xref: /linux/fs/btrfs/super.c (revision 11fe69fbd56f63ad0749303d2e014ef1c17142a6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/crc32c.h>
28 #include <linux/btrfs.h>
29 #include <linux/security.h>
30 #include <linux/fs_parser.h>
31 #include "messages.h"
32 #include "delayed-inode.h"
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "direct-io.h"
38 #include "props.h"
39 #include "xattr.h"
40 #include "bio.h"
41 #include "export.h"
42 #include "compression.h"
43 #include "dev-replace.h"
44 #include "free-space-cache.h"
45 #include "backref.h"
46 #include "space-info.h"
47 #include "sysfs.h"
48 #include "zoned.h"
49 #include "tests/btrfs-tests.h"
50 #include "block-group.h"
51 #include "discard.h"
52 #include "qgroup.h"
53 #include "raid56.h"
54 #include "fs.h"
55 #include "accessors.h"
56 #include "defrag.h"
57 #include "dir-item.h"
58 #include "ioctl.h"
59 #include "scrub.h"
60 #include "verity.h"
61 #include "super.h"
62 #include "extent-tree.h"
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/btrfs.h>
65 
66 static const struct super_operations btrfs_super_ops;
67 static struct file_system_type btrfs_fs_type;
68 
btrfs_put_super(struct super_block * sb)69 static void btrfs_put_super(struct super_block *sb)
70 {
71 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
72 
73 	btrfs_info(fs_info, "last unmount of filesystem %pU", fs_info->fs_devices->fsid);
74 	close_ctree(fs_info);
75 }
76 
77 /* Store the mount options related information. */
78 struct btrfs_fs_context {
79 	char *subvol_name;
80 	u64 subvol_objectid;
81 	u64 max_inline;
82 	u32 commit_interval;
83 	u32 metadata_ratio;
84 	u32 thread_pool_size;
85 	unsigned long long mount_opt;
86 	unsigned long compress_type:4;
87 	int compress_level;
88 	refcount_t refs;
89 };
90 
91 enum {
92 	Opt_acl,
93 	Opt_clear_cache,
94 	Opt_commit_interval,
95 	Opt_compress,
96 	Opt_compress_force,
97 	Opt_compress_force_type,
98 	Opt_compress_type,
99 	Opt_degraded,
100 	Opt_device,
101 	Opt_fatal_errors,
102 	Opt_flushoncommit,
103 	Opt_max_inline,
104 	Opt_barrier,
105 	Opt_datacow,
106 	Opt_datasum,
107 	Opt_defrag,
108 	Opt_discard,
109 	Opt_discard_mode,
110 	Opt_ratio,
111 	Opt_rescan_uuid_tree,
112 	Opt_skip_balance,
113 	Opt_space_cache,
114 	Opt_space_cache_version,
115 	Opt_ssd,
116 	Opt_ssd_spread,
117 	Opt_subvol,
118 	Opt_subvol_empty,
119 	Opt_subvolid,
120 	Opt_thread_pool,
121 	Opt_treelog,
122 	Opt_user_subvol_rm_allowed,
123 	Opt_norecovery,
124 
125 	/* Rescue options */
126 	Opt_rescue,
127 	Opt_usebackuproot,
128 
129 	/* Debugging options */
130 	Opt_enospc_debug,
131 #ifdef CONFIG_BTRFS_DEBUG
132 	Opt_fragment, Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
133 #endif
134 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
135 	Opt_ref_verify,
136 #endif
137 	Opt_err,
138 };
139 
140 enum {
141 	Opt_fatal_errors_panic,
142 	Opt_fatal_errors_bug,
143 };
144 
145 static const struct constant_table btrfs_parameter_fatal_errors[] = {
146 	{ "panic", Opt_fatal_errors_panic },
147 	{ "bug", Opt_fatal_errors_bug },
148 	{}
149 };
150 
151 enum {
152 	Opt_discard_sync,
153 	Opt_discard_async,
154 };
155 
156 static const struct constant_table btrfs_parameter_discard[] = {
157 	{ "sync", Opt_discard_sync },
158 	{ "async", Opt_discard_async },
159 	{}
160 };
161 
162 enum {
163 	Opt_space_cache_v1,
164 	Opt_space_cache_v2,
165 };
166 
167 static const struct constant_table btrfs_parameter_space_cache[] = {
168 	{ "v1", Opt_space_cache_v1 },
169 	{ "v2", Opt_space_cache_v2 },
170 	{}
171 };
172 
173 enum {
174 	Opt_rescue_usebackuproot,
175 	Opt_rescue_nologreplay,
176 	Opt_rescue_ignorebadroots,
177 	Opt_rescue_ignoredatacsums,
178 	Opt_rescue_ignoremetacsums,
179 	Opt_rescue_ignoresuperflags,
180 	Opt_rescue_parameter_all,
181 };
182 
183 static const struct constant_table btrfs_parameter_rescue[] = {
184 	{ "usebackuproot", Opt_rescue_usebackuproot },
185 	{ "nologreplay", Opt_rescue_nologreplay },
186 	{ "ignorebadroots", Opt_rescue_ignorebadroots },
187 	{ "ibadroots", Opt_rescue_ignorebadroots },
188 	{ "ignoredatacsums", Opt_rescue_ignoredatacsums },
189 	{ "ignoremetacsums", Opt_rescue_ignoremetacsums},
190 	{ "ignoresuperflags", Opt_rescue_ignoresuperflags},
191 	{ "idatacsums", Opt_rescue_ignoredatacsums },
192 	{ "imetacsums", Opt_rescue_ignoremetacsums},
193 	{ "isuperflags", Opt_rescue_ignoresuperflags},
194 	{ "all", Opt_rescue_parameter_all },
195 	{}
196 };
197 
198 #ifdef CONFIG_BTRFS_DEBUG
199 enum {
200 	Opt_fragment_parameter_data,
201 	Opt_fragment_parameter_metadata,
202 	Opt_fragment_parameter_all,
203 };
204 
205 static const struct constant_table btrfs_parameter_fragment[] = {
206 	{ "data", Opt_fragment_parameter_data },
207 	{ "metadata", Opt_fragment_parameter_metadata },
208 	{ "all", Opt_fragment_parameter_all },
209 	{}
210 };
211 #endif
212 
213 static const struct fs_parameter_spec btrfs_fs_parameters[] = {
214 	fsparam_flag_no("acl", Opt_acl),
215 	fsparam_flag_no("autodefrag", Opt_defrag),
216 	fsparam_flag_no("barrier", Opt_barrier),
217 	fsparam_flag("clear_cache", Opt_clear_cache),
218 	fsparam_u32("commit", Opt_commit_interval),
219 	fsparam_flag("compress", Opt_compress),
220 	fsparam_string("compress", Opt_compress_type),
221 	fsparam_flag("compress-force", Opt_compress_force),
222 	fsparam_string("compress-force", Opt_compress_force_type),
223 	fsparam_flag_no("datacow", Opt_datacow),
224 	fsparam_flag_no("datasum", Opt_datasum),
225 	fsparam_flag("degraded", Opt_degraded),
226 	fsparam_string("device", Opt_device),
227 	fsparam_flag_no("discard", Opt_discard),
228 	fsparam_enum("discard", Opt_discard_mode, btrfs_parameter_discard),
229 	fsparam_enum("fatal_errors", Opt_fatal_errors, btrfs_parameter_fatal_errors),
230 	fsparam_flag_no("flushoncommit", Opt_flushoncommit),
231 	fsparam_string("max_inline", Opt_max_inline),
232 	fsparam_u32("metadata_ratio", Opt_ratio),
233 	fsparam_flag("rescan_uuid_tree", Opt_rescan_uuid_tree),
234 	fsparam_flag("skip_balance", Opt_skip_balance),
235 	fsparam_flag_no("space_cache", Opt_space_cache),
236 	fsparam_enum("space_cache", Opt_space_cache_version, btrfs_parameter_space_cache),
237 	fsparam_flag_no("ssd", Opt_ssd),
238 	fsparam_flag_no("ssd_spread", Opt_ssd_spread),
239 	fsparam_string("subvol", Opt_subvol),
240 	fsparam_flag("subvol=", Opt_subvol_empty),
241 	fsparam_u64("subvolid", Opt_subvolid),
242 	fsparam_u32("thread_pool", Opt_thread_pool),
243 	fsparam_flag_no("treelog", Opt_treelog),
244 	fsparam_flag("user_subvol_rm_allowed", Opt_user_subvol_rm_allowed),
245 
246 	/* Rescue options. */
247 	fsparam_enum("rescue", Opt_rescue, btrfs_parameter_rescue),
248 	/* Deprecated, with alias rescue=usebackuproot */
249 	__fsparam(NULL, "usebackuproot", Opt_usebackuproot, fs_param_deprecated, NULL),
250 	/* For compatibility only, alias for "rescue=nologreplay". */
251 	fsparam_flag("norecovery", Opt_norecovery),
252 
253 	/* Debugging options. */
254 	fsparam_flag_no("enospc_debug", Opt_enospc_debug),
255 #ifdef CONFIG_BTRFS_DEBUG
256 	fsparam_enum("fragment", Opt_fragment, btrfs_parameter_fragment),
257 #endif
258 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
259 	fsparam_flag("ref_verify", Opt_ref_verify),
260 #endif
261 	{}
262 };
263 
btrfs_match_compress_type(const char * string,const char * type,bool may_have_level)264 static bool btrfs_match_compress_type(const char *string, const char *type, bool may_have_level)
265 {
266 	const int len = strlen(type);
267 
268 	return (strncmp(string, type, len) == 0) &&
269 		((may_have_level && string[len] == ':') || string[len] == '\0');
270 }
271 
btrfs_parse_compress(struct btrfs_fs_context * ctx,const struct fs_parameter * param,int opt)272 static int btrfs_parse_compress(struct btrfs_fs_context *ctx,
273 				const struct fs_parameter *param, int opt)
274 {
275 	const char *string = param->string;
276 
277 	/*
278 	 * Provide the same semantics as older kernels that don't use fs
279 	 * context, specifying the "compress" option clears "force-compress"
280 	 * without the need to pass "compress-force=[no|none]" before
281 	 * specifying "compress".
282 	 */
283 	if (opt != Opt_compress_force && opt != Opt_compress_force_type)
284 		btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
285 
286 	if (opt == Opt_compress || opt == Opt_compress_force) {
287 		ctx->compress_type = BTRFS_COMPRESS_ZLIB;
288 		ctx->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
289 		btrfs_set_opt(ctx->mount_opt, COMPRESS);
290 		btrfs_clear_opt(ctx->mount_opt, NODATACOW);
291 		btrfs_clear_opt(ctx->mount_opt, NODATASUM);
292 	} else if (btrfs_match_compress_type(string, "zlib", true)) {
293 		ctx->compress_type = BTRFS_COMPRESS_ZLIB;
294 		ctx->compress_level = btrfs_compress_str2level(BTRFS_COMPRESS_ZLIB,
295 							       string + 4);
296 		btrfs_set_opt(ctx->mount_opt, COMPRESS);
297 		btrfs_clear_opt(ctx->mount_opt, NODATACOW);
298 		btrfs_clear_opt(ctx->mount_opt, NODATASUM);
299 	} else if (btrfs_match_compress_type(string, "lzo", false)) {
300 		ctx->compress_type = BTRFS_COMPRESS_LZO;
301 		ctx->compress_level = 0;
302 		btrfs_set_opt(ctx->mount_opt, COMPRESS);
303 		btrfs_clear_opt(ctx->mount_opt, NODATACOW);
304 		btrfs_clear_opt(ctx->mount_opt, NODATASUM);
305 	} else if (btrfs_match_compress_type(string, "zstd", true)) {
306 		ctx->compress_type = BTRFS_COMPRESS_ZSTD;
307 		ctx->compress_level = btrfs_compress_str2level(BTRFS_COMPRESS_ZSTD,
308 							       string + 4);
309 		btrfs_set_opt(ctx->mount_opt, COMPRESS);
310 		btrfs_clear_opt(ctx->mount_opt, NODATACOW);
311 		btrfs_clear_opt(ctx->mount_opt, NODATASUM);
312 	} else if (btrfs_match_compress_type(string, "no", false) ||
313 		   btrfs_match_compress_type(string, "none", false)) {
314 		ctx->compress_level = 0;
315 		ctx->compress_type = 0;
316 		btrfs_clear_opt(ctx->mount_opt, COMPRESS);
317 		btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
318 	} else {
319 		btrfs_err(NULL, "unrecognized compression value %s", string);
320 		return -EINVAL;
321 	}
322 	return 0;
323 }
324 
btrfs_parse_param(struct fs_context * fc,struct fs_parameter * param)325 static int btrfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
326 {
327 	struct btrfs_fs_context *ctx = fc->fs_private;
328 	struct fs_parse_result result;
329 	int opt;
330 
331 	opt = fs_parse(fc, btrfs_fs_parameters, param, &result);
332 	if (opt < 0)
333 		return opt;
334 
335 	switch (opt) {
336 	case Opt_degraded:
337 		btrfs_set_opt(ctx->mount_opt, DEGRADED);
338 		break;
339 	case Opt_subvol_empty:
340 		/*
341 		 * This exists because we used to allow it on accident, so we're
342 		 * keeping it to maintain ABI.  See 37becec95ac3 ("Btrfs: allow
343 		 * empty subvol= again").
