_state *func(struct bpf_verifier_env *env,
617 				   const struct bpf_reg_state *reg)
618 {
619 	struct bpf_verifier_state *cur = env->cur_state;
620 
621 	return cur->frame[reg->frameno];
622 }
623 
is_spi_bounds_valid(struct bpf_func_state * state,int spi,int nr_slots)624 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
625 {
626        int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
627 
628        /* We need to check that slots between [spi - nr_slots + 1, spi] are
629 	* within [0, allocated_stack).
630 	*
631 	* Please note that the spi grows downwards. For example, a dynptr
632 	* takes the size of two stack slots; the first slot will be at
633 	* spi and the second slot will be at spi - 1.
634 	*/
635        return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
636 }
637 
stack_slot_obj_get_spi(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * obj_kind,int nr_slots)638 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
639 			          const char *obj_kind, int nr_slots)
640 {
641 	int off, spi;
642 
643 	if (!tnum_is_const(reg->var_off)) {
644 		verbose(env, "%s has to be at a constant offset\n", obj_kind);
645 		return -EINVAL;
646 	}
647 
648 	off = reg->off + reg->var_off.value;
649 	if (off % BPF_REG_SIZE) {
650 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
651 		return -EINVAL;
652 	}
653 
654 	spi = __get_spi(off);
655 	if (spi + 1 < nr_slots) {
656 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
657 		return -EINVAL;
658 	}
659 
660 	if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
661 		return -ERANGE;
662 	return spi;
663 }
664 
dynptr_get_spi(struct bpf_verifier_env * env,struct bpf_reg_state * reg)665 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
666 {
667 	return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
668 }
669 
iter_get_spi(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int nr_slots)670 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
671 {
672 	return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
673 }
674 
irq_flag_get_spi(struct bpf_verifier_env * env,struct bpf_reg_state * reg)675 static int irq_flag_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
676 {
677 	return stack_slot_obj_get_spi(env, reg, "irq_flag", 1);
678 }
679 
arg_to_dynptr_type(enum bpf_arg_type arg_type)680 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
681 {
682 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
683 	case DYNPTR_TYPE_LOCAL:
684 		return BPF_DYNPTR_TYPE_LOCAL;
685 	case DYNPTR_TYPE_RINGBUF:
686 		return BPF_DYNPTR_TYPE_RINGBUF;
687 	case DYNPTR_TYPE_SKB:
688 		return BPF_DYNPTR_TYPE_SKB;
689 	case DYNPTR_TYPE_XDP:
690 		return BPF_DYNPTR_TYPE_XDP;
691 	case DYNPTR_TYPE_SKB_META:
692 		return BPF_DYNPTR_TYPE_SKB_META;
693 	case DYNPTR_TYPE_FILE:
694 		return BPF_DYNPTR_TYPE_FILE;
695 	default:
696 		return BPF_DYNPTR_TYPE_INVALID;
697 	}
698 }
699 
get_dynptr_type_flag(enum bpf_dynptr_type type)700 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
701 {
702 	switch (type) {
703 	case BPF_DYNPTR_TYPE_LOCAL:
704 		return DYNPTR_TYPE_LOCAL;
705 	case BPF_DYNPTR_TYPE_RINGBUF:
706 		return DYNPTR_TYPE_RINGBUF;
707 	case BPF_DYNPTR_TYPE_SKB:
708 		return DYNPTR_TYPE_SKB;
709 	case BPF_DYNPTR_TYPE_XDP:
710 		return DYNPTR_TYPE_XDP;
711 	case BPF_DYNPTR_TYPE_SKB_META:
712 		return DYNPTR_TYPE_SKB_META;
713 	case BPF_DYNPTR_TYPE_FILE:
714 		return DYNPTR_TYPE_FILE;
715 	default:
716 		return 0;
717 	}
718 }
719 
dynptr_type_refcounted(enum bpf_dynptr_type type)720 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
721 {
722 	return type == BPF_DYNPTR_TYPE_RINGBUF || type == BPF_DYNPTR_TYPE_FILE;
723 }
724 
725 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
726 			      enum bpf_dynptr_type type,
727 			      bool first_slot, int dynptr_id);
728 
729 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
730 				struct bpf_reg_state *reg);
731 
mark_dynptr_stack_regs(struct bpf_verifier_env * env,struct bpf_reg_state * sreg1,struct bpf_reg_state * sreg2,enum bpf_dynptr_type type)732 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
733 				   struct bpf_reg_state *sreg1,
734 				   struct bpf_reg_state *sreg2,
735 				   enum bpf_dynptr_type type)
736 {
737 	int id = ++env->id_gen;
738 
739 	__mark_dynptr_reg(sreg1, type, true, id);
740 	__mark_dynptr_reg(sreg2, type, false, id);
741 }
742 
mark_dynptr_cb_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,enum bpf_dynptr_type type)743 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
744 			       struct bpf_reg_state *reg,
745 			       enum bpf_dynptr_type type)
746 {
747 	__mark_dynptr_reg(reg, type, true, ++env->id_gen);
748 }
749 
750 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
751 				        struct bpf_func_state *state, int spi);
752 
mark_stack_slots_dynptr(struct bpf_verifier_env * env,struct bpf_reg_state * reg,enum bpf_arg_type arg_type,int insn_idx,int clone_ref_obj_id)753 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
754 				   enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
755 {
756 	struct bpf_func_state *state = func(env, reg);
757 	enum bpf_dynptr_type type;
758 	int spi, i, err;
759 
760 	spi = dynptr_get_spi(env, reg);
761 	if (spi < 0)
762 		return spi;
763 
764 	/* We cannot assume both spi and spi - 1 belong to the same dynptr,
765 	 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
766 	 * to ensure that for the following example:
767 	 *	[d1][d1][d2][d2]
768 	 * spi    3   2   1   0
769 	 * So marking spi = 2 should lead to destruction of both d1 and d2. In
770 	 * case they do belong to same dynptr, second call won't see slot_type
771 	 * as STACK_DYNPTR and will simply skip destruction.
772 	 */
773 	err = destroy_if_dynptr_stack_slot(env, state, spi);
774 	if (err)
775 		return err;
776 	err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
777 	if (err)
778 		return err;
779 
780 	for (i = 0; i < BPF_REG_SIZE; i++) {
781 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
782 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
783 	}
784 
785 	type = arg_to_dynptr_type(arg_type);
786 	if (type == BPF_DYNPTR_TYPE_INVALID)
787 		return -EINVAL;
788 
789 	mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
790 			       &state->stack[spi - 1].spilled_ptr, type);
791 
792 	if (dynptr_type_refcounted(type)) {
793 		/* The id is used to track proper releasing */
794 		int id;
795 
796 		if (clone_ref_obj_id)
797 			id = clone_ref_obj_id;
798 		else
799 			id = acquire_reference(env, insn_idx);
800 
801 		if (id < 0)
802 			return id;
803 
804 		state->stack[spi].spilled_ptr.ref_obj_id = id;
805 		state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
806 	}
807 
808 	bpf_mark_stack_write(env, state->frameno, BIT(spi - 1) | BIT(spi));
809 
810 	return 0;
811 }
812 
invalidate_dynptr(struct bpf_verifier_env * env,struct bpf_func_state * state,int spi)813 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
814 {
815 	int i;
816 
817 	for (i = 0; i < BPF_REG_SIZE; i++) {
818 		state->stack[spi].slot_type[i] = STACK_INVALID;
819 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
820 	}
821 
822 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
823 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
824 
825 	bpf_mark_stack_write(env, state->frameno, BIT(spi - 1) | BIT(spi));
826 }
827 
unmark_stack_slots_dynptr(struct bpf_verifier_env * env,struct bpf_reg_state * reg)828 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
829 {
830 	struct bpf_func_state *state = func(env, reg);
831 	int spi, ref_obj_id, i;
832 
833 	/*
834 	 * This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
835 	 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
836 	 * is safe to do directly.
837 	 */
838 	if (reg->type == CONST_PTR_TO_DYNPTR) {
839 		verifier_bug(env, "CONST_PTR_TO_DYNPTR cannot be released");
840 		return -EFAULT;
841 	}
842 	spi = dynptr_get_spi(env, reg);
843 	if (spi < 0)
844 		return spi;
845 
846 	if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
847 		invalidate_dynptr(env, state, spi);
848 		return 0;
849 	}
850 
851 	ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
852 
853 	/* If the dynptr has a ref_obj_id, then we need to invalidate
854 	 * two things:
855 	 *
856 	 * 1) Any dynptrs with a matching ref_obj_id (clones)
857 	 * 2) Any slices derived from this dynptr.
858 	 */
859 
860 	/* Invalidate any slices associated with this dynptr */
861 	WARN_ON_ONCE(release_reference(env, ref_obj_id));
862 
863 	/* Invalidate any dynptr clones */
864 	for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
865 		if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
866 			continue;
867 
868 		/* it should always be the case that if the ref obj id
869 		 * matches then the stack slot also belongs to a
870 		 * dynptr
871 		 */
872 		if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
873 			verifier_bug(env, "misconfigured ref_obj_id");
874 			return -EFAULT;
875 		}
876 		if (state->stack[i].spilled_ptr.dynptr.first_slot)
877 			invalidate_dynptr(env, state, i);
878 	}
879 
880 	return 0;
881 }
882 
883 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
884 			       struct bpf_reg_state *reg);
885 
mark_reg_invalid(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)886 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
887 {
888 	if (!env->allow_ptr_leaks)
889 		__mark_reg_not_init(env, reg);
890 	else
891 		__mark_reg_unknown(env, reg);
892 }
893 
destroy_if_dynptr_stack_slot(struct bpf_verifier_env * env,struct bpf_func_state * state,int spi)894 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
895 				        struct bpf_func_state *state, int spi)
896 {
897 	struct bpf_func_state *fstate;
898 	struct bpf_reg_state *dreg;
899 	int i, dynptr_id;
900 
901 	/* We always ensure that STACK_DYNPTR is never set partially,
902 	 * hence just checking for slot_type[0] is enough. This is
903 	 * different for STACK_SPILL, where it may be only set for
904 	 * 1 byte, so code has to use is_spilled_reg.
905 	 */
906 	if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
907 		return 0;
908 
909 	/* Reposition spi to first slot */
910 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
911 		spi = spi + 1;
912 
913 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
914 		verbose(env, "cannot overwrite referenced dynptr\n");
915 		return -EINVAL;
916 	}
917 
918 	mark_stack_slot_scratched(env, spi);
919 	mark_stack_slot_scratched(env, spi - 1);
920 
921 	/* Writing partially to one dynptr stack slot destroys both. */
922 	for (i = 0; i < BPF_REG_SIZE; i++) {
923 		state->stack[spi].slot_type[i] = STACK_INVALID;
924 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
925 	}
926 
927 	dynptr_id = state->stack[spi].spilled_ptr.id;
928 	/* Invalidate any slices associated with this dynptr */
929 	bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
930 		/* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
931 		if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
932 			continue;
933 		if (dreg->dynptr_id == dynptr_id)
934 			mark_reg_invalid(env, dreg);
935 	}));
936 
937 	/* Do not release reference state, we are destroying dynptr on stack,
938 	 * not using some helper to release it. Just reset register.
939 	 */
940 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
941 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
942 
943 	bpf_mark_stack_write(env, state->frameno, BIT(spi - 1) | BIT(spi));
944 
945 	return 0;
946 }
947 
is_dynptr_reg_valid_uninit(struct bpf_verifier_env * env,struct bpf_reg_state * reg)948 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
949 {
950 	int spi;
951 
952 	if (reg->type == CONST_PTR_TO_DYNPTR)
953 		return false;
954 
955 	spi = dynptr_get_spi(env, reg);
956 
957 	/* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
958 	 * error because this just means the stack state hasn't been updated yet.
959 	 * We will do check_mem_access to check and update stack bounds later.
960 	 */
961 	if (spi < 0 && spi != -ERANGE)
962 		return false;
963 
964 	/* We don't need to check if the stack slots are marked by previous
965 	 * dynptr initializations because we allow overwriting existing unreferenced
966 	 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
967 	 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
968 	 * touching are completely destructed before we reinitialize them for a new
969 	 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
970 	 * instead of delaying it until the end where the user will get "Unreleased
971 	 * reference" error.
972 	 */
973 	return true;
974 }
975 
is_dynptr_reg_valid_init(struct bpf_verifier_env * env,struct bpf_reg_state * reg)976 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
977 {
978 	struct bpf_func_state *state = func(env, reg);
979 	int i, spi;
980 
981 	/* This already represents first slot of initialized bpf_dynptr.
982 	 *
983 	 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
984 	 * check_func_arg_reg_off's logic, so we don't need to check its
985 	 * offset and alignment.
986 	 */
987 	if (reg->type == CONST_PTR_TO_DYNPTR)
988 		return true;
989 
990 	spi = dynptr_get_spi(env, reg);
991 	if (spi < 0)
992 		return false;
993 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
994 		return false;
995 
996 	for (i = 0; i < BPF_REG_SIZE; i++) {
997 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
998 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
999 			return false;
1000 	}
1001 
1002 	return true;
1003 }
1004 
is_dynptr_type_expected(struct bpf_verifier_env * env,struct bpf_reg_state * reg,enum bpf_arg_type arg_type)1005 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1006 				    enum bpf_arg_type arg_type)
1007 {
1008 	struct bpf_func_state *state = func(env, reg);
1009 	enum bpf_dynptr_type dynptr_type;
1010 	int spi;
1011 
1012 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
1013 	if (arg_type == ARG_PTR_TO_DYNPTR)
1014 		return true;
1015 
1016 	dynptr_type = arg_to_dynptr_type(arg_type);
1017 	if (reg->type == CONST_PTR_TO_DYNPTR) {
1018 		return reg->dynptr.type == dynptr_type;
1019 	} else {
1020 		spi = dynptr_get_spi(env, reg);
1021 		if (spi < 0)
1022 			return false;
1023 		return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
1024 	}
1025 }
1026 
1027 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
1028 
1029 static bool in_rcu_cs(struct bpf_verifier_env *env);
1030 
1031 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta);
1032 
mark_stack_slots_iter(struct bpf_verifier_env * env,struct bpf_kfunc_call_arg_meta * meta,struct bpf_reg_state * reg,int insn_idx,struct btf * btf,u32 btf_id,int nr_slots)1033 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1034 				 struct bpf_kfunc_call_arg_meta *meta,
1035 				 struct bpf_reg_state *reg, int insn_idx,
1036 				 struct btf *btf, u32 btf_id, int nr_slots)
1037 {
1038 	struct bpf_func_state *state = func(env, reg);
1039 	int spi, i, j, id;
1040 
1041 	spi = iter_get_spi(env, reg, nr_slots);
1042 	if (spi < 0)
1043 		return spi;
1044 
1045 	id = acquire_reference(env, insn_idx);
1046 	if (id < 0)
1047 		return id;
1048 
1049 	for (i = 0; i < nr_slots; i++) {
1050 		struct bpf_stack_state *slot = &state->stack[spi - i];
1051 		struct bpf_reg_state *st = &slot->spilled_ptr;
1052 
1053 		__mark_reg_known_zero(st);
1054 		st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1055 		if (is_kfunc_rcu_protected(meta)) {
1056 			if (in_rcu_cs(env))
1057 				st->type |= MEM_RCU;
1058 			else
1059 				st->type |= PTR_UNTRUSTED;
1060 		}
1061 		st->ref_obj_id = i == 0 ? id : 0;
1062 		st->iter.btf = btf;
1063 		st->iter.btf_id = btf_id;
1064 		st->iter.state = BPF_ITER_STATE_ACTIVE;
1065 		st->iter.depth = 0;
1066 
1067 		for (j = 0; j < BPF_REG_SIZE; j++)
1068 			slot->slot_type[j] = STACK_ITER;
1069 
1070 		bpf_mark_stack_write(env, state->frameno, BIT(spi - i));
1071 		mark_stack_slot_scratched(env, spi - i);
1072 	}
1073 
1074 	return 0;
1075 }
1076 
unmark_stack_slots_iter(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int nr_slots)1077 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1078 				   struct bpf_reg_state *reg, int nr_slots)
1079 {
1080 	struct bpf_func_state *state = func(env, reg);
1081 	int spi, i, j;
1082 
1083 	spi = iter_get_spi(env, reg, nr_slots);
1084 	if (spi < 0)
1085 		return spi;
1086 
1087 	for (i = 0; i < nr_slots; i++) {
1088 		struct bpf_stack_state *slot = &state->stack[spi - i];
1089 		struct bpf_reg_state *st = &slot->spilled_ptr;
1090 
1091 		if (i == 0)
1092 			WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1093 
1094 		__mark_reg_not_init(env, st);
1095 
1096 		for (j = 0; j < BPF_REG_SIZE; j++)
1097 			slot->slot_type[j] = STACK_INVALID;
1098 
1099 		bpf_mark_stack_write(env, state->frameno, BIT(spi - i));
1100 		mark_stack_slot_scratched(env, spi - i);
1101 	}
1102 
1103 	return 0;
1104 }
1105 
is_iter_reg_valid_uninit(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int nr_slots)1106 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1107 				     struct bpf_reg_state *reg, int nr_slots)
1108 {
1109 	struct bpf_func_state *state = func(env, reg);
1110 	int spi, i, j;
1111 
1112 	/* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1113 	 * will do check_mem_access to check and update stack bounds later, so
1114 	 * return true for that case.
1115 	 */
1116 	spi = iter_get_spi(env, reg, nr_slots);
1117 	if (spi == -ERANGE)
1118 		return true;
1119 	if (spi < 0)
1120 		return false;
1121 
1122 	for (i = 0; i < nr_slots; i++) {
1123 		struct bpf_stack_state *slot = &state->stack[spi - i];
1124 
1125 		for (j = 0; j < BPF_REG_SIZE; j++)
1126 			if (slot->slot_type[j] == STACK_ITER)
1127 				return false;
1128 	}
1129 
1130 	return true;
1131 }
1132 
is_iter_reg_valid_init(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct btf * btf,u32 btf_id,int nr_slots)1133 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1134 				   struct btf *btf, u32 btf_id, int nr_slots)
1135 {
1136 	struct bpf_func_state *state = func(env, reg);
1137 	int spi, i, j;
1138 
1139 	spi = iter_get_spi(env, reg, nr_slots);
1140 	if (spi < 0)
1141 		return -EINVAL;
1142 
1143 	for (i = 0; i < nr_slots; i++) {
1144 		struct bpf_stack_state *slot = &state->stack[spi - i];
1145 		struct bpf_reg_state *st = &slot->spilled_ptr;
1146 
1147 		if (st->type & PTR_UNTRUSTED)
1148 			return -EPROTO;
1149 		/* only main (first) slot has ref_obj_id set */
1150 		if (i == 0 && !st->ref_obj_id)
1151 			return -EINVAL;
1152 		if (i != 0 && st->ref_obj_id)
1153 			return -EINVAL;
1154 		if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1155 			return -EINVAL;
1156 
1157 		for (j = 0; j < BPF_REG_SIZE; j++)
1158 			if (slot->slot_type[j] != STACK_ITER)
1159 				return -EINVAL;
1160 	}
1161 
1162 	return 0;
1163 }
1164 
1165 static int acquire_irq_state(struct bpf_verifier_env *env, int insn_idx);
1166 static int release_irq_state(struct bpf_verifier_state *state, int id);
1167 
mark_stack_slot_irq_flag(struct bpf_verifier_env * env,struct bpf_kfunc_call_arg_meta * meta,struct bpf_reg_state * reg,int insn_idx,int kfunc_class)1168 static int mark_stack_slot_irq_flag(struct bpf_verifier_env *env,
1169 				     struct bpf_kfunc_call_arg_meta *meta,
1170 				     struct bpf_reg_state *reg, int insn_idx,
1171 				     int kfunc_class)
1172 {
1173 	struct bpf_func_state *state = func(env, reg);
1174 	struct bpf_stack_state *slot;
1175 	struct bpf_reg_state *st;
1176 	int spi, i, id;
1177 
1178 	spi = irq_flag_get_spi(env, reg);
1179 	if (spi < 0)
1180 		return spi;
1181 
1182 	id = acquire_irq_state(env, insn_idx);
1183 	if (id < 0)
1184 		return id;
1185 
1186 	slot = &state->stack[spi];
1187 	st = &slot->spilled_ptr;
1188 
1189 	bpf_mark_stack_write(env, reg->frameno, BIT(spi));
1190 	__mark_reg_known_zero(st);
1191 	st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1192 	st->ref_obj_id = id;
1193 	st->irq.kfunc_class = kfunc_class;
1194 
1195 	for (i = 0; i < BPF_REG_SIZE; i++)
1196 		slot->slot_type[i] = STACK_IRQ_FLAG;
1197 
1198 	mark_stack_slot_scratched(env, spi);
1199 	return 0;
1200 }
1201 
unmark_stack_slot_irq_flag(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int kfunc_class)1202 static int unmark_stack_slot_irq_flag(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1203 				      int kfunc_class)
1204 {
1205 	struct bpf_func_state *state = func(env, reg);
1206 	struct bpf_stack_state *slot;
1207 	struct bpf_reg_state *st;
1208 	int spi, i, err;
1209 
1210 	spi = irq_flag_get_spi(env, reg);
1211 	if (spi < 0)
1212 		return spi;
1213 
1214 	slot = &state->stack[spi];
1215 	st = &slot->spilled_ptr;
1216 
1217 	if (st->irq.kfunc_class != kfunc_class) {
1218 		const char *flag_kfunc = st->irq.kfunc_class == IRQ_NATIVE_KFUNC ? "native" : "lock";
1219 		const char *used_kfunc = kfunc_class == IRQ_NATIVE_KFUNC ? "native" : "lock";
1220 
1221 		verbose(env, "irq flag acquired by %s kfuncs cannot be restored with %s kfuncs\n",
1222 			flag_kfunc, used_kfunc);
1223 		return -EINVAL;
1224 	}
1225 
1226 	err = release_irq_state(env->cur_state, st->ref_obj_id);
1227 	WARN_ON_ONCE(err && err != -EACCES);
1228 	if (err) {
1229 		int insn_idx = 0;
1230 
1231 		for (int i = 0; i < env->cur_state->acquired_refs; i++) {
1232 			if (env->cur_state->refs[i].id == env->cur_state->active_irq_id) {
1233 				insn_idx = env->cur_state->refs[i].insn_idx;
1234 				break;
1235 			}
1236 		}
1237 
1238 		verbose(env, "cannot restore irq state out of order, expected id=%d acquired at insn_idx=%d\n",
1239 			env->cur_state->active_irq_id, insn_idx);
1240 		return err;
1241 	}
1242 
1243 	__mark_reg_not_init(env, st);
1244 
1245 	bpf_mark_stack_write(env, reg->frameno, BIT(spi));
1246 
1247 	for (i = 0; i < BPF_REG_SIZE; i++)
1248 		slot->slot_type[i] = STACK_INVALID;
1249 
1250 	mark_stack_slot_scratched(env, spi);
1251 	return 0;
1252 }
1253 
is_irq_flag_reg_valid_uninit(struct bpf_verifier_env * env,struct bpf_reg_state * reg)1254 static bool is_irq_flag_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1255 {
1256 	struct bpf_func_state *state = func(env, reg);
1257 	struct bpf_stack_state *slot;
1258 	int spi, i;
1259 
1260 	/* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1261 	 * will do check_mem_access to check and update stack bounds later, so
1262 	 * return true for that case.
1263 	 */
1264 	spi = irq_flag_get_spi(env, reg);
1265 	if (spi == -ERANGE)
1266 		return true;
1267 	if (spi < 0)
1268 		return false;
1269 
1270 	slot = &state->stack[spi];
1271 
1272 	for (i = 0; i < BPF_REG_SIZE; i++)
1273 		if (slot->slot_type[i] == STACK_IRQ_FLAG)
1274 			return false;
1275 	return true;
1276 }
1277 
is_irq_flag_reg_valid_init(struct bpf_verifier_env * env,struct bpf_reg_state * reg)1278 static int is_irq_flag_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1279 {
1280 	struct bpf_func_state *state = func(env, reg);
1281 	struct bpf_stack_state *slot;
1282 	struct bpf_reg_state *st;
1283 	int spi, i;
1284 
1285 	spi = irq_flag_get_spi(env, reg);
1286 	if (spi < 0)
1287 		return -EINVAL;
1288 
1289 	slot = &state->stack[spi];
1290 	st = &slot->spilled_ptr;
1291 
1292 	if (!st->ref_obj_id)
1293 		return -EINVAL;
1294 
1295 	for (i = 0; i < BPF_REG_SIZE; i++)
1296 		if (slot->slot_type[i] != STACK_IRQ_FLAG)
1297 			return -EINVAL;
1298 	return 0;
1299 }
1300 
1301 /* Check if given stack slot is "special":
1302  *   - spilled register state (STACK_SPILL);
1303  *   - dynptr state (STACK_DYNPTR);
1304  *   - iter state (STACK_ITER).
1305  *   - irq flag state (STACK_IRQ_FLAG)
1306  */
is_stack_slot_special(const struct bpf_stack_state * stack)1307 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1308 {
1309 	enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1310 
1311 	switch (type) {
1312 	case STACK_SPILL:
1313 	case STACK_DYNPTR:
1314 	case STACK_ITER:
1315 	case STACK_IRQ_FLAG:
1316 		return true;
1317 	case STACK_INVALID:
1318 	case STACK_MISC:
1319 	case STACK_ZERO:
1320 		return false;
1321 	default:
1322 		WARN_ONCE(1, "unknown stack slot type %d\n", type);
1323 		return true;
1324 	}
1325 }
1326 
1327 /* The reg state of a pointer or a bounded scalar was saved when
1328  * it was spilled to the stack.
1329  */
is_spilled_reg(const struct bpf_stack_state * stack)1330 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1331 {
1332 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1333 }
1334 
is_spilled_scalar_reg(const struct bpf_stack_state * stack)1335 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1336 {
1337 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1338 	       stack->spilled_ptr.type == SCALAR_VALUE;
1339 }
1340 
is_spilled_scalar_reg64(const struct bpf_stack_state * stack)1341 static bool is_spilled_scalar_reg64(const struct bpf_stack_state *stack)
1342 {
1343 	return stack->slot_type[0] == STACK_SPILL &&
1344 	       stack->spilled_ptr.type == SCALAR_VALUE;
1345 }
1346 
1347 /* Mark stack slot as STACK_MISC, unless it is already STACK_INVALID, in which
1348  * case they are equivalent, or it's STACK_ZERO, in which case we preserve
1349  * more precise STACK_ZERO.
1350  * Regardless of allow_ptr_leaks setting (i.e., privileged or unprivileged
1351  * mode), we won't promote STACK_INVALID to STACK_MISC. In privileged case it is
1352  * unnecessary as both are considered equivalent when loading data and pruning,
1353  * in case of unprivileged mode it will be incorrect to allow reads of invalid
1354  * slots.
1355  */
mark_stack_slot_misc(struct bpf_verifier_env * env,u8 * stype)1356 static void mark_stack_slot_misc(struct bpf_verifier_env *env, u8 *stype)
1357 {
1358 	if (*stype == STACK_ZERO)
1359 		return;
1360 	if (*stype == STACK_INVALID)
1361 		return;
1362 	*stype = STACK_MISC;
1363 }
1364 
scrub_spilled_slot(u8 * stype)1365 static void scrub_spilled_slot(u8 *stype)
1366 {
1367 	if (*stype != STACK_INVALID)
1368 		*stype = STACK_MISC;
1369 }
1370 
1371 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1372  * small to hold src. This is different from krealloc since we don't want to preserve
1373  * the contents of dst.
1374  *
1375  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1376  * not be allocated.
1377  */
copy_array(void * dst,const void * src,size_t n,size_t size,gfp_t flags)1378 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1379 {
1380 	size_t alloc_bytes;
1381 	void *orig = dst;
1382 	size_t bytes;
1383 
1384 	if (ZERO_OR_NULL_PTR(src))
1385 		goto out;
1386 
1387 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1388 		return NULL;
1389 
1390 	alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1391 	dst = krealloc(orig, alloc_bytes, flags);
1392 	if (!dst) {
1393 		kfree(orig);
1394 		return NULL;
1395 	}
1396 
1397 	memcpy(dst, src, bytes);
1398 out:
1399 	return dst ? dst : ZERO_SIZE_PTR;
1400 }
1401 
1402 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1403  * small to hold new_n items. new items are zeroed out if the array grows.
1404  *
1405  * Contrary to krealloc_array, does not free arr if new_n is zero.
1406  */
realloc_array(void * arr,size_t old_n,size_t new_n,size_t size)1407 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1408 {
1409 	size_t alloc_size;
1410 	void *new_arr;
1411 
1412 	if (!new_n || old_n == new_n)
1413 		goto out;
1414 
1415 	alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1416 	new_arr = krealloc(arr, alloc_size, GFP_KERNEL_ACCOUNT);
1417 	if (!new_arr) {
1418 		kfree(arr);
1419 		return NULL;
1420 	}
1421 	arr = new_arr;
1422 
1423 	if (new_n > old_n)
1424 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1425 
1426 out:
1427 	return arr ? arr : ZERO_SIZE_PTR;
1428 }
1429 
copy_reference_state(struct bpf_verifier_state * dst,const struct bpf_verifier_state * src)1430 static int copy_reference_state(struct bpf_verifier_state *dst, const struct bpf_verifier_state *src)
1431 {
1432 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1433 			       sizeof(struct bpf_reference_state), GFP_KERNEL_ACCOUNT);
1434 	if (!dst->refs)
1435 		return -ENOMEM;
1436 
1437 	dst->acquired_refs = src->acquired_refs;
1438 	dst->active_locks = src->active_locks;
1439 	dst->active_preempt_locks = src->active_preempt_locks;
1440 	dst->active_rcu_locks = src->active_rcu_locks;
1441 	dst->active_irq_id = src->active_irq_id;
1442 	dst->active_lock_id = src->active_lock_id;
1443 	dst->active_lock_ptr = src->active_lock_ptr;
1444 	return 0;
1445 }
1446 
copy_stack_state(struct bpf_func_state * dst,const struct bpf_func_state * src)1447 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1448 {
1449 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1450 
1451 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1452 				GFP_KERNEL_ACCOUNT);
1453 	if (!dst->stack)
1454 		return -ENOMEM;
1455 
1456 	dst->allocated_stack = src->allocated_stack;
1457 	return 0;
1458 }
1459 
resize_reference_state(struct bpf_verifier_state * state,size_t n)1460 static int resize_reference_state(struct bpf_verifier_state *state, size_t n)
1461 {
1462 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1463 				    sizeof(struct bpf_reference_state));
1464 	if (!state->refs)
1465 		return -ENOMEM;
1466 
1467 	state->acquired_refs = n;
1468 	return 0;
1469 }
1470 
1471 /* Possibly update state->allocated_stack to be at least size bytes. Also
1472  * possibly update the function's high-water mark in its bpf_subprog_info.
1473  */
grow_stack_state(struct bpf_verifier_env * env,struct bpf_func_state * state,int size)1474 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size)
1475 {
1476 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n;
1477 
1478 	/* The stack size is always a multiple of BPF_REG_SIZE. */
1479 	size = round_up(size, BPF_REG_SIZE);
1480 	n = size / BPF_REG_SIZE;
1481 
1482 	if (old_n >= n)
1483 		return 0;
1484 
1485 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1486 	if (!state->stack)
1487 		return -ENOMEM;
1488 
1489 	state->allocated_stack = size;
1490 
1491 	/* update known max for given subprogram */
1492 	if (env->subprog_info[state->subprogno].stack_depth < size)
1493 		env->subprog_info[state->subprogno].stack_depth = size;
1494 
1495 	return 0;
1496 }
1497 
1498 /* Acquire a pointer id from the env and update the state->refs to include
1499  * this new pointer reference.
1500  * On success, returns a valid pointer id to associate with the register
1501  * On failure, returns a negative errno.
1502  */
acquire_reference_state(struct bpf_verifier_env * env,int insn_idx)1503 static struct bpf_reference_state *acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1504 {
1505 	struct bpf_verifier_state *state = env->cur_state;
1506 	int new_ofs = state->acquired_refs;
1507 	int err;
1508 
1509 	err = resize_reference_state(state, state->acquired_refs + 1);
1510 	if (err)
1511 		return NULL;
1512 	state->refs[new_ofs].insn_idx = insn_idx;
1513 
1514 	return &state->refs[new_ofs];
1515 }
1516 
acquire_reference(struct bpf_verifier_env * env,int insn_idx)1517 static int acquire_reference(struct bpf_verifier_env *env, int insn_idx)
1518 {
1519 	struct bpf_reference_state *s;
1520 
1521 	s = acquire_reference_state(env, insn_idx);
1522 	if (!s)
1523 		return -ENOMEM;
1524 	s->type = REF_TYPE_PTR;
1525 	s->id = ++env->id_gen;
1526 	return s->id;
1527 }
1528 
acquire_lock_state(struct bpf_verifier_env * env,int insn_idx,enum ref_state_type type,int id,void * ptr)1529 static int acquire_lock_state(struct bpf_verifier_env *env, int insn_idx, enum ref_state_type type,
1530 			      int id, void *ptr)
1531 {
1532 	struct bpf_verifier_state *state = env->cur_state;
1533 	struct bpf_reference_state *s;
1534 
1535 	s = acquire_reference_state(env, insn_idx);
1536 	if (!s)
1537 		return -ENOMEM;
1538 	s->type = type;
1539 	s->id = id;
1540 	s->ptr = ptr;
1541 
1542 	state->active_locks++;
1543 	state->active_lock_id = id;
1544 	state->active_lock_ptr = ptr;
1545 	return 0;
1546 }
1547 
acquire_irq_state(struct bpf_verifier_env * env,int insn_idx)1548 static int acquire_irq_state(struct bpf_verifier_env *env, int insn_idx)
1549 {
1550 	struct bpf_verifier_state *state = env->cur_state;
1551 	struct bpf_reference_state *s;
1552 
1553 	s = acquire_reference_state(env, insn_idx);
1554 	if (!s)
1555 		return -ENOMEM;
1556 	s->type = REF_TYPE_IRQ;
1557 	s->id = ++env->id_gen;
1558 
1559 	state->active_irq_id = s->id;
1560 	return s->id;
1561 }
1562 
release_reference_state(struct bpf_verifier_state * state,int idx)1563 static void release_reference_state(struct bpf_verifier_state *state, int idx)
1564 {
1565 	int last_idx;
1566 	size_t rem;
1567 
1568 	/* IRQ state requires the relative ordering of elements remaining the
1569 	 * same, since it relies on the refs array to behave as a stack, so that
1570 	 * it can detect out-of-order IRQ restore. Hence use memmove to shift
1571 	 * the array instead of swapping the final element into the deleted idx.
1572 	 */
1573 	last_idx = state->acquired_refs - 1;
1574 	rem = state->acquired_refs - idx - 1;
1575 	if (last_idx && idx != last_idx)
1576 		memmove(&state->refs[idx], &state->refs[idx + 1], sizeof(*state->refs) * rem);
1577 	memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1578 	state->acquired_refs--;
1579 	return;
1580 }
1581 
find_reference_state(struct bpf_verifier_state * state,int ptr_id)1582 static bool find_reference_state(struct bpf_verifier_state *state, int ptr_id)
1583 {
1584 	int i;
1585 
1586 	for (i = 0; i < state->acquired_refs; i++)
1587 		if (state->refs[i].id == ptr_id)
1588 			return true;
1589 
1590 	return false;
1591 }
1592 
release_lock_state(struct bpf_verifier_state * state,int type,int id,void * ptr)1593 static int release_lock_state(struct bpf_verifier_state *state, int type, int id, void *ptr)
1594 {
1595 	void *prev_ptr = NULL;
1596 	u32 prev_id = 0;
1597 	int i;
1598 
1599 	for (i = 0; i < state->acquired_refs; i++) {
1600 		if (state->refs[i].type == type && state->refs[i].id == id &&
1601 		    state->refs[i].ptr == ptr) {
1602 			release_reference_state(state, i);
1603 			state->active_locks--;
1604 			/* Reassign active lock (id, ptr). */
1605 			state->active_lock_id = prev_id;
1606 			state->active_lock_ptr = prev_ptr;
1607 			return 0;
1608 		}
1609 		if (state->refs[i].type & REF_TYPE_LOCK_MASK) {
1610 			prev_id = state->refs[i].id;
1611 			prev_ptr = state->refs[i].ptr;
1612 		}
1613 	}
1614 	return -EINVAL;
1615 }
1616 
release_irq_state(struct bpf_verifier_state * state,int id)1617 static int release_irq_state(struct bpf_verifier_state *state, int id)
1618 {
1619 	u32 prev_id = 0;
1620 	int i;
1621 
1622 	if (id != state->active_irq_id)
1623 		return -EACCES;
1624 
1625 	for (i = 0; i < state->acquired_refs; i++) {
1626 		if (state->refs[i].type != REF_TYPE_IRQ)
1627 			continue;
1628 		if (state->refs[i].id == id) {
1629 			release_reference_state(state, i);
1630 			state->active_irq_id = prev_id;
1631 			return 0;
1632 		} else {
1633 			prev_id = state->refs[i].id;
1634 		}
1635 	}
1636 	return -EINVAL;
1637 }
1638 
find_lock_state(struct bpf_verifier_state * state,enum ref_state_type type,int id,void * ptr)1639 static struct bpf_reference_state *find_lock_state(struct bpf_verifier_state *state, enum ref_state_type type,
1640 						   int id, void *ptr)
1641 {
1642 	int i;
1643 
1644 	for (i = 0; i < state->acquired_refs; i++) {
1645 		struct bpf_reference_state *s = &state->refs[i];
1646 
1647 		if (!(s->type & type))
1648 			continue;
1649 
1650 		if (s->id == id && s->ptr == ptr)
1651 			return s;
1652 	}
1653 	return NULL;
1654 }
1655 
update_peak_states(struct bpf_verifier_env * env)1656 static void update_peak_states(struct bpf_verifier_env *env)
1657 {
1658 	u32 cur_states;
1659 
1660 	cur_states = env->explored_states_size + env->free_list_size + env->num_backedges;
1661 	env->peak_states = max(env->peak_states, cur_states);
1662 }
1663 
free_func_state(struct bpf_func_state * state)1664 static void free_func_state(struct bpf_func_state *state)
1665 {
1666 	if (!state)
1667 		return;
1668 	kfree(state->stack);
1669 	kfree(state);
1670 }
1671 
clear_jmp_history(struct bpf_verifier_state * state)1672 static void clear_jmp_history(struct bpf_verifier_state *state)
1673 {
1674 	kfree(state->jmp_history);
1675 	state->jmp_history = NULL;
1676 	state->jmp_history_cnt = 0;
1677 }
1678 
free_verifier_state(struct bpf_verifier_state * state,bool free_self)1679 static void free_verifier_state(struct bpf_verifier_state *state,
1680 				bool free_self)
1681 {
1682 	int i;
1683 
1684 	for (i = 0; i <= state->curframe; i++) {
1685 		free_func_state(state->frame[i]);
1686 		state->frame[i] = NULL;
1687 	}
1688 	kfree(state->refs);
1689 	clear_jmp_history(state);
1690 	if (free_self)
1691 		kfree(state);
1692 }
1693 
1694 /* struct bpf_verifier_state->parent refers to states
1695  * that are in either of env->{expored_states,free_list}.
1696  * In both cases the state is contained in struct bpf_verifier_state_list.
1697  */
state_parent_as_list(struct bpf_verifier_state * st)1698 static struct bpf_verifier_state_list *state_parent_as_list(struct bpf_verifier_state *st)
1699 {
1700 	if (st->parent)
1701 		return container_of(st->parent, struct bpf_verifier_state_list, state);
1702 	return NULL;
1703 }
1704 
1705 static bool incomplete_read_marks(struct bpf_verifier_env *env,
1706 				  struct bpf_verifier_state *st);
1707 
1708 /* A state can be freed if it is no longer referenced:
1709  * - is in the env->free_list;
1710  * - has no children states;
1711  */
maybe_free_verifier_state(struct bpf_verifier_env * env,struct bpf_verifier_state_list * sl)1712 static void maybe_free_verifier_state(struct bpf_verifier_env *env,
1713 				      struct bpf_verifier_state_list *sl)
1714 {
1715 	if (!sl->in_free_list
1716 	    || sl->state.branches != 0
1717 	    || incomplete_read_marks(env, &sl->state))
1718 		return;
1719 	list_del(&sl->node);
1720 	free_verifier_state(&sl->state, false);
1721 	kfree(sl);
1722 	env->free_list_size--;
1723 }
1724 
1725 /* copy verifier state from src to dst growing dst stack space
1726  * when necessary to accommodate larger src stack
1727  */
copy_func_state(struct bpf_func_state * dst,const struct bpf_func_state * src)1728 static int copy_func_state(struct bpf_func_state *dst,
1729 			   const struct bpf_func_state *src)
1730 {
1731 	memcpy(dst, src, offsetof(struct bpf_func_state, stack));
1732 	return copy_stack_state(dst, src);
1733 }
1734 
copy_verifier_state(struct bpf_verifier_state * dst_state,const struct bpf_verifier_state * src)1735 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1736 			       const struct bpf_verifier_state *src)
1737 {
1738 	struct bpf_func_state *dst;
1739 	int i, err;
1740 
1741 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1742 					  src->jmp_history_cnt, sizeof(*dst_state->jmp_history),
1743 					  GFP_KERNEL_ACCOUNT);
1744 	if (!dst_state->jmp_history)
1745 		return -ENOMEM;
1746 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1747 
1748 	/* if dst has more stack frames then src frame, free them, this is also
1749 	 * necessary in case of exceptional exits using bpf_throw.
1750 	 */
1751 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1752 		free_func_state(dst_state->frame[i]);
1753 		dst_state->frame[i] = NULL;
1754 	}
1755 	err = copy_reference_state(dst_state, src);
1756 	if (err)
1757 		return err;
1758 	dst_state->speculative = src->speculative;
1759 	dst_state->in_sleepable = src->in_sleepable;
1760 	dst_state->cleaned = src->cleaned;
1761 	dst_state->curframe = src->curframe;
1762 	dst_state->branches = src->branches;
1763 	dst_state->parent = src->parent;
1764 	dst_state->first_insn_idx = src->first_insn_idx;
1765 	dst_state->last_insn_idx = src->last_insn_idx;
1766 	dst_state->dfs_depth = src->dfs_depth;
1767 	dst_state->callback_unroll_depth = src->callback_unroll_depth;
1768 	dst_state->may_goto_depth = src->may_goto_depth;
1769 	dst_state->equal_state = src->equal_state;
1770 	for (i = 0; i <= src->curframe; i++) {
1771 		dst = dst_state->frame[i];
1772 		if (!dst) {
1773 			dst = kzalloc(sizeof(*dst), GFP_KERNEL_ACCOUNT);
1774 			if (!dst)
1775 				return -ENOMEM;
1776 			dst_state->frame[i] = dst;
1777 		}
1778 		err = copy_func_state(dst, src->frame[i]);
1779 		if (err)
1780 			return err;
1781 	}
1782 	return 0;
1783 }
1784 
state_htab_size(struct bpf_verifier_env * env)1785 static u32 state_htab_size(struct bpf_verifier_env *env)
1786 {
1787 	return env->prog->len;
1788 }
1789 
explored_state(struct bpf_verifier_env * env,int idx)1790 static struct list_head *explored_state(struct bpf_verifier_env *env, int idx)
1791 {
1792 	struct bpf_verifier_state *cur = env->cur_state;
1793 	struct bpf_func_state *state = cur->frame[cur->curframe];
1794 
1795 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
1796 }
1797 
same_callsites(struct bpf_verifier_state * a,struct bpf_verifier_state * b)1798 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b)
1799 {
1800 	int fr;
1801 
1802 	if (a->curframe != b->curframe)
1803 		return false;
1804 
1805 	for (fr = a->curframe; fr >= 0; fr--)
1806 		if (a->frame[fr]->callsite != b->frame[fr]->callsite)
1807 			return false;
1808 
1809 	return true;
1810 }
1811 
1812 /* Return IP for a given frame in a call stack */
frame_insn_idx(struct bpf_verifier_state * st,u32 frame)1813 static u32 frame_insn_idx(struct bpf_verifier_state *st, u32 frame)
1814 {
1815 	return frame == st->curframe
1816 	       ? st->insn_idx
1817 	       : st->frame[frame + 1]->callsite;
1818 }
1819 
1820 /* For state @st look for a topmost frame with frame_insn_idx() in some SCC,
1821  * if such frame exists form a corresponding @callchain as an array of
1822  * call sites leading to this frame and SCC id.
1823  * E.g.:
1824  *
1825  *    void foo()  { A: loop {... SCC#1 ...}; }
1826  *    void bar()  { B: loop { C: foo(); ... SCC#2 ... }
1827  *                  D: loop { E: foo(); ... SCC#3 ... } }
1828  *    void main() { F: bar(); }
1829  *
1830  * @callchain at (A) would be either (F,SCC#2) or (F,SCC#3) depending
1831  * on @st frame call sites being (F,C,A) or (F,E,A).
1832  */
compute_scc_callchain(struct bpf_verifier_env * env,struct bpf_verifier_state * st,struct bpf_scc_callchain * callchain)1833 static bool compute_scc_callchain(struct bpf_verifier_env *env,
1834 				  struct bpf_verifier_state *st,
1835 				  struct bpf_scc_callchain *callchain)
1836 {
1837 	u32 i, scc, insn_idx;
1838 
1839 	memset(callchain, 0, sizeof(*callchain));
1840 	for (i = 0; i <= st->curframe; i++) {
1841 		insn_idx = frame_insn_idx(st, i);
1842 		scc = env->insn_aux_data[insn_idx].scc;
1843 		if (scc) {
1844 			callchain->scc = scc;
1845 			break;
1846 		} else if (i < st->curframe) {
1847 			callchain->callsites[i] = insn_idx;
1848 		} else {
1849 			return false;
1850 		}
1851 	}
1852 	return true;
1853 }
1854 
1855 /* Check if bpf_scc_visit instance for @callchain exists. */
scc_visit_lookup(struct bpf_verifier_env * env,struct bpf_scc_callchain * callchain)1856 static struct bpf_scc_visit *scc_visit_lookup(struct bpf_verifier_env *env,
1857 					      struct bpf_scc_callchain *callchain)
1858 {
1859 	struct bpf_scc_info *info = env->scc_info[callchain->scc];
1860 	struct bpf_scc_visit *visits = info->visits;
1861 	u32 i;
1862 
1863 	if (!info)
1864 		return NULL;
1865 	for (i = 0; i < info->num_visits; i++)
1866 		if (memcmp(callchain, &visits[i].callchain, sizeof(*callchain)) == 0)
1867 			return &visits[i];
1868 	return NULL;
1869 }
1870 
1871 /* Allocate a new bpf_scc_visit instance corresponding to @callchain.
1872  * Allocated instances are alive for a duration of the do_check_common()
1873  * call and are freed by free_states().
1874  */
scc_visit_alloc(struct bpf_verifier_env * env,struct bpf_scc_callchain * callchain)1875 static struct bpf_scc_visit *scc_visit_alloc(struct bpf_verifier_env *env,
1876 					     struct bpf_scc_callchain *callchain)
1877 {
1878 	struct bpf_scc_visit *visit;
1879 	struct bpf_scc_info *info;
1880 	u32 scc, num_visits;
1881 	u64 new_sz;
1882 
1883 	scc = callchain->scc;
1884 	info = env->scc_info[scc];
1885 	num_visits = info ? info->num_visits : 0;
1886 	new_sz = sizeof(*info) + sizeof(struct bpf_scc_visit) * (num_visits + 1);
1887 	info = kvrealloc(env->scc_info[scc], new_sz, GFP_KERNEL_ACCOUNT);
1888 	if (!info)
1889 		return NULL;
1890 	env->scc_info[scc] = info;
1891 	info->num_visits = num_visits + 1;
1892 	visit = &info->visits[num_visits];
1893 	memset(visit, 0, sizeof(*visit));
1894 	memcpy(&visit->callchain, callchain, sizeof(*callchain));
1895 	return visit;
1896 }
1897 
1898 /* Form a string '(callsite#1,callsite#2,...,scc)' in env->tmp_str_buf */
format_callchain(struct bpf_verifier_env * env,struct bpf_scc_callchain * callchain)1899 static char *format_callchain(struct bpf_verifier_env *env, struct bpf_scc_callchain *callchain)
1900 {
1901 	char *buf = env->tmp_str_buf;
1902 	int i, delta = 0;
1903 
1904 	delta += snprintf(buf + delta, TMP_STR_BUF_LEN - delta, "(");
1905 	for (i = 0; i < ARRAY_SIZE(callchain->callsites); i++) {
1906 		if (!callchain->callsites[i])
1907 			break;
1908 		delta += snprintf(buf + delta, TMP_STR_BUF_LEN - delta, "%u,",
1909 				  callchain->callsites[i]);
1910 	}
1911 	delta += snprintf(buf + delta, TMP_STR_BUF_LEN - delta, "%u)", callchain->scc);
1912 	return env->tmp_str_buf;
1913 }
1914 
1915 /* If callchain for @st exists (@st is in some SCC), ensure that
1916  * bpf_scc_visit instance for this callchain exists.
1917  * If instance does not exist or is empty, assign visit->entry_state to @st.
1918  */
maybe_enter_scc(struct bpf_verifier_env * env,struct bpf_verifier_state * st)1919 static int maybe_enter_scc(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1920 {
1921 	struct bpf_scc_callchain *callchain = &env->callchain_buf;
1922 	struct bpf_scc_visit *visit;
1923 
1924 	if (!compute_scc_callchain(env, st, callchain))
1925 		return 0;
1926 	visit = scc_visit_lookup(env, callchain);
1927 	visit = visit ?: scc_visit_alloc(env, callchain);
1928 	if (!visit)
1929 		return -ENOMEM;
1930 	if (!visit->entry_state) {
1931 		visit->entry_state = st;
1932 		if (env->log.level & BPF_LOG_LEVEL2)
1933 			verbose(env, "SCC enter %s\n", format_callchain(env, callchain));
1934 	}
1935 	return 0;
1936 }
1937 
1938 static int propagate_backedges(struct bpf_verifier_env *env, struct bpf_scc_visit *visit);
1939 
1940 /* If callchain for @st exists (@st is in some SCC), make it empty:
1941  * - set visit->entry_state to NULL;
1942  * - flush accumulated backedges.
1943  */
maybe_exit_scc(struct bpf_verifier_env * env,struct bpf_verifier_state * st)1944 static int maybe_exit_scc(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1945 {
1946 	struct bpf_scc_callchain *callchain = &env->callchain_buf;
1947 	struct bpf_scc_visit *visit;
1948 
1949 	if (!compute_scc_callchain(env, st, callchain))
1950 		return 0;
1951 	visit = scc_visit_lookup(env, callchain);
1952 	if (!visit) {
1953 		/*
1954 		 * If path traversal stops inside an SCC, corresponding bpf_scc_visit
1955 		 * must exist for non-speculative paths. For non-speculative paths
1956 		 * traversal stops when:
1957 		 * a. Verification error is found, maybe_exit_scc() is not called.
1958 		 * b. Top level BPF_EXIT is reached. Top level BPF_EXIT is not a member
1959 		 *    of any SCC.
1960 		 * c. A checkpoint is reached and matched. Checkpoints are created by
1961 		 *    is_state_visited(), which calls maybe_enter_scc(), which allocates
1962 		 *    bpf_scc_visit instances for checkpoints within SCCs.
1963 		 * (c) is the only case that can reach this point.
1964 		 */
1965 		if (!st->speculative) {
1966 			verifier_bug(env, "scc exit: no visit info for call chain %s",
1967 				     format_callchain(env, callchain));
1968 			return -EFAULT;
1969 		}
1970 		return 0;
1971 	}
1972 	if (visit->entry_state != st)
1973 		return 0;
1974 	if (env->log.level & BPF_LOG_LEVEL2)
1975 		verbose(env, "SCC exit %s\n", format_callchain(env, callchain));
1976 	visit->entry_state = NULL;
1977 	env->num_backedges -= visit->num_backedges;
1978 	visit->num_backedges = 0;
1979 	update_peak_states(env);
1980 	return propagate_backedges(env, visit);
1981 }
1982 
1983 /* Lookup an bpf_scc_visit instance corresponding to @st callchain
1984  * and add @backedge to visit->backedges. @st callchain must exist.
1985  */
add_scc_backedge(struct bpf_verifier_env * env,struct bpf_verifier_state * st,struct bpf_scc_backedge * backedge)1986 static int add_scc_backedge(struct bpf_verifier_env *env,
1987 			    struct bpf_verifier_state *st,
1988 			    struct bpf_scc_backedge *backedge)
1989 {
1990 	struct bpf_scc_callchain *callchain = &env->callchain_buf;
1991 	struct bpf_scc_visit *visit;
1992 
1993 	if (!compute_scc_callchain(env, st, callchain)) {
1994 		verifier_bug(env, "add backedge: no SCC in verification path, insn_idx %d",
1995 			     st->insn_idx);
1996 		return -EFAULT;
1997 	}
1998 	visit = scc_visit_lookup(env, callchain);
1999 	if (!visit) {
2000 		verifier_bug(env, "add backedge: no visit info for call chain %s",
2001 			     format_callchain(env, callchain));
2002 		return -EFAULT;
2003 	}
2004 	if (env->log.level & BPF_LOG_LEVEL2)
2005 		verbose(env, "SCC backedge %s\n", format_callchain(env, callchain));
2006 	backedge->next = visit->backedges;
2007 	visit->backedges = backedge;
2008 	visit->num_backedges++;
2009 	env->num_backedges++;
2010 	update_peak_states(env);
2011 	return 0;
2012 }
2013 
2014 /* bpf_reg_state->live marks for registers in a state @st are incomplete,
2015  * if state @st is in some SCC and not all execution paths starting at this
2016  * SCC are fully explored.
2017  */
incomplete_read_marks(struct bpf_verifier_env * env,struct bpf_verifier_state * st)2018 static bool incomplete_read_marks(struct bpf_verifier_env *env,
2019 				  struct bpf_verifier_state *st)
2020 {
2021 	struct bpf_scc_callchain *callchain = &env->callchain_buf;
2022 	struct bpf_scc_visit *visit;
2023 
2024 	if (!compute_scc_callchain(env, st, callchain))
2025 		return false;
2026 	visit = scc_visit_lookup(env, callchain);
2027 	if (!visit)
2028 		return false;
2029 	return !!visit->backedges;
2030 }
2031 
free_backedges(struct bpf_scc_visit * visit)2032 static void free_backedges(struct bpf_scc_visit *visit)
2033 {
2034 	struct bpf_scc_backedge *backedge, *next;
2035 
2036 	for (backedge = visit->backedges; backedge; backedge = next) {
2037 		free_verifier_state(&backedge->state, false);
2038 		next = backedge->next;
2039 		kfree(backedge);
2040 	}
2041 	visit->backedges = NULL;
2042 }
2043 
update_branch_counts(struct bpf_verifier_env * env,struct bpf_verifier_state * st)2044 static int update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
2045 {
2046 	struct bpf_verifier_state_list *sl = NULL, *parent_sl;
2047 	struct bpf_verifier_state *parent;
2048 	int err;
2049 
2050 	while (st) {
2051 		u32 br = --st->branches;
2052 
2053 		/* verifier_bug_if(br > 1, ...) technically makes sense here,
2054 		 * but see comment in push_stack(), hence:
2055 		 */
2056 		verifier_bug_if((int)br < 0, env, "%s:branches_to_explore=%d", __func__, br);
2057 		if (br)
2058 			break;
2059 		err = maybe_exit_scc(env, st);
2060 		if (err)
2061 			return err;
2062 		parent = st->parent;
2063 		parent_sl = state_parent_as_list(st);
2064 		if (sl)
2065 			maybe_free_verifier_state(env, sl);
2066 		st = parent;
2067 		sl = parent_sl;
2068 	}
2069 	return 0;
2070 }
2071 
pop_stack(struct bpf_verifier_env * env,int * prev_insn_idx,int * insn_idx,bool pop_log)2072 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
2073 		     int *insn_idx, bool pop_log)
2074 {
2075 	struct bpf_verifier_state *cur = env->cur_state;
2076 	struct bpf_verifier_stack_elem *elem, *head = env->head;
2077 	int err;
2078 
2079 	if (env->head == NULL)
2080 		return -ENOENT;
2081 
2082 	if (cur) {
2083 		err = copy_verifier_state(cur, &head->st);
2084 		if (err)
2085 			return err;
2086 	}
2087 	if (pop_log)
2088 		bpf_vlog_reset(&env->log, head->log_pos);
2089 	if (insn_idx)
2090 		*insn_idx = head->insn_idx;
2091 	if (prev_insn_idx)
2092 		*prev_insn_idx = head->prev_insn_idx;
2093 	elem = head->next;
2094 	free_verifier_state(&head->st, false);
2095 	kfree(head);
2096 	env->head = elem;
2097 	env->stack_size--;
2098 	return 0;
2099 }
2100 
error_recoverable_with_nospec(int err)2101 static bool error_recoverable_with_nospec(int err)
2102 {
2103 	/* Should only return true for non-fatal errors that are allowed to
2104 	 * occur during speculative verification. For these we can insert a
2105 	 * nospec and the program might still be accepted. Do not include
2106 	 * something like ENOMEM because it is likely to re-occur for the next
2107 	 * architectural path once it has been recovered-from in all speculative
2108 	 * paths.
2109 	 */
2110 	return err == -EPERM || err == -EACCES || err == -EINVAL;
2111 }
2112 
push_stack(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx,bool speculative)2113 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
2114 					     int insn_idx, int prev_insn_idx,
2115 					     bool speculative)
2116 {
2117 	struct bpf_verifier_state *cur = env->cur_state;
2118 	struct bpf_verifier_stack_elem *elem;
2119 	int err;
2120 
2121 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL_ACCOUNT);
2122 	if (!elem)
2123 		return ERR_PTR(-ENOMEM);
2124 
2125 	elem->insn_idx = insn_idx;
2126 	elem->prev_insn_idx = prev_insn_idx;
2127 	elem->next = env->head;
2128 	elem->log_pos = env->log.end_pos;
2129 	env->head = elem;
2130 	env->stack_size++;
2131 	err = copy_verifier_state(&elem->st, cur);
2132 	if (err)
2133 		return ERR_PTR(-ENOMEM);
2134 	elem->st.speculative |= speculative;
2135 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2136 		verbose(env, "The sequence of %d jumps is too complex.\n",
2137 			env->stack_size);
2138 		return ERR_PTR(-E2BIG);
2139 	}
2140 	if (elem->st.parent) {
2141 		++elem->st.parent->branches;
2142 		/* WARN_ON(branches > 2) technically makes sense here,
2143 		 * but
2144 		 * 1. speculative states will bump 'branches' for non-branch
2145 		 * instructions
2146 		 * 2. is_state_visited() heuristics may decide not to create
2147 		 * a new state for a sequence of branches and all such current
2148 		 * and cloned states will be pointing to a single parent state
2149 		 * which might have large 'branches' count.
2150 		 */
2151 	}
2152 	return &elem->st;
2153 }
2154 
2155 #define CALLER_SAVED_REGS 6
2156 static const int caller_saved[CALLER_SAVED_REGS] = {
2157 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
2158 };
2159 
2160 /* This helper doesn't clear reg->id */
___mark_reg_known(struct bpf_reg_state * reg,u64 imm)2161 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
2162 {
2163 	reg->var_off = tnum_const(imm);
2164 	reg->smin_value = (s64)imm;
2165 	reg->smax_value = (s64)imm;
2166 	reg->umin_value = imm;
2167 	reg->umax_value = imm;
2168 
2169 	reg->s32_min_value = (s32)imm;
2170 	reg->s32_max_value = (s32)imm;
2171 	reg->u32_min_value = (u32)imm;
2172 	reg->u32_max_value = (u32)imm;
2173 }
2174 
2175 /* Mark the unknown part of a register (variable offset or scalar value) as
2176  * known to have the value @imm.
2177  */
__mark_reg_known(struct bpf_reg_state * reg,u64 imm)2178 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
2179 {
2180 	/* Clear off and union(map_ptr, range) */
2181 	memset(((u8 *)reg) + sizeof(reg->type), 0,
2182 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
2183 	reg->id = 0;
2184 	reg->ref_obj_id = 0;
2185 	___mark_reg_known(reg, imm);
2186 }
2187 
__mark_reg32_known(struct bpf_reg_state * reg,u64 imm)2188 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
2189 {
2190 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
2191 	reg->s32_min_value = (s32)imm;
2192 	reg->s32_max_value = (s32)imm;
2193 	reg->u32_min_value = (u32)imm;
2194 	reg->u32_max_value = (u32)imm;
2195 }
2196 
2197 /* Mark the 'variable offset' part of a register as zero.  This should be
2198  * used only on registers holding a pointer type.
2199  */
__mark_reg_known_zero(struct bpf_reg_state * reg)2200 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
2201 {
2202 	__mark_reg_known(reg, 0);
2203 }
2204 
__mark_reg_const_zero(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)2205 static void __mark_reg_const_zero(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
2206 {
2207 	__mark_reg_known(reg, 0);
2208 	reg->type = SCALAR_VALUE;
2209 	/* all scalars are assumed imprecise initially (unless unprivileged,
2210 	 * in which case everything is forced to be precise)
2211 	 */
2212 	reg->precise = !env->bpf_capable;
2213 }
2214 
mark_reg_known_zero(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)2215 static void mark_reg_known_zero(struct bpf_verifier_env *env,
2216 				struct bpf_reg_state *regs, u32 regno)
2217 {
2218 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2219 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
2220 		/* Something bad happened, let's kill all regs */
2221 		for (regno = 0; regno < MAX_BPF_REG; regno++)
2222 			__mark_reg_not_init(env, regs + regno);
2223 		return;
2224 	}
2225 	__mark_reg_known_zero(regs + regno);
2226 }
2227 
__mark_dynptr_reg(struct bpf_reg_state * reg,enum bpf_dynptr_type type,bool first_slot,int dynptr_id)2228 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
2229 			      bool first_slot, int dynptr_id)
2230 {
2231 	/* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
2232 	 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
2233 	 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
2234 	 */
2235 	__mark_reg_known_zero(reg);
2236 	reg->type = CONST_PTR_TO_DYNPTR;
2237 	/* Give each dynptr a unique id to uniquely associate slices to it. */
2238 	reg->id = dynptr_id;
2239 	reg->dynptr.type = type;
2240 	reg->dynptr.first_slot = first_slot;
2241 }
2242 
mark_ptr_not_null_reg(struct bpf_reg_state * reg)2243 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
2244 {
2245 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
2246 		const struct bpf_map *map = reg->map_ptr;
2247 
2248 		if (map->inner_map_meta) {
2249 			reg->type = CONST_PTR_TO_MAP;
2250 			reg->map_ptr = map->inner_map_meta;
2251 			/* transfer reg's id which is unique for every map_lookup_elem
2252 			 * as UID of the inner map.
2253 			 */
2254 			if (btf_record_has_field(map->inner_map_meta->record,
2255 						 BPF_TIMER | BPF_WORKQUEUE | BPF_TASK_WORK)) {
2256 				reg->map_uid = reg->id;
2257 			}
2258 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
2259 			reg->type = PTR_TO_XDP_SOCK;
2260 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
2261 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
2262 			reg->type = PTR_TO_SOCKET;
2263 		} else {
2264 			reg->type = PTR_TO_MAP_VALUE;
2265 		}
2266 		return;
2267 	}
2268 
2269 	reg->type &= ~PTR_MAYBE_NULL;
2270 }
2271 
mark_reg_graph_node(struct bpf_reg_state * regs,u32 regno,struct btf_field_graph_root * ds_head)2272 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
2273 				struct btf_field_graph_root *ds_head)
2274 {
2275 	__mark_reg_known_zero(&regs[regno]);
2276 	regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
2277 	regs[regno].btf = ds_head->btf;
2278 	regs[regno].btf_id = ds_head->value_btf_id;
2279 	regs[regno].off = ds_head->node_offset;
2280 }
2281 
reg_is_pkt_pointer(const struct bpf_reg_state * reg)2282 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
2283 {
2284 	return type_is_pkt_pointer(reg->type);
2285 }
2286 
reg_is_pkt_pointer_any(const struct bpf_reg_state * reg)2287 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
2288 {
2289 	return reg_is_pkt_pointer(reg) ||
2290 	       reg->type == PTR_TO_PACKET_END;
2291 }
2292 
reg_is_dynptr_slice_pkt(const struct bpf_reg_state * reg)2293 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
2294 {
2295 	return base_type(reg->type) == PTR_TO_MEM &&
2296 	       (reg->type &
2297 		(DYNPTR_TYPE_SKB | DYNPTR_TYPE_XDP | DYNPTR_TYPE_SKB_META));
2298 }
2299 
2300 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
reg_is_init_pkt_pointer(const struct bpf_reg_state * reg,enum bpf_reg_type which)2301 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
2302 				    enum bpf_reg_type which)
2303 {
2304 	/* The register can already have a range from prior markings.
2305 	 * This is fine as long as it hasn't been advanced from its
2306 	 * origin.
2307 	 */
2308 	return reg->type == which &&
2309 	       reg->id == 0 &&
2310 	       reg->off == 0 &&
2311 	       tnum_equals_const(reg->var_off, 0);
2312 }
2313 
2314 /* Reset the min/max bounds of a register */
__mark_reg_unbounded(struct bpf_reg_state * reg)2315 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
2316 {
2317 	reg->smin_value = S64_MIN;
2318 	reg->smax_value = S64_MAX;
2319 	reg->umin_value = 0;
2320 	reg->umax_value = U64_MAX;
2321 
2322 	reg->s32_min_value = S32_MIN;
2323 	reg->s32_max_value = S32_MAX;
2324 	reg->u32_min_value = 0;
2325 	reg->u32_max_value = U32_MAX;
2326 }
2327 
__mark_reg64_unbounded(struct bpf_reg_state * reg)2328 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
2329 {
2330 	reg->smin_value = S64_MIN;
2331 	reg->smax_value = S64_MAX;
2332 	reg->umin_value = 0;
2333 	reg->umax_value = U64_MAX;
2334 }
2335 
__mark_reg32_unbounded(struct bpf_reg_state * reg)2336 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
2337 {
2338 	reg->s32_min_value = S32_MIN;
2339 	reg->s32_max_value = S32_MAX;
2340 	reg->u32_min_value = 0;
2341 	reg->u32_max_value = U32_MAX;
2342 }
2343 
__update_reg32_bounds(struct bpf_reg_state * reg)2344 static void __update_reg32_bounds(struct bpf_reg_state *reg)
2345 {
2346 	struct tnum var32_off = tnum_subreg(reg->var_off);
2347 
2348 	/* min signed is max(sign bit) | min(other bits) */
2349 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
2350 			var32_off.value | (var32_off.mask & S32_MIN));
2351 	/* max signed is min(sign bit) | max(other bits) */
2352 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
2353 			var32_off.value | (var32_off.mask & S32_MAX));
2354 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
2355 	reg->u32_max_value = min(reg->u32_max_value,
2356 				 (u32)(var32_off.value | var32_off.mask));
2357 }
2358 
__update_reg64_bounds(struct bpf_reg_state * reg)2359 static void __update_reg64_bounds(struct bpf_reg_state *reg)
2360 {
2361 	/* min signed is max(sign bit) | min(other bits) */
2362 	reg->smin_value = max_t(s64, reg->smin_value,
2363 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
2364 	/* max signed is min(sign bit) | max(other bits) */
2365 	reg->smax_value = min_t(s64, reg->smax_value,
2366 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
2367 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
2368 	reg->umax_value = min(reg->umax_value,
2369 			      reg->var_off.value | reg->var_off.mask);
2370 }
2371 
__update_reg_bounds(struct bpf_reg_state * reg)2372 static void __update_reg_bounds(struct bpf_reg_state *reg)
2373 {
2374 	__update_reg32_bounds(reg);
2375 	__update_reg64_bounds(reg);
2376 }
2377 
2378 /* Uses signed min/max values to inform unsigned, and vice-versa */
__reg32_deduce_bounds(struct bpf_reg_state * reg)2379 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
2380 {
2381 	/* If upper 32 bits of u64/s64 range don't change, we can use lower 32
2382 	 * bits to improve our u32/s32 boundaries.
2383 	 *
2384 	 * E.g., the case where we have upper 32 bits as zero ([10, 20] in
2385 	 * u64) is pretty trivial, it's obvious that in u32 we'll also have
2386 	 * [10, 20] range. But this property holds for any 64-bit range as
2387 	 * long as upper 32 bits in that entire range of values stay the same.
2388 	 *
2389 	 * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311]
2390 	 * in decimal) has the same upper 32 bits throughout all the values in
2391 	 * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15])
2392 	 * range.
2393 	 *
2394 	 * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32,
2395 	 * following the rules outlined below about u64/s64 correspondence
2396 	 * (which equally applies to u32 vs s32 correspondence). In general it
2397 	 * depends on actual hexadecimal values of 32-bit range. They can form
2398 	 * only valid u32, or only valid s32 ranges in some cases.
2399 	 *
2400 	 * So we use all these insights to derive bounds for subregisters here.
2401 	 */
2402 	if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) {
2403 		/* u64 to u32 casting preserves validity of low 32 bits as
2404 		 * a range, if upper 32 bits are the same
2405 		 */
2406 		reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value);
2407 		reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value);
2408 
2409 		if ((s32)reg->umin_value <= (s32)reg->umax_value) {
2410 			reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
2411 			reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
2412 		}
2413 	}
2414 	if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) {
2415 		/* low 32 bits should form a proper u32 range */
2416 		if ((u32)reg->smin_value <= (u32)reg->smax_value) {
2417 			reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value);
2418 			reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value);
2419 		}
2420 		/* low 32 bits should form a proper s32 range */
2421 		if ((s32)reg->smin_value <= (s32)reg->smax_value) {
2422 			reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
2423 			reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
2424 		}
2425 	}
2426 	/* Special case where upper bits form a small sequence of two
2427 	 * sequential numbers (in 32-bit unsigned space, so 0xffffffff to
2428 	 * 0x00000000 is also valid), while lower bits form a proper s32 range
2429 	 * going from negative numbers to positive numbers. E.g., let's say we
2430 	 * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]).
2431 	 * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff,
2432 	 * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits,
2433 	 * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]).
2434 	 * Note that it doesn't have to be 0xffffffff going to 0x00000000 in
2435 	 * upper 32 bits. As a random example, s64 range
2436 	 * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range
2437 	 * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister.
2438 	 */
2439 	if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) &&
2440 	    (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) {
2441 		reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
2442 		reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
2443 	}
2444 	if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) &&
2445 	    (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) {
2446 		reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
2447 		reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
2448 	}
2449 	/* if u32 range forms a valid s32 range (due to matching sign bit),
2450 	 * try to learn from that
2451 	 */
2452 	if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) {
2453 		reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value);
2454 		reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value);
2455 	}
2456 	/* If we cannot cross the sign boundary, then signed and unsigned bounds
2457 	 * are the same, so combine.  This works even in the negative case, e.g.
2458 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2459 	 */
2460 	if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) {
2461 		reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value);
2462 		reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value);
2463 	}
2464 }
2465 
__reg64_deduce_bounds(struct bpf_reg_state * reg)2466 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2467 {
2468 	/* If u64 range forms a valid s64 range (due to matching sign bit),
2469 	 * try to learn from that. Let's do a bit of ASCII art to see when
2470 	 * this is happening. Let's take u64 range first:
2471 	 *
2472 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
2473 	 * |-------------------------------|--------------------------------|
2474 	 *
2475 	 * Valid u64 range is formed when umin and umax are anywhere in the
2476 	 * range [0, U64_MAX], and umin <= umax. u64 case is simple and
2477 	 * straightforward. Let's see how s64 range maps onto the same range
2478 	 * of values, annotated below the line for comparison:
2479 	 *
2480 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
2481 	 * |-------------------------------|--------------------------------|
2482 	 * 0                        S64_MAX S64_MIN                        -1
2483 	 *
2484 	 * So s64 values basically start in the middle and they are logically
2485 	 * contiguous to the right of it, wrapping around from -1 to 0, and
2486 	 * then finishing as S64_MAX (0x7fffffffffffffff) right before
2487 	 * S64_MIN. We can try drawing the continuity of u64 vs s64 values
2488 	 * more visually as mapped to sign-agnostic range of hex values.
2489 	 *
2490 	 *  u64 start                                               u64 end
2491 	 *  _______________________________________________________________
2492 	 * /                                                               \
2493 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
2494 	 * |-------------------------------|--------------------------------|
2495 	 * 0                        S64_MAX S64_MIN                        -1
2496 	 *                                / \
2497 	 * >------------------------------   ------------------------------->
2498 	 * s64 continues...        s64 end   s64 start          s64 "midpoint"
2499 	 *
2500 	 * What this means is that, in general, we can't always derive
2501 	 * something new about u64 from any random s64 range, and vice versa.
2502 	 *
2503 	 * But we can do that in two particular cases. One is when entire
2504 	 * u64/s64 range is *entirely* contained within left half of the above
2505 	 * diagram or when it is *entirely* contained in the right half. I.e.:
2506 	 *
2507 	 * |-------------------------------|--------------------------------|
2508 	 *     ^                   ^            ^                 ^
2509 	 *     A                   B            C                 D
2510 	 *
2511 	 * [A, B] and [C, D] are contained entirely in their respective halves
2512 	 * and form valid contiguous ranges as both u64 and s64 values. [A, B]
2513 	 * will be non-negative both as u64 and s64 (and in fact it will be
2514 	 * identical ranges no matter the signedness). [C, D] treated as s64
2515 	 * will be a range of negative values, while in u64 it will be
2516 	 * non-negative range of values larger than 0x8000000000000000.
2517 	 *
2518 	 * Now, any other range here can't be represented in both u64 and s64
2519 	 * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid
2520 	 * contiguous u64 ranges, but they are discontinuous in s64. [B, C]
2521 	 * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX],
2522 	 * for example. Similarly, valid s64 range [D, A] (going from negative
2523 	 * to positive values), would be two separate [D, U64_MAX] and [0, A]
2524 	 * ranges as u64. Currently reg_state can't represent two segments per
2525 	 * numeric domain, so in such situations we can only derive maximal
2526 	 * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64).
2527 	 *
2528 	 * So we use these facts to derive umin/umax from smin/smax and vice
2529 	 * versa only if they stay within the same "half". This is equivalent
2530 	 * to checking sign bit: lower half will have sign bit as zero, upper
2531 	 * half have sign bit 1. Below in code we simplify this by just
2532 	 * casting umin/umax as smin/smax and checking if they form valid
2533 	 * range, and vice versa. Those are equivalent checks.
2534 	 */
2535 	if ((s64)reg->umin_value <= (s64)reg->umax_value) {
2536 		reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value);
2537 		reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value);
2538 	}
2539 	/* If we cannot cross the sign boundary, then signed and unsigned bounds
2540 	 * are the same, so combine.  This works even in the negative case, e.g.
2541 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2542 	 */
2543 	if ((u64)reg->smin_value <= (u64)reg->smax_value) {
2544 		reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value);
2545 		reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value);
2546 	} else {
2547 		/* If the s64 range crosses the sign boundary, then it's split
2548 		 * between the beginning and end of the U64 domain. In that
2549 		 * case, we can derive new bounds if the u64 range overlaps
2550 		 * with only one end of the s64 range.
2551 		 *
2552 		 * In the following example, the u64 range overlaps only with
2553 		 * positive portion of the s64 range.
2554 		 *
2555 		 * 0                                                   U64_MAX
2556 		 * |  [xxxxxxxxxxxxxx u64 range xxxxxxxxxxxxxx]              |
2557 		 * |----------------------------|----------------------------|
2558 		 * |xxxxx s64 range xxxxxxxxx]                       [xxxxxxx|
2559 		 * 0                     S64_MAX S64_MIN                    -1
2560 		 *
2561 		 * We can thus derive the following new s64 and u64 ranges.
2562 		 *
2563 		 * 0                                                   U64_MAX
2564 		 * |  [xxxxxx u64 range xxxxx]                               |
2565 		 * |----------------------------|----------------------------|
2566 		 * |  [xxxxxx s64 range xxxxx]                               |
2567 		 * 0                     S64_MAX S64_MIN                    -1
2568 		 *
2569 		 * If they overlap in two places, we can't derive anything
2570 		 * because reg_state can't represent two ranges per numeric
2571 		 * domain.
2572 		 *
2573 		 * 0                                                   U64_MAX
2574 		 * |  [xxxxxxxxxxxxxxxxx u64 range xxxxxxxxxxxxxxxxx]        |
2575 		 * |----------------------------|----------------------------|
2576 		 * |xxxxx s64 range xxxxxxxxx]                    [xxxxxxxxxx|
2577 		 * 0                     S64_MAX S64_MIN                    -1
2578 		 *
2579 		 * The first condition below corresponds to the first diagram
2580 		 * above.
2581 		 */
2582 		if (reg->umax_value < (u64)reg->smin_value) {
2583 			reg->smin_value = (s64)reg->umin_value;
2584 			reg->umax_value = min_t(u64, reg->umax_value, reg->smax_value);
2585 		} else if ((u64)reg->smax_value < reg->umin_value) {
2586 			/* This second condition considers the case where the u64 range
2587 			 * overlaps with the negative portion of the s64 range:
2588 			 *
2589 			 * 0                                                   U64_MAX
2590 			 * |              [xxxxxxxxxxxxxx u64 range xxxxxxxxxxxxxx]  |
2591 			 * |----------------------------|----------------------------|
2592 			 * |xxxxxxxxx]                       [xxxxxxxxxxxx s64 range |
2593 			 * 0                     S64_MAX S64_MIN                    -1
2594 			 */
2595 			reg->smax_value = (s64)reg->umax_value;
2596 			reg->umin_value = max_t(u64, reg->umin_value, reg->smin_value);
2597 		}
2598 	}
2599 }
2600 
__reg_deduce_mixed_bounds(struct bpf_reg_state * reg)2601 static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg)
2602 {
2603 	/* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit
2604 	 * values on both sides of 64-bit range in hope to have tighter range.
2605 	 * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from
2606 	 * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff].
2607 	 * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound
2608 	 * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of
2609 	 * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a
2610 	 * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff].
2611 	 * We just need to make sure that derived bounds we are intersecting
2612 	 * with are well-formed ranges in respective s64 or u64 domain, just
2613 	 * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments.
2614 	 */
2615 	__u64 new_umin, new_umax;
2616 	__s64 new_smin, new_smax;
2617 
2618 	/* u32 -> u64 tightening, it's always well-formed */
2619 	new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value;
2620 	new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value;
2621 	reg->umin_value = max_t(u64, reg->umin_value, new_umin);
2622 	reg->umax_value = min_t(u64, reg->umax_value, new_umax);
2623 	/* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */
2624 	new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value;
2625 	new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value;
2626 	reg->smin_value = max_t(s64, reg->smin_value, new_smin);
2627 	reg->smax_value = min_t(s64, reg->smax_value, new_smax);
2628 
2629 	/* Here we would like to handle a special case after sign extending load,
2630 	 * when upper bits for a 64-bit range are all 1s or all 0s.
2631 	 *
2632 	 * Upper bits are all 1s when register is in a range:
2633 	 *   [0xffff_ffff_0000_0000, 0xffff_ffff_ffff_ffff]
2634 	 * Upper bits are all 0s when register is in a range:
2635 	 *   [0x0000_0000_0000_0000, 0x0000_0000_ffff_ffff]
2636 	 * Together this forms are continuous range:
2637 	 *   [0xffff_ffff_0000_0000, 0x0000_0000_ffff_ffff]
2638 	 *
2639 	 * Now, suppose that register range is in fact tighter:
2640 	 *   [0xffff_ffff_8000_0000, 0x0000_0000_ffff_ffff] (R)
2641 	 * Also suppose that it's 32-bit range is positive,
2642 	 * meaning that lower 32-bits of the full 64-bit register
2643 	 * are in the range:
2644 	 *   [0x0000_0000, 0x7fff_ffff] (W)
2645 	 *
2646 	 * If this happens, then any value in a range:
2647 	 *   [0xffff_ffff_0000_0000, 0xffff_ffff_7fff_ffff]
2648 	 * is smaller than a lowest bound of the range (R):
2649 	 *   0xffff_ffff_8000_0000
2650 	 * which means that upper bits of the full 64-bit register
2651 	 * can't be all 1s, when lower bits are in range (W).
2652 	 *
2653 	 * Note that:
2654 	 *  - 0xffff_ffff_8000_0000 == (s64)S32_MIN
2655 	 *  - 0x0000_0000_7fff_ffff == (s64)S32_MAX
2656 	 * These relations are used in the conditions below.
2657 	 */
2658 	if (reg->s32_min_value >= 0 && reg->smin_value >= S32_MIN && reg->smax_value <= S32_MAX) {
2659 		reg->smin_value = reg->s32_min_value;
2660 		reg->smax_value = reg->s32_max_value;
2661 		reg->umin_value = reg->s32_min_value;
2662 		reg->umax_value = reg->s32_max_value;
2663 		reg->var_off = tnum_intersect(reg->var_off,
2664 					      tnum_range(reg->smin_value, reg->smax_value));
2665 	}
2666 }
2667 
__reg_deduce_bounds(struct bpf_reg_state * reg)2668 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2669 {
2670 	__reg32_deduce_bounds(reg);
2671 	__reg64_deduce_bounds(reg);
2672 	__reg_deduce_mixed_bounds(reg);
2673 }
2674 
2675 /* Attempts to improve var_off based on unsigned min/max information */
__reg_bound_offset(struct bpf_reg_state * reg)2676 static void __reg_bound_offset(struct bpf_reg_state *reg)
2677 {
2678 	struct tnum var64_off = tnum_intersect(reg->var_off,
2679 					       tnum_range(reg->umin_value,
2680 							  reg->umax_value));
2681 	struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2682 					       tnum_range(reg->u32_min_value,
2683 							  reg->u32_max_value));
2684 
2685 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2686 }
2687 
reg_bounds_sync(struct bpf_reg_state * reg)2688 static void reg_bounds_sync(struct bpf_reg_state *reg)
2689 {
2690 	/* We might have learned new bounds from the var_off. */
2691 	__update_reg_bounds(reg);
2692 	/* We might have learned something about the sign bit. */
2693 	__reg_deduce_bounds(reg);
2694 	__reg_deduce_bounds(reg);
2695 	__reg_deduce_bounds(reg);
2696 	/* We might have learned some bits from the bounds. */
2697 	__reg_bound_offset(reg);
2698 	/* Intersecting with the old var_off might have improved our bounds
2699 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2700 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2701 	 */
2702 	__update_reg_bounds(reg);
2703 }
2704 
reg_bounds_sanity_check(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * ctx)2705 static int reg_bounds_sanity_check(struct bpf_verifier_env *env,
2706 				   struct bpf_reg_state *reg, const char *ctx)
2707 {
2708 	const char *msg;
2709 
2710 	if (reg->umin_value > reg->umax_value ||
2711 	    reg->smin_value > reg->smax_value ||
2712 	    reg->u32_min_value > reg->u32_max_value ||
2713 	    reg->s32_min_value > reg->s32_max_value) {
2714 		    msg = "range bounds violation";
2715 		    goto out;
2716 	}
2717 
2718 	if (tnum_is_const(reg->var_off)) {
2719 		u64 uval = reg->var_off.value;
2720 		s64 sval = (s64)uval;
2721 
2722 		if (reg->umin_value != uval || reg->umax_value != uval ||
2723 		    reg->smin_value != sval || reg->smax_value != sval) {
2724 			msg = "const tnum out of sync with range bounds";
2725 			goto out;
2726 		}
2727 	}
2728 
2729 	if (tnum_subreg_is_const(reg->var_off)) {
2730 		u32 uval32 = tnum_subreg(reg->var_off).value;
2731 		s32 sval32 = (s32)uval32;
2732 
2733 		if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 ||
2734 		    reg->s32_min_value != sval32 || reg->s32_max_value != sval32) {
2735 			msg = "const subreg tnum out of sync with range bounds";
2736 			goto out;
2737 		}
2738 	}
2739 
2740 	return 0;
2741 out:
2742 	verifier_bug(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] "
2743 		     "s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)",
2744 		     ctx, msg, reg->umin_value, reg->umax_value,
2745 		     reg->smin_value, reg->smax_value,
2746 		     reg->u32_min_value, reg->u32_max_value,
2747 		     reg->s32_min_value, reg->s32_max_value,
2748 		     reg->var_off.value, reg->var_off.mask);
2749 	if (env->test_reg_invariants)
2750 		return -EFAULT;
2751 	__mark_reg_unbounded(reg);
2752 	return 0;
2753 }
2754 
__reg32_bound_s64(s32 a)2755 static bool __reg32_bound_s64(s32 a)
2756 {
2757 	return a >= 0 && a <= S32_MAX;
2758 }
2759 
__reg_assign_32_into_64(struct bpf_reg_state * reg)2760 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2761 {
2762 	reg->umin_value = reg->u32_min_value;
2763 	reg->umax_value = reg->u32_max_value;
2764 
2765 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2766 	 * be positive otherwise set to worse case bounds and refine later
2767 	 * from tnum.
2768 	 */
2769 	if (__reg32_bound_s64(reg->s32_min_value) &&
2770 	    __reg32_bound_s64(reg->s32_max_value)) {
2771 		reg->smin_value = reg->s32_min_value;
2772 		reg->smax_value = reg->s32_max_value;
2773 	} else {
2774 		reg->smin_value = 0;
2775 		reg->smax_value = U32_MAX;
2776 	}
2777 }
2778 
2779 /* Mark a register as having a completely unknown (scalar) value. */
__mark_reg_unknown_imprecise(struct bpf_reg_state * reg)2780 static void __mark_reg_unknown_imprecise(struct bpf_reg_state *reg)
2781 {
2782 	/*
2783 	 * Clear type, off, and union(map_ptr, range) and
2784 	 * padding between 'type' and union
2785 	 */
2786 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2787 	reg->type = SCALAR_VALUE;
2788 	reg->id = 0;
2789 	reg->ref_obj_id = 0;
2790 	reg->var_off = tnum_unknown;
2791 	reg->frameno = 0;
2792 	reg->precise = false;
2793 	__mark_reg_unbounded(reg);
2794 }
2795 
2796 /* Mark a register as having a completely unknown (scalar) value,
2797  * initialize .precise as true when not bpf capable.
2798  */
__mark_reg_unknown(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)2799 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2800 			       struct bpf_reg_state *reg)
2801 {
2802 	__mark_reg_unknown_imprecise(reg);
2803 	reg->precise = !env->bpf_capable;
2804 }
2805 
mark_reg_unknown(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)2806 static void mark_reg_unknown(struct bpf_verifier_env *env,
2807 			     struct bpf_reg_state *regs, u32 regno)
2808 {
2809 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2810 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2811 		/* Something bad happened, let's kill all regs except FP */
2812 		for (regno = 0; regno < BPF_REG_FP; regno++)
2813 			__mark_reg_not_init(env, regs + regno);
2814 		return;
2815 	}
2816 	__mark_reg_unknown(env, regs + regno);
2817 }
2818 
__mark_reg_s32_range(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,s32 s32_min,s32 s32_max)2819 static int __mark_reg_s32_range(struct bpf_verifier_env *env,
2820 				struct bpf_reg_state *regs,
2821 				u32 regno,
2822 				s32 s32_min,
2823 				s32 s32_max)
2824 {
2825 	struct bpf_reg_state *reg = regs + regno;
2826 
2827 	reg->s32_min_value = max_t(s32, reg->s32_min_value, s32_min);
2828 	reg->s32_max_value = min_t(s32, reg->s32_max_value, s32_max);
2829 
2830 	reg->smin_value = max_t(s64, reg->smin_value, s32_min);
2831 	reg->smax_value = min_t(s64, reg->smax_value, s32_max);
2832 
2833 	reg_bounds_sync(reg);
2834 
2835 	return reg_bounds_sanity_check(env, reg, "s32_range");
2836 }
2837 
__mark_reg_not_init(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)2838 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2839 				struct bpf_reg_state *reg)
2840 {
2841 	__mark_reg_unknown(env, reg);
2842 	reg->type = NOT_INIT;
2843 }
2844 
mark_reg_not_init(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)2845 static void mark_reg_not_init(struct bpf_verifier_env *env,
2846 			      struct bpf_reg_state *regs, u32 regno)
2847 {
2848 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2849 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2850 		/* Something bad happened, let's kill all regs except FP */
2851 		for (regno = 0; regno < BPF_REG_FP; regno++)
2852 			__mark_reg_not_init(env, regs + regno);
2853 		return;
2854 	}
2855 	__mark_reg_not_init(env, regs + regno);
2856 }
2857 
mark_btf_ld_reg(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,enum bpf_reg_type reg_type,struct btf * btf,u32 btf_id,enum bpf_type_flag flag)2858 static int mark_btf_ld_reg(struct bpf_verifier_env *env,
2859 			   struct bpf_reg_state *regs, u32 regno,
2860 			   enum bpf_reg_type reg_type,
2861 			   struct btf *btf, u32 btf_id,
2862 			   enum bpf_type_flag flag)
2863 {
2864 	switch (reg_type) {
2865 	case SCALAR_VALUE:
2866 		mark_reg_unknown(env, regs, regno);
2867 		return 0;
2868 	case PTR_TO_BTF_ID:
2869 		mark_reg_known_zero(env, regs, regno);
2870 		regs[regno].type = PTR_TO_BTF_ID | flag;
2871 		regs[regno].btf = btf;
2872 		regs[regno].btf_id = btf_id;
2873 		if (type_may_be_null(flag))
2874 			regs[regno].id = ++env->id_gen;
2875 		return 0;
2876 	case PTR_TO_MEM:
2877 		mark_reg_known_zero(env, regs, regno);
2878 		regs[regno].type = PTR_TO_MEM | flag;
2879 		regs[regno].mem_size = 0;
2880 		return 0;
2881 	default:
2882 		verifier_bug(env, "unexpected reg_type %d in %s\n", reg_type, __func__);
2883 		return -EFAULT;
2884 	}
2885 }
2886 
2887 #define DEF_NOT_SUBREG	(0)
init_reg_state(struct bpf_verifier_env * env,struct bpf_func_state * state)2888 static void init_reg_state(struct bpf_verifier_env *env,
2889 			   struct bpf_func_state *state)
2890 {
2891 	struct bpf_reg_state *regs = state->regs;
2892 	int i;
2893 
2894 	for (i = 0; i < MAX_BPF_REG; i++) {
2895 		mark_reg_not_init(env, regs, i);
2896 		regs[i].subreg_def = DEF_NOT_SUBREG;
2897 	}
2898 
2899 	/* frame pointer */
2900 	regs[BPF_REG_FP].type = PTR_TO_STACK;
2901 	mark_reg_known_zero(env, regs, BPF_REG_FP);
2902 	regs[BPF_REG_FP].frameno = state->frameno;
2903 }
2904 
retval_range(s32 minval,s32 maxval)2905 static struct bpf_retval_range retval_range(s32 minval, s32 maxval)
2906 {
2907 	return (struct bpf_retval_range){ minval, maxval };
2908 }
2909 
2910 #define BPF_MAIN_FUNC (-1)
init_func_state(struct bpf_verifier_env * env,struct bpf_func_state * state,int callsite,int frameno,int subprogno)2911 static void init_func_state(struct bpf_verifier_env *env,
2912 			    struct bpf_func_state *state,
2913 			    int callsite, int frameno, int subprogno)
2914 {
2915 	state->callsite = callsite;
2916 	state->frameno = frameno;
2917 	state->subprogno = subprogno;
2918 	state->callback_ret_range = retval_range(0, 0);
2919 	init_reg_state(env, state);
2920 	mark_verifier_state_scratched(env);
2921 }
2922 
2923 /* Similar to push_stack(), but for async callbacks */
push_async_cb(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx,int subprog,bool is_sleepable)2924 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2925 						int insn_idx, int prev_insn_idx,
2926 						int subprog, bool is_sleepable)
2927 {
2928 	struct bpf_verifier_stack_elem *elem;
2929 	struct bpf_func_state *frame;
2930 
2931 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL_ACCOUNT);
2932 	if (!elem)
2933 		return ERR_PTR(-ENOMEM);
2934 
2935 	elem->insn_idx = insn_idx;
2936 	elem->prev_insn_idx = prev_insn_idx;
2937 	elem->next = env->head;
2938 	elem->log_pos = env->log.end_pos;
2939 	env->head = elem;
2940 	env->stack_size++;
2941 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2942 		verbose(env,
2943 			"The sequence of %d jumps is too complex for async cb.\n",
2944 			env->stack_size);
2945 		return ERR_PTR(-E2BIG);
2946 	}
2947 	/* Unlike push_stack() do not copy_verifier_state().
2948 	 * The caller state doesn't matter.
2949 	 * This is async callback. It starts in a fresh stack.
2950 	 * Initialize it similar to do_check_common().
2951 	 */
2952 	elem->st.branches = 1;
2953 	elem->st.in_sleepable = is_sleepable;
2954 	frame = kzalloc(sizeof(*frame), GFP_KERNEL_ACCOUNT);
2955 	if (!frame)
2956 		return ERR_PTR(-ENOMEM);
2957 	init_func_state(env, frame,
2958 			BPF_MAIN_FUNC /* callsite */,
2959 			0 /* frameno within this callchain */,
2960 			subprog /* subprog number within this prog */);
2961 	elem->st.frame[0] = frame;
2962 	return &elem->st;
2963 }
2964 
2965 
2966 enum reg_arg_type {
2967 	SRC_OP,		/* register is used as source operand */
2968 	DST_OP,		/* register is used as destination operand */
2969 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
2970 };
2971 
cmp_subprogs(const void * a,const void * b)2972 static int cmp_subprogs(const void *a, const void *b)
2973 {
2974 	return ((struct bpf_subprog_info *)a)->start -
2975 	       ((struct bpf_subprog_info *)b)->start;
2976 }
2977 
2978 /* Find subprogram that contains instruction at 'off' */
bpf_find_containing_subprog(struct bpf_verifier_env * env,int off)2979 struct bpf_subprog_info *bpf_find_containing_subprog(struct bpf_verifier_env *env, int off)
2980 {
2981 	struct bpf_subprog_info *vals = env->subprog_info;
2982 	int l, r, m;
2983 
2984 	if (off >= env->prog->len || off < 0 || env->subprog_cnt == 0)
2985 		return NULL;
2986 
2987 	l = 0;
2988 	r = env->subprog_cnt - 1;
2989 	while (l < r) {
2990 		m = l + (r - l + 1) / 2;
2991 		if (vals[m].start <= off)
2992 			l = m;
2993 		else
2994 			r = m - 1;
2995 	}
2996 	return &vals[l];
2997 }
2998 
2999 /* Find subprogram that starts exactly at 'off' */
find_subprog(struct bpf_verifier_env * env,int off)3000 static int find_subprog(struct bpf_verifier_env *env, int off)
3001 {
3002 	struct bpf_subprog_info *p;
3003 
3004 	p = bpf_find_containing_subprog(env, off);
3005 	if (!p || p->start != off)
3006 		return -ENOENT;
3007 	return p - env->subprog_info;
3008 }
3009 
add_subprog(struct bpf_verifier_env * env,int off)3010 static int add_subprog(struct bpf_verifier_env *env, int off)
3011 {
3012 	int insn_cnt = env->prog->len;
3013 	int ret;
3014 
3015 	if (off >= insn_cnt || off < 0) {
3016 		verbose(env, "call to invalid destination\n");
3017 		return -EINVAL;
3018 	}
3019 	ret = find_subprog(env, off);
3020 	if (ret >= 0)
3021 		return ret;
3022 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
3023 		verbose(env, "too many subprograms\n");
3024 		return -E2BIG;
3025 	}
3026 	/* determine subprog starts. The end is one before the next starts */
3027 	env->subprog_info[env->subprog_cnt++].start = off;
3028 	sort(env->subprog_info, env->subprog_cnt,
3029 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
3030 	return env->subprog_cnt - 1;
3031 }
3032 
bpf_find_exception_callback_insn_off(struct bpf_verifier_env * env)3033 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env)
3034 {
3035 	struct bpf_prog_aux *aux = env->prog->aux;
3036 	struct btf *btf = aux->btf;
3037 	const struct btf_type *t;
3038 	u32 main_btf_id, id;
3039 	const char *name;
3040 	int ret, i;
3041 
3042 	/* Non-zero func_info_cnt implies valid btf */
3043 	if (!aux->func_info_cnt)
3044 		return 0;
3045 	main_btf_id = aux->func_info[0].type_id;
3046 
3047 	t = btf_type_by_id(btf, main_btf_id);
3048 	if (!t) {
3049 		verbose(env, "invalid btf id for main subprog in func_info\n");
3050 		return -EINVAL;
3051 	}
3052 
3053 	name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:");
3054 	if (IS_ERR(name)) {
3055 		ret = PTR_ERR(name);
3056 		/* If there is no tag present, there is no exception callback */
3057 		if (ret == -ENOENT)
3058 			ret = 0;
3059 		else if (ret == -EEXIST)
3060 			verbose(env, "multiple exception callback tags for main subprog\n");
3061 		return ret;
3062 	}
3063 
3064 	ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC);
3065 	if (ret < 0) {
3066 		verbose(env, "exception callback '%s' could not be found in BTF\n", name);
3067 		return ret;
3068 	}
3069 	id = ret;
3070 	t = btf_type_by_id(btf, id);
3071 	if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
3072 		verbose(env, "exception callback '%s' must have global linkage\n", name);
3073 		return -EINVAL;
3074 	}
3075 	ret = 0;
3076 	for (i = 0; i < aux->func_info_cnt; i++) {
3077 		if (aux->func_info[i].type_id != id)
3078 			continue;
3079 		ret = aux->func_info[i].insn_off;
3080 		/* Further func_info and subprog checks will also happen
3081 		 * later, so assume this is the right insn_off for now.
3082 		 */
3083 		if (!ret) {
3084 			verbose(env, "invalid exception callback insn_off in func_info: 0\n");
3085 			ret = -EINVAL;
3086 		}
3087 	}
3088 	if (!ret) {
3089 		verbose(env, "exception callback type id not found in func_info\n");
3090 		ret = -EINVAL;
3091 	}
3092 	return ret;
3093 }
3094 
3095 #define MAX_KFUNC_DESCS 256
3096 #define MAX_KFUNC_BTFS	256
3097 
3098 struct bpf_kfunc_desc {
3099 	struct btf_func_model func_model;
3100 	u32 func_id;
3101 	s32 imm;
3102 	u16 offset;
3103 	unsigned long addr;
3104 };
3105 
3106 struct bpf_kfunc_btf {
3107 	struct btf *btf;
3108 	struct module *module;
3109 	u16 offset;
3110 };
3111 
3112 struct bpf_kfunc_desc_tab {
3113 	/* Sorted by func_id (BTF ID) and offset (fd_array offset) during
3114 	 * verification. JITs do lookups by bpf_insn, where func_id may not be
3115 	 * available, therefore at the end of verification do_misc_fixups()
3116 	 * sorts this by imm and offset.
3117 	 */
3118 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
3119 	u32 nr_descs;
3120 };
3121 
3122 struct bpf_kfunc_btf_tab {
3123 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
3124 	u32 nr_descs;
3125 };
3126 
3127 static int specialize_kfunc(struct bpf_verifier_env *env, struct bpf_kfunc_desc *desc,
3128 			    int insn_idx);
3129 
kfunc_desc_cmp_by_id_off(const void * a,const void * b)3130 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
3131 {
3132 	const struct bpf_kfunc_desc *d0 = a;
3133 	const struct bpf_kfunc_desc *d1 = b;
3134 
3135 	/* func_id is not greater than BTF_MAX_TYPE */
3136 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
3137 }
3138 
kfunc_btf_cmp_by_off(const void * a,const void * b)3139 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
3140 {
3141 	const struct bpf_kfunc_btf *d0 = a;
3142 	const struct bpf_kfunc_btf *d1 = b;
3143 
3144 	return d0->offset - d1->offset;
3145 }
3146 
3147 static struct bpf_kfunc_desc *
find_kfunc_desc(const struct bpf_prog * prog,u32 func_id,u16 offset)3148 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
3149 {
3150 	struct bpf_kfunc_desc desc = {
3151 		.func_id = func_id,
3152 		.offset = offset,
3153 	};
3154 	struct bpf_kfunc_desc_tab *tab;
3155 
3156 	tab = prog->aux->kfunc_tab;
3157 	return bsearch(&desc, tab->descs, tab->nr_descs,
3158 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
3159 }
3160 
bpf_get_kfunc_addr(const struct bpf_prog * prog,u32 func_id,u16 btf_fd_idx,u8 ** func_addr)3161 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
3162 		       u16 btf_fd_idx, u8 **func_addr)
3163 {
3164 	const struct bpf_kfunc_desc *desc;
3165 
3166 	desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
3167 	if (!desc)
3168 		return -EFAULT;
3169 
3170 	*func_addr = (u8 *)desc->addr;
3171 	return 0;
3172 }
3173 
__find_kfunc_desc_btf(struct bpf_verifier_env * env,s16 offset)3174 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
3175 					 s16 offset)
3176 {
3177 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
3178 	struct bpf_kfunc_btf_tab *tab;
3179 	struct bpf_kfunc_btf *b;
3180 	struct module *mod;
3181 	struct btf *btf;
3182 	int btf_fd;
3183 
3184 	tab = env->prog->aux->kfunc_btf_tab;
3185 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
3186 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
3187 	if (!b) {
3188 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
3189 			verbose(env, "too many different module BTFs\n");
3190 			return ERR_PTR(-E2BIG);
3191 		}
3192 
3193 		if (bpfptr_is_null(env->fd_array)) {
3194 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
3195 			return ERR_PTR(-EPROTO);
3196 		}
3197 
3198 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
3199 					    offset * sizeof(btf_fd),
3200 					    sizeof(btf_fd)))
3201 			return ERR_PTR(-EFAULT);
3202 
3203 		btf = btf_get_by_fd(btf_fd);
3204 		if (IS_ERR(btf)) {
3205 			verbose(env, "invalid module BTF fd specified\n");
3206 			return btf;
3207 		}
3208 
3209 		if (!btf_is_module(btf)) {
3210 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
3211 			btf_put(btf);
3212 			return ERR_PTR(-EINVAL);
3213 		}
3214 
3215 		mod = btf_try_get_module(btf);
3216 		if (!mod) {
3217 			btf_put(btf);
3218 			return ERR_PTR(-ENXIO);
3219 		}
3220 
3221 		b = &tab->descs[tab->nr_descs++];
3222 		b->btf = btf;
3223 		b->module = mod;
3224 		b->offset = offset;
3225 
3226 		/* sort() reorders entries by value, so b may no longer point
3227 		 * to the right entry after this
3228 		 */
3229 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
3230 		     kfunc_btf_cmp_by_off, NULL);
3231 	} else {
3232 		btf = b->btf;
3233 	}
3234 
3235 	return btf;
3236 }
3237 
bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab * tab)3238 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
3239 {
3240 	if (!tab)
3241 		return;
3242 
3243 	while (tab->nr_descs--) {
3244 		module_put(tab->descs[tab->nr_descs].module);
3245 		btf_put(tab->descs[tab->nr_descs].btf);
3246 	}
3247 	kfree(tab);
3248 }
3249 
find_kfunc_desc_btf(struct bpf_verifier_env * env,s16 offset)3250 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
3251 {
3252 	if (offset) {
3253 		if (offset < 0) {
3254 			/* In the future, this can be allowed to increase limit
3255 			 * of fd index into fd_array, interpreted as u16.
3256 			 */
3257 			verbose(env, "negative offset disallowed for kernel module function call\n");
3258 			return ERR_PTR(-EINVAL);
3259 		}
3260 
3261 		return __find_kfunc_desc_btf(env, offset);
3262 	}
3263 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
3264 }
3265 
add_kfunc_call(struct bpf_verifier_env * env,u32 func_id,s16 offset)3266 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
3267 {
3268 	const struct btf_type *func, *func_proto;
3269 	struct bpf_kfunc_btf_tab *btf_tab;
3270 	struct btf_func_model func_model;
3271 	struct bpf_kfunc_desc_tab *tab;
3272 	struct bpf_prog_aux *prog_aux;
3273 	struct bpf_kfunc_desc *desc;
3274 	const char *func_name;
3275 	struct btf *desc_btf;
3276 	unsigned long addr;
3277 	int err;
3278 
3279 	prog_aux = env->prog->aux;
3280 	tab = prog_aux->kfunc_tab;
3281 	btf_tab = prog_aux->kfunc_btf_tab;
3282 	if (!tab) {
3283 		if (!btf_vmlinux) {
3284 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
3285 			return -ENOTSUPP;
3286 		}
3287 
3288 		if (!env->prog->jit_requested) {
3289 			verbose(env, "JIT is required for calling kernel function\n");
3290 			return -ENOTSUPP;
3291 		}
3292 
3293 		if (!bpf_jit_supports_kfunc_call()) {
3294 			verbose(env, "JIT does not support calling kernel function\n");
3295 			return -ENOTSUPP;
3296 		}
3297 
3298 		if (!env->prog->gpl_compatible) {
3299 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
3300 			return -EINVAL;
3301 		}
3302 
3303 		tab = kzalloc(sizeof(*tab), GFP_KERNEL_ACCOUNT);
3304 		if (!tab)
3305 			return -ENOMEM;
3306 		prog_aux->kfunc_tab = tab;
3307 	}
3308 
3309 	/* func_id == 0 is always invalid, but instead of returning an error, be
3310 	 * conservative and wait until the code elimination pass before returning
3311 	 * error, so that invalid calls that get pruned out can be in BPF programs
3312 	 * loaded from userspace.  It is also required that offset be untouched
3313 	 * for such calls.
3314 	 */
3315 	if (!func_id && !offset)
3316 		return 0;
3317 
3318 	if (!btf_tab && offset) {
3319 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL_ACCOUNT);
3320 		if (!btf_tab)
3321 			return -ENOMEM;
3322 		prog_aux->kfunc_btf_tab = btf_tab;
3323 	}
3324 
3325 	desc_btf = find_kfunc_desc_btf(env, offset);
3326 	if (IS_ERR(desc_btf)) {
3327 		verbose(env, "failed to find BTF for kernel function\n");
3328 		return PTR_ERR(desc_btf);
3329 	}
3330 
3331 	if (find_kfunc_desc(env->prog, func_id, offset))
3332 		return 0;
3333 
3334 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
3335 		verbose(env, "too many different kernel function calls\n");
3336 		return -E2BIG;
3337 	}
3338 
3339 	func = btf_type_by_id(desc_btf, func_id);
3340 	if (!func || !btf_type_is_func(func)) {
3341 		verbose(env, "kernel btf_id %u is not a function\n",
3342 			func_id);
3343 		return -EINVAL;
3344 	}
3345 	func_proto = btf_type_by_id(desc_btf, func->type);
3346 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
3347 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
3348 			func_id);
3349 		return -EINVAL;
3350 	}
3351 
3352 	func_name = btf_name_by_offset(desc_btf, func->name_off);
3353 	addr = kallsyms_lookup_name(func_name);
3354 	if (!addr) {
3355 		verbose(env, "cannot find address for kernel function %s\n",
3356 			func_name);
3357 		return -EINVAL;
3358 	}
3359 
3360 	if (bpf_dev_bound_kfunc_id(func_id)) {
3361 		err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
3362 		if (err)
3363 			return err;
3364 	}
3365 
3366 	err = btf_distill_func_proto(&env->log, desc_btf,
3367 				     func_proto, func_name,
3368 				     &func_model);
3369 	if (err)
3370 		return err;
3371 
3372 	desc = &tab->descs[tab->nr_descs++];
3373 	desc->func_id = func_id;
3374 	desc->offset = offset;
3375 	desc->addr = addr;
3376 	desc->func_model = func_model;
3377 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
3378 	     kfunc_desc_cmp_by_id_off, NULL);
3379 	return 0;
3380 }
3381 
kfunc_desc_cmp_by_imm_off(const void * a,const void * b)3382 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
3383 {
3384 	const struct bpf_kfunc_desc *d0 = a;
3385 	const struct bpf_kfunc_desc *d1 = b;
3386 
3387 	if (d0->imm != d1->imm)
3388 		return d0->imm < d1->imm ? -1 : 1;
3389 	if (d0->offset != d1->offset)
3390 		return d0->offset < d1->offset ? -1 : 1;
3391 	return 0;
3392 }
3393 
set_kfunc_desc_imm(struct bpf_verifier_env * env,struct bpf_kfunc_desc * desc)3394 static int set_kfunc_desc_imm(struct bpf_verifier_env *env, struct bpf_kfunc_desc *desc)
3395 {
3396 	unsigned long call_imm;
3397 
3398 	if (bpf_jit_supports_far_kfunc_call()) {
3399 		call_imm = desc->func_id;
3400 	} else {
3401 		call_imm = BPF_CALL_IMM(desc->addr);
3402 		/* Check whether the relative offset overflows desc->imm */
3403 		if ((unsigned long)(s32)call_imm != call_imm) {
3404 			verbose(env, "address of kernel func_id %u is out of range\n",
3405 				desc->func_id);
3406 			return -EINVAL;
3407 		}
3408 	}
3409 	desc->imm = call_imm;
3410 	return 0;
3411 }
3412 
sort_kfunc_descs_by_imm_off(struct bpf_verifier_env * env)3413 static int sort_kfunc_descs_by_imm_off(struct bpf_verifier_env *env)
3414 {
3415 	struct bpf_kfunc_desc_tab *tab;
3416 	int i, err;
3417 
3418 	tab = env->prog->aux->kfunc_tab;
3419 	if (!tab)
3420 		return 0;
3421 
3422 	for (i = 0; i < tab->nr_descs; i++) {
3423 		err = set_kfunc_desc_imm(env, &tab->descs[i]);
3424 		if (err)
3425 			return err;
3426 	}
3427 
3428 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
3429 	     kfunc_desc_cmp_by_imm_off, NULL);
3430 	return 0;
3431 }
3432 
bpf_prog_has_kfunc_call(const struct bpf_prog * prog)3433 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
3434 {
3435 	return !!prog->aux->kfunc_tab;
3436 }
3437 
3438 const struct btf_func_model *
bpf_jit_find_kfunc_model(const struct bpf_prog * prog,const struct bpf_insn * insn)3439 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
3440 			 const struct bpf_insn *insn)
3441 {
3442 	const struct bpf_kfunc_desc desc = {
3443 		.imm = insn->imm,
3444 		.offset = insn->off,
3445 	};
3446 	const struct bpf_kfunc_desc *res;
3447 	struct bpf_kfunc_desc_tab *tab;
3448 
3449 	tab = prog->aux->kfunc_tab;
3450 	res = bsearch(&desc, tab->descs, tab->nr_descs,
3451 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
3452 
3453 	return res ? &res->func_model : NULL;
3454 }
3455 
add_kfunc_in_insns(struct bpf_verifier_env * env,struct bpf_insn * insn,int cnt)3456 static int add_kfunc_in_insns(struct bpf_verifier_env *env,
3457 			      struct bpf_insn *insn, int cnt)
3458 {
3459 	int i, ret;
3460 
3461 	for (i = 0; i < cnt; i++, insn++) {
3462 		if (bpf_pseudo_kfunc_call(insn)) {
3463 			ret = add_kfunc_call(env, insn->imm, insn->off);
3464 			if (ret < 0)
3465 				return ret;
3466 		}
3467 	}
3468 	return 0;
3469 }
3470 
add_subprog_and_kfunc(struct bpf_verifier_env * env)3471 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
3472 {
3473 	struct bpf_subprog_info *subprog = env->subprog_info;
3474 	int i, ret, insn_cnt = env->prog->len, ex_cb_insn;
3475 	struct bpf_insn *insn = env->prog->insnsi;
3476 
3477 	/* Add entry function. */
3478 	ret = add_subprog(env, 0);
3479 	if (ret)
3480 		return ret;
3481 
3482 	for (i = 0; i < insn_cnt; i++, insn++) {
3483 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
3484 		    !bpf_pseudo_kfunc_call(insn))
3485 			continue;
3486 
3487 		if (!env->bpf_capable) {
3488 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
3489 			return -EPERM;
3490 		}
3491 
3492 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
3493 			ret = add_subprog(env, i + insn->imm + 1);
3494 		else
3495 			ret = add_kfunc_call(env, insn->imm, insn->off);
3496 
3497 		if (ret < 0)
3498 			return ret;
3499 	}
3500 
3501 	ret = bpf_find_exception_callback_insn_off(env);
3502 	if (ret < 0)
3503 		return ret;
3504 	ex_cb_insn = ret;
3505 
3506 	/* If ex_cb_insn > 0, this means that the main program has a subprog
3507 	 * marked using BTF decl tag to serve as the exception callback.
3508 	 */
3509 	if (ex_cb_insn) {
3510 		ret = add_subprog(env, ex_cb_insn);
3511 		if (ret < 0)
3512 			return ret;
3513 		for (i = 1; i < env->subprog_cnt; i++) {
3514 			if (env->subprog_info[i].start != ex_cb_insn)
3515 				continue;
3516 			env->exception_callback_subprog = i;
3517 			mark_subprog_exc_cb(env, i);
3518 			break;
3519 		}
3520 	}
3521 
3522 	/* Add a fake 'exit' subprog which could simplify subprog iteration
3523 	 * logic. 'subprog_cnt' should not be increased.
3524 	 */
3525 	subprog[env->subprog_cnt].start = insn_cnt;
3526 
3527 	if (env->log.level & BPF_LOG_LEVEL2)
3528 		for (i = 0; i < env->subprog_cnt; i++)
3529 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
3530 
3531 	return 0;
3532 }
3533 
check_subprogs(struct bpf_verifier_env * env)3534 static int check_subprogs(struct bpf_verifier_env *env)
3535 {
3536 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
3537 	struct bpf_subprog_info *subprog = env->subprog_info;
3538 	struct bpf_insn *insn = env->prog->insnsi;
3539 	int insn_cnt = env->prog->len;
3540 
3541 	/* now check that all jumps are within the same subprog */
3542 	subprog_start = subprog[cur_subprog].start;
3543 	subprog_end = subprog[cur_subprog + 1].start;
3544 	for (i = 0; i < insn_cnt; i++) {
3545 		u8 code = insn[i].code;
3546 
3547 		if (code == (BPF_JMP | BPF_CALL) &&
3548 		    insn[i].src_reg == 0 &&
3549 		    insn[i].imm == BPF_FUNC_tail_call) {
3550 			subprog[cur_subprog].has_tail_call = true;
3551 			subprog[cur_subprog].tail_call_reachable = true;
3552 		}
3553 		if (BPF_CLASS(code) == BPF_LD &&
3554 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
3555 			subprog[cur_subprog].has_ld_abs = true;
3556 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
3557 			goto next;
3558 		if (BPF_OP(code) == BPF_CALL)
3559 			goto next;
3560 		if (BPF_OP(code) == BPF_EXIT) {
3561 			subprog[cur_subprog].exit_idx = i;
3562 			goto next;
3563 		}
3564 		off = i + bpf_jmp_offset(&insn[i]) + 1;
3565 		if (off < subprog_start || off >= subprog_end) {
3566 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
3567 			return -EINVAL;
3568 		}
3569 next:
3570 		if (i == subprog_end - 1) {
3571 			/* to avoid fall-through from one subprog into another
3572 			 * the last insn of the subprog should be either exit
3573 			 * or unconditional jump back or bpf_throw call
3574 			 */
3575 			if (code != (BPF_JMP | BPF_EXIT) &&
3576 			    code != (BPF_JMP32 | BPF_JA) &&
3577 			    code != (BPF_JMP | BPF_JA)) {
3578 				verbose(env, "last insn is not an exit or jmp\n");
3579 				return -EINVAL;
3580 			}
3581 			subprog_start = subprog_end;
3582 			cur_subprog++;
3583 			if (cur_subprog < env->subprog_cnt)
3584 				subprog_end = subprog[cur_subprog + 1].start;
3585 		}
3586 	}
3587 	return 0;
3588 }
3589 
mark_stack_slot_obj_read(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int spi,int nr_slots)3590 static int mark_stack_slot_obj_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
3591 				    int spi, int nr_slots)
3592 {
3593 	int err, i;
3594 
3595 	for (i = 0; i < nr_slots; i++) {
3596 		err = bpf_mark_stack_read(env, reg->frameno, env->insn_idx, BIT(spi - i));
3597 		if (err)
3598 			return err;
3599 		mark_stack_slot_scratched(env, spi - i);
3600 	}
3601 	return 0;
3602 }
3603 
mark_dynptr_read(struct bpf_verifier_env * env,struct bpf_reg_state * reg)3604 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
3605 {
3606 	int spi;
3607 
3608 	/* For CONST_PTR_TO_DYNPTR, it must have already been done by
3609 	 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
3610 	 * check_kfunc_call.
3611 	 */
3612 	if (reg->type == CONST_PTR_TO_DYNPTR)
3613 		return 0;
3614 	spi = dynptr_get_spi(env, reg);
3615 	if (spi < 0)
3616 		return spi;
3617 	/* Caller ensures dynptr is valid and initialized, which means spi is in
3618 	 * bounds and spi is the first dynptr slot. Simply mark stack slot as
3619 	 * read.
3620 	 */
3621 	return mark_stack_slot_obj_read(env, reg, spi, BPF_DYNPTR_NR_SLOTS);
3622 }
3623 
mark_iter_read(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int spi,int nr_slots)3624 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
3625 			  int spi, int nr_slots)
3626 {
3627 	return mark_stack_slot_obj_read(env, reg, spi, nr_slots);
3628 }
3629 
mark_irq_flag_read(struct bpf_verifier_env * env,struct bpf_reg_state * reg)3630 static int mark_irq_flag_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
3631 {
3632 	int spi;
3633 
3634 	spi = irq_flag_get_spi(env, reg);
3635 	if (spi < 0)
3636 		return spi;
3637 	return mark_stack_slot_obj_read(env, reg, spi, 1);
3638 }
3639 
3640 /* This function is supposed to be used by the following 32-bit optimization
3641  * code only. It returns TRUE if the source or destination register operates
3642  * on 64-bit, otherwise return FALSE.
3643  */
is_reg64(struct bpf_insn * insn,u32 regno,struct bpf_reg_state * reg,enum reg_arg_type t)3644 static bool is_reg64(struct bpf_insn *insn,
3645 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
3646 {
3647 	u8 code, class, op;
3648 
3649 	code = insn->code;
3650 	class = BPF_CLASS(code);
3651 	op = BPF_OP(code);
3652 	if (class == BPF_JMP) {
3653 		/* BPF_EXIT for "main" will reach here. Return TRUE
3654 		 * conservatively.
