xref: /linux/kernel/bpf/verifier.c (revision ee88bddf7f2f5d1f1da87dd7bedc734048b70e88)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 #include <linux/cpumask.h>
29 #include <linux/bpf_mem_alloc.h>
30 #include <net/xdp.h>
31 #include <linux/trace_events.h>
32 #include <linux/kallsyms.h>
33 
34 #include "disasm.h"
35 
36 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
37 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
38 	[_id] = & _name ## _verifier_ops,
39 #define BPF_MAP_TYPE(_id, _ops)
40 #define BPF_LINK_TYPE(_id, _name)
41 #include <linux/bpf_types.h>
42 #undef BPF_PROG_TYPE
43 #undef BPF_MAP_TYPE
44 #undef BPF_LINK_TYPE
45 };
46 
47 struct bpf_mem_alloc bpf_global_percpu_ma;
48 static bool bpf_global_percpu_ma_set;
49 
50 /* bpf_check() is a static code analyzer that walks eBPF program
51  * instruction by instruction and updates register/stack state.
52  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
53  *
54  * The first pass is depth-first-search to check that the program is a DAG.
55  * It rejects the following programs:
56  * - larger than BPF_MAXINSNS insns
57  * - if loop is present (detected via back-edge)
58  * - unreachable insns exist (shouldn't be a forest. program = one function)
59  * - out of bounds or malformed jumps
60  * The second pass is all possible path descent from the 1st insn.
61  * Since it's analyzing all paths through the program, the length of the
62  * analysis is limited to 64k insn, which may be hit even if total number of
63  * insn is less then 4K, but there are too many branches that change stack/regs.
64  * Number of 'branches to be analyzed' is limited to 1k
65  *
66  * On entry to each instruction, each register has a type, and the instruction
67  * changes the types of the registers depending on instruction semantics.
68  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
69  * copied to R1.
70  *
71  * All registers are 64-bit.
72  * R0 - return register
73  * R1-R5 argument passing registers
74  * R6-R9 callee saved registers
75  * R10 - frame pointer read-only
76  *
77  * At the start of BPF program the register R1 contains a pointer to bpf_context
78  * and has type PTR_TO_CTX.
79  *
80  * Verifier tracks arithmetic operations on pointers in case:
81  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
82  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
83  * 1st insn copies R10 (which has FRAME_PTR) type into R1
84  * and 2nd arithmetic instruction is pattern matched to recognize
85  * that it wants to construct a pointer to some element within stack.
86  * So after 2nd insn, the register R1 has type PTR_TO_STACK
87  * (and -20 constant is saved for further stack bounds checking).
88  * Meaning that this reg is a pointer to stack plus known immediate constant.
89  *
90  * Most of the time the registers have SCALAR_VALUE type, which
91  * means the register has some value, but it's not a valid pointer.
92  * (like pointer plus pointer becomes SCALAR_VALUE type)
93  *
94  * When verifier sees load or store instructions the type of base register
95  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
96  * four pointer types recognized by check_mem_access() function.
97  *
98  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
99  * and the range of [ptr, ptr + map's value_size) is accessible.
100  *
101  * registers used to pass values to function calls are checked against
102  * function argument constraints.
103  *
104  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
105  * It means that the register type passed to this function must be
106  * PTR_TO_STACK and it will be used inside the function as
107  * 'pointer to map element key'
108  *
109  * For example the argument constraints for bpf_map_lookup_elem():
110  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
111  *   .arg1_type = ARG_CONST_MAP_PTR,
112  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
113  *
114  * ret_type says that this function returns 'pointer to map elem value or null'
115  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
116  * 2nd argument should be a pointer to stack, which will be used inside
117  * the helper function as a pointer to map element key.
118  *
119  * On the kernel side the helper function looks like:
120  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
121  * {
122  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
123  *    void *key = (void *) (unsigned long) r2;
124  *    void *value;
125  *
126  *    here kernel can access 'key' and 'map' pointers safely, knowing that
127  *    [key, key + map->key_size) bytes are valid and were initialized on
128  *    the stack of eBPF program.
129  * }
130  *
131  * Corresponding eBPF program may look like:
132  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
133  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
134  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
135  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
136  * here verifier looks at prototype of map_lookup_elem() and sees:
137  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
138  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
139  *
140  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
141  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
142  * and were initialized prior to this call.
143  * If it's ok, then verifier allows this BPF_CALL insn and looks at
144  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
145  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
146  * returns either pointer to map value or NULL.
147  *
148  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
149  * insn, the register holding that pointer in the true branch changes state to
150  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
151  * branch. See check_cond_jmp_op().
152  *
153  * After the call R0 is set to return type of the function and registers R1-R5
154  * are set to NOT_INIT to indicate that they are no longer readable.
155  *
156  * The following reference types represent a potential reference to a kernel
157  * resource which, after first being allocated, must be checked and freed by
158  * the BPF program:
159  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
160  *
161  * When the verifier sees a helper call return a reference type, it allocates a
162  * pointer id for the reference and stores it in the current function state.
163  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
164  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
165  * passes through a NULL-check conditional. For the branch wherein the state is
166  * changed to CONST_IMM, the verifier releases the reference.
167  *
168  * For each helper function that allocates a reference, such as
169  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
170  * bpf_sk_release(). When a reference type passes into the release function,
171  * the verifier also releases the reference. If any unchecked or unreleased
172  * reference remains at the end of the program, the verifier rejects it.
173  */
174 
175 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
176 struct bpf_verifier_stack_elem {
177 	/* verifier state is 'st'
178 	 * before processing instruction 'insn_idx'
179 	 * and after processing instruction 'prev_insn_idx'
180 	 */
181 	struct bpf_verifier_state st;
182 	int insn_idx;
183 	int prev_insn_idx;
184 	struct bpf_verifier_stack_elem *next;
185 	/* length of verifier log at the time this state was pushed on stack */
186 	u32 log_pos;
187 };
188 
189 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
190 #define BPF_COMPLEXITY_LIMIT_STATES	64
191 
192 #define BPF_MAP_KEY_POISON	(1ULL << 63)
193 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
194 
195 #define BPF_GLOBAL_PERCPU_MA_MAX_SIZE  512
196 
197 #define BPF_PRIV_STACK_MIN_SIZE		64
198 
199 static int acquire_reference(struct bpf_verifier_env *env, int insn_idx);
200 static int release_reference_nomark(struct bpf_verifier_state *state, int ref_obj_id);
201 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
202 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
203 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
204 static int ref_set_non_owning(struct bpf_verifier_env *env,
205 			      struct bpf_reg_state *reg);
206 static void specialize_kfunc(struct bpf_verifier_env *env,
207 			     u32 func_id, u16 offset, unsigned long *addr);
208 static bool is_trusted_reg(const struct bpf_reg_state *reg);
209 
bpf_map_ptr_poisoned(const struct bpf_insn_aux_data * aux)210 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
211 {
212 	return aux->map_ptr_state.poison;
213 }
214 
bpf_map_ptr_unpriv(const struct bpf_insn_aux_data * aux)215 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
216 {
217 	return aux->map_ptr_state.unpriv;
218 }
219 
bpf_map_ptr_store(struct bpf_insn_aux_data * aux,struct bpf_map * map,bool unpriv,bool poison)220 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
221 			      struct bpf_map *map,
222 			      bool unpriv, bool poison)
223 {
224 	unpriv |= bpf_map_ptr_unpriv(aux);
225 	aux->map_ptr_state.unpriv = unpriv;
226 	aux->map_ptr_state.poison = poison;
227 	aux->map_ptr_state.map_ptr = map;
228 }
229 
bpf_map_key_poisoned(const struct bpf_insn_aux_data * aux)230 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
231 {
232 	return aux->map_key_state & BPF_MAP_KEY_POISON;
233 }
234 
bpf_map_key_unseen(const struct bpf_insn_aux_data * aux)235 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
236 {
237 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
238 }
239 
bpf_map_key_immediate(const struct bpf_insn_aux_data * aux)240 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
241 {
242 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
243 }
244 
bpf_map_key_store(struct bpf_insn_aux_data * aux,u64 state)245 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
246 {
247 	bool poisoned = bpf_map_key_poisoned(aux);
248 
249 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
250 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
251 }
252 
bpf_helper_call(const struct bpf_insn * insn)253 static bool bpf_helper_call(const struct bpf_insn *insn)
254 {
255 	return insn->code == (BPF_JMP | BPF_CALL) &&
256 	       insn->src_reg == 0;
257 }
258 
bpf_pseudo_call(const struct bpf_insn * insn)259 static bool bpf_pseudo_call(const struct bpf_insn *insn)
260 {
261 	return insn->code == (BPF_JMP | BPF_CALL) &&
262 	       insn->src_reg == BPF_PSEUDO_CALL;
263 }
264 
bpf_pseudo_kfunc_call(const struct bpf_insn * insn)265 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
266 {
267 	return insn->code == (BPF_JMP | BPF_CALL) &&
268 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
269 }
270 
271 struct bpf_call_arg_meta {
272 	struct bpf_map *map_ptr;
273 	bool raw_mode;
274 	bool pkt_access;
275 	u8 release_regno;
276 	int regno;
277 	int access_size;
278 	int mem_size;
279 	u64 msize_max_value;
280 	int ref_obj_id;
281 	int dynptr_id;
282 	int map_uid;
283 	int func_id;
284 	struct btf *btf;
285 	u32 btf_id;
286 	struct btf *ret_btf;
287 	u32 ret_btf_id;
288 	u32 subprogno;
289 	struct btf_field *kptr_field;
290 	s64 const_map_key;
291 };
292 
293 struct bpf_kfunc_call_arg_meta {
294 	/* In parameters */
295 	struct btf *btf;
296 	u32 func_id;
297 	u32 kfunc_flags;
298 	const struct btf_type *func_proto;
299 	const char *func_name;
300 	/* Out parameters */
301 	u32 ref_obj_id;
302 	u8 release_regno;
303 	bool r0_rdonly;
304 	u32 ret_btf_id;
305 	u64 r0_size;
306 	u32 subprogno;
307 	struct {
308 		u64 value;
309 		bool found;
310 	} arg_constant;
311 
312 	/* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
313 	 * generally to pass info about user-defined local kptr types to later
314 	 * verification logic
315 	 *   bpf_obj_drop/bpf_percpu_obj_drop
316 	 *     Record the local kptr type to be drop'd
317 	 *   bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
318 	 *     Record the local kptr type to be refcount_incr'd and use
319 	 *     arg_owning_ref to determine whether refcount_acquire should be
320 	 *     fallible
321 	 */
322 	struct btf *arg_btf;
323 	u32 arg_btf_id;
324 	bool arg_owning_ref;
325 	bool arg_prog;
326 
327 	struct {
328 		struct btf_field *field;
329 	} arg_list_head;
330 	struct {
331 		struct btf_field *field;
332 	} arg_rbtree_root;
333 	struct {
334 		enum bpf_dynptr_type type;
335 		u32 id;
336 		u32 ref_obj_id;
337 	} initialized_dynptr;
338 	struct {
339 		u8 spi;
340 		u8 frameno;
341 	} iter;
342 	struct {
343 		struct bpf_map *ptr;
344 		int uid;
345 	} map;
346 	u64 mem_size;
347 };
348 
349 struct btf *btf_vmlinux;
350 
btf_type_name(const struct btf * btf,u32 id)351 static const char *btf_type_name(const struct btf *btf, u32 id)
352 {
353 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
354 }
355 
356 static DEFINE_MUTEX(bpf_verifier_lock);
357 static DEFINE_MUTEX(bpf_percpu_ma_lock);
358 
verbose(void * private_data,const char * fmt,...)359 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
360 {
361 	struct bpf_verifier_env *env = private_data;
362 	va_list args;
363 
364 	if (!bpf_verifier_log_needed(&env->log))
365 		return;
366 
367 	va_start(args, fmt);
368 	bpf_verifier_vlog(&env->log, fmt, args);
369 	va_end(args);
370 }
371 
verbose_invalid_scalar(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct bpf_retval_range range,const char * ctx,const char * reg_name)372 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
373 				   struct bpf_reg_state *reg,
374 				   struct bpf_retval_range range, const char *ctx,
375 				   const char *reg_name)
376 {
377 	bool unknown = true;
378 
379 	verbose(env, "%s the register %s has", ctx, reg_name);
380 	if (reg->smin_value > S64_MIN) {
381 		verbose(env, " smin=%lld", reg->smin_value);
382 		unknown = false;
383 	}
384 	if (reg->smax_value < S64_MAX) {
385 		verbose(env, " smax=%lld", reg->smax_value);
386 		unknown = false;
387 	}
388 	if (unknown)
389 		verbose(env, " unknown scalar value");
390 	verbose(env, " should have been in [%d, %d]\n", range.minval, range.maxval);
391 }
392 
reg_not_null(const struct bpf_reg_state * reg)393 static bool reg_not_null(const struct bpf_reg_state *reg)
394 {
395 	enum bpf_reg_type type;
396 
397 	type = reg->type;
398 	if (type_may_be_null(type))
399 		return false;
400 
401 	type = base_type(type);
402 	return type == PTR_TO_SOCKET ||
403 		type == PTR_TO_TCP_SOCK ||
404 		type == PTR_TO_MAP_VALUE ||
405 		type == PTR_TO_MAP_KEY ||
406 		type == PTR_TO_SOCK_COMMON ||
407 		(type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
408 		type == PTR_TO_MEM;
409 }
410 
reg_btf_record(const struct bpf_reg_state * reg)411 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
412 {
413 	struct btf_record *rec = NULL;
414 	struct btf_struct_meta *meta;
415 
416 	if (reg->type == PTR_TO_MAP_VALUE) {
417 		rec = reg->map_ptr->record;
418 	} else if (type_is_ptr_alloc_obj(reg->type)) {
419 		meta = btf_find_struct_meta(reg->btf, reg->btf_id);
420 		if (meta)
421 			rec = meta->record;
422 	}
423 	return rec;
424 }
425 
subprog_is_global(const struct bpf_verifier_env * env,int subprog)426 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
427 {
428 	struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
429 
430 	return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
431 }
432 
subprog_name(const struct bpf_verifier_env * env,int subprog)433 static const char *subprog_name(const struct bpf_verifier_env *env, int subprog)
434 {
435 	struct bpf_func_info *info;
436 
437 	if (!env->prog->aux->func_info)
438 		return "";
439 
440 	info = &env->prog->aux->func_info[subprog];
441 	return btf_type_name(env->prog->aux->btf, info->type_id);
442 }
443 
mark_subprog_exc_cb(struct bpf_verifier_env * env,int subprog)444 static void mark_subprog_exc_cb(struct bpf_verifier_env *env, int subprog)
445 {
446 	struct bpf_subprog_info *info = subprog_info(env, subprog);
447 
448 	info->is_cb = true;
449 	info->is_async_cb = true;
450 	info->is_exception_cb = true;
451 }
452 
subprog_is_exc_cb(struct bpf_verifier_env * env,int subprog)453 static bool subprog_is_exc_cb(struct bpf_verifier_env *env, int subprog)
454 {
455 	return subprog_info(env, subprog)->is_exception_cb;
456 }
457 
reg_may_point_to_spin_lock(const struct bpf_reg_state * reg)458 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
459 {
460 	return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK);
461 }
462 
type_is_rdonly_mem(u32 type)463 static bool type_is_rdonly_mem(u32 type)
464 {
465 	return type & MEM_RDONLY;
466 }
467 
is_acquire_function(enum bpf_func_id func_id,const struct bpf_map * map)468 static bool is_acquire_function(enum bpf_func_id func_id,
469 				const struct bpf_map *map)
470 {
471 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
472 
473 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
474 	    func_id == BPF_FUNC_sk_lookup_udp ||
475 	    func_id == BPF_FUNC_skc_lookup_tcp ||
476 	    func_id == BPF_FUNC_ringbuf_reserve ||
477 	    func_id == BPF_FUNC_kptr_xchg)
478 		return true;
479 
480 	if (func_id == BPF_FUNC_map_lookup_elem &&
481 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
482 	     map_type == BPF_MAP_TYPE_SOCKHASH))
483 		return true;
484 
485 	return false;
486 }
487 
is_ptr_cast_function(enum bpf_func_id func_id)488 static bool is_ptr_cast_function(enum bpf_func_id func_id)
489 {
490 	return func_id == BPF_FUNC_tcp_sock ||
491 		func_id == BPF_FUNC_sk_fullsock ||
492 		func_id == BPF_FUNC_skc_to_tcp_sock ||
493 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
494 		func_id == BPF_FUNC_skc_to_udp6_sock ||
495 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
496 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
497 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
498 }
499 
is_dynptr_ref_function(enum bpf_func_id func_id)500 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
501 {
502 	return func_id == BPF_FUNC_dynptr_data;
503 }
504 
505 static bool is_sync_callback_calling_kfunc(u32 btf_id);
506 static bool is_async_callback_calling_kfunc(u32 btf_id);
507 static bool is_callback_calling_kfunc(u32 btf_id);
508 static bool is_bpf_throw_kfunc(struct bpf_insn *insn);
509 
510 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id);
511 
is_sync_callback_calling_function(enum bpf_func_id func_id)512 static bool is_sync_callback_calling_function(enum bpf_func_id func_id)
513 {
514 	return func_id == BPF_FUNC_for_each_map_elem ||
515 	       func_id == BPF_FUNC_find_vma ||
516 	       func_id == BPF_FUNC_loop ||
517 	       func_id == BPF_FUNC_user_ringbuf_drain;
518 }
519 
is_async_callback_calling_function(enum bpf_func_id func_id)520 static bool is_async_callback_calling_function(enum bpf_func_id func_id)
521 {
522 	return func_id == BPF_FUNC_timer_set_callback;
523 }
524 
is_callback_calling_function(enum bpf_func_id func_id)525 static bool is_callback_calling_function(enum bpf_func_id func_id)
526 {
527 	return is_sync_callback_calling_function(func_id) ||
528 	       is_async_callback_calling_function(func_id);
529 }
530 
is_sync_callback_calling_insn(struct bpf_insn * insn)531 static bool is_sync_callback_calling_insn(struct bpf_insn *insn)
532 {
533 	return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) ||
534 	       (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm));
535 }
536 
is_async_callback_calling_insn(struct bpf_insn * insn)537 static bool is_async_callback_calling_insn(struct bpf_insn *insn)
538 {
539 	return (bpf_helper_call(insn) && is_async_callback_calling_function(insn->imm)) ||
540 	       (bpf_pseudo_kfunc_call(insn) && is_async_callback_calling_kfunc(insn->imm));
541 }
542 
is_may_goto_insn(struct bpf_insn * insn)543 static bool is_may_goto_insn(struct bpf_insn *insn)
544 {
545 	return insn->code == (BPF_JMP | BPF_JCOND) && insn->src_reg == BPF_MAY_GOTO;
546 }
547 
is_may_goto_insn_at(struct bpf_verifier_env * env,int insn_idx)548 static bool is_may_goto_insn_at(struct bpf_verifier_env *env, int insn_idx)
549 {
550 	return is_may_goto_insn(&env->prog->insnsi[insn_idx]);
551 }
552 
is_storage_get_function(enum bpf_func_id func_id)553 static bool is_storage_get_function(enum bpf_func_id func_id)
554 {
555 	return func_id == BPF_FUNC_sk_storage_get ||
556 	       func_id == BPF_FUNC_inode_storage_get ||
557 	       func_id == BPF_FUNC_task_storage_get ||
558 	       func_id == BPF_FUNC_cgrp_storage_get;
559 }
560 
helper_multiple_ref_obj_use(enum bpf_func_id func_id,const struct bpf_map * map)561 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
562 					const struct bpf_map *map)
563 {
564 	int ref_obj_uses = 0;
565 
566 	if (is_ptr_cast_function(func_id))
567 		ref_obj_uses++;
568 	if (is_acquire_function(func_id, map))
569 		ref_obj_uses++;
570 	if (is_dynptr_ref_function(func_id))
571 		ref_obj_uses++;
572 
573 	return ref_obj_uses > 1;
574 }
575 
is_cmpxchg_insn(const struct bpf_insn * insn)576 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
577 {
578 	return BPF_CLASS(insn->code) == BPF_STX &&
579 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
580 	       insn->imm == BPF_CMPXCHG;
581 }
582 
is_atomic_load_insn(const struct bpf_insn * insn)583 static bool is_atomic_load_insn(const struct bpf_insn *insn)
584 {
585 	return BPF_CLASS(insn->code) == BPF_STX &&
586 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
587 	       insn->imm == BPF_LOAD_ACQ;
588 }
589 
__get_spi(s32 off)590 static int __get_spi(s32 off)
591 {
592 	return (-off - 1) / BPF_REG_SIZE;
593 }
594 
func(struct bpf_verifier_env * env,const struct bpf_reg_state * reg)595 static struct bpf_func_state *func(struct bpf_verifier_env *env,
596 				   const struct bpf_reg_state *reg)
597 {
598 	struct bpf_verifier_state *cur = env->cur_state;
599 
600 	return cur->frame[reg->frameno];
601 }
602 
is_spi_bounds_valid(struct bpf_func_state * state,int spi,int nr_slots)603 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
604 {
605        int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
606 
607        /* We need to check that slots between [spi - nr_slots + 1, spi] are
608 	* within [0, allocated_stack).
609 	*
610 	* Please note that the spi grows downwards. For example, a dynptr
611 	* takes the size of two stack slots; the first slot will be at
612 	* spi and the second slot will be at spi - 1.
613 	*/
614        return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
615 }
616 
stack_slot_obj_get_spi(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * obj_kind,int nr_slots)617 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
618 			          const char *obj_kind, int nr_slots)
619 {
620 	int off, spi;
621 
622 	if (!tnum_is_const(reg->var_off)) {
623 		verbose(env, "%s has to be at a constant offset\n", obj_kind);
624 		return -EINVAL;
625 	}
626 
627 	off = reg->off + reg->var_off.value;
628 	if (off % BPF_REG_SIZE) {
629 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
630 		return -EINVAL;
631 	}
632 
633 	spi = __get_spi(off);
634 	if (spi + 1 < nr_slots) {
635 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
636 		return -EINVAL;
637 	}
638 
639 	if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
640 		return -ERANGE;
641 	return spi;
642 }
643 
dynptr_get_spi(struct bpf_verifier_env * env,struct bpf_reg_state * reg)644 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
645 {
646 	return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
647 }
648 
iter_get_spi(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int nr_slots)649 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
650 {
651 	return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
652 }
653 
irq_flag_get_spi(struct bpf_verifier_env * env,struct bpf_reg_state * reg)654 static int irq_flag_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
655 {
656 	return stack_slot_obj_get_spi(env, reg, "irq_flag", 1);
657 }
658 
arg_to_dynptr_type(enum bpf_arg_type arg_type)659 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
660 {
661 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
662 	case DYNPTR_TYPE_LOCAL:
663 		return BPF_DYNPTR_TYPE_LOCAL;
664 	case DYNPTR_TYPE_RINGBUF:
665 		return BPF_DYNPTR_TYPE_RINGBUF;
666 	case DYNPTR_TYPE_SKB:
667 		return BPF_DYNPTR_TYPE_SKB;
668 	case DYNPTR_TYPE_XDP:
669 		return BPF_DYNPTR_TYPE_XDP;
670 	default:
671 		return BPF_DYNPTR_TYPE_INVALID;
672 	}
673 }
674 
get_dynptr_type_flag(enum bpf_dynptr_type type)675 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
676 {
677 	switch (type) {
678 	case BPF_DYNPTR_TYPE_LOCAL:
679 		return DYNPTR_TYPE_LOCAL;
680 	case BPF_DYNPTR_TYPE_RINGBUF:
681 		return DYNPTR_TYPE_RINGBUF;
682 	case BPF_DYNPTR_TYPE_SKB:
683 		return DYNPTR_TYPE_SKB;
684 	case BPF_DYNPTR_TYPE_XDP:
685 		return DYNPTR_TYPE_XDP;
686 	default:
687 		return 0;
688 	}
689 }
690 
dynptr_type_refcounted(enum bpf_dynptr_type type)691 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
692 {
693 	return type == BPF_DYNPTR_TYPE_RINGBUF;
694 }
695 
696 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
697 			      enum bpf_dynptr_type type,
698 			      bool first_slot, int dynptr_id);
699 
700 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
701 				struct bpf_reg_state *reg);
702 
mark_dynptr_stack_regs(struct bpf_verifier_env * env,struct bpf_reg_state * sreg1,struct bpf_reg_state * sreg2,enum bpf_dynptr_type type)703 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
704 				   struct bpf_reg_state *sreg1,
705 				   struct bpf_reg_state *sreg2,
706 				   enum bpf_dynptr_type type)
707 {
708 	int id = ++env->id_gen;
709 
710 	__mark_dynptr_reg(sreg1, type, true, id);
711 	__mark_dynptr_reg(sreg2, type, false, id);
712 }
713 
mark_dynptr_cb_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,enum bpf_dynptr_type type)714 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
715 			       struct bpf_reg_state *reg,
716 			       enum bpf_dynptr_type type)
717 {
718 	__mark_dynptr_reg(reg, type, true, ++env->id_gen);
719 }
720 
721 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
722 				        struct bpf_func_state *state, int spi);
723 
mark_stack_slots_dynptr(struct bpf_verifier_env * env,struct bpf_reg_state * reg,enum bpf_arg_type arg_type,int insn_idx,int clone_ref_obj_id)724 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
725 				   enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
726 {
727 	struct bpf_func_state *state = func(env, reg);
728 	enum bpf_dynptr_type type;
729 	int spi, i, err;
730 
731 	spi = dynptr_get_spi(env, reg);
732 	if (spi < 0)
733 		return spi;
734 
735 	/* We cannot assume both spi and spi - 1 belong to the same dynptr,
736 	 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
737 	 * to ensure that for the following example:
738 	 *	[d1][d1][d2][d2]
739 	 * spi    3   2   1   0
740 	 * So marking spi = 2 should lead to destruction of both d1 and d2. In
741 	 * case they do belong to same dynptr, second call won't see slot_type
742 	 * as STACK_DYNPTR and will simply skip destruction.
743 	 */
744 	err = destroy_if_dynptr_stack_slot(env, state, spi);
745 	if (err)
746 		return err;
747 	err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
748 	if (err)
749 		return err;
750 
751 	for (i = 0; i < BPF_REG_SIZE; i++) {
752 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
753 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
754 	}
755 
756 	type = arg_to_dynptr_type(arg_type);
757 	if (type == BPF_DYNPTR_TYPE_INVALID)
758 		return -EINVAL;
759 
760 	mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
761 			       &state->stack[spi - 1].spilled_ptr, type);
762 
763 	if (dynptr_type_refcounted(type)) {
764 		/* The id is used to track proper releasing */
765 		int id;
766 
767 		if (clone_ref_obj_id)
768 			id = clone_ref_obj_id;
769 		else
770 			id = acquire_reference(env, insn_idx);
771 
772 		if (id < 0)
773 			return id;
774 
775 		state->stack[spi].spilled_ptr.ref_obj_id = id;
776 		state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
777 	}
778 
779 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
780 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
781 
782 	return 0;
783 }
784 
invalidate_dynptr(struct bpf_verifier_env * env,struct bpf_func_state * state,int spi)785 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
786 {
787 	int i;
788 
789 	for (i = 0; i < BPF_REG_SIZE; i++) {
790 		state->stack[spi].slot_type[i] = STACK_INVALID;
791 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
792 	}
793 
794 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
795 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
796 
797 	/* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
798 	 *
799 	 * While we don't allow reading STACK_INVALID, it is still possible to
800 	 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
801 	 * helpers or insns can do partial read of that part without failing,
802 	 * but check_stack_range_initialized, check_stack_read_var_off, and
803 	 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
804 	 * the slot conservatively. Hence we need to prevent those liveness
805 	 * marking walks.
806 	 *
807 	 * This was not a problem before because STACK_INVALID is only set by
808 	 * default (where the default reg state has its reg->parent as NULL), or
809 	 * in clean_live_states after REG_LIVE_DONE (at which point
810 	 * mark_reg_read won't walk reg->parent chain), but not randomly during
811 	 * verifier state exploration (like we did above). Hence, for our case
812 	 * parentage chain will still be live (i.e. reg->parent may be
813 	 * non-NULL), while earlier reg->parent was NULL, so we need
814 	 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
815 	 * done later on reads or by mark_dynptr_read as well to unnecessary
816 	 * mark registers in verifier state.
817 	 */
818 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
819 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
820 }
821 
unmark_stack_slots_dynptr(struct bpf_verifier_env * env,struct bpf_reg_state * reg)822 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
823 {
824 	struct bpf_func_state *state = func(env, reg);
825 	int spi, ref_obj_id, i;
826 
827 	spi = dynptr_get_spi(env, reg);
828 	if (spi < 0)
829 		return spi;
830 
831 	if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
832 		invalidate_dynptr(env, state, spi);
833 		return 0;
834 	}
835 
836 	ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
837 
838 	/* If the dynptr has a ref_obj_id, then we need to invalidate
839 	 * two things:
840 	 *
841 	 * 1) Any dynptrs with a matching ref_obj_id (clones)
842 	 * 2) Any slices derived from this dynptr.
843 	 */
844 
845 	/* Invalidate any slices associated with this dynptr */
846 	WARN_ON_ONCE(release_reference(env, ref_obj_id));
847 
848 	/* Invalidate any dynptr clones */
849 	for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
850 		if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
851 			continue;
852 
853 		/* it should always be the case that if the ref obj id
854 		 * matches then the stack slot also belongs to a
855 		 * dynptr
856 		 */
857 		if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
858 			verbose(env, "verifier internal error: misconfigured ref_obj_id\n");
859 			return -EFAULT;
860 		}
861 		if (state->stack[i].spilled_ptr.dynptr.first_slot)
862 			invalidate_dynptr(env, state, i);
863 	}
864 
865 	return 0;
866 }
867 
868 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
869 			       struct bpf_reg_state *reg);
870 
mark_reg_invalid(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)871 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
872 {
873 	if (!env->allow_ptr_leaks)
874 		__mark_reg_not_init(env, reg);
875 	else
876 		__mark_reg_unknown(env, reg);
877 }
878 
destroy_if_dynptr_stack_slot(struct bpf_verifier_env * env,struct bpf_func_state * state,int spi)879 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
880 				        struct bpf_func_state *state, int spi)
881 {
882 	struct bpf_func_state *fstate;
883 	struct bpf_reg_state *dreg;
884 	int i, dynptr_id;
885 
886 	/* We always ensure that STACK_DYNPTR is never set partially,
887 	 * hence just checking for slot_type[0] is enough. This is
888 	 * different for STACK_SPILL, where it may be only set for
889 	 * 1 byte, so code has to use is_spilled_reg.
890 	 */
891 	if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
892 		return 0;
893 
894 	/* Reposition spi to first slot */
895 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
896 		spi = spi + 1;
897 
898 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
899 		verbose(env, "cannot overwrite referenced dynptr\n");
900 		return -EINVAL;
901 	}
902 
903 	mark_stack_slot_scratched(env, spi);
904 	mark_stack_slot_scratched(env, spi - 1);
905 
906 	/* Writing partially to one dynptr stack slot destroys both. */
907 	for (i = 0; i < BPF_REG_SIZE; i++) {
908 		state->stack[spi].slot_type[i] = STACK_INVALID;
909 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
910 	}
911 
912 	dynptr_id = state->stack[spi].spilled_ptr.id;
913 	/* Invalidate any slices associated with this dynptr */
914 	bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
915 		/* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
916 		if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
917 			continue;
918 		if (dreg->dynptr_id == dynptr_id)
919 			mark_reg_invalid(env, dreg);
920 	}));
921 
922 	/* Do not release reference state, we are destroying dynptr on stack,
923 	 * not using some helper to release it. Just reset register.
924 	 */
925 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
926 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
927 
928 	/* Same reason as unmark_stack_slots_dynptr above */
929 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
930 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
931 
932 	return 0;
933 }
934 
is_dynptr_reg_valid_uninit(struct bpf_verifier_env * env,struct bpf_reg_state * reg)935 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
936 {
937 	int spi;
938 
939 	if (reg->type == CONST_PTR_TO_DYNPTR)
940 		return false;
941 
942 	spi = dynptr_get_spi(env, reg);
943 
944 	/* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
945 	 * error because this just means the stack state hasn't been updated yet.
946 	 * We will do check_mem_access to check and update stack bounds later.
947 	 */
948 	if (spi < 0 && spi != -ERANGE)
949 		return false;
950 
951 	/* We don't need to check if the stack slots are marked by previous
952 	 * dynptr initializations because we allow overwriting existing unreferenced
953 	 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
954 	 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
955 	 * touching are completely destructed before we reinitialize them for a new
956 	 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
957 	 * instead of delaying it until the end where the user will get "Unreleased
958 	 * reference" error.
959 	 */
960 	return true;
961 }
962 
is_dynptr_reg_valid_init(struct bpf_verifier_env * env,struct bpf_reg_state * reg)963 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
964 {
965 	struct bpf_func_state *state = func(env, reg);
966 	int i, spi;
967 
968 	/* This already represents first slot of initialized bpf_dynptr.
969 	 *
970 	 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
971 	 * check_func_arg_reg_off's logic, so we don't need to check its
972 	 * offset and alignment.
973 	 */
974 	if (reg->type == CONST_PTR_TO_DYNPTR)
975 		return true;
976 
977 	spi = dynptr_get_spi(env, reg);
978 	if (spi < 0)
979 		return false;
980 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
981 		return false;
982 
983 	for (i = 0; i < BPF_REG_SIZE; i++) {
984 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
985 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
986 			return false;
987 	}
988 
989 	return true;
990 }
991 
is_dynptr_type_expected(struct bpf_verifier_env * env,struct bpf_reg_state * reg,enum bpf_arg_type arg_type)992 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
993 				    enum bpf_arg_type arg_type)
994 {
995 	struct bpf_func_state *state = func(env, reg);
996 	enum bpf_dynptr_type dynptr_type;
997 	int spi;
998 
999 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
1000 	if (arg_type == ARG_PTR_TO_DYNPTR)
1001 		return true;
1002 
1003 	dynptr_type = arg_to_dynptr_type(arg_type);
1004 	if (reg->type == CONST_PTR_TO_DYNPTR) {
1005 		return reg->dynptr.type == dynptr_type;
1006 	} else {
1007 		spi = dynptr_get_spi(env, reg);
1008 		if (spi < 0)
1009 			return false;
1010 		return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
1011 	}
1012 }
1013 
1014 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
1015 
1016 static bool in_rcu_cs(struct bpf_verifier_env *env);
1017 
1018 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta);
1019 
mark_stack_slots_iter(struct bpf_verifier_env * env,struct bpf_kfunc_call_arg_meta * meta,struct bpf_reg_state * reg,int insn_idx,struct btf * btf,u32 btf_id,int nr_slots)1020 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1021 				 struct bpf_kfunc_call_arg_meta *meta,
1022 				 struct bpf_reg_state *reg, int insn_idx,
1023 				 struct btf *btf, u32 btf_id, int nr_slots)
1024 {
1025 	struct bpf_func_state *state = func(env, reg);
1026 	int spi, i, j, id;
1027 
1028 	spi = iter_get_spi(env, reg, nr_slots);
1029 	if (spi < 0)
1030 		return spi;
1031 
1032 	id = acquire_reference(env, insn_idx);
1033 	if (id < 0)
1034 		return id;
1035 
1036 	for (i = 0; i < nr_slots; i++) {
1037 		struct bpf_stack_state *slot = &state->stack[spi - i];
1038 		struct bpf_reg_state *st = &slot->spilled_ptr;
1039 
1040 		__mark_reg_known_zero(st);
1041 		st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1042 		if (is_kfunc_rcu_protected(meta)) {
1043 			if (in_rcu_cs(env))
1044 				st->type |= MEM_RCU;
1045 			else
1046 				st->type |= PTR_UNTRUSTED;
1047 		}
1048 		st->live |= REG_LIVE_WRITTEN;
1049 		st->ref_obj_id = i == 0 ? id : 0;
1050 		st->iter.btf = btf;
1051 		st->iter.btf_id = btf_id;
1052 		st->iter.state = BPF_ITER_STATE_ACTIVE;
1053 		st->iter.depth = 0;
1054 
1055 		for (j = 0; j < BPF_REG_SIZE; j++)
1056 			slot->slot_type[j] = STACK_ITER;
1057 
1058 		mark_stack_slot_scratched(env, spi - i);
1059 	}
1060 
1061 	return 0;
1062 }
1063 
unmark_stack_slots_iter(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int nr_slots)1064 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1065 				   struct bpf_reg_state *reg, int nr_slots)
1066 {
1067 	struct bpf_func_state *state = func(env, reg);
1068 	int spi, i, j;
1069 
1070 	spi = iter_get_spi(env, reg, nr_slots);
1071 	if (spi < 0)
1072 		return spi;
1073 
1074 	for (i = 0; i < nr_slots; i++) {
1075 		struct bpf_stack_state *slot = &state->stack[spi - i];
1076 		struct bpf_reg_state *st = &slot->spilled_ptr;
1077 
1078 		if (i == 0)
1079 			WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1080 
1081 		__mark_reg_not_init(env, st);
1082 
1083 		/* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1084 		st->live |= REG_LIVE_WRITTEN;
1085 
1086 		for (j = 0; j < BPF_REG_SIZE; j++)
1087 			slot->slot_type[j] = STACK_INVALID;
1088 
1089 		mark_stack_slot_scratched(env, spi - i);
1090 	}
1091 
1092 	return 0;
1093 }
1094 
is_iter_reg_valid_uninit(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int nr_slots)1095 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1096 				     struct bpf_reg_state *reg, int nr_slots)
1097 {
1098 	struct bpf_func_state *state = func(env, reg);
1099 	int spi, i, j;
1100 
1101 	/* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1102 	 * will do check_mem_access to check and update stack bounds later, so
1103 	 * return true for that case.
1104 	 */
1105 	spi = iter_get_spi(env, reg, nr_slots);
1106 	if (spi == -ERANGE)
1107 		return true;
1108 	if (spi < 0)
1109 		return false;
1110 
1111 	for (i = 0; i < nr_slots; i++) {
1112 		struct bpf_stack_state *slot = &state->stack[spi - i];
1113 
1114 		for (j = 0; j < BPF_REG_SIZE; j++)
1115 			if (slot->slot_type[j] == STACK_ITER)
1116 				return false;
1117 	}
1118 
1119 	return true;
1120 }
1121 
is_iter_reg_valid_init(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct btf * btf,u32 btf_id,int nr_slots)1122 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1123 				   struct btf *btf, u32 btf_id, int nr_slots)
1124 {
1125 	struct bpf_func_state *state = func(env, reg);
1126 	int spi, i, j;
1127 
1128 	spi = iter_get_spi(env, reg, nr_slots);
1129 	if (spi < 0)
1130 		return -EINVAL;
1131 
1132 	for (i = 0; i < nr_slots; i++) {
1133 		struct bpf_stack_state *slot = &state->stack[spi - i];
1134 		struct bpf_reg_state *st = &slot->spilled_ptr;
1135 
1136 		if (st->type & PTR_UNTRUSTED)
1137 			return -EPROTO;
1138 		/* only main (first) slot has ref_obj_id set */
1139 		if (i == 0 && !st->ref_obj_id)
1140 			return -EINVAL;
1141 		if (i != 0 && st->ref_obj_id)
1142 			return -EINVAL;
1143 		if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1144 			return -EINVAL;
1145 
1146 		for (j = 0; j < BPF_REG_SIZE; j++)
1147 			if (slot->slot_type[j] != STACK_ITER)
1148 				return -EINVAL;
1149 	}
1150 
1151 	return 0;
1152 }
1153 
1154 static int acquire_irq_state(struct bpf_verifier_env *env, int insn_idx);
1155 static int release_irq_state(struct bpf_verifier_state *state, int id);
1156 
mark_stack_slot_irq_flag(struct bpf_verifier_env * env,struct bpf_kfunc_call_arg_meta * meta,struct bpf_reg_state * reg,int insn_idx,int kfunc_class)1157 static int mark_stack_slot_irq_flag(struct bpf_verifier_env *env,
1158 				     struct bpf_kfunc_call_arg_meta *meta,
1159 				     struct bpf_reg_state *reg, int insn_idx,
1160 				     int kfunc_class)
1161 {
1162 	struct bpf_func_state *state = func(env, reg);
1163 	struct bpf_stack_state *slot;
1164 	struct bpf_reg_state *st;
1165 	int spi, i, id;
1166 
1167 	spi = irq_flag_get_spi(env, reg);
1168 	if (spi < 0)
1169 		return spi;
1170 
1171 	id = acquire_irq_state(env, insn_idx);
1172 	if (id < 0)
1173 		return id;
1174 
1175 	slot = &state->stack[spi];
1176 	st = &slot->spilled_ptr;
1177 
1178 	__mark_reg_known_zero(st);
1179 	st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1180 	st->live |= REG_LIVE_WRITTEN;
1181 	st->ref_obj_id = id;
1182 	st->irq.kfunc_class = kfunc_class;
1183 
1184 	for (i = 0; i < BPF_REG_SIZE; i++)
1185 		slot->slot_type[i] = STACK_IRQ_FLAG;
1186 
1187 	mark_stack_slot_scratched(env, spi);
1188 	return 0;
1189 }
1190 
unmark_stack_slot_irq_flag(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int kfunc_class)1191 static int unmark_stack_slot_irq_flag(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1192 				      int kfunc_class)
1193 {
1194 	struct bpf_func_state *state = func(env, reg);
1195 	struct bpf_stack_state *slot;
1196 	struct bpf_reg_state *st;
1197 	int spi, i, err;
1198 
1199 	spi = irq_flag_get_spi(env, reg);
1200 	if (spi < 0)
1201 		return spi;
1202 
1203 	slot = &state->stack[spi];
1204 	st = &slot->spilled_ptr;
1205 
1206 	if (st->irq.kfunc_class != kfunc_class) {
1207 		const char *flag_kfunc = st->irq.kfunc_class == IRQ_NATIVE_KFUNC ? "native" : "lock";
1208 		const char *used_kfunc = kfunc_class == IRQ_NATIVE_KFUNC ? "native" : "lock";
1209 
1210 		verbose(env, "irq flag acquired by %s kfuncs cannot be restored with %s kfuncs\n",
1211 			flag_kfunc, used_kfunc);
1212 		return -EINVAL;
1213 	}
1214 
1215 	err = release_irq_state(env->cur_state, st->ref_obj_id);
1216 	WARN_ON_ONCE(err && err != -EACCES);
1217 	if (err) {
1218 		int insn_idx = 0;
1219 
1220 		for (int i = 0; i < env->cur_state->acquired_refs; i++) {
1221 			if (env->cur_state->refs[i].id == env->cur_state->active_irq_id) {
1222 				insn_idx = env->cur_state->refs[i].insn_idx;
1223 				break;
1224 			}
1225 		}
1226 
1227 		verbose(env, "cannot restore irq state out of order, expected id=%d acquired at insn_idx=%d\n",
1228 			env->cur_state->active_irq_id, insn_idx);
1229 		return err;
1230 	}
1231 
1232 	__mark_reg_not_init(env, st);
1233 
1234 	/* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1235 	st->live |= REG_LIVE_WRITTEN;
1236 
1237 	for (i = 0; i < BPF_REG_SIZE; i++)
1238 		slot->slot_type[i] = STACK_INVALID;
1239 
1240 	mark_stack_slot_scratched(env, spi);
1241 	return 0;
1242 }
1243 
is_irq_flag_reg_valid_uninit(struct bpf_verifier_env * env,struct bpf_reg_state * reg)1244 static bool is_irq_flag_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1245 {
1246 	struct bpf_func_state *state = func(env, reg);
1247 	struct bpf_stack_state *slot;
1248 	int spi, i;
1249 
1250 	/* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1251 	 * will do check_mem_access to check and update stack bounds later, so
1252 	 * return true for that case.