344 		 */
345 		break;
346 	case Opt_subvol:
347 		kfree(ctx->subvol_name);
348 		ctx->subvol_name = kstrdup(param->string, GFP_KERNEL);
349 		if (!ctx->subvol_name)
350 			return -ENOMEM;
351 		break;
352 	case Opt_subvolid:
353 		ctx->subvol_objectid = result.uint_64;
354 
355 		/* subvolid=0 means give me the original fs_tree. */
356 		if (!ctx->subvol_objectid)
357 			ctx->subvol_objectid = BTRFS_FS_TREE_OBJECTID;
358 		break;
359 	case Opt_device: {
360 		struct btrfs_device *device;
361 
362 		mutex_lock(&uuid_mutex);
363 		device = btrfs_scan_one_device(param->string, false);
364 		mutex_unlock(&uuid_mutex);
365 		if (IS_ERR(device))
366 			return PTR_ERR(device);
367 		break;
368 	}
369 	case Opt_datasum:
370 		if (result.negated) {
371 			btrfs_set_opt(ctx->mount_opt, NODATASUM);
372 		} else {
373 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
374 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
375 		}
376 		break;
377 	case Opt_datacow:
378 		if (result.negated) {
379 			btrfs_clear_opt(ctx->mount_opt, COMPRESS);
380 			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
381 			btrfs_set_opt(ctx->mount_opt, NODATACOW);
382 			btrfs_set_opt(ctx->mount_opt, NODATASUM);
383 		} else {
384 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
385 		}
386 		break;
387 	case Opt_compress_force:
388 	case Opt_compress_force_type:
389 		btrfs_set_opt(ctx->mount_opt, FORCE_COMPRESS);
390 		fallthrough;
391 	case Opt_compress:
392 	case Opt_compress_type:
393 		if (btrfs_parse_compress(ctx, param, opt))
394 			return -EINVAL;
395 		break;
396 	case Opt_ssd:
397 		if (result.negated) {
398 			btrfs_set_opt(ctx->mount_opt, NOSSD);
399 			btrfs_clear_opt(ctx->mount_opt, SSD);
400 			btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
401 		} else {
402 			btrfs_set_opt(ctx->mount_opt, SSD);
403 			btrfs_clear_opt(ctx->mount_opt, NOSSD);
404 		}
405 		break;
406 	case Opt_ssd_spread:
407 		if (result.negated) {
408 			btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
409 		} else {
410 			btrfs_set_opt(ctx->mount_opt, SSD);
411 			btrfs_set_opt(ctx->mount_opt, SSD_SPREAD);
412 			btrfs_clear_opt(ctx->mount_opt, NOSSD);
413 		}
414 		break;
415 	case Opt_barrier:
416 		if (result.negated)
417 			btrfs_set_opt(ctx->mount_opt, NOBARRIER);
418 		else
419 			btrfs_clear_opt(ctx->mount_opt, NOBARRIER);
420 		break;
421 	case Opt_thread_pool:
422 		if (result.uint_32 == 0) {
423 			btrfs_err(NULL, "invalid value 0 for thread_pool");
424 			return -EINVAL;
425 		}
426 		ctx->thread_pool_size = result.uint_32;
427 		break;
428 	case Opt_max_inline:
429 		ctx->max_inline = memparse(param->string, NULL);
430 		break;
431 	case Opt_acl:
432 		if (result.negated) {
433 			fc->sb_flags &= ~SB_POSIXACL;
434 		} else {
435 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
436 			fc->sb_flags |= SB_POSIXACL;
437 #else
438 			btrfs_err(NULL, "support for ACL not compiled in");
439 			return -EINVAL;
440 #endif
441 		}
442 		/*
443 		 * VFS limits the ability to toggle ACL on and off via remount,
444 		 * despite every file system allowing this.  This seems to be
445 		 * an oversight since we all do, but it'll fail if we're
446 		 * remounting.  So don't set the mask here, we'll check it in
447 		 * btrfs_reconfigure and do the toggling ourselves.
448 		 */
449 		if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE)
450 			fc->sb_flags_mask |= SB_POSIXACL;
451 		break;
452 	case Opt_treelog:
453 		if (result.negated)
454 			btrfs_set_opt(ctx->mount_opt, NOTREELOG);
455 		else
456 			btrfs_clear_opt(ctx->mount_opt, NOTREELOG);
457 		break;
458 	case Opt_norecovery:
459 		btrfs_info(NULL,
460 "'norecovery' is for compatibility only, recommended to use 'rescue=nologreplay'");
461 		btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
462 		break;
463 	case Opt_flushoncommit:
464 		if (result.negated)
465 			btrfs_clear_opt(ctx->mount_opt, FLUSHONCOMMIT);
466 		else
467 			btrfs_set_opt(ctx->mount_opt, FLUSHONCOMMIT);
468 		break;
469 	case Opt_ratio:
470 		ctx->metadata_ratio = result.uint_32;
471 		break;
472 	case Opt_discard:
473 		if (result.negated) {
474 			btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
475 			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
476 			btrfs_set_opt(ctx->mount_opt, NODISCARD);
477 		} else {
478 			btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
479 			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
480 		}
481 		break;
482 	case Opt_discard_mode:
483 		switch (result.uint_32) {
484 		case Opt_discard_sync:
485 			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
486 			btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
487 			break;
488 		case Opt_discard_async:
489 			btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
490 			btrfs_set_opt(ctx->mount_opt, DISCARD_ASYNC);
491 			break;
492 		default:
493 			btrfs_err(NULL, "unrecognized discard mode value %s",
494 				  param->key);
495 			return -EINVAL;
496 		}
497 		btrfs_clear_opt(ctx->mount_opt, NODISCARD);
498 		break;
499 	case Opt_space_cache:
500 		if (result.negated) {
501 			btrfs_set_opt(ctx->mount_opt, NOSPACECACHE);
502 			btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
503 			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
504 		} else {
505 			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
506 			btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
507 		}
508 		break;
509 	case Opt_space_cache_version:
510 		switch (result.uint_32) {
511 		case Opt_space_cache_v1:
512 			btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
513 			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
514 			break;
515 		case Opt_space_cache_v2:
516 			btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
517 			btrfs_set_opt(ctx->mount_opt, FREE_SPACE_TREE);
518 			break;
519 		default:
520 			btrfs_err(NULL, "unrecognized space_cache value %s",
521 				  param->key);
522 			return -EINVAL;
523 		}
524 		break;
525 	case Opt_rescan_uuid_tree:
526 		btrfs_set_opt(ctx->mount_opt, RESCAN_UUID_TREE);
527 		break;
528 	case Opt_clear_cache:
529 		btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
530 		break;
531 	case Opt_user_subvol_rm_allowed:
532 		btrfs_set_opt(ctx->mount_opt, USER_SUBVOL_RM_ALLOWED);
533 		break;
534 	case Opt_enospc_debug:
535 		if (result.negated)
536 			btrfs_clear_opt(ctx->mount_opt, ENOSPC_DEBUG);
537 		else
538 			btrfs_set_opt(ctx->mount_opt, ENOSPC_DEBUG);
539 		break;
540 	case Opt_defrag:
541 		if (result.negated)
542 			btrfs_clear_opt(ctx->mount_opt, AUTO_DEFRAG);
543 		else
544 			btrfs_set_opt(ctx->mount_opt, AUTO_DEFRAG);
545 		break;
546 	case Opt_usebackuproot:
547 		btrfs_warn(NULL,
548 			   "'usebackuproot' is deprecated, use 'rescue=usebackuproot' instead");
549 		btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
550 
551 		/* If we're loading the backup roots we can't trust the space cache. */
552 		btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
553 		break;
554 	case Opt_skip_balance:
555 		btrfs_set_opt(ctx->mount_opt, SKIP_BALANCE);
556 		break;
557 	case Opt_fatal_errors:
558 		switch (result.uint_32) {
559 		case Opt_fatal_errors_panic:
560 			btrfs_set_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
561 			break;
562 		case Opt_fatal_errors_bug:
563 			btrfs_clear_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
564 			break;
565 		default:
566 			btrfs_err(NULL, "unrecognized fatal_errors value %s",
567 				  param->key);
568 			return -EINVAL;
569 		}
570 		break;
571 	case Opt_commit_interval:
572 		ctx->commit_interval = result.uint_32;
573 		if (ctx->commit_interval > BTRFS_WARNING_COMMIT_INTERVAL) {
574 			btrfs_warn(NULL, "excessive commit interval %u, use with care",
575 				   ctx->commit_interval);
576 		}
577 		if (ctx->commit_interval == 0)
578 			ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
579 		break;
580 	case Opt_rescue:
581 		switch (result.uint_32) {
582 		case Opt_rescue_usebackuproot:
583 			btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
584 			break;
585 		case Opt_rescue_nologreplay:
586 			btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
587 			break;
588 		case Opt_rescue_ignorebadroots:
589 			btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
590 			break;
591 		case Opt_rescue_ignoredatacsums:
592 			btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
593 			break;
594 		case Opt_rescue_ignoremetacsums:
595 			btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS);
596 			break;
597 		case Opt_rescue_ignoresuperflags:
598 			btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS);
599 			break;
600 		case Opt_rescue_parameter_all:
601 			btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
602 			btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS);
603 			btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS);
604 			btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
605 			btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
606 			break;
607 		default:
608 			btrfs_info(NULL, "unrecognized rescue option '%s'",
609 				   param->key);
610 			return -EINVAL;
611 		}
612 		break;
613 #ifdef CONFIG_BTRFS_DEBUG
614 	case Opt_fragment:
615 		switch (result.uint_32) {
616 		case Opt_fragment_parameter_all:
617 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
618 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
619 			break;
620 		case Opt_fragment_parameter_metadata:
621 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
622 			break;
623 		case Opt_fragment_parameter_data:
624 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
625 			break;
626 		default:
627 			btrfs_info(NULL, "unrecognized fragment option '%s'",
628 				   param->key);
629 			return -EINVAL;
630 		}
631 		break;
632 #endif
633 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
634 	case Opt_ref_verify:
635 		btrfs_set_opt(ctx->mount_opt, REF_VERIFY);
636 		break;
637 #endif
638 	default:
639 		btrfs_err(NULL, "unrecognized mount option '%s'", param->key);
640 		return -EINVAL;
641 	}
642 
643 	return 0;
644 }
645 
646 /*
647  * Some options only have meaning at mount time and shouldn't persist across
648  * remounts, or be displayed. Clear these at the end of mount and remount code
649  * paths.
650  */
btrfs_clear_oneshot_options(struct btrfs_fs_info * fs_info)651 static void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
652 {
653 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
654 	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
655 	btrfs_clear_opt(fs_info->mount_opt, NOSPACECACHE);
656 }
657 
check_ro_option(const struct btrfs_fs_info * fs_info,unsigned long long mount_opt,unsigned long long opt,const char * opt_name)658 static bool check_ro_option(const struct btrfs_fs_info *fs_info,
659 			    unsigned long long mount_opt, unsigned long long opt,
660 			    const char *opt_name)
661 {
662 	if (mount_opt & opt) {
663 		btrfs_err(fs_info, "%s must be used with ro mount option",
664 			  opt_name);
665 		return true;
666 	}
667 	return false;
668 }
669 
btrfs_check_options(const struct btrfs_fs_info * info,unsigned long long * mount_opt,unsigned long flags)670 bool btrfs_check_options(const struct btrfs_fs_info *info,
671 			 unsigned long long *mount_opt,
672 			 unsigned long flags)
673 {
674 	bool ret = true;
675 
676 	if (!(flags & SB_RDONLY) &&
677 	    (check_ro_option(info, *mount_opt, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
678 	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
679 	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums") ||
680 	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREMETACSUMS, "ignoremetacsums") ||
681 	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNORESUPERFLAGS, "ignoresuperflags")))
682 		ret = false;
683 
684 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
685 	    !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE) &&
686 	    !btrfs_raw_test_opt(*mount_opt, CLEAR_CACHE)) {
687 		btrfs_err(info, "cannot disable free-space-tree");
688 		ret = false;
689 	}
690 	if (btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE) &&
691 	     !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) {
692 		btrfs_err(info, "cannot disable free-space-tree with block-group-tree feature");
693 		ret = false;
694 	}
695 
696 	if (btrfs_check_mountopts_zoned(info, mount_opt))
697 		ret = false;
698 
699 	if (!test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state)) {
700 		if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) {
701 			btrfs_info(info, "disk space caching is enabled");
702 			btrfs_warn(info,
703 "space cache v1 is being deprecated and will be removed in a future release, please use -o space_cache=v2");
704 		}
705 		if (btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE))
706 			btrfs_info(info, "using free-space-tree");
707 	}
708 
709 	return ret;
710 }
711 
712 /*
713  * This is subtle, we only call this during open_ctree().  We need to pre-load
714  * the mount options with the on-disk settings.  Before the new mount API took
715  * effect we would do this on mount and remount.  With the new mount API we'll
716  * only do this on the initial mount.