3655 		 */
3656 		if (op == BPF_EXIT)
3657 			return true;
3658 		if (op == BPF_CALL) {
3659 			/* BPF to BPF call will reach here because of marking
3660 			 * caller saved clobber with DST_OP_NO_MARK for which we
3661 			 * don't care the register def because they are anyway
3662 			 * marked as NOT_INIT already.
3663 			 */
3664 			if (insn->src_reg == BPF_PSEUDO_CALL)
3665 				return false;
3666 			/* Helper call will reach here because of arg type
3667 			 * check, conservatively return TRUE.
3668 			 */
3669 			if (t == SRC_OP)
3670 				return true;
3671 
3672 			return false;
3673 		}
3674 	}
3675 
3676 	if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
3677 		return false;
3678 
3679 	if (class == BPF_ALU64 || class == BPF_JMP ||
3680 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3681 		return true;
3682 
3683 	if (class == BPF_ALU || class == BPF_JMP32)
3684 		return false;
3685 
3686 	if (class == BPF_LDX) {
3687 		if (t != SRC_OP)
3688 			return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX;
3689 		/* LDX source must be ptr. */
3690 		return true;
3691 	}
3692 
3693 	if (class == BPF_STX) {
3694 		/* BPF_STX (including atomic variants) has one or more source
3695 		 * operands, one of which is a ptr. Check whether the caller is
3696 		 * asking about it.
3697 		 */
3698 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
3699 			return true;
3700 		return BPF_SIZE(code) == BPF_DW;
3701 	}
3702 
3703 	if (class == BPF_LD) {
3704 		u8 mode = BPF_MODE(code);
3705 
3706 		/* LD_IMM64 */
3707 		if (mode == BPF_IMM)
3708 			return true;
3709 
3710 		/* Both LD_IND and LD_ABS return 32-bit data. */
3711 		if (t != SRC_OP)
3712 			return  false;
3713 
3714 		/* Implicit ctx ptr. */
3715 		if (regno == BPF_REG_6)
3716 			return true;
3717 
3718 		/* Explicit source could be any width. */
3719 		return true;
3720 	}
3721 
3722 	if (class == BPF_ST)
3723 		/* The only source register for BPF_ST is a ptr. */
3724 		return true;
3725 
3726 	/* Conservatively return true at default. */
3727 	return true;
3728 }
3729 
3730 /* Return the regno defined by the insn, or -1. */
insn_def_regno(const struct bpf_insn * insn)3731 static int insn_def_regno(const struct bpf_insn *insn)
3732 {
3733 	switch (BPF_CLASS(insn->code)) {
3734 	case BPF_JMP:
3735 	case BPF_JMP32:
3736 	case BPF_ST:
3737 		return -1;
3738 	case BPF_STX:
3739 		if (BPF_MODE(insn->code) == BPF_ATOMIC ||
3740 		    BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) {
3741 			if (insn->imm == BPF_CMPXCHG)
3742 				return BPF_REG_0;
3743 			else if (insn->imm == BPF_LOAD_ACQ)
3744 				return insn->dst_reg;
3745 			else if (insn->imm & BPF_FETCH)
3746 				return insn->src_reg;
3747 		}
3748 		return -1;
3749 	default:
3750 		return insn->dst_reg;
3751 	}
3752 }
3753 
3754 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
insn_has_def32(struct bpf_insn * insn)3755 static bool insn_has_def32(struct bpf_insn *insn)
3756 {
3757 	int dst_reg = insn_def_regno(insn);
3758 
3759 	if (dst_reg == -1)
3760 		return false;
3761 
3762 	return !is_reg64(insn, dst_reg, NULL, DST_OP);
3763 }
3764 
mark_insn_zext(struct bpf_verifier_env * env,struct bpf_reg_state * reg)3765 static void mark_insn_zext(struct bpf_verifier_env *env,
3766 			   struct bpf_reg_state *reg)
3767 {
3768 	s32 def_idx = reg->subreg_def;
3769 
3770 	if (def_idx == DEF_NOT_SUBREG)
3771 		return;
3772 
3773 	env->insn_aux_data[def_idx - 1].zext_dst = true;
3774 	/* The dst will be zero extended, so won't be sub-register anymore. */
3775 	reg->subreg_def = DEF_NOT_SUBREG;
3776 }
3777 
__check_reg_arg(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,enum reg_arg_type t)3778 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno,
3779 			   enum reg_arg_type t)
3780 {
3781 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3782 	struct bpf_reg_state *reg;
3783 	bool rw64;
3784 
3785 	if (regno >= MAX_BPF_REG) {
3786 		verbose(env, "R%d is invalid\n", regno);
3787 		return -EINVAL;
3788 	}
3789 
3790 	mark_reg_scratched(env, regno);
3791 
3792 	reg = &regs[regno];
3793 	rw64 = is_reg64(insn, regno, reg, t);
3794 	if (t == SRC_OP) {
3795 		/* check whether register used as source operand can be read */
3796 		if (reg->type == NOT_INIT) {
3797 			verbose(env, "R%d !read_ok\n", regno);
3798 			return -EACCES;
3799 		}
3800 		/* We don't need to worry about FP liveness because it's read-only */
3801 		if (regno == BPF_REG_FP)
3802 			return 0;
3803 
3804 		if (rw64)
3805 			mark_insn_zext(env, reg);
3806 
3807 		return 0;
3808 	} else {
3809 		/* check whether register used as dest operand can be written to */
3810 		if (regno == BPF_REG_FP) {
3811 			verbose(env, "frame pointer is read only\n");
3812 			return -EACCES;
3813 		}
3814 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3815 		if (t == DST_OP)
3816 			mark_reg_unknown(env, regs, regno);
3817 	}
3818 	return 0;
3819 }
3820 
check_reg_arg(struct bpf_verifier_env * env,u32 regno,enum reg_arg_type t)3821 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3822 			 enum reg_arg_type t)
3823 {
3824 	struct bpf_verifier_state *vstate = env->cur_state;
3825 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3826 
3827 	return __check_reg_arg(env, state->regs, regno, t);
3828 }
3829 
insn_stack_access_flags(int frameno,int spi)3830 static int insn_stack_access_flags(int frameno, int spi)
3831 {
3832 	return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno;
3833 }
3834 
insn_stack_access_spi(int insn_flags)3835 static int insn_stack_access_spi(int insn_flags)
3836 {
3837 	return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK;
3838 }
3839 
insn_stack_access_frameno(int insn_flags)3840 static int insn_stack_access_frameno(int insn_flags)
3841 {
3842 	return insn_flags & INSN_F_FRAMENO_MASK;
3843 }
3844 
mark_jmp_point(struct bpf_verifier_env * env,int idx)3845 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3846 {
3847 	env->insn_aux_data[idx].jmp_point = true;
3848 }
3849 
is_jmp_point(struct bpf_verifier_env * env,int insn_idx)3850 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3851 {
3852 	return env->insn_aux_data[insn_idx].jmp_point;
3853 }
3854 
3855 #define LR_FRAMENO_BITS	3
3856 #define LR_SPI_BITS	6
3857 #define LR_ENTRY_BITS	(LR_SPI_BITS + LR_FRAMENO_BITS + 1)
3858 #define LR_SIZE_BITS	4
3859 #define LR_FRAMENO_MASK	((1ull << LR_FRAMENO_BITS) - 1)
3860 #define LR_SPI_MASK	((1ull << LR_SPI_BITS)     - 1)
3861 #define LR_SIZE_MASK	((1ull << LR_SIZE_BITS)    - 1)
3862 #define LR_SPI_OFF	LR_FRAMENO_BITS
3863 #define LR_IS_REG_OFF	(LR_SPI_BITS + LR_FRAMENO_BITS)
3864 #define LINKED_REGS_MAX	6
3865 
3866 struct linked_reg {
3867 	u8 frameno;
3868 	union {
3869 		u8 spi;
3870 		u8 regno;
3871 	};
3872 	bool is_reg;
3873 };
3874 
3875 struct linked_regs {
3876 	int cnt;
3877 	struct linked_reg entries[LINKED_REGS_MAX];
3878 };
3879 
linked_regs_push(struct linked_regs * s)3880 static struct linked_reg *linked_regs_push(struct linked_regs *s)
3881 {
3882 	if (s->cnt < LINKED_REGS_MAX)
3883 		return &s->entries[s->cnt++];
3884 
3885 	return NULL;
3886 }
3887 
3888 /* Use u64 as a vector of 6 10-bit values, use first 4-bits to track
3889  * number of elements currently in stack.
3890  * Pack one history entry for linked registers as 10 bits in the following format:
3891  * - 3-bits frameno
3892  * - 6-bits spi_or_reg
3893  * - 1-bit  is_reg
3894  */
linked_regs_pack(struct linked_regs * s)3895 static u64 linked_regs_pack(struct linked_regs *s)
3896 {
3897 	u64 val = 0;
3898 	int i;
3899 
3900 	for (i = 0; i < s->cnt; ++i) {
3901 		struct linked_reg *e = &s->entries[i];
3902 		u64 tmp = 0;
3903 
3904 		tmp |= e->frameno;
3905 		tmp |= e->spi << LR_SPI_OFF;
3906 		tmp |= (e->is_reg ? 1 : 0) << LR_IS_REG_OFF;
3907 
3908 		val <<= LR_ENTRY_BITS;
3909 		val |= tmp;
3910 	}
3911 	val <<= LR_SIZE_BITS;
3912 	val |= s->cnt;
3913 	return val;
3914 }
3915 
linked_regs_unpack(u64 val,struct linked_regs * s)3916 static void linked_regs_unpack(u64 val, struct linked_regs *s)
3917 {
3918 	int i;
3919 
3920 	s->cnt = val & LR_SIZE_MASK;
3921 	val >>= LR_SIZE_BITS;
3922 
3923 	for (i = 0; i < s->cnt; ++i) {
3924 		struct linked_reg *e = &s->entries[i];
3925 
3926 		e->frameno =  val & LR_FRAMENO_MASK;
3927 		e->spi     = (val >> LR_SPI_OFF) & LR_SPI_MASK;
3928 		e->is_reg  = (val >> LR_IS_REG_OFF) & 0x1;
3929 		val >>= LR_ENTRY_BITS;
3930 	}
3931 }
3932 
3933 /* for any branch, call, exit record the history of jmps in the given state */
push_jmp_history(struct bpf_verifier_env * env,struct bpf_verifier_state * cur,int insn_flags,u64 linked_regs)3934 static int push_jmp_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur,
3935 			    int insn_flags, u64 linked_regs)
3936 {
3937 	u32 cnt = cur->jmp_history_cnt;
3938 	struct bpf_jmp_history_entry *p;
3939 	size_t alloc_size;
3940 
3941 	/* combine instruction flags if we already recorded this instruction */
3942 	if (env->cur_hist_ent) {
3943 		/* atomic instructions push insn_flags twice, for READ and
3944 		 * WRITE sides, but they should agree on stack slot
3945 		 */
3946 		verifier_bug_if((env->cur_hist_ent->flags & insn_flags) &&
3947 				(env->cur_hist_ent->flags & insn_flags) != insn_flags,
3948 				env, "insn history: insn_idx %d cur flags %x new flags %x",
3949 				env->insn_idx, env->cur_hist_ent->flags, insn_flags);
3950 		env->cur_hist_ent->flags |= insn_flags;
3951 		verifier_bug_if(env->cur_hist_ent->linked_regs != 0, env,
3952 				"insn history: insn_idx %d linked_regs: %#llx",
3953 				env->insn_idx, env->cur_hist_ent->linked_regs);
3954 		env->cur_hist_ent->linked_regs = linked_regs;
3955 		return 0;
3956 	}
3957 
3958 	cnt++;
3959 	alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3960 	p = krealloc(cur->jmp_history, alloc_size, GFP_KERNEL_ACCOUNT);
3961 	if (!p)
3962 		return -ENOMEM;
3963 	cur->jmp_history = p;
3964 
3965 	p = &cur->jmp_history[cnt - 1];
3966 	p->idx = env->insn_idx;
3967 	p->prev_idx = env->prev_insn_idx;
3968 	p->flags = insn_flags;
3969 	p->linked_regs = linked_regs;
3970 	cur->jmp_history_cnt = cnt;
3971 	env->cur_hist_ent = p;
3972 
3973 	return 0;
3974 }
3975 
get_jmp_hist_entry(struct bpf_verifier_state * st,u32 hist_end,int insn_idx)3976 static struct bpf_jmp_history_entry *get_jmp_hist_entry(struct bpf_verifier_state *st,
3977 						        u32 hist_end, int insn_idx)
3978 {
3979 	if (hist_end > 0 && st->jmp_history[hist_end - 1].idx == insn_idx)
3980 		return &st->jmp_history[hist_end - 1];
3981 	return NULL;
3982 }
3983 
3984 /* Backtrack one insn at a time. If idx is not at the top of recorded
3985  * history then previous instruction came from straight line execution.
3986  * Return -ENOENT if we exhausted all instructions within given state.
3987  *
3988  * It's legal to have a bit of a looping with the same starting and ending
3989  * insn index within the same state, e.g.: 3->4->5->3, so just because current
3990  * instruction index is the same as state's first_idx doesn't mean we are
3991  * done. If there is still some jump history left, we should keep going. We
3992  * need to take into account that we might have a jump history between given
3993  * state's parent and itself, due to checkpointing. In this case, we'll have
3994  * history entry recording a jump from last instruction of parent state and
3995  * first instruction of given state.
3996  */
get_prev_insn_idx(struct bpf_verifier_state * st,int i,u32 * history)3997 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
3998 			     u32 *history)
3999 {
4000 	u32 cnt = *history;
4001 
4002 	if (i == st->first_insn_idx) {
4003 		if (cnt == 0)
4004 			return -ENOENT;
4005 		if (cnt == 1 && st->jmp_history[0].idx == i)
4006 			return -ENOENT;
4007 	}
4008 
4009 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
4010 		i = st->jmp_history[cnt - 1].prev_idx;
4011 		(*history)--;
4012 	} else {
4013 		i--;
4014 	}
4015 	return i;
4016 }
4017 
disasm_kfunc_name(void * data,const struct bpf_insn * insn)4018 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
4019 {
4020 	const struct btf_type *func;
4021 	struct btf *desc_btf;
4022 
4023 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
4024 		return NULL;
4025 
4026 	desc_btf = find_kfunc_desc_btf(data, insn->off);
4027 	if (IS_ERR(desc_btf))
4028 		return "<error>";
4029 
4030 	func = btf_type_by_id(desc_btf, insn->imm);
4031 	return btf_name_by_offset(desc_btf, func->name_off);
4032 }
4033 
verbose_insn(struct bpf_verifier_env * env,struct bpf_insn * insn)4034 static void verbose_insn(struct bpf_verifier_env *env, struct bpf_insn *insn)
4035 {
4036 	const struct bpf_insn_cbs cbs = {
4037 		.cb_call	= disasm_kfunc_name,
4038 		.cb_print	= verbose,
4039 		.private_data	= env,
4040 	};
4041 
4042 	print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
4043 }
4044 
bt_init(struct backtrack_state * bt,u32 frame)4045 static inline void bt_init(struct backtrack_state *bt, u32 frame)
4046 {
4047 	bt->frame = frame;
4048 }
4049 
bt_reset(struct backtrack_state * bt)4050 static inline void bt_reset(struct backtrack_state *bt)
4051 {
4052 	struct bpf_verifier_env *env = bt->env;
4053 
4054 	memset(bt, 0, sizeof(*bt));
4055 	bt->env = env;
4056 }
4057 
bt_empty(struct backtrack_state * bt)4058 static inline u32 bt_empty(struct backtrack_state *bt)
4059 {
4060 	u64 mask = 0;
4061 	int i;
4062 
4063 	for (i = 0; i <= bt->frame; i++)
4064 		mask |= bt->reg_masks[i] | bt->stack_masks[i];
4065 
4066 	return mask == 0;
4067 }
4068 
bt_subprog_enter(struct backtrack_state * bt)4069 static inline int bt_subprog_enter(struct backtrack_state *bt)
4070 {
4071 	if (bt->frame == MAX_CALL_FRAMES - 1) {
4072 		verifier_bug(bt->env, "subprog enter from frame %d", bt->frame);
4073 		return -EFAULT;
4074 	}
4075 	bt->frame++;
4076 	return 0;
4077 }
4078 
bt_subprog_exit(struct backtrack_state * bt)4079 static inline int bt_subprog_exit(struct backtrack_state *bt)
4080 {
4081 	if (bt->frame == 0) {
4082 		verifier_bug(bt->env, "subprog exit from frame 0");
4083 		return -EFAULT;
4084 	}
4085 	bt->frame--;
4086 	return 0;
4087 }
4088 
bt_set_frame_reg(struct backtrack_state * bt,u32 frame,u32 reg)4089 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
4090 {
4091 	bt->reg_masks[frame] |= 1 << reg;
4092 }
4093 
bt_clear_frame_reg(struct backtrack_state * bt,u32 frame,u32 reg)4094 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
4095 {
4096 	bt->reg_masks[frame] &= ~(1 << reg);
4097 }
4098 
bt_set_reg(struct backtrack_state * bt,u32 reg)4099 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
4100 {
4101 	bt_set_frame_reg(bt, bt->frame, reg);
4102 }
4103 
bt_clear_reg(struct backtrack_state * bt,u32 reg)4104 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
4105 {
4106 	bt_clear_frame_reg(bt, bt->frame, reg);
4107 }
4108 
bt_set_frame_slot(struct backtrack_state * bt,u32 frame,u32 slot)4109 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
4110 {
4111 	bt->stack_masks[frame] |= 1ull << slot;
4112 }
4113 
bt_clear_frame_slot(struct backtrack_state * bt,u32 frame,u32 slot)4114 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
4115 {
4116 	bt->stack_masks[frame] &= ~(1ull << slot);
4117 }
4118 
bt_frame_reg_mask(struct backtrack_state * bt,u32 frame)4119 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
4120 {
4121 	return bt->reg_masks[frame];
4122 }
4123 
bt_reg_mask(struct backtrack_state * bt)4124 static inline u32 bt_reg_mask(struct backtrack_state *bt)
4125 {
4126 	return bt->reg_masks[bt->frame];
4127 }
4128 
bt_frame_stack_mask(struct backtrack_state * bt,u32 frame)4129 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
4130 {
4131 	return bt->stack_masks[frame];
4132 }
4133 
bt_stack_mask(struct backtrack_state * bt)4134 static inline u64 bt_stack_mask(struct backtrack_state *bt)
4135 {
4136 	return bt->stack_masks[bt->frame];
4137 }
4138 
bt_is_reg_set(struct backtrack_state * bt,u32 reg)4139 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
4140 {
4141 	return bt->reg_masks[bt->frame] & (1 << reg);
4142 }
4143 
bt_is_frame_reg_set(struct backtrack_state * bt,u32 frame,u32 reg)4144 static inline bool bt_is_frame_reg_set(struct backtrack_state *bt, u32 frame, u32 reg)
4145 {
4146 	return bt->reg_masks[frame] & (1 << reg);
4147 }
4148 
bt_is_frame_slot_set(struct backtrack_state * bt,u32 frame,u32 slot)4149 static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot)
4150 {
4151 	return bt->stack_masks[frame] & (1ull << slot);
4152 }
4153 
4154 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
fmt_reg_mask(char * buf,ssize_t buf_sz,u32 reg_mask)4155 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
4156 {
4157 	DECLARE_BITMAP(mask, 64);
4158 	bool first = true;
4159 	int i, n;
4160 
4161 	buf[0] = '\0';
4162 
4163 	bitmap_from_u64(mask, reg_mask);
4164 	for_each_set_bit(i, mask, 32) {
4165 		n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
4166 		first = false;
4167 		buf += n;
4168 		buf_sz -= n;
4169 		if (buf_sz < 0)
4170 			break;
4171 	}
4172 }
4173 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
bpf_fmt_stack_mask(char * buf,ssize_t buf_sz,u64 stack_mask)4174 void bpf_fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
4175 {
4176 	DECLARE_BITMAP(mask, 64);
4177 	bool first = true;
4178 	int i, n;
4179 
4180 	buf[0] = '\0';
4181 
4182 	bitmap_from_u64(mask, stack_mask);
4183 	for_each_set_bit(i, mask, 64) {
4184 		n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
4185 		first = false;
4186 		buf += n;
4187 		buf_sz -= n;
4188 		if (buf_sz < 0)
4189 			break;
4190 	}
4191 }
4192 
4193 /* If any register R in hist->linked_regs is marked as precise in bt,
4194  * do bt_set_frame_{reg,slot}(bt, R) for all registers in hist->linked_regs.
4195  */
bt_sync_linked_regs(struct backtrack_state * bt,struct bpf_jmp_history_entry * hist)4196 static void bt_sync_linked_regs(struct backtrack_state *bt, struct bpf_jmp_history_entry *hist)
4197 {
4198 	struct linked_regs linked_regs;
4199 	bool some_precise = false;
4200 	int i;
4201 
4202 	if (!hist || hist->linked_regs == 0)
4203 		return;
4204 
4205 	linked_regs_unpack(hist->linked_regs, &linked_regs);
4206 	for (i = 0; i < linked_regs.cnt; ++i) {
4207 		struct linked_reg *e = &linked_regs.entries[i];
4208 
4209 		if ((e->is_reg && bt_is_frame_reg_set(bt, e->frameno, e->regno)) ||
4210 		    (!e->is_reg && bt_is_frame_slot_set(bt, e->frameno, e->spi))) {
4211 			some_precise = true;
4212 			break;
4213 		}
4214 	}
4215 
4216 	if (!some_precise)
4217 		return;
4218 
4219 	for (i = 0; i < linked_regs.cnt; ++i) {
4220 		struct linked_reg *e = &linked_regs.entries[i];
4221 
4222 		if (e->is_reg)
4223 			bt_set_frame_reg(bt, e->frameno, e->regno);
4224 		else
4225 			bt_set_frame_slot(bt, e->frameno, e->spi);
4226 	}
4227 }
4228 
4229 /* For given verifier state backtrack_insn() is called from the last insn to
4230  * the first insn. Its purpose is to compute a bitmask of registers and
4231  * stack slots that needs precision in the parent verifier state.
4232  *
4233  * @idx is an index of the instruction we are currently processing;
4234  * @subseq_idx is an index of the subsequent instruction that:
4235  *   - *would be* executed next, if jump history is viewed in forward order;
4236  *   - *was* processed previously during backtracking.
4237  */
backtrack_insn(struct bpf_verifier_env * env,int idx,int subseq_idx,struct bpf_jmp_history_entry * hist,struct backtrack_state * bt)4238 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
4239 			  struct bpf_jmp_history_entry *hist, struct backtrack_state *bt)
4240 {
4241 	struct bpf_insn *insn = env->prog->insnsi + idx;
4242 	u8 class = BPF_CLASS(insn->code);
4243 	u8 opcode = BPF_OP(insn->code);
4244 	u8 mode = BPF_MODE(insn->code);
4245 	u32 dreg = insn->dst_reg;
4246 	u32 sreg = insn->src_reg;
4247 	u32 spi, i, fr;
4248 
4249 	if (insn->code == 0)
4250 		return 0;
4251 	if (env->log.level & BPF_LOG_LEVEL2) {
4252 		fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
4253 		verbose(env, "mark_precise: frame%d: regs=%s ",
4254 			bt->frame, env->tmp_str_buf);
4255 		bpf_fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
4256 		verbose(env, "stack=%s before ", env->tmp_str_buf);
4257 		verbose(env, "%d: ", idx);
4258 		verbose_insn(env, insn);
4259 	}
4260 
4261 	/* If there is a history record that some registers gained range at this insn,
4262 	 * propagate precision marks to those registers, so that bt_is_reg_set()
4263 	 * accounts for these registers.
4264 	 */
4265 	bt_sync_linked_regs(bt, hist);
4266 
4267 	if (class == BPF_ALU || class == BPF_ALU64) {
4268 		if (!bt_is_reg_set(bt, dreg))
4269 			return 0;
4270 		if (opcode == BPF_END || opcode == BPF_NEG) {
4271 			/* sreg is reserved and unused
4272 			 * dreg still need precision before this insn
4273 			 */
4274 			return 0;
4275 		} else if (opcode == BPF_MOV) {
4276 			if (BPF_SRC(insn->code) == BPF_X) {
4277 				/* dreg = sreg or dreg = (s8, s16, s32)sreg
4278 				 * dreg needs precision after this insn
4279 				 * sreg needs precision before this insn
4280 				 */
4281 				bt_clear_reg(bt, dreg);
4282 				if (sreg != BPF_REG_FP)
4283 					bt_set_reg(bt, sreg);
4284 			} else {
4285 				/* dreg = K
4286 				 * dreg needs precision after this insn.
4287 				 * Corresponding register is already marked
4288 				 * as precise=true in this verifier state.
4289 				 * No further markings in parent are necessary
4290 				 */
4291 				bt_clear_reg(bt, dreg);
4292 			}
4293 		} else {
4294 			if (BPF_SRC(insn->code) == BPF_X) {
4295 				/* dreg += sreg
4296 				 * both dreg and sreg need precision
4297 				 * before this insn
4298 				 */
4299 				if (sreg != BPF_REG_FP)
4300 					bt_set_reg(bt, sreg);
4301 			} /* else dreg += K
4302 			   * dreg still needs precision before this insn
4303 			   */
4304 		}
4305 	} else if (class == BPF_LDX || is_atomic_load_insn(insn)) {
4306 		if (!bt_is_reg_set(bt, dreg))
4307 			return 0;
4308 		bt_clear_reg(bt, dreg);
4309 
4310 		/* scalars can only be spilled into stack w/o losing precision.
4311 		 * Load from any other memory can be zero extended.
4312 		 * The desire to keep that precision is already indicated
4313 		 * by 'precise' mark in corresponding register of this state.
4314 		 * No further tracking necessary.
4315 		 */
4316 		if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
4317 			return 0;
4318 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
4319 		 * that [fp - off] slot contains scalar that needs to be
4320 		 * tracked with precision
4321 		 */
4322 		spi = insn_stack_access_spi(hist->flags);
4323 		fr = insn_stack_access_frameno(hist->flags);
4324 		bt_set_frame_slot(bt, fr, spi);
4325 	} else if (class == BPF_STX || class == BPF_ST) {
4326 		if (bt_is_reg_set(bt, dreg))
4327 			/* stx & st shouldn't be using _scalar_ dst_reg
4328 			 * to access memory. It means backtracking
4329 			 * encountered a case of pointer subtraction.
4330 			 */
4331 			return -ENOTSUPP;
4332 		/* scalars can only be spilled into stack */
4333 		if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
4334 			return 0;
4335 		spi = insn_stack_access_spi(hist->flags);
4336 		fr = insn_stack_access_frameno(hist->flags);
4337 		if (!bt_is_frame_slot_set(bt, fr, spi))
4338 			return 0;
4339 		bt_clear_frame_slot(bt, fr, spi);
4340 		if (class == BPF_STX)
4341 			bt_set_reg(bt, sreg);
4342 	} else if (class == BPF_JMP || class == BPF_JMP32) {
4343 		if (bpf_pseudo_call(insn)) {
4344 			int subprog_insn_idx, subprog;
4345 
4346 			subprog_insn_idx = idx + insn->imm + 1;
4347 			subprog = find_subprog(env, subprog_insn_idx);
4348 			if (subprog < 0)
4349 				return -EFAULT;
4350 
4351 			if (subprog_is_global(env, subprog)) {
4352 				/* check that jump history doesn't have any
4353 				 * extra instructions from subprog; the next
4354 				 * instruction after call to global subprog
4355 				 * should be literally next instruction in
4356 				 * caller program
4357 				 */
4358 				verifier_bug_if(idx + 1 != subseq_idx, env,
4359 						"extra insn from subprog");
4360 				/* r1-r5 are invalidated after subprog call,
4361 				 * so for global func call it shouldn't be set
4362 				 * anymore
4363 				 */
4364 				if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
4365 					verifier_bug(env, "global subprog unexpected regs %x",
4366 						     bt_reg_mask(bt));
4367 					return -EFAULT;
4368 				}
4369 				/* global subprog always sets R0 */
4370 				bt_clear_reg(bt, BPF_REG_0);
4371 				return 0;
4372 			} else {
4373 				/* static subprog call instruction, which
4374 				 * means that we are exiting current subprog,
4375 				 * so only r1-r5 could be still requested as
4376 				 * precise, r0 and r6-r10 or any stack slot in
4377 				 * the current frame should be zero by now
4378 				 */
4379 				if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
4380 					verifier_bug(env, "static subprog unexpected regs %x",
4381 						     bt_reg_mask(bt));
4382 					return -EFAULT;
4383 				}
4384 				/* we are now tracking register spills correctly,
4385 				 * so any instance of leftover slots is a bug
4386 				 */
4387 				if (bt_stack_mask(bt) != 0) {
4388 					verifier_bug(env,
4389 						     "static subprog leftover stack slots %llx",
4390 						     bt_stack_mask(bt));
4391 					return -EFAULT;
4392 				}
4393 				/* propagate r1-r5 to the caller */
4394 				for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
4395 					if (bt_is_reg_set(bt, i)) {
4396 						bt_clear_reg(bt, i);
4397 						bt_set_frame_reg(bt, bt->frame - 1, i);
4398 					}
4399 				}
4400 				if (bt_subprog_exit(bt))
4401 					return -EFAULT;
4402 				return 0;
4403 			}
4404 		} else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) {
4405 			/* exit from callback subprog to callback-calling helper or
4406 			 * kfunc call. Use idx/subseq_idx check to discern it from
4407 			 * straight line code backtracking.
4408 			 * Unlike the subprog call handling above, we shouldn't
4409 			 * propagate precision of r1-r5 (if any requested), as they are
4410 			 * not actually arguments passed directly to callback subprogs
4411 			 */
4412 			if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
4413 				verifier_bug(env, "callback unexpected regs %x",
4414 					     bt_reg_mask(bt));
4415 				return -EFAULT;
4416 			}
4417 			if (bt_stack_mask(bt) != 0) {
4418 				verifier_bug(env, "callback leftover stack slots %llx",
4419 					     bt_stack_mask(bt));
4420 				return -EFAULT;
4421 			}
4422 			/* clear r1-r5 in callback subprog's mask */
4423 			for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4424 				bt_clear_reg(bt, i);
4425 			if (bt_subprog_exit(bt))
4426 				return -EFAULT;
4427 			return 0;
4428 		} else if (opcode == BPF_CALL) {
4429 			/* kfunc with imm==0 is invalid and fixup_kfunc_call will
4430 			 * catch this error later. Make backtracking conservative
4431 			 * with ENOTSUPP.
4432 			 */
4433 			if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
4434 				return -ENOTSUPP;
4435 			/* regular helper call sets R0 */
4436 			bt_clear_reg(bt, BPF_REG_0);
4437 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
4438 				/* if backtracking was looking for registers R1-R5
4439 				 * they should have been found already.
4440 				 */
4441 				verifier_bug(env, "backtracking call unexpected regs %x",
4442 					     bt_reg_mask(bt));
4443 				return -EFAULT;
4444 			}
4445 			if (insn->src_reg == BPF_REG_0 && insn->imm == BPF_FUNC_tail_call
4446 			    && subseq_idx - idx != 1) {
4447 				if (bt_subprog_enter(bt))
4448 					return -EFAULT;
4449 			}
4450 		} else if (opcode == BPF_EXIT) {
4451 			bool r0_precise;
4452 
4453 			/* Backtracking to a nested function call, 'idx' is a part of
4454 			 * the inner frame 'subseq_idx' is a part of the outer frame.
4455 			 * In case of a regular function call, instructions giving
4456 			 * precision to registers R1-R5 should have been found already.
4457 			 * In case of a callback, it is ok to have R1-R5 marked for
4458 			 * backtracking, as these registers are set by the function
4459 			 * invoking callback.
4460 			 */
4461 			if (subseq_idx >= 0 && bpf_calls_callback(env, subseq_idx))
4462 				for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4463 					bt_clear_reg(bt, i);
4464 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
4465 				verifier_bug(env, "backtracking exit unexpected regs %x",
4466 					     bt_reg_mask(bt));
4467 				return -EFAULT;
4468 			}
4469 
4470 			/* BPF_EXIT in subprog or callback always returns
4471 			 * right after the call instruction, so by checking
4472 			 * whether the instruction at subseq_idx-1 is subprog
4473 			 * call or not we can distinguish actual exit from
4474 			 * *subprog* from exit from *callback*. In the former
4475 			 * case, we need to propagate r0 precision, if
4476 			 * necessary. In the former we never do that.
4477 			 */
4478 			r0_precise = subseq_idx - 1 >= 0 &&
4479 				     bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
4480 				     bt_is_reg_set(bt, BPF_REG_0);
4481 
4482 			bt_clear_reg(bt, BPF_REG_0);
4483 			if (bt_subprog_enter(bt))
4484 				return -EFAULT;
4485 
4486 			if (r0_precise)
4487 				bt_set_reg(bt, BPF_REG_0);
4488 			/* r6-r9 and stack slots will stay set in caller frame
4489 			 * bitmasks until we return back from callee(s)
4490 			 */
4491 			return 0;
4492 		} else if (BPF_SRC(insn->code) == BPF_X) {
4493 			if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
4494 				return 0;
4495 			/* dreg <cond> sreg
4496 			 * Both dreg and sreg need precision before
4497 			 * this insn. If only sreg was marked precise
4498 			 * before it would be equally necessary to
4499 			 * propagate it to dreg.
4500 			 */
4501 			if (!hist || !(hist->flags & INSN_F_SRC_REG_STACK))
4502 				bt_set_reg(bt, sreg);
4503 			if (!hist || !(hist->flags & INSN_F_DST_REG_STACK))
4504 				bt_set_reg(bt, dreg);
4505 		} else if (BPF_SRC(insn->code) == BPF_K) {
4506 			 /* dreg <cond> K
4507 			  * Only dreg still needs precision before
4508 			  * this insn, so for the K-based conditional
4509 			  * there is nothing new to be marked.
4510 			  */
4511 		}
4512 	} else if (class == BPF_LD) {
4513 		if (!bt_is_reg_set(bt, dreg))
4514 			return 0;
4515 		bt_clear_reg(bt, dreg);
4516 		/* It's ld_imm64 or ld_abs or ld_ind.
4517 		 * For ld_imm64 no further tracking of precision
4518 		 * into parent is necessary
4519 		 */
4520 		if (mode == BPF_IND || mode == BPF_ABS)
4521 			/* to be analyzed */
4522 			return -ENOTSUPP;
4523 	}
4524 	/* Propagate precision marks to linked registers, to account for
4525 	 * registers marked as precise in this function.
4526 	 */
4527 	bt_sync_linked_regs(bt, hist);
4528 	return 0;
4529 }
4530 
4531 /* the scalar precision tracking algorithm:
4532  * . at the start all registers have precise=false.
4533  * . scalar ranges are tracked as normal through alu and jmp insns.
4534  * . once precise value of the scalar register is used in:
4535  *   .  ptr + scalar alu
4536  *   . if (scalar cond K|scalar)
4537  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
4538  *   backtrack through the verifier states and mark all registers and
4539  *   stack slots with spilled constants that these scalar registers
4540  *   should be precise.
4541  * . during state pruning two registers (or spilled stack slots)
4542  *   are equivalent if both are not precise.
4543  *
4544  * Note the verifier cannot simply walk register parentage chain,
4545  * since many different registers and stack slots could have been
4546  * used to compute single precise scalar.
4547  *
4548  * The approach of starting with precise=true for all registers and then
4549  * backtrack to mark a register as not precise when the verifier detects
4550  * that program doesn't care about specific value (e.g., when helper
4551  * takes register as ARG_ANYTHING parameter) is not safe.
4552  *
4553  * It's ok to walk single parentage chain of the verifier states.
4554  * It's possible that this backtracking will go all the way till 1st insn.
4555  * All other branches will be explored for needing precision later.
4556  *
4557  * The backtracking needs to deal with cases like:
4558  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
4559  * r9 -= r8
4560  * r5 = r9
4561  * if r5 > 0x79f goto pc+7
4562  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
4563  * r5 += 1
4564  * ...
4565  * call bpf_perf_event_output#25
4566  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
4567  *
4568  * and this case:
4569  * r6 = 1
4570  * call foo // uses callee's r6 inside to compute r0
4571  * r0 += r6
4572  * if r0 == 0 goto
4573  *
4574  * to track above reg_mask/stack_mask needs to be independent for each frame.
4575  *
4576  * Also if parent's curframe > frame where backtracking started,
4577  * the verifier need to mark registers in both frames, otherwise callees
4578  * may incorrectly prune callers. This is similar to
4579  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
4580  *
4581  * For now backtracking falls back into conservative marking.
4582  */
mark_all_scalars_precise(struct bpf_verifier_env * env,struct bpf_verifier_state * st)4583 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
4584 				     struct bpf_verifier_state *st)
4585 {
4586 	struct bpf_func_state *func;
4587 	struct bpf_reg_state *reg;
4588 	int i, j;
4589 
4590 	if (env->log.level & BPF_LOG_LEVEL2) {
4591 		verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
4592 			st->curframe);
4593 	}
4594 
4595 	/* big hammer: mark all scalars precise in this path.
4596 	 * pop_stack may still get !precise scalars.
4597 	 * We also skip current state and go straight to first parent state,
4598 	 * because precision markings in current non-checkpointed state are
4599 	 * not needed. See why in the comment in __mark_chain_precision below.
4600 	 */
4601 	for (st = st->parent; st; st = st->parent) {
4602 		for (i = 0; i <= st->curframe; i++) {
4603 			func = st->frame[i];
4604 			for (j = 0; j < BPF_REG_FP; j++) {
4605 				reg = &func->regs[j];
4606 				if (reg->type != SCALAR_VALUE || reg->precise)
4607 					continue;
4608 				reg->precise = true;
4609 				if (env->log.level & BPF_LOG_LEVEL2) {
4610 					verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
4611 						i, j);
4612 				}
4613 			}
4614 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4615 				if (!is_spilled_reg(&func->stack[j]))
4616 					continue;
4617 				reg = &func->stack[j].spilled_ptr;
4618 				if (reg->type != SCALAR_VALUE || reg->precise)
4619 					continue;
4620 				reg->precise = true;
4621 				if (env->log.level & BPF_LOG_LEVEL2) {
4622 					verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
4623 						i, -(j + 1) * 8);
4624 				}
4625 			}
4626 		}
4627 	}
4628 }
4629 
mark_all_scalars_imprecise(struct bpf_verifier_env * env,struct bpf_verifier_state * st)4630 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
4631 {
4632 	struct bpf_func_state *func;
4633 	struct bpf_reg_state *reg;
4634 	int i, j;
4635 
4636 	for (i = 0; i <= st->curframe; i++) {
4637 		func = st->frame[i];
4638 		for (j = 0; j < BPF_REG_FP; j++) {
4639 			reg = &func->regs[j];
4640 			if (reg->type != SCALAR_VALUE)
4641 				continue;
4642 			reg->precise = false;
4643 		}
4644 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4645 			if (!is_spilled_reg(&func->stack[j]))
4646 				continue;
4647 			reg = &func->stack[j].spilled_ptr;
4648 			if (reg->type != SCALAR_VALUE)
4649 				continue;
4650 			reg->precise = false;
4651 		}
4652 	}
4653 }
4654 
4655 /*
4656  * __mark_chain_precision() backtracks BPF program instruction sequence and
4657  * chain of verifier states making sure that register *regno* (if regno >= 0)
4658  * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
4659  * SCALARS, as well as any other registers and slots that contribute to
4660  * a tracked state of given registers/stack slots, depending on specific BPF
4661  * assembly instructions (see backtrack_insns() for exact instruction handling
4662  * logic). This backtracking relies on recorded jmp_history and is able to
4663  * traverse entire chain of parent states. This process ends only when all the
4664  * necessary registers/slots and their transitive dependencies are marked as
4665  * precise.
4666  *
4667  * One important and subtle aspect is that precise marks *do not matter* in
4668  * the currently verified state (current state). It is important to understand
4669  * why this is the case.
4670  *
4671  * First, note that current state is the state that is not yet "checkpointed",
4672  * i.e., it is not yet put into env->explored_states, and it has no children
4673  * states as well. It's ephemeral, and can end up either a) being discarded if
4674  * compatible explored state is found at some point or BPF_EXIT instruction is
4675  * reached or b) checkpointed and put into env->explored_states, branching out
4676  * into one or more children states.
4677  *
4678  * In the former case, precise markings in current state are completely
4679  * ignored by state comparison code (see regsafe() for details). Only
4680  * checkpointed ("old") state precise markings are important, and if old
4681  * state's register/slot is precise, regsafe() assumes current state's
4682  * register/slot as precise and checks value ranges exactly and precisely. If
4683  * states turn out to be compatible, current state's necessary precise
4684  * markings and any required parent states' precise markings are enforced
4685  * after the fact with propagate_precision() logic, after the fact. But it's
4686  * important to realize that in this case, even after marking current state
4687  * registers/slots as precise, we immediately discard current state. So what
4688  * actually matters is any of the precise markings propagated into current
4689  * state's parent states, which are always checkpointed (due to b) case above).
4690  * As such, for scenario a) it doesn't matter if current state has precise
4691  * markings set or not.
4692  *
4693  * Now, for the scenario b), checkpointing and forking into child(ren)
4694  * state(s). Note that before current state gets to checkpointing step, any
4695  * processed instruction always assumes precise SCALAR register/slot
4696  * knowledge: if precise value or range is useful to prune jump branch, BPF
4697  * verifier takes this opportunity enthusiastically. Similarly, when
4698  * register's value is used to calculate offset or memory address, exact
4699  * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
4700  * what we mentioned above about state comparison ignoring precise markings
4701  * during state comparison, BPF verifier ignores and also assumes precise
4702  * markings *at will* during instruction verification process. But as verifier
4703  * assumes precision, it also propagates any precision dependencies across
4704  * parent states, which are not yet finalized, so can be further restricted
4705  * based on new knowledge gained from restrictions enforced by their children
4706  * states. This is so that once those parent states are finalized, i.e., when
4707  * they have no more active children state, state comparison logic in
4708  * is_state_visited() would enforce strict and precise SCALAR ranges, if
4709  * required for correctness.
4710  *
4711  * To build a bit more intuition, note also that once a state is checkpointed,
4712  * the path we took to get to that state is not important. This is crucial
4713  * property for state pruning. When state is checkpointed and finalized at
4714  * some instruction index, it can be correctly and safely used to "short
4715  * circuit" any *compatible* state that reaches exactly the same instruction
4716  * index. I.e., if we jumped to that instruction from a completely different
4717  * code path than original finalized state was derived from, it doesn't
4718  * matter, current state can be discarded because from that instruction
4719  * forward having a compatible state will ensure we will safely reach the
4720  * exit. States describe preconditions for further exploration, but completely
4721  * forget the history of how we got here.
4722  *
4723  * This also means that even if we needed precise SCALAR range to get to
4724  * finalized state, but from that point forward *that same* SCALAR register is
4725  * never used in a precise context (i.e., it's precise value is not needed for
4726  * correctness), it's correct and safe to mark such register as "imprecise"
4727  * (i.e., precise marking set to false). This is what we rely on when we do
4728  * not set precise marking in current state. If no child state requires
4729  * precision for any given SCALAR register, it's safe to dictate that it can
4730  * be imprecise. If any child state does require this register to be precise,
4731  * we'll mark it precise later retroactively during precise markings
4732  * propagation from child state to parent states.
4733  *
4734  * Skipping precise marking setting in current state is a mild version of
4735  * relying on the above observation. But we can utilize this property even
4736  * more aggressively by proactively forgetting any precise marking in the
4737  * current state (which we inherited from the parent state), right before we
4738  * checkpoint it and branch off into new child state. This is done by
4739  * mark_all_scalars_imprecise() to hopefully get more permissive and generic
4740  * finalized states which help in short circuiting more future states.
4741  */
__mark_chain_precision(struct bpf_verifier_env * env,struct bpf_verifier_state * starting_state,int regno,bool * changed)4742 static int __mark_chain_precision(struct bpf_verifier_env *env,
4743 				  struct bpf_verifier_state *starting_state,
4744 				  int regno,
4745 				  bool *changed)
4746 {
4747 	struct bpf_verifier_state *st = starting_state;
4748 	struct backtrack_state *bt = &env->bt;
4749 	int first_idx = st->first_insn_idx;
4750 	int last_idx = starting_state->insn_idx;
4751 	int subseq_idx = -1;
4752 	struct bpf_func_state *func;
4753 	bool tmp, skip_first = true;
4754 	struct bpf_reg_state *reg;
4755 	int i, fr, err;
4756 
4757 	if (!env->bpf_capable)
4758 		return 0;
4759 
4760 	changed = changed ?: &tmp;
4761 	/* set frame number from which we are starting to backtrack */
4762 	bt_init(bt, starting_state->curframe);
4763 
4764 	/* Do sanity checks against current state of register and/or stack
4765 	 * slot, but don't set precise flag in current state, as precision
4766 	 * tracking in the current state is unnecessary.
4767 	 */
4768 	func = st->frame[bt->frame];
4769 	if (regno >= 0) {
4770 		reg = &func->regs[regno];
4771 		if (reg->type != SCALAR_VALUE) {
4772 			verifier_bug(env, "backtracking misuse");
4773 			return -EFAULT;
4774 		}
4775 		bt_set_reg(bt, regno);
4776 	}
4777 
4778 	if (bt_empty(bt))
4779 		return 0;
4780 
4781 	for (;;) {
4782 		DECLARE_BITMAP(mask, 64);
4783 		u32 history = st->jmp_history_cnt;
4784 		struct bpf_jmp_history_entry *hist;
4785 
4786 		if (env->log.level & BPF_LOG_LEVEL2) {
4787 			verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
4788 				bt->frame, last_idx, first_idx, subseq_idx);
4789 		}
4790 
4791 		if (last_idx < 0) {
4792 			/* we are at the entry into subprog, which
4793 			 * is expected for global funcs, but only if
4794 			 * requested precise registers are R1-R5
4795 			 * (which are global func's input arguments)
4796 			 */
4797 			if (st->curframe == 0 &&
4798 			    st->frame[0]->subprogno > 0 &&
4799 			    st->frame[0]->callsite == BPF_MAIN_FUNC &&
4800 			    bt_stack_mask(bt) == 0 &&
4801 			    (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
4802 				bitmap_from_u64(mask, bt_reg_mask(bt));
4803 				for_each_set_bit(i, mask, 32) {
4804 					reg = &st->frame[0]->regs[i];
4805 					bt_clear_reg(bt, i);
4806 					if (reg->type == SCALAR_VALUE) {
4807 						reg->precise = true;
4808 						*changed = true;
4809 					}
4810 				}
4811 				return 0;
4812 			}
4813 
4814 			verifier_bug(env, "backtracking func entry subprog %d reg_mask %x stack_mask %llx",
4815 				     st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
4816 			return -EFAULT;
4817 		}
4818 
4819 		for (i = last_idx;;) {
4820 			if (skip_first) {
4821 				err = 0;
4822 				skip_first = false;
4823 			} else {
4824 				hist = get_jmp_hist_entry(st, history, i);
4825 				err = backtrack_insn(env, i, subseq_idx, hist, bt);
4826 			}
4827 			if (err == -ENOTSUPP) {
4828 				mark_all_scalars_precise(env, starting_state);
4829 				bt_reset(bt);
4830 				return 0;
4831 			} else if (err) {
4832 				return err;
4833 			}
4834 			if (bt_empty(bt))
4835 				/* Found assignment(s) into tracked register in this state.
4836 				 * Since this state is already marked, just return.
4837 				 * Nothing to be tracked further in the parent state.
4838 				 */
4839 				return 0;
4840 			subseq_idx = i;
4841 			i = get_prev_insn_idx(st, i, &history);
4842 			if (i == -ENOENT)
4843 				break;
4844 			if (i >= env->prog->len) {
4845 				/* This can happen if backtracking reached insn 0
4846 				 * and there are still reg_mask or stack_mask
4847 				 * to backtrack.
4848 				 * It means the backtracking missed the spot where
4849 				 * particular register was initialized with a constant.
4850 				 */
4851 				verifier_bug(env, "backtracking idx %d", i);
4852 				return -EFAULT;
4853 			}
4854 		}
4855 		st = st->parent;
4856 		if (!st)
4857 			break;
4858 
4859 		for (fr = bt->frame; fr >= 0; fr--) {
4860 			func = st->frame[fr];
4861 			bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4862 			for_each_set_bit(i, mask, 32) {
4863 				reg = &func->regs[i];
4864 				if (reg->type != SCALAR_VALUE) {
4865 					bt_clear_frame_reg(bt, fr, i);
4866 					continue;
4867 				}
4868 				if (reg->precise) {
4869 					bt_clear_frame_reg(bt, fr, i);
4870 				} else {
4871 					reg->precise = true;
4872 					*changed = true;
4873 				}
4874 			}
4875 
4876 			bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4877 			for_each_set_bit(i, mask, 64) {
4878 				if (verifier_bug_if(i >= func->allocated_stack / BPF_REG_SIZE,
4879 						    env, "stack slot %d, total slots %d",
4880 						    i, func->allocated_stack / BPF_REG_SIZE))
4881 					return -EFAULT;
4882 
4883 				if (!is_spilled_scalar_reg(&func->stack[i])) {
4884 					bt_clear_frame_slot(bt, fr, i);
4885 					continue;
4886 				}
4887 				reg = &func->stack[i].spilled_ptr;
4888 				if (reg->precise) {
4889 					bt_clear_frame_slot(bt, fr, i);
4890 				} else {
4891 					reg->precise = true;
4892 					*changed = true;
4893 				}
4894 			}
4895 			if (env->log.level & BPF_LOG_LEVEL2) {
4896 				fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4897 					     bt_frame_reg_mask(bt, fr));
4898 				verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4899 					fr, env->tmp_str_buf);
4900 				bpf_fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4901 					       bt_frame_stack_mask(bt, fr));
4902 				verbose(env, "stack=%s: ", env->tmp_str_buf);
4903 				print_verifier_state(env, st, fr, true);
4904 			}
4905 		}
4906 
4907 		if (bt_empty(bt))
4908 			return 0;
4909 
4910 		subseq_idx = first_idx;
4911 		last_idx = st->last_insn_idx;
4912 		first_idx = st->first_insn_idx;
4913 	}
4914 
4915 	/* if we still have requested precise regs or slots, we missed
4916 	 * something (e.g., stack access through non-r10 register), so
4917 	 * fallback to marking all precise
4918 	 */
4919 	if (!bt_empty(bt)) {
4920 		mark_all_scalars_precise(env, starting_state);
4921 		bt_reset(bt);
4922 	}
4923 
4924 	return 0;
4925 }
4926 
mark_chain_precision(struct bpf_verifier_env * env,int regno)4927 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
4928 {
4929 	return __mark_chain_precision(env, env->cur_state, regno, NULL);
4930 }
4931 
4932 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to
4933  * desired reg and stack masks across all relevant frames
4934  */
mark_chain_precision_batch(struct bpf_verifier_env * env,struct bpf_verifier_state * starting_state)4935 static int mark_chain_precision_batch(struct bpf_verifier_env *env,
4936 				      struct bpf_verifier_state *starting_state)
4937 {
4938 	return __mark_chain_precision(env, starting_state, -1, NULL);
4939 }
4940 
is_spillable_regtype(enum bpf_reg_type type)4941 static bool is_spillable_regtype(enum bpf_reg_type type)
4942 {
4943 	switch (base_type(type)) {
4944 	case PTR_TO_MAP_VALUE:
4945 	case PTR_TO_STACK:
4946 	case PTR_TO_CTX:
4947 	case PTR_TO_PACKET:
4948 	case PTR_TO_PACKET_META:
4949 	case PTR_TO_PACKET_END:
4950 	case PTR_TO_FLOW_KEYS:
4951 	case CONST_PTR_TO_MAP:
4952 	case PTR_TO_SOCKET:
4953 	case PTR_TO_SOCK_COMMON:
4954 	case PTR_TO_TCP_SOCK:
4955 	case PTR_TO_XDP_SOCK:
4956 	case PTR_TO_BTF_ID:
4957 	case PTR_TO_BUF:
4958 	case PTR_TO_MEM:
4959 	case PTR_TO_FUNC:
4960 	case PTR_TO_MAP_KEY:
4961 	case PTR_TO_ARENA:
4962 		return true;
4963 	default:
4964 		return false;
4965 	}
4966 }
4967 
4968 /* Does this register contain a constant zero? */
register_is_null(struct bpf_reg_state * reg)4969 static bool register_is_null(struct bpf_reg_state *reg)
4970 {
4971 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
4972 }
4973 
4974 /* check if register is a constant scalar value */
is_reg_const(struct bpf_reg_state * reg,bool subreg32)4975 static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32)
4976 {
4977 	return reg->type == SCALAR_VALUE &&
4978 	       tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off);
4979 }
4980 
4981 /* assuming is_reg_const() is true, return constant value of a register */
reg_const_value(struct bpf_reg_state * reg,bool subreg32)4982 static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32)
4983 {
4984 	return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value;
4985 }
4986 
__is_pointer_value(bool allow_ptr_leaks,const struct bpf_reg_state * reg)4987 static bool __is_pointer_value(bool allow_ptr_leaks,
4988 			       const struct bpf_reg_state *reg)
4989 {
4990 	if (allow_ptr_leaks)
4991 		return false;
4992 
4993 	return reg->type != SCALAR_VALUE;
4994 }
4995 
assign_scalar_id_before_mov(struct bpf_verifier_env * env,struct bpf_reg_state * src_reg)4996 static void assign_scalar_id_before_mov(struct bpf_verifier_env *env,
4997 					struct bpf_reg_state *src_reg)
4998 {
4999 	if (src_reg->type != SCALAR_VALUE)
5000 		return;
5001 
5002 	if (src_reg->id & BPF_ADD_CONST) {
5003 		/*
5004 		 * The verifier is processing rX = rY insn and
5005 		 * rY->id has special linked register already.
5006 		 * Cleared it, since multiple rX += const are not supported.
5007 		 */
5008 		src_reg->id = 0;
5009 		src_reg->off = 0;
5010 	}
5011 
5012 	if (!src_reg->id && !tnum_is_const(src_reg->var_off))
5013 		/* Ensure that src_reg has a valid ID that will be copied to
5014 		 * dst_reg and then will be used by sync_linked_regs() to
5015 		 * propagate min/max range.
5016 		 */
5017 		src_reg->id = ++env->id_gen;
5018 }
5019 
5020 /* Copy src state preserving dst->parent and dst->live fields */
copy_register_state(struct bpf_reg_state * dst,const struct bpf_reg_state * src)5021 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
5022 {
5023 	*dst = *src;
5024 }
5025 
save_register_state(struct bpf_verifier_env * env,struct bpf_func_state * state,int spi,struct bpf_reg_state * reg,int size)5026 static void save_register_state(struct bpf_verifier_env *env,
5027 				struct bpf_func_state *state,
5028 				int spi, struct bpf_reg_state *reg,
5029 				int size)
5030 {
5031 	int i;
5032 
5033 	copy_register_state(&state->stack[spi].spilled_ptr, reg);
5034 
5035 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
5036 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
5037 
5038 	/* size < 8 bytes spill */
5039 	for (; i; i--)
5040 		mark_stack_slot_misc(env, &state->stack[spi].slot_type[i - 1]);
5041 }
5042 
is_bpf_st_mem(struct bpf_insn * insn)5043 static bool is_bpf_st_mem(struct bpf_insn *insn)
5044 {
5045 	return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
5046 }
5047 
get_reg_width(struct bpf_reg_state * reg)5048 static int get_reg_width(struct bpf_reg_state *reg)
5049 {
5050 	return fls64(reg->umax_value);
5051 }
5052 
5053 /* See comment for mark_fastcall_pattern_for_call() */
check_fastcall_stack_contract(struct bpf_verifier_env * env,struct bpf_func_state * state,int insn_idx,int off)5054 static void check_fastcall_stack_contract(struct bpf_verifier_env *env,
5055 					  struct bpf_func_state *state, int insn_idx, int off)
5056 {
5057 	struct bpf_subprog_info *subprog = &env->subprog_info[state->subprogno];
5058 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
5059 	int i;
5060 
5061 	if (subprog->fastcall_stack_off <= off || aux[insn_idx].fastcall_pattern)
5062 		return;
5063 	/* access to the region [max_stack_depth .. fastcall_stack_off)
5064 	 * from something that is not a part of the fastcall pattern,
5065 	 * disable fastcall rewrites for current subprogram by setting
5066 	 * fastcall_stack_off to a value smaller than any possible offset.
5067 	 */
5068 	subprog->fastcall_stack_off = S16_MIN;
5069 	/* reset fastcall aux flags within subprogram,
5070 	 * happens at most once per subprogram
5071 	 */
5072 	for (i = subprog->start; i < (subprog + 1)->start; ++i) {
5073 		aux[i].fastcall_spills_num = 0;
5074 		aux[i].fastcall_pattern = 0;
5075 	}
5076 }
5077 
5078 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
5079  * stack boundary and alignment are checked in check_mem_access()
5080  */
check_stack_write_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int off,int size,int value_regno,int insn_idx)5081 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
5082 				       /* stack frame we're writing to */
5083 				       struct bpf_func_state *state,
5084 				       int off, int size, int value_regno,
5085 				       int insn_idx)
5086 {
5087 	struct bpf_func_state *cur; /* state of the current function */
5088 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
5089 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5090 	struct bpf_reg_state *reg = NULL;
5091 	int insn_flags = insn_stack_access_flags(state->frameno, spi);
5092 
5093 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
5094 	 * so it's aligned access and [off, off + size) are within stack limits
5095 	 */
5096 	if (!env->allow_ptr_leaks &&
5097 	    is_spilled_reg(&state->stack[spi]) &&
5098 	    !is_spilled_scalar_reg(&state->stack[spi]) &&
5099 	    size != BPF_REG_SIZE) {
5100 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
5101 		return -EACCES;
5102 	}
5103 
5104 	cur = env->cur_state->frame[env->cur_state->curframe];
5105 	if (value_regno >= 0)
5106 		reg = &cur->regs[value_regno];
5107 	if (!env->bypass_spec_v4) {
5108 		bool sanitize = reg && is_spillable_regtype(reg->type);
5109 
5110 		for (i = 0; i < size; i++) {
5111 			u8 type = state->stack[spi].slot_type[i];
5112 
5113 			if (type != STACK_MISC && type != STACK_ZERO) {
5114 				sanitize = true;
5115 				break;
5116 			}
5117 		}
5118 
5119 		if (sanitize)
5120 			env->insn_aux_data[insn_idx].nospec_result = true;
5121 	}
5122 
5123 	err = destroy_if_dynptr_stack_slot(env, state, spi);
5124 	if (err)
5125 		return err;
5126 
5127 	if (!(off % BPF_REG_SIZE) && size == BPF_REG_SIZE) {
5128 		/* only mark the slot as written if all 8 bytes were written
5129 		 * otherwise read propagation may incorrectly stop too soon
5130 		 * when stack slots are partially written.
5131 		 * This heuristic means that read propagation will be
5132 		 * conservative, since it will add reg_live_read marks
5133 		 * to stack slots all the way to first state when programs
5134 		 * writes+reads less than 8 bytes
5135 		 */
5136 		bpf_mark_stack_write(env, state->frameno, BIT(spi));
5137 	}
5138 
5139 	check_fastcall_stack_contract(env, state, insn_idx, off);
5140 	mark_stack_slot_scratched(env, spi);
5141 	if (reg && !(off % BPF_REG_SIZE) && reg->type == SCALAR_VALUE && env->bpf_capable) {
5142 		bool reg_value_fits;
5143 
5144 		reg_value_fits = get_reg_width(reg) <= BITS_PER_BYTE * size;
5145 		/* Make sure that reg had an ID to build a relation on spill. */
5146 		if (reg_value_fits)
5147 			assign_scalar_id_before_mov(env, reg);
5148 		save_register_state(env, state, spi, reg, size);
5149 		/* Break the relation on a narrowing spill. */
5150 		if (!reg_value_fits)
5151 			state->stack[spi].spilled_ptr.id = 0;
5152 	} else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
5153 		   env->bpf_capable) {
5154 		struct bpf_reg_state *tmp_reg = &env->fake_reg[0];
5155 
5156 		memset(tmp_reg, 0, sizeof(*tmp_reg));
5157 		__mark_reg_known(tmp_reg, insn->imm);
5158 		tmp_reg->type = SCALAR_VALUE;
5159 		save_register_state(env, state, spi, tmp_reg, size);
5160 	} else if (reg && is_spillable_regtype(reg->type)) {
5161 		/* register containing pointer is being spilled into stack */
5162 		if (size != BPF_REG_SIZE) {
5163 			verbose_linfo(env, insn_idx, "; ");
5164 			verbose(env, "invalid size of register spill\n");
5165 			return -EACCES;
5166 		}
5167 		if (state != cur && reg->type == PTR_TO_STACK) {
5168 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
5169 			return -EINVAL;
5170 		}
5171 		save_register_state(env, state, spi, reg, size);
5172 	} else {
5173 		u8 type = STACK_MISC;
5174 
5175 		/* regular write of data into stack destroys any spilled ptr */
5176 		state->stack[spi].spilled_ptr.type = NOT_INIT;
5177 		/* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
5178 		if (is_stack_slot_special(&state->stack[spi]))
5179 			for (i = 0; i < BPF_REG_SIZE; i++)
5180 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
5181 
5182 		/* when we zero initialize stack slots mark them as such */
5183 		if ((reg && register_is_null(reg)) ||
5184 		    (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
5185 			/* STACK_ZERO case happened because register spill
5186 			 * wasn't properly aligned at the stack slot boundary,
5187 			 * so it's not a register spill anymore; force
5188 			 * originating register to be precise to make
5189 			 * STACK_ZERO correct for subsequent states
5190 			 */
5191 			err = mark_chain_precision(env, value_regno);
5192 			if (err)
5193 				return err;
5194 			type = STACK_ZERO;
5195 		}
5196 
5197 		/* Mark slots affected by this stack write. */
5198 		for (i = 0; i < size; i++)
5199 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type;
5200 		insn_flags = 0; /* not a register spill */
5201 	}
5202 
5203 	if (insn_flags)
5204 		return push_jmp_history(env, env->cur_state, insn_flags, 0);
5205 	return 0;
5206 }
5207 
5208 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
5209  * known to contain a variable offset.
5210  * This function checks whether the write is permitted and conservatively
5211  * tracks the effects of the write, considering that each stack slot in the
5212  * dynamic range is potentially written to.
5213  *
5214  * 'off' includes 'regno->off'.
5215  * 'value_regno' can be -1, meaning that an unknown value is being written to
5216  * the stack.
5217  *
5218  * Spilled pointers in range are not marked as written because we don't know
5219  * what's going to be actually written. This means that read propagation for
5220  * future reads cannot be terminated by this write.
5221  *
5222  * For privileged programs, uninitialized stack slots are considered
5223  * initialized by this write (even though we don't know exactly what offsets
5224  * are going to be written to). The idea is that we don't want the verifier to
5225  * reject future reads that access slots written to through variable offsets.
5226  */
check_stack_write_var_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int ptr_regno,int off,int size,int value_regno,int insn_idx)5227 static int check_stack_write_var_off(struct bpf_verifier_env *env,
5228 				     /* func where register points to */
5229 				     struct bpf_func_state *state,
5230 				     int ptr_regno, int off, int size,
5231 				     int value_regno, int insn_idx)
5232 {
5233 	struct bpf_func_state *cur; /* state of the current function */
5234 	int min_off, max_off;
5235 	int i, err;
5236 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
5237 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5238 	bool writing_zero = false;
5239 	/* set if the fact that we're writing a zero is used to let any
5240 	 * stack slots remain STACK_ZERO
5241 	 */
5242 	bool zero_used = false;
5243 
5244 	cur = env->cur_state->frame[env->cur_state->curframe];
5245 	ptr_reg = &cur->regs[ptr_regno];
5246 	min_off = ptr_reg->smin_value + off;
5247 	max_off = ptr_reg->smax_value + off + size;
5248 	if (value_regno >= 0)
5249 		value_reg = &cur->regs[value_regno];
5250 	if ((value_reg && register_is_null(value_reg)) ||
5251 	    (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
5252 		writing_zero = true;
5253 
5254 	for (i = min_off; i < max_off; i++) {
5255 		int spi;
5256 
5257 		spi = __get_spi(i);
5258 		err = destroy_if_dynptr_stack_slot(env, state, spi);
5259 		if (err)
5260 			return err;
5261 	}
5262 
5263 	check_fastcall_stack_contract(env, state, insn_idx, min_off);
5264 	/* Variable offset writes destroy any spilled pointers in range. */
5265 	for (i = min_off; i < max_off; i++) {
5266 		u8 new_type, *stype;
5267 		int slot, spi;
5268 
5269 		slot = -i - 1;
5270 		spi = slot / BPF_REG_SIZE;
5271 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
5272 		mark_stack_slot_scratched(env, spi);
5273 
5274 		if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
5275 			/* Reject the write if range we may write to has not
5276 			 * been initialized beforehand. If we didn't reject
5277 			 * here, the ptr status would be erased below (even
5278 			 * though not all slots are actually overwritten),
5279 			 * possibly opening the door to leaks.
5280 			 *
5281 			 * We do however catch STACK_INVALID case below, and
5282 			 * only allow reading possibly uninitialized memory
5283 			 * later for CAP_PERFMON, as the write may not happen to
5284 			 * that slot.
5285 			 */
5286 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
5287 				insn_idx, i);
5288 			return -EINVAL;
5289 		}
5290 
5291 		/* If writing_zero and the spi slot contains a spill of value 0,
5292 		 * maintain the spill type.
5293 		 */
5294 		if (writing_zero && *stype == STACK_SPILL &&
5295 		    is_spilled_scalar_reg(&state->stack[spi])) {
5296 			struct bpf_reg_state *spill_reg = &state->stack[spi].spilled_ptr;
5297 
5298 			if (tnum_is_const(spill_reg->var_off) && spill_reg->var_off.value == 0) {
5299 				zero_used = true;
5300 				continue;
5301 			}
5302 		}
5303 
5304 		/* Erase all other spilled pointers. */
5305 		state->stack[spi].spilled_ptr.type = NOT_INIT;
5306 
5307 		/* Update the slot type. */
5308 		new_type = STACK_MISC;
5309 		if (writing_zero && *stype == STACK_ZERO) {
5310 			new_type = STACK_ZERO;
5311 			zero_used = true;
5312 		}
5313 		/* If the slot is STACK_INVALID, we check whether it's OK to
5314 		 * pretend that it will be initialized by this write. The slot
5315 		 * might not actually be written to, and so if we mark it as
5316 		 * initialized future reads might leak uninitialized memory.
5317 		 * For privileged programs, we will accept such reads to slots
5318 		 * that may or may not be written because, if we're reject
5319 		 * them, the error would be too confusing.
5320 		 */
5321 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
5322 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
5323 					insn_idx, i);
5324 			return -EINVAL;
5325 		}
5326 		*stype = new_type;
5327 	}
5328 	if (zero_used) {
5329 		/* backtracking doesn't work for STACK_ZERO yet. */
5330 		err = mark_chain_precision(env, value_regno);
5331 		if (err)
5332 			return err;
5333 	}
5334 	return 0;
5335 }
5336 
5337 /* When register 'dst_regno' is assigned some values from stack[min_off,
5338  * max_off), we set the register's type according to the types of the
5339  * respective stack slots. If all the stack values are known to be zeros, then
5340  * so is the destination reg. Otherwise, the register is considered to be
5341  * SCALAR. This function does not deal with register filling; the caller must
5342  * ensure that all spilled registers in the stack range have been marked as
5343  * read.
5344  */
mark_reg_stack_read(struct bpf_verifier_env * env,struct bpf_func_state * ptr_state,int min_off,int max_off,int dst_regno)5345 static void mark_reg_stack_read(struct bpf_verifier_env *env,
5346 				/* func where src register points to */
5347 				struct bpf_func_state *ptr_state,
5348 				int min_off, int max_off, int dst_regno)
5349 {
5350 	struct bpf_verifier_state *vstate = env->cur_state;
5351 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5352 	int i, slot, spi;
5353 	u8 *stype;
5354 	int zeros = 0;
5355 
5356 	for (i = min_off; i < max_off; i++) {
5357 		slot = -i - 1;
5358 		spi = slot / BPF_REG_SIZE;
5359 		mark_stack_slot_scratched(env, spi);
5360 		stype = ptr_state->stack[spi].slot_type;
5361 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
5362 			break;
5363 		zeros++;
5364 	}
5365 	if (zeros == max_off - min_off) {
5366 		/* Any access_size read into register is zero extended,
5367 		 * so the whole register == const_zero.
5368 		 */
5369 		__mark_reg_const_zero(env, &state->regs[dst_regno]);
5370 	} else {
5371 		/* have read misc data from the stack */
5372 		mark_reg_unknown(env, state->regs, dst_regno);
5373 	}
5374 }
5375 
5376 /* Read the stack at 'off' and put the results into the register indicated by
5377  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
5378  * spilled reg.
5379  *
5380  * 'dst_regno' can be -1, meaning that the read value is not going to a
5381  * register.
5382  *
5383  * The access is assumed to be within the current stack bounds.
5384  */
check_stack_read_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * reg_state,int off,int size,int dst_regno)5385 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
5386 				      /* func where src register points to */
5387 				      struct bpf_func_state *reg_state,
5388 				      int off, int size, int dst_regno)
5389 {
5390 	struct bpf_verifier_state *vstate = env->cur_state;
5391 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5392 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
5393 	struct bpf_reg_state *reg;
5394 	u8 *stype, type;
5395 	int insn_flags = insn_stack_access_flags(reg_state->frameno, spi);
5396 	int err;
5397 
5398 	stype = reg_state->stack[spi].slot_type;
5399 	reg = &reg_state->stack[spi].spilled_ptr;
5400 
5401 	mark_stack_slot_scratched(env, spi);
5402 	check_fastcall_stack_contract(env, state, env->insn_idx, off);
5403 	err = bpf_mark_stack_read(env, reg_state->frameno, env->insn_idx, BIT(spi));
5404 	if (err)
5405 		return err;
5406 
5407 	if (is_spilled_reg(&reg_state->stack[spi])) {
5408 		u8 spill_size = 1;
5409 
5410 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
5411 			spill_size++;
5412 
5413 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
5414 			if (reg->type != SCALAR_VALUE) {
5415 				verbose_linfo(env, env->insn_idx, "; ");
5416 				verbose(env, "invalid size of register fill\n");
5417 				return -EACCES;
5418 			}
5419 
5420 			if (dst_regno < 0)
5421 				return 0;
5422 
5423 			if (size <= spill_size &&
5424 			    bpf_stack_narrow_access_ok(off, size, spill_size)) {
5425 				/* The earlier check_reg_arg() has decided the
5426 				 * subreg_def for this insn.  Save it first.
5427 				 */
5428 				s32 subreg_def = state->regs[dst_regno].subreg_def;
5429 
5430 				copy_register_state(&state->regs[dst_regno], reg);
5431 				state->regs[dst_regno].subreg_def = subreg_def;
5432 
5433 				/* Break the relation on a narrowing fill.
5434 				 * coerce_reg_to_size will adjust the boundaries.
5435 				 */
5436 				if (get_reg_width(reg) > size * BITS_PER_BYTE)
5437 					state->regs[dst_regno].id = 0;
5438 			} else {
5439 				int spill_cnt = 0, zero_cnt = 0;
5440 
5441 				for (i = 0; i < size; i++) {
5442 					type = stype[(slot - i) % BPF_REG_SIZE];
5443 					if (type == STACK_SPILL) {
5444 						spill_cnt++;
5445 						continue;
5446 					}
5447 					if (type == STACK_MISC)
5448 						continue;
5449 					if (type == STACK_ZERO) {
5450 						zero_cnt++;
5451 						continue;
5452 					}
5453 					if (type == STACK_INVALID && env->allow_uninit_stack)
5454 						continue;
5455 					verbose(env, "invalid read from stack off %d+%d size %d\n",
5456 						off, i, size);
5457 					return -EACCES;
5458 				}
5459 
5460 				if (spill_cnt == size &&
5461 				    tnum_is_const(reg->var_off) && reg->var_off.value == 0) {
5462 					__mark_reg_const_zero(env, &state->regs[dst_regno]);
5463 					/* this IS register fill, so keep insn_flags */
5464 				} else if (zero_cnt == size) {
5465 					/* similarly to mark_reg_stack_read(), preserve zeroes */
5466 					__mark_reg_const_zero(env, &state->regs[dst_regno]);
5467 					insn_flags = 0; /* not restoring original register state */
5468 				} else {
5469 					mark_reg_unknown(env, state->regs, dst_regno);
5470 					insn_flags = 0; /* not restoring original register state */
5471 				}
5472 			}
5473 		} else if (dst_regno >= 0) {
5474 			/* restore register state from stack */
5475 			copy_register_state(&state->regs[dst_regno], reg);
5476 			/* mark reg as written since spilled pointer state likely
5477 			 * has its liveness marks cleared by is_state_visited()
5478 			 * which resets stack/reg liveness for state transitions
5479 			 */
5480 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
5481 			/* If dst_regno==-1, the caller is asking us whether
5482 			 * it is acceptable to use this value as a SCALAR_VALUE
5483 			 * (e.g. for XADD).
5484 			 * We must not allow unprivileged callers to do that
5485 			 * with spilled pointers.
5486 			 */
5487 			verbose(env, "leaking pointer from stack off %d\n",
5488 				off);
5489 			return -EACCES;
5490 		}
5491 	} else {
5492 		for (i = 0; i < size; i++) {
5493 			type = stype[(slot - i) % BPF_REG_SIZE];
5494 			if (type == STACK_MISC)
5495 				continue;
5496 			if (type == STACK_ZERO)
5497 				continue;
5498 			if (type == STACK_INVALID && env->allow_uninit_stack)
5499 				continue;
5500 			verbose(env, "invalid read from stack off %d+%d size %d\n",
5501 				off, i, size);
5502 			return -EACCES;
5503 		}
5504 		if (dst_regno >= 0)
5505 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
5506 		insn_flags = 0; /* we are not restoring spilled register */
5507 	}
5508 	if (insn_flags)
5509 		return push_jmp_history(env, env->cur_state, insn_flags, 0);
5510 	return 0;
5511 }
5512 
5513 enum bpf_access_src {
5514 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
5515 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
5516 };
5517 
5518 static int check_stack_range_initialized(struct bpf_verifier_env *env,
5519 					 int regno, int off, int access_size,
5520 					 bool zero_size_allowed,
5521 					 enum bpf_access_type type,
5522 					 struct bpf_call_arg_meta *meta);
5523 
reg_state(struct bpf_verifier_env * env,int regno)5524 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
5525 {
5526 	return cur_regs(env) + regno;
5527 }
5528 
5529 /* Read the stack at 'ptr_regno + off' and put the result into the register
5530  * 'dst_regno'.
5531  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
5532  * but not its variable offset.
5533  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
5534  *
5535  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
5536  * filling registers (i.e. reads of spilled register cannot be detected when
5537  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
5538  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
5539  * offset; for a fixed offset check_stack_read_fixed_off should be used
5540  * instead.
5541  */
check_stack_read_var_off(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)5542 static int check_stack_read_var_off(struct bpf_verifier_env *env,
5543 				    int ptr_regno, int off, int size, int dst_regno)
5544 {
5545 	/* The state of the source register. */
5546 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5547 	struct bpf_func_state *ptr_state = func(env, reg);
5548 	int err;
5549 	int min_off, max_off;
5550 
5551 	/* Note that we pass a NULL meta, so raw access will not be permitted.
5552 	 */
5553 	err = check_stack_range_initialized(env, ptr_regno, off, size,
5554 					    false, BPF_READ, NULL);
5555 	if (err)
5556 		return err;
5557 
5558 	min_off = reg->smin_value + off;
5559 	max_off = reg->smax_value + off;
5560 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
5561 	check_fastcall_stack_contract(env, ptr_state, env->insn_idx, min_off);
5562 	return 0;
5563 }
5564 
5565 /* check_stack_read dispatches to check_stack_read_fixed_off or
5566  * check_stack_read_var_off.
5567  *
5568  * The caller must ensure that the offset falls within the allocated stack
5569  * bounds.
5570  *
5571  * 'dst_regno' is a register which will receive the value from the stack. It
5572  * can be -1, meaning that the read value is not going to a register.
5573  */
check_stack_read(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)5574 static int check_stack_read(struct bpf_verifier_env *env,
5575 			    int ptr_regno, int off, int size,
5576 			    int dst_regno)
5577 {
5578 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5579 	struct bpf_func_state *state = func(env, reg);
5580 	int err;
5581 	/* Some accesses are only permitted with a static offset. */
5582 	bool var_off = !tnum_is_const(reg->var_off);
5583 
5584 	/* The offset is required to be static when reads don't go to a
5585 	 * register, in order to not leak pointers (see
5586 	 * check_stack_read_fixed_off).
5587 	 */
5588 	if (dst_regno < 0 && var_off) {
5589 		char tn_buf[48];
5590 
5591 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5592 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
5593 			tn_buf, off, size);
5594 		return -EACCES;
5595 	}
5596 	/* Variable offset is prohibited for unprivileged mode for simplicity
5597 	 * since it requires corresponding support in Spectre masking for stack
5598 	 * ALU. See also retrieve_ptr_limit(). The check in
5599 	 * check_stack_access_for_ptr_arithmetic() called by
5600 	 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
5601 	 * with variable offsets, therefore no check is required here. Further,
5602 	 * just checking it here would be insufficient as speculative stack
5603 	 * writes could still lead to unsafe speculative behaviour.
5604 	 */
5605 	if (!var_off) {
5606 		off += reg->var_off.value;
5607 		err = check_stack_read_fixed_off(env, state, off, size,
5608 						 dst_regno);
5609 	} else {
5610 		/* Variable offset stack reads need more conservative handling
5611 		 * than fixed offset ones. Note that dst_regno >= 0 on this
5612 		 * branch.
5613 		 */
5614 		err = check_stack_read_var_off(env, ptr_regno, off, size,
5615 					       dst_regno);
5616 	}
5617 	return err;
5618 }
5619 
5620 
5621 /* check_stack_write dispatches to check_stack_write_fixed_off or
5622  * check_stack_write_var_off.
5623  *
5624  * 'ptr_regno' is the register used as a pointer into the stack.
5625  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
5626  * 'value_regno' is the register whose value we're writing to the stack. It can
5627  * be -1, meaning that we're not writing from a register.
5628  *
5629  * The caller must ensure that the offset falls within the maximum stack size.
5630  */
check_stack_write(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int value_regno,int insn_idx)5631 static int check_stack_write(struct bpf_verifier_env *env,
5632 			     int ptr_regno, int off, int size,
5633 			     int value_regno, int insn_idx)
5634 {
5635 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5636 	struct bpf_func_state *state = func(env, reg);
5637 	int err;
5638 
5639 	if (tnum_is_const(reg->var_off)) {
5640 		off += reg->var_off.value;
5641 		err = check_stack_write_fixed_off(env, state, off, size,
5642 						  value_regno, insn_idx);
5643 	} else {
5644 		/* Variable offset stack reads need more conservative handling
5645 		 * than fixed offset ones.
5646 		 */
5647 		err = check_stack_write_var_off(env, state,
5648 						ptr_regno, off, size,
5649 						value_regno, insn_idx);
5650 	}
5651 	return err;
5652 }
5653 
check_map_access_type(struct bpf_verifier_env * env,u32 regno,int off,int size,enum bpf_access_type type)5654 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
5655 				 int off, int size, enum bpf_access_type type)
5656 {
5657 	struct bpf_reg_state *regs = cur_regs(env);
5658 	struct bpf_map *map = regs[regno].map_ptr;
5659 	u32 cap = bpf_map_flags_to_cap(map);
5660 
5661 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
5662 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
5663 			map->value_size, off, size);
5664 		return -EACCES;
5665 	}
5666 
5667 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
5668 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
5669 			map->value_size, off, size);
5670 		return -EACCES;
5671 	}
5672 
5673 	return 0;
5674 }
5675 
5676 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
__check_mem_access(struct bpf_verifier_env * env,int regno,int off,int size,u32 mem_size,bool zero_size_allowed)5677 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
5678 			      int off, int size, u32 mem_size,
5679 			      bool zero_size_allowed)
5680 {
5681 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
5682 	struct bpf_reg_state *reg;
5683 
5684 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
5685 		return 0;
5686 
5687 	reg = &cur_regs(env)[regno];
5688 	switch (reg->type) {
5689 	case PTR_TO_MAP_KEY:
5690 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
5691 			mem_size, off, size);
5692 		break;
5693 	case PTR_TO_MAP_VALUE:
5694 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
5695 			mem_size, off, size);
5696 		break;
5697 	case PTR_TO_PACKET:
5698 	case PTR_TO_PACKET_META:
5699 	case PTR_TO_PACKET_END:
5700 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
5701 			off, size, regno, reg->id, off, mem_size);
5702 		break;
5703 	case PTR_TO_MEM:
5704 	default:
5705 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
5706 			mem_size, off, size);
5707 	}
5708 
5709 	return -EACCES;
5710 }
5711 
5712 /* check read/write into a memory region with possible variable offset */
check_mem_region_access(struct bpf_verifier_env * env,u32 regno,int off,int size,u32 mem_size,bool zero_size_allowed)5713 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
5714 				   int off, int size, u32 mem_size,
5715 				   bool zero_size_allowed)
5716 {
5717 	struct bpf_verifier_state *vstate = env->cur_state;
5718 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5719 	struct bpf_reg_state *reg = &state->regs[regno];
5720 	int err;
5721 
5722 	/* We may have adjusted the register pointing to memory region, so we
5723 	 * need to try adding each of min_value and max_value to off
5724 	 * to make sure our theoretical access will be safe.
5725 	 *
5726 	 * The minimum value is only important with signed
5727 	 * comparisons where we can't assume the floor of a
5728 	 * value is 0.  If we are using signed variables for our
5729 	 * index'es we need to make sure that whatever we use
5730 	 * will have a set floor within our range.
5731 	 */
5732 	if (reg->smin_value < 0 &&
5733 	    (reg->smin_value == S64_MIN ||
5734 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
5735 	      reg->smin_value + off < 0)) {
5736 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5737 			regno);
5738 		return -EACCES;
5739 	}
5740 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
5741 				 mem_size, zero_size_allowed);
5742 	if (err) {
5743 		verbose(env, "R%d min value is outside of the allowed memory range\n",
5744 			regno);
5745 		return err;
5746 	}
5747 
5748 	/* If we haven't set a max value then we need to bail since we can't be
5749 	 * sure we won't do bad things.
5750 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
5751 	 */
5752 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
5753 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
5754 			regno);
5755 		return -EACCES;
5756 	}
5757 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
5758 				 mem_size, zero_size_allowed);
5759 	if (err) {
5760 		verbose(env, "R%d max value is outside of the allowed memory range\n",
5761 			regno);
5762 		return err;
5763 	}
5764 
5765 	return 0;
5766 }
5767 
__check_ptr_off_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,bool fixed_off_ok)5768 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
5769 			       const struct bpf_reg_state *reg, int regno,
5770 			       bool fixed_off_ok)
5771 {
5772 	/* Access to this pointer-typed register or passing it to a helper
5773 	 * is only allowed in its original, unmodified form.
5774 	 */
5775 
5776 	if (reg->off < 0) {
5777 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
5778 			reg_type_str(env, reg->type), regno, reg->off);
5779 		return -EACCES;
5780 	}
5781 
5782 	if (!fixed_off_ok && reg->off) {
5783 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
5784 			reg_type_str(env, reg->type), regno, reg->off);
5785 		return -EACCES;
5786 	}
5787 
5788 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5789 		char tn_buf[48];
5790 
5791 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5792 		verbose(env, "variable %s access var_off=%s disallowed\n",
5793 			reg_type_str(env, reg->type), tn_buf);
5794 		return -EACCES;
5795 	}
5796 
5797 	return 0;
5798 }
5799 
check_ptr_off_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno)5800 static int check_ptr_off_reg(struct bpf_verifier_env *env,
5801 		             const struct bpf_reg_state *reg, int regno)
5802 {
5803 	return __check_ptr_off_reg(env, reg, regno, false);
5804 }
5805 
map_kptr_match_type(struct bpf_verifier_env * env,struct btf_field * kptr_field,struct bpf_reg_state * reg,u32 regno)5806 static int map_kptr_match_type(struct bpf_verifier_env *env,
5807 			       struct btf_field *kptr_field,
5808 			       struct bpf_reg_state *reg, u32 regno)
5809 {
5810 	const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
5811 	int perm_flags;
5812 	const char *reg_name = "";
5813 
5814 	if (btf_is_kernel(reg->btf)) {
5815 		perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
5816 
5817 		/* Only unreferenced case accepts untrusted pointers */
5818 		if (kptr_field->type == BPF_KPTR_UNREF)
5819 			perm_flags |= PTR_UNTRUSTED;
5820 	} else {
5821 		perm_flags = PTR_MAYBE_NULL | MEM_ALLOC;
5822 		if (kptr_field->type == BPF_KPTR_PERCPU)
5823 			perm_flags |= MEM_PERCPU;
5824 	}
5825 
5826 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
5827 		goto bad_type;
5828 
5829 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
5830 	reg_name = btf_type_name(reg->btf, reg->btf_id);
5831 
5832 	/* For ref_ptr case, release function check should ensure we get one
5833 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
5834 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
5835 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
5836 	 * reg->off and reg->ref_obj_id are not needed here.
5837 	 */
5838 	if (__check_ptr_off_reg(env, reg, regno, true))
5839 		return -EACCES;
5840 
5841 	/* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and
5842 	 * we also need to take into account the reg->off.
5843 	 *
5844 	 * We want to support cases like:
5845 	 *
5846 	 * struct foo {
5847 	 *         struct bar br;
5848 	 *         struct baz bz;
5849 	 * };
5850 	 *
5851 	 * struct foo *v;
5852 	 * v = func();	      // PTR_TO_BTF_ID
5853 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
5854 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
5855 	 *                    // first member type of struct after comparison fails
5856 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
5857 	 *                    // to match type
5858 	 *
5859 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
5860 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
5861 	 * the struct to match type against first member of struct, i.e. reject
5862 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
5863 	 * strict mode to true for type match.
5864 	 */
5865 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5866 				  kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5867 				  kptr_field->type != BPF_KPTR_UNREF))
5868 		goto bad_type;
5869 	return 0;
5870 bad_type:
5871 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
5872 		reg_type_str(env, reg->type), reg_name);
5873 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
5874 	if (kptr_field->type == BPF_KPTR_UNREF)
5875 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
5876 			targ_name);
5877 	else
5878 		verbose(env, "\n");
5879 	return -EINVAL;
5880 }
5881 
in_sleepable(struct bpf_verifier_env * env)5882 static bool in_sleepable(struct bpf_verifier_env *env)
5883 {
5884 	return env->cur_state->in_sleepable;
5885 }
5886 
5887 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
5888  * can dereference RCU protected pointers and result is PTR_TRUSTED.
5889  */
in_rcu_cs(struct bpf_verifier_env * env)5890 static bool in_rcu_cs(struct bpf_verifier_env *env)
5891 {
5892 	return env->cur_state->active_rcu_locks ||
5893 	       env->cur_state->active_locks ||
5894 	       !in_sleepable(env);
5895 }
5896 
5897 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
5898 BTF_SET_START(rcu_protected_types)
5899 #ifdef CONFIG_NET
BTF_ID(struct,prog_test_ref_kfunc)5900 BTF_ID(struct, prog_test_ref_kfunc)
5901 #endif
5902 #ifdef CONFIG_CGROUPS
5903 BTF_ID(struct, cgroup)
5904 #endif
5905 #ifdef CONFIG_BPF_JIT
5906 BTF_ID(struct, bpf_cpumask)
5907 #endif
5908 BTF_ID(struct, task_struct)
5909 #ifdef CONFIG_CRYPTO
5910 BTF_ID(struct, bpf_crypto_ctx)
5911 #endif
5912 BTF_SET_END(rcu_protected_types)
5913 
5914 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
5915 {
5916 	if (!btf_is_kernel(btf))
5917 		return true;
5918 	return btf_id_set_contains(&rcu_protected_types, btf_id);
5919 }
5920 
kptr_pointee_btf_record(struct btf_field * kptr_field)5921 static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field)
5922 {
5923 	struct btf_struct_meta *meta;
5924 
5925 	if (btf_is_kernel(kptr_field->kptr.btf))
5926 		return NULL;
5927 
5928 	meta = btf_find_struct_meta(kptr_field->kptr.btf,
5929 				    kptr_field->kptr.btf_id);
5930 
5931 	return meta ? meta->record : NULL;
5932 }
5933 
rcu_safe_kptr(const struct btf_field * field)5934 static bool rcu_safe_kptr(const struct btf_field *field)
5935 {
5936 	const struct btf_field_kptr *kptr = &field->kptr;
5937 
5938 	return field->type == BPF_KPTR_PERCPU ||
5939 	       (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id));
5940 }
5941 
btf_ld_kptr_type(struct bpf_verifier_env * env,struct btf_field * kptr_field)5942 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field)
5943 {
5944 	struct btf_record *rec;
5945 	u32 ret;
5946 
5947 	ret = PTR_MAYBE_NULL;
5948 	if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) {
5949 		ret |= MEM_RCU;
5950 		if (kptr_field->type == BPF_KPTR_PERCPU)
5951 			ret |= MEM_PERCPU;
5952 		else if (!btf_is_kernel(kptr_field->kptr.btf))
5953 			ret |= MEM_ALLOC;
5954 
5955 		rec = kptr_pointee_btf_record(kptr_field);
5956 		if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE))
5957 			ret |= NON_OWN_REF;
5958 	} else {
5959 		ret |= PTR_UNTRUSTED;
5960 	}
5961 
5962 	return ret;
5963 }
5964 
mark_uptr_ld_reg(struct bpf_verifier_env * env,u32 regno,struct btf_field * field)5965 static int mark_uptr_ld_reg(struct bpf_verifier_env *env, u32 regno,
5966 			    struct btf_field *field)
5967 {
5968 	struct bpf_reg_state *reg;
5969 	const struct btf_type *t;
5970 
5971 	t = btf_type_by_id(field->kptr.btf, field->kptr.btf_id);
5972 	mark_reg_known_zero(env, cur_regs(env), regno);
5973 	reg = reg_state(env, regno);
5974 	reg->type = PTR_TO_MEM | PTR_MAYBE_NULL;
5975 	reg->mem_size = t->size;
5976 	reg->id = ++env->id_gen;
5977 
5978 	return 0;
5979 }
5980 
check_map_kptr_access(struct bpf_verifier_env * env,u32 regno,int value_regno,int insn_idx,struct btf_field * kptr_field)5981 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
5982 				 int value_regno, int insn_idx,
5983 				 struct btf_field *kptr_field)
5984 {
5985 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5986 	int class = BPF_CLASS(insn->code);
5987 	struct bpf_reg_state *val_reg;
5988 	int ret;
5989 
5990 	/* Things we already checked for in check_map_access and caller:
5991 	 *  - Reject cases where variable offset may touch kptr
5992 	 *  - size of access (must be BPF_DW)
5993 	 *  - tnum_is_const(reg->var_off)
5994 	 *  - kptr_field->offset == off + reg->var_off.value
5995 	 */
5996 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
5997 	if (BPF_MODE(insn->code) != BPF_MEM) {
5998 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
5999 		return -EACCES;
6000 	}
6001 
6002 	/* We only allow loading referenced kptr, since it will be marked as
6003 	 * untrusted, similar to unreferenced kptr.
6004 	 */
6005 	if (class != BPF_LDX &&
6006 	    (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) {
6007 		verbose(env, "store to referenced kptr disallowed\n");
6008 		return -EACCES;
6009 	}
6010 	if (class != BPF_LDX && kptr_field->type == BPF_UPTR) {
6011 		verbose(env, "store to uptr disallowed\n");
6012 		return -EACCES;
6013 	}
6014 
6015 	if (class == BPF_LDX) {
6016 		if (kptr_field->type == BPF_UPTR)
6017 			return mark_uptr_ld_reg(env, value_regno, kptr_field);
6018 
6019 		/* We can simply mark the value_regno receiving the pointer
6020 		 * value from map as PTR_TO_BTF_ID, with the correct type.
6021 		 */
6022 		ret = mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID,
6023 				      kptr_field->kptr.btf, kptr_field->kptr.btf_id,
6024 				      btf_ld_kptr_type(env, kptr_field));
6025 		if (ret < 0)
6026 			return ret;
6027 	} else if (class == BPF_STX) {
6028 		val_reg = reg_state(env, value_regno);
6029 		if (!register_is_null(val_reg) &&
6030 		    map_kptr_match_type(env, kptr_field, val_reg, value_regno))
6031 			return -EACCES;
6032 	} else if (class == BPF_ST) {
6033 		if (insn->imm) {
6034 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
6035 				kptr_field->offset);
6036 			return -EACCES;
6037 		}
6038 	} else {
6039 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
6040 		return -EACCES;
6041 	}
6042 	return 0;
6043 }
6044 
6045 /*
6046  * Return the size of the memory region accessible from a pointer to map value.
6047  * For INSN_ARRAY maps whole bpf_insn_array->ips array is accessible.
6048  */
map_mem_size(const struct bpf_map * map)6049 static u32 map_mem_size(const struct bpf_map *map)
6050 {
6051 	if (map->map_type == BPF_MAP_TYPE_INSN_ARRAY)
6052 		return map->max_entries * sizeof(long);
6053 
6054 	return map->value_size;
6055 }
6056 
6057 /* check read/write into a map element with possible variable offset */
check_map_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed,enum bpf_access_src src)6058 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
6059 			    int off, int size, bool zero_size_allowed,
6060 			    enum bpf_access_src src)
6061 {
6062 	struct bpf_verifier_state *vstate = env->cur_state;
6063 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
6064 	struct bpf_reg_state *reg = &state->regs[regno];
6065 	struct bpf_map *map = reg->map_ptr;
6066 	u32 mem_size = map_mem_size(map);
6067 	struct btf_record *rec;
6068 	int err, i;
6069 
6070 	err = check_mem_region_access(env, regno, off, size, mem_size, zero_size_allowed);
6071 	if (err)
6072 		return err;
6073 
6074 	if (IS_ERR_OR_NULL(map->record))
6075 		return 0;
6076 	rec = map->record;
6077 	for (i = 0; i < rec->cnt; i++) {
6078 		struct btf_field *field = &rec->fields[i];
6079 		u32 p = field->offset;
6080 
6081 		/* If any part of a field  can be touched by load/store, reject
6082 		 * this program. To check that [x1, x2) overlaps with [y1, y2),
6083 		 * it is sufficient to check x1 < y2 && y1 < x2.
6084 		 */
6085 		if (reg->smin_value + off < p + field->size &&
6086 		    p < reg->umax_value + off + size) {
6087 			switch (field->type) {
6088 			case BPF_KPTR_UNREF:
6089 			case BPF_KPTR_REF:
6090 			case BPF_KPTR_PERCPU:
6091 			case BPF_UPTR:
6092 				if (src != ACCESS_DIRECT) {
6093 					verbose(env, "%s cannot be accessed indirectly by helper\n",
6094 						btf_field_type_name(field->type));
6095 					return -EACCES;
6096 				}
6097 				if (!tnum_is_const(reg->var_off)) {
6098 					verbose(env, "%s access cannot have variable offset\n",
6099 						btf_field_type_name(field->type));
6100 					return -EACCES;
6101 				}
6102 				if (p != off + reg->var_off.value) {
6103 					verbose(env, "%s access misaligned expected=%u off=%llu\n",
6104 						btf_field_type_name(field->type),
6105 						p, off + reg->var_off.value);
6106 					return -EACCES;
6107 				}
6108 				if (size != bpf_size_to_bytes(BPF_DW)) {
6109 					verbose(env, "%s access size must be BPF_DW\n",
6110 						btf_field_type_name(field->type));
6111 					return -EACCES;
6112 				}
6113 				break;
6114 			default:
6115 				verbose(env, "%s cannot be accessed directly by load/store\n",
6116 					btf_field_type_name(field->type));
6117 				return -EACCES;
6118 			}
6119 		}
6120 	}
6121 	return 0;
6122 }
6123 
6124 #define MAX_PACKET_OFF 0xffff
6125 
may_access_direct_pkt_data(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_access_type t)6126 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
6127 				       const struct bpf_call_arg_meta *meta,
6128 				       enum bpf_access_type t)
6129 {
6130 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
6131 
6132 	switch (prog_type) {
6133 	/* Program types only with direct read access go here! */
6134 	case BPF_PROG_TYPE_LWT_IN:
6135 	case BPF_PROG_TYPE_LWT_OUT:
6136 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
6137 	case BPF_PROG_TYPE_SK_REUSEPORT:
6138 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
6139 	case BPF_PROG_TYPE_CGROUP_SKB:
6140 		if (t == BPF_WRITE)
6141 			return false;
6142 		fallthrough;
6143 
6144 	/* Program types with direct read + write access go here! */
6145 	case BPF_PROG_TYPE_SCHED_CLS:
6146 	case BPF_PROG_TYPE_SCHED_ACT:
6147 	case BPF_PROG_TYPE_XDP:
6148 	case BPF_PROG_TYPE_LWT_XMIT:
6149 	case BPF_PROG_TYPE_SK_SKB:
6150 	case BPF_PROG_TYPE_SK_MSG:
6151 		if (meta)
6152 			return meta->pkt_access;
6153 
6154 		env->seen_direct_write = true;
6155 		return true;
6156 
6157 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
6158 		if (t == BPF_WRITE)
6159 			env->seen_direct_write = true;
6160 
6161 		return true;
6162 
6163 	default:
6164 		return false;
6165 	}
6166 }
6167 
check_packet_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed)6168 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
6169 			       int size, bool zero_size_allowed)
6170 {
6171 	struct bpf_reg_state *regs = cur_regs(env);
6172 	struct bpf_reg_state *reg = &regs[regno];
6173 	int err;
6174 
6175 	/* We may have added a variable offset to the packet pointer; but any
6176 	 * reg->range we have comes after that.  We are only checking the fixed
6177 	 * offset.
6178 	 */
6179 
6180 	/* We don't allow negative numbers, because we aren't tracking enough
6181 	 * detail to prove they're safe.
6182 	 */
6183 	if (reg->smin_value < 0) {
6184 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
6185 			regno);
6186 		return -EACCES;
6187 	}
6188 
6189 	err = reg->range < 0 ? -EINVAL :
6190 	      __check_mem_access(env, regno, off, size, reg->range,
6191 				 zero_size_allowed);
6192 	if (err) {
6193 		verbose(env, "R%d offset is outside of the packet\n", regno);
6194 		return err;
6195 	}
6196 
6197 	/* __check_mem_access has made sure "off + size - 1" is within u16.
6198 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
6199 	 * otherwise find_good_pkt_pointers would have refused to set range info
6200 	 * that __check_mem_access would have rejected this pkt access.
6201 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
6202 	 */
6203 	env->prog->aux->max_pkt_offset =
6204 		max_t(u32, env->prog->aux->max_pkt_offset,
6205 		      off + reg->umax_value + size - 1);
6206 
6207 	return err;
6208 }
6209 
6210 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
check_ctx_access(struct bpf_verifier_env * env,int insn_idx,int off,int size,enum bpf_access_type t,struct bpf_insn_access_aux * info)6211 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
6212 			    enum bpf_access_type t, struct bpf_insn_access_aux *info)
6213 {
6214 	if (env->ops->is_valid_access &&
6215 	    env->ops->is_valid_access(off, size, t, env->prog, info)) {
6216 		/* A non zero info.ctx_field_size indicates that this field is a
6217 		 * candidate for later verifier transformation to load the whole
6218 		 * field and then apply a mask when accessed with a narrower
6219 		 * access than actual ctx access size. A zero info.ctx_field_size
6220 		 * will only allow for whole field access and rejects any other
6221 		 * type of narrower access.
6222 		 */
6223 		if (base_type(info->reg_type) == PTR_TO_BTF_ID) {
6224 			if (info->ref_obj_id &&
6225 			    !find_reference_state(env->cur_state, info->ref_obj_id)) {
6226 				verbose(env, "invalid bpf_context access off=%d. Reference may already be released\n",
6227 					off);
6228 				return -EACCES;
6229 			}
6230 		} else {
6231 			env->insn_aux_data[insn_idx].ctx_field_size = info->ctx_field_size;
6232 		}
6233 		/* remember the offset of last byte accessed in ctx */
6234 		if (env->prog->aux->max_ctx_offset < off + size)
6235 			env->prog->aux->max_ctx_offset = off + size;
6236 		return 0;
6237 	}
6238 
6239 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
6240 	return -EACCES;
6241 }
6242 
check_flow_keys_access(struct bpf_verifier_env * env,int off,int size)6243 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
6244 				  int size)
6245 {
6246 	if (size < 0 || off < 0 ||
6247 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
6248 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
6249 			off, size);
6250 		return -EACCES;
6251 	}
6252 	return 0;
6253 }
6254 
check_sock_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int size,enum bpf_access_type t)6255 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
6256 			     u32 regno, int off, int size,
6257 			     enum bpf_access_type t)
6258 {
6259 	struct bpf_reg_state *regs = cur_regs(env);
6260 	struct bpf_reg_state *reg = &regs[regno];
6261 	struct bpf_insn_access_aux info = {};
6262 	bool valid;
6263 
6264 	if (reg->smin_value < 0) {
6265 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
6266 			regno);
6267 		return -EACCES;
6268 	}
6269 
6270 	switch (reg->type) {
6271 	case PTR_TO_SOCK_COMMON:
6272 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
6273 		break;
6274 	case PTR_TO_SOCKET:
6275 		valid = bpf_sock_is_valid_access(off, size, t, &info);
6276 		break;
6277 	case PTR_TO_TCP_SOCK:
6278 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
6279 		break;
6280 	case PTR_TO_XDP_SOCK:
6281 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
6282 		break;
6283 	default:
6284 		valid = false;
6285 	}
6286 
6287 
6288 	if (valid) {
6289 		env->insn_aux_data[insn_idx].ctx_field_size =
6290 			info.ctx_field_size;
6291 		return 0;
6292 	}
6293 
6294 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
6295 		regno, reg_type_str(env, reg->type), off, size);
6296 
6297 	return -EACCES;
6298 }
6299 
is_pointer_value(struct bpf_verifier_env * env,int regno)6300 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
6301 {
6302 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
6303 }
6304 
is_ctx_reg(struct bpf_verifier_env * env,int regno)6305 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
6306 {
6307 	const struct bpf_reg_state *reg = reg_state(env, regno);
6308 
6309 	return reg->type == PTR_TO_CTX;
6310 }
6311 
is_sk_reg(struct bpf_verifier_env * env,int regno)6312 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
6313 {
6314 	const struct bpf_reg_state *reg = reg_state(env, regno);
6315 
6316 	return type_is_sk_pointer(reg->type);
6317 }
6318 
is_pkt_reg(struct bpf_verifier_env * env,int regno)6319 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
6320 {
6321 	const struct bpf_reg_state *reg = reg_state(env, regno);
6322 
6323 	return type_is_pkt_pointer(reg->type);
6324 }
6325 
is_flow_key_reg(struct bpf_verifier_env * env,int regno)6326 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
6327 {
6328 	const struct bpf_reg_state *reg = reg_state(env, regno);
6329 
6330 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
6331 	return reg->type == PTR_TO_FLOW_KEYS;
6332 }
6333 
is_arena_reg(struct bpf_verifier_env * env,int regno)6334 static bool is_arena_reg(struct bpf_verifier_env *env, int regno)
6335 {
6336 	const struct bpf_reg_state *reg = reg_state(env, regno);
6337 
6338 	return reg->type == PTR_TO_ARENA;
6339 }
6340 
6341 /* Return false if @regno contains a pointer whose type isn't supported for
6342  * atomic instruction @insn.
6343  */
atomic_ptr_type_ok(struct bpf_verifier_env * env,int regno,struct bpf_insn * insn)6344 static bool atomic_ptr_type_ok(struct bpf_verifier_env *env, int regno,
6345 			       struct bpf_insn *insn)
6346 {
6347 	if (is_ctx_reg(env, regno))
6348 		return false;
6349 	if (is_pkt_reg(env, regno))
6350 		return false;
6351 	if (is_flow_key_reg(env, regno))
6352 		return false;
6353 	if (is_sk_reg(env, regno))
6354 		return false;
6355 	if (is_arena_reg(env, regno))
6356 		return bpf_jit_supports_insn(insn, true);
6357 
6358 	return true;
6359 }
6360 
6361 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
6362 #ifdef CONFIG_NET
6363 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
6364 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
6365 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
6366 #endif
6367 	[CONST_PTR_TO_MAP] = btf_bpf_map_id,
6368 };
6369 
is_trusted_reg(const struct bpf_reg_state * reg)6370 static bool is_trusted_reg(const struct bpf_reg_state *reg)
6371 {
6372 	/* A referenced register is always trusted. */
6373 	if (reg->ref_obj_id)
6374 		return true;
6375 
6376 	/* Types listed in the reg2btf_ids are always trusted */
6377 	if (reg2btf_ids[base_type(reg->type)] &&
6378 	    !bpf_type_has_unsafe_modifiers(reg->type))
6379 		return true;
6380 
6381 	/* If a register is not referenced, it is trusted if it has the
6382 	 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
6383 	 * other type modifiers may be safe, but we elect to take an opt-in
6384 	 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
6385 	 * not.
6386 	 *
6387 	 * Eventually, we should make PTR_TRUSTED the single source of truth
6388 	 * for whether a register is trusted.
6389 	 */
6390 	return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
6391 	       !bpf_type_has_unsafe_modifiers(reg->type);
6392 }
6393 
is_rcu_reg(const struct bpf_reg_state * reg)6394 static bool is_rcu_reg(const struct bpf_reg_state *reg)
6395 {
6396 	return reg->type & MEM_RCU;
6397 }
6398 
clear_trusted_flags(enum bpf_type_flag * flag)6399 static void clear_trusted_flags(enum bpf_type_flag *flag)
6400 {
6401 	*flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
6402 }
6403 
check_pkt_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict)6404 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
6405 				   const struct bpf_reg_state *reg,
6406 				   int off, int size, bool strict)
6407 {
6408 	struct tnum reg_off;
6409 	int ip_align;
6410 
6411 	/* Byte size accesses are always allowed. */
6412 	if (!strict || size == 1)
6413 		return 0;
6414 
6415 	/* For platforms that do not have a Kconfig enabling
6416 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
6417 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
6418 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
6419 	 * to this code only in strict mode where we want to emulate
6420 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
6421 	 * unconditional IP align value of '2'.
6422 	 */
6423 	ip_align = 2;
6424 
6425 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
6426 	if (!tnum_is_aligned(reg_off, size)) {
6427 		char tn_buf[48];
6428 
6429 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6430 		verbose(env,
6431 			"misaligned packet access off %d+%s+%d+%d size %d\n",
6432 			ip_align, tn_buf, reg->off, off, size);
6433 		return -EACCES;
6434 	}
6435 
6436 	return 0;
6437 }
6438 
check_generic_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,const char * pointer_desc,int off,int size,bool strict)6439 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
6440 				       const struct bpf_reg_state *reg,
6441 				       const char *pointer_desc,
6442 				       int off, int size, bool strict)
6443 {
6444 	struct tnum reg_off;
6445 
6446 	/* Byte size accesses are always allowed. */
6447 	if (!strict || size == 1)
6448 		return 0;
6449 
6450 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
6451 	if (!tnum_is_aligned(reg_off, size)) {
6452 		char tn_buf[48];
6453 
6454 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6455 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
6456 			pointer_desc, tn_buf, reg->off, off, size);
6457 		return -EACCES;
6458 	}
6459 
6460 	return 0;
6461 }
6462 
check_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict_alignment_once)6463 static int check_ptr_alignment(struct bpf_verifier_env *env,
6464 			       const struct bpf_reg_state *reg, int off,
6465 			       int size, bool strict_alignment_once)
6466 {
6467 	bool strict = env->strict_alignment || strict_alignment_once;
6468 	const char *pointer_desc = "";
6469 
6470 	switch (reg->type) {
6471 	case PTR_TO_PACKET:
6472 	case PTR_TO_PACKET_META:
6473 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
6474 		 * right in front, treat it the very same way.
6475 		 */
6476 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
6477 	case PTR_TO_FLOW_KEYS:
6478 		pointer_desc = "flow keys ";
6479 		break;
6480 	case PTR_TO_MAP_KEY:
6481 		pointer_desc = "key ";
6482 		break;
6483 	case PTR_TO_MAP_VALUE:
6484 		pointer_desc = "value ";
6485 		if (reg->map_ptr->map_type == BPF_MAP_TYPE_INSN_ARRAY)
6486 			strict = true;
6487 		break;
6488 	case PTR_TO_CTX:
6489 		pointer_desc = "context ";
6490 		break;
6491 	case PTR_TO_STACK:
6492 		pointer_desc = "stack ";
6493 		/* The stack spill tracking logic in check_stack_write_fixed_off()
6494 		 * and check_stack_read_fixed_off() relies on stack accesses being
6495 		 * aligned.
6496 		 */
6497 		strict = true;
6498 		break;
6499 	case PTR_TO_SOCKET:
6500 		pointer_desc = "sock ";
6501 		break;
6502 	case PTR_TO_SOCK_COMMON:
6503 		pointer_desc = "sock_common ";
6504 		break;
6505 	case PTR_TO_TCP_SOCK:
6506 		pointer_desc = "tcp_sock ";
6507 		break;
6508 	case PTR_TO_XDP_SOCK:
6509 		pointer_desc = "xdp_sock ";
6510 		break;
6511 	case PTR_TO_ARENA:
6512 		return 0;
6513 	default:
6514 		break;
6515 	}
6516 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
6517 					   strict);
6518 }
6519 
bpf_enable_priv_stack(struct bpf_prog * prog)6520 static enum priv_stack_mode bpf_enable_priv_stack(struct bpf_prog *prog)
6521 {
6522 	if (!bpf_jit_supports_private_stack())
6523 		return NO_PRIV_STACK;
6524 
6525 	/* bpf_prog_check_recur() checks all prog types that use bpf trampoline
6526 	 * while kprobe/tp/perf_event/raw_tp don't use trampoline hence checked
6527 	 * explicitly.
6528 	 */
6529 	switch (prog->type) {
6530 	case BPF_PROG_TYPE_KPROBE:
6531 	case BPF_PROG_TYPE_TRACEPOINT:
6532 	case BPF_PROG_TYPE_PERF_EVENT:
6533 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
6534 		return PRIV_STACK_ADAPTIVE;
6535 	case BPF_PROG_TYPE_TRACING:
6536 	case BPF_PROG_TYPE_LSM:
6537 	case BPF_PROG_TYPE_STRUCT_OPS:
6538 		if (prog->aux->priv_stack_requested || bpf_prog_check_recur(prog))
6539 			return PRIV_STACK_ADAPTIVE;
6540 		fallthrough;
6541 	default:
6542 		break;
6543 	}
6544 
6545 	return NO_PRIV_STACK;
6546 }
6547 
round_up_stack_depth(struct bpf_verifier_env * env,int stack_depth)6548 static int round_up_stack_depth(struct bpf_verifier_env *env, int stack_depth)
6549 {
6550 	if (env->prog->jit_requested)
6551 		return round_up(stack_depth, 16);
6552 
6553 	/* round up to 32-bytes, since this is granularity
6554 	 * of interpreter stack size
6555 	 */
6556 	return round_up(max_t(u32, stack_depth, 1), 32);
6557 }
6558 
6559 /* starting from main bpf function walk all instructions of the function
6560  * and recursively walk all callees that given function can call.
6561  * Ignore jump and exit insns.
6562  * Since recursion is prevented by check_cfg() this algorithm
6563  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
6564  */
check_max_stack_depth_subprog(struct bpf_verifier_env * env,int idx,bool priv_stack_supported)6565 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx,
6566 					 bool priv_stack_supported)
6567 {
6568 	struct bpf_subprog_info *subprog = env->subprog_info;
6569 	struct bpf_insn *insn = env->prog->insnsi;
6570 	int depth = 0, frame = 0, i, subprog_end, subprog_depth;
6571 	bool tail_call_reachable = false;
6572 	int ret_insn[MAX_CALL_FRAMES];
6573 	int ret_prog[MAX_CALL_FRAMES];
6574 	int j;
6575 
6576 	i = subprog[idx].start;
6577 	if (!priv_stack_supported)
6578 		subprog[idx].priv_stack_mode = NO_PRIV_STACK;
6579 process_func:
6580 	/* protect against potential stack overflow that might happen when
6581 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
6582 	 * depth for such case down to 256 so that the worst case scenario
6583 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
6584 	 * 8k).
6585 	 *
6586 	 * To get the idea what might happen, see an example:
6587 	 * func1 -> sub rsp, 128
6588 	 *  subfunc1 -> sub rsp, 256
6589 	 *  tailcall1 -> add rsp, 256
6590 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
6591 	 *   subfunc2 -> sub rsp, 64
6592 	 *   subfunc22 -> sub rsp, 128
6593 	 *   tailcall2 -> add rsp, 128
6594 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
6595 	 *
6596 	 * tailcall will unwind the current stack frame but it will not get rid
6597 	 * of caller's stack as shown on the example above.
6598 	 */
6599 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
6600 		verbose(env,
6601 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
6602 			depth);
6603 		return -EACCES;
6604 	}
6605 
6606 	subprog_depth = round_up_stack_depth(env, subprog[idx].stack_depth);
6607 	if (priv_stack_supported) {
6608 		/* Request private stack support only if the subprog stack
6609 		 * depth is no less than BPF_PRIV_STACK_MIN_SIZE. This is to
6610 		 * avoid jit penalty if the stack usage is small.
6611 		 */
6612 		if (subprog[idx].priv_stack_mode == PRIV_STACK_UNKNOWN &&
6613 		    subprog_depth >= BPF_PRIV_STACK_MIN_SIZE)
6614 			subprog[idx].priv_stack_mode = PRIV_STACK_ADAPTIVE;
6615 	}
6616 
6617 	if (subprog[idx].priv_stack_mode == PRIV_STACK_ADAPTIVE) {
6618 		if (subprog_depth > MAX_BPF_STACK) {
6619 			verbose(env, "stack size of subprog %d is %d. Too large\n",
6620 				idx, subprog_depth);
6621 			return -EACCES;
6622 		}
6623 	} else {
6624 		depth += subprog_depth;
6625 		if (depth > MAX_BPF_STACK) {
6626 			verbose(env, "combined stack size of %d calls is %d. Too large\n",
6627 				frame + 1, depth);
6628 			return -EACCES;
6629 		}
6630 	}
6631 continue_func:
6632 	subprog_end = subprog[idx + 1].start;
6633 	for (; i < subprog_end; i++) {
6634 		int next_insn, sidx;
6635 
6636 		if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) {
6637 			bool err = false;
6638 
6639 			if (!is_bpf_throw_kfunc(insn + i))
6640 				continue;
6641 			if (subprog[idx].is_cb)
6642 				err = true;
6643 			for (int c = 0; c < frame && !err; c++) {
6644 				if (subprog[ret_prog[c]].is_cb) {
6645 					err = true;
6646 					break;
6647 				}
6648 			}
6649 			if (!err)
6650 				continue;
6651 			verbose(env,
6652 				"bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n",
6653 				i, idx);
6654 			return -EINVAL;
6655 		}
6656 
6657 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
6658 			continue;
6659 		/* remember insn and function to return to */
6660 		ret_insn[frame] = i + 1;
6661 		ret_prog[frame] = idx;
6662 
6663 		/* find the callee */
6664 		next_insn = i + insn[i].imm + 1;
6665 		sidx = find_subprog(env, next_insn);
6666 		if (verifier_bug_if(sidx < 0, env, "callee not found at insn %d", next_insn))
6667 			return -EFAULT;
6668 		if (subprog[sidx].is_async_cb) {
6669 			if (subprog[sidx].has_tail_call) {
6670 				verifier_bug(env, "subprog has tail_call and async cb");
6671 				return -EFAULT;
6672 			}
6673 			/* async callbacks don't increase bpf prog stack size unless called directly */
6674 			if (!bpf_pseudo_call(insn + i))
6675 				continue;
6676 			if (subprog[sidx].is_exception_cb) {
6677 				verbose(env, "insn %d cannot call exception cb directly", i);
6678 				return -EINVAL;
6679 			}
6680 		}
6681 		i = next_insn;
6682 		idx = sidx;
6683 		if (!priv_stack_supported)
6684 			subprog[idx].priv_stack_mode = NO_PRIV_STACK;
6685 
6686 		if (subprog[idx].has_tail_call)
6687 			tail_call_reachable = true;
6688 
6689 		frame++;
6690 		if (frame >= MAX_CALL_FRAMES) {
6691 			verbose(env, "the call stack of %d frames is too deep !\n",
6692 				frame);
6693 			return -E2BIG;
6694 		}
6695 		goto process_func;
6696 	}
6697 	/* if tail call got detected across bpf2bpf calls then mark each of the
6698 	 * currently present subprog frames as tail call reachable subprogs;
6699 	 * this info will be utilized by JIT so that we will be preserving the
6700 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
6701 	 */
6702 	if (tail_call_reachable)
6703 		for (j = 0; j < frame; j++) {
6704 			if (subprog[ret_prog[j]].is_exception_cb) {
6705 				verbose(env, "cannot tail call within exception cb\n");
6706 				return -EINVAL;
6707 			}
6708 			subprog[ret_prog[j]].tail_call_reachable = true;
6709 		}
6710 	if (subprog[0].tail_call_reachable)
6711 		env->prog->aux->tail_call_reachable = true;
6712 
6713 	/* end of for() loop means the last insn of the 'subprog'
6714 	 * was reached. Doesn't matter whether it was JA or EXIT
6715 	 */
6716 	if (frame == 0)
6717 		return 0;
6718 	if (subprog[idx].priv_stack_mode != PRIV_STACK_ADAPTIVE)
6719 		depth -= round_up_stack_depth(env, subprog[idx].stack_depth);
6720 	frame--;
6721 	i = ret_insn[frame];
6722 	idx = ret_prog[frame];
6723 	goto continue_func;
6724 }
6725 
check_max_stack_depth(struct bpf_verifier_env * env)6726 static int check_max_stack_depth(struct bpf_verifier_env *env)
6727 {
6728 	enum priv_stack_mode priv_stack_mode = PRIV_STACK_UNKNOWN;
6729 	struct bpf_subprog_info *si = env->subprog_info;
6730 	bool priv_stack_supported;
6731 	int ret;
6732 
6733 	for (int i = 0; i < env->subprog_cnt; i++) {
6734 		if (si[i].has_tail_call) {
6735 			priv_stack_mode = NO_PRIV_STACK;
6736 			break;
6737 		}
6738 	}
6739 
6740 	if (priv_stack_mode == PRIV_STACK_UNKNOWN)
6741 		priv_stack_mode = bpf_enable_priv_stack(env->prog);
6742 
6743 	/* All async_cb subprogs use normal kernel stack. If a particular
6744 	 * subprog appears in both main prog and async_cb subtree, that
6745 	 * subprog will use normal kernel stack to avoid potential nesting.