1253 	 */
1254 	spi = irq_flag_get_spi(env, reg);
1255 	if (spi == -ERANGE)
1256 		return true;
1257 	if (spi < 0)
1258 		return false;
1259 
1260 	slot = &state->stack[spi];
1261 
1262 	for (i = 0; i < BPF_REG_SIZE; i++)
1263 		if (slot->slot_type[i] == STACK_IRQ_FLAG)
1264 			return false;
1265 	return true;
1266 }
1267 
is_irq_flag_reg_valid_init(struct bpf_verifier_env * env,struct bpf_reg_state * reg)1268 static int is_irq_flag_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1269 {
1270 	struct bpf_func_state *state = func(env, reg);
1271 	struct bpf_stack_state *slot;
1272 	struct bpf_reg_state *st;
1273 	int spi, i;
1274 
1275 	spi = irq_flag_get_spi(env, reg);
1276 	if (spi < 0)
1277 		return -EINVAL;
1278 
1279 	slot = &state->stack[spi];
1280 	st = &slot->spilled_ptr;
1281 
1282 	if (!st->ref_obj_id)
1283 		return -EINVAL;
1284 
1285 	for (i = 0; i < BPF_REG_SIZE; i++)
1286 		if (slot->slot_type[i] != STACK_IRQ_FLAG)
1287 			return -EINVAL;
1288 	return 0;
1289 }
1290 
1291 /* Check if given stack slot is "special":
1292  *   - spilled register state (STACK_SPILL);
1293  *   - dynptr state (STACK_DYNPTR);
1294  *   - iter state (STACK_ITER).
1295  *   - irq flag state (STACK_IRQ_FLAG)
1296  */
is_stack_slot_special(const struct bpf_stack_state * stack)1297 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1298 {
1299 	enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1300 
1301 	switch (type) {
1302 	case STACK_SPILL:
1303 	case STACK_DYNPTR:
1304 	case STACK_ITER:
1305 	case STACK_IRQ_FLAG:
1306 		return true;
1307 	case STACK_INVALID:
1308 	case STACK_MISC:
1309 	case STACK_ZERO:
1310 		return false;
1311 	default:
1312 		WARN_ONCE(1, "unknown stack slot type %d\n", type);
1313 		return true;
1314 	}
1315 }
1316 
1317 /* The reg state of a pointer or a bounded scalar was saved when
1318  * it was spilled to the stack.
1319  */
is_spilled_reg(const struct bpf_stack_state * stack)1320 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1321 {
1322 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1323 }
1324 
is_spilled_scalar_reg(const struct bpf_stack_state * stack)1325 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1326 {
1327 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1328 	       stack->spilled_ptr.type == SCALAR_VALUE;
1329 }
1330 
is_spilled_scalar_reg64(const struct bpf_stack_state * stack)1331 static bool is_spilled_scalar_reg64(const struct bpf_stack_state *stack)
1332 {
1333 	return stack->slot_type[0] == STACK_SPILL &&
1334 	       stack->spilled_ptr.type == SCALAR_VALUE;
1335 }
1336 
1337 /* Mark stack slot as STACK_MISC, unless it is already STACK_INVALID, in which
1338  * case they are equivalent, or it's STACK_ZERO, in which case we preserve
1339  * more precise STACK_ZERO.
1340  * Regardless of allow_ptr_leaks setting (i.e., privileged or unprivileged
1341  * mode), we won't promote STACK_INVALID to STACK_MISC. In privileged case it is
1342  * unnecessary as both are considered equivalent when loading data and pruning,
1343  * in case of unprivileged mode it will be incorrect to allow reads of invalid
1344  * slots.
1345  */
mark_stack_slot_misc(struct bpf_verifier_env * env,u8 * stype)1346 static void mark_stack_slot_misc(struct bpf_verifier_env *env, u8 *stype)
1347 {
1348 	if (*stype == STACK_ZERO)
1349 		return;
1350 	if (*stype == STACK_INVALID)
1351 		return;
1352 	*stype = STACK_MISC;
1353 }
1354 
scrub_spilled_slot(u8 * stype)1355 static void scrub_spilled_slot(u8 *stype)
1356 {
1357 	if (*stype != STACK_INVALID)
1358 		*stype = STACK_MISC;
1359 }
1360 
1361 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1362  * small to hold src. This is different from krealloc since we don't want to preserve
1363  * the contents of dst.
1364  *
1365  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1366  * not be allocated.
1367  */
copy_array(void * dst,const void * src,size_t n,size_t size,gfp_t flags)1368 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1369 {
1370 	size_t alloc_bytes;
1371 	void *orig = dst;
1372 	size_t bytes;
1373 
1374 	if (ZERO_OR_NULL_PTR(src))
1375 		goto out;
1376 
1377 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1378 		return NULL;
1379 
1380 	alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1381 	dst = krealloc(orig, alloc_bytes, flags);
1382 	if (!dst) {
1383 		kfree(orig);
1384 		return NULL;
1385 	}
1386 
1387 	memcpy(dst, src, bytes);
1388 out:
1389 	return dst ? dst : ZERO_SIZE_PTR;
1390 }
1391 
1392 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1393  * small to hold new_n items. new items are zeroed out if the array grows.
1394  *
1395  * Contrary to krealloc_array, does not free arr if new_n is zero.
1396  */
realloc_array(void * arr,size_t old_n,size_t new_n,size_t size)1397 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1398 {
1399 	size_t alloc_size;
1400 	void *new_arr;
1401 
1402 	if (!new_n || old_n == new_n)
1403 		goto out;
1404 
1405 	alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1406 	new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1407 	if (!new_arr) {
1408 		kfree(arr);
1409 		return NULL;
1410 	}
1411 	arr = new_arr;
1412 
1413 	if (new_n > old_n)
1414 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1415 
1416 out:
1417 	return arr ? arr : ZERO_SIZE_PTR;
1418 }
1419 
copy_reference_state(struct bpf_verifier_state * dst,const struct bpf_verifier_state * src)1420 static int copy_reference_state(struct bpf_verifier_state *dst, const struct bpf_verifier_state *src)
1421 {
1422 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1423 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
1424 	if (!dst->refs)
1425 		return -ENOMEM;
1426 
1427 	dst->acquired_refs = src->acquired_refs;
1428 	dst->active_locks = src->active_locks;
1429 	dst->active_preempt_locks = src->active_preempt_locks;
1430 	dst->active_rcu_lock = src->active_rcu_lock;
1431 	dst->active_irq_id = src->active_irq_id;
1432 	dst->active_lock_id = src->active_lock_id;
1433 	dst->active_lock_ptr = src->active_lock_ptr;
1434 	return 0;
1435 }
1436 
copy_stack_state(struct bpf_func_state * dst,const struct bpf_func_state * src)1437 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1438 {
1439 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1440 
1441 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1442 				GFP_KERNEL);
1443 	if (!dst->stack)
1444 		return -ENOMEM;
1445 
1446 	dst->allocated_stack = src->allocated_stack;
1447 	return 0;
1448 }
1449 
resize_reference_state(struct bpf_verifier_state * state,size_t n)1450 static int resize_reference_state(struct bpf_verifier_state *state, size_t n)
1451 {
1452 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1453 				    sizeof(struct bpf_reference_state));
1454 	if (!state->refs)
1455 		return -ENOMEM;
1456 
1457 	state->acquired_refs = n;
1458 	return 0;
1459 }
1460 
1461 /* Possibly update state->allocated_stack to be at least size bytes. Also
1462  * possibly update the function's high-water mark in its bpf_subprog_info.
1463  */
grow_stack_state(struct bpf_verifier_env * env,struct bpf_func_state * state,int size)1464 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size)
1465 {
1466 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n;
1467 
1468 	/* The stack size is always a multiple of BPF_REG_SIZE. */
1469 	size = round_up(size, BPF_REG_SIZE);
1470 	n = size / BPF_REG_SIZE;
1471 
1472 	if (old_n >= n)
1473 		return 0;
1474 
1475 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1476 	if (!state->stack)
1477 		return -ENOMEM;
1478 
1479 	state->allocated_stack = size;
1480 
1481 	/* update known max for given subprogram */
1482 	if (env->subprog_info[state->subprogno].stack_depth < size)
1483 		env->subprog_info[state->subprogno].stack_depth = size;
1484 
1485 	return 0;
1486 }
1487 
1488 /* Acquire a pointer id from the env and update the state->refs to include
1489  * this new pointer reference.
1490  * On success, returns a valid pointer id to associate with the register
1491  * On failure, returns a negative errno.
1492  */
acquire_reference_state(struct bpf_verifier_env * env,int insn_idx)1493 static struct bpf_reference_state *acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1494 {
1495 	struct bpf_verifier_state *state = env->cur_state;
1496 	int new_ofs = state->acquired_refs;
1497 	int err;
1498 
1499 	err = resize_reference_state(state, state->acquired_refs + 1);
1500 	if (err)
1501 		return NULL;
1502 	state->refs[new_ofs].insn_idx = insn_idx;
1503 
1504 	return &state->refs[new_ofs];
1505 }
1506 
acquire_reference(struct bpf_verifier_env * env,int insn_idx)1507 static int acquire_reference(struct bpf_verifier_env *env, int insn_idx)
1508 {
1509 	struct bpf_reference_state *s;
1510 
1511 	s = acquire_reference_state(env, insn_idx);
1512 	if (!s)
1513 		return -ENOMEM;
1514 	s->type = REF_TYPE_PTR;
1515 	s->id = ++env->id_gen;
1516 	return s->id;
1517 }
1518 
acquire_lock_state(struct bpf_verifier_env * env,int insn_idx,enum ref_state_type type,int id,void * ptr)1519 static int acquire_lock_state(struct bpf_verifier_env *env, int insn_idx, enum ref_state_type type,
1520 			      int id, void *ptr)
1521 {
1522 	struct bpf_verifier_state *state = env->cur_state;
1523 	struct bpf_reference_state *s;
1524 
1525 	s = acquire_reference_state(env, insn_idx);
1526 	if (!s)
1527 		return -ENOMEM;
1528 	s->type = type;
1529 	s->id = id;
1530 	s->ptr = ptr;
1531 
1532 	state->active_locks++;
1533 	state->active_lock_id = id;
1534 	state->active_lock_ptr = ptr;
1535 	return 0;
1536 }
1537 
acquire_irq_state(struct bpf_verifier_env * env,int insn_idx)1538 static int acquire_irq_state(struct bpf_verifier_env *env, int insn_idx)
1539 {
1540 	struct bpf_verifier_state *state = env->cur_state;
1541 	struct bpf_reference_state *s;
1542 
1543 	s = acquire_reference_state(env, insn_idx);
1544 	if (!s)
1545 		return -ENOMEM;
1546 	s->type = REF_TYPE_IRQ;
1547 	s->id = ++env->id_gen;
1548 
1549 	state->active_irq_id = s->id;
1550 	return s->id;
1551 }
1552 
release_reference_state(struct bpf_verifier_state * state,int idx)1553 static void release_reference_state(struct bpf_verifier_state *state, int idx)
1554 {
1555 	int last_idx;
1556 	size_t rem;
1557 
1558 	/* IRQ state requires the relative ordering of elements remaining the
1559 	 * same, since it relies on the refs array to behave as a stack, so that
1560 	 * it can detect out-of-order IRQ restore. Hence use memmove to shift
1561 	 * the array instead of swapping the final element into the deleted idx.
1562 	 */
1563 	last_idx = state->acquired_refs - 1;
1564 	rem = state->acquired_refs - idx - 1;
1565 	if (last_idx && idx != last_idx)
1566 		memmove(&state->refs[idx], &state->refs[idx + 1], sizeof(*state->refs) * rem);
1567 	memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1568 	state->acquired_refs--;
1569 	return;
1570 }
1571 
find_reference_state(struct bpf_verifier_state * state,int ptr_id)1572 static bool find_reference_state(struct bpf_verifier_state *state, int ptr_id)
1573 {
1574 	int i;
1575 
1576 	for (i = 0; i < state->acquired_refs; i++)
1577 		if (state->refs[i].id == ptr_id)
1578 			return true;
1579 
1580 	return false;
1581 }
1582 
release_lock_state(struct bpf_verifier_state * state,int type,int id,void * ptr)1583 static int release_lock_state(struct bpf_verifier_state *state, int type, int id, void *ptr)
1584 {
1585 	void *prev_ptr = NULL;
1586 	u32 prev_id = 0;
1587 	int i;
1588 
1589 	for (i = 0; i < state->acquired_refs; i++) {
1590 		if (state->refs[i].type == type && state->refs[i].id == id &&
1591 		    state->refs[i].ptr == ptr) {
1592 			release_reference_state(state, i);
1593 			state->active_locks--;
1594 			/* Reassign active lock (id, ptr). */
1595 			state->active_lock_id = prev_id;
1596 			state->active_lock_ptr = prev_ptr;
1597 			return 0;
1598 		}
1599 		if (state->refs[i].type & REF_TYPE_LOCK_MASK) {
1600 			prev_id = state->refs[i].id;
1601 			prev_ptr = state->refs[i].ptr;
1602 		}
1603 	}
1604 	return -EINVAL;
1605 }
1606 
release_irq_state(struct bpf_verifier_state * state,int id)1607 static int release_irq_state(struct bpf_verifier_state *state, int id)
1608 {
1609 	u32 prev_id = 0;
1610 	int i;
1611 
1612 	if (id != state->active_irq_id)
1613 		return -EACCES;
1614 
1615 	for (i = 0; i < state->acquired_refs; i++) {
1616 		if (state->refs[i].type != REF_TYPE_IRQ)
1617 			continue;
1618 		if (state->refs[i].id == id) {
1619 			release_reference_state(state, i);
1620 			state->active_irq_id = prev_id;
1621 			return 0;
1622 		} else {
1623 			prev_id = state->refs[i].id;
1624 		}
1625 	}
1626 	return -EINVAL;
1627 }
1628 
find_lock_state(struct bpf_verifier_state * state,enum ref_state_type type,int id,void * ptr)1629 static struct bpf_reference_state *find_lock_state(struct bpf_verifier_state *state, enum ref_state_type type,
1630 						   int id, void *ptr)
1631 {
1632 	int i;
1633 
1634 	for (i = 0; i < state->acquired_refs; i++) {
1635 		struct bpf_reference_state *s = &state->refs[i];
1636 
1637 		if (!(s->type & type))
1638 			continue;
1639 
1640 		if (s->id == id && s->ptr == ptr)
1641 			return s;
1642 	}
1643 	return NULL;
1644 }
1645 
update_peak_states(struct bpf_verifier_env * env)1646 static void update_peak_states(struct bpf_verifier_env *env)
1647 {
1648 	u32 cur_states;
1649 
1650 	cur_states = env->explored_states_size + env->free_list_size;
1651 	env->peak_states = max(env->peak_states, cur_states);
1652 }
1653 
free_func_state(struct bpf_func_state * state)1654 static void free_func_state(struct bpf_func_state *state)
1655 {
1656 	if (!state)
1657 		return;
1658 	kfree(state->stack);
1659 	kfree(state);
1660 }
1661 
free_verifier_state(struct bpf_verifier_state * state,bool free_self)1662 static void free_verifier_state(struct bpf_verifier_state *state,
1663 				bool free_self)
1664 {
1665 	int i;
1666 
1667 	for (i = 0; i <= state->curframe; i++) {
1668 		free_func_state(state->frame[i]);
1669 		state->frame[i] = NULL;
1670 	}
1671 	kfree(state->refs);
1672 	if (free_self)
1673 		kfree(state);
1674 }
1675 
1676 /* struct bpf_verifier_state->{parent,loop_entry} refer to states
1677  * that are in either of env->{expored_states,free_list}.
1678  * In both cases the state is contained in struct bpf_verifier_state_list.
1679  */
state_parent_as_list(struct bpf_verifier_state * st)1680 static struct bpf_verifier_state_list *state_parent_as_list(struct bpf_verifier_state *st)
1681 {
1682 	if (st->parent)
1683 		return container_of(st->parent, struct bpf_verifier_state_list, state);
1684 	return NULL;
1685 }
1686 
state_loop_entry_as_list(struct bpf_verifier_state * st)1687 static struct bpf_verifier_state_list *state_loop_entry_as_list(struct bpf_verifier_state *st)
1688 {
1689 	if (st->loop_entry)
1690 		return container_of(st->loop_entry, struct bpf_verifier_state_list, state);
1691 	return NULL;
1692 }
1693 
1694 /* A state can be freed if it is no longer referenced:
1695  * - is in the env->free_list;
1696  * - has no children states;
1697  * - is not used as loop_entry.
1698  *
1699  * Freeing a state can make it's loop_entry free-able.
1700  */
maybe_free_verifier_state(struct bpf_verifier_env * env,struct bpf_verifier_state_list * sl)1701 static void maybe_free_verifier_state(struct bpf_verifier_env *env,
1702 				      struct bpf_verifier_state_list *sl)
1703 {
1704 	struct bpf_verifier_state_list *loop_entry_sl;
1705 
1706 	while (sl && sl->in_free_list &&
1707 		     sl->state.branches == 0 &&
1708 		     sl->state.used_as_loop_entry == 0) {
1709 		loop_entry_sl = state_loop_entry_as_list(&sl->state);
1710 		if (loop_entry_sl)
1711 			loop_entry_sl->state.used_as_loop_entry--;
1712 		list_del(&sl->node);
1713 		free_verifier_state(&sl->state, false);
1714 		kfree(sl);
1715 		env->free_list_size--;
1716 		sl = loop_entry_sl;
1717 	}
1718 }
1719 
1720 /* copy verifier state from src to dst growing dst stack space
1721  * when necessary to accommodate larger src stack
1722  */
copy_func_state(struct bpf_func_state * dst,const struct bpf_func_state * src)1723 static int copy_func_state(struct bpf_func_state *dst,
1724 			   const struct bpf_func_state *src)
1725 {
1726 	memcpy(dst, src, offsetof(struct bpf_func_state, stack));
1727 	return copy_stack_state(dst, src);
1728 }
1729 
copy_verifier_state(struct bpf_verifier_state * dst_state,const struct bpf_verifier_state * src)1730 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1731 			       const struct bpf_verifier_state *src)
1732 {
1733 	struct bpf_func_state *dst;
1734 	int i, err;
1735 
1736 	/* if dst has more stack frames then src frame, free them, this is also
1737 	 * necessary in case of exceptional exits using bpf_throw.
1738 	 */
1739 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1740 		free_func_state(dst_state->frame[i]);
1741 		dst_state->frame[i] = NULL;
1742 	}
1743 	err = copy_reference_state(dst_state, src);
1744 	if (err)
1745 		return err;
1746 	dst_state->speculative = src->speculative;
1747 	dst_state->in_sleepable = src->in_sleepable;
1748 	dst_state->curframe = src->curframe;
1749 	dst_state->branches = src->branches;
1750 	dst_state->parent = src->parent;
1751 	dst_state->first_insn_idx = src->first_insn_idx;
1752 	dst_state->last_insn_idx = src->last_insn_idx;
1753 	dst_state->insn_hist_start = src->insn_hist_start;
1754 	dst_state->insn_hist_end = src->insn_hist_end;
1755 	dst_state->dfs_depth = src->dfs_depth;
1756 	dst_state->callback_unroll_depth = src->callback_unroll_depth;
1757 	dst_state->used_as_loop_entry = src->used_as_loop_entry;
1758 	dst_state->may_goto_depth = src->may_goto_depth;
1759 	dst_state->loop_entry = src->loop_entry;
1760 	for (i = 0; i <= src->curframe; i++) {
1761 		dst = dst_state->frame[i];
1762 		if (!dst) {
1763 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1764 			if (!dst)
1765 				return -ENOMEM;
1766 			dst_state->frame[i] = dst;
1767 		}
1768 		err = copy_func_state(dst, src->frame[i]);
1769 		if (err)
1770 			return err;
1771 	}
1772 	return 0;
1773 }
1774 
state_htab_size(struct bpf_verifier_env * env)1775 static u32 state_htab_size(struct bpf_verifier_env *env)
1776 {
1777 	return env->prog->len;
1778 }
1779 
explored_state(struct bpf_verifier_env * env,int idx)1780 static struct list_head *explored_state(struct bpf_verifier_env *env, int idx)
1781 {
1782 	struct bpf_verifier_state *cur = env->cur_state;
1783 	struct bpf_func_state *state = cur->frame[cur->curframe];
1784 
1785 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
1786 }
1787 
same_callsites(struct bpf_verifier_state * a,struct bpf_verifier_state * b)1788 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b)
1789 {
1790 	int fr;
1791 
1792 	if (a->curframe != b->curframe)
1793 		return false;
1794 
1795 	for (fr = a->curframe; fr >= 0; fr--)
1796 		if (a->frame[fr]->callsite != b->frame[fr]->callsite)
1797 			return false;
1798 
1799 	return true;
1800 }
1801 
1802 /* Open coded iterators allow back-edges in the state graph in order to
1803  * check unbounded loops that iterators.
1804  *
1805  * In is_state_visited() it is necessary to know if explored states are
1806  * part of some loops in order to decide whether non-exact states
1807  * comparison could be used:
1808  * - non-exact states comparison establishes sub-state relation and uses
1809  *   read and precision marks to do so, these marks are propagated from
1810  *   children states and thus are not guaranteed to be final in a loop;
1811  * - exact states comparison just checks if current and explored states
1812  *   are identical (and thus form a back-edge).
1813  *
1814  * Paper "A New Algorithm for Identifying Loops in Decompilation"
1815  * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient
1816  * algorithm for loop structure detection and gives an overview of
1817  * relevant terminology. It also has helpful illustrations.
1818  *
1819  * [1] https://api.semanticscholar.org/CorpusID:15784067
1820  *
1821  * We use a similar algorithm but because loop nested structure is
1822  * irrelevant for verifier ours is significantly simpler and resembles
1823  * strongly connected components algorithm from Sedgewick's textbook.
1824  *
1825  * Define topmost loop entry as a first node of the loop traversed in a
1826  * depth first search starting from initial state. The goal of the loop
1827  * tracking algorithm is to associate topmost loop entries with states
1828  * derived from these entries.
1829  *
1830  * For each step in the DFS states traversal algorithm needs to identify
1831  * the following situations:
1832  *
1833  *          initial                     initial                   initial
1834  *            |                           |                         |
1835  *            V                           V                         V
1836  *           ...                         ...           .---------> hdr
1837  *            |                           |            |            |
1838  *            V                           V            |            V
1839  *           cur                     .-> succ          |    .------...
1840  *            |                      |    |            |    |       |
1841  *            V                      |    V            |    V       V
1842  *           succ                    '-- cur           |   ...     ...
1843  *                                                     |    |       |
1844  *                                                     |    V       V
1845  *                                                     |   succ <- cur
1846  *                                                     |    |
1847  *                                                     |    V
1848  *                                                     |   ...
1849  *                                                     |    |
1850  *                                                     '----'
1851  *
1852  *  (A) successor state of cur   (B) successor state of cur or it's entry
1853  *      not yet traversed            are in current DFS path, thus cur and succ
1854  *                                   are members of the same outermost loop
1855  *
1856  *                      initial                  initial
1857  *                        |                        |
1858  *                        V                        V
1859  *                       ...                      ...
1860  *                        |                        |
1861  *                        V                        V
1862  *                .------...               .------...
1863  *                |       |                |       |
1864  *                V       V                V       V
1865  *           .-> hdr     ...              ...     ...
1866  *           |    |       |                |       |
1867  *           |    V       V                V       V
1868  *           |   succ <- cur              succ <- cur
1869  *           |    |                        |
1870  *           |    V                        V
1871  *           |   ...                      ...
1872  *           |    |                        |
1873  *           '----'                       exit
1874  *
1875  * (C) successor state of cur is a part of some loop but this loop
1876  *     does not include cur or successor state is not in a loop at all.
1877  *
1878  * Algorithm could be described as the following python code:
1879  *
1880  *     traversed = set()   # Set of traversed nodes
1881  *     entries = {}        # Mapping from node to loop entry
1882  *     depths = {}         # Depth level assigned to graph node
1883  *     path = set()        # Current DFS path
1884  *
1885  *     # Find outermost loop entry known for n
1886  *     def get_loop_entry(n):
1887  *         h = entries.get(n, None)
1888  *         while h in entries:
1889  *             h = entries[h]
1890  *         return h
1891  *
1892  *     # Update n's loop entry if h comes before n in current DFS path.
1893  *     def update_loop_entry(n, h):
1894  *         if h in path and depths[entries.get(n, n)] < depths[n]:
1895  *             entries[n] = h1
1896  *
1897  *     def dfs(n, depth):
1898  *         traversed.add(n)
1899  *         path.add(n)
1900  *         depths[n] = depth
1901  *         for succ in G.successors(n):
1902  *             if succ not in traversed:
1903  *                 # Case A: explore succ and update cur's loop entry
1904  *                 #         only if succ's entry is in current DFS path.
1905  *                 dfs(succ, depth + 1)
1906  *                 h = entries.get(succ, None)
1907  *                 update_loop_entry(n, h)
1908  *             else:
1909  *                 # Case B or C depending on `h1 in path` check in update_loop_entry().
1910  *                 update_loop_entry(n, succ)
1911  *         path.remove(n)
1912  *
1913  * To adapt this algorithm for use with verifier:
1914  * - use st->branch == 0 as a signal that DFS of succ had been finished
1915  *   and cur's loop entry has to be updated (case A), handle this in
1916  *   update_branch_counts();
1917  * - use st->branch > 0 as a signal that st is in the current DFS path;
1918  * - handle cases B and C in is_state_visited().
1919  */
get_loop_entry(struct bpf_verifier_env * env,struct bpf_verifier_state * st)1920 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_env *env,
1921 						 struct bpf_verifier_state *st)
1922 {
1923 	struct bpf_verifier_state *topmost = st->loop_entry;
1924 	u32 steps = 0;
1925 
1926 	while (topmost && topmost->loop_entry) {
1927 		if (verifier_bug_if(steps++ > st->dfs_depth, env, "infinite loop"))
1928 			return ERR_PTR(-EFAULT);
1929 		topmost = topmost->loop_entry;
1930 	}
1931 	return topmost;
1932 }
1933 
update_loop_entry(struct bpf_verifier_env * env,struct bpf_verifier_state * cur,struct bpf_verifier_state * hdr)1934 static void update_loop_entry(struct bpf_verifier_env *env,
1935 			      struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr)
1936 {
1937 	/* The hdr->branches check decides between cases B and C in
1938 	 * comment for get_loop_entry(). If hdr->branches == 0 then
1939 	 * head's topmost loop entry is not in current DFS path,
1940 	 * hence 'cur' and 'hdr' are not in the same loop and there is
1941 	 * no need to update cur->loop_entry.
1942 	 */
1943 	if (hdr->branches && hdr->dfs_depth < (cur->loop_entry ?: cur)->dfs_depth) {
1944 		if (cur->loop_entry) {
1945 			cur->loop_entry->used_as_loop_entry--;
1946 			maybe_free_verifier_state(env, state_loop_entry_as_list(cur));
1947 		}
1948 		cur->loop_entry = hdr;
1949 		hdr->used_as_loop_entry++;
1950 	}
1951 }
1952 
update_branch_counts(struct bpf_verifier_env * env,struct bpf_verifier_state * st)1953 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1954 {
1955 	struct bpf_verifier_state_list *sl = NULL, *parent_sl;
1956 	struct bpf_verifier_state *parent;
1957 
1958 	while (st) {
1959 		u32 br = --st->branches;
1960 
1961 		/* br == 0 signals that DFS exploration for 'st' is finished,
1962 		 * thus it is necessary to update parent's loop entry if it
1963 		 * turned out that st is a part of some loop.
1964 		 * This is a part of 'case A' in get_loop_entry() comment.
1965 		 */
1966 		if (br == 0 && st->parent && st->loop_entry)
1967 			update_loop_entry(env, st->parent, st->loop_entry);
1968 
1969 		/* WARN_ON(br > 1) technically makes sense here,
1970 		 * but see comment in push_stack(), hence:
1971 		 */
1972 		WARN_ONCE((int)br < 0,
1973 			  "BUG update_branch_counts:branches_to_explore=%d\n",
1974 			  br);
1975 		if (br)
1976 			break;
1977 		parent = st->parent;
1978 		parent_sl = state_parent_as_list(st);
1979 		if (sl)
1980 			maybe_free_verifier_state(env, sl);
1981 		st = parent;
1982 		sl = parent_sl;
1983 	}
1984 }
1985 
pop_stack(struct bpf_verifier_env * env,int * prev_insn_idx,int * insn_idx,bool pop_log)1986 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1987 		     int *insn_idx, bool pop_log)
1988 {
1989 	struct bpf_verifier_state *cur = env->cur_state;
1990 	struct bpf_verifier_stack_elem *elem, *head = env->head;
1991 	int err;
1992 
1993 	if (env->head == NULL)
1994 		return -ENOENT;
1995 
1996 	if (cur) {
1997 		err = copy_verifier_state(cur, &head->st);
1998 		if (err)
1999 			return err;
2000 	}
2001 	if (pop_log)
2002 		bpf_vlog_reset(&env->log, head->log_pos);
2003 	if (insn_idx)
2004 		*insn_idx = head->insn_idx;
2005 	if (prev_insn_idx)
2006 		*prev_insn_idx = head->prev_insn_idx;
2007 	elem = head->next;
2008 	free_verifier_state(&head->st, false);
2009 	kfree(head);
2010 	env->head = elem;
2011 	env->stack_size--;
2012 	return 0;
2013 }
2014 
push_stack(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx,bool speculative)2015 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
2016 					     int insn_idx, int prev_insn_idx,
2017 					     bool speculative)
2018 {
2019 	struct bpf_verifier_state *cur = env->cur_state;
2020 	struct bpf_verifier_stack_elem *elem;
2021 	int err;
2022 
2023 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2024 	if (!elem)
2025 		goto err;
2026 
2027 	elem->insn_idx = insn_idx;
2028 	elem->prev_insn_idx = prev_insn_idx;
2029 	elem->next = env->head;
2030 	elem->log_pos = env->log.end_pos;
2031 	env->head = elem;
2032 	env->stack_size++;
2033 	err = copy_verifier_state(&elem->st, cur);
2034 	if (err)
2035 		goto err;
2036 	elem->st.speculative |= speculative;
2037 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2038 		verbose(env, "The sequence of %d jumps is too complex.\n",
2039 			env->stack_size);
2040 		goto err;
2041 	}
2042 	if (elem->st.parent) {
2043 		++elem->st.parent->branches;
2044 		/* WARN_ON(branches > 2) technically makes sense here,
2045 		 * but
2046 		 * 1. speculative states will bump 'branches' for non-branch
2047 		 * instructions
2048 		 * 2. is_state_visited() heuristics may decide not to create
2049 		 * a new state for a sequence of branches and all such current
2050 		 * and cloned states will be pointing to a single parent state
2051 		 * which might have large 'branches' count.
2052 		 */
2053 	}
2054 	return &elem->st;
2055 err:
2056 	free_verifier_state(env->cur_state, true);
2057 	env->cur_state = NULL;
2058 	/* pop all elements and return */
2059 	while (!pop_stack(env, NULL, NULL, false));
2060 	return NULL;
2061 }
2062 
2063 #define CALLER_SAVED_REGS 6
2064 static const int caller_saved[CALLER_SAVED_REGS] = {
2065 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
2066 };
2067 
2068 /* This helper doesn't clear reg->id */
___mark_reg_known(struct bpf_reg_state * reg,u64 imm)2069 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
2070 {
2071 	reg->var_off = tnum_const(imm);
2072 	reg->smin_value = (s64)imm;
2073 	reg->smax_value = (s64)imm;
2074 	reg->umin_value = imm;
2075 	reg->umax_value = imm;
2076 
2077 	reg->s32_min_value = (s32)imm;
2078 	reg->s32_max_value = (s32)imm;
2079 	reg->u32_min_value = (u32)imm;
2080 	reg->u32_max_value = (u32)imm;
2081 }
2082 
2083 /* Mark the unknown part of a register (variable offset or scalar value) as
2084  * known to have the value @imm.
2085  */
__mark_reg_known(struct bpf_reg_state * reg,u64 imm)2086 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
2087 {
2088 	/* Clear off and union(map_ptr, range) */
2089 	memset(((u8 *)reg) + sizeof(reg->type), 0,
2090 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
2091 	reg->id = 0;
2092 	reg->ref_obj_id = 0;
2093 	___mark_reg_known(reg, imm);
2094 }
2095 
__mark_reg32_known(struct bpf_reg_state * reg,u64 imm)2096 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
2097 {
2098 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
2099 	reg->s32_min_value = (s32)imm;
2100 	reg->s32_max_value = (s32)imm;
2101 	reg->u32_min_value = (u32)imm;
2102 	reg->u32_max_value = (u32)imm;
2103 }
2104 
2105 /* Mark the 'variable offset' part of a register as zero.  This should be
2106  * used only on registers holding a pointer type.
2107  */
__mark_reg_known_zero(struct bpf_reg_state * reg)2108 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
2109 {
2110 	__mark_reg_known(reg, 0);
2111 }
2112 
__mark_reg_const_zero(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)2113 static void __mark_reg_const_zero(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
2114 {
2115 	__mark_reg_known(reg, 0);
2116 	reg->type = SCALAR_VALUE;
2117 	/* all scalars are assumed imprecise initially (unless unprivileged,
2118 	 * in which case everything is forced to be precise)
2119 	 */
2120 	reg->precise = !env->bpf_capable;
2121 }
2122 
mark_reg_known_zero(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)2123 static void mark_reg_known_zero(struct bpf_verifier_env *env,
2124 				struct bpf_reg_state *regs, u32 regno)
2125 {
2126 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2127 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
2128 		/* Something bad happened, let's kill all regs */
2129 		for (regno = 0; regno < MAX_BPF_REG; regno++)
2130 			__mark_reg_not_init(env, regs + regno);
2131 		return;
2132 	}
2133 	__mark_reg_known_zero(regs + regno);
2134 }
2135 
__mark_dynptr_reg(struct bpf_reg_state * reg,enum bpf_dynptr_type type,bool first_slot,int dynptr_id)2136 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
2137 			      bool first_slot, int dynptr_id)
2138 {
2139 	/* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
2140 	 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
2141 	 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
2142 	 */
2143 	__mark_reg_known_zero(reg);
2144 	reg->type = CONST_PTR_TO_DYNPTR;
2145 	/* Give each dynptr a unique id to uniquely associate slices to it. */
2146 	reg->id = dynptr_id;
2147 	reg->dynptr.type = type;
2148 	reg->dynptr.first_slot = first_slot;
2149 }
2150 
mark_ptr_not_null_reg(struct bpf_reg_state * reg)2151 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
2152 {
2153 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
2154 		const struct bpf_map *map = reg->map_ptr;
2155 
2156 		if (map->inner_map_meta) {
2157 			reg->type = CONST_PTR_TO_MAP;
2158 			reg->map_ptr = map->inner_map_meta;
2159 			/* transfer reg's id which is unique for every map_lookup_elem
2160 			 * as UID of the inner map.
2161 			 */
2162 			if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
2163 				reg->map_uid = reg->id;
2164 			if (btf_record_has_field(map->inner_map_meta->record, BPF_WORKQUEUE))
2165 				reg->map_uid = reg->id;
2166 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
2167 			reg->type = PTR_TO_XDP_SOCK;
2168 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
2169 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
2170 			reg->type = PTR_TO_SOCKET;
2171 		} else {
2172 			reg->type = PTR_TO_MAP_VALUE;
2173 		}
2174 		return;
2175 	}
2176 
2177 	reg->type &= ~PTR_MAYBE_NULL;
2178 }
2179 
mark_reg_graph_node(struct bpf_reg_state * regs,u32 regno,struct btf_field_graph_root * ds_head)2180 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
2181 				struct btf_field_graph_root *ds_head)
2182 {
2183 	__mark_reg_known_zero(&regs[regno]);
2184 	regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
2185 	regs[regno].btf = ds_head->btf;
2186 	regs[regno].btf_id = ds_head->value_btf_id;
2187 	regs[regno].off = ds_head->node_offset;
2188 }
2189 
reg_is_pkt_pointer(const struct bpf_reg_state * reg)2190 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
2191 {
2192 	return type_is_pkt_pointer(reg->type);
2193 }
2194 
reg_is_pkt_pointer_any(const struct bpf_reg_state * reg)2195 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
2196 {
2197 	return reg_is_pkt_pointer(reg) ||
2198 	       reg->type == PTR_TO_PACKET_END;
2199 }
2200 
reg_is_dynptr_slice_pkt(const struct bpf_reg_state * reg)2201 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
2202 {
2203 	return base_type(reg->type) == PTR_TO_MEM &&
2204 		(reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
2205 }
2206 
2207 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
reg_is_init_pkt_pointer(const struct bpf_reg_state * reg,enum bpf_reg_type which)2208 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
2209 				    enum bpf_reg_type which)
2210 {
2211 	/* The register can already have a range from prior markings.
2212 	 * This is fine as long as it hasn't been advanced from its
2213 	 * origin.
2214 	 */
2215 	return reg->type == which &&
2216 	       reg->id == 0 &&
2217 	       reg->off == 0 &&
2218 	       tnum_equals_const(reg->var_off, 0);
2219 }
2220 
2221 /* Reset the min/max bounds of a register */
__mark_reg_unbounded(struct bpf_reg_state * reg)2222 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
2223 {
2224 	reg->smin_value = S64_MIN;
2225 	reg->smax_value = S64_MAX;
2226 	reg->umin_value = 0;
2227 	reg->umax_value = U64_MAX;
2228 
2229 	reg->s32_min_value = S32_MIN;
2230 	reg->s32_max_value = S32_MAX;
2231 	reg->u32_min_value = 0;
2232 	reg->u32_max_value = U32_MAX;
2233 }
2234 
__mark_reg64_unbounded(struct bpf_reg_state * reg)2235 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
2236 {
2237 	reg->smin_value = S64_MIN;
2238 	reg->smax_value = S64_MAX;
2239 	reg->umin_value = 0;
2240 	reg->umax_value = U64_MAX;
2241 }
2242 
__mark_reg32_unbounded(struct bpf_reg_state * reg)2243 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
2244 {
2245 	reg->s32_min_value = S32_MIN;
2246 	reg->s32_max_value = S32_MAX;
2247 	reg->u32_min_value = 0;
2248 	reg->u32_max_value = U32_MAX;
2249 }
2250 
__update_reg32_bounds(struct bpf_reg_state * reg)2251 static void __update_reg32_bounds(struct bpf_reg_state *reg)
2252 {
2253 	struct tnum var32_off = tnum_subreg(reg->var_off);
2254 
2255 	/* min signed is max(sign bit) | min(other bits) */
2256 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
2257 			var32_off.value | (var32_off.mask & S32_MIN));
2258 	/* max signed is min(sign bit) | max(other bits) */
2259 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
2260 			var32_off.value | (var32_off.mask & S32_MAX));
2261 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
2262 	reg->u32_max_value = min(reg->u32_max_value,
2263 				 (u32)(var32_off.value | var32_off.mask));
2264 }
2265 
__update_reg64_bounds(struct bpf_reg_state * reg)2266 static void __update_reg64_bounds(struct bpf_reg_state *reg)
2267 {
2268 	/* min signed is max(sign bit) | min(other bits) */
2269 	reg->smin_value = max_t(s64, reg->smin_value,
2270 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
2271 	/* max signed is min(sign bit) | max(other bits) */
2272 	reg->smax_value = min_t(s64, reg->smax_value,
2273 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
2274 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
2275 	reg->umax_value = min(reg->umax_value,
2276 			      reg->var_off.value | reg->var_off.mask);
2277 }
2278 
__update_reg_bounds(struct bpf_reg_state * reg)2279 static void __update_reg_bounds(struct bpf_reg_state *reg)
2280 {
2281 	__update_reg32_bounds(reg);
2282 	__update_reg64_bounds(reg);
2283 }
2284 
2285 /* Uses signed min/max values to inform unsigned, and vice-versa */
__reg32_deduce_bounds(struct bpf_reg_state * reg)2286 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
2287 {
2288 	/* If upper 32 bits of u64/s64 range don't change, we can use lower 32
2289 	 * bits to improve our u32/s32 boundaries.
2290 	 *
2291 	 * E.g., the case where we have upper 32 bits as zero ([10, 20] in
2292 	 * u64) is pretty trivial, it's obvious that in u32 we'll also have
2293 	 * [10, 20] range. But this property holds for any 64-bit range as
2294 	 * long as upper 32 bits in that entire range of values stay the same.
2295 	 *
2296 	 * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311]
2297 	 * in decimal) has the same upper 32 bits throughout all the values in
2298 	 * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15])
2299 	 * range.
2300 	 *
2301 	 * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32,
2302 	 * following the rules outlined below about u64/s64 correspondence
2303 	 * (which equally applies to u32 vs s32 correspondence). In general it
2304 	 * depends on actual hexadecimal values of 32-bit range. They can form
2305 	 * only valid u32, or only valid s32 ranges in some cases.
2306 	 *
2307 	 * So we use all these insights to derive bounds for subregisters here.
2308 	 */
2309 	if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) {
2310 		/* u64 to u32 casting preserves validity of low 32 bits as
2311 		 * a range, if upper 32 bits are the same
2312 		 */
2313 		reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value);
2314 		reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value);
2315 
2316 		if ((s32)reg->umin_value <= (s32)reg->umax_value) {
2317 			reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
2318 			reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
2319 		}
2320 	}
2321 	if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) {
2322 		/* low 32 bits should form a proper u32 range */
2323 		if ((u32)reg->smin_value <= (u32)reg->smax_value) {
2324 			reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value);
2325 			reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value);
2326 		}
2327 		/* low 32 bits should form a proper s32 range */
2328 		if ((s32)reg->smin_value <= (s32)reg->smax_value) {
2329 			reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
2330 			reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
2331 		}
2332 	}
2333 	/* Special case where upper bits form a small sequence of two
2334 	 * sequential numbers (in 32-bit unsigned space, so 0xffffffff to
2335 	 * 0x00000000 is also valid), while lower bits form a proper s32 range
2336 	 * going from negative numbers to positive numbers. E.g., let's say we
2337 	 * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]).
2338 	 * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff,
2339 	 * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits,
2340 	 * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]).