717  *
718  * This isn't a change in behavior, because we're using the current state of the
719  * file system to set the current mount options.  If you mounted with special
720  * options to disable these features and then remounted we wouldn't revert the
721  * settings, because mounting without these features cleared the on-disk
722  * settings, so this being called on re-mount is not needed.
723  */
btrfs_set_free_space_cache_settings(struct btrfs_fs_info * fs_info)724 void btrfs_set_free_space_cache_settings(struct btrfs_fs_info *fs_info)
725 {
726 	if (fs_info->sectorsize < PAGE_SIZE) {
727 		btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
728 		if (!btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
729 			btrfs_info(fs_info,
730 				   "forcing free space tree for sector size %u with page size %lu",
731 				   fs_info->sectorsize, PAGE_SIZE);
732 			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
733 		}
734 	}
735 
736 	/*
737 	 * At this point our mount options are populated, so we only mess with
738 	 * these settings if we don't have any settings already.
739 	 */
740 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
741 		return;
742 
743 	if (btrfs_is_zoned(fs_info) &&
744 	    btrfs_free_space_cache_v1_active(fs_info)) {
745 		btrfs_info(fs_info, "zoned: clearing existing space cache");
746 		btrfs_set_super_cache_generation(fs_info->super_copy, 0);
747 		return;
748 	}
749 
750 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
751 		return;
752 
753 	if (btrfs_test_opt(fs_info, NOSPACECACHE))
754 		return;
755 
756 	/*
757 	 * At this point we don't have explicit options set by the user, set
758 	 * them ourselves based on the state of the file system.
759 	 */
760 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
761 		btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
762 	else if (btrfs_free_space_cache_v1_active(fs_info))
763 		btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
764 }
765 
set_device_specific_options(struct btrfs_fs_info * fs_info)766 static void set_device_specific_options(struct btrfs_fs_info *fs_info)
767 {
768 	if (!btrfs_test_opt(fs_info, NOSSD) &&
769 	    !fs_info->fs_devices->rotating)
770 		btrfs_set_opt(fs_info->mount_opt, SSD);
771 
772 	/*
773 	 * For devices supporting discard turn on discard=async automatically,
774 	 * unless it's already set or disabled. This could be turned off by
775 	 * nodiscard for the same mount.
776 	 *
777 	 * The zoned mode piggy backs on the discard functionality for
778 	 * resetting a zone. There is no reason to delay the zone reset as it is
779 	 * fast enough. So, do not enable async discard for zoned mode.
780 	 */
781 	if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
782 	      btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
783 	      btrfs_test_opt(fs_info, NODISCARD)) &&
784 	    fs_info->fs_devices->discardable &&
785 	    !btrfs_is_zoned(fs_info))
786 		btrfs_set_opt(fs_info->mount_opt, DISCARD_ASYNC);
787 }
788 
btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info * fs_info,u64 subvol_objectid)789 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
790 					  u64 subvol_objectid)
791 {
792 	struct btrfs_root *root = fs_info->tree_root;
793 	struct btrfs_root *fs_root = NULL;
794 	struct btrfs_root_ref *root_ref;
795 	struct btrfs_inode_ref *inode_ref;
796 	struct btrfs_key key;
797 	struct btrfs_path *path = NULL;
798 	char *name = NULL, *ptr;
799 	u64 dirid;
800 	int len;
801 	int ret;
802 
803 	path = btrfs_alloc_path();
804 	if (!path) {
805 		ret = -ENOMEM;
806 		goto err;
807 	}
808 
809 	name = kmalloc(PATH_MAX, GFP_KERNEL);
810 	if (!name) {
811 		ret = -ENOMEM;
812 		goto err;
813 	}
814 	ptr = name + PATH_MAX - 1;
815 	ptr[0] = '\0';
816 
817 	/*
818 	 * Walk up the subvolume trees in the tree of tree roots by root
819 	 * backrefs until we hit the top-level subvolume.
820 	 */
821 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
822 		key.objectid = subvol_objectid;
823 		key.type = BTRFS_ROOT_BACKREF_KEY;
824 		key.offset = (u64)-1;
825 
826 		ret = btrfs_search_backwards(root, &key, path);
827 		if (ret < 0) {
828 			goto err;
829 		} else if (ret > 0) {
830 			ret = -ENOENT;
831 			goto err;
832 		}
833 
834 		subvol_objectid = key.offset;
835 
836 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
837 					  struct btrfs_root_ref);
838 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
839 		ptr -= len + 1;
840 		if (ptr < name) {
841 			ret = -ENAMETOOLONG;
842 			goto err;
843 		}
844 		read_extent_buffer(path->nodes[0], ptr + 1,
845 				   (unsigned long)(root_ref + 1), len);
846 		ptr[0] = '/';
847 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
848 		btrfs_release_path(path);
849 
850 		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
851 		if (IS_ERR(fs_root)) {
852 			ret = PTR_ERR(fs_root);
853 			fs_root = NULL;
854 			goto err;
855 		}
856 
857 		/*
858 		 * Walk up the filesystem tree by inode refs until we hit the
859 		 * root directory.
860 		 */
861 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
862 			key.objectid = dirid;
863 			key.type = BTRFS_INODE_REF_KEY;
864 			key.offset = (u64)-1;
865 
866 			ret = btrfs_search_backwards(fs_root, &key, path);
867 			if (ret < 0) {
868 				goto err;
869 			} else if (ret > 0) {
870 				ret = -ENOENT;
871 				goto err;
872 			}
873 
874 			dirid = key.offset;
875 
876 			inode_ref = btrfs_item_ptr(path->nodes[0],
877 						   path->slots[0],
878 						   struct btrfs_inode_ref);
879 			len = btrfs_inode_ref_name_len(path->nodes[0],
880 						       inode_ref);
881 			ptr -= len + 1;
882 			if (ptr < name) {
883 				ret = -ENAMETOOLONG;
884 				goto err;
885 			}
886 			read_extent_buffer(path->nodes[0], ptr + 1,
887 					   (unsigned long)(inode_ref + 1), len);
888 			ptr[0] = '/';
889 			btrfs_release_path(path);
890 		}
891 		btrfs_put_root(fs_root);
892 		fs_root = NULL;
893 	}
894 
895 	btrfs_free_path(path);
896 	if (ptr == name + PATH_MAX - 1) {
897 		name[0] = '/';
898 		name[1] = '\0';
899 	} else {
900 		memmove(name, ptr, name + PATH_MAX - ptr);
901 	}
902 	return name;
903 
904 err:
905 	btrfs_put_root(fs_root);
906 	btrfs_free_path(path);
907 	kfree(name);
908 	return ERR_PTR(ret);
909 }
910 
get_default_subvol_objectid(struct btrfs_fs_info * fs_info,u64 * objectid)911 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
912 {
913 	struct btrfs_root *root = fs_info->tree_root;
914 	struct btrfs_dir_item *di;
915 	struct btrfs_path *path;
916 	struct btrfs_key location;
917 	struct fscrypt_str name = FSTR_INIT("default", 7);
918 	u64 dir_id;
919 
920 	path = btrfs_alloc_path();
921 	if (!path)
922 		return -ENOMEM;
923 
924 	/*
925 	 * Find the "default" dir item which points to the root item that we
926 	 * will mount by default if we haven't been given a specific subvolume
927 	 * to mount.
928 	 */
929 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
930 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0);
931 	if (IS_ERR(di)) {
932 		btrfs_free_path(path);
933 		return PTR_ERR(di);
934 	}
935 	if (!di) {
936 		/*
937 		 * Ok the default dir item isn't there.  This is weird since
938 		 * it's always been there, but don't freak out, just try and
939 		 * mount the top-level subvolume.
940 		 */
941 		btrfs_free_path(path);
942 		*objectid = BTRFS_FS_TREE_OBJECTID;
943 		return 0;
944 	}
945 
946 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
947 	btrfs_free_path(path);
948 	*objectid = location.objectid;
949 	return 0;
950 }
951 
btrfs_fill_super(struct super_block * sb,struct btrfs_fs_devices * fs_devices)952 static int btrfs_fill_super(struct super_block *sb,
953 			    struct btrfs_fs_devices *fs_devices)
954 {
955 	struct btrfs_inode *inode;
956 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
957 	int ret;
958 
959 	sb->s_maxbytes = MAX_LFS_FILESIZE;
960 	sb->s_magic = BTRFS_SUPER_MAGIC;
961 	sb->s_op = &btrfs_super_ops;
962 	set_default_d_op(sb, &btrfs_dentry_operations);
963 	sb->s_export_op = &btrfs_export_ops;
964 #ifdef CONFIG_FS_VERITY
965 	sb->s_vop = &btrfs_verityops;
966 #endif
967 	sb->s_xattr = btrfs_xattr_handlers;
968 	sb->s_time_gran = 1;
969 	sb->s_iflags |= SB_I_CGROUPWB | SB_I_ALLOW_HSM;
970 
971 	ret = super_setup_bdi(sb);
972 	if (ret) {
973 		btrfs_err(fs_info, "super_setup_bdi failed");
974 		return ret;
975 	}
976 
977 	ret = open_ctree(sb, fs_devices);
978 	if (ret) {
979 		btrfs_err(fs_info, "open_ctree failed: %d", ret);
980 		return ret;
981 	}
982 
983 	inode = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
984 	if (IS_ERR(inode)) {
985 		ret = PTR_ERR(inode);
986 		btrfs_handle_fs_error(fs_info, ret, NULL);
987 		goto fail_close;
988 	}
989 
990 	sb->s_root = d_make_root(&inode->vfs_inode);
991 	if (!sb->s_root) {
992 		ret = -ENOMEM;
993 		goto fail_close;
994 	}
995 
996 	sb->s_flags |= SB_ACTIVE;
997 	return 0;
998 
999 fail_close:
1000 	close_ctree(fs_info);
1001 	return ret;
1002 }
1003 
btrfs_sync_fs(struct super_block * sb,int wait)1004 int btrfs_sync_fs(struct super_block *sb, int wait)
1005 {
1006 	struct btrfs_trans_handle *trans;
1007 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1008 	struct btrfs_root *root = fs_info->tree_root;
1009 
1010 	trace_btrfs_sync_fs(fs_info, wait);
1011 
1012 	if (!wait) {
1013 		filemap_flush(fs_info->btree_inode->i_mapping);
1014 		return 0;
1015 	}
1016 
1017 	btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
1018 
1019 	trans = btrfs_attach_transaction_barrier(root);
1020 	if (IS_ERR(trans)) {
1021 		/* no transaction, don't bother */
1022 		if (PTR_ERR(trans) == -ENOENT) {
1023 			/*
1024 			 * Exit unless we have some pending changes
1025 			 * that need to go through commit
1026 			 */
1027 			if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT,
1028 				      &fs_info->flags))
1029 				return 0;
1030 			/*
1031 			 * A non-blocking test if the fs is frozen. We must not
1032 			 * start a new transaction here otherwise a deadlock
1033 			 * happens. The pending operations are delayed to the
1034 			 * next commit after thawing.