6746 	 * The reverse subprog traversal ensures when main prog subtree is
6747 	 * checked, the subprogs appearing in async_cb subtrees are already
6748 	 * marked as using normal kernel stack, so stack size checking can
6749 	 * be done properly.
6750 	 */
6751 	for (int i = env->subprog_cnt - 1; i >= 0; i--) {
6752 		if (!i || si[i].is_async_cb) {
6753 			priv_stack_supported = !i && priv_stack_mode == PRIV_STACK_ADAPTIVE;
6754 			ret = check_max_stack_depth_subprog(env, i, priv_stack_supported);
6755 			if (ret < 0)
6756 				return ret;
6757 		}
6758 	}
6759 
6760 	for (int i = 0; i < env->subprog_cnt; i++) {
6761 		if (si[i].priv_stack_mode == PRIV_STACK_ADAPTIVE) {
6762 			env->prog->aux->jits_use_priv_stack = true;
6763 			break;
6764 		}
6765 	}
6766 
6767 	return 0;
6768 }
6769 
6770 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
get_callee_stack_depth(struct bpf_verifier_env * env,const struct bpf_insn * insn,int idx)6771 static int get_callee_stack_depth(struct bpf_verifier_env *env,
6772 				  const struct bpf_insn *insn, int idx)
6773 {
6774 	int start = idx + insn->imm + 1, subprog;
6775 
6776 	subprog = find_subprog(env, start);
6777 	if (verifier_bug_if(subprog < 0, env, "get stack depth: no program at insn %d", start))
6778 		return -EFAULT;
6779 	return env->subprog_info[subprog].stack_depth;
6780 }
6781 #endif
6782 
__check_buffer_access(struct bpf_verifier_env * env,const char * buf_info,const struct bpf_reg_state * reg,int regno,int off,int size)6783 static int __check_buffer_access(struct bpf_verifier_env *env,
6784 				 const char *buf_info,
6785 				 const struct bpf_reg_state *reg,
6786 				 int regno, int off, int size)
6787 {
6788 	if (off < 0) {
6789 		verbose(env,
6790 			"R%d invalid %s buffer access: off=%d, size=%d\n",
6791 			regno, buf_info, off, size);
6792 		return -EACCES;
6793 	}
6794 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6795 		char tn_buf[48];
6796 
6797 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6798 		verbose(env,
6799 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
6800 			regno, off, tn_buf);
6801 		return -EACCES;
6802 	}
6803 
6804 	return 0;
6805 }
6806 
check_tp_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size)6807 static int check_tp_buffer_access(struct bpf_verifier_env *env,
6808 				  const struct bpf_reg_state *reg,
6809 				  int regno, int off, int size)
6810 {
6811 	int err;
6812 
6813 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
6814 	if (err)
6815 		return err;
6816 
6817 	if (off + size > env->prog->aux->max_tp_access)
6818 		env->prog->aux->max_tp_access = off + size;
6819 
6820 	return 0;
6821 }
6822 
check_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size,bool zero_size_allowed,u32 * max_access)6823 static int check_buffer_access(struct bpf_verifier_env *env,
6824 			       const struct bpf_reg_state *reg,
6825 			       int regno, int off, int size,
6826 			       bool zero_size_allowed,
6827 			       u32 *max_access)
6828 {
6829 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
6830 	int err;
6831 
6832 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
6833 	if (err)
6834 		return err;
6835 
6836 	if (off + size > *max_access)
6837 		*max_access = off + size;
6838 
6839 	return 0;
6840 }
6841 
6842 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
zext_32_to_64(struct bpf_reg_state * reg)6843 static void zext_32_to_64(struct bpf_reg_state *reg)
6844 {
6845 	reg->var_off = tnum_subreg(reg->var_off);
6846 	__reg_assign_32_into_64(reg);
6847 }
6848 
6849 /* truncate register to smaller size (in bytes)
6850  * must be called with size < BPF_REG_SIZE
6851  */
coerce_reg_to_size(struct bpf_reg_state * reg,int size)6852 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
6853 {
6854 	u64 mask;
6855 
6856 	/* clear high bits in bit representation */
6857 	reg->var_off = tnum_cast(reg->var_off, size);
6858 
6859 	/* fix arithmetic bounds */
6860 	mask = ((u64)1 << (size * 8)) - 1;
6861 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
6862 		reg->umin_value &= mask;
6863 		reg->umax_value &= mask;
6864 	} else {
6865 		reg->umin_value = 0;
6866 		reg->umax_value = mask;
6867 	}
6868 	reg->smin_value = reg->umin_value;
6869 	reg->smax_value = reg->umax_value;
6870 
6871 	/* If size is smaller than 32bit register the 32bit register
6872 	 * values are also truncated so we push 64-bit bounds into
6873 	 * 32-bit bounds. Above were truncated < 32-bits already.
6874 	 */
6875 	if (size < 4)
6876 		__mark_reg32_unbounded(reg);
6877 
6878 	reg_bounds_sync(reg);
6879 }
6880 
set_sext64_default_val(struct bpf_reg_state * reg,int size)6881 static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
6882 {
6883 	if (size == 1) {
6884 		reg->smin_value = reg->s32_min_value = S8_MIN;
6885 		reg->smax_value = reg->s32_max_value = S8_MAX;
6886 	} else if (size == 2) {
6887 		reg->smin_value = reg->s32_min_value = S16_MIN;
6888 		reg->smax_value = reg->s32_max_value = S16_MAX;
6889 	} else {
6890 		/* size == 4 */
6891 		reg->smin_value = reg->s32_min_value = S32_MIN;
6892 		reg->smax_value = reg->s32_max_value = S32_MAX;
6893 	}
6894 	reg->umin_value = reg->u32_min_value = 0;
6895 	reg->umax_value = U64_MAX;
6896 	reg->u32_max_value = U32_MAX;
6897 	reg->var_off = tnum_unknown;
6898 }
6899 
coerce_reg_to_size_sx(struct bpf_reg_state * reg,int size)6900 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
6901 {
6902 	s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
6903 	u64 top_smax_value, top_smin_value;
6904 	u64 num_bits = size * 8;
6905 
6906 	if (tnum_is_const(reg->var_off)) {
6907 		u64_cval = reg->var_off.value;
6908 		if (size == 1)
6909 			reg->var_off = tnum_const((s8)u64_cval);
6910 		else if (size == 2)
6911 			reg->var_off = tnum_const((s16)u64_cval);
6912 		else
6913 			/* size == 4 */
6914 			reg->var_off = tnum_const((s32)u64_cval);
6915 
6916 		u64_cval = reg->var_off.value;
6917 		reg->smax_value = reg->smin_value = u64_cval;
6918 		reg->umax_value = reg->umin_value = u64_cval;
6919 		reg->s32_max_value = reg->s32_min_value = u64_cval;
6920 		reg->u32_max_value = reg->u32_min_value = u64_cval;
6921 		return;
6922 	}
6923 
6924 	top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
6925 	top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
6926 
6927 	if (top_smax_value != top_smin_value)
6928 		goto out;
6929 
6930 	/* find the s64_min and s64_min after sign extension */
6931 	if (size == 1) {
6932 		init_s64_max = (s8)reg->smax_value;
6933 		init_s64_min = (s8)reg->smin_value;
6934 	} else if (size == 2) {
6935 		init_s64_max = (s16)reg->smax_value;
6936 		init_s64_min = (s16)reg->smin_value;
6937 	} else {
6938 		init_s64_max = (s32)reg->smax_value;
6939 		init_s64_min = (s32)reg->smin_value;
6940 	}
6941 
6942 	s64_max = max(init_s64_max, init_s64_min);
6943 	s64_min = min(init_s64_max, init_s64_min);
6944 
6945 	/* both of s64_max/s64_min positive or negative */
6946 	if ((s64_max >= 0) == (s64_min >= 0)) {
6947 		reg->s32_min_value = reg->smin_value = s64_min;
6948 		reg->s32_max_value = reg->smax_value = s64_max;
6949 		reg->u32_min_value = reg->umin_value = s64_min;
6950 		reg->u32_max_value = reg->umax_value = s64_max;
6951 		reg->var_off = tnum_range(s64_min, s64_max);
6952 		return;
6953 	}
6954 
6955 out:
6956 	set_sext64_default_val(reg, size);
6957 }
6958 
set_sext32_default_val(struct bpf_reg_state * reg,int size)6959 static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
6960 {
6961 	if (size == 1) {
6962 		reg->s32_min_value = S8_MIN;
6963 		reg->s32_max_value = S8_MAX;
6964 	} else {
6965 		/* size == 2 */
6966 		reg->s32_min_value = S16_MIN;
6967 		reg->s32_max_value = S16_MAX;
6968 	}
6969 	reg->u32_min_value = 0;
6970 	reg->u32_max_value = U32_MAX;
6971 	reg->var_off = tnum_subreg(tnum_unknown);
6972 }
6973 
coerce_subreg_to_size_sx(struct bpf_reg_state * reg,int size)6974 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
6975 {
6976 	s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
6977 	u32 top_smax_value, top_smin_value;
6978 	u32 num_bits = size * 8;
6979 
6980 	if (tnum_is_const(reg->var_off)) {
6981 		u32_val = reg->var_off.value;
6982 		if (size == 1)
6983 			reg->var_off = tnum_const((s8)u32_val);
6984 		else
6985 			reg->var_off = tnum_const((s16)u32_val);
6986 
6987 		u32_val = reg->var_off.value;
6988 		reg->s32_min_value = reg->s32_max_value = u32_val;
6989 		reg->u32_min_value = reg->u32_max_value = u32_val;
6990 		return;
6991 	}
6992 
6993 	top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
6994 	top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
6995 
6996 	if (top_smax_value != top_smin_value)
6997 		goto out;
6998 
6999 	/* find the s32_min and s32_min after sign extension */
7000 	if (size == 1) {
7001 		init_s32_max = (s8)reg->s32_max_value;
7002 		init_s32_min = (s8)reg->s32_min_value;
7003 	} else {
7004 		/* size == 2 */
7005 		init_s32_max = (s16)reg->s32_max_value;
7006 		init_s32_min = (s16)reg->s32_min_value;
7007 	}
7008 	s32_max = max(init_s32_max, init_s32_min);
7009 	s32_min = min(init_s32_max, init_s32_min);
7010 
7011 	if ((s32_min >= 0) == (s32_max >= 0)) {
7012 		reg->s32_min_value = s32_min;
7013 		reg->s32_max_value = s32_max;
7014 		reg->u32_min_value = (u32)s32_min;
7015 		reg->u32_max_value = (u32)s32_max;
7016 		reg->var_off = tnum_subreg(tnum_range(s32_min, s32_max));
7017 		return;
7018 	}
7019 
7020 out:
7021 	set_sext32_default_val(reg, size);
7022 }
7023 
bpf_map_is_rdonly(const struct bpf_map * map)7024 static bool bpf_map_is_rdonly(const struct bpf_map *map)
7025 {
7026 	/* A map is considered read-only if the following condition are true:
7027 	 *
7028 	 * 1) BPF program side cannot change any of the map content. The
7029 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
7030 	 *    and was set at map creation time.
7031 	 * 2) The map value(s) have been initialized from user space by a
7032 	 *    loader and then "frozen", such that no new map update/delete
7033 	 *    operations from syscall side are possible for the rest of
7034 	 *    the map's lifetime from that point onwards.
7035 	 * 3) Any parallel/pending map update/delete operations from syscall
7036 	 *    side have been completed. Only after that point, it's safe to
7037 	 *    assume that map value(s) are immutable.
7038 	 */
7039 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
7040 	       READ_ONCE(map->frozen) &&
7041 	       !bpf_map_write_active(map);
7042 }
7043 
bpf_map_direct_read(struct bpf_map * map,int off,int size,u64 * val,bool is_ldsx)7044 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
7045 			       bool is_ldsx)
7046 {
7047 	void *ptr;
7048 	u64 addr;
7049 	int err;
7050 
7051 	err = map->ops->map_direct_value_addr(map, &addr, off);
7052 	if (err)
7053 		return err;
7054 	ptr = (void *)(long)addr + off;
7055 
7056 	switch (size) {
7057 	case sizeof(u8):
7058 		*val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
7059 		break;
7060 	case sizeof(u16):
7061 		*val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
7062 		break;
7063 	case sizeof(u32):
7064 		*val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
7065 		break;
7066 	case sizeof(u64):
7067 		*val = *(u64 *)ptr;
7068 		break;
7069 	default:
7070 		return -EINVAL;
7071 	}
7072 	return 0;
7073 }
7074 
7075 #define BTF_TYPE_SAFE_RCU(__type)  __PASTE(__type, __safe_rcu)
7076 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type)  __PASTE(__type, __safe_rcu_or_null)
7077 #define BTF_TYPE_SAFE_TRUSTED(__type)  __PASTE(__type, __safe_trusted)
7078 #define BTF_TYPE_SAFE_TRUSTED_OR_NULL(__type)  __PASTE(__type, __safe_trusted_or_null)
7079 
7080 /*
7081  * Allow list few fields as RCU trusted or full trusted.
7082  * This logic doesn't allow mix tagging and will be removed once GCC supports
7083  * btf_type_tag.
7084  */
7085 
7086 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
BTF_TYPE_SAFE_RCU(struct task_struct)7087 BTF_TYPE_SAFE_RCU(struct task_struct) {
7088 	const cpumask_t *cpus_ptr;
7089 	struct css_set __rcu *cgroups;
7090 	struct task_struct __rcu *real_parent;
7091 	struct task_struct *group_leader;
7092 };
7093 
BTF_TYPE_SAFE_RCU(struct cgroup)7094 BTF_TYPE_SAFE_RCU(struct cgroup) {
7095 	/* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
7096 	struct kernfs_node *kn;
7097 };
7098 
BTF_TYPE_SAFE_RCU(struct css_set)7099 BTF_TYPE_SAFE_RCU(struct css_set) {
7100 	struct cgroup *dfl_cgrp;
7101 };
7102 
BTF_TYPE_SAFE_RCU(struct cgroup_subsys_state)7103 BTF_TYPE_SAFE_RCU(struct cgroup_subsys_state) {
7104 	struct cgroup *cgroup;
7105 };
7106 
7107 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)7108 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
7109 	struct file __rcu *exe_file;
7110 #ifdef CONFIG_MEMCG
7111 	struct task_struct __rcu *owner;
7112 #endif
7113 };
7114 
7115 /* skb->sk, req->sk are not RCU protected, but we mark them as such
7116  * because bpf prog accessible sockets are SOCK_RCU_FREE.
7117  */
BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)7118 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
7119 	struct sock *sk;
7120 };
7121 
BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)7122 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
7123 	struct sock *sk;
7124 };
7125 
7126 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)7127 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
7128 	struct seq_file *seq;
7129 };
7130 
BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)7131 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
7132 	struct bpf_iter_meta *meta;
7133 	struct task_struct *task;
7134 };
7135 
BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)7136 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
7137 	struct file *file;
7138 };
7139 
BTF_TYPE_SAFE_TRUSTED(struct file)7140 BTF_TYPE_SAFE_TRUSTED(struct file) {
7141 	struct inode *f_inode;
7142 };
7143 
BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct dentry)7144 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct dentry) {
7145 	struct inode *d_inode;
7146 };
7147 
BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket)7148 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) {
7149 	struct sock *sk;
7150 };
7151 
BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct vm_area_struct)7152 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct vm_area_struct) {
7153 	struct mm_struct *vm_mm;
7154 	struct file *vm_file;
7155 };
7156 
type_is_rcu(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)7157 static bool type_is_rcu(struct bpf_verifier_env *env,
7158 			struct bpf_reg_state *reg,
7159 			const char *field_name, u32 btf_id)
7160 {
7161 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
7162 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
7163 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
7164 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup_subsys_state));
7165 
7166 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
7167 }
7168 
type_is_rcu_or_null(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)7169 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
7170 				struct bpf_reg_state *reg,
7171 				const char *field_name, u32 btf_id)
7172 {
7173 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
7174 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
7175 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
7176 
7177 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
7178 }
7179 
type_is_trusted(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)7180 static bool type_is_trusted(struct bpf_verifier_env *env,
7181 			    struct bpf_reg_state *reg,
7182 			    const char *field_name, u32 btf_id)
7183 {
7184 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
7185 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
7186 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
7187 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
7188 
7189 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
7190 }
7191 
type_is_trusted_or_null(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)7192 static bool type_is_trusted_or_null(struct bpf_verifier_env *env,
7193 				    struct bpf_reg_state *reg,
7194 				    const char *field_name, u32 btf_id)
7195 {
7196 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket));
7197 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct dentry));
7198 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct vm_area_struct));
7199 
7200 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id,
7201 					  "__safe_trusted_or_null");
7202 }
7203 
check_ptr_to_btf_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)7204 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
7205 				   struct bpf_reg_state *regs,
7206 				   int regno, int off, int size,
7207 				   enum bpf_access_type atype,
7208 				   int value_regno)
7209 {
7210 	struct bpf_reg_state *reg = regs + regno;
7211 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
7212 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
7213 	const char *field_name = NULL;
7214 	enum bpf_type_flag flag = 0;
7215 	u32 btf_id = 0;
7216 	int ret;
7217 
7218 	if (!env->allow_ptr_leaks) {
7219 		verbose(env,
7220 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
7221 			tname);
7222 		return -EPERM;
7223 	}
7224 	if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
7225 		verbose(env,
7226 			"Cannot access kernel 'struct %s' from non-GPL compatible program\n",
7227 			tname);
7228 		return -EINVAL;
7229 	}
7230 	if (off < 0) {
7231 		verbose(env,
7232 			"R%d is ptr_%s invalid negative access: off=%d\n",
7233 			regno, tname, off);
7234 		return -EACCES;
7235 	}
7236 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
7237 		char tn_buf[48];
7238 
7239 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7240 		verbose(env,
7241 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
7242 			regno, tname, off, tn_buf);
7243 		return -EACCES;
7244 	}
7245 
7246 	if (reg->type & MEM_USER) {
7247 		verbose(env,
7248 			"R%d is ptr_%s access user memory: off=%d\n",
7249 			regno, tname, off);
7250 		return -EACCES;
7251 	}
7252 
7253 	if (reg->type & MEM_PERCPU) {
7254 		verbose(env,
7255 			"R%d is ptr_%s access percpu memory: off=%d\n",
7256 			regno, tname, off);
7257 		return -EACCES;
7258 	}
7259 
7260 	if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
7261 		if (!btf_is_kernel(reg->btf)) {
7262 			verifier_bug(env, "reg->btf must be kernel btf");
7263 			return -EFAULT;
7264 		}
7265 		ret = env->ops->btf_struct_access(&env->log, reg, off, size);
7266 	} else {
7267 		/* Writes are permitted with default btf_struct_access for
7268 		 * program allocated objects (which always have ref_obj_id > 0),
7269 		 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
7270 		 */
7271 		if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
7272 			verbose(env, "only read is supported\n");
7273 			return -EACCES;
7274 		}
7275 
7276 		if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
7277 		    !(reg->type & MEM_RCU) && !reg->ref_obj_id) {
7278 			verifier_bug(env, "ref_obj_id for allocated object must be non-zero");
7279 			return -EFAULT;
7280 		}
7281 
7282 		ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
7283 	}
7284 
7285 	if (ret < 0)
7286 		return ret;
7287 
7288 	if (ret != PTR_TO_BTF_ID) {
7289 		/* just mark; */
7290 
7291 	} else if (type_flag(reg->type) & PTR_UNTRUSTED) {
7292 		/* If this is an untrusted pointer, all pointers formed by walking it
7293 		 * also inherit the untrusted flag.
7294 		 */
7295 		flag = PTR_UNTRUSTED;
7296 
7297 	} else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
7298 		/* By default any pointer obtained from walking a trusted pointer is no
7299 		 * longer trusted, unless the field being accessed has explicitly been
7300 		 * marked as inheriting its parent's state of trust (either full or RCU).
7301 		 * For example:
7302 		 * 'cgroups' pointer is untrusted if task->cgroups dereference
7303 		 * happened in a sleepable program outside of bpf_rcu_read_lock()
7304 		 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
7305 		 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
7306 		 *
7307 		 * A regular RCU-protected pointer with __rcu tag can also be deemed
7308 		 * trusted if we are in an RCU CS. Such pointer can be NULL.
7309 		 */
7310 		if (type_is_trusted(env, reg, field_name, btf_id)) {
7311 			flag |= PTR_TRUSTED;
7312 		} else if (type_is_trusted_or_null(env, reg, field_name, btf_id)) {
7313 			flag |= PTR_TRUSTED | PTR_MAYBE_NULL;
7314 		} else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
7315 			if (type_is_rcu(env, reg, field_name, btf_id)) {
7316 				/* ignore __rcu tag and mark it MEM_RCU */
7317 				flag |= MEM_RCU;
7318 			} else if (flag & MEM_RCU ||
7319 				   type_is_rcu_or_null(env, reg, field_name, btf_id)) {
7320 				/* __rcu tagged pointers can be NULL */
7321 				flag |= MEM_RCU | PTR_MAYBE_NULL;
7322 
7323 				/* We always trust them */
7324 				if (type_is_rcu_or_null(env, reg, field_name, btf_id) &&
7325 				    flag & PTR_UNTRUSTED)
7326 					flag &= ~PTR_UNTRUSTED;
7327 			} else if (flag & (MEM_PERCPU | MEM_USER)) {
7328 				/* keep as-is */
7329 			} else {
7330 				/* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
7331 				clear_trusted_flags(&flag);
7332 			}
7333 		} else {
7334 			/*
7335 			 * If not in RCU CS or MEM_RCU pointer can be NULL then
7336 			 * aggressively mark as untrusted otherwise such
7337 			 * pointers will be plain PTR_TO_BTF_ID without flags
7338 			 * and will be allowed to be passed into helpers for
7339 			 * compat reasons.
7340 			 */
7341 			flag = PTR_UNTRUSTED;
7342 		}
7343 	} else {
7344 		/* Old compat. Deprecated */
7345 		clear_trusted_flags(&flag);
7346 	}
7347 
7348 	if (atype == BPF_READ && value_regno >= 0) {
7349 		ret = mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
7350 		if (ret < 0)
7351 			return ret;
7352 	}
7353 
7354 	return 0;
7355 }
7356 
check_ptr_to_map_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)7357 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
7358 				   struct bpf_reg_state *regs,
7359 				   int regno, int off, int size,
7360 				   enum bpf_access_type atype,
7361 				   int value_regno)
7362 {
7363 	struct bpf_reg_state *reg = regs + regno;
7364 	struct bpf_map *map = reg->map_ptr;
7365 	struct bpf_reg_state map_reg;
7366 	enum bpf_type_flag flag = 0;
7367 	const struct btf_type *t;
7368 	const char *tname;
7369 	u32 btf_id;
7370 	int ret;
7371 
7372 	if (!btf_vmlinux) {
7373 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
7374 		return -ENOTSUPP;
7375 	}
7376 
7377 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
7378 		verbose(env, "map_ptr access not supported for map type %d\n",
7379 			map->map_type);
7380 		return -ENOTSUPP;
7381 	}
7382 
7383 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
7384 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
7385 
7386 	if (!env->allow_ptr_leaks) {
7387 		verbose(env,
7388 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
7389 			tname);
7390 		return -EPERM;
7391 	}
7392 
7393 	if (off < 0) {
7394 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
7395 			regno, tname, off);
7396 		return -EACCES;
7397 	}
7398 
7399 	if (atype != BPF_READ) {
7400 		verbose(env, "only read from %s is supported\n", tname);
7401 		return -EACCES;
7402 	}
7403 
7404 	/* Simulate access to a PTR_TO_BTF_ID */
7405 	memset(&map_reg, 0, sizeof(map_reg));
7406 	ret = mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID,
7407 			      btf_vmlinux, *map->ops->map_btf_id, 0);
7408 	if (ret < 0)
7409 		return ret;
7410 	ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
7411 	if (ret < 0)
7412 		return ret;
7413 
7414 	if (value_regno >= 0) {
7415 		ret = mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
7416 		if (ret < 0)
7417 			return ret;
7418 	}
7419 
7420 	return 0;
7421 }
7422 
7423 /* Check that the stack access at the given offset is within bounds. The
7424  * maximum valid offset is -1.
7425  *
7426  * The minimum valid offset is -MAX_BPF_STACK for writes, and
7427  * -state->allocated_stack for reads.
7428  */
check_stack_slot_within_bounds(struct bpf_verifier_env * env,s64 off,struct bpf_func_state * state,enum bpf_access_type t)7429 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env,
7430                                           s64 off,
7431                                           struct bpf_func_state *state,
7432                                           enum bpf_access_type t)
7433 {
7434 	int min_valid_off;
7435 
7436 	if (t == BPF_WRITE || env->allow_uninit_stack)
7437 		min_valid_off = -MAX_BPF_STACK;
7438 	else
7439 		min_valid_off = -state->allocated_stack;
7440 
7441 	if (off < min_valid_off || off > -1)
7442 		return -EACCES;
7443 	return 0;
7444 }
7445 
7446 /* Check that the stack access at 'regno + off' falls within the maximum stack
7447  * bounds.
7448  *
7449  * 'off' includes `regno->offset`, but not its dynamic part (if any).
7450  */
check_stack_access_within_bounds(struct bpf_verifier_env * env,int regno,int off,int access_size,enum bpf_access_type type)7451 static int check_stack_access_within_bounds(
7452 		struct bpf_verifier_env *env,
7453 		int regno, int off, int access_size,
7454 		enum bpf_access_type type)
7455 {
7456 	struct bpf_reg_state *regs = cur_regs(env);
7457 	struct bpf_reg_state *reg = regs + regno;
7458 	struct bpf_func_state *state = func(env, reg);
7459 	s64 min_off, max_off;
7460 	int err;
7461 	char *err_extra;
7462 
7463 	if (type == BPF_READ)
7464 		err_extra = " read from";
7465 	else
7466 		err_extra = " write to";
7467 
7468 	if (tnum_is_const(reg->var_off)) {
7469 		min_off = (s64)reg->var_off.value + off;
7470 		max_off = min_off + access_size;
7471 	} else {
7472 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
7473 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
7474 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
7475 				err_extra, regno);
7476 			return -EACCES;
7477 		}
7478 		min_off = reg->smin_value + off;
7479 		max_off = reg->smax_value + off + access_size;
7480 	}
7481 
7482 	err = check_stack_slot_within_bounds(env, min_off, state, type);
7483 	if (!err && max_off > 0)
7484 		err = -EINVAL; /* out of stack access into non-negative offsets */
7485 	if (!err && access_size < 0)
7486 		/* access_size should not be negative (or overflow an int); others checks
7487 		 * along the way should have prevented such an access.
7488 		 */
7489 		err = -EFAULT; /* invalid negative access size; integer overflow? */
7490 
7491 	if (err) {
7492 		if (tnum_is_const(reg->var_off)) {
7493 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
7494 				err_extra, regno, off, access_size);
7495 		} else {
7496 			char tn_buf[48];
7497 
7498 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7499 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s off=%d size=%d\n",
7500 				err_extra, regno, tn_buf, off, access_size);
7501 		}
7502 		return err;
7503 	}
7504 
7505 	/* Note that there is no stack access with offset zero, so the needed stack
7506 	 * size is -min_off, not -min_off+1.
7507 	 */
7508 	return grow_stack_state(env, state, -min_off /* size */);
7509 }
7510 
get_func_retval_range(struct bpf_prog * prog,struct bpf_retval_range * range)7511 static bool get_func_retval_range(struct bpf_prog *prog,
7512 				  struct bpf_retval_range *range)
7513 {
7514 	if (prog->type == BPF_PROG_TYPE_LSM &&
7515 		prog->expected_attach_type == BPF_LSM_MAC &&
7516 		!bpf_lsm_get_retval_range(prog, range)) {
7517 		return true;
7518 	}
7519 	return false;
7520 }
7521 
7522 /* check whether memory at (regno + off) is accessible for t = (read | write)
7523  * if t==write, value_regno is a register which value is stored into memory
7524  * if t==read, value_regno is a register which will receive the value from memory
7525  * if t==write && value_regno==-1, some unknown value is stored into memory
7526  * if t==read && value_regno==-1, don't care what we read from memory
7527  */
check_mem_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int bpf_size,enum bpf_access_type t,int value_regno,bool strict_alignment_once,bool is_ldsx)7528 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
7529 			    int off, int bpf_size, enum bpf_access_type t,
7530 			    int value_regno, bool strict_alignment_once, bool is_ldsx)
7531 {
7532 	struct bpf_reg_state *regs = cur_regs(env);
7533 	struct bpf_reg_state *reg = regs + regno;
7534 	int size, err = 0;
7535 
7536 	size = bpf_size_to_bytes(bpf_size);
7537 	if (size < 0)
7538 		return size;
7539 
7540 	/* alignment checks will add in reg->off themselves */
7541 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
7542 	if (err)
7543 		return err;
7544 
7545 	/* for access checks, reg->off is just part of off */
7546 	off += reg->off;
7547 
7548 	if (reg->type == PTR_TO_MAP_KEY) {
7549 		if (t == BPF_WRITE) {
7550 			verbose(env, "write to change key R%d not allowed\n", regno);
7551 			return -EACCES;
7552 		}
7553 
7554 		err = check_mem_region_access(env, regno, off, size,
7555 					      reg->map_ptr->key_size, false);
7556 		if (err)
7557 			return err;
7558 		if (value_regno >= 0)
7559 			mark_reg_unknown(env, regs, value_regno);
7560 	} else if (reg->type == PTR_TO_MAP_VALUE) {
7561 		struct btf_field *kptr_field = NULL;
7562 
7563 		if (t == BPF_WRITE && value_regno >= 0 &&
7564 		    is_pointer_value(env, value_regno)) {
7565 			verbose(env, "R%d leaks addr into map\n", value_regno);
7566 			return -EACCES;
7567 		}
7568 		err = check_map_access_type(env, regno, off, size, t);
7569 		if (err)
7570 			return err;
7571 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
7572 		if (err)
7573 			return err;
7574 		if (tnum_is_const(reg->var_off))
7575 			kptr_field = btf_record_find(reg->map_ptr->record,
7576 						     off + reg->var_off.value, BPF_KPTR | BPF_UPTR);
7577 		if (kptr_field) {
7578 			err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
7579 		} else if (t == BPF_READ && value_regno >= 0) {
7580 			struct bpf_map *map = reg->map_ptr;
7581 
7582 			/*
7583 			 * If map is read-only, track its contents as scalars,
7584 			 * unless it is an insn array (see the special case below)
7585 			 */
7586 			if (tnum_is_const(reg->var_off) &&
7587 			    bpf_map_is_rdonly(map) &&
7588 			    map->ops->map_direct_value_addr &&
7589 			    map->map_type != BPF_MAP_TYPE_INSN_ARRAY) {
7590 				int map_off = off + reg->var_off.value;
7591 				u64 val = 0;
7592 
7593 				err = bpf_map_direct_read(map, map_off, size,
7594 							  &val, is_ldsx);
7595 				if (err)
7596 					return err;
7597 
7598 				regs[value_regno].type = SCALAR_VALUE;
7599 				__mark_reg_known(&regs[value_regno], val);
7600 			} else if (map->map_type == BPF_MAP_TYPE_INSN_ARRAY) {
7601 				if (bpf_size != BPF_DW) {
7602 					verbose(env, "Invalid read of %d bytes from insn_array\n",
7603 						     size);
7604 					return -EACCES;
7605 				}
7606 				copy_register_state(&regs[value_regno], reg);
7607 				regs[value_regno].type = PTR_TO_INSN;
7608 			} else {
7609 				mark_reg_unknown(env, regs, value_regno);
7610 			}
7611 		}
7612 	} else if (base_type(reg->type) == PTR_TO_MEM) {
7613 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
7614 		bool rdonly_untrusted = rdonly_mem && (reg->type & PTR_UNTRUSTED);
7615 
7616 		if (type_may_be_null(reg->type)) {
7617 			verbose(env, "R%d invalid mem access '%s'\n", regno,
7618 				reg_type_str(env, reg->type));
7619 			return -EACCES;
7620 		}
7621 
7622 		if (t == BPF_WRITE && rdonly_mem) {
7623 			verbose(env, "R%d cannot write into %s\n",
7624 				regno, reg_type_str(env, reg->type));
7625 			return -EACCES;
7626 		}
7627 
7628 		if (t == BPF_WRITE && value_regno >= 0 &&
7629 		    is_pointer_value(env, value_regno)) {
7630 			verbose(env, "R%d leaks addr into mem\n", value_regno);
7631 			return -EACCES;
7632 		}
7633 
7634 		/*
7635 		 * Accesses to untrusted PTR_TO_MEM are done through probe
7636 		 * instructions, hence no need to check bounds in that case.
7637 		 */
7638 		if (!rdonly_untrusted)
7639 			err = check_mem_region_access(env, regno, off, size,
7640 						      reg->mem_size, false);
7641 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
7642 			mark_reg_unknown(env, regs, value_regno);
7643 	} else if (reg->type == PTR_TO_CTX) {
7644 		struct bpf_retval_range range;
7645 		struct bpf_insn_access_aux info = {
7646 			.reg_type = SCALAR_VALUE,
7647 			.is_ldsx = is_ldsx,
7648 			.log = &env->log,
7649 		};
7650 
7651 		if (t == BPF_WRITE && value_regno >= 0 &&
7652 		    is_pointer_value(env, value_regno)) {
7653 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
7654 			return -EACCES;
7655 		}
7656 
7657 		err = check_ptr_off_reg(env, reg, regno);
7658 		if (err < 0)
7659 			return err;
7660 
7661 		err = check_ctx_access(env, insn_idx, off, size, t, &info);
7662 		if (err)
7663 			verbose_linfo(env, insn_idx, "; ");
7664 		if (!err && t == BPF_READ && value_regno >= 0) {
7665 			/* ctx access returns either a scalar, or a
7666 			 * PTR_TO_PACKET[_META,_END]. In the latter
7667 			 * case, we know the offset is zero.
7668 			 */
7669 			if (info.reg_type == SCALAR_VALUE) {
7670 				if (info.is_retval && get_func_retval_range(env->prog, &range)) {
7671 					err = __mark_reg_s32_range(env, regs, value_regno,
7672 								   range.minval, range.maxval);
7673 					if (err)
7674 						return err;
7675 				} else {
7676 					mark_reg_unknown(env, regs, value_regno);
7677 				}
7678 			} else {
7679 				mark_reg_known_zero(env, regs,
7680 						    value_regno);
7681 				if (type_may_be_null(info.reg_type))
7682 					regs[value_regno].id = ++env->id_gen;
7683 				/* A load of ctx field could have different
7684 				 * actual load size with the one encoded in the
7685 				 * insn. When the dst is PTR, it is for sure not
7686 				 * a sub-register.
7687 				 */
7688 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
7689 				if (base_type(info.reg_type) == PTR_TO_BTF_ID) {
7690 					regs[value_regno].btf = info.btf;
7691 					regs[value_regno].btf_id = info.btf_id;
7692 					regs[value_regno].ref_obj_id = info.ref_obj_id;
7693 				}
7694 			}
7695 			regs[value_regno].type = info.reg_type;
7696 		}
7697 
7698 	} else if (reg->type == PTR_TO_STACK) {
7699 		/* Basic bounds checks. */
7700 		err = check_stack_access_within_bounds(env, regno, off, size, t);
7701 		if (err)
7702 			return err;
7703 
7704 		if (t == BPF_READ)
7705 			err = check_stack_read(env, regno, off, size,
7706 					       value_regno);
7707 		else
7708 			err = check_stack_write(env, regno, off, size,
7709 						value_regno, insn_idx);
7710 	} else if (reg_is_pkt_pointer(reg)) {
7711 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
7712 			verbose(env, "cannot write into packet\n");
7713 			return -EACCES;
7714 		}
7715 		if (t == BPF_WRITE && value_regno >= 0 &&
7716 		    is_pointer_value(env, value_regno)) {
7717 			verbose(env, "R%d leaks addr into packet\n",
7718 				value_regno);
7719 			return -EACCES;
7720 		}
7721 		err = check_packet_access(env, regno, off, size, false);
7722 		if (!err && t == BPF_READ && value_regno >= 0)
7723 			mark_reg_unknown(env, regs, value_regno);
7724 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
7725 		if (t == BPF_WRITE && value_regno >= 0 &&
7726 		    is_pointer_value(env, value_regno)) {
7727 			verbose(env, "R%d leaks addr into flow keys\n",
7728 				value_regno);
7729 			return -EACCES;
7730 		}
7731 
7732 		err = check_flow_keys_access(env, off, size);
7733 		if (!err && t == BPF_READ && value_regno >= 0)
7734 			mark_reg_unknown(env, regs, value_regno);
7735 	} else if (type_is_sk_pointer(reg->type)) {
7736 		if (t == BPF_WRITE) {
7737 			verbose(env, "R%d cannot write into %s\n",
7738 				regno, reg_type_str(env, reg->type));
7739 			return -EACCES;
7740 		}
7741 		err = check_sock_access(env, insn_idx, regno, off, size, t);
7742 		if (!err && value_regno >= 0)
7743 			mark_reg_unknown(env, regs, value_regno);
7744 	} else if (reg->type == PTR_TO_TP_BUFFER) {
7745 		err = check_tp_buffer_access(env, reg, regno, off, size);
7746 		if (!err && t == BPF_READ && value_regno >= 0)
7747 			mark_reg_unknown(env, regs, value_regno);
7748 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
7749 		   !type_may_be_null(reg->type)) {
7750 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
7751 					      value_regno);
7752 	} else if (reg->type == CONST_PTR_TO_MAP) {
7753 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
7754 					      value_regno);
7755 	} else if (base_type(reg->type) == PTR_TO_BUF) {
7756 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
7757 		u32 *max_access;
7758 
7759 		if (rdonly_mem) {
7760 			if (t == BPF_WRITE) {
7761 				verbose(env, "R%d cannot write into %s\n",
7762 					regno, reg_type_str(env, reg->type));
7763 				return -EACCES;
7764 			}
7765 			max_access = &env->prog->aux->max_rdonly_access;
7766 		} else {
7767 			max_access = &env->prog->aux->max_rdwr_access;
7768 		}
7769 
7770 		err = check_buffer_access(env, reg, regno, off, size, false,
7771 					  max_access);
7772 
7773 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
7774 			mark_reg_unknown(env, regs, value_regno);
7775 	} else if (reg->type == PTR_TO_ARENA) {
7776 		if (t == BPF_READ && value_regno >= 0)
7777 			mark_reg_unknown(env, regs, value_regno);
7778 	} else {
7779 		verbose(env, "R%d invalid mem access '%s'\n", regno,
7780 			reg_type_str(env, reg->type));
7781 		return -EACCES;
7782 	}
7783 
7784 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
7785 	    regs[value_regno].type == SCALAR_VALUE) {
7786 		if (!is_ldsx)
7787 			/* b/h/w load zero-extends, mark upper bits as known 0 */
7788 			coerce_reg_to_size(&regs[value_regno], size);
7789 		else
7790 			coerce_reg_to_size_sx(&regs[value_regno], size);
7791 	}
7792 	return err;
7793 }
7794 
7795 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
7796 			     bool allow_trust_mismatch);
7797 
check_load_mem(struct bpf_verifier_env * env,struct bpf_insn * insn,bool strict_alignment_once,bool is_ldsx,bool allow_trust_mismatch,const char * ctx)7798 static int check_load_mem(struct bpf_verifier_env *env, struct bpf_insn *insn,
7799 			  bool strict_alignment_once, bool is_ldsx,
7800 			  bool allow_trust_mismatch, const char *ctx)
7801 {
7802 	struct bpf_reg_state *regs = cur_regs(env);
7803 	enum bpf_reg_type src_reg_type;
7804 	int err;
7805 
7806 	/* check src operand */
7807 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
7808 	if (err)
7809 		return err;
7810 
7811 	/* check dst operand */
7812 	err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7813 	if (err)
7814 		return err;
7815 
7816 	src_reg_type = regs[insn->src_reg].type;
7817 
7818 	/* Check if (src_reg + off) is readable. The state of dst_reg will be
7819 	 * updated by this call.
7820 	 */
7821 	err = check_mem_access(env, env->insn_idx, insn->src_reg, insn->off,
7822 			       BPF_SIZE(insn->code), BPF_READ, insn->dst_reg,
7823 			       strict_alignment_once, is_ldsx);
7824 	err = err ?: save_aux_ptr_type(env, src_reg_type,
7825 				       allow_trust_mismatch);
7826 	err = err ?: reg_bounds_sanity_check(env, &regs[insn->dst_reg], ctx);
7827 
7828 	return err;
7829 }
7830 
check_store_reg(struct bpf_verifier_env * env,struct bpf_insn * insn,bool strict_alignment_once)7831 static int check_store_reg(struct bpf_verifier_env *env, struct bpf_insn *insn,
7832 			   bool strict_alignment_once)
7833 {
7834 	struct bpf_reg_state *regs = cur_regs(env);
7835 	enum bpf_reg_type dst_reg_type;
7836 	int err;
7837 
7838 	/* check src1 operand */
7839 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
7840 	if (err)
7841 		return err;
7842 
7843 	/* check src2 operand */
7844 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7845 	if (err)
7846 		return err;
7847 
7848 	dst_reg_type = regs[insn->dst_reg].type;
7849 
7850 	/* Check if (dst_reg + off) is writeable. */
7851 	err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off,
7852 			       BPF_SIZE(insn->code), BPF_WRITE, insn->src_reg,
7853 			       strict_alignment_once, false);
7854 	err = err ?: save_aux_ptr_type(env, dst_reg_type, false);
7855 
7856 	return err;
7857 }
7858 
check_atomic_rmw(struct bpf_verifier_env * env,struct bpf_insn * insn)7859 static int check_atomic_rmw(struct bpf_verifier_env *env,
7860 			    struct bpf_insn *insn)
7861 {
7862 	int load_reg;
7863 	int err;
7864 
7865 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
7866 		verbose(env, "invalid atomic operand size\n");
7867 		return -EINVAL;
7868 	}
7869 
7870 	/* check src1 operand */
7871 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
7872 	if (err)
7873 		return err;
7874 
7875 	/* check src2 operand */
7876 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7877 	if (err)
7878 		return err;
7879 
7880 	if (insn->imm == BPF_CMPXCHG) {
7881 		/* Check comparison of R0 with memory location */
7882 		const u32 aux_reg = BPF_REG_0;
7883 
7884 		err = check_reg_arg(env, aux_reg, SRC_OP);
7885 		if (err)
7886 			return err;
7887 
7888 		if (is_pointer_value(env, aux_reg)) {
7889 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
7890 			return -EACCES;
7891 		}
7892 	}
7893 
7894 	if (is_pointer_value(env, insn->src_reg)) {
7895 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
7896 		return -EACCES;
7897 	}
7898 
7899 	if (!atomic_ptr_type_ok(env, insn->dst_reg, insn)) {
7900 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
7901 			insn->dst_reg,
7902 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
7903 		return -EACCES;
7904 	}
7905 
7906 	if (insn->imm & BPF_FETCH) {
7907 		if (insn->imm == BPF_CMPXCHG)
7908 			load_reg = BPF_REG_0;
7909 		else
7910 			load_reg = insn->src_reg;
7911 
7912 		/* check and record load of old value */
7913 		err = check_reg_arg(env, load_reg, DST_OP);
7914 		if (err)
7915 			return err;
7916 	} else {
7917 		/* This instruction accesses a memory location but doesn't
7918 		 * actually load it into a register.
7919 		 */
7920 		load_reg = -1;
7921 	}
7922 
7923 	/* Check whether we can read the memory, with second call for fetch
7924 	 * case to simulate the register fill.
7925 	 */
7926 	err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off,
7927 			       BPF_SIZE(insn->code), BPF_READ, -1, true, false);
7928 	if (!err && load_reg >= 0)
7929 		err = check_mem_access(env, env->insn_idx, insn->dst_reg,
7930 				       insn->off, BPF_SIZE(insn->code),
7931 				       BPF_READ, load_reg, true, false);
7932 	if (err)
7933 		return err;
7934 
7935 	if (is_arena_reg(env, insn->dst_reg)) {
7936 		err = save_aux_ptr_type(env, PTR_TO_ARENA, false);
7937 		if (err)
7938 			return err;
7939 	}
7940 	/* Check whether we can write into the same memory. */
7941 	err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off,
7942 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
7943 	if (err)
7944 		return err;
7945 	return 0;
7946 }
7947 
check_atomic_load(struct bpf_verifier_env * env,struct bpf_insn * insn)7948 static int check_atomic_load(struct bpf_verifier_env *env,
7949 			     struct bpf_insn *insn)
7950 {
7951 	int err;
7952 
7953 	err = check_load_mem(env, insn, true, false, false, "atomic_load");
7954 	if (err)
7955 		return err;
7956 
7957 	if (!atomic_ptr_type_ok(env, insn->src_reg, insn)) {
7958 		verbose(env, "BPF_ATOMIC loads from R%d %s is not allowed\n",
7959 			insn->src_reg,
7960 			reg_type_str(env, reg_state(env, insn->src_reg)->type));
7961 		return -EACCES;
7962 	}
7963 
7964 	return 0;
7965 }
7966 
check_atomic_store(struct bpf_verifier_env * env,struct bpf_insn * insn)7967 static int check_atomic_store(struct bpf_verifier_env *env,
7968 			      struct bpf_insn *insn)
7969 {
7970 	int err;
7971 
7972 	err = check_store_reg(env, insn, true);
7973 	if (err)
7974 		return err;
7975 
7976 	if (!atomic_ptr_type_ok(env, insn->dst_reg, insn)) {
7977 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
7978 			insn->dst_reg,
7979 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
7980 		return -EACCES;
7981 	}
7982 
7983 	return 0;
7984 }
7985 
check_atomic(struct bpf_verifier_env * env,struct bpf_insn * insn)7986 static int check_atomic(struct bpf_verifier_env *env, struct bpf_insn *insn)
7987 {
7988 	switch (insn->imm) {
7989 	case BPF_ADD:
7990 	case BPF_ADD | BPF_FETCH:
7991 	case BPF_AND:
7992 	case BPF_AND | BPF_FETCH:
7993 	case BPF_OR:
7994 	case BPF_OR | BPF_FETCH:
7995 	case BPF_XOR:
7996 	case BPF_XOR | BPF_FETCH:
7997 	case BPF_XCHG:
7998 	case BPF_CMPXCHG:
7999 		return check_atomic_rmw(env, insn);
8000 	case BPF_LOAD_ACQ:
8001 		if (BPF_SIZE(insn->code) == BPF_DW && BITS_PER_LONG != 64) {
8002 			verbose(env,
8003 				"64-bit load-acquires are only supported on 64-bit arches\n");
8004 			return -EOPNOTSUPP;
8005 		}
8006 		return check_atomic_load(env, insn);
8007 	case BPF_STORE_REL:
8008 		if (BPF_SIZE(insn->code) == BPF_DW && BITS_PER_LONG != 64) {
8009 			verbose(env,
8010 				"64-bit store-releases are only supported on 64-bit arches\n");
8011 			return -EOPNOTSUPP;
8012 		}
8013 		return check_atomic_store(env, insn);
8014 	default:
8015 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n",
8016 			insn->imm);
8017 		return -EINVAL;
8018 	}
8019 }
8020 
8021 /* When register 'regno' is used to read the stack (either directly or through
8022  * a helper function) make sure that it's within stack boundary and, depending
8023  * on the access type and privileges, that all elements of the stack are
8024  * initialized.
8025  *
8026  * 'off' includes 'regno->off', but not its dynamic part (if any).
8027  *
8028  * All registers that have been spilled on the stack in the slots within the
8029  * read offsets are marked as read.
8030  */
check_stack_range_initialized(struct bpf_verifier_env * env,int regno,int off,int access_size,bool zero_size_allowed,enum bpf_access_type type,struct bpf_call_arg_meta * meta)8031 static int check_stack_range_initialized(
8032 		struct bpf_verifier_env *env, int regno, int off,
8033 		int access_size, bool zero_size_allowed,
8034 		enum bpf_access_type type, struct bpf_call_arg_meta *meta)
8035 {
8036 	struct bpf_reg_state *reg = reg_state(env, regno);
8037 	struct bpf_func_state *state = func(env, reg);
8038 	int err, min_off, max_off, i, j, slot, spi;
8039 	/* Some accesses can write anything into the stack, others are
8040 	 * read-only.
8041 	 */
8042 	bool clobber = false;
8043 
8044 	if (access_size == 0 && !zero_size_allowed) {
8045 		verbose(env, "invalid zero-sized read\n");
8046 		return -EACCES;
8047 	}
8048 
8049 	if (type == BPF_WRITE)
8050 		clobber = true;
8051 
8052 	err = check_stack_access_within_bounds(env, regno, off, access_size, type);
8053 	if (err)
8054 		return err;
8055 
8056 
8057 	if (tnum_is_const(reg->var_off)) {
8058 		min_off = max_off = reg->var_off.value + off;
8059 	} else {
8060 		/* Variable offset is prohibited for unprivileged mode for
8061 		 * simplicity since it requires corresponding support in
8062 		 * Spectre masking for stack ALU.
8063 		 * See also retrieve_ptr_limit().
8064 		 */
8065 		if (!env->bypass_spec_v1) {
8066 			char tn_buf[48];
8067 
8068 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
8069 			verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
8070 				regno, tn_buf);
8071 			return -EACCES;
8072 		}
8073 		/* Only initialized buffer on stack is allowed to be accessed
8074 		 * with variable offset. With uninitialized buffer it's hard to
8075 		 * guarantee that whole memory is marked as initialized on
8076 		 * helper return since specific bounds are unknown what may
8077 		 * cause uninitialized stack leaking.
8078 		 */
8079 		if (meta && meta->raw_mode)
8080 			meta = NULL;
8081 
8082 		min_off = reg->smin_value + off;
8083 		max_off = reg->smax_value + off;
8084 	}
8085 
8086 	if (meta && meta->raw_mode) {
8087 		/* Ensure we won't be overwriting dynptrs when simulating byte
8088 		 * by byte access in check_helper_call using meta.access_size.
8089 		 * This would be a problem if we have a helper in the future
8090 		 * which takes:
8091 		 *
8092 		 *	helper(uninit_mem, len, dynptr)
8093 		 *
8094 		 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
8095 		 * may end up writing to dynptr itself when touching memory from
8096 		 * arg 1. This can be relaxed on a case by case basis for known
8097 		 * safe cases, but reject due to the possibilitiy of aliasing by
8098 		 * default.
8099 		 */
8100 		for (i = min_off; i < max_off + access_size; i++) {
8101 			int stack_off = -i - 1;
8102 
8103 			spi = __get_spi(i);
8104 			/* raw_mode may write past allocated_stack */
8105 			if (state->allocated_stack <= stack_off)
8106 				continue;
8107 			if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
8108 				verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
8109 				return -EACCES;
8110 			}
8111 		}
8112 		meta->access_size = access_size;
8113 		meta->regno = regno;
8114 		return 0;
8115 	}
8116 
8117 	for (i = min_off; i < max_off + access_size; i++) {
8118 		u8 *stype;
8119 
8120 		slot = -i - 1;
8121 		spi = slot / BPF_REG_SIZE;
8122 		if (state->allocated_stack <= slot) {
8123 			verbose(env, "allocated_stack too small\n");
8124 			return -EFAULT;
8125 		}
8126 
8127 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
8128 		if (*stype == STACK_MISC)
8129 			goto mark;
8130 		if ((*stype == STACK_ZERO) ||
8131 		    (*stype == STACK_INVALID && env->allow_uninit_stack)) {
8132 			if (clobber) {
8133 				/* helper can write anything into the stack */
8134 				*stype = STACK_MISC;
8135 			}
8136 			goto mark;
8137 		}
8138 
8139 		if (is_spilled_reg(&state->stack[spi]) &&
8140 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
8141 		     env->allow_ptr_leaks)) {
8142 			if (clobber) {
8143 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
8144 				for (j = 0; j < BPF_REG_SIZE; j++)
8145 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
8146 			}
8147 			goto mark;
8148 		}
8149 
8150 		if (tnum_is_const(reg->var_off)) {
8151 			verbose(env, "invalid read from stack R%d off %d+%d size %d\n",
8152 				regno, min_off, i - min_off, access_size);
8153 		} else {
8154 			char tn_buf[48];
8155 
8156 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
8157 			verbose(env, "invalid read from stack R%d var_off %s+%d size %d\n",
8158 				regno, tn_buf, i - min_off, access_size);
8159 		}
8160 		return -EACCES;
8161 mark:
8162 		/* reading any byte out of 8-byte 'spill_slot' will cause
8163 		 * the whole slot to be marked as 'read'
8164 		 */
8165 		err = bpf_mark_stack_read(env, reg->frameno, env->insn_idx, BIT(spi));
8166 		if (err)
8167 			return err;
8168 		/* We do not call bpf_mark_stack_write(), as we can not
8169 		 * be sure that whether stack slot is written to or not. Hence,
8170 		 * we must still conservatively propagate reads upwards even if
8171 		 * helper may write to the entire memory range.
8172 		 */
8173 	}
8174 	return 0;
8175 }
8176 
check_helper_mem_access(struct bpf_verifier_env * env,int regno,int access_size,enum bpf_access_type access_type,bool zero_size_allowed,struct bpf_call_arg_meta * meta)8177 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
8178 				   int access_size, enum bpf_access_type access_type,
8179 				   bool zero_size_allowed,
8180 				   struct bpf_call_arg_meta *meta)
8181 {
8182 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8183 	u32 *max_access;
8184 
8185 	switch (base_type(reg->type)) {
8186 	case PTR_TO_PACKET:
8187 	case PTR_TO_PACKET_META:
8188 		return check_packet_access(env, regno, reg->off, access_size,
8189 					   zero_size_allowed);
8190 	case PTR_TO_MAP_KEY:
8191 		if (access_type == BPF_WRITE) {
8192 			verbose(env, "R%d cannot write into %s\n", regno,
8193 				reg_type_str(env, reg->type));
8194 			return -EACCES;
8195 		}
8196 		return check_mem_region_access(env, regno, reg->off, access_size,
8197 					       reg->map_ptr->key_size, false);
8198 	case PTR_TO_MAP_VALUE:
8199 		if (check_map_access_type(env, regno, reg->off, access_size, access_type))
8200 			return -EACCES;
8201 		return check_map_access(env, regno, reg->off, access_size,
8202 					zero_size_allowed, ACCESS_HELPER);
8203 	case PTR_TO_MEM:
8204 		if (type_is_rdonly_mem(reg->type)) {
8205 			if (access_type == BPF_WRITE) {
8206 				verbose(env, "R%d cannot write into %s\n", regno,
8207 					reg_type_str(env, reg->type));
8208 				return -EACCES;
8209 			}
8210 		}
8211 		return check_mem_region_access(env, regno, reg->off,
8212 					       access_size, reg->mem_size,
8213 					       zero_size_allowed);
8214 	case PTR_TO_BUF:
8215 		if (type_is_rdonly_mem(reg->type)) {
8216 			if (access_type == BPF_WRITE) {
8217 				verbose(env, "R%d cannot write into %s\n", regno,
8218 					reg_type_str(env, reg->type));
8219 				return -EACCES;
8220 			}
8221 
8222 			max_access = &env->prog->aux->max_rdonly_access;
8223 		} else {
8224 			max_access = &env->prog->aux->max_rdwr_access;
8225 		}
8226 		return check_buffer_access(env, reg, regno, reg->off,
8227 					   access_size, zero_size_allowed,
8228 					   max_access);
8229 	case PTR_TO_STACK:
8230 		return check_stack_range_initialized(
8231 				env,
8232 				regno, reg->off, access_size,
8233 				zero_size_allowed, access_type, meta);
8234 	case PTR_TO_BTF_ID:
8235 		return check_ptr_to_btf_access(env, regs, regno, reg->off,
8236 					       access_size, BPF_READ, -1);
8237 	case PTR_TO_CTX:
8238 		/* in case the function doesn't know how to access the context,
8239 		 * (because we are in a program of type SYSCALL for example), we
8240 		 * can not statically check its size.
8241 		 * Dynamically check it now.
8242 		 */
8243 		if (!env->ops->convert_ctx_access) {
8244 			int offset = access_size - 1;
8245 
8246 			/* Allow zero-byte read from PTR_TO_CTX */
8247 			if (access_size == 0)
8248 				return zero_size_allowed ? 0 : -EACCES;
8249 
8250 			return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
8251 						access_type, -1, false, false);
8252 		}
8253 
8254 		fallthrough;
8255 	default: /* scalar_value or invalid ptr */
8256 		/* Allow zero-byte read from NULL, regardless of pointer type */
8257 		if (zero_size_allowed && access_size == 0 &&
8258 		    register_is_null(reg))
8259 			return 0;
8260 
8261 		verbose(env, "R%d type=%s ", regno,
8262 			reg_type_str(env, reg->type));
8263 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
8264 		return -EACCES;
8265 	}
8266 }
8267 
8268 /* verify arguments to helpers or kfuncs consisting of a pointer and an access
8269  * size.
8270  *
8271  * @regno is the register containing the access size. regno-1 is the register
8272  * containing the pointer.
8273  */
check_mem_size_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,enum bpf_access_type access_type,bool zero_size_allowed,struct bpf_call_arg_meta * meta)8274 static int check_mem_size_reg(struct bpf_verifier_env *env,
8275 			      struct bpf_reg_state *reg, u32 regno,
8276 			      enum bpf_access_type access_type,
8277 			      bool zero_size_allowed,
8278 			      struct bpf_call_arg_meta *meta)
8279 {
8280 	int err;
8281 
8282 	/* This is used to refine r0 return value bounds for helpers
8283 	 * that enforce this value as an upper bound on return values.
8284 	 * See do_refine_retval_range() for helpers that can refine
8285 	 * the return value. C type of helper is u32 so we pull register
8286 	 * bound from umax_value however, if negative verifier errors
8287 	 * out. Only upper bounds can be learned because retval is an
8288 	 * int type and negative retvals are allowed.
8289 	 */
8290 	meta->msize_max_value = reg->umax_value;
8291 
8292 	/* The register is SCALAR_VALUE; the access check happens using
8293 	 * its boundaries. For unprivileged variable accesses, disable
8294 	 * raw mode so that the program is required to initialize all
8295 	 * the memory that the helper could just partially fill up.
8296 	 */
8297 	if (!tnum_is_const(reg->var_off))
8298 		meta = NULL;
8299 
8300 	if (reg->smin_value < 0) {
8301 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
8302 			regno);
8303 		return -EACCES;
8304 	}
8305 
8306 	if (reg->umin_value == 0 && !zero_size_allowed) {
8307 		verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n",
8308 			regno, reg->umin_value, reg->umax_value);
8309 		return -EACCES;
8310 	}
8311 
8312 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
8313 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
8314 			regno);
8315 		return -EACCES;
8316 	}
8317 	err = check_helper_mem_access(env, regno - 1, reg->umax_value,
8318 				      access_type, zero_size_allowed, meta);
8319 	if (!err)
8320 		err = mark_chain_precision(env, regno);
8321 	return err;
8322 }
8323 
check_mem_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,u32 mem_size)8324 static int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
8325 			 u32 regno, u32 mem_size)
8326 {
8327 	bool may_be_null = type_may_be_null(reg->type);
8328 	struct bpf_reg_state saved_reg;
8329 	int err;
8330 
8331 	if (register_is_null(reg))
8332 		return 0;
8333 
8334 	/* Assuming that the register contains a value check if the memory
8335 	 * access is safe. Temporarily save and restore the register's state as
8336 	 * the conversion shouldn't be visible to a caller.
8337 	 */
8338 	if (may_be_null) {
8339 		saved_reg = *reg;
8340 		mark_ptr_not_null_reg(reg);
8341 	}
8342 
8343 	err = check_helper_mem_access(env, regno, mem_size, BPF_READ, true, NULL);
8344 	err = err ?: check_helper_mem_access(env, regno, mem_size, BPF_WRITE, true, NULL);
8345 
8346 	if (may_be_null)
8347 		*reg = saved_reg;
8348 
8349 	return err;
8350 }
8351 
check_kfunc_mem_size_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno)8352 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
8353 				    u32 regno)
8354 {
8355 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
8356 	bool may_be_null = type_may_be_null(mem_reg->type);
8357 	struct bpf_reg_state saved_reg;
8358 	struct bpf_call_arg_meta meta;
8359 	int err;
8360 
8361 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
8362 
8363 	memset(&meta, 0, sizeof(meta));
8364 
8365 	if (may_be_null) {
8366 		saved_reg = *mem_reg;
8367 		mark_ptr_not_null_reg(mem_reg);
8368 	}
8369 
8370 	err = check_mem_size_reg(env, reg, regno, BPF_READ, true, &meta);
8371 	err = err ?: check_mem_size_reg(env, reg, regno, BPF_WRITE, true, &meta);
8372 
8373 	if (may_be_null)
8374 		*mem_reg = saved_reg;
8375 
8376 	return err;
8377 }
8378 
8379 enum {
8380 	PROCESS_SPIN_LOCK = (1 << 0),
8381 	PROCESS_RES_LOCK  = (1 << 1),
8382 	PROCESS_LOCK_IRQ  = (1 << 2),
8383 };
8384 
8385 /* Implementation details:
8386  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
8387  * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
8388  * Two bpf_map_lookups (even with the same key) will have different reg->id.
8389  * Two separate bpf_obj_new will also have different reg->id.
8390  * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
8391  * clears reg->id after value_or_null->value transition, since the verifier only
8392  * cares about the range of access to valid map value pointer and doesn't care
8393  * about actual address of the map element.
8394  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
8395  * reg->id > 0 after value_or_null->value transition. By doing so
8396  * two bpf_map_lookups will be considered two different pointers that
8397  * point to different bpf_spin_locks. Likewise for pointers to allocated objects
8398  * returned from bpf_obj_new.
8399  * The verifier allows taking only one bpf_spin_lock at a time to avoid
8400  * dead-locks.
8401  * Since only one bpf_spin_lock is allowed the checks are simpler than
8402  * reg_is_refcounted() logic. The verifier needs to remember only
8403  * one spin_lock instead of array of acquired_refs.
8404  * env->cur_state->active_locks remembers which map value element or allocated
8405  * object got locked and clears it after bpf_spin_unlock.
8406  */
process_spin_lock(struct bpf_verifier_env * env,int regno,int flags)8407 static int process_spin_lock(struct bpf_verifier_env *env, int regno, int flags)
8408 {
8409 	bool is_lock = flags & PROCESS_SPIN_LOCK, is_res_lock = flags & PROCESS_RES_LOCK;
8410 	const char *lock_str = is_res_lock ? "bpf_res_spin" : "bpf_spin";
8411 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8412 	struct bpf_verifier_state *cur = env->cur_state;
8413 	bool is_const = tnum_is_const(reg->var_off);
8414 	bool is_irq = flags & PROCESS_LOCK_IRQ;
8415 	u64 val = reg->var_off.value;
8416 	struct bpf_map *map = NULL;
8417 	struct btf *btf = NULL;
8418 	struct btf_record *rec;
8419 	u32 spin_lock_off;
8420 	int err;
8421 
8422 	if (!is_const) {
8423 		verbose(env,
8424 			"R%d doesn't have constant offset. %s_lock has to be at the constant offset\n",
8425 			regno, lock_str);
8426 		return -EINVAL;
8427 	}
8428 	if (reg->type == PTR_TO_MAP_VALUE) {
8429 		map = reg->map_ptr;
8430 		if (!map->btf) {
8431 			verbose(env,
8432 				"map '%s' has to have BTF in order to use %s_lock\n",
8433 				map->name, lock_str);
8434 			return -EINVAL;
8435 		}
8436 	} else {
8437 		btf = reg->btf;
8438 	}
8439 
8440 	rec = reg_btf_record(reg);
8441 	if (!btf_record_has_field(rec, is_res_lock ? BPF_RES_SPIN_LOCK : BPF_SPIN_LOCK)) {
8442 		verbose(env, "%s '%s' has no valid %s_lock\n", map ? "map" : "local",
8443 			map ? map->name : "kptr", lock_str);
8444 		return -EINVAL;
8445 	}
8446 	spin_lock_off = is_res_lock ? rec->res_spin_lock_off : rec->spin_lock_off;
8447 	if (spin_lock_off != val + reg->off) {
8448 		verbose(env, "off %lld doesn't point to 'struct %s_lock' that is at %d\n",
8449 			val + reg->off, lock_str, spin_lock_off);
8450 		return -EINVAL;
8451 	}
8452 	if (is_lock) {
8453 		void *ptr;
8454 		int type;
8455 
8456 		if (map)
8457 			ptr = map;
8458 		else
8459 			ptr = btf;
8460 
8461 		if (!is_res_lock && cur->active_locks) {
8462 			if (find_lock_state(env->cur_state, REF_TYPE_LOCK, 0, NULL)) {
8463 				verbose(env,
8464 					"Locking two bpf_spin_locks are not allowed\n");
8465 				return -EINVAL;
8466 			}
8467 		} else if (is_res_lock && cur->active_locks) {
8468 			if (find_lock_state(env->cur_state, REF_TYPE_RES_LOCK | REF_TYPE_RES_LOCK_IRQ, reg->id, ptr)) {
8469 				verbose(env, "Acquiring the same lock again, AA deadlock detected\n");
8470 				return -EINVAL;
8471 			}
8472 		}
8473 
8474 		if (is_res_lock && is_irq)
8475 			type = REF_TYPE_RES_LOCK_IRQ;
8476 		else if (is_res_lock)
8477 			type = REF_TYPE_RES_LOCK;
8478 		else
8479 			type = REF_TYPE_LOCK;
8480 		err = acquire_lock_state(env, env->insn_idx, type, reg->id, ptr);
8481 		if (err < 0) {
8482 			verbose(env, "Failed to acquire lock state\n");
8483 			return err;
8484 		}
8485 	} else {
8486 		void *ptr;
8487 		int type;
8488 
8489 		if (map)
8490 			ptr = map;
8491 		else
8492 			ptr = btf;
8493 
8494 		if (!cur->active_locks) {
8495 			verbose(env, "%s_unlock without taking a lock\n", lock_str);
8496 			return -EINVAL;
8497 		}
8498 
8499 		if (is_res_lock && is_irq)
8500 			type = REF_TYPE_RES_LOCK_IRQ;
8501 		else if (is_res_lock)
8502 			type = REF_TYPE_RES_LOCK;
8503 		else
8504 			type = REF_TYPE_LOCK;
8505 		if (!find_lock_state(cur, type, reg->id, ptr)) {
8506 			verbose(env, "%s_unlock of different lock\n", lock_str);
8507 			return -EINVAL;
8508 		}
8509 		if (reg->id != cur->active_lock_id || ptr != cur->active_lock_ptr) {
8510 			verbose(env, "%s_unlock cannot be out of order\n", lock_str);
8511 			return -EINVAL;
8512 		}
8513 		if (release_lock_state(cur, type, reg->id, ptr)) {
8514 			verbose(env, "%s_unlock of different lock\n", lock_str);
8515 			return -EINVAL;
8516 		}
8517 
8518 		invalidate_non_owning_refs(env);
8519 	}
8520 	return 0;
8521 }
8522 
8523 /* Check if @regno is a pointer to a specific field in a map value */
check_map_field_pointer(struct bpf_verifier_env * env,u32 regno,enum btf_field_type field_type)8524 static int check_map_field_pointer(struct bpf_verifier_env *env, u32 regno,
8525 				   enum btf_field_type field_type)
8526 {
8527 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8528 	bool is_const = tnum_is_const(reg->var_off);
8529 	struct bpf_map *map = reg->map_ptr;
8530 	u64 val = reg->var_off.value;
8531 	const char *struct_name = btf_field_type_name(field_type);
8532 	int field_off = -1;
8533 
8534 	if (!is_const) {
8535 		verbose(env,
8536 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
8537 			regno, struct_name);
8538 		return -EINVAL;
8539 	}
8540 	if (!map->btf) {
8541 		verbose(env, "map '%s' has to have BTF in order to use %s\n", map->name,
8542 			struct_name);
8543 		return -EINVAL;
8544 	}
8545 	if (!btf_record_has_field(map->record, field_type)) {
8546 		verbose(env, "map '%s' has no valid %s\n", map->name, struct_name);
8547 		return -EINVAL;
8548 	}
8549 	switch (field_type) {
8550 	case BPF_TIMER:
8551 		field_off = map->record->timer_off;
8552 		break;
8553 	case BPF_TASK_WORK:
8554 		field_off = map->record->task_work_off;
8555 		break;
8556 	case BPF_WORKQUEUE:
8557 		field_off = map->record->wq_off;
8558 		break;
8559 	default:
8560 		verifier_bug(env, "unsupported BTF field type: %s\n", struct_name);
8561 		return -EINVAL;
8562 	}
8563 	if (field_off != val + reg->off) {
8564 		verbose(env, "off %lld doesn't point to 'struct %s' that is at %d\n",
8565 			val + reg->off, struct_name, field_off);
8566 		return -EINVAL;
8567 	}
8568 	return 0;
8569 }
8570 
process_timer_func(struct bpf_verifier_env * env,int regno,struct bpf_call_arg_meta * meta)8571 static int process_timer_func(struct bpf_verifier_env *env, int regno,
8572 			      struct bpf_call_arg_meta *meta)
8573 {
8574 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8575 	struct bpf_map *map = reg->map_ptr;
8576 	int err;
8577 
8578 	err = check_map_field_pointer(env, regno, BPF_TIMER);
8579 	if (err)
8580 		return err;
8581 
8582 	if (meta->map_ptr) {
8583 		verifier_bug(env, "Two map pointers in a timer helper");
8584 		return -EFAULT;
8585 	}
8586 	if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
8587 		verbose(env, "bpf_timer cannot be used for PREEMPT_RT.\n");
8588 		return -EOPNOTSUPP;
8589 	}
8590 	meta->map_uid = reg->map_uid;
8591 	meta->map_ptr = map;
8592 	return 0;
8593 }
8594 
process_wq_func(struct bpf_verifier_env * env,int regno,struct bpf_kfunc_call_arg_meta * meta)8595 static int process_wq_func(struct bpf_verifier_env *env, int regno,
8596 			   struct bpf_kfunc_call_arg_meta *meta)
8597 {
8598 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8599 	struct bpf_map *map = reg->map_ptr;
8600 	int err;
8601 
8602 	err = check_map_field_pointer(env, regno, BPF_WORKQUEUE);
8603 	if (err)
8604 		return err;
8605 
8606 	if (meta->map.ptr) {
8607 		verifier_bug(env, "Two map pointers in a bpf_wq helper");
8608 		return -EFAULT;
8609 	}
8610 
8611 	meta->map.uid = reg->map_uid;
8612 	meta->map.ptr = map;
8613 	return 0;
8614 }
8615 
process_task_work_func(struct bpf_verifier_env * env,int regno,struct bpf_kfunc_call_arg_meta * meta)8616 static int process_task_work_func(struct bpf_verifier_env *env, int regno,
8617 				  struct bpf_kfunc_call_arg_meta *meta)
8618 {
8619 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8620 	struct bpf_map *map = reg->map_ptr;
8621 	int err;
8622 
8623 	err = check_map_field_pointer(env, regno, BPF_TASK_WORK);
8624 	if (err)
8625 		return err;
8626 
8627 	if (meta->map.ptr) {
8628 		verifier_bug(env, "Two map pointers in a bpf_task_work helper");
8629 		return -EFAULT;
8630 	}
8631 	meta->map.uid = reg->map_uid;
8632 	meta->map.ptr = map;
8633 	return 0;
8634 }
8635 
process_kptr_func(struct bpf_verifier_env * env,int regno,struct bpf_call_arg_meta * meta)8636 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
8637 			     struct bpf_call_arg_meta *meta)
8638 {
8639 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8640 	struct btf_field *kptr_field;
8641 	struct bpf_map *map_ptr;
8642 	struct btf_record *rec;
8643 	u32 kptr_off;
8644 
8645 	if (type_is_ptr_alloc_obj(reg->type)) {
8646 		rec = reg_btf_record(reg);
8647 	} else { /* PTR_TO_MAP_VALUE */
8648 		map_ptr = reg->map_ptr;
8649 		if (!map_ptr->btf) {
8650 			verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
8651 				map_ptr->name);
8652 			return -EINVAL;
8653 		}
8654 		rec = map_ptr->record;
8655 		meta->map_ptr = map_ptr;
8656 	}
8657 
8658 	if (!tnum_is_const(reg->var_off)) {
8659 		verbose(env,
8660 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
8661 			regno);
8662 		return -EINVAL;
8663 	}
8664 
8665 	if (!btf_record_has_field(rec, BPF_KPTR)) {
8666 		verbose(env, "R%d has no valid kptr\n", regno);
8667 		return -EINVAL;
8668 	}
8669 
8670 	kptr_off = reg->off + reg->var_off.value;
8671 	kptr_field = btf_record_find(rec, kptr_off, BPF_KPTR);
8672 	if (!kptr_field) {
8673 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
8674 		return -EACCES;
8675 	}
8676 	if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) {
8677 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
8678 		return -EACCES;
8679 	}
8680 	meta->kptr_field = kptr_field;
8681 	return 0;
8682 }
8683 
8684 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
8685  * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
8686  *
8687  * In both cases we deal with the first 8 bytes, but need to mark the next 8
8688  * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
8689  * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
8690  *
8691  * Mutability of bpf_dynptr is at two levels, one is at the level of struct
8692  * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
8693  * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
8694  * mutate the view of the dynptr and also possibly destroy it. In the latter
8695  * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
8696  * memory that dynptr points to.
8697  *
8698  * The verifier will keep track both levels of mutation (bpf_dynptr's in
8699  * reg->type and the memory's in reg->dynptr.type), but there is no support for
8700  * readonly dynptr view yet, hence only the first case is tracked and checked.
8701  *
8702  * This is consistent with how C applies the const modifier to a struct object,
8703  * where the pointer itself inside bpf_dynptr becomes const but not what it
8704  * points to.
8705  *
8706  * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
8707  * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
8708  */
process_dynptr_func(struct bpf_verifier_env * env,int regno,int insn_idx,enum bpf_arg_type arg_type,int clone_ref_obj_id)8709 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
8710 			       enum bpf_arg_type arg_type, int clone_ref_obj_id)
8711 {
8712 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8713 	int err;
8714 
8715 	if (reg->type != PTR_TO_STACK && reg->type != CONST_PTR_TO_DYNPTR) {
8716 		verbose(env,
8717 			"arg#%d expected pointer to stack or const struct bpf_dynptr\n",
8718 			regno - 1);
8719 		return -EINVAL;
8720 	}
8721 
8722 	/* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
8723 	 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
8724 	 */
8725 	if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
8726 		verifier_bug(env, "misconfigured dynptr helper type flags");
8727 		return -EFAULT;
8728 	}
8729 
8730 	/*  MEM_UNINIT - Points to memory that is an appropriate candidate for
8731 	 *		 constructing a mutable bpf_dynptr object.
8732 	 *
8733 	 *		 Currently, this is only possible with PTR_TO_STACK
8734 	 *		 pointing to a region of at least 16 bytes which doesn't
8735 	 *		 contain an existing bpf_dynptr.
8736 	 *
8737 	 *  MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
8738 	 *		 mutated or destroyed. However, the memory it points to
8739 	 *		 may be mutated.
8740 	 *
8741 	 *  None       - Points to a initialized dynptr that can be mutated and
8742 	 *		 destroyed, including mutation of the memory it points
8743 	 *		 to.
8744 	 */
8745 	if (arg_type & MEM_UNINIT) {
8746 		int i;
8747 
8748 		if (!is_dynptr_reg_valid_uninit(env, reg)) {
8749 			verbose(env, "Dynptr has to be an uninitialized dynptr\n");
8750 			return -EINVAL;
8751 		}
8752 
8753 		/* we write BPF_DW bits (8 bytes) at a time */
8754 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
8755 			err = check_mem_access(env, insn_idx, regno,
8756 					       i, BPF_DW, BPF_WRITE, -1, false, false);
8757 			if (err)
8758 				return err;
8759 		}
8760 
8761 		err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
8762 	} else /* MEM_RDONLY and None case from above */ {
8763 		/* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
8764 		if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
8765 			verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
8766 			return -EINVAL;
8767 		}
8768 
8769 		if (!is_dynptr_reg_valid_init(env, reg)) {
8770 			verbose(env,
8771 				"Expected an initialized dynptr as arg #%d\n",
8772 				regno - 1);
8773 			return -EINVAL;
8774 		}
8775 
8776 		/* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
8777 		if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
8778 			verbose(env,
8779 				"Expected a dynptr of type %s as arg #%d\n",
8780 				dynptr_type_str(arg_to_dynptr_type(arg_type)), regno - 1);
8781 			return -EINVAL;
8782 		}
8783 
8784 		err = mark_dynptr_read(env, reg);
8785 	}
8786 	return err;
8787 }
8788 
iter_ref_obj_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int spi)8789 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
8790 {
8791 	struct bpf_func_state *state = func(env, reg);
8792 
8793 	return state->stack[spi].spilled_ptr.ref_obj_id;
8794 }
8795 
is_iter_kfunc(struct bpf_kfunc_call_arg_meta * meta)8796 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
8797 {
8798 	return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
8799 }
8800 
is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta * meta)8801 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
8802 {
8803 	return meta->kfunc_flags & KF_ITER_NEW;
8804 }
8805 
is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta * meta)8806 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
8807 {
8808 	return meta->kfunc_flags & KF_ITER_NEXT;
8809 }
8810 
is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta * meta)8811 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
8812 {
8813 	return meta->kfunc_flags & KF_ITER_DESTROY;
8814 }
8815 
is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta * meta,int arg_idx,const struct btf_param * arg)8816 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg_idx,
8817 			      const struct btf_param *arg)
8818 {
8819 	/* btf_check_iter_kfuncs() guarantees that first argument of any iter
8820 	 * kfunc is iter state pointer
8821 	 */
8822 	if (is_iter_kfunc(meta))
8823 		return arg_idx == 0;
8824 
8825 	/* iter passed as an argument to a generic kfunc */
8826 	return btf_param_match_suffix(meta->btf, arg, "__iter");
8827 }
8828 
process_iter_arg(struct bpf_verifier_env * env,int regno,int insn_idx,struct bpf_kfunc_call_arg_meta * meta)8829 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
8830 			    struct bpf_kfunc_call_arg_meta *meta)
8831 {
8832 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8833 	const struct btf_type *t;
8834 	int spi, err, i, nr_slots, btf_id;
8835 
8836 	if (reg->type != PTR_TO_STACK) {
8837 		verbose(env, "arg#%d expected pointer to an iterator on stack\n", regno - 1);
8838 		return -EINVAL;
8839 	}
8840 
8841 	/* For iter_{new,next,destroy} functions, btf_check_iter_kfuncs()
8842 	 * ensures struct convention, so we wouldn't need to do any BTF
8843 	 * validation here. But given iter state can be passed as a parameter
8844 	 * to any kfunc, if arg has "__iter" suffix, we need to be a bit more
8845 	 * conservative here.
8846 	 */
8847 	btf_id = btf_check_iter_arg(meta->btf, meta->func_proto, regno - 1);
8848 	if (btf_id < 0) {
8849 		verbose(env, "expected valid iter pointer as arg #%d\n", regno - 1);
8850 		return -EINVAL;
8851 	}
8852 	t = btf_type_by_id(meta->btf, btf_id);
8853 	nr_slots = t->size / BPF_REG_SIZE;
8854 
8855 	if (is_iter_new_kfunc(meta)) {
8856 		/* bpf_iter_<type>_new() expects pointer to uninit iter state */
8857 		if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
8858 			verbose(env, "expected uninitialized iter_%s as arg #%d\n",
8859 				iter_type_str(meta->btf, btf_id), regno - 1);
8860 			return -EINVAL;
8861 		}
8862 
8863 		for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
8864 			err = check_mem_access(env, insn_idx, regno,
8865 					       i, BPF_DW, BPF_WRITE, -1, false, false);
8866 			if (err)
8867 				return err;
8868 		}
8869 
8870 		err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots);
8871 		if (err)
8872 			return err;
8873 	} else {
8874 		/* iter_next() or iter_destroy(), as well as any kfunc
8875 		 * accepting iter argument, expect initialized iter state
8876 		 */
8877 		err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots);
8878 		switch (err) {
8879 		case 0:
8880 			break;
8881 		case -EINVAL:
8882 			verbose(env, "expected an initialized iter_%s as arg #%d\n",
8883 				iter_type_str(meta->btf, btf_id), regno - 1);
8884 			return err;
8885 		case -EPROTO:
8886 			verbose(env, "expected an RCU CS when using %s\n", meta->func_name);
8887 			return err;
8888 		default:
8889 			return err;
8890 		}
8891 
8892 		spi = iter_get_spi(env, reg, nr_slots);
8893 		if (spi < 0)
8894 			return spi;
8895 
8896 		err = mark_iter_read(env, reg, spi, nr_slots);
8897 		if (err)
8898 			return err;
8899 
8900 		/* remember meta->iter info for process_iter_next_call() */
8901 		meta->iter.spi = spi;
8902 		meta->iter.frameno = reg->frameno;
8903 		meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
8904 
8905 		if (is_iter_destroy_kfunc(meta)) {
8906 			err = unmark_stack_slots_iter(env, reg, nr_slots);
8907 			if (err)
8908 				return err;
8909 		}
8910 	}
8911 
8912 	return 0;
8913 }
8914 
8915 /* Look for a previous loop entry at insn_idx: nearest parent state
8916  * stopped at insn_idx with callsites matching those in cur->frame.
8917  */
find_prev_entry(struct bpf_verifier_env * env,struct bpf_verifier_state * cur,int insn_idx)8918 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env,
8919 						  struct bpf_verifier_state *cur,
8920 						  int insn_idx)
8921 {
8922 	struct bpf_verifier_state_list *sl;
8923 	struct bpf_verifier_state *st;
8924 	struct list_head *pos, *head;
8925 
8926 	/* Explored states are pushed in stack order, most recent states come first */
8927 	head = explored_state(env, insn_idx);
8928 	list_for_each(pos, head) {
8929 		sl = container_of(pos, struct bpf_verifier_state_list, node);
8930 		/* If st->branches != 0 state is a part of current DFS verification path,
8931 		 * hence cur & st for a loop.
8932 		 */
8933 		st = &sl->state;
8934 		if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) &&
8935 		    st->dfs_depth < cur->dfs_depth)
8936 			return st;
8937 	}
8938 
8939 	return NULL;
8940 }
8941 
8942 static void reset_idmap_scratch(struct bpf_verifier_env *env);
8943 static bool regs_exact(const struct bpf_reg_state *rold,
8944 		       const struct bpf_reg_state *rcur,
8945 		       struct bpf_idmap *idmap);
8946 
maybe_widen_reg(struct bpf_verifier_env * env,struct bpf_reg_state * rold,struct bpf_reg_state * rcur,struct bpf_idmap * idmap)8947 static void maybe_widen_reg(struct bpf_verifier_env *env,
8948 			    struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
8949 			    struct bpf_idmap *idmap)
8950 {
8951 	if (rold->type != SCALAR_VALUE)
8952 		return;
8953 	if (rold->type != rcur->type)
8954 		return;
8955 	if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap))
8956 		return;
8957 	__mark_reg_unknown(env, rcur);
8958 }
8959 
widen_imprecise_scalars(struct bpf_verifier_env * env,struct bpf_verifier_state * old,struct bpf_verifier_state * cur)8960 static int widen_imprecise_scalars(struct bpf_verifier_env *env,
8961 				   struct bpf_verifier_state *old,
8962 				   struct bpf_verifier_state *cur)
8963 {
8964 	struct bpf_func_state *fold, *fcur;
8965 	int i, fr, num_slots;
8966 
8967 	reset_idmap_scratch(env);
8968 	for (fr = old->curframe; fr >= 0; fr--) {
8969 		fold = old->frame[fr];
8970 		fcur = cur->frame[fr];
8971 
8972 		for (i = 0; i < MAX_BPF_REG; i++)
8973 			maybe_widen_reg(env,
8974 					&fold->regs[i],
8975 					&fcur->regs[i],
8976 					&env->idmap_scratch);
8977 
8978 		num_slots = min(fold->allocated_stack / BPF_REG_SIZE,
8979 				fcur->allocated_stack / BPF_REG_SIZE);
8980 		for (i = 0; i < num_slots; i++) {
8981 			if (!is_spilled_reg(&fold->stack[i]) ||
8982 			    !is_spilled_reg(&fcur->stack[i]))
8983 				continue;
8984 
8985 			maybe_widen_reg(env,
8986 					&fold->stack[i].spilled_ptr,
8987 					&fcur->stack[i].spilled_ptr,
8988 					&env->idmap_scratch);
8989 		}
8990 	}
8991 	return 0;
8992 }
8993 
get_iter_from_state(struct bpf_verifier_state * cur_st,struct bpf_kfunc_call_arg_meta * meta)8994 static struct bpf_reg_state *get_iter_from_state(struct bpf_verifier_state *cur_st,
8995 						 struct bpf_kfunc_call_arg_meta *meta)
8996 {
8997 	int iter_frameno = meta->iter.frameno;
8998 	int iter_spi = meta->iter.spi;
8999 
9000 	return &cur_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
9001 }
9002 
9003 /* process_iter_next_call() is called when verifier gets to iterator's next
9004  * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
9005  * to it as just "iter_next()" in comments below.
9006  *
9007  * BPF verifier relies on a crucial contract for any iter_next()
9008  * implementation: it should *eventually* return NULL, and once that happens
9009  * it should keep returning NULL. That is, once iterator exhausts elements to
9010  * iterate, it should never reset or spuriously return new elements.
9011  *
9012  * With the assumption of such contract, process_iter_next_call() simulates
9013  * a fork in the verifier state to validate loop logic correctness and safety
9014  * without having to simulate infinite amount of iterations.
9015  *
9016  * In current state, we first assume that iter_next() returned NULL and
9017  * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
9018  * conditions we should not form an infinite loop and should eventually reach
9019  * exit.
9020  *
9021  * Besides that, we also fork current state and enqueue it for later
9022  * verification. In a forked state we keep iterator state as ACTIVE
9023  * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
9024  * also bump iteration depth to prevent erroneous infinite loop detection
9025  * later on (see iter_active_depths_differ() comment for details). In this
9026  * state we assume that we'll eventually loop back to another iter_next()
9027  * calls (it could be in exactly same location or in some other instruction,
9028  * it doesn't matter, we don't make any unnecessary assumptions about this,
9029  * everything revolves around iterator state in a stack slot, not which
9030  * instruction is calling iter_next()). When that happens, we either will come
9031  * to iter_next() with equivalent state and can conclude that next iteration
9032  * will proceed in exactly the same way as we just verified, so it's safe to
9033  * assume that loop converges. If not, we'll go on another iteration
9034  * simulation with a different input state, until all possible starting states
9035  * are validated or we reach maximum number of instructions limit.
9036  *
9037  * This way, we will either exhaustively discover all possible input states
9038  * that iterator loop can start with and eventually will converge, or we'll
9039  * effectively regress into bounded loop simulation logic and either reach
9040  * maximum number of instructions if loop is not provably convergent, or there
9041  * is some statically known limit on number of iterations (e.g., if there is
9042  * an explicit `if n > 100 then break;` statement somewhere in the loop).
9043  *
9044  * Iteration convergence logic in is_state_visited() relies on exact
9045  * states comparison, which ignores read and precision marks.
9046  * This is necessary because read and precision marks are not finalized
9047  * while in the loop. Exact comparison might preclude convergence for
9048  * simple programs like below:
9049  *
9050  *     i = 0;
9051  *     while(iter_next(&it))
9052  *       i++;
9053  *
9054  * At each iteration step i++ would produce a new distinct state and
9055  * eventually instruction processing limit would be reached.
9056  *
9057  * To avoid such behavior speculatively forget (widen) range for
9058  * imprecise scalar registers, if those registers were not precise at the
9059  * end of the previous iteration and do not match exactly.
9060  *
9061  * This is a conservative heuristic that allows to verify wide range of programs,
9062  * however it precludes verification of programs that conjure an
9063  * imprecise value on the first loop iteration and use it as precise on a second.
9064  * For example, the following safe program would fail to verify:
9065  *
9066  *     struct bpf_num_iter it;
9067  *     int arr[10];
9068  *     int i = 0, a = 0;
9069  *     bpf_iter_num_new(&it, 0, 10);
9070  *     while (bpf_iter_num_next(&it)) {
9071  *       if (a == 0) {
9072  *         a = 1;
9073  *         i = 7; // Because i changed verifier would forget
9074  *                // it's range on second loop entry.
9075  *       } else {
9076  *         arr[i] = 42; // This would fail to verify.
9077  *       }
9078  *     }
9079  *     bpf_iter_num_destroy(&it);
9080  */
process_iter_next_call(struct bpf_verifier_env * env,int insn_idx,struct bpf_kfunc_call_arg_meta * meta)9081 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
9082 				  struct bpf_kfunc_call_arg_meta *meta)
9083 {
9084 	struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
9085 	struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
9086 	struct bpf_reg_state *cur_iter, *queued_iter;
9087 
9088 	BTF_TYPE_EMIT(struct bpf_iter);
9089 
9090 	cur_iter = get_iter_from_state(cur_st, meta);
9091 
9092 	if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
9093 	    cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
9094 		verifier_bug(env, "unexpected iterator state %d (%s)",
9095 			     cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
9096 		return -EFAULT;
9097 	}
9098 
9099 	if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
9100 		/* Because iter_next() call is a checkpoint is_state_visitied()
9101 		 * should guarantee parent state with same call sites and insn_idx.
9102 		 */
9103 		if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx ||
9104 		    !same_callsites(cur_st->parent, cur_st)) {
9105 			verifier_bug(env, "bad parent state for iter next call");
9106 			return -EFAULT;
9107 		}
9108 		/* Note cur_st->parent in the call below, it is necessary to skip
9109 		 * checkpoint created for cur_st by is_state_visited()
9110 		 * right at this instruction.
9111 		 */
9112 		prev_st = find_prev_entry(env, cur_st->parent, insn_idx);
9113 		/* branch out active iter state */
9114 		queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
9115 		if (IS_ERR(queued_st))
9116 			return PTR_ERR(queued_st);
9117 
9118 		queued_iter = get_iter_from_state(queued_st, meta);
9119 		queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
9120 		queued_iter->iter.depth++;
9121 		if (prev_st)
9122 			widen_imprecise_scalars(env, prev_st, queued_st);
9123 
9124 		queued_fr = queued_st->frame[queued_st->curframe];
9125 		mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
9126 	}
9127 
9128 	/* switch to DRAINED state, but keep the depth unchanged */
9129 	/* mark current iter state as drained and assume returned NULL */
9130 	cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
9131 	__mark_reg_const_zero(env, &cur_fr->regs[BPF_REG_0]);
9132 
9133 	return 0;
9134 }
9135 
arg_type_is_mem_size(enum bpf_arg_type type)9136 static bool arg_type_is_mem_size(enum bpf_arg_type type)
9137 {
9138 	return type == ARG_CONST_SIZE ||
9139 	       type == ARG_CONST_SIZE_OR_ZERO;
9140 }
9141 
arg_type_is_raw_mem(enum bpf_arg_type type)9142 static bool arg_type_is_raw_mem(enum bpf_arg_type type)
9143 {
9144 	return base_type(type) == ARG_PTR_TO_MEM &&
9145 	       type & MEM_UNINIT;
9146 }
9147 
arg_type_is_release(enum bpf_arg_type type)9148 static bool arg_type_is_release(enum bpf_arg_type type)
9149 {
9150 	return type & OBJ_RELEASE;
9151 }
9152 
arg_type_is_dynptr(enum bpf_arg_type type)9153 static bool arg_type_is_dynptr(enum bpf_arg_type type)
9154 {
9155 	return base_type(type) == ARG_PTR_TO_DYNPTR;
9156 }
9157 
resolve_map_arg_type(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_arg_type * arg_type)9158 static int resolve_map_arg_type(struct bpf_verifier_env *env,
9159 				 const struct bpf_call_arg_meta *meta,
9160 				 enum bpf_arg_type *arg_type)
9161 {
9162 	if (!meta->map_ptr) {
9163 		/* kernel subsystem misconfigured verifier */
9164 		verifier_bug(env, "invalid map_ptr to access map->type");
9165 		return -EFAULT;
9166 	}
9167 
9168 	switch (meta->map_ptr->map_type) {
9169 	case BPF_MAP_TYPE_SOCKMAP:
9170 	case BPF_MAP_TYPE_SOCKHASH:
9171 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
9172 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
9173 		} else {
9174 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
9175 			return -EINVAL;
9176 		}
9177 		break;
9178 	case BPF_MAP_TYPE_BLOOM_FILTER:
9179 		if (meta->func_id == BPF_FUNC_map_peek_elem)
9180 			*arg_type = ARG_PTR_TO_MAP_VALUE;
9181 		break;
9182 	default:
9183 		break;
9184 	}
9185 	return 0;
9186 }
9187 
9188 struct bpf_reg_types {
9189 	const enum bpf_reg_type types[10];
9190 	u32 *btf_id;
9191 };
9192 
9193 static const struct bpf_reg_types sock_types = {
9194 	.types = {
9195 		PTR_TO_SOCK_COMMON,
9196 		PTR_TO_SOCKET,
9197 		PTR_TO_TCP_SOCK,
9198 		PTR_TO_XDP_SOCK,
9199 	},
9200 };
9201 
9202 #ifdef CONFIG_NET
9203 static const struct bpf_reg_types btf_id_sock_common_types = {
9204 	.types = {
9205 		PTR_TO_SOCK_COMMON,
9206 		PTR_TO_SOCKET,
9207 		PTR_TO_TCP_SOCK,
9208 		PTR_TO_XDP_SOCK,
9209 		PTR_TO_BTF_ID,
9210 		PTR_TO_BTF_ID | PTR_TRUSTED,
9211 	},
9212 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
9213 };
9214 #endif
9215 
9216 static const struct bpf_reg_types mem_types = {
9217 	.types = {
9218 		PTR_TO_STACK,
9219 		PTR_TO_PACKET,
9220 		PTR_TO_PACKET_META,
9221 		PTR_TO_MAP_KEY,
9222 		PTR_TO_MAP_VALUE,
9223 		PTR_TO_MEM,
9224 		PTR_TO_MEM | MEM_RINGBUF,
9225 		PTR_TO_BUF,
9226 		PTR_TO_BTF_ID | PTR_TRUSTED,
9227 	},
9228 };
9229 
9230 static const struct bpf_reg_types spin_lock_types = {
9231 	.types = {
9232 		PTR_TO_MAP_VALUE,
9233 		PTR_TO_BTF_ID | MEM_ALLOC,
9234 	}
9235 };
9236 
9237 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
9238 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
9239 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
9240 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
9241 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
9242 static const struct bpf_reg_types btf_ptr_types = {
9243 	.types = {
9244 		PTR_TO_BTF_ID,
9245 		PTR_TO_BTF_ID | PTR_TRUSTED,
9246 		PTR_TO_BTF_ID | MEM_RCU,
9247 	},
9248 };
9249 static const struct bpf_reg_types percpu_btf_ptr_types = {
9250 	.types = {
9251 		PTR_TO_BTF_ID | MEM_PERCPU,
9252 		PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU,
9253 		PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
9254 	}
9255 };
9256 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
9257 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
9258 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
9259 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
9260 static const struct bpf_reg_types kptr_xchg_dest_types = {
9261 	.types = {
9262 		PTR_TO_MAP_VALUE,
9263 		PTR_TO_BTF_ID | MEM_ALLOC
9264 	}
9265 };
9266 static const struct bpf_reg_types dynptr_types = {
9267 	.types = {
9268 		PTR_TO_STACK,
9269 		CONST_PTR_TO_DYNPTR,
9270 	}
9271 };
9272 
9273 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
9274 	[ARG_PTR_TO_MAP_KEY]		= &mem_types,
9275 	[ARG_PTR_TO_MAP_VALUE]		= &mem_types,
9276 	[ARG_CONST_SIZE]		= &scalar_types,
9277 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
9278 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
9279 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
9280 	[ARG_PTR_TO_CTX]		= &context_types,
9281 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
9282 #ifdef CONFIG_NET
9283 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
9284 #endif
9285 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
9286 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
9287 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
9288 	[ARG_PTR_TO_MEM]		= &mem_types,
9289 	[ARG_PTR_TO_RINGBUF_MEM]	= &ringbuf_mem_types,
9290 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
9291 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
9292 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
9293 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
9294 	[ARG_PTR_TO_TIMER]		= &timer_types,
9295 	[ARG_KPTR_XCHG_DEST]		= &kptr_xchg_dest_types,
9296 	[ARG_PTR_TO_DYNPTR]		= &dynptr_types,
9297 };
9298 
check_reg_type(struct bpf_verifier_env * env,u32 regno,enum bpf_arg_type arg_type,const u32 * arg_btf_id,struct bpf_call_arg_meta * meta)9299 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
9300 			  enum bpf_arg_type arg_type,
9301 			  const u32 *arg_btf_id,
9302 			  struct bpf_call_arg_meta *meta)
9303 {
9304 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
9305 	enum bpf_reg_type expected, type = reg->type;
9306 	const struct bpf_reg_types *compatible;
9307 	int i, j;
9308 
9309 	compatible = compatible_reg_types[base_type(arg_type)];
9310 	if (!compatible) {
9311 		verifier_bug(env, "unsupported arg type %d", arg_type);
9312 		return -EFAULT;
9313 	}
9314 
9315 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
9316 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
9317 	 *
9318 	 * Same for MAYBE_NULL:
9319 	 *
9320 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
9321 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
9322 	 *
9323 	 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
9324 	 *
9325 	 * Therefore we fold these flags depending on the arg_type before comparison.
9326 	 */
9327 	if (arg_type & MEM_RDONLY)
9328 		type &= ~MEM_RDONLY;
9329 	if (arg_type & PTR_MAYBE_NULL)
9330 		type &= ~PTR_MAYBE_NULL;
9331 	if (base_type(arg_type) == ARG_PTR_TO_MEM)
9332 		type &= ~DYNPTR_TYPE_FLAG_MASK;
9333 
9334 	/* Local kptr types are allowed as the source argument of bpf_kptr_xchg */
9335 	if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type) && regno == BPF_REG_2) {
9336 		type &= ~MEM_ALLOC;
9337 		type &= ~MEM_PERCPU;
9338 	}
9339 
9340 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
9341 		expected = compatible->types[i];
9342 		if (expected == NOT_INIT)
9343 			break;
9344 
9345 		if (type == expected)
9346 			goto found;
9347 	}
9348 
9349 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
9350 	for (j = 0; j + 1 < i; j++)
9351 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
9352 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
9353 	return -EACCES;
9354 
9355 found:
9356 	if (base_type(reg->type) != PTR_TO_BTF_ID)
9357 		return 0;
9358 
9359 	if (compatible == &mem_types) {
9360 		if (!(arg_type & MEM_RDONLY)) {
9361 			verbose(env,
9362 				"%s() may write into memory pointed by R%d type=%s\n",
9363 				func_id_name(meta->func_id),
9364 				regno, reg_type_str(env, reg->type));
9365 			return -EACCES;
9366 		}
9367 		return 0;
9368 	}
9369 
9370 	switch ((int)reg->type) {
9371 	case PTR_TO_BTF_ID:
9372 	case PTR_TO_BTF_ID | PTR_TRUSTED:
9373 	case PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL:
9374 	case PTR_TO_BTF_ID | MEM_RCU:
9375 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
9376 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
9377 	{
9378 		/* For bpf_sk_release, it needs to match against first member
9379 		 * 'struct sock_common', hence make an exception for it. This
9380 		 * allows bpf_sk_release to work for multiple socket types.
9381 		 */
9382 		bool strict_type_match = arg_type_is_release(arg_type) &&
9383 					 meta->func_id != BPF_FUNC_sk_release;
9384 
9385 		if (type_may_be_null(reg->type) &&
9386 		    (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
9387 			verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
9388 			return -EACCES;
9389 		}
9390 
9391 		if (!arg_btf_id) {
9392 			if (!compatible->btf_id) {
9393 				verifier_bug(env, "missing arg compatible BTF ID");
9394 				return -EFAULT;
9395 			}
9396 			arg_btf_id = compatible->btf_id;
9397 		}
9398 
9399 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
9400 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
9401 				return -EACCES;
9402 		} else {
9403 			if (arg_btf_id == BPF_PTR_POISON) {
9404 				verbose(env, "verifier internal error:");
9405 				verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
9406 					regno);
9407 				return -EACCES;
9408 			}
9409 
9410 			if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
9411 						  btf_vmlinux, *arg_btf_id,
9412 						  strict_type_match)) {
9413 				verbose(env, "R%d is of type %s but %s is expected\n",
9414 					regno, btf_type_name(reg->btf, reg->btf_id),
9415 					btf_type_name(btf_vmlinux, *arg_btf_id));
9416 				return -EACCES;
9417 			}
9418 		}
9419 		break;
9420 	}
9421 	case PTR_TO_BTF_ID | MEM_ALLOC:
9422 	case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC:
9423 		if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
9424 		    meta->func_id != BPF_FUNC_kptr_xchg) {
9425 			verifier_bug(env, "unimplemented handling of MEM_ALLOC");
9426 			return -EFAULT;
9427 		}
9428 		/* Check if local kptr in src arg matches kptr in dst arg */
9429 		if (meta->func_id == BPF_FUNC_kptr_xchg && regno == BPF_REG_2) {
9430 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
9431 				return -EACCES;
9432 		}
9433 		break;
9434 	case PTR_TO_BTF_ID | MEM_PERCPU:
9435 	case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU:
9436 	case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
9437 		/* Handled by helper specific checks */
9438 		break;
9439 	default:
9440 		verifier_bug(env, "invalid PTR_TO_BTF_ID register for type match");
9441 		return -EFAULT;
9442 	}
9443 	return 0;
9444 }
9445 
9446 static struct btf_field *
reg_find_field_offset(const struct bpf_reg_state * reg,s32 off,u32 fields)9447 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
9448 {
9449 	struct btf_field *field;
9450 	struct btf_record *rec;
9451 
9452 	rec = reg_btf_record(reg);
9453 	if (!rec)
9454 		return NULL;
9455 
9456 	field = btf_record_find(rec, off, fields);
9457 	if (!field)
9458 		return NULL;
9459 
9460 	return field;
9461 }
9462 
check_func_arg_reg_off(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,enum bpf_arg_type arg_type)9463 static int check_func_arg_reg_off(struct bpf_verifier_env *env,
9464 				  const struct bpf_reg_state *reg, int regno,
9465 				  enum bpf_arg_type arg_type)
9466 {
9467 	u32 type = reg->type;
9468 
9469 	/* When referenced register is passed to release function, its fixed
9470 	 * offset must be 0.
9471 	 *
9472 	 * We will check arg_type_is_release reg has ref_obj_id when storing
9473 	 * meta->release_regno.
9474 	 */
9475 	if (arg_type_is_release(arg_type)) {
9476 		/* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
9477 		 * may not directly point to the object being released, but to
9478 		 * dynptr pointing to such object, which might be at some offset
9479 		 * on the stack. In that case, we simply to fallback to the
9480 		 * default handling.
9481 		 */
9482 		if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
9483 			return 0;
9484 
9485 		/* Doing check_ptr_off_reg check for the offset will catch this
9486 		 * because fixed_off_ok is false, but checking here allows us
9487 		 * to give the user a better error message.
9488 		 */
9489 		if (reg->off) {
9490 			verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
9491 				regno);
9492 			return -EINVAL;
9493 		}
9494 		return __check_ptr_off_reg(env, reg, regno, false);
9495 	}
9496 
9497 	switch (type) {
9498 	/* Pointer types where both fixed and variable offset is explicitly allowed: */
9499 	case PTR_TO_STACK:
9500 	case PTR_TO_PACKET:
9501 	case PTR_TO_PACKET_META:
9502 	case PTR_TO_MAP_KEY:
9503 	case PTR_TO_MAP_VALUE:
9504 	case PTR_TO_MEM:
9505 	case PTR_TO_MEM | MEM_RDONLY:
9506 	case PTR_TO_MEM | MEM_RINGBUF:
9507 	case PTR_TO_BUF:
9508 	case PTR_TO_BUF | MEM_RDONLY:
9509 	case PTR_TO_ARENA:
9510 	case SCALAR_VALUE:
9511 		return 0;
9512 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
9513 	 * fixed offset.
9514 	 */
9515 	case PTR_TO_BTF_ID:
9516 	case PTR_TO_BTF_ID | MEM_ALLOC:
9517 	case PTR_TO_BTF_ID | PTR_TRUSTED:
9518 	case PTR_TO_BTF_ID | MEM_RCU:
9519 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
9520 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU:
9521 		/* When referenced PTR_TO_BTF_ID is passed to release function,
9522 		 * its fixed offset must be 0. In the other cases, fixed offset
9523 		 * can be non-zero. This was already checked above. So pass
9524 		 * fixed_off_ok as true to allow fixed offset for all other
9525 		 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
9526 		 * still need to do checks instead of returning.
9527 		 */
9528 		return __check_ptr_off_reg(env, reg, regno, true);
9529 	default:
9530 		return __check_ptr_off_reg(env, reg, regno, false);
9531 	}
9532 }
9533 
get_dynptr_arg_reg(struct bpf_verifier_env * env,const struct bpf_func_proto * fn,struct bpf_reg_state * regs)9534 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
9535 						const struct bpf_func_proto *fn,
9536 						struct bpf_reg_state *regs)
9537 {
9538 	struct bpf_reg_state *state = NULL;
9539 	int i;
9540 
9541 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
9542 		if (arg_type_is_dynptr(fn->arg_type[i])) {
9543 			if (state) {
9544 				verbose(env, "verifier internal error: multiple dynptr args\n");
9545 				return NULL;
9546 			}
9547 			state = &regs[BPF_REG_1 + i];
9548 		}
9549 
9550 	if (!state)
9551 		verbose(env, "verifier internal error: no dynptr arg found\n");
9552 
9553 	return state;
9554 }
9555 
dynptr_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg)9556 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
9557 {
9558 	struct bpf_func_state *state = func(env, reg);
9559 	int spi;
9560 
9561 	if (reg->type == CONST_PTR_TO_DYNPTR)
9562 		return reg->id;
9563 	spi = dynptr_get_spi(env, reg);
9564 	if (spi < 0)
9565 		return spi;
9566 	return state->stack[spi].spilled_ptr.id;
9567 }
9568 
dynptr_ref_obj_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg)9569 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
9570 {
9571 	struct bpf_func_state *state = func(env, reg);
9572 	int spi;
9573 
9574 	if (reg->type == CONST_PTR_TO_DYNPTR)
9575 		return reg->ref_obj_id;
9576 	spi = dynptr_get_spi(env, reg);
9577 	if (spi < 0)
9578 		return spi;
9579 	return state->stack[spi].spilled_ptr.ref_obj_id;
9580 }
9581 
dynptr_get_type(struct bpf_verifier_env * env,struct bpf_reg_state * reg)9582 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
9583 					    struct bpf_reg_state *reg)
9584 {
9585 	struct bpf_func_state *state = func(env, reg);
9586 	int spi;
9587 
9588 	if (reg->type == CONST_PTR_TO_DYNPTR)
9589 		return reg->dynptr.type;
9590 
9591 	spi = __get_spi(reg->off);
9592 	if (spi < 0) {
9593 		verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
9594 		return BPF_DYNPTR_TYPE_INVALID;
9595 	}
9596 
9597 	return state->stack[spi].spilled_ptr.dynptr.type;
9598 }
9599 
check_reg_const_str(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno)9600 static int check_reg_const_str(struct bpf_verifier_env *env,
9601 			       struct bpf_reg_state *reg, u32 regno)
9602 {
9603 	struct bpf_map *map = reg->map_ptr;
9604 	int err;
9605 	int map_off;
9606 	u64 map_addr;
9607 	char *str_ptr;
9608 
9609 	if (reg->type != PTR_TO_MAP_VALUE)
9610 		return -EINVAL;
9611 
9612 	if (map->map_type == BPF_MAP_TYPE_INSN_ARRAY) {
9613 		verbose(env, "R%d points to insn_array map which cannot be used as const string\n", regno);
9614 		return -EACCES;
9615 	}
9616 
9617 	if (!bpf_map_is_rdonly(map)) {
9618 		verbose(env, "R%d does not point to a readonly map'\n", regno);
9619 		return -EACCES;
9620 	}
9621 
9622 	if (!tnum_is_const(reg->var_off)) {
9623 		verbose(env, "R%d is not a constant address'\n", regno);
9624 		return -EACCES;
9625 	}
9626 
9627 	if (!map->ops->map_direct_value_addr) {
9628 		verbose(env, "no direct value access support for this map type\n");
9629 		return -EACCES;
9630 	}
9631 
9632 	err = check_map_access(env, regno, reg->off,
9633 			       map->value_size - reg->off, false,
9634 			       ACCESS_HELPER);
9635 	if (err)
9636 		return err;
9637 
9638 	map_off = reg->off + reg->var_off.value;
9639 	err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
9640 	if (err) {
9641 		verbose(env, "direct value access on string failed\n");
9642 		return err;
9643 	}
9644 
9645 	str_ptr = (char *)(long)(map_addr);
9646 	if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
9647 		verbose(env, "string is not zero-terminated\n");
9648 		return -EINVAL;
9649 	}
9650 	return 0;
9651 }
9652 
9653 /* Returns constant key value in `value` if possible, else negative error */
get_constant_map_key(struct bpf_verifier_env * env,struct bpf_reg_state * key,u32 key_size,s64 * value)9654 static int get_constant_map_key(struct bpf_verifier_env *env,
9655 				struct bpf_reg_state *key,
9656 				u32 key_size,
9657 				s64 *value)
9658 {
9659 	struct bpf_func_state *state = func(env, key);
9660 	struct bpf_reg_state *reg;
9661 	int slot, spi, off;
9662 	int spill_size = 0;
9663 	int zero_size = 0;
9664 	int stack_off;
9665 	int i, err;
9666 	u8 *stype;
9667 
9668 	if (!env->bpf_capable)
9669 		return -EOPNOTSUPP;
9670 	if (key->type != PTR_TO_STACK)
9671 		return -EOPNOTSUPP;
9672 	if (!tnum_is_const(key->var_off))
9673 		return -EOPNOTSUPP;
9674 
9675 	stack_off = key->off + key->var_off.value;
9676 	slot = -stack_off - 1;
9677 	spi = slot / BPF_REG_SIZE;
9678 	off = slot % BPF_REG_SIZE;
9679 	stype = state->stack[spi].slot_type;
9680 
9681 	/* First handle precisely tracked STACK_ZERO */
9682 	for (i = off; i >= 0 && stype[i] == STACK_ZERO; i--)
9683 		zero_size++;
9684 	if (zero_size >= key_size) {
9685 		*value = 0;
9686 		return 0;
9687 	}
9688 
9689 	/* Check that stack contains a scalar spill of expected size */
9690 	if (!is_spilled_scalar_reg(&state->stack[spi]))
9691 		return -EOPNOTSUPP;
9692 	for (i = off; i >= 0 && stype[i] == STACK_SPILL; i--)
9693 		spill_size++;
9694 	if (spill_size != key_size)
9695 		return -EOPNOTSUPP;
9696 
9697 	reg = &state->stack[spi].spilled_ptr;
9698 	if (!tnum_is_const(reg->var_off))
9699 		/* Stack value not statically known */
9700 		return -EOPNOTSUPP;
9701 
9702 	/* We are relying on a constant value. So mark as precise
9703 	 * to prevent pruning on it.
9704 	 */
9705 	bt_set_frame_slot(&env->bt, key->frameno, spi);
9706 	err = mark_chain_precision_batch(env, env->cur_state);
9707 	if (err < 0)
9708 		return err;
9709 
9710 	*value = reg->var_off.value;
9711 	return 0;
9712 }
9713 
9714 static bool can_elide_value_nullness(enum bpf_map_type type);
9715 
check_func_arg(struct bpf_verifier_env * env,u32 arg,struct bpf_call_arg_meta * meta,const struct bpf_func_proto * fn,int insn_idx)9716 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
9717 			  struct bpf_call_arg_meta *meta,
9718 			  const struct bpf_func_proto *fn,
9719 			  int insn_idx)
9720 {
9721 	u32 regno = BPF_REG_1 + arg;
9722 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
9723 	enum bpf_arg_type arg_type = fn->arg_type[arg];
9724 	enum bpf_reg_type type = reg->type;
9725 	u32 *arg_btf_id = NULL;
9726 	u32 key_size;
9727 	int err = 0;
9728 
9729 	if (arg_type == ARG_DONTCARE)
9730 		return 0;
9731 
9732 	err = check_reg_arg(env, regno, SRC_OP);
9733 	if (err)
9734 		return err;
9735 
9736 	if (arg_type == ARG_ANYTHING) {
9737 		if (is_pointer_value(env, regno)) {
9738 			verbose(env, "R%d leaks addr into helper function\n",
9739 				regno);
9740 			return -EACCES;
9741 		}
9742 		return 0;
9743 	}
9744 
9745 	if (type_is_pkt_pointer(type) &&
9746 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
9747 		verbose(env, "helper access to the packet is not allowed\n");
9748 		return -EACCES;
9749 	}
9750 
9751 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
9752 		err = resolve_map_arg_type(env, meta, &arg_type);
9753 		if (err)
9754 			return err;
9755 	}
9756 
9757 	if (register_is_null(reg) && type_may_be_null(arg_type))
9758 		/* A NULL register has a SCALAR_VALUE type, so skip
9759 		 * type checking.
9760 		 */
9761 		goto skip_type_check;
9762 
9763 	/* arg_btf_id and arg_size are in a union. */
9764 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
9765 	    base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
9766 		arg_btf_id = fn->arg_btf_id[arg];
9767 
9768 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
9769 	if (err)
9770 		return err;
9771 
9772 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
9773 	if (err)
9774 		return err;
9775 
9776 skip_type_check:
9777 	if (arg_type_is_release(arg_type)) {
9778 		if (arg_type_is_dynptr(arg_type)) {
9779 			struct bpf_func_state *state = func(env, reg);
9780 			int spi;
9781 
9782 			/* Only dynptr created on stack can be released, thus
9783 			 * the get_spi and stack state checks for spilled_ptr
9784 			 * should only be done before process_dynptr_func for
9785 			 * PTR_TO_STACK.
9786 			 */
9787 			if (reg->type == PTR_TO_STACK) {
9788 				spi = dynptr_get_spi(env, reg);
9789 				if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
9790 					verbose(env, "arg %d is an unacquired reference\n", regno);
9791 					return -EINVAL;
9792 				}
9793 			} else {
9794 				verbose(env, "cannot release unowned const bpf_dynptr\n");
9795 				return -EINVAL;
9796 			}
9797 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
9798 			verbose(env, "R%d must be referenced when passed to release function\n",
9799 				regno);
9800 			return -EINVAL;
9801 		}
9802 		if (meta->release_regno) {
9803 			verifier_bug(env, "more than one release argument");
9804 			return -EFAULT;
9805 		}
9806 		meta->release_regno = regno;
9807 	}
9808 
9809 	if (reg->ref_obj_id && base_type(arg_type) != ARG_KPTR_XCHG_DEST) {
9810 		if (meta->ref_obj_id) {
9811 			verbose(env, "more than one arg with ref_obj_id R%d %u %u",
9812 				regno, reg->ref_obj_id,
9813 				meta->ref_obj_id);
9814 			return -EACCES;
9815 		}
9816 		meta->ref_obj_id = reg->ref_obj_id;
9817 	}
9818 
9819 	switch (base_type(arg_type)) {
9820 	case ARG_CONST_MAP_PTR:
9821 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
9822 		if (meta->map_ptr) {
9823 			/* Use map_uid (which is unique id of inner map) to reject:
9824 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
9825 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
9826 			 * if (inner_map1 && inner_map2) {
9827 			 *     timer = bpf_map_lookup_elem(inner_map1);
9828 			 *     if (timer)
9829 			 *         // mismatch would have been allowed
9830 			 *         bpf_timer_init(timer, inner_map2);
9831 			 * }
9832 			 *
9833 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
9834 			 */
9835 			if (meta->map_ptr != reg->map_ptr ||
9836 			    meta->map_uid != reg->map_uid) {
9837 				verbose(env,
9838 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
9839 					meta->map_uid, reg->map_uid);
9840 				return -EINVAL;
9841 			}
9842 		}
9843 		meta->map_ptr = reg->map_ptr;
9844 		meta->map_uid = reg->map_uid;
9845 		break;
9846 	case ARG_PTR_TO_MAP_KEY:
9847 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
9848 		 * check that [key, key + map->key_size) are within
9849 		 * stack limits and initialized
9850 		 */
9851 		if (!meta->map_ptr) {
9852 			/* in function declaration map_ptr must come before
9853 			 * map_key, so that it's verified and known before
9854 			 * we have to check map_key here. Otherwise it means
9855 			 * that kernel subsystem misconfigured verifier
9856 			 */
9857 			verifier_bug(env, "invalid map_ptr to access map->key");
9858 			return -EFAULT;
9859 		}
9860 		key_size = meta->map_ptr->key_size;
9861 		err = check_helper_mem_access(env, regno, key_size, BPF_READ, false, NULL);
9862 		if (err)
9863 			return err;
9864 		if (can_elide_value_nullness(meta->map_ptr->map_type)) {
9865 			err = get_constant_map_key(env, reg, key_size, &meta->const_map_key);
9866 			if (err < 0) {
9867 				meta->const_map_key = -1;
9868 				if (err == -EOPNOTSUPP)
9869 					err = 0;
9870 				else
9871 					return err;
9872 			}
9873 		}
9874 		break;
9875 	case ARG_PTR_TO_MAP_VALUE:
9876 		if (type_may_be_null(arg_type) && register_is_null(reg))
9877 			return 0;
9878 
9879 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
9880 		 * check [value, value + map->value_size) validity
9881 		 */
9882 		if (!meta->map_ptr) {
9883 			/* kernel subsystem misconfigured verifier */
9884 			verifier_bug(env, "invalid map_ptr to access map->value");
9885 			return -EFAULT;
9886 		}
9887 		meta->raw_mode = arg_type & MEM_UNINIT;
9888 		err = check_helper_mem_access(env, regno, meta->map_ptr->value_size,
9889 					      arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ,
9890 					      false, meta);
9891 		break;
9892 	case ARG_PTR_TO_PERCPU_BTF_ID:
9893 		if (!reg->btf_id) {
9894 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
9895 			return -EACCES;
9896 		}
9897 		meta->ret_btf = reg->btf;
9898 		meta->ret_btf_id = reg->btf_id;
9899 		break;
9900 	case ARG_PTR_TO_SPIN_LOCK:
9901 		if (in_rbtree_lock_required_cb(env)) {
9902 			verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
9903 			return -EACCES;
9904 		}
9905 		if (meta->func_id == BPF_FUNC_spin_lock) {
9906 			err = process_spin_lock(env, regno, PROCESS_SPIN_LOCK);
9907 			if (err)
9908 				return err;
9909 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
9910 			err = process_spin_lock(env, regno, 0);
9911 			if (err)
9912 				return err;
9913 		} else {
9914 			verifier_bug(env, "spin lock arg on unexpected helper");
9915 			return -EFAULT;
9916 		}
9917 		break;
9918 	case ARG_PTR_TO_TIMER:
9919 		err = process_timer_func(env, regno, meta);
9920 		if (err)
9921 			return err;
9922 		break;
9923 	case ARG_PTR_TO_FUNC:
9924 		meta->subprogno = reg->subprogno;
9925 		break;
9926 	case ARG_PTR_TO_MEM:
9927 		/* The access to this pointer is only checked when we hit the
9928 		 * next is_mem_size argument below.