2341 	 * Note that it doesn't have to be 0xffffffff going to 0x00000000 in
2342 	 * upper 32 bits. As a random example, s64 range
2343 	 * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range
2344 	 * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister.
2345 	 */
2346 	if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) &&
2347 	    (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) {
2348 		reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
2349 		reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
2350 	}
2351 	if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) &&
2352 	    (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) {
2353 		reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
2354 		reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
2355 	}
2356 	/* if u32 range forms a valid s32 range (due to matching sign bit),
2357 	 * try to learn from that
2358 	 */
2359 	if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) {
2360 		reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value);
2361 		reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value);
2362 	}
2363 	/* If we cannot cross the sign boundary, then signed and unsigned bounds
2364 	 * are the same, so combine.  This works even in the negative case, e.g.
2365 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2366 	 */
2367 	if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) {
2368 		reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value);
2369 		reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value);
2370 	}
2371 }
2372 
__reg64_deduce_bounds(struct bpf_reg_state * reg)2373 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2374 {
2375 	/* If u64 range forms a valid s64 range (due to matching sign bit),
2376 	 * try to learn from that. Let's do a bit of ASCII art to see when
2377 	 * this is happening. Let's take u64 range first:
2378 	 *
2379 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
2380 	 * |-------------------------------|--------------------------------|
2381 	 *
2382 	 * Valid u64 range is formed when umin and umax are anywhere in the
2383 	 * range [0, U64_MAX], and umin <= umax. u64 case is simple and
2384 	 * straightforward. Let's see how s64 range maps onto the same range
2385 	 * of values, annotated below the line for comparison:
2386 	 *
2387 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
2388 	 * |-------------------------------|--------------------------------|
2389 	 * 0                        S64_MAX S64_MIN                        -1
2390 	 *
2391 	 * So s64 values basically start in the middle and they are logically
2392 	 * contiguous to the right of it, wrapping around from -1 to 0, and
2393 	 * then finishing as S64_MAX (0x7fffffffffffffff) right before
2394 	 * S64_MIN. We can try drawing the continuity of u64 vs s64 values
2395 	 * more visually as mapped to sign-agnostic range of hex values.
2396 	 *
2397 	 *  u64 start                                               u64 end
2398 	 *  _______________________________________________________________
2399 	 * /                                                               \
2400 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
2401 	 * |-------------------------------|--------------------------------|
2402 	 * 0                        S64_MAX S64_MIN                        -1
2403 	 *                                / \
2404 	 * >------------------------------   ------------------------------->
2405 	 * s64 continues...        s64 end   s64 start          s64 "midpoint"
2406 	 *
2407 	 * What this means is that, in general, we can't always derive
2408 	 * something new about u64 from any random s64 range, and vice versa.
2409 	 *
2410 	 * But we can do that in two particular cases. One is when entire
2411 	 * u64/s64 range is *entirely* contained within left half of the above
2412 	 * diagram or when it is *entirely* contained in the right half. I.e.:
2413 	 *
2414 	 * |-------------------------------|--------------------------------|
2415 	 *     ^                   ^            ^                 ^
2416 	 *     A                   B            C                 D
2417 	 *
2418 	 * [A, B] and [C, D] are contained entirely in their respective halves
2419 	 * and form valid contiguous ranges as both u64 and s64 values. [A, B]
2420 	 * will be non-negative both as u64 and s64 (and in fact it will be
2421 	 * identical ranges no matter the signedness). [C, D] treated as s64
2422 	 * will be a range of negative values, while in u64 it will be
2423 	 * non-negative range of values larger than 0x8000000000000000.
2424 	 *
2425 	 * Now, any other range here can't be represented in both u64 and s64
2426 	 * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid
2427 	 * contiguous u64 ranges, but they are discontinuous in s64. [B, C]
2428 	 * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX],
2429 	 * for example. Similarly, valid s64 range [D, A] (going from negative
2430 	 * to positive values), would be two separate [D, U64_MAX] and [0, A]
2431 	 * ranges as u64. Currently reg_state can't represent two segments per
2432 	 * numeric domain, so in such situations we can only derive maximal
2433 	 * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64).
2434 	 *
2435 	 * So we use these facts to derive umin/umax from smin/smax and vice
2436 	 * versa only if they stay within the same "half". This is equivalent
2437 	 * to checking sign bit: lower half will have sign bit as zero, upper
2438 	 * half have sign bit 1. Below in code we simplify this by just
2439 	 * casting umin/umax as smin/smax and checking if they form valid
2440 	 * range, and vice versa. Those are equivalent checks.
2441 	 */
2442 	if ((s64)reg->umin_value <= (s64)reg->umax_value) {
2443 		reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value);
2444 		reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value);
2445 	}
2446 	/* If we cannot cross the sign boundary, then signed and unsigned bounds
2447 	 * are the same, so combine.  This works even in the negative case, e.g.
2448 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2449 	 */
2450 	if ((u64)reg->smin_value <= (u64)reg->smax_value) {
2451 		reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value);
2452 		reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value);
2453 	}
2454 }
2455 
__reg_deduce_mixed_bounds(struct bpf_reg_state * reg)2456 static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg)
2457 {
2458 	/* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit
2459 	 * values on both sides of 64-bit range in hope to have tighter range.
2460 	 * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from
2461 	 * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff].
2462 	 * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound
2463 	 * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of
2464 	 * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a
2465 	 * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff].
2466 	 * We just need to make sure that derived bounds we are intersecting
2467 	 * with are well-formed ranges in respective s64 or u64 domain, just
2468 	 * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments.
2469 	 */
2470 	__u64 new_umin, new_umax;
2471 	__s64 new_smin, new_smax;
2472 
2473 	/* u32 -> u64 tightening, it's always well-formed */
2474 	new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value;
2475 	new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value;
2476 	reg->umin_value = max_t(u64, reg->umin_value, new_umin);
2477 	reg->umax_value = min_t(u64, reg->umax_value, new_umax);
2478 	/* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */
2479 	new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value;
2480 	new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value;
2481 	reg->smin_value = max_t(s64, reg->smin_value, new_smin);
2482 	reg->smax_value = min_t(s64, reg->smax_value, new_smax);
2483 
2484 	/* if s32 can be treated as valid u32 range, we can use it as well */
2485 	if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) {
2486 		/* s32 -> u64 tightening */
2487 		new_umin = (reg->umin_value & ~0xffffffffULL) | (u32)reg->s32_min_value;
2488 		new_umax = (reg->umax_value & ~0xffffffffULL) | (u32)reg->s32_max_value;
2489 		reg->umin_value = max_t(u64, reg->umin_value, new_umin);
2490 		reg->umax_value = min_t(u64, reg->umax_value, new_umax);
2491 		/* s32 -> s64 tightening */
2492 		new_smin = (reg->smin_value & ~0xffffffffULL) | (u32)reg->s32_min_value;
2493 		new_smax = (reg->smax_value & ~0xffffffffULL) | (u32)reg->s32_max_value;
2494 		reg->smin_value = max_t(s64, reg->smin_value, new_smin);
2495 		reg->smax_value = min_t(s64, reg->smax_value, new_smax);
2496 	}
2497 
2498 	/* Here we would like to handle a special case after sign extending load,
2499 	 * when upper bits for a 64-bit range are all 1s or all 0s.
2500 	 *
2501 	 * Upper bits are all 1s when register is in a range:
2502 	 *   [0xffff_ffff_0000_0000, 0xffff_ffff_ffff_ffff]
2503 	 * Upper bits are all 0s when register is in a range:
2504 	 *   [0x0000_0000_0000_0000, 0x0000_0000_ffff_ffff]
2505 	 * Together this forms are continuous range:
2506 	 *   [0xffff_ffff_0000_0000, 0x0000_0000_ffff_ffff]
2507 	 *
2508 	 * Now, suppose that register range is in fact tighter:
2509 	 *   [0xffff_ffff_8000_0000, 0x0000_0000_ffff_ffff] (R)
2510 	 * Also suppose that it's 32-bit range is positive,
2511 	 * meaning that lower 32-bits of the full 64-bit register
2512 	 * are in the range:
2513 	 *   [0x0000_0000, 0x7fff_ffff] (W)
2514 	 *
2515 	 * If this happens, then any value in a range:
2516 	 *   [0xffff_ffff_0000_0000, 0xffff_ffff_7fff_ffff]
2517 	 * is smaller than a lowest bound of the range (R):
2518 	 *   0xffff_ffff_8000_0000
2519 	 * which means that upper bits of the full 64-bit register
2520 	 * can't be all 1s, when lower bits are in range (W).
2521 	 *
2522 	 * Note that:
2523 	 *  - 0xffff_ffff_8000_0000 == (s64)S32_MIN
2524 	 *  - 0x0000_0000_7fff_ffff == (s64)S32_MAX
2525 	 * These relations are used in the conditions below.
2526 	 */
2527 	if (reg->s32_min_value >= 0 && reg->smin_value >= S32_MIN && reg->smax_value <= S32_MAX) {
2528 		reg->smin_value = reg->s32_min_value;
2529 		reg->smax_value = reg->s32_max_value;
2530 		reg->umin_value = reg->s32_min_value;
2531 		reg->umax_value = reg->s32_max_value;
2532 		reg->var_off = tnum_intersect(reg->var_off,
2533 					      tnum_range(reg->smin_value, reg->smax_value));
2534 	}
2535 }
2536 
__reg_deduce_bounds(struct bpf_reg_state * reg)2537 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2538 {
2539 	__reg32_deduce_bounds(reg);
2540 	__reg64_deduce_bounds(reg);
2541 	__reg_deduce_mixed_bounds(reg);
2542 }
2543 
2544 /* Attempts to improve var_off based on unsigned min/max information */
__reg_bound_offset(struct bpf_reg_state * reg)2545 static void __reg_bound_offset(struct bpf_reg_state *reg)
2546 {
2547 	struct tnum var64_off = tnum_intersect(reg->var_off,
2548 					       tnum_range(reg->umin_value,
2549 							  reg->umax_value));
2550 	struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2551 					       tnum_range(reg->u32_min_value,
2552 							  reg->u32_max_value));
2553 
2554 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2555 }
2556 
reg_bounds_sync(struct bpf_reg_state * reg)2557 static void reg_bounds_sync(struct bpf_reg_state *reg)
2558 {
2559 	/* We might have learned new bounds from the var_off. */
2560 	__update_reg_bounds(reg);
2561 	/* We might have learned something about the sign bit. */
2562 	__reg_deduce_bounds(reg);
2563 	__reg_deduce_bounds(reg);
2564 	/* We might have learned some bits from the bounds. */
2565 	__reg_bound_offset(reg);
2566 	/* Intersecting with the old var_off might have improved our bounds
2567 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2568 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2569 	 */
2570 	__update_reg_bounds(reg);
2571 }
2572 
reg_bounds_sanity_check(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * ctx)2573 static int reg_bounds_sanity_check(struct bpf_verifier_env *env,
2574 				   struct bpf_reg_state *reg, const char *ctx)
2575 {
2576 	const char *msg;
2577 
2578 	if (reg->umin_value > reg->umax_value ||
2579 	    reg->smin_value > reg->smax_value ||
2580 	    reg->u32_min_value > reg->u32_max_value ||
2581 	    reg->s32_min_value > reg->s32_max_value) {
2582 		    msg = "range bounds violation";
2583 		    goto out;
2584 	}
2585 
2586 	if (tnum_is_const(reg->var_off)) {
2587 		u64 uval = reg->var_off.value;
2588 		s64 sval = (s64)uval;
2589 
2590 		if (reg->umin_value != uval || reg->umax_value != uval ||
2591 		    reg->smin_value != sval || reg->smax_value != sval) {
2592 			msg = "const tnum out of sync with range bounds";
2593 			goto out;
2594 		}
2595 	}
2596 
2597 	if (tnum_subreg_is_const(reg->var_off)) {
2598 		u32 uval32 = tnum_subreg(reg->var_off).value;
2599 		s32 sval32 = (s32)uval32;
2600 
2601 		if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 ||
2602 		    reg->s32_min_value != sval32 || reg->s32_max_value != sval32) {
2603 			msg = "const subreg tnum out of sync with range bounds";
2604 			goto out;
2605 		}
2606 	}
2607 
2608 	return 0;
2609 out:
2610 	verbose(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] "
2611 		"s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)\n",
2612 		ctx, msg, reg->umin_value, reg->umax_value,
2613 		reg->smin_value, reg->smax_value,
2614 		reg->u32_min_value, reg->u32_max_value,
2615 		reg->s32_min_value, reg->s32_max_value,
2616 		reg->var_off.value, reg->var_off.mask);
2617 	if (env->test_reg_invariants)
2618 		return -EFAULT;
2619 	__mark_reg_unbounded(reg);
2620 	return 0;
2621 }
2622 
__reg32_bound_s64(s32 a)2623 static bool __reg32_bound_s64(s32 a)
2624 {
2625 	return a >= 0 && a <= S32_MAX;
2626 }
2627 
__reg_assign_32_into_64(struct bpf_reg_state * reg)2628 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2629 {
2630 	reg->umin_value = reg->u32_min_value;
2631 	reg->umax_value = reg->u32_max_value;
2632 
2633 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2634 	 * be positive otherwise set to worse case bounds and refine later
2635 	 * from tnum.
2636 	 */
2637 	if (__reg32_bound_s64(reg->s32_min_value) &&
2638 	    __reg32_bound_s64(reg->s32_max_value)) {
2639 		reg->smin_value = reg->s32_min_value;
2640 		reg->smax_value = reg->s32_max_value;
2641 	} else {
2642 		reg->smin_value = 0;
2643 		reg->smax_value = U32_MAX;
2644 	}
2645 }
2646 
2647 /* Mark a register as having a completely unknown (scalar) value. */
__mark_reg_unknown_imprecise(struct bpf_reg_state * reg)2648 static void __mark_reg_unknown_imprecise(struct bpf_reg_state *reg)
2649 {
2650 	/*
2651 	 * Clear type, off, and union(map_ptr, range) and
2652 	 * padding between 'type' and union
2653 	 */
2654 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2655 	reg->type = SCALAR_VALUE;
2656 	reg->id = 0;
2657 	reg->ref_obj_id = 0;
2658 	reg->var_off = tnum_unknown;
2659 	reg->frameno = 0;
2660 	reg->precise = false;
2661 	__mark_reg_unbounded(reg);
2662 }
2663 
2664 /* Mark a register as having a completely unknown (scalar) value,
2665  * initialize .precise as true when not bpf capable.
2666  */
__mark_reg_unknown(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)2667 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2668 			       struct bpf_reg_state *reg)
2669 {
2670 	__mark_reg_unknown_imprecise(reg);
2671 	reg->precise = !env->bpf_capable;
2672 }
2673 
mark_reg_unknown(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)2674 static void mark_reg_unknown(struct bpf_verifier_env *env,
2675 			     struct bpf_reg_state *regs, u32 regno)
2676 {
2677 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2678 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2679 		/* Something bad happened, let's kill all regs except FP */
2680 		for (regno = 0; regno < BPF_REG_FP; regno++)
2681 			__mark_reg_not_init(env, regs + regno);
2682 		return;
2683 	}
2684 	__mark_reg_unknown(env, regs + regno);
2685 }
2686 
__mark_reg_s32_range(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,s32 s32_min,s32 s32_max)2687 static int __mark_reg_s32_range(struct bpf_verifier_env *env,
2688 				struct bpf_reg_state *regs,
2689 				u32 regno,
2690 				s32 s32_min,
2691 				s32 s32_max)
2692 {
2693 	struct bpf_reg_state *reg = regs + regno;
2694 
2695 	reg->s32_min_value = max_t(s32, reg->s32_min_value, s32_min);
2696 	reg->s32_max_value = min_t(s32, reg->s32_max_value, s32_max);
2697 
2698 	reg->smin_value = max_t(s64, reg->smin_value, s32_min);
2699 	reg->smax_value = min_t(s64, reg->smax_value, s32_max);
2700 
2701 	reg_bounds_sync(reg);
2702 
2703 	return reg_bounds_sanity_check(env, reg, "s32_range");
2704 }
2705 
__mark_reg_not_init(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)2706 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2707 				struct bpf_reg_state *reg)
2708 {
2709 	__mark_reg_unknown(env, reg);
2710 	reg->type = NOT_INIT;
2711 }
2712 
mark_reg_not_init(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)2713 static void mark_reg_not_init(struct bpf_verifier_env *env,
2714 			      struct bpf_reg_state *regs, u32 regno)
2715 {
2716 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2717 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2718 		/* Something bad happened, let's kill all regs except FP */
2719 		for (regno = 0; regno < BPF_REG_FP; regno++)
2720 			__mark_reg_not_init(env, regs + regno);
2721 		return;
2722 	}
2723 	__mark_reg_not_init(env, regs + regno);
2724 }
2725 
mark_btf_ld_reg(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,enum bpf_reg_type reg_type,struct btf * btf,u32 btf_id,enum bpf_type_flag flag)2726 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2727 			    struct bpf_reg_state *regs, u32 regno,
2728 			    enum bpf_reg_type reg_type,
2729 			    struct btf *btf, u32 btf_id,
2730 			    enum bpf_type_flag flag)
2731 {
2732 	if (reg_type == SCALAR_VALUE) {
2733 		mark_reg_unknown(env, regs, regno);
2734 		return;
2735 	}
2736 	mark_reg_known_zero(env, regs, regno);
2737 	regs[regno].type = PTR_TO_BTF_ID | flag;
2738 	regs[regno].btf = btf;
2739 	regs[regno].btf_id = btf_id;
2740 	if (type_may_be_null(flag))
2741 		regs[regno].id = ++env->id_gen;
2742 }
2743 
2744 #define DEF_NOT_SUBREG	(0)
init_reg_state(struct bpf_verifier_env * env,struct bpf_func_state * state)2745 static void init_reg_state(struct bpf_verifier_env *env,
2746 			   struct bpf_func_state *state)
2747 {
2748 	struct bpf_reg_state *regs = state->regs;
2749 	int i;
2750 
2751 	for (i = 0; i < MAX_BPF_REG; i++) {
2752 		mark_reg_not_init(env, regs, i);
2753 		regs[i].live = REG_LIVE_NONE;
2754 		regs[i].parent = NULL;
2755 		regs[i].subreg_def = DEF_NOT_SUBREG;
2756 	}
2757 
2758 	/* frame pointer */
2759 	regs[BPF_REG_FP].type = PTR_TO_STACK;
2760 	mark_reg_known_zero(env, regs, BPF_REG_FP);
2761 	regs[BPF_REG_FP].frameno = state->frameno;
2762 }
2763 
retval_range(s32 minval,s32 maxval)2764 static struct bpf_retval_range retval_range(s32 minval, s32 maxval)
2765 {
2766 	return (struct bpf_retval_range){ minval, maxval };
2767 }
2768 
2769 #define BPF_MAIN_FUNC (-1)
init_func_state(struct bpf_verifier_env * env,struct bpf_func_state * state,int callsite,int frameno,int subprogno)2770 static void init_func_state(struct bpf_verifier_env *env,
2771 			    struct bpf_func_state *state,
2772 			    int callsite, int frameno, int subprogno)
2773 {
2774 	state->callsite = callsite;
2775 	state->frameno = frameno;
2776 	state->subprogno = subprogno;
2777 	state->callback_ret_range = retval_range(0, 0);
2778 	init_reg_state(env, state);
2779 	mark_verifier_state_scratched(env);
2780 }
2781 
2782 /* Similar to push_stack(), but for async callbacks */
push_async_cb(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx,int subprog,bool is_sleepable)2783 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2784 						int insn_idx, int prev_insn_idx,
2785 						int subprog, bool is_sleepable)
2786 {
2787 	struct bpf_verifier_stack_elem *elem;
2788 	struct bpf_func_state *frame;
2789 
2790 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2791 	if (!elem)
2792 		goto err;
2793 
2794 	elem->insn_idx = insn_idx;
2795 	elem->prev_insn_idx = prev_insn_idx;
2796 	elem->next = env->head;
2797 	elem->log_pos = env->log.end_pos;
2798 	env->head = elem;
2799 	env->stack_size++;
2800 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2801 		verbose(env,
2802 			"The sequence of %d jumps is too complex for async cb.\n",
2803 			env->stack_size);
2804 		goto err;
2805 	}
2806 	/* Unlike push_stack() do not copy_verifier_state().
2807 	 * The caller state doesn't matter.
2808 	 * This is async callback. It starts in a fresh stack.
2809 	 * Initialize it similar to do_check_common().
2810 	 * But we do need to make sure to not clobber insn_hist, so we keep
2811 	 * chaining insn_hist_start/insn_hist_end indices as for a normal
2812 	 * child state.
2813 	 */
2814 	elem->st.branches = 1;
2815 	elem->st.in_sleepable = is_sleepable;
2816 	elem->st.insn_hist_start = env->cur_state->insn_hist_end;
2817 	elem->st.insn_hist_end = elem->st.insn_hist_start;
2818 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2819 	if (!frame)
2820 		goto err;
2821 	init_func_state(env, frame,
2822 			BPF_MAIN_FUNC /* callsite */,
2823 			0 /* frameno within this callchain */,
2824 			subprog /* subprog number within this prog */);
2825 	elem->st.frame[0] = frame;
2826 	return &elem->st;
2827 err:
2828 	free_verifier_state(env->cur_state, true);
2829 	env->cur_state = NULL;
2830 	/* pop all elements and return */
2831 	while (!pop_stack(env, NULL, NULL, false));
2832 	return NULL;
2833 }
2834 
2835 
2836 enum reg_arg_type {
2837 	SRC_OP,		/* register is used as source operand */
2838 	DST_OP,		/* register is used as destination operand */
2839 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
2840 };
2841 
cmp_subprogs(const void * a,const void * b)2842 static int cmp_subprogs(const void *a, const void *b)
2843 {
2844 	return ((struct bpf_subprog_info *)a)->start -
2845 	       ((struct bpf_subprog_info *)b)->start;
2846 }
2847 
2848 /* Find subprogram that contains instruction at 'off' */
find_containing_subprog(struct bpf_verifier_env * env,int off)2849 static struct bpf_subprog_info *find_containing_subprog(struct bpf_verifier_env *env, int off)
2850 {
2851 	struct bpf_subprog_info *vals = env->subprog_info;
2852 	int l, r, m;
2853 
2854 	if (off >= env->prog->len || off < 0 || env->subprog_cnt == 0)
2855 		return NULL;
2856 
2857 	l = 0;
2858 	r = env->subprog_cnt - 1;
2859 	while (l < r) {
2860 		m = l + (r - l + 1) / 2;
2861 		if (vals[m].start <= off)
2862 			l = m;
2863 		else
2864 			r = m - 1;
2865 	}
2866 	return &vals[l];
2867 }
2868 
2869 /* Find subprogram that starts exactly at 'off' */
find_subprog(struct bpf_verifier_env * env,int off)2870 static int find_subprog(struct bpf_verifier_env *env, int off)
2871 {
2872 	struct bpf_subprog_info *p;
2873 
2874 	p = find_containing_subprog(env, off);
2875 	if (!p || p->start != off)
2876 		return -ENOENT;
2877 	return p - env->subprog_info;
2878 }
2879 
add_subprog(struct bpf_verifier_env * env,int off)2880 static int add_subprog(struct bpf_verifier_env *env, int off)
2881 {
2882 	int insn_cnt = env->prog->len;
2883 	int ret;
2884 
2885 	if (off >= insn_cnt || off < 0) {
2886 		verbose(env, "call to invalid destination\n");
2887 		return -EINVAL;
2888 	}
2889 	ret = find_subprog(env, off);
2890 	if (ret >= 0)
2891 		return ret;
2892 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
2893 		verbose(env, "too many subprograms\n");
2894 		return -E2BIG;
2895 	}
2896 	/* determine subprog starts. The end is one before the next starts */
2897 	env->subprog_info[env->subprog_cnt++].start = off;
2898 	sort(env->subprog_info, env->subprog_cnt,
2899 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
2900 	return env->subprog_cnt - 1;
2901 }
2902 
bpf_find_exception_callback_insn_off(struct bpf_verifier_env * env)2903 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env)
2904 {
2905 	struct bpf_prog_aux *aux = env->prog->aux;
2906 	struct btf *btf = aux->btf;
2907 	const struct btf_type *t;
2908 	u32 main_btf_id, id;
2909 	const char *name;
2910 	int ret, i;
2911 
2912 	/* Non-zero func_info_cnt implies valid btf */
2913 	if (!aux->func_info_cnt)
2914 		return 0;
2915 	main_btf_id = aux->func_info[0].type_id;
2916 
2917 	t = btf_type_by_id(btf, main_btf_id);
2918 	if (!t) {
2919 		verbose(env, "invalid btf id for main subprog in func_info\n");
2920 		return -EINVAL;
2921 	}
2922 
2923 	name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:");
2924 	if (IS_ERR(name)) {
2925 		ret = PTR_ERR(name);
2926 		/* If there is no tag present, there is no exception callback */
2927 		if (ret == -ENOENT)
2928 			ret = 0;
2929 		else if (ret == -EEXIST)
2930 			verbose(env, "multiple exception callback tags for main subprog\n");
2931 		return ret;
2932 	}
2933 
2934 	ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC);
2935 	if (ret < 0) {
2936 		verbose(env, "exception callback '%s' could not be found in BTF\n", name);
2937 		return ret;
2938 	}
2939 	id = ret;
2940 	t = btf_type_by_id(btf, id);
2941 	if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
2942 		verbose(env, "exception callback '%s' must have global linkage\n", name);
2943 		return -EINVAL;
2944 	}
2945 	ret = 0;
2946 	for (i = 0; i < aux->func_info_cnt; i++) {
2947 		if (aux->func_info[i].type_id != id)
2948 			continue;
2949 		ret = aux->func_info[i].insn_off;
2950 		/* Further func_info and subprog checks will also happen
2951 		 * later, so assume this is the right insn_off for now.
2952 		 */
2953 		if (!ret) {
2954 			verbose(env, "invalid exception callback insn_off in func_info: 0\n");
2955 			ret = -EINVAL;
2956 		}
2957 	}
2958 	if (!ret) {
2959 		verbose(env, "exception callback type id not found in func_info\n");
2960 		ret = -EINVAL;
2961 	}
2962 	return ret;
2963 }
2964 
2965 #define MAX_KFUNC_DESCS 256
2966 #define MAX_KFUNC_BTFS	256
2967 
2968 struct bpf_kfunc_desc {
2969 	struct btf_func_model func_model;
2970 	u32 func_id;
2971 	s32 imm;
2972 	u16 offset;
2973 	unsigned long addr;
2974 };
2975 
2976 struct bpf_kfunc_btf {
2977 	struct btf *btf;
2978 	struct module *module;
2979 	u16 offset;
2980 };
2981 
2982 struct bpf_kfunc_desc_tab {
2983 	/* Sorted by func_id (BTF ID) and offset (fd_array offset) during
2984 	 * verification. JITs do lookups by bpf_insn, where func_id may not be
2985 	 * available, therefore at the end of verification do_misc_fixups()
2986 	 * sorts this by imm and offset.
2987 	 */
2988 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2989 	u32 nr_descs;
2990 };
2991 
2992 struct bpf_kfunc_btf_tab {
2993 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2994 	u32 nr_descs;
2995 };
2996 
kfunc_desc_cmp_by_id_off(const void * a,const void * b)2997 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
2998 {
2999 	const struct bpf_kfunc_desc *d0 = a;
3000 	const struct bpf_kfunc_desc *d1 = b;
3001 
3002 	/* func_id is not greater than BTF_MAX_TYPE */
3003 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
3004 }
3005 
kfunc_btf_cmp_by_off(const void * a,const void * b)3006 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
3007 {
3008 	const struct bpf_kfunc_btf *d0 = a;
3009 	const struct bpf_kfunc_btf *d1 = b;
3010 
3011 	return d0->offset - d1->offset;
3012 }
3013 
3014 static const struct bpf_kfunc_desc *
find_kfunc_desc(const struct bpf_prog * prog,u32 func_id,u16 offset)3015 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
3016 {
3017 	struct bpf_kfunc_desc desc = {
3018 		.func_id = func_id,
3019 		.offset = offset,
3020 	};
3021 	struct bpf_kfunc_desc_tab *tab;
3022 
3023 	tab = prog->aux->kfunc_tab;
3024 	return bsearch(&desc, tab->descs, tab->nr_descs,
3025 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
3026 }
3027 
bpf_get_kfunc_addr(const struct bpf_prog * prog,u32 func_id,u16 btf_fd_idx,u8 ** func_addr)3028 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
3029 		       u16 btf_fd_idx, u8 **func_addr)
3030 {
3031 	const struct bpf_kfunc_desc *desc;
3032 
3033 	desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
3034 	if (!desc)
3035 		return -EFAULT;
3036 
3037 	*func_addr = (u8 *)desc->addr;
3038 	return 0;
3039 }
3040 
__find_kfunc_desc_btf(struct bpf_verifier_env * env,s16 offset)3041 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
3042 					 s16 offset)
3043 {
3044 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
3045 	struct bpf_kfunc_btf_tab *tab;
3046 	struct bpf_kfunc_btf *b;
3047 	struct module *mod;
3048 	struct btf *btf;
3049 	int btf_fd;
3050 
3051 	tab = env->prog->aux->kfunc_btf_tab;
3052 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
3053 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
3054 	if (!b) {
3055 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
3056 			verbose(env, "too many different module BTFs\n");
3057 			return ERR_PTR(-E2BIG);
3058 		}
3059 
3060 		if (bpfptr_is_null(env->fd_array)) {
3061 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
3062 			return ERR_PTR(-EPROTO);
3063 		}
3064 
3065 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
3066 					    offset * sizeof(btf_fd),
3067 					    sizeof(btf_fd)))
3068 			return ERR_PTR(-EFAULT);
3069 
3070 		btf = btf_get_by_fd(btf_fd);
3071 		if (IS_ERR(btf)) {
3072 			verbose(env, "invalid module BTF fd specified\n");
3073 			return btf;
3074 		}
3075 
3076 		if (!btf_is_module(btf)) {
3077 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
3078 			btf_put(btf);
3079 			return ERR_PTR(-EINVAL);
3080 		}
3081 
3082 		mod = btf_try_get_module(btf);
3083 		if (!mod) {
3084 			btf_put(btf);
3085 			return ERR_PTR(-ENXIO);
3086 		}
3087 
3088 		b = &tab->descs[tab->nr_descs++];
3089 		b->btf = btf;
3090 		b->module = mod;
3091 		b->offset = offset;
3092 
3093 		/* sort() reorders entries by value, so b may no longer point
3094 		 * to the right entry after this
3095 		 */
3096 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
3097 		     kfunc_btf_cmp_by_off, NULL);
3098 	} else {
3099 		btf = b->btf;
3100 	}
3101 
3102 	return btf;
3103 }
3104 
bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab * tab)3105 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
3106 {
3107 	if (!tab)
3108 		return;
3109 
3110 	while (tab->nr_descs--) {
3111 		module_put(tab->descs[tab->nr_descs].module);
3112 		btf_put(tab->descs[tab->nr_descs].btf);
3113 	}
3114 	kfree(tab);
3115 }
3116 
find_kfunc_desc_btf(struct bpf_verifier_env * env,s16 offset)3117 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
3118 {
3119 	if (offset) {
3120 		if (offset < 0) {
3121 			/* In the future, this can be allowed to increase limit
3122 			 * of fd index into fd_array, interpreted as u16.
3123 			 */
3124 			verbose(env, "negative offset disallowed for kernel module function call\n");
3125 			return ERR_PTR(-EINVAL);
3126 		}
3127 
3128 		return __find_kfunc_desc_btf(env, offset);
3129 	}
3130 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
3131 }
3132 
add_kfunc_call(struct bpf_verifier_env * env,u32 func_id,s16 offset)3133 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
3134 {
3135 	const struct btf_type *func, *func_proto;
3136 	struct bpf_kfunc_btf_tab *btf_tab;
3137 	struct bpf_kfunc_desc_tab *tab;
3138 	struct bpf_prog_aux *prog_aux;
3139 	struct bpf_kfunc_desc *desc;
3140 	const char *func_name;
3141 	struct btf *desc_btf;
3142 	unsigned long call_imm;
3143 	unsigned long addr;
3144 	int err;
3145 
3146 	prog_aux = env->prog->aux;
3147 	tab = prog_aux->kfunc_tab;
3148 	btf_tab = prog_aux->kfunc_btf_tab;
3149 	if (!tab) {
3150 		if (!btf_vmlinux) {
3151 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
3152 			return -ENOTSUPP;
3153 		}
3154 
3155 		if (!env->prog->jit_requested) {
3156 			verbose(env, "JIT is required for calling kernel function\n");
3157 			return -ENOTSUPP;
3158 		}
3159 
3160 		if (!bpf_jit_supports_kfunc_call()) {
3161 			verbose(env, "JIT does not support calling kernel function\n");
3162 			return -ENOTSUPP;
3163 		}
3164 
3165 		if (!env->prog->gpl_compatible) {
3166 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
3167 			return -EINVAL;
3168 		}
3169 
3170 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
3171 		if (!tab)
3172 			return -ENOMEM;
3173 		prog_aux->kfunc_tab = tab;
3174 	}
3175 
3176 	/* func_id == 0 is always invalid, but instead of returning an error, be
3177 	 * conservative and wait until the code elimination pass before returning
3178 	 * error, so that invalid calls that get pruned out can be in BPF programs
3179 	 * loaded from userspace.  It is also required that offset be untouched
3180 	 * for such calls.
3181 	 */
3182 	if (!func_id && !offset)
3183 		return 0;
3184 
3185 	if (!btf_tab && offset) {
3186 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
3187 		if (!btf_tab)
3188 			return -ENOMEM;
3189 		prog_aux->kfunc_btf_tab = btf_tab;
3190 	}
3191 
3192 	desc_btf = find_kfunc_desc_btf(env, offset);
3193 	if (IS_ERR(desc_btf)) {
3194 		verbose(env, "failed to find BTF for kernel function\n");
3195 		return PTR_ERR(desc_btf);
3196 	}
3197 
3198 	if (find_kfunc_desc(env->prog, func_id, offset))
3199 		return 0;
3200 
3201 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
3202 		verbose(env, "too many different kernel function calls\n");
3203 		return -E2BIG;
3204 	}
3205 
3206 	func = btf_type_by_id(desc_btf, func_id);
3207 	if (!func || !btf_type_is_func(func)) {
3208 		verbose(env, "kernel btf_id %u is not a function\n",
3209 			func_id);
3210 		return -EINVAL;
3211 	}
3212 	func_proto = btf_type_by_id(desc_btf, func->type);
3213 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
3214 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
3215 			func_id);
3216 		return -EINVAL;
3217 	}
3218 
3219 	func_name = btf_name_by_offset(desc_btf, func->name_off);
3220 	addr = kallsyms_lookup_name(func_name);
3221 	if (!addr) {
3222 		verbose(env, "cannot find address for kernel function %s\n",
3223 			func_name);
3224 		return -EINVAL;
3225 	}
3226 	specialize_kfunc(env, func_id, offset, &addr);
3227 
3228 	if (bpf_jit_supports_far_kfunc_call()) {
3229 		call_imm = func_id;
3230 	} else {
3231 		call_imm = BPF_CALL_IMM(addr);
3232 		/* Check whether the relative offset overflows desc->imm */
3233 		if ((unsigned long)(s32)call_imm != call_imm) {
3234 			verbose(env, "address of kernel function %s is out of range\n",
3235 				func_name);
3236 			return -EINVAL;
3237 		}
3238 	}
3239 
3240 	if (bpf_dev_bound_kfunc_id(func_id)) {
3241 		err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
3242 		if (err)
3243 			return err;
3244 	}
3245 
3246 	desc = &tab->descs[tab->nr_descs++];
3247 	desc->func_id = func_id;
3248 	desc->imm = call_imm;
3249 	desc->offset = offset;
3250 	desc->addr = addr;
3251 	err = btf_distill_func_proto(&env->log, desc_btf,
3252 				     func_proto, func_name,
3253 				     &desc->func_model);
3254 	if (!err)
3255 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
3256 		     kfunc_desc_cmp_by_id_off, NULL);
3257 	return err;
3258 }
3259 
kfunc_desc_cmp_by_imm_off(const void * a,const void * b)3260 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
3261 {
3262 	const struct bpf_kfunc_desc *d0 = a;
3263 	const struct bpf_kfunc_desc *d1 = b;
3264 
3265 	if (d0->imm != d1->imm)
3266 		return d0->imm < d1->imm ? -1 : 1;
3267 	if (d0->offset != d1->offset)
3268 		return d0->offset < d1->offset ? -1 : 1;
3269 	return 0;
3270 }
3271 
sort_kfunc_descs_by_imm_off(struct bpf_prog * prog)3272 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
3273 {
3274 	struct bpf_kfunc_desc_tab *tab;
3275 
3276 	tab = prog->aux->kfunc_tab;
3277 	if (!tab)
3278 		return;
3279 
3280 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
3281 	     kfunc_desc_cmp_by_imm_off, NULL);
3282 }
3283 
bpf_prog_has_kfunc_call(const struct bpf_prog * prog)3284 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
3285 {
3286 	return !!prog->aux->kfunc_tab;
3287 }
3288 
3289 const struct btf_func_model *
bpf_jit_find_kfunc_model(const struct bpf_prog * prog,const struct bpf_insn * insn)3290 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
3291 			 const struct bpf_insn *insn)
3292 {
3293 	const struct bpf_kfunc_desc desc = {
3294 		.imm = insn->imm,
3295 		.offset = insn->off,
3296 	};
3297 	const struct bpf_kfunc_desc *res;
3298 	struct bpf_kfunc_desc_tab *tab;
3299 
3300 	tab = prog->aux->kfunc_tab;
3301 	res = bsearch(&desc, tab->descs, tab->nr_descs,
3302 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
3303 
3304 	return res ? &res->func_model : NULL;
3305 }
3306 
add_kfunc_in_insns(struct bpf_verifier_env * env,struct bpf_insn * insn,int cnt)3307 static int add_kfunc_in_insns(struct bpf_verifier_env *env,
3308 			      struct bpf_insn *insn, int cnt)
3309 {
3310 	int i, ret;
3311 
3312 	for (i = 0; i < cnt; i++, insn++) {
3313 		if (bpf_pseudo_kfunc_call(insn)) {
3314 			ret = add_kfunc_call(env, insn->imm, insn->off);
3315 			if (ret < 0)
3316 				return ret;
3317 		}
3318 	}
3319 	return 0;
3320 }
3321 
add_subprog_and_kfunc(struct bpf_verifier_env * env)3322 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
3323 {
3324 	struct bpf_subprog_info *subprog = env->subprog_info;
3325 	int i, ret, insn_cnt = env->prog->len, ex_cb_insn;
3326 	struct bpf_insn *insn = env->prog->insnsi;
3327 
3328 	/* Add entry function. */
3329 	ret = add_subprog(env, 0);
3330 	if (ret)
3331 		return ret;
3332 
3333 	for (i = 0; i < insn_cnt; i++, insn++) {
3334 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
3335 		    !bpf_pseudo_kfunc_call(insn))
3336 			continue;
3337 
3338 		if (!env->bpf_capable) {
3339 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
3340 			return -EPERM;
3341 		}
3342 
3343 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
3344 			ret = add_subprog(env, i + insn->imm + 1);
3345 		else
3346 			ret = add_kfunc_call(env, insn->imm, insn->off);
3347 
3348 		if (ret < 0)
3349 			return ret;
3350 	}
3351 
3352 	ret = bpf_find_exception_callback_insn_off(env);
3353 	if (ret < 0)
3354 		return ret;
3355 	ex_cb_insn = ret;
3356 
3357 	/* If ex_cb_insn > 0, this means that the main program has a subprog
3358 	 * marked using BTF decl tag to serve as the exception callback.
3359 	 */
3360 	if (ex_cb_insn) {
3361 		ret = add_subprog(env, ex_cb_insn);
3362 		if (ret < 0)
3363 			return ret;
3364 		for (i = 1; i < env->subprog_cnt; i++) {
3365 			if (env->subprog_info[i].start != ex_cb_insn)
3366 				continue;
3367 			env->exception_callback_subprog = i;
3368 			mark_subprog_exc_cb(env, i);
3369 			break;
3370 		}
3371 	}
3372 
3373 	/* Add a fake 'exit' subprog which could simplify subprog iteration
3374 	 * logic. 'subprog_cnt' should not be increased.
3375 	 */
3376 	subprog[env->subprog_cnt].start = insn_cnt;
3377 
3378 	if (env->log.level & BPF_LOG_LEVEL2)
3379 		for (i = 0; i < env->subprog_cnt; i++)
3380 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
3381 
3382 	return 0;
3383 }
3384 
jmp_offset(struct bpf_insn * insn)3385 static int jmp_offset(struct bpf_insn *insn)
3386 {
3387 	u8 code = insn->code;
3388 
3389 	if (code == (BPF_JMP32 | BPF_JA))
3390 		return insn->imm;
3391 	return insn->off;
3392 }
3393 
check_subprogs(struct bpf_verifier_env * env)3394 static int check_subprogs(struct bpf_verifier_env *env)
3395 {
3396 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
3397 	struct bpf_subprog_info *subprog = env->subprog_info;
3398 	struct bpf_insn *insn = env->prog->insnsi;
3399 	int insn_cnt = env->prog->len;
3400 
3401 	/* now check that all jumps are within the same subprog */
3402 	subprog_start = subprog[cur_subprog].start;
3403 	subprog_end = subprog[cur_subprog + 1].start;
3404 	for (i = 0; i < insn_cnt; i++) {
3405 		u8 code = insn[i].code;
3406 
3407 		if (code == (BPF_JMP | BPF_CALL) &&
3408 		    insn[i].src_reg == 0 &&
3409 		    insn[i].imm == BPF_FUNC_tail_call) {
3410 			subprog[cur_subprog].has_tail_call = true;
3411 			subprog[cur_subprog].tail_call_reachable = true;
3412 		}
3413 		if (BPF_CLASS(code) == BPF_LD &&
3414 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
3415 			subprog[cur_subprog].has_ld_abs = true;
3416 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
3417 			goto next;
3418 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
3419 			goto next;
3420 		off = i + jmp_offset(&insn[i]) + 1;
3421 		if (off < subprog_start || off >= subprog_end) {
3422 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
3423 			return -EINVAL;
3424 		}
3425 next:
3426 		if (i == subprog_end - 1) {
3427 			/* to avoid fall-through from one subprog into another
3428 			 * the last insn of the subprog should be either exit
3429 			 * or unconditional jump back or bpf_throw call
3430 			 */
3431 			if (code != (BPF_JMP | BPF_EXIT) &&
3432 			    code != (BPF_JMP32 | BPF_JA) &&
3433 			    code != (BPF_JMP | BPF_JA)) {
3434 				verbose(env, "last insn is not an exit or jmp\n");
3435 				return -EINVAL;
3436 			}
3437 			subprog_start = subprog_end;
3438 			cur_subprog++;
3439 			if (cur_subprog < env->subprog_cnt)
3440 				subprog_end = subprog[cur_subprog + 1].start;
3441 		}
3442 	}
3443 	return 0;
3444 }
3445 
3446 /* Parentage chain of this register (or stack slot) should take care of all
3447  * issues like callee-saved registers, stack slot allocation time, etc.