1035 			 */
1036 			if (sb_start_write_trylock(sb))
1037 				sb_end_write(sb);
1038 			else
1039 				return 0;
1040 			trans = btrfs_start_transaction(root, 0);
1041 		}
1042 		if (IS_ERR(trans))
1043 			return PTR_ERR(trans);
1044 	}
1045 	return btrfs_commit_transaction(trans);
1046 }
1047 
print_rescue_option(struct seq_file * seq,const char * s,bool * printed)1048 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1049 {
1050 	seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1051 	*printed = true;
1052 }
1053 
btrfs_show_options(struct seq_file * seq,struct dentry * dentry)1054 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1055 {
1056 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1057 	const char *compress_type;
1058 	const char *subvol_name;
1059 	bool printed = false;
1060 
1061 	if (btrfs_test_opt(info, DEGRADED))
1062 		seq_puts(seq, ",degraded");
1063 	if (btrfs_test_opt(info, NODATASUM))
1064 		seq_puts(seq, ",nodatasum");
1065 	if (btrfs_test_opt(info, NODATACOW))
1066 		seq_puts(seq, ",nodatacow");
1067 	if (btrfs_test_opt(info, NOBARRIER))
1068 		seq_puts(seq, ",nobarrier");
1069 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1070 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1071 	if (info->thread_pool_size !=  min_t(unsigned long,
1072 					     num_online_cpus() + 2, 8))
1073 		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1074 	if (btrfs_test_opt(info, COMPRESS)) {
1075 		compress_type = btrfs_compress_type2str(info->compress_type);
1076 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1077 			seq_printf(seq, ",compress-force=%s", compress_type);
1078 		else
1079 			seq_printf(seq, ",compress=%s", compress_type);
1080 		if (info->compress_level)
1081 			seq_printf(seq, ":%d", info->compress_level);
1082 	}
1083 	if (btrfs_test_opt(info, NOSSD))
1084 		seq_puts(seq, ",nossd");
1085 	if (btrfs_test_opt(info, SSD_SPREAD))
1086 		seq_puts(seq, ",ssd_spread");
1087 	else if (btrfs_test_opt(info, SSD))
1088 		seq_puts(seq, ",ssd");
1089 	if (btrfs_test_opt(info, NOTREELOG))
1090 		seq_puts(seq, ",notreelog");
1091 	if (btrfs_test_opt(info, NOLOGREPLAY))
1092 		print_rescue_option(seq, "nologreplay", &printed);
1093 	if (btrfs_test_opt(info, USEBACKUPROOT))
1094 		print_rescue_option(seq, "usebackuproot", &printed);
1095 	if (btrfs_test_opt(info, IGNOREBADROOTS))
1096 		print_rescue_option(seq, "ignorebadroots", &printed);
1097 	if (btrfs_test_opt(info, IGNOREDATACSUMS))
1098 		print_rescue_option(seq, "ignoredatacsums", &printed);
1099 	if (btrfs_test_opt(info, IGNOREMETACSUMS))
1100 		print_rescue_option(seq, "ignoremetacsums", &printed);
1101 	if (btrfs_test_opt(info, IGNORESUPERFLAGS))
1102 		print_rescue_option(seq, "ignoresuperflags", &printed);
1103 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1104 		seq_puts(seq, ",flushoncommit");
1105 	if (btrfs_test_opt(info, DISCARD_SYNC))
1106 		seq_puts(seq, ",discard");
1107 	if (btrfs_test_opt(info, DISCARD_ASYNC))
1108 		seq_puts(seq, ",discard=async");
1109 	if (!(info->sb->s_flags & SB_POSIXACL))
1110 		seq_puts(seq, ",noacl");
1111 	if (btrfs_free_space_cache_v1_active(info))
1112 		seq_puts(seq, ",space_cache");
1113 	else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1114 		seq_puts(seq, ",space_cache=v2");
1115 	else
1116 		seq_puts(seq, ",nospace_cache");
1117 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1118 		seq_puts(seq, ",rescan_uuid_tree");
1119 	if (btrfs_test_opt(info, CLEAR_CACHE))
1120 		seq_puts(seq, ",clear_cache");
1121 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1122 		seq_puts(seq, ",user_subvol_rm_allowed");
1123 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1124 		seq_puts(seq, ",enospc_debug");
1125 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1126 		seq_puts(seq, ",autodefrag");
1127 	if (btrfs_test_opt(info, SKIP_BALANCE))
1128 		seq_puts(seq, ",skip_balance");
1129 	if (info->metadata_ratio)
1130 		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1131 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1132 		seq_puts(seq, ",fatal_errors=panic");
1133 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1134 		seq_printf(seq, ",commit=%u", info->commit_interval);
1135 #ifdef CONFIG_BTRFS_DEBUG
1136 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1137 		seq_puts(seq, ",fragment=data");
1138 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1139 		seq_puts(seq, ",fragment=metadata");
1140 #endif
1141 	if (btrfs_test_opt(info, REF_VERIFY))
1142 		seq_puts(seq, ",ref_verify");
1143 	seq_printf(seq, ",subvolid=%llu", btrfs_root_id(BTRFS_I(d_inode(dentry))->root));
1144 	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1145 			btrfs_root_id(BTRFS_I(d_inode(dentry))->root));
1146 	if (!IS_ERR(subvol_name)) {
1147 		seq_show_option(seq, "subvol", subvol_name);
1148 		kfree(subvol_name);
1149 	}
1150 	return 0;
1151 }
1152 
1153 /*
1154  * subvolumes are identified by ino 256
1155  */
is_subvolume_inode(struct inode * inode)1156 static inline bool is_subvolume_inode(struct inode *inode)
1157 {
1158 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1159 		return true;
1160 	return false;
1161 }
1162 
mount_subvol(const char * subvol_name,u64 subvol_objectid,struct vfsmount * mnt)1163 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1164 				   struct vfsmount *mnt)
1165 {
1166 	struct dentry *root;
1167 	int ret;
1168 
1169 	if (!subvol_name) {
1170 		if (!subvol_objectid) {
1171 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1172 							  &subvol_objectid);
1173 			if (ret) {
1174 				root = ERR_PTR(ret);
1175 				goto out;
1176 			}
1177 		}
1178 		subvol_name = btrfs_get_subvol_name_from_objectid(
1179 					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1180 		if (IS_ERR(subvol_name)) {
1181 			root = ERR_CAST(subvol_name);
1182 			subvol_name = NULL;
1183 			goto out;
1184 		}
1185 
1186 	}
1187 
1188 	root = mount_subtree(mnt, subvol_name);
1189 	/* mount_subtree() drops our reference on the vfsmount. */
1190 	mnt = NULL;
1191 
1192 	if (!IS_ERR(root)) {
1193 		struct super_block *s = root->d_sb;
1194 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1195 		struct inode *root_inode = d_inode(root);
1196 		u64 root_objectid = btrfs_root_id(BTRFS_I(root_inode)->root);
1197 
1198 		ret = 0;
1199 		if (!is_subvolume_inode(root_inode)) {
1200 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1201 			       subvol_name);
1202 			ret = -EINVAL;
1203 		}
1204 		if (subvol_objectid && root_objectid != subvol_objectid) {
1205 			/*
1206 			 * This will also catch a race condition where a
1207 			 * subvolume which was passed by ID is renamed and
1208 			 * another subvolume is renamed over the old location.
1209 			 */
1210 			btrfs_err(fs_info,
1211 				  "subvol '%s' does not match subvolid %llu",
1212 				  subvol_name, subvol_objectid);
1213 			ret = -EINVAL;
1214 		}
1215 		if (ret) {
1216 			dput(root);
1217 			root = ERR_PTR(ret);
1218 			deactivate_locked_super(s);
1219 		}
1220 	}
1221 
1222 out:
1223 	mntput(mnt);
1224 	kfree(subvol_name);
1225 	return root;
1226 }
1227 
btrfs_resize_thread_pool(struct btrfs_fs_info * fs_info,u32 new_pool_size,u32 old_pool_size)1228 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1229 				     u32 new_pool_size, u32 old_pool_size)
1230 {
1231 	if (new_pool_size == old_pool_size)
1232 		return;
1233 
1234 	fs_info->thread_pool_size = new_pool_size;
1235 
1236 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1237 	       old_pool_size, new_pool_size);
1238 
1239 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1240 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1241 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1242 	workqueue_set_max_active(fs_info->endio_workers, new_pool_size);
1243 	workqueue_set_max_active(fs_info->endio_meta_workers, new_pool_size);
1244 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1245 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1246 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1247 }
1248 
btrfs_remount_begin(struct btrfs_fs_info * fs_info,unsigned long long old_opts,int flags)1249 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1250 				       unsigned long long old_opts, int flags)
1251 {
1252 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1253 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1254 	     (flags & SB_RDONLY))) {
1255 		/* wait for any defraggers to finish */
1256 		wait_event(fs_info->transaction_wait,
1257 			   (atomic_read(&fs_info->defrag_running) == 0));
1258 		if (flags & SB_RDONLY)
1259 			sync_filesystem(fs_info->sb);
1260 	}
1261 }
1262 
btrfs_remount_cleanup(struct btrfs_fs_info * fs_info,unsigned long long old_opts)1263 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1264 					 unsigned long long old_opts)
1265 {
1266 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1267 
1268 	/*
1269 	 * We need to cleanup all defragable inodes if the autodefragment is
1270 	 * close or the filesystem is read only.
1271 	 */
1272 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1273 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1274 		btrfs_cleanup_defrag_inodes(fs_info);
1275 	}
1276 
1277 	/* If we toggled discard async */
1278 	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1279 	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1280 		btrfs_discard_resume(fs_info);
1281 	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1282 		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1283 		btrfs_discard_cleanup(fs_info);
1284 
1285 	/* If we toggled space cache */
1286 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1287 		btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1288 }
1289 
btrfs_remount_rw(struct btrfs_fs_info * fs_info)1290 static int btrfs_remount_rw(struct btrfs_fs_info *fs_info)
1291 {
1292 	int ret;
1293 
1294 	if (BTRFS_FS_ERROR(fs_info)) {
1295 		btrfs_err(fs_info,
1296 			  "remounting read-write after error is not allowed");
1297 		return -EINVAL;
1298 	}
1299 
1300 	if (fs_info->fs_devices->rw_devices == 0)
1301 		return -EACCES;
1302 
1303 	if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1304 		btrfs_warn(fs_info,
1305 			   "too many missing devices, writable remount is not allowed");
1306 		return -EACCES;
1307 	}
1308 
1309 	if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1310 		btrfs_warn(fs_info,
1311 			   "mount required to replay tree-log, cannot remount read-write");
1312 		return -EINVAL;
1313 	}
1314 
1315 	/*
1316 	 * NOTE: when remounting with a change that does writes, don't put it
1317 	 * anywhere above this point, as we are not sure to be safe to write
1318 	 * until we pass the above checks.
1319 	 */
1320 	ret = btrfs_start_pre_rw_mount(fs_info);
1321 	if (ret)
1322 		return ret;
1323 
1324 	btrfs_clear_sb_rdonly(fs_info->sb);
1325 
1326 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1327 
1328 	/*
1329 	 * If we've gone from readonly -> read-write, we need to get our
1330 	 * sync/async discard lists in the right state.
1331 	 */
1332 	btrfs_discard_resume(fs_info);
1333 
1334 	return 0;
1335 }
1336 
btrfs_remount_ro(struct btrfs_fs_info * fs_info)1337 static int btrfs_remount_ro(struct btrfs_fs_info *fs_info)
1338 {
1339 	/*
1340 	 * This also happens on 'umount -rf' or on shutdown, when the
1341 	 * filesystem is busy.
1342 	 */
1343 	cancel_work_sync(&fs_info->async_reclaim_work);
1344 	cancel_work_sync(&fs_info->async_data_reclaim_work);
1345 
1346 	btrfs_discard_cleanup(fs_info);
1347 
1348 	/* Wait for the uuid_scan task to finish */
1349 	down(&fs_info->uuid_tree_rescan_sem);
1350 	/* Avoid complains from lockdep et al. */
1351 	up(&fs_info->uuid_tree_rescan_sem);
1352 
1353 	btrfs_set_sb_rdonly(fs_info->sb);
1354 
1355 	/*
1356 	 * Setting SB_RDONLY will put the cleaner thread to sleep at the next
1357 	 * loop if it's already active.  If it's already asleep, we'll leave
1358 	 * unused block groups on disk until we're mounted read-write again
1359 	 * unless we clean them up here.
1360 	 */
1361 	btrfs_delete_unused_bgs(fs_info);
1362 
1363 	/*
1364 	 * The cleaner task could be already running before we set the flag
1365 	 * BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).  We must make
1366 	 * sure that after we finish the remount, i.e. after we call
1367 	 * btrfs_commit_super(), the cleaner can no longer start a transaction
1368 	 * - either because it was dropping a dead root, running delayed iputs
1369 	 *   or deleting an unused block group (the cleaner picked a block
1370 	 *   group from the list of unused block groups before we were able to
1371 	 *   in the previous call to btrfs_delete_unused_bgs()).
1372 	 */
1373 	wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, TASK_UNINTERRUPTIBLE);
1374 
1375 	/*
1376 	 * We've set the superblock to RO mode, so we might have made the
1377 	 * cleaner task sleep without running all pending delayed iputs. Go
1378 	 * through all the delayed iputs here, so that if an unmount happens
1379 	 * without remounting RW we don't end up at finishing close_ctree()
1380 	 * with a non-empty list of delayed iputs.
1381 	 */
1382 	btrfs_run_delayed_iputs(fs_info);
1383 
1384 	btrfs_dev_replace_suspend_for_unmount(fs_info);
1385 	btrfs_scrub_cancel(fs_info);
1386 	btrfs_pause_balance(fs_info);
1387 
1388 	/*
1389 	 * Pause the qgroup rescan worker if it is running. We don't want it to
1390 	 * be still running after we are in RO mode, as after that, by the time
1391 	 * we unmount, it might have left a transaction open, so we would leak
1392 	 * the transaction and/or crash.