9929 		 */
9930 		meta->raw_mode = arg_type & MEM_UNINIT;
9931 		if (arg_type & MEM_FIXED_SIZE) {
9932 			err = check_helper_mem_access(env, regno, fn->arg_size[arg],
9933 						      arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ,
9934 						      false, meta);
9935 			if (err)
9936 				return err;
9937 			if (arg_type & MEM_ALIGNED)
9938 				err = check_ptr_alignment(env, reg, 0, fn->arg_size[arg], true);
9939 		}
9940 		break;
9941 	case ARG_CONST_SIZE:
9942 		err = check_mem_size_reg(env, reg, regno,
9943 					 fn->arg_type[arg - 1] & MEM_WRITE ?
9944 					 BPF_WRITE : BPF_READ,
9945 					 false, meta);
9946 		break;
9947 	case ARG_CONST_SIZE_OR_ZERO:
9948 		err = check_mem_size_reg(env, reg, regno,
9949 					 fn->arg_type[arg - 1] & MEM_WRITE ?
9950 					 BPF_WRITE : BPF_READ,
9951 					 true, meta);
9952 		break;
9953 	case ARG_PTR_TO_DYNPTR:
9954 		err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
9955 		if (err)
9956 			return err;
9957 		break;
9958 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
9959 		if (!tnum_is_const(reg->var_off)) {
9960 			verbose(env, "R%d is not a known constant'\n",
9961 				regno);
9962 			return -EACCES;
9963 		}
9964 		meta->mem_size = reg->var_off.value;
9965 		err = mark_chain_precision(env, regno);
9966 		if (err)
9967 			return err;
9968 		break;
9969 	case ARG_PTR_TO_CONST_STR:
9970 	{
9971 		err = check_reg_const_str(env, reg, regno);
9972 		if (err)
9973 			return err;
9974 		break;
9975 	}
9976 	case ARG_KPTR_XCHG_DEST:
9977 		err = process_kptr_func(env, regno, meta);
9978 		if (err)
9979 			return err;
9980 		break;
9981 	}
9982 
9983 	return err;
9984 }
9985 
may_update_sockmap(struct bpf_verifier_env * env,int func_id)9986 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
9987 {
9988 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
9989 	enum bpf_prog_type type = resolve_prog_type(env->prog);
9990 
9991 	if (func_id != BPF_FUNC_map_update_elem &&
9992 	    func_id != BPF_FUNC_map_delete_elem)
9993 		return false;
9994 
9995 	/* It's not possible to get access to a locked struct sock in these
9996 	 * contexts, so updating is safe.
9997 	 */
9998 	switch (type) {
9999 	case BPF_PROG_TYPE_TRACING:
10000 		if (eatype == BPF_TRACE_ITER)
10001 			return true;
10002 		break;
10003 	case BPF_PROG_TYPE_SOCK_OPS:
10004 		/* map_update allowed only via dedicated helpers with event type checks */
10005 		if (func_id == BPF_FUNC_map_delete_elem)
10006 			return true;
10007 		break;
10008 	case BPF_PROG_TYPE_SOCKET_FILTER:
10009 	case BPF_PROG_TYPE_SCHED_CLS:
10010 	case BPF_PROG_TYPE_SCHED_ACT:
10011 	case BPF_PROG_TYPE_XDP:
10012 	case BPF_PROG_TYPE_SK_REUSEPORT:
10013 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
10014 	case BPF_PROG_TYPE_SK_LOOKUP:
10015 		return true;
10016 	default:
10017 		break;
10018 	}
10019 
10020 	verbose(env, "cannot update sockmap in this context\n");
10021 	return false;
10022 }
10023 
allow_tail_call_in_subprogs(struct bpf_verifier_env * env)10024 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
10025 {
10026 	return env->prog->jit_requested &&
10027 	       bpf_jit_supports_subprog_tailcalls();
10028 }
10029 
check_map_func_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,int func_id)10030 static int check_map_func_compatibility(struct bpf_verifier_env *env,
10031 					struct bpf_map *map, int func_id)
10032 {
10033 	if (!map)
10034 		return 0;
10035 
10036 	/* We need a two way check, first is from map perspective ... */
10037 	switch (map->map_type) {
10038 	case BPF_MAP_TYPE_PROG_ARRAY:
10039 		if (func_id != BPF_FUNC_tail_call)
10040 			goto error;
10041 		break;
10042 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
10043 		if (func_id != BPF_FUNC_perf_event_read &&
10044 		    func_id != BPF_FUNC_perf_event_output &&
10045 		    func_id != BPF_FUNC_skb_output &&
10046 		    func_id != BPF_FUNC_perf_event_read_value &&
10047 		    func_id != BPF_FUNC_xdp_output)
10048 			goto error;
10049 		break;
10050 	case BPF_MAP_TYPE_RINGBUF:
10051 		if (func_id != BPF_FUNC_ringbuf_output &&
10052 		    func_id != BPF_FUNC_ringbuf_reserve &&
10053 		    func_id != BPF_FUNC_ringbuf_query &&
10054 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
10055 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
10056 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
10057 			goto error;
10058 		break;
10059 	case BPF_MAP_TYPE_USER_RINGBUF:
10060 		if (func_id != BPF_FUNC_user_ringbuf_drain)
10061 			goto error;
10062 		break;
10063 	case BPF_MAP_TYPE_STACK_TRACE:
10064 		if (func_id != BPF_FUNC_get_stackid)
10065 			goto error;
10066 		break;
10067 	case BPF_MAP_TYPE_CGROUP_ARRAY:
10068 		if (func_id != BPF_FUNC_skb_under_cgroup &&
10069 		    func_id != BPF_FUNC_current_task_under_cgroup)
10070 			goto error;
10071 		break;
10072 	case BPF_MAP_TYPE_CGROUP_STORAGE:
10073 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
10074 		if (func_id != BPF_FUNC_get_local_storage)
10075 			goto error;
10076 		break;
10077 	case BPF_MAP_TYPE_DEVMAP:
10078 	case BPF_MAP_TYPE_DEVMAP_HASH:
10079 		if (func_id != BPF_FUNC_redirect_map &&
10080 		    func_id != BPF_FUNC_map_lookup_elem)
10081 			goto error;
10082 		break;
10083 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
10084 	 * appear.
10085 	 */
10086 	case BPF_MAP_TYPE_CPUMAP:
10087 		if (func_id != BPF_FUNC_redirect_map)
10088 			goto error;
10089 		break;
10090 	case BPF_MAP_TYPE_XSKMAP:
10091 		if (func_id != BPF_FUNC_redirect_map &&
10092 		    func_id != BPF_FUNC_map_lookup_elem)
10093 			goto error;
10094 		break;
10095 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
10096 	case BPF_MAP_TYPE_HASH_OF_MAPS:
10097 		if (func_id != BPF_FUNC_map_lookup_elem)
10098 			goto error;
10099 		break;
10100 	case BPF_MAP_TYPE_SOCKMAP:
10101 		if (func_id != BPF_FUNC_sk_redirect_map &&
10102 		    func_id != BPF_FUNC_sock_map_update &&
10103 		    func_id != BPF_FUNC_msg_redirect_map &&
10104 		    func_id != BPF_FUNC_sk_select_reuseport &&
10105 		    func_id != BPF_FUNC_map_lookup_elem &&
10106 		    !may_update_sockmap(env, func_id))
10107 			goto error;
10108 		break;
10109 	case BPF_MAP_TYPE_SOCKHASH:
10110 		if (func_id != BPF_FUNC_sk_redirect_hash &&
10111 		    func_id != BPF_FUNC_sock_hash_update &&
10112 		    func_id != BPF_FUNC_msg_redirect_hash &&
10113 		    func_id != BPF_FUNC_sk_select_reuseport &&
10114 		    func_id != BPF_FUNC_map_lookup_elem &&
10115 		    !may_update_sockmap(env, func_id))
10116 			goto error;
10117 		break;
10118 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
10119 		if (func_id != BPF_FUNC_sk_select_reuseport)
10120 			goto error;
10121 		break;
10122 	case BPF_MAP_TYPE_QUEUE:
10123 	case BPF_MAP_TYPE_STACK:
10124 		if (func_id != BPF_FUNC_map_peek_elem &&
10125 		    func_id != BPF_FUNC_map_pop_elem &&
10126 		    func_id != BPF_FUNC_map_push_elem)
10127 			goto error;
10128 		break;
10129 	case BPF_MAP_TYPE_SK_STORAGE:
10130 		if (func_id != BPF_FUNC_sk_storage_get &&
10131 		    func_id != BPF_FUNC_sk_storage_delete &&
10132 		    func_id != BPF_FUNC_kptr_xchg)
10133 			goto error;
10134 		break;
10135 	case BPF_MAP_TYPE_INODE_STORAGE:
10136 		if (func_id != BPF_FUNC_inode_storage_get &&
10137 		    func_id != BPF_FUNC_inode_storage_delete &&
10138 		    func_id != BPF_FUNC_kptr_xchg)
10139 			goto error;
10140 		break;
10141 	case BPF_MAP_TYPE_TASK_STORAGE:
10142 		if (func_id != BPF_FUNC_task_storage_get &&
10143 		    func_id != BPF_FUNC_task_storage_delete &&
10144 		    func_id != BPF_FUNC_kptr_xchg)
10145 			goto error;
10146 		break;
10147 	case BPF_MAP_TYPE_CGRP_STORAGE:
10148 		if (func_id != BPF_FUNC_cgrp_storage_get &&
10149 		    func_id != BPF_FUNC_cgrp_storage_delete &&
10150 		    func_id != BPF_FUNC_kptr_xchg)
10151 			goto error;
10152 		break;
10153 	case BPF_MAP_TYPE_BLOOM_FILTER:
10154 		if (func_id != BPF_FUNC_map_peek_elem &&
10155 		    func_id != BPF_FUNC_map_push_elem)
10156 			goto error;
10157 		break;
10158 	case BPF_MAP_TYPE_INSN_ARRAY:
10159 		goto error;
10160 	default:
10161 		break;
10162 	}
10163 
10164 	/* ... and second from the function itself. */
10165 	switch (func_id) {
10166 	case BPF_FUNC_tail_call:
10167 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
10168 			goto error;
10169 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
10170 			verbose(env, "mixing of tail_calls and bpf-to-bpf calls is not supported\n");
10171 			return -EINVAL;
10172 		}
10173 		break;
10174 	case BPF_FUNC_perf_event_read:
10175 	case BPF_FUNC_perf_event_output:
10176 	case BPF_FUNC_perf_event_read_value:
10177 	case BPF_FUNC_skb_output:
10178 	case BPF_FUNC_xdp_output:
10179 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
10180 			goto error;
10181 		break;
10182 	case BPF_FUNC_ringbuf_output:
10183 	case BPF_FUNC_ringbuf_reserve:
10184 	case BPF_FUNC_ringbuf_query:
10185 	case BPF_FUNC_ringbuf_reserve_dynptr:
10186 	case BPF_FUNC_ringbuf_submit_dynptr:
10187 	case BPF_FUNC_ringbuf_discard_dynptr:
10188 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
10189 			goto error;
10190 		break;
10191 	case BPF_FUNC_user_ringbuf_drain:
10192 		if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
10193 			goto error;
10194 		break;
10195 	case BPF_FUNC_get_stackid:
10196 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
10197 			goto error;
10198 		break;
10199 	case BPF_FUNC_current_task_under_cgroup:
10200 	case BPF_FUNC_skb_under_cgroup:
10201 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
10202 			goto error;
10203 		break;
10204 	case BPF_FUNC_redirect_map:
10205 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
10206 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
10207 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
10208 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
10209 			goto error;
10210 		break;
10211 	case BPF_FUNC_sk_redirect_map:
10212 	case BPF_FUNC_msg_redirect_map:
10213 	case BPF_FUNC_sock_map_update:
10214 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
10215 			goto error;
10216 		break;
10217 	case BPF_FUNC_sk_redirect_hash:
10218 	case BPF_FUNC_msg_redirect_hash:
10219 	case BPF_FUNC_sock_hash_update:
10220 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
10221 			goto error;
10222 		break;
10223 	case BPF_FUNC_get_local_storage:
10224 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
10225 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
10226 			goto error;
10227 		break;
10228 	case BPF_FUNC_sk_select_reuseport:
10229 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
10230 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
10231 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
10232 			goto error;
10233 		break;
10234 	case BPF_FUNC_map_pop_elem:
10235 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
10236 		    map->map_type != BPF_MAP_TYPE_STACK)
10237 			goto error;
10238 		break;
10239 	case BPF_FUNC_map_peek_elem:
10240 	case BPF_FUNC_map_push_elem:
10241 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
10242 		    map->map_type != BPF_MAP_TYPE_STACK &&
10243 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
10244 			goto error;
10245 		break;
10246 	case BPF_FUNC_map_lookup_percpu_elem:
10247 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
10248 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
10249 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
10250 			goto error;
10251 		break;
10252 	case BPF_FUNC_sk_storage_get:
10253 	case BPF_FUNC_sk_storage_delete:
10254 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
10255 			goto error;
10256 		break;
10257 	case BPF_FUNC_inode_storage_get:
10258 	case BPF_FUNC_inode_storage_delete:
10259 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
10260 			goto error;
10261 		break;
10262 	case BPF_FUNC_task_storage_get:
10263 	case BPF_FUNC_task_storage_delete:
10264 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
10265 			goto error;
10266 		break;
10267 	case BPF_FUNC_cgrp_storage_get:
10268 	case BPF_FUNC_cgrp_storage_delete:
10269 		if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
10270 			goto error;
10271 		break;
10272 	default:
10273 		break;
10274 	}
10275 
10276 	return 0;
10277 error:
10278 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
10279 		map->map_type, func_id_name(func_id), func_id);
10280 	return -EINVAL;
10281 }
10282 
check_raw_mode_ok(const struct bpf_func_proto * fn)10283 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
10284 {
10285 	int count = 0;
10286 
10287 	if (arg_type_is_raw_mem(fn->arg1_type))
10288 		count++;
10289 	if (arg_type_is_raw_mem(fn->arg2_type))
10290 		count++;
10291 	if (arg_type_is_raw_mem(fn->arg3_type))
10292 		count++;
10293 	if (arg_type_is_raw_mem(fn->arg4_type))
10294 		count++;
10295 	if (arg_type_is_raw_mem(fn->arg5_type))
10296 		count++;
10297 
10298 	/* We only support one arg being in raw mode at the moment,
10299 	 * which is sufficient for the helper functions we have
10300 	 * right now.
10301 	 */
10302 	return count <= 1;
10303 }
10304 
check_args_pair_invalid(const struct bpf_func_proto * fn,int arg)10305 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
10306 {
10307 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
10308 	bool has_size = fn->arg_size[arg] != 0;
10309 	bool is_next_size = false;
10310 
10311 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
10312 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
10313 
10314 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
10315 		return is_next_size;
10316 
10317 	return has_size == is_next_size || is_next_size == is_fixed;
10318 }
10319 
check_arg_pair_ok(const struct bpf_func_proto * fn)10320 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
10321 {
10322 	/* bpf_xxx(..., buf, len) call will access 'len'
10323 	 * bytes from memory 'buf'. Both arg types need
10324 	 * to be paired, so make sure there's no buggy
10325 	 * helper function specification.
10326 	 */
10327 	if (arg_type_is_mem_size(fn->arg1_type) ||
10328 	    check_args_pair_invalid(fn, 0) ||
10329 	    check_args_pair_invalid(fn, 1) ||
10330 	    check_args_pair_invalid(fn, 2) ||
10331 	    check_args_pair_invalid(fn, 3) ||
10332 	    check_args_pair_invalid(fn, 4))
10333 		return false;
10334 
10335 	return true;
10336 }
10337 
check_btf_id_ok(const struct bpf_func_proto * fn)10338 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
10339 {
10340 	int i;
10341 
10342 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
10343 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
10344 			return !!fn->arg_btf_id[i];
10345 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
10346 			return fn->arg_btf_id[i] == BPF_PTR_POISON;
10347 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
10348 		    /* arg_btf_id and arg_size are in a union. */
10349 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
10350 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
10351 			return false;
10352 	}
10353 
10354 	return true;
10355 }
10356 
check_func_proto(const struct bpf_func_proto * fn,int func_id)10357 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
10358 {
10359 	return check_raw_mode_ok(fn) &&
10360 	       check_arg_pair_ok(fn) &&
10361 	       check_btf_id_ok(fn) ? 0 : -EINVAL;
10362 }
10363 
10364 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
10365  * are now invalid, so turn them into unknown SCALAR_VALUE.
10366  *
10367  * This also applies to dynptr slices belonging to skb and xdp dynptrs,
10368  * since these slices point to packet data.
10369  */
clear_all_pkt_pointers(struct bpf_verifier_env * env)10370 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
10371 {
10372 	struct bpf_func_state *state;
10373 	struct bpf_reg_state *reg;
10374 
10375 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
10376 		if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
10377 			mark_reg_invalid(env, reg);
10378 	}));
10379 }
10380 
10381 enum {
10382 	AT_PKT_END = -1,
10383 	BEYOND_PKT_END = -2,
10384 };
10385 
mark_pkt_end(struct bpf_verifier_state * vstate,int regn,bool range_open)10386 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
10387 {
10388 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
10389 	struct bpf_reg_state *reg = &state->regs[regn];
10390 
10391 	if (reg->type != PTR_TO_PACKET)
10392 		/* PTR_TO_PACKET_META is not supported yet */
10393 		return;
10394 
10395 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
10396 	 * How far beyond pkt_end it goes is unknown.
10397 	 * if (!range_open) it's the case of pkt >= pkt_end
10398 	 * if (range_open) it's the case of pkt > pkt_end
10399 	 * hence this pointer is at least 1 byte bigger than pkt_end
10400 	 */
10401 	if (range_open)
10402 		reg->range = BEYOND_PKT_END;
10403 	else
10404 		reg->range = AT_PKT_END;
10405 }
10406 
release_reference_nomark(struct bpf_verifier_state * state,int ref_obj_id)10407 static int release_reference_nomark(struct bpf_verifier_state *state, int ref_obj_id)
10408 {
10409 	int i;
10410 
10411 	for (i = 0; i < state->acquired_refs; i++) {
10412 		if (state->refs[i].type != REF_TYPE_PTR)
10413 			continue;
10414 		if (state->refs[i].id == ref_obj_id) {
10415 			release_reference_state(state, i);
10416 			return 0;
10417 		}
10418 	}
10419 	return -EINVAL;
10420 }
10421 
10422 /* The pointer with the specified id has released its reference to kernel
10423  * resources. Identify all copies of the same pointer and clear the reference.
10424  *
10425  * This is the release function corresponding to acquire_reference(). Idempotent.
10426  */
release_reference(struct bpf_verifier_env * env,int ref_obj_id)10427 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id)
10428 {
10429 	struct bpf_verifier_state *vstate = env->cur_state;
10430 	struct bpf_func_state *state;
10431 	struct bpf_reg_state *reg;
10432 	int err;
10433 
10434 	err = release_reference_nomark(vstate, ref_obj_id);
10435 	if (err)
10436 		return err;
10437 
10438 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
10439 		if (reg->ref_obj_id == ref_obj_id)
10440 			mark_reg_invalid(env, reg);
10441 	}));
10442 
10443 	return 0;
10444 }
10445 
invalidate_non_owning_refs(struct bpf_verifier_env * env)10446 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
10447 {
10448 	struct bpf_func_state *unused;
10449 	struct bpf_reg_state *reg;
10450 
10451 	bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
10452 		if (type_is_non_owning_ref(reg->type))
10453 			mark_reg_invalid(env, reg);
10454 	}));
10455 }
10456 
clear_caller_saved_regs(struct bpf_verifier_env * env,struct bpf_reg_state * regs)10457 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
10458 				    struct bpf_reg_state *regs)
10459 {
10460 	int i;
10461 
10462 	/* after the call registers r0 - r5 were scratched */
10463 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
10464 		mark_reg_not_init(env, regs, caller_saved[i]);
10465 		__check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK);
10466 	}
10467 }
10468 
10469 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
10470 				   struct bpf_func_state *caller,
10471 				   struct bpf_func_state *callee,
10472 				   int insn_idx);
10473 
10474 static int set_callee_state(struct bpf_verifier_env *env,
10475 			    struct bpf_func_state *caller,
10476 			    struct bpf_func_state *callee, int insn_idx);
10477 
setup_func_entry(struct bpf_verifier_env * env,int subprog,int callsite,set_callee_state_fn set_callee_state_cb,struct bpf_verifier_state * state)10478 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite,
10479 			    set_callee_state_fn set_callee_state_cb,
10480 			    struct bpf_verifier_state *state)
10481 {
10482 	struct bpf_func_state *caller, *callee;
10483 	int err;
10484 
10485 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
10486 		verbose(env, "the call stack of %d frames is too deep\n",
10487 			state->curframe + 2);
10488 		return -E2BIG;
10489 	}
10490 
10491 	if (state->frame[state->curframe + 1]) {
10492 		verifier_bug(env, "Frame %d already allocated", state->curframe + 1);
10493 		return -EFAULT;
10494 	}
10495 
10496 	caller = state->frame[state->curframe];
10497 	callee = kzalloc(sizeof(*callee), GFP_KERNEL_ACCOUNT);
10498 	if (!callee)
10499 		return -ENOMEM;
10500 	state->frame[state->curframe + 1] = callee;
10501 
10502 	/* callee cannot access r0, r6 - r9 for reading and has to write
10503 	 * into its own stack before reading from it.
10504 	 * callee can read/write into caller's stack
10505 	 */
10506 	init_func_state(env, callee,
10507 			/* remember the callsite, it will be used by bpf_exit */
10508 			callsite,
10509 			state->curframe + 1 /* frameno within this callchain */,
10510 			subprog /* subprog number within this prog */);
10511 	err = set_callee_state_cb(env, caller, callee, callsite);
10512 	if (err)
10513 		goto err_out;
10514 
10515 	/* only increment it after check_reg_arg() finished */
10516 	state->curframe++;
10517 
10518 	return 0;
10519 
10520 err_out:
10521 	free_func_state(callee);
10522 	state->frame[state->curframe + 1] = NULL;
10523 	return err;
10524 }
10525 
btf_check_func_arg_match(struct bpf_verifier_env * env,int subprog,const struct btf * btf,struct bpf_reg_state * regs)10526 static int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog,
10527 				    const struct btf *btf,
10528 				    struct bpf_reg_state *regs)
10529 {
10530 	struct bpf_subprog_info *sub = subprog_info(env, subprog);
10531 	struct bpf_verifier_log *log = &env->log;
10532 	u32 i;
10533 	int ret;
10534 
10535 	ret = btf_prepare_func_args(env, subprog);
10536 	if (ret)
10537 		return ret;
10538 
10539 	/* check that BTF function arguments match actual types that the
10540 	 * verifier sees.
10541 	 */
10542 	for (i = 0; i < sub->arg_cnt; i++) {
10543 		u32 regno = i + 1;
10544 		struct bpf_reg_state *reg = &regs[regno];
10545 		struct bpf_subprog_arg_info *arg = &sub->args[i];
10546 
10547 		if (arg->arg_type == ARG_ANYTHING) {
10548 			if (reg->type != SCALAR_VALUE) {
10549 				bpf_log(log, "R%d is not a scalar\n", regno);
10550 				return -EINVAL;
10551 			}
10552 		} else if (arg->arg_type & PTR_UNTRUSTED) {
10553 			/*
10554 			 * Anything is allowed for untrusted arguments, as these are
10555 			 * read-only and probe read instructions would protect against
10556 			 * invalid memory access.
10557 			 */
10558 		} else if (arg->arg_type == ARG_PTR_TO_CTX) {
10559 			ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE);
10560 			if (ret < 0)
10561 				return ret;
10562 			/* If function expects ctx type in BTF check that caller
10563 			 * is passing PTR_TO_CTX.
10564 			 */
10565 			if (reg->type != PTR_TO_CTX) {
10566 				bpf_log(log, "arg#%d expects pointer to ctx\n", i);
10567 				return -EINVAL;
10568 			}
10569 		} else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) {
10570 			ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE);
10571 			if (ret < 0)
10572 				return ret;
10573 			if (check_mem_reg(env, reg, regno, arg->mem_size))
10574 				return -EINVAL;
10575 			if (!(arg->arg_type & PTR_MAYBE_NULL) && (reg->type & PTR_MAYBE_NULL)) {
10576 				bpf_log(log, "arg#%d is expected to be non-NULL\n", i);
10577 				return -EINVAL;
10578 			}
10579 		} else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) {
10580 			/*
10581 			 * Can pass any value and the kernel won't crash, but
10582 			 * only PTR_TO_ARENA or SCALAR make sense. Everything
10583 			 * else is a bug in the bpf program. Point it out to
10584 			 * the user at the verification time instead of
10585 			 * run-time debug nightmare.
10586 			 */
10587 			if (reg->type != PTR_TO_ARENA && reg->type != SCALAR_VALUE) {
10588 				bpf_log(log, "R%d is not a pointer to arena or scalar.\n", regno);
10589 				return -EINVAL;
10590 			}
10591 		} else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) {
10592 			ret = check_func_arg_reg_off(env, reg, regno, ARG_PTR_TO_DYNPTR);
10593 			if (ret)
10594 				return ret;
10595 
10596 			ret = process_dynptr_func(env, regno, -1, arg->arg_type, 0);
10597 			if (ret)
10598 				return ret;
10599 		} else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) {
10600 			struct bpf_call_arg_meta meta;
10601 			int err;
10602 
10603 			if (register_is_null(reg) && type_may_be_null(arg->arg_type))
10604 				continue;
10605 
10606 			memset(&meta, 0, sizeof(meta)); /* leave func_id as zero */
10607 			err = check_reg_type(env, regno, arg->arg_type, &arg->btf_id, &meta);
10608 			err = err ?: check_func_arg_reg_off(env, reg, regno, arg->arg_type);
10609 			if (err)
10610 				return err;
10611 		} else {
10612 			verifier_bug(env, "unrecognized arg#%d type %d", i, arg->arg_type);
10613 			return -EFAULT;
10614 		}
10615 	}
10616 
10617 	return 0;
10618 }
10619 
10620 /* Compare BTF of a function call with given bpf_reg_state.
10621  * Returns:
10622  * EFAULT - there is a verifier bug. Abort verification.
10623  * EINVAL - there is a type mismatch or BTF is not available.
10624  * 0 - BTF matches with what bpf_reg_state expects.
10625  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
10626  */
btf_check_subprog_call(struct bpf_verifier_env * env,int subprog,struct bpf_reg_state * regs)10627 static int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
10628 				  struct bpf_reg_state *regs)
10629 {
10630 	struct bpf_prog *prog = env->prog;
10631 	struct btf *btf = prog->aux->btf;
10632 	u32 btf_id;
10633 	int err;
10634 
10635 	if (!prog->aux->func_info)
10636 		return -EINVAL;
10637 
10638 	btf_id = prog->aux->func_info[subprog].type_id;
10639 	if (!btf_id)
10640 		return -EFAULT;
10641 
10642 	if (prog->aux->func_info_aux[subprog].unreliable)
10643 		return -EINVAL;
10644 
10645 	err = btf_check_func_arg_match(env, subprog, btf, regs);
10646 	/* Compiler optimizations can remove arguments from static functions
10647 	 * or mismatched type can be passed into a global function.
10648 	 * In such cases mark the function as unreliable from BTF point of view.
10649 	 */
10650 	if (err)
10651 		prog->aux->func_info_aux[subprog].unreliable = true;
10652 	return err;
10653 }
10654 
push_callback_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int insn_idx,int subprog,set_callee_state_fn set_callee_state_cb)10655 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
10656 			      int insn_idx, int subprog,
10657 			      set_callee_state_fn set_callee_state_cb)
10658 {
10659 	struct bpf_verifier_state *state = env->cur_state, *callback_state;
10660 	struct bpf_func_state *caller, *callee;
10661 	int err;
10662 
10663 	caller = state->frame[state->curframe];
10664 	err = btf_check_subprog_call(env, subprog, caller->regs);
10665 	if (err == -EFAULT)
10666 		return err;
10667 
10668 	/* set_callee_state is used for direct subprog calls, but we are
10669 	 * interested in validating only BPF helpers that can call subprogs as
10670 	 * callbacks
10671 	 */
10672 	env->subprog_info[subprog].is_cb = true;
10673 	if (bpf_pseudo_kfunc_call(insn) &&
10674 	    !is_callback_calling_kfunc(insn->imm)) {
10675 		verifier_bug(env, "kfunc %s#%d not marked as callback-calling",
10676 			     func_id_name(insn->imm), insn->imm);
10677 		return -EFAULT;
10678 	} else if (!bpf_pseudo_kfunc_call(insn) &&
10679 		   !is_callback_calling_function(insn->imm)) { /* helper */
10680 		verifier_bug(env, "helper %s#%d not marked as callback-calling",
10681 			     func_id_name(insn->imm), insn->imm);
10682 		return -EFAULT;
10683 	}
10684 
10685 	if (is_async_callback_calling_insn(insn)) {
10686 		struct bpf_verifier_state *async_cb;
10687 
10688 		/* there is no real recursion here. timer and workqueue callbacks are async */
10689 		env->subprog_info[subprog].is_async_cb = true;
10690 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
10691 					 insn_idx, subprog,
10692 					 is_async_cb_sleepable(env, insn));
10693 		if (IS_ERR(async_cb))
10694 			return PTR_ERR(async_cb);
10695 		callee = async_cb->frame[0];
10696 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
10697 
10698 		/* Convert bpf_timer_set_callback() args into timer callback args */
10699 		err = set_callee_state_cb(env, caller, callee, insn_idx);
10700 		if (err)
10701 			return err;
10702 
10703 		return 0;
10704 	}
10705 
10706 	/* for callback functions enqueue entry to callback and
10707 	 * proceed with next instruction within current frame.
10708 	 */
10709 	callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false);
10710 	if (IS_ERR(callback_state))
10711 		return PTR_ERR(callback_state);
10712 
10713 	err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb,
10714 			       callback_state);
10715 	if (err)
10716 		return err;
10717 
10718 	callback_state->callback_unroll_depth++;
10719 	callback_state->frame[callback_state->curframe - 1]->callback_depth++;
10720 	caller->callback_depth = 0;
10721 	return 0;
10722 }
10723 
check_func_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)10724 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
10725 			   int *insn_idx)
10726 {
10727 	struct bpf_verifier_state *state = env->cur_state;
10728 	struct bpf_func_state *caller;
10729 	int err, subprog, target_insn;
10730 
10731 	target_insn = *insn_idx + insn->imm + 1;
10732 	subprog = find_subprog(env, target_insn);
10733 	if (verifier_bug_if(subprog < 0, env, "target of func call at insn %d is not a program",
10734 			    target_insn))
10735 		return -EFAULT;
10736 
10737 	caller = state->frame[state->curframe];
10738 	err = btf_check_subprog_call(env, subprog, caller->regs);
10739 	if (err == -EFAULT)
10740 		return err;
10741 	if (subprog_is_global(env, subprog)) {
10742 		const char *sub_name = subprog_name(env, subprog);
10743 
10744 		if (env->cur_state->active_locks) {
10745 			verbose(env, "global function calls are not allowed while holding a lock,\n"
10746 				     "use static function instead\n");
10747 			return -EINVAL;
10748 		}
10749 
10750 		if (env->subprog_info[subprog].might_sleep &&
10751 		    (env->cur_state->active_rcu_locks || env->cur_state->active_preempt_locks ||
10752 		     env->cur_state->active_irq_id || !in_sleepable(env))) {
10753 			verbose(env, "global functions that may sleep are not allowed in non-sleepable context,\n"
10754 				     "i.e., in a RCU/IRQ/preempt-disabled section, or in\n"
10755 				     "a non-sleepable BPF program context\n");
10756 			return -EINVAL;
10757 		}
10758 
10759 		if (err) {
10760 			verbose(env, "Caller passes invalid args into func#%d ('%s')\n",
10761 				subprog, sub_name);
10762 			return err;
10763 		}
10764 
10765 		if (env->log.level & BPF_LOG_LEVEL)
10766 			verbose(env, "Func#%d ('%s') is global and assumed valid.\n",
10767 				subprog, sub_name);
10768 		if (env->subprog_info[subprog].changes_pkt_data)
10769 			clear_all_pkt_pointers(env);
10770 		/* mark global subprog for verifying after main prog */
10771 		subprog_aux(env, subprog)->called = true;
10772 		clear_caller_saved_regs(env, caller->regs);
10773 
10774 		/* All global functions return a 64-bit SCALAR_VALUE */
10775 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
10776 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
10777 
10778 		/* continue with next insn after call */
10779 		return 0;
10780 	}
10781 
10782 	/* for regular function entry setup new frame and continue
10783 	 * from that frame.
10784 	 */
10785 	err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state);
10786 	if (err)
10787 		return err;
10788 
10789 	clear_caller_saved_regs(env, caller->regs);
10790 
10791 	/* and go analyze first insn of the callee */
10792 	*insn_idx = env->subprog_info[subprog].start - 1;
10793 
10794 	bpf_reset_live_stack_callchain(env);
10795 
10796 	if (env->log.level & BPF_LOG_LEVEL) {
10797 		verbose(env, "caller:\n");
10798 		print_verifier_state(env, state, caller->frameno, true);
10799 		verbose(env, "callee:\n");
10800 		print_verifier_state(env, state, state->curframe, true);
10801 	}
10802 
10803 	return 0;
10804 }
10805 
map_set_for_each_callback_args(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee)10806 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
10807 				   struct bpf_func_state *caller,
10808 				   struct bpf_func_state *callee)
10809 {
10810 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
10811 	 *      void *callback_ctx, u64 flags);
10812 	 * callback_fn(struct bpf_map *map, void *key, void *value,
10813 	 *      void *callback_ctx);
10814 	 */
10815 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
10816 
10817 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
10818 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
10819 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
10820 
10821 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
10822 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
10823 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
10824 
10825 	/* pointer to stack or null */
10826 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
10827 
10828 	/* unused */
10829 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10830 	return 0;
10831 }
10832 
set_callee_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)10833 static int set_callee_state(struct bpf_verifier_env *env,
10834 			    struct bpf_func_state *caller,
10835 			    struct bpf_func_state *callee, int insn_idx)
10836 {
10837 	int i;
10838 
10839 	/* copy r1 - r5 args that callee can access.  The copy includes parent
10840 	 * pointers, which connects us up to the liveness chain
10841 	 */
10842 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
10843 		callee->regs[i] = caller->regs[i];
10844 	return 0;
10845 }
10846 
set_map_elem_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)10847 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
10848 				       struct bpf_func_state *caller,
10849 				       struct bpf_func_state *callee,
10850 				       int insn_idx)
10851 {
10852 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
10853 	struct bpf_map *map;
10854 	int err;
10855 
10856 	/* valid map_ptr and poison value does not matter */
10857 	map = insn_aux->map_ptr_state.map_ptr;
10858 	if (!map->ops->map_set_for_each_callback_args ||
10859 	    !map->ops->map_for_each_callback) {
10860 		verbose(env, "callback function not allowed for map\n");
10861 		return -ENOTSUPP;
10862 	}
10863 
10864 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
10865 	if (err)
10866 		return err;
10867 
10868 	callee->in_callback_fn = true;
10869 	callee->callback_ret_range = retval_range(0, 1);
10870 	return 0;
10871 }
10872 
set_loop_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)10873 static int set_loop_callback_state(struct bpf_verifier_env *env,
10874 				   struct bpf_func_state *caller,
10875 				   struct bpf_func_state *callee,
10876 				   int insn_idx)
10877 {
10878 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
10879 	 *	    u64 flags);
10880 	 * callback_fn(u64 index, void *callback_ctx);
10881 	 */
10882 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
10883 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
10884 
10885 	/* unused */
10886 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
10887 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10888 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10889 
10890 	callee->in_callback_fn = true;
10891 	callee->callback_ret_range = retval_range(0, 1);
10892 	return 0;
10893 }
10894 
set_timer_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)10895 static int set_timer_callback_state(struct bpf_verifier_env *env,
10896 				    struct bpf_func_state *caller,
10897 				    struct bpf_func_state *callee,
10898 				    int insn_idx)
10899 {
10900 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
10901 
10902 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
10903 	 * callback_fn(struct bpf_map *map, void *key, void *value);
10904 	 */
10905 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
10906 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
10907 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
10908 
10909 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
10910 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
10911 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
10912 
10913 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
10914 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
10915 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
10916 
10917 	/* unused */
10918 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10919 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10920 	callee->in_async_callback_fn = true;
10921 	callee->callback_ret_range = retval_range(0, 0);
10922 	return 0;
10923 }
10924 
set_find_vma_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)10925 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
10926 				       struct bpf_func_state *caller,
10927 				       struct bpf_func_state *callee,
10928 				       int insn_idx)
10929 {
10930 	/* bpf_find_vma(struct task_struct *task, u64 addr,
10931 	 *               void *callback_fn, void *callback_ctx, u64 flags)
10932 	 * (callback_fn)(struct task_struct *task,
10933 	 *               struct vm_area_struct *vma, void *callback_ctx);
10934 	 */
10935 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
10936 
10937 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
10938 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
10939 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
10940 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA];
10941 
10942 	/* pointer to stack or null */
10943 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
10944 
10945 	/* unused */
10946 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10947 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10948 	callee->in_callback_fn = true;
10949 	callee->callback_ret_range = retval_range(0, 1);
10950 	return 0;
10951 }
10952 
set_user_ringbuf_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)10953 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
10954 					   struct bpf_func_state *caller,
10955 					   struct bpf_func_state *callee,
10956 					   int insn_idx)
10957 {
10958 	/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
10959 	 *			  callback_ctx, u64 flags);
10960 	 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
10961 	 */
10962 	__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
10963 	mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
10964 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
10965 
10966 	/* unused */
10967 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
10968 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10969 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10970 
10971 	callee->in_callback_fn = true;
10972 	callee->callback_ret_range = retval_range(0, 1);
10973 	return 0;
10974 }
10975 
set_rbtree_add_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)10976 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
10977 					 struct bpf_func_state *caller,
10978 					 struct bpf_func_state *callee,
10979 					 int insn_idx)
10980 {
10981 	/* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
10982 	 *                     bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
10983 	 *
10984 	 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
10985 	 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
10986 	 * by this point, so look at 'root'
10987 	 */
10988 	struct btf_field *field;
10989 
10990 	field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
10991 				      BPF_RB_ROOT);
10992 	if (!field || !field->graph_root.value_btf_id)
10993 		return -EFAULT;
10994 
10995 	mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
10996 	ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
10997 	mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
10998 	ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
10999 
11000 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
11001 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
11002 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
11003 	callee->in_callback_fn = true;
11004 	callee->callback_ret_range = retval_range(0, 1);
11005 	return 0;
11006 }
11007 
set_task_work_schedule_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)11008 static int set_task_work_schedule_callback_state(struct bpf_verifier_env *env,
11009 						 struct bpf_func_state *caller,
11010 						 struct bpf_func_state *callee,
11011 						 int insn_idx)
11012 {
11013 	struct bpf_map *map_ptr = caller->regs[BPF_REG_3].map_ptr;
11014 
11015 	/*
11016 	 * callback_fn(struct bpf_map *map, void *key, void *value);
11017 	 */
11018 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
11019 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
11020 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
11021 
11022 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
11023 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
11024 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
11025 
11026 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
11027 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
11028 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
11029 
11030 	/* unused */
11031 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
11032 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
11033 	callee->in_async_callback_fn = true;
11034 	callee->callback_ret_range = retval_range(S32_MIN, S32_MAX);
11035 	return 0;
11036 }
11037 
11038 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
11039 
11040 /* Are we currently verifying the callback for a rbtree helper that must
11041  * be called with lock held? If so, no need to complain about unreleased
11042  * lock
11043  */
in_rbtree_lock_required_cb(struct bpf_verifier_env * env)11044 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
11045 {
11046 	struct bpf_verifier_state *state = env->cur_state;
11047 	struct bpf_insn *insn = env->prog->insnsi;
11048 	struct bpf_func_state *callee;
11049 	int kfunc_btf_id;
11050 
11051 	if (!state->curframe)
11052 		return false;
11053 
11054 	callee = state->frame[state->curframe];
11055 
11056 	if (!callee->in_callback_fn)
11057 		return false;
11058 
11059 	kfunc_btf_id = insn[callee->callsite].imm;
11060 	return is_rbtree_lock_required_kfunc(kfunc_btf_id);
11061 }
11062 
retval_range_within(struct bpf_retval_range range,const struct bpf_reg_state * reg,bool return_32bit)11063 static bool retval_range_within(struct bpf_retval_range range, const struct bpf_reg_state *reg,
11064 				bool return_32bit)
11065 {
11066 	if (return_32bit)
11067 		return range.minval <= reg->s32_min_value && reg->s32_max_value <= range.maxval;
11068 	else
11069 		return range.minval <= reg->smin_value && reg->smax_value <= range.maxval;
11070 }
11071 
prepare_func_exit(struct bpf_verifier_env * env,int * insn_idx)11072 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
11073 {
11074 	struct bpf_verifier_state *state = env->cur_state, *prev_st;
11075 	struct bpf_func_state *caller, *callee;
11076 	struct bpf_reg_state *r0;
11077 	bool in_callback_fn;
11078 	int err;
11079 
11080 	err = bpf_update_live_stack(env);
11081 	if (err)
11082 		return err;
11083 
11084 	callee = state->frame[state->curframe];
11085 	r0 = &callee->regs[BPF_REG_0];
11086 	if (r0->type == PTR_TO_STACK) {
11087 		/* technically it's ok to return caller's stack pointer
11088 		 * (or caller's caller's pointer) back to the caller,
11089 		 * since these pointers are valid. Only current stack
11090 		 * pointer will be invalid as soon as function exits,
11091 		 * but let's be conservative
11092 		 */
11093 		verbose(env, "cannot return stack pointer to the caller\n");
11094 		return -EINVAL;
11095 	}
11096 
11097 	caller = state->frame[state->curframe - 1];
11098 	if (callee->in_callback_fn) {
11099 		if (r0->type != SCALAR_VALUE) {
11100 			verbose(env, "R0 not a scalar value\n");
11101 			return -EACCES;
11102 		}
11103 
11104 		/* we are going to rely on register's precise value */
11105 		err = mark_chain_precision(env, BPF_REG_0);
11106 		if (err)
11107 			return err;
11108 
11109 		/* enforce R0 return value range, and bpf_callback_t returns 64bit */
11110 		if (!retval_range_within(callee->callback_ret_range, r0, false)) {
11111 			verbose_invalid_scalar(env, r0, callee->callback_ret_range,
11112 					       "At callback return", "R0");
11113 			return -EINVAL;
11114 		}
11115 		if (!bpf_calls_callback(env, callee->callsite)) {
11116 			verifier_bug(env, "in callback at %d, callsite %d !calls_callback",
11117 				     *insn_idx, callee->callsite);
11118 			return -EFAULT;
11119 		}
11120 	} else {
11121 		/* return to the caller whatever r0 had in the callee */
11122 		caller->regs[BPF_REG_0] = *r0;
11123 	}
11124 
11125 	/* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite,
11126 	 * there function call logic would reschedule callback visit. If iteration
11127 	 * converges is_state_visited() would prune that visit eventually.
11128 	 */
11129 	in_callback_fn = callee->in_callback_fn;
11130 	if (in_callback_fn)
11131 		*insn_idx = callee->callsite;
11132 	else
11133 		*insn_idx = callee->callsite + 1;
11134 
11135 	if (env->log.level & BPF_LOG_LEVEL) {
11136 		verbose(env, "returning from callee:\n");
11137 		print_verifier_state(env, state, callee->frameno, true);
11138 		verbose(env, "to caller at %d:\n", *insn_idx);
11139 		print_verifier_state(env, state, caller->frameno, true);
11140 	}
11141 	/* clear everything in the callee. In case of exceptional exits using
11142 	 * bpf_throw, this will be done by copy_verifier_state for extra frames. */
11143 	free_func_state(callee);
11144 	state->frame[state->curframe--] = NULL;
11145 
11146 	/* for callbacks widen imprecise scalars to make programs like below verify:
11147 	 *
11148 	 *   struct ctx { int i; }
11149 	 *   void cb(int idx, struct ctx *ctx) { ctx->i++; ... }
11150 	 *   ...
11151 	 *   struct ctx = { .i = 0; }
11152 	 *   bpf_loop(100, cb, &ctx, 0);
11153 	 *
11154 	 * This is similar to what is done in process_iter_next_call() for open
11155 	 * coded iterators.
11156 	 */
11157 	prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL;
11158 	if (prev_st) {
11159 		err = widen_imprecise_scalars(env, prev_st, state);
11160 		if (err)
11161 			return err;
11162 	}
11163 	return 0;
11164 }
11165 
do_refine_retval_range(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int ret_type,int func_id,struct bpf_call_arg_meta * meta)11166 static int do_refine_retval_range(struct bpf_verifier_env *env,
11167 				  struct bpf_reg_state *regs, int ret_type,
11168 				  int func_id,
11169 				  struct bpf_call_arg_meta *meta)
11170 {
11171 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
11172 
11173 	if (ret_type != RET_INTEGER)
11174 		return 0;
11175 
11176 	switch (func_id) {
11177 	case BPF_FUNC_get_stack:
11178 	case BPF_FUNC_get_task_stack:
11179 	case BPF_FUNC_probe_read_str:
11180 	case BPF_FUNC_probe_read_kernel_str:
11181 	case BPF_FUNC_probe_read_user_str:
11182 		ret_reg->smax_value = meta->msize_max_value;
11183 		ret_reg->s32_max_value = meta->msize_max_value;
11184 		ret_reg->smin_value = -MAX_ERRNO;
11185 		ret_reg->s32_min_value = -MAX_ERRNO;
11186 		reg_bounds_sync(ret_reg);
11187 		break;
11188 	case BPF_FUNC_get_smp_processor_id:
11189 		ret_reg->umax_value = nr_cpu_ids - 1;
11190 		ret_reg->u32_max_value = nr_cpu_ids - 1;
11191 		ret_reg->smax_value = nr_cpu_ids - 1;
11192 		ret_reg->s32_max_value = nr_cpu_ids - 1;
11193 		ret_reg->umin_value = 0;
11194 		ret_reg->u32_min_value = 0;
11195 		ret_reg->smin_value = 0;
11196 		ret_reg->s32_min_value = 0;
11197 		reg_bounds_sync(ret_reg);
11198 		break;
11199 	}
11200 
11201 	return reg_bounds_sanity_check(env, ret_reg, "retval");
11202 }
11203 
11204 static int
record_func_map(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)11205 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
11206 		int func_id, int insn_idx)
11207 {
11208 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
11209 	struct bpf_map *map = meta->map_ptr;
11210 
11211 	if (func_id != BPF_FUNC_tail_call &&
11212 	    func_id != BPF_FUNC_map_lookup_elem &&
11213 	    func_id != BPF_FUNC_map_update_elem &&
11214 	    func_id != BPF_FUNC_map_delete_elem &&
11215 	    func_id != BPF_FUNC_map_push_elem &&
11216 	    func_id != BPF_FUNC_map_pop_elem &&
11217 	    func_id != BPF_FUNC_map_peek_elem &&
11218 	    func_id != BPF_FUNC_for_each_map_elem &&
11219 	    func_id != BPF_FUNC_redirect_map &&
11220 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
11221 		return 0;
11222 
11223 	if (map == NULL) {
11224 		verifier_bug(env, "expected map for helper call");
11225 		return -EFAULT;
11226 	}
11227 
11228 	/* In case of read-only, some additional restrictions
11229 	 * need to be applied in order to prevent altering the
11230 	 * state of the map from program side.
11231 	 */
11232 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
11233 	    (func_id == BPF_FUNC_map_delete_elem ||
11234 	     func_id == BPF_FUNC_map_update_elem ||
11235 	     func_id == BPF_FUNC_map_push_elem ||
11236 	     func_id == BPF_FUNC_map_pop_elem)) {
11237 		verbose(env, "write into map forbidden\n");
11238 		return -EACCES;
11239 	}
11240 
11241 	if (!aux->map_ptr_state.map_ptr)
11242 		bpf_map_ptr_store(aux, meta->map_ptr,
11243 				  !meta->map_ptr->bypass_spec_v1, false);
11244 	else if (aux->map_ptr_state.map_ptr != meta->map_ptr)
11245 		bpf_map_ptr_store(aux, meta->map_ptr,
11246 				  !meta->map_ptr->bypass_spec_v1, true);
11247 	return 0;
11248 }
11249 
11250 static int
record_func_key(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)11251 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
11252 		int func_id, int insn_idx)
11253 {
11254 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
11255 	struct bpf_reg_state *regs = cur_regs(env), *reg;
11256 	struct bpf_map *map = meta->map_ptr;
11257 	u64 val, max;
11258 	int err;
11259 
11260 	if (func_id != BPF_FUNC_tail_call)
11261 		return 0;
11262 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
11263 		verbose(env, "expected prog array map for tail call");
11264 		return -EINVAL;
11265 	}
11266 
11267 	reg = &regs[BPF_REG_3];
11268 	val = reg->var_off.value;
11269 	max = map->max_entries;
11270 
11271 	if (!(is_reg_const(reg, false) && val < max)) {
11272 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
11273 		return 0;
11274 	}
11275 
11276 	err = mark_chain_precision(env, BPF_REG_3);
11277 	if (err)
11278 		return err;
11279 	if (bpf_map_key_unseen(aux))
11280 		bpf_map_key_store(aux, val);
11281 	else if (!bpf_map_key_poisoned(aux) &&
11282 		  bpf_map_key_immediate(aux) != val)
11283 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
11284 	return 0;
11285 }
11286 
check_reference_leak(struct bpf_verifier_env * env,bool exception_exit)11287 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit)
11288 {
11289 	struct bpf_verifier_state *state = env->cur_state;
11290 	enum bpf_prog_type type = resolve_prog_type(env->prog);
11291 	struct bpf_reg_state *reg = reg_state(env, BPF_REG_0);
11292 	bool refs_lingering = false;
11293 	int i;
11294 
11295 	if (!exception_exit && cur_func(env)->frameno)
11296 		return 0;
11297 
11298 	for (i = 0; i < state->acquired_refs; i++) {
11299 		if (state->refs[i].type != REF_TYPE_PTR)
11300 			continue;
11301 		/* Allow struct_ops programs to return a referenced kptr back to
11302 		 * kernel. Type checks are performed later in check_return_code.
11303 		 */
11304 		if (type == BPF_PROG_TYPE_STRUCT_OPS && !exception_exit &&
11305 		    reg->ref_obj_id == state->refs[i].id)
11306 			continue;
11307 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
11308 			state->refs[i].id, state->refs[i].insn_idx);
11309 		refs_lingering = true;
11310 	}
11311 	return refs_lingering ? -EINVAL : 0;
11312 }
11313 
check_resource_leak(struct bpf_verifier_env * env,bool exception_exit,bool check_lock,const char * prefix)11314 static int check_resource_leak(struct bpf_verifier_env *env, bool exception_exit, bool check_lock, const char *prefix)
11315 {
11316 	int err;
11317 
11318 	if (check_lock && env->cur_state->active_locks) {
11319 		verbose(env, "%s cannot be used inside bpf_spin_lock-ed region\n", prefix);
11320 		return -EINVAL;
11321 	}
11322 
11323 	err = check_reference_leak(env, exception_exit);
11324 	if (err) {
11325 		verbose(env, "%s would lead to reference leak\n", prefix);
11326 		return err;
11327 	}
11328 
11329 	if (check_lock && env->cur_state->active_irq_id) {
11330 		verbose(env, "%s cannot be used inside bpf_local_irq_save-ed region\n", prefix);
11331 		return -EINVAL;
11332 	}
11333 
11334 	if (check_lock && env->cur_state->active_rcu_locks) {
11335 		verbose(env, "%s cannot be used inside bpf_rcu_read_lock-ed region\n", prefix);
11336 		return -EINVAL;
11337 	}
11338 
11339 	if (check_lock && env->cur_state->active_preempt_locks) {
11340 		verbose(env, "%s cannot be used inside bpf_preempt_disable-ed region\n", prefix);
11341 		return -EINVAL;
11342 	}
11343 
11344 	return 0;
11345 }
11346 
check_bpf_snprintf_call(struct bpf_verifier_env * env,struct bpf_reg_state * regs)11347 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
11348 				   struct bpf_reg_state *regs)
11349 {
11350 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
11351 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
11352 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
11353 	struct bpf_bprintf_data data = {};
11354 	int err, fmt_map_off, num_args;
11355 	u64 fmt_addr;
11356 	char *fmt;
11357 
11358 	/* data must be an array of u64 */
11359 	if (data_len_reg->var_off.value % 8)
11360 		return -EINVAL;
11361 	num_args = data_len_reg->var_off.value / 8;
11362 
11363 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
11364 	 * and map_direct_value_addr is set.
11365 	 */
11366 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
11367 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
11368 						  fmt_map_off);
11369 	if (err) {
11370 		verbose(env, "failed to retrieve map value address\n");
11371 		return -EFAULT;
11372 	}
11373 	fmt = (char *)(long)fmt_addr + fmt_map_off;
11374 
11375 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
11376 	 * can focus on validating the format specifiers.
11377 	 */
11378 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
11379 	if (err < 0)
11380 		verbose(env, "Invalid format string\n");
11381 
11382 	return err;
11383 }
11384 
check_get_func_ip(struct bpf_verifier_env * env)11385 static int check_get_func_ip(struct bpf_verifier_env *env)
11386 {
11387 	enum bpf_prog_type type = resolve_prog_type(env->prog);
11388 	int func_id = BPF_FUNC_get_func_ip;
11389 
11390 	if (type == BPF_PROG_TYPE_TRACING) {
11391 		if (!bpf_prog_has_trampoline(env->prog)) {
11392 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
11393 				func_id_name(func_id), func_id);
11394 			return -ENOTSUPP;
11395 		}
11396 		return 0;
11397 	} else if (type == BPF_PROG_TYPE_KPROBE) {
11398 		return 0;
11399 	}
11400 
11401 	verbose(env, "func %s#%d not supported for program type %d\n",
11402 		func_id_name(func_id), func_id, type);
11403 	return -ENOTSUPP;
11404 }
11405 
cur_aux(const struct bpf_verifier_env * env)11406 static struct bpf_insn_aux_data *cur_aux(const struct bpf_verifier_env *env)
11407 {
11408 	return &env->insn_aux_data[env->insn_idx];
11409 }
11410 
loop_flag_is_zero(struct bpf_verifier_env * env)11411 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
11412 {
11413 	struct bpf_reg_state *regs = cur_regs(env);
11414 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
11415 	bool reg_is_null = register_is_null(reg);
11416 
11417 	if (reg_is_null)
11418 		mark_chain_precision(env, BPF_REG_4);
11419 
11420 	return reg_is_null;
11421 }
11422 
update_loop_inline_state(struct bpf_verifier_env * env,u32 subprogno)11423 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
11424 {
11425 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
11426 
11427 	if (!state->initialized) {
11428 		state->initialized = 1;
11429 		state->fit_for_inline = loop_flag_is_zero(env);
11430 		state->callback_subprogno = subprogno;
11431 		return;
11432 	}
11433 
11434 	if (!state->fit_for_inline)
11435 		return;
11436 
11437 	state->fit_for_inline = (loop_flag_is_zero(env) &&
11438 				 state->callback_subprogno == subprogno);
11439 }
11440 
11441 /* Returns whether or not the given map type can potentially elide
11442  * lookup return value nullness check. This is possible if the key
11443  * is statically known.
11444  */
can_elide_value_nullness(enum bpf_map_type type)11445 static bool can_elide_value_nullness(enum bpf_map_type type)
11446 {
11447 	switch (type) {
11448 	case BPF_MAP_TYPE_ARRAY:
11449 	case BPF_MAP_TYPE_PERCPU_ARRAY:
11450 		return true;
11451 	default:
11452 		return false;
11453 	}
11454 }
11455 
get_helper_proto(struct bpf_verifier_env * env,int func_id,const struct bpf_func_proto ** ptr)11456 static int get_helper_proto(struct bpf_verifier_env *env, int func_id,
11457 			    const struct bpf_func_proto **ptr)
11458 {
11459 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID)
11460 		return -ERANGE;
11461 
11462 	if (!env->ops->get_func_proto)
11463 		return -EINVAL;
11464 
11465 	*ptr = env->ops->get_func_proto(func_id, env->prog);
11466 	return *ptr && (*ptr)->func ? 0 : -EINVAL;
11467 }
11468 
11469 /* Check if we're in a sleepable context. */
in_sleepable_context(struct bpf_verifier_env * env)11470 static inline bool in_sleepable_context(struct bpf_verifier_env *env)
11471 {
11472 	return !env->cur_state->active_rcu_locks &&
11473 	       !env->cur_state->active_preempt_locks &&
11474 	       !env->cur_state->active_irq_id &&
11475 	       in_sleepable(env);
11476 }
11477 
check_helper_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx_p)11478 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
11479 			     int *insn_idx_p)
11480 {
11481 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
11482 	bool returns_cpu_specific_alloc_ptr = false;
11483 	const struct bpf_func_proto *fn = NULL;
11484 	enum bpf_return_type ret_type;
11485 	enum bpf_type_flag ret_flag;
11486 	struct bpf_reg_state *regs;
11487 	struct bpf_call_arg_meta meta;
11488 	int insn_idx = *insn_idx_p;
11489 	bool changes_data;
11490 	int i, err, func_id;
11491 
11492 	/* find function prototype */
11493 	func_id = insn->imm;
11494 	err = get_helper_proto(env, insn->imm, &fn);
11495 	if (err == -ERANGE) {
11496 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id), func_id);
11497 		return -EINVAL;
11498 	}
11499 
11500 	if (err) {
11501 		verbose(env, "program of this type cannot use helper %s#%d\n",
11502 			func_id_name(func_id), func_id);
11503 		return err;
11504 	}
11505 
11506 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
11507 	if (!env->prog->gpl_compatible && fn->gpl_only) {
11508 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
11509 		return -EINVAL;
11510 	}
11511 
11512 	if (fn->allowed && !fn->allowed(env->prog)) {
11513 		verbose(env, "helper call is not allowed in probe\n");
11514 		return -EINVAL;
11515 	}
11516 
11517 	if (!in_sleepable(env) && fn->might_sleep) {
11518 		verbose(env, "helper call might sleep in a non-sleepable prog\n");
11519 		return -EINVAL;
11520 	}
11521 
11522 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
11523 	changes_data = bpf_helper_changes_pkt_data(func_id);
11524 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
11525 		verifier_bug(env, "func %s#%d: r1 != ctx", func_id_name(func_id), func_id);
11526 		return -EFAULT;
11527 	}
11528 
11529 	memset(&meta, 0, sizeof(meta));
11530 	meta.pkt_access = fn->pkt_access;
11531 
11532 	err = check_func_proto(fn, func_id);
11533 	if (err) {
11534 		verifier_bug(env, "incorrect func proto %s#%d", func_id_name(func_id), func_id);
11535 		return err;
11536 	}
11537 
11538 	if (env->cur_state->active_rcu_locks) {
11539 		if (fn->might_sleep) {
11540 			verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
11541 				func_id_name(func_id), func_id);
11542 			return -EINVAL;
11543 		}
11544 	}
11545 
11546 	if (env->cur_state->active_preempt_locks) {
11547 		if (fn->might_sleep) {
11548 			verbose(env, "sleepable helper %s#%d in non-preemptible region\n",
11549 				func_id_name(func_id), func_id);
11550 			return -EINVAL;
11551 		}
11552 	}
11553 
11554 	if (env->cur_state->active_irq_id) {
11555 		if (fn->might_sleep) {
11556 			verbose(env, "sleepable helper %s#%d in IRQ-disabled region\n",
11557 				func_id_name(func_id), func_id);
11558 			return -EINVAL;
11559 		}
11560 	}
11561 
11562 	/* Track non-sleepable context for helpers. */
11563 	if (!in_sleepable_context(env))
11564 		env->insn_aux_data[insn_idx].non_sleepable = true;
11565 
11566 	meta.func_id = func_id;
11567 	/* check args */
11568 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
11569 		err = check_func_arg(env, i, &meta, fn, insn_idx);
11570 		if (err)
11571 			return err;
11572 	}
11573 
11574 	err = record_func_map(env, &meta, func_id, insn_idx);
11575 	if (err)
11576 		return err;
11577 
11578 	err = record_func_key(env, &meta, func_id, insn_idx);
11579 	if (err)
11580 		return err;
11581 
11582 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
11583 	 * is inferred from register state.
11584 	 */
11585 	for (i = 0; i < meta.access_size; i++) {
11586 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
11587 				       BPF_WRITE, -1, false, false);
11588 		if (err)
11589 			return err;
11590 	}
11591 
11592 	regs = cur_regs(env);
11593 
11594 	if (meta.release_regno) {
11595 		err = -EINVAL;
11596 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
11597 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
11598 		} else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) {
11599 			u32 ref_obj_id = meta.ref_obj_id;
11600 			bool in_rcu = in_rcu_cs(env);
11601 			struct bpf_func_state *state;
11602 			struct bpf_reg_state *reg;
11603 
11604 			err = release_reference_nomark(env->cur_state, ref_obj_id);
11605 			if (!err) {
11606 				bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
11607 					if (reg->ref_obj_id == ref_obj_id) {
11608 						if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) {
11609 							reg->ref_obj_id = 0;
11610 							reg->type &= ~MEM_ALLOC;
11611 							reg->type |= MEM_RCU;
11612 						} else {
11613 							mark_reg_invalid(env, reg);
11614 						}
11615 					}
11616 				}));
11617 			}
11618 		} else if (meta.ref_obj_id) {
11619 			err = release_reference(env, meta.ref_obj_id);
11620 		} else if (register_is_null(&regs[meta.release_regno])) {
11621 			/* meta.ref_obj_id can only be 0 if register that is meant to be
11622 			 * released is NULL, which must be > R0.
11623 			 */
11624 			err = 0;
11625 		}
11626 		if (err) {
11627 			verbose(env, "func %s#%d reference has not been acquired before\n",
11628 				func_id_name(func_id), func_id);
11629 			return err;
11630 		}
11631 	}
11632 
11633 	switch (func_id) {
11634 	case BPF_FUNC_tail_call:
11635 		err = check_resource_leak(env, false, true, "tail_call");
11636 		if (err)
11637 			return err;
11638 		break;
11639 	case BPF_FUNC_get_local_storage:
11640 		/* check that flags argument in get_local_storage(map, flags) is 0,
11641 		 * this is required because get_local_storage() can't return an error.
11642 		 */
11643 		if (!register_is_null(&regs[BPF_REG_2])) {
11644 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
11645 			return -EINVAL;
11646 		}
11647 		break;
11648 	case BPF_FUNC_for_each_map_elem:
11649 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
11650 					 set_map_elem_callback_state);
11651 		break;
11652 	case BPF_FUNC_timer_set_callback:
11653 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
11654 					 set_timer_callback_state);
11655 		break;
11656 	case BPF_FUNC_find_vma:
11657 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
11658 					 set_find_vma_callback_state);
11659 		break;
11660 	case BPF_FUNC_snprintf:
11661 		err = check_bpf_snprintf_call(env, regs);
11662 		break;
11663 	case BPF_FUNC_loop:
11664 		update_loop_inline_state(env, meta.subprogno);
11665 		/* Verifier relies on R1 value to determine if bpf_loop() iteration
11666 		 * is finished, thus mark it precise.
11667 		 */
11668 		err = mark_chain_precision(env, BPF_REG_1);
11669 		if (err)
11670 			return err;
11671 		if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) {
11672 			err = push_callback_call(env, insn, insn_idx, meta.subprogno,
11673 						 set_loop_callback_state);
11674 		} else {
11675 			cur_func(env)->callback_depth = 0;
11676 			if (env->log.level & BPF_LOG_LEVEL2)
11677 				verbose(env, "frame%d bpf_loop iteration limit reached\n",
11678 					env->cur_state->curframe);
11679 		}
11680 		break;
11681 	case BPF_FUNC_dynptr_from_mem:
11682 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
11683 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
11684 				reg_type_str(env, regs[BPF_REG_1].type));
11685 			return -EACCES;
11686 		}
11687 		break;
11688 	case BPF_FUNC_set_retval:
11689 		if (prog_type == BPF_PROG_TYPE_LSM &&
11690 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
11691 			if (!env->prog->aux->attach_func_proto->type) {
11692 				/* Make sure programs that attach to void
11693 				 * hooks don't try to modify return value.
11694 				 */
11695 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
11696 				return -EINVAL;
11697 			}
11698 		}
11699 		break;
11700 	case BPF_FUNC_dynptr_data:
11701 	{
11702 		struct bpf_reg_state *reg;
11703 		int id, ref_obj_id;
11704 
11705 		reg = get_dynptr_arg_reg(env, fn, regs);
11706 		if (!reg)
11707 			return -EFAULT;
11708 
11709 
11710 		if (meta.dynptr_id) {
11711 			verifier_bug(env, "meta.dynptr_id already set");
11712 			return -EFAULT;
11713 		}
11714 		if (meta.ref_obj_id) {
11715 			verifier_bug(env, "meta.ref_obj_id already set");
11716 			return -EFAULT;
11717 		}
11718 
11719 		id = dynptr_id(env, reg);
11720 		if (id < 0) {
11721 			verifier_bug(env, "failed to obtain dynptr id");
11722 			return id;
11723 		}
11724 
11725 		ref_obj_id = dynptr_ref_obj_id(env, reg);
11726 		if (ref_obj_id < 0) {
11727 			verifier_bug(env, "failed to obtain dynptr ref_obj_id");
11728 			return ref_obj_id;
11729 		}
11730 
11731 		meta.dynptr_id = id;
11732 		meta.ref_obj_id = ref_obj_id;
11733 
11734 		break;
11735 	}
11736 	case BPF_FUNC_dynptr_write:
11737 	{
11738 		enum bpf_dynptr_type dynptr_type;
11739 		struct bpf_reg_state *reg;
11740 
11741 		reg = get_dynptr_arg_reg(env, fn, regs);
11742 		if (!reg)
11743 			return -EFAULT;
11744 
11745 		dynptr_type = dynptr_get_type(env, reg);
11746 		if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
11747 			return -EFAULT;
11748 
11749 		if (dynptr_type == BPF_DYNPTR_TYPE_SKB ||
11750 		    dynptr_type == BPF_DYNPTR_TYPE_SKB_META)
11751 			/* this will trigger clear_all_pkt_pointers(), which will
11752 			 * invalidate all dynptr slices associated with the skb
11753 			 */
11754 			changes_data = true;
11755 
11756 		break;
11757 	}
11758 	case BPF_FUNC_per_cpu_ptr:
11759 	case BPF_FUNC_this_cpu_ptr:
11760 	{
11761 		struct bpf_reg_state *reg = &regs[BPF_REG_1];
11762 		const struct btf_type *type;
11763 
11764 		if (reg->type & MEM_RCU) {
11765 			type = btf_type_by_id(reg->btf, reg->btf_id);
11766 			if (!type || !btf_type_is_struct(type)) {
11767 				verbose(env, "Helper has invalid btf/btf_id in R1\n");
11768 				return -EFAULT;
11769 			}
11770 			returns_cpu_specific_alloc_ptr = true;
11771 			env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true;
11772 		}
11773 		break;
11774 	}
11775 	case BPF_FUNC_user_ringbuf_drain:
11776 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
11777 					 set_user_ringbuf_callback_state);
11778 		break;
11779 	}
11780 
11781 	if (err)
11782 		return err;
11783 
11784 	/* reset caller saved regs */
11785 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
11786 		mark_reg_not_init(env, regs, caller_saved[i]);
11787 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
11788 	}
11789 
11790 	/* helper call returns 64-bit value. */
11791 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
11792 
11793 	/* update return register (already marked as written above) */
11794 	ret_type = fn->ret_type;
11795 	ret_flag = type_flag(ret_type);
11796 
11797 	switch (base_type(ret_type)) {
11798 	case RET_INTEGER:
11799 		/* sets type to SCALAR_VALUE */
11800 		mark_reg_unknown(env, regs, BPF_REG_0);
11801 		break;
11802 	case RET_VOID:
11803 		regs[BPF_REG_0].type = NOT_INIT;
11804 		break;
11805 	case RET_PTR_TO_MAP_VALUE:
11806 		/* There is no offset yet applied, variable or fixed */
11807 		mark_reg_known_zero(env, regs, BPF_REG_0);
11808 		/* remember map_ptr, so that check_map_access()
11809 		 * can check 'value_size' boundary of memory access
11810 		 * to map element returned from bpf_map_lookup_elem()
11811 		 */
11812 		if (meta.map_ptr == NULL) {
11813 			verifier_bug(env, "unexpected null map_ptr");
11814 			return -EFAULT;
11815 		}
11816 
11817 		if (func_id == BPF_FUNC_map_lookup_elem &&
11818 		    can_elide_value_nullness(meta.map_ptr->map_type) &&
11819 		    meta.const_map_key >= 0 &&
11820 		    meta.const_map_key < meta.map_ptr->max_entries)
11821 			ret_flag &= ~PTR_MAYBE_NULL;
11822 
11823 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
11824 		regs[BPF_REG_0].map_uid = meta.map_uid;
11825 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
11826 		if (!type_may_be_null(ret_flag) &&
11827 		    btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK)) {
11828 			regs[BPF_REG_0].id = ++env->id_gen;
11829 		}
11830 		break;
11831 	case RET_PTR_TO_SOCKET:
11832 		mark_reg_known_zero(env, regs, BPF_REG_0);
11833 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
11834 		break;
11835 	case RET_PTR_TO_SOCK_COMMON:
11836 		mark_reg_known_zero(env, regs, BPF_REG_0);
11837 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
11838 		break;
11839 	case RET_PTR_TO_TCP_SOCK:
11840 		mark_reg_known_zero(env, regs, BPF_REG_0);
11841 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
11842 		break;
11843 	case RET_PTR_TO_MEM:
11844 		mark_reg_known_zero(env, regs, BPF_REG_0);
11845 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
11846 		regs[BPF_REG_0].mem_size = meta.mem_size;
11847 		break;
11848 	case RET_PTR_TO_MEM_OR_BTF_ID:
11849 	{
11850 		const struct btf_type *t;
11851 
11852 		mark_reg_known_zero(env, regs, BPF_REG_0);
11853 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
11854 		if (!btf_type_is_struct(t)) {
11855 			u32 tsize;
11856 			const struct btf_type *ret;
11857 			const char *tname;
11858 
11859 			/* resolve the type size of ksym. */
11860 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
11861 			if (IS_ERR(ret)) {
11862 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
11863 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
11864 					tname, PTR_ERR(ret));
11865 				return -EINVAL;
11866 			}
11867 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
11868 			regs[BPF_REG_0].mem_size = tsize;
11869 		} else {
11870 			if (returns_cpu_specific_alloc_ptr) {
11871 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU;
11872 			} else {
11873 				/* MEM_RDONLY may be carried from ret_flag, but it
11874 				 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
11875 				 * it will confuse the check of PTR_TO_BTF_ID in
11876 				 * check_mem_access().
11877 				 */
11878 				ret_flag &= ~MEM_RDONLY;
11879 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
11880 			}
11881 
11882 			regs[BPF_REG_0].btf = meta.ret_btf;
11883 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
11884 		}
11885 		break;
11886 	}
11887 	case RET_PTR_TO_BTF_ID:
11888 	{
11889 		struct btf *ret_btf;
11890 		int ret_btf_id;
11891 
11892 		mark_reg_known_zero(env, regs, BPF_REG_0);
11893 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
11894 		if (func_id == BPF_FUNC_kptr_xchg) {
11895 			ret_btf = meta.kptr_field->kptr.btf;
11896 			ret_btf_id = meta.kptr_field->kptr.btf_id;
11897 			if (!btf_is_kernel(ret_btf)) {
11898 				regs[BPF_REG_0].type |= MEM_ALLOC;
11899 				if (meta.kptr_field->type == BPF_KPTR_PERCPU)
11900 					regs[BPF_REG_0].type |= MEM_PERCPU;
11901 			}
11902 		} else {
11903 			if (fn->ret_btf_id == BPF_PTR_POISON) {
11904 				verifier_bug(env, "func %s has non-overwritten BPF_PTR_POISON return type",
11905 					     func_id_name(func_id));
11906 				return -EFAULT;
11907 			}
11908 			ret_btf = btf_vmlinux;
11909 			ret_btf_id = *fn->ret_btf_id;
11910 		}
11911 		if (ret_btf_id == 0) {
11912 			verbose(env, "invalid return type %u of func %s#%d\n",
11913 				base_type(ret_type), func_id_name(func_id),
11914 				func_id);
11915 			return -EINVAL;
11916 		}
11917 		regs[BPF_REG_0].btf = ret_btf;
11918 		regs[BPF_REG_0].btf_id = ret_btf_id;
11919 		break;
11920 	}
11921 	default:
11922 		verbose(env, "unknown return type %u of func %s#%d\n",
11923 			base_type(ret_type), func_id_name(func_id), func_id);
11924 		return -EINVAL;
11925 	}
11926 
11927 	if (type_may_be_null(regs[BPF_REG_0].type))
11928 		regs[BPF_REG_0].id = ++env->id_gen;
11929 
11930 	if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
11931 		verifier_bug(env, "func %s#%d sets ref_obj_id more than once",
11932 			     func_id_name(func_id), func_id);
11933 		return -EFAULT;
11934 	}
11935 
11936 	if (is_dynptr_ref_function(func_id))
11937 		regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
11938 
11939 	if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
11940 		/* For release_reference() */
11941 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
11942 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
11943 		int id = acquire_reference(env, insn_idx);
11944 
11945 		if (id < 0)
11946 			return id;
11947 		/* For mark_ptr_or_null_reg() */
11948 		regs[BPF_REG_0].id = id;
11949 		/* For release_reference() */
11950 		regs[BPF_REG_0].ref_obj_id = id;
11951 	}
11952 
11953 	err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta);
11954 	if (err)
11955 		return err;
11956 
11957 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
11958 	if (err)
11959 		return err;
11960 
11961 	if ((func_id == BPF_FUNC_get_stack ||
11962 	     func_id == BPF_FUNC_get_task_stack) &&
11963 	    !env->prog->has_callchain_buf) {
11964 		const char *err_str;
11965 
11966 #ifdef CONFIG_PERF_EVENTS
11967 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
11968 		err_str = "cannot get callchain buffer for func %s#%d\n";
11969 #else
11970 		err = -ENOTSUPP;
11971 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
11972 #endif
11973 		if (err) {
11974 			verbose(env, err_str, func_id_name(func_id), func_id);
11975 			return err;
11976 		}
11977 
11978 		env->prog->has_callchain_buf = true;
11979 	}
11980 
11981 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
11982 		env->prog->call_get_stack = true;
11983 
11984 	if (func_id == BPF_FUNC_get_func_ip) {
11985 		if (check_get_func_ip(env))
11986 			return -ENOTSUPP;
11987 		env->prog->call_get_func_ip = true;
11988 	}
11989 
11990 	if (func_id == BPF_FUNC_tail_call) {
11991 		if (env->cur_state->curframe) {
11992 			struct bpf_verifier_state *branch;
11993 
11994 			mark_reg_scratched(env, BPF_REG_0);
11995 			branch = push_stack(env, env->insn_idx + 1, env->insn_idx, false);
11996 			if (IS_ERR(branch))
11997 				return PTR_ERR(branch);
11998 			clear_all_pkt_pointers(env);
11999 			mark_reg_unknown(env, regs, BPF_REG_0);
12000 			err = prepare_func_exit(env, &env->insn_idx);
12001 			if (err)
12002 				return err;
12003 			env->insn_idx--;
12004 		} else {
12005 			changes_data = false;
12006 		}
12007 	}
12008 
12009 	if (changes_data)
12010 		clear_all_pkt_pointers(env);
12011 	return 0;
12012 }
12013 
12014 /* mark_btf_func_reg_size() is used when the reg size is determined by
12015  * the BTF func_proto's return value size and argument.
12016  */
__mark_btf_func_reg_size(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,size_t reg_size)12017 static void __mark_btf_func_reg_size(struct bpf_verifier_env *env, struct bpf_reg_state *regs,
12018 				     u32 regno, size_t reg_size)
12019 {
12020 	struct bpf_reg_state *reg = &regs[regno];
12021 
12022 	if (regno == BPF_REG_0) {
12023 		/* Function return value */
12024 		reg->subreg_def = reg_size == sizeof(u64) ?
12025 			DEF_NOT_SUBREG : env->insn_idx + 1;
12026 	} else if (reg_size == sizeof(u64)) {
12027 		/* Function argument */
12028 		mark_insn_zext(env, reg);
12029 	}
12030 }
12031 
mark_btf_func_reg_size(struct bpf_verifier_env * env,u32 regno,size_t reg_size)12032 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
12033 				   size_t reg_size)
12034 {
12035 	return __mark_btf_func_reg_size(env, cur_regs(env), regno, reg_size);
12036 }
12037 
is_kfunc_acquire(struct bpf_kfunc_call_arg_meta * meta)12038 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
12039 {
12040 	return meta->kfunc_flags & KF_ACQUIRE;
12041 }
12042 
is_kfunc_release(struct bpf_kfunc_call_arg_meta * meta)12043 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
12044 {
12045 	return meta->kfunc_flags & KF_RELEASE;
12046 }
12047 
is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta * meta)12048 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
12049 {
12050 	return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
12051 }
12052 
is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta * meta)12053 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
12054 {
12055 	return meta->kfunc_flags & KF_SLEEPABLE;
12056 }
12057 
is_kfunc_destructive(struct bpf_kfunc_call_arg_meta * meta)12058 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
12059 {
12060 	return meta->kfunc_flags & KF_DESTRUCTIVE;
12061 }
12062 
is_kfunc_rcu(struct bpf_kfunc_call_arg_meta * meta)12063 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
12064 {
12065 	return meta->kfunc_flags & KF_RCU;
12066 }
12067 
is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta * meta)12068 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta)
12069 {
12070 	return meta->kfunc_flags & KF_RCU_PROTECTED;
12071 }
12072 
is_kfunc_arg_mem_size(const struct btf * btf,const struct btf_param * arg,const struct bpf_reg_state * reg)12073 static bool is_kfunc_arg_mem_size(const struct btf *btf,
12074 				  const struct btf_param *arg,
12075 				  const struct bpf_reg_state *reg)
12076 {
12077 	const struct btf_type *t;
12078 
12079 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
12080 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
12081 		return false;
12082 
12083 	return btf_param_match_suffix(btf, arg, "__sz");
12084 }
12085 
is_kfunc_arg_const_mem_size(const struct btf * btf,const struct btf_param * arg,const struct bpf_reg_state * reg)12086 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
12087 					const struct btf_param *arg,
12088 					const struct bpf_reg_state *reg)
12089 {
12090 	const struct btf_type *t;
12091 
12092 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
12093 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
12094 		return false;
12095 
12096 	return btf_param_match_suffix(btf, arg, "__szk");
12097 }
12098 
is_kfunc_arg_optional(const struct btf * btf,const struct btf_param * arg)12099 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg)
12100 {
12101 	return btf_param_match_suffix(btf, arg, "__opt");
12102 }
12103 
is_kfunc_arg_constant(const struct btf * btf,const struct btf_param * arg)12104 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
12105 {
12106 	return btf_param_match_suffix(btf, arg, "__k");
12107 }
12108 
is_kfunc_arg_ignore(const struct btf * btf,const struct btf_param * arg)12109 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
12110 {
12111 	return btf_param_match_suffix(btf, arg, "__ign");
12112 }
12113 
is_kfunc_arg_map(const struct btf * btf,const struct btf_param * arg)12114 static bool is_kfunc_arg_map(const struct btf *btf, const struct btf_param *arg)
12115 {
12116 	return btf_param_match_suffix(btf, arg, "__map");
12117 }
12118 
is_kfunc_arg_alloc_obj(const struct btf * btf,const struct btf_param * arg)12119 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
12120 {
12121 	return btf_param_match_suffix(btf, arg, "__alloc");
12122 }
12123 
is_kfunc_arg_uninit(const struct btf * btf,const struct btf_param * arg)12124 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
12125 {
12126 	return btf_param_match_suffix(btf, arg, "__uninit");
12127 }
12128 
is_kfunc_arg_refcounted_kptr(const struct btf * btf,const struct btf_param * arg)12129 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
12130 {
12131 	return btf_param_match_suffix(btf, arg, "__refcounted_kptr");
12132 }
12133 
is_kfunc_arg_nullable(const struct btf * btf,const struct btf_param * arg)12134 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg)
12135 {
12136 	return btf_param_match_suffix(btf, arg, "__nullable");
12137 }
12138 
is_kfunc_arg_const_str(const struct btf * btf,const struct btf_param * arg)12139 static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg)
12140 {
12141 	return btf_param_match_suffix(btf, arg, "__str");
12142 }
12143 
is_kfunc_arg_irq_flag(const struct btf * btf,const struct btf_param * arg)12144 static bool is_kfunc_arg_irq_flag(const struct btf *btf, const struct btf_param *arg)
12145 {
12146 	return btf_param_match_suffix(btf, arg, "__irq_flag");
12147 }
12148 
is_kfunc_arg_prog(const struct btf * btf,const struct btf_param * arg)12149 static bool is_kfunc_arg_prog(const struct btf *btf, const struct btf_param *arg)
12150 {
12151 	return btf_param_match_suffix(btf, arg, "__prog");
12152 }
12153 
is_kfunc_arg_scalar_with_name(const struct btf * btf,const struct btf_param * arg,const char * name)12154 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
12155 					  const struct btf_param *arg,
12156 					  const char *name)
12157 {
12158 	int len, target_len = strlen(name);
12159 	const char *param_name;
12160 
12161 	param_name = btf_name_by_offset(btf, arg->name_off);
12162 	if (str_is_empty(param_name))
12163 		return false;
12164 	len = strlen(param_name);
12165 	if (len != target_len)
12166 		return false;
12167 	if (strcmp(param_name, name))
12168 		return false;
12169 
12170 	return true;
12171 }
12172 
12173 enum {
12174 	KF_ARG_DYNPTR_ID,
12175 	KF_ARG_LIST_HEAD_ID,
12176 	KF_ARG_LIST_NODE_ID,
12177 	KF_ARG_RB_ROOT_ID,
12178 	KF_ARG_RB_NODE_ID,
12179 	KF_ARG_WORKQUEUE_ID,
12180 	KF_ARG_RES_SPIN_LOCK_ID,
12181 	KF_ARG_TASK_WORK_ID,
12182 };
12183 
12184 BTF_ID_LIST(kf_arg_btf_ids)
BTF_ID(struct,bpf_dynptr)12185 BTF_ID(struct, bpf_dynptr)
12186 BTF_ID(struct, bpf_list_head)
12187 BTF_ID(struct, bpf_list_node)
12188 BTF_ID(struct, bpf_rb_root)
12189 BTF_ID(struct, bpf_rb_node)
12190 BTF_ID(struct, bpf_wq)
12191 BTF_ID(struct, bpf_res_spin_lock)
12192 BTF_ID(struct, bpf_task_work)
12193 
12194 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
12195 				    const struct btf_param *arg, int type)
12196 {
12197 	const struct btf_type *t;
12198 	u32 res_id;
12199 
12200 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
12201 	if (!t)
12202 		return false;
12203 	if (!btf_type_is_ptr(t))
12204 		return false;
12205 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
12206 	if (!t)
12207 		return false;
12208 	return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
12209 }
12210 
is_kfunc_arg_dynptr(const struct btf * btf,const struct btf_param * arg)12211 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
12212 {
12213 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
12214 }
12215 
is_kfunc_arg_list_head(const struct btf * btf,const struct btf_param * arg)12216 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
12217 {
12218 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
12219 }
12220 
is_kfunc_arg_list_node(const struct btf * btf,const struct btf_param * arg)12221 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
12222 {
12223 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
12224 }
12225 
is_kfunc_arg_rbtree_root(const struct btf * btf,const struct btf_param * arg)12226 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
12227 {
12228 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
12229 }
12230 
is_kfunc_arg_rbtree_node(const struct btf * btf,const struct btf_param * arg)12231 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
12232 {
12233 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
12234 }
12235 
is_kfunc_arg_wq(const struct btf * btf,const struct btf_param * arg)12236 static bool is_kfunc_arg_wq(const struct btf *btf, const struct btf_param *arg)
12237 {
12238 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_WORKQUEUE_ID);
12239 }
12240 
is_kfunc_arg_task_work(const struct btf * btf,const struct btf_param * arg)12241 static bool is_kfunc_arg_task_work(const struct btf *btf, const struct btf_param *arg)
12242 {
12243 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_TASK_WORK_ID);
12244 }
12245 
is_kfunc_arg_res_spin_lock(const struct btf * btf,const struct btf_param * arg)12246 static bool is_kfunc_arg_res_spin_lock(const struct btf *btf, const struct btf_param *arg)
12247 {
12248 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RES_SPIN_LOCK_ID);
12249 }
12250 
is_rbtree_node_type(const struct btf_type * t)12251 static bool is_rbtree_node_type(const struct btf_type *t)
12252 {
12253 	return t == btf_type_by_id(btf_vmlinux, kf_arg_btf_ids[KF_ARG_RB_NODE_ID]);
12254 }
12255 
is_list_node_type(const struct btf_type * t)12256 static bool is_list_node_type(const struct btf_type *t)
12257 {
12258 	return t == btf_type_by_id(btf_vmlinux, kf_arg_btf_ids[KF_ARG_LIST_NODE_ID]);
12259 }
12260 
is_kfunc_arg_callback(struct bpf_verifier_env * env,const struct btf * btf,const struct btf_param * arg)12261 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
12262 				  const struct btf_param *arg)
12263 {
12264 	const struct btf_type *t;
12265 
12266 	t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
12267 	if (!t)
12268 		return false;
12269 
12270 	return true;
12271 }
12272 
12273 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
__btf_type_is_scalar_struct(struct bpf_verifier_env * env,const struct btf * btf,const struct btf_type * t,int rec)12274 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
12275 					const struct btf *btf,
12276 					const struct btf_type *t, int rec)
12277 {
12278 	const struct btf_type *member_type;
12279 	const struct btf_member *member;
12280 	u32 i;
12281 
12282 	if (!btf_type_is_struct(t))
12283 		return false;
12284 
12285 	for_each_member(i, t, member) {
12286 		const struct btf_array *array;
12287 
12288 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
12289 		if (btf_type_is_struct(member_type)) {
12290 			if (rec >= 3) {
12291 				verbose(env, "max struct nesting depth exceeded\n");
12292 				return false;
12293 			}
12294 			if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
12295 				return false;
12296 			continue;
12297 		}
12298 		if (btf_type_is_array(member_type)) {
12299 			array = btf_array(member_type);
12300 			if (!array->nelems)
12301 				return false;
12302 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
12303 			if (!btf_type_is_scalar(member_type))
12304 				return false;
12305 			continue;
12306 		}
12307 		if (!btf_type_is_scalar(member_type))
12308 			return false;
12309 	}
12310 	return true;
12311 }
12312 
12313 enum kfunc_ptr_arg_type {
12314 	KF_ARG_PTR_TO_CTX,
12315 	KF_ARG_PTR_TO_ALLOC_BTF_ID,    /* Allocated object */
12316 	KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
12317 	KF_ARG_PTR_TO_DYNPTR,
12318 	KF_ARG_PTR_TO_ITER,
12319 	KF_ARG_PTR_TO_LIST_HEAD,
12320 	KF_ARG_PTR_TO_LIST_NODE,
12321 	KF_ARG_PTR_TO_BTF_ID,	       /* Also covers reg2btf_ids conversions */
12322 	KF_ARG_PTR_TO_MEM,
12323 	KF_ARG_PTR_TO_MEM_SIZE,	       /* Size derived from next argument, skip it */
12324 	KF_ARG_PTR_TO_CALLBACK,
12325 	KF_ARG_PTR_TO_RB_ROOT,
12326 	KF_ARG_PTR_TO_RB_NODE,
12327 	KF_ARG_PTR_TO_NULL,
12328 	KF_ARG_PTR_TO_CONST_STR,
12329 	KF_ARG_PTR_TO_MAP,
12330 	KF_ARG_PTR_TO_WORKQUEUE,
12331 	KF_ARG_PTR_TO_IRQ_FLAG,
12332 	KF_ARG_PTR_TO_RES_SPIN_LOCK,
12333 	KF_ARG_PTR_TO_TASK_WORK,
12334 };
12335 
12336 enum special_kfunc_type {
12337 	KF_bpf_obj_new_impl,
12338 	KF_bpf_obj_drop_impl,
12339 	KF_bpf_refcount_acquire_impl,
12340 	KF_bpf_list_push_front_impl,
12341 	KF_bpf_list_push_back_impl,
12342 	KF_bpf_list_pop_front,
12343 	KF_bpf_list_pop_back,
12344 	KF_bpf_list_front,
12345 	KF_bpf_list_back,
12346 	KF_bpf_cast_to_kern_ctx,
12347 	KF_bpf_rdonly_cast,
12348 	KF_bpf_rcu_read_lock,
12349 	KF_bpf_rcu_read_unlock,
12350 	KF_bpf_rbtree_remove,
12351 	KF_bpf_rbtree_add_impl,
12352 	KF_bpf_rbtree_first,
12353 	KF_bpf_rbtree_root,
12354 	KF_bpf_rbtree_left,
12355 	KF_bpf_rbtree_right,
12356 	KF_bpf_dynptr_from_skb,
12357 	KF_bpf_dynptr_from_xdp,
12358 	KF_bpf_dynptr_from_skb_meta,
12359 	KF_bpf_xdp_pull_data,
12360 	KF_bpf_dynptr_slice,
12361 	KF_bpf_dynptr_slice_rdwr,
12362 	KF_bpf_dynptr_clone,
12363 	KF_bpf_percpu_obj_new_impl,
12364 	KF_bpf_percpu_obj_drop_impl,
12365 	KF_bpf_throw,
12366 	KF_bpf_wq_set_callback_impl,
12367 	KF_bpf_preempt_disable,
12368 	KF_bpf_preempt_enable,
12369 	KF_bpf_iter_css_task_new,
12370 	KF_bpf_session_cookie,
12371 	KF_bpf_get_kmem_cache,
12372 	KF_bpf_local_irq_save,
12373 	KF_bpf_local_irq_restore,
12374 	KF_bpf_iter_num_new,
12375 	KF_bpf_iter_num_next,
12376 	KF_bpf_iter_num_destroy,
12377 	KF_bpf_set_dentry_xattr,
12378 	KF_bpf_remove_dentry_xattr,
12379 	KF_bpf_res_spin_lock,
12380 	KF_bpf_res_spin_unlock,
12381 	KF_bpf_res_spin_lock_irqsave,
12382 	KF_bpf_res_spin_unlock_irqrestore,
12383 	KF_bpf_dynptr_from_file,
12384 	KF_bpf_dynptr_file_discard,
12385 	KF___bpf_trap,
12386 	KF_bpf_task_work_schedule_signal_impl,
12387 	KF_bpf_task_work_schedule_resume_impl,
12388 };
12389 
12390 BTF_ID_LIST(special_kfunc_list)
BTF_ID(func,bpf_obj_new_impl)12391 BTF_ID(func, bpf_obj_new_impl)
12392 BTF_ID(func, bpf_obj_drop_impl)
12393 BTF_ID(func, bpf_refcount_acquire_impl)
12394 BTF_ID(func, bpf_list_push_front_impl)
12395 BTF_ID(func, bpf_list_push_back_impl)
12396 BTF_ID(func, bpf_list_pop_front)
12397 BTF_ID(func, bpf_list_pop_back)
12398 BTF_ID(func, bpf_list_front)
12399 BTF_ID(func, bpf_list_back)
12400 BTF_ID(func, bpf_cast_to_kern_ctx)
12401 BTF_ID(func, bpf_rdonly_cast)
12402 BTF_ID(func, bpf_rcu_read_lock)
12403 BTF_ID(func, bpf_rcu_read_unlock)
12404 BTF_ID(func, bpf_rbtree_remove)
12405 BTF_ID(func, bpf_rbtree_add_impl)
12406 BTF_ID(func, bpf_rbtree_first)
12407 BTF_ID(func, bpf_rbtree_root)
12408 BTF_ID(func, bpf_rbtree_left)
12409 BTF_ID(func, bpf_rbtree_right)
12410 #ifdef CONFIG_NET
12411 BTF_ID(func, bpf_dynptr_from_skb)
12412 BTF_ID(func, bpf_dynptr_from_xdp)
12413 BTF_ID(func, bpf_dynptr_from_skb_meta)
12414 BTF_ID(func, bpf_xdp_pull_data)
12415 #else
12416 BTF_ID_UNUSED
12417 BTF_ID_UNUSED
12418 BTF_ID_UNUSED
12419 BTF_ID_UNUSED
12420 #endif
12421 BTF_ID(func, bpf_dynptr_slice)
12422 BTF_ID(func, bpf_dynptr_slice_rdwr)
12423 BTF_ID(func, bpf_dynptr_clone)
12424 BTF_ID(func, bpf_percpu_obj_new_impl)
12425 BTF_ID(func, bpf_percpu_obj_drop_impl)
12426 BTF_ID(func, bpf_throw)
12427 BTF_ID(func, bpf_wq_set_callback_impl)
12428 BTF_ID(func, bpf_preempt_disable)
12429 BTF_ID(func, bpf_preempt_enable)
12430 #ifdef CONFIG_CGROUPS
12431 BTF_ID(func, bpf_iter_css_task_new)
12432 #else
12433 BTF_ID_UNUSED
12434 #endif
12435 #ifdef CONFIG_BPF_EVENTS
12436 BTF_ID(func, bpf_session_cookie)
12437 #else
12438 BTF_ID_UNUSED
12439 #endif
12440 BTF_ID(func, bpf_get_kmem_cache)
12441 BTF_ID(func, bpf_local_irq_save)
12442 BTF_ID(func, bpf_local_irq_restore)
12443 BTF_ID(func, bpf_iter_num_new)
12444 BTF_ID(func, bpf_iter_num_next)
12445 BTF_ID(func, bpf_iter_num_destroy)
12446 #ifdef CONFIG_BPF_LSM
12447 BTF_ID(func, bpf_set_dentry_xattr)
12448 BTF_ID(func, bpf_remove_dentry_xattr)
12449 #else
12450 BTF_ID_UNUSED
12451 BTF_ID_UNUSED
12452 #endif
12453 BTF_ID(func, bpf_res_spin_lock)
12454 BTF_ID(func, bpf_res_spin_unlock)
12455 BTF_ID(func, bpf_res_spin_lock_irqsave)
12456 BTF_ID(func, bpf_res_spin_unlock_irqrestore)
12457 BTF_ID(func, bpf_dynptr_from_file)
12458 BTF_ID(func, bpf_dynptr_file_discard)
12459 BTF_ID(func, __bpf_trap)
12460 BTF_ID(func, bpf_task_work_schedule_signal_impl)
12461 BTF_ID(func, bpf_task_work_schedule_resume_impl)
12462 
12463 static bool is_task_work_add_kfunc(u32 func_id)
12464 {
12465 	return func_id == special_kfunc_list[KF_bpf_task_work_schedule_signal_impl] ||
12466 	       func_id == special_kfunc_list[KF_bpf_task_work_schedule_resume_impl];
12467 }
12468 
is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta * meta)12469 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
12470 {
12471 	if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
12472 	    meta->arg_owning_ref) {
12473 		return false;
12474 	}
12475 
12476 	return meta->kfunc_flags & KF_RET_NULL;
12477 }
12478 
is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta * meta)12479 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
12480 {
12481 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
12482 }
12483 
is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta * meta)12484 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
12485 {
12486 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
12487 }
12488 
is_kfunc_bpf_preempt_disable(struct bpf_kfunc_call_arg_meta * meta)12489 static bool is_kfunc_bpf_preempt_disable(struct bpf_kfunc_call_arg_meta *meta)
12490 {
12491 	return meta->func_id == special_kfunc_list[KF_bpf_preempt_disable];
12492 }
12493 
is_kfunc_bpf_preempt_enable(struct bpf_kfunc_call_arg_meta * meta)12494 static bool is_kfunc_bpf_preempt_enable(struct bpf_kfunc_call_arg_meta *meta)
12495 {
12496 	return meta->func_id == special_kfunc_list[KF_bpf_preempt_enable];
12497 }
12498 
is_kfunc_pkt_changing(struct bpf_kfunc_call_arg_meta * meta)12499 static bool is_kfunc_pkt_changing(struct bpf_kfunc_call_arg_meta *meta)
12500 {
12501 	return meta->func_id == special_kfunc_list[KF_bpf_xdp_pull_data];
12502 }
12503 
12504 static enum kfunc_ptr_arg_type
get_kfunc_ptr_arg_type(struct bpf_verifier_env * env,struct bpf_kfunc_call_arg_meta * meta,const struct btf_type * t,const struct btf_type * ref_t,const char * ref_tname,const struct btf_param * args,int argno,int nargs)12505 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
12506 		       struct bpf_kfunc_call_arg_meta *meta,
12507 		       const struct btf_type *t, const struct btf_type *ref_t,
12508 		       const char *ref_tname, const struct btf_param *args,
12509 		       int argno, int nargs)
12510 {
12511 	u32 regno = argno + 1;
12512 	struct bpf_reg_state *regs = cur_regs(env);
12513 	struct bpf_reg_state *reg = &regs[regno];
12514 	bool arg_mem_size = false;
12515 
12516 	if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
12517 		return KF_ARG_PTR_TO_CTX;
12518 
12519 	/* In this function, we verify the kfunc's BTF as per the argument type,
12520 	 * leaving the rest of the verification with respect to the register
12521 	 * type to our caller. When a set of conditions hold in the BTF type of
12522 	 * arguments, we resolve it to a known kfunc_ptr_arg_type.
12523 	 */
12524 	if (btf_is_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
12525 		return KF_ARG_PTR_TO_CTX;
12526 
12527 	if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg))
12528 		return KF_ARG_PTR_TO_NULL;
12529 
12530 	if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
12531 		return KF_ARG_PTR_TO_ALLOC_BTF_ID;
12532 
12533 	if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
12534 		return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
12535 
12536 	if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
12537 		return KF_ARG_PTR_TO_DYNPTR;
12538 
12539 	if (is_kfunc_arg_iter(meta, argno, &args[argno]))
12540 		return KF_ARG_PTR_TO_ITER;
12541 
12542 	if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
12543 		return KF_ARG_PTR_TO_LIST_HEAD;
12544 
12545 	if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
12546 		return KF_ARG_PTR_TO_LIST_NODE;
12547 
12548 	if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
12549 		return KF_ARG_PTR_TO_RB_ROOT;
12550 
12551 	if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
12552 		return KF_ARG_PTR_TO_RB_NODE;
12553 
12554 	if (is_kfunc_arg_const_str(meta->btf, &args[argno]))
12555 		return KF_ARG_PTR_TO_CONST_STR;
12556 
12557 	if (is_kfunc_arg_map(meta->btf, &args[argno]))
12558 		return KF_ARG_PTR_TO_MAP;
12559 
12560 	if (is_kfunc_arg_wq(meta->btf, &args[argno]))
12561 		return KF_ARG_PTR_TO_WORKQUEUE;
12562 
12563 	if (is_kfunc_arg_task_work(meta->btf, &args[argno]))
12564 		return KF_ARG_PTR_TO_TASK_WORK;
12565 
12566 	if (is_kfunc_arg_irq_flag(meta->btf, &args[argno]))
12567 		return KF_ARG_PTR_TO_IRQ_FLAG;
12568 
12569 	if (is_kfunc_arg_res_spin_lock(meta->btf, &args[argno]))
12570 		return KF_ARG_PTR_TO_RES_SPIN_LOCK;
12571 
12572 	if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
12573 		if (!btf_type_is_struct(ref_t)) {
12574 			verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
12575 				meta->func_name, argno, btf_type_str(ref_t), ref_tname);
12576 			return -EINVAL;
12577 		}
12578 		return KF_ARG_PTR_TO_BTF_ID;
12579 	}
12580 
12581 	if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
12582 		return KF_ARG_PTR_TO_CALLBACK;
12583 
12584 	if (argno + 1 < nargs &&
12585 	    (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]) ||
12586 	     is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1])))
12587 		arg_mem_size = true;
12588 
12589 	/* This is the catch all argument type of register types supported by
12590 	 * check_helper_mem_access. However, we only allow when argument type is
12591 	 * pointer to scalar, or struct composed (recursively) of scalars. When
12592 	 * arg_mem_size is true, the pointer can be void *.
12593 	 */
12594 	if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
12595 	    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
12596 		verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
12597 			argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
12598 		return -EINVAL;
12599 	}
12600 	return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
12601 }
12602 
process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const struct btf_type * ref_t,const char * ref_tname,u32 ref_id,struct bpf_kfunc_call_arg_meta * meta,int argno)12603 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
12604 					struct bpf_reg_state *reg,
12605 					const struct btf_type *ref_t,
12606 					const char *ref_tname, u32 ref_id,
12607 					struct bpf_kfunc_call_arg_meta *meta,
12608 					int argno)
12609 {
12610 	const struct btf_type *reg_ref_t;
12611 	bool strict_type_match = false;
12612 	const struct btf *reg_btf;
12613 	const char *reg_ref_tname;
12614 	bool taking_projection;
12615 	bool struct_same;
12616 	u32 reg_ref_id;
12617 
12618 	if (base_type(reg->type) == PTR_TO_BTF_ID) {
12619 		reg_btf = reg->btf;
12620 		reg_ref_id = reg->btf_id;
12621 	} else {
12622 		reg_btf = btf_vmlinux;
12623 		reg_ref_id = *reg2btf_ids[base_type(reg->type)];
12624 	}
12625 
12626 	/* Enforce strict type matching for calls to kfuncs that are acquiring
12627 	 * or releasing a reference, or are no-cast aliases. We do _not_
12628 	 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
12629 	 * as we want to enable BPF programs to pass types that are bitwise
12630 	 * equivalent without forcing them to explicitly cast with something
12631 	 * like bpf_cast_to_kern_ctx().
12632 	 *
12633 	 * For example, say we had a type like the following:
12634 	 *
12635 	 * struct bpf_cpumask {
12636 	 *	cpumask_t cpumask;
12637 	 *	refcount_t usage;
12638 	 * };
12639 	 *
12640 	 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
12641 	 * to a struct cpumask, so it would be safe to pass a struct
12642 	 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
12643 	 *
12644 	 * The philosophy here is similar to how we allow scalars of different
12645 	 * types to be passed to kfuncs as long as the size is the same. The
12646 	 * only difference here is that we're simply allowing
12647 	 * btf_struct_ids_match() to walk the struct at the 0th offset, and
12648 	 * resolve types.
12649 	 */
12650 	if ((is_kfunc_release(meta) && reg->ref_obj_id) ||
12651 	    btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
12652 		strict_type_match = true;
12653 
12654 	WARN_ON_ONCE(is_kfunc_release(meta) &&
12655 		     (reg->off || !tnum_is_const(reg->var_off) ||
12656 		      reg->var_off.value));
12657 
12658 	reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
12659 	reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
12660 	struct_same = btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match);
12661 	/* If kfunc is accepting a projection type (ie. __sk_buff), it cannot
12662 	 * actually use it -- it must cast to the underlying type. So we allow
12663 	 * caller to pass in the underlying type.
12664 	 */
12665 	taking_projection = btf_is_projection_of(ref_tname, reg_ref_tname);
12666 	if (!taking_projection && !struct_same) {
12667 		verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
12668 			meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
12669 			btf_type_str(reg_ref_t), reg_ref_tname);
12670 		return -EINVAL;
12671 	}
12672 	return 0;
12673 }
12674 
process_irq_flag(struct bpf_verifier_env * env,int regno,struct bpf_kfunc_call_arg_meta * meta)12675 static int process_irq_flag(struct bpf_verifier_env *env, int regno,
12676 			     struct bpf_kfunc_call_arg_meta *meta)
12677 {
12678 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
12679 	int err, kfunc_class = IRQ_NATIVE_KFUNC;
12680 	bool irq_save;
12681 
12682 	if (meta->func_id == special_kfunc_list[KF_bpf_local_irq_save] ||
12683 	    meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave]) {
12684 		irq_save = true;
12685 		if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave])
12686 			kfunc_class = IRQ_LOCK_KFUNC;
12687 	} else if (meta->func_id == special_kfunc_list[KF_bpf_local_irq_restore] ||
12688 		   meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]) {
12689 		irq_save = false;
12690 		if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore])
12691 			kfunc_class = IRQ_LOCK_KFUNC;
12692 	} else {
12693 		verifier_bug(env, "unknown irq flags kfunc");
12694 		return -EFAULT;
12695 	}
12696 
12697 	if (irq_save) {
12698 		if (!is_irq_flag_reg_valid_uninit(env, reg)) {
12699 			verbose(env, "expected uninitialized irq flag as arg#%d\n", regno - 1);
12700 			return -EINVAL;
12701 		}
12702 
12703 		err = check_mem_access(env, env->insn_idx, regno, 0, BPF_DW, BPF_WRITE, -1, false, false);
12704 		if (err)
12705 			return err;
12706 
12707 		err = mark_stack_slot_irq_flag(env, meta, reg, env->insn_idx, kfunc_class);
12708 		if (err)
12709 			return err;
12710 	} else {
12711 		err = is_irq_flag_reg_valid_init(env, reg);
12712 		if (err) {
12713 			verbose(env, "expected an initialized irq flag as arg#%d\n", regno - 1);
12714 			return err;
12715 		}
12716 
12717 		err = mark_irq_flag_read(env, reg);
12718 		if (err)
12719 			return err;
12720 
12721 		err = unmark_stack_slot_irq_flag(env, reg, kfunc_class);
12722 		if (err)
12723 			return err;
12724 	}
12725 	return 0;
12726 }
12727 
12728 
ref_set_non_owning(struct bpf_verifier_env * env,struct bpf_reg_state * reg)12729 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
12730 {
12731 	struct btf_record *rec = reg_btf_record(reg);
12732 
12733 	if (!env->cur_state->active_locks) {
12734 		verifier_bug(env, "%s w/o active lock", __func__);
12735 		return -EFAULT;
12736 	}
12737 
12738 	if (type_flag(reg->type) & NON_OWN_REF) {
12739 		verifier_bug(env, "NON_OWN_REF already set");
12740 		return -EFAULT;
12741 	}
12742 
12743 	reg->type |= NON_OWN_REF;
12744 	if (rec->refcount_off >= 0)
12745 		reg->type |= MEM_RCU;
12746 
12747 	return 0;
12748 }
12749 
ref_convert_owning_non_owning(struct bpf_verifier_env * env,u32 ref_obj_id)12750 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
12751 {
12752 	struct bpf_verifier_state *state = env->cur_state;
12753 	struct bpf_func_state *unused;
12754 	struct bpf_reg_state *reg;
12755 	int i;
12756 
12757 	if (!ref_obj_id) {
12758 		verifier_bug(env, "ref_obj_id is zero for owning -> non-owning conversion");
12759 		return -EFAULT;
12760 	}
12761 
12762 	for (i = 0; i < state->acquired_refs; i++) {
12763 		if (state->refs[i].id != ref_obj_id)
12764 			continue;
12765 
12766 		/* Clear ref_obj_id here so release_reference doesn't clobber
12767 		 * the whole reg
12768 		 */
12769 		bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
12770 			if (reg->ref_obj_id == ref_obj_id) {
12771 				reg->ref_obj_id = 0;
12772 				ref_set_non_owning(env, reg);
12773 			}
12774 		}));
12775 		return 0;
12776 	}
12777 
12778 	verifier_bug(env, "ref state missing for ref_obj_id");
12779 	return -EFAULT;
12780 }
12781 
12782 /* Implementation details:
12783  *
12784  * Each register points to some region of memory, which we define as an
12785  * allocation. Each allocation may embed a bpf_spin_lock which protects any
12786  * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
12787  * allocation. The lock and the data it protects are colocated in the same
12788  * memory region.
12789  *
12790  * Hence, everytime a register holds a pointer value pointing to such
12791  * allocation, the verifier preserves a unique reg->id for it.
12792  *
12793  * The verifier remembers the lock 'ptr' and the lock 'id' whenever
12794  * bpf_spin_lock is called.
12795  *
12796  * To enable this, lock state in the verifier captures two values:
12797  *	active_lock.ptr = Register's type specific pointer
12798  *	active_lock.id  = A unique ID for each register pointer value
12799  *
12800  * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
12801  * supported register types.
12802  *
12803  * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
12804  * allocated objects is the reg->btf pointer.
12805  *
12806  * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
12807  * can establish the provenance of the map value statically for each distinct
12808  * lookup into such maps. They always contain a single map value hence unique
12809  * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
12810  *
12811  * So, in case of global variables, they use array maps with max_entries = 1,
12812  * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
12813  * into the same map value as max_entries is 1, as described above).
12814  *
12815  * In case of inner map lookups, the inner map pointer has same map_ptr as the
12816  * outer map pointer (in verifier context), but each lookup into an inner map
12817  * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
12818  * maps from the same outer map share the same map_ptr as active_lock.ptr, they
12819  * will get different reg->id assigned to each lookup, hence different
12820  * active_lock.id.
12821  *
12822  * In case of allocated objects, active_lock.ptr is the reg->btf, and the
12823  * reg->id is a unique ID preserved after the NULL pointer check on the pointer
12824  * returned from bpf_obj_new. Each allocation receives a new reg->id.
12825  */
check_reg_allocation_locked(struct bpf_verifier_env * env,struct bpf_reg_state * reg)12826 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
12827 {
12828 	struct bpf_reference_state *s;
12829 	void *ptr;
12830 	u32 id;
12831 
12832 	switch ((int)reg->type) {
12833 	case PTR_TO_MAP_VALUE:
12834 		ptr = reg->map_ptr;
12835 		break;
12836 	case PTR_TO_BTF_ID | MEM_ALLOC:
12837 		ptr = reg->btf;
12838 		break;
12839 	default:
12840 		verifier_bug(env, "unknown reg type for lock check");
12841 		return -EFAULT;
12842 	}
12843 	id = reg->id;
12844 
12845 	if (!env->cur_state->active_locks)
12846 		return -EINVAL;
12847 	s = find_lock_state(env->cur_state, REF_TYPE_LOCK_MASK, id, ptr);
12848 	if (!s) {
12849 		verbose(env, "held lock and object are not in the same allocation\n");
12850 		return -EINVAL;
12851 	}
12852 	return 0;
12853 }
12854 
is_bpf_list_api_kfunc(u32 btf_id)12855 static bool is_bpf_list_api_kfunc(u32 btf_id)
12856 {
12857 	return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
12858 	       btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
12859 	       btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
12860 	       btf_id == special_kfunc_list[KF_bpf_list_pop_back] ||
12861 	       btf_id == special_kfunc_list[KF_bpf_list_front] ||
12862 	       btf_id == special_kfunc_list[KF_bpf_list_back];
12863 }
12864 
is_bpf_rbtree_api_kfunc(u32 btf_id)12865 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
12866 {
12867 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
12868 	       btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
12869 	       btf_id == special_kfunc_list[KF_bpf_rbtree_first] ||
12870 	       btf_id == special_kfunc_list[KF_bpf_rbtree_root] ||
12871 	       btf_id == special_kfunc_list[KF_bpf_rbtree_left] ||
12872 	       btf_id == special_kfunc_list[KF_bpf_rbtree_right];
12873 }
12874 
is_bpf_iter_num_api_kfunc(u32 btf_id)12875 static bool is_bpf_iter_num_api_kfunc(u32 btf_id)
12876 {
12877 	return btf_id == special_kfunc_list[KF_bpf_iter_num_new] ||
12878 	       btf_id == special_kfunc_list[KF_bpf_iter_num_next] ||
12879 	       btf_id == special_kfunc_list[KF_bpf_iter_num_destroy];
12880 }
12881 
is_bpf_graph_api_kfunc(u32 btf_id)12882 static bool is_bpf_graph_api_kfunc(u32 btf_id)
12883 {
12884 	return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
12885 	       btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
12886 }
12887 
is_bpf_res_spin_lock_kfunc(u32 btf_id)12888 static bool is_bpf_res_spin_lock_kfunc(u32 btf_id)
12889 {
12890 	return btf_id == special_kfunc_list[KF_bpf_res_spin_lock] ||
12891 	       btf_id == special_kfunc_list[KF_bpf_res_spin_unlock] ||
12892 	       btf_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave] ||
12893 	       btf_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore];
12894 }
12895 
kfunc_spin_allowed(u32 btf_id)12896 static bool kfunc_spin_allowed(u32 btf_id)
12897 {
12898 	return is_bpf_graph_api_kfunc(btf_id) || is_bpf_iter_num_api_kfunc(btf_id) ||
12899 	       is_bpf_res_spin_lock_kfunc(btf_id);
12900 }
12901 
is_sync_callback_calling_kfunc(u32 btf_id)12902 static bool is_sync_callback_calling_kfunc(u32 btf_id)
12903 {
12904 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
12905 }
12906 
is_async_callback_calling_kfunc(u32 btf_id)12907 static bool is_async_callback_calling_kfunc(u32 btf_id)
12908 {
12909 	return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl] ||
12910 	       is_task_work_add_kfunc(btf_id);
12911 }
12912 
is_bpf_throw_kfunc(struct bpf_insn * insn)12913 static bool is_bpf_throw_kfunc(struct bpf_insn *insn)
12914 {
12915 	return bpf_pseudo_kfunc_call(insn) && insn->off == 0 &&
12916 	       insn->imm == special_kfunc_list[KF_bpf_throw];
12917 }
12918 
is_bpf_wq_set_callback_impl_kfunc(u32 btf_id)12919 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id)
12920 {
12921 	return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl];
12922 }
12923 
is_callback_calling_kfunc(u32 btf_id)12924 static bool is_callback_calling_kfunc(u32 btf_id)
12925 {
12926 	return is_sync_callback_calling_kfunc(btf_id) ||
12927 	       is_async_callback_calling_kfunc(btf_id);
12928 }
12929 
is_rbtree_lock_required_kfunc(u32 btf_id)12930 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
12931 {
12932 	return is_bpf_rbtree_api_kfunc(btf_id);
12933 }
12934 
check_kfunc_is_graph_root_api(struct bpf_verifier_env * env,enum btf_field_type head_field_type,u32 kfunc_btf_id)12935 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
12936 					  enum btf_field_type head_field_type,
12937 					  u32 kfunc_btf_id)
12938 {
12939 	bool ret;
12940 
12941 	switch (head_field_type) {
12942 	case BPF_LIST_HEAD:
12943 		ret = is_bpf_list_api_kfunc(kfunc_btf_id);
12944 		break;
12945 	case BPF_RB_ROOT:
12946 		ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
12947 		break;
12948 	default:
12949 		verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
12950 			btf_field_type_name(head_field_type));
12951 		return false;
12952 	}
12953 
12954 	if (!ret)
12955 		verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
12956 			btf_field_type_name(head_field_type));
12957 	return ret;
12958 }
12959 
check_kfunc_is_graph_node_api(struct bpf_verifier_env * env,enum btf_field_type node_field_type,u32 kfunc_btf_id)12960 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
12961 					  enum btf_field_type node_field_type,
12962 					  u32 kfunc_btf_id)
12963 {
12964 	bool ret;
12965 
12966 	switch (node_field_type) {
12967 	case BPF_LIST_NODE:
12968 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
12969 		       kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
12970 		break;
12971 	case BPF_RB_NODE:
12972 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
12973 		       kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
12974 		       kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_left] ||
12975 		       kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_right]);
12976 		break;
12977 	default:
12978 		verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
12979 			btf_field_type_name(node_field_type));
12980 		return false;
12981 	}
12982 
12983 	if (!ret)
12984 		verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
12985 			btf_field_type_name(node_field_type));
12986 	return ret;
12987 }
12988 
12989 static int
__process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta,enum btf_field_type head_field_type,struct btf_field ** head_field)12990 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
12991 				   struct bpf_reg_state *reg, u32 regno,
12992 				   struct bpf_kfunc_call_arg_meta *meta,
12993 				   enum btf_field_type head_field_type,
12994 				   struct btf_field **head_field)
12995 {
12996 	const char *head_type_name;
12997 	struct btf_field *field;
12998 	struct btf_record *rec;
12999 	u32 head_off;
13000 
13001 	if (meta->btf != btf_vmlinux) {
13002 		verifier_bug(env, "unexpected btf mismatch in kfunc call");
13003 		return -EFAULT;
13004 	}
13005 
13006 	if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
13007 		return -EFAULT;
13008 
13009 	head_type_name = btf_field_type_name(head_field_type);
13010 	if (!tnum_is_const(reg->var_off)) {
13011 		verbose(env,
13012 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
13013 			regno, head_type_name);
13014 		return -EINVAL;
13015 	}
13016 
13017 	rec = reg_btf_record(reg);
13018 	head_off = reg->off + reg->var_off.value;
13019 	field = btf_record_find(rec, head_off, head_field_type);
13020 	if (!field) {
13021 		verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
13022 		return -EINVAL;
13023 	}
13024 
13025 	/* All functions require bpf_list_head to be protected using a bpf_spin_lock */
13026 	if (check_reg_allocation_locked(env, reg)) {
13027 		verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
13028 			rec->spin_lock_off, head_type_name);
13029 		return -EINVAL;
13030 	}
13031 
13032 	if (*head_field) {
13033 		verifier_bug(env, "repeating %s arg", head_type_name);
13034 		return -EFAULT;
13035 	}
13036 	*head_field = field;
13037 	return 0;
13038 }
13039 
process_kf_arg_ptr_to_list_head(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)13040 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
13041 					   struct bpf_reg_state *reg, u32 regno,
13042 					   struct bpf_kfunc_call_arg_meta *meta)
13043 {
13044 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
13045 							  &meta->arg_list_head.field);
13046 }
13047 
process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)13048 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
13049 					     struct bpf_reg_state *reg, u32 regno,
13050 					     struct bpf_kfunc_call_arg_meta *meta)
13051 {
13052 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
13053 							  &meta->arg_rbtree_root.field);
13054 }
13055 
13056 static int
__process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta,enum btf_field_type head_field_type,enum btf_field_type node_field_type,struct btf_field ** node_field)13057 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
13058 				   struct bpf_reg_state *reg, u32 regno,
13059 				   struct bpf_kfunc_call_arg_meta *meta,
13060 				   enum btf_field_type head_field_type,
13061 				   enum btf_field_type node_field_type,
13062 				   struct btf_field **node_field)
13063 {
13064 	const char *node_type_name;
13065 	const struct btf_type *et, *t;
13066 	struct btf_field *field;
13067 	u32 node_off;
13068 
13069 	if (meta->btf != btf_vmlinux) {
13070 		verifier_bug(env, "unexpected btf mismatch in kfunc call");
13071 		return -EFAULT;
13072 	}
13073 
13074 	if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
13075 		return -EFAULT;
13076 
13077 	node_type_name = btf_field_type_name(node_field_type);
13078 	if (!tnum_is_const(reg->var_off)) {
13079 		verbose(env,
13080 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
13081 			regno, node_type_name);
13082 		return -EINVAL;
13083 	}
13084 
13085 	node_off = reg->off + reg->var_off.value;
13086 	field = reg_find_field_offset(reg, node_off, node_field_type);
13087 	if (!field) {
13088 		verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
13089 		return -EINVAL;
13090 	}
13091 
13092 	field = *node_field;
13093 
13094 	et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
13095 	t = btf_type_by_id(reg->btf, reg->btf_id);
13096 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
13097 				  field->graph_root.value_btf_id, true)) {
13098 		verbose(env, "operation on %s expects arg#1 %s at offset=%d "
13099 			"in struct %s, but arg is at offset=%d in struct %s\n",
13100 			btf_field_type_name(head_field_type),
13101 			btf_field_type_name(node_field_type),
13102 			field->graph_root.node_offset,
13103 			btf_name_by_offset(field->graph_root.btf, et->name_off),
13104 			node_off, btf_name_by_offset(reg->btf, t->name_off));
13105 		return -EINVAL;
13106 	}
13107 	meta->arg_btf = reg->btf;
13108 	meta->arg_btf_id = reg->btf_id;
13109 
13110 	if (node_off != field->graph_root.node_offset) {
13111 		verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
13112 			node_off, btf_field_type_name(node_field_type),
13113 			field->graph_root.node_offset,
13114 			btf_name_by_offset(field->graph_root.btf, et->name_off));
13115 		return -EINVAL;
13116 	}
13117 
13118 	return 0;
13119 }
13120 
process_kf_arg_ptr_to_list_node(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)13121 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
13122 					   struct bpf_reg_state *reg, u32 regno,
13123 					   struct bpf_kfunc_call_arg_meta *meta)
13124 {
13125 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
13126 						  BPF_LIST_HEAD, BPF_LIST_NODE,
13127 						  &meta->arg_list_head.field);
13128 }
13129 
process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)13130 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
13131 					     struct bpf_reg_state *reg, u32 regno,
13132 					     struct bpf_kfunc_call_arg_meta *meta)
13133 {
13134 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
13135 						  BPF_RB_ROOT, BPF_RB_NODE,
13136 						  &meta->arg_rbtree_root.field);
13137 }
13138 
13139 /*
13140  * css_task iter allowlist is needed to avoid dead locking on css_set_lock.