3448  */
mark_reg_read(struct bpf_verifier_env * env,const struct bpf_reg_state * state,struct bpf_reg_state * parent,u8 flag)3449 static int mark_reg_read(struct bpf_verifier_env *env,
3450 			 const struct bpf_reg_state *state,
3451 			 struct bpf_reg_state *parent, u8 flag)
3452 {
3453 	bool writes = parent == state->parent; /* Observe write marks */
3454 	int cnt = 0;
3455 
3456 	while (parent) {
3457 		/* if read wasn't screened by an earlier write ... */
3458 		if (writes && state->live & REG_LIVE_WRITTEN)
3459 			break;
3460 		if (verifier_bug_if(parent->live & REG_LIVE_DONE, env,
3461 				    "type %s var_off %lld off %d",
3462 				    reg_type_str(env, parent->type),
3463 				    parent->var_off.value, parent->off))
3464 			return -EFAULT;
3465 		/* The first condition is more likely to be true than the
3466 		 * second, checked it first.
3467 		 */
3468 		if ((parent->live & REG_LIVE_READ) == flag ||
3469 		    parent->live & REG_LIVE_READ64)
3470 			/* The parentage chain never changes and
3471 			 * this parent was already marked as LIVE_READ.
3472 			 * There is no need to keep walking the chain again and
3473 			 * keep re-marking all parents as LIVE_READ.
3474 			 * This case happens when the same register is read
3475 			 * multiple times without writes into it in-between.
3476 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
3477 			 * then no need to set the weak REG_LIVE_READ32.
3478 			 */
3479 			break;
3480 		/* ... then we depend on parent's value */
3481 		parent->live |= flag;
3482 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
3483 		if (flag == REG_LIVE_READ64)
3484 			parent->live &= ~REG_LIVE_READ32;
3485 		state = parent;
3486 		parent = state->parent;
3487 		writes = true;
3488 		cnt++;
3489 	}
3490 
3491 	if (env->longest_mark_read_walk < cnt)
3492 		env->longest_mark_read_walk = cnt;
3493 	return 0;
3494 }
3495 
mark_stack_slot_obj_read(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int spi,int nr_slots)3496 static int mark_stack_slot_obj_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
3497 				    int spi, int nr_slots)
3498 {
3499 	struct bpf_func_state *state = func(env, reg);
3500 	int err, i;
3501 
3502 	for (i = 0; i < nr_slots; i++) {
3503 		struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
3504 
3505 		err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
3506 		if (err)
3507 			return err;
3508 
3509 		mark_stack_slot_scratched(env, spi - i);
3510 	}
3511 	return 0;
3512 }
3513 
mark_dynptr_read(struct bpf_verifier_env * env,struct bpf_reg_state * reg)3514 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
3515 {
3516 	int spi;
3517 
3518 	/* For CONST_PTR_TO_DYNPTR, it must have already been done by
3519 	 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
3520 	 * check_kfunc_call.
3521 	 */
3522 	if (reg->type == CONST_PTR_TO_DYNPTR)
3523 		return 0;
3524 	spi = dynptr_get_spi(env, reg);
3525 	if (spi < 0)
3526 		return spi;
3527 	/* Caller ensures dynptr is valid and initialized, which means spi is in
3528 	 * bounds and spi is the first dynptr slot. Simply mark stack slot as
3529 	 * read.
3530 	 */
3531 	return mark_stack_slot_obj_read(env, reg, spi, BPF_DYNPTR_NR_SLOTS);
3532 }
3533 
mark_iter_read(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int spi,int nr_slots)3534 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
3535 			  int spi, int nr_slots)
3536 {
3537 	return mark_stack_slot_obj_read(env, reg, spi, nr_slots);
3538 }
3539 
mark_irq_flag_read(struct bpf_verifier_env * env,struct bpf_reg_state * reg)3540 static int mark_irq_flag_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
3541 {
3542 	int spi;
3543 
3544 	spi = irq_flag_get_spi(env, reg);
3545 	if (spi < 0)
3546 		return spi;
3547 	return mark_stack_slot_obj_read(env, reg, spi, 1);
3548 }
3549 
3550 /* This function is supposed to be used by the following 32-bit optimization
3551  * code only. It returns TRUE if the source or destination register operates
3552  * on 64-bit, otherwise return FALSE.
3553  */
is_reg64(struct bpf_verifier_env * env,struct bpf_insn * insn,u32 regno,struct bpf_reg_state * reg,enum reg_arg_type t)3554 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
3555 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
3556 {
3557 	u8 code, class, op;
3558 
3559 	code = insn->code;
3560 	class = BPF_CLASS(code);
3561 	op = BPF_OP(code);
3562 	if (class == BPF_JMP) {
3563 		/* BPF_EXIT for "main" will reach here. Return TRUE
3564 		 * conservatively.
3565 		 */
3566 		if (op == BPF_EXIT)
3567 			return true;
3568 		if (op == BPF_CALL) {
3569 			/* BPF to BPF call will reach here because of marking
3570 			 * caller saved clobber with DST_OP_NO_MARK for which we
3571 			 * don't care the register def because they are anyway
3572 			 * marked as NOT_INIT already.
3573 			 */
3574 			if (insn->src_reg == BPF_PSEUDO_CALL)
3575 				return false;
3576 			/* Helper call will reach here because of arg type
3577 			 * check, conservatively return TRUE.
3578 			 */
3579 			if (t == SRC_OP)
3580 				return true;
3581 
3582 			return false;
3583 		}
3584 	}
3585 
3586 	if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
3587 		return false;
3588 
3589 	if (class == BPF_ALU64 || class == BPF_JMP ||
3590 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3591 		return true;
3592 
3593 	if (class == BPF_ALU || class == BPF_JMP32)
3594 		return false;
3595 
3596 	if (class == BPF_LDX) {
3597 		if (t != SRC_OP)
3598 			return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX;
3599 		/* LDX source must be ptr. */
3600 		return true;
3601 	}
3602 
3603 	if (class == BPF_STX) {
3604 		/* BPF_STX (including atomic variants) has one or more source
3605 		 * operands, one of which is a ptr. Check whether the caller is
3606 		 * asking about it.
3607 		 */
3608 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
3609 			return true;
3610 		return BPF_SIZE(code) == BPF_DW;
3611 	}
3612 
3613 	if (class == BPF_LD) {
3614 		u8 mode = BPF_MODE(code);
3615 
3616 		/* LD_IMM64 */
3617 		if (mode == BPF_IMM)
3618 			return true;
3619 
3620 		/* Both LD_IND and LD_ABS return 32-bit data. */
3621 		if (t != SRC_OP)
3622 			return  false;
3623 
3624 		/* Implicit ctx ptr. */
3625 		if (regno == BPF_REG_6)
3626 			return true;
3627 
3628 		/* Explicit source could be any width. */
3629 		return true;
3630 	}
3631 
3632 	if (class == BPF_ST)
3633 		/* The only source register for BPF_ST is a ptr. */
3634 		return true;
3635 
3636 	/* Conservatively return true at default. */
3637 	return true;
3638 }
3639 
3640 /* Return the regno defined by the insn, or -1. */
insn_def_regno(const struct bpf_insn * insn)3641 static int insn_def_regno(const struct bpf_insn *insn)
3642 {
3643 	switch (BPF_CLASS(insn->code)) {
3644 	case BPF_JMP:
3645 	case BPF_JMP32:
3646 	case BPF_ST:
3647 		return -1;
3648 	case BPF_STX:
3649 		if (BPF_MODE(insn->code) == BPF_ATOMIC ||
3650 		    BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) {
3651 			if (insn->imm == BPF_CMPXCHG)
3652 				return BPF_REG_0;
3653 			else if (insn->imm == BPF_LOAD_ACQ)
3654 				return insn->dst_reg;
3655 			else if (insn->imm & BPF_FETCH)
3656 				return insn->src_reg;
3657 		}
3658 		return -1;
3659 	default:
3660 		return insn->dst_reg;
3661 	}
3662 }
3663 
3664 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
insn_has_def32(struct bpf_verifier_env * env,struct bpf_insn * insn)3665 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3666 {
3667 	int dst_reg = insn_def_regno(insn);
3668 
3669 	if (dst_reg == -1)
3670 		return false;
3671 
3672 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
3673 }
3674 
mark_insn_zext(struct bpf_verifier_env * env,struct bpf_reg_state * reg)3675 static void mark_insn_zext(struct bpf_verifier_env *env,
3676 			   struct bpf_reg_state *reg)
3677 {
3678 	s32 def_idx = reg->subreg_def;
3679 
3680 	if (def_idx == DEF_NOT_SUBREG)
3681 		return;
3682 
3683 	env->insn_aux_data[def_idx - 1].zext_dst = true;
3684 	/* The dst will be zero extended, so won't be sub-register anymore. */
3685 	reg->subreg_def = DEF_NOT_SUBREG;
3686 }
3687 
__check_reg_arg(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,enum reg_arg_type t)3688 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno,
3689 			   enum reg_arg_type t)
3690 {
3691 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3692 	struct bpf_reg_state *reg;
3693 	bool rw64;
3694 
3695 	if (regno >= MAX_BPF_REG) {
3696 		verbose(env, "R%d is invalid\n", regno);
3697 		return -EINVAL;
3698 	}
3699 
3700 	mark_reg_scratched(env, regno);
3701 
3702 	reg = &regs[regno];
3703 	rw64 = is_reg64(env, insn, regno, reg, t);
3704 	if (t == SRC_OP) {
3705 		/* check whether register used as source operand can be read */
3706 		if (reg->type == NOT_INIT) {
3707 			verbose(env, "R%d !read_ok\n", regno);
3708 			return -EACCES;
3709 		}
3710 		/* We don't need to worry about FP liveness because it's read-only */
3711 		if (regno == BPF_REG_FP)
3712 			return 0;
3713 
3714 		if (rw64)
3715 			mark_insn_zext(env, reg);
3716 
3717 		return mark_reg_read(env, reg, reg->parent,
3718 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
3719 	} else {
3720 		/* check whether register used as dest operand can be written to */
3721 		if (regno == BPF_REG_FP) {
3722 			verbose(env, "frame pointer is read only\n");
3723 			return -EACCES;
3724 		}
3725 		reg->live |= REG_LIVE_WRITTEN;
3726 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3727 		if (t == DST_OP)
3728 			mark_reg_unknown(env, regs, regno);
3729 	}
3730 	return 0;
3731 }
3732 
check_reg_arg(struct bpf_verifier_env * env,u32 regno,enum reg_arg_type t)3733 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3734 			 enum reg_arg_type t)
3735 {
3736 	struct bpf_verifier_state *vstate = env->cur_state;
3737 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3738 
3739 	return __check_reg_arg(env, state->regs, regno, t);
3740 }
3741 
insn_stack_access_flags(int frameno,int spi)3742 static int insn_stack_access_flags(int frameno, int spi)
3743 {
3744 	return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno;
3745 }
3746 
insn_stack_access_spi(int insn_flags)3747 static int insn_stack_access_spi(int insn_flags)
3748 {
3749 	return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK;
3750 }
3751 
insn_stack_access_frameno(int insn_flags)3752 static int insn_stack_access_frameno(int insn_flags)
3753 {
3754 	return insn_flags & INSN_F_FRAMENO_MASK;
3755 }
3756 
mark_jmp_point(struct bpf_verifier_env * env,int idx)3757 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3758 {
3759 	env->insn_aux_data[idx].jmp_point = true;
3760 }
3761 
is_jmp_point(struct bpf_verifier_env * env,int insn_idx)3762 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3763 {
3764 	return env->insn_aux_data[insn_idx].jmp_point;
3765 }
3766 
3767 #define LR_FRAMENO_BITS	3
3768 #define LR_SPI_BITS	6
3769 #define LR_ENTRY_BITS	(LR_SPI_BITS + LR_FRAMENO_BITS + 1)
3770 #define LR_SIZE_BITS	4
3771 #define LR_FRAMENO_MASK	((1ull << LR_FRAMENO_BITS) - 1)
3772 #define LR_SPI_MASK	((1ull << LR_SPI_BITS)     - 1)
3773 #define LR_SIZE_MASK	((1ull << LR_SIZE_BITS)    - 1)
3774 #define LR_SPI_OFF	LR_FRAMENO_BITS
3775 #define LR_IS_REG_OFF	(LR_SPI_BITS + LR_FRAMENO_BITS)
3776 #define LINKED_REGS_MAX	6
3777 
3778 struct linked_reg {
3779 	u8 frameno;
3780 	union {
3781 		u8 spi;
3782 		u8 regno;
3783 	};
3784 	bool is_reg;
3785 };
3786 
3787 struct linked_regs {
3788 	int cnt;
3789 	struct linked_reg entries[LINKED_REGS_MAX];
3790 };
3791 
linked_regs_push(struct linked_regs * s)3792 static struct linked_reg *linked_regs_push(struct linked_regs *s)
3793 {
3794 	if (s->cnt < LINKED_REGS_MAX)
3795 		return &s->entries[s->cnt++];
3796 
3797 	return NULL;
3798 }
3799 
3800 /* Use u64 as a vector of 6 10-bit values, use first 4-bits to track
3801  * number of elements currently in stack.
3802  * Pack one history entry for linked registers as 10 bits in the following format:
3803  * - 3-bits frameno
3804  * - 6-bits spi_or_reg
3805  * - 1-bit  is_reg
3806  */
linked_regs_pack(struct linked_regs * s)3807 static u64 linked_regs_pack(struct linked_regs *s)
3808 {
3809 	u64 val = 0;
3810 	int i;
3811 
3812 	for (i = 0; i < s->cnt; ++i) {
3813 		struct linked_reg *e = &s->entries[i];
3814 		u64 tmp = 0;
3815 
3816 		tmp |= e->frameno;
3817 		tmp |= e->spi << LR_SPI_OFF;
3818 		tmp |= (e->is_reg ? 1 : 0) << LR_IS_REG_OFF;
3819 
3820 		val <<= LR_ENTRY_BITS;
3821 		val |= tmp;
3822 	}
3823 	val <<= LR_SIZE_BITS;
3824 	val |= s->cnt;
3825 	return val;
3826 }
3827 
linked_regs_unpack(u64 val,struct linked_regs * s)3828 static void linked_regs_unpack(u64 val, struct linked_regs *s)
3829 {
3830 	int i;
3831 
3832 	s->cnt = val & LR_SIZE_MASK;
3833 	val >>= LR_SIZE_BITS;
3834 
3835 	for (i = 0; i < s->cnt; ++i) {
3836 		struct linked_reg *e = &s->entries[i];
3837 
3838 		e->frameno =  val & LR_FRAMENO_MASK;
3839 		e->spi     = (val >> LR_SPI_OFF) & LR_SPI_MASK;
3840 		e->is_reg  = (val >> LR_IS_REG_OFF) & 0x1;
3841 		val >>= LR_ENTRY_BITS;
3842 	}
3843 }
3844 
3845 /* for any branch, call, exit record the history of jmps in the given state */
push_insn_history(struct bpf_verifier_env * env,struct bpf_verifier_state * cur,int insn_flags,u64 linked_regs)3846 static int push_insn_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur,
3847 			     int insn_flags, u64 linked_regs)
3848 {
3849 	struct bpf_insn_hist_entry *p;
3850 	size_t alloc_size;
3851 
3852 	/* combine instruction flags if we already recorded this instruction */
3853 	if (env->cur_hist_ent) {
3854 		/* atomic instructions push insn_flags twice, for READ and
3855 		 * WRITE sides, but they should agree on stack slot
3856 		 */
3857 		verifier_bug_if((env->cur_hist_ent->flags & insn_flags) &&
3858 				(env->cur_hist_ent->flags & insn_flags) != insn_flags,
3859 				env, "insn history: insn_idx %d cur flags %x new flags %x",
3860 				env->insn_idx, env->cur_hist_ent->flags, insn_flags);
3861 		env->cur_hist_ent->flags |= insn_flags;
3862 		verifier_bug_if(env->cur_hist_ent->linked_regs != 0, env,
3863 				"insn history: insn_idx %d linked_regs: %#llx",
3864 				env->insn_idx, env->cur_hist_ent->linked_regs);
3865 		env->cur_hist_ent->linked_regs = linked_regs;
3866 		return 0;
3867 	}
3868 
3869 	if (cur->insn_hist_end + 1 > env->insn_hist_cap) {
3870 		alloc_size = size_mul(cur->insn_hist_end + 1, sizeof(*p));
3871 		p = kvrealloc(env->insn_hist, alloc_size, GFP_USER);
3872 		if (!p)
3873 			return -ENOMEM;
3874 		env->insn_hist = p;
3875 		env->insn_hist_cap = alloc_size / sizeof(*p);
3876 	}
3877 
3878 	p = &env->insn_hist[cur->insn_hist_end];
3879 	p->idx = env->insn_idx;
3880 	p->prev_idx = env->prev_insn_idx;
3881 	p->flags = insn_flags;
3882 	p->linked_regs = linked_regs;
3883 
3884 	cur->insn_hist_end++;
3885 	env->cur_hist_ent = p;
3886 
3887 	return 0;
3888 }
3889 
get_insn_hist_entry(struct bpf_verifier_env * env,u32 hist_start,u32 hist_end,int insn_idx)3890 static struct bpf_insn_hist_entry *get_insn_hist_entry(struct bpf_verifier_env *env,
3891 						       u32 hist_start, u32 hist_end, int insn_idx)
3892 {
3893 	if (hist_end > hist_start && env->insn_hist[hist_end - 1].idx == insn_idx)
3894 		return &env->insn_hist[hist_end - 1];
3895 	return NULL;
3896 }
3897 
3898 /* Backtrack one insn at a time. If idx is not at the top of recorded
3899  * history then previous instruction came from straight line execution.
3900  * Return -ENOENT if we exhausted all instructions within given state.
3901  *
3902  * It's legal to have a bit of a looping with the same starting and ending
3903  * insn index within the same state, e.g.: 3->4->5->3, so just because current
3904  * instruction index is the same as state's first_idx doesn't mean we are
3905  * done. If there is still some jump history left, we should keep going. We
3906  * need to take into account that we might have a jump history between given
3907  * state's parent and itself, due to checkpointing. In this case, we'll have
3908  * history entry recording a jump from last instruction of parent state and
3909  * first instruction of given state.
3910  */
get_prev_insn_idx(const struct bpf_verifier_env * env,struct bpf_verifier_state * st,int insn_idx,u32 hist_start,u32 * hist_endp)3911 static int get_prev_insn_idx(const struct bpf_verifier_env *env,
3912 			     struct bpf_verifier_state *st,
3913 			     int insn_idx, u32 hist_start, u32 *hist_endp)
3914 {
3915 	u32 hist_end = *hist_endp;
3916 	u32 cnt = hist_end - hist_start;
3917 
3918 	if (insn_idx == st->first_insn_idx) {
3919 		if (cnt == 0)
3920 			return -ENOENT;
3921 		if (cnt == 1 && env->insn_hist[hist_start].idx == insn_idx)
3922 			return -ENOENT;
3923 	}
3924 
3925 	if (cnt && env->insn_hist[hist_end - 1].idx == insn_idx) {
3926 		(*hist_endp)--;
3927 		return env->insn_hist[hist_end - 1].prev_idx;
3928 	} else {
3929 		return insn_idx - 1;
3930 	}
3931 }
3932 
disasm_kfunc_name(void * data,const struct bpf_insn * insn)3933 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3934 {
3935 	const struct btf_type *func;
3936 	struct btf *desc_btf;
3937 
3938 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3939 		return NULL;
3940 
3941 	desc_btf = find_kfunc_desc_btf(data, insn->off);
3942 	if (IS_ERR(desc_btf))
3943 		return "<error>";
3944 
3945 	func = btf_type_by_id(desc_btf, insn->imm);
3946 	return btf_name_by_offset(desc_btf, func->name_off);
3947 }
3948 
verbose_insn(struct bpf_verifier_env * env,struct bpf_insn * insn)3949 static void verbose_insn(struct bpf_verifier_env *env, struct bpf_insn *insn)
3950 {
3951 	const struct bpf_insn_cbs cbs = {
3952 		.cb_call	= disasm_kfunc_name,
3953 		.cb_print	= verbose,
3954 		.private_data	= env,
3955 	};
3956 
3957 	print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3958 }
3959 
bt_init(struct backtrack_state * bt,u32 frame)3960 static inline void bt_init(struct backtrack_state *bt, u32 frame)
3961 {
3962 	bt->frame = frame;
3963 }
3964 
bt_reset(struct backtrack_state * bt)3965 static inline void bt_reset(struct backtrack_state *bt)
3966 {
3967 	struct bpf_verifier_env *env = bt->env;
3968 
3969 	memset(bt, 0, sizeof(*bt));
3970 	bt->env = env;
3971 }
3972 
bt_empty(struct backtrack_state * bt)3973 static inline u32 bt_empty(struct backtrack_state *bt)
3974 {
3975 	u64 mask = 0;
3976 	int i;
3977 
3978 	for (i = 0; i <= bt->frame; i++)
3979 		mask |= bt->reg_masks[i] | bt->stack_masks[i];
3980 
3981 	return mask == 0;
3982 }
3983 
bt_subprog_enter(struct backtrack_state * bt)3984 static inline int bt_subprog_enter(struct backtrack_state *bt)
3985 {
3986 	if (bt->frame == MAX_CALL_FRAMES - 1) {
3987 		verifier_bug(bt->env, "subprog enter from frame %d", bt->frame);
3988 		return -EFAULT;
3989 	}
3990 	bt->frame++;
3991 	return 0;
3992 }
3993 
bt_subprog_exit(struct backtrack_state * bt)3994 static inline int bt_subprog_exit(struct backtrack_state *bt)
3995 {
3996 	if (bt->frame == 0) {
3997 		verifier_bug(bt->env, "subprog exit from frame 0");
3998 		return -EFAULT;
3999 	}
4000 	bt->frame--;
4001 	return 0;
4002 }
4003 
bt_set_frame_reg(struct backtrack_state * bt,u32 frame,u32 reg)4004 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
4005 {
4006 	bt->reg_masks[frame] |= 1 << reg;
4007 }
4008 
bt_clear_frame_reg(struct backtrack_state * bt,u32 frame,u32 reg)4009 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
4010 {
4011 	bt->reg_masks[frame] &= ~(1 << reg);
4012 }
4013 
bt_set_reg(struct backtrack_state * bt,u32 reg)4014 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
4015 {
4016 	bt_set_frame_reg(bt, bt->frame, reg);
4017 }
4018 
bt_clear_reg(struct backtrack_state * bt,u32 reg)4019 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
4020 {
4021 	bt_clear_frame_reg(bt, bt->frame, reg);
4022 }
4023 
bt_set_frame_slot(struct backtrack_state * bt,u32 frame,u32 slot)4024 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
4025 {
4026 	bt->stack_masks[frame] |= 1ull << slot;
4027 }
4028 
bt_clear_frame_slot(struct backtrack_state * bt,u32 frame,u32 slot)4029 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
4030 {
4031 	bt->stack_masks[frame] &= ~(1ull << slot);
4032 }
4033 
bt_frame_reg_mask(struct backtrack_state * bt,u32 frame)4034 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
4035 {
4036 	return bt->reg_masks[frame];
4037 }
4038 
bt_reg_mask(struct backtrack_state * bt)4039 static inline u32 bt_reg_mask(struct backtrack_state *bt)
4040 {
4041 	return bt->reg_masks[bt->frame];
4042 }
4043 
bt_frame_stack_mask(struct backtrack_state * bt,u32 frame)4044 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
4045 {
4046 	return bt->stack_masks[frame];
4047 }
4048 
bt_stack_mask(struct backtrack_state * bt)4049 static inline u64 bt_stack_mask(struct backtrack_state *bt)
4050 {
4051 	return bt->stack_masks[bt->frame];
4052 }
4053 
bt_is_reg_set(struct backtrack_state * bt,u32 reg)4054 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
4055 {
4056 	return bt->reg_masks[bt->frame] & (1 << reg);
4057 }
4058 
bt_is_frame_reg_set(struct backtrack_state * bt,u32 frame,u32 reg)4059 static inline bool bt_is_frame_reg_set(struct backtrack_state *bt, u32 frame, u32 reg)
4060 {
4061 	return bt->reg_masks[frame] & (1 << reg);
4062 }
4063 
bt_is_frame_slot_set(struct backtrack_state * bt,u32 frame,u32 slot)4064 static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot)
4065 {
4066 	return bt->stack_masks[frame] & (1ull << slot);
4067 }
4068 
4069 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
fmt_reg_mask(char * buf,ssize_t buf_sz,u32 reg_mask)4070 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
4071 {
4072 	DECLARE_BITMAP(mask, 64);
4073 	bool first = true;
4074 	int i, n;
4075 
4076 	buf[0] = '\0';
4077 
4078 	bitmap_from_u64(mask, reg_mask);
4079 	for_each_set_bit(i, mask, 32) {
4080 		n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
4081 		first = false;
4082 		buf += n;
4083 		buf_sz -= n;
4084 		if (buf_sz < 0)
4085 			break;
4086 	}
4087 }
4088 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
fmt_stack_mask(char * buf,ssize_t buf_sz,u64 stack_mask)4089 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
4090 {
4091 	DECLARE_BITMAP(mask, 64);
4092 	bool first = true;
4093 	int i, n;
4094 
4095 	buf[0] = '\0';
4096 
4097 	bitmap_from_u64(mask, stack_mask);
4098 	for_each_set_bit(i, mask, 64) {
4099 		n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
4100 		first = false;
4101 		buf += n;
4102 		buf_sz -= n;
4103 		if (buf_sz < 0)
4104 			break;
4105 	}
4106 }
4107 
4108 /* If any register R in hist->linked_regs is marked as precise in bt,
4109  * do bt_set_frame_{reg,slot}(bt, R) for all registers in hist->linked_regs.
4110  */
bt_sync_linked_regs(struct backtrack_state * bt,struct bpf_insn_hist_entry * hist)4111 static void bt_sync_linked_regs(struct backtrack_state *bt, struct bpf_insn_hist_entry *hist)
4112 {
4113 	struct linked_regs linked_regs;
4114 	bool some_precise = false;
4115 	int i;
4116 
4117 	if (!hist || hist->linked_regs == 0)
4118 		return;
4119 
4120 	linked_regs_unpack(hist->linked_regs, &linked_regs);
4121 	for (i = 0; i < linked_regs.cnt; ++i) {
4122 		struct linked_reg *e = &linked_regs.entries[i];
4123 
4124 		if ((e->is_reg && bt_is_frame_reg_set(bt, e->frameno, e->regno)) ||
4125 		    (!e->is_reg && bt_is_frame_slot_set(bt, e->frameno, e->spi))) {
4126 			some_precise = true;
4127 			break;
4128 		}
4129 	}
4130 
4131 	if (!some_precise)
4132 		return;
4133 
4134 	for (i = 0; i < linked_regs.cnt; ++i) {
4135 		struct linked_reg *e = &linked_regs.entries[i];
4136 
4137 		if (e->is_reg)
4138 			bt_set_frame_reg(bt, e->frameno, e->regno);
4139 		else
4140 			bt_set_frame_slot(bt, e->frameno, e->spi);
4141 	}
4142 }
4143 
4144 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx);
4145 
4146 /* For given verifier state backtrack_insn() is called from the last insn to
4147  * the first insn. Its purpose is to compute a bitmask of registers and
4148  * stack slots that needs precision in the parent verifier state.
4149  *
4150  * @idx is an index of the instruction we are currently processing;
4151  * @subseq_idx is an index of the subsequent instruction that:
4152  *   - *would be* executed next, if jump history is viewed in forward order;
4153  *   - *was* processed previously during backtracking.
4154  */
backtrack_insn(struct bpf_verifier_env * env,int idx,int subseq_idx,struct bpf_insn_hist_entry * hist,struct backtrack_state * bt)4155 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
4156 			  struct bpf_insn_hist_entry *hist, struct backtrack_state *bt)
4157 {
4158 	struct bpf_insn *insn = env->prog->insnsi + idx;
4159 	u8 class = BPF_CLASS(insn->code);
4160 	u8 opcode = BPF_OP(insn->code);
4161 	u8 mode = BPF_MODE(insn->code);
4162 	u32 dreg = insn->dst_reg;
4163 	u32 sreg = insn->src_reg;
4164 	u32 spi, i, fr;
4165 
4166 	if (insn->code == 0)
4167 		return 0;
4168 	if (env->log.level & BPF_LOG_LEVEL2) {
4169 		fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
4170 		verbose(env, "mark_precise: frame%d: regs=%s ",
4171 			bt->frame, env->tmp_str_buf);
4172 		fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
4173 		verbose(env, "stack=%s before ", env->tmp_str_buf);
4174 		verbose(env, "%d: ", idx);
4175 		verbose_insn(env, insn);
4176 	}
4177 
4178 	/* If there is a history record that some registers gained range at this insn,
4179 	 * propagate precision marks to those registers, so that bt_is_reg_set()
4180 	 * accounts for these registers.
4181 	 */
4182 	bt_sync_linked_regs(bt, hist);
4183 
4184 	if (class == BPF_ALU || class == BPF_ALU64) {
4185 		if (!bt_is_reg_set(bt, dreg))
4186 			return 0;
4187 		if (opcode == BPF_END || opcode == BPF_NEG) {
4188 			/* sreg is reserved and unused
4189 			 * dreg still need precision before this insn
4190 			 */
4191 			return 0;
4192 		} else if (opcode == BPF_MOV) {
4193 			if (BPF_SRC(insn->code) == BPF_X) {
4194 				/* dreg = sreg or dreg = (s8, s16, s32)sreg
4195 				 * dreg needs precision after this insn
4196 				 * sreg needs precision before this insn
4197 				 */
4198 				bt_clear_reg(bt, dreg);
4199 				if (sreg != BPF_REG_FP)
4200 					bt_set_reg(bt, sreg);
4201 			} else {
4202 				/* dreg = K
4203 				 * dreg needs precision after this insn.
4204 				 * Corresponding register is already marked
4205 				 * as precise=true in this verifier state.
4206 				 * No further markings in parent are necessary
4207 				 */
4208 				bt_clear_reg(bt, dreg);
4209 			}
4210 		} else {
4211 			if (BPF_SRC(insn->code) == BPF_X) {
4212 				/* dreg += sreg
4213 				 * both dreg and sreg need precision
4214 				 * before this insn
4215 				 */
4216 				if (sreg != BPF_REG_FP)
4217 					bt_set_reg(bt, sreg);
4218 			} /* else dreg += K
4219 			   * dreg still needs precision before this insn
4220 			   */
4221 		}
4222 	} else if (class == BPF_LDX || is_atomic_load_insn(insn)) {
4223 		if (!bt_is_reg_set(bt, dreg))
4224 			return 0;
4225 		bt_clear_reg(bt, dreg);
4226 
4227 		/* scalars can only be spilled into stack w/o losing precision.
4228 		 * Load from any other memory can be zero extended.
4229 		 * The desire to keep that precision is already indicated
4230 		 * by 'precise' mark in corresponding register of this state.
4231 		 * No further tracking necessary.
4232 		 */
4233 		if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
4234 			return 0;
4235 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
4236 		 * that [fp - off] slot contains scalar that needs to be
4237 		 * tracked with precision
4238 		 */
4239 		spi = insn_stack_access_spi(hist->flags);
4240 		fr = insn_stack_access_frameno(hist->flags);
4241 		bt_set_frame_slot(bt, fr, spi);
4242 	} else if (class == BPF_STX || class == BPF_ST) {
4243 		if (bt_is_reg_set(bt, dreg))
4244 			/* stx & st shouldn't be using _scalar_ dst_reg
4245 			 * to access memory. It means backtracking
4246 			 * encountered a case of pointer subtraction.
4247 			 */
4248 			return -ENOTSUPP;
4249 		/* scalars can only be spilled into stack */
4250 		if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
4251 			return 0;
4252 		spi = insn_stack_access_spi(hist->flags);
4253 		fr = insn_stack_access_frameno(hist->flags);
4254 		if (!bt_is_frame_slot_set(bt, fr, spi))
4255 			return 0;
4256 		bt_clear_frame_slot(bt, fr, spi);
4257 		if (class == BPF_STX)
4258 			bt_set_reg(bt, sreg);
4259 	} else if (class == BPF_JMP || class == BPF_JMP32) {
4260 		if (bpf_pseudo_call(insn)) {
4261 			int subprog_insn_idx, subprog;
4262 
4263 			subprog_insn_idx = idx + insn->imm + 1;
4264 			subprog = find_subprog(env, subprog_insn_idx);
4265 			if (subprog < 0)
4266 				return -EFAULT;
4267 
4268 			if (subprog_is_global(env, subprog)) {
4269 				/* check that jump history doesn't have any
4270 				 * extra instructions from subprog; the next
4271 				 * instruction after call to global subprog
4272 				 * should be literally next instruction in
4273 				 * caller program
4274 				 */
4275 				verifier_bug_if(idx + 1 != subseq_idx, env,
4276 						"extra insn from subprog");
4277 				/* r1-r5 are invalidated after subprog call,
4278 				 * so for global func call it shouldn't be set
4279 				 * anymore
4280 				 */
4281 				if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
4282 					verifier_bug(env, "global subprog unexpected regs %x",
4283 						     bt_reg_mask(bt));
4284 					return -EFAULT;
4285 				}
4286 				/* global subprog always sets R0 */
4287 				bt_clear_reg(bt, BPF_REG_0);
4288 				return 0;
4289 			} else {
4290 				/* static subprog call instruction, which
4291 				 * means that we are exiting current subprog,
4292 				 * so only r1-r5 could be still requested as
4293 				 * precise, r0 and r6-r10 or any stack slot in
4294 				 * the current frame should be zero by now
4295 				 */
4296 				if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
4297 					verifier_bug(env, "static subprog unexpected regs %x",
4298 						     bt_reg_mask(bt));
4299 					return -EFAULT;
4300 				}
4301 				/* we are now tracking register spills correctly,
4302 				 * so any instance of leftover slots is a bug
4303 				 */
4304 				if (bt_stack_mask(bt) != 0) {
4305 					verifier_bug(env,
4306 						     "static subprog leftover stack slots %llx",
4307 						     bt_stack_mask(bt));
4308 					return -EFAULT;
4309 				}
4310 				/* propagate r1-r5 to the caller */
4311 				for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
4312 					if (bt_is_reg_set(bt, i)) {
4313 						bt_clear_reg(bt, i);
4314 						bt_set_frame_reg(bt, bt->frame - 1, i);
4315 					}
4316 				}
4317 				if (bt_subprog_exit(bt))
4318 					return -EFAULT;
4319 				return 0;
4320 			}
4321 		} else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) {
4322 			/* exit from callback subprog to callback-calling helper or
4323 			 * kfunc call. Use idx/subseq_idx check to discern it from
4324 			 * straight line code backtracking.
4325 			 * Unlike the subprog call handling above, we shouldn't
4326 			 * propagate precision of r1-r5 (if any requested), as they are
4327 			 * not actually arguments passed directly to callback subprogs
4328 			 */
4329 			if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
4330 				verifier_bug(env, "callback unexpected regs %x",
4331 					     bt_reg_mask(bt));
4332 				return -EFAULT;
4333 			}
4334 			if (bt_stack_mask(bt) != 0) {
4335 				verifier_bug(env, "callback leftover stack slots %llx",
4336 					     bt_stack_mask(bt));
4337 				return -EFAULT;
4338 			}
4339 			/* clear r1-r5 in callback subprog's mask */
4340 			for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4341 				bt_clear_reg(bt, i);
4342 			if (bt_subprog_exit(bt))
4343 				return -EFAULT;
4344 			return 0;
4345 		} else if (opcode == BPF_CALL) {
4346 			/* kfunc with imm==0 is invalid and fixup_kfunc_call will
4347 			 * catch this error later. Make backtracking conservative
4348 			 * with ENOTSUPP.
4349 			 */
4350 			if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
4351 				return -ENOTSUPP;
4352 			/* regular helper call sets R0 */
4353 			bt_clear_reg(bt, BPF_REG_0);
4354 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
4355 				/* if backtracking was looking for registers R1-R5
4356 				 * they should have been found already.
4357 				 */
4358 				verifier_bug(env, "backtracking call unexpected regs %x",
4359 					     bt_reg_mask(bt));
4360 				return -EFAULT;
4361 			}
4362 		} else if (opcode == BPF_EXIT) {
4363 			bool r0_precise;
4364 
4365 			/* Backtracking to a nested function call, 'idx' is a part of
4366 			 * the inner frame 'subseq_idx' is a part of the outer frame.
4367 			 * In case of a regular function call, instructions giving
4368 			 * precision to registers R1-R5 should have been found already.
4369 			 * In case of a callback, it is ok to have R1-R5 marked for
4370 			 * backtracking, as these registers are set by the function
4371 			 * invoking callback.
4372 			 */
4373 			if (subseq_idx >= 0 && calls_callback(env, subseq_idx))
4374 				for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4375 					bt_clear_reg(bt, i);
4376 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
4377 				verifier_bug(env, "backtracking exit unexpected regs %x",
4378 					     bt_reg_mask(bt));
4379 				return -EFAULT;
4380 			}
4381 
4382 			/* BPF_EXIT in subprog or callback always returns
4383 			 * right after the call instruction, so by checking
4384 			 * whether the instruction at subseq_idx-1 is subprog
4385 			 * call or not we can distinguish actual exit from
4386 			 * *subprog* from exit from *callback*. In the former
4387 			 * case, we need to propagate r0 precision, if
4388 			 * necessary. In the former we never do that.
4389 			 */
4390 			r0_precise = subseq_idx - 1 >= 0 &&
4391 				     bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
4392 				     bt_is_reg_set(bt, BPF_REG_0);
4393 
4394 			bt_clear_reg(bt, BPF_REG_0);
4395 			if (bt_subprog_enter(bt))
4396 				return -EFAULT;
4397 
4398 			if (r0_precise)
4399 				bt_set_reg(bt, BPF_REG_0);
4400 			/* r6-r9 and stack slots will stay set in caller frame
4401 			 * bitmasks until we return back from callee(s)
4402 			 */
4403 			return 0;
4404 		} else if (BPF_SRC(insn->code) == BPF_X) {
4405 			if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
4406 				return 0;
4407 			/* dreg <cond> sreg
4408 			 * Both dreg and sreg need precision before
4409 			 * this insn. If only sreg was marked precise
4410 			 * before it would be equally necessary to
4411 			 * propagate it to dreg.
4412 			 */
4413 			if (!hist || !(hist->flags & INSN_F_SRC_REG_STACK))
4414 				bt_set_reg(bt, sreg);
4415 			if (!hist || !(hist->flags & INSN_F_DST_REG_STACK))
4416 				bt_set_reg(bt, dreg);
4417 		} else if (BPF_SRC(insn->code) == BPF_K) {
4418 			 /* dreg <cond> K
4419 			  * Only dreg still needs precision before
4420 			  * this insn, so for the K-based conditional
4421 			  * there is nothing new to be marked.
4422 			  */
4423 		}
4424 	} else if (class == BPF_LD) {
4425 		if (!bt_is_reg_set(bt, dreg))
4426 			return 0;
4427 		bt_clear_reg(bt, dreg);
4428 		/* It's ld_imm64 or ld_abs or ld_ind.
4429 		 * For ld_imm64 no further tracking of precision
4430 		 * into parent is necessary
4431 		 */
4432 		if (mode == BPF_IND || mode == BPF_ABS)
4433 			/* to be analyzed */
4434 			return -ENOTSUPP;
4435 	}
4436 	/* Propagate precision marks to linked registers, to account for
4437 	 * registers marked as precise in this function.
4438 	 */
4439 	bt_sync_linked_regs(bt, hist);
4440 	return 0;
4441 }
4442 
4443 /* the scalar precision tracking algorithm:
4444  * . at the start all registers have precise=false.
4445  * . scalar ranges are tracked as normal through alu and jmp insns.
4446  * . once precise value of the scalar register is used in:
4447  *   .  ptr + scalar alu
4448  *   . if (scalar cond K|scalar)
4449  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
4450  *   backtrack through the verifier states and mark all registers and
4451  *   stack slots with spilled constants that these scalar regisers
4452  *   should be precise.
4453  * . during state pruning two registers (or spilled stack slots)
4454  *   are equivalent if both are not precise.
4455  *
4456  * Note the verifier cannot simply walk register parentage chain,
4457  * since many different registers and stack slots could have been
4458  * used to compute single precise scalar.
4459  *
4460  * The approach of starting with precise=true for all registers and then
4461  * backtrack to mark a register as not precise when the verifier detects
4462  * that program doesn't care about specific value (e.g., when helper
4463  * takes register as ARG_ANYTHING parameter) is not safe.
4464  *
4465  * It's ok to walk single parentage chain of the verifier states.
4466  * It's possible that this backtracking will go all the way till 1st insn.
4467  * All other branches will be explored for needing precision later.
4468  *
4469  * The backtracking needs to deal with cases like:
4470  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
4471  * r9 -= r8
4472  * r5 = r9
4473  * if r5 > 0x79f goto pc+7
4474  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
4475  * r5 += 1
4476  * ...
4477  * call bpf_perf_event_output#25
4478  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
4479  *
4480  * and this case:
4481  * r6 = 1
4482  * call foo // uses callee's r6 inside to compute r0
4483  * r0 += r6
4484  * if r0 == 0 goto
4485  *
4486  * to track above reg_mask/stack_mask needs to be independent for each frame.
4487  *
4488  * Also if parent's curframe > frame where backtracking started,
4489  * the verifier need to mark registers in both frames, otherwise callees
4490  * may incorrectly prune callers. This is similar to
4491  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
4492  *
4493  * For now backtracking falls back into conservative marking.
4494  */
mark_all_scalars_precise(struct bpf_verifier_env * env,struct bpf_verifier_state * st)4495 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
4496 				     struct bpf_verifier_state *st)
4497 {
4498 	struct bpf_func_state *func;
4499 	struct bpf_reg_state *reg;
4500 	int i, j;
4501 
4502 	if (env->log.level & BPF_LOG_LEVEL2) {
4503 		verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
4504 			st->curframe);
4505 	}
4506 
4507 	/* big hammer: mark all scalars precise in this path.
4508 	 * pop_stack may still get !precise scalars.
4509 	 * We also skip current state and go straight to first parent state,
4510 	 * because precision markings in current non-checkpointed state are
4511 	 * not needed. See why in the comment in __mark_chain_precision below.