1393 	 */
1394 	btrfs_qgroup_wait_for_completion(fs_info, false);
1395 
1396 	return btrfs_commit_super(fs_info);
1397 }
1398 
btrfs_ctx_to_info(struct btrfs_fs_info * fs_info,struct btrfs_fs_context * ctx)1399 static void btrfs_ctx_to_info(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1400 {
1401 	fs_info->max_inline = ctx->max_inline;
1402 	fs_info->commit_interval = ctx->commit_interval;
1403 	fs_info->metadata_ratio = ctx->metadata_ratio;
1404 	fs_info->thread_pool_size = ctx->thread_pool_size;
1405 	fs_info->mount_opt = ctx->mount_opt;
1406 	fs_info->compress_type = ctx->compress_type;
1407 	fs_info->compress_level = ctx->compress_level;
1408 }
1409 
btrfs_info_to_ctx(struct btrfs_fs_info * fs_info,struct btrfs_fs_context * ctx)1410 static void btrfs_info_to_ctx(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1411 {
1412 	ctx->max_inline = fs_info->max_inline;
1413 	ctx->commit_interval = fs_info->commit_interval;
1414 	ctx->metadata_ratio = fs_info->metadata_ratio;
1415 	ctx->thread_pool_size = fs_info->thread_pool_size;
1416 	ctx->mount_opt = fs_info->mount_opt;
1417 	ctx->compress_type = fs_info->compress_type;
1418 	ctx->compress_level = fs_info->compress_level;
1419 }
1420 
1421 #define btrfs_info_if_set(fs_info, old_ctx, opt, fmt, args...)			\
1422 do {										\
1423 	if ((!old_ctx || !btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&	\
1424 	    btrfs_raw_test_opt(fs_info->mount_opt, opt))			\
1425 		btrfs_info(fs_info, fmt, ##args);				\
1426 } while (0)
1427 
1428 #define btrfs_info_if_unset(fs_info, old_ctx, opt, fmt, args...)	\
1429 do {									\
1430 	if ((old_ctx && btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&	\
1431 	    !btrfs_raw_test_opt(fs_info->mount_opt, opt))		\
1432 		btrfs_info(fs_info, fmt, ##args);			\
1433 } while (0)
1434 
btrfs_emit_options(struct btrfs_fs_info * info,struct btrfs_fs_context * old)1435 static void btrfs_emit_options(struct btrfs_fs_info *info,
1436 			       struct btrfs_fs_context *old)
1437 {
1438 	btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1439 	btrfs_info_if_set(info, old, DEGRADED, "allowing degraded mounts");
1440 	btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1441 	btrfs_info_if_set(info, old, SSD, "enabling ssd optimizations");
1442 	btrfs_info_if_set(info, old, SSD_SPREAD, "using spread ssd allocation scheme");
1443 	btrfs_info_if_set(info, old, NOBARRIER, "turning off barriers");
1444 	btrfs_info_if_set(info, old, NOTREELOG, "disabling tree log");
1445 	btrfs_info_if_set(info, old, NOLOGREPLAY, "disabling log replay at mount time");
1446 	btrfs_info_if_set(info, old, FLUSHONCOMMIT, "turning on flush-on-commit");
1447 	btrfs_info_if_set(info, old, DISCARD_SYNC, "turning on sync discard");
1448 	btrfs_info_if_set(info, old, DISCARD_ASYNC, "turning on async discard");
1449 	btrfs_info_if_set(info, old, FREE_SPACE_TREE, "enabling free space tree");
1450 	btrfs_info_if_set(info, old, SPACE_CACHE, "enabling disk space caching");
1451 	btrfs_info_if_set(info, old, CLEAR_CACHE, "force clearing of disk cache");
1452 	btrfs_info_if_set(info, old, AUTO_DEFRAG, "enabling auto defrag");
1453 	btrfs_info_if_set(info, old, FRAGMENT_DATA, "fragmenting data");
1454 	btrfs_info_if_set(info, old, FRAGMENT_METADATA, "fragmenting metadata");
1455 	btrfs_info_if_set(info, old, REF_VERIFY, "doing ref verification");
1456 	btrfs_info_if_set(info, old, USEBACKUPROOT, "trying to use backup root at mount time");
1457 	btrfs_info_if_set(info, old, IGNOREBADROOTS, "ignoring bad roots");
1458 	btrfs_info_if_set(info, old, IGNOREDATACSUMS, "ignoring data csums");
1459 	btrfs_info_if_set(info, old, IGNOREMETACSUMS, "ignoring meta csums");
1460 	btrfs_info_if_set(info, old, IGNORESUPERFLAGS, "ignoring unknown super block flags");
1461 
1462 	btrfs_info_if_unset(info, old, NODATACOW, "setting datacow");
1463 	btrfs_info_if_unset(info, old, SSD, "not using ssd optimizations");
1464 	btrfs_info_if_unset(info, old, SSD_SPREAD, "not using spread ssd allocation scheme");
1465 	btrfs_info_if_unset(info, old, NOBARRIER, "turning off barriers");
1466 	btrfs_info_if_unset(info, old, NOTREELOG, "enabling tree log");
1467 	btrfs_info_if_unset(info, old, SPACE_CACHE, "disabling disk space caching");
1468 	btrfs_info_if_unset(info, old, FREE_SPACE_TREE, "disabling free space tree");
1469 	btrfs_info_if_unset(info, old, AUTO_DEFRAG, "disabling auto defrag");
1470 	btrfs_info_if_unset(info, old, COMPRESS, "use no compression");
1471 
1472 	/* Did the compression settings change? */
1473 	if (btrfs_test_opt(info, COMPRESS) &&
1474 	    (!old ||
1475 	     old->compress_type != info->compress_type ||
1476 	     old->compress_level != info->compress_level ||
1477 	     (!btrfs_raw_test_opt(old->mount_opt, FORCE_COMPRESS) &&
1478 	      btrfs_raw_test_opt(info->mount_opt, FORCE_COMPRESS)))) {
1479 		const char *compress_type = btrfs_compress_type2str(info->compress_type);
1480 
1481 		btrfs_info(info, "%s %s compression, level %d",
1482 			   btrfs_test_opt(info, FORCE_COMPRESS) ? "force" : "use",
1483 			   compress_type, info->compress_level);
1484 	}
1485 
1486 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1487 		btrfs_info(info, "max_inline set to %llu", info->max_inline);
1488 }
1489 
btrfs_reconfigure(struct fs_context * fc)1490 static int btrfs_reconfigure(struct fs_context *fc)
1491 {
1492 	struct super_block *sb = fc->root->d_sb;
1493 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1494 	struct btrfs_fs_context *ctx = fc->fs_private;
1495 	struct btrfs_fs_context old_ctx;
1496 	int ret = 0;
1497 	bool mount_reconfigure = (fc->s_fs_info != NULL);
1498 
1499 	btrfs_info_to_ctx(fs_info, &old_ctx);
1500 
1501 	/*
1502 	 * This is our "bind mount" trick, we don't want to allow the user to do
1503 	 * anything other than mount a different ro/rw and a different subvol,
1504 	 * all of the mount options should be maintained.
1505 	 */
1506 	if (mount_reconfigure)
1507 		ctx->mount_opt = old_ctx.mount_opt;
1508 
1509 	sync_filesystem(sb);
1510 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1511 
1512 	if (!btrfs_check_options(fs_info, &ctx->mount_opt, fc->sb_flags))
1513 		return -EINVAL;
1514 
1515 	ret = btrfs_check_features(fs_info, !(fc->sb_flags & SB_RDONLY));
1516 	if (ret < 0)
1517 		return ret;
1518 
1519 	btrfs_ctx_to_info(fs_info, ctx);
1520 	btrfs_remount_begin(fs_info, old_ctx.mount_opt, fc->sb_flags);
1521 	btrfs_resize_thread_pool(fs_info, fs_info->thread_pool_size,
1522 				 old_ctx.thread_pool_size);
1523 
1524 	if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1525 	    (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1526 	    (!sb_rdonly(sb) || (fc->sb_flags & SB_RDONLY))) {
1527 		btrfs_warn(fs_info,
1528 		"remount supports changing free space tree only from RO to RW");
1529 		/* Make sure free space cache options match the state on disk. */
1530 		if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1531 			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1532 			btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1533 		}
1534 		if (btrfs_free_space_cache_v1_active(fs_info)) {
1535 			btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1536 			btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1537 		}
1538 	}
1539 
1540 	ret = 0;
1541 	if (!sb_rdonly(sb) && (fc->sb_flags & SB_RDONLY))
1542 		ret = btrfs_remount_ro(fs_info);
1543 	else if (sb_rdonly(sb) && !(fc->sb_flags & SB_RDONLY))
1544 		ret = btrfs_remount_rw(fs_info);
1545 	if (ret)
1546 		goto restore;
1547 
1548 	/*
1549 	 * If we set the mask during the parameter parsing VFS would reject the
1550 	 * remount.  Here we can set the mask and the value will be updated
1551 	 * appropriately.
1552 	 */
1553 	if ((fc->sb_flags & SB_POSIXACL) != (sb->s_flags & SB_POSIXACL))
1554 		fc->sb_flags_mask |= SB_POSIXACL;
1555 
1556 	btrfs_emit_options(fs_info, &old_ctx);
1557 	wake_up_process(fs_info->transaction_kthread);
1558 	btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1559 	btrfs_clear_oneshot_options(fs_info);
1560 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1561 
1562 	return 0;
1563 restore:
1564 	btrfs_ctx_to_info(fs_info, &old_ctx);
1565 	btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1566 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1567 	return ret;
1568 }
1569 
1570 /* Used to sort the devices by max_avail(descending sort) */
btrfs_cmp_device_free_bytes(const void * a,const void * b)1571 static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
1572 {
1573 	const struct btrfs_device_info *dev_info1 = a;
1574 	const struct btrfs_device_info *dev_info2 = b;
1575 
1576 	if (dev_info1->max_avail > dev_info2->max_avail)
1577 		return -1;
1578 	else if (dev_info1->max_avail < dev_info2->max_avail)
1579 		return 1;
1580 	return 0;
1581 }
1582 
1583 /*
1584  * sort the devices by max_avail, in which max free extent size of each device
1585  * is stored.(Descending Sort)
1586  */
btrfs_descending_sort_devices(struct btrfs_device_info * devices,size_t nr_devices)1587 static inline void btrfs_descending_sort_devices(
1588 					struct btrfs_device_info *devices,
1589 					size_t nr_devices)
1590 {
1591 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1592 	     btrfs_cmp_device_free_bytes, NULL);
1593 }
1594 
1595 /*
1596  * The helper to calc the free space on the devices that can be used to store
1597  * file data.
1598  */
btrfs_calc_avail_data_space(struct btrfs_fs_info * fs_info,u64 * free_bytes)1599 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1600 					      u64 *free_bytes)
1601 {
1602 	struct btrfs_device_info *devices_info;
1603 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1604 	struct btrfs_device *device;
1605 	u64 type;
1606 	u64 avail_space;
1607 	u64 min_stripe_size;
1608 	int num_stripes = 1;
1609 	int i = 0, nr_devices;
1610 	const struct btrfs_raid_attr *rattr;
1611 
1612 	/*
1613 	 * We aren't under the device list lock, so this is racy-ish, but good
1614 	 * enough for our purposes.
1615 	 */
1616 	nr_devices = fs_info->fs_devices->open_devices;
1617 	if (!nr_devices) {
1618 		smp_mb();
1619 		nr_devices = fs_info->fs_devices->open_devices;
1620 		ASSERT(nr_devices);
1621 		if (!nr_devices) {
1622 			*free_bytes = 0;
1623 			return 0;
1624 		}
1625 	}
1626 
1627 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1628 			       GFP_KERNEL);
1629 	if (!devices_info)
1630 		return -ENOMEM;
1631 
1632 	/* calc min stripe number for data space allocation */
1633 	type = btrfs_data_alloc_profile(fs_info);
1634 	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1635 
1636 	if (type & BTRFS_BLOCK_GROUP_RAID0)
1637 		num_stripes = nr_devices;
1638 	else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK)
1639 		num_stripes = rattr->ncopies;
1640 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
1641 		num_stripes = 4;
1642 
1643 	/* Adjust for more than 1 stripe per device */
1644 	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
1645 
1646 	rcu_read_lock();
1647 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1648 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1649 						&device->dev_state) ||
1650 		    !device->bdev ||
1651 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1652 			continue;
1653 
1654 		if (i >= nr_devices)
1655 			break;
1656 
1657 		avail_space = device->total_bytes - device->bytes_used;
1658 
1659 		/* align with stripe_len */
1660 		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
1661 
1662 		/*
1663 		 * Ensure we have at least min_stripe_size on top of the
1664 		 * reserved space on the device.