13141  * LSM hooks and iters (both sleepable and non-sleepable) are safe.
13142  * Any sleepable progs are also safe since bpf_check_attach_target() enforce
13143  * them can only be attached to some specific hook points.
13144  */
check_css_task_iter_allowlist(struct bpf_verifier_env * env)13145 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env)
13146 {
13147 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
13148 
13149 	switch (prog_type) {
13150 	case BPF_PROG_TYPE_LSM:
13151 		return true;
13152 	case BPF_PROG_TYPE_TRACING:
13153 		if (env->prog->expected_attach_type == BPF_TRACE_ITER)
13154 			return true;
13155 		fallthrough;
13156 	default:
13157 		return in_sleepable(env);
13158 	}
13159 }
13160 
check_kfunc_args(struct bpf_verifier_env * env,struct bpf_kfunc_call_arg_meta * meta,int insn_idx)13161 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
13162 			    int insn_idx)
13163 {
13164 	const char *func_name = meta->func_name, *ref_tname;
13165 	const struct btf *btf = meta->btf;
13166 	const struct btf_param *args;
13167 	struct btf_record *rec;
13168 	u32 i, nargs;
13169 	int ret;
13170 
13171 	args = (const struct btf_param *)(meta->func_proto + 1);
13172 	nargs = btf_type_vlen(meta->func_proto);
13173 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
13174 		verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
13175 			MAX_BPF_FUNC_REG_ARGS);
13176 		return -EINVAL;
13177 	}
13178 
13179 	/* Check that BTF function arguments match actual types that the
13180 	 * verifier sees.
13181 	 */
13182 	for (i = 0; i < nargs; i++) {
13183 		struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
13184 		const struct btf_type *t, *ref_t, *resolve_ret;
13185 		enum bpf_arg_type arg_type = ARG_DONTCARE;
13186 		u32 regno = i + 1, ref_id, type_size;
13187 		bool is_ret_buf_sz = false;
13188 		int kf_arg_type;
13189 
13190 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
13191 
13192 		if (is_kfunc_arg_ignore(btf, &args[i]))
13193 			continue;
13194 
13195 		if (is_kfunc_arg_prog(btf, &args[i])) {
13196 			/* Used to reject repeated use of __prog. */
13197 			if (meta->arg_prog) {
13198 				verifier_bug(env, "Only 1 prog->aux argument supported per-kfunc");
13199 				return -EFAULT;
13200 			}
13201 			meta->arg_prog = true;
13202 			cur_aux(env)->arg_prog = regno;
13203 			continue;
13204 		}
13205 
13206 		if (btf_type_is_scalar(t)) {
13207 			if (reg->type != SCALAR_VALUE) {
13208 				verbose(env, "R%d is not a scalar\n", regno);
13209 				return -EINVAL;
13210 			}
13211 
13212 			if (is_kfunc_arg_constant(meta->btf, &args[i])) {
13213 				if (meta->arg_constant.found) {
13214 					verifier_bug(env, "only one constant argument permitted");
13215 					return -EFAULT;
13216 				}
13217 				if (!tnum_is_const(reg->var_off)) {
13218 					verbose(env, "R%d must be a known constant\n", regno);
13219 					return -EINVAL;
13220 				}
13221 				ret = mark_chain_precision(env, regno);
13222 				if (ret < 0)
13223 					return ret;
13224 				meta->arg_constant.found = true;
13225 				meta->arg_constant.value = reg->var_off.value;
13226 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
13227 				meta->r0_rdonly = true;
13228 				is_ret_buf_sz = true;
13229 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
13230 				is_ret_buf_sz = true;
13231 			}
13232 
13233 			if (is_ret_buf_sz) {
13234 				if (meta->r0_size) {
13235 					verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
13236 					return -EINVAL;
13237 				}
13238 
13239 				if (!tnum_is_const(reg->var_off)) {
13240 					verbose(env, "R%d is not a const\n", regno);
13241 					return -EINVAL;
13242 				}
13243 
13244 				meta->r0_size = reg->var_off.value;
13245 				ret = mark_chain_precision(env, regno);
13246 				if (ret)
13247 					return ret;
13248 			}
13249 			continue;
13250 		}
13251 
13252 		if (!btf_type_is_ptr(t)) {
13253 			verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
13254 			return -EINVAL;
13255 		}
13256 
13257 		if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
13258 		    (register_is_null(reg) || type_may_be_null(reg->type)) &&
13259 			!is_kfunc_arg_nullable(meta->btf, &args[i])) {
13260 			verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
13261 			return -EACCES;
13262 		}
13263 
13264 		if (reg->ref_obj_id) {
13265 			if (is_kfunc_release(meta) && meta->ref_obj_id) {
13266 				verifier_bug(env, "more than one arg with ref_obj_id R%d %u %u",
13267 					     regno, reg->ref_obj_id,
13268 					     meta->ref_obj_id);
13269 				return -EFAULT;
13270 			}
13271 			meta->ref_obj_id = reg->ref_obj_id;
13272 			if (is_kfunc_release(meta))
13273 				meta->release_regno = regno;
13274 		}
13275 
13276 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
13277 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
13278 
13279 		kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
13280 		if (kf_arg_type < 0)
13281 			return kf_arg_type;
13282 
13283 		switch (kf_arg_type) {
13284 		case KF_ARG_PTR_TO_NULL:
13285 			continue;
13286 		case KF_ARG_PTR_TO_MAP:
13287 			if (!reg->map_ptr) {
13288 				verbose(env, "pointer in R%d isn't map pointer\n", regno);
13289 				return -EINVAL;
13290 			}
13291 			if (meta->map.ptr && (reg->map_ptr->record->wq_off >= 0 ||
13292 					      reg->map_ptr->record->task_work_off >= 0)) {
13293 				/* Use map_uid (which is unique id of inner map) to reject:
13294 				 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
13295 				 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
13296 				 * if (inner_map1 && inner_map2) {
13297 				 *     wq = bpf_map_lookup_elem(inner_map1);
13298 				 *     if (wq)
13299 				 *         // mismatch would have been allowed
13300 				 *         bpf_wq_init(wq, inner_map2);
13301 				 * }
13302 				 *
13303 				 * Comparing map_ptr is enough to distinguish normal and outer maps.
13304 				 */
13305 				if (meta->map.ptr != reg->map_ptr ||
13306 				    meta->map.uid != reg->map_uid) {
13307 					if (reg->map_ptr->record->task_work_off >= 0) {
13308 						verbose(env,
13309 							"bpf_task_work pointer in R2 map_uid=%d doesn't match map pointer in R3 map_uid=%d\n",
13310 							meta->map.uid, reg->map_uid);
13311 						return -EINVAL;
13312 					}
13313 					verbose(env,
13314 						"workqueue pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
13315 						meta->map.uid, reg->map_uid);
13316 					return -EINVAL;
13317 				}
13318 			}
13319 			meta->map.ptr = reg->map_ptr;
13320 			meta->map.uid = reg->map_uid;
13321 			fallthrough;
13322 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
13323 		case KF_ARG_PTR_TO_BTF_ID:
13324 			if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
13325 				break;
13326 
13327 			if (!is_trusted_reg(reg)) {
13328 				if (!is_kfunc_rcu(meta)) {
13329 					verbose(env, "R%d must be referenced or trusted\n", regno);
13330 					return -EINVAL;
13331 				}
13332 				if (!is_rcu_reg(reg)) {
13333 					verbose(env, "R%d must be a rcu pointer\n", regno);
13334 					return -EINVAL;
13335 				}
13336 			}
13337 			fallthrough;
13338 		case KF_ARG_PTR_TO_CTX:
13339 		case KF_ARG_PTR_TO_DYNPTR:
13340 		case KF_ARG_PTR_TO_ITER:
13341 		case KF_ARG_PTR_TO_LIST_HEAD:
13342 		case KF_ARG_PTR_TO_LIST_NODE:
13343 		case KF_ARG_PTR_TO_RB_ROOT:
13344 		case KF_ARG_PTR_TO_RB_NODE:
13345 		case KF_ARG_PTR_TO_MEM:
13346 		case KF_ARG_PTR_TO_MEM_SIZE:
13347 		case KF_ARG_PTR_TO_CALLBACK:
13348 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
13349 		case KF_ARG_PTR_TO_CONST_STR:
13350 		case KF_ARG_PTR_TO_WORKQUEUE:
13351 		case KF_ARG_PTR_TO_TASK_WORK:
13352 		case KF_ARG_PTR_TO_IRQ_FLAG:
13353 		case KF_ARG_PTR_TO_RES_SPIN_LOCK:
13354 			break;
13355 		default:
13356 			verifier_bug(env, "unknown kfunc arg type %d", kf_arg_type);
13357 			return -EFAULT;
13358 		}
13359 
13360 		if (is_kfunc_release(meta) && reg->ref_obj_id)
13361 			arg_type |= OBJ_RELEASE;
13362 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
13363 		if (ret < 0)
13364 			return ret;
13365 
13366 		switch (kf_arg_type) {
13367 		case KF_ARG_PTR_TO_CTX:
13368 			if (reg->type != PTR_TO_CTX) {
13369 				verbose(env, "arg#%d expected pointer to ctx, but got %s\n",
13370 					i, reg_type_str(env, reg->type));
13371 				return -EINVAL;
13372 			}
13373 
13374 			if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
13375 				ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
13376 				if (ret < 0)
13377 					return -EINVAL;
13378 				meta->ret_btf_id  = ret;
13379 			}
13380 			break;
13381 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
13382 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) {
13383 				if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) {
13384 					verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i);
13385 					return -EINVAL;
13386 				}
13387 			} else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) {
13388 				if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
13389 					verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i);
13390 					return -EINVAL;
13391 				}
13392 			} else {
13393 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
13394 				return -EINVAL;
13395 			}
13396 			if (!reg->ref_obj_id) {
13397 				verbose(env, "allocated object must be referenced\n");
13398 				return -EINVAL;
13399 			}
13400 			if (meta->btf == btf_vmlinux) {
13401 				meta->arg_btf = reg->btf;
13402 				meta->arg_btf_id = reg->btf_id;
13403 			}
13404 			break;
13405 		case KF_ARG_PTR_TO_DYNPTR:
13406 		{
13407 			enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
13408 			int clone_ref_obj_id = 0;
13409 
13410 			if (reg->type == CONST_PTR_TO_DYNPTR)
13411 				dynptr_arg_type |= MEM_RDONLY;
13412 
13413 			if (is_kfunc_arg_uninit(btf, &args[i]))
13414 				dynptr_arg_type |= MEM_UNINIT;
13415 
13416 			if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
13417 				dynptr_arg_type |= DYNPTR_TYPE_SKB;
13418 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
13419 				dynptr_arg_type |= DYNPTR_TYPE_XDP;
13420 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb_meta]) {
13421 				dynptr_arg_type |= DYNPTR_TYPE_SKB_META;
13422 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_file]) {
13423 				dynptr_arg_type |= DYNPTR_TYPE_FILE;
13424 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_file_discard]) {
13425 				dynptr_arg_type |= DYNPTR_TYPE_FILE;
13426 				meta->release_regno = regno;
13427 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
13428 				   (dynptr_arg_type & MEM_UNINIT)) {
13429 				enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
13430 
13431 				if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
13432 					verifier_bug(env, "no dynptr type for parent of clone");
13433 					return -EFAULT;
13434 				}
13435 
13436 				dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
13437 				clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
13438 				if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
13439 					verifier_bug(env, "missing ref obj id for parent of clone");
13440 					return -EFAULT;
13441 				}
13442 			}
13443 
13444 			ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
13445 			if (ret < 0)
13446 				return ret;
13447 
13448 			if (!(dynptr_arg_type & MEM_UNINIT)) {
13449 				int id = dynptr_id(env, reg);
13450 
13451 				if (id < 0) {
13452 					verifier_bug(env, "failed to obtain dynptr id");
13453 					return id;
13454 				}
13455 				meta->initialized_dynptr.id = id;
13456 				meta->initialized_dynptr.type = dynptr_get_type(env, reg);
13457 				meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
13458 			}
13459 
13460 			break;
13461 		}
13462 		case KF_ARG_PTR_TO_ITER:
13463 			if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) {
13464 				if (!check_css_task_iter_allowlist(env)) {
13465 					verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n");
13466 					return -EINVAL;
13467 				}
13468 			}
13469 			ret = process_iter_arg(env, regno, insn_idx, meta);
13470 			if (ret < 0)
13471 				return ret;
13472 			break;
13473 		case KF_ARG_PTR_TO_LIST_HEAD:
13474 			if (reg->type != PTR_TO_MAP_VALUE &&
13475 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
13476 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
13477 				return -EINVAL;
13478 			}
13479 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
13480 				verbose(env, "allocated object must be referenced\n");
13481 				return -EINVAL;
13482 			}
13483 			ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
13484 			if (ret < 0)
13485 				return ret;
13486 			break;
13487 		case KF_ARG_PTR_TO_RB_ROOT:
13488 			if (reg->type != PTR_TO_MAP_VALUE &&
13489 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
13490 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
13491 				return -EINVAL;
13492 			}
13493 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
13494 				verbose(env, "allocated object must be referenced\n");
13495 				return -EINVAL;
13496 			}
13497 			ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
13498 			if (ret < 0)
13499 				return ret;
13500 			break;
13501 		case KF_ARG_PTR_TO_LIST_NODE:
13502 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
13503 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
13504 				return -EINVAL;
13505 			}
13506 			if (!reg->ref_obj_id) {
13507 				verbose(env, "allocated object must be referenced\n");
13508 				return -EINVAL;
13509 			}
13510 			ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
13511 			if (ret < 0)
13512 				return ret;
13513 			break;
13514 		case KF_ARG_PTR_TO_RB_NODE:
13515 			if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
13516 				if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
13517 					verbose(env, "arg#%d expected pointer to allocated object\n", i);
13518 					return -EINVAL;
13519 				}
13520 				if (!reg->ref_obj_id) {
13521 					verbose(env, "allocated object must be referenced\n");
13522 					return -EINVAL;
13523 				}
13524 			} else {
13525 				if (!type_is_non_owning_ref(reg->type) && !reg->ref_obj_id) {
13526 					verbose(env, "%s can only take non-owning or refcounted bpf_rb_node pointer\n", func_name);
13527 					return -EINVAL;
13528 				}
13529 				if (in_rbtree_lock_required_cb(env)) {
13530 					verbose(env, "%s not allowed in rbtree cb\n", func_name);
13531 					return -EINVAL;
13532 				}
13533 			}
13534 
13535 			ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
13536 			if (ret < 0)
13537 				return ret;
13538 			break;
13539 		case KF_ARG_PTR_TO_MAP:
13540 			/* If argument has '__map' suffix expect 'struct bpf_map *' */
13541 			ref_id = *reg2btf_ids[CONST_PTR_TO_MAP];
13542 			ref_t = btf_type_by_id(btf_vmlinux, ref_id);
13543 			ref_tname = btf_name_by_offset(btf, ref_t->name_off);
13544 			fallthrough;
13545 		case KF_ARG_PTR_TO_BTF_ID:
13546 			/* Only base_type is checked, further checks are done here */
13547 			if ((base_type(reg->type) != PTR_TO_BTF_ID ||
13548 			     (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
13549 			    !reg2btf_ids[base_type(reg->type)]) {
13550 				verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
13551 				verbose(env, "expected %s or socket\n",
13552 					reg_type_str(env, base_type(reg->type) |
13553 							  (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
13554 				return -EINVAL;
13555 			}
13556 			ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
13557 			if (ret < 0)
13558 				return ret;
13559 			break;
13560 		case KF_ARG_PTR_TO_MEM:
13561 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
13562 			if (IS_ERR(resolve_ret)) {
13563 				verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
13564 					i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
13565 				return -EINVAL;
13566 			}
13567 			ret = check_mem_reg(env, reg, regno, type_size);
13568 			if (ret < 0)
13569 				return ret;
13570 			break;
13571 		case KF_ARG_PTR_TO_MEM_SIZE:
13572 		{
13573 			struct bpf_reg_state *buff_reg = &regs[regno];
13574 			const struct btf_param *buff_arg = &args[i];
13575 			struct bpf_reg_state *size_reg = &regs[regno + 1];
13576 			const struct btf_param *size_arg = &args[i + 1];
13577 
13578 			if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) {
13579 				ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
13580 				if (ret < 0) {
13581 					verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
13582 					return ret;
13583 				}
13584 			}
13585 
13586 			if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
13587 				if (meta->arg_constant.found) {
13588 					verifier_bug(env, "only one constant argument permitted");
13589 					return -EFAULT;
13590 				}
13591 				if (!tnum_is_const(size_reg->var_off)) {
13592 					verbose(env, "R%d must be a known constant\n", regno + 1);
13593 					return -EINVAL;
13594 				}
13595 				meta->arg_constant.found = true;
13596 				meta->arg_constant.value = size_reg->var_off.value;
13597 			}
13598 
13599 			/* Skip next '__sz' or '__szk' argument */
13600 			i++;
13601 			break;
13602 		}
13603 		case KF_ARG_PTR_TO_CALLBACK:
13604 			if (reg->type != PTR_TO_FUNC) {
13605 				verbose(env, "arg%d expected pointer to func\n", i);
13606 				return -EINVAL;
13607 			}
13608 			meta->subprogno = reg->subprogno;
13609 			break;
13610 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
13611 			if (!type_is_ptr_alloc_obj(reg->type)) {
13612 				verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
13613 				return -EINVAL;
13614 			}
13615 			if (!type_is_non_owning_ref(reg->type))
13616 				meta->arg_owning_ref = true;
13617 
13618 			rec = reg_btf_record(reg);
13619 			if (!rec) {
13620 				verifier_bug(env, "Couldn't find btf_record");
13621 				return -EFAULT;
13622 			}
13623 
13624 			if (rec->refcount_off < 0) {
13625 				verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
13626 				return -EINVAL;
13627 			}
13628 
13629 			meta->arg_btf = reg->btf;
13630 			meta->arg_btf_id = reg->btf_id;
13631 			break;
13632 		case KF_ARG_PTR_TO_CONST_STR:
13633 			if (reg->type != PTR_TO_MAP_VALUE) {
13634 				verbose(env, "arg#%d doesn't point to a const string\n", i);
13635 				return -EINVAL;
13636 			}
13637 			ret = check_reg_const_str(env, reg, regno);
13638 			if (ret)
13639 				return ret;
13640 			break;
13641 		case KF_ARG_PTR_TO_WORKQUEUE:
13642 			if (reg->type != PTR_TO_MAP_VALUE) {
13643 				verbose(env, "arg#%d doesn't point to a map value\n", i);
13644 				return -EINVAL;
13645 			}
13646 			ret = process_wq_func(env, regno, meta);
13647 			if (ret < 0)
13648 				return ret;
13649 			break;
13650 		case KF_ARG_PTR_TO_TASK_WORK:
13651 			if (reg->type != PTR_TO_MAP_VALUE) {
13652 				verbose(env, "arg#%d doesn't point to a map value\n", i);
13653 				return -EINVAL;
13654 			}
13655 			ret = process_task_work_func(env, regno, meta);
13656 			if (ret < 0)
13657 				return ret;
13658 			break;
13659 		case KF_ARG_PTR_TO_IRQ_FLAG:
13660 			if (reg->type != PTR_TO_STACK) {
13661 				verbose(env, "arg#%d doesn't point to an irq flag on stack\n", i);
13662 				return -EINVAL;
13663 			}
13664 			ret = process_irq_flag(env, regno, meta);
13665 			if (ret < 0)
13666 				return ret;
13667 			break;
13668 		case KF_ARG_PTR_TO_RES_SPIN_LOCK:
13669 		{
13670 			int flags = PROCESS_RES_LOCK;
13671 
13672 			if (reg->type != PTR_TO_MAP_VALUE && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
13673 				verbose(env, "arg#%d doesn't point to map value or allocated object\n", i);
13674 				return -EINVAL;
13675 			}
13676 
13677 			if (!is_bpf_res_spin_lock_kfunc(meta->func_id))
13678 				return -EFAULT;
13679 			if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock] ||
13680 			    meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave])
13681 				flags |= PROCESS_SPIN_LOCK;
13682 			if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave] ||
13683 			    meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore])
13684 				flags |= PROCESS_LOCK_IRQ;
13685 			ret = process_spin_lock(env, regno, flags);
13686 			if (ret < 0)
13687 				return ret;
13688 			break;
13689 		}
13690 		}
13691 	}
13692 
13693 	if (is_kfunc_release(meta) && !meta->release_regno) {
13694 		verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
13695 			func_name);
13696 		return -EINVAL;
13697 	}
13698 
13699 	return 0;
13700 }
13701 
fetch_kfunc_meta(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_kfunc_call_arg_meta * meta,const char ** kfunc_name)13702 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
13703 			    struct bpf_insn *insn,
13704 			    struct bpf_kfunc_call_arg_meta *meta,
13705 			    const char **kfunc_name)
13706 {
13707 	const struct btf_type *func, *func_proto;
13708 	u32 func_id, *kfunc_flags;
13709 	const char *func_name;
13710 	struct btf *desc_btf;
13711 
13712 	if (kfunc_name)
13713 		*kfunc_name = NULL;
13714 
13715 	if (!insn->imm)
13716 		return -EINVAL;
13717 
13718 	desc_btf = find_kfunc_desc_btf(env, insn->off);
13719 	if (IS_ERR(desc_btf))
13720 		return PTR_ERR(desc_btf);
13721 
13722 	func_id = insn->imm;
13723 	func = btf_type_by_id(desc_btf, func_id);
13724 	func_name = btf_name_by_offset(desc_btf, func->name_off);
13725 	if (kfunc_name)
13726 		*kfunc_name = func_name;
13727 	func_proto = btf_type_by_id(desc_btf, func->type);
13728 
13729 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog);
13730 	if (!kfunc_flags) {
13731 		return -EACCES;
13732 	}
13733 
13734 	memset(meta, 0, sizeof(*meta));
13735 	meta->btf = desc_btf;
13736 	meta->func_id = func_id;
13737 	meta->kfunc_flags = *kfunc_flags;
13738 	meta->func_proto = func_proto;
13739 	meta->func_name = func_name;
13740 
13741 	return 0;
13742 }
13743 
13744 /* check special kfuncs and return:
13745  *  1  - not fall-through to 'else' branch, continue verification
13746  *  0  - fall-through to 'else' branch
13747  * < 0 - not fall-through to 'else' branch, return error
13748  */
check_special_kfunc(struct bpf_verifier_env * env,struct bpf_kfunc_call_arg_meta * meta,struct bpf_reg_state * regs,struct bpf_insn_aux_data * insn_aux,const struct btf_type * ptr_type,struct btf * desc_btf)13749 static int check_special_kfunc(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
13750 			       struct bpf_reg_state *regs, struct bpf_insn_aux_data *insn_aux,
13751 			       const struct btf_type *ptr_type, struct btf *desc_btf)
13752 {
13753 	const struct btf_type *ret_t;
13754 	int err = 0;
13755 
13756 	if (meta->btf != btf_vmlinux)
13757 		return 0;
13758 
13759 	if (meta->func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
13760 	    meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
13761 		struct btf_struct_meta *struct_meta;
13762 		struct btf *ret_btf;
13763 		u32 ret_btf_id;
13764 
13765 		if (meta->func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set)
13766 			return -ENOMEM;
13767 
13768 		if (((u64)(u32)meta->arg_constant.value) != meta->arg_constant.value) {
13769 			verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
13770 			return -EINVAL;
13771 		}
13772 
13773 		ret_btf = env->prog->aux->btf;
13774 		ret_btf_id = meta->arg_constant.value;
13775 
13776 		/* This may be NULL due to user not supplying a BTF */
13777 		if (!ret_btf) {
13778 			verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n");
13779 			return -EINVAL;
13780 		}
13781 
13782 		ret_t = btf_type_by_id(ret_btf, ret_btf_id);
13783 		if (!ret_t || !__btf_type_is_struct(ret_t)) {
13784 			verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n");
13785 			return -EINVAL;
13786 		}
13787 
13788 		if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
13789 			if (ret_t->size > BPF_GLOBAL_PERCPU_MA_MAX_SIZE) {
13790 				verbose(env, "bpf_percpu_obj_new type size (%d) is greater than %d\n",
13791 					ret_t->size, BPF_GLOBAL_PERCPU_MA_MAX_SIZE);
13792 				return -EINVAL;
13793 			}
13794 
13795 			if (!bpf_global_percpu_ma_set) {
13796 				mutex_lock(&bpf_percpu_ma_lock);
13797 				if (!bpf_global_percpu_ma_set) {
13798 					/* Charge memory allocated with bpf_global_percpu_ma to
13799 					 * root memcg. The obj_cgroup for root memcg is NULL.
13800 					 */
13801 					err = bpf_mem_alloc_percpu_init(&bpf_global_percpu_ma, NULL);
13802 					if (!err)
13803 						bpf_global_percpu_ma_set = true;
13804 				}
13805 				mutex_unlock(&bpf_percpu_ma_lock);
13806 				if (err)
13807 					return err;
13808 			}
13809 
13810 			mutex_lock(&bpf_percpu_ma_lock);
13811 			err = bpf_mem_alloc_percpu_unit_init(&bpf_global_percpu_ma, ret_t->size);
13812 			mutex_unlock(&bpf_percpu_ma_lock);
13813 			if (err)
13814 				return err;
13815 		}
13816 
13817 		struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id);
13818 		if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
13819 			if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) {
13820 				verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n");
13821 				return -EINVAL;
13822 			}
13823 
13824 			if (struct_meta) {
13825 				verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n");
13826 				return -EINVAL;
13827 			}
13828 		}
13829 
13830 		mark_reg_known_zero(env, regs, BPF_REG_0);
13831 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
13832 		regs[BPF_REG_0].btf = ret_btf;
13833 		regs[BPF_REG_0].btf_id = ret_btf_id;
13834 		if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl])
13835 			regs[BPF_REG_0].type |= MEM_PERCPU;
13836 
13837 		insn_aux->obj_new_size = ret_t->size;
13838 		insn_aux->kptr_struct_meta = struct_meta;
13839 	} else if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
13840 		mark_reg_known_zero(env, regs, BPF_REG_0);
13841 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
13842 		regs[BPF_REG_0].btf = meta->arg_btf;
13843 		regs[BPF_REG_0].btf_id = meta->arg_btf_id;
13844 
13845 		insn_aux->kptr_struct_meta =
13846 			btf_find_struct_meta(meta->arg_btf,
13847 					     meta->arg_btf_id);
13848 	} else if (is_list_node_type(ptr_type)) {
13849 		struct btf_field *field = meta->arg_list_head.field;
13850 
13851 		mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
13852 	} else if (is_rbtree_node_type(ptr_type)) {
13853 		struct btf_field *field = meta->arg_rbtree_root.field;
13854 
13855 		mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
13856 	} else if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
13857 		mark_reg_known_zero(env, regs, BPF_REG_0);
13858 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
13859 		regs[BPF_REG_0].btf = desc_btf;
13860 		regs[BPF_REG_0].btf_id = meta->ret_btf_id;
13861 	} else if (meta->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
13862 		ret_t = btf_type_by_id(desc_btf, meta->arg_constant.value);
13863 		if (!ret_t) {
13864 			verbose(env, "Unknown type ID %lld passed to kfunc bpf_rdonly_cast\n",
13865 				meta->arg_constant.value);
13866 			return -EINVAL;
13867 		} else if (btf_type_is_struct(ret_t)) {
13868 			mark_reg_known_zero(env, regs, BPF_REG_0);
13869 			regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
13870 			regs[BPF_REG_0].btf = desc_btf;
13871 			regs[BPF_REG_0].btf_id = meta->arg_constant.value;
13872 		} else if (btf_type_is_void(ret_t)) {
13873 			mark_reg_known_zero(env, regs, BPF_REG_0);
13874 			regs[BPF_REG_0].type = PTR_TO_MEM | MEM_RDONLY | PTR_UNTRUSTED;
13875 			regs[BPF_REG_0].mem_size = 0;
13876 		} else {
13877 			verbose(env,
13878 				"kfunc bpf_rdonly_cast type ID argument must be of a struct or void\n");
13879 			return -EINVAL;
13880 		}
13881 	} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
13882 		   meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
13883 		enum bpf_type_flag type_flag = get_dynptr_type_flag(meta->initialized_dynptr.type);
13884 
13885 		mark_reg_known_zero(env, regs, BPF_REG_0);
13886 
13887 		if (!meta->arg_constant.found) {
13888 			verifier_bug(env, "bpf_dynptr_slice(_rdwr) no constant size");
13889 			return -EFAULT;
13890 		}
13891 
13892 		regs[BPF_REG_0].mem_size = meta->arg_constant.value;
13893 
13894 		/* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
13895 		regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
13896 
13897 		if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
13898 			regs[BPF_REG_0].type |= MEM_RDONLY;
13899 		} else {
13900 			/* this will set env->seen_direct_write to true */
13901 			if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
13902 				verbose(env, "the prog does not allow writes to packet data\n");
13903 				return -EINVAL;
13904 			}
13905 		}
13906 
13907 		if (!meta->initialized_dynptr.id) {
13908 			verifier_bug(env, "no dynptr id");
13909 			return -EFAULT;
13910 		}
13911 		regs[BPF_REG_0].dynptr_id = meta->initialized_dynptr.id;
13912 
13913 		/* we don't need to set BPF_REG_0's ref obj id
13914 		 * because packet slices are not refcounted (see
13915 		 * dynptr_type_refcounted)
13916 		 */
13917 	} else {
13918 		return 0;
13919 	}
13920 
13921 	return 1;
13922 }
13923 
13924 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name);
13925 
check_kfunc_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx_p)13926 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
13927 			    int *insn_idx_p)
13928 {
13929 	bool sleepable, rcu_lock, rcu_unlock, preempt_disable, preempt_enable;
13930 	u32 i, nargs, ptr_type_id, release_ref_obj_id;
13931 	struct bpf_reg_state *regs = cur_regs(env);
13932 	const char *func_name, *ptr_type_name;
13933 	const struct btf_type *t, *ptr_type;
13934 	struct bpf_kfunc_call_arg_meta meta;
13935 	struct bpf_insn_aux_data *insn_aux;
13936 	int err, insn_idx = *insn_idx_p;
13937 	const struct btf_param *args;
13938 	struct btf *desc_btf;
13939 
13940 	/* skip for now, but return error when we find this in fixup_kfunc_call */
13941 	if (!insn->imm)
13942 		return 0;
13943 
13944 	err = fetch_kfunc_meta(env, insn, &meta, &func_name);
13945 	if (err == -EACCES && func_name)
13946 		verbose(env, "calling kernel function %s is not allowed\n", func_name);
13947 	if (err)
13948 		return err;
13949 	desc_btf = meta.btf;
13950 	insn_aux = &env->insn_aux_data[insn_idx];
13951 
13952 	insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
13953 
13954 	if (!insn->off &&
13955 	    (insn->imm == special_kfunc_list[KF_bpf_res_spin_lock] ||
13956 	     insn->imm == special_kfunc_list[KF_bpf_res_spin_lock_irqsave])) {
13957 		struct bpf_verifier_state *branch;
13958 		struct bpf_reg_state *regs;
13959 
13960 		branch = push_stack(env, env->insn_idx + 1, env->insn_idx, false);
13961 		if (IS_ERR(branch)) {
13962 			verbose(env, "failed to push state for failed lock acquisition\n");
13963 			return PTR_ERR(branch);
13964 		}
13965 
13966 		regs = branch->frame[branch->curframe]->regs;
13967 
13968 		/* Clear r0-r5 registers in forked state */
13969 		for (i = 0; i < CALLER_SAVED_REGS; i++)
13970 			mark_reg_not_init(env, regs, caller_saved[i]);
13971 
13972 		mark_reg_unknown(env, regs, BPF_REG_0);
13973 		err = __mark_reg_s32_range(env, regs, BPF_REG_0, -MAX_ERRNO, -1);
13974 		if (err) {
13975 			verbose(env, "failed to mark s32 range for retval in forked state for lock\n");
13976 			return err;
13977 		}
13978 		__mark_btf_func_reg_size(env, regs, BPF_REG_0, sizeof(u32));
13979 	} else if (!insn->off && insn->imm == special_kfunc_list[KF___bpf_trap]) {
13980 		verbose(env, "unexpected __bpf_trap() due to uninitialized variable?\n");
13981 		return -EFAULT;
13982 	}
13983 
13984 	if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
13985 		verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
13986 		return -EACCES;
13987 	}
13988 
13989 	sleepable = is_kfunc_sleepable(&meta);
13990 	if (sleepable && !in_sleepable(env)) {
13991 		verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
13992 		return -EACCES;
13993 	}
13994 
13995 	/* Track non-sleepable context for kfuncs, same as for helpers. */
13996 	if (!in_sleepable_context(env))
13997 		insn_aux->non_sleepable = true;
13998 
13999 	/* Check the arguments */
14000 	err = check_kfunc_args(env, &meta, insn_idx);
14001 	if (err < 0)
14002 		return err;
14003 
14004 	if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
14005 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
14006 					 set_rbtree_add_callback_state);
14007 		if (err) {
14008 			verbose(env, "kfunc %s#%d failed callback verification\n",
14009 				func_name, meta.func_id);
14010 			return err;
14011 		}
14012 	}
14013 
14014 	if (meta.func_id == special_kfunc_list[KF_bpf_session_cookie]) {
14015 		meta.r0_size = sizeof(u64);
14016 		meta.r0_rdonly = false;
14017 	}
14018 
14019 	if (is_bpf_wq_set_callback_impl_kfunc(meta.func_id)) {
14020 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
14021 					 set_timer_callback_state);
14022 		if (err) {
14023 			verbose(env, "kfunc %s#%d failed callback verification\n",
14024 				func_name, meta.func_id);
14025 			return err;
14026 		}
14027 	}
14028 
14029 	if (is_task_work_add_kfunc(meta.func_id)) {
14030 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
14031 					 set_task_work_schedule_callback_state);
14032 		if (err) {
14033 			verbose(env, "kfunc %s#%d failed callback verification\n",
14034 				func_name, meta.func_id);
14035 			return err;
14036 		}
14037 	}
14038 
14039 	rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
14040 	rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
14041 
14042 	preempt_disable = is_kfunc_bpf_preempt_disable(&meta);
14043 	preempt_enable = is_kfunc_bpf_preempt_enable(&meta);
14044 
14045 	if (rcu_lock) {
14046 		env->cur_state->active_rcu_locks++;
14047 	} else if (rcu_unlock) {
14048 		struct bpf_func_state *state;
14049 		struct bpf_reg_state *reg;
14050 		u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER);
14051 
14052 		if (env->cur_state->active_rcu_locks == 0) {
14053 			verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
14054 			return -EINVAL;
14055 		}
14056 		if (--env->cur_state->active_rcu_locks == 0) {
14057 			bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({
14058 				if (reg->type & MEM_RCU) {
14059 					reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
14060 					reg->type |= PTR_UNTRUSTED;
14061 				}
14062 			}));
14063 		}
14064 	} else if (sleepable && env->cur_state->active_rcu_locks) {
14065 		verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
14066 		return -EACCES;
14067 	}
14068 
14069 	if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
14070 		verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
14071 		return -EACCES;
14072 	}
14073 
14074 	if (env->cur_state->active_preempt_locks) {
14075 		if (preempt_disable) {
14076 			env->cur_state->active_preempt_locks++;
14077 		} else if (preempt_enable) {
14078 			env->cur_state->active_preempt_locks--;
14079 		} else if (sleepable) {
14080 			verbose(env, "kernel func %s is sleepable within non-preemptible region\n", func_name);
14081 			return -EACCES;
14082 		}
14083 	} else if (preempt_disable) {
14084 		env->cur_state->active_preempt_locks++;
14085 	} else if (preempt_enable) {
14086 		verbose(env, "unmatched attempt to enable preemption (kernel function %s)\n", func_name);
14087 		return -EINVAL;
14088 	}
14089 
14090 	if (env->cur_state->active_irq_id && sleepable) {
14091 		verbose(env, "kernel func %s is sleepable within IRQ-disabled region\n", func_name);
14092 		return -EACCES;
14093 	}
14094 
14095 	if (is_kfunc_rcu_protected(&meta) && !in_rcu_cs(env)) {
14096 		verbose(env, "kernel func %s requires RCU critical section protection\n", func_name);
14097 		return -EACCES;
14098 	}
14099 
14100 	/* In case of release function, we get register number of refcounted
14101 	 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
14102 	 */
14103 	if (meta.release_regno) {
14104 		struct bpf_reg_state *reg = &regs[meta.release_regno];
14105 
14106 		if (meta.initialized_dynptr.ref_obj_id) {
14107 			err = unmark_stack_slots_dynptr(env, reg);
14108 		} else {
14109 			err = release_reference(env, reg->ref_obj_id);
14110 			if (err)
14111 				verbose(env, "kfunc %s#%d reference has not been acquired before\n",
14112 					func_name, meta.func_id);
14113 		}
14114 		if (err)
14115 			return err;
14116 	}
14117 
14118 	if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
14119 	    meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
14120 	    meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
14121 		release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
14122 		insn_aux->insert_off = regs[BPF_REG_2].off;
14123 		insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
14124 		err = ref_convert_owning_non_owning(env, release_ref_obj_id);
14125 		if (err) {
14126 			verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
14127 				func_name, meta.func_id);
14128 			return err;
14129 		}
14130 
14131 		err = release_reference(env, release_ref_obj_id);
14132 		if (err) {
14133 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
14134 				func_name, meta.func_id);
14135 			return err;
14136 		}
14137 	}
14138 
14139 	if (meta.func_id == special_kfunc_list[KF_bpf_throw]) {
14140 		if (!bpf_jit_supports_exceptions()) {
14141 			verbose(env, "JIT does not support calling kfunc %s#%d\n",
14142 				func_name, meta.func_id);
14143 			return -ENOTSUPP;
14144 		}
14145 		env->seen_exception = true;
14146 
14147 		/* In the case of the default callback, the cookie value passed
14148 		 * to bpf_throw becomes the return value of the program.
14149 		 */
14150 		if (!env->exception_callback_subprog) {
14151 			err = check_return_code(env, BPF_REG_1, "R1");
14152 			if (err < 0)
14153 				return err;
14154 		}
14155 	}
14156 
14157 	for (i = 0; i < CALLER_SAVED_REGS; i++)
14158 		mark_reg_not_init(env, regs, caller_saved[i]);
14159 
14160 	/* Check return type */
14161 	t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
14162 
14163 	if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
14164 		/* Only exception is bpf_obj_new_impl */
14165 		if (meta.btf != btf_vmlinux ||
14166 		    (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
14167 		     meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] &&
14168 		     meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
14169 			verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
14170 			return -EINVAL;
14171 		}
14172 	}
14173 
14174 	if (btf_type_is_scalar(t)) {
14175 		mark_reg_unknown(env, regs, BPF_REG_0);
14176 		if (meta.btf == btf_vmlinux && (meta.func_id == special_kfunc_list[KF_bpf_res_spin_lock] ||
14177 		    meta.func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave]))
14178 			__mark_reg_const_zero(env, &regs[BPF_REG_0]);
14179 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
14180 	} else if (btf_type_is_ptr(t)) {
14181 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
14182 		err = check_special_kfunc(env, &meta, regs, insn_aux, ptr_type, desc_btf);
14183 		if (err) {
14184 			if (err < 0)
14185 				return err;
14186 		} else if (btf_type_is_void(ptr_type)) {
14187 			/* kfunc returning 'void *' is equivalent to returning scalar */
14188 			mark_reg_unknown(env, regs, BPF_REG_0);
14189 		} else if (!__btf_type_is_struct(ptr_type)) {
14190 			if (!meta.r0_size) {
14191 				__u32 sz;
14192 
14193 				if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
14194 					meta.r0_size = sz;
14195 					meta.r0_rdonly = true;
14196 				}
14197 			}
14198 			if (!meta.r0_size) {
14199 				ptr_type_name = btf_name_by_offset(desc_btf,
14200 								   ptr_type->name_off);
14201 				verbose(env,
14202 					"kernel function %s returns pointer type %s %s is not supported\n",
14203 					func_name,
14204 					btf_type_str(ptr_type),
14205 					ptr_type_name);
14206 				return -EINVAL;
14207 			}
14208 
14209 			mark_reg_known_zero(env, regs, BPF_REG_0);
14210 			regs[BPF_REG_0].type = PTR_TO_MEM;
14211 			regs[BPF_REG_0].mem_size = meta.r0_size;
14212 
14213 			if (meta.r0_rdonly)
14214 				regs[BPF_REG_0].type |= MEM_RDONLY;
14215 
14216 			/* Ensures we don't access the memory after a release_reference() */
14217 			if (meta.ref_obj_id)
14218 				regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
14219 
14220 			if (is_kfunc_rcu_protected(&meta))
14221 				regs[BPF_REG_0].type |= MEM_RCU;
14222 		} else {
14223 			mark_reg_known_zero(env, regs, BPF_REG_0);
14224 			regs[BPF_REG_0].btf = desc_btf;
14225 			regs[BPF_REG_0].type = PTR_TO_BTF_ID;
14226 			regs[BPF_REG_0].btf_id = ptr_type_id;
14227 
14228 			if (meta.func_id == special_kfunc_list[KF_bpf_get_kmem_cache])
14229 				regs[BPF_REG_0].type |= PTR_UNTRUSTED;
14230 			else if (is_kfunc_rcu_protected(&meta))
14231 				regs[BPF_REG_0].type |= MEM_RCU;
14232 
14233 			if (is_iter_next_kfunc(&meta)) {
14234 				struct bpf_reg_state *cur_iter;
14235 
14236 				cur_iter = get_iter_from_state(env->cur_state, &meta);
14237 
14238 				if (cur_iter->type & MEM_RCU) /* KF_RCU_PROTECTED */
14239 					regs[BPF_REG_0].type |= MEM_RCU;
14240 				else
14241 					regs[BPF_REG_0].type |= PTR_TRUSTED;
14242 			}
14243 		}
14244 
14245 		if (is_kfunc_ret_null(&meta)) {
14246 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
14247 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
14248 			regs[BPF_REG_0].id = ++env->id_gen;
14249 		}
14250 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
14251 		if (is_kfunc_acquire(&meta)) {
14252 			int id = acquire_reference(env, insn_idx);
14253 
14254 			if (id < 0)
14255 				return id;
14256 			if (is_kfunc_ret_null(&meta))
14257 				regs[BPF_REG_0].id = id;
14258 			regs[BPF_REG_0].ref_obj_id = id;
14259 		} else if (is_rbtree_node_type(ptr_type) || is_list_node_type(ptr_type)) {
14260 			ref_set_non_owning(env, &regs[BPF_REG_0]);
14261 		}
14262 
14263 		if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
14264 			regs[BPF_REG_0].id = ++env->id_gen;
14265 	} else if (btf_type_is_void(t)) {
14266 		if (meta.btf == btf_vmlinux) {
14267 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
14268 			    meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
14269 				insn_aux->kptr_struct_meta =
14270 					btf_find_struct_meta(meta.arg_btf,
14271 							     meta.arg_btf_id);
14272 			}
14273 		}
14274 	}
14275 
14276 	if (is_kfunc_pkt_changing(&meta))
14277 		clear_all_pkt_pointers(env);
14278 
14279 	nargs = btf_type_vlen(meta.func_proto);
14280 	args = (const struct btf_param *)(meta.func_proto + 1);
14281 	for (i = 0; i < nargs; i++) {
14282 		u32 regno = i + 1;
14283 
14284 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
14285 		if (btf_type_is_ptr(t))
14286 			mark_btf_func_reg_size(env, regno, sizeof(void *));
14287 		else
14288 			/* scalar. ensured by btf_check_kfunc_arg_match() */
14289 			mark_btf_func_reg_size(env, regno, t->size);
14290 	}
14291 
14292 	if (is_iter_next_kfunc(&meta)) {
14293 		err = process_iter_next_call(env, insn_idx, &meta);
14294 		if (err)
14295 			return err;
14296 	}
14297 
14298 	return 0;
14299 }
14300 
check_reg_sane_offset(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,enum bpf_reg_type type)14301 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
14302 				  const struct bpf_reg_state *reg,
14303 				  enum bpf_reg_type type)
14304 {
14305 	bool known = tnum_is_const(reg->var_off);
14306 	s64 val = reg->var_off.value;
14307 	s64 smin = reg->smin_value;
14308 
14309 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
14310 		verbose(env, "math between %s pointer and %lld is not allowed\n",
14311 			reg_type_str(env, type), val);
14312 		return false;
14313 	}
14314 
14315 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
14316 		verbose(env, "%s pointer offset %d is not allowed\n",
14317 			reg_type_str(env, type), reg->off);
14318 		return false;
14319 	}
14320 
14321 	if (smin == S64_MIN) {
14322 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
14323 			reg_type_str(env, type));
14324 		return false;
14325 	}
14326 
14327 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
14328 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
14329 			smin, reg_type_str(env, type));
14330 		return false;
14331 	}
14332 
14333 	return true;
14334 }
14335 
14336 enum {
14337 	REASON_BOUNDS	= -1,
14338 	REASON_TYPE	= -2,
14339 	REASON_PATHS	= -3,
14340 	REASON_LIMIT	= -4,
14341 	REASON_STACK	= -5,
14342 };
14343 
retrieve_ptr_limit(const struct bpf_reg_state * ptr_reg,u32 * alu_limit,bool mask_to_left)14344 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
14345 			      u32 *alu_limit, bool mask_to_left)
14346 {
14347 	u32 max = 0, ptr_limit = 0;
14348 
14349 	switch (ptr_reg->type) {
14350 	case PTR_TO_STACK:
14351 		/* Offset 0 is out-of-bounds, but acceptable start for the
14352 		 * left direction, see BPF_REG_FP. Also, unknown scalar
14353 		 * offset where we would need to deal with min/max bounds is
14354 		 * currently prohibited for unprivileged.
14355 		 */
14356 		max = MAX_BPF_STACK + mask_to_left;
14357 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
14358 		break;
14359 	case PTR_TO_MAP_VALUE:
14360 		max = ptr_reg->map_ptr->value_size;
14361 		ptr_limit = (mask_to_left ?
14362 			     ptr_reg->smin_value :
14363 			     ptr_reg->umax_value) + ptr_reg->off;
14364 		break;
14365 	default:
14366 		return REASON_TYPE;
14367 	}
14368 
14369 	if (ptr_limit >= max)
14370 		return REASON_LIMIT;
14371 	*alu_limit = ptr_limit;
14372 	return 0;
14373 }
14374 
can_skip_alu_sanitation(const struct bpf_verifier_env * env,const struct bpf_insn * insn)14375 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
14376 				    const struct bpf_insn *insn)
14377 {
14378 	return env->bypass_spec_v1 ||
14379 		BPF_SRC(insn->code) == BPF_K ||
14380 		cur_aux(env)->nospec;
14381 }
14382 
update_alu_sanitation_state(struct bpf_insn_aux_data * aux,u32 alu_state,u32 alu_limit)14383 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
14384 				       u32 alu_state, u32 alu_limit)
14385 {
14386 	/* If we arrived here from different branches with different
14387 	 * state or limits to sanitize, then this won't work.
14388 	 */
14389 	if (aux->alu_state &&
14390 	    (aux->alu_state != alu_state ||
14391 	     aux->alu_limit != alu_limit))
14392 		return REASON_PATHS;
14393 
14394 	/* Corresponding fixup done in do_misc_fixups(). */
14395 	aux->alu_state = alu_state;
14396 	aux->alu_limit = alu_limit;
14397 	return 0;
14398 }
14399 
sanitize_val_alu(struct bpf_verifier_env * env,struct bpf_insn * insn)14400 static int sanitize_val_alu(struct bpf_verifier_env *env,
14401 			    struct bpf_insn *insn)
14402 {
14403 	struct bpf_insn_aux_data *aux = cur_aux(env);
14404 
14405 	if (can_skip_alu_sanitation(env, insn))
14406 		return 0;
14407 
14408 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
14409 }
14410 
sanitize_needed(u8 opcode)14411 static bool sanitize_needed(u8 opcode)
14412 {
14413 	return opcode == BPF_ADD || opcode == BPF_SUB;
14414 }
14415 
14416 struct bpf_sanitize_info {
14417 	struct bpf_insn_aux_data aux;
14418 	bool mask_to_left;
14419 };
14420 
sanitize_speculative_path(struct bpf_verifier_env * env,const struct bpf_insn * insn,u32 next_idx,u32 curr_idx)14421 static int sanitize_speculative_path(struct bpf_verifier_env *env,
14422 				     const struct bpf_insn *insn,
14423 				     u32 next_idx, u32 curr_idx)
14424 {
14425 	struct bpf_verifier_state *branch;
14426 	struct bpf_reg_state *regs;
14427 
14428 	branch = push_stack(env, next_idx, curr_idx, true);
14429 	if (!IS_ERR(branch) && insn) {
14430 		regs = branch->frame[branch->curframe]->regs;
14431 		if (BPF_SRC(insn->code) == BPF_K) {
14432 			mark_reg_unknown(env, regs, insn->dst_reg);
14433 		} else if (BPF_SRC(insn->code) == BPF_X) {
14434 			mark_reg_unknown(env, regs, insn->dst_reg);
14435 			mark_reg_unknown(env, regs, insn->src_reg);
14436 		}
14437 	}
14438 	return PTR_ERR_OR_ZERO(branch);
14439 }
14440 
sanitize_ptr_alu(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg,struct bpf_reg_state * dst_reg,struct bpf_sanitize_info * info,const bool commit_window)14441 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
14442 			    struct bpf_insn *insn,
14443 			    const struct bpf_reg_state *ptr_reg,
14444 			    const struct bpf_reg_state *off_reg,
14445 			    struct bpf_reg_state *dst_reg,
14446 			    struct bpf_sanitize_info *info,
14447 			    const bool commit_window)
14448 {
14449 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
14450 	struct bpf_verifier_state *vstate = env->cur_state;
14451 	bool off_is_imm = tnum_is_const(off_reg->var_off);
14452 	bool off_is_neg = off_reg->smin_value < 0;
14453 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
14454 	u8 opcode = BPF_OP(insn->code);
14455 	u32 alu_state, alu_limit;
14456 	struct bpf_reg_state tmp;
14457 	int err;
14458 
14459 	if (can_skip_alu_sanitation(env, insn))
14460 		return 0;
14461 
14462 	/* We already marked aux for masking from non-speculative
14463 	 * paths, thus we got here in the first place. We only care
14464 	 * to explore bad access from here.
14465 	 */
14466 	if (vstate->speculative)
14467 		goto do_sim;
14468 
14469 	if (!commit_window) {
14470 		if (!tnum_is_const(off_reg->var_off) &&
14471 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
14472 			return REASON_BOUNDS;
14473 
14474 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
14475 				     (opcode == BPF_SUB && !off_is_neg);
14476 	}
14477 
14478 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
14479 	if (err < 0)
14480 		return err;
14481 
14482 	if (commit_window) {
14483 		/* In commit phase we narrow the masking window based on
14484 		 * the observed pointer move after the simulated operation.
14485 		 */
14486 		alu_state = info->aux.alu_state;
14487 		alu_limit = abs(info->aux.alu_limit - alu_limit);
14488 	} else {
14489 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
14490 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
14491 		alu_state |= ptr_is_dst_reg ?
14492 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
14493 
14494 		/* Limit pruning on unknown scalars to enable deep search for
14495 		 * potential masking differences from other program paths.
14496 		 */
14497 		if (!off_is_imm)
14498 			env->explore_alu_limits = true;
14499 	}
14500 
14501 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
14502 	if (err < 0)
14503 		return err;
14504 do_sim:
14505 	/* If we're in commit phase, we're done here given we already
14506 	 * pushed the truncated dst_reg into the speculative verification
14507 	 * stack.
14508 	 *
14509 	 * Also, when register is a known constant, we rewrite register-based
14510 	 * operation to immediate-based, and thus do not need masking (and as
14511 	 * a consequence, do not need to simulate the zero-truncation either).
14512 	 */
14513 	if (commit_window || off_is_imm)
14514 		return 0;
14515 
14516 	/* Simulate and find potential out-of-bounds access under
14517 	 * speculative execution from truncation as a result of
14518 	 * masking when off was not within expected range. If off
14519 	 * sits in dst, then we temporarily need to move ptr there
14520 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
14521 	 * for cases where we use K-based arithmetic in one direction
14522 	 * and truncated reg-based in the other in order to explore
14523 	 * bad access.
14524 	 */
14525 	if (!ptr_is_dst_reg) {
14526 		tmp = *dst_reg;
14527 		copy_register_state(dst_reg, ptr_reg);
14528 	}
14529 	err = sanitize_speculative_path(env, NULL, env->insn_idx + 1, env->insn_idx);
14530 	if (err < 0)
14531 		return REASON_STACK;
14532 	if (!ptr_is_dst_reg)
14533 		*dst_reg = tmp;
14534 	return 0;
14535 }
14536 
sanitize_mark_insn_seen(struct bpf_verifier_env * env)14537 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
14538 {
14539 	struct bpf_verifier_state *vstate = env->cur_state;
14540 
14541 	/* If we simulate paths under speculation, we don't update the
14542 	 * insn as 'seen' such that when we verify unreachable paths in
14543 	 * the non-speculative domain, sanitize_dead_code() can still
14544 	 * rewrite/sanitize them.
14545 	 */
14546 	if (!vstate->speculative)
14547 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
14548 }
14549 
sanitize_err(struct bpf_verifier_env * env,const struct bpf_insn * insn,int reason,const struct bpf_reg_state * off_reg,const struct bpf_reg_state * dst_reg)14550 static int sanitize_err(struct bpf_verifier_env *env,
14551 			const struct bpf_insn *insn, int reason,
14552 			const struct bpf_reg_state *off_reg,
14553 			const struct bpf_reg_state *dst_reg)
14554 {
14555 	static const char *err = "pointer arithmetic with it prohibited for !root";
14556 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
14557 	u32 dst = insn->dst_reg, src = insn->src_reg;
14558 
14559 	switch (reason) {
14560 	case REASON_BOUNDS:
14561 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
14562 			off_reg == dst_reg ? dst : src, err);
14563 		break;
14564 	case REASON_TYPE:
14565 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
14566 			off_reg == dst_reg ? src : dst, err);
14567 		break;
14568 	case REASON_PATHS:
14569 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
14570 			dst, op, err);
14571 		break;
14572 	case REASON_LIMIT:
14573 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
14574 			dst, op, err);
14575 		break;
14576 	case REASON_STACK:
14577 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
14578 			dst, err);
14579 		return -ENOMEM;
14580 	default:
14581 		verifier_bug(env, "unknown reason (%d)", reason);
14582 		break;
14583 	}
14584 
14585 	return -EACCES;
14586 }
14587 
14588 /* check that stack access falls within stack limits and that 'reg' doesn't
14589  * have a variable offset.
14590  *
14591  * Variable offset is prohibited for unprivileged mode for simplicity since it
14592  * requires corresponding support in Spectre masking for stack ALU.  See also
14593  * retrieve_ptr_limit().
14594  *
14595  *
14596  * 'off' includes 'reg->off'.
14597  */
check_stack_access_for_ptr_arithmetic(struct bpf_verifier_env * env,int regno,const struct bpf_reg_state * reg,int off)14598 static int check_stack_access_for_ptr_arithmetic(
14599 				struct bpf_verifier_env *env,
14600 				int regno,
14601 				const struct bpf_reg_state *reg,
14602 				int off)
14603 {
14604 	if (!tnum_is_const(reg->var_off)) {
14605 		char tn_buf[48];
14606 
14607 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
14608 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
14609 			regno, tn_buf, off);
14610 		return -EACCES;
14611 	}
14612 
14613 	if (off >= 0 || off < -MAX_BPF_STACK) {
14614 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
14615 			"prohibited for !root; off=%d\n", regno, off);
14616 		return -EACCES;
14617 	}
14618 
14619 	return 0;
14620 }
14621 
sanitize_check_bounds(struct bpf_verifier_env * env,const struct bpf_insn * insn,const struct bpf_reg_state * dst_reg)14622 static int sanitize_check_bounds(struct bpf_verifier_env *env,
14623 				 const struct bpf_insn *insn,
14624 				 const struct bpf_reg_state *dst_reg)
14625 {
14626 	u32 dst = insn->dst_reg;
14627 
14628 	/* For unprivileged we require that resulting offset must be in bounds
14629 	 * in order to be able to sanitize access later on.
14630 	 */
14631 	if (env->bypass_spec_v1)
14632 		return 0;
14633 
14634 	switch (dst_reg->type) {
14635 	case PTR_TO_STACK:
14636 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
14637 					dst_reg->off + dst_reg->var_off.value))
14638 			return -EACCES;
14639 		break;
14640 	case PTR_TO_MAP_VALUE:
14641 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
14642 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
14643 				"prohibited for !root\n", dst);
14644 			return -EACCES;
14645 		}
14646 		break;
14647 	default:
14648 		return -EOPNOTSUPP;
14649 	}
14650 
14651 	return 0;
14652 }
14653 
14654 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
14655  * Caller should also handle BPF_MOV case separately.
14656  * If we return -EACCES, caller may want to try again treating pointer as a
14657  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
14658  */
adjust_ptr_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg)14659 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
14660 				   struct bpf_insn *insn,
14661 				   const struct bpf_reg_state *ptr_reg,
14662 				   const struct bpf_reg_state *off_reg)
14663 {
14664 	struct bpf_verifier_state *vstate = env->cur_state;
14665 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
14666 	struct bpf_reg_state *regs = state->regs, *dst_reg;
14667 	bool known = tnum_is_const(off_reg->var_off);
14668 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
14669 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
14670 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
14671 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
14672 	struct bpf_sanitize_info info = {};
14673 	u8 opcode = BPF_OP(insn->code);
14674 	u32 dst = insn->dst_reg;
14675 	int ret, bounds_ret;
14676 
14677 	dst_reg = &regs[dst];
14678 
14679 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
14680 	    smin_val > smax_val || umin_val > umax_val) {
14681 		/* Taint dst register if offset had invalid bounds derived from
14682 		 * e.g. dead branches.
14683 		 */
14684 		__mark_reg_unknown(env, dst_reg);
14685 		return 0;
14686 	}
14687 
14688 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
14689 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
14690 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
14691 			__mark_reg_unknown(env, dst_reg);
14692 			return 0;
14693 		}
14694 
14695 		verbose(env,
14696 			"R%d 32-bit pointer arithmetic prohibited\n",
14697 			dst);
14698 		return -EACCES;
14699 	}
14700 
14701 	if (ptr_reg->type & PTR_MAYBE_NULL) {
14702 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
14703 			dst, reg_type_str(env, ptr_reg->type));
14704 		return -EACCES;
14705 	}
14706 
14707 	/*
14708 	 * Accesses to untrusted PTR_TO_MEM are done through probe
14709 	 * instructions, hence no need to track offsets.
14710 	 */
14711 	if (base_type(ptr_reg->type) == PTR_TO_MEM && (ptr_reg->type & PTR_UNTRUSTED))
14712 		return 0;
14713 
14714 	switch (base_type(ptr_reg->type)) {
14715 	case PTR_TO_CTX:
14716 	case PTR_TO_MAP_VALUE:
14717 	case PTR_TO_MAP_KEY:
14718 	case PTR_TO_STACK:
14719 	case PTR_TO_PACKET_META:
14720 	case PTR_TO_PACKET:
14721 	case PTR_TO_TP_BUFFER:
14722 	case PTR_TO_BTF_ID:
14723 	case PTR_TO_MEM:
14724 	case PTR_TO_BUF:
14725 	case PTR_TO_FUNC:
14726 	case CONST_PTR_TO_DYNPTR:
14727 		break;
14728 	case PTR_TO_FLOW_KEYS:
14729 		if (known)
14730 			break;
14731 		fallthrough;
14732 	case CONST_PTR_TO_MAP:
14733 		/* smin_val represents the known value */
14734 		if (known && smin_val == 0 && opcode == BPF_ADD)
14735 			break;
14736 		fallthrough;
14737 	default:
14738 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
14739 			dst, reg_type_str(env, ptr_reg->type));
14740 		return -EACCES;
14741 	}
14742 
14743 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
14744 	 * The id may be overwritten later if we create a new variable offset.
14745 	 */
14746 	dst_reg->type = ptr_reg->type;
14747 	dst_reg->id = ptr_reg->id;
14748 
14749 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
14750 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
14751 		return -EINVAL;
14752 
14753 	/* pointer types do not carry 32-bit bounds at the moment. */
14754 	__mark_reg32_unbounded(dst_reg);
14755 
14756 	if (sanitize_needed(opcode)) {
14757 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
14758 				       &info, false);
14759 		if (ret < 0)
14760 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
14761 	}
14762 
14763 	switch (opcode) {
14764 	case BPF_ADD:
14765 		/* We can take a fixed offset as long as it doesn't overflow
14766 		 * the s32 'off' field
14767 		 */
14768 		if (known && (ptr_reg->off + smin_val ==
14769 			      (s64)(s32)(ptr_reg->off + smin_val))) {
14770 			/* pointer += K.  Accumulate it into fixed offset */
14771 			dst_reg->smin_value = smin_ptr;
14772 			dst_reg->smax_value = smax_ptr;
14773 			dst_reg->umin_value = umin_ptr;
14774 			dst_reg->umax_value = umax_ptr;
14775 			dst_reg->var_off = ptr_reg->var_off;
14776 			dst_reg->off = ptr_reg->off + smin_val;
14777 			dst_reg->raw = ptr_reg->raw;
14778 			break;
14779 		}
14780 		/* A new variable offset is created.  Note that off_reg->off
14781 		 * == 0, since it's a scalar.
14782 		 * dst_reg gets the pointer type and since some positive
14783 		 * integer value was added to the pointer, give it a new 'id'
14784 		 * if it's a PTR_TO_PACKET.
14785 		 * this creates a new 'base' pointer, off_reg (variable) gets
14786 		 * added into the variable offset, and we copy the fixed offset
14787 		 * from ptr_reg.
14788 		 */
14789 		if (check_add_overflow(smin_ptr, smin_val, &dst_reg->smin_value) ||
14790 		    check_add_overflow(smax_ptr, smax_val, &dst_reg->smax_value)) {
14791 			dst_reg->smin_value = S64_MIN;
14792 			dst_reg->smax_value = S64_MAX;
14793 		}
14794 		if (check_add_overflow(umin_ptr, umin_val, &dst_reg->umin_value) ||
14795 		    check_add_overflow(umax_ptr, umax_val, &dst_reg->umax_value)) {
14796 			dst_reg->umin_value = 0;
14797 			dst_reg->umax_value = U64_MAX;
14798 		}
14799 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
14800 		dst_reg->off = ptr_reg->off;
14801 		dst_reg->raw = ptr_reg->raw;
14802 		if (reg_is_pkt_pointer(ptr_reg)) {
14803 			dst_reg->id = ++env->id_gen;
14804 			/* something was added to pkt_ptr, set range to zero */
14805 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
14806 		}
14807 		break;
14808 	case BPF_SUB:
14809 		if (dst_reg == off_reg) {
14810 			/* scalar -= pointer.  Creates an unknown scalar */
14811 			verbose(env, "R%d tried to subtract pointer from scalar\n",
14812 				dst);
14813 			return -EACCES;
14814 		}
14815 		/* We don't allow subtraction from FP, because (according to
14816 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
14817 		 * be able to deal with it.
14818 		 */
14819 		if (ptr_reg->type == PTR_TO_STACK) {
14820 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
14821 				dst);
14822 			return -EACCES;
14823 		}
14824 		if (known && (ptr_reg->off - smin_val ==
14825 			      (s64)(s32)(ptr_reg->off - smin_val))) {
14826 			/* pointer -= K.  Subtract it from fixed offset */
14827 			dst_reg->smin_value = smin_ptr;
14828 			dst_reg->smax_value = smax_ptr;
14829 			dst_reg->umin_value = umin_ptr;
14830 			dst_reg->umax_value = umax_ptr;
14831 			dst_reg->var_off = ptr_reg->var_off;
14832 			dst_reg->id = ptr_reg->id;
14833 			dst_reg->off = ptr_reg->off - smin_val;
14834 			dst_reg->raw = ptr_reg->raw;
14835 			break;
14836 		}
14837 		/* A new variable offset is created.  If the subtrahend is known
14838 		 * nonnegative, then any reg->range we had before is still good.
14839 		 */
14840 		if (check_sub_overflow(smin_ptr, smax_val, &dst_reg->smin_value) ||
14841 		    check_sub_overflow(smax_ptr, smin_val, &dst_reg->smax_value)) {
14842 			/* Overflow possible, we know nothing */
14843 			dst_reg->smin_value = S64_MIN;
14844 			dst_reg->smax_value = S64_MAX;
14845 		}
14846 		if (umin_ptr < umax_val) {
14847 			/* Overflow possible, we know nothing */
14848 			dst_reg->umin_value = 0;
14849 			dst_reg->umax_value = U64_MAX;
14850 		} else {
14851 			/* Cannot overflow (as long as bounds are consistent) */
14852 			dst_reg->umin_value = umin_ptr - umax_val;
14853 			dst_reg->umax_value = umax_ptr - umin_val;
14854 		}
14855 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
14856 		dst_reg->off = ptr_reg->off;
14857 		dst_reg->raw = ptr_reg->raw;
14858 		if (reg_is_pkt_pointer(ptr_reg)) {
14859 			dst_reg->id = ++env->id_gen;
14860 			/* something was added to pkt_ptr, set range to zero */
14861 			if (smin_val < 0)
14862 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
14863 		}
14864 		break;
14865 	case BPF_AND:
14866 	case BPF_OR:
14867 	case BPF_XOR:
14868 		/* bitwise ops on pointers are troublesome, prohibit. */
14869 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
14870 			dst, bpf_alu_string[opcode >> 4]);
14871 		return -EACCES;
14872 	default:
14873 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
14874 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
14875 			dst, bpf_alu_string[opcode >> 4]);
14876 		return -EACCES;
14877 	}
14878 
14879 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
14880 		return -EINVAL;
14881 	reg_bounds_sync(dst_reg);
14882 	bounds_ret = sanitize_check_bounds(env, insn, dst_reg);
14883 	if (bounds_ret == -EACCES)
14884 		return bounds_ret;
14885 	if (sanitize_needed(opcode)) {
14886 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
14887 				       &info, true);
14888 		if (verifier_bug_if(!can_skip_alu_sanitation(env, insn)
14889 				    && !env->cur_state->speculative
14890 				    && bounds_ret
14891 				    && !ret,
14892 				    env, "Pointer type unsupported by sanitize_check_bounds() not rejected by retrieve_ptr_limit() as required")) {
14893 			return -EFAULT;
14894 		}
14895 		if (ret < 0)
14896 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
14897 	}
14898 
14899 	return 0;
14900 }
14901 
scalar32_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)14902 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
14903 				 struct bpf_reg_state *src_reg)
14904 {
14905 	s32 *dst_smin = &dst_reg->s32_min_value;
14906 	s32 *dst_smax = &dst_reg->s32_max_value;
14907 	u32 *dst_umin = &dst_reg->u32_min_value;
14908 	u32 *dst_umax = &dst_reg->u32_max_value;
14909 	u32 umin_val = src_reg->u32_min_value;
14910 	u32 umax_val = src_reg->u32_max_value;
14911 	bool min_overflow, max_overflow;
14912 
14913 	if (check_add_overflow(*dst_smin, src_reg->s32_min_value, dst_smin) ||
14914 	    check_add_overflow(*dst_smax, src_reg->s32_max_value, dst_smax)) {
14915 		*dst_smin = S32_MIN;
14916 		*dst_smax = S32_MAX;
14917 	}
14918 
14919 	/* If either all additions overflow or no additions overflow, then
14920 	 * it is okay to set: dst_umin = dst_umin + src_umin, dst_umax =
14921 	 * dst_umax + src_umax. Otherwise (some additions overflow), set
14922 	 * the output bounds to unbounded.
14923 	 */
14924 	min_overflow = check_add_overflow(*dst_umin, umin_val, dst_umin);
14925 	max_overflow = check_add_overflow(*dst_umax, umax_val, dst_umax);
14926 
14927 	if (!min_overflow && max_overflow) {
14928 		*dst_umin = 0;
14929 		*dst_umax = U32_MAX;
14930 	}
14931 }
14932 
scalar_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)14933 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
14934 			       struct bpf_reg_state *src_reg)
14935 {
14936 	s64 *dst_smin = &dst_reg->smin_value;
14937 	s64 *dst_smax = &dst_reg->smax_value;
14938 	u64 *dst_umin = &dst_reg->umin_value;
14939 	u64 *dst_umax = &dst_reg->umax_value;
14940 	u64 umin_val = src_reg->umin_value;
14941 	u64 umax_val = src_reg->umax_value;
14942 	bool min_overflow, max_overflow;
14943 
14944 	if (check_add_overflow(*dst_smin, src_reg->smin_value, dst_smin) ||
14945 	    check_add_overflow(*dst_smax, src_reg->smax_value, dst_smax)) {
14946 		*dst_smin = S64_MIN;
14947 		*dst_smax = S64_MAX;
14948 	}
14949 
14950 	/* If either all additions overflow or no additions overflow, then
14951 	 * it is okay to set: dst_umin = dst_umin + src_umin, dst_umax =
14952 	 * dst_umax + src_umax. Otherwise (some additions overflow), set
14953 	 * the output bounds to unbounded.
14954 	 */
14955 	min_overflow = check_add_overflow(*dst_umin, umin_val, dst_umin);
14956 	max_overflow = check_add_overflow(*dst_umax, umax_val, dst_umax);
14957 
14958 	if (!min_overflow && max_overflow) {
14959 		*dst_umin = 0;
14960 		*dst_umax = U64_MAX;
14961 	}
14962 }
14963 
scalar32_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)14964 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
14965 				 struct bpf_reg_state *src_reg)
14966 {
14967 	s32 *dst_smin = &dst_reg->s32_min_value;
14968 	s32 *dst_smax = &dst_reg->s32_max_value;
14969 	u32 *dst_umin = &dst_reg->u32_min_value;
14970 	u32 *dst_umax = &dst_reg->u32_max_value;
14971 	u32 umin_val = src_reg->u32_min_value;
14972 	u32 umax_val = src_reg->u32_max_value;
14973 	bool min_underflow, max_underflow;
14974 
14975 	if (check_sub_overflow(*dst_smin, src_reg->s32_max_value, dst_smin) ||
14976 	    check_sub_overflow(*dst_smax, src_reg->s32_min_value, dst_smax)) {
14977 		/* Overflow possible, we know nothing */
14978 		*dst_smin = S32_MIN;
14979 		*dst_smax = S32_MAX;
14980 	}
14981 
14982 	/* If either all subtractions underflow or no subtractions
14983 	 * underflow, it is okay to set: dst_umin = dst_umin - src_umax,
14984 	 * dst_umax = dst_umax - src_umin. Otherwise (some subtractions
14985 	 * underflow), set the output bounds to unbounded.
14986 	 */
14987 	min_underflow = check_sub_overflow(*dst_umin, umax_val, dst_umin);
14988 	max_underflow = check_sub_overflow(*dst_umax, umin_val, dst_umax);
14989 
14990 	if (min_underflow && !max_underflow) {
14991 		*dst_umin = 0;
14992 		*dst_umax = U32_MAX;
14993 	}
14994 }
14995 
scalar_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)14996 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
14997 			       struct bpf_reg_state *src_reg)
14998 {
14999 	s64 *dst_smin = &dst_reg->smin_value;
15000 	s64 *dst_smax = &dst_reg->smax_value;
15001 	u64 *dst_umin = &dst_reg->umin_value;
15002 	u64 *dst_umax = &dst_reg->umax_value;
15003 	u64 umin_val = src_reg->umin_value;
15004 	u64 umax_val = src_reg->umax_value;
15005 	bool min_underflow, max_underflow;
15006 
15007 	if (check_sub_overflow(*dst_smin, src_reg->smax_value, dst_smin) ||
15008 	    check_sub_overflow(*dst_smax, src_reg->smin_value, dst_smax)) {
15009 		/* Overflow possible, we know nothing */
15010 		*dst_smin = S64_MIN;
15011 		*dst_smax = S64_MAX;
15012 	}
15013 
15014 	/* If either all subtractions underflow or no subtractions
15015 	 * underflow, it is okay to set: dst_umin = dst_umin - src_umax,
15016 	 * dst_umax = dst_umax - src_umin. Otherwise (some subtractions
15017 	 * underflow), set the output bounds to unbounded.
15018 	 */
15019 	min_underflow = check_sub_overflow(*dst_umin, umax_val, dst_umin);
15020 	max_underflow = check_sub_overflow(*dst_umax, umin_val, dst_umax);
15021 
15022 	if (min_underflow && !max_underflow) {
15023 		*dst_umin = 0;
15024 		*dst_umax = U64_MAX;
15025 	}
15026 }
15027 
scalar32_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15028 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
15029 				 struct bpf_reg_state *src_reg)
15030 {
15031 	s32 *dst_smin = &dst_reg->s32_min_value;
15032 	s32 *dst_smax = &dst_reg->s32_max_value;
15033 	u32 *dst_umin = &dst_reg->u32_min_value;
15034 	u32 *dst_umax = &dst_reg->u32_max_value;
15035 	s32 tmp_prod[4];
15036 
15037 	if (check_mul_overflow(*dst_umax, src_reg->u32_max_value, dst_umax) ||
15038 	    check_mul_overflow(*dst_umin, src_reg->u32_min_value, dst_umin)) {
15039 		/* Overflow possible, we know nothing */
15040 		*dst_umin = 0;
15041 		*dst_umax = U32_MAX;
15042 	}
15043 	if (check_mul_overflow(*dst_smin, src_reg->s32_min_value, &tmp_prod[0]) ||
15044 	    check_mul_overflow(*dst_smin, src_reg->s32_max_value, &tmp_prod[1]) ||
15045 	    check_mul_overflow(*dst_smax, src_reg->s32_min_value, &tmp_prod[2]) ||
15046 	    check_mul_overflow(*dst_smax, src_reg->s32_max_value, &tmp_prod[3])) {
15047 		/* Overflow possible, we know nothing */
15048 		*dst_smin = S32_MIN;
15049 		*dst_smax = S32_MAX;
15050 	} else {
15051 		*dst_smin = min_array(tmp_prod, 4);
15052 		*dst_smax = max_array(tmp_prod, 4);
15053 	}
15054 }
15055 
scalar_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15056 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
15057 			       struct bpf_reg_state *src_reg)
15058 {
15059 	s64 *dst_smin = &dst_reg->smin_value;
15060 	s64 *dst_smax = &dst_reg->smax_value;
15061 	u64 *dst_umin = &dst_reg->umin_value;
15062 	u64 *dst_umax = &dst_reg->umax_value;
15063 	s64 tmp_prod[4];
15064 
15065 	if (check_mul_overflow(*dst_umax, src_reg->umax_value, dst_umax) ||
15066 	    check_mul_overflow(*dst_umin, src_reg->umin_value, dst_umin)) {
15067 		/* Overflow possible, we know nothing */
15068 		*dst_umin = 0;
15069 		*dst_umax = U64_MAX;
15070 	}
15071 	if (check_mul_overflow(*dst_smin, src_reg->smin_value, &tmp_prod[0]) ||
15072 	    check_mul_overflow(*dst_smin, src_reg->smax_value, &tmp_prod[1]) ||
15073 	    check_mul_overflow(*dst_smax, src_reg->smin_value, &tmp_prod[2]) ||
15074 	    check_mul_overflow(*dst_smax, src_reg->smax_value, &tmp_prod[3])) {
15075 		/* Overflow possible, we know nothing */
15076 		*dst_smin = S64_MIN;
15077 		*dst_smax = S64_MAX;
15078 	} else {
15079 		*dst_smin = min_array(tmp_prod, 4);
15080 		*dst_smax = max_array(tmp_prod, 4);
15081 	}
15082 }
15083 
scalar32_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15084 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
15085 				 struct bpf_reg_state *src_reg)
15086 {
15087 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
15088 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
15089 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
15090 	u32 umax_val = src_reg->u32_max_value;
15091 
15092 	if (src_known && dst_known) {
15093 		__mark_reg32_known(dst_reg, var32_off.value);
15094 		return;
15095 	}
15096 
15097 	/* We get our minimum from the var_off, since that's inherently
15098 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
15099 	 */
15100 	dst_reg->u32_min_value = var32_off.value;
15101 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
15102 
15103 	/* Safe to set s32 bounds by casting u32 result into s32 when u32
15104 	 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
15105 	 */
15106 	if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
15107 		dst_reg->s32_min_value = dst_reg->u32_min_value;
15108 		dst_reg->s32_max_value = dst_reg->u32_max_value;
15109 	} else {
15110 		dst_reg->s32_min_value = S32_MIN;
15111 		dst_reg->s32_max_value = S32_MAX;
15112 	}
15113 }
15114 
scalar_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15115 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
15116 			       struct bpf_reg_state *src_reg)
15117 {
15118 	bool src_known = tnum_is_const(src_reg->var_off);
15119 	bool dst_known = tnum_is_const(dst_reg->var_off);
15120 	u64 umax_val = src_reg->umax_value;
15121 
15122 	if (src_known && dst_known) {
15123 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
15124 		return;
15125 	}
15126 
15127 	/* We get our minimum from the var_off, since that's inherently
15128 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
15129 	 */
15130 	dst_reg->umin_value = dst_reg->var_off.value;
15131 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
15132 
15133 	/* Safe to set s64 bounds by casting u64 result into s64 when u64
15134 	 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
15135 	 */
15136 	if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
15137 		dst_reg->smin_value = dst_reg->umin_value;
15138 		dst_reg->smax_value = dst_reg->umax_value;
15139 	} else {
15140 		dst_reg->smin_value = S64_MIN;
15141 		dst_reg->smax_value = S64_MAX;
15142 	}
15143 	/* We may learn something more from the var_off */
15144 	__update_reg_bounds(dst_reg);
15145 }
15146 
scalar32_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15147 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
15148 				struct bpf_reg_state *src_reg)
15149 {
15150 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
15151 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
15152 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
15153 	u32 umin_val = src_reg->u32_min_value;
15154 
15155 	if (src_known && dst_known) {
15156 		__mark_reg32_known(dst_reg, var32_off.value);
15157 		return;
15158 	}
15159 
15160 	/* We get our maximum from the var_off, and our minimum is the
15161 	 * maximum of the operands' minima
15162 	 */
15163 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
15164 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
15165 
15166 	/* Safe to set s32 bounds by casting u32 result into s32 when u32
15167 	 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
15168 	 */
15169 	if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
15170 		dst_reg->s32_min_value = dst_reg->u32_min_value;
15171 		dst_reg->s32_max_value = dst_reg->u32_max_value;
15172 	} else {
15173 		dst_reg->s32_min_value = S32_MIN;
15174 		dst_reg->s32_max_value = S32_MAX;
15175 	}
15176 }
15177 
scalar_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15178 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
15179 			      struct bpf_reg_state *src_reg)
15180 {
15181 	bool src_known = tnum_is_const(src_reg->var_off);
15182 	bool dst_known = tnum_is_const(dst_reg->var_off);
15183 	u64 umin_val = src_reg->umin_value;
15184 
15185 	if (src_known && dst_known) {
15186 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
15187 		return;
15188 	}
15189 
15190 	/* We get our maximum from the var_off, and our minimum is the
15191 	 * maximum of the operands' minima
15192 	 */
15193 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
15194 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
15195 
15196 	/* Safe to set s64 bounds by casting u64 result into s64 when u64
15197 	 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
15198 	 */
15199 	if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
15200 		dst_reg->smin_value = dst_reg->umin_value;
15201 		dst_reg->smax_value = dst_reg->umax_value;
15202 	} else {
15203 		dst_reg->smin_value = S64_MIN;
15204 		dst_reg->smax_value = S64_MAX;
15205 	}
15206 	/* We may learn something more from the var_off */
15207 	__update_reg_bounds(dst_reg);
15208 }
15209 
scalar32_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15210 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
15211 				 struct bpf_reg_state *src_reg)
15212 {
15213 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
15214 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
15215 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
15216 
15217 	if (src_known && dst_known) {
15218 		__mark_reg32_known(dst_reg, var32_off.value);
15219 		return;
15220 	}
15221 
15222 	/* We get both minimum and maximum from the var32_off. */
15223 	dst_reg->u32_min_value = var32_off.value;
15224 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
15225 
15226 	/* Safe to set s32 bounds by casting u32 result into s32 when u32
15227 	 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
15228 	 */
15229 	if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
15230 		dst_reg->s32_min_value = dst_reg->u32_min_value;
15231 		dst_reg->s32_max_value = dst_reg->u32_max_value;
15232 	} else {
15233 		dst_reg->s32_min_value = S32_MIN;
15234 		dst_reg->s32_max_value = S32_MAX;
15235 	}
15236 }
15237 
scalar_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15238 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
15239 			       struct bpf_reg_state *src_reg)
15240 {
15241 	bool src_known = tnum_is_const(src_reg->var_off);
15242 	bool dst_known = tnum_is_const(dst_reg->var_off);
15243 
15244 	if (src_known && dst_known) {
15245 		/* dst_reg->var_off.value has been updated earlier */
15246 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
15247 		return;
15248 	}
15249 
15250 	/* We get both minimum and maximum from the var_off. */
15251 	dst_reg->umin_value = dst_reg->var_off.value;
15252 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
15253 
15254 	/* Safe to set s64 bounds by casting u64 result into s64 when u64
15255 	 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
15256 	 */
15257 	if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
15258 		dst_reg->smin_value = dst_reg->umin_value;
15259 		dst_reg->smax_value = dst_reg->umax_value;
15260 	} else {
15261 		dst_reg->smin_value = S64_MIN;
15262 		dst_reg->smax_value = S64_MAX;
15263 	}
15264 
15265 	__update_reg_bounds(dst_reg);
15266 }
15267 
__scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)15268 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
15269 				   u64 umin_val, u64 umax_val)
15270 {
15271 	/* We lose all sign bit information (except what we can pick
15272 	 * up from var_off)
15273 	 */
15274 	dst_reg->s32_min_value = S32_MIN;
15275 	dst_reg->s32_max_value = S32_MAX;
15276 	/* If we might shift our top bit out, then we know nothing */
15277 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
15278 		dst_reg->u32_min_value = 0;
15279 		dst_reg->u32_max_value = U32_MAX;
15280 	} else {
15281 		dst_reg->u32_min_value <<= umin_val;
15282 		dst_reg->u32_max_value <<= umax_val;
15283 	}
15284 }
15285 
scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15286 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
15287 				 struct bpf_reg_state *src_reg)
15288 {
15289 	u32 umax_val = src_reg->u32_max_value;
15290 	u32 umin_val = src_reg->u32_min_value;
15291 	/* u32 alu operation will zext upper bits */
15292 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
15293 
15294 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
15295 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
15296 	/* Not required but being careful mark reg64 bounds as unknown so
15297 	 * that we are forced to pick them up from tnum and zext later and
15298 	 * if some path skips this step we are still safe.
15299 	 */
15300 	__mark_reg64_unbounded(dst_reg);
15301 	__update_reg32_bounds(dst_reg);
15302 }
15303 
__scalar64_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)15304 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
15305 				   u64 umin_val, u64 umax_val)
15306 {
15307 	/* Special case <<32 because it is a common compiler pattern to sign
15308 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
15309 	 * positive we know this shift will also be positive so we can track
15310 	 * bounds correctly. Otherwise we lose all sign bit information except
15311 	 * what we can pick up from var_off. Perhaps we can generalize this
15312 	 * later to shifts of any length.
15313 	 */
15314 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
15315 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
15316 	else
15317 		dst_reg->smax_value = S64_MAX;
15318 
15319 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
15320 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
15321 	else
15322 		dst_reg->smin_value = S64_MIN;
15323 
15324 	/* If we might shift our top bit out, then we know nothing */
15325 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
15326 		dst_reg->umin_value = 0;
15327 		dst_reg->umax_value = U64_MAX;
15328 	} else {
15329 		dst_reg->umin_value <<= umin_val;
15330 		dst_reg->umax_value <<= umax_val;
15331 	}
15332 }
15333 
scalar_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15334 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
15335 			       struct bpf_reg_state *src_reg)
15336 {
15337 	u64 umax_val = src_reg->umax_value;
15338 	u64 umin_val = src_reg->umin_value;
15339 
15340 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
15341 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
15342 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
15343 
15344 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
15345 	/* We may learn something more from the var_off */
15346 	__update_reg_bounds(dst_reg);
15347 }
15348 
scalar32_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15349 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
15350 				 struct bpf_reg_state *src_reg)
15351 {
15352 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
15353 	u32 umax_val = src_reg->u32_max_value;
15354 	u32 umin_val = src_reg->u32_min_value;
15355 
15356 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
15357 	 * be negative, then either:
15358 	 * 1) src_reg might be zero, so the sign bit of the result is
15359 	 *    unknown, so we lose our signed bounds
15360 	 * 2) it's known negative, thus the unsigned bounds capture the
15361 	 *    signed bounds
15362 	 * 3) the signed bounds cross zero, so they tell us nothing
15363 	 *    about the result
15364 	 * If the value in dst_reg is known nonnegative, then again the
15365 	 * unsigned bounds capture the signed bounds.
15366 	 * Thus, in all cases it suffices to blow away our signed bounds
15367 	 * and rely on inferring new ones from the unsigned bounds and
15368 	 * var_off of the result.
15369 	 */
15370 	dst_reg->s32_min_value = S32_MIN;
15371 	dst_reg->s32_max_value = S32_MAX;
15372 
15373 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
15374 	dst_reg->u32_min_value >>= umax_val;
15375 	dst_reg->u32_max_value >>= umin_val;
15376 
15377 	__mark_reg64_unbounded(dst_reg);
15378 	__update_reg32_bounds(dst_reg);
15379 }
15380 
scalar_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15381 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
15382 			       struct bpf_reg_state *src_reg)
15383 {
15384 	u64 umax_val = src_reg->umax_value;
15385 	u64 umin_val = src_reg->umin_value;
15386 
15387 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
15388 	 * be negative, then either:
15389 	 * 1) src_reg might be zero, so the sign bit of the result is
15390 	 *    unknown, so we lose our signed bounds
15391 	 * 2) it's known negative, thus the unsigned bounds capture the
15392 	 *    signed bounds
15393 	 * 3) the signed bounds cross zero, so they tell us nothing
15394 	 *    about the result
15395 	 * If the value in dst_reg is known nonnegative, then again the
15396 	 * unsigned bounds capture the signed bounds.
15397 	 * Thus, in all cases it suffices to blow away our signed bounds
15398 	 * and rely on inferring new ones from the unsigned bounds and
15399 	 * var_off of the result.
15400 	 */
15401 	dst_reg->smin_value = S64_MIN;
15402 	dst_reg->smax_value = S64_MAX;
15403 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
15404 	dst_reg->umin_value >>= umax_val;
15405 	dst_reg->umax_value >>= umin_val;
15406 
15407 	/* Its not easy to operate on alu32 bounds here because it depends
15408 	 * on bits being shifted in. Take easy way out and mark unbounded
15409 	 * so we can recalculate later from tnum.
15410 	 */
15411 	__mark_reg32_unbounded(dst_reg);
15412 	__update_reg_bounds(dst_reg);
15413 }
15414 
scalar32_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15415 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
15416 				  struct bpf_reg_state *src_reg)
15417 {
15418 	u64 umin_val = src_reg->u32_min_value;
15419 
15420 	/* Upon reaching here, src_known is true and
15421 	 * umax_val is equal to umin_val.
15422 	 */
15423 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
15424 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
15425 
15426 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
15427 
15428 	/* blow away the dst_reg umin_value/umax_value and rely on
15429 	 * dst_reg var_off to refine the result.
15430 	 */
15431 	dst_reg->u32_min_value = 0;
15432 	dst_reg->u32_max_value = U32_MAX;
15433 
15434 	__mark_reg64_unbounded(dst_reg);
15435 	__update_reg32_bounds(dst_reg);
15436 }
15437 
scalar_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15438 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
15439 				struct bpf_reg_state *src_reg)
15440 {
15441 	u64 umin_val = src_reg->umin_value;
15442 
15443 	/* Upon reaching here, src_known is true and umax_val is equal
15444 	 * to umin_val.
15445 	 */
15446 	dst_reg->smin_value >>= umin_val;
15447 	dst_reg->smax_value >>= umin_val;
15448 
15449 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
15450 
15451 	/* blow away the dst_reg umin_value/umax_value and rely on
15452 	 * dst_reg var_off to refine the result.
15453 	 */
15454 	dst_reg->umin_value = 0;
15455 	dst_reg->umax_value = U64_MAX;
15456 
15457 	/* Its not easy to operate on alu32 bounds here because it depends
15458 	 * on bits being shifted in from upper 32-bits. Take easy way out
15459 	 * and mark unbounded so we can recalculate later from tnum.
15460 	 */
15461 	__mark_reg32_unbounded(dst_reg);
15462 	__update_reg_bounds(dst_reg);
15463 }
15464 
is_safe_to_compute_dst_reg_range(struct bpf_insn * insn,const struct bpf_reg_state * src_reg)15465 static bool is_safe_to_compute_dst_reg_range(struct bpf_insn *insn,
15466 					     const struct bpf_reg_state *src_reg)
15467 {
15468 	bool src_is_const = false;
15469 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
15470 
15471 	if (insn_bitness == 32) {
15472 		if (tnum_subreg_is_const(src_reg->var_off)
15473 		    && src_reg->s32_min_value == src_reg->s32_max_value
15474 		    && src_reg->u32_min_value == src_reg->u32_max_value)
15475 			src_is_const = true;
15476 	} else {
15477 		if (tnum_is_const(src_reg->var_off)
15478 		    && src_reg->smin_value == src_reg->smax_value
15479 		    && src_reg->umin_value == src_reg->umax_value)
15480 			src_is_const = true;
15481 	}
15482 
15483 	switch (BPF_OP(insn->code)) {
15484 	case BPF_ADD:
15485 	case BPF_SUB:
15486 	case BPF_NEG:
15487 	case BPF_AND:
15488 	case BPF_XOR:
15489 	case BPF_OR:
15490 	case BPF_MUL:
15491 		return true;
15492 
15493 	/* Shift operators range is only computable if shift dimension operand
15494 	 * is a constant. Shifts greater than 31 or 63 are undefined. This
15495 	 * includes shifts by a negative number.
15496 	 */
15497 	case BPF_LSH:
15498 	case BPF_RSH:
15499 	case BPF_ARSH:
15500 		return (src_is_const && src_reg->umax_value < insn_bitness);
15501 	default:
15502 		return false;
15503 	}
15504 }
15505 
15506 /* WARNING: This function does calculations on 64-bit values, but the actual
15507  * execution may occur on 32-bit values. Therefore, things like bitshifts
15508  * need extra checks in the 32-bit case.
15509  */
adjust_scalar_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state src_reg)15510 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
15511 				      struct bpf_insn *insn,
15512 				      struct bpf_reg_state *dst_reg,
15513 				      struct bpf_reg_state src_reg)
15514 {
15515 	u8 opcode = BPF_OP(insn->code);
15516 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
15517 	int ret;
15518 
15519 	if (!is_safe_to_compute_dst_reg_range(insn, &src_reg)) {
15520 		__mark_reg_unknown(env, dst_reg);
15521 		return 0;
15522 	}
15523 
15524 	if (sanitize_needed(opcode)) {
15525 		ret = sanitize_val_alu(env, insn);
15526 		if (ret < 0)
15527 			return sanitize_err(env, insn, ret, NULL, NULL);
15528 	}
15529 
15530 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
15531 	 * There are two classes of instructions: The first class we track both
15532 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
15533 	 * greatest amount of precision when alu operations are mixed with jmp32
15534 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
15535 	 * and BPF_OR. This is possible because these ops have fairly easy to
15536 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
15537 	 * See alu32 verifier tests for examples. The second class of
15538 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
15539 	 * with regards to tracking sign/unsigned bounds because the bits may
15540 	 * cross subreg boundaries in the alu64 case. When this happens we mark
15541 	 * the reg unbounded in the subreg bound space and use the resulting
15542 	 * tnum to calculate an approximation of the sign/unsigned bounds.
15543 	 */
15544 	switch (opcode) {
15545 	case BPF_ADD:
15546 		scalar32_min_max_add(dst_reg, &src_reg);
15547 		scalar_min_max_add(dst_reg, &src_reg);
15548 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
15549 		break;
15550 	case BPF_SUB:
15551 		scalar32_min_max_sub(dst_reg, &src_reg);
15552 		scalar_min_max_sub(dst_reg, &src_reg);
15553 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
15554 		break;
15555 	case BPF_NEG:
15556 		env->fake_reg[0] = *dst_reg;
15557 		__mark_reg_known(dst_reg, 0);
15558 		scalar32_min_max_sub(dst_reg, &env->fake_reg[0]);
15559 		scalar_min_max_sub(dst_reg, &env->fake_reg[0]);
15560 		dst_reg->var_off = tnum_neg(env->fake_reg[0].var_off);
15561 		break;
15562 	case BPF_MUL:
15563 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
15564 		scalar32_min_max_mul(dst_reg, &src_reg);
15565 		scalar_min_max_mul(dst_reg, &src_reg);
15566 		break;
15567 	case BPF_AND:
15568 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
15569 		scalar32_min_max_and(dst_reg, &src_reg);
15570 		scalar_min_max_and(dst_reg, &src_reg);
15571 		break;
15572 	case BPF_OR:
15573 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
15574 		scalar32_min_max_or(dst_reg, &src_reg);
15575 		scalar_min_max_or(dst_reg, &src_reg);
15576 		break;
15577 	case BPF_XOR:
15578 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
15579 		scalar32_min_max_xor(dst_reg, &src_reg);
15580 		scalar_min_max_xor(dst_reg, &src_reg);
15581 		break;
15582 	case BPF_LSH:
15583 		if (alu32)
15584 			scalar32_min_max_lsh(dst_reg, &src_reg);
15585 		else
15586 			scalar_min_max_lsh(dst_reg, &src_reg);
15587 		break;
15588 	case BPF_RSH:
15589 		if (alu32)
15590 			scalar32_min_max_rsh(dst_reg, &src_reg);
15591 		else
15592 			scalar_min_max_rsh(dst_reg, &src_reg);
15593 		break;
15594 	case BPF_ARSH:
15595 		if (alu32)
15596 			scalar32_min_max_arsh(dst_reg, &src_reg);
15597 		else
15598 			scalar_min_max_arsh(dst_reg, &src_reg);
15599 		break;
15600 	default:
15601 		break;
15602 	}
15603 
15604 	/* ALU32 ops are zero extended into 64bit register */
15605 	if (alu32)
15606 		zext_32_to_64(dst_reg);
15607 	reg_bounds_sync(dst_reg);
15608 	return 0;
15609 }
15610 
15611 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
15612  * and var_off.
15613  */
adjust_reg_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn)15614 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
15615 				   struct bpf_insn *insn)
15616 {
15617 	struct bpf_verifier_state *vstate = env->cur_state;
15618 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
15619 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
15620 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
15621 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
15622 	u8 opcode = BPF_OP(insn->code);
15623 	int err;
15624 
15625 	dst_reg = &regs[insn->dst_reg];
15626 	src_reg = NULL;
15627 
15628 	if (dst_reg->type == PTR_TO_ARENA) {
15629 		struct bpf_insn_aux_data *aux = cur_aux(env);
15630 
15631 		if (BPF_CLASS(insn->code) == BPF_ALU64)
15632 			/*
15633 			 * 32-bit operations zero upper bits automatically.
15634 			 * 64-bit operations need to be converted to 32.
15635 			 */
15636 			aux->needs_zext = true;
15637 
15638 		/* Any arithmetic operations are allowed on arena pointers */
15639 		return 0;
15640 	}
15641 
15642 	if (dst_reg->type != SCALAR_VALUE)
15643 		ptr_reg = dst_reg;
15644 
15645 	if (BPF_SRC(insn->code) == BPF_X) {
15646 		src_reg = &regs[insn->src_reg];
15647 		if (src_reg->type != SCALAR_VALUE) {
15648 			if (dst_reg->type != SCALAR_VALUE) {
15649 				/* Combining two pointers by any ALU op yields
15650 				 * an arbitrary scalar. Disallow all math except
15651 				 * pointer subtraction
15652 				 */
15653 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
15654 					mark_reg_unknown(env, regs, insn->dst_reg);
15655 					return 0;
15656 				}
15657 				verbose(env, "R%d pointer %s pointer prohibited\n",
15658 					insn->dst_reg,
15659 					bpf_alu_string[opcode >> 4]);
15660 				return -EACCES;
15661 			} else {
15662 				/* scalar += pointer
15663 				 * This is legal, but we have to reverse our
15664 				 * src/dest handling in computing the range
15665 				 */
15666 				err = mark_chain_precision(env, insn->dst_reg);
15667 				if (err)
15668 					return err;
15669 				return adjust_ptr_min_max_vals(env, insn,
15670 							       src_reg, dst_reg);
15671 			}
15672 		} else if (ptr_reg) {
15673 			/* pointer += scalar */
15674 			err = mark_chain_precision(env, insn->src_reg);
15675 			if (err)
15676 				return err;
15677 			return adjust_ptr_min_max_vals(env, insn,
15678 						       dst_reg, src_reg);
15679 		} else if (dst_reg->precise) {
15680 			/* if dst_reg is precise, src_reg should be precise as well */
15681 			err = mark_chain_precision(env, insn->src_reg);
15682 			if (err)
15683 				return err;
15684 		}
15685 	} else {
15686 		/* Pretend the src is a reg with a known value, since we only
15687 		 * need to be able to read from this state.
15688 		 */
15689 		off_reg.type = SCALAR_VALUE;
15690 		__mark_reg_known(&off_reg, insn->imm);
15691 		src_reg = &off_reg;
15692 		if (ptr_reg) /* pointer += K */
15693 			return adjust_ptr_min_max_vals(env, insn,
15694 						       ptr_reg, src_reg);
15695 	}
15696 
15697 	/* Got here implies adding two SCALAR_VALUEs */
15698 	if (WARN_ON_ONCE(ptr_reg)) {
15699 		print_verifier_state(env, vstate, vstate->curframe, true);
15700 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
15701 		return -EFAULT;
15702 	}
15703 	if (WARN_ON(!src_reg)) {
15704 		print_verifier_state(env, vstate, vstate->curframe, true);
15705 		verbose(env, "verifier internal error: no src_reg\n");
15706 		return -EFAULT;
15707 	}
15708 	err = adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
15709 	if (err)
15710 		return err;
15711 	/*
15712 	 * Compilers can generate the code
15713 	 * r1 = r2
15714 	 * r1 += 0x1
15715 	 * if r2 < 1000 goto ...
15716 	 * use r1 in memory access
15717 	 * So for 64-bit alu remember constant delta between r2 and r1 and
15718 	 * update r1 after 'if' condition.
15719 	 */
15720 	if (env->bpf_capable &&
15721 	    BPF_OP(insn->code) == BPF_ADD && !alu32 &&
15722 	    dst_reg->id && is_reg_const(src_reg, false)) {
15723 		u64 val = reg_const_value(src_reg, false);
15724 
15725 		if ((dst_reg->id & BPF_ADD_CONST) ||
15726 		    /* prevent overflow in sync_linked_regs() later */
15727 		    val > (u32)S32_MAX) {
15728 			/*
15729 			 * If the register already went through rX += val
15730 			 * we cannot accumulate another val into rx->off.
15731 			 */
15732 			dst_reg->off = 0;
15733 			dst_reg->id = 0;
15734 		} else {
15735 			dst_reg->id |= BPF_ADD_CONST;
15736 			dst_reg->off = val;
15737 		}
15738 	} else {
15739 		/*
15740 		 * Make sure ID is cleared otherwise dst_reg min/max could be
15741 		 * incorrectly propagated into other registers by sync_linked_regs()
15742 		 */
15743 		dst_reg->id = 0;
15744 	}
15745 	return 0;
15746 }
15747 
15748 /* check validity of 32-bit and 64-bit arithmetic operations */
check_alu_op(struct bpf_verifier_env * env,struct bpf_insn * insn)15749 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
15750 {
15751 	struct bpf_reg_state *regs = cur_regs(env);
15752 	u8 opcode = BPF_OP(insn->code);
15753 	int err;
15754 
15755 	if (opcode == BPF_END || opcode == BPF_NEG) {
15756 		if (opcode == BPF_NEG) {
15757 			if (BPF_SRC(insn->code) != BPF_K ||
15758 			    insn->src_reg != BPF_REG_0 ||
15759 			    insn->off != 0 || insn->imm != 0) {
15760 				verbose(env, "BPF_NEG uses reserved fields\n");
15761 				return -EINVAL;
15762 			}
15763 		} else {
15764 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
15765 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
15766 			    (BPF_CLASS(insn->code) == BPF_ALU64 &&
15767 			     BPF_SRC(insn->code) != BPF_TO_LE)) {
15768 				verbose(env, "BPF_END uses reserved fields\n");
15769 				return -EINVAL;
15770 			}
15771 		}
15772 
15773 		/* check src operand */
15774 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
15775 		if (err)
15776 			return err;
15777 
15778 		if (is_pointer_value(env, insn->dst_reg)) {
15779 			verbose(env, "R%d pointer arithmetic prohibited\n",
15780 				insn->dst_reg);
15781 			return -EACCES;
15782 		}
15783 
15784 		/* check dest operand */
15785 		if (opcode == BPF_NEG &&
15786 		    regs[insn->dst_reg].type == SCALAR_VALUE) {
15787 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
15788 			err = err ?: adjust_scalar_min_max_vals(env, insn,
15789 							 &regs[insn->dst_reg],
15790 							 regs[insn->dst_reg]);
15791 		} else {
15792 			err = check_reg_arg(env, insn->dst_reg, DST_OP);
15793 		}
15794 		if (err)
15795 			return err;
15796 
15797 	} else if (opcode == BPF_MOV) {
15798 
15799 		if (BPF_SRC(insn->code) == BPF_X) {
15800 			if (BPF_CLASS(insn->code) == BPF_ALU) {
15801 				if ((insn->off != 0 && insn->off != 8 && insn->off != 16) ||
15802 				    insn->imm) {
15803 					verbose(env, "BPF_MOV uses reserved fields\n");
15804 					return -EINVAL;
15805 				}
15806 			} else if (insn->off == BPF_ADDR_SPACE_CAST) {
15807 				if (insn->imm != 1 && insn->imm != 1u << 16) {
15808 					verbose(env, "addr_space_cast insn can only convert between address space 1 and 0\n");
15809 					return -EINVAL;
15810 				}
15811 				if (!env->prog->aux->arena) {
15812 					verbose(env, "addr_space_cast insn can only be used in a program that has an associated arena\n");
15813 					return -EINVAL;
15814 				}
15815 			} else {
15816 				if ((insn->off != 0 && insn->off != 8 && insn->off != 16 &&
15817 				     insn->off != 32) || insn->imm) {
15818 					verbose(env, "BPF_MOV uses reserved fields\n");
15819 					return -EINVAL;
15820 				}
15821 			}
15822 
15823 			/* check src operand */
15824 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
15825 			if (err)
15826 				return err;
15827 		} else {
15828 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
15829 				verbose(env, "BPF_MOV uses reserved fields\n");
15830 				return -EINVAL;
15831 			}
15832 		}
15833 
15834 		/* check dest operand, mark as required later */
15835 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
15836 		if (err)
15837 			return err;
15838 
15839 		if (BPF_SRC(insn->code) == BPF_X) {
15840 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
15841 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
15842 
15843 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
15844 				if (insn->imm) {
15845 					/* off == BPF_ADDR_SPACE_CAST */
15846 					mark_reg_unknown(env, regs, insn->dst_reg);
15847 					if (insn->imm == 1) { /* cast from as(1) to as(0) */
15848 						dst_reg->type = PTR_TO_ARENA;
15849 						/* PTR_TO_ARENA is 32-bit */
15850 						dst_reg->subreg_def = env->insn_idx + 1;
15851 					}
15852 				} else if (insn->off == 0) {
15853 					/* case: R1 = R2
15854 					 * copy register state to dest reg
15855 					 */
15856 					assign_scalar_id_before_mov(env, src_reg);
15857 					copy_register_state(dst_reg, src_reg);
15858 					dst_reg->subreg_def = DEF_NOT_SUBREG;
15859 				} else {
15860 					/* case: R1 = (s8, s16 s32)R2 */
15861 					if (is_pointer_value(env, insn->src_reg)) {
15862 						verbose(env,
15863 							"R%d sign-extension part of pointer\n",
15864 							insn->src_reg);
15865 						return -EACCES;
15866 					} else if (src_reg->type == SCALAR_VALUE) {
15867 						bool no_sext;
15868 
15869 						no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
15870 						if (no_sext)
15871 							assign_scalar_id_before_mov(env, src_reg);
15872 						copy_register_state(dst_reg, src_reg);
15873 						if (!no_sext)
15874 							dst_reg->id = 0;
15875 						coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
15876 						dst_reg->subreg_def = DEF_NOT_SUBREG;
15877 					} else {
15878 						mark_reg_unknown(env, regs, insn->dst_reg);
15879 					}
15880 				}
15881 			} else {
15882 				/* R1 = (u32) R2 */
15883 				if (is_pointer_value(env, insn->src_reg)) {
15884 					verbose(env,
15885 						"R%d partial copy of pointer\n",
15886 						insn->src_reg);
15887 					return -EACCES;
15888 				} else if (src_reg->type == SCALAR_VALUE) {
15889 					if (insn->off == 0) {
15890 						bool is_src_reg_u32 = get_reg_width(src_reg) <= 32;
15891 
15892 						if (is_src_reg_u32)
15893 							assign_scalar_id_before_mov(env, src_reg);
15894 						copy_register_state(dst_reg, src_reg);
15895 						/* Make sure ID is cleared if src_reg is not in u32
15896 						 * range otherwise dst_reg min/max could be incorrectly
15897 						 * propagated into src_reg by sync_linked_regs()
15898 						 */
15899 						if (!is_src_reg_u32)
15900 							dst_reg->id = 0;
15901 						dst_reg->subreg_def = env->insn_idx + 1;
15902 					} else {
15903 						/* case: W1 = (s8, s16)W2 */
15904 						bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
15905 
15906 						if (no_sext)
15907 							assign_scalar_id_before_mov(env, src_reg);
15908 						copy_register_state(dst_reg, src_reg);
15909 						if (!no_sext)
15910 							dst_reg->id = 0;
15911 						dst_reg->subreg_def = env->insn_idx + 1;
15912 						coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
15913 					}
15914 				} else {
15915 					mark_reg_unknown(env, regs,
15916 							 insn->dst_reg);
15917 				}
15918 				zext_32_to_64(dst_reg);
15919 				reg_bounds_sync(dst_reg);
15920 			}
15921 		} else {
15922 			/* case: R = imm
15923 			 * remember the value we stored into this reg
15924 			 */
15925 			/* clear any state __mark_reg_known doesn't set */
15926 			mark_reg_unknown(env, regs, insn->dst_reg);
15927 			regs[insn->dst_reg].type = SCALAR_VALUE;
15928 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
15929 				__mark_reg_known(regs + insn->dst_reg,
15930 						 insn->imm);
15931 			} else {
15932 				__mark_reg_known(regs + insn->dst_reg,
15933 						 (u32)insn->imm);
15934 			}
15935 		}
15936 
15937 	} else if (opcode > BPF_END) {
15938 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
15939 		return -EINVAL;
15940 
15941 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
15942 
15943 		if (BPF_SRC(insn->code) == BPF_X) {
15944 			if (insn->imm != 0 || (insn->off != 0 && insn->off != 1) ||
15945 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
15946 				verbose(env, "BPF_ALU uses reserved fields\n");
15947 				return -EINVAL;
15948 			}
15949 			/* check src1 operand */
15950 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
15951 			if (err)
15952 				return err;
15953 		} else {
15954 			if (insn->src_reg != BPF_REG_0 || (insn->off != 0 && insn->off != 1) ||
15955 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
15956 				verbose(env, "BPF_ALU uses reserved fields\n");
15957 				return -EINVAL;
15958 			}
15959 		}
15960 
15961 		/* check src2 operand */
15962 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
15963 		if (err)
15964 			return err;
15965 
15966 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
15967 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
15968 			verbose(env, "div by zero\n");
15969 			return -EINVAL;
15970 		}
15971 
15972 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
15973 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
15974 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
15975 
15976 			if (insn->imm < 0 || insn->imm >= size) {
15977 				verbose(env, "invalid shift %d\n", insn->imm);
15978 				return -EINVAL;
15979 			}
15980 		}
15981 
15982 		/* check dest operand */
15983 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
15984 		err = err ?: adjust_reg_min_max_vals(env, insn);
15985 		if (err)
15986 			return err;
15987 	}
15988 
15989 	return reg_bounds_sanity_check(env, &regs[insn->dst_reg], "alu");
15990 }
15991 
find_good_pkt_pointers(struct bpf_verifier_state * vstate,struct bpf_reg_state * dst_reg,enum bpf_reg_type type,bool range_right_open)15992 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
15993 				   struct bpf_reg_state *dst_reg,
15994 				   enum bpf_reg_type type,
15995 				   bool range_right_open)
15996 {
15997 	struct bpf_func_state *state;
15998 	struct bpf_reg_state *reg;
15999 	int new_range;
16000 
16001 	if (dst_reg->off < 0 ||
16002 	    (dst_reg->off == 0 && range_right_open))
16003 		/* This doesn't give us any range */
16004 		return;
16005 
16006 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
16007 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
16008 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
16009 		 * than pkt_end, but that's because it's also less than pkt.
16010 		 */
16011 		return;
16012 
16013 	new_range = dst_reg->off;
16014 	if (range_right_open)
16015 		new_range++;
16016 
16017 	/* Examples for register markings:
16018 	 *
16019 	 * pkt_data in dst register:
16020 	 *
16021 	 *   r2 = r3;
16022 	 *   r2 += 8;
16023 	 *   if (r2 > pkt_end) goto <handle exception>
16024 	 *   <access okay>
16025 	 *
16026 	 *   r2 = r3;
16027 	 *   r2 += 8;
16028 	 *   if (r2 < pkt_end) goto <access okay>
16029 	 *   <handle exception>
16030 	 *
16031 	 *   Where:
16032 	 *     r2 == dst_reg, pkt_end == src_reg
16033 	 *     r2=pkt(id=n,off=8,r=0)
16034 	 *     r3=pkt(id=n,off=0,r=0)
16035 	 *
16036 	 * pkt_data in src register:
16037 	 *
16038 	 *   r2 = r3;
16039 	 *   r2 += 8;
16040 	 *   if (pkt_end >= r2) goto <access okay>
16041 	 *   <handle exception>
16042 	 *
16043 	 *   r2 = r3;
16044 	 *   r2 += 8;
16045 	 *   if (pkt_end <= r2) goto <handle exception>
16046 	 *   <access okay>
16047 	 *
16048 	 *   Where:
16049 	 *     pkt_end == dst_reg, r2 == src_reg
16050 	 *     r2=pkt(id=n,off=8,r=0)
16051 	 *     r3=pkt(id=n,off=0,r=0)
16052 	 *
16053 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
16054 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
16055 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
16056 	 * the check.
16057 	 */
16058 
16059 	/* If our ids match, then we must have the same max_value.  And we
16060 	 * don't care about the other reg's fixed offset, since if it's too big
16061 	 * the range won't allow anything.