4512 	 */
4513 	for (st = st->parent; st; st = st->parent) {
4514 		for (i = 0; i <= st->curframe; i++) {
4515 			func = st->frame[i];
4516 			for (j = 0; j < BPF_REG_FP; j++) {
4517 				reg = &func->regs[j];
4518 				if (reg->type != SCALAR_VALUE || reg->precise)
4519 					continue;
4520 				reg->precise = true;
4521 				if (env->log.level & BPF_LOG_LEVEL2) {
4522 					verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
4523 						i, j);
4524 				}
4525 			}
4526 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4527 				if (!is_spilled_reg(&func->stack[j]))
4528 					continue;
4529 				reg = &func->stack[j].spilled_ptr;
4530 				if (reg->type != SCALAR_VALUE || reg->precise)
4531 					continue;
4532 				reg->precise = true;
4533 				if (env->log.level & BPF_LOG_LEVEL2) {
4534 					verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
4535 						i, -(j + 1) * 8);
4536 				}
4537 			}
4538 		}
4539 	}
4540 }
4541 
mark_all_scalars_imprecise(struct bpf_verifier_env * env,struct bpf_verifier_state * st)4542 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
4543 {
4544 	struct bpf_func_state *func;
4545 	struct bpf_reg_state *reg;
4546 	int i, j;
4547 
4548 	for (i = 0; i <= st->curframe; i++) {
4549 		func = st->frame[i];
4550 		for (j = 0; j < BPF_REG_FP; j++) {
4551 			reg = &func->regs[j];
4552 			if (reg->type != SCALAR_VALUE)
4553 				continue;
4554 			reg->precise = false;
4555 		}
4556 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4557 			if (!is_spilled_reg(&func->stack[j]))
4558 				continue;
4559 			reg = &func->stack[j].spilled_ptr;
4560 			if (reg->type != SCALAR_VALUE)
4561 				continue;
4562 			reg->precise = false;
4563 		}
4564 	}
4565 }
4566 
4567 /*
4568  * __mark_chain_precision() backtracks BPF program instruction sequence and
4569  * chain of verifier states making sure that register *regno* (if regno >= 0)
4570  * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
4571  * SCALARS, as well as any other registers and slots that contribute to
4572  * a tracked state of given registers/stack slots, depending on specific BPF
4573  * assembly instructions (see backtrack_insns() for exact instruction handling
4574  * logic). This backtracking relies on recorded insn_hist and is able to
4575  * traverse entire chain of parent states. This process ends only when all the
4576  * necessary registers/slots and their transitive dependencies are marked as
4577  * precise.
4578  *
4579  * One important and subtle aspect is that precise marks *do not matter* in
4580  * the currently verified state (current state). It is important to understand
4581  * why this is the case.
4582  *
4583  * First, note that current state is the state that is not yet "checkpointed",
4584  * i.e., it is not yet put into env->explored_states, and it has no children
4585  * states as well. It's ephemeral, and can end up either a) being discarded if
4586  * compatible explored state is found at some point or BPF_EXIT instruction is
4587  * reached or b) checkpointed and put into env->explored_states, branching out
4588  * into one or more children states.
4589  *
4590  * In the former case, precise markings in current state are completely
4591  * ignored by state comparison code (see regsafe() for details). Only
4592  * checkpointed ("old") state precise markings are important, and if old
4593  * state's register/slot is precise, regsafe() assumes current state's
4594  * register/slot as precise and checks value ranges exactly and precisely. If
4595  * states turn out to be compatible, current state's necessary precise
4596  * markings and any required parent states' precise markings are enforced
4597  * after the fact with propagate_precision() logic, after the fact. But it's
4598  * important to realize that in this case, even after marking current state
4599  * registers/slots as precise, we immediately discard current state. So what
4600  * actually matters is any of the precise markings propagated into current
4601  * state's parent states, which are always checkpointed (due to b) case above).
4602  * As such, for scenario a) it doesn't matter if current state has precise
4603  * markings set or not.
4604  *
4605  * Now, for the scenario b), checkpointing and forking into child(ren)
4606  * state(s). Note that before current state gets to checkpointing step, any
4607  * processed instruction always assumes precise SCALAR register/slot
4608  * knowledge: if precise value or range is useful to prune jump branch, BPF
4609  * verifier takes this opportunity enthusiastically. Similarly, when
4610  * register's value is used to calculate offset or memory address, exact
4611  * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
4612  * what we mentioned above about state comparison ignoring precise markings
4613  * during state comparison, BPF verifier ignores and also assumes precise
4614  * markings *at will* during instruction verification process. But as verifier
4615  * assumes precision, it also propagates any precision dependencies across
4616  * parent states, which are not yet finalized, so can be further restricted
4617  * based on new knowledge gained from restrictions enforced by their children
4618  * states. This is so that once those parent states are finalized, i.e., when
4619  * they have no more active children state, state comparison logic in
4620  * is_state_visited() would enforce strict and precise SCALAR ranges, if
4621  * required for correctness.
4622  *
4623  * To build a bit more intuition, note also that once a state is checkpointed,
4624  * the path we took to get to that state is not important. This is crucial
4625  * property for state pruning. When state is checkpointed and finalized at
4626  * some instruction index, it can be correctly and safely used to "short
4627  * circuit" any *compatible* state that reaches exactly the same instruction
4628  * index. I.e., if we jumped to that instruction from a completely different
4629  * code path than original finalized state was derived from, it doesn't
4630  * matter, current state can be discarded because from that instruction
4631  * forward having a compatible state will ensure we will safely reach the
4632  * exit. States describe preconditions for further exploration, but completely
4633  * forget the history of how we got here.
4634  *
4635  * This also means that even if we needed precise SCALAR range to get to
4636  * finalized state, but from that point forward *that same* SCALAR register is
4637  * never used in a precise context (i.e., it's precise value is not needed for
4638  * correctness), it's correct and safe to mark such register as "imprecise"
4639  * (i.e., precise marking set to false). This is what we rely on when we do
4640  * not set precise marking in current state. If no child state requires
4641  * precision for any given SCALAR register, it's safe to dictate that it can
4642  * be imprecise. If any child state does require this register to be precise,
4643  * we'll mark it precise later retroactively during precise markings
4644  * propagation from child state to parent states.
4645  *
4646  * Skipping precise marking setting in current state is a mild version of
4647  * relying on the above observation. But we can utilize this property even
4648  * more aggressively by proactively forgetting any precise marking in the
4649  * current state (which we inherited from the parent state), right before we
4650  * checkpoint it and branch off into new child state. This is done by
4651  * mark_all_scalars_imprecise() to hopefully get more permissive and generic
4652  * finalized states which help in short circuiting more future states.
4653  */
__mark_chain_precision(struct bpf_verifier_env * env,int regno)4654 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
4655 {
4656 	struct backtrack_state *bt = &env->bt;
4657 	struct bpf_verifier_state *st = env->cur_state;
4658 	int first_idx = st->first_insn_idx;
4659 	int last_idx = env->insn_idx;
4660 	int subseq_idx = -1;
4661 	struct bpf_func_state *func;
4662 	struct bpf_reg_state *reg;
4663 	bool skip_first = true;
4664 	int i, fr, err;
4665 
4666 	if (!env->bpf_capable)
4667 		return 0;
4668 
4669 	/* set frame number from which we are starting to backtrack */
4670 	bt_init(bt, env->cur_state->curframe);
4671 
4672 	/* Do sanity checks against current state of register and/or stack
4673 	 * slot, but don't set precise flag in current state, as precision
4674 	 * tracking in the current state is unnecessary.
4675 	 */
4676 	func = st->frame[bt->frame];
4677 	if (regno >= 0) {
4678 		reg = &func->regs[regno];
4679 		if (reg->type != SCALAR_VALUE) {
4680 			WARN_ONCE(1, "backtracing misuse");
4681 			return -EFAULT;
4682 		}
4683 		bt_set_reg(bt, regno);
4684 	}
4685 
4686 	if (bt_empty(bt))
4687 		return 0;
4688 
4689 	for (;;) {
4690 		DECLARE_BITMAP(mask, 64);
4691 		u32 hist_start = st->insn_hist_start;
4692 		u32 hist_end = st->insn_hist_end;
4693 		struct bpf_insn_hist_entry *hist;
4694 
4695 		if (env->log.level & BPF_LOG_LEVEL2) {
4696 			verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
4697 				bt->frame, last_idx, first_idx, subseq_idx);
4698 		}
4699 
4700 		if (last_idx < 0) {
4701 			/* we are at the entry into subprog, which
4702 			 * is expected for global funcs, but only if
4703 			 * requested precise registers are R1-R5
4704 			 * (which are global func's input arguments)
4705 			 */
4706 			if (st->curframe == 0 &&
4707 			    st->frame[0]->subprogno > 0 &&
4708 			    st->frame[0]->callsite == BPF_MAIN_FUNC &&
4709 			    bt_stack_mask(bt) == 0 &&
4710 			    (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
4711 				bitmap_from_u64(mask, bt_reg_mask(bt));
4712 				for_each_set_bit(i, mask, 32) {
4713 					reg = &st->frame[0]->regs[i];
4714 					bt_clear_reg(bt, i);
4715 					if (reg->type == SCALAR_VALUE)
4716 						reg->precise = true;
4717 				}
4718 				return 0;
4719 			}
4720 
4721 			verifier_bug(env, "backtracking func entry subprog %d reg_mask %x stack_mask %llx",
4722 				     st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
4723 			return -EFAULT;
4724 		}
4725 
4726 		for (i = last_idx;;) {
4727 			if (skip_first) {
4728 				err = 0;
4729 				skip_first = false;
4730 			} else {
4731 				hist = get_insn_hist_entry(env, hist_start, hist_end, i);
4732 				err = backtrack_insn(env, i, subseq_idx, hist, bt);
4733 			}
4734 			if (err == -ENOTSUPP) {
4735 				mark_all_scalars_precise(env, env->cur_state);
4736 				bt_reset(bt);
4737 				return 0;
4738 			} else if (err) {
4739 				return err;
4740 			}
4741 			if (bt_empty(bt))
4742 				/* Found assignment(s) into tracked register in this state.
4743 				 * Since this state is already marked, just return.
4744 				 * Nothing to be tracked further in the parent state.
4745 				 */
4746 				return 0;
4747 			subseq_idx = i;
4748 			i = get_prev_insn_idx(env, st, i, hist_start, &hist_end);
4749 			if (i == -ENOENT)
4750 				break;
4751 			if (i >= env->prog->len) {
4752 				/* This can happen if backtracking reached insn 0
4753 				 * and there are still reg_mask or stack_mask
4754 				 * to backtrack.
4755 				 * It means the backtracking missed the spot where
4756 				 * particular register was initialized with a constant.
4757 				 */
4758 				verifier_bug(env, "backtracking idx %d", i);
4759 				return -EFAULT;
4760 			}
4761 		}
4762 		st = st->parent;
4763 		if (!st)
4764 			break;
4765 
4766 		for (fr = bt->frame; fr >= 0; fr--) {
4767 			func = st->frame[fr];
4768 			bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4769 			for_each_set_bit(i, mask, 32) {
4770 				reg = &func->regs[i];
4771 				if (reg->type != SCALAR_VALUE) {
4772 					bt_clear_frame_reg(bt, fr, i);
4773 					continue;
4774 				}
4775 				if (reg->precise)
4776 					bt_clear_frame_reg(bt, fr, i);
4777 				else
4778 					reg->precise = true;
4779 			}
4780 
4781 			bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4782 			for_each_set_bit(i, mask, 64) {
4783 				if (verifier_bug_if(i >= func->allocated_stack / BPF_REG_SIZE,
4784 						    env, "stack slot %d, total slots %d",
4785 						    i, func->allocated_stack / BPF_REG_SIZE))
4786 					return -EFAULT;
4787 
4788 				if (!is_spilled_scalar_reg(&func->stack[i])) {
4789 					bt_clear_frame_slot(bt, fr, i);
4790 					continue;
4791 				}
4792 				reg = &func->stack[i].spilled_ptr;
4793 				if (reg->precise)
4794 					bt_clear_frame_slot(bt, fr, i);
4795 				else
4796 					reg->precise = true;
4797 			}
4798 			if (env->log.level & BPF_LOG_LEVEL2) {
4799 				fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4800 					     bt_frame_reg_mask(bt, fr));
4801 				verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4802 					fr, env->tmp_str_buf);
4803 				fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4804 					       bt_frame_stack_mask(bt, fr));
4805 				verbose(env, "stack=%s: ", env->tmp_str_buf);
4806 				print_verifier_state(env, st, fr, true);
4807 			}
4808 		}
4809 
4810 		if (bt_empty(bt))
4811 			return 0;
4812 
4813 		subseq_idx = first_idx;
4814 		last_idx = st->last_insn_idx;
4815 		first_idx = st->first_insn_idx;
4816 	}
4817 
4818 	/* if we still have requested precise regs or slots, we missed
4819 	 * something (e.g., stack access through non-r10 register), so
4820 	 * fallback to marking all precise
4821 	 */
4822 	if (!bt_empty(bt)) {
4823 		mark_all_scalars_precise(env, env->cur_state);
4824 		bt_reset(bt);
4825 	}
4826 
4827 	return 0;
4828 }
4829 
mark_chain_precision(struct bpf_verifier_env * env,int regno)4830 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
4831 {
4832 	return __mark_chain_precision(env, regno);
4833 }
4834 
4835 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to
4836  * desired reg and stack masks across all relevant frames
4837  */
mark_chain_precision_batch(struct bpf_verifier_env * env)4838 static int mark_chain_precision_batch(struct bpf_verifier_env *env)
4839 {
4840 	return __mark_chain_precision(env, -1);
4841 }
4842 
is_spillable_regtype(enum bpf_reg_type type)4843 static bool is_spillable_regtype(enum bpf_reg_type type)
4844 {
4845 	switch (base_type(type)) {
4846 	case PTR_TO_MAP_VALUE:
4847 	case PTR_TO_STACK:
4848 	case PTR_TO_CTX:
4849 	case PTR_TO_PACKET:
4850 	case PTR_TO_PACKET_META:
4851 	case PTR_TO_PACKET_END:
4852 	case PTR_TO_FLOW_KEYS:
4853 	case CONST_PTR_TO_MAP:
4854 	case PTR_TO_SOCKET:
4855 	case PTR_TO_SOCK_COMMON:
4856 	case PTR_TO_TCP_SOCK:
4857 	case PTR_TO_XDP_SOCK:
4858 	case PTR_TO_BTF_ID:
4859 	case PTR_TO_BUF:
4860 	case PTR_TO_MEM:
4861 	case PTR_TO_FUNC:
4862 	case PTR_TO_MAP_KEY:
4863 	case PTR_TO_ARENA:
4864 		return true;
4865 	default:
4866 		return false;
4867 	}
4868 }
4869 
4870 /* Does this register contain a constant zero? */
register_is_null(struct bpf_reg_state * reg)4871 static bool register_is_null(struct bpf_reg_state *reg)
4872 {
4873 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
4874 }
4875 
4876 /* check if register is a constant scalar value */
is_reg_const(struct bpf_reg_state * reg,bool subreg32)4877 static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32)
4878 {
4879 	return reg->type == SCALAR_VALUE &&
4880 	       tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off);
4881 }
4882 
4883 /* assuming is_reg_const() is true, return constant value of a register */
reg_const_value(struct bpf_reg_state * reg,bool subreg32)4884 static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32)
4885 {
4886 	return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value;
4887 }
4888 
__is_pointer_value(bool allow_ptr_leaks,const struct bpf_reg_state * reg)4889 static bool __is_pointer_value(bool allow_ptr_leaks,
4890 			       const struct bpf_reg_state *reg)
4891 {
4892 	if (allow_ptr_leaks)
4893 		return false;
4894 
4895 	return reg->type != SCALAR_VALUE;
4896 }
4897 
assign_scalar_id_before_mov(struct bpf_verifier_env * env,struct bpf_reg_state * src_reg)4898 static void assign_scalar_id_before_mov(struct bpf_verifier_env *env,
4899 					struct bpf_reg_state *src_reg)
4900 {
4901 	if (src_reg->type != SCALAR_VALUE)
4902 		return;
4903 
4904 	if (src_reg->id & BPF_ADD_CONST) {
4905 		/*
4906 		 * The verifier is processing rX = rY insn and
4907 		 * rY->id has special linked register already.
4908 		 * Cleared it, since multiple rX += const are not supported.
4909 		 */
4910 		src_reg->id = 0;
4911 		src_reg->off = 0;
4912 	}
4913 
4914 	if (!src_reg->id && !tnum_is_const(src_reg->var_off))
4915 		/* Ensure that src_reg has a valid ID that will be copied to
4916 		 * dst_reg and then will be used by sync_linked_regs() to
4917 		 * propagate min/max range.
4918 		 */
4919 		src_reg->id = ++env->id_gen;
4920 }
4921 
4922 /* Copy src state preserving dst->parent and dst->live fields */
copy_register_state(struct bpf_reg_state * dst,const struct bpf_reg_state * src)4923 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
4924 {
4925 	struct bpf_reg_state *parent = dst->parent;
4926 	enum bpf_reg_liveness live = dst->live;
4927 
4928 	*dst = *src;
4929 	dst->parent = parent;
4930 	dst->live = live;
4931 }
4932 
save_register_state(struct bpf_verifier_env * env,struct bpf_func_state * state,int spi,struct bpf_reg_state * reg,int size)4933 static void save_register_state(struct bpf_verifier_env *env,
4934 				struct bpf_func_state *state,
4935 				int spi, struct bpf_reg_state *reg,
4936 				int size)
4937 {
4938 	int i;
4939 
4940 	copy_register_state(&state->stack[spi].spilled_ptr, reg);
4941 	if (size == BPF_REG_SIZE)
4942 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4943 
4944 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
4945 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
4946 
4947 	/* size < 8 bytes spill */
4948 	for (; i; i--)
4949 		mark_stack_slot_misc(env, &state->stack[spi].slot_type[i - 1]);
4950 }
4951 
is_bpf_st_mem(struct bpf_insn * insn)4952 static bool is_bpf_st_mem(struct bpf_insn *insn)
4953 {
4954 	return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
4955 }
4956 
get_reg_width(struct bpf_reg_state * reg)4957 static int get_reg_width(struct bpf_reg_state *reg)
4958 {
4959 	return fls64(reg->umax_value);
4960 }
4961 
4962 /* See comment for mark_fastcall_pattern_for_call() */
check_fastcall_stack_contract(struct bpf_verifier_env * env,struct bpf_func_state * state,int insn_idx,int off)4963 static void check_fastcall_stack_contract(struct bpf_verifier_env *env,
4964 					  struct bpf_func_state *state, int insn_idx, int off)
4965 {
4966 	struct bpf_subprog_info *subprog = &env->subprog_info[state->subprogno];
4967 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
4968 	int i;
4969 
4970 	if (subprog->fastcall_stack_off <= off || aux[insn_idx].fastcall_pattern)
4971 		return;
4972 	/* access to the region [max_stack_depth .. fastcall_stack_off)
4973 	 * from something that is not a part of the fastcall pattern,
4974 	 * disable fastcall rewrites for current subprogram by setting
4975 	 * fastcall_stack_off to a value smaller than any possible offset.
4976 	 */
4977 	subprog->fastcall_stack_off = S16_MIN;
4978 	/* reset fastcall aux flags within subprogram,
4979 	 * happens at most once per subprogram
4980 	 */
4981 	for (i = subprog->start; i < (subprog + 1)->start; ++i) {
4982 		aux[i].fastcall_spills_num = 0;
4983 		aux[i].fastcall_pattern = 0;
4984 	}
4985 }
4986 
4987 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
4988  * stack boundary and alignment are checked in check_mem_access()
4989  */
check_stack_write_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int off,int size,int value_regno,int insn_idx)4990 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
4991 				       /* stack frame we're writing to */
4992 				       struct bpf_func_state *state,
4993 				       int off, int size, int value_regno,
4994 				       int insn_idx)
4995 {
4996 	struct bpf_func_state *cur; /* state of the current function */
4997 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
4998 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4999 	struct bpf_reg_state *reg = NULL;
5000 	int insn_flags = insn_stack_access_flags(state->frameno, spi);
5001 
5002 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
5003 	 * so it's aligned access and [off, off + size) are within stack limits
5004 	 */
5005 	if (!env->allow_ptr_leaks &&
5006 	    is_spilled_reg(&state->stack[spi]) &&
5007 	    !is_spilled_scalar_reg(&state->stack[spi]) &&
5008 	    size != BPF_REG_SIZE) {
5009 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
5010 		return -EACCES;
5011 	}
5012 
5013 	cur = env->cur_state->frame[env->cur_state->curframe];
5014 	if (value_regno >= 0)
5015 		reg = &cur->regs[value_regno];
5016 	if (!env->bypass_spec_v4) {
5017 		bool sanitize = reg && is_spillable_regtype(reg->type);
5018 
5019 		for (i = 0; i < size; i++) {
5020 			u8 type = state->stack[spi].slot_type[i];
5021 
5022 			if (type != STACK_MISC && type != STACK_ZERO) {
5023 				sanitize = true;
5024 				break;
5025 			}
5026 		}
5027 
5028 		if (sanitize)
5029 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
5030 	}
5031 
5032 	err = destroy_if_dynptr_stack_slot(env, state, spi);
5033 	if (err)
5034 		return err;
5035 
5036 	check_fastcall_stack_contract(env, state, insn_idx, off);
5037 	mark_stack_slot_scratched(env, spi);
5038 	if (reg && !(off % BPF_REG_SIZE) && reg->type == SCALAR_VALUE && env->bpf_capable) {
5039 		bool reg_value_fits;
5040 
5041 		reg_value_fits = get_reg_width(reg) <= BITS_PER_BYTE * size;
5042 		/* Make sure that reg had an ID to build a relation on spill. */
5043 		if (reg_value_fits)
5044 			assign_scalar_id_before_mov(env, reg);
5045 		save_register_state(env, state, spi, reg, size);
5046 		/* Break the relation on a narrowing spill. */
5047 		if (!reg_value_fits)
5048 			state->stack[spi].spilled_ptr.id = 0;
5049 	} else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
5050 		   env->bpf_capable) {
5051 		struct bpf_reg_state *tmp_reg = &env->fake_reg[0];
5052 
5053 		memset(tmp_reg, 0, sizeof(*tmp_reg));
5054 		__mark_reg_known(tmp_reg, insn->imm);
5055 		tmp_reg->type = SCALAR_VALUE;
5056 		save_register_state(env, state, spi, tmp_reg, size);
5057 	} else if (reg && is_spillable_regtype(reg->type)) {
5058 		/* register containing pointer is being spilled into stack */
5059 		if (size != BPF_REG_SIZE) {
5060 			verbose_linfo(env, insn_idx, "; ");
5061 			verbose(env, "invalid size of register spill\n");
5062 			return -EACCES;
5063 		}
5064 		if (state != cur && reg->type == PTR_TO_STACK) {
5065 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
5066 			return -EINVAL;
5067 		}
5068 		save_register_state(env, state, spi, reg, size);
5069 	} else {
5070 		u8 type = STACK_MISC;
5071 
5072 		/* regular write of data into stack destroys any spilled ptr */
5073 		state->stack[spi].spilled_ptr.type = NOT_INIT;
5074 		/* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
5075 		if (is_stack_slot_special(&state->stack[spi]))
5076 			for (i = 0; i < BPF_REG_SIZE; i++)
5077 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
5078 
5079 		/* only mark the slot as written if all 8 bytes were written
5080 		 * otherwise read propagation may incorrectly stop too soon
5081 		 * when stack slots are partially written.
5082 		 * This heuristic means that read propagation will be
5083 		 * conservative, since it will add reg_live_read marks
5084 		 * to stack slots all the way to first state when programs
5085 		 * writes+reads less than 8 bytes
5086 		 */
5087 		if (size == BPF_REG_SIZE)
5088 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
5089 
5090 		/* when we zero initialize stack slots mark them as such */
5091 		if ((reg && register_is_null(reg)) ||
5092 		    (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
5093 			/* STACK_ZERO case happened because register spill
5094 			 * wasn't properly aligned at the stack slot boundary,
5095 			 * so it's not a register spill anymore; force
5096 			 * originating register to be precise to make
5097 			 * STACK_ZERO correct for subsequent states
5098 			 */
5099 			err = mark_chain_precision(env, value_regno);
5100 			if (err)
5101 				return err;
5102 			type = STACK_ZERO;
5103 		}
5104 
5105 		/* Mark slots affected by this stack write. */
5106 		for (i = 0; i < size; i++)
5107 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type;
5108 		insn_flags = 0; /* not a register spill */
5109 	}
5110 
5111 	if (insn_flags)
5112 		return push_insn_history(env, env->cur_state, insn_flags, 0);
5113 	return 0;
5114 }
5115 
5116 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
5117  * known to contain a variable offset.
5118  * This function checks whether the write is permitted and conservatively
5119  * tracks the effects of the write, considering that each stack slot in the
5120  * dynamic range is potentially written to.
5121  *
5122  * 'off' includes 'regno->off'.
5123  * 'value_regno' can be -1, meaning that an unknown value is being written to
5124  * the stack.
5125  *
5126  * Spilled pointers in range are not marked as written because we don't know
5127  * what's going to be actually written. This means that read propagation for
5128  * future reads cannot be terminated by this write.
5129  *
5130  * For privileged programs, uninitialized stack slots are considered
5131  * initialized by this write (even though we don't know exactly what offsets
5132  * are going to be written to). The idea is that we don't want the verifier to
5133  * reject future reads that access slots written to through variable offsets.
5134  */
check_stack_write_var_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int ptr_regno,int off,int size,int value_regno,int insn_idx)5135 static int check_stack_write_var_off(struct bpf_verifier_env *env,
5136 				     /* func where register points to */
5137 				     struct bpf_func_state *state,
5138 				     int ptr_regno, int off, int size,
5139 				     int value_regno, int insn_idx)
5140 {
5141 	struct bpf_func_state *cur; /* state of the current function */
5142 	int min_off, max_off;
5143 	int i, err;
5144 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
5145 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5146 	bool writing_zero = false;
5147 	/* set if the fact that we're writing a zero is used to let any
5148 	 * stack slots remain STACK_ZERO
5149 	 */
5150 	bool zero_used = false;
5151 
5152 	cur = env->cur_state->frame[env->cur_state->curframe];
5153 	ptr_reg = &cur->regs[ptr_regno];
5154 	min_off = ptr_reg->smin_value + off;
5155 	max_off = ptr_reg->smax_value + off + size;
5156 	if (value_regno >= 0)
5157 		value_reg = &cur->regs[value_regno];
5158 	if ((value_reg && register_is_null(value_reg)) ||
5159 	    (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
5160 		writing_zero = true;
5161 
5162 	for (i = min_off; i < max_off; i++) {
5163 		int spi;
5164 
5165 		spi = __get_spi(i);
5166 		err = destroy_if_dynptr_stack_slot(env, state, spi);
5167 		if (err)
5168 			return err;
5169 	}
5170 
5171 	check_fastcall_stack_contract(env, state, insn_idx, min_off);
5172 	/* Variable offset writes destroy any spilled pointers in range. */
5173 	for (i = min_off; i < max_off; i++) {
5174 		u8 new_type, *stype;
5175 		int slot, spi;
5176 
5177 		slot = -i - 1;
5178 		spi = slot / BPF_REG_SIZE;
5179 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
5180 		mark_stack_slot_scratched(env, spi);
5181 
5182 		if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
5183 			/* Reject the write if range we may write to has not
5184 			 * been initialized beforehand. If we didn't reject
5185 			 * here, the ptr status would be erased below (even
5186 			 * though not all slots are actually overwritten),
5187 			 * possibly opening the door to leaks.
5188 			 *
5189 			 * We do however catch STACK_INVALID case below, and
5190 			 * only allow reading possibly uninitialized memory
5191 			 * later for CAP_PERFMON, as the write may not happen to
5192 			 * that slot.
5193 			 */
5194 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
5195 				insn_idx, i);
5196 			return -EINVAL;
5197 		}
5198 
5199 		/* If writing_zero and the spi slot contains a spill of value 0,
5200 		 * maintain the spill type.
5201 		 */
5202 		if (writing_zero && *stype == STACK_SPILL &&
5203 		    is_spilled_scalar_reg(&state->stack[spi])) {
5204 			struct bpf_reg_state *spill_reg = &state->stack[spi].spilled_ptr;
5205 
5206 			if (tnum_is_const(spill_reg->var_off) && spill_reg->var_off.value == 0) {
5207 				zero_used = true;
5208 				continue;
5209 			}
5210 		}
5211 
5212 		/* Erase all other spilled pointers. */
5213 		state->stack[spi].spilled_ptr.type = NOT_INIT;
5214 
5215 		/* Update the slot type. */
5216 		new_type = STACK_MISC;
5217 		if (writing_zero && *stype == STACK_ZERO) {
5218 			new_type = STACK_ZERO;
5219 			zero_used = true;
5220 		}
5221 		/* If the slot is STACK_INVALID, we check whether it's OK to
5222 		 * pretend that it will be initialized by this write. The slot
5223 		 * might not actually be written to, and so if we mark it as
5224 		 * initialized future reads might leak uninitialized memory.
5225 		 * For privileged programs, we will accept such reads to slots
5226 		 * that may or may not be written because, if we're reject
5227 		 * them, the error would be too confusing.
5228 		 */
5229 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
5230 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
5231 					insn_idx, i);
5232 			return -EINVAL;
5233 		}
5234 		*stype = new_type;
5235 	}
5236 	if (zero_used) {
5237 		/* backtracking doesn't work for STACK_ZERO yet. */
5238 		err = mark_chain_precision(env, value_regno);
5239 		if (err)
5240 			return err;
5241 	}
5242 	return 0;
5243 }
5244 
5245 /* When register 'dst_regno' is assigned some values from stack[min_off,
5246  * max_off), we set the register's type according to the types of the
5247  * respective stack slots. If all the stack values are known to be zeros, then
5248  * so is the destination reg. Otherwise, the register is considered to be
5249  * SCALAR. This function does not deal with register filling; the caller must
5250  * ensure that all spilled registers in the stack range have been marked as
5251  * read.
5252  */
mark_reg_stack_read(struct bpf_verifier_env * env,struct bpf_func_state * ptr_state,int min_off,int max_off,int dst_regno)5253 static void mark_reg_stack_read(struct bpf_verifier_env *env,
5254 				/* func where src register points to */
5255 				struct bpf_func_state *ptr_state,
5256 				int min_off, int max_off, int dst_regno)
5257 {
5258 	struct bpf_verifier_state *vstate = env->cur_state;
5259 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5260 	int i, slot, spi;
5261 	u8 *stype;
5262 	int zeros = 0;
5263 
5264 	for (i = min_off; i < max_off; i++) {
5265 		slot = -i - 1;
5266 		spi = slot / BPF_REG_SIZE;
5267 		mark_stack_slot_scratched(env, spi);
5268 		stype = ptr_state->stack[spi].slot_type;
5269 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
5270 			break;
5271 		zeros++;
5272 	}
5273 	if (zeros == max_off - min_off) {
5274 		/* Any access_size read into register is zero extended,
5275 		 * so the whole register == const_zero.
5276 		 */
5277 		__mark_reg_const_zero(env, &state->regs[dst_regno]);
5278 	} else {
5279 		/* have read misc data from the stack */
5280 		mark_reg_unknown(env, state->regs, dst_regno);
5281 	}
5282 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
5283 }
5284 
5285 /* Read the stack at 'off' and put the results into the register indicated by
5286  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
5287  * spilled reg.
5288  *
5289  * 'dst_regno' can be -1, meaning that the read value is not going to a
5290  * register.
5291  *
5292  * The access is assumed to be within the current stack bounds.
5293  */
check_stack_read_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * reg_state,int off,int size,int dst_regno)5294 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
5295 				      /* func where src register points to */
5296 				      struct bpf_func_state *reg_state,
5297 				      int off, int size, int dst_regno)
5298 {
5299 	struct bpf_verifier_state *vstate = env->cur_state;
5300 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5301 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
5302 	struct bpf_reg_state *reg;
5303 	u8 *stype, type;
5304 	int insn_flags = insn_stack_access_flags(reg_state->frameno, spi);
5305 
5306 	stype = reg_state->stack[spi].slot_type;
5307 	reg = &reg_state->stack[spi].spilled_ptr;
5308 
5309 	mark_stack_slot_scratched(env, spi);
5310 	check_fastcall_stack_contract(env, state, env->insn_idx, off);
5311 
5312 	if (is_spilled_reg(&reg_state->stack[spi])) {
5313 		u8 spill_size = 1;
5314 
5315 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
5316 			spill_size++;
5317 
5318 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
5319 			if (reg->type != SCALAR_VALUE) {
5320 				verbose_linfo(env, env->insn_idx, "; ");
5321 				verbose(env, "invalid size of register fill\n");
5322 				return -EACCES;
5323 			}
5324 
5325 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
5326 			if (dst_regno < 0)
5327 				return 0;
5328 
5329 			if (size <= spill_size &&
5330 			    bpf_stack_narrow_access_ok(off, size, spill_size)) {
5331 				/* The earlier check_reg_arg() has decided the
5332 				 * subreg_def for this insn.  Save it first.
5333 				 */
5334 				s32 subreg_def = state->regs[dst_regno].subreg_def;
5335 
5336 				copy_register_state(&state->regs[dst_regno], reg);
5337 				state->regs[dst_regno].subreg_def = subreg_def;
5338 
5339 				/* Break the relation on a narrowing fill.
5340 				 * coerce_reg_to_size will adjust the boundaries.
5341 				 */
5342 				if (get_reg_width(reg) > size * BITS_PER_BYTE)
5343 					state->regs[dst_regno].id = 0;
5344 			} else {
5345 				int spill_cnt = 0, zero_cnt = 0;
5346 
5347 				for (i = 0; i < size; i++) {
5348 					type = stype[(slot - i) % BPF_REG_SIZE];
5349 					if (type == STACK_SPILL) {
5350 						spill_cnt++;
5351 						continue;
5352 					}
5353 					if (type == STACK_MISC)
5354 						continue;
5355 					if (type == STACK_ZERO) {
5356 						zero_cnt++;
5357 						continue;
5358 					}
5359 					if (type == STACK_INVALID && env->allow_uninit_stack)
5360 						continue;
5361 					verbose(env, "invalid read from stack off %d+%d size %d\n",
5362 						off, i, size);
5363 					return -EACCES;
5364 				}
5365 
5366 				if (spill_cnt == size &&
5367 				    tnum_is_const(reg->var_off) && reg->var_off.value == 0) {
5368 					__mark_reg_const_zero(env, &state->regs[dst_regno]);
5369 					/* this IS register fill, so keep insn_flags */
5370 				} else if (zero_cnt == size) {
5371 					/* similarly to mark_reg_stack_read(), preserve zeroes */
5372 					__mark_reg_const_zero(env, &state->regs[dst_regno]);
5373 					insn_flags = 0; /* not restoring original register state */
5374 				} else {
5375 					mark_reg_unknown(env, state->regs, dst_regno);
5376 					insn_flags = 0; /* not restoring original register state */
5377 				}
5378 			}
5379 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
5380 		} else if (dst_regno >= 0) {
5381 			/* restore register state from stack */
5382 			copy_register_state(&state->regs[dst_regno], reg);
5383 			/* mark reg as written since spilled pointer state likely
5384 			 * has its liveness marks cleared by is_state_visited()
5385 			 * which resets stack/reg liveness for state transitions
5386 			 */
5387 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
5388 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
5389 			/* If dst_regno==-1, the caller is asking us whether
5390 			 * it is acceptable to use this value as a SCALAR_VALUE
5391 			 * (e.g. for XADD).
5392 			 * We must not allow unprivileged callers to do that
5393 			 * with spilled pointers.
5394 			 */
5395 			verbose(env, "leaking pointer from stack off %d\n",
5396 				off);
5397 			return -EACCES;
5398 		}
5399 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
5400 	} else {
5401 		for (i = 0; i < size; i++) {
5402 			type = stype[(slot - i) % BPF_REG_SIZE];
5403 			if (type == STACK_MISC)
5404 				continue;
5405 			if (type == STACK_ZERO)
5406 				continue;
5407 			if (type == STACK_INVALID && env->allow_uninit_stack)
5408 				continue;
5409 			verbose(env, "invalid read from stack off %d+%d size %d\n",
5410 				off, i, size);
5411 			return -EACCES;
5412 		}
5413 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
5414 		if (dst_regno >= 0)
5415 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
5416 		insn_flags = 0; /* we are not restoring spilled register */
5417 	}
5418 	if (insn_flags)
5419 		return push_insn_history(env, env->cur_state, insn_flags, 0);
5420 	return 0;
5421 }
5422 
5423 enum bpf_access_src {
5424 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
5425 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
5426 };
5427 
5428 static int check_stack_range_initialized(struct bpf_verifier_env *env,
5429 					 int regno, int off, int access_size,
5430 					 bool zero_size_allowed,
5431 					 enum bpf_access_type type,
5432 					 struct bpf_call_arg_meta *meta);
5433 
reg_state(struct bpf_verifier_env * env,int regno)5434 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
5435 {
5436 	return cur_regs(env) + regno;
5437 }
5438 
5439 /* Read the stack at 'ptr_regno + off' and put the result into the register
5440  * 'dst_regno'.
5441  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
5442  * but not its variable offset.
5443  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
5444  *
5445  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
5446  * filling registers (i.e. reads of spilled register cannot be detected when
5447  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
5448  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
5449  * offset; for a fixed offset check_stack_read_fixed_off should be used
5450  * instead.
5451  */
check_stack_read_var_off(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)5452 static int check_stack_read_var_off(struct bpf_verifier_env *env,
5453 				    int ptr_regno, int off, int size, int dst_regno)
5454 {
5455 	/* The state of the source register. */
5456 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5457 	struct bpf_func_state *ptr_state = func(env, reg);
5458 	int err;
5459 	int min_off, max_off;
5460 
5461 	/* Note that we pass a NULL meta, so raw access will not be permitted.
5462 	 */
5463 	err = check_stack_range_initialized(env, ptr_regno, off, size,
5464 					    false, BPF_READ, NULL);
5465 	if (err)
5466 		return err;
5467 
5468 	min_off = reg->smin_value + off;
5469 	max_off = reg->smax_value + off;
5470 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
5471 	check_fastcall_stack_contract(env, ptr_state, env->insn_idx, min_off);
5472 	return 0;
5473 }
5474 
5475 /* check_stack_read dispatches to check_stack_read_fixed_off or
5476  * check_stack_read_var_off.
5477  *
5478  * The caller must ensure that the offset falls within the allocated stack
5479  * bounds.
5480  *
5481  * 'dst_regno' is a register which will receive the value from the stack. It
5482  * can be -1, meaning that the read value is not going to a register.
5483  */
check_stack_read(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)5484 static int check_stack_read(struct bpf_verifier_env *env,
5485 			    int ptr_regno, int off, int size,
5486 			    int dst_regno)
5487 {
5488 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5489 	struct bpf_func_state *state = func(env, reg);
5490 	int err;
5491 	/* Some accesses are only permitted with a static offset. */
5492 	bool var_off = !tnum_is_const(reg->var_off);
5493 
5494 	/* The offset is required to be static when reads don't go to a
5495 	 * register, in order to not leak pointers (see
5496 	 * check_stack_read_fixed_off).
5497 	 */
5498 	if (dst_regno < 0 && var_off) {
5499 		char tn_buf[48];
5500 
5501 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5502 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
5503 			tn_buf, off, size);
5504 		return -EACCES;
5505 	}
5506 	/* Variable offset is prohibited for unprivileged mode for simplicity
5507 	 * since it requires corresponding support in Spectre masking for stack
5508 	 * ALU. See also retrieve_ptr_limit(). The check in
5509 	 * check_stack_access_for_ptr_arithmetic() called by
5510 	 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
5511 	 * with variable offsets, therefore no check is required here. Further,
5512 	 * just checking it here would be insufficient as speculative stack
5513 	 * writes could still lead to unsafe speculative behaviour.
5514 	 */
5515 	if (!var_off) {
5516 		off += reg->var_off.value;
5517 		err = check_stack_read_fixed_off(env, state, off, size,
5518 						 dst_regno);
5519 	} else {
5520 		/* Variable offset stack reads need more conservative handling
5521 		 * than fixed offset ones. Note that dst_regno >= 0 on this
5522 		 * branch.
5523 		 */
5524 		err = check_stack_read_var_off(env, ptr_regno, off, size,
5525 					       dst_regno);
5526 	}
5527 	return err;
5528 }
5529 
5530 
5531 /* check_stack_write dispatches to check_stack_write_fixed_off or
5532  * check_stack_write_var_off.
5533  *
5534  * 'ptr_regno' is the register used as a pointer into the stack.
5535  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
5536  * 'value_regno' is the register whose value we're writing to the stack. It can
5537  * be -1, meaning that we're not writing from a register.
5538  *
5539  * The caller must ensure that the offset falls within the maximum stack size.
5540  */
check_stack_write(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int value_regno,int insn_idx)5541 static int check_stack_write(struct bpf_verifier_env *env,
5542 			     int ptr_regno, int off, int size,
5543 			     int value_regno, int insn_idx)
5544 {
5545 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5546 	struct bpf_func_state *state = func(env, reg);
5547 	int err;
5548 
5549 	if (tnum_is_const(reg->var_off)) {
5550 		off += reg->var_off.value;
5551 		err = check_stack_write_fixed_off(env, state, off, size,
5552 						  value_regno, insn_idx);
5553 	} else {
5554 		/* Variable offset stack reads need more conservative handling
5555 		 * than fixed offset ones.
5556 		 */
5557 		err = check_stack_write_var_off(env, state,
5558 						ptr_regno, off, size,
5559 						value_regno, insn_idx);
5560 	}
5561 	return err;
5562 }
5563 
check_map_access_type(struct bpf_verifier_env * env,u32 regno,int off,int size,enum bpf_access_type type)5564 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
5565 				 int off, int size, enum bpf_access_type type)
5566 {
5567 	struct bpf_reg_state *regs = cur_regs(env);
5568 	struct bpf_map *map = regs[regno].map_ptr;
5569 	u32 cap = bpf_map_flags_to_cap(map);
5570 
5571 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
5572 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
5573 			map->value_size, off, size);
5574 		return -EACCES;
5575 	}
5576 
5577 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
5578 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
5579 			map->value_size, off, size);
5580 		return -EACCES;
5581 	}
5582 
5583 	return 0;
5584 }
5585 
5586 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
__check_mem_access(struct bpf_verifier_env * env,int regno,int off,int size,u32 mem_size,bool zero_size_allowed)5587 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
5588 			      int off, int size, u32 mem_size,
5589 			      bool zero_size_allowed)
5590 {
5591 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
5592 	struct bpf_reg_state *reg;
5593 
5594 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
5595 		return 0;
5596 
5597 	reg = &cur_regs(env)[regno];
5598 	switch (reg->type) {
5599 	case PTR_TO_MAP_KEY:
5600 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
5601 			mem_size, off, size);
5602 		break;
5603 	case PTR_TO_MAP_VALUE:
5604 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
5605 			mem_size, off, size);
5606 		break;
5607 	case PTR_TO_PACKET:
5608 	case PTR_TO_PACKET_META:
5609 	case PTR_TO_PACKET_END:
5610 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
5611 			off, size, regno, reg->id, off, mem_size);
5612 		break;
5613 	case PTR_TO_MEM:
5614 	default:
5615 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
5616 			mem_size, off, size);
5617 	}
5618 
5619 	return -EACCES;
5620 }
5621 
5622 /* check read/write into a memory region with possible variable offset */
check_mem_region_access(struct bpf_verifier_env * env,u32 regno,int off,int size,u32 mem_size,bool zero_size_allowed)5623 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
5624 				   int off, int size, u32 mem_size,
5625 				   bool zero_size_allowed)
5626 {
5627 	struct bpf_verifier_state *vstate = env->cur_state;
5628 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5629 	struct bpf_reg_state *reg = &state->regs[regno];
5630 	int err;
5631 
5632 	/* We may have adjusted the register pointing to memory region, so we
5633 	 * need to try adding each of min_value and max_value to off
5634 	 * to make sure our theoretical access will be safe.