1665 		 */
1666 		if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size)
1667 			continue;
1668 
1669 		avail_space -= BTRFS_DEVICE_RANGE_RESERVED;
1670 
1671 		devices_info[i].dev = device;
1672 		devices_info[i].max_avail = avail_space;
1673 
1674 		i++;
1675 	}
1676 	rcu_read_unlock();
1677 
1678 	nr_devices = i;
1679 
1680 	btrfs_descending_sort_devices(devices_info, nr_devices);
1681 
1682 	i = nr_devices - 1;
1683 	avail_space = 0;
1684 	while (nr_devices >= rattr->devs_min) {
1685 		num_stripes = min(num_stripes, nr_devices);
1686 
1687 		if (devices_info[i].max_avail >= min_stripe_size) {
1688 			int j;
1689 			u64 alloc_size;
1690 
1691 			avail_space += devices_info[i].max_avail * num_stripes;
1692 			alloc_size = devices_info[i].max_avail;
1693 			for (j = i + 1 - num_stripes; j <= i; j++)
1694 				devices_info[j].max_avail -= alloc_size;
1695 		}
1696 		i--;
1697 		nr_devices--;
1698 	}
1699 
1700 	kfree(devices_info);
1701 	*free_bytes = avail_space;
1702 	return 0;
1703 }
1704 
1705 /*
1706  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1707  *
1708  * If there's a redundant raid level at DATA block groups, use the respective
1709  * multiplier to scale the sizes.
1710  *
1711  * Unused device space usage is based on simulating the chunk allocator
1712  * algorithm that respects the device sizes and order of allocations.  This is
1713  * a close approximation of the actual use but there are other factors that may
1714  * change the result (like a new metadata chunk).
1715  *
1716  * If metadata is exhausted, f_bavail will be 0.
1717  */
btrfs_statfs(struct dentry * dentry,struct kstatfs * buf)1718 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1719 {
1720 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1721 	struct btrfs_super_block *disk_super = fs_info->super_copy;
1722 	struct btrfs_space_info *found;
1723 	u64 total_used = 0;
1724 	u64 total_free_data = 0;
1725 	u64 total_free_meta = 0;
1726 	u32 bits = fs_info->sectorsize_bits;
1727 	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
1728 	unsigned factor = 1;
1729 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
1730 	int ret;
1731 	u64 thresh = 0;
1732 	int mixed = 0;
1733 
1734 	list_for_each_entry(found, &fs_info->space_info, list) {
1735 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1736 			int i;
1737 
1738 			total_free_data += found->disk_total - found->disk_used;
1739 			total_free_data -=
1740 				btrfs_account_ro_block_groups_free_space(found);
1741 
1742 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1743 				if (!list_empty(&found->block_groups[i]))
1744 					factor = btrfs_bg_type_to_factor(
1745 						btrfs_raid_array[i].bg_flag);
1746 			}
1747 		}
1748 
1749 		/*
1750 		 * Metadata in mixed block group profiles are accounted in data
1751 		 */
1752 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
1753 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
1754 				mixed = 1;
1755 			else
1756 				total_free_meta += found->disk_total -
1757 					found->disk_used;
1758 		}
1759 
1760 		total_used += found->disk_used;
1761 	}
1762 
1763 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
1764 	buf->f_blocks >>= bits;
1765 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
1766 
1767 	/* Account global block reserve as used, it's in logical size already */
1768 	spin_lock(&block_rsv->lock);
1769 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
1770 	if (buf->f_bfree >= block_rsv->size >> bits)
1771 		buf->f_bfree -= block_rsv->size >> bits;
1772 	else
1773 		buf->f_bfree = 0;
1774 	spin_unlock(&block_rsv->lock);
1775 
1776 	buf->f_bavail = div_u64(total_free_data, factor);
1777 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
1778 	if (ret)
1779 		return ret;
1780 	buf->f_bavail += div_u64(total_free_data, factor);
1781 	buf->f_bavail = buf->f_bavail >> bits;
1782 
1783 	/*
1784 	 * We calculate the remaining metadata space minus global reserve. If
1785 	 * this is (supposedly) smaller than zero, there's no space. But this
1786 	 * does not hold in practice, the exhausted state happens where's still
1787 	 * some positive delta. So we apply some guesswork and compare the
1788 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
1789 	 *
1790 	 * We probably cannot calculate the exact threshold value because this
1791 	 * depends on the internal reservations requested by various
1792 	 * operations, so some operations that consume a few metadata will
1793 	 * succeed even if the Avail is zero. But this is better than the other
1794 	 * way around.
1795 	 */
1796 	thresh = SZ_4M;
1797 
1798 	/*
1799 	 * We only want to claim there's no available space if we can no longer
1800 	 * allocate chunks for our metadata profile and our global reserve will
1801 	 * not fit in the free metadata space.  If we aren't ->full then we
1802 	 * still can allocate chunks and thus are fine using the currently
1803 	 * calculated f_bavail.
1804 	 */
1805 	if (!mixed && block_rsv->space_info->full &&
1806 	    (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size))
1807 		buf->f_bavail = 0;
1808 
1809 	buf->f_type = BTRFS_SUPER_MAGIC;
1810 	buf->f_bsize = fs_info->sectorsize;
1811 	buf->f_namelen = BTRFS_NAME_LEN;
1812 
1813 	/* We treat it as constant endianness (it doesn't matter _which_)
1814 	   because we want the fsid to come out the same whether mounted
1815 	   on a big-endian or little-endian host */
1816 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1817 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1818 	/* Mask in the root object ID too, to disambiguate subvols */
1819 	buf->f_fsid.val[0] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root) >> 32;
1820 	buf->f_fsid.val[1] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root);
1821 
1822 	return 0;
1823 }
1824 
btrfs_fc_test_super(struct super_block * sb,struct fs_context * fc)1825 static int btrfs_fc_test_super(struct super_block *sb, struct fs_context *fc)
1826 {
1827 	struct btrfs_fs_info *p = fc->s_fs_info;
1828 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1829 
1830 	return fs_info->fs_devices == p->fs_devices;
1831 }
1832 
btrfs_get_tree_super(struct fs_context * fc)1833 static int btrfs_get_tree_super(struct fs_context *fc)
1834 {
1835 	struct btrfs_fs_info *fs_info = fc->s_fs_info;
1836 	struct btrfs_fs_context *ctx = fc->fs_private;
1837 	struct btrfs_fs_devices *fs_devices = NULL;
1838 	struct btrfs_device *device;
1839 	struct super_block *sb;
1840 	blk_mode_t mode = sb_open_mode(fc->sb_flags);
1841 	int ret;
1842 
1843 	btrfs_ctx_to_info(fs_info, ctx);
1844 	mutex_lock(&uuid_mutex);
1845 
1846 	/*
1847 	 * With 'true' passed to btrfs_scan_one_device() (mount time) we expect
1848 	 * either a valid device or an error.
1849 	 */
1850 	device = btrfs_scan_one_device(fc->source, true);
1851 	ASSERT(device != NULL);
1852 	if (IS_ERR(device)) {
1853 		mutex_unlock(&uuid_mutex);
1854 		return PTR_ERR(device);
1855 	}
1856 	fs_devices = device->fs_devices;
1857 	/*
1858 	 * We cannot hold uuid_mutex calling sget_fc(), it will lead to a
1859 	 * locking order reversal with s_umount.
1860 	 *
1861 	 * So here we increase the holding number of fs_devices, this will ensure
1862 	 * the fs_devices itself won't be freed.
1863 	 */
1864 	btrfs_fs_devices_inc_holding(fs_devices);
1865 	fs_info->fs_devices = fs_devices;
1866 	mutex_unlock(&uuid_mutex);
1867 
1868 
1869 	sb = sget_fc(fc, btrfs_fc_test_super, set_anon_super_fc);
1870 	if (IS_ERR(sb)) {
1871 		mutex_lock(&uuid_mutex);
1872 		btrfs_fs_devices_dec_holding(fs_devices);
1873 		/*
1874 		 * Since the fs_devices is not opened, it can be freed at any
1875 		 * time after unlocking uuid_mutex.  We need to avoid double
1876 		 * free through put_fs_context()->btrfs_free_fs_info().
1877 		 * So here we reset fs_info->fs_devices to NULL, and let the
1878 		 * regular fs_devices reclaim path to handle it.
1879 		 *
1880 		 * This applies to all later branches where no fs_devices is
1881 		 * opened.
1882 		 */
1883 		fs_info->fs_devices = NULL;
1884 		mutex_unlock(&uuid_mutex);
1885 		return PTR_ERR(sb);
1886 	}
1887 
1888 	set_device_specific_options(fs_info);
1889 
1890 	if (sb->s_root) {
1891 		/*
1892 		 * Not the first mount of the fs thus got an existing super block.
1893 		 * Will reuse the returned super block, fs_info and fs_devices.
1894 		 *
1895 		 * fc->s_fs_info is not touched and will be later freed by
1896 		 * put_fs_context() through btrfs_free_fs_context().
1897 		 */
1898 		ASSERT(fc->s_fs_info == fs_info);
1899 
1900 		mutex_lock(&uuid_mutex);
1901 		btrfs_fs_devices_dec_holding(fs_devices);
1902 		fs_info->fs_devices = NULL;
1903 		mutex_unlock(&uuid_mutex);
1904 		/*
1905 		 * At this stage we may have RO flag mismatch between
1906 		 * fc->sb_flags and sb->s_flags.  Caller should detect such
1907 		 * mismatch and reconfigure with sb->s_umount rwsem held if
1908 		 * needed.
1909 		 */
1910 	} else {
1911 		struct block_device *bdev;
1912 
1913 		/*
1914 		 * The first mount of the fs thus a new superblock, fc->s_fs_info
1915 		 * must be NULL, and the ownership of our fs_info and fs_devices is
1916 		 * transferred to the super block.
1917 		 */
1918 		ASSERT(fc->s_fs_info == NULL);
1919 
1920 		mutex_lock(&uuid_mutex);
1921 		btrfs_fs_devices_dec_holding(fs_devices);
1922 		ret = btrfs_open_devices(fs_devices, mode, sb);
1923 		if (ret < 0)
1924 			fs_info->fs_devices = NULL;
1925 		mutex_unlock(&uuid_mutex);
1926 		if (ret < 0) {
1927 			deactivate_locked_super(sb);
1928 			return ret;
1929 		}
1930 		if (!(fc->sb_flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1931 			deactivate_locked_super(sb);
1932 			return -EACCES;
1933 		}
1934 		bdev = fs_devices->latest_dev->bdev;
1935 		snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1936 		shrinker_debugfs_rename(sb->s_shrink, "sb-btrfs:%s", sb->s_id);
1937 		ret = btrfs_fill_super(sb, fs_devices);
1938 		if (ret) {
1939 			deactivate_locked_super(sb);
1940 			return ret;
1941 		}
1942 	}
1943 
1944 	btrfs_clear_oneshot_options(fs_info);
1945 
1946 	fc->root = dget(sb->s_root);
1947 	return 0;
1948 }
1949 
1950 /*
1951  * Ever since commit 0723a0473fb4 ("btrfs: allow mounting btrfs subvolumes
1952  * with different ro/rw options") the following works:
1953  *
1954  *        (i) mount /dev/sda3 -o subvol=foo,ro /mnt/foo
1955  *       (ii) mount /dev/sda3 -o subvol=bar,rw /mnt/bar
1956  *
1957  * which looks nice and innocent but is actually pretty intricate and deserves
1958  * a long comment.
1959  *
1960  * On another filesystem a subvolume mount is close to something like:
1961  *
1962  *	(iii) # create rw superblock + initial mount
1963  *	      mount -t xfs /dev/sdb /opt/
1964  *
1965  *	      # create ro bind mount
1966  *	      mount --bind -o ro /opt/foo /mnt/foo
1967  *
1968  *	      # unmount initial mount
1969  *	      umount /opt
1970  *
1971  * Of course, there's some special subvolume sauce and there's the fact that the
1972  * sb->s_root dentry is really swapped after mount_subtree(). But conceptually
1973  * it's very close and will help us understand the issue.
1974  *
1975  * The old mount API didn't cleanly distinguish between a mount being made ro
1976  * and a superblock being made ro.  The only way to change the ro state of
1977  * either object was by passing ms_rdonly. If a new mount was created via
1978  * mount(2) such as:
1979  *
1980  *      mount("/dev/sdb", "/mnt", "xfs", ms_rdonly, null);
1981  *
1982  * the MS_RDONLY flag being specified had two effects:
1983  *
1984  * (1) MNT_READONLY was raised -> the resulting mount got
1985  *     @mnt->mnt_flags |= MNT_READONLY raised.