16062 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
16063 	 */
16064 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
16065 		if (reg->type == type && reg->id == dst_reg->id)
16066 			/* keep the maximum range already checked */
16067 			reg->range = max(reg->range, new_range);
16068 	}));
16069 }
16070 
16071 /*
16072  * <reg1> <op> <reg2>, currently assuming reg2 is a constant
16073  */
is_scalar_branch_taken(struct bpf_reg_state * reg1,struct bpf_reg_state * reg2,u8 opcode,bool is_jmp32)16074 static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
16075 				  u8 opcode, bool is_jmp32)
16076 {
16077 	struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off;
16078 	struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off;
16079 	u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value;
16080 	u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value;
16081 	s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value;
16082 	s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value;
16083 	u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value;
16084 	u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value;
16085 	s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value;
16086 	s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value;
16087 
16088 	if (reg1 == reg2) {
16089 		switch (opcode) {
16090 		case BPF_JGE:
16091 		case BPF_JLE:
16092 		case BPF_JSGE:
16093 		case BPF_JSLE:
16094 		case BPF_JEQ:
16095 			return 1;
16096 		case BPF_JGT:
16097 		case BPF_JLT:
16098 		case BPF_JSGT:
16099 		case BPF_JSLT:
16100 		case BPF_JNE:
16101 			return 0;
16102 		case BPF_JSET:
16103 			if (tnum_is_const(t1))
16104 				return t1.value != 0;
16105 			else
16106 				return (smin1 <= 0 && smax1 >= 0) ? -1 : 1;
16107 		default:
16108 			return -1;
16109 		}
16110 	}
16111 
16112 	switch (opcode) {
16113 	case BPF_JEQ:
16114 		/* constants, umin/umax and smin/smax checks would be
16115 		 * redundant in this case because they all should match
16116 		 */
16117 		if (tnum_is_const(t1) && tnum_is_const(t2))
16118 			return t1.value == t2.value;
16119 		if (!tnum_overlap(t1, t2))
16120 			return 0;
16121 		/* non-overlapping ranges */
16122 		if (umin1 > umax2 || umax1 < umin2)
16123 			return 0;
16124 		if (smin1 > smax2 || smax1 < smin2)
16125 			return 0;
16126 		if (!is_jmp32) {
16127 			/* if 64-bit ranges are inconclusive, see if we can
16128 			 * utilize 32-bit subrange knowledge to eliminate
16129 			 * branches that can't be taken a priori
16130 			 */
16131 			if (reg1->u32_min_value > reg2->u32_max_value ||
16132 			    reg1->u32_max_value < reg2->u32_min_value)
16133 				return 0;
16134 			if (reg1->s32_min_value > reg2->s32_max_value ||
16135 			    reg1->s32_max_value < reg2->s32_min_value)
16136 				return 0;
16137 		}
16138 		break;
16139 	case BPF_JNE:
16140 		/* constants, umin/umax and smin/smax checks would be
16141 		 * redundant in this case because they all should match
16142 		 */
16143 		if (tnum_is_const(t1) && tnum_is_const(t2))
16144 			return t1.value != t2.value;
16145 		if (!tnum_overlap(t1, t2))
16146 			return 1;
16147 		/* non-overlapping ranges */
16148 		if (umin1 > umax2 || umax1 < umin2)
16149 			return 1;
16150 		if (smin1 > smax2 || smax1 < smin2)
16151 			return 1;
16152 		if (!is_jmp32) {
16153 			/* if 64-bit ranges are inconclusive, see if we can
16154 			 * utilize 32-bit subrange knowledge to eliminate
16155 			 * branches that can't be taken a priori
16156 			 */
16157 			if (reg1->u32_min_value > reg2->u32_max_value ||
16158 			    reg1->u32_max_value < reg2->u32_min_value)
16159 				return 1;
16160 			if (reg1->s32_min_value > reg2->s32_max_value ||
16161 			    reg1->s32_max_value < reg2->s32_min_value)
16162 				return 1;
16163 		}
16164 		break;
16165 	case BPF_JSET:
16166 		if (!is_reg_const(reg2, is_jmp32)) {
16167 			swap(reg1, reg2);
16168 			swap(t1, t2);
16169 		}
16170 		if (!is_reg_const(reg2, is_jmp32))
16171 			return -1;
16172 		if ((~t1.mask & t1.value) & t2.value)
16173 			return 1;
16174 		if (!((t1.mask | t1.value) & t2.value))
16175 			return 0;
16176 		break;
16177 	case BPF_JGT:
16178 		if (umin1 > umax2)
16179 			return 1;
16180 		else if (umax1 <= umin2)
16181 			return 0;
16182 		break;
16183 	case BPF_JSGT:
16184 		if (smin1 > smax2)
16185 			return 1;
16186 		else if (smax1 <= smin2)
16187 			return 0;
16188 		break;
16189 	case BPF_JLT:
16190 		if (umax1 < umin2)
16191 			return 1;
16192 		else if (umin1 >= umax2)
16193 			return 0;
16194 		break;
16195 	case BPF_JSLT:
16196 		if (smax1 < smin2)
16197 			return 1;
16198 		else if (smin1 >= smax2)
16199 			return 0;
16200 		break;
16201 	case BPF_JGE:
16202 		if (umin1 >= umax2)
16203 			return 1;
16204 		else if (umax1 < umin2)
16205 			return 0;
16206 		break;
16207 	case BPF_JSGE:
16208 		if (smin1 >= smax2)
16209 			return 1;
16210 		else if (smax1 < smin2)
16211 			return 0;
16212 		break;
16213 	case BPF_JLE:
16214 		if (umax1 <= umin2)
16215 			return 1;
16216 		else if (umin1 > umax2)
16217 			return 0;
16218 		break;
16219 	case BPF_JSLE:
16220 		if (smax1 <= smin2)
16221 			return 1;
16222 		else if (smin1 > smax2)
16223 			return 0;
16224 		break;
16225 	}
16226 
16227 	return -1;
16228 }
16229 
flip_opcode(u32 opcode)16230 static int flip_opcode(u32 opcode)
16231 {
16232 	/* How can we transform "a <op> b" into "b <op> a"? */
16233 	static const u8 opcode_flip[16] = {
16234 		/* these stay the same */
16235 		[BPF_JEQ  >> 4] = BPF_JEQ,
16236 		[BPF_JNE  >> 4] = BPF_JNE,
16237 		[BPF_JSET >> 4] = BPF_JSET,
16238 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
16239 		[BPF_JGE  >> 4] = BPF_JLE,
16240 		[BPF_JGT  >> 4] = BPF_JLT,
16241 		[BPF_JLE  >> 4] = BPF_JGE,
16242 		[BPF_JLT  >> 4] = BPF_JGT,
16243 		[BPF_JSGE >> 4] = BPF_JSLE,
16244 		[BPF_JSGT >> 4] = BPF_JSLT,
16245 		[BPF_JSLE >> 4] = BPF_JSGE,
16246 		[BPF_JSLT >> 4] = BPF_JSGT
16247 	};
16248 	return opcode_flip[opcode >> 4];
16249 }
16250 
is_pkt_ptr_branch_taken(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,u8 opcode)16251 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
16252 				   struct bpf_reg_state *src_reg,
16253 				   u8 opcode)
16254 {
16255 	struct bpf_reg_state *pkt;
16256 
16257 	if (src_reg->type == PTR_TO_PACKET_END) {
16258 		pkt = dst_reg;
16259 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
16260 		pkt = src_reg;
16261 		opcode = flip_opcode(opcode);
16262 	} else {
16263 		return -1;
16264 	}
16265 
16266 	if (pkt->range >= 0)
16267 		return -1;
16268 
16269 	switch (opcode) {
16270 	case BPF_JLE:
16271 		/* pkt <= pkt_end */
16272 		fallthrough;
16273 	case BPF_JGT:
16274 		/* pkt > pkt_end */
16275 		if (pkt->range == BEYOND_PKT_END)
16276 			/* pkt has at last one extra byte beyond pkt_end */
16277 			return opcode == BPF_JGT;
16278 		break;
16279 	case BPF_JLT:
16280 		/* pkt < pkt_end */
16281 		fallthrough;
16282 	case BPF_JGE:
16283 		/* pkt >= pkt_end */
16284 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
16285 			return opcode == BPF_JGE;
16286 		break;
16287 	}
16288 	return -1;
16289 }
16290 
16291 /* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;"
16292  * and return:
16293  *  1 - branch will be taken and "goto target" will be executed
16294  *  0 - branch will not be taken and fall-through to next insn
16295  * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value
16296  *      range [0,10]
16297  */
is_branch_taken(struct bpf_reg_state * reg1,struct bpf_reg_state * reg2,u8 opcode,bool is_jmp32)16298 static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
16299 			   u8 opcode, bool is_jmp32)
16300 {
16301 	if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32)
16302 		return is_pkt_ptr_branch_taken(reg1, reg2, opcode);
16303 
16304 	if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) {
16305 		u64 val;
16306 
16307 		/* arrange that reg2 is a scalar, and reg1 is a pointer */
16308 		if (!is_reg_const(reg2, is_jmp32)) {
16309 			opcode = flip_opcode(opcode);
16310 			swap(reg1, reg2);
16311 		}
16312 		/* and ensure that reg2 is a constant */
16313 		if (!is_reg_const(reg2, is_jmp32))
16314 			return -1;
16315 
16316 		if (!reg_not_null(reg1))
16317 			return -1;
16318 
16319 		/* If pointer is valid tests against zero will fail so we can
16320 		 * use this to direct branch taken.
16321 		 */
16322 		val = reg_const_value(reg2, is_jmp32);
16323 		if (val != 0)
16324 			return -1;
16325 
16326 		switch (opcode) {
16327 		case BPF_JEQ:
16328 			return 0;
16329 		case BPF_JNE:
16330 			return 1;
16331 		default:
16332 			return -1;
16333 		}
16334 	}
16335 
16336 	/* now deal with two scalars, but not necessarily constants */
16337 	return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32);
16338 }
16339 
16340 /* Opcode that corresponds to a *false* branch condition.
16341  * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2
16342  */
rev_opcode(u8 opcode)16343 static u8 rev_opcode(u8 opcode)
16344 {
16345 	switch (opcode) {
16346 	case BPF_JEQ:		return BPF_JNE;
16347 	case BPF_JNE:		return BPF_JEQ;
16348 	/* JSET doesn't have it's reverse opcode in BPF, so add
16349 	 * BPF_X flag to denote the reverse of that operation
16350 	 */
16351 	case BPF_JSET:		return BPF_JSET | BPF_X;
16352 	case BPF_JSET | BPF_X:	return BPF_JSET;
16353 	case BPF_JGE:		return BPF_JLT;
16354 	case BPF_JGT:		return BPF_JLE;
16355 	case BPF_JLE:		return BPF_JGT;
16356 	case BPF_JLT:		return BPF_JGE;
16357 	case BPF_JSGE:		return BPF_JSLT;
16358 	case BPF_JSGT:		return BPF_JSLE;
16359 	case BPF_JSLE:		return BPF_JSGT;
16360 	case BPF_JSLT:		return BPF_JSGE;
16361 	default:		return 0;
16362 	}
16363 }
16364 
16365 /* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */
regs_refine_cond_op(struct bpf_reg_state * reg1,struct bpf_reg_state * reg2,u8 opcode,bool is_jmp32)16366 static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
16367 				u8 opcode, bool is_jmp32)
16368 {
16369 	struct tnum t;
16370 	u64 val;
16371 
16372 	/* In case of GE/GT/SGE/JST, reuse LE/LT/SLE/SLT logic from below */
16373 	switch (opcode) {
16374 	case BPF_JGE:
16375 	case BPF_JGT:
16376 	case BPF_JSGE:
16377 	case BPF_JSGT:
16378 		opcode = flip_opcode(opcode);
16379 		swap(reg1, reg2);
16380 		break;
16381 	default:
16382 		break;
16383 	}
16384 
16385 	switch (opcode) {
16386 	case BPF_JEQ:
16387 		if (is_jmp32) {
16388 			reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value);
16389 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value);
16390 			reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value);
16391 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value);
16392 			reg2->u32_min_value = reg1->u32_min_value;
16393 			reg2->u32_max_value = reg1->u32_max_value;
16394 			reg2->s32_min_value = reg1->s32_min_value;
16395 			reg2->s32_max_value = reg1->s32_max_value;
16396 
16397 			t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off));
16398 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
16399 			reg2->var_off = tnum_with_subreg(reg2->var_off, t);
16400 		} else {
16401 			reg1->umin_value = max(reg1->umin_value, reg2->umin_value);
16402 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value);
16403 			reg1->smin_value = max(reg1->smin_value, reg2->smin_value);
16404 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value);
16405 			reg2->umin_value = reg1->umin_value;
16406 			reg2->umax_value = reg1->umax_value;
16407 			reg2->smin_value = reg1->smin_value;
16408 			reg2->smax_value = reg1->smax_value;
16409 
16410 			reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off);
16411 			reg2->var_off = reg1->var_off;
16412 		}
16413 		break;
16414 	case BPF_JNE:
16415 		if (!is_reg_const(reg2, is_jmp32))
16416 			swap(reg1, reg2);
16417 		if (!is_reg_const(reg2, is_jmp32))
16418 			break;
16419 
16420 		/* try to recompute the bound of reg1 if reg2 is a const and
16421 		 * is exactly the edge of reg1.
16422 		 */
16423 		val = reg_const_value(reg2, is_jmp32);
16424 		if (is_jmp32) {
16425 			/* u32_min_value is not equal to 0xffffffff at this point,
16426 			 * because otherwise u32_max_value is 0xffffffff as well,
16427 			 * in such a case both reg1 and reg2 would be constants,
16428 			 * jump would be predicted and reg_set_min_max() won't
16429 			 * be called.
16430 			 *
16431 			 * Same reasoning works for all {u,s}{min,max}{32,64} cases
16432 			 * below.
16433 			 */
16434 			if (reg1->u32_min_value == (u32)val)
16435 				reg1->u32_min_value++;
16436 			if (reg1->u32_max_value == (u32)val)
16437 				reg1->u32_max_value--;
16438 			if (reg1->s32_min_value == (s32)val)
16439 				reg1->s32_min_value++;
16440 			if (reg1->s32_max_value == (s32)val)
16441 				reg1->s32_max_value--;
16442 		} else {
16443 			if (reg1->umin_value == (u64)val)
16444 				reg1->umin_value++;
16445 			if (reg1->umax_value == (u64)val)
16446 				reg1->umax_value--;
16447 			if (reg1->smin_value == (s64)val)
16448 				reg1->smin_value++;
16449 			if (reg1->smax_value == (s64)val)
16450 				reg1->smax_value--;
16451 		}
16452 		break;
16453 	case BPF_JSET:
16454 		if (!is_reg_const(reg2, is_jmp32))
16455 			swap(reg1, reg2);
16456 		if (!is_reg_const(reg2, is_jmp32))
16457 			break;
16458 		val = reg_const_value(reg2, is_jmp32);
16459 		/* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X)
16460 		 * requires single bit to learn something useful. E.g., if we
16461 		 * know that `r1 & 0x3` is true, then which bits (0, 1, or both)
16462 		 * are actually set? We can learn something definite only if
16463 		 * it's a single-bit value to begin with.
16464 		 *
16465 		 * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have
16466 		 * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor
16467 		 * bit 1 is set, which we can readily use in adjustments.
16468 		 */
16469 		if (!is_power_of_2(val))
16470 			break;
16471 		if (is_jmp32) {
16472 			t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val));
16473 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
16474 		} else {
16475 			reg1->var_off = tnum_or(reg1->var_off, tnum_const(val));
16476 		}
16477 		break;
16478 	case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */
16479 		if (!is_reg_const(reg2, is_jmp32))
16480 			swap(reg1, reg2);
16481 		if (!is_reg_const(reg2, is_jmp32))
16482 			break;
16483 		val = reg_const_value(reg2, is_jmp32);
16484 		/* Forget the ranges before narrowing tnums, to avoid invariant
16485 		 * violations if we're on a dead branch.
16486 		 */
16487 		__mark_reg_unbounded(reg1);
16488 		if (is_jmp32) {
16489 			t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val));
16490 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
16491 		} else {
16492 			reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val));
16493 		}
16494 		break;
16495 	case BPF_JLE:
16496 		if (is_jmp32) {
16497 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value);
16498 			reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value);
16499 		} else {
16500 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value);
16501 			reg2->umin_value = max(reg1->umin_value, reg2->umin_value);
16502 		}
16503 		break;
16504 	case BPF_JLT:
16505 		if (is_jmp32) {
16506 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1);
16507 			reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value);
16508 		} else {
16509 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1);
16510 			reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value);
16511 		}
16512 		break;
16513 	case BPF_JSLE:
16514 		if (is_jmp32) {
16515 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value);
16516 			reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value);
16517 		} else {
16518 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value);
16519 			reg2->smin_value = max(reg1->smin_value, reg2->smin_value);
16520 		}
16521 		break;
16522 	case BPF_JSLT:
16523 		if (is_jmp32) {
16524 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1);
16525 			reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value);
16526 		} else {
16527 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1);
16528 			reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value);
16529 		}
16530 		break;
16531 	default:
16532 		return;
16533 	}
16534 }
16535 
16536 /* Adjusts the register min/max values in the case that the dst_reg and
16537  * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K
16538  * check, in which case we have a fake SCALAR_VALUE representing insn->imm).
16539  * Technically we can do similar adjustments for pointers to the same object,
16540  * but we don't support that right now.
16541  */
reg_set_min_max(struct bpf_verifier_env * env,struct bpf_reg_state * true_reg1,struct bpf_reg_state * true_reg2,struct bpf_reg_state * false_reg1,struct bpf_reg_state * false_reg2,u8 opcode,bool is_jmp32)16542 static int reg_set_min_max(struct bpf_verifier_env *env,
16543 			   struct bpf_reg_state *true_reg1,
16544 			   struct bpf_reg_state *true_reg2,
16545 			   struct bpf_reg_state *false_reg1,
16546 			   struct bpf_reg_state *false_reg2,
16547 			   u8 opcode, bool is_jmp32)
16548 {
16549 	int err;
16550 
16551 	/* If either register is a pointer, we can't learn anything about its
16552 	 * variable offset from the compare (unless they were a pointer into
16553 	 * the same object, but we don't bother with that).
16554 	 */
16555 	if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE)
16556 		return 0;
16557 
16558 	/* We compute branch direction for same SCALAR_VALUE registers in
16559 	 * is_scalar_branch_taken(). For unknown branch directions (e.g., BPF_JSET)
16560 	 * on the same registers, we don't need to adjust the min/max values.
16561 	 */
16562 	if (false_reg1 == false_reg2)
16563 		return 0;
16564 
16565 	/* fallthrough (FALSE) branch */
16566 	regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32);
16567 	reg_bounds_sync(false_reg1);
16568 	reg_bounds_sync(false_reg2);
16569 
16570 	/* jump (TRUE) branch */
16571 	regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32);
16572 	reg_bounds_sync(true_reg1);
16573 	reg_bounds_sync(true_reg2);
16574 
16575 	err = reg_bounds_sanity_check(env, true_reg1, "true_reg1");
16576 	err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2");
16577 	err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1");
16578 	err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2");
16579 	return err;
16580 }
16581 
mark_ptr_or_null_reg(struct bpf_func_state * state,struct bpf_reg_state * reg,u32 id,bool is_null)16582 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
16583 				 struct bpf_reg_state *reg, u32 id,
16584 				 bool is_null)
16585 {
16586 	if (type_may_be_null(reg->type) && reg->id == id &&
16587 	    (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
16588 		/* Old offset (both fixed and variable parts) should have been
16589 		 * known-zero, because we don't allow pointer arithmetic on
16590 		 * pointers that might be NULL. If we see this happening, don't
16591 		 * convert the register.
16592 		 *
16593 		 * But in some cases, some helpers that return local kptrs
16594 		 * advance offset for the returned pointer. In those cases, it
16595 		 * is fine to expect to see reg->off.
16596 		 */
16597 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
16598 			return;
16599 		if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
16600 		    WARN_ON_ONCE(reg->off))
16601 			return;
16602 
16603 		if (is_null) {
16604 			reg->type = SCALAR_VALUE;
16605 			/* We don't need id and ref_obj_id from this point
16606 			 * onwards anymore, thus we should better reset it,
16607 			 * so that state pruning has chances to take effect.
16608 			 */
16609 			reg->id = 0;
16610 			reg->ref_obj_id = 0;
16611 
16612 			return;
16613 		}
16614 
16615 		mark_ptr_not_null_reg(reg);
16616 
16617 		if (!reg_may_point_to_spin_lock(reg)) {
16618 			/* For not-NULL ptr, reg->ref_obj_id will be reset
16619 			 * in release_reference().
16620 			 *
16621 			 * reg->id is still used by spin_lock ptr. Other
16622 			 * than spin_lock ptr type, reg->id can be reset.
16623 			 */
16624 			reg->id = 0;
16625 		}
16626 	}
16627 }
16628 
16629 /* The logic is similar to find_good_pkt_pointers(), both could eventually
16630  * be folded together at some point.
16631  */
mark_ptr_or_null_regs(struct bpf_verifier_state * vstate,u32 regno,bool is_null)16632 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
16633 				  bool is_null)
16634 {
16635 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
16636 	struct bpf_reg_state *regs = state->regs, *reg;
16637 	u32 ref_obj_id = regs[regno].ref_obj_id;
16638 	u32 id = regs[regno].id;
16639 
16640 	if (ref_obj_id && ref_obj_id == id && is_null)
16641 		/* regs[regno] is in the " == NULL" branch.
16642 		 * No one could have freed the reference state before
16643 		 * doing the NULL check.
16644 		 */
16645 		WARN_ON_ONCE(release_reference_nomark(vstate, id));
16646 
16647 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
16648 		mark_ptr_or_null_reg(state, reg, id, is_null);
16649 	}));
16650 }
16651 
try_match_pkt_pointers(const struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,struct bpf_verifier_state * this_branch,struct bpf_verifier_state * other_branch)16652 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
16653 				   struct bpf_reg_state *dst_reg,
16654 				   struct bpf_reg_state *src_reg,
16655 				   struct bpf_verifier_state *this_branch,
16656 				   struct bpf_verifier_state *other_branch)
16657 {
16658 	if (BPF_SRC(insn->code) != BPF_X)
16659 		return false;
16660 
16661 	/* Pointers are always 64-bit. */
16662 	if (BPF_CLASS(insn->code) == BPF_JMP32)
16663 		return false;
16664 
16665 	switch (BPF_OP(insn->code)) {
16666 	case BPF_JGT:
16667 		if ((dst_reg->type == PTR_TO_PACKET &&
16668 		     src_reg->type == PTR_TO_PACKET_END) ||
16669 		    (dst_reg->type == PTR_TO_PACKET_META &&
16670 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
16671 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
16672 			find_good_pkt_pointers(this_branch, dst_reg,
16673 					       dst_reg->type, false);
16674 			mark_pkt_end(other_branch, insn->dst_reg, true);
16675 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
16676 			    src_reg->type == PTR_TO_PACKET) ||
16677 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
16678 			    src_reg->type == PTR_TO_PACKET_META)) {
16679 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
16680 			find_good_pkt_pointers(other_branch, src_reg,
16681 					       src_reg->type, true);
16682 			mark_pkt_end(this_branch, insn->src_reg, false);
16683 		} else {
16684 			return false;
16685 		}
16686 		break;
16687 	case BPF_JLT:
16688 		if ((dst_reg->type == PTR_TO_PACKET &&
16689 		     src_reg->type == PTR_TO_PACKET_END) ||
16690 		    (dst_reg->type == PTR_TO_PACKET_META &&
16691 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
16692 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
16693 			find_good_pkt_pointers(other_branch, dst_reg,
16694 					       dst_reg->type, true);
16695 			mark_pkt_end(this_branch, insn->dst_reg, false);
16696 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
16697 			    src_reg->type == PTR_TO_PACKET) ||
16698 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
16699 			    src_reg->type == PTR_TO_PACKET_META)) {
16700 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
16701 			find_good_pkt_pointers(this_branch, src_reg,
16702 					       src_reg->type, false);
16703 			mark_pkt_end(other_branch, insn->src_reg, true);
16704 		} else {
16705 			return false;
16706 		}
16707 		break;
16708 	case BPF_JGE:
16709 		if ((dst_reg->type == PTR_TO_PACKET &&
16710 		     src_reg->type == PTR_TO_PACKET_END) ||
16711 		    (dst_reg->type == PTR_TO_PACKET_META &&
16712 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
16713 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
16714 			find_good_pkt_pointers(this_branch, dst_reg,
16715 					       dst_reg->type, true);
16716 			mark_pkt_end(other_branch, insn->dst_reg, false);
16717 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
16718 			    src_reg->type == PTR_TO_PACKET) ||
16719 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
16720 			    src_reg->type == PTR_TO_PACKET_META)) {
16721 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
16722 			find_good_pkt_pointers(other_branch, src_reg,
16723 					       src_reg->type, false);
16724 			mark_pkt_end(this_branch, insn->src_reg, true);
16725 		} else {
16726 			return false;
16727 		}
16728 		break;
16729 	case BPF_JLE:
16730 		if ((dst_reg->type == PTR_TO_PACKET &&
16731 		     src_reg->type == PTR_TO_PACKET_END) ||
16732 		    (dst_reg->type == PTR_TO_PACKET_META &&
16733 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
16734 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
16735 			find_good_pkt_pointers(other_branch, dst_reg,
16736 					       dst_reg->type, false);
16737 			mark_pkt_end(this_branch, insn->dst_reg, true);
16738 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
16739 			    src_reg->type == PTR_TO_PACKET) ||
16740 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
16741 			    src_reg->type == PTR_TO_PACKET_META)) {
16742 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
16743 			find_good_pkt_pointers(this_branch, src_reg,
16744 					       src_reg->type, true);
16745 			mark_pkt_end(other_branch, insn->src_reg, false);
16746 		} else {
16747 			return false;
16748 		}
16749 		break;
16750 	default:
16751 		return false;
16752 	}
16753 
16754 	return true;
16755 }
16756 
__collect_linked_regs(struct linked_regs * reg_set,struct bpf_reg_state * reg,u32 id,u32 frameno,u32 spi_or_reg,bool is_reg)16757 static void __collect_linked_regs(struct linked_regs *reg_set, struct bpf_reg_state *reg,
16758 				  u32 id, u32 frameno, u32 spi_or_reg, bool is_reg)
16759 {
16760 	struct linked_reg *e;
16761 
16762 	if (reg->type != SCALAR_VALUE || (reg->id & ~BPF_ADD_CONST) != id)
16763 		return;
16764 
16765 	e = linked_regs_push(reg_set);
16766 	if (e) {
16767 		e->frameno = frameno;
16768 		e->is_reg = is_reg;
16769 		e->regno = spi_or_reg;
16770 	} else {
16771 		reg->id = 0;
16772 	}
16773 }
16774 
16775 /* For all R being scalar registers or spilled scalar registers
16776  * in verifier state, save R in linked_regs if R->id == id.
16777  * If there are too many Rs sharing same id, reset id for leftover Rs.
16778  */
collect_linked_regs(struct bpf_verifier_state * vstate,u32 id,struct linked_regs * linked_regs)16779 static void collect_linked_regs(struct bpf_verifier_state *vstate, u32 id,
16780 				struct linked_regs *linked_regs)
16781 {
16782 	struct bpf_func_state *func;
16783 	struct bpf_reg_state *reg;
16784 	int i, j;
16785 
16786 	id = id & ~BPF_ADD_CONST;
16787 	for (i = vstate->curframe; i >= 0; i--) {
16788 		func = vstate->frame[i];
16789 		for (j = 0; j < BPF_REG_FP; j++) {
16790 			reg = &func->regs[j];
16791 			__collect_linked_regs(linked_regs, reg, id, i, j, true);
16792 		}
16793 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
16794 			if (!is_spilled_reg(&func->stack[j]))
16795 				continue;
16796 			reg = &func->stack[j].spilled_ptr;
16797 			__collect_linked_regs(linked_regs, reg, id, i, j, false);
16798 		}
16799 	}
16800 }
16801 
16802 /* For all R in linked_regs, copy known_reg range into R
16803  * if R->id == known_reg->id.
16804  */
sync_linked_regs(struct bpf_verifier_state * vstate,struct bpf_reg_state * known_reg,struct linked_regs * linked_regs)16805 static void sync_linked_regs(struct bpf_verifier_state *vstate, struct bpf_reg_state *known_reg,
16806 			     struct linked_regs *linked_regs)
16807 {
16808 	struct bpf_reg_state fake_reg;
16809 	struct bpf_reg_state *reg;
16810 	struct linked_reg *e;
16811 	int i;
16812 
16813 	for (i = 0; i < linked_regs->cnt; ++i) {
16814 		e = &linked_regs->entries[i];
16815 		reg = e->is_reg ? &vstate->frame[e->frameno]->regs[e->regno]
16816 				: &vstate->frame[e->frameno]->stack[e->spi].spilled_ptr;
16817 		if (reg->type != SCALAR_VALUE || reg == known_reg)
16818 			continue;
16819 		if ((reg->id & ~BPF_ADD_CONST) != (known_reg->id & ~BPF_ADD_CONST))
16820 			continue;
16821 		if ((!(reg->id & BPF_ADD_CONST) && !(known_reg->id & BPF_ADD_CONST)) ||
16822 		    reg->off == known_reg->off) {
16823 			s32 saved_subreg_def = reg->subreg_def;
16824 
16825 			copy_register_state(reg, known_reg);
16826 			reg->subreg_def = saved_subreg_def;
16827 		} else {
16828 			s32 saved_subreg_def = reg->subreg_def;
16829 			s32 saved_off = reg->off;
16830 
16831 			fake_reg.type = SCALAR_VALUE;
16832 			__mark_reg_known(&fake_reg, (s32)reg->off - (s32)known_reg->off);
16833 
16834 			/* reg = known_reg; reg += delta */
16835 			copy_register_state(reg, known_reg);
16836 			/*
16837 			 * Must preserve off, id and add_const flag,
16838 			 * otherwise another sync_linked_regs() will be incorrect.
16839 			 */
16840 			reg->off = saved_off;
16841 			reg->subreg_def = saved_subreg_def;
16842 
16843 			scalar32_min_max_add(reg, &fake_reg);
16844 			scalar_min_max_add(reg, &fake_reg);
16845 			reg->var_off = tnum_add(reg->var_off, fake_reg.var_off);
16846 		}
16847 	}
16848 }
16849 
check_cond_jmp_op(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)16850 static int check_cond_jmp_op(struct bpf_verifier_env *env,
16851 			     struct bpf_insn *insn, int *insn_idx)
16852 {
16853 	struct bpf_verifier_state *this_branch = env->cur_state;
16854 	struct bpf_verifier_state *other_branch;
16855 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
16856 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
16857 	struct bpf_reg_state *eq_branch_regs;
16858 	struct linked_regs linked_regs = {};
16859 	u8 opcode = BPF_OP(insn->code);
16860 	int insn_flags = 0;
16861 	bool is_jmp32;
16862 	int pred = -1;
16863 	int err;
16864 
16865 	/* Only conditional jumps are expected to reach here. */
16866 	if (opcode == BPF_JA || opcode > BPF_JCOND) {
16867 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
16868 		return -EINVAL;
16869 	}
16870 
16871 	if (opcode == BPF_JCOND) {
16872 		struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
16873 		int idx = *insn_idx;
16874 
16875 		if (insn->code != (BPF_JMP | BPF_JCOND) ||
16876 		    insn->src_reg != BPF_MAY_GOTO ||
16877 		    insn->dst_reg || insn->imm) {
16878 			verbose(env, "invalid may_goto imm %d\n", insn->imm);
16879 			return -EINVAL;
16880 		}
16881 		prev_st = find_prev_entry(env, cur_st->parent, idx);
16882 
16883 		/* branch out 'fallthrough' insn as a new state to explore */
16884 		queued_st = push_stack(env, idx + 1, idx, false);
16885 		if (IS_ERR(queued_st))
16886 			return PTR_ERR(queued_st);
16887 
16888 		queued_st->may_goto_depth++;
16889 		if (prev_st)
16890 			widen_imprecise_scalars(env, prev_st, queued_st);
16891 		*insn_idx += insn->off;
16892 		return 0;
16893 	}
16894 
16895 	/* check src2 operand */
16896 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
16897 	if (err)
16898 		return err;
16899 
16900 	dst_reg = &regs[insn->dst_reg];
16901 	if (BPF_SRC(insn->code) == BPF_X) {
16902 		if (insn->imm != 0) {
16903 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
16904 			return -EINVAL;
16905 		}
16906 
16907 		/* check src1 operand */
16908 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
16909 		if (err)
16910 			return err;
16911 
16912 		src_reg = &regs[insn->src_reg];
16913 		if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
16914 		    is_pointer_value(env, insn->src_reg)) {
16915 			verbose(env, "R%d pointer comparison prohibited\n",
16916 				insn->src_reg);
16917 			return -EACCES;
16918 		}
16919 
16920 		if (src_reg->type == PTR_TO_STACK)
16921 			insn_flags |= INSN_F_SRC_REG_STACK;
16922 		if (dst_reg->type == PTR_TO_STACK)
16923 			insn_flags |= INSN_F_DST_REG_STACK;
16924 	} else {
16925 		if (insn->src_reg != BPF_REG_0) {
16926 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
16927 			return -EINVAL;
16928 		}
16929 		src_reg = &env->fake_reg[0];
16930 		memset(src_reg, 0, sizeof(*src_reg));
16931 		src_reg->type = SCALAR_VALUE;
16932 		__mark_reg_known(src_reg, insn->imm);
16933 
16934 		if (dst_reg->type == PTR_TO_STACK)
16935 			insn_flags |= INSN_F_DST_REG_STACK;
16936 	}
16937 
16938 	if (insn_flags) {
16939 		err = push_jmp_history(env, this_branch, insn_flags, 0);
16940 		if (err)
16941 			return err;
16942 	}
16943 
16944 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
16945 	pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32);
16946 	if (pred >= 0) {
16947 		/* If we get here with a dst_reg pointer type it is because
16948 		 * above is_branch_taken() special cased the 0 comparison.
16949 		 */
16950 		if (!__is_pointer_value(false, dst_reg))
16951 			err = mark_chain_precision(env, insn->dst_reg);
16952 		if (BPF_SRC(insn->code) == BPF_X && !err &&
16953 		    !__is_pointer_value(false, src_reg))
16954 			err = mark_chain_precision(env, insn->src_reg);
16955 		if (err)
16956 			return err;
16957 	}
16958 
16959 	if (pred == 1) {
16960 		/* Only follow the goto, ignore fall-through. If needed, push
16961 		 * the fall-through branch for simulation under speculative
16962 		 * execution.
16963 		 */
16964 		if (!env->bypass_spec_v1) {
16965 			err = sanitize_speculative_path(env, insn, *insn_idx + 1, *insn_idx);
16966 			if (err < 0)
16967 				return err;
16968 		}
16969 		if (env->log.level & BPF_LOG_LEVEL)
16970 			print_insn_state(env, this_branch, this_branch->curframe);
16971 		*insn_idx += insn->off;
16972 		return 0;
16973 	} else if (pred == 0) {
16974 		/* Only follow the fall-through branch, since that's where the
16975 		 * program will go. If needed, push the goto branch for
16976 		 * simulation under speculative execution.
16977 		 */
16978 		if (!env->bypass_spec_v1) {
16979 			err = sanitize_speculative_path(env, insn, *insn_idx + insn->off + 1,
16980 							*insn_idx);
16981 			if (err < 0)
16982 				return err;
16983 		}
16984 		if (env->log.level & BPF_LOG_LEVEL)
16985 			print_insn_state(env, this_branch, this_branch->curframe);
16986 		return 0;
16987 	}
16988 
16989 	/* Push scalar registers sharing same ID to jump history,
16990 	 * do this before creating 'other_branch', so that both
16991 	 * 'this_branch' and 'other_branch' share this history
16992 	 * if parent state is created.
16993 	 */
16994 	if (BPF_SRC(insn->code) == BPF_X && src_reg->type == SCALAR_VALUE && src_reg->id)
16995 		collect_linked_regs(this_branch, src_reg->id, &linked_regs);
16996 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id)
16997 		collect_linked_regs(this_branch, dst_reg->id, &linked_regs);
16998 	if (linked_regs.cnt > 1) {
16999 		err = push_jmp_history(env, this_branch, 0, linked_regs_pack(&linked_regs));
17000 		if (err)
17001 			return err;
17002 	}
17003 
17004 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, false);
17005 	if (IS_ERR(other_branch))
17006 		return PTR_ERR(other_branch);
17007 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17008 
17009 	if (BPF_SRC(insn->code) == BPF_X) {
17010 		err = reg_set_min_max(env,
17011 				      &other_branch_regs[insn->dst_reg],
17012 				      &other_branch_regs[insn->src_reg],
17013 				      dst_reg, src_reg, opcode, is_jmp32);
17014 	} else /* BPF_SRC(insn->code) == BPF_K */ {
17015 		/* reg_set_min_max() can mangle the fake_reg. Make a copy
17016 		 * so that these are two different memory locations. The
17017 		 * src_reg is not used beyond here in context of K.
17018 		 */
17019 		memcpy(&env->fake_reg[1], &env->fake_reg[0],
17020 		       sizeof(env->fake_reg[0]));
17021 		err = reg_set_min_max(env,
17022 				      &other_branch_regs[insn->dst_reg],
17023 				      &env->fake_reg[0],
17024 				      dst_reg, &env->fake_reg[1],
17025 				      opcode, is_jmp32);
17026 	}
17027 	if (err)
17028 		return err;
17029 
17030 	if (BPF_SRC(insn->code) == BPF_X &&
17031 	    src_reg->type == SCALAR_VALUE && src_reg->id &&
17032 	    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
17033 		sync_linked_regs(this_branch, src_reg, &linked_regs);
17034 		sync_linked_regs(other_branch, &other_branch_regs[insn->src_reg], &linked_regs);
17035 	}
17036 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
17037 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
17038 		sync_linked_regs(this_branch, dst_reg, &linked_regs);
17039 		sync_linked_regs(other_branch, &other_branch_regs[insn->dst_reg], &linked_regs);
17040 	}
17041 
17042 	/* if one pointer register is compared to another pointer
17043 	 * register check if PTR_MAYBE_NULL could be lifted.
17044 	 * E.g. register A - maybe null
17045 	 *      register B - not null
17046 	 * for JNE A, B, ... - A is not null in the false branch;
17047 	 * for JEQ A, B, ... - A is not null in the true branch.
17048 	 *
17049 	 * Since PTR_TO_BTF_ID points to a kernel struct that does
17050 	 * not need to be null checked by the BPF program, i.e.,
17051 	 * could be null even without PTR_MAYBE_NULL marking, so
17052 	 * only propagate nullness when neither reg is that type.
17053 	 */
17054 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
17055 	    __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
17056 	    type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
17057 	    base_type(src_reg->type) != PTR_TO_BTF_ID &&
17058 	    base_type(dst_reg->type) != PTR_TO_BTF_ID) {
17059 		eq_branch_regs = NULL;
17060 		switch (opcode) {
17061 		case BPF_JEQ:
17062 			eq_branch_regs = other_branch_regs;
17063 			break;
17064 		case BPF_JNE:
17065 			eq_branch_regs = regs;
17066 			break;
17067 		default:
17068 			/* do nothing */
17069 			break;
17070 		}
17071 		if (eq_branch_regs) {
17072 			if (type_may_be_null(src_reg->type))
17073 				mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
17074 			else
17075 				mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
17076 		}
17077 	}
17078 
17079 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
17080 	 * NOTE: these optimizations below are related with pointer comparison
17081 	 *       which will never be JMP32.
17082 	 */
17083 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
17084 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
17085 	    type_may_be_null(dst_reg->type)) {
17086 		/* Mark all identical registers in each branch as either
17087 		 * safe or unknown depending R == 0 or R != 0 conditional.
17088 		 */
17089 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
17090 				      opcode == BPF_JNE);
17091 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
17092 				      opcode == BPF_JEQ);
17093 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
17094 					   this_branch, other_branch) &&
17095 		   is_pointer_value(env, insn->dst_reg)) {
17096 		verbose(env, "R%d pointer comparison prohibited\n",
17097 			insn->dst_reg);
17098 		return -EACCES;
17099 	}
17100 	if (env->log.level & BPF_LOG_LEVEL)
17101 		print_insn_state(env, this_branch, this_branch->curframe);
17102 	return 0;
17103 }
17104 
17105 /* verify BPF_LD_IMM64 instruction */
check_ld_imm(struct bpf_verifier_env * env,struct bpf_insn * insn)17106 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17107 {
17108 	struct bpf_insn_aux_data *aux = cur_aux(env);
17109 	struct bpf_reg_state *regs = cur_regs(env);
17110 	struct bpf_reg_state *dst_reg;
17111 	struct bpf_map *map;
17112 	int err;
17113 
17114 	if (BPF_SIZE(insn->code) != BPF_DW) {
17115 		verbose(env, "invalid BPF_LD_IMM insn\n");
17116 		return -EINVAL;
17117 	}
17118 	if (insn->off != 0) {
17119 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17120 		return -EINVAL;
17121 	}
17122 
17123 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
17124 	if (err)
17125 		return err;
17126 
17127 	dst_reg = &regs[insn->dst_reg];
17128 	if (insn->src_reg == 0) {
17129 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
17130 
17131 		dst_reg->type = SCALAR_VALUE;
17132 		__mark_reg_known(&regs[insn->dst_reg], imm);
17133 		return 0;
17134 	}
17135 
17136 	/* All special src_reg cases are listed below. From this point onwards
17137 	 * we either succeed and assign a corresponding dst_reg->type after
17138 	 * zeroing the offset, or fail and reject the program.
17139 	 */
17140 	mark_reg_known_zero(env, regs, insn->dst_reg);
17141 
17142 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
17143 		dst_reg->type = aux->btf_var.reg_type;
17144 		switch (base_type(dst_reg->type)) {
17145 		case PTR_TO_MEM:
17146 			dst_reg->mem_size = aux->btf_var.mem_size;
17147 			break;
17148 		case PTR_TO_BTF_ID:
17149 			dst_reg->btf = aux->btf_var.btf;
17150 			dst_reg->btf_id = aux->btf_var.btf_id;
17151 			break;
17152 		default:
17153 			verifier_bug(env, "pseudo btf id: unexpected dst reg type");
17154 			return -EFAULT;
17155 		}
17156 		return 0;
17157 	}
17158 
17159 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
17160 		struct bpf_prog_aux *aux = env->prog->aux;
17161 		u32 subprogno = find_subprog(env,
17162 					     env->insn_idx + insn->imm + 1);
17163 
17164 		if (!aux->func_info) {
17165 			verbose(env, "missing btf func_info\n");
17166 			return -EINVAL;
17167 		}
17168 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
17169 			verbose(env, "callback function not static\n");
17170 			return -EINVAL;
17171 		}
17172 
17173 		dst_reg->type = PTR_TO_FUNC;
17174 		dst_reg->subprogno = subprogno;
17175 		return 0;
17176 	}
17177 
17178 	map = env->used_maps[aux->map_index];
17179 	dst_reg->map_ptr = map;
17180 
17181 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
17182 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
17183 		if (map->map_type == BPF_MAP_TYPE_ARENA) {
17184 			__mark_reg_unknown(env, dst_reg);
17185 			return 0;
17186 		}
17187 		dst_reg->type = PTR_TO_MAP_VALUE;
17188 		dst_reg->off = aux->map_off;
17189 		WARN_ON_ONCE(map->map_type != BPF_MAP_TYPE_INSN_ARRAY &&
17190 			     map->max_entries != 1);
17191 		/* We want reg->id to be same (0) as map_value is not distinct */
17192 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
17193 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
17194 		dst_reg->type = CONST_PTR_TO_MAP;
17195 	} else {
17196 		verifier_bug(env, "unexpected src reg value for ldimm64");
17197 		return -EFAULT;
17198 	}
17199 
17200 	return 0;
17201 }
17202 
may_access_skb(enum bpf_prog_type type)17203 static bool may_access_skb(enum bpf_prog_type type)
17204 {
17205 	switch (type) {
17206 	case BPF_PROG_TYPE_SOCKET_FILTER:
17207 	case BPF_PROG_TYPE_SCHED_CLS:
17208 	case BPF_PROG_TYPE_SCHED_ACT:
17209 		return true;
17210 	default:
17211 		return false;
17212 	}
17213 }
17214 
17215 /* verify safety of LD_ABS|LD_IND instructions:
17216  * - they can only appear in the programs where ctx == skb
17217  * - since they are wrappers of function calls, they scratch R1-R5 registers,
17218  *   preserve R6-R9, and store return value into R0
17219  *
17220  * Implicit input:
17221  *   ctx == skb == R6 == CTX
17222  *
17223  * Explicit input:
17224  *   SRC == any register
17225  *   IMM == 32-bit immediate
17226  *
17227  * Output:
17228  *   R0 - 8/16/32-bit skb data converted to cpu endianness
17229  */
check_ld_abs(struct bpf_verifier_env * env,struct bpf_insn * insn)17230 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
17231 {
17232 	struct bpf_reg_state *regs = cur_regs(env);
17233 	static const int ctx_reg = BPF_REG_6;
17234 	u8 mode = BPF_MODE(insn->code);
17235 	int i, err;
17236 
17237 	if (!may_access_skb(resolve_prog_type(env->prog))) {
17238 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
17239 		return -EINVAL;
17240 	}
17241 
17242 	if (!env->ops->gen_ld_abs) {
17243 		verifier_bug(env, "gen_ld_abs is null");
17244 		return -EFAULT;
17245 	}
17246 
17247 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
17248 	    BPF_SIZE(insn->code) == BPF_DW ||
17249 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
17250 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
17251 		return -EINVAL;
17252 	}
17253 
17254 	/* check whether implicit source operand (register R6) is readable */
17255 	err = check_reg_arg(env, ctx_reg, SRC_OP);
17256 	if (err)
17257 		return err;
17258 
17259 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
17260 	 * gen_ld_abs() may terminate the program at runtime, leading to
17261 	 * reference leak.
17262 	 */
17263 	err = check_resource_leak(env, false, true, "BPF_LD_[ABS|IND]");
17264 	if (err)
17265 		return err;
17266 
17267 	if (regs[ctx_reg].type != PTR_TO_CTX) {
17268 		verbose(env,
17269 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
17270 		return -EINVAL;
17271 	}
17272 
17273 	if (mode == BPF_IND) {
17274 		/* check explicit source operand */
17275 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
17276 		if (err)
17277 			return err;
17278 	}
17279 
17280 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
17281 	if (err < 0)
17282 		return err;
17283 
17284 	/* reset caller saved regs to unreadable */
17285 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
17286 		mark_reg_not_init(env, regs, caller_saved[i]);
17287 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
17288 	}
17289 
17290 	/* mark destination R0 register as readable, since it contains
17291 	 * the value fetched from the packet.
17292 	 * Already marked as written above.
17293 	 */
17294 	mark_reg_unknown(env, regs, BPF_REG_0);
17295 	/* ld_abs load up to 32-bit skb data. */
17296 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
17297 	return 0;
17298 }
17299 
check_return_code(struct bpf_verifier_env * env,int regno,const char * reg_name)17300 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name)
17301 {
17302 	const char *exit_ctx = "At program exit";
17303 	struct tnum enforce_attach_type_range = tnum_unknown;
17304 	const struct bpf_prog *prog = env->prog;
17305 	struct bpf_reg_state *reg = reg_state(env, regno);
17306 	struct bpf_retval_range range = retval_range(0, 1);
17307 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
17308 	int err;
17309 	struct bpf_func_state *frame = env->cur_state->frame[0];
17310 	const bool is_subprog = frame->subprogno;
17311 	bool return_32bit = false;
17312 	const struct btf_type *reg_type, *ret_type = NULL;
17313 
17314 	/* LSM and struct_ops func-ptr's return type could be "void" */
17315 	if (!is_subprog || frame->in_exception_callback_fn) {
17316 		switch (prog_type) {
17317 		case BPF_PROG_TYPE_LSM:
17318 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
17319 				/* See below, can be 0 or 0-1 depending on hook. */
17320 				break;
17321 			if (!prog->aux->attach_func_proto->type)
17322 				return 0;
17323 			break;
17324 		case BPF_PROG_TYPE_STRUCT_OPS:
17325 			if (!prog->aux->attach_func_proto->type)
17326 				return 0;
17327 
17328 			if (frame->in_exception_callback_fn)
17329 				break;
17330 
17331 			/* Allow a struct_ops program to return a referenced kptr if it
17332 			 * matches the operator's return type and is in its unmodified
17333 			 * form. A scalar zero (i.e., a null pointer) is also allowed.
17334 			 */
17335 			reg_type = reg->btf ? btf_type_by_id(reg->btf, reg->btf_id) : NULL;
17336 			ret_type = btf_type_resolve_ptr(prog->aux->attach_btf,
17337 							prog->aux->attach_func_proto->type,
17338 							NULL);
17339 			if (ret_type && ret_type == reg_type && reg->ref_obj_id)
17340 				return __check_ptr_off_reg(env, reg, regno, false);
17341 			break;
17342 		default:
17343 			break;
17344 		}
17345 	}
17346 
17347 	/* eBPF calling convention is such that R0 is used
17348 	 * to return the value from eBPF program.
17349 	 * Make sure that it's readable at this time
17350 	 * of bpf_exit, which means that program wrote
17351 	 * something into it earlier
17352 	 */
17353 	err = check_reg_arg(env, regno, SRC_OP);
17354 	if (err)
17355 		return err;
17356 
17357 	if (is_pointer_value(env, regno)) {
17358 		verbose(env, "R%d leaks addr as return value\n", regno);
17359 		return -EACCES;
17360 	}
17361 
17362 	if (frame->in_async_callback_fn) {
17363 		exit_ctx = "At async callback return";
17364 		range = frame->callback_ret_range;
17365 		goto enforce_retval;
17366 	}
17367 
17368 	if (is_subprog && !frame->in_exception_callback_fn) {
17369 		if (reg->type != SCALAR_VALUE) {
17370 			verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n",
17371 				regno, reg_type_str(env, reg->type));
17372 			return -EINVAL;
17373 		}
17374 		return 0;
17375 	}
17376 
17377 	switch (prog_type) {
17378 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
17379 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
17380 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
17381 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG ||
17382 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
17383 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
17384 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME ||
17385 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
17386 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME ||
17387 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME)
17388 			range = retval_range(1, 1);
17389 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
17390 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
17391 			range = retval_range(0, 3);
17392 		break;
17393 	case BPF_PROG_TYPE_CGROUP_SKB:
17394 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
17395 			range = retval_range(0, 3);
17396 			enforce_attach_type_range = tnum_range(2, 3);
17397 		}
17398 		break;
17399 	case BPF_PROG_TYPE_CGROUP_SOCK:
17400 	case BPF_PROG_TYPE_SOCK_OPS:
17401 	case BPF_PROG_TYPE_CGROUP_DEVICE:
17402 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
17403 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
17404 		break;
17405 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
17406 		if (!env->prog->aux->attach_btf_id)
17407 			return 0;
17408 		range = retval_range(0, 0);
17409 		break;
17410 	case BPF_PROG_TYPE_TRACING:
17411 		switch (env->prog->expected_attach_type) {
17412 		case BPF_TRACE_FENTRY:
17413 		case BPF_TRACE_FEXIT:
17414 			range = retval_range(0, 0);
17415 			break;
17416 		case BPF_TRACE_RAW_TP:
17417 		case BPF_MODIFY_RETURN:
17418 			return 0;
17419 		case BPF_TRACE_ITER:
17420 			break;
17421 		default:
17422 			return -ENOTSUPP;
17423 		}
17424 		break;
17425 	case BPF_PROG_TYPE_KPROBE:
17426 		switch (env->prog->expected_attach_type) {
17427 		case BPF_TRACE_KPROBE_SESSION:
17428 		case BPF_TRACE_UPROBE_SESSION:
17429 			range = retval_range(0, 1);
17430 			break;
17431 		default:
17432 			return 0;
17433 		}
17434 		break;
17435 	case BPF_PROG_TYPE_SK_LOOKUP:
17436 		range = retval_range(SK_DROP, SK_PASS);
17437 		break;
17438 
17439 	case BPF_PROG_TYPE_LSM:
17440 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
17441 			/* no range found, any return value is allowed */
17442 			if (!get_func_retval_range(env->prog, &range))
17443 				return 0;
17444 			/* no restricted range, any return value is allowed */
17445 			if (range.minval == S32_MIN && range.maxval == S32_MAX)
17446 				return 0;
17447 			return_32bit = true;
17448 		} else if (!env->prog->aux->attach_func_proto->type) {
17449 			/* Make sure programs that attach to void
17450 			 * hooks don't try to modify return value.
17451 			 */
17452 			range = retval_range(1, 1);
17453 		}
17454 		break;
17455 
17456 	case BPF_PROG_TYPE_NETFILTER:
17457 		range = retval_range(NF_DROP, NF_ACCEPT);
17458 		break;
17459 	case BPF_PROG_TYPE_STRUCT_OPS:
17460 		if (!ret_type)
17461 			return 0;
17462 		range = retval_range(0, 0);
17463 		break;
17464 	case BPF_PROG_TYPE_EXT:
17465 		/* freplace program can return anything as its return value
17466 		 * depends on the to-be-replaced kernel func or bpf program.
17467 		 */
17468 	default:
17469 		return 0;
17470 	}
17471 
17472 enforce_retval:
17473 	if (reg->type != SCALAR_VALUE) {
17474 		verbose(env, "%s the register R%d is not a known value (%s)\n",
17475 			exit_ctx, regno, reg_type_str(env, reg->type));
17476 		return -EINVAL;
17477 	}
17478 
17479 	err = mark_chain_precision(env, regno);
17480 	if (err)
17481 		return err;
17482 
17483 	if (!retval_range_within(range, reg, return_32bit)) {
17484 		verbose_invalid_scalar(env, reg, range, exit_ctx, reg_name);
17485 		if (!is_subprog &&
17486 		    prog->expected_attach_type == BPF_LSM_CGROUP &&
17487 		    prog_type == BPF_PROG_TYPE_LSM &&
17488 		    !prog->aux->attach_func_proto->type)
17489 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
17490 		return -EINVAL;
17491 	}
17492 
17493 	if (!tnum_is_unknown(enforce_attach_type_range) &&
17494 	    tnum_in(enforce_attach_type_range, reg->var_off))
17495 		env->prog->enforce_expected_attach_type = 1;
17496 	return 0;
17497 }
17498 
mark_subprog_changes_pkt_data(struct bpf_verifier_env * env,int off)17499 static void mark_subprog_changes_pkt_data(struct bpf_verifier_env *env, int off)
17500 {
17501 	struct bpf_subprog_info *subprog;
17502 
17503 	subprog = bpf_find_containing_subprog(env, off);
17504 	subprog->changes_pkt_data = true;
17505 }
17506 
mark_subprog_might_sleep(struct bpf_verifier_env * env,int off)17507 static void mark_subprog_might_sleep(struct bpf_verifier_env *env, int off)
17508 {
17509 	struct bpf_subprog_info *subprog;
17510 
17511 	subprog = bpf_find_containing_subprog(env, off);
17512 	subprog->might_sleep = true;
17513 }
17514 
17515 /* 't' is an index of a call-site.
17516  * 'w' is a callee entry point.
17517  * Eventually this function would be called when env->cfg.insn_state[w] == EXPLORED.
17518  * Rely on DFS traversal order and absence of recursive calls to guarantee that
17519  * callee's change_pkt_data marks would be correct at that moment.
17520  */
merge_callee_effects(struct bpf_verifier_env * env,int t,int w)17521 static void merge_callee_effects(struct bpf_verifier_env *env, int t, int w)
17522 {
17523 	struct bpf_subprog_info *caller, *callee;
17524 
17525 	caller = bpf_find_containing_subprog(env, t);
17526 	callee = bpf_find_containing_subprog(env, w);
17527 	caller->changes_pkt_data |= callee->changes_pkt_data;
17528 	caller->might_sleep |= callee->might_sleep;
17529 }
17530 
17531 /* non-recursive DFS pseudo code
17532  * 1  procedure DFS-iterative(G,v):
17533  * 2      label v as discovered
17534  * 3      let S be a stack
17535  * 4      S.push(v)
17536  * 5      while S is not empty
17537  * 6            t <- S.peek()
17538  * 7            if t is what we're looking for:
17539  * 8                return t
17540  * 9            for all edges e in G.adjacentEdges(t) do
17541  * 10               if edge e is already labelled
17542  * 11                   continue with the next edge
17543  * 12               w <- G.adjacentVertex(t,e)
17544  * 13               if vertex w is not discovered and not explored
17545  * 14                   label e as tree-edge
17546  * 15                   label w as discovered
17547  * 16                   S.push(w)
17548  * 17                   continue at 5
17549  * 18               else if vertex w is discovered
17550  * 19                   label e as back-edge
17551  * 20               else
17552  * 21                   // vertex w is explored
17553  * 22                   label e as forward- or cross-edge
17554  * 23           label t as explored
17555  * 24           S.pop()
17556  *
17557  * convention:
17558  * 0x10 - discovered
17559  * 0x11 - discovered and fall-through edge labelled
17560  * 0x12 - discovered and fall-through and branch edges labelled
17561  * 0x20 - explored
17562  */
17563 
17564 enum {
17565 	DISCOVERED = 0x10,
17566 	EXPLORED = 0x20,
17567 	FALLTHROUGH = 1,
17568 	BRANCH = 2,
17569 };
17570 
mark_prune_point(struct bpf_verifier_env * env,int idx)17571 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
17572 {
17573 	env->insn_aux_data[idx].prune_point = true;
17574 }
17575 
is_prune_point(struct bpf_verifier_env * env,int insn_idx)17576 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
17577 {
17578 	return env->insn_aux_data[insn_idx].prune_point;
17579 }
17580 
mark_force_checkpoint(struct bpf_verifier_env * env,int idx)17581 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
17582 {
17583 	env->insn_aux_data[idx].force_checkpoint = true;
17584 }
17585 
is_force_checkpoint(struct bpf_verifier_env * env,int insn_idx)17586 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
17587 {
17588 	return env->insn_aux_data[insn_idx].force_checkpoint;
17589 }
17590 
mark_calls_callback(struct bpf_verifier_env * env,int idx)17591 static void mark_calls_callback(struct bpf_verifier_env *env, int idx)
17592 {
17593 	env->insn_aux_data[idx].calls_callback = true;
17594 }
17595 
bpf_calls_callback(struct bpf_verifier_env * env,int insn_idx)17596 bool bpf_calls_callback(struct bpf_verifier_env *env, int insn_idx)
17597 {
17598 	return env->insn_aux_data[insn_idx].calls_callback;
17599 }
17600 
17601 enum {
17602 	DONE_EXPLORING = 0,
17603 	KEEP_EXPLORING = 1,
17604 };
17605 
17606 /* t, w, e - match pseudo-code above:
17607  * t - index of current instruction
17608  * w - next instruction
17609  * e - edge
17610  */
push_insn(int t,int w,int e,struct bpf_verifier_env * env)17611 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
17612 {
17613 	int *insn_stack = env->cfg.insn_stack;
17614 	int *insn_state = env->cfg.insn_state;
17615 
17616 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
17617 		return DONE_EXPLORING;
17618 
17619 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
17620 		return DONE_EXPLORING;
17621 
17622 	if (w < 0 || w >= env->prog->len) {
17623 		verbose_linfo(env, t, "%d: ", t);
17624 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
17625 		return -EINVAL;
17626 	}
17627 
17628 	if (e == BRANCH) {
17629 		/* mark branch target for state pruning */
17630 		mark_prune_point(env, w);
17631 		mark_jmp_point(env, w);
17632 	}
17633 
17634 	if (insn_state[w] == 0) {
17635 		/* tree-edge */
17636 		insn_state[t] = DISCOVERED | e;
17637 		insn_state[w] = DISCOVERED;
17638 		if (env->cfg.cur_stack >= env->prog->len)
17639 			return -E2BIG;
17640 		insn_stack[env->cfg.cur_stack++] = w;
17641 		return KEEP_EXPLORING;
17642 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
17643 		if (env->bpf_capable)
17644 			return DONE_EXPLORING;
17645 		verbose_linfo(env, t, "%d: ", t);
17646 		verbose_linfo(env, w, "%d: ", w);
17647 		verbose(env, "back-edge from insn %d to %d\n", t, w);
17648 		return -EINVAL;
17649 	} else if (insn_state[w] == EXPLORED) {
17650 		/* forward- or cross-edge */
17651 		insn_state[t] = DISCOVERED | e;
17652 	} else {
17653 		verifier_bug(env, "insn state internal bug");
17654 		return -EFAULT;
17655 	}
17656 	return DONE_EXPLORING;
17657 }
17658 
visit_func_call_insn(int t,struct bpf_insn * insns,struct bpf_verifier_env * env,bool visit_callee)17659 static int visit_func_call_insn(int t, struct bpf_insn *insns,
17660 				struct bpf_verifier_env *env,
17661 				bool visit_callee)
17662 {
17663 	int ret, insn_sz;
17664 	int w;
17665 
17666 	insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1;
17667 	ret = push_insn(t, t + insn_sz, FALLTHROUGH, env);
17668 	if (ret)
17669 		return ret;
17670 
17671 	mark_prune_point(env, t + insn_sz);
17672 	/* when we exit from subprog, we need to record non-linear history */
17673 	mark_jmp_point(env, t + insn_sz);
17674 
17675 	if (visit_callee) {
17676 		w = t + insns[t].imm + 1;
17677 		mark_prune_point(env, t);
17678 		merge_callee_effects(env, t, w);
17679 		ret = push_insn(t, w, BRANCH, env);
17680 	}
17681 	return ret;
17682 }
17683 
17684 /* Bitmask with 1s for all caller saved registers */
17685 #define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1)
17686 
17687 /* True if do_misc_fixups() replaces calls to helper number 'imm',
17688  * replacement patch is presumed to follow bpf_fastcall contract
17689  * (see mark_fastcall_pattern_for_call() below).
17690  */
verifier_inlines_helper_call(struct bpf_verifier_env * env,s32 imm)17691 static bool verifier_inlines_helper_call(struct bpf_verifier_env *env, s32 imm)
17692 {
17693 	switch (imm) {
17694 #ifdef CONFIG_X86_64
17695 	case BPF_FUNC_get_smp_processor_id:
17696 		return env->prog->jit_requested && bpf_jit_supports_percpu_insn();
17697 #endif
17698 	default:
17699 		return false;
17700 	}
17701 }
17702 
17703 struct call_summary {
17704 	u8 num_params;
17705 	bool is_void;
17706 	bool fastcall;
17707 };
17708 
17709 /* If @call is a kfunc or helper call, fills @cs and returns true,
17710  * otherwise returns false.
17711  */
get_call_summary(struct bpf_verifier_env * env,struct bpf_insn * call,struct call_summary * cs)17712 static bool get_call_summary(struct bpf_verifier_env *env, struct bpf_insn *call,
17713 			     struct call_summary *cs)
17714 {
17715 	struct bpf_kfunc_call_arg_meta meta;
17716 	const struct bpf_func_proto *fn;
17717 	int i;
17718 
17719 	if (bpf_helper_call(call)) {
17720 
17721 		if (get_helper_proto(env, call->imm, &fn) < 0)
17722 			/* error would be reported later */
17723 			return false;
17724 		cs->fastcall = fn->allow_fastcall &&
17725 			       (verifier_inlines_helper_call(env, call->imm) ||
17726 				bpf_jit_inlines_helper_call(call->imm));
17727 		cs->is_void = fn->ret_type == RET_VOID;
17728 		cs->num_params = 0;
17729 		for (i = 0; i < ARRAY_SIZE(fn->arg_type); ++i) {
17730 			if (fn->arg_type[i] == ARG_DONTCARE)
17731 				break;
17732 			cs->num_params++;
17733 		}
17734 		return true;
17735 	}
17736 
17737 	if (bpf_pseudo_kfunc_call(call)) {
17738 		int err;
17739 
17740 		err = fetch_kfunc_meta(env, call, &meta, NULL);
17741 		if (err < 0)
17742 			/* error would be reported later */
17743 			return false;
17744 		cs->num_params = btf_type_vlen(meta.func_proto);
17745 		cs->fastcall = meta.kfunc_flags & KF_FASTCALL;
17746 		cs->is_void = btf_type_is_void(btf_type_by_id(meta.btf, meta.func_proto->type));
17747 		return true;
17748 	}
17749 
17750 	return false;
17751 }
17752 
17753 /* LLVM define a bpf_fastcall function attribute.
17754  * This attribute means that function scratches only some of
17755  * the caller saved registers defined by ABI.
17756  * For BPF the set of such registers could be defined as follows:
17757  * - R0 is scratched only if function is non-void;
17758  * - R1-R5 are scratched only if corresponding parameter type is defined
17759  *   in the function prototype.
17760  *
17761  * The contract between kernel and clang allows to simultaneously use
17762  * such functions and maintain backwards compatibility with old
17763  * kernels that don't understand bpf_fastcall calls:
17764  *
17765  * - for bpf_fastcall calls clang allocates registers as-if relevant r0-r5
17766  *   registers are not scratched by the call;
17767  *
17768  * - as a post-processing step, clang visits each bpf_fastcall call and adds
17769  *   spill/fill for every live r0-r5;
17770  *
17771  * - stack offsets used for the spill/fill are allocated as lowest
17772  *   stack offsets in whole function and are not used for any other
17773  *   purposes;
17774  *
17775  * - when kernel loads a program, it looks for such patterns
17776  *   (bpf_fastcall function surrounded by spills/fills) and checks if
17777  *   spill/fill stack offsets are used exclusively in fastcall patterns;
17778  *
17779  * - if so, and if verifier or current JIT inlines the call to the
17780  *   bpf_fastcall function (e.g. a helper call), kernel removes unnecessary
17781  *   spill/fill pairs;
17782  *
17783  * - when old kernel loads a program, presence of spill/fill pairs
17784  *   keeps BPF program valid, albeit slightly less efficient.
17785  *
17786  * For example:
17787  *
17788  *   r1 = 1;
17789  *   r2 = 2;
17790  *   *(u64 *)(r10 - 8)  = r1;            r1 = 1;
17791  *   *(u64 *)(r10 - 16) = r2;            r2 = 2;
17792  *   call %[to_be_inlined]         -->   call %[to_be_inlined]
17793  *   r2 = *(u64 *)(r10 - 16);            r0 = r1;
17794  *   r1 = *(u64 *)(r10 - 8);             r0 += r2;
17795  *   r0 = r1;                            exit;
17796  *   r0 += r2;
17797  *   exit;
17798  *
17799  * The purpose of mark_fastcall_pattern_for_call is to:
17800  * - look for such patterns;
17801  * - mark spill and fill instructions in env->insn_aux_data[*].fastcall_pattern;
17802  * - mark set env->insn_aux_data[*].fastcall_spills_num for call instruction;
17803  * - update env->subprog_info[*]->fastcall_stack_off to find an offset
17804  *   at which bpf_fastcall spill/fill stack slots start;
17805  * - update env->subprog_info[*]->keep_fastcall_stack.
17806  *
17807  * The .fastcall_pattern and .fastcall_stack_off are used by
17808  * check_fastcall_stack_contract() to check if every stack access to
17809  * fastcall spill/fill stack slot originates from spill/fill
17810  * instructions, members of fastcall patterns.
17811  *
17812  * If such condition holds true for a subprogram, fastcall patterns could
17813  * be rewritten by remove_fastcall_spills_fills().
17814  * Otherwise bpf_fastcall patterns are not changed in the subprogram
17815  * (code, presumably, generated by an older clang version).
17816  *
17817  * For example, it is *not* safe to remove spill/fill below:
17818  *
17819  *   r1 = 1;
17820  *   *(u64 *)(r10 - 8)  = r1;            r1 = 1;
17821  *   call %[to_be_inlined]         -->   call %[to_be_inlined]
17822  *   r1 = *(u64 *)(r10 - 8);             r0 = *(u64 *)(r10 - 8);  <---- wrong !!!
17823  *   r0 = *(u64 *)(r10 - 8);             r0 += r1;
17824  *   r0 += r1;                           exit;
17825  *   exit;
17826  */
mark_fastcall_pattern_for_call(struct bpf_verifier_env * env,struct bpf_subprog_info * subprog,int insn_idx,s16 lowest_off)17827 static void mark_fastcall_pattern_for_call(struct bpf_verifier_env *env,
17828 					   struct bpf_subprog_info *subprog,
17829 					   int insn_idx, s16 lowest_off)
17830 {
17831 	struct bpf_insn *insns = env->prog->insnsi, *stx, *ldx;
17832 	struct bpf_insn *call = &env->prog->insnsi[insn_idx];
17833 	u32 clobbered_regs_mask;
17834 	struct call_summary cs;
17835 	u32 expected_regs_mask;
17836 	s16 off;
17837 	int i;
17838 
17839 	if (!get_call_summary(env, call, &cs))
17840 		return;
17841 
17842 	/* A bitmask specifying which caller saved registers are clobbered
17843 	 * by a call to a helper/kfunc *as if* this helper/kfunc follows
17844 	 * bpf_fastcall contract:
17845 	 * - includes R0 if function is non-void;
17846 	 * - includes R1-R5 if corresponding parameter has is described
17847 	 *   in the function prototype.
17848 	 */
17849 	clobbered_regs_mask = GENMASK(cs.num_params, cs.is_void ? 1 : 0);
17850 	/* e.g. if helper call clobbers r{0,1}, expect r{2,3,4,5} in the pattern */
17851 	expected_regs_mask = ~clobbered_regs_mask & ALL_CALLER_SAVED_REGS;
17852 
17853 	/* match pairs of form:
17854 	 *
17855 	 * *(u64 *)(r10 - Y) = rX   (where Y % 8 == 0)
17856 	 * ...
17857 	 * call %[to_be_inlined]
17858 	 * ...
17859 	 * rX = *(u64 *)(r10 - Y)
17860 	 */
17861 	for (i = 1, off = lowest_off; i <= ARRAY_SIZE(caller_saved); ++i, off += BPF_REG_SIZE) {
17862 		if (insn_idx - i < 0 || insn_idx + i >= env->prog->len)
17863 			break;
17864 		stx = &insns[insn_idx - i];
17865 		ldx = &insns[insn_idx + i];
17866 		/* must be a stack spill/fill pair */
17867 		if (stx->code != (BPF_STX | BPF_MEM | BPF_DW) ||
17868 		    ldx->code != (BPF_LDX | BPF_MEM | BPF_DW) ||
17869 		    stx->dst_reg != BPF_REG_10 ||
17870 		    ldx->src_reg != BPF_REG_10)
17871 			break;
17872 		/* must be a spill/fill for the same reg */
17873 		if (stx->src_reg != ldx->dst_reg)
17874 			break;
17875 		/* must be one of the previously unseen registers */
17876 		if ((BIT(stx->src_reg) & expected_regs_mask) == 0)
17877 			break;
17878 		/* must be a spill/fill for the same expected offset,
17879 		 * no need to check offset alignment, BPF_DW stack access
17880 		 * is always 8-byte aligned.
17881 		 */
17882 		if (stx->off != off || ldx->off != off)
17883 			break;
17884 		expected_regs_mask &= ~BIT(stx->src_reg);
17885 		env->insn_aux_data[insn_idx - i].fastcall_pattern = 1;
17886 		env->insn_aux_data[insn_idx + i].fastcall_pattern = 1;
17887 	}
17888 	if (i == 1)
17889 		return;
17890 
17891 	/* Conditionally set 'fastcall_spills_num' to allow forward
17892 	 * compatibility when more helper functions are marked as
17893 	 * bpf_fastcall at compile time than current kernel supports, e.g:
17894 	 *
17895 	 *   1: *(u64 *)(r10 - 8) = r1
17896 	 *   2: call A                  ;; assume A is bpf_fastcall for current kernel
17897 	 *   3: r1 = *(u64 *)(r10 - 8)
17898 	 *   4: *(u64 *)(r10 - 8) = r1
17899 	 *   5: call B                  ;; assume B is not bpf_fastcall for current kernel
17900 	 *   6: r1 = *(u64 *)(r10 - 8)
17901 	 *
17902 	 * There is no need to block bpf_fastcall rewrite for such program.
17903 	 * Set 'fastcall_pattern' for both calls to keep check_fastcall_stack_contract() happy,
17904 	 * don't set 'fastcall_spills_num' for call B so that remove_fastcall_spills_fills()
17905 	 * does not remove spill/fill pair {4,6}.
17906 	 */
17907 	if (cs.fastcall)
17908 		env->insn_aux_data[insn_idx].fastcall_spills_num = i - 1;
17909 	else
17910 		subprog->keep_fastcall_stack = 1;
17911 	subprog->fastcall_stack_off = min(subprog->fastcall_stack_off, off);
17912 }
17913 
mark_fastcall_patterns(struct bpf_verifier_env * env)17914 static int mark_fastcall_patterns(struct bpf_verifier_env *env)
17915 {
17916 	struct bpf_subprog_info *subprog = env->subprog_info;
17917 	struct bpf_insn *insn;
17918 	s16 lowest_off;
17919 	int s, i;
17920 
17921 	for (s = 0; s < env->subprog_cnt; ++s, ++subprog) {
17922 		/* find lowest stack spill offset used in this subprog */
17923 		lowest_off = 0;
17924 		for (i = subprog->start; i < (subprog + 1)->start; ++i) {
17925 			insn = env->prog->insnsi + i;
17926 			if (insn->code != (BPF_STX | BPF_MEM | BPF_DW) ||
17927 			    insn->dst_reg != BPF_REG_10)
17928 				continue;
17929 			lowest_off = min(lowest_off, insn->off);
17930 		}
17931 		/* use this offset to find fastcall patterns */
17932 		for (i = subprog->start; i < (subprog + 1)->start; ++i) {
17933 			insn = env->prog->insnsi + i;
17934 			if (insn->code != (BPF_JMP | BPF_CALL))
17935 				continue;
17936 			mark_fastcall_pattern_for_call(env, subprog, i, lowest_off);
17937 		}
17938 	}
17939 	return 0;
17940 }
17941 
iarray_realloc(struct bpf_iarray * old,size_t n_elem)17942 static struct bpf_iarray *iarray_realloc(struct bpf_iarray *old, size_t n_elem)
17943 {
17944 	size_t new_size = sizeof(struct bpf_iarray) + n_elem * sizeof(old->items[0]);
17945 	struct bpf_iarray *new;
17946 
17947 	new = kvrealloc(old, new_size, GFP_KERNEL_ACCOUNT);
17948 	if (!new) {
17949 		/* this is what callers always want, so simplify the call site */
17950 		kvfree(old);
17951 		return NULL;
17952 	}
17953 
17954 	new->cnt = n_elem;
17955 	return new;
17956 }
17957 
copy_insn_array(struct bpf_map * map,u32 start,u32 end,u32 * items)17958 static int copy_insn_array(struct bpf_map *map, u32 start, u32 end, u32 *items)
17959 {
17960 	struct bpf_insn_array_value *value;
17961 	u32 i;
17962 
17963 	for (i = start; i <= end; i++) {
17964 		value = map->ops->map_lookup_elem(map, &i);
17965 		/*
17966 		 * map_lookup_elem of an array map will never return an error,
17967 		 * but not checking it makes some static analysers to worry
17968 		 */
17969 		if (IS_ERR(value))
17970 			return PTR_ERR(value);
17971 		else if (!value)
17972 			return -EINVAL;
17973 		items[i - start] = value->xlated_off;
17974 	}
17975 	return 0;
17976 }
17977 
cmp_ptr_to_u32(const void * a,const void * b)17978 static int cmp_ptr_to_u32(const void *a, const void *b)
17979 {
17980 	return *(u32 *)a - *(u32 *)b;
17981 }
17982 
sort_insn_array_uniq(u32 * items,int cnt)17983 static int sort_insn_array_uniq(u32 *items, int cnt)
17984 {
17985 	int unique = 1;
17986 	int i;
17987 
17988 	sort(items, cnt, sizeof(items[0]), cmp_ptr_to_u32, NULL);
17989 
17990 	for (i = 1; i < cnt; i++)
17991 		if (items[i] != items[unique - 1])
17992 			items[unique++] = items[i];
17993 
17994 	return unique;
17995 }
17996 
17997 /*
17998  * sort_unique({map[start], ..., map[end]}) into off
17999  */
copy_insn_array_uniq(struct bpf_map * map,u32 start,u32 end,u32 * off)18000 static int copy_insn_array_uniq(struct bpf_map *map, u32 start, u32 end, u32 *off)
18001 {
18002 	u32 n = end - start + 1;
18003 	int err;
18004 
18005 	err = copy_insn_array(map, start, end, off);
18006 	if (err)
18007 		return err;
18008 
18009 	return sort_insn_array_uniq(off, n);
18010 }
18011 
18012 /*
18013  * Copy all unique offsets from the map
18014  */
jt_from_map(struct bpf_map * map)18015 static struct bpf_iarray *jt_from_map(struct bpf_map *map)
18016 {
18017 	struct bpf_iarray *jt;
18018 	int err;
18019 	int n;
18020 
18021 	jt = iarray_realloc(NULL, map->max_entries);
18022 	if (!jt)
18023 		return ERR_PTR(-ENOMEM);
18024 
18025 	n = copy_insn_array_uniq(map, 0, map->max_entries - 1, jt->items);
18026 	if (n < 0) {
18027 		err = n;
18028 		goto err_free;
18029 	}
18030 	if (n == 0) {
18031 		err = -EINVAL;
18032 		goto err_free;
18033 	}
18034 	jt->cnt = n;
18035 	return jt;
18036 
18037 err_free:
18038 	kvfree(jt);
18039 	return ERR_PTR(err);
18040 }
18041 
18042 /*
18043  * Find and collect all maps which fit in the subprog. Return the result as one
18044  * combined jump table in jt->items (allocated with kvcalloc)
18045  */
jt_from_subprog(struct bpf_verifier_env * env,int subprog_start,int subprog_end)18046 static struct bpf_iarray *jt_from_subprog(struct bpf_verifier_env *env,
18047 					  int subprog_start, int subprog_end)
18048 {
18049 	struct bpf_iarray *jt = NULL;
18050 	struct bpf_map *map;
18051 	struct bpf_iarray *jt_cur;
18052 	int i;
18053 
18054 	for (i = 0; i < env->insn_array_map_cnt; i++) {
18055 		/*
18056 		 * TODO (when needed): collect only jump tables, not static keys
18057 		 * or maps for indirect calls
18058 		 */
18059 		map = env->insn_array_maps[i];
18060 
18061 		jt_cur = jt_from_map(map);
18062 		if (IS_ERR(jt_cur)) {
18063 			kvfree(jt);
18064 			return jt_cur;
18065 		}
18066 
18067 		/*
18068 		 * This is enough to check one element. The full table is
18069 		 * checked to fit inside the subprog later in create_jt()
18070 		 */
18071 		if (jt_cur->items[0] >= subprog_start && jt_cur->items[0] < subprog_end) {
18072 			u32 old_cnt = jt ? jt->cnt : 0;
18073 			jt = iarray_realloc(jt, old_cnt + jt_cur->cnt);
18074 			if (!jt) {
18075 				kvfree(jt_cur);
18076 				return ERR_PTR(-ENOMEM);
18077 			}
18078 			memcpy(jt->items + old_cnt, jt_cur->items, jt_cur->cnt << 2);
18079 		}
18080 
18081 		kvfree(jt_cur);
18082 	}
18083 
18084 	if (!jt) {
18085 		verbose(env, "no jump tables found for subprog starting at %u\n", subprog_start);
18086 		return ERR_PTR(-EINVAL);
18087 	}
18088 
18089 	jt->cnt = sort_insn_array_uniq(jt->items, jt->cnt);
18090 	return jt;
18091 }
18092 
18093 static struct bpf_iarray *
create_jt(int t,struct bpf_verifier_env * env)18094 create_jt(int t, struct bpf_verifier_env *env)
18095 {
18096 	static struct bpf_subprog_info *subprog;
18097 	int subprog_start, subprog_end;
18098 	struct bpf_iarray *jt;
18099 	int i;
18100 
18101 	subprog = bpf_find_containing_subprog(env, t);
18102 	subprog_start = subprog->start;
18103 	subprog_end = (subprog + 1)->start;
18104 	jt = jt_from_subprog(env, subprog_start, subprog_end);
18105 	if (IS_ERR(jt))
18106 		return jt;
18107 
18108 	/* Check that the every element of the jump table fits within the given subprogram */
18109 	for (i = 0; i < jt->cnt; i++) {
18110 		if (jt->items[i] < subprog_start || jt->items[i] >= subprog_end) {
18111 			verbose(env, "jump table for insn %d points outside of the subprog [%u,%u]\n",
18112 					t, subprog_start, subprog_end);
18113 			kvfree(jt);
18114 			return ERR_PTR(-EINVAL);
18115 		}
18116 	}
18117 
18118 	return jt;
18119 }
18120 
18121 /* "conditional jump with N edges" */
visit_gotox_insn(int t,struct bpf_verifier_env * env)18122 static int visit_gotox_insn(int t, struct bpf_verifier_env *env)
18123 {
18124 	int *insn_stack = env->cfg.insn_stack;
18125 	int *insn_state = env->cfg.insn_state;
18126 	bool keep_exploring = false;
18127 	struct bpf_iarray *jt;
18128 	int i, w;
18129 
18130 	jt = env->insn_aux_data[t].jt;
18131 	if (!jt) {
18132 		jt = create_jt(t, env);
18133 		if (IS_ERR(jt))
18134 			return PTR_ERR(jt);
18135 
18136 		env->insn_aux_data[t].jt = jt;
18137 	}
18138 
18139 	mark_prune_point(env, t);
18140 	for (i = 0; i < jt->cnt; i++) {
18141 		w = jt->items[i];
18142 		if (w < 0 || w >= env->prog->len) {
18143 			verbose(env, "indirect jump out of range from insn %d to %d\n", t, w);
18144 			return -EINVAL;
18145 		}
18146 
18147 		mark_jmp_point(env, w);
18148 
18149 		/* EXPLORED || DISCOVERED */
18150 		if (insn_state[w])
18151 			continue;
18152 
18153 		if (env->cfg.cur_stack >= env->prog->len)
18154 			return -E2BIG;
18155 
18156 		insn_stack[env->cfg.cur_stack++] = w;
18157 		insn_state[w] |= DISCOVERED;
18158 		keep_exploring = true;
18159 	}
18160 
18161 	return keep_exploring ? KEEP_EXPLORING : DONE_EXPLORING;
18162 }
18163 
visit_tailcall_insn(struct bpf_verifier_env * env,int t)18164 static int visit_tailcall_insn(struct bpf_verifier_env *env, int t)
18165 {
18166 	static struct bpf_subprog_info *subprog;
18167 	struct bpf_iarray *jt;
18168 
18169 	if (env->insn_aux_data[t].jt)
18170 		return 0;
18171 
18172 	jt = iarray_realloc(NULL, 2);
18173 	if (!jt)
18174 		return -ENOMEM;
18175 
18176 	subprog = bpf_find_containing_subprog(env, t);
18177 	jt->items[0] = t + 1;
18178 	jt->items[1] = subprog->exit_idx;
18179 	env->insn_aux_data[t].jt = jt;
18180 	return 0;
18181 }
18182 
18183 /* Visits the instruction at index t and returns one of the following:
18184  *  < 0 - an error occurred
18185  *  DONE_EXPLORING - the instruction was fully explored
18186  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
18187  */
visit_insn(int t,struct bpf_verifier_env * env)18188 static int visit_insn(int t, struct bpf_verifier_env *env)
18189 {
18190 	struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
18191 	int ret, off, insn_sz;
18192 
18193 	if (bpf_pseudo_func(insn))
18194 		return visit_func_call_insn(t, insns, env, true);
18195 
18196 	/* All non-branch instructions have a single fall-through edge. */
18197 	if (BPF_CLASS(insn->code) != BPF_JMP &&
18198 	    BPF_CLASS(insn->code) != BPF_JMP32) {
18199 		insn_sz = bpf_is_ldimm64(insn) ? 2 : 1;
18200 		return push_insn(t, t + insn_sz, FALLTHROUGH, env);
18201 	}
18202 
18203 	switch (BPF_OP(insn->code)) {
18204 	case BPF_EXIT:
18205 		return DONE_EXPLORING;
18206 
18207 	case BPF_CALL:
18208 		if (is_async_callback_calling_insn(insn))
18209 			/* Mark this call insn as a prune point to trigger
18210 			 * is_state_visited() check before call itself is
18211 			 * processed by __check_func_call(). Otherwise new
18212 			 * async state will be pushed for further exploration.
18213 			 */
18214 			mark_prune_point(env, t);
18215 		/* For functions that invoke callbacks it is not known how many times
18216 		 * callback would be called. Verifier models callback calling functions
18217 		 * by repeatedly visiting callback bodies and returning to origin call
18218 		 * instruction.
18219 		 * In order to stop such iteration verifier needs to identify when a
18220 		 * state identical some state from a previous iteration is reached.
18221 		 * Check below forces creation of checkpoint before callback calling
18222 		 * instruction to allow search for such identical states.
18223 		 */
18224 		if (is_sync_callback_calling_insn(insn)) {
18225 			mark_calls_callback(env, t);
18226 			mark_force_checkpoint(env, t);
18227 			mark_prune_point(env, t);
18228 			mark_jmp_point(env, t);
18229 		}
18230 		if (bpf_helper_call(insn)) {
18231 			const struct bpf_func_proto *fp;
18232 
18233 			ret = get_helper_proto(env, insn->imm, &fp);
18234 			/* If called in a non-sleepable context program will be
18235 			 * rejected anyway, so we should end up with precise
18236 			 * sleepable marks on subprogs, except for dead code
18237 			 * elimination.
18238 			 */
18239 			if (ret == 0 && fp->might_sleep)
18240 				mark_subprog_might_sleep(env, t);
18241 			if (bpf_helper_changes_pkt_data(insn->imm))
18242 				mark_subprog_changes_pkt_data(env, t);
18243 			if (insn->imm == BPF_FUNC_tail_call)
18244 				visit_tailcall_insn(env, t);
18245 		} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
18246 			struct bpf_kfunc_call_arg_meta meta;
18247 
18248 			ret = fetch_kfunc_meta(env, insn, &meta, NULL);
18249 			if (ret == 0 && is_iter_next_kfunc(&meta)) {
18250 				mark_prune_point(env, t);
18251 				/* Checking and saving state checkpoints at iter_next() call
18252 				 * is crucial for fast convergence of open-coded iterator loop
18253 				 * logic, so we need to force it. If we don't do that,
18254 				 * is_state_visited() might skip saving a checkpoint, causing
18255 				 * unnecessarily long sequence of not checkpointed
18256 				 * instructions and jumps, leading to exhaustion of jump
18257 				 * history buffer, and potentially other undesired outcomes.
18258 				 * It is expected that with correct open-coded iterators
18259 				 * convergence will happen quickly, so we don't run a risk of
18260 				 * exhausting memory.
18261 				 */
18262 				mark_force_checkpoint(env, t);
18263 			}
18264 			/* Same as helpers, if called in a non-sleepable context
18265 			 * program will be rejected anyway, so we should end up
18266 			 * with precise sleepable marks on subprogs, except for
18267 			 * dead code elimination.
18268 			 */
18269 			if (ret == 0 && is_kfunc_sleepable(&meta))
18270 				mark_subprog_might_sleep(env, t);
18271 			if (ret == 0 && is_kfunc_pkt_changing(&meta))
18272 				mark_subprog_changes_pkt_data(env, t);
18273 		}
18274 		return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
18275 
18276 	case BPF_JA:
18277 		if (BPF_SRC(insn->code) == BPF_X)
18278 			return visit_gotox_insn(t, env);
18279 
18280 		if (BPF_CLASS(insn->code) == BPF_JMP)
18281 			off = insn->off;
18282 		else
18283 			off = insn->imm;
18284 
18285 		/* unconditional jump with single edge */
18286 		ret = push_insn(t, t + off + 1, FALLTHROUGH, env);
18287 		if (ret)
18288 			return ret;
18289 
18290 		mark_prune_point(env, t + off + 1);
18291 		mark_jmp_point(env, t + off + 1);
18292 
18293 		return ret;
18294 
18295 	default:
18296 		/* conditional jump with two edges */
18297 		mark_prune_point(env, t);
18298 		if (is_may_goto_insn(insn))
18299 			mark_force_checkpoint(env, t);
18300 
18301 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
18302 		if (ret)
18303 			return ret;
18304 
18305 		return push_insn(t, t + insn->off + 1, BRANCH, env);
18306 	}
18307 }
18308 
18309 /* non-recursive depth-first-search to detect loops in BPF program
18310  * loop == back-edge in directed graph
18311  */
check_cfg(struct bpf_verifier_env * env)18312 static int check_cfg(struct bpf_verifier_env *env)
18313 {
18314 	int insn_cnt = env->prog->len;
18315 	int *insn_stack, *insn_state;
18316 	int ex_insn_beg, i, ret = 0;
18317 
18318 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT);
18319 	if (!insn_state)
18320 		return -ENOMEM;
18321 
18322 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT);
18323 	if (!insn_stack) {
18324 		kvfree(insn_state);
18325 		return -ENOMEM;
18326 	}
18327 
18328 	ex_insn_beg = env->exception_callback_subprog
18329 		      ? env->subprog_info[env->exception_callback_subprog].start
18330 		      : 0;
18331 
18332 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
18333 	insn_stack[0] = 0; /* 0 is the first instruction */
18334 	env->cfg.cur_stack = 1;
18335 
18336 walk_cfg:
18337 	while (env->cfg.cur_stack > 0) {
18338 		int t = insn_stack[env->cfg.cur_stack - 1];
18339 
18340 		ret = visit_insn(t, env);
18341 		switch (ret) {
18342 		case DONE_EXPLORING:
18343 			insn_state[t] = EXPLORED;
18344 			env->cfg.cur_stack--;
18345 			break;
18346 		case KEEP_EXPLORING:
18347 			break;
18348 		default:
18349 			if (ret > 0) {
18350 				verifier_bug(env, "visit_insn internal bug");
18351 				ret = -EFAULT;
18352 			}
18353 			goto err_free;
18354 		}
18355 	}
18356 
18357 	if (env->cfg.cur_stack < 0) {
18358 		verifier_bug(env, "pop stack internal bug");
18359 		ret = -EFAULT;
18360 		goto err_free;
18361 	}
18362 
18363 	if (ex_insn_beg && insn_state[ex_insn_beg] != EXPLORED) {
18364 		insn_state[ex_insn_beg] = DISCOVERED;
18365 		insn_stack[0] = ex_insn_beg;
18366 		env->cfg.cur_stack = 1;
18367 		goto walk_cfg;
18368 	}
18369 
18370 	for (i = 0; i < insn_cnt; i++) {
18371 		struct bpf_insn *insn = &env->prog->insnsi[i];
18372 
18373 		if (insn_state[i] != EXPLORED) {
18374 			verbose(env, "unreachable insn %d\n", i);
18375 			ret = -EINVAL;
18376 			goto err_free;
18377 		}
18378 		if (bpf_is_ldimm64(insn)) {
18379 			if (insn_state[i + 1] != 0) {
18380 				verbose(env, "jump into the middle of ldimm64 insn %d\n", i);
18381 				ret = -EINVAL;
18382 				goto err_free;
18383 			}
18384 			i++; /* skip second half of ldimm64 */
18385 		}
18386 	}
18387 	ret = 0; /* cfg looks good */
18388 	env->prog->aux->changes_pkt_data = env->subprog_info[0].changes_pkt_data;
18389 	env->prog->aux->might_sleep = env->subprog_info[0].might_sleep;
18390 
18391 err_free:
18392 	kvfree(insn_state);
18393 	kvfree(insn_stack);
18394 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
18395 	return ret;
18396 }
18397 
18398 /*
18399  * For each subprogram 'i' fill array env->cfg.insn_subprogram sub-range
18400  * [env->subprog_info[i].postorder_start, env->subprog_info[i+1].postorder_start)
18401  * with indices of 'i' instructions in postorder.
18402  */
compute_postorder(struct bpf_verifier_env * env)18403 static int compute_postorder(struct bpf_verifier_env *env)
18404 {
18405 	u32 cur_postorder, i, top, stack_sz, s;
18406 	int *stack = NULL, *postorder = NULL, *state = NULL;
18407 	struct bpf_iarray *succ;
18408 
18409 	postorder = kvcalloc(env->prog->len, sizeof(int), GFP_KERNEL_ACCOUNT);
18410 	state = kvcalloc(env->prog->len, sizeof(int), GFP_KERNEL_ACCOUNT);
18411 	stack = kvcalloc(env->prog->len, sizeof(int), GFP_KERNEL_ACCOUNT);
18412 	if (!postorder || !state || !stack) {
18413 		kvfree(postorder);
18414 		kvfree(state);
18415 		kvfree(stack);
18416 		return -ENOMEM;
18417 	}
18418 	cur_postorder = 0;
18419 	for (i = 0; i < env->subprog_cnt; i++) {
18420 		env->subprog_info[i].postorder_start = cur_postorder;
18421 		stack[0] = env->subprog_info[i].start;
18422 		stack_sz = 1;
18423 		do {
18424 			top = stack[stack_sz - 1];
18425 			state[top] |= DISCOVERED;
18426 			if (state[top] & EXPLORED) {
18427 				postorder[cur_postorder++] = top;
18428 				stack_sz--;
18429 				continue;
18430 			}
18431 			succ = bpf_insn_successors(env, top);
18432 			for (s = 0; s < succ->cnt; ++s) {
18433 				if (!state[succ->items[s]]) {
18434 					stack[stack_sz++] = succ->items[s];
18435 					state[succ->items[s]] |= DISCOVERED;
18436 				}
18437 			}
18438 			state[top] |= EXPLORED;
18439 		} while (stack_sz);
18440 	}
18441 	env->subprog_info[i].postorder_start = cur_postorder;
18442 	env->cfg.insn_postorder = postorder;
18443 	env->cfg.cur_postorder = cur_postorder;
18444 	kvfree(stack);
18445 	kvfree(state);
18446 	return 0;
18447 }
18448 
check_abnormal_return(struct bpf_verifier_env * env)18449 static int check_abnormal_return(struct bpf_verifier_env *env)
18450 {
18451 	int i;
18452 
18453 	for (i = 1; i < env->subprog_cnt; i++) {
18454 		if (env->subprog_info[i].has_ld_abs) {
18455 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
18456 			return -EINVAL;
18457 		}
18458 		if (env->subprog_info[i].has_tail_call) {
18459 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
18460 			return -EINVAL;
18461 		}
18462 	}
18463 	return 0;
18464 }
18465 
18466 /* The minimum supported BTF func info size */
18467 #define MIN_BPF_FUNCINFO_SIZE	8
18468 #define MAX_FUNCINFO_REC_SIZE	252
18469 
check_btf_func_early(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)18470 static int check_btf_func_early(struct bpf_verifier_env *env,
18471 				const union bpf_attr *attr,
18472 				bpfptr_t uattr)
18473 {
18474 	u32 krec_size = sizeof(struct bpf_func_info);
18475 	const struct btf_type *type, *func_proto;
18476 	u32 i, nfuncs, urec_size, min_size;
18477 	struct bpf_func_info *krecord;
18478 	struct bpf_prog *prog;
18479 	const struct btf *btf;
18480 	u32 prev_offset = 0;
18481 	bpfptr_t urecord;
18482 	int ret = -ENOMEM;
18483 
18484 	nfuncs = attr->func_info_cnt;
18485 	if (!nfuncs) {
18486 		if (check_abnormal_return(env))
18487 			return -EINVAL;
18488 		return 0;
18489 	}
18490 
18491 	urec_size = attr->func_info_rec_size;
18492 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
18493 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
18494 	    urec_size % sizeof(u32)) {
18495 		verbose(env, "invalid func info rec size %u\n", urec_size);
18496 		return -EINVAL;
18497 	}
18498 
18499 	prog = env->prog;
18500 	btf = prog->aux->btf;
18501 
18502 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
18503 	min_size = min_t(u32, krec_size, urec_size);
18504 
18505 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
18506 	if (!krecord)
18507 		return -ENOMEM;
18508 
18509 	for (i = 0; i < nfuncs; i++) {
18510 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
18511 		if (ret) {
18512 			if (ret == -E2BIG) {
18513 				verbose(env, "nonzero tailing record in func info");
18514 				/* set the size kernel expects so loader can zero
18515 				 * out the rest of the record.
18516 				 */
18517 				if (copy_to_bpfptr_offset(uattr,
18518 							  offsetof(union bpf_attr, func_info_rec_size),
18519 							  &min_size, sizeof(min_size)))
18520 					ret = -EFAULT;
18521 			}
18522 			goto err_free;
18523 		}
18524 
18525 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
18526 			ret = -EFAULT;
18527 			goto err_free;
18528 		}
18529 
18530 		/* check insn_off */
18531 		ret = -EINVAL;
18532 		if (i == 0) {
18533 			if (krecord[i].insn_off) {
18534 				verbose(env,
18535 					"nonzero insn_off %u for the first func info record",
18536 					krecord[i].insn_off);
18537 				goto err_free;
18538 			}
18539 		} else if (krecord[i].insn_off <= prev_offset) {
18540 			verbose(env,
18541 				"same or smaller insn offset (%u) than previous func info record (%u)",
18542 				krecord[i].insn_off, prev_offset);
18543 			goto err_free;
18544 		}
18545 
18546 		/* check type_id */
18547 		type = btf_type_by_id(btf, krecord[i].type_id);
18548 		if (!type || !btf_type_is_func(type)) {
18549 			verbose(env, "invalid type id %d in func info",
18550 				krecord[i].type_id);
18551 			goto err_free;
18552 		}
18553 
18554 		func_proto = btf_type_by_id(btf, type->type);
18555 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
18556 			/* btf_func_check() already verified it during BTF load */
18557 			goto err_free;
18558 
18559 		prev_offset = krecord[i].insn_off;
18560 		bpfptr_add(&urecord, urec_size);
18561 	}
18562 
18563 	prog->aux->func_info = krecord;
18564 	prog->aux->func_info_cnt = nfuncs;
18565 	return 0;
18566 
18567 err_free:
18568 	kvfree(krecord);
18569 	return ret;
18570 }
18571 
check_btf_func(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)18572 static int check_btf_func(struct bpf_verifier_env *env,
18573 			  const union bpf_attr *attr,
18574 			  bpfptr_t uattr)
18575 {
18576 	const struct btf_type *type, *func_proto, *ret_type;
18577 	u32 i, nfuncs, urec_size;
18578 	struct bpf_func_info *krecord;
18579 	struct bpf_func_info_aux *info_aux = NULL;
18580 	struct bpf_prog *prog;
18581 	const struct btf *btf;
18582 	bpfptr_t urecord;
18583 	bool scalar_return;
18584 	int ret = -ENOMEM;
18585 
18586 	nfuncs = attr->func_info_cnt;
18587 	if (!nfuncs) {
18588 		if (check_abnormal_return(env))
18589 			return -EINVAL;
18590 		return 0;
18591 	}
18592 	if (nfuncs != env->subprog_cnt) {
18593 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
18594 		return -EINVAL;
18595 	}
18596 
18597 	urec_size = attr->func_info_rec_size;
18598 
18599 	prog = env->prog;
18600 	btf = prog->aux->btf;
18601 
18602 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
18603 
18604 	krecord = prog->aux->func_info;
18605 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
18606 	if (!info_aux)
18607 		return -ENOMEM;
18608 
18609 	for (i = 0; i < nfuncs; i++) {
18610 		/* check insn_off */
18611 		ret = -EINVAL;
18612 
18613 		if (env->subprog_info[i].start != krecord[i].insn_off) {
18614 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
18615 			goto err_free;
18616 		}
18617 
18618 		/* Already checked type_id */
18619 		type = btf_type_by_id(btf, krecord[i].type_id);
18620 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
18621 		/* Already checked func_proto */
18622 		func_proto = btf_type_by_id(btf, type->type);
18623 
18624 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
18625 		scalar_return =
18626 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
18627 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
18628 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
18629 			goto err_free;
18630 		}
18631 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
18632 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
18633 			goto err_free;
18634 		}
18635 
18636 		bpfptr_add(&urecord, urec_size);
18637 	}
18638 
18639 	prog->aux->func_info_aux = info_aux;
18640 	return 0;
18641 
18642 err_free:
18643 	kfree(info_aux);
18644 	return ret;
18645 }
18646 
adjust_btf_func(struct bpf_verifier_env * env)18647 static void adjust_btf_func(struct bpf_verifier_env *env)
18648 {
18649 	struct bpf_prog_aux *aux = env->prog->aux;
18650 	int i;
18651 
18652 	if (!aux->func_info)
18653 		return;
18654 
18655 	/* func_info is not available for hidden subprogs */
18656 	for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++)
18657 		aux->func_info[i].insn_off = env->subprog_info[i].start;
18658 }
18659 
18660 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
18661 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
18662 
check_btf_line(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)18663 static int check_btf_line(struct bpf_verifier_env *env,
18664 			  const union bpf_attr *attr,
18665 			  bpfptr_t uattr)
18666 {
18667 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
18668 	struct bpf_subprog_info *sub;
18669 	struct bpf_line_info *linfo;
18670 	struct bpf_prog *prog;
18671 	const struct btf *btf;
18672 	bpfptr_t ulinfo;
18673 	int err;
18674 
18675 	nr_linfo = attr->line_info_cnt;
18676 	if (!nr_linfo)
18677 		return 0;
18678 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
18679 		return -EINVAL;
18680 
18681 	rec_size = attr->line_info_rec_size;
18682 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
18683 	    rec_size > MAX_LINEINFO_REC_SIZE ||
18684 	    rec_size & (sizeof(u32) - 1))
18685 		return -EINVAL;
18686 
18687 	/* Need to zero it in case the userspace may
18688 	 * pass in a smaller bpf_line_info object.
18689 	 */
18690 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
18691 			 GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
18692 	if (!linfo)
18693 		return -ENOMEM;
18694 
18695 	prog = env->prog;
18696 	btf = prog->aux->btf;
18697 
18698 	s = 0;
18699 	sub = env->subprog_info;
18700 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
18701 	expected_size = sizeof(struct bpf_line_info);
18702 	ncopy = min_t(u32, expected_size, rec_size);
18703 	for (i = 0; i < nr_linfo; i++) {
18704 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
18705 		if (err) {
18706 			if (err == -E2BIG) {
18707 				verbose(env, "nonzero tailing record in line_info");
18708 				if (copy_to_bpfptr_offset(uattr,
18709 							  offsetof(union bpf_attr, line_info_rec_size),
18710 							  &expected_size, sizeof(expected_size)))
18711 					err = -EFAULT;
18712 			}
18713 			goto err_free;
18714 		}
18715 
18716 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
18717 			err = -EFAULT;
18718 			goto err_free;
18719 		}
18720 
18721 		/*
18722 		 * Check insn_off to ensure
18723 		 * 1) strictly increasing AND
18724 		 * 2) bounded by prog->len
18725 		 *
18726 		 * The linfo[0].insn_off == 0 check logically falls into
18727 		 * the later "missing bpf_line_info for func..." case
18728 		 * because the first linfo[0].insn_off must be the
18729 		 * first sub also and the first sub must have
18730 		 * subprog_info[0].start == 0.
18731 		 */
18732 		if ((i && linfo[i].insn_off <= prev_offset) ||
18733 		    linfo[i].insn_off >= prog->len) {
18734 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
18735 				i, linfo[i].insn_off, prev_offset,
18736 				prog->len);
18737 			err = -EINVAL;
18738 			goto err_free;
18739 		}
18740 
18741 		if (!prog->insnsi[linfo[i].insn_off].code) {
18742 			verbose(env,
18743 				"Invalid insn code at line_info[%u].insn_off\n",
18744 				i);
18745 			err = -EINVAL;
18746 			goto err_free;
18747 		}
18748 
18749 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
18750 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
18751 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
18752 			err = -EINVAL;
18753 			goto err_free;
18754 		}
18755 
18756 		if (s != env->subprog_cnt) {
18757 			if (linfo[i].insn_off == sub[s].start) {
18758 				sub[s].linfo_idx = i;
18759 				s++;
18760 			} else if (sub[s].start < linfo[i].insn_off) {
18761 				verbose(env, "missing bpf_line_info for func#%u\n", s);
18762 				err = -EINVAL;
18763 				goto err_free;
18764 			}
18765 		}
18766 
18767 		prev_offset = linfo[i].insn_off;
18768 		bpfptr_add(&ulinfo, rec_size);
18769 	}
18770 
18771 	if (s != env->subprog_cnt) {
18772 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
18773 			env->subprog_cnt - s, s);
18774 		err = -EINVAL;
18775 		goto err_free;
18776 	}
18777 
18778 	prog->aux->linfo = linfo;
18779 	prog->aux->nr_linfo = nr_linfo;
18780 
18781 	return 0;
18782 
18783 err_free:
18784 	kvfree(linfo);
18785 	return err;
18786 }
18787 
18788 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
18789 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
18790 
check_core_relo(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)18791 static int check_core_relo(struct bpf_verifier_env *env,
18792 			   const union bpf_attr *attr,
18793 			   bpfptr_t uattr)
18794 {
18795 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
18796 	struct bpf_core_relo core_relo = {};
18797 	struct bpf_prog *prog = env->prog;
18798 	const struct btf *btf = prog->aux->btf;
18799 	struct bpf_core_ctx ctx = {
18800 		.log = &env->log,
18801 		.btf = btf,
18802 	};
18803 	bpfptr_t u_core_relo;
18804 	int err;
18805 
18806 	nr_core_relo = attr->core_relo_cnt;
18807 	if (!nr_core_relo)
18808 		return 0;
18809 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
18810 		return -EINVAL;
18811 
18812 	rec_size = attr->core_relo_rec_size;
18813 	if (rec_size < MIN_CORE_RELO_SIZE ||
18814 	    rec_size > MAX_CORE_RELO_SIZE ||
18815 	    rec_size % sizeof(u32))
18816 		return -EINVAL;
18817 
18818 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
18819 	expected_size = sizeof(struct bpf_core_relo);
18820 	ncopy = min_t(u32, expected_size, rec_size);
18821 
18822 	/* Unlike func_info and line_info, copy and apply each CO-RE
18823 	 * relocation record one at a time.
18824 	 */
18825 	for (i = 0; i < nr_core_relo; i++) {
18826 		/* future proofing when sizeof(bpf_core_relo) changes */
18827 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
18828 		if (err) {
18829 			if (err == -E2BIG) {
18830 				verbose(env, "nonzero tailing record in core_relo");
18831 				if (copy_to_bpfptr_offset(uattr,
18832 							  offsetof(union bpf_attr, core_relo_rec_size),
18833 							  &expected_size, sizeof(expected_size)))
18834 					err = -EFAULT;
18835 			}
18836 			break;
18837 		}
18838 
18839 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
18840 			err = -EFAULT;
18841 			break;
18842 		}
18843 
18844 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
18845 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
18846 				i, core_relo.insn_off, prog->len);
18847 			err = -EINVAL;
18848 			break;
18849 		}
18850 
18851 		err = bpf_core_apply(&ctx, &core_relo, i,
18852 				     &prog->insnsi[core_relo.insn_off / 8]);
18853 		if (err)
18854 			break;
18855 		bpfptr_add(&u_core_relo, rec_size);
18856 	}
18857 	return err;
18858 }
18859 
check_btf_info_early(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)18860 static int check_btf_info_early(struct bpf_verifier_env *env,
18861 				const union bpf_attr *attr,
18862 				bpfptr_t uattr)
18863 {
18864 	struct btf *btf;
18865 	int err;
18866 
18867 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
18868 		if (check_abnormal_return(env))
18869 			return -EINVAL;
18870 		return 0;
18871 	}
18872 
18873 	btf = btf_get_by_fd(attr->prog_btf_fd);
18874 	if (IS_ERR(btf))
18875 		return PTR_ERR(btf);
18876 	if (btf_is_kernel(btf)) {
18877 		btf_put(btf);
18878 		return -EACCES;
18879 	}
18880 	env->prog->aux->btf = btf;
18881 
18882 	err = check_btf_func_early(env, attr, uattr);
18883 	if (err)
18884 		return err;
18885 	return 0;
18886 }
18887 
check_btf_info(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)18888 static int check_btf_info(struct bpf_verifier_env *env,
18889 			  const union bpf_attr *attr,
18890 			  bpfptr_t uattr)
18891 {
18892 	int err;
18893 
18894 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
18895 		if (check_abnormal_return(env))
18896 			return -EINVAL;
18897 		return 0;
18898 	}
18899 
18900 	err = check_btf_func(env, attr, uattr);
18901 	if (err)
18902 		return err;
18903 
18904 	err = check_btf_line(env, attr, uattr);
18905 	if (err)
18906 		return err;
18907 
18908 	err = check_core_relo(env, attr, uattr);
18909 	if (err)
18910 		return err;
18911 
18912 	return 0;
18913 }
18914 
18915 /* check %cur's range satisfies %old's */
range_within(const struct bpf_reg_state * old,const struct bpf_reg_state * cur)18916 static bool range_within(const struct bpf_reg_state *old,
18917 			 const struct bpf_reg_state *cur)
18918 {
18919 	return old->umin_value <= cur->umin_value &&
18920 	       old->umax_value >= cur->umax_value &&
18921 	       old->smin_value <= cur->smin_value &&
18922 	       old->smax_value >= cur->smax_value &&
18923 	       old->u32_min_value <= cur->u32_min_value &&
18924 	       old->u32_max_value >= cur->u32_max_value &&
18925 	       old->s32_min_value <= cur->s32_min_value &&
18926 	       old->s32_max_value >= cur->s32_max_value;
18927 }
18928 
18929 /* If in the old state two registers had the same id, then they need to have
18930  * the same id in the new state as well.  But that id could be different from
18931  * the old state, so we need to track the mapping from old to new ids.
18932  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
18933  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
18934  * regs with a different old id could still have new id 9, we don't care about
18935  * that.
18936  * So we look through our idmap to see if this old id has been seen before.  If
18937  * so, we require the new id to match; otherwise, we add the id pair to the map.
18938  */
check_ids(u32 old_id,u32 cur_id,struct bpf_idmap * idmap)18939 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
18940 {
18941 	struct bpf_id_pair *map = idmap->map;
18942 	unsigned int i;
18943 
18944 	/* either both IDs should be set or both should be zero */
18945 	if (!!old_id != !!cur_id)
18946 		return false;
18947 
18948 	if (old_id == 0) /* cur_id == 0 as well */
18949 		return true;
18950 
18951 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
18952 		if (!map[i].old) {
18953 			/* Reached an empty slot; haven't seen this id before */
18954 			map[i].old = old_id;
18955 			map[i].cur = cur_id;
18956 			return true;
18957 		}
18958 		if (map[i].old == old_id)
18959 			return map[i].cur == cur_id;
18960 		if (map[i].cur == cur_id)
18961 			return false;
18962 	}
18963 	/* We ran out of idmap slots, which should be impossible */
18964 	WARN_ON_ONCE(1);
18965 	return false;
18966 }
18967 
18968 /* Similar to check_ids(), but allocate a unique temporary ID
18969  * for 'old_id' or 'cur_id' of zero.
18970  * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid.
18971  */
check_scalar_ids(u32 old_id,u32 cur_id,struct bpf_idmap * idmap)18972 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
18973 {
18974 	old_id = old_id ? old_id : ++idmap->tmp_id_gen;
18975 	cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
18976 
18977 	return check_ids(old_id, cur_id, idmap);
18978 }
18979 
clean_func_state(struct bpf_verifier_env * env,struct bpf_func_state * st,u32 ip)18980 static void clean_func_state(struct bpf_verifier_env *env,
18981 			     struct bpf_func_state *st,
18982 			     u32 ip)
18983 {
18984 	u16 live_regs = env->insn_aux_data[ip].live_regs_before;
18985 	int i, j;
18986 
18987 	for (i = 0; i < BPF_REG_FP; i++) {
18988 		/* liveness must not touch this register anymore */
18989 		if (!(live_regs & BIT(i)))
18990 			/* since the register is unused, clear its state
18991 			 * to make further comparison simpler
18992 			 */
18993 			__mark_reg_not_init(env, &st->regs[i]);
18994 	}
18995 
18996 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
18997 		if (!bpf_stack_slot_alive(env, st->frameno, i)) {
18998 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
18999 			for (j = 0; j < BPF_REG_SIZE; j++)
19000 				st->stack[i].slot_type[j] = STACK_INVALID;
19001 		}
19002 	}
19003 }
19004 
clean_verifier_state(struct bpf_verifier_env * env,struct bpf_verifier_state * st)19005 static void clean_verifier_state(struct bpf_verifier_env *env,
19006 				 struct bpf_verifier_state *st)
19007 {
19008 	int i, ip;
19009 
19010 	bpf_live_stack_query_init(env, st);
19011 	st->cleaned = true;
19012 	for (i = 0; i <= st->curframe; i++) {
19013 		ip = frame_insn_idx(st, i);
19014 		clean_func_state(env, st->frame[i], ip);
19015 	}
19016 }
19017 
19018 /* the parentage chains form a tree.
19019  * the verifier states are added to state lists at given insn and
19020  * pushed into state stack for future exploration.
19021  * when the verifier reaches bpf_exit insn some of the verifier states
19022  * stored in the state lists have their final liveness state already,
19023  * but a lot of states will get revised from liveness point of view when
19024  * the verifier explores other branches.
19025  * Example:
19026  * 1: *(u64)(r10 - 8) = 1
19027  * 2: if r1 == 100 goto pc+1
19028  * 3: *(u64)(r10 - 8) = 2
19029  * 4: r0 = *(u64)(r10 - 8)
19030  * 5: exit
19031  * when the verifier reaches exit insn the stack slot -8 in the state list of
19032  * insn 2 is not yet marked alive. Then the verifier pops the other_branch
19033  * of insn 2 and goes exploring further. After the insn 4 read, liveness
19034  * analysis would propagate read mark for -8 at insn 2.
19035  *
19036  * Since the verifier pushes the branch states as it sees them while exploring
19037  * the program the condition of walking the branch instruction for the second
19038  * time means that all states below this branch were already explored and
19039  * their final liveness marks are already propagated.
19040  * Hence when the verifier completes the search of state list in is_state_visited()
19041  * we can call this clean_live_states() function to clear dead the registers and stack
19042  * slots to simplify state merging.
19043  *
19044  * Important note here that walking the same branch instruction in the callee
19045  * doesn't meant that the states are DONE. The verifier has to compare
19046  * the callsites
19047  */
clean_live_states(struct bpf_verifier_env * env,int insn,struct bpf_verifier_state * cur)19048 static void clean_live_states(struct bpf_verifier_env *env, int insn,
19049 			      struct bpf_verifier_state *cur)
19050 {
19051 	struct bpf_verifier_state_list *sl;
19052 	struct list_head *pos, *head;
19053 
19054 	head = explored_state(env, insn);
19055 	list_for_each(pos, head) {
19056 		sl = container_of(pos, struct bpf_verifier_state_list, node);
19057 		if (sl->state.branches)
19058 			continue;
19059 		if (sl->state.insn_idx != insn ||
19060 		    !same_callsites(&sl->state, cur))
19061 			continue;
19062 		if (sl->state.cleaned)
19063 			/* all regs in this state in all frames were already marked */
19064 			continue;
19065 		if (incomplete_read_marks(env, &sl->state))
19066 			continue;
19067 		clean_verifier_state(env, &sl->state);
19068 	}
19069 }
19070 
regs_exact(const struct bpf_reg_state * rold,const struct bpf_reg_state * rcur,struct bpf_idmap * idmap)19071 static bool regs_exact(const struct bpf_reg_state *rold,
19072 		       const struct bpf_reg_state *rcur,
19073 		       struct bpf_idmap *idmap)
19074 {
19075 	return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
19076 	       check_ids(rold->id, rcur->id, idmap) &&
19077 	       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
19078 }
19079 
19080 enum exact_level {
19081 	NOT_EXACT,
19082 	EXACT,
19083 	RANGE_WITHIN
19084 };
19085 
19086 /* Returns true if (rold safe implies rcur safe) */
regsafe(struct bpf_verifier_env * env,struct bpf_reg_state * rold,struct bpf_reg_state * rcur,struct bpf_idmap * idmap,enum exact_level exact)19087 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
19088 		    struct bpf_reg_state *rcur, struct bpf_idmap *idmap,
19089 		    enum exact_level exact)
19090 {
19091 	if (exact == EXACT)
19092 		return regs_exact(rold, rcur, idmap);
19093 
19094 	if (rold->type == NOT_INIT) {
19095 		if (exact == NOT_EXACT || rcur->type == NOT_INIT)
19096 			/* explored state can't have used this */
19097 			return true;
19098 	}
19099 
19100 	/* Enforce that register types have to match exactly, including their
19101 	 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
19102 	 * rule.
19103 	 *
19104 	 * One can make a point that using a pointer register as unbounded
19105 	 * SCALAR would be technically acceptable, but this could lead to
19106 	 * pointer leaks because scalars are allowed to leak while pointers
19107 	 * are not. We could make this safe in special cases if root is
19108 	 * calling us, but it's probably not worth the hassle.
19109 	 *
19110 	 * Also, register types that are *not* MAYBE_NULL could technically be
19111 	 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
19112 	 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
19113 	 * to the same map).
19114 	 * However, if the old MAYBE_NULL register then got NULL checked,
19115 	 * doing so could have affected others with the same id, and we can't
19116 	 * check for that because we lost the id when we converted to
19117 	 * a non-MAYBE_NULL variant.
19118 	 * So, as a general rule we don't allow mixing MAYBE_NULL and
19119 	 * non-MAYBE_NULL registers as well.
19120 	 */
19121 	if (rold->type != rcur->type)
19122 		return false;
19123 
19124 	switch (base_type(rold->type)) {
19125 	case SCALAR_VALUE:
19126 		if (env->explore_alu_limits) {
19127 			/* explore_alu_limits disables tnum_in() and range_within()
19128 			 * logic and requires everything to be strict
19129 			 */
19130 			return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
19131 			       check_scalar_ids(rold->id, rcur->id, idmap);
19132 		}
19133 		if (!rold->precise && exact == NOT_EXACT)
19134 			return true;
19135 		if ((rold->id & BPF_ADD_CONST) != (rcur->id & BPF_ADD_CONST))
19136 			return false;
19137 		if ((rold->id & BPF_ADD_CONST) && (rold->off != rcur->off))
19138 			return false;
19139 		/* Why check_ids() for scalar registers?
19140 		 *
19141 		 * Consider the following BPF code:
19142 		 *   1: r6 = ... unbound scalar, ID=a ...
19143 		 *   2: r7 = ... unbound scalar, ID=b ...
19144 		 *   3: if (r6 > r7) goto +1
19145 		 *   4: r6 = r7
19146 		 *   5: if (r6 > X) goto ...
19147 		 *   6: ... memory operation using r7 ...
19148 		 *
19149 		 * First verification path is [1-6]:
19150 		 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
19151 		 * - at (5) r6 would be marked <= X, sync_linked_regs() would also mark
19152 		 *   r7 <= X, because r6 and r7 share same id.
19153 		 * Next verification path is [1-4, 6].
19154 		 *
19155 		 * Instruction (6) would be reached in two states:
19156 		 *   I.  r6{.id=b}, r7{.id=b} via path 1-6;
19157 		 *   II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
19158 		 *
19159 		 * Use check_ids() to distinguish these states.
19160 		 * ---
19161 		 * Also verify that new value satisfies old value range knowledge.
19162 		 */
19163 		return range_within(rold, rcur) &&
19164 		       tnum_in(rold->var_off, rcur->var_off) &&
19165 		       check_scalar_ids(rold->id, rcur->id, idmap);
19166 	case PTR_TO_MAP_KEY:
19167 	case PTR_TO_MAP_VALUE:
19168 	case PTR_TO_MEM:
19169 	case PTR_TO_BUF:
19170 	case PTR_TO_TP_BUFFER:
19171 		/* If the new min/max/var_off satisfy the old ones and
19172 		 * everything else matches, we are OK.
19173 		 */
19174 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
19175 		       range_within(rold, rcur) &&
19176 		       tnum_in(rold->var_off, rcur->var_off) &&
19177 		       check_ids(rold->id, rcur->id, idmap) &&
19178 		       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
19179 	case PTR_TO_PACKET_META:
19180 	case PTR_TO_PACKET:
19181 		/* We must have at least as much range as the old ptr
19182 		 * did, so that any accesses which were safe before are
19183 		 * still safe.  This is true even if old range < old off,
19184 		 * since someone could have accessed through (ptr - k), or
19185 		 * even done ptr -= k in a register, to get a safe access.
19186 		 */
19187 		if (rold->range > rcur->range)
19188 			return false;
19189 		/* If the offsets don't match, we can't trust our alignment;
19190 		 * nor can we be sure that we won't fall out of range.