5635 	 *
5636 	 * The minimum value is only important with signed
5637 	 * comparisons where we can't assume the floor of a
5638 	 * value is 0.  If we are using signed variables for our
5639 	 * index'es we need to make sure that whatever we use
5640 	 * will have a set floor within our range.
5641 	 */
5642 	if (reg->smin_value < 0 &&
5643 	    (reg->smin_value == S64_MIN ||
5644 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
5645 	      reg->smin_value + off < 0)) {
5646 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5647 			regno);
5648 		return -EACCES;
5649 	}
5650 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
5651 				 mem_size, zero_size_allowed);
5652 	if (err) {
5653 		verbose(env, "R%d min value is outside of the allowed memory range\n",
5654 			regno);
5655 		return err;
5656 	}
5657 
5658 	/* If we haven't set a max value then we need to bail since we can't be
5659 	 * sure we won't do bad things.
5660 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
5661 	 */
5662 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
5663 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
5664 			regno);
5665 		return -EACCES;
5666 	}
5667 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
5668 				 mem_size, zero_size_allowed);
5669 	if (err) {
5670 		verbose(env, "R%d max value is outside of the allowed memory range\n",
5671 			regno);
5672 		return err;
5673 	}
5674 
5675 	return 0;
5676 }
5677 
__check_ptr_off_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,bool fixed_off_ok)5678 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
5679 			       const struct bpf_reg_state *reg, int regno,
5680 			       bool fixed_off_ok)
5681 {
5682 	/* Access to this pointer-typed register or passing it to a helper
5683 	 * is only allowed in its original, unmodified form.
5684 	 */
5685 
5686 	if (reg->off < 0) {
5687 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
5688 			reg_type_str(env, reg->type), regno, reg->off);
5689 		return -EACCES;
5690 	}
5691 
5692 	if (!fixed_off_ok && reg->off) {
5693 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
5694 			reg_type_str(env, reg->type), regno, reg->off);
5695 		return -EACCES;
5696 	}
5697 
5698 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5699 		char tn_buf[48];
5700 
5701 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5702 		verbose(env, "variable %s access var_off=%s disallowed\n",
5703 			reg_type_str(env, reg->type), tn_buf);
5704 		return -EACCES;
5705 	}
5706 
5707 	return 0;
5708 }
5709 
check_ptr_off_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno)5710 static int check_ptr_off_reg(struct bpf_verifier_env *env,
5711 		             const struct bpf_reg_state *reg, int regno)
5712 {
5713 	return __check_ptr_off_reg(env, reg, regno, false);
5714 }
5715 
map_kptr_match_type(struct bpf_verifier_env * env,struct btf_field * kptr_field,struct bpf_reg_state * reg,u32 regno)5716 static int map_kptr_match_type(struct bpf_verifier_env *env,
5717 			       struct btf_field *kptr_field,
5718 			       struct bpf_reg_state *reg, u32 regno)
5719 {
5720 	const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
5721 	int perm_flags;
5722 	const char *reg_name = "";
5723 
5724 	if (btf_is_kernel(reg->btf)) {
5725 		perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
5726 
5727 		/* Only unreferenced case accepts untrusted pointers */
5728 		if (kptr_field->type == BPF_KPTR_UNREF)
5729 			perm_flags |= PTR_UNTRUSTED;
5730 	} else {
5731 		perm_flags = PTR_MAYBE_NULL | MEM_ALLOC;
5732 		if (kptr_field->type == BPF_KPTR_PERCPU)
5733 			perm_flags |= MEM_PERCPU;
5734 	}
5735 
5736 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
5737 		goto bad_type;
5738 
5739 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
5740 	reg_name = btf_type_name(reg->btf, reg->btf_id);
5741 
5742 	/* For ref_ptr case, release function check should ensure we get one
5743 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
5744 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
5745 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
5746 	 * reg->off and reg->ref_obj_id are not needed here.
5747 	 */
5748 	if (__check_ptr_off_reg(env, reg, regno, true))
5749 		return -EACCES;
5750 
5751 	/* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and
5752 	 * we also need to take into account the reg->off.
5753 	 *
5754 	 * We want to support cases like:
5755 	 *
5756 	 * struct foo {
5757 	 *         struct bar br;
5758 	 *         struct baz bz;
5759 	 * };
5760 	 *
5761 	 * struct foo *v;
5762 	 * v = func();	      // PTR_TO_BTF_ID
5763 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
5764 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
5765 	 *                    // first member type of struct after comparison fails
5766 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
5767 	 *                    // to match type
5768 	 *
5769 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
5770 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
5771 	 * the struct to match type against first member of struct, i.e. reject
5772 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
5773 	 * strict mode to true for type match.
5774 	 */
5775 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5776 				  kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5777 				  kptr_field->type != BPF_KPTR_UNREF))
5778 		goto bad_type;
5779 	return 0;
5780 bad_type:
5781 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
5782 		reg_type_str(env, reg->type), reg_name);
5783 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
5784 	if (kptr_field->type == BPF_KPTR_UNREF)
5785 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
5786 			targ_name);
5787 	else
5788 		verbose(env, "\n");
5789 	return -EINVAL;
5790 }
5791 
in_sleepable(struct bpf_verifier_env * env)5792 static bool in_sleepable(struct bpf_verifier_env *env)
5793 {
5794 	return env->prog->sleepable ||
5795 	       (env->cur_state && env->cur_state->in_sleepable);
5796 }
5797 
5798 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
5799  * can dereference RCU protected pointers and result is PTR_TRUSTED.
5800  */
in_rcu_cs(struct bpf_verifier_env * env)5801 static bool in_rcu_cs(struct bpf_verifier_env *env)
5802 {
5803 	return env->cur_state->active_rcu_lock ||
5804 	       env->cur_state->active_locks ||
5805 	       !in_sleepable(env);
5806 }
5807 
5808 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
5809 BTF_SET_START(rcu_protected_types)
5810 #ifdef CONFIG_NET
BTF_ID(struct,prog_test_ref_kfunc)5811 BTF_ID(struct, prog_test_ref_kfunc)
5812 #endif
5813 #ifdef CONFIG_CGROUPS
5814 BTF_ID(struct, cgroup)
5815 #endif
5816 #ifdef CONFIG_BPF_JIT
5817 BTF_ID(struct, bpf_cpumask)
5818 #endif
5819 BTF_ID(struct, task_struct)
5820 #ifdef CONFIG_CRYPTO
5821 BTF_ID(struct, bpf_crypto_ctx)
5822 #endif
5823 BTF_SET_END(rcu_protected_types)
5824 
5825 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
5826 {
5827 	if (!btf_is_kernel(btf))
5828 		return true;
5829 	return btf_id_set_contains(&rcu_protected_types, btf_id);
5830 }
5831 
kptr_pointee_btf_record(struct btf_field * kptr_field)5832 static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field)
5833 {
5834 	struct btf_struct_meta *meta;
5835 
5836 	if (btf_is_kernel(kptr_field->kptr.btf))
5837 		return NULL;
5838 
5839 	meta = btf_find_struct_meta(kptr_field->kptr.btf,
5840 				    kptr_field->kptr.btf_id);
5841 
5842 	return meta ? meta->record : NULL;
5843 }
5844 
rcu_safe_kptr(const struct btf_field * field)5845 static bool rcu_safe_kptr(const struct btf_field *field)
5846 {
5847 	const struct btf_field_kptr *kptr = &field->kptr;
5848 
5849 	return field->type == BPF_KPTR_PERCPU ||
5850 	       (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id));
5851 }
5852 
btf_ld_kptr_type(struct bpf_verifier_env * env,struct btf_field * kptr_field)5853 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field)
5854 {
5855 	struct btf_record *rec;
5856 	u32 ret;
5857 
5858 	ret = PTR_MAYBE_NULL;
5859 	if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) {
5860 		ret |= MEM_RCU;
5861 		if (kptr_field->type == BPF_KPTR_PERCPU)
5862 			ret |= MEM_PERCPU;
5863 		else if (!btf_is_kernel(kptr_field->kptr.btf))
5864 			ret |= MEM_ALLOC;
5865 
5866 		rec = kptr_pointee_btf_record(kptr_field);
5867 		if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE))
5868 			ret |= NON_OWN_REF;
5869 	} else {
5870 		ret |= PTR_UNTRUSTED;
5871 	}
5872 
5873 	return ret;
5874 }
5875 
mark_uptr_ld_reg(struct bpf_verifier_env * env,u32 regno,struct btf_field * field)5876 static int mark_uptr_ld_reg(struct bpf_verifier_env *env, u32 regno,
5877 			    struct btf_field *field)
5878 {
5879 	struct bpf_reg_state *reg;
5880 	const struct btf_type *t;
5881 
5882 	t = btf_type_by_id(field->kptr.btf, field->kptr.btf_id);
5883 	mark_reg_known_zero(env, cur_regs(env), regno);
5884 	reg = reg_state(env, regno);
5885 	reg->type = PTR_TO_MEM | PTR_MAYBE_NULL;
5886 	reg->mem_size = t->size;
5887 	reg->id = ++env->id_gen;
5888 
5889 	return 0;
5890 }
5891 
check_map_kptr_access(struct bpf_verifier_env * env,u32 regno,int value_regno,int insn_idx,struct btf_field * kptr_field)5892 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
5893 				 int value_regno, int insn_idx,
5894 				 struct btf_field *kptr_field)
5895 {
5896 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5897 	int class = BPF_CLASS(insn->code);
5898 	struct bpf_reg_state *val_reg;
5899 
5900 	/* Things we already checked for in check_map_access and caller:
5901 	 *  - Reject cases where variable offset may touch kptr
5902 	 *  - size of access (must be BPF_DW)
5903 	 *  - tnum_is_const(reg->var_off)
5904 	 *  - kptr_field->offset == off + reg->var_off.value
5905 	 */
5906 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
5907 	if (BPF_MODE(insn->code) != BPF_MEM) {
5908 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
5909 		return -EACCES;
5910 	}
5911 
5912 	/* We only allow loading referenced kptr, since it will be marked as
5913 	 * untrusted, similar to unreferenced kptr.
5914 	 */
5915 	if (class != BPF_LDX &&
5916 	    (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) {
5917 		verbose(env, "store to referenced kptr disallowed\n");
5918 		return -EACCES;
5919 	}
5920 	if (class != BPF_LDX && kptr_field->type == BPF_UPTR) {
5921 		verbose(env, "store to uptr disallowed\n");
5922 		return -EACCES;
5923 	}
5924 
5925 	if (class == BPF_LDX) {
5926 		if (kptr_field->type == BPF_UPTR)
5927 			return mark_uptr_ld_reg(env, value_regno, kptr_field);
5928 
5929 		/* We can simply mark the value_regno receiving the pointer
5930 		 * value from map as PTR_TO_BTF_ID, with the correct type.
5931 		 */
5932 		mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
5933 				kptr_field->kptr.btf_id, btf_ld_kptr_type(env, kptr_field));
5934 	} else if (class == BPF_STX) {
5935 		val_reg = reg_state(env, value_regno);
5936 		if (!register_is_null(val_reg) &&
5937 		    map_kptr_match_type(env, kptr_field, val_reg, value_regno))
5938 			return -EACCES;
5939 	} else if (class == BPF_ST) {
5940 		if (insn->imm) {
5941 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
5942 				kptr_field->offset);
5943 			return -EACCES;
5944 		}
5945 	} else {
5946 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
5947 		return -EACCES;
5948 	}
5949 	return 0;
5950 }
5951 
5952 /* check read/write into a map element with possible variable offset */
check_map_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed,enum bpf_access_src src)5953 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
5954 			    int off, int size, bool zero_size_allowed,
5955 			    enum bpf_access_src src)
5956 {
5957 	struct bpf_verifier_state *vstate = env->cur_state;
5958 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5959 	struct bpf_reg_state *reg = &state->regs[regno];
5960 	struct bpf_map *map = reg->map_ptr;
5961 	struct btf_record *rec;
5962 	int err, i;
5963 
5964 	err = check_mem_region_access(env, regno, off, size, map->value_size,
5965 				      zero_size_allowed);
5966 	if (err)
5967 		return err;
5968 
5969 	if (IS_ERR_OR_NULL(map->record))
5970 		return 0;
5971 	rec = map->record;
5972 	for (i = 0; i < rec->cnt; i++) {
5973 		struct btf_field *field = &rec->fields[i];
5974 		u32 p = field->offset;
5975 
5976 		/* If any part of a field  can be touched by load/store, reject
5977 		 * this program. To check that [x1, x2) overlaps with [y1, y2),
5978 		 * it is sufficient to check x1 < y2 && y1 < x2.
5979 		 */
5980 		if (reg->smin_value + off < p + field->size &&
5981 		    p < reg->umax_value + off + size) {
5982 			switch (field->type) {
5983 			case BPF_KPTR_UNREF:
5984 			case BPF_KPTR_REF:
5985 			case BPF_KPTR_PERCPU:
5986 			case BPF_UPTR:
5987 				if (src != ACCESS_DIRECT) {
5988 					verbose(env, "%s cannot be accessed indirectly by helper\n",
5989 						btf_field_type_name(field->type));
5990 					return -EACCES;
5991 				}
5992 				if (!tnum_is_const(reg->var_off)) {
5993 					verbose(env, "%s access cannot have variable offset\n",
5994 						btf_field_type_name(field->type));
5995 					return -EACCES;
5996 				}
5997 				if (p != off + reg->var_off.value) {
5998 					verbose(env, "%s access misaligned expected=%u off=%llu\n",
5999 						btf_field_type_name(field->type),
6000 						p, off + reg->var_off.value);
6001 					return -EACCES;
6002 				}
6003 				if (size != bpf_size_to_bytes(BPF_DW)) {
6004 					verbose(env, "%s access size must be BPF_DW\n",
6005 						btf_field_type_name(field->type));
6006 					return -EACCES;
6007 				}
6008 				break;
6009 			default:
6010 				verbose(env, "%s cannot be accessed directly by load/store\n",
6011 					btf_field_type_name(field->type));
6012 				return -EACCES;
6013 			}
6014 		}
6015 	}
6016 	return 0;
6017 }
6018 
6019 #define MAX_PACKET_OFF 0xffff
6020 
may_access_direct_pkt_data(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_access_type t)6021 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
6022 				       const struct bpf_call_arg_meta *meta,
6023 				       enum bpf_access_type t)
6024 {
6025 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
6026 
6027 	switch (prog_type) {
6028 	/* Program types only with direct read access go here! */
6029 	case BPF_PROG_TYPE_LWT_IN:
6030 	case BPF_PROG_TYPE_LWT_OUT:
6031 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
6032 	case BPF_PROG_TYPE_SK_REUSEPORT:
6033 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
6034 	case BPF_PROG_TYPE_CGROUP_SKB:
6035 		if (t == BPF_WRITE)
6036 			return false;
6037 		fallthrough;
6038 
6039 	/* Program types with direct read + write access go here! */
6040 	case BPF_PROG_TYPE_SCHED_CLS:
6041 	case BPF_PROG_TYPE_SCHED_ACT:
6042 	case BPF_PROG_TYPE_XDP:
6043 	case BPF_PROG_TYPE_LWT_XMIT:
6044 	case BPF_PROG_TYPE_SK_SKB:
6045 	case BPF_PROG_TYPE_SK_MSG:
6046 		if (meta)
6047 			return meta->pkt_access;
6048 
6049 		env->seen_direct_write = true;
6050 		return true;
6051 
6052 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
6053 		if (t == BPF_WRITE)
6054 			env->seen_direct_write = true;
6055 
6056 		return true;
6057 
6058 	default:
6059 		return false;
6060 	}
6061 }
6062 
check_packet_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed)6063 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
6064 			       int size, bool zero_size_allowed)
6065 {
6066 	struct bpf_reg_state *regs = cur_regs(env);
6067 	struct bpf_reg_state *reg = &regs[regno];
6068 	int err;
6069 
6070 	/* We may have added a variable offset to the packet pointer; but any
6071 	 * reg->range we have comes after that.  We are only checking the fixed
6072 	 * offset.
6073 	 */
6074 
6075 	/* We don't allow negative numbers, because we aren't tracking enough
6076 	 * detail to prove they're safe.
6077 	 */
6078 	if (reg->smin_value < 0) {
6079 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
6080 			regno);
6081 		return -EACCES;
6082 	}
6083 
6084 	err = reg->range < 0 ? -EINVAL :
6085 	      __check_mem_access(env, regno, off, size, reg->range,
6086 				 zero_size_allowed);
6087 	if (err) {
6088 		verbose(env, "R%d offset is outside of the packet\n", regno);
6089 		return err;
6090 	}
6091 
6092 	/* __check_mem_access has made sure "off + size - 1" is within u16.
6093 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
6094 	 * otherwise find_good_pkt_pointers would have refused to set range info
6095 	 * that __check_mem_access would have rejected this pkt access.
6096 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
6097 	 */
6098 	env->prog->aux->max_pkt_offset =
6099 		max_t(u32, env->prog->aux->max_pkt_offset,
6100 		      off + reg->umax_value + size - 1);
6101 
6102 	return err;
6103 }
6104 
6105 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
check_ctx_access(struct bpf_verifier_env * env,int insn_idx,int off,int size,enum bpf_access_type t,struct bpf_insn_access_aux * info)6106 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
6107 			    enum bpf_access_type t, struct bpf_insn_access_aux *info)
6108 {
6109 	if (env->ops->is_valid_access &&
6110 	    env->ops->is_valid_access(off, size, t, env->prog, info)) {
6111 		/* A non zero info.ctx_field_size indicates that this field is a
6112 		 * candidate for later verifier transformation to load the whole
6113 		 * field and then apply a mask when accessed with a narrower
6114 		 * access than actual ctx access size. A zero info.ctx_field_size
6115 		 * will only allow for whole field access and rejects any other
6116 		 * type of narrower access.
6117 		 */
6118 		if (base_type(info->reg_type) == PTR_TO_BTF_ID) {
6119 			if (info->ref_obj_id &&
6120 			    !find_reference_state(env->cur_state, info->ref_obj_id)) {
6121 				verbose(env, "invalid bpf_context access off=%d. Reference may already be released\n",
6122 					off);
6123 				return -EACCES;
6124 			}
6125 		} else {
6126 			env->insn_aux_data[insn_idx].ctx_field_size = info->ctx_field_size;
6127 		}
6128 		/* remember the offset of last byte accessed in ctx */
6129 		if (env->prog->aux->max_ctx_offset < off + size)
6130 			env->prog->aux->max_ctx_offset = off + size;
6131 		return 0;
6132 	}
6133 
6134 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
6135 	return -EACCES;
6136 }
6137 
check_flow_keys_access(struct bpf_verifier_env * env,int off,int size)6138 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
6139 				  int size)
6140 {
6141 	if (size < 0 || off < 0 ||
6142 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
6143 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
6144 			off, size);
6145 		return -EACCES;
6146 	}
6147 	return 0;
6148 }
6149 
check_sock_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int size,enum bpf_access_type t)6150 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
6151 			     u32 regno, int off, int size,
6152 			     enum bpf_access_type t)
6153 {
6154 	struct bpf_reg_state *regs = cur_regs(env);
6155 	struct bpf_reg_state *reg = &regs[regno];
6156 	struct bpf_insn_access_aux info = {};
6157 	bool valid;
6158 
6159 	if (reg->smin_value < 0) {
6160 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
6161 			regno);
6162 		return -EACCES;
6163 	}
6164 
6165 	switch (reg->type) {
6166 	case PTR_TO_SOCK_COMMON:
6167 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
6168 		break;
6169 	case PTR_TO_SOCKET:
6170 		valid = bpf_sock_is_valid_access(off, size, t, &info);
6171 		break;
6172 	case PTR_TO_TCP_SOCK:
6173 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
6174 		break;
6175 	case PTR_TO_XDP_SOCK:
6176 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
6177 		break;
6178 	default:
6179 		valid = false;
6180 	}
6181 
6182 
6183 	if (valid) {
6184 		env->insn_aux_data[insn_idx].ctx_field_size =
6185 			info.ctx_field_size;
6186 		return 0;
6187 	}
6188 
6189 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
6190 		regno, reg_type_str(env, reg->type), off, size);
6191 
6192 	return -EACCES;
6193 }
6194 
is_pointer_value(struct bpf_verifier_env * env,int regno)6195 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
6196 {
6197 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
6198 }
6199 
is_ctx_reg(struct bpf_verifier_env * env,int regno)6200 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
6201 {
6202 	const struct bpf_reg_state *reg = reg_state(env, regno);
6203 
6204 	return reg->type == PTR_TO_CTX;
6205 }
6206 
is_sk_reg(struct bpf_verifier_env * env,int regno)6207 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
6208 {
6209 	const struct bpf_reg_state *reg = reg_state(env, regno);
6210 
6211 	return type_is_sk_pointer(reg->type);
6212 }
6213 
is_pkt_reg(struct bpf_verifier_env * env,int regno)6214 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
6215 {
6216 	const struct bpf_reg_state *reg = reg_state(env, regno);
6217 
6218 	return type_is_pkt_pointer(reg->type);
6219 }
6220 
is_flow_key_reg(struct bpf_verifier_env * env,int regno)6221 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
6222 {
6223 	const struct bpf_reg_state *reg = reg_state(env, regno);
6224 
6225 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
6226 	return reg->type == PTR_TO_FLOW_KEYS;
6227 }
6228 
is_arena_reg(struct bpf_verifier_env * env,int regno)6229 static bool is_arena_reg(struct bpf_verifier_env *env, int regno)
6230 {
6231 	const struct bpf_reg_state *reg = reg_state(env, regno);
6232 
6233 	return reg->type == PTR_TO_ARENA;
6234 }
6235 
6236 /* Return false if @regno contains a pointer whose type isn't supported for
6237  * atomic instruction @insn.
6238  */
atomic_ptr_type_ok(struct bpf_verifier_env * env,int regno,struct bpf_insn * insn)6239 static bool atomic_ptr_type_ok(struct bpf_verifier_env *env, int regno,
6240 			       struct bpf_insn *insn)
6241 {
6242 	if (is_ctx_reg(env, regno))
6243 		return false;
6244 	if (is_pkt_reg(env, regno))
6245 		return false;
6246 	if (is_flow_key_reg(env, regno))
6247 		return false;
6248 	if (is_sk_reg(env, regno))
6249 		return false;
6250 	if (is_arena_reg(env, regno))
6251 		return bpf_jit_supports_insn(insn, true);
6252 
6253 	return true;
6254 }
6255 
6256 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
6257 #ifdef CONFIG_NET
6258 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
6259 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
6260 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
6261 #endif
6262 	[CONST_PTR_TO_MAP] = btf_bpf_map_id,
6263 };
6264 
is_trusted_reg(const struct bpf_reg_state * reg)6265 static bool is_trusted_reg(const struct bpf_reg_state *reg)
6266 {
6267 	/* A referenced register is always trusted. */
6268 	if (reg->ref_obj_id)
6269 		return true;
6270 
6271 	/* Types listed in the reg2btf_ids are always trusted */
6272 	if (reg2btf_ids[base_type(reg->type)] &&
6273 	    !bpf_type_has_unsafe_modifiers(reg->type))
6274 		return true;
6275 
6276 	/* If a register is not referenced, it is trusted if it has the
6277 	 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
6278 	 * other type modifiers may be safe, but we elect to take an opt-in
6279 	 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
6280 	 * not.
6281 	 *
6282 	 * Eventually, we should make PTR_TRUSTED the single source of truth
6283 	 * for whether a register is trusted.
6284 	 */
6285 	return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
6286 	       !bpf_type_has_unsafe_modifiers(reg->type);
6287 }
6288 
is_rcu_reg(const struct bpf_reg_state * reg)6289 static bool is_rcu_reg(const struct bpf_reg_state *reg)
6290 {
6291 	return reg->type & MEM_RCU;
6292 }
6293 
clear_trusted_flags(enum bpf_type_flag * flag)6294 static void clear_trusted_flags(enum bpf_type_flag *flag)
6295 {
6296 	*flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
6297 }
6298 
check_pkt_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict)6299 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
6300 				   const struct bpf_reg_state *reg,
6301 				   int off, int size, bool strict)
6302 {
6303 	struct tnum reg_off;
6304 	int ip_align;
6305 
6306 	/* Byte size accesses are always allowed. */
6307 	if (!strict || size == 1)
6308 		return 0;
6309 
6310 	/* For platforms that do not have a Kconfig enabling
6311 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
6312 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
6313 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
6314 	 * to this code only in strict mode where we want to emulate
6315 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
6316 	 * unconditional IP align value of '2'.
6317 	 */
6318 	ip_align = 2;
6319 
6320 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
6321 	if (!tnum_is_aligned(reg_off, size)) {
6322 		char tn_buf[48];
6323 
6324 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6325 		verbose(env,
6326 			"misaligned packet access off %d+%s+%d+%d size %d\n",
6327 			ip_align, tn_buf, reg->off, off, size);
6328 		return -EACCES;
6329 	}
6330 
6331 	return 0;
6332 }
6333 
check_generic_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,const char * pointer_desc,int off,int size,bool strict)6334 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
6335 				       const struct bpf_reg_state *reg,
6336 				       const char *pointer_desc,
6337 				       int off, int size, bool strict)
6338 {
6339 	struct tnum reg_off;
6340 
6341 	/* Byte size accesses are always allowed. */
6342 	if (!strict || size == 1)
6343 		return 0;
6344 
6345 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
6346 	if (!tnum_is_aligned(reg_off, size)) {
6347 		char tn_buf[48];
6348 
6349 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6350 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
6351 			pointer_desc, tn_buf, reg->off, off, size);
6352 		return -EACCES;
6353 	}
6354 
6355 	return 0;
6356 }
6357 
check_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict_alignment_once)6358 static int check_ptr_alignment(struct bpf_verifier_env *env,
6359 			       const struct bpf_reg_state *reg, int off,
6360 			       int size, bool strict_alignment_once)
6361 {
6362 	bool strict = env->strict_alignment || strict_alignment_once;
6363 	const char *pointer_desc = "";
6364 
6365 	switch (reg->type) {
6366 	case PTR_TO_PACKET:
6367 	case PTR_TO_PACKET_META:
6368 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
6369 		 * right in front, treat it the very same way.
6370 		 */
6371 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
6372 	case PTR_TO_FLOW_KEYS:
6373 		pointer_desc = "flow keys ";
6374 		break;
6375 	case PTR_TO_MAP_KEY:
6376 		pointer_desc = "key ";
6377 		break;
6378 	case PTR_TO_MAP_VALUE:
6379 		pointer_desc = "value ";
6380 		break;
6381 	case PTR_TO_CTX:
6382 		pointer_desc = "context ";
6383 		break;
6384 	case PTR_TO_STACK:
6385 		pointer_desc = "stack ";
6386 		/* The stack spill tracking logic in check_stack_write_fixed_off()
6387 		 * and check_stack_read_fixed_off() relies on stack accesses being
6388 		 * aligned.
6389 		 */
6390 		strict = true;
6391 		break;
6392 	case PTR_TO_SOCKET:
6393 		pointer_desc = "sock ";
6394 		break;
6395 	case PTR_TO_SOCK_COMMON:
6396 		pointer_desc = "sock_common ";
6397 		break;
6398 	case PTR_TO_TCP_SOCK:
6399 		pointer_desc = "tcp_sock ";
6400 		break;
6401 	case PTR_TO_XDP_SOCK:
6402 		pointer_desc = "xdp_sock ";
6403 		break;
6404 	case PTR_TO_ARENA:
6405 		return 0;
6406 	default:
6407 		break;
6408 	}
6409 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
6410 					   strict);
6411 }
6412 
bpf_enable_priv_stack(struct bpf_prog * prog)6413 static enum priv_stack_mode bpf_enable_priv_stack(struct bpf_prog *prog)
6414 {
6415 	if (!bpf_jit_supports_private_stack())
6416 		return NO_PRIV_STACK;
6417 
6418 	/* bpf_prog_check_recur() checks all prog types that use bpf trampoline
6419 	 * while kprobe/tp/perf_event/raw_tp don't use trampoline hence checked
6420 	 * explicitly.
6421 	 */
6422 	switch (prog->type) {
6423 	case BPF_PROG_TYPE_KPROBE:
6424 	case BPF_PROG_TYPE_TRACEPOINT:
6425 	case BPF_PROG_TYPE_PERF_EVENT:
6426 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
6427 		return PRIV_STACK_ADAPTIVE;
6428 	case BPF_PROG_TYPE_TRACING:
6429 	case BPF_PROG_TYPE_LSM:
6430 	case BPF_PROG_TYPE_STRUCT_OPS:
6431 		if (prog->aux->priv_stack_requested || bpf_prog_check_recur(prog))
6432 			return PRIV_STACK_ADAPTIVE;
6433 		fallthrough;
6434 	default:
6435 		break;
6436 	}
6437 
6438 	return NO_PRIV_STACK;
6439 }
6440 
round_up_stack_depth(struct bpf_verifier_env * env,int stack_depth)6441 static int round_up_stack_depth(struct bpf_verifier_env *env, int stack_depth)
6442 {
6443 	if (env->prog->jit_requested)
6444 		return round_up(stack_depth, 16);
6445 
6446 	/* round up to 32-bytes, since this is granularity
6447 	 * of interpreter stack size
6448 	 */
6449 	return round_up(max_t(u32, stack_depth, 1), 32);
6450 }
6451 
6452 /* starting from main bpf function walk all instructions of the function
6453  * and recursively walk all callees that given function can call.
6454  * Ignore jump and exit insns.
6455  * Since recursion is prevented by check_cfg() this algorithm
6456  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
6457  */
check_max_stack_depth_subprog(struct bpf_verifier_env * env,int idx,bool priv_stack_supported)6458 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx,
6459 					 bool priv_stack_supported)
6460 {
6461 	struct bpf_subprog_info *subprog = env->subprog_info;
6462 	struct bpf_insn *insn = env->prog->insnsi;
6463 	int depth = 0, frame = 0, i, subprog_end, subprog_depth;
6464 	bool tail_call_reachable = false;
6465 	int ret_insn[MAX_CALL_FRAMES];
6466 	int ret_prog[MAX_CALL_FRAMES];
6467 	int j;
6468 
6469 	i = subprog[idx].start;
6470 	if (!priv_stack_supported)
6471 		subprog[idx].priv_stack_mode = NO_PRIV_STACK;
6472 process_func:
6473 	/* protect against potential stack overflow that might happen when
6474 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
6475 	 * depth for such case down to 256 so that the worst case scenario
6476 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
6477 	 * 8k).
6478 	 *
6479 	 * To get the idea what might happen, see an example:
6480 	 * func1 -> sub rsp, 128
6481 	 *  subfunc1 -> sub rsp, 256
6482 	 *  tailcall1 -> add rsp, 256
6483 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
6484 	 *   subfunc2 -> sub rsp, 64
6485 	 *   subfunc22 -> sub rsp, 128
6486 	 *   tailcall2 -> add rsp, 128
6487 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
6488 	 *
6489 	 * tailcall will unwind the current stack frame but it will not get rid
6490 	 * of caller's stack as shown on the example above.
6491 	 */
6492 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
6493 		verbose(env,
6494 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
6495 			depth);
6496 		return -EACCES;
6497 	}
6498 
6499 	subprog_depth = round_up_stack_depth(env, subprog[idx].stack_depth);
6500 	if (priv_stack_supported) {
6501 		/* Request private stack support only if the subprog stack
6502 		 * depth is no less than BPF_PRIV_STACK_MIN_SIZE. This is to
6503 		 * avoid jit penalty if the stack usage is small.
6504 		 */
6505 		if (subprog[idx].priv_stack_mode == PRIV_STACK_UNKNOWN &&
6506 		    subprog_depth >= BPF_PRIV_STACK_MIN_SIZE)
6507 			subprog[idx].priv_stack_mode = PRIV_STACK_ADAPTIVE;
6508 	}
6509 
6510 	if (subprog[idx].priv_stack_mode == PRIV_STACK_ADAPTIVE) {
6511 		if (subprog_depth > MAX_BPF_STACK) {
6512 			verbose(env, "stack size of subprog %d is %d. Too large\n",
6513 				idx, subprog_depth);
6514 			return -EACCES;
6515 		}
6516 	} else {
6517 		depth += subprog_depth;
6518 		if (depth > MAX_BPF_STACK) {
6519 			verbose(env, "combined stack size of %d calls is %d. Too large\n",
6520 				frame + 1, depth);
6521 			return -EACCES;
6522 		}
6523 	}
6524 continue_func:
6525 	subprog_end = subprog[idx + 1].start;
6526 	for (; i < subprog_end; i++) {
6527 		int next_insn, sidx;
6528 
6529 		if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) {
6530 			bool err = false;
6531 
6532 			if (!is_bpf_throw_kfunc(insn + i))
6533 				continue;
6534 			if (subprog[idx].is_cb)
6535 				err = true;
6536 			for (int c = 0; c < frame && !err; c++) {
6537 				if (subprog[ret_prog[c]].is_cb) {
6538 					err = true;
6539 					break;
6540 				}
6541 			}
6542 			if (!err)
6543 				continue;
6544 			verbose(env,
6545 				"bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n",
6546 				i, idx);
6547 			return -EINVAL;
6548 		}
6549 
6550 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
6551 			continue;
6552 		/* remember insn and function to return to */
6553 		ret_insn[frame] = i + 1;
6554 		ret_prog[frame] = idx;
6555 
6556 		/* find the callee */
6557 		next_insn = i + insn[i].imm + 1;
6558 		sidx = find_subprog(env, next_insn);
6559 		if (verifier_bug_if(sidx < 0, env, "callee not found at insn %d", next_insn))
6560 			return -EFAULT;
6561 		if (subprog[sidx].is_async_cb) {
6562 			if (subprog[sidx].has_tail_call) {
6563 				verifier_bug(env, "subprog has tail_call and async cb");
6564 				return -EFAULT;
6565 			}
6566 			/* async callbacks don't increase bpf prog stack size unless called directly */
6567 			if (!bpf_pseudo_call(insn + i))
6568 				continue;
6569 			if (subprog[sidx].is_exception_cb) {
6570 				verbose(env, "insn %d cannot call exception cb directly", i);
6571 				return -EINVAL;
6572 			}
6573 		}
6574 		i = next_insn;
6575 		idx = sidx;
6576 		if (!priv_stack_supported)
6577 			subprog[idx].priv_stack_mode = NO_PRIV_STACK;
6578 
6579 		if (subprog[idx].has_tail_call)
6580 			tail_call_reachable = true;
6581 
6582 		frame++;
6583 		if (frame >= MAX_CALL_FRAMES) {
6584 			verbose(env, "the call stack of %d frames is too deep !\n",
6585 				frame);
6586 			return -E2BIG;
6587 		}
6588 		goto process_func;
6589 	}
6590 	/* if tail call got detected across bpf2bpf calls then mark each of the
6591 	 * currently present subprog frames as tail call reachable subprogs;
6592 	 * this info will be utilized by JIT so that we will be preserving the
6593 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
6594 	 */
6595 	if (tail_call_reachable)
6596 		for (j = 0; j < frame; j++) {
6597 			if (subprog[ret_prog[j]].is_exception_cb) {
6598 				verbose(env, "cannot tail call within exception cb\n");
6599 				return -EINVAL;
6600 			}
6601 			subprog[ret_prog[j]].tail_call_reachable = true;
6602 		}
6603 	if (subprog[0].tail_call_reachable)
6604 		env->prog->aux->tail_call_reachable = true;
6605 
6606 	/* end of for() loop means the last insn of the 'subprog'
6607 	 * was reached. Doesn't matter whether it was JA or EXIT
6608 	 */
6609 	if (frame == 0)
6610 		return 0;
6611 	if (subprog[idx].priv_stack_mode != PRIV_STACK_ADAPTIVE)
6612 		depth -= round_up_stack_depth(env, subprog[idx].stack_depth);
6613 	frame--;
6614 	i = ret_insn[frame];
6615 	idx = ret_prog[frame];
6616 	goto continue_func;
6617 }
6618 
check_max_stack_depth(struct bpf_verifier_env * env)6619 static int check_max_stack_depth(struct bpf_verifier_env *env)
6620 {
6621 	enum priv_stack_mode priv_stack_mode = PRIV_STACK_UNKNOWN;
6622 	struct bpf_subprog_info *si = env->subprog_info;
6623 	bool priv_stack_supported;
6624 	int ret;
6625 
6626 	for (int i = 0; i < env->subprog_cnt; i++) {
6627 		if (si[i].has_tail_call) {
6628 			priv_stack_mode = NO_PRIV_STACK;
6629 			break;
6630 		}
6631 	}
6632 
6633 	if (priv_stack_mode == PRIV_STACK_UNKNOWN)
6634 		priv_stack_mode = bpf_enable_priv_stack(env->prog);
6635 
6636 	/* All async_cb subprogs use normal kernel stack. If a particular
6637 	 * subprog appears in both main prog and async_cb subtree, that
6638 	 * subprog will use normal kernel stack to avoid potential nesting.
6639 	 * The reverse subprog traversal ensures when main prog subtree is
6640 	 * checked, the subprogs appearing in async_cb subtrees are already
6641 	 * marked as using normal kernel stack, so stack size checking can
6642 	 * be done properly.
6643 	 */
6644 	for (int i = env->subprog_cnt - 1; i >= 0; i--) {
6645 		if (!i || si[i].is_async_cb) {
6646 			priv_stack_supported = !i && priv_stack_mode == PRIV_STACK_ADAPTIVE;
6647 			ret = check_max_stack_depth_subprog(env, i, priv_stack_supported);
6648 			if (ret < 0)
6649 				return ret;
6650 		}
6651 	}
6652 
6653 	for (int i = 0; i < env->subprog_cnt; i++) {
6654 		if (si[i].priv_stack_mode == PRIV_STACK_ADAPTIVE) {
6655 			env->prog->aux->jits_use_priv_stack = true;
6656 			break;
6657 		}
6658 	}
6659 
6660 	return 0;
6661 }
6662 
6663 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
get_callee_stack_depth(struct bpf_verifier_env * env,const struct bpf_insn * insn,int idx)6664 static int get_callee_stack_depth(struct bpf_verifier_env *env,
6665 				  const struct bpf_insn *insn, int idx)
6666 {
6667 	int start = idx + insn->imm + 1, subprog;
6668 
6669 	subprog = find_subprog(env, start);
6670 	if (verifier_bug_if(subprog < 0, env, "get stack depth: no program at insn %d", start))
6671 		return -EFAULT;
6672 	return env->subprog_info[subprog].stack_depth;
6673 }
6674 #endif
6675 
__check_buffer_access(struct bpf_verifier_env * env,const char * buf_info,const struct bpf_reg_state * reg,int regno,int off,int size)6676 static int __check_buffer_access(struct bpf_verifier_env *env,
6677 				 const char *buf_info,
6678 				 const struct bpf_reg_state *reg,
6679 				 int regno, int off, int size)
6680 {
6681 	if (off < 0) {
6682 		verbose(env,
6683 			"R%d invalid %s buffer access: off=%d, size=%d\n",
6684 			regno, buf_info, off, size);
6685 		return -EACCES;
6686 	}
6687 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6688 		char tn_buf[48];
6689 
6690 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6691 		verbose(env,
6692 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
6693 			regno, off, tn_buf);
6694 		return -EACCES;
6695 	}
6696 
6697 	return 0;
6698 }
6699 
check_tp_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size)6700 static int check_tp_buffer_access(struct bpf_verifier_env *env,
6701 				  const struct bpf_reg_state *reg,
6702 				  int regno, int off, int size)
6703 {
6704 	int err;
6705 
6706 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
6707 	if (err)
6708 		return err;
6709 
6710 	if (off + size > env->prog->aux->max_tp_access)
6711 		env->prog->aux->max_tp_access = off + size;
6712 
6713 	return 0;
6714 }
6715 
check_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size,bool zero_size_allowed,u32 * max_access)6716 static int check_buffer_access(struct bpf_verifier_env *env,
6717 			       const struct bpf_reg_state *reg,
6718 			       int regno, int off, int size,
6719 			       bool zero_size_allowed,
6720 			       u32 *max_access)
6721 {
6722 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
6723 	int err;
6724 
6725 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
6726 	if (err)
6727 		return err;
6728 
6729 	if (off + size > *max_access)
6730 		*max_access = off + size;
6731 
6732 	return 0;
6733 }
6734 
6735 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
zext_32_to_64(struct bpf_reg_state * reg)6736 static void zext_32_to_64(struct bpf_reg_state *reg)
6737 {
6738 	reg->var_off = tnum_subreg(reg->var_off);
6739 	__reg_assign_32_into_64(reg);
6740 }
6741 
6742 /* truncate register to smaller size (in bytes)
6743  * must be called with size < BPF_REG_SIZE
6744  */
coerce_reg_to_size(struct bpf_reg_state * reg,int size)6745 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
6746 {
6747 	u64 mask;
6748 
6749 	/* clear high bits in bit representation */
6750 	reg->var_off = tnum_cast(reg->var_off, size);
6751 
6752 	/* fix arithmetic bounds */
6753 	mask = ((u64)1 << (size * 8)) - 1;
6754 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
6755 		reg->umin_value &= mask;
6756 		reg->umax_value &= mask;
6757 	} else {
6758 		reg->umin_value = 0;
6759 		reg->umax_value = mask;
6760 	}
6761 	reg->smin_value = reg->umin_value;
6762 	reg->smax_value = reg->umax_value;
6763 
6764 	/* If size is smaller than 32bit register the 32bit register
6765 	 * values are also truncated so we push 64-bit bounds into
6766 	 * 32-bit bounds. Above were truncated < 32-bits already.