1986  *
1987  * (2) MS_RDONLY was passed to the filesystem's mount method and the filesystems
1988  *     made the superblock ro. Note, how SB_RDONLY has the same value as
1989  *     ms_rdonly and is raised whenever MS_RDONLY is passed through mount(2).
1990  *
1991  * Creating a subtree mount via (iii) ends up leaving a rw superblock with a
1992  * subtree mounted ro.
1993  *
1994  * But consider the effect on the old mount API on btrfs subvolume mounting
1995  * which combines the distinct step in (iii) into a single step.
1996  *
1997  * By issuing (i) both the mount and the superblock are turned ro. Now when (ii)
1998  * is issued the superblock is ro and thus even if the mount created for (ii) is
1999  * rw it wouldn't help. Hence, btrfs needed to transition the superblock from ro
2000  * to rw for (ii) which it did using an internal remount call.
2001  *
2002  * IOW, subvolume mounting was inherently complicated due to the ambiguity of
2003  * MS_RDONLY in mount(2). Note, this ambiguity has mount(8) always translate
2004  * "ro" to MS_RDONLY. IOW, in both (i) and (ii) "ro" becomes MS_RDONLY when
2005  * passed by mount(8) to mount(2).
2006  *
2007  * Enter the new mount API. The new mount API disambiguates making a mount ro
2008  * and making a superblock ro.
2009  *
2010  * (3) To turn a mount ro the MOUNT_ATTR_ONLY flag can be used with either
2011  *     fsmount() or mount_setattr() this is a pure VFS level change for a
2012  *     specific mount or mount tree that is never seen by the filesystem itself.
2013  *
2014  * (4) To turn a superblock ro the "ro" flag must be used with
2015  *     fsconfig(FSCONFIG_SET_FLAG, "ro"). This option is seen by the filesystem
2016  *     in fc->sb_flags.
2017  *
2018  * But, currently the util-linux mount command already utilizes the new mount
2019  * API and is still setting fsconfig(FSCONFIG_SET_FLAG, "ro") no matter if it's
2020  * btrfs or not, setting the whole super block RO.  To make per-subvolume mounting
2021  * work with different options work we need to keep backward compatibility.
2022  */
btrfs_reconfigure_for_mount(struct fs_context * fc)2023 static int btrfs_reconfigure_for_mount(struct fs_context *fc)
2024 {
2025 	int ret = 0;
2026 
2027 	if (!(fc->sb_flags & SB_RDONLY) && (fc->root->d_sb->s_flags & SB_RDONLY))
2028 		ret = btrfs_reconfigure(fc);
2029 
2030 	return ret;
2031 }
2032 
btrfs_get_tree_subvol(struct fs_context * fc)2033 static int btrfs_get_tree_subvol(struct fs_context *fc)
2034 {
2035 	struct btrfs_fs_info *fs_info = NULL;
2036 	struct btrfs_fs_context *ctx = fc->fs_private;
2037 	struct fs_context *dup_fc;
2038 	struct dentry *dentry;
2039 	struct vfsmount *mnt;
2040 	int ret = 0;
2041 
2042 	/*
2043 	 * Setup a dummy root and fs_info for test/set super.  This is because
2044 	 * we don't actually fill this stuff out until open_ctree, but we need
2045 	 * then open_ctree will properly initialize the file system specific
2046 	 * settings later.  btrfs_init_fs_info initializes the static elements
2047 	 * of the fs_info (locks and such) to make cleanup easier if we find a
2048 	 * superblock with our given fs_devices later on at sget() time.
2049 	 */
2050 	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
2051 	if (!fs_info)
2052 		return -ENOMEM;
2053 
2054 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2055 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2056 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
2057 		btrfs_free_fs_info(fs_info);
2058 		return -ENOMEM;
2059 	}
2060 	btrfs_init_fs_info(fs_info);
2061 
2062 	dup_fc = vfs_dup_fs_context(fc);
2063 	if (IS_ERR(dup_fc)) {
2064 		btrfs_free_fs_info(fs_info);
2065 		return PTR_ERR(dup_fc);
2066 	}
2067 
2068 	/*
2069 	 * When we do the sget_fc this gets transferred to the sb, so we only
2070 	 * need to set it on the dup_fc as this is what creates the super block.
2071 	 */
2072 	dup_fc->s_fs_info = fs_info;
2073 
2074 	ret = btrfs_get_tree_super(dup_fc);
2075 	if (ret)
2076 		goto error;
2077 
2078 	ret = btrfs_reconfigure_for_mount(dup_fc);
2079 	up_write(&dup_fc->root->d_sb->s_umount);
2080 	if (ret)
2081 		goto error;
2082 	mnt = vfs_create_mount(dup_fc);
2083 	put_fs_context(dup_fc);
2084 	if (IS_ERR(mnt))
2085 		return PTR_ERR(mnt);
2086 
2087 	/*
2088 	 * This free's ->subvol_name, because if it isn't set we have to
2089 	 * allocate a buffer to hold the subvol_name, so we just drop our
2090 	 * reference to it here.
2091 	 */
2092 	dentry = mount_subvol(ctx->subvol_name, ctx->subvol_objectid, mnt);
2093 	ctx->subvol_name = NULL;
2094 	if (IS_ERR(dentry))
2095 		return PTR_ERR(dentry);
2096 
2097 	fc->root = dentry;
2098 	return 0;
2099 error:
2100 	put_fs_context(dup_fc);
2101 	return ret;
2102 }
2103 
btrfs_get_tree(struct fs_context * fc)2104 static int btrfs_get_tree(struct fs_context *fc)
2105 {
2106 	ASSERT(fc->s_fs_info == NULL);
2107 
2108 	return btrfs_get_tree_subvol(fc);
2109 }
2110 
btrfs_kill_super(struct super_block * sb)2111 static void btrfs_kill_super(struct super_block *sb)
2112 {
2113 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2114 	kill_anon_super(sb);
2115 	btrfs_free_fs_info(fs_info);
2116 }
2117 
btrfs_free_fs_context(struct fs_context * fc)2118 static void btrfs_free_fs_context(struct fs_context *fc)
2119 {
2120 	struct btrfs_fs_context *ctx = fc->fs_private;
2121 	struct btrfs_fs_info *fs_info = fc->s_fs_info;
2122 
2123 	if (fs_info)
2124 		btrfs_free_fs_info(fs_info);
2125 
2126 	if (ctx && refcount_dec_and_test(&ctx->refs)) {
2127 		kfree(ctx->subvol_name);
2128 		kfree(ctx);
2129 	}
2130 }
2131 
btrfs_dup_fs_context(struct fs_context * fc,struct fs_context * src_fc)2132 static int btrfs_dup_fs_context(struct fs_context *fc, struct fs_context *src_fc)
2133 {
2134 	struct btrfs_fs_context *ctx = src_fc->fs_private;
2135 
2136 	/*
2137 	 * Give a ref to our ctx to this dup, as we want to keep it around for
2138 	 * our original fc so we can have the subvolume name or objectid.
2139 	 *
2140 	 * We unset ->source in the original fc because the dup needs it for
2141 	 * mounting, and then once we free the dup it'll free ->source, so we
2142 	 * need to make sure we're only pointing to it in one fc.
2143 	 */
2144 	refcount_inc(&ctx->refs);
2145 	fc->fs_private = ctx;
2146 	fc->source = src_fc->source;
2147 	src_fc->source = NULL;
2148 	return 0;
2149 }
2150 
2151 static const struct fs_context_operations btrfs_fs_context_ops = {
2152 	.parse_param	= btrfs_parse_param,
2153 	.reconfigure	= btrfs_reconfigure,
2154 	.get_tree	= btrfs_get_tree,
2155 	.dup		= btrfs_dup_fs_context,
2156 	.free		= btrfs_free_fs_context,
2157 };
2158 
btrfs_init_fs_context(struct fs_context * fc)2159 static int btrfs_init_fs_context(struct fs_context *fc)
2160 {
2161 	struct btrfs_fs_context *ctx;
2162 
2163 	ctx = kzalloc(sizeof(struct btrfs_fs_context), GFP_KERNEL);
2164 	if (!ctx)
2165 		return -ENOMEM;
2166 
2167 	refcount_set(&ctx->refs, 1);
2168 	fc->fs_private = ctx;
2169 	fc->ops = &btrfs_fs_context_ops;
2170 
2171 	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2172 		btrfs_info_to_ctx(btrfs_sb(fc->root->d_sb), ctx);
2173 	} else {
2174 		ctx->thread_pool_size =
2175 			min_t(unsigned long, num_online_cpus() + 2, 8);
2176 		ctx->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2177 		ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2178 	}
2179 
2180 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
2181 	fc->sb_flags |= SB_POSIXACL;
2182 #endif
2183 	fc->sb_flags |= SB_I_VERSION;
2184 
2185 	return 0;
2186 }
2187 
2188 static struct file_system_type btrfs_fs_type = {
2189 	.owner			= THIS_MODULE,
2190 	.name			= "btrfs",
2191 	.init_fs_context	= btrfs_init_fs_context,
2192 	.parameters		= btrfs_fs_parameters,
2193 	.kill_sb		= btrfs_kill_super,
2194 	.fs_flags		= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA |
2195 				  FS_ALLOW_IDMAP | FS_MGTIME,
2196  };
2197 
2198 MODULE_ALIAS_FS("btrfs");
2199 
btrfs_control_open(struct inode * inode,struct file * file)2200 static int btrfs_control_open(struct inode *inode, struct file *file)
2201 {
2202 	/*
2203 	 * The control file's private_data is used to hold the
2204 	 * transaction when it is started and is used to keep
2205 	 * track of whether a transaction is already in progress.
2206 	 */
2207 	file->private_data = NULL;
2208 	return 0;
2209 }
2210 
2211 /*
2212  * Used by /dev/btrfs-control for devices ioctls.
2213  */
btrfs_control_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2214 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2215 				unsigned long arg)
2216 {
2217 	struct btrfs_ioctl_vol_args *vol;
2218 	struct btrfs_device *device = NULL;
2219 	dev_t devt = 0;
2220 	int ret = -ENOTTY;
2221 
2222 	if (!capable(CAP_SYS_ADMIN))
2223 		return -EPERM;
2224 
2225 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2226 	if (IS_ERR(vol))
2227 		return PTR_ERR(vol);
2228 	ret = btrfs_check_ioctl_vol_args_path(vol);
2229 	if (ret < 0)
2230 		goto out;
2231 
2232 	switch (cmd) {
2233 	case BTRFS_IOC_SCAN_DEV:
2234 		mutex_lock(&uuid_mutex);
2235 		/*
2236 		 * Scanning outside of mount can return NULL which would turn
2237 		 * into 0 error code.
2238 		 */
2239 		device = btrfs_scan_one_device(vol->name, false);
2240 		ret = PTR_ERR_OR_ZERO(device);
2241 		mutex_unlock(&uuid_mutex);
2242 		break;
2243 	case BTRFS_IOC_FORGET_DEV:
2244 		if (vol->name[0] != 0) {
2245 			ret = lookup_bdev(vol->name, &devt);
2246 			if (ret)
2247 				break;
2248 		}
2249 		ret = btrfs_forget_devices(devt);
2250 		break;
2251 	case BTRFS_IOC_DEVICES_READY:
2252 		mutex_lock(&uuid_mutex);
2253 		/*
2254 		 * Scanning outside of mount can return NULL which would turn
2255 		 * into 0 error code.
2256 		 */
2257 		device = btrfs_scan_one_device(vol->name, false);
2258 		if (IS_ERR_OR_NULL(device)) {
2259 			mutex_unlock(&uuid_mutex);
2260 			if (IS_ERR(device))
2261 				ret = PTR_ERR(device);
2262 			else
2263 				ret = 0;
2264 			break;
2265 		}
2266 		ret = !(device->fs_devices->num_devices ==
2267 			device->fs_devices->total_devices);
2268 		mutex_unlock(&uuid_mutex);
2269 		break;
2270 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2271 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2272 		break;
2273 	}
2274 
2275 out:
2276 	kfree(vol);
2277 	return ret;
2278 }
2279 
btrfs_freeze(struct super_block * sb)2280 static int btrfs_freeze(struct super_block *sb)
2281 {
2282 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2283 
2284 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2285 	/*
2286 	 * We don't need a barrier here, we'll wait for any transaction that
2287 	 * could be in progress on other threads (and do delayed iputs that
2288 	 * we want to avoid on a frozen filesystem), or do the commit
2289 	 * ourselves.