19191 		 */
19192 		if (rold->off != rcur->off)
19193 			return false;
19194 		/* id relations must be preserved */
19195 		if (!check_ids(rold->id, rcur->id, idmap))
19196 			return false;
19197 		/* new val must satisfy old val knowledge */
19198 		return range_within(rold, rcur) &&
19199 		       tnum_in(rold->var_off, rcur->var_off);
19200 	case PTR_TO_STACK:
19201 		/* two stack pointers are equal only if they're pointing to
19202 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
19203 		 */
19204 		return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
19205 	case PTR_TO_ARENA:
19206 		return true;
19207 	case PTR_TO_INSN:
19208 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
19209 			rold->off == rcur->off && range_within(rold, rcur) &&
19210 			tnum_in(rold->var_off, rcur->var_off);
19211 	default:
19212 		return regs_exact(rold, rcur, idmap);
19213 	}
19214 }
19215 
19216 static struct bpf_reg_state unbound_reg;
19217 
unbound_reg_init(void)19218 static __init int unbound_reg_init(void)
19219 {
19220 	__mark_reg_unknown_imprecise(&unbound_reg);
19221 	return 0;
19222 }
19223 late_initcall(unbound_reg_init);
19224 
is_stack_all_misc(struct bpf_verifier_env * env,struct bpf_stack_state * stack)19225 static bool is_stack_all_misc(struct bpf_verifier_env *env,
19226 			      struct bpf_stack_state *stack)
19227 {
19228 	u32 i;
19229 
19230 	for (i = 0; i < ARRAY_SIZE(stack->slot_type); ++i) {
19231 		if ((stack->slot_type[i] == STACK_MISC) ||
19232 		    (stack->slot_type[i] == STACK_INVALID && env->allow_uninit_stack))
19233 			continue;
19234 		return false;
19235 	}
19236 
19237 	return true;
19238 }
19239 
scalar_reg_for_stack(struct bpf_verifier_env * env,struct bpf_stack_state * stack)19240 static struct bpf_reg_state *scalar_reg_for_stack(struct bpf_verifier_env *env,
19241 						  struct bpf_stack_state *stack)
19242 {
19243 	if (is_spilled_scalar_reg64(stack))
19244 		return &stack->spilled_ptr;
19245 
19246 	if (is_stack_all_misc(env, stack))
19247 		return &unbound_reg;
19248 
19249 	return NULL;
19250 }
19251 
stacksafe(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur,struct bpf_idmap * idmap,enum exact_level exact)19252 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
19253 		      struct bpf_func_state *cur, struct bpf_idmap *idmap,
19254 		      enum exact_level exact)
19255 {
19256 	int i, spi;
19257 
19258 	/* walk slots of the explored stack and ignore any additional
19259 	 * slots in the current stack, since explored(safe) state
19260 	 * didn't use them
19261 	 */
19262 	for (i = 0; i < old->allocated_stack; i++) {
19263 		struct bpf_reg_state *old_reg, *cur_reg;
19264 
19265 		spi = i / BPF_REG_SIZE;
19266 
19267 		if (exact != NOT_EXACT &&
19268 		    (i >= cur->allocated_stack ||
19269 		     old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
19270 		     cur->stack[spi].slot_type[i % BPF_REG_SIZE]))
19271 			return false;
19272 
19273 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
19274 			continue;
19275 
19276 		if (env->allow_uninit_stack &&
19277 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
19278 			continue;
19279 
19280 		/* explored stack has more populated slots than current stack
19281 		 * and these slots were used
19282 		 */
19283 		if (i >= cur->allocated_stack)
19284 			return false;
19285 
19286 		/* 64-bit scalar spill vs all slots MISC and vice versa.
19287 		 * Load from all slots MISC produces unbound scalar.
19288 		 * Construct a fake register for such stack and call
19289 		 * regsafe() to ensure scalar ids are compared.
19290 		 */
19291 		old_reg = scalar_reg_for_stack(env, &old->stack[spi]);
19292 		cur_reg = scalar_reg_for_stack(env, &cur->stack[spi]);
19293 		if (old_reg && cur_reg) {
19294 			if (!regsafe(env, old_reg, cur_reg, idmap, exact))
19295 				return false;
19296 			i += BPF_REG_SIZE - 1;
19297 			continue;
19298 		}
19299 
19300 		/* if old state was safe with misc data in the stack
19301 		 * it will be safe with zero-initialized stack.
19302 		 * The opposite is not true
19303 		 */
19304 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
19305 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
19306 			continue;
19307 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
19308 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
19309 			/* Ex: old explored (safe) state has STACK_SPILL in
19310 			 * this stack slot, but current has STACK_MISC ->
19311 			 * this verifier states are not equivalent,
19312 			 * return false to continue verification of this path
19313 			 */
19314 			return false;
19315 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
19316 			continue;
19317 		/* Both old and cur are having same slot_type */
19318 		switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
19319 		case STACK_SPILL:
19320 			/* when explored and current stack slot are both storing
19321 			 * spilled registers, check that stored pointers types
19322 			 * are the same as well.
19323 			 * Ex: explored safe path could have stored
19324 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
19325 			 * but current path has stored:
19326 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
19327 			 * such verifier states are not equivalent.
19328 			 * return false to continue verification of this path
19329 			 */
19330 			if (!regsafe(env, &old->stack[spi].spilled_ptr,
19331 				     &cur->stack[spi].spilled_ptr, idmap, exact))
19332 				return false;
19333 			break;
19334 		case STACK_DYNPTR:
19335 			old_reg = &old->stack[spi].spilled_ptr;
19336 			cur_reg = &cur->stack[spi].spilled_ptr;
19337 			if (old_reg->dynptr.type != cur_reg->dynptr.type ||
19338 			    old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
19339 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
19340 				return false;
19341 			break;
19342 		case STACK_ITER:
19343 			old_reg = &old->stack[spi].spilled_ptr;
19344 			cur_reg = &cur->stack[spi].spilled_ptr;
19345 			/* iter.depth is not compared between states as it
19346 			 * doesn't matter for correctness and would otherwise
19347 			 * prevent convergence; we maintain it only to prevent
19348 			 * infinite loop check triggering, see
19349 			 * iter_active_depths_differ()
19350 			 */
19351 			if (old_reg->iter.btf != cur_reg->iter.btf ||
19352 			    old_reg->iter.btf_id != cur_reg->iter.btf_id ||
19353 			    old_reg->iter.state != cur_reg->iter.state ||
19354 			    /* ignore {old_reg,cur_reg}->iter.depth, see above */
19355 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
19356 				return false;
19357 			break;
19358 		case STACK_IRQ_FLAG:
19359 			old_reg = &old->stack[spi].spilled_ptr;
19360 			cur_reg = &cur->stack[spi].spilled_ptr;
19361 			if (!check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap) ||
19362 			    old_reg->irq.kfunc_class != cur_reg->irq.kfunc_class)
19363 				return false;
19364 			break;
19365 		case STACK_MISC:
19366 		case STACK_ZERO:
19367 		case STACK_INVALID:
19368 			continue;
19369 		/* Ensure that new unhandled slot types return false by default */
19370 		default:
19371 			return false;
19372 		}
19373 	}
19374 	return true;
19375 }
19376 
refsafe(struct bpf_verifier_state * old,struct bpf_verifier_state * cur,struct bpf_idmap * idmap)19377 static bool refsafe(struct bpf_verifier_state *old, struct bpf_verifier_state *cur,
19378 		    struct bpf_idmap *idmap)
19379 {
19380 	int i;
19381 
19382 	if (old->acquired_refs != cur->acquired_refs)
19383 		return false;
19384 
19385 	if (old->active_locks != cur->active_locks)
19386 		return false;
19387 
19388 	if (old->active_preempt_locks != cur->active_preempt_locks)
19389 		return false;
19390 
19391 	if (old->active_rcu_locks != cur->active_rcu_locks)
19392 		return false;
19393 
19394 	if (!check_ids(old->active_irq_id, cur->active_irq_id, idmap))
19395 		return false;
19396 
19397 	if (!check_ids(old->active_lock_id, cur->active_lock_id, idmap) ||
19398 	    old->active_lock_ptr != cur->active_lock_ptr)
19399 		return false;
19400 
19401 	for (i = 0; i < old->acquired_refs; i++) {
19402 		if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap) ||
19403 		    old->refs[i].type != cur->refs[i].type)
19404 			return false;
19405 		switch (old->refs[i].type) {
19406 		case REF_TYPE_PTR:
19407 		case REF_TYPE_IRQ:
19408 			break;
19409 		case REF_TYPE_LOCK:
19410 		case REF_TYPE_RES_LOCK:
19411 		case REF_TYPE_RES_LOCK_IRQ:
19412 			if (old->refs[i].ptr != cur->refs[i].ptr)
19413 				return false;
19414 			break;
19415 		default:
19416 			WARN_ONCE(1, "Unhandled enum type for reference state: %d\n", old->refs[i].type);
19417 			return false;
19418 		}
19419 	}
19420 
19421 	return true;
19422 }
19423 
19424 /* compare two verifier states
19425  *
19426  * all states stored in state_list are known to be valid, since
19427  * verifier reached 'bpf_exit' instruction through them
19428  *
19429  * this function is called when verifier exploring different branches of
19430  * execution popped from the state stack. If it sees an old state that has
19431  * more strict register state and more strict stack state then this execution
19432  * branch doesn't need to be explored further, since verifier already
19433  * concluded that more strict state leads to valid finish.
19434  *
19435  * Therefore two states are equivalent if register state is more conservative
19436  * and explored stack state is more conservative than the current one.
19437  * Example:
19438  *       explored                   current
19439  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
19440  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
19441  *
19442  * In other words if current stack state (one being explored) has more
19443  * valid slots than old one that already passed validation, it means
19444  * the verifier can stop exploring and conclude that current state is valid too
19445  *
19446  * Similarly with registers. If explored state has register type as invalid
19447  * whereas register type in current state is meaningful, it means that
19448  * the current state will reach 'bpf_exit' instruction safely
19449  */
func_states_equal(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur,u32 insn_idx,enum exact_level exact)19450 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
19451 			      struct bpf_func_state *cur, u32 insn_idx, enum exact_level exact)
19452 {
19453 	u16 live_regs = env->insn_aux_data[insn_idx].live_regs_before;
19454 	u16 i;
19455 
19456 	if (old->callback_depth > cur->callback_depth)
19457 		return false;
19458 
19459 	for (i = 0; i < MAX_BPF_REG; i++)
19460 		if (((1 << i) & live_regs) &&
19461 		    !regsafe(env, &old->regs[i], &cur->regs[i],
19462 			     &env->idmap_scratch, exact))
19463 			return false;
19464 
19465 	if (!stacksafe(env, old, cur, &env->idmap_scratch, exact))
19466 		return false;
19467 
19468 	return true;
19469 }
19470 
reset_idmap_scratch(struct bpf_verifier_env * env)19471 static void reset_idmap_scratch(struct bpf_verifier_env *env)
19472 {
19473 	env->idmap_scratch.tmp_id_gen = env->id_gen;
19474 	memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
19475 }
19476 
states_equal(struct bpf_verifier_env * env,struct bpf_verifier_state * old,struct bpf_verifier_state * cur,enum exact_level exact)19477 static bool states_equal(struct bpf_verifier_env *env,
19478 			 struct bpf_verifier_state *old,
19479 			 struct bpf_verifier_state *cur,
19480 			 enum exact_level exact)
19481 {
19482 	u32 insn_idx;
19483 	int i;
19484 
19485 	if (old->curframe != cur->curframe)
19486 		return false;
19487 
19488 	reset_idmap_scratch(env);
19489 
19490 	/* Verification state from speculative execution simulation
19491 	 * must never prune a non-speculative execution one.
19492 	 */
19493 	if (old->speculative && !cur->speculative)
19494 		return false;
19495 
19496 	if (old->in_sleepable != cur->in_sleepable)
19497 		return false;
19498 
19499 	if (!refsafe(old, cur, &env->idmap_scratch))
19500 		return false;
19501 
19502 	/* for states to be equal callsites have to be the same
19503 	 * and all frame states need to be equivalent
19504 	 */
19505 	for (i = 0; i <= old->curframe; i++) {
19506 		insn_idx = frame_insn_idx(old, i);
19507 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
19508 			return false;
19509 		if (!func_states_equal(env, old->frame[i], cur->frame[i], insn_idx, exact))
19510 			return false;
19511 	}
19512 	return true;
19513 }
19514 
19515 /* find precise scalars in the previous equivalent state and
19516  * propagate them into the current state
19517  */
propagate_precision(struct bpf_verifier_env * env,const struct bpf_verifier_state * old,struct bpf_verifier_state * cur,bool * changed)19518 static int propagate_precision(struct bpf_verifier_env *env,
19519 			       const struct bpf_verifier_state *old,
19520 			       struct bpf_verifier_state *cur,
19521 			       bool *changed)
19522 {
19523 	struct bpf_reg_state *state_reg;
19524 	struct bpf_func_state *state;
19525 	int i, err = 0, fr;
19526 	bool first;
19527 
19528 	for (fr = old->curframe; fr >= 0; fr--) {
19529 		state = old->frame[fr];
19530 		state_reg = state->regs;
19531 		first = true;
19532 		for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
19533 			if (state_reg->type != SCALAR_VALUE ||
19534 			    !state_reg->precise)
19535 				continue;
19536 			if (env->log.level & BPF_LOG_LEVEL2) {
19537 				if (first)
19538 					verbose(env, "frame %d: propagating r%d", fr, i);
19539 				else
19540 					verbose(env, ",r%d", i);
19541 			}
19542 			bt_set_frame_reg(&env->bt, fr, i);
19543 			first = false;
19544 		}
19545 
19546 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
19547 			if (!is_spilled_reg(&state->stack[i]))
19548 				continue;
19549 			state_reg = &state->stack[i].spilled_ptr;
19550 			if (state_reg->type != SCALAR_VALUE ||
19551 			    !state_reg->precise)
19552 				continue;
19553 			if (env->log.level & BPF_LOG_LEVEL2) {
19554 				if (first)
19555 					verbose(env, "frame %d: propagating fp%d",
19556 						fr, (-i - 1) * BPF_REG_SIZE);
19557 				else
19558 					verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
19559 			}
19560 			bt_set_frame_slot(&env->bt, fr, i);
19561 			first = false;
19562 		}
19563 		if (!first && (env->log.level & BPF_LOG_LEVEL2))
19564 			verbose(env, "\n");
19565 	}
19566 
19567 	err = __mark_chain_precision(env, cur, -1, changed);
19568 	if (err < 0)
19569 		return err;
19570 
19571 	return 0;
19572 }
19573 
19574 #define MAX_BACKEDGE_ITERS 64
19575 
19576 /* Propagate read and precision marks from visit->backedges[*].state->equal_state
19577  * to corresponding parent states of visit->backedges[*].state until fixed point is reached,
19578  * then free visit->backedges.
19579  * After execution of this function incomplete_read_marks() will return false
19580  * for all states corresponding to @visit->callchain.
19581  */
propagate_backedges(struct bpf_verifier_env * env,struct bpf_scc_visit * visit)19582 static int propagate_backedges(struct bpf_verifier_env *env, struct bpf_scc_visit *visit)
19583 {
19584 	struct bpf_scc_backedge *backedge;
19585 	struct bpf_verifier_state *st;
19586 	bool changed;
19587 	int i, err;
19588 
19589 	i = 0;
19590 	do {
19591 		if (i++ > MAX_BACKEDGE_ITERS) {
19592 			if (env->log.level & BPF_LOG_LEVEL2)
19593 				verbose(env, "%s: too many iterations\n", __func__);
19594 			for (backedge = visit->backedges; backedge; backedge = backedge->next)
19595 				mark_all_scalars_precise(env, &backedge->state);
19596 			break;
19597 		}
19598 		changed = false;
19599 		for (backedge = visit->backedges; backedge; backedge = backedge->next) {
19600 			st = &backedge->state;
19601 			err = propagate_precision(env, st->equal_state, st, &changed);
19602 			if (err)
19603 				return err;
19604 		}
19605 	} while (changed);
19606 
19607 	free_backedges(visit);
19608 	return 0;
19609 }
19610 
states_maybe_looping(struct bpf_verifier_state * old,struct bpf_verifier_state * cur)19611 static bool states_maybe_looping(struct bpf_verifier_state *old,
19612 				 struct bpf_verifier_state *cur)
19613 {
19614 	struct bpf_func_state *fold, *fcur;
19615 	int i, fr = cur->curframe;
19616 
19617 	if (old->curframe != fr)
19618 		return false;
19619 
19620 	fold = old->frame[fr];
19621 	fcur = cur->frame[fr];
19622 	for (i = 0; i < MAX_BPF_REG; i++)
19623 		if (memcmp(&fold->regs[i], &fcur->regs[i],
19624 			   offsetof(struct bpf_reg_state, frameno)))
19625 			return false;
19626 	return true;
19627 }
19628 
is_iter_next_insn(struct bpf_verifier_env * env,int insn_idx)19629 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
19630 {
19631 	return env->insn_aux_data[insn_idx].is_iter_next;
19632 }
19633 
19634 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
19635  * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
19636  * states to match, which otherwise would look like an infinite loop. So while
19637  * iter_next() calls are taken care of, we still need to be careful and
19638  * prevent erroneous and too eager declaration of "infinite loop", when
19639  * iterators are involved.
19640  *
19641  * Here's a situation in pseudo-BPF assembly form:
19642  *
19643  *   0: again:                          ; set up iter_next() call args
19644  *   1:   r1 = &it                      ; <CHECKPOINT HERE>
19645  *   2:   call bpf_iter_num_next        ; this is iter_next() call
19646  *   3:   if r0 == 0 goto done
19647  *   4:   ... something useful here ...
19648  *   5:   goto again                    ; another iteration
19649  *   6: done:
19650  *   7:   r1 = &it
19651  *   8:   call bpf_iter_num_destroy     ; clean up iter state
19652  *   9:   exit
19653  *
19654  * This is a typical loop. Let's assume that we have a prune point at 1:,
19655  * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
19656  * again`, assuming other heuristics don't get in a way).
19657  *
19658  * When we first time come to 1:, let's say we have some state X. We proceed
19659  * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
19660  * Now we come back to validate that forked ACTIVE state. We proceed through
19661  * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
19662  * are converging. But the problem is that we don't know that yet, as this
19663  * convergence has to happen at iter_next() call site only. So if nothing is
19664  * done, at 1: verifier will use bounded loop logic and declare infinite
19665  * looping (and would be *technically* correct, if not for iterator's
19666  * "eventual sticky NULL" contract, see process_iter_next_call()). But we
19667  * don't want that. So what we do in process_iter_next_call() when we go on
19668  * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
19669  * a different iteration. So when we suspect an infinite loop, we additionally
19670  * check if any of the *ACTIVE* iterator states depths differ. If yes, we
19671  * pretend we are not looping and wait for next iter_next() call.
19672  *
19673  * This only applies to ACTIVE state. In DRAINED state we don't expect to
19674  * loop, because that would actually mean infinite loop, as DRAINED state is
19675  * "sticky", and so we'll keep returning into the same instruction with the
19676  * same state (at least in one of possible code paths).
19677  *
19678  * This approach allows to keep infinite loop heuristic even in the face of
19679  * active iterator. E.g., C snippet below is and will be detected as
19680  * infinitely looping:
19681  *
19682  *   struct bpf_iter_num it;
19683  *   int *p, x;
19684  *
19685  *   bpf_iter_num_new(&it, 0, 10);
19686  *   while ((p = bpf_iter_num_next(&t))) {
19687  *       x = p;
19688  *       while (x--) {} // <<-- infinite loop here
19689  *   }
19690  *
19691  */
iter_active_depths_differ(struct bpf_verifier_state * old,struct bpf_verifier_state * cur)19692 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
19693 {
19694 	struct bpf_reg_state *slot, *cur_slot;
19695 	struct bpf_func_state *state;
19696 	int i, fr;
19697 
19698 	for (fr = old->curframe; fr >= 0; fr--) {
19699 		state = old->frame[fr];
19700 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
19701 			if (state->stack[i].slot_type[0] != STACK_ITER)
19702 				continue;
19703 
19704 			slot = &state->stack[i].spilled_ptr;
19705 			if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
19706 				continue;
19707 
19708 			cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
19709 			if (cur_slot->iter.depth != slot->iter.depth)
19710 				return true;
19711 		}
19712 	}
19713 	return false;
19714 }
19715 
is_state_visited(struct bpf_verifier_env * env,int insn_idx)19716 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
19717 {
19718 	struct bpf_verifier_state_list *new_sl;
19719 	struct bpf_verifier_state_list *sl;
19720 	struct bpf_verifier_state *cur = env->cur_state, *new;
19721 	bool force_new_state, add_new_state, loop;
19722 	int n, err, states_cnt = 0;
19723 	struct list_head *pos, *tmp, *head;
19724 
19725 	force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx) ||
19726 			  /* Avoid accumulating infinitely long jmp history */
19727 			  cur->jmp_history_cnt > 40;
19728 
19729 	/* bpf progs typically have pruning point every 4 instructions
19730 	 * http://vger.kernel.org/bpfconf2019.html#session-1
19731 	 * Do not add new state for future pruning if the verifier hasn't seen
19732 	 * at least 2 jumps and at least 8 instructions.
19733 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
19734 	 * In tests that amounts to up to 50% reduction into total verifier
19735 	 * memory consumption and 20% verifier time speedup.
19736 	 */
19737 	add_new_state = force_new_state;
19738 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
19739 	    env->insn_processed - env->prev_insn_processed >= 8)
19740 		add_new_state = true;
19741 
19742 	clean_live_states(env, insn_idx, cur);
19743 
19744 	loop = false;
19745 	head = explored_state(env, insn_idx);
19746 	list_for_each_safe(pos, tmp, head) {
19747 		sl = container_of(pos, struct bpf_verifier_state_list, node);
19748 		states_cnt++;
19749 		if (sl->state.insn_idx != insn_idx)
19750 			continue;
19751 
19752 		if (sl->state.branches) {
19753 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
19754 
19755 			if (frame->in_async_callback_fn &&
19756 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
19757 				/* Different async_entry_cnt means that the verifier is
19758 				 * processing another entry into async callback.
19759 				 * Seeing the same state is not an indication of infinite
19760 				 * loop or infinite recursion.
19761 				 * But finding the same state doesn't mean that it's safe
19762 				 * to stop processing the current state. The previous state
19763 				 * hasn't yet reached bpf_exit, since state.branches > 0.
19764 				 * Checking in_async_callback_fn alone is not enough either.
19765 				 * Since the verifier still needs to catch infinite loops
19766 				 * inside async callbacks.
19767 				 */
19768 				goto skip_inf_loop_check;
19769 			}
19770 			/* BPF open-coded iterators loop detection is special.
19771 			 * states_maybe_looping() logic is too simplistic in detecting
19772 			 * states that *might* be equivalent, because it doesn't know
19773 			 * about ID remapping, so don't even perform it.
19774 			 * See process_iter_next_call() and iter_active_depths_differ()
19775 			 * for overview of the logic. When current and one of parent
19776 			 * states are detected as equivalent, it's a good thing: we prove
19777 			 * convergence and can stop simulating further iterations.
19778 			 * It's safe to assume that iterator loop will finish, taking into
19779 			 * account iter_next() contract of eventually returning
19780 			 * sticky NULL result.
19781 			 *
19782 			 * Note, that states have to be compared exactly in this case because
19783 			 * read and precision marks might not be finalized inside the loop.
19784 			 * E.g. as in the program below:
19785 			 *
19786 			 *     1. r7 = -16
19787 			 *     2. r6 = bpf_get_prandom_u32()
19788 			 *     3. while (bpf_iter_num_next(&fp[-8])) {
19789 			 *     4.   if (r6 != 42) {
19790 			 *     5.     r7 = -32
19791 			 *     6.     r6 = bpf_get_prandom_u32()
19792 			 *     7.     continue
19793 			 *     8.   }
19794 			 *     9.   r0 = r10
19795 			 *    10.   r0 += r7
19796 			 *    11.   r8 = *(u64 *)(r0 + 0)
19797 			 *    12.   r6 = bpf_get_prandom_u32()
19798 			 *    13. }
19799 			 *
19800 			 * Here verifier would first visit path 1-3, create a checkpoint at 3
19801 			 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does
19802 			 * not have read or precision mark for r7 yet, thus inexact states
19803 			 * comparison would discard current state with r7=-32
19804 			 * => unsafe memory access at 11 would not be caught.
19805 			 */
19806 			if (is_iter_next_insn(env, insn_idx)) {
19807 				if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) {
19808 					struct bpf_func_state *cur_frame;
19809 					struct bpf_reg_state *iter_state, *iter_reg;
19810 					int spi;
19811 
19812 					cur_frame = cur->frame[cur->curframe];
19813 					/* btf_check_iter_kfuncs() enforces that
19814 					 * iter state pointer is always the first arg
19815 					 */
19816 					iter_reg = &cur_frame->regs[BPF_REG_1];
19817 					/* current state is valid due to states_equal(),
19818 					 * so we can assume valid iter and reg state,
19819 					 * no need for extra (re-)validations
19820 					 */
19821 					spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
19822 					iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
19823 					if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) {
19824 						loop = true;
19825 						goto hit;
19826 					}
19827 				}
19828 				goto skip_inf_loop_check;
19829 			}
19830 			if (is_may_goto_insn_at(env, insn_idx)) {
19831 				if (sl->state.may_goto_depth != cur->may_goto_depth &&
19832 				    states_equal(env, &sl->state, cur, RANGE_WITHIN)) {
19833 					loop = true;
19834 					goto hit;
19835 				}
19836 			}
19837 			if (bpf_calls_callback(env, insn_idx)) {
19838 				if (states_equal(env, &sl->state, cur, RANGE_WITHIN))
19839 					goto hit;
19840 				goto skip_inf_loop_check;
19841 			}
19842 			/* attempt to detect infinite loop to avoid unnecessary doomed work */
19843 			if (states_maybe_looping(&sl->state, cur) &&
19844 			    states_equal(env, &sl->state, cur, EXACT) &&
19845 			    !iter_active_depths_differ(&sl->state, cur) &&
19846 			    sl->state.may_goto_depth == cur->may_goto_depth &&
19847 			    sl->state.callback_unroll_depth == cur->callback_unroll_depth) {
19848 				verbose_linfo(env, insn_idx, "; ");
19849 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
19850 				verbose(env, "cur state:");
19851 				print_verifier_state(env, cur, cur->curframe, true);
19852 				verbose(env, "old state:");
19853 				print_verifier_state(env, &sl->state, cur->curframe, true);
19854 				return -EINVAL;
19855 			}
19856 			/* if the verifier is processing a loop, avoid adding new state
19857 			 * too often, since different loop iterations have distinct
19858 			 * states and may not help future pruning.
19859 			 * This threshold shouldn't be too low to make sure that
19860 			 * a loop with large bound will be rejected quickly.
19861 			 * The most abusive loop will be:
19862 			 * r1 += 1
19863 			 * if r1 < 1000000 goto pc-2
19864 			 * 1M insn_procssed limit / 100 == 10k peak states.
19865 			 * This threshold shouldn't be too high either, since states
19866 			 * at the end of the loop are likely to be useful in pruning.
19867 			 */
19868 skip_inf_loop_check:
19869 			if (!force_new_state &&
19870 			    env->jmps_processed - env->prev_jmps_processed < 20 &&
19871 			    env->insn_processed - env->prev_insn_processed < 100)
19872 				add_new_state = false;
19873 			goto miss;
19874 		}
19875 		/* See comments for mark_all_regs_read_and_precise() */
19876 		loop = incomplete_read_marks(env, &sl->state);
19877 		if (states_equal(env, &sl->state, cur, loop ? RANGE_WITHIN : NOT_EXACT)) {
19878 hit:
19879 			sl->hit_cnt++;
19880 
19881 			/* if previous state reached the exit with precision and
19882 			 * current state is equivalent to it (except precision marks)
19883 			 * the precision needs to be propagated back in
19884 			 * the current state.
19885 			 */
19886 			err = 0;
19887 			if (is_jmp_point(env, env->insn_idx))
19888 				err = push_jmp_history(env, cur, 0, 0);
19889 			err = err ? : propagate_precision(env, &sl->state, cur, NULL);
19890 			if (err)
19891 				return err;
19892 			/* When processing iterator based loops above propagate_liveness and
19893 			 * propagate_precision calls are not sufficient to transfer all relevant
19894 			 * read and precision marks. E.g. consider the following case:
19895 			 *
19896 			 *  .-> A --.  Assume the states are visited in the order A, B, C.
19897 			 *  |   |   |  Assume that state B reaches a state equivalent to state A.
19898 			 *  |   v   v  At this point, state C is not processed yet, so state A
19899 			 *  '-- B   C  has not received any read or precision marks from C.
19900 			 *             Thus, marks propagated from A to B are incomplete.
19901 			 *
19902 			 * The verifier mitigates this by performing the following steps:
19903 			 *
19904 			 * - Prior to the main verification pass, strongly connected components
19905 			 *   (SCCs) are computed over the program's control flow graph,
19906 			 *   intraprocedurally.
19907 			 *
19908 			 * - During the main verification pass, `maybe_enter_scc()` checks
19909 			 *   whether the current verifier state is entering an SCC. If so, an
19910 			 *   instance of a `bpf_scc_visit` object is created, and the state
19911 			 *   entering the SCC is recorded as the entry state.
19912 			 *
19913 			 * - This instance is associated not with the SCC itself, but with a
19914 			 *   `bpf_scc_callchain`: a tuple consisting of the call sites leading to
19915 			 *   the SCC and the SCC id. See `compute_scc_callchain()`.
19916 			 *
19917 			 * - When a verification path encounters a `states_equal(...,
19918 			 *   RANGE_WITHIN)` condition, there exists a call chain describing the
19919 			 *   current state and a corresponding `bpf_scc_visit` instance. A copy
19920 			 *   of the current state is created and added to
19921 			 *   `bpf_scc_visit->backedges`.
19922 			 *
19923 			 * - When a verification path terminates, `maybe_exit_scc()` is called
19924 			 *   from `update_branch_counts()`. For states with `branches == 0`, it
19925 			 *   checks whether the state is the entry state of any `bpf_scc_visit`
19926 			 *   instance. If it is, this indicates that all paths originating from
19927 			 *   this SCC visit have been explored. `propagate_backedges()` is then
19928 			 *   called, which propagates read and precision marks through the
19929 			 *   backedges until a fixed point is reached.
19930 			 *   (In the earlier example, this would propagate marks from A to B,
19931 			 *    from C to A, and then again from A to B.)
19932 			 *
19933 			 * A note on callchains
19934 			 * --------------------
19935 			 *
19936 			 * Consider the following example:
19937 			 *
19938 			 *     void foo() { loop { ... SCC#1 ... } }
19939 			 *     void main() {
19940 			 *       A: foo();
19941 			 *       B: ...
19942 			 *       C: foo();
19943 			 *     }
19944 			 *
19945 			 * Here, there are two distinct callchains leading to SCC#1:
19946 			 * - (A, SCC#1)
19947 			 * - (C, SCC#1)
19948 			 *
19949 			 * Each callchain identifies a separate `bpf_scc_visit` instance that
19950 			 * accumulates backedge states. The `propagate_{liveness,precision}()`
19951 			 * functions traverse the parent state of each backedge state, which
19952 			 * means these parent states must remain valid (i.e., not freed) while
19953 			 * the corresponding `bpf_scc_visit` instance exists.
19954 			 *
19955 			 * Associating `bpf_scc_visit` instances directly with SCCs instead of
19956 			 * callchains would break this invariant:
19957 			 * - States explored during `C: foo()` would contribute backedges to
19958 			 *   SCC#1, but SCC#1 would only be exited once the exploration of
19959 			 *   `A: foo()` completes.
19960 			 * - By that time, the states explored between `A: foo()` and `C: foo()`
19961 			 *   (i.e., `B: ...`) may have already been freed, causing the parent
19962 			 *   links for states from `C: foo()` to become invalid.
19963 			 */
19964 			if (loop) {
19965 				struct bpf_scc_backedge *backedge;
19966 
19967 				backedge = kzalloc(sizeof(*backedge), GFP_KERNEL_ACCOUNT);
19968 				if (!backedge)
19969 					return -ENOMEM;
19970 				err = copy_verifier_state(&backedge->state, cur);
19971 				backedge->state.equal_state = &sl->state;
19972 				backedge->state.insn_idx = insn_idx;
19973 				err = err ?: add_scc_backedge(env, &sl->state, backedge);
19974 				if (err) {
19975 					free_verifier_state(&backedge->state, false);
19976 					kfree(backedge);
19977 					return err;
19978 				}
19979 			}
19980 			return 1;
19981 		}
19982 miss:
19983 		/* when new state is not going to be added do not increase miss count.
19984 		 * Otherwise several loop iterations will remove the state
19985 		 * recorded earlier. The goal of these heuristics is to have
19986 		 * states from some iterations of the loop (some in the beginning
19987 		 * and some at the end) to help pruning.
19988 		 */
19989 		if (add_new_state)
19990 			sl->miss_cnt++;
19991 		/* heuristic to determine whether this state is beneficial
19992 		 * to keep checking from state equivalence point of view.
19993 		 * Higher numbers increase max_states_per_insn and verification time,
19994 		 * but do not meaningfully decrease insn_processed.
19995 		 * 'n' controls how many times state could miss before eviction.
19996 		 * Use bigger 'n' for checkpoints because evicting checkpoint states
19997 		 * too early would hinder iterator convergence.
19998 		 */
19999 		n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3;
20000 		if (sl->miss_cnt > sl->hit_cnt * n + n) {
20001 			/* the state is unlikely to be useful. Remove it to
20002 			 * speed up verification
20003 			 */
20004 			sl->in_free_list = true;
20005 			list_del(&sl->node);
20006 			list_add(&sl->node, &env->free_list);
20007 			env->free_list_size++;
20008 			env->explored_states_size--;
20009 			maybe_free_verifier_state(env, sl);
20010 		}
20011 	}
20012 
20013 	if (env->max_states_per_insn < states_cnt)
20014 		env->max_states_per_insn = states_cnt;
20015 
20016 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
20017 		return 0;
20018 
20019 	if (!add_new_state)
20020 		return 0;
20021 
20022 	/* There were no equivalent states, remember the current one.
20023 	 * Technically the current state is not proven to be safe yet,
20024 	 * but it will either reach outer most bpf_exit (which means it's safe)
20025 	 * or it will be rejected. When there are no loops the verifier won't be
20026 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
20027 	 * again on the way to bpf_exit.
20028 	 * When looping the sl->state.branches will be > 0 and this state
20029 	 * will not be considered for equivalence until branches == 0.
20030 	 */
20031 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL_ACCOUNT);
20032 	if (!new_sl)
20033 		return -ENOMEM;
20034 	env->total_states++;
20035 	env->explored_states_size++;
20036 	update_peak_states(env);
20037 	env->prev_jmps_processed = env->jmps_processed;
20038 	env->prev_insn_processed = env->insn_processed;
20039 
20040 	/* forget precise markings we inherited, see __mark_chain_precision */
20041 	if (env->bpf_capable)
20042 		mark_all_scalars_imprecise(env, cur);
20043 
20044 	/* add new state to the head of linked list */
20045 	new = &new_sl->state;
20046 	err = copy_verifier_state(new, cur);
20047 	if (err) {
20048 		free_verifier_state(new, false);
20049 		kfree(new_sl);
20050 		return err;
20051 	}
20052 	new->insn_idx = insn_idx;
20053 	verifier_bug_if(new->branches != 1, env,
20054 			"%s:branches_to_explore=%d insn %d",
20055 			__func__, new->branches, insn_idx);
20056 	err = maybe_enter_scc(env, new);
20057 	if (err) {
20058 		free_verifier_state(new, false);
20059 		kfree(new_sl);
20060 		return err;
20061 	}
20062 
20063 	cur->parent = new;
20064 	cur->first_insn_idx = insn_idx;
20065 	cur->dfs_depth = new->dfs_depth + 1;
20066 	clear_jmp_history(cur);
20067 	list_add(&new_sl->node, head);
20068 	return 0;
20069 }
20070 
20071 /* Return true if it's OK to have the same insn return a different type. */
reg_type_mismatch_ok(enum bpf_reg_type type)20072 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
20073 {
20074 	switch (base_type(type)) {
20075 	case PTR_TO_CTX:
20076 	case PTR_TO_SOCKET:
20077 	case PTR_TO_SOCK_COMMON:
20078 	case PTR_TO_TCP_SOCK:
20079 	case PTR_TO_XDP_SOCK:
20080 	case PTR_TO_BTF_ID:
20081 	case PTR_TO_ARENA:
20082 		return false;
20083 	default:
20084 		return true;
20085 	}
20086 }
20087 
20088 /* If an instruction was previously used with particular pointer types, then we
20089  * need to be careful to avoid cases such as the below, where it may be ok
20090  * for one branch accessing the pointer, but not ok for the other branch:
20091  *
20092  * R1 = sock_ptr
20093  * goto X;
20094  * ...
20095  * R1 = some_other_valid_ptr;
20096  * goto X;
20097  * ...
20098  * R2 = *(u32 *)(R1 + 0);
20099  */
reg_type_mismatch(enum bpf_reg_type src,enum bpf_reg_type prev)20100 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
20101 {
20102 	return src != prev && (!reg_type_mismatch_ok(src) ||
20103 			       !reg_type_mismatch_ok(prev));
20104 }
20105 
is_ptr_to_mem_or_btf_id(enum bpf_reg_type type)20106 static bool is_ptr_to_mem_or_btf_id(enum bpf_reg_type type)
20107 {
20108 	switch (base_type(type)) {
20109 	case PTR_TO_MEM:
20110 	case PTR_TO_BTF_ID:
20111 		return true;
20112 	default:
20113 		return false;
20114 	}
20115 }
20116 
is_ptr_to_mem(enum bpf_reg_type type)20117 static bool is_ptr_to_mem(enum bpf_reg_type type)
20118 {
20119 	return base_type(type) == PTR_TO_MEM;
20120 }
20121 
save_aux_ptr_type(struct bpf_verifier_env * env,enum bpf_reg_type type,bool allow_trust_mismatch)20122 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
20123 			     bool allow_trust_mismatch)
20124 {
20125 	enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
20126 	enum bpf_reg_type merged_type;
20127 
20128 	if (*prev_type == NOT_INIT) {
20129 		/* Saw a valid insn
20130 		 * dst_reg = *(u32 *)(src_reg + off)
20131 		 * save type to validate intersecting paths
20132 		 */
20133 		*prev_type = type;
20134 	} else if (reg_type_mismatch(type, *prev_type)) {
20135 		/* Abuser program is trying to use the same insn
20136 		 * dst_reg = *(u32*) (src_reg + off)
20137 		 * with different pointer types:
20138 		 * src_reg == ctx in one branch and
20139 		 * src_reg == stack|map in some other branch.
20140 		 * Reject it.
20141 		 */
20142 		if (allow_trust_mismatch &&
20143 		    is_ptr_to_mem_or_btf_id(type) &&
20144 		    is_ptr_to_mem_or_btf_id(*prev_type)) {
20145 			/*
20146 			 * Have to support a use case when one path through
20147 			 * the program yields TRUSTED pointer while another
20148 			 * is UNTRUSTED. Fallback to UNTRUSTED to generate
20149 			 * BPF_PROBE_MEM/BPF_PROBE_MEMSX.
20150 			 * Same behavior of MEM_RDONLY flag.
20151 			 */
20152 			if (is_ptr_to_mem(type) || is_ptr_to_mem(*prev_type))
20153 				merged_type = PTR_TO_MEM;
20154 			else
20155 				merged_type = PTR_TO_BTF_ID;
20156 			if ((type & PTR_UNTRUSTED) || (*prev_type & PTR_UNTRUSTED))
20157 				merged_type |= PTR_UNTRUSTED;
20158 			if ((type & MEM_RDONLY) || (*prev_type & MEM_RDONLY))
20159 				merged_type |= MEM_RDONLY;
20160 			*prev_type = merged_type;
20161 		} else {
20162 			verbose(env, "same insn cannot be used with different pointers\n");
20163 			return -EINVAL;
20164 		}
20165 	}
20166 
20167 	return 0;
20168 }
20169 
20170 enum {
20171 	PROCESS_BPF_EXIT = 1
20172 };
20173 
process_bpf_exit_full(struct bpf_verifier_env * env,bool * do_print_state,bool exception_exit)20174 static int process_bpf_exit_full(struct bpf_verifier_env *env,
20175 				 bool *do_print_state,
20176 				 bool exception_exit)
20177 {
20178 	/* We must do check_reference_leak here before
20179 	 * prepare_func_exit to handle the case when
20180 	 * state->curframe > 0, it may be a callback function,
20181 	 * for which reference_state must match caller reference
20182 	 * state when it exits.
20183 	 */
20184 	int err = check_resource_leak(env, exception_exit,
20185 				      !env->cur_state->curframe,
20186 				      "BPF_EXIT instruction in main prog");
20187 	if (err)
20188 		return err;
20189 
20190 	/* The side effect of the prepare_func_exit which is
20191 	 * being skipped is that it frees bpf_func_state.
20192 	 * Typically, process_bpf_exit will only be hit with
20193 	 * outermost exit. copy_verifier_state in pop_stack will
20194 	 * handle freeing of any extra bpf_func_state left over
20195 	 * from not processing all nested function exits. We
20196 	 * also skip return code checks as they are not needed
20197 	 * for exceptional exits.
20198 	 */
20199 	if (exception_exit)
20200 		return PROCESS_BPF_EXIT;
20201 
20202 	if (env->cur_state->curframe) {
20203 		/* exit from nested function */
20204 		err = prepare_func_exit(env, &env->insn_idx);
20205 		if (err)
20206 			return err;
20207 		*do_print_state = true;
20208 		return 0;
20209 	}
20210 
20211 	err = check_return_code(env, BPF_REG_0, "R0");
20212 	if (err)
20213 		return err;
20214 	return PROCESS_BPF_EXIT;
20215 }
20216 
indirect_jump_min_max_index(struct bpf_verifier_env * env,int regno,struct bpf_map * map,u32 * pmin_index,u32 * pmax_index)20217 static int indirect_jump_min_max_index(struct bpf_verifier_env *env,
20218 				       int regno,
20219 				       struct bpf_map *map,
20220 				       u32 *pmin_index, u32 *pmax_index)
20221 {
20222 	struct bpf_reg_state *reg = reg_state(env, regno);
20223 	u64 min_index, max_index;
20224 	const u32 size = 8;
20225 
20226 	if (check_add_overflow(reg->umin_value, reg->off, &min_index) ||
20227 		(min_index > (u64) U32_MAX * size)) {
20228 		verbose(env, "the sum of R%u umin_value %llu and off %u is too big\n",
20229 			     regno, reg->umin_value, reg->off);
20230 		return -ERANGE;
20231 	}
20232 	if (check_add_overflow(reg->umax_value, reg->off, &max_index) ||
20233 		(max_index > (u64) U32_MAX * size)) {
20234 		verbose(env, "the sum of R%u umax_value %llu and off %u is too big\n",
20235 			     regno, reg->umax_value, reg->off);
20236 		return -ERANGE;
20237 	}
20238 
20239 	min_index /= size;
20240 	max_index /= size;
20241 
20242 	if (max_index >= map->max_entries) {
20243 		verbose(env, "R%u points to outside of jump table: [%llu,%llu] max_entries %u\n",
20244 			     regno, min_index, max_index, map->max_entries);
20245 		return -EINVAL;
20246 	}
20247 
20248 	*pmin_index = min_index;
20249 	*pmax_index = max_index;
20250 	return 0;
20251 }
20252 
20253 /* gotox *dst_reg */
check_indirect_jump(struct bpf_verifier_env * env,struct bpf_insn * insn)20254 static int check_indirect_jump(struct bpf_verifier_env *env, struct bpf_insn *insn)
20255 {
20256 	struct bpf_verifier_state *other_branch;
20257 	struct bpf_reg_state *dst_reg;
20258 	struct bpf_map *map;
20259 	u32 min_index, max_index;
20260 	int err = 0;
20261 	int n;
20262 	int i;
20263 
20264 	dst_reg = reg_state(env, insn->dst_reg);
20265 	if (dst_reg->type != PTR_TO_INSN) {
20266 		verbose(env, "R%d has type %s, expected PTR_TO_INSN\n",
20267 			     insn->dst_reg, reg_type_str(env, dst_reg->type));
20268 		return -EINVAL;
20269 	}
20270 
20271 	map = dst_reg->map_ptr;
20272 	if (verifier_bug_if(!map, env, "R%d has an empty map pointer", insn->dst_reg))
20273 		return -EFAULT;
20274 
20275 	if (verifier_bug_if(map->map_type != BPF_MAP_TYPE_INSN_ARRAY, env,
20276 			    "R%d has incorrect map type %d", insn->dst_reg, map->map_type))
20277 		return -EFAULT;
20278 
20279 	err = indirect_jump_min_max_index(env, insn->dst_reg, map, &min_index, &max_index);
20280 	if (err)
20281 		return err;
20282 
20283 	/* Ensure that the buffer is large enough */
20284 	if (!env->gotox_tmp_buf || env->gotox_tmp_buf->cnt < max_index - min_index + 1) {
20285 		env->gotox_tmp_buf = iarray_realloc(env->gotox_tmp_buf,
20286 						    max_index - min_index + 1);
20287 		if (!env->gotox_tmp_buf)
20288 			return -ENOMEM;
20289 	}
20290 
20291 	n = copy_insn_array_uniq(map, min_index, max_index, env->gotox_tmp_buf->items);
20292 	if (n < 0)
20293 		return n;
20294 	if (n == 0) {
20295 		verbose(env, "register R%d doesn't point to any offset in map id=%d\n",
20296 			     insn->dst_reg, map->id);
20297 		return -EINVAL;
20298 	}
20299 
20300 	for (i = 0; i < n - 1; i++) {
20301 		other_branch = push_stack(env, env->gotox_tmp_buf->items[i],
20302 					  env->insn_idx, env->cur_state->speculative);
20303 		if (IS_ERR(other_branch))
20304 			return PTR_ERR(other_branch);
20305 	}
20306 	env->insn_idx = env->gotox_tmp_buf->items[n-1];
20307 	return 0;
20308 }
20309 
do_check_insn(struct bpf_verifier_env * env,bool * do_print_state)20310 static int do_check_insn(struct bpf_verifier_env *env, bool *do_print_state)
20311 {
20312 	int err;
20313 	struct bpf_insn *insn = &env->prog->insnsi[env->insn_idx];
20314 	u8 class = BPF_CLASS(insn->code);
20315 
20316 	if (class == BPF_ALU || class == BPF_ALU64) {
20317 		err = check_alu_op(env, insn);
20318 		if (err)
20319 			return err;
20320 
20321 	} else if (class == BPF_LDX) {
20322 		bool is_ldsx = BPF_MODE(insn->code) == BPF_MEMSX;
20323 
20324 		/* Check for reserved fields is already done in
20325 		 * resolve_pseudo_ldimm64().
20326 		 */
20327 		err = check_load_mem(env, insn, false, is_ldsx, true, "ldx");
20328 		if (err)
20329 			return err;
20330 	} else if (class == BPF_STX) {
20331 		if (BPF_MODE(insn->code) == BPF_ATOMIC) {
20332 			err = check_atomic(env, insn);
20333 			if (err)
20334 				return err;
20335 			env->insn_idx++;
20336 			return 0;
20337 		}
20338 
20339 		if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
20340 			verbose(env, "BPF_STX uses reserved fields\n");
20341 			return -EINVAL;
20342 		}
20343 
20344 		err = check_store_reg(env, insn, false);
20345 		if (err)
20346 			return err;
20347 	} else if (class == BPF_ST) {
20348 		enum bpf_reg_type dst_reg_type;
20349 
20350 		if (BPF_MODE(insn->code) != BPF_MEM ||
20351 		    insn->src_reg != BPF_REG_0) {
20352 			verbose(env, "BPF_ST uses reserved fields\n");
20353 			return -EINVAL;
20354 		}
20355 		/* check src operand */
20356 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
20357 		if (err)
20358 			return err;
20359 
20360 		dst_reg_type = cur_regs(env)[insn->dst_reg].type;
20361 
20362 		/* check that memory (dst_reg + off) is writeable */
20363 		err = check_mem_access(env, env->insn_idx, insn->dst_reg,
20364 				       insn->off, BPF_SIZE(insn->code),
20365 				       BPF_WRITE, -1, false, false);
20366 		if (err)
20367 			return err;
20368 
20369 		err = save_aux_ptr_type(env, dst_reg_type, false);
20370 		if (err)
20371 			return err;
20372 	} else if (class == BPF_JMP || class == BPF_JMP32) {
20373 		u8 opcode = BPF_OP(insn->code);
20374 
20375 		env->jmps_processed++;
20376 		if (opcode == BPF_CALL) {
20377 			if (BPF_SRC(insn->code) != BPF_K ||
20378 			    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL &&
20379 			     insn->off != 0) ||
20380 			    (insn->src_reg != BPF_REG_0 &&
20381 			     insn->src_reg != BPF_PSEUDO_CALL &&
20382 			     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
20383 			    insn->dst_reg != BPF_REG_0 || class == BPF_JMP32) {
20384 				verbose(env, "BPF_CALL uses reserved fields\n");
20385 				return -EINVAL;
20386 			}
20387 
20388 			if (env->cur_state->active_locks) {
20389 				if ((insn->src_reg == BPF_REG_0 &&
20390 				     insn->imm != BPF_FUNC_spin_unlock) ||
20391 				    (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
20392 				     (insn->off != 0 || !kfunc_spin_allowed(insn->imm)))) {
20393 					verbose(env,
20394 						"function calls are not allowed while holding a lock\n");
20395 					return -EINVAL;
20396 				}
20397 			}
20398 			if (insn->src_reg == BPF_PSEUDO_CALL) {
20399 				err = check_func_call(env, insn, &env->insn_idx);
20400 			} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
20401 				err = check_kfunc_call(env, insn, &env->insn_idx);
20402 				if (!err && is_bpf_throw_kfunc(insn))
20403 					return process_bpf_exit_full(env, do_print_state, true);
20404 			} else {
20405 				err = check_helper_call(env, insn, &env->insn_idx);
20406 			}
20407 			if (err)
20408 				return err;
20409 
20410 			mark_reg_scratched(env, BPF_REG_0);
20411 		} else if (opcode == BPF_JA) {
20412 			if (BPF_SRC(insn->code) == BPF_X) {
20413 				if (insn->src_reg != BPF_REG_0 ||
20414 				    insn->imm != 0 || insn->off != 0) {
20415 					verbose(env, "BPF_JA|BPF_X uses reserved fields\n");
20416 					return -EINVAL;
20417 				}
20418 				return check_indirect_jump(env, insn);
20419 			}
20420 
20421 			if (BPF_SRC(insn->code) != BPF_K ||
20422 			    insn->src_reg != BPF_REG_0 ||
20423 			    insn->dst_reg != BPF_REG_0 ||
20424 			    (class == BPF_JMP && insn->imm != 0) ||
20425 			    (class == BPF_JMP32 && insn->off != 0)) {
20426 				verbose(env, "BPF_JA uses reserved fields\n");
20427 				return -EINVAL;
20428 			}
20429 
20430 			if (class == BPF_JMP)
20431 				env->insn_idx += insn->off + 1;
20432 			else
20433 				env->insn_idx += insn->imm + 1;
20434 			return 0;
20435 		} else if (opcode == BPF_EXIT) {
20436 			if (BPF_SRC(insn->code) != BPF_K ||
20437 			    insn->imm != 0 ||
20438 			    insn->src_reg != BPF_REG_0 ||
20439 			    insn->dst_reg != BPF_REG_0 ||
20440 			    class == BPF_JMP32) {
20441 				verbose(env, "BPF_EXIT uses reserved fields\n");
20442 				return -EINVAL;
20443 			}
20444 			return process_bpf_exit_full(env, do_print_state, false);
20445 		} else {
20446 			err = check_cond_jmp_op(env, insn, &env->insn_idx);
20447 			if (err)
20448 				return err;
20449 		}
20450 	} else if (class == BPF_LD) {
20451 		u8 mode = BPF_MODE(insn->code);
20452 
20453 		if (mode == BPF_ABS || mode == BPF_IND) {
20454 			err = check_ld_abs(env, insn);
20455 			if (err)
20456 				return err;
20457 
20458 		} else if (mode == BPF_IMM) {
20459 			err = check_ld_imm(env, insn);
20460 			if (err)
20461 				return err;
20462 
20463 			env->insn_idx++;
20464 			sanitize_mark_insn_seen(env);
20465 		} else {
20466 			verbose(env, "invalid BPF_LD mode\n");
20467 			return -EINVAL;
20468 		}
20469 	} else {
20470 		verbose(env, "unknown insn class %d\n", class);
20471 		return -EINVAL;
20472 	}
20473 
20474 	env->insn_idx++;
20475 	return 0;
20476 }
20477 
do_check(struct bpf_verifier_env * env)20478 static int do_check(struct bpf_verifier_env *env)
20479 {
20480 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
20481 	struct bpf_verifier_state *state = env->cur_state;
20482 	struct bpf_insn *insns = env->prog->insnsi;
20483 	int insn_cnt = env->prog->len;
20484 	bool do_print_state = false;
20485 	int prev_insn_idx = -1;
20486 
20487 	for (;;) {
20488 		struct bpf_insn *insn;
20489 		struct bpf_insn_aux_data *insn_aux;
20490 		int err, marks_err;
20491 
20492 		/* reset current history entry on each new instruction */
20493 		env->cur_hist_ent = NULL;
20494 
20495 		env->prev_insn_idx = prev_insn_idx;
20496 		if (env->insn_idx >= insn_cnt) {
20497 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
20498 				env->insn_idx, insn_cnt);
20499 			return -EFAULT;
20500 		}
20501 
20502 		insn = &insns[env->insn_idx];
20503 		insn_aux = &env->insn_aux_data[env->insn_idx];
20504 
20505 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
20506 			verbose(env,
20507 				"BPF program is too large. Processed %d insn\n",
20508 				env->insn_processed);
20509 			return -E2BIG;
20510 		}
20511 
20512 		state->last_insn_idx = env->prev_insn_idx;
20513 		state->insn_idx = env->insn_idx;
20514 
20515 		if (is_prune_point(env, env->insn_idx)) {
20516 			err = is_state_visited(env, env->insn_idx);
20517 			if (err < 0)
20518 				return err;
20519 			if (err == 1) {
20520 				/* found equivalent state, can prune the search */
20521 				if (env->log.level & BPF_LOG_LEVEL) {
20522 					if (do_print_state)
20523 						verbose(env, "\nfrom %d to %d%s: safe\n",
20524 							env->prev_insn_idx, env->insn_idx,
20525 							env->cur_state->speculative ?
20526 							" (speculative execution)" : "");
20527 					else
20528 						verbose(env, "%d: safe\n", env->insn_idx);
20529 				}
20530 				goto process_bpf_exit;
20531 			}
20532 		}
20533 
20534 		if (is_jmp_point(env, env->insn_idx)) {
20535 			err = push_jmp_history(env, state, 0, 0);
20536 			if (err)
20537 				return err;
20538 		}
20539 
20540 		if (signal_pending(current))
20541 			return -EAGAIN;
20542 
20543 		if (need_resched())
20544 			cond_resched();
20545 
20546 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
20547 			verbose(env, "\nfrom %d to %d%s:",
20548 				env->prev_insn_idx, env->insn_idx,
20549 				env->cur_state->speculative ?
20550 				" (speculative execution)" : "");
20551 			print_verifier_state(env, state, state->curframe, true);
20552 			do_print_state = false;
20553 		}
20554 
20555 		if (env->log.level & BPF_LOG_LEVEL) {
20556 			if (verifier_state_scratched(env))
20557 				print_insn_state(env, state, state->curframe);
20558 
20559 			verbose_linfo(env, env->insn_idx, "; ");
20560 			env->prev_log_pos = env->log.end_pos;
20561 			verbose(env, "%d: ", env->insn_idx);
20562 			verbose_insn(env, insn);
20563 			env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
20564 			env->prev_log_pos = env->log.end_pos;
20565 		}
20566 
20567 		if (bpf_prog_is_offloaded(env->prog->aux)) {
20568 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
20569 							   env->prev_insn_idx);
20570 			if (err)
20571 				return err;
20572 		}
20573 
20574 		sanitize_mark_insn_seen(env);
20575 		prev_insn_idx = env->insn_idx;
20576 
20577 		/* Reduce verification complexity by stopping speculative path
20578 		 * verification when a nospec is encountered.
20579 		 */
20580 		if (state->speculative && insn_aux->nospec)
20581 			goto process_bpf_exit;
20582 
20583 		err = bpf_reset_stack_write_marks(env, env->insn_idx);
20584 		if (err)
20585 			return err;
20586 		err = do_check_insn(env, &do_print_state);
20587 		if (err >= 0 || error_recoverable_with_nospec(err)) {
20588 			marks_err = bpf_commit_stack_write_marks(env);
20589 			if (marks_err)
20590 				return marks_err;
20591 		}
20592 		if (error_recoverable_with_nospec(err) && state->speculative) {
20593 			/* Prevent this speculative path from ever reaching the
20594 			 * insn that would have been unsafe to execute.
20595 			 */
20596 			insn_aux->nospec = true;
20597 			/* If it was an ADD/SUB insn, potentially remove any
20598 			 * markings for alu sanitization.
20599 			 */
20600 			insn_aux->alu_state = 0;
20601 			goto process_bpf_exit;
20602 		} else if (err < 0) {
20603 			return err;
20604 		} else if (err == PROCESS_BPF_EXIT) {
20605 			goto process_bpf_exit;
20606 		}
20607 		WARN_ON_ONCE(err);
20608 
20609 		if (state->speculative && insn_aux->nospec_result) {
20610 			/* If we are on a path that performed a jump-op, this
20611 			 * may skip a nospec patched-in after the jump. This can
20612 			 * currently never happen because nospec_result is only
20613 			 * used for the write-ops
20614 			 * `*(size*)(dst_reg+off)=src_reg|imm32` which must
20615 			 * never skip the following insn. Still, add a warning
20616 			 * to document this in case nospec_result is used
20617 			 * elsewhere in the future.
20618 			 *
20619 			 * All non-branch instructions have a single
20620 			 * fall-through edge. For these, nospec_result should
20621 			 * already work.
20622 			 */
20623 			if (verifier_bug_if(BPF_CLASS(insn->code) == BPF_JMP ||
20624 					    BPF_CLASS(insn->code) == BPF_JMP32, env,
20625 					    "speculation barrier after jump instruction may not have the desired effect"))
20626 				return -EFAULT;
20627 process_bpf_exit:
20628 			mark_verifier_state_scratched(env);
20629 			err = update_branch_counts(env, env->cur_state);
20630 			if (err)
20631 				return err;
20632 			err = bpf_update_live_stack(env);
20633 			if (err)
20634 				return err;
20635 			err = pop_stack(env, &prev_insn_idx, &env->insn_idx,
20636 					pop_log);
20637 			if (err < 0) {
20638 				if (err != -ENOENT)
20639 					return err;
20640 				break;
20641 			} else {
20642 				do_print_state = true;
20643 				continue;
20644 			}
20645 		}
20646 	}
20647 
20648 	return 0;
20649 }
20650 
find_btf_percpu_datasec(struct btf * btf)20651 static int find_btf_percpu_datasec(struct btf *btf)
20652 {
20653 	const struct btf_type *t;
20654 	const char *tname;
20655 	int i, n;
20656 
20657 	/*
20658 	 * Both vmlinux and module each have their own ".data..percpu"
20659 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
20660 	 * types to look at only module's own BTF types.
20661 	 */
20662 	n = btf_nr_types(btf);
20663 	if (btf_is_module(btf))
20664 		i = btf_nr_types(btf_vmlinux);
20665 	else
20666 		i = 1;
20667 
20668 	for(; i < n; i++) {
20669 		t = btf_type_by_id(btf, i);
20670 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
20671 			continue;
20672 
20673 		tname = btf_name_by_offset(btf, t->name_off);
20674 		if (!strcmp(tname, ".data..percpu"))
20675 			return i;
20676 	}
20677 
20678 	return -ENOENT;
20679 }
20680 
20681 /*
20682  * Add btf to the used_btfs array and return the index. (If the btf was
20683  * already added, then just return the index.) Upon successful insertion
20684  * increase btf refcnt, and, if present, also refcount the corresponding
20685  * kernel module.
20686  */
__add_used_btf(struct bpf_verifier_env * env,struct btf * btf)20687 static int __add_used_btf(struct bpf_verifier_env *env, struct btf *btf)
20688 {
20689 	struct btf_mod_pair *btf_mod;
20690 	int i;
20691 
20692 	/* check whether we recorded this BTF (and maybe module) already */
20693 	for (i = 0; i < env->used_btf_cnt; i++)
20694 		if (env->used_btfs[i].btf == btf)
20695 			return i;
20696 
20697 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
20698 		verbose(env, "The total number of btfs per program has reached the limit of %u\n",
20699 			MAX_USED_BTFS);
20700 		return -E2BIG;
20701 	}
20702 
20703 	btf_get(btf);
20704 
20705 	btf_mod = &env->used_btfs[env->used_btf_cnt];
20706 	btf_mod->btf = btf;
20707 	btf_mod->module = NULL;
20708 
20709 	/* if we reference variables from kernel module, bump its refcount */
20710 	if (btf_is_module(btf)) {
20711 		btf_mod->module = btf_try_get_module(btf);
20712 		if (!btf_mod->module) {
20713 			btf_put(btf);
20714 			return -ENXIO;
20715 		}
20716 	}
20717 
20718 	return env->used_btf_cnt++;
20719 }
20720 
20721 /* replace pseudo btf_id with kernel symbol address */
__check_pseudo_btf_id(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_insn_aux_data * aux,struct btf * btf)20722 static int __check_pseudo_btf_id(struct bpf_verifier_env *env,
20723 				 struct bpf_insn *insn,
20724 				 struct bpf_insn_aux_data *aux,
20725 				 struct btf *btf)
20726 {
20727 	const struct btf_var_secinfo *vsi;
20728 	const struct btf_type *datasec;
20729 	const struct btf_type *t;
20730 	const char *sym_name;
20731 	bool percpu = false;
20732 	u32 type, id = insn->imm;
20733 	s32 datasec_id;
20734 	u64 addr;
20735 	int i;
20736 
20737 	t = btf_type_by_id(btf, id);
20738 	if (!t) {
20739 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
20740 		return -ENOENT;
20741 	}
20742 
20743 	if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
20744 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
20745 		return -EINVAL;
20746 	}
20747 
20748 	sym_name = btf_name_by_offset(btf, t->name_off);
20749 	addr = kallsyms_lookup_name(sym_name);
20750 	if (!addr) {
20751 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
20752 			sym_name);
20753 		return -ENOENT;
20754 	}
20755 	insn[0].imm = (u32)addr;
20756 	insn[1].imm = addr >> 32;
20757 
20758 	if (btf_type_is_func(t)) {
20759 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
20760 		aux->btf_var.mem_size = 0;
20761 		return 0;
20762 	}
20763 
20764 	datasec_id = find_btf_percpu_datasec(btf);
20765 	if (datasec_id > 0) {
20766 		datasec = btf_type_by_id(btf, datasec_id);
20767 		for_each_vsi(i, datasec, vsi) {
20768 			if (vsi->type == id) {
20769 				percpu = true;
20770 				break;
20771 			}
20772 		}
20773 	}
20774 
20775 	type = t->type;
20776 	t = btf_type_skip_modifiers(btf, type, NULL);
20777 	if (percpu) {
20778 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
20779 		aux->btf_var.btf = btf;
20780 		aux->btf_var.btf_id = type;
20781 	} else if (!btf_type_is_struct(t)) {
20782 		const struct btf_type *ret;
20783 		const char *tname;
20784 		u32 tsize;
20785 
20786 		/* resolve the type size of ksym. */
20787 		ret = btf_resolve_size(btf, t, &tsize);
20788 		if (IS_ERR(ret)) {
20789 			tname = btf_name_by_offset(btf, t->name_off);
20790 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
20791 				tname, PTR_ERR(ret));
20792 			return -EINVAL;
20793 		}
20794 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
20795 		aux->btf_var.mem_size = tsize;
20796 	} else {
20797 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
20798 		aux->btf_var.btf = btf;
20799 		aux->btf_var.btf_id = type;
20800 	}
20801 
20802 	return 0;
20803 }
20804 
check_pseudo_btf_id(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_insn_aux_data * aux)20805 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
20806 			       struct bpf_insn *insn,
20807 			       struct bpf_insn_aux_data *aux)
20808 {
20809 	struct btf *btf;
20810 	int btf_fd;
20811 	int err;
20812 
20813 	btf_fd = insn[1].imm;
20814 	if (btf_fd) {
20815 		CLASS(fd, f)(btf_fd);
20816 
20817 		btf = __btf_get_by_fd(f);
20818 		if (IS_ERR(btf)) {
20819 			verbose(env, "invalid module BTF object FD specified.\n");
20820 			return -EINVAL;
20821 		}
20822 	} else {
20823 		if (!btf_vmlinux) {
20824 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
20825 			return -EINVAL;
20826 		}
20827 		btf = btf_vmlinux;
20828 	}
20829 
20830 	err = __check_pseudo_btf_id(env, insn, aux, btf);
20831 	if (err)
20832 		return err;
20833 
20834 	err = __add_used_btf(env, btf);
20835 	if (err < 0)
20836 		return err;
20837 	return 0;
20838 }
20839 
is_tracing_prog_type(enum bpf_prog_type type)20840 static bool is_tracing_prog_type(enum bpf_prog_type type)
20841 {
20842 	switch (type) {
20843 	case BPF_PROG_TYPE_KPROBE:
20844 	case BPF_PROG_TYPE_TRACEPOINT:
20845 	case BPF_PROG_TYPE_PERF_EVENT:
20846 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
20847 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
20848 		return true;
20849 	default:
20850 		return false;
20851 	}
20852 }
20853 
bpf_map_is_cgroup_storage(struct bpf_map * map)20854 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
20855 {
20856 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
20857 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
20858 }
20859 
check_map_prog_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,struct bpf_prog * prog)20860 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
20861 					struct bpf_map *map,
20862 					struct bpf_prog *prog)
20863 
20864 {
20865 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
20866 
20867 	if (map->excl_prog_sha &&
20868 	    memcmp(map->excl_prog_sha, prog->digest, SHA256_DIGEST_SIZE)) {
20869 		verbose(env, "program's hash doesn't match map's excl_prog_hash\n");
20870 		return -EACCES;
20871 	}
20872 
20873 	if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
20874 	    btf_record_has_field(map->record, BPF_RB_ROOT)) {
20875 		if (is_tracing_prog_type(prog_type)) {
20876 			verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
20877 			return -EINVAL;
20878 		}
20879 	}
20880 
20881 	if (btf_record_has_field(map->record, BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK)) {
20882 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
20883 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
20884 			return -EINVAL;
20885 		}
20886 
20887 		if (is_tracing_prog_type(prog_type)) {
20888 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
20889 			return -EINVAL;
20890 		}
20891 	}
20892 
20893 	if (btf_record_has_field(map->record, BPF_TIMER)) {
20894 		if (is_tracing_prog_type(prog_type)) {
20895 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
20896 			return -EINVAL;
20897 		}
20898 	}
20899 
20900 	if (btf_record_has_field(map->record, BPF_WORKQUEUE)) {
20901 		if (is_tracing_prog_type(prog_type)) {
20902 			verbose(env, "tracing progs cannot use bpf_wq yet\n");
20903 			return -EINVAL;
20904 		}
20905 	}
20906 
20907 	if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
20908 	    !bpf_offload_prog_map_match(prog, map)) {
20909 		verbose(env, "offload device mismatch between prog and map\n");
20910 		return -EINVAL;
20911 	}
20912 
20913 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
20914 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
20915 		return -EINVAL;
20916 	}
20917 
20918 	if (prog->sleepable)
20919 		switch (map->map_type) {
20920 		case BPF_MAP_TYPE_HASH:
20921 		case BPF_MAP_TYPE_LRU_HASH:
20922 		case BPF_MAP_TYPE_ARRAY:
20923 		case BPF_MAP_TYPE_PERCPU_HASH:
20924 		case BPF_MAP_TYPE_PERCPU_ARRAY:
20925 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
20926 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
20927 		case BPF_MAP_TYPE_HASH_OF_MAPS:
20928 		case BPF_MAP_TYPE_RINGBUF:
20929 		case BPF_MAP_TYPE_USER_RINGBUF:
20930 		case BPF_MAP_TYPE_INODE_STORAGE:
20931 		case BPF_MAP_TYPE_SK_STORAGE:
20932 		case BPF_MAP_TYPE_TASK_STORAGE:
20933 		case BPF_MAP_TYPE_CGRP_STORAGE:
20934 		case BPF_MAP_TYPE_QUEUE:
20935 		case BPF_MAP_TYPE_STACK:
20936 		case BPF_MAP_TYPE_ARENA:
20937 		case BPF_MAP_TYPE_INSN_ARRAY:
20938 			break;
20939 		default:
20940 			verbose(env,
20941 				"Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
20942 			return -EINVAL;
20943 		}
20944 
20945 	if (bpf_map_is_cgroup_storage(map) &&
20946 	    bpf_cgroup_storage_assign(env->prog->aux, map)) {
20947 		verbose(env, "only one cgroup storage of each type is allowed\n");
20948 		return -EBUSY;
20949 	}
20950 
20951 	if (map->map_type == BPF_MAP_TYPE_ARENA) {
20952 		if (env->prog->aux->arena) {
20953 			verbose(env, "Only one arena per program\n");
20954 			return -EBUSY;
20955 		}
20956 		if (!env->allow_ptr_leaks || !env->bpf_capable) {
20957 			verbose(env, "CAP_BPF and CAP_PERFMON are required to use arena\n");
20958 			return -EPERM;
20959 		}
20960 		if (!env->prog->jit_requested) {
20961 			verbose(env, "JIT is required to use arena\n");
20962 			return -EOPNOTSUPP;
20963 		}
20964 		if (!bpf_jit_supports_arena()) {
20965 			verbose(env, "JIT doesn't support arena\n");
20966 			return -EOPNOTSUPP;
20967 		}
20968 		env->prog->aux->arena = (void *)map;
20969 		if (!bpf_arena_get_user_vm_start(env->prog->aux->arena)) {
20970 			verbose(env, "arena's user address must be set via map_extra or mmap()\n");
20971 			return -EINVAL;
20972 		}
20973 	}
20974 
20975 	return 0;
20976 }
20977 
__add_used_map(struct bpf_verifier_env * env,struct bpf_map * map)20978 static int __add_used_map(struct bpf_verifier_env *env, struct bpf_map *map)
20979 {
20980 	int i, err;
20981 
20982 	/* check whether we recorded this map already */
20983 	for (i = 0; i < env->used_map_cnt; i++)
20984 		if (env->used_maps[i] == map)
20985 			return i;
20986 
20987 	if (env->used_map_cnt >= MAX_USED_MAPS) {
20988 		verbose(env, "The total number of maps per program has reached the limit of %u\n",
20989 			MAX_USED_MAPS);
20990 		return -E2BIG;
20991 	}
20992 
20993 	err = check_map_prog_compatibility(env, map, env->prog);
20994 	if (err)
20995 		return err;
20996 
20997 	if (env->prog->sleepable)
20998 		atomic64_inc(&map->sleepable_refcnt);
20999 
21000 	/* hold the map. If the program is rejected by verifier,
21001 	 * the map will be released by release_maps() or it
21002 	 * will be used by the valid program until it's unloaded
21003 	 * and all maps are released in bpf_free_used_maps()
21004 	 */
21005 	bpf_map_inc(map);
21006 
21007 	env->used_maps[env->used_map_cnt++] = map;
21008 
21009 	if (map->map_type == BPF_MAP_TYPE_INSN_ARRAY) {
21010 		err = bpf_insn_array_init(map, env->prog);
21011 		if (err) {
21012 			verbose(env, "Failed to properly initialize insn array\n");
21013 			return err;
21014 		}
21015 		env->insn_array_maps[env->insn_array_map_cnt++] = map;
21016 	}
21017 
21018 	return env->used_map_cnt - 1;
21019 }
21020 
21021 /* Add map behind fd to used maps list, if it's not already there, and return
21022  * its index.
21023  * Returns <0 on error, or >= 0 index, on success.
21024  */
add_used_map(struct bpf_verifier_env * env,int fd)21025 static int add_used_map(struct bpf_verifier_env *env, int fd)
21026 {
21027 	struct bpf_map *map;
21028 	CLASS(fd, f)(fd);
21029 
21030 	map = __bpf_map_get(f);
21031 	if (IS_ERR(map)) {
21032 		verbose(env, "fd %d is not pointing to valid bpf_map\n", fd);
21033 		return PTR_ERR(map);
21034 	}
21035 
21036 	return __add_used_map(env, map);
21037 }
21038 
21039 /* find and rewrite pseudo imm in ld_imm64 instructions:
21040  *
21041  * 1. if it accesses map FD, replace it with actual map pointer.
21042  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
21043  *
21044  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
21045  */
resolve_pseudo_ldimm64(struct bpf_verifier_env * env)21046 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
21047 {
21048 	struct bpf_insn *insn = env->prog->insnsi;
21049 	int insn_cnt = env->prog->len;
21050 	int i, err;
21051 
21052 	err = bpf_prog_calc_tag(env->prog);
21053 	if (err)
21054 		return err;
21055 
21056 	for (i = 0; i < insn_cnt; i++, insn++) {
21057 		if (BPF_CLASS(insn->code) == BPF_LDX &&
21058 		    ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
21059 		    insn->imm != 0)) {
21060 			verbose(env, "BPF_LDX uses reserved fields\n");
21061 			return -EINVAL;
21062 		}
21063 
21064 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
21065 			struct bpf_insn_aux_data *aux;
21066 			struct bpf_map *map;
21067 			int map_idx;
21068 			u64 addr;
21069 			u32 fd;
21070 
21071 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
21072 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
21073 			    insn[1].off != 0) {
21074 				verbose(env, "invalid bpf_ld_imm64 insn\n");
21075 				return -EINVAL;
21076 			}
21077 
21078 			if (insn[0].src_reg == 0)
21079 				/* valid generic load 64-bit imm */
21080 				goto next_insn;
21081 
21082 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
21083 				aux = &env->insn_aux_data[i];
21084 				err = check_pseudo_btf_id(env, insn, aux);
21085 				if (err)
21086 					return err;
21087 				goto next_insn;
21088 			}
21089 
21090 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
21091 				aux = &env->insn_aux_data[i];
21092 				aux->ptr_type = PTR_TO_FUNC;
21093 				goto next_insn;
21094 			}
21095 
21096 			/* In final convert_pseudo_ld_imm64() step, this is
21097 			 * converted into regular 64-bit imm load insn.
21098 			 */
21099 			switch (insn[0].src_reg) {
21100 			case BPF_PSEUDO_MAP_VALUE:
21101 			case BPF_PSEUDO_MAP_IDX_VALUE:
21102 				break;
21103 			case BPF_PSEUDO_MAP_FD:
21104 			case BPF_PSEUDO_MAP_IDX:
21105 				if (insn[1].imm == 0)
21106 					break;
21107 				fallthrough;
21108 			default:
21109 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
21110 				return -EINVAL;
21111 			}
21112 
21113 			switch (insn[0].src_reg) {
21114 			case BPF_PSEUDO_MAP_IDX_VALUE:
21115 			case BPF_PSEUDO_MAP_IDX:
21116 				if (bpfptr_is_null(env->fd_array)) {
21117 					verbose(env, "fd_idx without fd_array is invalid\n");
21118 					return -EPROTO;
21119 				}
21120 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
21121 							    insn[0].imm * sizeof(fd),
21122 							    sizeof(fd)))
21123 					return -EFAULT;
21124 				break;
21125 			default:
21126 				fd = insn[0].imm;
21127 				break;
21128 			}
21129 
21130 			map_idx = add_used_map(env, fd);
21131 			if (map_idx < 0)
21132 				return map_idx;
21133 			map = env->used_maps[map_idx];
21134 
21135 			aux = &env->insn_aux_data[i];
21136 			aux->map_index = map_idx;
21137 
21138 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
21139 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
21140 				addr = (unsigned long)map;
21141 			} else {
21142 				u32 off = insn[1].imm;
21143 
21144 				if (off >= BPF_MAX_VAR_OFF) {
21145 					verbose(env, "direct value offset of %u is not allowed\n", off);
21146 					return -EINVAL;
21147 				}
21148 
21149 				if (!map->ops->map_direct_value_addr) {
21150 					verbose(env, "no direct value access support for this map type\n");
21151 					return -EINVAL;
21152 				}
21153 
21154 				err = map->ops->map_direct_value_addr(map, &addr, off);
21155 				if (err) {
21156 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
21157 						map->value_size, off);
21158 					return err;
21159 				}
21160 
21161 				aux->map_off = off;
21162 				addr += off;
21163 			}
21164 
21165 			insn[0].imm = (u32)addr;
21166 			insn[1].imm = addr >> 32;
21167 
21168 next_insn:
21169 			insn++;
21170 			i++;
21171 			continue;
21172 		}
21173 
21174 		/* Basic sanity check before we invest more work here. */
21175 		if (!bpf_opcode_in_insntable(insn->code)) {
21176 			verbose(env, "unknown opcode %02x\n", insn->code);
21177 			return -EINVAL;
21178 		}
21179 	}
21180 
21181 	/* now all pseudo BPF_LD_IMM64 instructions load valid
21182 	 * 'struct bpf_map *' into a register instead of user map_fd.
21183 	 * These pointers will be used later by verifier to validate map access.
21184 	 */
21185 	return 0;
21186 }
21187 
21188 /* drop refcnt of maps used by the rejected program */
release_maps(struct bpf_verifier_env * env)21189 static void release_maps(struct bpf_verifier_env *env)
21190 {
21191 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
21192 			     env->used_map_cnt);
21193 }
21194 
21195 /* drop refcnt of maps used by the rejected program */
release_btfs(struct bpf_verifier_env * env)21196 static void release_btfs(struct bpf_verifier_env *env)
21197 {
21198 	__bpf_free_used_btfs(env->used_btfs, env->used_btf_cnt);
21199 }
21200 
21201 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
convert_pseudo_ld_imm64(struct bpf_verifier_env * env)21202 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
21203 {
21204 	struct bpf_insn *insn = env->prog->insnsi;
21205 	int insn_cnt = env->prog->len;
21206 	int i;
21207 
21208 	for (i = 0; i < insn_cnt; i++, insn++) {
21209 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
21210 			continue;
21211 		if (insn->src_reg == BPF_PSEUDO_FUNC)
21212 			continue;
21213 		insn->src_reg = 0;
21214 	}
21215 }
21216 
21217 /* single env->prog->insni[off] instruction was replaced with the range
21218  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
21219  * [0, off) and [off, end) to new locations, so the patched range stays zero
21220  */
adjust_insn_aux_data(struct bpf_verifier_env * env,struct bpf_prog * new_prog,u32 off,u32 cnt)21221 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
21222 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
21223 {
21224 	struct bpf_insn_aux_data *data = env->insn_aux_data;
21225 	struct bpf_insn *insn = new_prog->insnsi;
21226 	u32 old_seen = data[off].seen;
21227 	u32 prog_len;
21228 	int i;
21229 
21230 	/* aux info at OFF always needs adjustment, no matter fast path
21231 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
21232 	 * original insn at old prog.
21233 	 */
21234 	data[off].zext_dst = insn_has_def32(insn + off + cnt - 1);
21235 
21236 	if (cnt == 1)
21237 		return;
21238 	prog_len = new_prog->len;
21239 
21240 	memmove(data + off + cnt - 1, data + off,
21241 		sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
21242 	memset(data + off, 0, sizeof(struct bpf_insn_aux_data) * (cnt - 1));
21243 	for (i = off; i < off + cnt - 1; i++) {
21244 		/* Expand insni[off]'s seen count to the patched range. */
21245 		data[i].seen = old_seen;
21246 		data[i].zext_dst = insn_has_def32(insn + i);
21247 	}
21248 }
21249 
adjust_subprog_starts(struct bpf_verifier_env * env,u32 off,u32 len)21250 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
21251 {
21252 	int i;
21253 
21254 	if (len == 1)
21255 		return;
21256 	/* NOTE: fake 'exit' subprog should be updated as well. */
21257 	for (i = 0; i <= env->subprog_cnt; i++) {
21258 		if (env->subprog_info[i].start <= off)
21259 			continue;
21260 		env->subprog_info[i].start += len - 1;
21261 	}
21262 }
21263 
release_insn_arrays(struct bpf_verifier_env * env)21264 static void release_insn_arrays(struct bpf_verifier_env *env)
21265 {
21266 	int i;
21267 
21268 	for (i = 0; i < env->insn_array_map_cnt; i++)
21269 		bpf_insn_array_release(env->insn_array_maps[i]);
21270 }
21271 
adjust_insn_arrays(struct bpf_verifier_env * env,u32 off,u32 len)21272 static void adjust_insn_arrays(struct bpf_verifier_env *env, u32 off, u32 len)
21273 {
21274 	int i;
21275 
21276 	if (len == 1)
21277 		return;
21278 
21279 	for (i = 0; i < env->insn_array_map_cnt; i++)
21280 		bpf_insn_array_adjust(env->insn_array_maps[i], off, len);
21281 }
21282 
adjust_insn_arrays_after_remove(struct bpf_verifier_env * env,u32 off,u32 len)21283 static void adjust_insn_arrays_after_remove(struct bpf_verifier_env *env, u32 off, u32 len)
21284 {
21285 	int i;
21286 
21287 	for (i = 0; i < env->insn_array_map_cnt; i++)
21288 		bpf_insn_array_adjust_after_remove(env->insn_array_maps[i], off, len);
21289 }
21290 
adjust_poke_descs(struct bpf_prog * prog,u32 off,u32 len)21291 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
21292 {
21293 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
21294 	int i, sz = prog->aux->size_poke_tab;
21295 	struct bpf_jit_poke_descriptor *desc;
21296 
21297 	for (i = 0; i < sz; i++) {
21298 		desc = &tab[i];
21299 		if (desc->insn_idx <= off)
21300 			continue;
21301 		desc->insn_idx += len - 1;
21302 	}
21303 }
21304 
bpf_patch_insn_data(struct bpf_verifier_env * env,u32 off,const struct bpf_insn * patch,u32 len)21305 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
21306 					    const struct bpf_insn *patch, u32 len)
21307 {
21308 	struct bpf_prog *new_prog;
21309 	struct bpf_insn_aux_data *new_data = NULL;
21310 
21311 	if (len > 1) {
21312 		new_data = vrealloc(env->insn_aux_data,
21313 				    array_size(env->prog->len + len - 1,
21314 					       sizeof(struct bpf_insn_aux_data)),
21315 				    GFP_KERNEL_ACCOUNT | __GFP_ZERO);
21316 		if (!new_data)
21317 			return NULL;
21318 
21319 		env->insn_aux_data = new_data;
21320 	}
21321 
21322 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
21323 	if (IS_ERR(new_prog)) {
21324 		if (PTR_ERR(new_prog) == -ERANGE)
21325 			verbose(env,
21326 				"insn %d cannot be patched due to 16-bit range\n",
21327 				env->insn_aux_data[off].orig_idx);
21328 		return NULL;
21329 	}
21330 	adjust_insn_aux_data(env, new_prog, off, len);
21331 	adjust_subprog_starts(env, off, len);
21332 	adjust_insn_arrays(env, off, len);
21333 	adjust_poke_descs(new_prog, off, len);
21334 	return new_prog;
21335 }
21336 
21337 /*
21338  * For all jmp insns in a given 'prog' that point to 'tgt_idx' insn adjust the
21339  * jump offset by 'delta'.
21340  */
adjust_jmp_off(struct bpf_prog * prog,u32 tgt_idx,u32 delta)21341 static int adjust_jmp_off(struct bpf_prog *prog, u32 tgt_idx, u32 delta)
21342 {
21343 	struct bpf_insn *insn = prog->insnsi;
21344 	u32 insn_cnt = prog->len, i;
21345 	s32 imm;
21346 	s16 off;
21347 
21348 	for (i = 0; i < insn_cnt; i++, insn++) {
21349 		u8 code = insn->code;
21350 
21351 		if (tgt_idx <= i && i < tgt_idx + delta)
21352 			continue;
21353 
21354 		if ((BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) ||
21355 		    BPF_OP(code) == BPF_CALL || BPF_OP(code) == BPF_EXIT)
21356 			continue;
21357 
21358 		if (insn->code == (BPF_JMP32 | BPF_JA)) {
21359 			if (i + 1 + insn->imm != tgt_idx)
21360 				continue;
21361 			if (check_add_overflow(insn->imm, delta, &imm))
21362 				return -ERANGE;
21363 			insn->imm = imm;
21364 		} else {
21365 			if (i + 1 + insn->off != tgt_idx)
21366 				continue;
21367 			if (check_add_overflow(insn->off, delta, &off))
21368 				return -ERANGE;
21369 			insn->off = off;
21370 		}
21371 	}
21372 	return 0;
21373 }
21374 
adjust_subprog_starts_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)21375 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
21376 					      u32 off, u32 cnt)
21377 {
21378 	int i, j;
21379 
21380 	/* find first prog starting at or after off (first to remove) */
21381 	for (i = 0; i < env->subprog_cnt; i++)
21382 		if (env->subprog_info[i].start >= off)
21383 			break;
21384 	/* find first prog starting at or after off + cnt (first to stay) */
21385 	for (j = i; j < env->subprog_cnt; j++)
21386 		if (env->subprog_info[j].start >= off + cnt)
21387 			break;
21388 	/* if j doesn't start exactly at off + cnt, we are just removing
21389 	 * the front of previous prog
21390 	 */
21391 	if (env->subprog_info[j].start != off + cnt)
21392 		j--;
21393 
21394 	if (j > i) {
21395 		struct bpf_prog_aux *aux = env->prog->aux;
21396 		int move;
21397 
21398 		/* move fake 'exit' subprog as well */
21399 		move = env->subprog_cnt + 1 - j;
21400 
21401 		memmove(env->subprog_info + i,
21402 			env->subprog_info + j,
21403 			sizeof(*env->subprog_info) * move);
21404 		env->subprog_cnt -= j - i;
21405 
21406 		/* remove func_info */
21407 		if (aux->func_info) {
21408 			move = aux->func_info_cnt - j;
21409 
21410 			memmove(aux->func_info + i,
21411 				aux->func_info + j,
21412 				sizeof(*aux->func_info) * move);
21413 			aux->func_info_cnt -= j - i;
21414 			/* func_info->insn_off is set after all code rewrites,
21415 			 * in adjust_btf_func() - no need to adjust
21416 			 */
21417 		}
21418 	} else {
21419 		/* convert i from "first prog to remove" to "first to adjust" */
21420 		if (env->subprog_info[i].start == off)
21421 			i++;
21422 	}
21423 
21424 	/* update fake 'exit' subprog as well */
21425 	for (; i <= env->subprog_cnt; i++)
21426 		env->subprog_info[i].start -= cnt;
21427 
21428 	return 0;
21429 }
21430 
bpf_adj_linfo_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)21431 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
21432 				      u32 cnt)
21433 {
21434 	struct bpf_prog *prog = env->prog;
21435 	u32 i, l_off, l_cnt, nr_linfo;
21436 	struct bpf_line_info *linfo;
21437 
21438 	nr_linfo = prog->aux->nr_linfo;
21439 	if (!nr_linfo)
21440 		return 0;
21441 
21442 	linfo = prog->aux->linfo;
21443 
21444 	/* find first line info to remove, count lines to be removed */
21445 	for (i = 0; i < nr_linfo; i++)
21446 		if (linfo[i].insn_off >= off)
21447 			break;
21448 
21449 	l_off = i;
21450 	l_cnt = 0;
21451 	for (; i < nr_linfo; i++)
21452 		if (linfo[i].insn_off < off + cnt)
21453 			l_cnt++;
21454 		else
21455 			break;
21456 
21457 	/* First live insn doesn't match first live linfo, it needs to "inherit"
21458 	 * last removed linfo.  prog is already modified, so prog->len == off
21459 	 * means no live instructions after (tail of the program was removed).
21460 	 */
21461 	if (prog->len != off && l_cnt &&
21462 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
21463 		l_cnt--;
21464 		linfo[--i].insn_off = off + cnt;
21465 	}
21466 
21467 	/* remove the line info which refer to the removed instructions */
21468 	if (l_cnt) {
21469 		memmove(linfo + l_off, linfo + i,
21470 			sizeof(*linfo) * (nr_linfo - i));
21471 
21472 		prog->aux->nr_linfo -= l_cnt;
21473 		nr_linfo = prog->aux->nr_linfo;
21474 	}
21475 
21476 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
21477 	for (i = l_off; i < nr_linfo; i++)
21478 		linfo[i].insn_off -= cnt;
21479 
21480 	/* fix up all subprogs (incl. 'exit') which start >= off */
21481 	for (i = 0; i <= env->subprog_cnt; i++)
21482 		if (env->subprog_info[i].linfo_idx > l_off) {
21483 			/* program may have started in the removed region but
21484 			 * may not be fully removed
21485 			 */
21486 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
21487 				env->subprog_info[i].linfo_idx -= l_cnt;
21488 			else
21489 				env->subprog_info[i].linfo_idx = l_off;
21490 		}
21491 
21492 	return 0;
21493 }
21494 
21495 /*
21496  * Clean up dynamically allocated fields of aux data for instructions [start, ...]
21497  */
clear_insn_aux_data(struct bpf_verifier_env * env,int start,int len)21498 static void clear_insn_aux_data(struct bpf_verifier_env *env, int start, int len)
21499 {
21500 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
21501 	struct bpf_insn *insns = env->prog->insnsi;
21502 	int end = start + len;
21503 	int i;
21504 
21505 	for (i = start; i < end; i++) {
21506 		if (aux_data[i].jt) {
21507 			kvfree(aux_data[i].jt);
21508 			aux_data[i].jt = NULL;
21509 		}
21510 
21511 		if (bpf_is_ldimm64(&insns[i]))
21512 			i++;
21513 	}
21514 }
21515 
verifier_remove_insns(struct bpf_verifier_env * env,u32 off,u32 cnt)21516 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
21517 {
21518 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
21519 	unsigned int orig_prog_len = env->prog->len;
21520 	int err;
21521 
21522 	if (bpf_prog_is_offloaded(env->prog->aux))
21523 		bpf_prog_offload_remove_insns(env, off, cnt);
21524 
21525 	/* Should be called before bpf_remove_insns, as it uses prog->insnsi */
21526 	clear_insn_aux_data(env, off, cnt);
21527 
21528 	err = bpf_remove_insns(env->prog, off, cnt);
21529 	if (err)
21530 		return err;
21531 
21532 	err = adjust_subprog_starts_after_remove(env, off, cnt);
21533 	if (err)
21534 		return err;
21535 
21536 	err = bpf_adj_linfo_after_remove(env, off, cnt);
21537 	if (err)
21538 		return err;
21539 
21540 	adjust_insn_arrays_after_remove(env, off, cnt);
21541 
21542 	memmove(aux_data + off,	aux_data + off + cnt,
21543 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
21544 
21545 	return 0;
21546 }
21547 
21548 /* The verifier does more data flow analysis than llvm and will not
21549  * explore branches that are dead at run time. Malicious programs can
21550  * have dead code too. Therefore replace all dead at-run-time code
21551  * with 'ja -1'.
21552  *
21553  * Just nops are not optimal, e.g. if they would sit at the end of the
21554  * program and through another bug we would manage to jump there, then
21555  * we'd execute beyond program memory otherwise. Returning exception
21556  * code also wouldn't work since we can have subprogs where the dead
21557  * code could be located.
21558  */
sanitize_dead_code(struct bpf_verifier_env * env)21559 static void sanitize_dead_code(struct bpf_verifier_env *env)
21560 {
21561 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
21562 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
21563 	struct bpf_insn *insn = env->prog->insnsi;
21564 	const int insn_cnt = env->prog->len;
21565 	int i;
21566 
21567 	for (i = 0; i < insn_cnt; i++) {
21568 		if (aux_data[i].seen)
21569 			continue;
21570 		memcpy(insn + i, &trap, sizeof(trap));
21571 		aux_data[i].zext_dst = false;
21572 	}
21573 }
21574 
insn_is_cond_jump(u8 code)21575 static bool insn_is_cond_jump(u8 code)
21576 {
21577 	u8 op;
21578 
21579 	op = BPF_OP(code);
21580 	if (BPF_CLASS(code) == BPF_JMP32)
21581 		return op != BPF_JA;
21582 
21583 	if (BPF_CLASS(code) != BPF_JMP)
21584 		return false;
21585 
21586 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
21587 }
21588 
opt_hard_wire_dead_code_branches(struct bpf_verifier_env * env)21589 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
21590 {
21591 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
21592 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
21593 	struct bpf_insn *insn = env->prog->insnsi;
21594 	const int insn_cnt = env->prog->len;
21595 	int i;
21596 
21597 	for (i = 0; i < insn_cnt; i++, insn++) {
21598 		if (!insn_is_cond_jump(insn->code))
21599 			continue;
21600 
21601 		if (!aux_data[i + 1].seen)
21602 			ja.off = insn->off;
21603 		else if (!aux_data[i + 1 + insn->off].seen)
21604 			ja.off = 0;
21605 		else
21606 			continue;
21607 
21608 		if (bpf_prog_is_offloaded(env->prog->aux))
21609 			bpf_prog_offload_replace_insn(env, i, &ja);
21610 
21611 		memcpy(insn, &ja, sizeof(ja));
21612 	}
21613 }
21614 
opt_remove_dead_code(struct bpf_verifier_env * env)21615 static int opt_remove_dead_code(struct bpf_verifier_env *env)
21616 {
21617 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
21618 	int insn_cnt = env->prog->len;
21619 	int i, err;
21620 
21621 	for (i = 0; i < insn_cnt; i++) {
21622 		int j;
21623 
21624 		j = 0;
21625 		while (i + j < insn_cnt && !aux_data[i + j].seen)
21626 			j++;
21627 		if (!j)
21628 			continue;
21629 
21630 		err = verifier_remove_insns(env, i, j);
21631 		if (err)
21632 			return err;
21633 		insn_cnt = env->prog->len;
21634 	}
21635 
21636 	return 0;
21637 }
21638 
21639 static const struct bpf_insn NOP = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
21640 static const struct bpf_insn MAY_GOTO_0 = BPF_RAW_INSN(BPF_JMP | BPF_JCOND, 0, 0, 0, 0);
21641 
opt_remove_nops(struct bpf_verifier_env * env)21642 static int opt_remove_nops(struct bpf_verifier_env *env)
21643 {
21644 	struct bpf_insn *insn = env->prog->insnsi;
21645 	int insn_cnt = env->prog->len;
21646 	bool is_may_goto_0, is_ja;
21647 	int i, err;
21648 
21649 	for (i = 0; i < insn_cnt; i++) {
21650 		is_may_goto_0 = !memcmp(&insn[i], &MAY_GOTO_0, sizeof(MAY_GOTO_0));
21651 		is_ja = !memcmp(&insn[i], &NOP, sizeof(NOP));
21652 
21653 		if (!is_may_goto_0 && !is_ja)
21654 			continue;
21655 
21656 		err = verifier_remove_insns(env, i, 1);
21657 		if (err)
21658 			return err;
21659 		insn_cnt--;
21660 		/* Go back one insn to catch may_goto +1; may_goto +0 sequence */
21661 		i -= (is_may_goto_0 && i > 0) ? 2 : 1;
21662 	}
21663 
21664 	return 0;
21665 }
21666 
opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env * env,const union bpf_attr * attr)21667 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
21668 					 const union bpf_attr *attr)
21669 {
21670 	struct bpf_insn *patch;
21671 	/* use env->insn_buf as two independent buffers */
21672 	struct bpf_insn *zext_patch = env->insn_buf;
21673 	struct bpf_insn *rnd_hi32_patch = &env->insn_buf[2];
21674 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
21675 	int i, patch_len, delta = 0, len = env->prog->len;
21676 	struct bpf_insn *insns = env->prog->insnsi;
21677 	struct bpf_prog *new_prog;
21678 	bool rnd_hi32;
21679 
21680 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
21681 	zext_patch[1] = BPF_ZEXT_REG(0);
21682 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
21683 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
21684 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
21685 	for (i = 0; i < len; i++) {
21686 		int adj_idx = i + delta;
21687 		struct bpf_insn insn;
21688 		int load_reg;
21689 
21690 		insn = insns[adj_idx];
21691 		load_reg = insn_def_regno(&insn);
21692 		if (!aux[adj_idx].zext_dst) {
21693 			u8 code, class;
21694 			u32 imm_rnd;
21695 
21696 			if (!rnd_hi32)
21697 				continue;
21698 
21699 			code = insn.code;
21700 			class = BPF_CLASS(code);
21701 			if (load_reg == -1)
21702 				continue;
21703 
21704 			/* NOTE: arg "reg" (the fourth one) is only used for
21705 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
21706 			 *       here.
21707 			 */
21708 			if (is_reg64(&insn, load_reg, NULL, DST_OP)) {
21709 				if (class == BPF_LD &&
21710 				    BPF_MODE(code) == BPF_IMM)
21711 					i++;
21712 				continue;
21713 			}
21714 
21715 			/* ctx load could be transformed into wider load. */
21716 			if (class == BPF_LDX &&
21717 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
21718 				continue;
21719 
21720 			imm_rnd = get_random_u32();
21721 			rnd_hi32_patch[0] = insn;
21722 			rnd_hi32_patch[1].imm = imm_rnd;
21723 			rnd_hi32_patch[3].dst_reg = load_reg;
21724 			patch = rnd_hi32_patch;
21725 			patch_len = 4;
21726 			goto apply_patch_buffer;
21727 		}
21728 
21729 		/* Add in an zero-extend instruction if a) the JIT has requested
21730 		 * it or b) it's a CMPXCHG.
21731 		 *
21732 		 * The latter is because: BPF_CMPXCHG always loads a value into
21733 		 * R0, therefore always zero-extends. However some archs'
21734 		 * equivalent instruction only does this load when the
21735 		 * comparison is successful. This detail of CMPXCHG is
21736 		 * orthogonal to the general zero-extension behaviour of the
21737 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
21738 		 */
21739 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
21740 			continue;
21741 
21742 		/* Zero-extension is done by the caller. */
21743 		if (bpf_pseudo_kfunc_call(&insn))
21744 			continue;
21745 
21746 		if (verifier_bug_if(load_reg == -1, env,
21747 				    "zext_dst is set, but no reg is defined"))
21748 			return -EFAULT;
21749 
21750 		zext_patch[0] = insn;
21751 		zext_patch[1].dst_reg = load_reg;
21752 		zext_patch[1].src_reg = load_reg;
21753 		patch = zext_patch;
21754 		patch_len = 2;
21755 apply_patch_buffer:
21756 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
21757 		if (!new_prog)
21758 			return -ENOMEM;
21759 		env->prog = new_prog;
21760 		insns = new_prog->insnsi;
21761 		aux = env->insn_aux_data;
21762 		delta += patch_len - 1;
21763 	}
21764 
21765 	return 0;
21766 }
21767 
21768 /* convert load instructions that access fields of a context type into a
21769  * sequence of instructions that access fields of the underlying structure:
21770  *     struct __sk_buff    -> struct sk_buff
21771  *     struct bpf_sock_ops -> struct sock
21772  */
convert_ctx_accesses(struct bpf_verifier_env * env)21773 static int convert_ctx_accesses(struct bpf_verifier_env *env)
21774 {
21775 	struct bpf_subprog_info *subprogs = env->subprog_info;
21776 	const struct bpf_verifier_ops *ops = env->ops;
21777 	int i, cnt, size, ctx_field_size, ret, delta = 0, epilogue_cnt = 0;
21778 	const int insn_cnt = env->prog->len;
21779 	struct bpf_insn *epilogue_buf = env->epilogue_buf;
21780 	struct bpf_insn *insn_buf = env->insn_buf;
21781 	struct bpf_insn *insn;
21782 	u32 target_size, size_default, off;
21783 	struct bpf_prog *new_prog;
21784 	enum bpf_access_type type;
21785 	bool is_narrower_load;
21786 	int epilogue_idx = 0;
21787 
21788 	if (ops->gen_epilogue) {
21789 		epilogue_cnt = ops->gen_epilogue(epilogue_buf, env->prog,
21790 						 -(subprogs[0].stack_depth + 8));
21791 		if (epilogue_cnt >= INSN_BUF_SIZE) {
21792 			verifier_bug(env, "epilogue is too long");
21793 			return -EFAULT;
21794 		} else if (epilogue_cnt) {
21795 			/* Save the ARG_PTR_TO_CTX for the epilogue to use */
21796 			cnt = 0;
21797 			subprogs[0].stack_depth += 8;
21798 			insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_1,
21799 						      -subprogs[0].stack_depth);
21800 			insn_buf[cnt++] = env->prog->insnsi[0];
21801 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
21802 			if (!new_prog)
21803 				return -ENOMEM;
21804 			env->prog = new_prog;
21805 			delta += cnt - 1;
21806 
21807 			ret = add_kfunc_in_insns(env, epilogue_buf, epilogue_cnt - 1);
21808 			if (ret < 0)
21809 				return ret;
21810 		}
21811 	}
21812 
21813 	if (ops->gen_prologue || env->seen_direct_write) {
21814 		if (!ops->gen_prologue) {
21815 			verifier_bug(env, "gen_prologue is null");
21816 			return -EFAULT;
21817 		}
21818 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
21819 					env->prog);
21820 		if (cnt >= INSN_BUF_SIZE) {
21821 			verifier_bug(env, "prologue is too long");
21822 			return -EFAULT;
21823 		} else if (cnt) {
21824 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
21825 			if (!new_prog)
21826 				return -ENOMEM;
21827 
21828 			env->prog = new_prog;
21829 			delta += cnt - 1;
21830 
21831 			ret = add_kfunc_in_insns(env, insn_buf, cnt - 1);
21832 			if (ret < 0)
21833 				return ret;
21834 		}
21835 	}
21836 
21837 	if (delta)
21838 		WARN_ON(adjust_jmp_off(env->prog, 0, delta));
21839 
21840 	if (bpf_prog_is_offloaded(env->prog->aux))
21841 		return 0;
21842 
21843 	insn = env->prog->insnsi + delta;
21844 
21845 	for (i = 0; i < insn_cnt; i++, insn++) {
21846 		bpf_convert_ctx_access_t convert_ctx_access;
21847 		u8 mode;
21848 
21849 		if (env->insn_aux_data[i + delta].nospec) {
21850 			WARN_ON_ONCE(env->insn_aux_data[i + delta].alu_state);
21851 			struct bpf_insn *patch = insn_buf;
21852 
21853 			*patch++ = BPF_ST_NOSPEC();
21854 			*patch++ = *insn;
21855 			cnt = patch - insn_buf;
21856 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21857 			if (!new_prog)
21858 				return -ENOMEM;
21859 
21860 			delta    += cnt - 1;
21861 			env->prog = new_prog;
21862 			insn      = new_prog->insnsi + i + delta;
21863 			/* This can not be easily merged with the
21864 			 * nospec_result-case, because an insn may require a
21865 			 * nospec before and after itself. Therefore also do not
21866 			 * 'continue' here but potentially apply further
21867 			 * patching to insn. *insn should equal patch[1] now.
21868 			 */
21869 		}
21870 
21871 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
21872 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
21873 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
21874 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
21875 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
21876 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
21877 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
21878 			type = BPF_READ;
21879 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
21880 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
21881 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
21882 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
21883 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
21884 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
21885 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
21886 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
21887 			type = BPF_WRITE;
21888 		} else if ((insn->code == (BPF_STX | BPF_ATOMIC | BPF_B) ||
21889 			    insn->code == (BPF_STX | BPF_ATOMIC | BPF_H) ||
21890 			    insn->code == (BPF_STX | BPF_ATOMIC | BPF_W) ||
21891 			    insn->code == (BPF_STX | BPF_ATOMIC | BPF_DW)) &&
21892 			   env->insn_aux_data[i + delta].ptr_type == PTR_TO_ARENA) {
21893 			insn->code = BPF_STX | BPF_PROBE_ATOMIC | BPF_SIZE(insn->code);
21894 			env->prog->aux->num_exentries++;
21895 			continue;
21896 		} else if (insn->code == (BPF_JMP | BPF_EXIT) &&
21897 			   epilogue_cnt &&
21898 			   i + delta < subprogs[1].start) {
21899 			/* Generate epilogue for the main prog */
21900 			if (epilogue_idx) {
21901 				/* jump back to the earlier generated epilogue */
21902 				insn_buf[0] = BPF_JMP32_A(epilogue_idx - i - delta - 1);
21903 				cnt = 1;
21904 			} else {
21905 				memcpy(insn_buf, epilogue_buf,
21906 				       epilogue_cnt * sizeof(*epilogue_buf));
21907 				cnt = epilogue_cnt;
21908 				/* epilogue_idx cannot be 0. It must have at
21909 				 * least one ctx ptr saving insn before the
21910 				 * epilogue.
21911 				 */
21912 				epilogue_idx = i + delta;
21913 			}
21914 			goto patch_insn_buf;
21915 		} else {
21916 			continue;
21917 		}
21918 
21919 		if (type == BPF_WRITE &&
21920 		    env->insn_aux_data[i + delta].nospec_result) {
21921 			/* nospec_result is only used to mitigate Spectre v4 and
21922 			 * to limit verification-time for Spectre v1.
21923 			 */
21924 			struct bpf_insn *patch = insn_buf;
21925 
21926 			*patch++ = *insn;
21927 			*patch++ = BPF_ST_NOSPEC();
21928 			cnt = patch - insn_buf;
21929 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21930 			if (!new_prog)
21931 				return -ENOMEM;
21932 
21933 			delta    += cnt - 1;
21934 			env->prog = new_prog;
21935 			insn      = new_prog->insnsi + i + delta;
21936 			continue;
21937 		}
21938 
21939 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
21940 		case PTR_TO_CTX:
21941 			if (!ops->convert_ctx_access)
21942 				continue;
21943 			convert_ctx_access = ops->convert_ctx_access;
21944 			break;
21945 		case PTR_TO_SOCKET:
21946 		case PTR_TO_SOCK_COMMON:
21947 			convert_ctx_access = bpf_sock_convert_ctx_access;
21948 			break;
21949 		case PTR_TO_TCP_SOCK:
21950 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
21951 			break;
21952 		case PTR_TO_XDP_SOCK:
21953 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
21954 			break;
21955 		case PTR_TO_BTF_ID:
21956 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
21957 		/* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
21958 		 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
21959 		 * be said once it is marked PTR_UNTRUSTED, hence we must handle
21960 		 * any faults for loads into such types. BPF_WRITE is disallowed
21961 		 * for this case.
21962 		 */
21963 		case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
21964 		case PTR_TO_MEM | MEM_RDONLY | PTR_UNTRUSTED:
21965 			if (type == BPF_READ) {
21966 				if (BPF_MODE(insn->code) == BPF_MEM)
21967 					insn->code = BPF_LDX | BPF_PROBE_MEM |
21968 						     BPF_SIZE((insn)->code);
21969 				else
21970 					insn->code = BPF_LDX | BPF_PROBE_MEMSX |
21971 						     BPF_SIZE((insn)->code);
21972 				env->prog->aux->num_exentries++;
21973 			}
21974 			continue;
21975 		case PTR_TO_ARENA:
21976 			if (BPF_MODE(insn->code) == BPF_MEMSX) {
21977 				if (!bpf_jit_supports_insn(insn, true)) {
21978 					verbose(env, "sign extending loads from arena are not supported yet\n");
21979 					return -EOPNOTSUPP;
21980 				}
21981 				insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32SX | BPF_SIZE(insn->code);
21982 			} else {
21983 				insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32 | BPF_SIZE(insn->code);
21984 			}
21985 			env->prog->aux->num_exentries++;
21986 			continue;
21987 		default:
21988 			continue;
21989 		}
21990 
21991 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
21992 		size = BPF_LDST_BYTES(insn);
21993 		mode = BPF_MODE(insn->code);
21994 
21995 		/* If the read access is a narrower load of the field,
21996 		 * convert to a 4/8-byte load, to minimum program type specific
21997 		 * convert_ctx_access changes. If conversion is successful,
21998 		 * we will apply proper mask to the result.
21999 		 */
22000 		is_narrower_load = size < ctx_field_size;
22001 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
22002 		off = insn->off;
22003 		if (is_narrower_load) {
22004 			u8 size_code;
22005 
22006 			if (type == BPF_WRITE) {
22007 				verifier_bug(env, "narrow ctx access misconfigured");
22008 				return -EFAULT;
22009 			}
22010 
22011 			size_code = BPF_H;
22012 			if (ctx_field_size == 4)
22013 				size_code = BPF_W;
22014 			else if (ctx_field_size == 8)
22015 				size_code = BPF_DW;
22016 
22017 			insn->off = off & ~(size_default - 1);
22018 			insn->code = BPF_LDX | BPF_MEM | size_code;
22019 		}
22020 
22021 		target_size = 0;
22022 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
22023 					 &target_size);
22024 		if (cnt == 0 || cnt >= INSN_BUF_SIZE ||
22025 		    (ctx_field_size && !target_size)) {
22026 			verifier_bug(env, "error during ctx access conversion (%d)", cnt);
22027 			return -EFAULT;
22028 		}
22029 
22030 		if (is_narrower_load && size < target_size) {
22031 			u8 shift = bpf_ctx_narrow_access_offset(
22032 				off, size, size_default) * 8;
22033 			if (shift && cnt + 1 >= INSN_BUF_SIZE) {
22034 				verifier_bug(env, "narrow ctx load misconfigured");
22035 				return -EFAULT;
22036 			}
22037 			if (ctx_field_size <= 4) {
22038 				if (shift)
22039 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
22040 									insn->dst_reg,
22041 									shift);
22042 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
22043 								(1 << size * 8) - 1);
22044 			} else {
22045 				if (shift)
22046 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
22047 									insn->dst_reg,
22048 									shift);
22049 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
22050 								(1ULL << size * 8) - 1);
22051 			}
22052 		}
22053 		if (mode == BPF_MEMSX)
22054 			insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
22055 						       insn->dst_reg, insn->dst_reg,
22056 						       size * 8, 0);
22057 
22058 patch_insn_buf:
22059 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22060 		if (!new_prog)
22061 			return -ENOMEM;
22062 
22063 		delta += cnt - 1;
22064 
22065 		/* keep walking new program and skip insns we just inserted */
22066 		env->prog = new_prog;
22067 		insn      = new_prog->insnsi + i + delta;
22068 	}
22069 
22070 	return 0;
22071 }
22072 
jit_subprogs(struct bpf_verifier_env * env)22073 static int jit_subprogs(struct bpf_verifier_env *env)
22074 {
22075 	struct bpf_prog *prog = env->prog, **func, *tmp;
22076 	int i, j, subprog_start, subprog_end = 0, len, subprog;
22077 	struct bpf_map *map_ptr;
22078 	struct bpf_insn *insn;
22079 	void *old_bpf_func;
22080 	int err, num_exentries;
22081 	int old_len, subprog_start_adjustment = 0;
22082 
22083 	if (env->subprog_cnt <= 1)
22084 		return 0;
22085 
22086 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
22087 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
22088 			continue;
22089 
22090 		/* Upon error here we cannot fall back to interpreter but
22091 		 * need a hard reject of the program. Thus -EFAULT is
22092 		 * propagated in any case.
22093 		 */
22094 		subprog = find_subprog(env, i + insn->imm + 1);
22095 		if (verifier_bug_if(subprog < 0, env, "No program to jit at insn %d",
22096 				    i + insn->imm + 1))
22097 			return -EFAULT;
22098 		/* temporarily remember subprog id inside insn instead of
22099 		 * aux_data, since next loop will split up all insns into funcs
22100 		 */
22101 		insn->off = subprog;
22102 		/* remember original imm in case JIT fails and fallback
22103 		 * to interpreter will be needed
22104 		 */
22105 		env->insn_aux_data[i].call_imm = insn->imm;
22106 		/* point imm to __bpf_call_base+1 from JITs point of view */
22107 		insn->imm = 1;
22108 		if (bpf_pseudo_func(insn)) {
22109 #if defined(MODULES_VADDR)
22110 			u64 addr = MODULES_VADDR;
22111 #else
22112 			u64 addr = VMALLOC_START;
22113 #endif
22114 			/* jit (e.g. x86_64) may emit fewer instructions
22115 			 * if it learns a u32 imm is the same as a u64 imm.
22116 			 * Set close enough to possible prog address.
22117 			 */
22118 			insn[0].imm = (u32)addr;
22119 			insn[1].imm = addr >> 32;
22120 		}
22121 	}
22122 
22123 	err = bpf_prog_alloc_jited_linfo(prog);
22124 	if (err)
22125 		goto out_undo_insn;
22126 
22127 	err = -ENOMEM;
22128 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
22129 	if (!func)
22130 		goto out_undo_insn;
22131 
22132 	for (i = 0; i < env->subprog_cnt; i++) {
22133 		subprog_start = subprog_end;
22134 		subprog_end = env->subprog_info[i + 1].start;
22135 
22136 		len = subprog_end - subprog_start;
22137 		/* bpf_prog_run() doesn't call subprogs directly,
22138 		 * hence main prog stats include the runtime of subprogs.
22139 		 * subprogs don't have IDs and not reachable via prog_get_next_id
22140 		 * func[i]->stats will never be accessed and stays NULL
22141 		 */
22142 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
22143 		if (!func[i])
22144 			goto out_free;
22145 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
22146 		       len * sizeof(struct bpf_insn));
22147 		func[i]->type = prog->type;
22148 		func[i]->len = len;
22149 		if (bpf_prog_calc_tag(func[i]))
22150 			goto out_free;
22151 		func[i]->is_func = 1;
22152 		func[i]->sleepable = prog->sleepable;
22153 		func[i]->aux->func_idx = i;
22154 		/* Below members will be freed only at prog->aux */
22155 		func[i]->aux->btf = prog->aux->btf;
22156 		func[i]->aux->subprog_start = subprog_start + subprog_start_adjustment;
22157 		func[i]->aux->func_info = prog->aux->func_info;
22158 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
22159 		func[i]->aux->poke_tab = prog->aux->poke_tab;
22160 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
22161 		func[i]->aux->main_prog_aux = prog->aux;
22162 
22163 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
22164 			struct bpf_jit_poke_descriptor *poke;
22165 
22166 			poke = &prog->aux->poke_tab[j];
22167 			if (poke->insn_idx < subprog_end &&
22168 			    poke->insn_idx >= subprog_start)
22169 				poke->aux = func[i]->aux;
22170 		}
22171 
22172 		func[i]->aux->name[0] = 'F';
22173 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
22174 		if (env->subprog_info[i].priv_stack_mode == PRIV_STACK_ADAPTIVE)
22175 			func[i]->aux->jits_use_priv_stack = true;
22176 
22177 		func[i]->jit_requested = 1;
22178 		func[i]->blinding_requested = prog->blinding_requested;
22179 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
22180 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
22181 		func[i]->aux->linfo = prog->aux->linfo;
22182 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
22183 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
22184 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
22185 		func[i]->aux->arena = prog->aux->arena;
22186 		func[i]->aux->used_maps = env->used_maps;
22187 		func[i]->aux->used_map_cnt = env->used_map_cnt;
22188 		num_exentries = 0;
22189 		insn = func[i]->insnsi;
22190 		for (j = 0; j < func[i]->len; j++, insn++) {
22191 			if (BPF_CLASS(insn->code) == BPF_LDX &&
22192 			    (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
22193 			     BPF_MODE(insn->code) == BPF_PROBE_MEM32 ||
22194 			     BPF_MODE(insn->code) == BPF_PROBE_MEM32SX ||
22195 			     BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
22196 				num_exentries++;
22197 			if ((BPF_CLASS(insn->code) == BPF_STX ||
22198 			     BPF_CLASS(insn->code) == BPF_ST) &&
22199 			     BPF_MODE(insn->code) == BPF_PROBE_MEM32)
22200 				num_exentries++;
22201 			if (BPF_CLASS(insn->code) == BPF_STX &&
22202 			     BPF_MODE(insn->code) == BPF_PROBE_ATOMIC)
22203 				num_exentries++;
22204 		}
22205 		func[i]->aux->num_exentries = num_exentries;
22206 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
22207 		func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb;
22208 		func[i]->aux->changes_pkt_data = env->subprog_info[i].changes_pkt_data;
22209 		func[i]->aux->might_sleep = env->subprog_info[i].might_sleep;
22210 		if (!i)
22211 			func[i]->aux->exception_boundary = env->seen_exception;
22212 
22213 		/*
22214 		 * To properly pass the absolute subprog start to jit
22215 		 * all instruction adjustments should be accumulated
22216 		 */
22217 		old_len = func[i]->len;
22218 		func[i] = bpf_int_jit_compile(func[i]);
22219 		subprog_start_adjustment += func[i]->len - old_len;
22220 
22221 		if (!func[i]->jited) {
22222 			err = -ENOTSUPP;
22223 			goto out_free;
22224 		}
22225 		cond_resched();
22226 	}
22227 
22228 	/* at this point all bpf functions were successfully JITed
22229 	 * now populate all bpf_calls with correct addresses and
22230 	 * run last pass of JIT
22231 	 */
22232 	for (i = 0; i < env->subprog_cnt; i++) {
22233 		insn = func[i]->insnsi;
22234 		for (j = 0; j < func[i]->len; j++, insn++) {
22235 			if (bpf_pseudo_func(insn)) {
22236 				subprog = insn->off;
22237 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
22238 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
22239 				continue;
22240 			}
22241 			if (!bpf_pseudo_call(insn))
22242 				continue;
22243 			subprog = insn->off;
22244 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
22245 		}
22246 
22247 		/* we use the aux data to keep a list of the start addresses
22248 		 * of the JITed images for each function in the program
22249 		 *
22250 		 * for some architectures, such as powerpc64, the imm field
22251 		 * might not be large enough to hold the offset of the start
22252 		 * address of the callee's JITed image from __bpf_call_base
22253 		 *
22254 		 * in such cases, we can lookup the start address of a callee
22255 		 * by using its subprog id, available from the off field of
22256 		 * the call instruction, as an index for this list
22257 		 */
22258 		func[i]->aux->func = func;
22259 		func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
22260 		func[i]->aux->real_func_cnt = env->subprog_cnt;
22261 	}
22262 	for (i = 0; i < env->subprog_cnt; i++) {
22263 		old_bpf_func = func[i]->bpf_func;
22264 		tmp = bpf_int_jit_compile(func[i]);
22265 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
22266 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
22267 			err = -ENOTSUPP;
22268 			goto out_free;
22269 		}
22270 		cond_resched();
22271 	}
22272 
22273 	/*
22274 	 * Cleanup func[i]->aux fields which aren't required
22275 	 * or can become invalid in future
22276 	 */
22277 	for (i = 0; i < env->subprog_cnt; i++) {
22278 		func[i]->aux->used_maps = NULL;
22279 		func[i]->aux->used_map_cnt = 0;
22280 	}
22281 
22282 	/* finally lock prog and jit images for all functions and
22283 	 * populate kallsysm. Begin at the first subprogram, since
22284 	 * bpf_prog_load will add the kallsyms for the main program.