6767 	 */
6768 	if (size < 4)
6769 		__mark_reg32_unbounded(reg);
6770 
6771 	reg_bounds_sync(reg);
6772 }
6773 
set_sext64_default_val(struct bpf_reg_state * reg,int size)6774 static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
6775 {
6776 	if (size == 1) {
6777 		reg->smin_value = reg->s32_min_value = S8_MIN;
6778 		reg->smax_value = reg->s32_max_value = S8_MAX;
6779 	} else if (size == 2) {
6780 		reg->smin_value = reg->s32_min_value = S16_MIN;
6781 		reg->smax_value = reg->s32_max_value = S16_MAX;
6782 	} else {
6783 		/* size == 4 */
6784 		reg->smin_value = reg->s32_min_value = S32_MIN;
6785 		reg->smax_value = reg->s32_max_value = S32_MAX;
6786 	}
6787 	reg->umin_value = reg->u32_min_value = 0;
6788 	reg->umax_value = U64_MAX;
6789 	reg->u32_max_value = U32_MAX;
6790 	reg->var_off = tnum_unknown;
6791 }
6792 
coerce_reg_to_size_sx(struct bpf_reg_state * reg,int size)6793 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
6794 {
6795 	s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
6796 	u64 top_smax_value, top_smin_value;
6797 	u64 num_bits = size * 8;
6798 
6799 	if (tnum_is_const(reg->var_off)) {
6800 		u64_cval = reg->var_off.value;
6801 		if (size == 1)
6802 			reg->var_off = tnum_const((s8)u64_cval);
6803 		else if (size == 2)
6804 			reg->var_off = tnum_const((s16)u64_cval);
6805 		else
6806 			/* size == 4 */
6807 			reg->var_off = tnum_const((s32)u64_cval);
6808 
6809 		u64_cval = reg->var_off.value;
6810 		reg->smax_value = reg->smin_value = u64_cval;
6811 		reg->umax_value = reg->umin_value = u64_cval;
6812 		reg->s32_max_value = reg->s32_min_value = u64_cval;
6813 		reg->u32_max_value = reg->u32_min_value = u64_cval;
6814 		return;
6815 	}
6816 
6817 	top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
6818 	top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
6819 
6820 	if (top_smax_value != top_smin_value)
6821 		goto out;
6822 
6823 	/* find the s64_min and s64_min after sign extension */
6824 	if (size == 1) {
6825 		init_s64_max = (s8)reg->smax_value;
6826 		init_s64_min = (s8)reg->smin_value;
6827 	} else if (size == 2) {
6828 		init_s64_max = (s16)reg->smax_value;
6829 		init_s64_min = (s16)reg->smin_value;
6830 	} else {
6831 		init_s64_max = (s32)reg->smax_value;
6832 		init_s64_min = (s32)reg->smin_value;
6833 	}
6834 
6835 	s64_max = max(init_s64_max, init_s64_min);
6836 	s64_min = min(init_s64_max, init_s64_min);
6837 
6838 	/* both of s64_max/s64_min positive or negative */
6839 	if ((s64_max >= 0) == (s64_min >= 0)) {
6840 		reg->s32_min_value = reg->smin_value = s64_min;
6841 		reg->s32_max_value = reg->smax_value = s64_max;
6842 		reg->u32_min_value = reg->umin_value = s64_min;
6843 		reg->u32_max_value = reg->umax_value = s64_max;
6844 		reg->var_off = tnum_range(s64_min, s64_max);
6845 		return;
6846 	}
6847 
6848 out:
6849 	set_sext64_default_val(reg, size);
6850 }
6851 
set_sext32_default_val(struct bpf_reg_state * reg,int size)6852 static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
6853 {
6854 	if (size == 1) {
6855 		reg->s32_min_value = S8_MIN;
6856 		reg->s32_max_value = S8_MAX;
6857 	} else {
6858 		/* size == 2 */
6859 		reg->s32_min_value = S16_MIN;
6860 		reg->s32_max_value = S16_MAX;
6861 	}
6862 	reg->u32_min_value = 0;
6863 	reg->u32_max_value = U32_MAX;
6864 	reg->var_off = tnum_subreg(tnum_unknown);
6865 }
6866 
coerce_subreg_to_size_sx(struct bpf_reg_state * reg,int size)6867 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
6868 {
6869 	s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
6870 	u32 top_smax_value, top_smin_value;
6871 	u32 num_bits = size * 8;
6872 
6873 	if (tnum_is_const(reg->var_off)) {
6874 		u32_val = reg->var_off.value;
6875 		if (size == 1)
6876 			reg->var_off = tnum_const((s8)u32_val);
6877 		else
6878 			reg->var_off = tnum_const((s16)u32_val);
6879 
6880 		u32_val = reg->var_off.value;
6881 		reg->s32_min_value = reg->s32_max_value = u32_val;
6882 		reg->u32_min_value = reg->u32_max_value = u32_val;
6883 		return;
6884 	}
6885 
6886 	top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
6887 	top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
6888 
6889 	if (top_smax_value != top_smin_value)
6890 		goto out;
6891 
6892 	/* find the s32_min and s32_min after sign extension */
6893 	if (size == 1) {
6894 		init_s32_max = (s8)reg->s32_max_value;
6895 		init_s32_min = (s8)reg->s32_min_value;
6896 	} else {
6897 		/* size == 2 */
6898 		init_s32_max = (s16)reg->s32_max_value;
6899 		init_s32_min = (s16)reg->s32_min_value;
6900 	}
6901 	s32_max = max(init_s32_max, init_s32_min);
6902 	s32_min = min(init_s32_max, init_s32_min);
6903 
6904 	if ((s32_min >= 0) == (s32_max >= 0)) {
6905 		reg->s32_min_value = s32_min;
6906 		reg->s32_max_value = s32_max;
6907 		reg->u32_min_value = (u32)s32_min;
6908 		reg->u32_max_value = (u32)s32_max;
6909 		reg->var_off = tnum_subreg(tnum_range(s32_min, s32_max));
6910 		return;
6911 	}
6912 
6913 out:
6914 	set_sext32_default_val(reg, size);
6915 }
6916 
bpf_map_is_rdonly(const struct bpf_map * map)6917 static bool bpf_map_is_rdonly(const struct bpf_map *map)
6918 {
6919 	/* A map is considered read-only if the following condition are true:
6920 	 *
6921 	 * 1) BPF program side cannot change any of the map content. The
6922 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
6923 	 *    and was set at map creation time.
6924 	 * 2) The map value(s) have been initialized from user space by a
6925 	 *    loader and then "frozen", such that no new map update/delete
6926 	 *    operations from syscall side are possible for the rest of
6927 	 *    the map's lifetime from that point onwards.
6928 	 * 3) Any parallel/pending map update/delete operations from syscall
6929 	 *    side have been completed. Only after that point, it's safe to
6930 	 *    assume that map value(s) are immutable.
6931 	 */
6932 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
6933 	       READ_ONCE(map->frozen) &&
6934 	       !bpf_map_write_active(map);
6935 }
6936 
bpf_map_direct_read(struct bpf_map * map,int off,int size,u64 * val,bool is_ldsx)6937 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
6938 			       bool is_ldsx)
6939 {
6940 	void *ptr;
6941 	u64 addr;
6942 	int err;
6943 
6944 	err = map->ops->map_direct_value_addr(map, &addr, off);
6945 	if (err)
6946 		return err;
6947 	ptr = (void *)(long)addr + off;
6948 
6949 	switch (size) {
6950 	case sizeof(u8):
6951 		*val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
6952 		break;
6953 	case sizeof(u16):
6954 		*val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
6955 		break;
6956 	case sizeof(u32):
6957 		*val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
6958 		break;
6959 	case sizeof(u64):
6960 		*val = *(u64 *)ptr;
6961 		break;
6962 	default:
6963 		return -EINVAL;
6964 	}
6965 	return 0;
6966 }
6967 
6968 #define BTF_TYPE_SAFE_RCU(__type)  __PASTE(__type, __safe_rcu)
6969 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type)  __PASTE(__type, __safe_rcu_or_null)
6970 #define BTF_TYPE_SAFE_TRUSTED(__type)  __PASTE(__type, __safe_trusted)
6971 #define BTF_TYPE_SAFE_TRUSTED_OR_NULL(__type)  __PASTE(__type, __safe_trusted_or_null)
6972 
6973 /*
6974  * Allow list few fields as RCU trusted or full trusted.
6975  * This logic doesn't allow mix tagging and will be removed once GCC supports
6976  * btf_type_tag.
6977  */
6978 
6979 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
BTF_TYPE_SAFE_RCU(struct task_struct)6980 BTF_TYPE_SAFE_RCU(struct task_struct) {
6981 	const cpumask_t *cpus_ptr;
6982 	struct css_set __rcu *cgroups;
6983 	struct task_struct __rcu *real_parent;
6984 	struct task_struct *group_leader;
6985 };
6986 
BTF_TYPE_SAFE_RCU(struct cgroup)6987 BTF_TYPE_SAFE_RCU(struct cgroup) {
6988 	/* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
6989 	struct kernfs_node *kn;
6990 };
6991 
BTF_TYPE_SAFE_RCU(struct css_set)6992 BTF_TYPE_SAFE_RCU(struct css_set) {
6993 	struct cgroup *dfl_cgrp;
6994 };
6995 
6996 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)6997 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
6998 	struct file __rcu *exe_file;
6999 };
7000 
7001 /* skb->sk, req->sk are not RCU protected, but we mark them as such
7002  * because bpf prog accessible sockets are SOCK_RCU_FREE.
7003  */
BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)7004 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
7005 	struct sock *sk;
7006 };
7007 
BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)7008 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
7009 	struct sock *sk;
7010 };
7011 
7012 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)7013 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
7014 	struct seq_file *seq;
7015 };
7016 
BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)7017 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
7018 	struct bpf_iter_meta *meta;
7019 	struct task_struct *task;
7020 };
7021 
BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)7022 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
7023 	struct file *file;
7024 };
7025 
BTF_TYPE_SAFE_TRUSTED(struct file)7026 BTF_TYPE_SAFE_TRUSTED(struct file) {
7027 	struct inode *f_inode;
7028 };
7029 
BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct dentry)7030 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct dentry) {
7031 	struct inode *d_inode;
7032 };
7033 
BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket)7034 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) {
7035 	struct sock *sk;
7036 };
7037 
type_is_rcu(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)7038 static bool type_is_rcu(struct bpf_verifier_env *env,
7039 			struct bpf_reg_state *reg,
7040 			const char *field_name, u32 btf_id)
7041 {
7042 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
7043 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
7044 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
7045 
7046 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
7047 }
7048 
type_is_rcu_or_null(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)7049 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
7050 				struct bpf_reg_state *reg,
7051 				const char *field_name, u32 btf_id)
7052 {
7053 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
7054 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
7055 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
7056 
7057 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
7058 }
7059 
type_is_trusted(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)7060 static bool type_is_trusted(struct bpf_verifier_env *env,
7061 			    struct bpf_reg_state *reg,
7062 			    const char *field_name, u32 btf_id)
7063 {
7064 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
7065 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
7066 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
7067 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
7068 
7069 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
7070 }
7071 
type_is_trusted_or_null(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)7072 static bool type_is_trusted_or_null(struct bpf_verifier_env *env,
7073 				    struct bpf_reg_state *reg,
7074 				    const char *field_name, u32 btf_id)
7075 {
7076 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket));
7077 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct dentry));
7078 
7079 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id,
7080 					  "__safe_trusted_or_null");
7081 }
7082 
check_ptr_to_btf_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)7083 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
7084 				   struct bpf_reg_state *regs,
7085 				   int regno, int off, int size,
7086 				   enum bpf_access_type atype,
7087 				   int value_regno)
7088 {
7089 	struct bpf_reg_state *reg = regs + regno;
7090 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
7091 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
7092 	const char *field_name = NULL;
7093 	enum bpf_type_flag flag = 0;
7094 	u32 btf_id = 0;
7095 	int ret;
7096 
7097 	if (!env->allow_ptr_leaks) {
7098 		verbose(env,
7099 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
7100 			tname);
7101 		return -EPERM;
7102 	}
7103 	if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
7104 		verbose(env,
7105 			"Cannot access kernel 'struct %s' from non-GPL compatible program\n",
7106 			tname);
7107 		return -EINVAL;
7108 	}
7109 	if (off < 0) {
7110 		verbose(env,
7111 			"R%d is ptr_%s invalid negative access: off=%d\n",
7112 			regno, tname, off);
7113 		return -EACCES;
7114 	}
7115 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
7116 		char tn_buf[48];
7117 
7118 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7119 		verbose(env,
7120 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
7121 			regno, tname, off, tn_buf);
7122 		return -EACCES;
7123 	}
7124 
7125 	if (reg->type & MEM_USER) {
7126 		verbose(env,
7127 			"R%d is ptr_%s access user memory: off=%d\n",
7128 			regno, tname, off);
7129 		return -EACCES;
7130 	}
7131 
7132 	if (reg->type & MEM_PERCPU) {
7133 		verbose(env,
7134 			"R%d is ptr_%s access percpu memory: off=%d\n",
7135 			regno, tname, off);
7136 		return -EACCES;
7137 	}
7138 
7139 	if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
7140 		if (!btf_is_kernel(reg->btf)) {
7141 			verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
7142 			return -EFAULT;
7143 		}
7144 		ret = env->ops->btf_struct_access(&env->log, reg, off, size);
7145 	} else {
7146 		/* Writes are permitted with default btf_struct_access for
7147 		 * program allocated objects (which always have ref_obj_id > 0),
7148 		 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
7149 		 */
7150 		if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
7151 			verbose(env, "only read is supported\n");
7152 			return -EACCES;
7153 		}
7154 
7155 		if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
7156 		    !(reg->type & MEM_RCU) && !reg->ref_obj_id) {
7157 			verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
7158 			return -EFAULT;
7159 		}
7160 
7161 		ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
7162 	}
7163 
7164 	if (ret < 0)
7165 		return ret;
7166 
7167 	if (ret != PTR_TO_BTF_ID) {
7168 		/* just mark; */
7169 
7170 	} else if (type_flag(reg->type) & PTR_UNTRUSTED) {
7171 		/* If this is an untrusted pointer, all pointers formed by walking it
7172 		 * also inherit the untrusted flag.
7173 		 */
7174 		flag = PTR_UNTRUSTED;
7175 
7176 	} else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
7177 		/* By default any pointer obtained from walking a trusted pointer is no
7178 		 * longer trusted, unless the field being accessed has explicitly been
7179 		 * marked as inheriting its parent's state of trust (either full or RCU).
7180 		 * For example:
7181 		 * 'cgroups' pointer is untrusted if task->cgroups dereference
7182 		 * happened in a sleepable program outside of bpf_rcu_read_lock()
7183 		 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
7184 		 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
7185 		 *
7186 		 * A regular RCU-protected pointer with __rcu tag can also be deemed
7187 		 * trusted if we are in an RCU CS. Such pointer can be NULL.
7188 		 */
7189 		if (type_is_trusted(env, reg, field_name, btf_id)) {
7190 			flag |= PTR_TRUSTED;
7191 		} else if (type_is_trusted_or_null(env, reg, field_name, btf_id)) {
7192 			flag |= PTR_TRUSTED | PTR_MAYBE_NULL;
7193 		} else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
7194 			if (type_is_rcu(env, reg, field_name, btf_id)) {
7195 				/* ignore __rcu tag and mark it MEM_RCU */
7196 				flag |= MEM_RCU;
7197 			} else if (flag & MEM_RCU ||
7198 				   type_is_rcu_or_null(env, reg, field_name, btf_id)) {
7199 				/* __rcu tagged pointers can be NULL */
7200 				flag |= MEM_RCU | PTR_MAYBE_NULL;
7201 
7202 				/* We always trust them */
7203 				if (type_is_rcu_or_null(env, reg, field_name, btf_id) &&
7204 				    flag & PTR_UNTRUSTED)
7205 					flag &= ~PTR_UNTRUSTED;
7206 			} else if (flag & (MEM_PERCPU | MEM_USER)) {
7207 				/* keep as-is */
7208 			} else {
7209 				/* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
7210 				clear_trusted_flags(&flag);
7211 			}
7212 		} else {
7213 			/*
7214 			 * If not in RCU CS or MEM_RCU pointer can be NULL then
7215 			 * aggressively mark as untrusted otherwise such
7216 			 * pointers will be plain PTR_TO_BTF_ID without flags
7217 			 * and will be allowed to be passed into helpers for
7218 			 * compat reasons.
7219 			 */
7220 			flag = PTR_UNTRUSTED;
7221 		}
7222 	} else {
7223 		/* Old compat. Deprecated */
7224 		clear_trusted_flags(&flag);
7225 	}
7226 
7227 	if (atype == BPF_READ && value_regno >= 0)
7228 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
7229 
7230 	return 0;
7231 }
7232 
check_ptr_to_map_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)7233 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
7234 				   struct bpf_reg_state *regs,
7235 				   int regno, int off, int size,
7236 				   enum bpf_access_type atype,
7237 				   int value_regno)
7238 {
7239 	struct bpf_reg_state *reg = regs + regno;
7240 	struct bpf_map *map = reg->map_ptr;
7241 	struct bpf_reg_state map_reg;
7242 	enum bpf_type_flag flag = 0;
7243 	const struct btf_type *t;
7244 	const char *tname;
7245 	u32 btf_id;
7246 	int ret;
7247 
7248 	if (!btf_vmlinux) {
7249 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
7250 		return -ENOTSUPP;
7251 	}
7252 
7253 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
7254 		verbose(env, "map_ptr access not supported for map type %d\n",
7255 			map->map_type);
7256 		return -ENOTSUPP;
7257 	}
7258 
7259 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
7260 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
7261 
7262 	if (!env->allow_ptr_leaks) {
7263 		verbose(env,
7264 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
7265 			tname);
7266 		return -EPERM;
7267 	}
7268 
7269 	if (off < 0) {
7270 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
7271 			regno, tname, off);
7272 		return -EACCES;
7273 	}
7274 
7275 	if (atype != BPF_READ) {
7276 		verbose(env, "only read from %s is supported\n", tname);
7277 		return -EACCES;
7278 	}
7279 
7280 	/* Simulate access to a PTR_TO_BTF_ID */
7281 	memset(&map_reg, 0, sizeof(map_reg));
7282 	mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
7283 	ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
7284 	if (ret < 0)
7285 		return ret;
7286 
7287 	if (value_regno >= 0)
7288 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
7289 
7290 	return 0;
7291 }
7292 
7293 /* Check that the stack access at the given offset is within bounds. The
7294  * maximum valid offset is -1.
7295  *
7296  * The minimum valid offset is -MAX_BPF_STACK for writes, and
7297  * -state->allocated_stack for reads.
7298  */
check_stack_slot_within_bounds(struct bpf_verifier_env * env,s64 off,struct bpf_func_state * state,enum bpf_access_type t)7299 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env,
7300                                           s64 off,
7301                                           struct bpf_func_state *state,
7302                                           enum bpf_access_type t)
7303 {
7304 	int min_valid_off;
7305 
7306 	if (t == BPF_WRITE || env->allow_uninit_stack)
7307 		min_valid_off = -MAX_BPF_STACK;
7308 	else
7309 		min_valid_off = -state->allocated_stack;
7310 
7311 	if (off < min_valid_off || off > -1)
7312 		return -EACCES;
7313 	return 0;
7314 }
7315 
7316 /* Check that the stack access at 'regno + off' falls within the maximum stack
7317  * bounds.
7318  *
7319  * 'off' includes `regno->offset`, but not its dynamic part (if any).
7320  */
check_stack_access_within_bounds(struct bpf_verifier_env * env,int regno,int off,int access_size,enum bpf_access_type type)7321 static int check_stack_access_within_bounds(
7322 		struct bpf_verifier_env *env,
7323 		int regno, int off, int access_size,
7324 		enum bpf_access_type type)
7325 {
7326 	struct bpf_reg_state *regs = cur_regs(env);
7327 	struct bpf_reg_state *reg = regs + regno;
7328 	struct bpf_func_state *state = func(env, reg);
7329 	s64 min_off, max_off;
7330 	int err;
7331 	char *err_extra;
7332 
7333 	if (type == BPF_READ)
7334 		err_extra = " read from";
7335 	else
7336 		err_extra = " write to";
7337 
7338 	if (tnum_is_const(reg->var_off)) {
7339 		min_off = (s64)reg->var_off.value + off;
7340 		max_off = min_off + access_size;
7341 	} else {
7342 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
7343 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
7344 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
7345 				err_extra, regno);
7346 			return -EACCES;
7347 		}
7348 		min_off = reg->smin_value + off;
7349 		max_off = reg->smax_value + off + access_size;
7350 	}
7351 
7352 	err = check_stack_slot_within_bounds(env, min_off, state, type);
7353 	if (!err && max_off > 0)
7354 		err = -EINVAL; /* out of stack access into non-negative offsets */
7355 	if (!err && access_size < 0)
7356 		/* access_size should not be negative (or overflow an int); others checks
7357 		 * along the way should have prevented such an access.
7358 		 */
7359 		err = -EFAULT; /* invalid negative access size; integer overflow? */
7360 
7361 	if (err) {
7362 		if (tnum_is_const(reg->var_off)) {
7363 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
7364 				err_extra, regno, off, access_size);
7365 		} else {
7366 			char tn_buf[48];
7367 
7368 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7369 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s off=%d size=%d\n",
7370 				err_extra, regno, tn_buf, off, access_size);
7371 		}
7372 		return err;
7373 	}
7374 
7375 	/* Note that there is no stack access with offset zero, so the needed stack
7376 	 * size is -min_off, not -min_off+1.
7377 	 */
7378 	return grow_stack_state(env, state, -min_off /* size */);
7379 }
7380 
get_func_retval_range(struct bpf_prog * prog,struct bpf_retval_range * range)7381 static bool get_func_retval_range(struct bpf_prog *prog,
7382 				  struct bpf_retval_range *range)
7383 {
7384 	if (prog->type == BPF_PROG_TYPE_LSM &&
7385 		prog->expected_attach_type == BPF_LSM_MAC &&
7386 		!bpf_lsm_get_retval_range(prog, range)) {
7387 		return true;
7388 	}
7389 	return false;
7390 }
7391 
7392 /* check whether memory at (regno + off) is accessible for t = (read | write)
7393  * if t==write, value_regno is a register which value is stored into memory
7394  * if t==read, value_regno is a register which will receive the value from memory
7395  * if t==write && value_regno==-1, some unknown value is stored into memory
7396  * if t==read && value_regno==-1, don't care what we read from memory
7397  */
check_mem_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int bpf_size,enum bpf_access_type t,int value_regno,bool strict_alignment_once,bool is_ldsx)7398 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
7399 			    int off, int bpf_size, enum bpf_access_type t,
7400 			    int value_regno, bool strict_alignment_once, bool is_ldsx)
7401 {
7402 	struct bpf_reg_state *regs = cur_regs(env);
7403 	struct bpf_reg_state *reg = regs + regno;
7404 	int size, err = 0;
7405 
7406 	size = bpf_size_to_bytes(bpf_size);
7407 	if (size < 0)
7408 		return size;
7409 
7410 	/* alignment checks will add in reg->off themselves */
7411 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
7412 	if (err)
7413 		return err;
7414 
7415 	/* for access checks, reg->off is just part of off */
7416 	off += reg->off;
7417 
7418 	if (reg->type == PTR_TO_MAP_KEY) {
7419 		if (t == BPF_WRITE) {
7420 			verbose(env, "write to change key R%d not allowed\n", regno);
7421 			return -EACCES;
7422 		}
7423 
7424 		err = check_mem_region_access(env, regno, off, size,
7425 					      reg->map_ptr->key_size, false);
7426 		if (err)
7427 			return err;
7428 		if (value_regno >= 0)
7429 			mark_reg_unknown(env, regs, value_regno);
7430 	} else if (reg->type == PTR_TO_MAP_VALUE) {
7431 		struct btf_field *kptr_field = NULL;
7432 
7433 		if (t == BPF_WRITE && value_regno >= 0 &&
7434 		    is_pointer_value(env, value_regno)) {
7435 			verbose(env, "R%d leaks addr into map\n", value_regno);
7436 			return -EACCES;
7437 		}
7438 		err = check_map_access_type(env, regno, off, size, t);
7439 		if (err)
7440 			return err;
7441 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
7442 		if (err)
7443 			return err;
7444 		if (tnum_is_const(reg->var_off))
7445 			kptr_field = btf_record_find(reg->map_ptr->record,
7446 						     off + reg->var_off.value, BPF_KPTR | BPF_UPTR);
7447 		if (kptr_field) {
7448 			err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
7449 		} else if (t == BPF_READ && value_regno >= 0) {
7450 			struct bpf_map *map = reg->map_ptr;
7451 
7452 			/* if map is read-only, track its contents as scalars */
7453 			if (tnum_is_const(reg->var_off) &&
7454 			    bpf_map_is_rdonly(map) &&
7455 			    map->ops->map_direct_value_addr) {
7456 				int map_off = off + reg->var_off.value;
7457 				u64 val = 0;
7458 
7459 				err = bpf_map_direct_read(map, map_off, size,
7460 							  &val, is_ldsx);
7461 				if (err)
7462 					return err;
7463 
7464 				regs[value_regno].type = SCALAR_VALUE;
7465 				__mark_reg_known(&regs[value_regno], val);
7466 			} else {
7467 				mark_reg_unknown(env, regs, value_regno);
7468 			}
7469 		}
7470 	} else if (base_type(reg->type) == PTR_TO_MEM) {
7471 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
7472 
7473 		if (type_may_be_null(reg->type)) {
7474 			verbose(env, "R%d invalid mem access '%s'\n", regno,
7475 				reg_type_str(env, reg->type));
7476 			return -EACCES;
7477 		}
7478 
7479 		if (t == BPF_WRITE && rdonly_mem) {
7480 			verbose(env, "R%d cannot write into %s\n",
7481 				regno, reg_type_str(env, reg->type));
7482 			return -EACCES;
7483 		}
7484 
7485 		if (t == BPF_WRITE && value_regno >= 0 &&
7486 		    is_pointer_value(env, value_regno)) {
7487 			verbose(env, "R%d leaks addr into mem\n", value_regno);
7488 			return -EACCES;
7489 		}
7490 
7491 		err = check_mem_region_access(env, regno, off, size,
7492 					      reg->mem_size, false);
7493 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
7494 			mark_reg_unknown(env, regs, value_regno);
7495 	} else if (reg->type == PTR_TO_CTX) {
7496 		struct bpf_retval_range range;
7497 		struct bpf_insn_access_aux info = {
7498 			.reg_type = SCALAR_VALUE,
7499 			.is_ldsx = is_ldsx,
7500 			.log = &env->log,
7501 		};
7502 
7503 		if (t == BPF_WRITE && value_regno >= 0 &&
7504 		    is_pointer_value(env, value_regno)) {
7505 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
7506 			return -EACCES;
7507 		}
7508 
7509 		err = check_ptr_off_reg(env, reg, regno);
7510 		if (err < 0)
7511 			return err;
7512 
7513 		err = check_ctx_access(env, insn_idx, off, size, t, &info);
7514 		if (err)
7515 			verbose_linfo(env, insn_idx, "; ");
7516 		if (!err && t == BPF_READ && value_regno >= 0) {
7517 			/* ctx access returns either a scalar, or a
7518 			 * PTR_TO_PACKET[_META,_END]. In the latter
7519 			 * case, we know the offset is zero.
7520 			 */
7521 			if (info.reg_type == SCALAR_VALUE) {
7522 				if (info.is_retval && get_func_retval_range(env->prog, &range)) {
7523 					err = __mark_reg_s32_range(env, regs, value_regno,
7524 								   range.minval, range.maxval);
7525 					if (err)
7526 						return err;
7527 				} else {
7528 					mark_reg_unknown(env, regs, value_regno);
7529 				}
7530 			} else {
7531 				mark_reg_known_zero(env, regs,
7532 						    value_regno);
7533 				if (type_may_be_null(info.reg_type))
7534 					regs[value_regno].id = ++env->id_gen;
7535 				/* A load of ctx field could have different
7536 				 * actual load size with the one encoded in the
7537 				 * insn. When the dst is PTR, it is for sure not
7538 				 * a sub-register.
7539 				 */
7540 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
7541 				if (base_type(info.reg_type) == PTR_TO_BTF_ID) {
7542 					regs[value_regno].btf = info.btf;
7543 					regs[value_regno].btf_id = info.btf_id;
7544 					regs[value_regno].ref_obj_id = info.ref_obj_id;
7545 				}
7546 			}
7547 			regs[value_regno].type = info.reg_type;
7548 		}
7549 
7550 	} else if (reg->type == PTR_TO_STACK) {
7551 		/* Basic bounds checks. */
7552 		err = check_stack_access_within_bounds(env, regno, off, size, t);
7553 		if (err)
7554 			return err;
7555 
7556 		if (t == BPF_READ)
7557 			err = check_stack_read(env, regno, off, size,
7558 					       value_regno);
7559 		else
7560 			err = check_stack_write(env, regno, off, size,
7561 						value_regno, insn_idx);
7562 	} else if (reg_is_pkt_pointer(reg)) {
7563 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
7564 			verbose(env, "cannot write into packet\n");
7565 			return -EACCES;
7566 		}
7567 		if (t == BPF_WRITE && value_regno >= 0 &&
7568 		    is_pointer_value(env, value_regno)) {
7569 			verbose(env, "R%d leaks addr into packet\n",
7570 				value_regno);
7571 			return -EACCES;
7572 		}
7573 		err = check_packet_access(env, regno, off, size, false);
7574 		if (!err && t == BPF_READ && value_regno >= 0)
7575 			mark_reg_unknown(env, regs, value_regno);
7576 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
7577 		if (t == BPF_WRITE && value_regno >= 0 &&
7578 		    is_pointer_value(env, value_regno)) {
7579 			verbose(env, "R%d leaks addr into flow keys\n",
7580 				value_regno);
7581 			return -EACCES;
7582 		}
7583 
7584 		err = check_flow_keys_access(env, off, size);
7585 		if (!err && t == BPF_READ && value_regno >= 0)
7586 			mark_reg_unknown(env, regs, value_regno);
7587 	} else if (type_is_sk_pointer(reg->type)) {
7588 		if (t == BPF_WRITE) {
7589 			verbose(env, "R%d cannot write into %s\n",
7590 				regno, reg_type_str(env, reg->type));
7591 			return -EACCES;
7592 		}
7593 		err = check_sock_access(env, insn_idx, regno, off, size, t);
7594 		if (!err && value_regno >= 0)
7595 			mark_reg_unknown(env, regs, value_regno);
7596 	} else if (reg->type == PTR_TO_TP_BUFFER) {
7597 		err = check_tp_buffer_access(env, reg, regno, off, size);
7598 		if (!err && t == BPF_READ && value_regno >= 0)
7599 			mark_reg_unknown(env, regs, value_regno);
7600 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
7601 		   !type_may_be_null(reg->type)) {
7602 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
7603 					      value_regno);
7604 	} else if (reg->type == CONST_PTR_TO_MAP) {
7605 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
7606 					      value_regno);
7607 	} else if (base_type(reg->type) == PTR_TO_BUF) {
7608 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
7609 		u32 *max_access;
7610 
7611 		if (rdonly_mem) {
7612 			if (t == BPF_WRITE) {
7613 				verbose(env, "R%d cannot write into %s\n",
7614 					regno, reg_type_str(env, reg->type));
7615 				return -EACCES;
7616 			}
7617 			max_access = &env->prog->aux->max_rdonly_access;
7618 		} else {
7619 			max_access = &env->prog->aux->max_rdwr_access;
7620 		}
7621 
7622 		err = check_buffer_access(env, reg, regno, off, size, false,
7623 					  max_access);
7624 
7625 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
7626 			mark_reg_unknown(env, regs, value_regno);
7627 	} else if (reg->type == PTR_TO_ARENA) {
7628 		if (t == BPF_READ && value_regno >= 0)
7629 			mark_reg_unknown(env, regs, value_regno);
7630 	} else {
7631 		verbose(env, "R%d invalid mem access '%s'\n", regno,
7632 			reg_type_str(env, reg->type));
7633 		return -EACCES;
7634 	}
7635 
7636 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
7637 	    regs[value_regno].type == SCALAR_VALUE) {
7638 		if (!is_ldsx)
7639 			/* b/h/w load zero-extends, mark upper bits as known 0 */
7640 			coerce_reg_to_size(&regs[value_regno], size);
7641 		else
7642 			coerce_reg_to_size_sx(&regs[value_regno], size);
7643 	}
7644 	return err;
7645 }
7646 
7647 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
7648 			     bool allow_trust_mismatch);
7649 
check_load_mem(struct bpf_verifier_env * env,struct bpf_insn * insn,bool strict_alignment_once,bool is_ldsx,bool allow_trust_mismatch,const char * ctx)7650 static int check_load_mem(struct bpf_verifier_env *env, struct bpf_insn *insn,
7651 			  bool strict_alignment_once, bool is_ldsx,
7652 			  bool allow_trust_mismatch, const char *ctx)
7653 {
7654 	struct bpf_reg_state *regs = cur_regs(env);
7655 	enum bpf_reg_type src_reg_type;
7656 	int err;
7657 
7658 	/* check src operand */
7659 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
7660 	if (err)
7661 		return err;
7662 
7663 	/* check dst operand */
7664 	err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7665 	if (err)
7666 		return err;
7667 
7668 	src_reg_type = regs[insn->src_reg].type;
7669 
7670 	/* Check if (src_reg + off) is readable. The state of dst_reg will be
7671 	 * updated by this call.
7672 	 */
7673 	err = check_mem_access(env, env->insn_idx, insn->src_reg, insn->off,
7674 			       BPF_SIZE(insn->code), BPF_READ, insn->dst_reg,
7675 			       strict_alignment_once, is_ldsx);
7676 	err = err ?: save_aux_ptr_type(env, src_reg_type,
7677 				       allow_trust_mismatch);
7678 	err = err ?: reg_bounds_sanity_check(env, &regs[insn->dst_reg], ctx);
7679 
7680 	return err;
7681 }
7682 
check_store_reg(struct bpf_verifier_env * env,struct bpf_insn * insn,bool strict_alignment_once)7683 static int check_store_reg(struct bpf_verifier_env *env, struct bpf_insn *insn,
7684 			   bool strict_alignment_once)
7685 {
7686 	struct bpf_reg_state *regs = cur_regs(env);
7687 	enum bpf_reg_type dst_reg_type;
7688 	int err;
7689 
7690 	/* check src1 operand */
7691 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
7692 	if (err)
7693 		return err;
7694 
7695 	/* check src2 operand */
7696 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7697 	if (err)
7698 		return err;
7699 
7700 	dst_reg_type = regs[insn->dst_reg].type;
7701 
7702 	/* Check if (dst_reg + off) is writeable. */
7703 	err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off,
7704 			       BPF_SIZE(insn->code), BPF_WRITE, insn->src_reg,
7705 			       strict_alignment_once, false);
7706 	err = err ?: save_aux_ptr_type(env, dst_reg_type, false);
7707 
7708 	return err;
7709 }
7710 
check_atomic_rmw(struct bpf_verifier_env * env,struct bpf_insn * insn)7711 static int check_atomic_rmw(struct bpf_verifier_env *env,
7712 			    struct bpf_insn *insn)
7713 {
7714 	int load_reg;
7715 	int err;
7716 
7717 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
7718 		verbose(env, "invalid atomic operand size\n");
7719 		return -EINVAL;
7720 	}
7721 
7722 	/* check src1 operand */
7723 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
7724 	if (err)
7725 		return err;
7726 
7727 	/* check src2 operand */
7728 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7729 	if (err)
7730 		return err;
7731 
7732 	if (insn->imm == BPF_CMPXCHG) {
7733 		/* Check comparison of R0 with memory location */
7734 		const u32 aux_reg = BPF_REG_0;
7735 
7736 		err = check_reg_arg(env, aux_reg, SRC_OP);
7737 		if (err)
7738 			return err;
7739 
7740 		if (is_pointer_value(env, aux_reg)) {
7741 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
7742 			return -EACCES;
7743 		}
7744 	}
7745 
7746 	if (is_pointer_value(env, insn->src_reg)) {
7747 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
7748 		return -EACCES;
7749 	}
7750 
7751 	if (!atomic_ptr_type_ok(env, insn->dst_reg, insn)) {
7752 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
7753 			insn->dst_reg,
7754 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
7755 		return -EACCES;
7756 	}
7757 
7758 	if (insn->imm & BPF_FETCH) {
7759 		if (insn->imm == BPF_CMPXCHG)
7760 			load_reg = BPF_REG_0;
7761 		else
7762 			load_reg = insn->src_reg;
7763 
7764 		/* check and record load of old value */
7765 		err = check_reg_arg(env, load_reg, DST_OP);
7766 		if (err)
7767 			return err;
7768 	} else {
7769 		/* This instruction accesses a memory location but doesn't
7770 		 * actually load it into a register.
7771 		 */
7772 		load_reg = -1;
7773 	}
7774 
7775 	/* Check whether we can read the memory, with second call for fetch
7776 	 * case to simulate the register fill.
7777 	 */
7778 	err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off,
7779 			       BPF_SIZE(insn->code), BPF_READ, -1, true, false);
7780 	if (!err && load_reg >= 0)
7781 		err = check_mem_access(env, env->insn_idx, insn->dst_reg,
7782 				       insn->off, BPF_SIZE(insn->code),
7783 				       BPF_READ, load_reg, true, false);
7784 	if (err)
7785 		return err;
7786 
7787 	if (is_arena_reg(env, insn->dst_reg)) {
7788 		err = save_aux_ptr_type(env, PTR_TO_ARENA, false);
7789 		if (err)
7790 			return err;
7791 	}
7792 	/* Check whether we can write into the same memory. */
7793 	err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off,
7794 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
7795 	if (err)
7796 		return err;
7797 	return 0;
7798 }
7799 
check_atomic_load(struct bpf_verifier_env * env,struct bpf_insn * insn)7800 static int check_atomic_load(struct bpf_verifier_env *env,
7801 			     struct bpf_insn *insn)
7802 {
7803 	int err;
7804 
7805 	err = check_load_mem(env, insn, true, false, false, "atomic_load");
7806 	if (err)
7807 		return err;
7808 
7809 	if (!atomic_ptr_type_ok(env, insn->src_reg, insn)) {
7810 		verbose(env, "BPF_ATOMIC loads from R%d %s is not allowed\n",
7811 			insn->src_reg,
7812 			reg_type_str(env, reg_state(env, insn->src_reg)->type));
7813 		return -EACCES;
7814 	}
7815 
7816 	return 0;
7817 }
7818 
check_atomic_store(struct bpf_verifier_env * env,struct bpf_insn * insn)7819 static int check_atomic_store(struct bpf_verifier_env *env,
7820 			      struct bpf_insn *insn)
7821 {
7822 	int err;
7823 
7824 	err = check_store_reg(env, insn, true);
7825 	if (err)
7826 		return err;
7827 
7828 	if (!atomic_ptr_type_ok(env, insn->dst_reg, insn)) {
7829 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
7830 			insn->dst_reg,
7831 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
7832 		return -EACCES;
7833 	}
7834 
7835 	return 0;
7836 }
7837 
check_atomic(struct bpf_verifier_env * env,struct bpf_insn * insn)7838 static int check_atomic(struct bpf_verifier_env *env, struct bpf_insn *insn)
7839 {
7840 	switch (insn->imm) {
7841 	case BPF_ADD:
7842 	case BPF_ADD | BPF_FETCH:
7843 	case BPF_AND:
7844 	case BPF_AND | BPF_FETCH:
7845 	case BPF_OR:
7846 	case BPF_OR | BPF_FETCH:
7847 	case BPF_XOR:
7848 	case BPF_XOR | BPF_FETCH:
7849 	case BPF_XCHG:
7850 	case BPF_CMPXCHG:
7851 		return check_atomic_rmw(env, insn);
7852 	case BPF_LOAD_ACQ:
7853 		if (BPF_SIZE(insn->code) == BPF_DW && BITS_PER_LONG != 64) {
7854 			verbose(env,
7855 				"64-bit load-acquires are only supported on 64-bit arches\n");
7856 			return -EOPNOTSUPP;
7857 		}
7858 		return check_atomic_load(env, insn);
7859 	case BPF_STORE_REL:
7860 		if (BPF_SIZE(insn->code) == BPF_DW && BITS_PER_LONG != 64) {
7861 			verbose(env,
7862 				"64-bit store-releases are only supported on 64-bit arches\n");
7863 			return -EOPNOTSUPP;
7864 		}
7865 		return check_atomic_store(env, insn);
7866 	default:
7867 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n",
7868 			insn->imm);
7869 		return -EINVAL;
7870 	}
7871 }
7872 
7873 /* When register 'regno' is used to read the stack (either directly or through
7874  * a helper function) make sure that it's within stack boundary and, depending
7875  * on the access type and privileges, that all elements of the stack are
7876  * initialized.
7877  *
7878  * 'off' includes 'regno->off', but not its dynamic part (if any).
7879  *
7880  * All registers that have been spilled on the stack in the slots within the
7881  * read offsets are marked as read.
7882  */
check_stack_range_initialized(struct bpf_verifier_env * env,int regno,int off,int access_size,bool zero_size_allowed,enum bpf_access_type type,struct bpf_call_arg_meta * meta)7883 static int check_stack_range_initialized(
7884 		struct bpf_verifier_env *env, int regno, int off,
7885 		int access_size, bool zero_size_allowed,
7886 		enum bpf_access_type type, struct bpf_call_arg_meta *meta)
7887 {
7888 	struct bpf_reg_state *reg = reg_state(env, regno);
7889 	struct bpf_func_state *state = func(env, reg);
7890 	int err, min_off, max_off, i, j, slot, spi;
7891 	/* Some accesses can write anything into the stack, others are
7892 	 * read-only.
7893 	 */
7894 	bool clobber = false;
7895 
7896 	if (access_size == 0 && !zero_size_allowed) {
7897 		verbose(env, "invalid zero-sized read\n");
7898 		return -EACCES;
7899 	}
7900 
7901 	if (type == BPF_WRITE)
7902 		clobber = true;
7903 
7904 	err = check_stack_access_within_bounds(env, regno, off, access_size, type);
7905 	if (err)
7906 		return err;
7907 
7908 
7909 	if (tnum_is_const(reg->var_off)) {
7910 		min_off = max_off = reg->var_off.value + off;
7911 	} else {
7912 		/* Variable offset is prohibited for unprivileged mode for
7913 		 * simplicity since it requires corresponding support in
7914 		 * Spectre masking for stack ALU.
7915 		 * See also retrieve_ptr_limit().
7916 		 */
7917 		if (!env->bypass_spec_v1) {
7918 			char tn_buf[48];
7919 
7920 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7921 			verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
7922 				regno, tn_buf);
7923 			return -EACCES;
7924 		}
7925 		/* Only initialized buffer on stack is allowed to be accessed
7926 		 * with variable offset. With uninitialized buffer it's hard to
7927 		 * guarantee that whole memory is marked as initialized on
7928 		 * helper return since specific bounds are unknown what may
7929 		 * cause uninitialized stack leaking.
7930 		 */
7931 		if (meta && meta->raw_mode)
7932 			meta = NULL;
7933 
7934 		min_off = reg->smin_value + off;
7935 		max_off = reg->smax_value + off;
7936 	}
7937 
7938 	if (meta && meta->raw_mode) {
7939 		/* Ensure we won't be overwriting dynptrs when simulating byte
7940 		 * by byte access in check_helper_call using meta.access_size.