2290 	 */
2291 	return btrfs_commit_current_transaction(fs_info->tree_root);
2292 }
2293 
check_dev_super(struct btrfs_device * dev)2294 static int check_dev_super(struct btrfs_device *dev)
2295 {
2296 	struct btrfs_fs_info *fs_info = dev->fs_info;
2297 	struct btrfs_super_block *sb;
2298 	u64 last_trans;
2299 	u16 csum_type;
2300 	int ret = 0;
2301 
2302 	/* This should be called with fs still frozen. */
2303 	ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags));
2304 
2305 	/* Missing dev, no need to check. */
2306 	if (!dev->bdev)
2307 		return 0;
2308 
2309 	/* Only need to check the primary super block. */
2310 	sb = btrfs_read_disk_super(dev->bdev, 0, true);
2311 	if (IS_ERR(sb))
2312 		return PTR_ERR(sb);
2313 
2314 	/* Verify the checksum. */
2315 	csum_type = btrfs_super_csum_type(sb);
2316 	if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) {
2317 		btrfs_err(fs_info, "csum type changed, has %u expect %u",
2318 			  csum_type, btrfs_super_csum_type(fs_info->super_copy));
2319 		ret = -EUCLEAN;
2320 		goto out;
2321 	}
2322 
2323 	if (btrfs_check_super_csum(fs_info, sb)) {
2324 		btrfs_err(fs_info, "csum for on-disk super block no longer matches");
2325 		ret = -EUCLEAN;
2326 		goto out;
2327 	}
2328 
2329 	/* Btrfs_validate_super() includes fsid check against super->fsid. */
2330 	ret = btrfs_validate_super(fs_info, sb, 0);
2331 	if (ret < 0)
2332 		goto out;
2333 
2334 	last_trans = btrfs_get_last_trans_committed(fs_info);
2335 	if (btrfs_super_generation(sb) != last_trans) {
2336 		btrfs_err(fs_info, "transid mismatch, has %llu expect %llu",
2337 			  btrfs_super_generation(sb), last_trans);
2338 		ret = -EUCLEAN;
2339 		goto out;
2340 	}
2341 out:
2342 	btrfs_release_disk_super(sb);
2343 	return ret;
2344 }
2345 
btrfs_unfreeze(struct super_block * sb)2346 static int btrfs_unfreeze(struct super_block *sb)
2347 {
2348 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2349 	struct btrfs_device *device;
2350 	int ret = 0;
2351 
2352 	/*
2353 	 * Make sure the fs is not changed by accident (like hibernation then
2354 	 * modified by other OS).
2355 	 * If we found anything wrong, we mark the fs error immediately.
2356 	 *
2357 	 * And since the fs is frozen, no one can modify the fs yet, thus
2358 	 * we don't need to hold device_list_mutex.
2359 	 */
2360 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
2361 		ret = check_dev_super(device);
2362 		if (ret < 0) {
2363 			btrfs_handle_fs_error(fs_info, ret,
2364 				"super block on devid %llu got modified unexpectedly",
2365 				device->devid);
2366 			break;
2367 		}
2368 	}
2369 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2370 
2371 	/*
2372 	 * We still return 0, to allow VFS layer to unfreeze the fs even the
2373 	 * above checks failed. Since the fs is either fine or read-only, we're
2374 	 * safe to continue, without causing further damage.
2375 	 */
2376 	return 0;
2377 }
2378 
btrfs_show_devname(struct seq_file * m,struct dentry * root)2379 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2380 {
2381 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2382 
2383 	/*
2384 	 * There should be always a valid pointer in latest_dev, it may be stale
2385 	 * for a short moment in case it's being deleted but still valid until
2386 	 * the end of RCU grace period.
2387 	 */
2388 	rcu_read_lock();
2389 	seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\");
2390 	rcu_read_unlock();
2391 
2392 	return 0;
2393 }
2394 
btrfs_nr_cached_objects(struct super_block * sb,struct shrink_control * sc)2395 static long btrfs_nr_cached_objects(struct super_block *sb, struct shrink_control *sc)
2396 {
2397 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2398 	const s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps);
2399 
2400 	trace_btrfs_extent_map_shrinker_count(fs_info, nr);
2401 
2402 	return nr;
2403 }
2404 
btrfs_free_cached_objects(struct super_block * sb,struct shrink_control * sc)2405 static long btrfs_free_cached_objects(struct super_block *sb, struct shrink_control *sc)
2406 {
2407 	const long nr_to_scan = min_t(unsigned long, LONG_MAX, sc->nr_to_scan);
2408 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2409 
2410 	btrfs_free_extent_maps(fs_info, nr_to_scan);
2411 
2412 	/* The extent map shrinker runs asynchronously, so always return 0. */
2413 	return 0;
2414 }
2415 
2416 static const struct super_operations btrfs_super_ops = {
2417 	.drop_inode	= btrfs_drop_inode,
2418 	.evict_inode	= btrfs_evict_inode,
2419 	.put_super	= btrfs_put_super,
2420 	.sync_fs	= btrfs_sync_fs,
2421 	.show_options	= btrfs_show_options,
2422 	.show_devname	= btrfs_show_devname,
2423 	.alloc_inode	= btrfs_alloc_inode,
2424 	.destroy_inode	= btrfs_destroy_inode,
2425 	.free_inode	= btrfs_free_inode,
2426 	.statfs		= btrfs_statfs,
2427 	.freeze_fs	= btrfs_freeze,
2428 	.unfreeze_fs	= btrfs_unfreeze,
2429 	.nr_cached_objects = btrfs_nr_cached_objects,
2430 	.free_cached_objects = btrfs_free_cached_objects,
2431 };
2432 
2433 static const struct file_operations btrfs_ctl_fops = {
2434 	.open = btrfs_control_open,
2435 	.unlocked_ioctl	 = btrfs_control_ioctl,
2436 	.compat_ioctl = compat_ptr_ioctl,
2437 	.owner	 = THIS_MODULE,
2438 	.llseek = noop_llseek,
2439 };
2440 
2441 static struct miscdevice btrfs_misc = {
2442 	.minor		= BTRFS_MINOR,
2443 	.name		= "btrfs-control",
2444 	.fops		= &btrfs_ctl_fops
2445 };
2446 
2447 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2448 MODULE_ALIAS("devname:btrfs-control");
2449 
btrfs_interface_init(void)2450 static int __init btrfs_interface_init(void)
2451 {
2452 	return misc_register(&btrfs_misc);
2453 }
2454 
btrfs_interface_exit(void)2455 static __cold void btrfs_interface_exit(void)
2456 {
2457 	misc_deregister(&btrfs_misc);
2458 }
2459 
btrfs_print_mod_info(void)2460 static int __init btrfs_print_mod_info(void)
2461 {
2462 	static const char options[] = ""
2463 #ifdef CONFIG_BTRFS_EXPERIMENTAL
2464 			", experimental=on"
2465 #endif
2466 #ifdef CONFIG_BTRFS_DEBUG
2467 			", debug=on"
2468 #endif
2469 #ifdef CONFIG_BTRFS_ASSERT
2470 			", assert=on"
2471 #endif
2472 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2473 			", ref-verify=on"
2474 #endif
2475 #ifdef CONFIG_BLK_DEV_ZONED
2476 			", zoned=yes"
2477 #else
2478 			", zoned=no"
2479 #endif
2480 #ifdef CONFIG_FS_VERITY
2481 			", fsverity=yes"
2482 #else
2483 			", fsverity=no"
2484 #endif
2485 			;
2486 
2487 #ifdef CONFIG_BTRFS_EXPERIMENTAL
2488 	if (btrfs_get_mod_read_policy() == NULL)
2489 		pr_info("Btrfs loaded%s\n", options);
2490 	else
2491 		pr_info("Btrfs loaded%s, read_policy=%s\n",
2492 			 options, btrfs_get_mod_read_policy());
2493 #else
2494 	pr_info("Btrfs loaded%s\n", options);
2495 #endif
2496 
2497 	return 0;
2498 }
2499 
register_btrfs(void)2500 static int register_btrfs(void)
2501 {
2502 	return register_filesystem(&btrfs_fs_type);
2503 }
2504 
unregister_btrfs(void)2505 static void unregister_btrfs(void)
2506 {
2507 	unregister_filesystem(&btrfs_fs_type);
2508 }
2509 
2510 /* Helper structure for long init/exit functions. */
2511 struct init_sequence {
2512 	int (*init_func)(void);
2513 	/* Can be NULL if the init_func doesn't need cleanup. */
2514 	void (*exit_func)(void);
2515 };
2516 
2517 static const struct init_sequence mod_init_seq[] = {
2518 	{
2519 		.init_func = btrfs_props_init,
2520 		.exit_func = NULL,
2521 	}, {
2522 		.init_func = btrfs_init_sysfs,
2523 		.exit_func = btrfs_exit_sysfs,
2524 	}, {
2525 		.init_func = btrfs_init_compress,
2526 		.exit_func = btrfs_exit_compress,
2527 	}, {
2528 		.init_func = btrfs_init_cachep,
2529 		.exit_func = btrfs_destroy_cachep,
2530 	}, {
2531 		.init_func = btrfs_init_dio,
2532 		.exit_func = btrfs_destroy_dio,
2533 	}, {
2534 		.init_func = btrfs_transaction_init,
2535 		.exit_func = btrfs_transaction_exit,
2536 	}, {
2537 		.init_func = btrfs_ctree_init,
2538 		.exit_func = btrfs_ctree_exit,
2539 	}, {
2540 		.init_func = btrfs_free_space_init,
2541 		.exit_func = btrfs_free_space_exit,
2542 	}, {
2543 		.init_func = btrfs_extent_state_init_cachep,
2544 		.exit_func = btrfs_extent_state_free_cachep,
2545 	}, {
2546 		.init_func = extent_buffer_init_cachep,
2547 		.exit_func = extent_buffer_free_cachep,
2548 	}, {
2549 		.init_func = btrfs_bioset_init,
2550 		.exit_func = btrfs_bioset_exit,
2551 	}, {
2552 		.init_func = btrfs_extent_map_init,
2553 		.exit_func = btrfs_extent_map_exit,
2554 #ifdef CONFIG_BTRFS_EXPERIMENTAL
2555 	}, {
2556 		.init_func = btrfs_read_policy_init,
2557 		.exit_func = NULL,
2558 #endif
2559 	}, {
2560 		.init_func = ordered_data_init,
2561 		.exit_func = ordered_data_exit,
2562 	}, {
2563 		.init_func = btrfs_delayed_inode_init,
2564 		.exit_func = btrfs_delayed_inode_exit,
2565 	}, {
2566 		.init_func = btrfs_auto_defrag_init,
2567 		.exit_func = btrfs_auto_defrag_exit,
2568 	}, {
2569 		.init_func = btrfs_delayed_ref_init,
2570 		.exit_func = btrfs_delayed_ref_exit,
2571 	}, {
2572 		.init_func = btrfs_prelim_ref_init,
2573 		.exit_func = btrfs_prelim_ref_exit,
2574 	}, {
2575 		.init_func = btrfs_interface_init,
2576 		.exit_func = btrfs_interface_exit,
2577 	}, {
2578 		.init_func = btrfs_print_mod_info,
2579 		.exit_func = NULL,
2580 	}, {
2581 		.init_func = btrfs_run_sanity_tests,
2582 		.exit_func = NULL,
2583 	}, {
2584 		.init_func = register_btrfs,
2585 		.exit_func = unregister_btrfs,
2586 	}
2587 };
2588 
2589 static bool mod_init_result[ARRAY_SIZE(mod_init_seq)];
2590 
btrfs_exit_btrfs_fs(void)2591 static __always_inline void btrfs_exit_btrfs_fs(void)
2592 {
2593 	int i;
2594 
2595 	for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) {
2596 		if (!mod_init_result[i])
2597 			continue;
2598 		if (mod_init_seq[i].exit_func)
2599 			mod_init_seq[i].exit_func();
2600 		mod_init_result[i] = false;
2601 	}
2602 }
2603 
exit_btrfs_fs(void)2604 static void __exit exit_btrfs_fs(void)
2605 {
2606 	btrfs_exit_btrfs_fs();
2607 	btrfs_cleanup_fs_uuids();
2608 }
2609 
init_btrfs_fs(void)2610 static int __init init_btrfs_fs(void)
2611 {
2612 	int ret;
2613 	int i;
2614 
2615 	for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) {
2616 		ASSERT(!mod_init_result[i]);
2617 		ret = mod_init_seq[i].init_func();
2618 		if (ret < 0) {
2619 			btrfs_exit_btrfs_fs();
2620 			return ret;
2621 		}
2622 		mod_init_result[i] = true;
2623 	}
2624 	return 0;
2625 }
2626 
2627 late_initcall(init_btrfs_fs);
2628 module_exit(exit_btrfs_fs)
2629 
2630 MODULE_DESCRIPTION("B-Tree File System (BTRFS)");
2631 MODULE_LICENSE("GPL");
2632 MODULE_SOFTDEP("pre: crc32c");
2633 MODULE_SOFTDEP("pre: xxhash64");
2634 MODULE_SOFTDEP("pre: sha256");
2635 MODULE_SOFTDEP("pre: blake2b-256");
2636