22285 	 */
22286 	for (i = 1; i < env->subprog_cnt; i++) {
22287 		err = bpf_prog_lock_ro(func[i]);
22288 		if (err)
22289 			goto out_free;
22290 	}
22291 
22292 	for (i = 1; i < env->subprog_cnt; i++)
22293 		bpf_prog_kallsyms_add(func[i]);
22294 
22295 	/* Last step: make now unused interpreter insns from main
22296 	 * prog consistent for later dump requests, so they can
22297 	 * later look the same as if they were interpreted only.
22298 	 */
22299 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
22300 		if (bpf_pseudo_func(insn)) {
22301 			insn[0].imm = env->insn_aux_data[i].call_imm;
22302 			insn[1].imm = insn->off;
22303 			insn->off = 0;
22304 			continue;
22305 		}
22306 		if (!bpf_pseudo_call(insn))
22307 			continue;
22308 		insn->off = env->insn_aux_data[i].call_imm;
22309 		subprog = find_subprog(env, i + insn->off + 1);
22310 		insn->imm = subprog;
22311 	}
22312 
22313 	prog->jited = 1;
22314 	prog->bpf_func = func[0]->bpf_func;
22315 	prog->jited_len = func[0]->jited_len;
22316 	prog->aux->extable = func[0]->aux->extable;
22317 	prog->aux->num_exentries = func[0]->aux->num_exentries;
22318 	prog->aux->func = func;
22319 	prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
22320 	prog->aux->real_func_cnt = env->subprog_cnt;
22321 	prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func;
22322 	prog->aux->exception_boundary = func[0]->aux->exception_boundary;
22323 	bpf_prog_jit_attempt_done(prog);
22324 	return 0;
22325 out_free:
22326 	/* We failed JIT'ing, so at this point we need to unregister poke
22327 	 * descriptors from subprogs, so that kernel is not attempting to
22328 	 * patch it anymore as we're freeing the subprog JIT memory.
22329 	 */
22330 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
22331 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
22332 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
22333 	}
22334 	/* At this point we're guaranteed that poke descriptors are not
22335 	 * live anymore. We can just unlink its descriptor table as it's
22336 	 * released with the main prog.
22337 	 */
22338 	for (i = 0; i < env->subprog_cnt; i++) {
22339 		if (!func[i])
22340 			continue;
22341 		func[i]->aux->poke_tab = NULL;
22342 		bpf_jit_free(func[i]);
22343 	}
22344 	kfree(func);
22345 out_undo_insn:
22346 	/* cleanup main prog to be interpreted */
22347 	prog->jit_requested = 0;
22348 	prog->blinding_requested = 0;
22349 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
22350 		if (!bpf_pseudo_call(insn))
22351 			continue;
22352 		insn->off = 0;
22353 		insn->imm = env->insn_aux_data[i].call_imm;
22354 	}
22355 	bpf_prog_jit_attempt_done(prog);
22356 	return err;
22357 }
22358 
fixup_call_args(struct bpf_verifier_env * env)22359 static int fixup_call_args(struct bpf_verifier_env *env)
22360 {
22361 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
22362 	struct bpf_prog *prog = env->prog;
22363 	struct bpf_insn *insn = prog->insnsi;
22364 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
22365 	int i, depth;
22366 #endif
22367 	int err = 0;
22368 
22369 	if (env->prog->jit_requested &&
22370 	    !bpf_prog_is_offloaded(env->prog->aux)) {
22371 		err = jit_subprogs(env);
22372 		if (err == 0)
22373 			return 0;
22374 		if (err == -EFAULT)
22375 			return err;
22376 	}
22377 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
22378 	if (has_kfunc_call) {
22379 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
22380 		return -EINVAL;
22381 	}
22382 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
22383 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
22384 		 * have to be rejected, since interpreter doesn't support them yet.
22385 		 */
22386 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
22387 		return -EINVAL;
22388 	}
22389 	for (i = 0; i < prog->len; i++, insn++) {
22390 		if (bpf_pseudo_func(insn)) {
22391 			/* When JIT fails the progs with callback calls
22392 			 * have to be rejected, since interpreter doesn't support them yet.
22393 			 */
22394 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
22395 			return -EINVAL;
22396 		}
22397 
22398 		if (!bpf_pseudo_call(insn))
22399 			continue;
22400 		depth = get_callee_stack_depth(env, insn, i);
22401 		if (depth < 0)
22402 			return depth;
22403 		bpf_patch_call_args(insn, depth);
22404 	}
22405 	err = 0;
22406 #endif
22407 	return err;
22408 }
22409 
22410 /* replace a generic kfunc with a specialized version if necessary */
specialize_kfunc(struct bpf_verifier_env * env,struct bpf_kfunc_desc * desc,int insn_idx)22411 static int specialize_kfunc(struct bpf_verifier_env *env, struct bpf_kfunc_desc *desc, int insn_idx)
22412 {
22413 	struct bpf_prog *prog = env->prog;
22414 	bool seen_direct_write;
22415 	void *xdp_kfunc;
22416 	bool is_rdonly;
22417 	u32 func_id = desc->func_id;
22418 	u16 offset = desc->offset;
22419 	unsigned long addr = desc->addr;
22420 
22421 	if (offset) /* return if module BTF is used */
22422 		return 0;
22423 
22424 	if (bpf_dev_bound_kfunc_id(func_id)) {
22425 		xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
22426 		if (xdp_kfunc)
22427 			addr = (unsigned long)xdp_kfunc;
22428 		/* fallback to default kfunc when not supported by netdev */
22429 	} else if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
22430 		seen_direct_write = env->seen_direct_write;
22431 		is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
22432 
22433 		if (is_rdonly)
22434 			addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
22435 
22436 		/* restore env->seen_direct_write to its original value, since
22437 		 * may_access_direct_pkt_data mutates it
22438 		 */
22439 		env->seen_direct_write = seen_direct_write;
22440 	} else if (func_id == special_kfunc_list[KF_bpf_set_dentry_xattr]) {
22441 		if (bpf_lsm_has_d_inode_locked(prog))
22442 			addr = (unsigned long)bpf_set_dentry_xattr_locked;
22443 	} else if (func_id == special_kfunc_list[KF_bpf_remove_dentry_xattr]) {
22444 		if (bpf_lsm_has_d_inode_locked(prog))
22445 			addr = (unsigned long)bpf_remove_dentry_xattr_locked;
22446 	} else if (func_id == special_kfunc_list[KF_bpf_dynptr_from_file]) {
22447 		if (!env->insn_aux_data[insn_idx].non_sleepable)
22448 			addr = (unsigned long)bpf_dynptr_from_file_sleepable;
22449 	}
22450 	desc->addr = addr;
22451 	return 0;
22452 }
22453 
__fixup_collection_insert_kfunc(struct bpf_insn_aux_data * insn_aux,u16 struct_meta_reg,u16 node_offset_reg,struct bpf_insn * insn,struct bpf_insn * insn_buf,int * cnt)22454 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
22455 					    u16 struct_meta_reg,
22456 					    u16 node_offset_reg,
22457 					    struct bpf_insn *insn,
22458 					    struct bpf_insn *insn_buf,
22459 					    int *cnt)
22460 {
22461 	struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
22462 	struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
22463 
22464 	insn_buf[0] = addr[0];
22465 	insn_buf[1] = addr[1];
22466 	insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
22467 	insn_buf[3] = *insn;
22468 	*cnt = 4;
22469 }
22470 
fixup_kfunc_call(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_insn * insn_buf,int insn_idx,int * cnt)22471 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
22472 			    struct bpf_insn *insn_buf, int insn_idx, int *cnt)
22473 {
22474 	struct bpf_kfunc_desc *desc;
22475 	int err;
22476 
22477 	if (!insn->imm) {
22478 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
22479 		return -EINVAL;
22480 	}
22481 
22482 	*cnt = 0;
22483 
22484 	/* insn->imm has the btf func_id. Replace it with an offset relative to
22485 	 * __bpf_call_base, unless the JIT needs to call functions that are
22486 	 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
22487 	 */
22488 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
22489 	if (!desc) {
22490 		verifier_bug(env, "kernel function descriptor not found for func_id %u",
22491 			     insn->imm);
22492 		return -EFAULT;
22493 	}
22494 
22495 	err = specialize_kfunc(env, desc, insn_idx);
22496 	if (err)
22497 		return err;
22498 
22499 	if (!bpf_jit_supports_far_kfunc_call())
22500 		insn->imm = BPF_CALL_IMM(desc->addr);
22501 	if (insn->off)
22502 		return 0;
22503 	if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
22504 	    desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
22505 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
22506 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
22507 		u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
22508 
22509 		if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) {
22510 			verifier_bug(env, "NULL kptr_struct_meta expected at insn_idx %d",
22511 				     insn_idx);
22512 			return -EFAULT;
22513 		}
22514 
22515 		insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
22516 		insn_buf[1] = addr[0];
22517 		insn_buf[2] = addr[1];
22518 		insn_buf[3] = *insn;
22519 		*cnt = 4;
22520 	} else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
22521 		   desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] ||
22522 		   desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
22523 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
22524 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
22525 
22526 		if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) {
22527 			verifier_bug(env, "NULL kptr_struct_meta expected at insn_idx %d",
22528 				     insn_idx);
22529 			return -EFAULT;
22530 		}
22531 
22532 		if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
22533 		    !kptr_struct_meta) {
22534 			verifier_bug(env, "kptr_struct_meta expected at insn_idx %d",
22535 				     insn_idx);
22536 			return -EFAULT;
22537 		}
22538 
22539 		insn_buf[0] = addr[0];
22540 		insn_buf[1] = addr[1];
22541 		insn_buf[2] = *insn;
22542 		*cnt = 3;
22543 	} else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
22544 		   desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
22545 		   desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
22546 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
22547 		int struct_meta_reg = BPF_REG_3;
22548 		int node_offset_reg = BPF_REG_4;
22549 
22550 		/* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
22551 		if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
22552 			struct_meta_reg = BPF_REG_4;
22553 			node_offset_reg = BPF_REG_5;
22554 		}
22555 
22556 		if (!kptr_struct_meta) {
22557 			verifier_bug(env, "kptr_struct_meta expected at insn_idx %d",
22558 				     insn_idx);
22559 			return -EFAULT;
22560 		}
22561 
22562 		__fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
22563 						node_offset_reg, insn, insn_buf, cnt);
22564 	} else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
22565 		   desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
22566 		insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
22567 		*cnt = 1;
22568 	}
22569 
22570 	if (env->insn_aux_data[insn_idx].arg_prog) {
22571 		u32 regno = env->insn_aux_data[insn_idx].arg_prog;
22572 		struct bpf_insn ld_addrs[2] = { BPF_LD_IMM64(regno, (long)env->prog->aux) };
22573 		int idx = *cnt;
22574 
22575 		insn_buf[idx++] = ld_addrs[0];
22576 		insn_buf[idx++] = ld_addrs[1];
22577 		insn_buf[idx++] = *insn;
22578 		*cnt = idx;
22579 	}
22580 	return 0;
22581 }
22582 
22583 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */
add_hidden_subprog(struct bpf_verifier_env * env,struct bpf_insn * patch,int len)22584 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len)
22585 {
22586 	struct bpf_subprog_info *info = env->subprog_info;
22587 	int cnt = env->subprog_cnt;
22588 	struct bpf_prog *prog;
22589 
22590 	/* We only reserve one slot for hidden subprogs in subprog_info. */
22591 	if (env->hidden_subprog_cnt) {
22592 		verifier_bug(env, "only one hidden subprog supported");
22593 		return -EFAULT;
22594 	}
22595 	/* We're not patching any existing instruction, just appending the new
22596 	 * ones for the hidden subprog. Hence all of the adjustment operations
22597 	 * in bpf_patch_insn_data are no-ops.
22598 	 */
22599 	prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len);
22600 	if (!prog)
22601 		return -ENOMEM;
22602 	env->prog = prog;
22603 	info[cnt + 1].start = info[cnt].start;
22604 	info[cnt].start = prog->len - len + 1;
22605 	env->subprog_cnt++;
22606 	env->hidden_subprog_cnt++;
22607 	return 0;
22608 }
22609 
22610 /* Do various post-verification rewrites in a single program pass.
22611  * These rewrites simplify JIT and interpreter implementations.
22612  */
do_misc_fixups(struct bpf_verifier_env * env)22613 static int do_misc_fixups(struct bpf_verifier_env *env)
22614 {
22615 	struct bpf_prog *prog = env->prog;
22616 	enum bpf_attach_type eatype = prog->expected_attach_type;
22617 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
22618 	struct bpf_insn *insn = prog->insnsi;
22619 	const struct bpf_func_proto *fn;
22620 	const int insn_cnt = prog->len;
22621 	const struct bpf_map_ops *ops;
22622 	struct bpf_insn_aux_data *aux;
22623 	struct bpf_insn *insn_buf = env->insn_buf;
22624 	struct bpf_prog *new_prog;
22625 	struct bpf_map *map_ptr;
22626 	int i, ret, cnt, delta = 0, cur_subprog = 0;
22627 	struct bpf_subprog_info *subprogs = env->subprog_info;
22628 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
22629 	u16 stack_depth_extra = 0;
22630 
22631 	if (env->seen_exception && !env->exception_callback_subprog) {
22632 		struct bpf_insn *patch = insn_buf;
22633 
22634 		*patch++ = env->prog->insnsi[insn_cnt - 1];
22635 		*patch++ = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
22636 		*patch++ = BPF_EXIT_INSN();
22637 		ret = add_hidden_subprog(env, insn_buf, patch - insn_buf);
22638 		if (ret < 0)
22639 			return ret;
22640 		prog = env->prog;
22641 		insn = prog->insnsi;
22642 
22643 		env->exception_callback_subprog = env->subprog_cnt - 1;
22644 		/* Don't update insn_cnt, as add_hidden_subprog always appends insns */
22645 		mark_subprog_exc_cb(env, env->exception_callback_subprog);
22646 	}
22647 
22648 	for (i = 0; i < insn_cnt;) {
22649 		if (insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->imm) {
22650 			if ((insn->off == BPF_ADDR_SPACE_CAST && insn->imm == 1) ||
22651 			    (((struct bpf_map *)env->prog->aux->arena)->map_flags & BPF_F_NO_USER_CONV)) {
22652 				/* convert to 32-bit mov that clears upper 32-bit */
22653 				insn->code = BPF_ALU | BPF_MOV | BPF_X;
22654 				/* clear off and imm, so it's a normal 'wX = wY' from JIT pov */
22655 				insn->off = 0;
22656 				insn->imm = 0;
22657 			} /* cast from as(0) to as(1) should be handled by JIT */
22658 			goto next_insn;
22659 		}
22660 
22661 		if (env->insn_aux_data[i + delta].needs_zext)
22662 			/* Convert BPF_CLASS(insn->code) == BPF_ALU64 to 32-bit ALU */
22663 			insn->code = BPF_ALU | BPF_OP(insn->code) | BPF_SRC(insn->code);
22664 
22665 		/* Make sdiv/smod divide-by-minus-one exceptions impossible. */
22666 		if ((insn->code == (BPF_ALU64 | BPF_MOD | BPF_K) ||
22667 		     insn->code == (BPF_ALU64 | BPF_DIV | BPF_K) ||
22668 		     insn->code == (BPF_ALU | BPF_MOD | BPF_K) ||
22669 		     insn->code == (BPF_ALU | BPF_DIV | BPF_K)) &&
22670 		    insn->off == 1 && insn->imm == -1) {
22671 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
22672 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
22673 			struct bpf_insn *patch = insn_buf;
22674 
22675 			if (isdiv)
22676 				*patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
22677 							BPF_NEG | BPF_K, insn->dst_reg,
22678 							0, 0, 0);
22679 			else
22680 				*patch++ = BPF_MOV32_IMM(insn->dst_reg, 0);
22681 
22682 			cnt = patch - insn_buf;
22683 
22684 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22685 			if (!new_prog)
22686 				return -ENOMEM;
22687 
22688 			delta    += cnt - 1;
22689 			env->prog = prog = new_prog;
22690 			insn      = new_prog->insnsi + i + delta;
22691 			goto next_insn;
22692 		}
22693 
22694 		/* Make divide-by-zero and divide-by-minus-one exceptions impossible. */
22695 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
22696 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
22697 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
22698 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
22699 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
22700 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
22701 			bool is_sdiv = isdiv && insn->off == 1;
22702 			bool is_smod = !isdiv && insn->off == 1;
22703 			struct bpf_insn *patch = insn_buf;
22704 
22705 			if (is_sdiv) {
22706 				/* [R,W]x sdiv 0 -> 0
22707 				 * LLONG_MIN sdiv -1 -> LLONG_MIN
22708 				 * INT_MIN sdiv -1 -> INT_MIN
22709 				 */
22710 				*patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg);
22711 				*patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
22712 							BPF_ADD | BPF_K, BPF_REG_AX,
22713 							0, 0, 1);
22714 				*patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
22715 							BPF_JGT | BPF_K, BPF_REG_AX,
22716 							0, 4, 1);
22717 				*patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
22718 							BPF_JEQ | BPF_K, BPF_REG_AX,
22719 							0, 1, 0);
22720 				*patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
22721 							BPF_MOV | BPF_K, insn->dst_reg,
22722 							0, 0, 0);
22723 				/* BPF_NEG(LLONG_MIN) == -LLONG_MIN == LLONG_MIN */
22724 				*patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
22725 							BPF_NEG | BPF_K, insn->dst_reg,
22726 							0, 0, 0);
22727 				*patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
22728 				*patch++ = *insn;
22729 				cnt = patch - insn_buf;
22730 			} else if (is_smod) {
22731 				/* [R,W]x mod 0 -> [R,W]x */
22732 				/* [R,W]x mod -1 -> 0 */
22733 				*patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg);
22734 				*patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
22735 							BPF_ADD | BPF_K, BPF_REG_AX,
22736 							0, 0, 1);
22737 				*patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
22738 							BPF_JGT | BPF_K, BPF_REG_AX,
22739 							0, 3, 1);
22740 				*patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
22741 							BPF_JEQ | BPF_K, BPF_REG_AX,
22742 							0, 3 + (is64 ? 0 : 1), 1);
22743 				*patch++ = BPF_MOV32_IMM(insn->dst_reg, 0);
22744 				*patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
22745 				*patch++ = *insn;
22746 
22747 				if (!is64) {
22748 					*patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
22749 					*patch++ = BPF_MOV32_REG(insn->dst_reg, insn->dst_reg);
22750 				}
22751 				cnt = patch - insn_buf;
22752 			} else if (isdiv) {
22753 				/* [R,W]x div 0 -> 0 */
22754 				*patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
22755 							BPF_JNE | BPF_K, insn->src_reg,
22756 							0, 2, 0);
22757 				*patch++ = BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg);
22758 				*patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
22759 				*patch++ = *insn;
22760 				cnt = patch - insn_buf;
22761 			} else {
22762 				/* [R,W]x mod 0 -> [R,W]x */
22763 				*patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
22764 							BPF_JEQ | BPF_K, insn->src_reg,
22765 							0, 1 + (is64 ? 0 : 1), 0);
22766 				*patch++ = *insn;
22767 
22768 				if (!is64) {
22769 					*patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
22770 					*patch++ = BPF_MOV32_REG(insn->dst_reg, insn->dst_reg);
22771 				}
22772 				cnt = patch - insn_buf;
22773 			}
22774 
22775 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22776 			if (!new_prog)
22777 				return -ENOMEM;
22778 
22779 			delta    += cnt - 1;
22780 			env->prog = prog = new_prog;
22781 			insn      = new_prog->insnsi + i + delta;
22782 			goto next_insn;
22783 		}
22784 
22785 		/* Make it impossible to de-reference a userspace address */
22786 		if (BPF_CLASS(insn->code) == BPF_LDX &&
22787 		    (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
22788 		     BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) {
22789 			struct bpf_insn *patch = insn_buf;
22790 			u64 uaddress_limit = bpf_arch_uaddress_limit();
22791 
22792 			if (!uaddress_limit)
22793 				goto next_insn;
22794 
22795 			*patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg);
22796 			if (insn->off)
22797 				*patch++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_AX, insn->off);
22798 			*patch++ = BPF_ALU64_IMM(BPF_RSH, BPF_REG_AX, 32);
22799 			*patch++ = BPF_JMP_IMM(BPF_JLE, BPF_REG_AX, uaddress_limit >> 32, 2);
22800 			*patch++ = *insn;
22801 			*patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
22802 			*patch++ = BPF_MOV64_IMM(insn->dst_reg, 0);
22803 
22804 			cnt = patch - insn_buf;
22805 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22806 			if (!new_prog)
22807 				return -ENOMEM;
22808 
22809 			delta    += cnt - 1;
22810 			env->prog = prog = new_prog;
22811 			insn      = new_prog->insnsi + i + delta;
22812 			goto next_insn;
22813 		}
22814 
22815 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
22816 		if (BPF_CLASS(insn->code) == BPF_LD &&
22817 		    (BPF_MODE(insn->code) == BPF_ABS ||
22818 		     BPF_MODE(insn->code) == BPF_IND)) {
22819 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
22820 			if (cnt == 0 || cnt >= INSN_BUF_SIZE) {
22821 				verifier_bug(env, "%d insns generated for ld_abs", cnt);
22822 				return -EFAULT;
22823 			}
22824 
22825 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22826 			if (!new_prog)
22827 				return -ENOMEM;
22828 
22829 			delta    += cnt - 1;
22830 			env->prog = prog = new_prog;
22831 			insn      = new_prog->insnsi + i + delta;
22832 			goto next_insn;
22833 		}
22834 
22835 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
22836 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
22837 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
22838 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
22839 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
22840 			struct bpf_insn *patch = insn_buf;
22841 			bool issrc, isneg, isimm;
22842 			u32 off_reg;
22843 
22844 			aux = &env->insn_aux_data[i + delta];
22845 			if (!aux->alu_state ||
22846 			    aux->alu_state == BPF_ALU_NON_POINTER)
22847 				goto next_insn;
22848 
22849 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
22850 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
22851 				BPF_ALU_SANITIZE_SRC;
22852 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
22853 
22854 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
22855 			if (isimm) {
22856 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
22857 			} else {
22858 				if (isneg)
22859 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
22860 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
22861 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
22862 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
22863 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
22864 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
22865 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
22866 			}
22867 			if (!issrc)
22868 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
22869 			insn->src_reg = BPF_REG_AX;
22870 			if (isneg)
22871 				insn->code = insn->code == code_add ?
22872 					     code_sub : code_add;
22873 			*patch++ = *insn;
22874 			if (issrc && isneg && !isimm)
22875 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
22876 			cnt = patch - insn_buf;
22877 
22878 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22879 			if (!new_prog)
22880 				return -ENOMEM;
22881 
22882 			delta    += cnt - 1;
22883 			env->prog = prog = new_prog;
22884 			insn      = new_prog->insnsi + i + delta;
22885 			goto next_insn;
22886 		}
22887 
22888 		if (is_may_goto_insn(insn) && bpf_jit_supports_timed_may_goto()) {
22889 			int stack_off_cnt = -stack_depth - 16;
22890 
22891 			/*
22892 			 * Two 8 byte slots, depth-16 stores the count, and
22893 			 * depth-8 stores the start timestamp of the loop.
22894 			 *
22895 			 * The starting value of count is BPF_MAX_TIMED_LOOPS
22896 			 * (0xffff).  Every iteration loads it and subs it by 1,
22897 			 * until the value becomes 0 in AX (thus, 1 in stack),
22898 			 * after which we call arch_bpf_timed_may_goto, which
22899 			 * either sets AX to 0xffff to keep looping, or to 0
22900 			 * upon timeout. AX is then stored into the stack. In
22901 			 * the next iteration, we either see 0 and break out, or
22902 			 * continue iterating until the next time value is 0
22903 			 * after subtraction, rinse and repeat.
22904 			 */
22905 			stack_depth_extra = 16;
22906 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off_cnt);
22907 			if (insn->off >= 0)
22908 				insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 5);
22909 			else
22910 				insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1);
22911 			insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1);
22912 			insn_buf[3] = BPF_JMP_IMM(BPF_JNE, BPF_REG_AX, 0, 2);
22913 			/*
22914 			 * AX is used as an argument to pass in stack_off_cnt
22915 			 * (to add to r10/fp), and also as the return value of
22916 			 * the call to arch_bpf_timed_may_goto.
22917 			 */
22918 			insn_buf[4] = BPF_MOV64_IMM(BPF_REG_AX, stack_off_cnt);
22919 			insn_buf[5] = BPF_EMIT_CALL(arch_bpf_timed_may_goto);
22920 			insn_buf[6] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off_cnt);
22921 			cnt = 7;
22922 
22923 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22924 			if (!new_prog)
22925 				return -ENOMEM;
22926 
22927 			delta += cnt - 1;
22928 			env->prog = prog = new_prog;
22929 			insn = new_prog->insnsi + i + delta;
22930 			goto next_insn;
22931 		} else if (is_may_goto_insn(insn)) {
22932 			int stack_off = -stack_depth - 8;
22933 
22934 			stack_depth_extra = 8;
22935 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off);
22936 			if (insn->off >= 0)
22937 				insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 2);
22938 			else
22939 				insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1);
22940 			insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1);
22941 			insn_buf[3] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off);
22942 			cnt = 4;
22943 
22944 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22945 			if (!new_prog)
22946 				return -ENOMEM;
22947 
22948 			delta += cnt - 1;
22949 			env->prog = prog = new_prog;
22950 			insn = new_prog->insnsi + i + delta;
22951 			goto next_insn;
22952 		}
22953 
22954 		if (insn->code != (BPF_JMP | BPF_CALL))
22955 			goto next_insn;
22956 		if (insn->src_reg == BPF_PSEUDO_CALL)
22957 			goto next_insn;
22958 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
22959 			ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
22960 			if (ret)
22961 				return ret;
22962 			if (cnt == 0)
22963 				goto next_insn;
22964 
22965 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22966 			if (!new_prog)
22967 				return -ENOMEM;
22968 
22969 			delta	 += cnt - 1;
22970 			env->prog = prog = new_prog;
22971 			insn	  = new_prog->insnsi + i + delta;
22972 			goto next_insn;
22973 		}
22974 
22975 		/* Skip inlining the helper call if the JIT does it. */
22976 		if (bpf_jit_inlines_helper_call(insn->imm))
22977 			goto next_insn;
22978 
22979 		if (insn->imm == BPF_FUNC_get_route_realm)
22980 			prog->dst_needed = 1;
22981 		if (insn->imm == BPF_FUNC_get_prandom_u32)
22982 			bpf_user_rnd_init_once();
22983 		if (insn->imm == BPF_FUNC_override_return)
22984 			prog->kprobe_override = 1;
22985 		if (insn->imm == BPF_FUNC_tail_call) {
22986 			/* If we tail call into other programs, we
22987 			 * cannot make any assumptions since they can
22988 			 * be replaced dynamically during runtime in
22989 			 * the program array.
22990 			 */
22991 			prog->cb_access = 1;
22992 			if (!allow_tail_call_in_subprogs(env))
22993 				prog->aux->stack_depth = MAX_BPF_STACK;
22994 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
22995 
22996 			/* mark bpf_tail_call as different opcode to avoid
22997 			 * conditional branch in the interpreter for every normal
22998 			 * call and to prevent accidental JITing by JIT compiler
22999 			 * that doesn't support bpf_tail_call yet
23000 			 */
23001 			insn->imm = 0;
23002 			insn->code = BPF_JMP | BPF_TAIL_CALL;
23003 
23004 			aux = &env->insn_aux_data[i + delta];
23005 			if (env->bpf_capable && !prog->blinding_requested &&
23006 			    prog->jit_requested &&
23007 			    !bpf_map_key_poisoned(aux) &&
23008 			    !bpf_map_ptr_poisoned(aux) &&
23009 			    !bpf_map_ptr_unpriv(aux)) {
23010 				struct bpf_jit_poke_descriptor desc = {
23011 					.reason = BPF_POKE_REASON_TAIL_CALL,
23012 					.tail_call.map = aux->map_ptr_state.map_ptr,
23013 					.tail_call.key = bpf_map_key_immediate(aux),
23014 					.insn_idx = i + delta,
23015 				};
23016 
23017 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
23018 				if (ret < 0) {
23019 					verbose(env, "adding tail call poke descriptor failed\n");
23020 					return ret;
23021 				}
23022 
23023 				insn->imm = ret + 1;
23024 				goto next_insn;
23025 			}
23026 
23027 			if (!bpf_map_ptr_unpriv(aux))
23028 				goto next_insn;
23029 
23030 			/* instead of changing every JIT dealing with tail_call
23031 			 * emit two extra insns:
23032 			 * if (index >= max_entries) goto out;
23033 			 * index &= array->index_mask;
23034 			 * to avoid out-of-bounds cpu speculation
23035 			 */
23036 			if (bpf_map_ptr_poisoned(aux)) {
23037 				verbose(env, "tail_call abusing map_ptr\n");
23038 				return -EINVAL;
23039 			}
23040 
23041 			map_ptr = aux->map_ptr_state.map_ptr;
23042 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
23043 						  map_ptr->max_entries, 2);
23044 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
23045 						    container_of(map_ptr,
23046 								 struct bpf_array,
23047 								 map)->index_mask);
23048 			insn_buf[2] = *insn;
23049 			cnt = 3;
23050 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
23051 			if (!new_prog)
23052 				return -ENOMEM;
23053 
23054 			delta    += cnt - 1;
23055 			env->prog = prog = new_prog;
23056 			insn      = new_prog->insnsi + i + delta;
23057 			goto next_insn;
23058 		}
23059 
23060 		if (insn->imm == BPF_FUNC_timer_set_callback) {
23061 			/* The verifier will process callback_fn as many times as necessary
23062 			 * with different maps and the register states prepared by
23063 			 * set_timer_callback_state will be accurate.
23064 			 *
23065 			 * The following use case is valid:
23066 			 *   map1 is shared by prog1, prog2, prog3.
23067 			 *   prog1 calls bpf_timer_init for some map1 elements
23068 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
23069 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
23070 			 *   prog3 calls bpf_timer_start for some map1 elements.
23071 			 *     Those that were not both bpf_timer_init-ed and
23072 			 *     bpf_timer_set_callback-ed will return -EINVAL.
23073 			 */
23074 			struct bpf_insn ld_addrs[2] = {
23075 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
23076 			};
23077 
23078 			insn_buf[0] = ld_addrs[0];
23079 			insn_buf[1] = ld_addrs[1];
23080 			insn_buf[2] = *insn;
23081 			cnt = 3;
23082 
23083 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
23084 			if (!new_prog)
23085 				return -ENOMEM;
23086 
23087 			delta    += cnt - 1;
23088 			env->prog = prog = new_prog;
23089 			insn      = new_prog->insnsi + i + delta;
23090 			goto patch_call_imm;
23091 		}
23092 
23093 		if (is_storage_get_function(insn->imm)) {
23094 			if (env->insn_aux_data[i + delta].non_sleepable)
23095 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
23096 			else
23097 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
23098 			insn_buf[1] = *insn;
23099 			cnt = 2;
23100 
23101 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
23102 			if (!new_prog)
23103 				return -ENOMEM;
23104 
23105 			delta += cnt - 1;
23106 			env->prog = prog = new_prog;
23107 			insn = new_prog->insnsi + i + delta;
23108 			goto patch_call_imm;
23109 		}
23110 
23111 		/* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */
23112 		if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) {
23113 			/* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data,
23114 			 * bpf_mem_alloc() returns a ptr to the percpu data ptr.
23115 			 */
23116 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0);
23117 			insn_buf[1] = *insn;
23118 			cnt = 2;
23119 
23120 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
23121 			if (!new_prog)
23122 				return -ENOMEM;
23123 
23124 			delta += cnt - 1;
23125 			env->prog = prog = new_prog;
23126 			insn = new_prog->insnsi + i + delta;
23127 			goto patch_call_imm;
23128 		}
23129 
23130 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
23131 		 * and other inlining handlers are currently limited to 64 bit
23132 		 * only.
23133 		 */
23134 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
23135 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
23136 		     insn->imm == BPF_FUNC_map_update_elem ||
23137 		     insn->imm == BPF_FUNC_map_delete_elem ||
23138 		     insn->imm == BPF_FUNC_map_push_elem   ||
23139 		     insn->imm == BPF_FUNC_map_pop_elem    ||
23140 		     insn->imm == BPF_FUNC_map_peek_elem   ||
23141 		     insn->imm == BPF_FUNC_redirect_map    ||
23142 		     insn->imm == BPF_FUNC_for_each_map_elem ||
23143 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
23144 			aux = &env->insn_aux_data[i + delta];
23145 			if (bpf_map_ptr_poisoned(aux))
23146 				goto patch_call_imm;
23147 
23148 			map_ptr = aux->map_ptr_state.map_ptr;
23149 			ops = map_ptr->ops;
23150 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
23151 			    ops->map_gen_lookup) {
23152 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
23153 				if (cnt == -EOPNOTSUPP)
23154 					goto patch_map_ops_generic;
23155 				if (cnt <= 0 || cnt >= INSN_BUF_SIZE) {
23156 					verifier_bug(env, "%d insns generated for map lookup", cnt);
23157 					return -EFAULT;
23158 				}
23159 
23160 				new_prog = bpf_patch_insn_data(env, i + delta,
23161 							       insn_buf, cnt);
23162 				if (!new_prog)
23163 					return -ENOMEM;
23164 
23165 				delta    += cnt - 1;
23166 				env->prog = prog = new_prog;
23167 				insn      = new_prog->insnsi + i + delta;
23168 				goto next_insn;
23169 			}
23170 
23171 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
23172 				     (void *(*)(struct bpf_map *map, void *key))NULL));
23173 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
23174 				     (long (*)(struct bpf_map *map, void *key))NULL));
23175 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
23176 				     (long (*)(struct bpf_map *map, void *key, void *value,
23177 					      u64 flags))NULL));
23178 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
23179 				     (long (*)(struct bpf_map *map, void *value,
23180 					      u64 flags))NULL));
23181 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
23182 				     (long (*)(struct bpf_map *map, void *value))NULL));
23183 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
23184 				     (long (*)(struct bpf_map *map, void *value))NULL));
23185 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
23186 				     (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
23187 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
23188 				     (long (*)(struct bpf_map *map,
23189 					      bpf_callback_t callback_fn,
23190 					      void *callback_ctx,
23191 					      u64 flags))NULL));
23192 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
23193 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
23194 
23195 patch_map_ops_generic:
23196 			switch (insn->imm) {
23197 			case BPF_FUNC_map_lookup_elem:
23198 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
23199 				goto next_insn;
23200 			case BPF_FUNC_map_update_elem:
23201 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
23202 				goto next_insn;
23203 			case BPF_FUNC_map_delete_elem:
23204 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
23205 				goto next_insn;
23206 			case BPF_FUNC_map_push_elem:
23207 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
23208 				goto next_insn;
23209 			case BPF_FUNC_map_pop_elem:
23210 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
23211 				goto next_insn;
23212 			case BPF_FUNC_map_peek_elem:
23213 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
23214 				goto next_insn;
23215 			case BPF_FUNC_redirect_map:
23216 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
23217 				goto next_insn;
23218 			case BPF_FUNC_for_each_map_elem:
23219 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
23220 				goto next_insn;
23221 			case BPF_FUNC_map_lookup_percpu_elem:
23222 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
23223 				goto next_insn;
23224 			}
23225 
23226 			goto patch_call_imm;
23227 		}
23228 
23229 		/* Implement bpf_jiffies64 inline. */
23230 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
23231 		    insn->imm == BPF_FUNC_jiffies64) {
23232 			struct bpf_insn ld_jiffies_addr[2] = {
23233 				BPF_LD_IMM64(BPF_REG_0,
23234 					     (unsigned long)&jiffies),
23235 			};
23236 
23237 			insn_buf[0] = ld_jiffies_addr[0];
23238 			insn_buf[1] = ld_jiffies_addr[1];
23239 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
23240 						  BPF_REG_0, 0);
23241 			cnt = 3;
23242 
23243 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
23244 						       cnt);
23245 			if (!new_prog)
23246 				return -ENOMEM;
23247 
23248 			delta    += cnt - 1;
23249 			env->prog = prog = new_prog;
23250 			insn      = new_prog->insnsi + i + delta;
23251 			goto next_insn;
23252 		}
23253 
23254 #if defined(CONFIG_X86_64) && !defined(CONFIG_UML)
23255 		/* Implement bpf_get_smp_processor_id() inline. */
23256 		if (insn->imm == BPF_FUNC_get_smp_processor_id &&
23257 		    verifier_inlines_helper_call(env, insn->imm)) {
23258 			/* BPF_FUNC_get_smp_processor_id inlining is an
23259 			 * optimization, so if cpu_number is ever
23260 			 * changed in some incompatible and hard to support
23261 			 * way, it's fine to back out this inlining logic
23262 			 */
23263 #ifdef CONFIG_SMP
23264 			insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, (u32)(unsigned long)&cpu_number);
23265 			insn_buf[1] = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0);
23266 			insn_buf[2] = BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, 0);
23267 			cnt = 3;
23268 #else
23269 			insn_buf[0] = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
23270 			cnt = 1;
23271 #endif
23272 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
23273 			if (!new_prog)
23274 				return -ENOMEM;
23275 
23276 			delta    += cnt - 1;
23277 			env->prog = prog = new_prog;
23278 			insn      = new_prog->insnsi + i + delta;
23279 			goto next_insn;
23280 		}
23281 #endif
23282 		/* Implement bpf_get_func_arg inline. */
23283 		if (prog_type == BPF_PROG_TYPE_TRACING &&
23284 		    insn->imm == BPF_FUNC_get_func_arg) {
23285 			/* Load nr_args from ctx - 8 */
23286 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
23287 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
23288 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
23289 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
23290 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
23291 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
23292 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
23293 			insn_buf[7] = BPF_JMP_A(1);
23294 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
23295 			cnt = 9;
23296 
23297 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
23298 			if (!new_prog)
23299 				return -ENOMEM;
23300 
23301 			delta    += cnt - 1;
23302 			env->prog = prog = new_prog;
23303 			insn      = new_prog->insnsi + i + delta;
23304 			goto next_insn;
23305 		}
23306 
23307 		/* Implement bpf_get_func_ret inline. */
23308 		if (prog_type == BPF_PROG_TYPE_TRACING &&
23309 		    insn->imm == BPF_FUNC_get_func_ret) {
23310 			if (eatype == BPF_TRACE_FEXIT ||
23311 			    eatype == BPF_MODIFY_RETURN) {
23312 				/* Load nr_args from ctx - 8 */
23313 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
23314 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
23315 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
23316 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
23317 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
23318 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
23319 				cnt = 6;
23320 			} else {
23321 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
23322 				cnt = 1;
23323 			}
23324 
23325 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
23326 			if (!new_prog)
23327 				return -ENOMEM;
23328 
23329 			delta    += cnt - 1;
23330 			env->prog = prog = new_prog;
23331 			insn      = new_prog->insnsi + i + delta;
23332 			goto next_insn;
23333 		}
23334 
23335 		/* Implement get_func_arg_cnt inline. */
23336 		if (prog_type == BPF_PROG_TYPE_TRACING &&
23337 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
23338 			/* Load nr_args from ctx - 8 */
23339 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
23340 
23341 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
23342 			if (!new_prog)
23343 				return -ENOMEM;
23344 
23345 			env->prog = prog = new_prog;
23346 			insn      = new_prog->insnsi + i + delta;
23347 			goto next_insn;
23348 		}
23349 
23350 		/* Implement bpf_get_func_ip inline. */
23351 		if (prog_type == BPF_PROG_TYPE_TRACING &&
23352 		    insn->imm == BPF_FUNC_get_func_ip) {
23353 			/* Load IP address from ctx - 16 */
23354 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
23355 
23356 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
23357 			if (!new_prog)
23358 				return -ENOMEM;
23359 
23360 			env->prog = prog = new_prog;
23361 			insn      = new_prog->insnsi + i + delta;
23362 			goto next_insn;
23363 		}
23364 
23365 		/* Implement bpf_get_branch_snapshot inline. */
23366 		if (IS_ENABLED(CONFIG_PERF_EVENTS) &&
23367 		    prog->jit_requested && BITS_PER_LONG == 64 &&
23368 		    insn->imm == BPF_FUNC_get_branch_snapshot) {
23369 			/* We are dealing with the following func protos:
23370 			 * u64 bpf_get_branch_snapshot(void *buf, u32 size, u64 flags);
23371 			 * int perf_snapshot_branch_stack(struct perf_branch_entry *entries, u32 cnt);
23372 			 */
23373 			const u32 br_entry_size = sizeof(struct perf_branch_entry);
23374 
23375 			/* struct perf_branch_entry is part of UAPI and is
23376 			 * used as an array element, so extremely unlikely to
23377 			 * ever grow or shrink
23378 			 */
23379 			BUILD_BUG_ON(br_entry_size != 24);
23380 
23381 			/* if (unlikely(flags)) return -EINVAL */
23382 			insn_buf[0] = BPF_JMP_IMM(BPF_JNE, BPF_REG_3, 0, 7);
23383 
23384 			/* Transform size (bytes) into number of entries (cnt = size / 24).
23385 			 * But to avoid expensive division instruction, we implement
23386 			 * divide-by-3 through multiplication, followed by further
23387 			 * division by 8 through 3-bit right shift.
23388 			 * Refer to book "Hacker's Delight, 2nd ed." by Henry S. Warren, Jr.,
23389 			 * p. 227, chapter "Unsigned Division by 3" for details and proofs.
23390 			 *
23391 			 * N / 3 <=> M * N / 2^33, where M = (2^33 + 1) / 3 = 0xaaaaaaab.
23392 			 */
23393 			insn_buf[1] = BPF_MOV32_IMM(BPF_REG_0, 0xaaaaaaab);
23394 			insn_buf[2] = BPF_ALU64_REG(BPF_MUL, BPF_REG_2, BPF_REG_0);
23395 			insn_buf[3] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 36);
23396 
23397 			/* call perf_snapshot_branch_stack implementation */
23398 			insn_buf[4] = BPF_EMIT_CALL(static_call_query(perf_snapshot_branch_stack));
23399 			/* if (entry_cnt == 0) return -ENOENT */
23400 			insn_buf[5] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4);
23401 			/* return entry_cnt * sizeof(struct perf_branch_entry) */
23402 			insn_buf[6] = BPF_ALU32_IMM(BPF_MUL, BPF_REG_0, br_entry_size);
23403 			insn_buf[7] = BPF_JMP_A(3);
23404 			/* return -EINVAL; */
23405 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
23406 			insn_buf[9] = BPF_JMP_A(1);
23407 			/* return -ENOENT; */
23408 			insn_buf[10] = BPF_MOV64_IMM(BPF_REG_0, -ENOENT);
23409 			cnt = 11;
23410 
23411 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
23412 			if (!new_prog)
23413 				return -ENOMEM;
23414 
23415 			delta    += cnt - 1;
23416 			env->prog = prog = new_prog;
23417 			insn      = new_prog->insnsi + i + delta;
23418 			goto next_insn;
23419 		}
23420 
23421 		/* Implement bpf_kptr_xchg inline */
23422 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
23423 		    insn->imm == BPF_FUNC_kptr_xchg &&
23424 		    bpf_jit_supports_ptr_xchg()) {
23425 			insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_2);
23426 			insn_buf[1] = BPF_ATOMIC_OP(BPF_DW, BPF_XCHG, BPF_REG_1, BPF_REG_0, 0);
23427 			cnt = 2;
23428 
23429 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
23430 			if (!new_prog)
23431 				return -ENOMEM;
23432 
23433 			delta    += cnt - 1;
23434 			env->prog = prog = new_prog;
23435 			insn      = new_prog->insnsi + i + delta;
23436 			goto next_insn;
23437 		}
23438 patch_call_imm:
23439 		fn = env->ops->get_func_proto(insn->imm, env->prog);
23440 		/* all functions that have prototype and verifier allowed
23441 		 * programs to call them, must be real in-kernel functions
23442 		 */
23443 		if (!fn->func) {
23444 			verifier_bug(env,
23445 				     "not inlined functions %s#%d is missing func",
23446 				     func_id_name(insn->imm), insn->imm);
23447 			return -EFAULT;
23448 		}
23449 		insn->imm = fn->func - __bpf_call_base;
23450 next_insn:
23451 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
23452 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
23453 			subprogs[cur_subprog].stack_extra = stack_depth_extra;
23454 
23455 			stack_depth = subprogs[cur_subprog].stack_depth;
23456 			if (stack_depth > MAX_BPF_STACK && !prog->jit_requested) {
23457 				verbose(env, "stack size %d(extra %d) is too large\n",
23458 					stack_depth, stack_depth_extra);
23459 				return -EINVAL;
23460 			}
23461 			cur_subprog++;
23462 			stack_depth = subprogs[cur_subprog].stack_depth;
23463 			stack_depth_extra = 0;
23464 		}
23465 		i++;
23466 		insn++;
23467 	}
23468 
23469 	env->prog->aux->stack_depth = subprogs[0].stack_depth;
23470 	for (i = 0; i < env->subprog_cnt; i++) {
23471 		int delta = bpf_jit_supports_timed_may_goto() ? 2 : 1;
23472 		int subprog_start = subprogs[i].start;
23473 		int stack_slots = subprogs[i].stack_extra / 8;
23474 		int slots = delta, cnt = 0;
23475 
23476 		if (!stack_slots)
23477 			continue;
23478 		/* We need two slots in case timed may_goto is supported. */
23479 		if (stack_slots > slots) {
23480 			verifier_bug(env, "stack_slots supports may_goto only");
23481 			return -EFAULT;
23482 		}
23483 
23484 		stack_depth = subprogs[i].stack_depth;
23485 		if (bpf_jit_supports_timed_may_goto()) {
23486 			insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth,
23487 						     BPF_MAX_TIMED_LOOPS);
23488 			insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth + 8, 0);
23489 		} else {
23490 			/* Add ST insn to subprog prologue to init extra stack */
23491 			insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth,
23492 						     BPF_MAX_LOOPS);
23493 		}
23494 		/* Copy first actual insn to preserve it */
23495 		insn_buf[cnt++] = env->prog->insnsi[subprog_start];
23496 
23497 		new_prog = bpf_patch_insn_data(env, subprog_start, insn_buf, cnt);
23498 		if (!new_prog)
23499 			return -ENOMEM;
23500 		env->prog = prog = new_prog;
23501 		/*
23502 		 * If may_goto is a first insn of a prog there could be a jmp
23503 		 * insn that points to it, hence adjust all such jmps to point
23504 		 * to insn after BPF_ST that inits may_goto count.
23505 		 * Adjustment will succeed because bpf_patch_insn_data() didn't fail.
23506 		 */
23507 		WARN_ON(adjust_jmp_off(env->prog, subprog_start, delta));
23508 	}
23509 
23510 	/* Since poke tab is now finalized, publish aux to tracker. */
23511 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
23512 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
23513 		if (!map_ptr->ops->map_poke_track ||
23514 		    !map_ptr->ops->map_poke_untrack ||
23515 		    !map_ptr->ops->map_poke_run) {
23516 			verifier_bug(env, "poke tab is misconfigured");
23517 			return -EFAULT;
23518 		}
23519 
23520 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
23521 		if (ret < 0) {
23522 			verbose(env, "tracking tail call prog failed\n");
23523 			return ret;
23524 		}
23525 	}
23526 
23527 	ret = sort_kfunc_descs_by_imm_off(env);
23528 	if (ret)
23529 		return ret;
23530 
23531 	return 0;
23532 }
23533 
inline_bpf_loop(struct bpf_verifier_env * env,int position,s32 stack_base,u32 callback_subprogno,u32 * total_cnt)23534 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
23535 					int position,
23536 					s32 stack_base,
23537 					u32 callback_subprogno,
23538 					u32 *total_cnt)
23539 {
23540 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
23541 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
23542 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
23543 	int reg_loop_max = BPF_REG_6;
23544 	int reg_loop_cnt = BPF_REG_7;
23545 	int reg_loop_ctx = BPF_REG_8;
23546 
23547 	struct bpf_insn *insn_buf = env->insn_buf;
23548 	struct bpf_prog *new_prog;
23549 	u32 callback_start;
23550 	u32 call_insn_offset;
23551 	s32 callback_offset;
23552 	u32 cnt = 0;
23553 
23554 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
23555 	 * be careful to modify this code in sync.
23556 	 */
23557 
23558 	/* Return error and jump to the end of the patch if
23559 	 * expected number of iterations is too big.
23560 	 */
23561 	insn_buf[cnt++] = BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2);
23562 	insn_buf[cnt++] = BPF_MOV32_IMM(BPF_REG_0, -E2BIG);
23563 	insn_buf[cnt++] = BPF_JMP_IMM(BPF_JA, 0, 0, 16);
23564 	/* spill R6, R7, R8 to use these as loop vars */
23565 	insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset);
23566 	insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset);
23567 	insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset);
23568 	/* initialize loop vars */
23569 	insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_max, BPF_REG_1);
23570 	insn_buf[cnt++] = BPF_MOV32_IMM(reg_loop_cnt, 0);
23571 	insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3);
23572 	/* loop header,
23573 	 * if reg_loop_cnt >= reg_loop_max skip the loop body
23574 	 */
23575 	insn_buf[cnt++] = BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5);
23576 	/* callback call,
23577 	 * correct callback offset would be set after patching
23578 	 */
23579 	insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt);
23580 	insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx);
23581 	insn_buf[cnt++] = BPF_CALL_REL(0);
23582 	/* increment loop counter */
23583 	insn_buf[cnt++] = BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1);
23584 	/* jump to loop header if callback returned 0 */
23585 	insn_buf[cnt++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6);
23586 	/* return value of bpf_loop,
23587 	 * set R0 to the number of iterations
23588 	 */
23589 	insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt);
23590 	/* restore original values of R6, R7, R8 */
23591 	insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset);
23592 	insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset);
23593 	insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset);
23594 
23595 	*total_cnt = cnt;
23596 	new_prog = bpf_patch_insn_data(env, position, insn_buf, cnt);
23597 	if (!new_prog)
23598 		return new_prog;
23599 
23600 	/* callback start is known only after patching */
23601 	callback_start = env->subprog_info[callback_subprogno].start;
23602 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
23603 	call_insn_offset = position + 12;
23604 	callback_offset = callback_start - call_insn_offset - 1;
23605 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
23606 
23607 	return new_prog;
23608 }
23609 
is_bpf_loop_call(struct bpf_insn * insn)23610 static bool is_bpf_loop_call(struct bpf_insn *insn)
23611 {
23612 	return insn->code == (BPF_JMP | BPF_CALL) &&
23613 		insn->src_reg == 0 &&
23614 		insn->imm == BPF_FUNC_loop;
23615 }
23616 
23617 /* For all sub-programs in the program (including main) check
23618  * insn_aux_data to see if there are bpf_loop calls that require
23619  * inlining. If such calls are found the calls are replaced with a
23620  * sequence of instructions produced by `inline_bpf_loop` function and
23621  * subprog stack_depth is increased by the size of 3 registers.
23622  * This stack space is used to spill values of the R6, R7, R8.  These
23623  * registers are used to store the loop bound, counter and context
23624  * variables.
23625  */
optimize_bpf_loop(struct bpf_verifier_env * env)23626 static int optimize_bpf_loop(struct bpf_verifier_env *env)
23627 {
23628 	struct bpf_subprog_info *subprogs = env->subprog_info;
23629 	int i, cur_subprog = 0, cnt, delta = 0;
23630 	struct bpf_insn *insn = env->prog->insnsi;
23631 	int insn_cnt = env->prog->len;
23632 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
23633 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
23634 	u16 stack_depth_extra = 0;
23635 
23636 	for (i = 0; i < insn_cnt; i++, insn++) {
23637 		struct bpf_loop_inline_state *inline_state =
23638 			&env->insn_aux_data[i + delta].loop_inline_state;
23639 
23640 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
23641 			struct bpf_prog *new_prog;
23642 
23643 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
23644 			new_prog = inline_bpf_loop(env,
23645 						   i + delta,
23646 						   -(stack_depth + stack_depth_extra),
23647 						   inline_state->callback_subprogno,
23648 						   &cnt);
23649 			if (!new_prog)
23650 				return -ENOMEM;
23651 
23652 			delta     += cnt - 1;
23653 			env->prog  = new_prog;
23654 			insn       = new_prog->insnsi + i + delta;
23655 		}
23656 
23657 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
23658 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
23659 			cur_subprog++;
23660 			stack_depth = subprogs[cur_subprog].stack_depth;
23661 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
23662 			stack_depth_extra = 0;
23663 		}
23664 	}
23665 
23666 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
23667 
23668 	return 0;
23669 }
23670 
23671 /* Remove unnecessary spill/fill pairs, members of fastcall pattern,
23672  * adjust subprograms stack depth when possible.
23673  */
remove_fastcall_spills_fills(struct bpf_verifier_env * env)23674 static int remove_fastcall_spills_fills(struct bpf_verifier_env *env)
23675 {
23676 	struct bpf_subprog_info *subprog = env->subprog_info;
23677 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
23678 	struct bpf_insn *insn = env->prog->insnsi;
23679 	int insn_cnt = env->prog->len;
23680 	u32 spills_num;
23681 	bool modified = false;
23682 	int i, j;
23683 
23684 	for (i = 0; i < insn_cnt; i++, insn++) {
23685 		if (aux[i].fastcall_spills_num > 0) {
23686 			spills_num = aux[i].fastcall_spills_num;
23687 			/* NOPs would be removed by opt_remove_nops() */
23688 			for (j = 1; j <= spills_num; ++j) {
23689 				*(insn - j) = NOP;
23690 				*(insn + j) = NOP;
23691 			}
23692 			modified = true;
23693 		}
23694 		if ((subprog + 1)->start == i + 1) {
23695 			if (modified && !subprog->keep_fastcall_stack)
23696 				subprog->stack_depth = -subprog->fastcall_stack_off;
23697 			subprog++;
23698 			modified = false;
23699 		}
23700 	}
23701 
23702 	return 0;
23703 }
23704 
free_states(struct bpf_verifier_env * env)23705 static void free_states(struct bpf_verifier_env *env)
23706 {
23707 	struct bpf_verifier_state_list *sl;
23708 	struct list_head *head, *pos, *tmp;
23709 	struct bpf_scc_info *info;
23710 	int i, j;
23711 
23712 	free_verifier_state(env->cur_state, true);
23713 	env->cur_state = NULL;
23714 	while (!pop_stack(env, NULL, NULL, false));
23715 
23716 	list_for_each_safe(pos, tmp, &env->free_list) {
23717 		sl = container_of(pos, struct bpf_verifier_state_list, node);
23718 		free_verifier_state(&sl->state, false);
23719 		kfree(sl);
23720 	}
23721 	INIT_LIST_HEAD(&env->free_list);
23722 
23723 	for (i = 0; i < env->scc_cnt; ++i) {
23724 		info = env->scc_info[i];
23725 		if (!info)
23726 			continue;
23727 		for (j = 0; j < info->num_visits; j++)
23728 			free_backedges(&info->visits[j]);
23729 		kvfree(info);
23730 		env->scc_info[i] = NULL;
23731 	}
23732 
23733 	if (!env->explored_states)
23734 		return;
23735 
23736 	for (i = 0; i < state_htab_size(env); i++) {
23737 		head = &env->explored_states[i];
23738 
23739 		list_for_each_safe(pos, tmp, head) {
23740 			sl = container_of(pos, struct bpf_verifier_state_list, node);
23741 			free_verifier_state(&sl->state, false);
23742 			kfree(sl);
23743 		}
23744 		INIT_LIST_HEAD(&env->explored_states[i]);
23745 	}
23746 }
23747 
do_check_common(struct bpf_verifier_env * env,int subprog)23748 static int do_check_common(struct bpf_verifier_env *env, int subprog)
23749 {
23750 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
23751 	struct bpf_subprog_info *sub = subprog_info(env, subprog);
23752 	struct bpf_prog_aux *aux = env->prog->aux;
23753 	struct bpf_verifier_state *state;
23754 	struct bpf_reg_state *regs;
23755 	int ret, i;
23756 
23757 	env->prev_linfo = NULL;
23758 	env->pass_cnt++;
23759 
23760 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL_ACCOUNT);
23761 	if (!state)
23762 		return -ENOMEM;
23763 	state->curframe = 0;
23764 	state->speculative = false;
23765 	state->branches = 1;
23766 	state->in_sleepable = env->prog->sleepable;
23767 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL_ACCOUNT);
23768 	if (!state->frame[0]) {
23769 		kfree(state);
23770 		return -ENOMEM;
23771 	}
23772 	env->cur_state = state;
23773 	init_func_state(env, state->frame[0],
23774 			BPF_MAIN_FUNC /* callsite */,
23775 			0 /* frameno */,
23776 			subprog);
23777 	state->first_insn_idx = env->subprog_info[subprog].start;
23778 	state->last_insn_idx = -1;
23779 
23780 	regs = state->frame[state->curframe]->regs;
23781 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
23782 		const char *sub_name = subprog_name(env, subprog);
23783 		struct bpf_subprog_arg_info *arg;
23784 		struct bpf_reg_state *reg;
23785 
23786 		if (env->log.level & BPF_LOG_LEVEL)
23787 			verbose(env, "Validating %s() func#%d...\n", sub_name, subprog);
23788 		ret = btf_prepare_func_args(env, subprog);
23789 		if (ret)
23790 			goto out;
23791 
23792 		if (subprog_is_exc_cb(env, subprog)) {
23793 			state->frame[0]->in_exception_callback_fn = true;
23794 			/* We have already ensured that the callback returns an integer, just
23795 			 * like all global subprogs. We need to determine it only has a single
23796 			 * scalar argument.
23797 			 */
23798 			if (sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_ANYTHING) {
23799 				verbose(env, "exception cb only supports single integer argument\n");
23800 				ret = -EINVAL;
23801 				goto out;
23802 			}
23803 		}
23804 		for (i = BPF_REG_1; i <= sub->arg_cnt; i++) {
23805 			arg = &sub->args[i - BPF_REG_1];
23806 			reg = &regs[i];
23807 
23808 			if (arg->arg_type == ARG_PTR_TO_CTX) {
23809 				reg->type = PTR_TO_CTX;
23810 				mark_reg_known_zero(env, regs, i);
23811 			} else if (arg->arg_type == ARG_ANYTHING) {
23812 				reg->type = SCALAR_VALUE;
23813 				mark_reg_unknown(env, regs, i);
23814 			} else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) {
23815 				/* assume unspecial LOCAL dynptr type */
23816 				__mark_dynptr_reg(reg, BPF_DYNPTR_TYPE_LOCAL, true, ++env->id_gen);
23817 			} else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) {
23818 				reg->type = PTR_TO_MEM;
23819 				reg->type |= arg->arg_type &
23820 					     (PTR_MAYBE_NULL | PTR_UNTRUSTED | MEM_RDONLY);
23821 				mark_reg_known_zero(env, regs, i);
23822 				reg->mem_size = arg->mem_size;
23823 				if (arg->arg_type & PTR_MAYBE_NULL)
23824 					reg->id = ++env->id_gen;
23825 			} else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) {
23826 				reg->type = PTR_TO_BTF_ID;
23827 				if (arg->arg_type & PTR_MAYBE_NULL)
23828 					reg->type |= PTR_MAYBE_NULL;
23829 				if (arg->arg_type & PTR_UNTRUSTED)
23830 					reg->type |= PTR_UNTRUSTED;
23831 				if (arg->arg_type & PTR_TRUSTED)
23832 					reg->type |= PTR_TRUSTED;
23833 				mark_reg_known_zero(env, regs, i);
23834 				reg->btf = bpf_get_btf_vmlinux(); /* can't fail at this point */
23835 				reg->btf_id = arg->btf_id;
23836 				reg->id = ++env->id_gen;
23837 			} else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) {
23838 				/* caller can pass either PTR_TO_ARENA or SCALAR */
23839 				mark_reg_unknown(env, regs, i);
23840 			} else {
23841 				verifier_bug(env, "unhandled arg#%d type %d",
23842 					     i - BPF_REG_1, arg->arg_type);
23843 				ret = -EFAULT;
23844 				goto out;
23845 			}
23846 		}
23847 	} else {
23848 		/* if main BPF program has associated BTF info, validate that
23849 		 * it's matching expected signature, and otherwise mark BTF
23850 		 * info for main program as unreliable
23851 		 */
23852 		if (env->prog->aux->func_info_aux) {
23853 			ret = btf_prepare_func_args(env, 0);
23854 			if (ret || sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_PTR_TO_CTX)
23855 				env->prog->aux->func_info_aux[0].unreliable = true;
23856 		}
23857 
23858 		/* 1st arg to a function */
23859 		regs[BPF_REG_1].type = PTR_TO_CTX;
23860 		mark_reg_known_zero(env, regs, BPF_REG_1);
23861 	}
23862 
23863 	/* Acquire references for struct_ops program arguments tagged with "__ref" */
23864 	if (!subprog && env->prog->type == BPF_PROG_TYPE_STRUCT_OPS) {
23865 		for (i = 0; i < aux->ctx_arg_info_size; i++)
23866 			aux->ctx_arg_info[i].ref_obj_id = aux->ctx_arg_info[i].refcounted ?
23867 							  acquire_reference(env, 0) : 0;
23868 	}
23869 
23870 	ret = do_check(env);
23871 out:
23872 	if (!ret && pop_log)
23873 		bpf_vlog_reset(&env->log, 0);
23874 	free_states(env);
23875 	return ret;
23876 }
23877 
23878 /* Lazily verify all global functions based on their BTF, if they are called
23879  * from main BPF program or any of subprograms transitively.
23880  * BPF global subprogs called from dead code are not validated.
23881  * All callable global functions must pass verification.
23882  * Otherwise the whole program is rejected.
23883  * Consider:
23884  * int bar(int);
23885  * int foo(int f)
23886  * {
23887  *    return bar(f);
23888  * }
23889  * int bar(int b)
23890  * {
23891  *    ...
23892  * }
23893  * foo() will be verified first for R1=any_scalar_value. During verification it
23894  * will be assumed that bar() already verified successfully and call to bar()
23895  * from foo() will be checked for type match only. Later bar() will be verified
23896  * independently to check that it's safe for R1=any_scalar_value.
23897  */
do_check_subprogs(struct bpf_verifier_env * env)23898 static int do_check_subprogs(struct bpf_verifier_env *env)
23899 {
23900 	struct bpf_prog_aux *aux = env->prog->aux;
23901 	struct bpf_func_info_aux *sub_aux;
23902 	int i, ret, new_cnt;
23903 
23904 	if (!aux->func_info)
23905 		return 0;
23906 
23907 	/* exception callback is presumed to be always called */
23908 	if (env->exception_callback_subprog)
23909 		subprog_aux(env, env->exception_callback_subprog)->called = true;
23910 
23911 again:
23912 	new_cnt = 0;
23913 	for (i = 1; i < env->subprog_cnt; i++) {
23914 		if (!subprog_is_global(env, i))
23915 			continue;
23916 
23917 		sub_aux = subprog_aux(env, i);
23918 		if (!sub_aux->called || sub_aux->verified)
23919 			continue;
23920 
23921 		env->insn_idx = env->subprog_info[i].start;
23922 		WARN_ON_ONCE(env->insn_idx == 0);
23923 		ret = do_check_common(env, i);
23924 		if (ret) {
23925 			return ret;
23926 		} else if (env->log.level & BPF_LOG_LEVEL) {
23927 			verbose(env, "Func#%d ('%s') is safe for any args that match its prototype\n",
23928 				i, subprog_name(env, i));
23929 		}
23930 
23931 		/* We verified new global subprog, it might have called some
23932 		 * more global subprogs that we haven't verified yet, so we
23933 		 * need to do another pass over subprogs to verify those.
23934 		 */
23935 		sub_aux->verified = true;
23936 		new_cnt++;
23937 	}
23938 
23939 	/* We can't loop forever as we verify at least one global subprog on
23940 	 * each pass.
23941 	 */
23942 	if (new_cnt)
23943 		goto again;
23944 
23945 	return 0;
23946 }
23947 
do_check_main(struct bpf_verifier_env * env)23948 static int do_check_main(struct bpf_verifier_env *env)
23949 {
23950 	int ret;
23951 
23952 	env->insn_idx = 0;
23953 	ret = do_check_common(env, 0);
23954 	if (!ret)
23955 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
23956 	return ret;
23957 }
23958 
23959 
print_verification_stats(struct bpf_verifier_env * env)23960 static void print_verification_stats(struct bpf_verifier_env *env)
23961 {
23962 	int i;
23963 
23964 	if (env->log.level & BPF_LOG_STATS) {
23965 		verbose(env, "verification time %lld usec\n",
23966 			div_u64(env->verification_time, 1000));
23967 		verbose(env, "stack depth ");
23968 		for (i = 0; i < env->subprog_cnt; i++) {
23969 			u32 depth = env->subprog_info[i].stack_depth;
23970 
23971 			verbose(env, "%d", depth);
23972 			if (i + 1 < env->subprog_cnt)
23973 				verbose(env, "+");
23974 		}
23975 		verbose(env, "\n");
23976 	}
23977 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
23978 		"total_states %d peak_states %d mark_read %d\n",
23979 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
23980 		env->max_states_per_insn, env->total_states,
23981 		env->peak_states, env->longest_mark_read_walk);
23982 }
23983 
bpf_prog_ctx_arg_info_init(struct bpf_prog * prog,const struct bpf_ctx_arg_aux * info,u32 cnt)23984 int bpf_prog_ctx_arg_info_init(struct bpf_prog *prog,
23985 			       const struct bpf_ctx_arg_aux *info, u32 cnt)
23986 {
23987 	prog->aux->ctx_arg_info = kmemdup_array(info, cnt, sizeof(*info), GFP_KERNEL_ACCOUNT);
23988 	prog->aux->ctx_arg_info_size = cnt;
23989 
23990 	return prog->aux->ctx_arg_info ? 0 : -ENOMEM;
23991 }
23992 
check_struct_ops_btf_id(struct bpf_verifier_env * env)23993 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
23994 {
23995 	const struct btf_type *t, *func_proto;
23996 	const struct bpf_struct_ops_desc *st_ops_desc;
23997 	const struct bpf_struct_ops *st_ops;
23998 	const struct btf_member *member;
23999 	struct bpf_prog *prog = env->prog;
24000 	bool has_refcounted_arg = false;
24001 	u32 btf_id, member_idx, member_off;
24002 	struct btf *btf;
24003 	const char *mname;
24004 	int i, err;
24005 
24006 	if (!prog->gpl_compatible) {
24007 		verbose(env, "struct ops programs must have a GPL compatible license\n");
24008 		return -EINVAL;
24009 	}
24010 
24011 	if (!prog->aux->attach_btf_id)
24012 		return -ENOTSUPP;
24013 
24014 	btf = prog->aux->attach_btf;
24015 	if (btf_is_module(btf)) {
24016 		/* Make sure st_ops is valid through the lifetime of env */
24017 		env->attach_btf_mod = btf_try_get_module(btf);
24018 		if (!env->attach_btf_mod) {
24019 			verbose(env, "struct_ops module %s is not found\n",
24020 				btf_get_name(btf));
24021 			return -ENOTSUPP;
24022 		}
24023 	}
24024 
24025 	btf_id = prog->aux->attach_btf_id;
24026 	st_ops_desc = bpf_struct_ops_find(btf, btf_id);
24027 	if (!st_ops_desc) {
24028 		verbose(env, "attach_btf_id %u is not a supported struct\n",
24029 			btf_id);
24030 		return -ENOTSUPP;
24031 	}
24032 	st_ops = st_ops_desc->st_ops;
24033 
24034 	t = st_ops_desc->type;
24035 	member_idx = prog->expected_attach_type;
24036 	if (member_idx >= btf_type_vlen(t)) {
24037 		verbose(env, "attach to invalid member idx %u of struct %s\n",
24038 			member_idx, st_ops->name);
24039 		return -EINVAL;
24040 	}
24041 
24042 	member = &btf_type_member(t)[member_idx];
24043 	mname = btf_name_by_offset(btf, member->name_off);
24044 	func_proto = btf_type_resolve_func_ptr(btf, member->type,
24045 					       NULL);
24046 	if (!func_proto) {
24047 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
24048 			mname, member_idx, st_ops->name);
24049 		return -EINVAL;
24050 	}
24051 
24052 	member_off = __btf_member_bit_offset(t, member) / 8;
24053 	err = bpf_struct_ops_supported(st_ops, member_off);
24054 	if (err) {
24055 		verbose(env, "attach to unsupported member %s of struct %s\n",
24056 			mname, st_ops->name);
24057 		return err;
24058 	}
24059 
24060 	if (st_ops->check_member) {
24061 		err = st_ops->check_member(t, member, prog);
24062 
24063 		if (err) {
24064 			verbose(env, "attach to unsupported member %s of struct %s\n",
24065 				mname, st_ops->name);
24066 			return err;
24067 		}
24068 	}
24069 
24070 	if (prog->aux->priv_stack_requested && !bpf_jit_supports_private_stack()) {
24071 		verbose(env, "Private stack not supported by jit\n");
24072 		return -EACCES;
24073 	}
24074 
24075 	for (i = 0; i < st_ops_desc->arg_info[member_idx].cnt; i++) {
24076 		if (st_ops_desc->arg_info[member_idx].info->refcounted) {
24077 			has_refcounted_arg = true;
24078 			break;
24079 		}
24080 	}
24081 
24082 	/* Tail call is not allowed for programs with refcounted arguments since we
24083 	 * cannot guarantee that valid refcounted kptrs will be passed to the callee.
24084 	 */
24085 	for (i = 0; i < env->subprog_cnt; i++) {
24086 		if (has_refcounted_arg && env->subprog_info[i].has_tail_call) {
24087 			verbose(env, "program with __ref argument cannot tail call\n");
24088 			return -EINVAL;
24089 		}
24090 	}
24091 
24092 	prog->aux->st_ops = st_ops;
24093 	prog->aux->attach_st_ops_member_off = member_off;
24094 
24095 	prog->aux->attach_func_proto = func_proto;
24096 	prog->aux->attach_func_name = mname;
24097 	env->ops = st_ops->verifier_ops;
24098 
24099 	return bpf_prog_ctx_arg_info_init(prog, st_ops_desc->arg_info[member_idx].info,
24100 					  st_ops_desc->arg_info[member_idx].cnt);
24101 }
24102 #define SECURITY_PREFIX "security_"
24103 
check_attach_modify_return(unsigned long addr,const char * func_name)24104 static int check_attach_modify_return(unsigned long addr, const char *func_name)
24105 {
24106 	if (within_error_injection_list(addr) ||
24107 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
24108 		return 0;
24109 
24110 	return -EINVAL;
24111 }
24112 
24113 /* list of non-sleepable functions that are otherwise on
24114  * ALLOW_ERROR_INJECTION list
24115  */
24116 BTF_SET_START(btf_non_sleepable_error_inject)
24117 /* Three functions below can be called from sleepable and non-sleepable context.
24118  * Assume non-sleepable from bpf safety point of view.
24119  */
BTF_ID(func,__filemap_add_folio)24120 BTF_ID(func, __filemap_add_folio)
24121 #ifdef CONFIG_FAIL_PAGE_ALLOC
24122 BTF_ID(func, should_fail_alloc_page)
24123 #endif
24124 #ifdef CONFIG_FAILSLAB
24125 BTF_ID(func, should_failslab)
24126 #endif
24127 BTF_SET_END(btf_non_sleepable_error_inject)
24128 
24129 static int check_non_sleepable_error_inject(u32 btf_id)
24130 {
24131 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
24132 }
24133 
bpf_check_attach_target(struct bpf_verifier_log * log,const struct bpf_prog * prog,const struct bpf_prog * tgt_prog,u32 btf_id,struct bpf_attach_target_info * tgt_info)24134 int bpf_check_attach_target(struct bpf_verifier_log *log,
24135 			    const struct bpf_prog *prog,
24136 			    const struct bpf_prog *tgt_prog,
24137 			    u32 btf_id,
24138 			    struct bpf_attach_target_info *tgt_info)
24139 {
24140 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
24141 	bool prog_tracing = prog->type == BPF_PROG_TYPE_TRACING;
24142 	char trace_symbol[KSYM_SYMBOL_LEN];
24143 	const char prefix[] = "btf_trace_";
24144 	struct bpf_raw_event_map *btp;
24145 	int ret = 0, subprog = -1, i;
24146 	const struct btf_type *t;
24147 	bool conservative = true;
24148 	const char *tname, *fname;
24149 	struct btf *btf;
24150 	long addr = 0;
24151 	struct module *mod = NULL;
24152 
24153 	if (!btf_id) {
24154 		bpf_log(log, "Tracing programs must provide btf_id\n");
24155 		return -EINVAL;
24156 	}
24157 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
24158 	if (!btf) {
24159 		bpf_log(log,
24160 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
24161 		return -EINVAL;
24162 	}
24163 	t = btf_type_by_id(btf, btf_id);
24164 	if (!t) {
24165 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
24166 		return -EINVAL;
24167 	}
24168 	tname = btf_name_by_offset(btf, t->name_off);
24169 	if (!tname) {
24170 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
24171 		return -EINVAL;
24172 	}
24173 	if (tgt_prog) {
24174 		struct bpf_prog_aux *aux = tgt_prog->aux;
24175 		bool tgt_changes_pkt_data;
24176 		bool tgt_might_sleep;
24177 
24178 		if (bpf_prog_is_dev_bound(prog->aux) &&
24179 		    !bpf_prog_dev_bound_match(prog, tgt_prog)) {
24180 			bpf_log(log, "Target program bound device mismatch");
24181 			return -EINVAL;
24182 		}
24183 
24184 		for (i = 0; i < aux->func_info_cnt; i++)
24185 			if (aux->func_info[i].type_id == btf_id) {
24186 				subprog = i;
24187 				break;
24188 			}
24189 		if (subprog == -1) {
24190 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
24191 			return -EINVAL;
24192 		}
24193 		if (aux->func && aux->func[subprog]->aux->exception_cb) {
24194 			bpf_log(log,
24195 				"%s programs cannot attach to exception callback\n",
24196 				prog_extension ? "Extension" : "FENTRY/FEXIT");
24197 			return -EINVAL;
24198 		}
24199 		conservative = aux->func_info_aux[subprog].unreliable;
24200 		if (prog_extension) {
24201 			if (conservative) {
24202 				bpf_log(log,
24203 					"Cannot replace static functions\n");
24204 				return -EINVAL;
24205 			}
24206 			if (!prog->jit_requested) {
24207 				bpf_log(log,
24208 					"Extension programs should be JITed\n");
24209 				return -EINVAL;
24210 			}
24211 			tgt_changes_pkt_data = aux->func
24212 					       ? aux->func[subprog]->aux->changes_pkt_data
24213 					       : aux->changes_pkt_data;
24214 			if (prog->aux->changes_pkt_data && !tgt_changes_pkt_data) {
24215 				bpf_log(log,
24216 					"Extension program changes packet data, while original does not\n");
24217 				return -EINVAL;
24218 			}
24219 
24220 			tgt_might_sleep = aux->func
24221 					  ? aux->func[subprog]->aux->might_sleep
24222 					  : aux->might_sleep;
24223 			if (prog->aux->might_sleep && !tgt_might_sleep) {
24224 				bpf_log(log,
24225 					"Extension program may sleep, while original does not\n");
24226 				return -EINVAL;
24227 			}
24228 		}
24229 		if (!tgt_prog->jited) {
24230 			bpf_log(log, "Can attach to only JITed progs\n");
24231 			return -EINVAL;
24232 		}
24233 		if (prog_tracing) {
24234 			if (aux->attach_tracing_prog) {
24235 				/*
24236 				 * Target program is an fentry/fexit which is already attached
24237 				 * to another tracing program. More levels of nesting
24238 				 * attachment are not allowed.
24239 				 */
24240 				bpf_log(log, "Cannot nest tracing program attach more than once\n");
24241 				return -EINVAL;
24242 			}
24243 		} else if (tgt_prog->type == prog->type) {
24244 			/*
24245 			 * To avoid potential call chain cycles, prevent attaching of a
24246 			 * program extension to another extension. It's ok to attach
24247 			 * fentry/fexit to extension program.
24248 			 */
24249 			bpf_log(log, "Cannot recursively attach\n");
24250 			return -EINVAL;
24251 		}
24252 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
24253 		    prog_extension &&
24254 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
24255 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
24256 			/* Program extensions can extend all program types
24257 			 * except fentry/fexit. The reason is the following.
24258 			 * The fentry/fexit programs are used for performance
24259 			 * analysis, stats and can be attached to any program
24260 			 * type. When extension program is replacing XDP function
24261 			 * it is necessary to allow performance analysis of all
24262 			 * functions. Both original XDP program and its program
24263 			 * extension. Hence attaching fentry/fexit to
24264 			 * BPF_PROG_TYPE_EXT is allowed. If extending of
24265 			 * fentry/fexit was allowed it would be possible to create
24266 			 * long call chain fentry->extension->fentry->extension
24267 			 * beyond reasonable stack size. Hence extending fentry
24268 			 * is not allowed.
24269 			 */
24270 			bpf_log(log, "Cannot extend fentry/fexit\n");
24271 			return -EINVAL;
24272 		}
24273 	} else {
24274 		if (prog_extension) {
24275 			bpf_log(log, "Cannot replace kernel functions\n");
24276 			return -EINVAL;
24277 		}
24278 	}
24279 
24280 	switch (prog->expected_attach_type) {
24281 	case BPF_TRACE_RAW_TP:
24282 		if (tgt_prog) {
24283 			bpf_log(log,
24284 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
24285 			return -EINVAL;
24286 		}
24287 		if (!btf_type_is_typedef(t)) {
24288 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
24289 				btf_id);
24290 			return -EINVAL;
24291 		}
24292 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
24293 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
24294 				btf_id, tname);
24295 			return -EINVAL;
24296 		}
24297 		tname += sizeof(prefix) - 1;
24298 
24299 		/* The func_proto of "btf_trace_##tname" is generated from typedef without argument
24300 		 * names. Thus using bpf_raw_event_map to get argument names.
24301 		 */
24302 		btp = bpf_get_raw_tracepoint(tname);
24303 		if (!btp)
24304 			return -EINVAL;
24305 		fname = kallsyms_lookup((unsigned long)btp->bpf_func, NULL, NULL, NULL,
24306 					trace_symbol);
24307 		bpf_put_raw_tracepoint(btp);
24308 
24309 		if (fname)
24310 			ret = btf_find_by_name_kind(btf, fname, BTF_KIND_FUNC);
24311 
24312 		if (!fname || ret < 0) {
24313 			bpf_log(log, "Cannot find btf of tracepoint template, fall back to %s%s.\n",
24314 				prefix, tname);
24315 			t = btf_type_by_id(btf, t->type);
24316 			if (!btf_type_is_ptr(t))
24317 				/* should never happen in valid vmlinux build */
24318 				return -EINVAL;
24319 		} else {
24320 			t = btf_type_by_id(btf, ret);
24321 			if (!btf_type_is_func(t))
24322 				/* should never happen in valid vmlinux build */
24323 				return -EINVAL;
24324 		}
24325 
24326 		t = btf_type_by_id(btf, t->type);
24327 		if (!btf_type_is_func_proto(t))
24328 			/* should never happen in valid vmlinux build */
24329 			return -EINVAL;
24330 
24331 		break;
24332 	case BPF_TRACE_ITER:
24333 		if (!btf_type_is_func(t)) {
24334 			bpf_log(log, "attach_btf_id %u is not a function\n",
24335 				btf_id);
24336 			return -EINVAL;
24337 		}
24338 		t = btf_type_by_id(btf, t->type);
24339 		if (!btf_type_is_func_proto(t))
24340 			return -EINVAL;
24341 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
24342 		if (ret)
24343 			return ret;
24344 		break;
24345 	default:
24346 		if (!prog_extension)
24347 			return -EINVAL;
24348 		fallthrough;
24349 	case BPF_MODIFY_RETURN:
24350 	case BPF_LSM_MAC:
24351 	case BPF_LSM_CGROUP:
24352 	case BPF_TRACE_FENTRY:
24353 	case BPF_TRACE_FEXIT:
24354 		if (!btf_type_is_func(t)) {
24355 			bpf_log(log, "attach_btf_id %u is not a function\n",
24356 				btf_id);
24357 			return -EINVAL;
24358 		}
24359 		if (prog_extension &&
24360 		    btf_check_type_match(log, prog, btf, t))
24361 			return -EINVAL;
24362 		t = btf_type_by_id(btf, t->type);
24363 		if (!btf_type_is_func_proto(t))
24364 			return -EINVAL;
24365 
24366 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
24367 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
24368 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
24369 			return -EINVAL;
24370 
24371 		if (tgt_prog && conservative)
24372 			t = NULL;
24373 
24374 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
24375 		if (ret < 0)
24376 			return ret;
24377 
24378 		if (tgt_prog) {
24379 			if (subprog == 0)
24380 				addr = (long) tgt_prog->bpf_func;
24381 			else
24382 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
24383 		} else {
24384 			if (btf_is_module(btf)) {
24385 				mod = btf_try_get_module(btf);
24386 				if (mod)
24387 					addr = find_kallsyms_symbol_value(mod, tname);
24388 				else
24389 					addr = 0;
24390 			} else {
24391 				addr = kallsyms_lookup_name(tname);
24392 			}
24393 			if (!addr) {
24394 				module_put(mod);
24395 				bpf_log(log,
24396 					"The address of function %s cannot be found\n",
24397 					tname);
24398 				return -ENOENT;
24399 			}
24400 		}
24401 
24402 		if (prog->sleepable) {
24403 			ret = -EINVAL;
24404 			switch (prog->type) {
24405 			case BPF_PROG_TYPE_TRACING:
24406 
24407 				/* fentry/fexit/fmod_ret progs can be sleepable if they are
24408 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
24409 				 */
24410 				if (!check_non_sleepable_error_inject(btf_id) &&
24411 				    within_error_injection_list(addr))
24412 					ret = 0;
24413 				/* fentry/fexit/fmod_ret progs can also be sleepable if they are
24414 				 * in the fmodret id set with the KF_SLEEPABLE flag.
24415 				 */
24416 				else {
24417 					u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
24418 										prog);
24419 
24420 					if (flags && (*flags & KF_SLEEPABLE))
24421 						ret = 0;
24422 				}
24423 				break;
24424 			case BPF_PROG_TYPE_LSM:
24425 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
24426 				 * Only some of them are sleepable.
24427 				 */
24428 				if (bpf_lsm_is_sleepable_hook(btf_id))
24429 					ret = 0;
24430 				break;
24431 			default:
24432 				break;
24433 			}
24434 			if (ret) {
24435 				module_put(mod);
24436 				bpf_log(log, "%s is not sleepable\n", tname);
24437 				return ret;
24438 			}
24439 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
24440 			if (tgt_prog) {
24441 				module_put(mod);
24442 				bpf_log(log, "can't modify return codes of BPF programs\n");
24443 				return -EINVAL;
24444 			}
24445 			ret = -EINVAL;
24446 			if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
24447 			    !check_attach_modify_return(addr, tname))
24448 				ret = 0;
24449 			if (ret) {
24450 				module_put(mod);
24451 				bpf_log(log, "%s() is not modifiable\n", tname);
24452 				return ret;
24453 			}
24454 		}
24455 
24456 		break;
24457 	}
24458 	tgt_info->tgt_addr = addr;
24459 	tgt_info->tgt_name = tname;
24460 	tgt_info->tgt_type = t;
24461 	tgt_info->tgt_mod = mod;
24462 	return 0;
24463 }
24464 
BTF_SET_START(btf_id_deny)24465 BTF_SET_START(btf_id_deny)
24466 BTF_ID_UNUSED
24467 #ifdef CONFIG_SMP
24468 BTF_ID(func, ___migrate_enable)
24469 BTF_ID(func, migrate_disable)
24470 BTF_ID(func, migrate_enable)
24471 #endif
24472 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
24473 BTF_ID(func, rcu_read_unlock_strict)
24474 #endif
24475 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
24476 BTF_ID(func, preempt_count_add)
24477 BTF_ID(func, preempt_count_sub)
24478 #endif
24479 #ifdef CONFIG_PREEMPT_RCU
24480 BTF_ID(func, __rcu_read_lock)
24481 BTF_ID(func, __rcu_read_unlock)
24482 #endif
24483 BTF_SET_END(btf_id_deny)
24484 
24485 /* fexit and fmod_ret can't be used to attach to __noreturn functions.
24486  * Currently, we must manually list all __noreturn functions here. Once a more
24487  * robust solution is implemented, this workaround can be removed.
24488  */
24489 BTF_SET_START(noreturn_deny)
24490 #ifdef CONFIG_IA32_EMULATION
24491 BTF_ID(func, __ia32_sys_exit)
24492 BTF_ID(func, __ia32_sys_exit_group)
24493 #endif
24494 #ifdef CONFIG_KUNIT
24495 BTF_ID(func, __kunit_abort)
24496 BTF_ID(func, kunit_try_catch_throw)
24497 #endif
24498 #ifdef CONFIG_MODULES
24499 BTF_ID(func, __module_put_and_kthread_exit)
24500 #endif
24501 #ifdef CONFIG_X86_64
24502 BTF_ID(func, __x64_sys_exit)
24503 BTF_ID(func, __x64_sys_exit_group)
24504 #endif
24505 BTF_ID(func, do_exit)
24506 BTF_ID(func, do_group_exit)
24507 BTF_ID(func, kthread_complete_and_exit)
24508 BTF_ID(func, kthread_exit)
24509 BTF_ID(func, make_task_dead)
24510 BTF_SET_END(noreturn_deny)
24511 
24512 static bool can_be_sleepable(struct bpf_prog *prog)
24513 {
24514 	if (prog->type == BPF_PROG_TYPE_TRACING) {
24515 		switch (prog->expected_attach_type) {
24516 		case BPF_TRACE_FENTRY:
24517 		case BPF_TRACE_FEXIT:
24518 		case BPF_MODIFY_RETURN:
24519 		case BPF_TRACE_ITER:
24520 			return true;
24521 		default:
24522 			return false;
24523 		}
24524 	}
24525 	return prog->type == BPF_PROG_TYPE_LSM ||
24526 	       prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
24527 	       prog->type == BPF_PROG_TYPE_STRUCT_OPS;
24528 }
24529 
check_attach_btf_id(struct bpf_verifier_env * env)24530 static int check_attach_btf_id(struct bpf_verifier_env *env)
24531 {
24532 	struct bpf_prog *prog = env->prog;
24533 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
24534 	struct bpf_attach_target_info tgt_info = {};
24535 	u32 btf_id = prog->aux->attach_btf_id;
24536 	struct bpf_trampoline *tr;
24537 	int ret;
24538 	u64 key;
24539 
24540 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
24541 		if (prog->sleepable)
24542 			/* attach_btf_id checked to be zero already */
24543 			return 0;
24544 		verbose(env, "Syscall programs can only be sleepable\n");
24545 		return -EINVAL;
24546 	}
24547 
24548 	if (prog->sleepable && !can_be_sleepable(prog)) {
24549 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
24550 		return -EINVAL;
24551 	}
24552 
24553 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
24554 		return check_struct_ops_btf_id(env);
24555 
24556 	if (prog->type != BPF_PROG_TYPE_TRACING &&
24557 	    prog->type != BPF_PROG_TYPE_LSM &&
24558 	    prog->type != BPF_PROG_TYPE_EXT)
24559 		return 0;
24560 
24561 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
24562 	if (ret)
24563 		return ret;
24564 
24565 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
24566 		/* to make freplace equivalent to their targets, they need to
24567 		 * inherit env->ops and expected_attach_type for the rest of the
24568 		 * verification
24569 		 */
24570 		env->ops = bpf_verifier_ops[tgt_prog->type];
24571 		prog->expected_attach_type = tgt_prog->expected_attach_type;
24572 	}
24573 
24574 	/* store info about the attachment target that will be used later */
24575 	prog->aux->attach_func_proto = tgt_info.tgt_type;
24576 	prog->aux->attach_func_name = tgt_info.tgt_name;
24577 	prog->aux->mod = tgt_info.tgt_mod;
24578 
24579 	if (tgt_prog) {
24580 		prog->aux->saved_dst_prog_type = tgt_prog->type;
24581 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
24582 	}
24583 
24584 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
24585 		prog->aux->attach_btf_trace = true;
24586 		return 0;
24587 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
24588 		return bpf_iter_prog_supported(prog);
24589 	}
24590 
24591 	if (prog->type == BPF_PROG_TYPE_LSM) {
24592 		ret = bpf_lsm_verify_prog(&env->log, prog);
24593 		if (ret < 0)
24594 			return ret;
24595 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
24596 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
24597 		verbose(env, "Attaching tracing programs to function '%s' is rejected.\n",
24598 			tgt_info.tgt_name);
24599 		return -EINVAL;
24600 	} else if ((prog->expected_attach_type == BPF_TRACE_FEXIT ||
24601 		   prog->expected_attach_type == BPF_MODIFY_RETURN) &&
24602 		   btf_id_set_contains(&noreturn_deny, btf_id)) {
24603 		verbose(env, "Attaching fexit/fmod_ret to __noreturn function '%s' is rejected.\n",
24604 			tgt_info.tgt_name);
24605 		return -EINVAL;
24606 	}
24607 
24608 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
24609 	tr = bpf_trampoline_get(key, &tgt_info);
24610 	if (!tr)
24611 		return -ENOMEM;
24612 
24613 	if (tgt_prog && tgt_prog->aux->tail_call_reachable)
24614 		tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX;
24615 
24616 	prog->aux->dst_trampoline = tr;
24617 	return 0;
24618 }
24619 
bpf_get_btf_vmlinux(void)24620 struct btf *bpf_get_btf_vmlinux(void)
24621 {
24622 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
24623 		mutex_lock(&bpf_verifier_lock);
24624 		if (!btf_vmlinux)
24625 			btf_vmlinux = btf_parse_vmlinux();
24626 		mutex_unlock(&bpf_verifier_lock);
24627 	}
24628 	return btf_vmlinux;
24629 }
24630 
24631 /*
24632  * The add_fd_from_fd_array() is executed only if fd_array_cnt is non-zero. In
24633  * this case expect that every file descriptor in the array is either a map or
24634  * a BTF. Everything else is considered to be trash.
24635  */
add_fd_from_fd_array(struct bpf_verifier_env * env,int fd)24636 static int add_fd_from_fd_array(struct bpf_verifier_env *env, int fd)
24637 {
24638 	struct bpf_map *map;
24639 	struct btf *btf;
24640 	CLASS(fd, f)(fd);
24641 	int err;
24642 
24643 	map = __bpf_map_get(f);
24644 	if (!IS_ERR(map)) {
24645 		err = __add_used_map(env, map);
24646 		if (err < 0)
24647 			return err;
24648 		return 0;
24649 	}
24650 
24651 	btf = __btf_get_by_fd(f);
24652 	if (!IS_ERR(btf)) {
24653 		err = __add_used_btf(env, btf);
24654 		if (err < 0)
24655 			return err;
24656 		return 0;
24657 	}
24658 
24659 	verbose(env, "fd %d is not pointing to valid bpf_map or btf\n", fd);
24660 	return PTR_ERR(map);
24661 }
24662 
process_fd_array(struct bpf_verifier_env * env,union bpf_attr * attr,bpfptr_t uattr)24663 static int process_fd_array(struct bpf_verifier_env *env, union bpf_attr *attr, bpfptr_t uattr)
24664 {
24665 	size_t size = sizeof(int);
24666 	int ret;
24667 	int fd;
24668 	u32 i;
24669 
24670 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
24671 
24672 	/*
24673 	 * The only difference between old (no fd_array_cnt is given) and new
24674 	 * APIs is that in the latter case the fd_array is expected to be
24675 	 * continuous and is scanned for map fds right away
24676 	 */
24677 	if (!attr->fd_array_cnt)
24678 		return 0;
24679 
24680 	/* Check for integer overflow */
24681 	if (attr->fd_array_cnt >= (U32_MAX / size)) {
24682 		verbose(env, "fd_array_cnt is too big (%u)\n", attr->fd_array_cnt);
24683 		return -EINVAL;
24684 	}
24685 
24686 	for (i = 0; i < attr->fd_array_cnt; i++) {
24687 		if (copy_from_bpfptr_offset(&fd, env->fd_array, i * size, size))
24688 			return -EFAULT;
24689 
24690 		ret = add_fd_from_fd_array(env, fd);
24691 		if (ret)
24692 			return ret;
24693 	}
24694 
24695 	return 0;
24696 }
24697 
24698 /* Each field is a register bitmask */
24699 struct insn_live_regs {
24700 	u16 use;	/* registers read by instruction */
24701 	u16 def;	/* registers written by instruction */
24702 	u16 in;		/* registers that may be alive before instruction */
24703 	u16 out;	/* registers that may be alive after instruction */
24704 };
24705 
24706 /* Bitmask with 1s for all caller saved registers */
24707 #define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1)
24708 
24709 /* Compute info->{use,def} fields for the instruction */
compute_insn_live_regs(struct bpf_verifier_env * env,struct bpf_insn * insn,struct insn_live_regs * info)24710 static void compute_insn_live_regs(struct bpf_verifier_env *env,
24711 				   struct bpf_insn *insn,
24712 				   struct insn_live_regs *info)
24713 {
24714 	struct call_summary cs;
24715 	u8 class = BPF_CLASS(insn->code);
24716 	u8 code = BPF_OP(insn->code);
24717 	u8 mode = BPF_MODE(insn->code);
24718 	u16 src = BIT(insn->src_reg);
24719 	u16 dst = BIT(insn->dst_reg);
24720 	u16 r0  = BIT(0);
24721 	u16 def = 0;
24722 	u16 use = 0xffff;
24723 
24724 	switch (class) {
24725 	case BPF_LD:
24726 		switch (mode) {
24727 		case BPF_IMM:
24728 			if (BPF_SIZE(insn->code) == BPF_DW) {
24729 				def = dst;
24730 				use = 0;
24731 			}
24732 			break;
24733 		case BPF_LD | BPF_ABS:
24734 		case BPF_LD | BPF_IND:
24735 			/* stick with defaults */
24736 			break;
24737 		}
24738 		break;
24739 	case BPF_LDX:
24740 		switch (mode) {
24741 		case BPF_MEM:
24742 		case BPF_MEMSX:
24743 			def = dst;
24744 			use = src;
24745 			break;
24746 		}
24747 		break;
24748 	case BPF_ST:
24749 		switch (mode) {
24750 		case BPF_MEM:
24751 			def = 0;
24752 			use = dst;
24753 			break;
24754 		}
24755 		break;
24756 	case BPF_STX:
24757 		switch (mode) {
24758 		case BPF_MEM:
24759 			def = 0;
24760 			use = dst | src;
24761 			break;
24762 		case BPF_ATOMIC:
24763 			switch (insn->imm) {
24764 			case BPF_CMPXCHG:
24765 				use = r0 | dst | src;
24766 				def = r0;
24767 				break;
24768 			case BPF_LOAD_ACQ:
24769 				def = dst;
24770 				use = src;
24771 				break;
24772 			case BPF_STORE_REL:
24773 				def = 0;
24774 				use = dst | src;
24775 				break;
24776 			default:
24777 				use = dst | src;
24778 				if (insn->imm & BPF_FETCH)
24779 					def = src;
24780 				else
24781 					def = 0;
24782 			}
24783 			break;
24784 		}
24785 		break;
24786 	case BPF_ALU:
24787 	case BPF_ALU64:
24788 		switch (code) {
24789 		case BPF_END:
24790 			use = dst;
24791 			def = dst;
24792 			break;
24793 		case BPF_MOV:
24794 			def = dst;
24795 			if (BPF_SRC(insn->code) == BPF_K)
24796 				use = 0;
24797 			else
24798 				use = src;
24799 			break;
24800 		default:
24801 			def = dst;
24802 			if (BPF_SRC(insn->code) == BPF_K)
24803 				use = dst;
24804 			else
24805 				use = dst | src;
24806 		}
24807 		break;
24808 	case BPF_JMP:
24809 	case BPF_JMP32:
24810 		switch (code) {
24811 		case BPF_JA:
24812 		case BPF_JCOND:
24813 			def = 0;
24814 			use = 0;
24815 			break;
24816 		case BPF_EXIT:
24817 			def = 0;
24818 			use = r0;
24819 			break;
24820 		case BPF_CALL:
24821 			def = ALL_CALLER_SAVED_REGS;
24822 			use = def & ~BIT(BPF_REG_0);
24823 			if (get_call_summary(env, insn, &cs))
24824 				use = GENMASK(cs.num_params, 1);
24825 			break;
24826 		default:
24827 			def = 0;
24828 			if (BPF_SRC(insn->code) == BPF_K)
24829 				use = dst;
24830 			else
24831 				use = dst | src;
24832 		}
24833 		break;
24834 	}
24835 
24836 	info->def = def;
24837 	info->use = use;
24838 }
24839 
24840 /* Compute may-live registers after each instruction in the program.
24841  * The register is live after the instruction I if it is read by some
24842  * instruction S following I during program execution and is not
24843  * overwritten between I and S.
24844  *
24845  * Store result in env->insn_aux_data[i].live_regs.
24846  */
compute_live_registers(struct bpf_verifier_env * env)24847 static int compute_live_registers(struct bpf_verifier_env *env)
24848 {
24849 	struct bpf_insn_aux_data *insn_aux = env->insn_aux_data;
24850 	struct bpf_insn *insns = env->prog->insnsi;
24851 	struct insn_live_regs *state;
24852 	int insn_cnt = env->prog->len;
24853 	int err = 0, i, j;
24854 	bool changed;
24855 
24856 	/* Use the following algorithm:
24857 	 * - define the following:
24858 	 *   - I.use : a set of all registers read by instruction I;
24859 	 *   - I.def : a set of all registers written by instruction I;
24860 	 *   - I.in  : a set of all registers that may be alive before I execution;
24861 	 *   - I.out : a set of all registers that may be alive after I execution;
24862 	 *   - insn_successors(I): a set of instructions S that might immediately
24863 	 *                         follow I for some program execution;
24864 	 * - associate separate empty sets 'I.in' and 'I.out' with each instruction;
24865 	 * - visit each instruction in a postorder and update
24866 	 *   state[i].in, state[i].out as follows:
24867 	 *
24868 	 *       state[i].out = U [state[s].in for S in insn_successors(i)]
24869 	 *       state[i].in  = (state[i].out / state[i].def) U state[i].use
24870 	 *
24871 	 *   (where U stands for set union, / stands for set difference)
24872 	 * - repeat the computation while {in,out} fields changes for
24873 	 *   any instruction.
24874 	 */
24875 	state = kvcalloc(insn_cnt, sizeof(*state), GFP_KERNEL_ACCOUNT);
24876 	if (!state) {
24877 		err = -ENOMEM;
24878 		goto out;
24879 	}
24880 
24881 	for (i = 0; i < insn_cnt; ++i)
24882 		compute_insn_live_regs(env, &insns[i], &state[i]);
24883 
24884 	changed = true;
24885 	while (changed) {
24886 		changed = false;
24887 		for (i = 0; i < env->cfg.cur_postorder; ++i) {
24888 			int insn_idx = env->cfg.insn_postorder[i];
24889 			struct insn_live_regs *live = &state[insn_idx];
24890 			struct bpf_iarray *succ;
24891 			u16 new_out = 0;
24892 			u16 new_in = 0;
24893 
24894 			succ = bpf_insn_successors(env, insn_idx);
24895 			for (int s = 0; s < succ->cnt; ++s)
24896 				new_out |= state[succ->items[s]].in;
24897 			new_in = (new_out & ~live->def) | live->use;
24898 			if (new_out != live->out || new_in != live->in) {
24899 				live->in = new_in;
24900 				live->out = new_out;
24901 				changed = true;
24902 			}
24903 		}
24904 	}
24905 
24906 	for (i = 0; i < insn_cnt; ++i)
24907 		insn_aux[i].live_regs_before = state[i].in;
24908 
24909 	if (env->log.level & BPF_LOG_LEVEL2) {
24910 		verbose(env, "Live regs before insn:\n");
24911 		for (i = 0; i < insn_cnt; ++i) {
24912 			if (env->insn_aux_data[i].scc)
24913 				verbose(env, "%3d ", env->insn_aux_data[i].scc);
24914 			else
24915 				verbose(env, "    ");
24916 			verbose(env, "%3d: ", i);
24917 			for (j = BPF_REG_0; j < BPF_REG_10; ++j)
24918 				if (insn_aux[i].live_regs_before & BIT(j))
24919 					verbose(env, "%d", j);
24920 				else
24921 					verbose(env, ".");
24922 			verbose(env, " ");
24923 			verbose_insn(env, &insns[i]);
24924 			if (bpf_is_ldimm64(&insns[i]))
24925 				i++;
24926 		}
24927 	}
24928 
24929 out:
24930 	kvfree(state);
24931 	return err;
24932 }
24933 
24934 /*
24935  * Compute strongly connected components (SCCs) on the CFG.
24936  * Assign an SCC number to each instruction, recorded in env->insn_aux[*].scc.
24937  * If instruction is a sole member of its SCC and there are no self edges,
24938  * assign it SCC number of zero.
24939  * Uses a non-recursive adaptation of Tarjan's algorithm for SCC computation.
24940  */
compute_scc(struct bpf_verifier_env * env)24941 static int compute_scc(struct bpf_verifier_env *env)
24942 {
24943 	const u32 NOT_ON_STACK = U32_MAX;
24944 
24945 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
24946 	const u32 insn_cnt = env->prog->len;
24947 	int stack_sz, dfs_sz, err = 0;
24948 	u32 *stack, *pre, *low, *dfs;
24949 	u32 i, j, t, w;
24950 	u32 next_preorder_num;
24951 	u32 next_scc_id;
24952 	bool assign_scc;
24953 	struct bpf_iarray *succ;
24954 
24955 	next_preorder_num = 1;
24956 	next_scc_id = 1;
24957 	/*
24958 	 * - 'stack' accumulates vertices in DFS order, see invariant comment below;
24959 	 * - 'pre[t] == p' => preorder number of vertex 't' is 'p';
24960 	 * - 'low[t] == n' => smallest preorder number of the vertex reachable from 't' is 'n';
24961 	 * - 'dfs' DFS traversal stack, used to emulate explicit recursion.
24962 	 */
24963 	stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT);
24964 	pre = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT);
24965 	low = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT);
24966 	dfs = kvcalloc(insn_cnt, sizeof(*dfs), GFP_KERNEL_ACCOUNT);
24967 	if (!stack || !pre || !low || !dfs) {
24968 		err = -ENOMEM;
24969 		goto exit;
24970 	}
24971 	/*
24972 	 * References:
24973 	 * [1] R. Tarjan "Depth-First Search and Linear Graph Algorithms"
24974 	 * [2] D. J. Pearce "A Space-Efficient Algorithm for Finding Strongly Connected Components"
24975 	 *
24976 	 * The algorithm maintains the following invariant:
24977 	 * - suppose there is a path 'u' ~> 'v', such that 'pre[v] < pre[u]';
24978 	 * - then, vertex 'u' remains on stack while vertex 'v' is on stack.
24979 	 *
24980 	 * Consequently:
24981 	 * - If 'low[v] < pre[v]', there is a path from 'v' to some vertex 'u',
24982 	 *   such that 'pre[u] == low[v]'; vertex 'u' is currently on the stack,
24983 	 *   and thus there is an SCC (loop) containing both 'u' and 'v'.
24984 	 * - If 'low[v] == pre[v]', loops containing 'v' have been explored,
24985 	 *   and 'v' can be considered the root of some SCC.
24986 	 *
24987 	 * Here is a pseudo-code for an explicitly recursive version of the algorithm:
24988 	 *
24989 	 *    NOT_ON_STACK = insn_cnt + 1
24990 	 *    pre = [0] * insn_cnt
24991 	 *    low = [0] * insn_cnt
24992 	 *    scc = [0] * insn_cnt
24993 	 *    stack = []
24994 	 *
24995 	 *    next_preorder_num = 1
24996 	 *    next_scc_id = 1
24997 	 *
24998 	 *    def recur(w):
24999 	 *        nonlocal next_preorder_num
25000 	 *        nonlocal next_scc_id
25001 	 *
25002 	 *        pre[w] = next_preorder_num
25003 	 *        low[w] = next_preorder_num
25004 	 *        next_preorder_num += 1
25005 	 *        stack.append(w)
25006 	 *        for s in successors(w):
25007 	 *            # Note: for classic algorithm the block below should look as:
25008 	 *            #
25009 	 *            # if pre[s] == 0:
25010 	 *            #     recur(s)
25011 	 *            #	    low[w] = min(low[w], low[s])
25012 	 *            # elif low[s] != NOT_ON_STACK:
25013 	 *            #     low[w] = min(low[w], pre[s])
25014 	 *            #
25015 	 *            # But replacing both 'min' instructions with 'low[w] = min(low[w], low[s])'
25016 	 *            # does not break the invariant and makes itartive version of the algorithm
25017 	 *            # simpler. See 'Algorithm #3' from [2].
25018 	 *
25019 	 *            # 's' not yet visited
25020 	 *            if pre[s] == 0:
25021 	 *                recur(s)
25022 	 *            # if 's' is on stack, pick lowest reachable preorder number from it;
25023 	 *            # if 's' is not on stack 'low[s] == NOT_ON_STACK > low[w]',
25024 	 *            # so 'min' would be a noop.
25025 	 *            low[w] = min(low[w], low[s])
25026 	 *
25027 	 *        if low[w] == pre[w]:
25028 	 *            # 'w' is the root of an SCC, pop all vertices
25029 	 *            # below 'w' on stack and assign same SCC to them.
25030 	 *            while True:
25031 	 *                t = stack.pop()
25032 	 *                low[t] = NOT_ON_STACK
25033 	 *                scc[t] = next_scc_id
25034 	 *                if t == w:
25035 	 *                    break
25036 	 *            next_scc_id += 1
25037 	 *
25038 	 *    for i in range(0, insn_cnt):
25039 	 *        if pre[i] == 0:
25040 	 *            recur(i)
25041 	 *
25042 	 * Below implementation replaces explicit recursion with array 'dfs'.
25043 	 */
25044 	for (i = 0; i < insn_cnt; i++) {
25045 		if (pre[i])
25046 			continue;
25047 		stack_sz = 0;
25048 		dfs_sz = 1;
25049 		dfs[0] = i;
25050 dfs_continue:
25051 		while (dfs_sz) {
25052 			w = dfs[dfs_sz - 1];
25053 			if (pre[w] == 0) {
25054 				low[w] = next_preorder_num;
25055 				pre[w] = next_preorder_num;
25056 				next_preorder_num++;
25057 				stack[stack_sz++] = w;
25058 			}
25059 			/* Visit 'w' successors */
25060 			succ = bpf_insn_successors(env, w);
25061 			for (j = 0; j < succ->cnt; ++j) {
25062 				if (pre[succ->items[j]]) {
25063 					low[w] = min(low[w], low[succ->items[j]]);
25064 				} else {
25065 					dfs[dfs_sz++] = succ->items[j];
25066 					goto dfs_continue;
25067 				}
25068 			}
25069 			/*
25070 			 * Preserve the invariant: if some vertex above in the stack
25071 			 * is reachable from 'w', keep 'w' on the stack.
25072 			 */
25073 			if (low[w] < pre[w]) {
25074 				dfs_sz--;
25075 				goto dfs_continue;
25076 			}
25077 			/*
25078 			 * Assign SCC number only if component has two or more elements,
25079 			 * or if component has a self reference.
25080 			 */
25081 			assign_scc = stack[stack_sz - 1] != w;
25082 			for (j = 0; j < succ->cnt; ++j) {
25083 				if (succ->items[j] == w) {
25084 					assign_scc = true;
25085 					break;
25086 				}
25087 			}
25088 			/* Pop component elements from stack */
25089 			do {
25090 				t = stack[--stack_sz];
25091 				low[t] = NOT_ON_STACK;
25092 				if (assign_scc)
25093 					aux[t].scc = next_scc_id;
25094 			} while (t != w);
25095 			if (assign_scc)
25096 				next_scc_id++;
25097 			dfs_sz--;
25098 		}
25099 	}
25100 	env->scc_info = kvcalloc(next_scc_id, sizeof(*env->scc_info), GFP_KERNEL_ACCOUNT);
25101 	if (!env->scc_info) {
25102 		err = -ENOMEM;
25103 		goto exit;
25104 	}
25105 	env->scc_cnt = next_scc_id;
25106 exit:
25107 	kvfree(stack);
25108 	kvfree(pre);
25109 	kvfree(low);
25110 	kvfree(dfs);
25111 	return err;
25112 }
25113 
bpf_check(struct bpf_prog ** prog,union bpf_attr * attr,bpfptr_t uattr,__u32 uattr_size)25114 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
25115 {
25116 	u64 start_time = ktime_get_ns();
25117 	struct bpf_verifier_env *env;
25118 	int i, len, ret = -EINVAL, err;
25119 	u32 log_true_size;
25120 	bool is_priv;
25121 
25122 	BTF_TYPE_EMIT(enum bpf_features);
25123 
25124 	/* no program is valid */
25125 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
25126 		return -EINVAL;
25127 
25128 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
25129 	 * allocate/free it every time bpf_check() is called
25130 	 */
25131 	env = kvzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL_ACCOUNT);
25132 	if (!env)
25133 		return -ENOMEM;
25134 
25135 	env->bt.env = env;
25136 
25137 	len = (*prog)->len;
25138 	env->insn_aux_data =
25139 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
25140 	ret = -ENOMEM;
25141 	if (!env->insn_aux_data)
25142 		goto err_free_env;
25143 	for (i = 0; i < len; i++)
25144 		env->insn_aux_data[i].orig_idx = i;
25145 	env->succ = iarray_realloc(NULL, 2);
25146 	if (!env->succ)
25147 		goto err_free_env;
25148 	env->prog = *prog;
25149 	env->ops = bpf_verifier_ops[env->prog->type];
25150 
25151 	env->allow_ptr_leaks = bpf_allow_ptr_leaks(env->prog->aux->token);
25152 	env->allow_uninit_stack = bpf_allow_uninit_stack(env->prog->aux->token);
25153 	env->bypass_spec_v1 = bpf_bypass_spec_v1(env->prog->aux->token);
25154 	env->bypass_spec_v4 = bpf_bypass_spec_v4(env->prog->aux->token);
25155 	env->bpf_capable = is_priv = bpf_token_capable(env->prog->aux->token, CAP_BPF);
25156 
25157 	bpf_get_btf_vmlinux();
25158 
25159 	/* grab the mutex to protect few globals used by verifier */
25160 	if (!is_priv)
25161 		mutex_lock(&bpf_verifier_lock);
25162 
25163 	/* user could have requested verbose verifier output
25164 	 * and supplied buffer to store the verification trace
25165 	 */
25166 	ret = bpf_vlog_init(&env->log, attr->log_level,
25167 			    (char __user *) (unsigned long) attr->log_buf,
25168 			    attr->log_size);
25169 	if (ret)
25170 		goto err_unlock;
25171 
25172 	ret = process_fd_array(env, attr, uattr);
25173 	if (ret)
25174 		goto skip_full_check;
25175 
25176 	mark_verifier_state_clean(env);
25177 
25178 	if (IS_ERR(btf_vmlinux)) {
25179 		/* Either gcc or pahole or kernel are broken. */
25180 		verbose(env, "in-kernel BTF is malformed\n");
25181 		ret = PTR_ERR(btf_vmlinux);
25182 		goto skip_full_check;
25183 	}
25184 
25185 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
25186 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
25187 		env->strict_alignment = true;
25188 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
25189 		env->strict_alignment = false;
25190 
25191 	if (is_priv)
25192 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
25193 	env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS;
25194 
25195 	env->explored_states = kvcalloc(state_htab_size(env),
25196 				       sizeof(struct list_head),
25197 				       GFP_KERNEL_ACCOUNT);
25198 	ret = -ENOMEM;
25199 	if (!env->explored_states)
25200 		goto skip_full_check;
25201 
25202 	for (i = 0; i < state_htab_size(env); i++)
25203 		INIT_LIST_HEAD(&env->explored_states[i]);
25204 	INIT_LIST_HEAD(&env->free_list);
25205 
25206 	ret = check_btf_info_early(env, attr, uattr);
25207 	if (ret < 0)
25208 		goto skip_full_check;
25209 
25210 	ret = add_subprog_and_kfunc(env);
25211 	if (ret < 0)
25212 		goto skip_full_check;
25213 
25214 	ret = check_subprogs(env);
25215 	if (ret < 0)
25216 		goto skip_full_check;
25217 
25218 	ret = check_btf_info(env, attr, uattr);
25219 	if (ret < 0)
25220 		goto skip_full_check;
25221 
25222 	ret = resolve_pseudo_ldimm64(env);
25223 	if (ret < 0)
25224 		goto skip_full_check;
25225 
25226 	if (bpf_prog_is_offloaded(env->prog->aux)) {
25227 		ret = bpf_prog_offload_verifier_prep(env->prog);
25228 		if (ret)
25229 			goto skip_full_check;
25230 	}
25231 
25232 	ret = check_cfg(env);
25233 	if (ret < 0)
25234 		goto skip_full_check;
25235 
25236 	ret = compute_postorder(env);
25237 	if (ret < 0)
25238 		goto skip_full_check;
25239 
25240 	ret = bpf_stack_liveness_init(env);
25241 	if (ret)
25242 		goto skip_full_check;
25243 
25244 	ret = check_attach_btf_id(env);
25245 	if (ret)
25246 		goto skip_full_check;
25247 
25248 	ret = compute_scc(env);
25249 	if (ret < 0)
25250 		goto skip_full_check;
25251 
25252 	ret = compute_live_registers(env);
25253 	if (ret < 0)
25254 		goto skip_full_check;
25255 
25256 	ret = mark_fastcall_patterns(env);
25257 	if (ret < 0)
25258 		goto skip_full_check;
25259 
25260 	ret = do_check_main(env);
25261 	ret = ret ?: do_check_subprogs(env);
25262 
25263 	if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
25264 		ret = bpf_prog_offload_finalize(env);
25265 
25266 skip_full_check:
25267 	kvfree(env->explored_states);
25268 
25269 	/* might decrease stack depth, keep it before passes that
25270 	 * allocate additional slots.
25271 	 */
25272 	if (ret == 0)
25273 		ret = remove_fastcall_spills_fills(env);
25274 
25275 	if (ret == 0)
25276 		ret = check_max_stack_depth(env);
25277 
25278 	/* instruction rewrites happen after this point */
25279 	if (ret == 0)
25280 		ret = optimize_bpf_loop(env);
25281 
25282 	if (is_priv) {
25283 		if (ret == 0)
25284 			opt_hard_wire_dead_code_branches(env);
25285 		if (ret == 0)
25286 			ret = opt_remove_dead_code(env);
25287 		if (ret == 0)
25288 			ret = opt_remove_nops(env);
25289 	} else {
25290 		if (ret == 0)
25291 			sanitize_dead_code(env);
25292 	}
25293 
25294 	if (ret == 0)
25295 		/* program is valid, convert *(u32*)(ctx + off) accesses */
25296 		ret = convert_ctx_accesses(env);
25297 
25298 	if (ret == 0)
25299 		ret = do_misc_fixups(env);
25300 
25301 	/* do 32-bit optimization after insn patching has done so those patched
25302 	 * insns could be handled correctly.
25303 	 */
25304 	if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
25305 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
25306 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
25307 								     : false;
25308 	}
25309 
25310 	if (ret == 0)
25311 		ret = fixup_call_args(env);
25312 
25313 	env->verification_time = ktime_get_ns() - start_time;
25314 	print_verification_stats(env);
25315 	env->prog->aux->verified_insns = env->insn_processed;
25316 
25317 	/* preserve original error even if log finalization is successful */
25318 	err = bpf_vlog_finalize(&env->log, &log_true_size);
25319 	if (err)
25320 		ret = err;
25321 
25322 	if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
25323 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
25324 				  &log_true_size, sizeof(log_true_size))) {
25325 		ret = -EFAULT;
25326 		goto err_release_maps;
25327 	}
25328 
25329 	if (ret)
25330 		goto err_release_maps;
25331 
25332 	if (env->used_map_cnt) {
25333 		/* if program passed verifier, update used_maps in bpf_prog_info */
25334 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
25335 							  sizeof(env->used_maps[0]),
25336 							  GFP_KERNEL_ACCOUNT);
25337 
25338 		if (!env->prog->aux->used_maps) {
25339 			ret = -ENOMEM;
25340 			goto err_release_maps;
25341 		}
25342 
25343 		memcpy(env->prog->aux->used_maps, env->used_maps,
25344 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
25345 		env->prog->aux->used_map_cnt = env->used_map_cnt;
25346 	}
25347 	if (env->used_btf_cnt) {
25348 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
25349 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
25350 							  sizeof(env->used_btfs[0]),
25351 							  GFP_KERNEL_ACCOUNT);
25352 		if (!env->prog->aux->used_btfs) {
25353 			ret = -ENOMEM;
25354 			goto err_release_maps;
25355 		}
25356 
25357 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
25358 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
25359 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
25360 	}
25361 	if (env->used_map_cnt || env->used_btf_cnt) {
25362 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
25363 		 * bpf_ld_imm64 instructions
25364 		 */
25365 		convert_pseudo_ld_imm64(env);
25366 	}
25367 
25368 	adjust_btf_func(env);
25369 
25370 err_release_maps:
25371 	if (ret)
25372 		release_insn_arrays(env);
25373 	if (!env->prog->aux->used_maps)
25374 		/* if we didn't copy map pointers into bpf_prog_info, release
25375 		 * them now. Otherwise free_used_maps() will release them.
25376 		 */
25377 		release_maps(env);
25378 	if (!env->prog->aux->used_btfs)
25379 		release_btfs(env);
25380 
25381 	/* extension progs temporarily inherit the attach_type of their targets
25382 	   for verification purposes, so set it back to zero before returning
25383 	 */
25384 	if (env->prog->type == BPF_PROG_TYPE_EXT)
25385 		env->prog->expected_attach_type = 0;
25386 
25387 	*prog = env->prog;
25388 
25389 	module_put(env->attach_btf_mod);
25390 err_unlock:
25391 	if (!is_priv)
25392 		mutex_unlock(&bpf_verifier_lock);
25393 	clear_insn_aux_data(env, 0, env->prog->len);
25394 	vfree(env->insn_aux_data);
25395 err_free_env:
25396 	bpf_stack_liveness_free(env);
25397 	kvfree(env->cfg.insn_postorder);
25398 	kvfree(env->scc_info);
25399 	kvfree(env->succ);
25400 	kvfree(env->gotox_tmp_buf);
25401 	kvfree(env);
25402 	return ret;
25403 }
25404