7941 		 * This would be a problem if we have a helper in the future
7942 		 * which takes:
7943 		 *
7944 		 *	helper(uninit_mem, len, dynptr)
7945 		 *
7946 		 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
7947 		 * may end up writing to dynptr itself when touching memory from
7948 		 * arg 1. This can be relaxed on a case by case basis for known
7949 		 * safe cases, but reject due to the possibilitiy of aliasing by
7950 		 * default.
7951 		 */
7952 		for (i = min_off; i < max_off + access_size; i++) {
7953 			int stack_off = -i - 1;
7954 
7955 			spi = __get_spi(i);
7956 			/* raw_mode may write past allocated_stack */
7957 			if (state->allocated_stack <= stack_off)
7958 				continue;
7959 			if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
7960 				verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
7961 				return -EACCES;
7962 			}
7963 		}
7964 		meta->access_size = access_size;
7965 		meta->regno = regno;
7966 		return 0;
7967 	}
7968 
7969 	for (i = min_off; i < max_off + access_size; i++) {
7970 		u8 *stype;
7971 
7972 		slot = -i - 1;
7973 		spi = slot / BPF_REG_SIZE;
7974 		if (state->allocated_stack <= slot) {
7975 			verbose(env, "allocated_stack too small\n");
7976 			return -EFAULT;
7977 		}
7978 
7979 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
7980 		if (*stype == STACK_MISC)
7981 			goto mark;
7982 		if ((*stype == STACK_ZERO) ||
7983 		    (*stype == STACK_INVALID && env->allow_uninit_stack)) {
7984 			if (clobber) {
7985 				/* helper can write anything into the stack */
7986 				*stype = STACK_MISC;
7987 			}
7988 			goto mark;
7989 		}
7990 
7991 		if (is_spilled_reg(&state->stack[spi]) &&
7992 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
7993 		     env->allow_ptr_leaks)) {
7994 			if (clobber) {
7995 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
7996 				for (j = 0; j < BPF_REG_SIZE; j++)
7997 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
7998 			}
7999 			goto mark;
8000 		}
8001 
8002 		if (tnum_is_const(reg->var_off)) {
8003 			verbose(env, "invalid read from stack R%d off %d+%d size %d\n",
8004 				regno, min_off, i - min_off, access_size);
8005 		} else {
8006 			char tn_buf[48];
8007 
8008 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
8009 			verbose(env, "invalid read from stack R%d var_off %s+%d size %d\n",
8010 				regno, tn_buf, i - min_off, access_size);
8011 		}
8012 		return -EACCES;
8013 mark:
8014 		/* reading any byte out of 8-byte 'spill_slot' will cause
8015 		 * the whole slot to be marked as 'read'
8016 		 */
8017 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
8018 			      state->stack[spi].spilled_ptr.parent,
8019 			      REG_LIVE_READ64);
8020 		/* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
8021 		 * be sure that whether stack slot is written to or not. Hence,
8022 		 * we must still conservatively propagate reads upwards even if
8023 		 * helper may write to the entire memory range.
8024 		 */
8025 	}
8026 	return 0;
8027 }
8028 
check_helper_mem_access(struct bpf_verifier_env * env,int regno,int access_size,enum bpf_access_type access_type,bool zero_size_allowed,struct bpf_call_arg_meta * meta)8029 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
8030 				   int access_size, enum bpf_access_type access_type,
8031 				   bool zero_size_allowed,
8032 				   struct bpf_call_arg_meta *meta)
8033 {
8034 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8035 	u32 *max_access;
8036 
8037 	switch (base_type(reg->type)) {
8038 	case PTR_TO_PACKET:
8039 	case PTR_TO_PACKET_META:
8040 		return check_packet_access(env, regno, reg->off, access_size,
8041 					   zero_size_allowed);
8042 	case PTR_TO_MAP_KEY:
8043 		if (access_type == BPF_WRITE) {
8044 			verbose(env, "R%d cannot write into %s\n", regno,
8045 				reg_type_str(env, reg->type));
8046 			return -EACCES;
8047 		}
8048 		return check_mem_region_access(env, regno, reg->off, access_size,
8049 					       reg->map_ptr->key_size, false);
8050 	case PTR_TO_MAP_VALUE:
8051 		if (check_map_access_type(env, regno, reg->off, access_size, access_type))
8052 			return -EACCES;
8053 		return check_map_access(env, regno, reg->off, access_size,
8054 					zero_size_allowed, ACCESS_HELPER);
8055 	case PTR_TO_MEM:
8056 		if (type_is_rdonly_mem(reg->type)) {
8057 			if (access_type == BPF_WRITE) {
8058 				verbose(env, "R%d cannot write into %s\n", regno,
8059 					reg_type_str(env, reg->type));
8060 				return -EACCES;
8061 			}
8062 		}
8063 		return check_mem_region_access(env, regno, reg->off,
8064 					       access_size, reg->mem_size,
8065 					       zero_size_allowed);
8066 	case PTR_TO_BUF:
8067 		if (type_is_rdonly_mem(reg->type)) {
8068 			if (access_type == BPF_WRITE) {
8069 				verbose(env, "R%d cannot write into %s\n", regno,
8070 					reg_type_str(env, reg->type));
8071 				return -EACCES;
8072 			}
8073 
8074 			max_access = &env->prog->aux->max_rdonly_access;
8075 		} else {
8076 			max_access = &env->prog->aux->max_rdwr_access;
8077 		}
8078 		return check_buffer_access(env, reg, regno, reg->off,
8079 					   access_size, zero_size_allowed,
8080 					   max_access);
8081 	case PTR_TO_STACK:
8082 		return check_stack_range_initialized(
8083 				env,
8084 				regno, reg->off, access_size,
8085 				zero_size_allowed, access_type, meta);
8086 	case PTR_TO_BTF_ID:
8087 		return check_ptr_to_btf_access(env, regs, regno, reg->off,
8088 					       access_size, BPF_READ, -1);
8089 	case PTR_TO_CTX:
8090 		/* in case the function doesn't know how to access the context,
8091 		 * (because we are in a program of type SYSCALL for example), we
8092 		 * can not statically check its size.
8093 		 * Dynamically check it now.
8094 		 */
8095 		if (!env->ops->convert_ctx_access) {
8096 			int offset = access_size - 1;
8097 
8098 			/* Allow zero-byte read from PTR_TO_CTX */
8099 			if (access_size == 0)
8100 				return zero_size_allowed ? 0 : -EACCES;
8101 
8102 			return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
8103 						access_type, -1, false, false);
8104 		}
8105 
8106 		fallthrough;
8107 	default: /* scalar_value or invalid ptr */
8108 		/* Allow zero-byte read from NULL, regardless of pointer type */
8109 		if (zero_size_allowed && access_size == 0 &&
8110 		    register_is_null(reg))
8111 			return 0;
8112 
8113 		verbose(env, "R%d type=%s ", regno,
8114 			reg_type_str(env, reg->type));
8115 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
8116 		return -EACCES;
8117 	}
8118 }
8119 
8120 /* verify arguments to helpers or kfuncs consisting of a pointer and an access
8121  * size.
8122  *
8123  * @regno is the register containing the access size. regno-1 is the register
8124  * containing the pointer.
8125  */
check_mem_size_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,enum bpf_access_type access_type,bool zero_size_allowed,struct bpf_call_arg_meta * meta)8126 static int check_mem_size_reg(struct bpf_verifier_env *env,
8127 			      struct bpf_reg_state *reg, u32 regno,
8128 			      enum bpf_access_type access_type,
8129 			      bool zero_size_allowed,
8130 			      struct bpf_call_arg_meta *meta)
8131 {
8132 	int err;
8133 
8134 	/* This is used to refine r0 return value bounds for helpers
8135 	 * that enforce this value as an upper bound on return values.
8136 	 * See do_refine_retval_range() for helpers that can refine
8137 	 * the return value. C type of helper is u32 so we pull register
8138 	 * bound from umax_value however, if negative verifier errors
8139 	 * out. Only upper bounds can be learned because retval is an
8140 	 * int type and negative retvals are allowed.
8141 	 */
8142 	meta->msize_max_value = reg->umax_value;
8143 
8144 	/* The register is SCALAR_VALUE; the access check happens using
8145 	 * its boundaries. For unprivileged variable accesses, disable
8146 	 * raw mode so that the program is required to initialize all
8147 	 * the memory that the helper could just partially fill up.
8148 	 */
8149 	if (!tnum_is_const(reg->var_off))
8150 		meta = NULL;
8151 
8152 	if (reg->smin_value < 0) {
8153 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
8154 			regno);
8155 		return -EACCES;
8156 	}
8157 
8158 	if (reg->umin_value == 0 && !zero_size_allowed) {
8159 		verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n",
8160 			regno, reg->umin_value, reg->umax_value);
8161 		return -EACCES;
8162 	}
8163 
8164 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
8165 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
8166 			regno);
8167 		return -EACCES;
8168 	}
8169 	err = check_helper_mem_access(env, regno - 1, reg->umax_value,
8170 				      access_type, zero_size_allowed, meta);
8171 	if (!err)
8172 		err = mark_chain_precision(env, regno);
8173 	return err;
8174 }
8175 
check_mem_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,u32 mem_size)8176 static int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
8177 			 u32 regno, u32 mem_size)
8178 {
8179 	bool may_be_null = type_may_be_null(reg->type);
8180 	struct bpf_reg_state saved_reg;
8181 	int err;
8182 
8183 	if (register_is_null(reg))
8184 		return 0;
8185 
8186 	/* Assuming that the register contains a value check if the memory
8187 	 * access is safe. Temporarily save and restore the register's state as
8188 	 * the conversion shouldn't be visible to a caller.
8189 	 */
8190 	if (may_be_null) {
8191 		saved_reg = *reg;
8192 		mark_ptr_not_null_reg(reg);
8193 	}
8194 
8195 	err = check_helper_mem_access(env, regno, mem_size, BPF_READ, true, NULL);
8196 	err = err ?: check_helper_mem_access(env, regno, mem_size, BPF_WRITE, true, NULL);
8197 
8198 	if (may_be_null)
8199 		*reg = saved_reg;
8200 
8201 	return err;
8202 }
8203 
check_kfunc_mem_size_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno)8204 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
8205 				    u32 regno)
8206 {
8207 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
8208 	bool may_be_null = type_may_be_null(mem_reg->type);
8209 	struct bpf_reg_state saved_reg;
8210 	struct bpf_call_arg_meta meta;
8211 	int err;
8212 
8213 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
8214 
8215 	memset(&meta, 0, sizeof(meta));
8216 
8217 	if (may_be_null) {
8218 		saved_reg = *mem_reg;
8219 		mark_ptr_not_null_reg(mem_reg);
8220 	}
8221 
8222 	err = check_mem_size_reg(env, reg, regno, BPF_READ, true, &meta);
8223 	err = err ?: check_mem_size_reg(env, reg, regno, BPF_WRITE, true, &meta);
8224 
8225 	if (may_be_null)
8226 		*mem_reg = saved_reg;
8227 
8228 	return err;
8229 }
8230 
8231 enum {
8232 	PROCESS_SPIN_LOCK = (1 << 0),
8233 	PROCESS_RES_LOCK  = (1 << 1),
8234 	PROCESS_LOCK_IRQ  = (1 << 2),
8235 };
8236 
8237 /* Implementation details:
8238  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
8239  * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
8240  * Two bpf_map_lookups (even with the same key) will have different reg->id.
8241  * Two separate bpf_obj_new will also have different reg->id.
8242  * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
8243  * clears reg->id after value_or_null->value transition, since the verifier only
8244  * cares about the range of access to valid map value pointer and doesn't care
8245  * about actual address of the map element.
8246  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
8247  * reg->id > 0 after value_or_null->value transition. By doing so
8248  * two bpf_map_lookups will be considered two different pointers that
8249  * point to different bpf_spin_locks. Likewise for pointers to allocated objects
8250  * returned from bpf_obj_new.
8251  * The verifier allows taking only one bpf_spin_lock at a time to avoid
8252  * dead-locks.
8253  * Since only one bpf_spin_lock is allowed the checks are simpler than
8254  * reg_is_refcounted() logic. The verifier needs to remember only
8255  * one spin_lock instead of array of acquired_refs.
8256  * env->cur_state->active_locks remembers which map value element or allocated
8257  * object got locked and clears it after bpf_spin_unlock.
8258  */
process_spin_lock(struct bpf_verifier_env * env,int regno,int flags)8259 static int process_spin_lock(struct bpf_verifier_env *env, int regno, int flags)
8260 {
8261 	bool is_lock = flags & PROCESS_SPIN_LOCK, is_res_lock = flags & PROCESS_RES_LOCK;
8262 	const char *lock_str = is_res_lock ? "bpf_res_spin" : "bpf_spin";
8263 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8264 	struct bpf_verifier_state *cur = env->cur_state;
8265 	bool is_const = tnum_is_const(reg->var_off);
8266 	bool is_irq = flags & PROCESS_LOCK_IRQ;
8267 	u64 val = reg->var_off.value;
8268 	struct bpf_map *map = NULL;
8269 	struct btf *btf = NULL;
8270 	struct btf_record *rec;
8271 	u32 spin_lock_off;
8272 	int err;
8273 
8274 	if (!is_const) {
8275 		verbose(env,
8276 			"R%d doesn't have constant offset. %s_lock has to be at the constant offset\n",
8277 			regno, lock_str);
8278 		return -EINVAL;
8279 	}
8280 	if (reg->type == PTR_TO_MAP_VALUE) {
8281 		map = reg->map_ptr;
8282 		if (!map->btf) {
8283 			verbose(env,
8284 				"map '%s' has to have BTF in order to use %s_lock\n",
8285 				map->name, lock_str);
8286 			return -EINVAL;
8287 		}
8288 	} else {
8289 		btf = reg->btf;
8290 	}
8291 
8292 	rec = reg_btf_record(reg);
8293 	if (!btf_record_has_field(rec, is_res_lock ? BPF_RES_SPIN_LOCK : BPF_SPIN_LOCK)) {
8294 		verbose(env, "%s '%s' has no valid %s_lock\n", map ? "map" : "local",
8295 			map ? map->name : "kptr", lock_str);
8296 		return -EINVAL;
8297 	}
8298 	spin_lock_off = is_res_lock ? rec->res_spin_lock_off : rec->spin_lock_off;
8299 	if (spin_lock_off != val + reg->off) {
8300 		verbose(env, "off %lld doesn't point to 'struct %s_lock' that is at %d\n",
8301 			val + reg->off, lock_str, spin_lock_off);
8302 		return -EINVAL;
8303 	}
8304 	if (is_lock) {
8305 		void *ptr;
8306 		int type;
8307 
8308 		if (map)
8309 			ptr = map;
8310 		else
8311 			ptr = btf;
8312 
8313 		if (!is_res_lock && cur->active_locks) {
8314 			if (find_lock_state(env->cur_state, REF_TYPE_LOCK, 0, NULL)) {
8315 				verbose(env,
8316 					"Locking two bpf_spin_locks are not allowed\n");
8317 				return -EINVAL;
8318 			}
8319 		} else if (is_res_lock && cur->active_locks) {
8320 			if (find_lock_state(env->cur_state, REF_TYPE_RES_LOCK | REF_TYPE_RES_LOCK_IRQ, reg->id, ptr)) {
8321 				verbose(env, "Acquiring the same lock again, AA deadlock detected\n");
8322 				return -EINVAL;
8323 			}
8324 		}
8325 
8326 		if (is_res_lock && is_irq)
8327 			type = REF_TYPE_RES_LOCK_IRQ;
8328 		else if (is_res_lock)
8329 			type = REF_TYPE_RES_LOCK;
8330 		else
8331 			type = REF_TYPE_LOCK;
8332 		err = acquire_lock_state(env, env->insn_idx, type, reg->id, ptr);
8333 		if (err < 0) {
8334 			verbose(env, "Failed to acquire lock state\n");
8335 			return err;
8336 		}
8337 	} else {
8338 		void *ptr;
8339 		int type;
8340 
8341 		if (map)
8342 			ptr = map;
8343 		else
8344 			ptr = btf;
8345 
8346 		if (!cur->active_locks) {
8347 			verbose(env, "%s_unlock without taking a lock\n", lock_str);
8348 			return -EINVAL;
8349 		}
8350 
8351 		if (is_res_lock && is_irq)
8352 			type = REF_TYPE_RES_LOCK_IRQ;
8353 		else if (is_res_lock)
8354 			type = REF_TYPE_RES_LOCK;
8355 		else
8356 			type = REF_TYPE_LOCK;
8357 		if (!find_lock_state(cur, type, reg->id, ptr)) {
8358 			verbose(env, "%s_unlock of different lock\n", lock_str);
8359 			return -EINVAL;
8360 		}
8361 		if (reg->id != cur->active_lock_id || ptr != cur->active_lock_ptr) {
8362 			verbose(env, "%s_unlock cannot be out of order\n", lock_str);
8363 			return -EINVAL;
8364 		}
8365 		if (release_lock_state(cur, type, reg->id, ptr)) {
8366 			verbose(env, "%s_unlock of different lock\n", lock_str);
8367 			return -EINVAL;
8368 		}
8369 
8370 		invalidate_non_owning_refs(env);
8371 	}
8372 	return 0;
8373 }
8374 
process_timer_func(struct bpf_verifier_env * env,int regno,struct bpf_call_arg_meta * meta)8375 static int process_timer_func(struct bpf_verifier_env *env, int regno,
8376 			      struct bpf_call_arg_meta *meta)
8377 {
8378 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8379 	bool is_const = tnum_is_const(reg->var_off);
8380 	struct bpf_map *map = reg->map_ptr;
8381 	u64 val = reg->var_off.value;
8382 
8383 	if (!is_const) {
8384 		verbose(env,
8385 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
8386 			regno);
8387 		return -EINVAL;
8388 	}
8389 	if (!map->btf) {
8390 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
8391 			map->name);
8392 		return -EINVAL;
8393 	}
8394 	if (!btf_record_has_field(map->record, BPF_TIMER)) {
8395 		verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
8396 		return -EINVAL;
8397 	}
8398 	if (map->record->timer_off != val + reg->off) {
8399 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
8400 			val + reg->off, map->record->timer_off);
8401 		return -EINVAL;
8402 	}
8403 	if (meta->map_ptr) {
8404 		verifier_bug(env, "Two map pointers in a timer helper");
8405 		return -EFAULT;
8406 	}
8407 	meta->map_uid = reg->map_uid;
8408 	meta->map_ptr = map;
8409 	return 0;
8410 }
8411 
process_wq_func(struct bpf_verifier_env * env,int regno,struct bpf_kfunc_call_arg_meta * meta)8412 static int process_wq_func(struct bpf_verifier_env *env, int regno,
8413 			   struct bpf_kfunc_call_arg_meta *meta)
8414 {
8415 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8416 	struct bpf_map *map = reg->map_ptr;
8417 	u64 val = reg->var_off.value;
8418 
8419 	if (map->record->wq_off != val + reg->off) {
8420 		verbose(env, "off %lld doesn't point to 'struct bpf_wq' that is at %d\n",
8421 			val + reg->off, map->record->wq_off);
8422 		return -EINVAL;
8423 	}
8424 	meta->map.uid = reg->map_uid;
8425 	meta->map.ptr = map;
8426 	return 0;
8427 }
8428 
process_kptr_func(struct bpf_verifier_env * env,int regno,struct bpf_call_arg_meta * meta)8429 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
8430 			     struct bpf_call_arg_meta *meta)
8431 {
8432 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8433 	struct btf_field *kptr_field;
8434 	struct bpf_map *map_ptr;
8435 	struct btf_record *rec;
8436 	u32 kptr_off;
8437 
8438 	if (type_is_ptr_alloc_obj(reg->type)) {
8439 		rec = reg_btf_record(reg);
8440 	} else { /* PTR_TO_MAP_VALUE */
8441 		map_ptr = reg->map_ptr;
8442 		if (!map_ptr->btf) {
8443 			verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
8444 				map_ptr->name);
8445 			return -EINVAL;
8446 		}
8447 		rec = map_ptr->record;
8448 		meta->map_ptr = map_ptr;
8449 	}
8450 
8451 	if (!tnum_is_const(reg->var_off)) {
8452 		verbose(env,
8453 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
8454 			regno);
8455 		return -EINVAL;
8456 	}
8457 
8458 	if (!btf_record_has_field(rec, BPF_KPTR)) {
8459 		verbose(env, "R%d has no valid kptr\n", regno);
8460 		return -EINVAL;
8461 	}
8462 
8463 	kptr_off = reg->off + reg->var_off.value;
8464 	kptr_field = btf_record_find(rec, kptr_off, BPF_KPTR);
8465 	if (!kptr_field) {
8466 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
8467 		return -EACCES;
8468 	}
8469 	if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) {
8470 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
8471 		return -EACCES;
8472 	}
8473 	meta->kptr_field = kptr_field;
8474 	return 0;
8475 }
8476 
8477 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
8478  * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
8479  *
8480  * In both cases we deal with the first 8 bytes, but need to mark the next 8
8481  * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
8482  * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
8483  *
8484  * Mutability of bpf_dynptr is at two levels, one is at the level of struct
8485  * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
8486  * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
8487  * mutate the view of the dynptr and also possibly destroy it. In the latter
8488  * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
8489  * memory that dynptr points to.
8490  *
8491  * The verifier will keep track both levels of mutation (bpf_dynptr's in
8492  * reg->type and the memory's in reg->dynptr.type), but there is no support for
8493  * readonly dynptr view yet, hence only the first case is tracked and checked.
8494  *
8495  * This is consistent with how C applies the const modifier to a struct object,
8496  * where the pointer itself inside bpf_dynptr becomes const but not what it
8497  * points to.
8498  *
8499  * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
8500  * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
8501  */
process_dynptr_func(struct bpf_verifier_env * env,int regno,int insn_idx,enum bpf_arg_type arg_type,int clone_ref_obj_id)8502 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
8503 			       enum bpf_arg_type arg_type, int clone_ref_obj_id)
8504 {
8505 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8506 	int err;
8507 
8508 	if (reg->type != PTR_TO_STACK && reg->type != CONST_PTR_TO_DYNPTR) {
8509 		verbose(env,
8510 			"arg#%d expected pointer to stack or const struct bpf_dynptr\n",
8511 			regno - 1);
8512 		return -EINVAL;
8513 	}
8514 
8515 	/* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
8516 	 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
8517 	 */
8518 	if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
8519 		verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
8520 		return -EFAULT;
8521 	}
8522 
8523 	/*  MEM_UNINIT - Points to memory that is an appropriate candidate for
8524 	 *		 constructing a mutable bpf_dynptr object.
8525 	 *
8526 	 *		 Currently, this is only possible with PTR_TO_STACK
8527 	 *		 pointing to a region of at least 16 bytes which doesn't
8528 	 *		 contain an existing bpf_dynptr.
8529 	 *
8530 	 *  MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
8531 	 *		 mutated or destroyed. However, the memory it points to
8532 	 *		 may be mutated.
8533 	 *
8534 	 *  None       - Points to a initialized dynptr that can be mutated and
8535 	 *		 destroyed, including mutation of the memory it points
8536 	 *		 to.
8537 	 */
8538 	if (arg_type & MEM_UNINIT) {
8539 		int i;
8540 
8541 		if (!is_dynptr_reg_valid_uninit(env, reg)) {
8542 			verbose(env, "Dynptr has to be an uninitialized dynptr\n");
8543 			return -EINVAL;
8544 		}
8545 
8546 		/* we write BPF_DW bits (8 bytes) at a time */
8547 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
8548 			err = check_mem_access(env, insn_idx, regno,
8549 					       i, BPF_DW, BPF_WRITE, -1, false, false);
8550 			if (err)
8551 				return err;
8552 		}
8553 
8554 		err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
8555 	} else /* MEM_RDONLY and None case from above */ {
8556 		/* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
8557 		if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
8558 			verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
8559 			return -EINVAL;
8560 		}
8561 
8562 		if (!is_dynptr_reg_valid_init(env, reg)) {
8563 			verbose(env,
8564 				"Expected an initialized dynptr as arg #%d\n",
8565 				regno - 1);
8566 			return -EINVAL;
8567 		}
8568 
8569 		/* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
8570 		if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
8571 			verbose(env,
8572 				"Expected a dynptr of type %s as arg #%d\n",
8573 				dynptr_type_str(arg_to_dynptr_type(arg_type)), regno - 1);
8574 			return -EINVAL;
8575 		}
8576 
8577 		err = mark_dynptr_read(env, reg);
8578 	}
8579 	return err;
8580 }
8581 
iter_ref_obj_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int spi)8582 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
8583 {
8584 	struct bpf_func_state *state = func(env, reg);
8585 
8586 	return state->stack[spi].spilled_ptr.ref_obj_id;
8587 }
8588 
is_iter_kfunc(struct bpf_kfunc_call_arg_meta * meta)8589 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
8590 {
8591 	return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
8592 }
8593 
is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta * meta)8594 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
8595 {
8596 	return meta->kfunc_flags & KF_ITER_NEW;
8597 }
8598 
is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta * meta)8599 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
8600 {
8601 	return meta->kfunc_flags & KF_ITER_NEXT;
8602 }
8603 
is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta * meta)8604 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
8605 {
8606 	return meta->kfunc_flags & KF_ITER_DESTROY;
8607 }
8608 
is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta * meta,int arg_idx,const struct btf_param * arg)8609 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg_idx,
8610 			      const struct btf_param *arg)
8611 {
8612 	/* btf_check_iter_kfuncs() guarantees that first argument of any iter
8613 	 * kfunc is iter state pointer
8614 	 */
8615 	if (is_iter_kfunc(meta))
8616 		return arg_idx == 0;
8617 
8618 	/* iter passed as an argument to a generic kfunc */
8619 	return btf_param_match_suffix(meta->btf, arg, "__iter");
8620 }
8621 
process_iter_arg(struct bpf_verifier_env * env,int regno,int insn_idx,struct bpf_kfunc_call_arg_meta * meta)8622 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
8623 			    struct bpf_kfunc_call_arg_meta *meta)
8624 {
8625 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8626 	const struct btf_type *t;
8627 	int spi, err, i, nr_slots, btf_id;
8628 
8629 	if (reg->type != PTR_TO_STACK) {
8630 		verbose(env, "arg#%d expected pointer to an iterator on stack\n", regno - 1);
8631 		return -EINVAL;
8632 	}
8633 
8634 	/* For iter_{new,next,destroy} functions, btf_check_iter_kfuncs()
8635 	 * ensures struct convention, so we wouldn't need to do any BTF
8636 	 * validation here. But given iter state can be passed as a parameter
8637 	 * to any kfunc, if arg has "__iter" suffix, we need to be a bit more
8638 	 * conservative here.
8639 	 */
8640 	btf_id = btf_check_iter_arg(meta->btf, meta->func_proto, regno - 1);
8641 	if (btf_id < 0) {
8642 		verbose(env, "expected valid iter pointer as arg #%d\n", regno - 1);
8643 		return -EINVAL;
8644 	}
8645 	t = btf_type_by_id(meta->btf, btf_id);
8646 	nr_slots = t->size / BPF_REG_SIZE;
8647 
8648 	if (is_iter_new_kfunc(meta)) {
8649 		/* bpf_iter_<type>_new() expects pointer to uninit iter state */
8650 		if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
8651 			verbose(env, "expected uninitialized iter_%s as arg #%d\n",
8652 				iter_type_str(meta->btf, btf_id), regno - 1);
8653 			return -EINVAL;
8654 		}
8655 
8656 		for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
8657 			err = check_mem_access(env, insn_idx, regno,
8658 					       i, BPF_DW, BPF_WRITE, -1, false, false);
8659 			if (err)
8660 				return err;
8661 		}
8662 
8663 		err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots);
8664 		if (err)
8665 			return err;
8666 	} else {
8667 		/* iter_next() or iter_destroy(), as well as any kfunc
8668 		 * accepting iter argument, expect initialized iter state
8669 		 */
8670 		err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots);
8671 		switch (err) {
8672 		case 0:
8673 			break;
8674 		case -EINVAL:
8675 			verbose(env, "expected an initialized iter_%s as arg #%d\n",
8676 				iter_type_str(meta->btf, btf_id), regno - 1);
8677 			return err;
8678 		case -EPROTO:
8679 			verbose(env, "expected an RCU CS when using %s\n", meta->func_name);
8680 			return err;
8681 		default:
8682 			return err;
8683 		}
8684 
8685 		spi = iter_get_spi(env, reg, nr_slots);
8686 		if (spi < 0)
8687 			return spi;
8688 
8689 		err = mark_iter_read(env, reg, spi, nr_slots);
8690 		if (err)
8691 			return err;
8692 
8693 		/* remember meta->iter info for process_iter_next_call() */
8694 		meta->iter.spi = spi;
8695 		meta->iter.frameno = reg->frameno;
8696 		meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
8697 
8698 		if (is_iter_destroy_kfunc(meta)) {
8699 			err = unmark_stack_slots_iter(env, reg, nr_slots);
8700 			if (err)
8701 				return err;
8702 		}
8703 	}
8704 
8705 	return 0;
8706 }
8707 
8708 /* Look for a previous loop entry at insn_idx: nearest parent state
8709  * stopped at insn_idx with callsites matching those in cur->frame.
8710  */
find_prev_entry(struct bpf_verifier_env * env,struct bpf_verifier_state * cur,int insn_idx)8711 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env,
8712 						  struct bpf_verifier_state *cur,
8713 						  int insn_idx)
8714 {
8715 	struct bpf_verifier_state_list *sl;
8716 	struct bpf_verifier_state *st;
8717 	struct list_head *pos, *head;
8718 
8719 	/* Explored states are pushed in stack order, most recent states come first */
8720 	head = explored_state(env, insn_idx);
8721 	list_for_each(pos, head) {
8722 		sl = container_of(pos, struct bpf_verifier_state_list, node);
8723 		/* If st->branches != 0 state is a part of current DFS verification path,
8724 		 * hence cur & st for a loop.
8725 		 */
8726 		st = &sl->state;
8727 		if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) &&
8728 		    st->dfs_depth < cur->dfs_depth)
8729 			return st;
8730 	}
8731 
8732 	return NULL;
8733 }
8734 
8735 static void reset_idmap_scratch(struct bpf_verifier_env *env);
8736 static bool regs_exact(const struct bpf_reg_state *rold,
8737 		       const struct bpf_reg_state *rcur,
8738 		       struct bpf_idmap *idmap);
8739 
maybe_widen_reg(struct bpf_verifier_env * env,struct bpf_reg_state * rold,struct bpf_reg_state * rcur,struct bpf_idmap * idmap)8740 static void maybe_widen_reg(struct bpf_verifier_env *env,
8741 			    struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
8742 			    struct bpf_idmap *idmap)
8743 {
8744 	if (rold->type != SCALAR_VALUE)
8745 		return;
8746 	if (rold->type != rcur->type)
8747 		return;
8748 	if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap))
8749 		return;
8750 	__mark_reg_unknown(env, rcur);
8751 }
8752 
widen_imprecise_scalars(struct bpf_verifier_env * env,struct bpf_verifier_state * old,struct bpf_verifier_state * cur)8753 static int widen_imprecise_scalars(struct bpf_verifier_env *env,
8754 				   struct bpf_verifier_state *old,
8755 				   struct bpf_verifier_state *cur)
8756 {
8757 	struct bpf_func_state *fold, *fcur;
8758 	int i, fr;
8759 
8760 	reset_idmap_scratch(env);
8761 	for (fr = old->curframe; fr >= 0; fr--) {
8762 		fold = old->frame[fr];
8763 		fcur = cur->frame[fr];
8764 
8765 		for (i = 0; i < MAX_BPF_REG; i++)
8766 			maybe_widen_reg(env,
8767 					&fold->regs[i],
8768 					&fcur->regs[i],
8769 					&env->idmap_scratch);
8770 
8771 		for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) {
8772 			if (!is_spilled_reg(&fold->stack[i]) ||
8773 			    !is_spilled_reg(&fcur->stack[i]))
8774 				continue;
8775 
8776 			maybe_widen_reg(env,
8777 					&fold->stack[i].spilled_ptr,
8778 					&fcur->stack[i].spilled_ptr,
8779 					&env->idmap_scratch);
8780 		}
8781 	}
8782 	return 0;
8783 }
8784 
get_iter_from_state(struct bpf_verifier_state * cur_st,struct bpf_kfunc_call_arg_meta * meta)8785 static struct bpf_reg_state *get_iter_from_state(struct bpf_verifier_state *cur_st,
8786 						 struct bpf_kfunc_call_arg_meta *meta)
8787 {
8788 	int iter_frameno = meta->iter.frameno;
8789 	int iter_spi = meta->iter.spi;
8790 
8791 	return &cur_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
8792 }
8793 
8794 /* process_iter_next_call() is called when verifier gets to iterator's next
8795  * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
8796  * to it as just "iter_next()" in comments below.
8797  *
8798  * BPF verifier relies on a crucial contract for any iter_next()
8799  * implementation: it should *eventually* return NULL, and once that happens
8800  * it should keep returning NULL. That is, once iterator exhausts elements to
8801  * iterate, it should never reset or spuriously return new elements.
8802  *
8803  * With the assumption of such contract, process_iter_next_call() simulates
8804  * a fork in the verifier state to validate loop logic correctness and safety
8805  * without having to simulate infinite amount of iterations.
8806  *
8807  * In current state, we first assume that iter_next() returned NULL and
8808  * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
8809  * conditions we should not form an infinite loop and should eventually reach
8810  * exit.
8811  *
8812  * Besides that, we also fork current state and enqueue it for later
8813  * verification. In a forked state we keep iterator state as ACTIVE
8814  * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
8815  * also bump iteration depth to prevent erroneous infinite loop detection
8816  * later on (see iter_active_depths_differ() comment for details). In this
8817  * state we assume that we'll eventually loop back to another iter_next()
8818  * calls (it could be in exactly same location or in some other instruction,
8819  * it doesn't matter, we don't make any unnecessary assumptions about this,
8820  * everything revolves around iterator state in a stack slot, not which
8821  * instruction is calling iter_next()). When that happens, we either will come
8822  * to iter_next() with equivalent state and can conclude that next iteration
8823  * will proceed in exactly the same way as we just verified, so it's safe to
8824  * assume that loop converges. If not, we'll go on another iteration
8825  * simulation with a different input state, until all possible starting states
8826  * are validated or we reach maximum number of instructions limit.
8827  *
8828  * This way, we will either exhaustively discover all possible input states
8829  * that iterator loop can start with and eventually will converge, or we'll
8830  * effectively regress into bounded loop simulation logic and either reach
8831  * maximum number of instructions if loop is not provably convergent, or there
8832  * is some statically known limit on number of iterations (e.g., if there is
8833  * an explicit `if n > 100 then break;` statement somewhere in the loop).
8834  *
8835  * Iteration convergence logic in is_state_visited() relies on exact
8836  * states comparison, which ignores read and precision marks.
8837  * This is necessary because read and precision marks are not finalized
8838  * while in the loop. Exact comparison might preclude convergence for
8839  * simple programs like below:
8840  *
8841  *     i = 0;
8842  *     while(iter_next(&it))
8843  *       i++;
8844  *
8845  * At each iteration step i++ would produce a new distinct state and
8846  * eventually instruction processing limit would be reached.
8847  *
8848  * To avoid such behavior speculatively forget (widen) range for
8849  * imprecise scalar registers, if those registers were not precise at the
8850  * end of the previous iteration and do not match exactly.
8851  *
8852  * This is a conservative heuristic that allows to verify wide range of programs,
8853  * however it precludes verification of programs that conjure an
8854  * imprecise value on the first loop iteration and use it as precise on a second.
8855  * For example, the following safe program would fail to verify:
8856  *
8857  *     struct bpf_num_iter it;
8858  *     int arr[10];
8859  *     int i = 0, a = 0;
8860  *     bpf_iter_num_new(&it, 0, 10);
8861  *     while (bpf_iter_num_next(&it)) {
8862  *       if (a == 0) {
8863  *         a = 1;
8864  *         i = 7; // Because i changed verifier would forget
8865  *                // it's range on second loop entry.
8866  *       } else {
8867  *         arr[i] = 42; // This would fail to verify.
8868  *       }
8869  *     }
8870  *     bpf_iter_num_destroy(&it);
8871  */
process_iter_next_call(struct bpf_verifier_env * env,int insn_idx,struct bpf_kfunc_call_arg_meta * meta)8872 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
8873 				  struct bpf_kfunc_call_arg_meta *meta)
8874 {
8875 	struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
8876 	struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
8877 	struct bpf_reg_state *cur_iter, *queued_iter;
8878 
8879 	BTF_TYPE_EMIT(struct bpf_iter);
8880 
8881 	cur_iter = get_iter_from_state(cur_st, meta);
8882 
8883 	if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
8884 	    cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
8885 		verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
8886 			cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
8887 		return -EFAULT;
8888 	}
8889 
8890 	if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
8891 		/* Because iter_next() call is a checkpoint is_state_visitied()
8892 		 * should guarantee parent state with same call sites and insn_idx.
8893 		 */
8894 		if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx ||
8895 		    !same_callsites(cur_st->parent, cur_st)) {
8896 			verbose(env, "bug: bad parent state for iter next call");
8897 			return -EFAULT;
8898 		}
8899 		/* Note cur_st->parent in the call below, it is necessary to skip
8900 		 * checkpoint created for cur_st by is_state_visited()
8901 		 * right at this instruction.
8902 		 */
8903 		prev_st = find_prev_entry(env, cur_st->parent, insn_idx);
8904 		/* branch out active iter state */
8905 		queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
8906 		if (!queued_st)
8907 			return -ENOMEM;
8908 
8909 		queued_iter = get_iter_from_state(queued_st, meta);
8910 		queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
8911 		queued_iter->iter.depth++;
8912 		if (prev_st)
8913 			widen_imprecise_scalars(env, prev_st, queued_st);
8914 
8915 		queued_fr = queued_st->frame[queued_st->curframe];
8916 		mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
8917 	}
8918 
8919 	/* switch to DRAINED state, but keep the depth unchanged */
8920 	/* mark current iter state as drained and assume returned NULL */
8921 	cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
8922 	__mark_reg_const_zero(env, &cur_fr->regs[BPF_REG_0]);
8923 
8924 	return 0;
8925 }
8926 
arg_type_is_mem_size(enum bpf_arg_type type)8927 static bool arg_type_is_mem_size(enum bpf_arg_type type)
8928 {
8929 	return type == ARG_CONST_SIZE ||
8930 	       type == ARG_CONST_SIZE_OR_ZERO;
8931 }
8932 
arg_type_is_raw_mem(enum bpf_arg_type type)8933 static bool arg_type_is_raw_mem(enum bpf_arg_type type)
8934 {
8935 	return base_type(type) == ARG_PTR_TO_MEM &&
8936 	       type & MEM_UNINIT;
8937 }
8938 
arg_type_is_release(enum bpf_arg_type type)8939 static bool arg_type_is_release(enum bpf_arg_type type)
8940 {
8941 	return type & OBJ_RELEASE;
8942 }
8943 
arg_type_is_dynptr(enum bpf_arg_type type)8944 static bool arg_type_is_dynptr(enum bpf_arg_type type)
8945 {
8946 	return base_type(type) == ARG_PTR_TO_DYNPTR;
8947 }
8948 
resolve_map_arg_type(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_arg_type * arg_type)8949 static int resolve_map_arg_type(struct bpf_verifier_env *env,
8950 				 const struct bpf_call_arg_meta *meta,
8951 				 enum bpf_arg_type *arg_type)
8952 {
8953 	if (!meta->map_ptr) {
8954 		/* kernel subsystem misconfigured verifier */
8955 		verbose(env, "invalid map_ptr to access map->type\n");
8956 		return -EACCES;
8957 	}
8958 
8959 	switch (meta->map_ptr->map_type) {
8960 	case BPF_MAP_TYPE_SOCKMAP:
8961 	case BPF_MAP_TYPE_SOCKHASH:
8962 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
8963 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
8964 		} else {
8965 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
8966 			return -EINVAL;
8967 		}
8968 		break;
8969 	case BPF_MAP_TYPE_BLOOM_FILTER:
8970 		if (meta->func_id == BPF_FUNC_map_peek_elem)
8971 			*arg_type = ARG_PTR_TO_MAP_VALUE;
8972 		break;
8973 	default:
8974 		break;
8975 	}
8976 	return 0;
8977 }
8978 
8979 struct bpf_reg_types {
8980 	const enum bpf_reg_type types[10];
8981 	u32 *btf_id;
8982 };
8983 
8984 static const struct bpf_reg_types sock_types = {
8985 	.types = {
8986 		PTR_TO_SOCK_COMMON,
8987 		PTR_TO_SOCKET,
8988 		PTR_TO_TCP_SOCK,
8989 		PTR_TO_XDP_SOCK,
8990 	},
8991 };
8992 
8993 #ifdef CONFIG_NET
8994 static const struct bpf_reg_types btf_id_sock_common_types = {
8995 	.types = {
8996 		PTR_TO_SOCK_COMMON,
8997 		PTR_TO_SOCKET,
8998 		PTR_TO_TCP_SOCK,
8999 		PTR_TO_XDP_SOCK,
9000 		PTR_TO_BTF_ID,
9001 		PTR_TO_BTF_ID | PTR_TRUSTED,
9002 	},
9003 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
9004 };
9005 #endif
9006 
9007 static const struct bpf_reg_types mem_types = {
9008 	.types = {
9009 		PTR_TO_STACK,
9010 		PTR_TO_PACKET,
9011 		PTR_TO_PACKET_META,
9012 		PTR_TO_MAP_KEY,
9013 		PTR_TO_MAP_VALUE,
9014 		PTR_TO_MEM,
9015 		PTR_TO_MEM | MEM_RINGBUF,
9016 		PTR_TO_BUF,
9017 		PTR_TO_BTF_ID | PTR_TRUSTED,
9018 	},
9019 };
9020 
9021 static const struct bpf_reg_types spin_lock_types = {
9022 	.types = {
9023 		PTR_TO_MAP_VALUE,
9024 		PTR_TO_BTF_ID | MEM_ALLOC,
9025 	}
9026 };
9027 
9028 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
9029 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
9030 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
9031 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
9032 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
9033 static const struct bpf_reg_types btf_ptr_types = {
9034 	.types = {
9035 		PTR_TO_BTF_ID,
9036 		PTR_TO_BTF_ID | PTR_TRUSTED,
9037 		PTR_TO_BTF_ID | MEM_RCU,
9038 	},
9039 };
9040 static const struct bpf_reg_types percpu_btf_ptr_types = {
9041 	.types = {
9042 		PTR_TO_BTF_ID | MEM_PERCPU,
9043 		PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU,
9044 		PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
9045 	}
9046 };
9047 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
9048 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
9049 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
9050 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
9051 static const struct bpf_reg_types kptr_xchg_dest_types = {
9052 	.types = {
9053 		PTR_TO_MAP_VALUE,
9054 		PTR_TO_BTF_ID | MEM_ALLOC
9055 	}
9056 };
9057 static const struct bpf_reg_types dynptr_types = {
9058 	.types = {
9059 		PTR_TO_STACK,
9060 		CONST_PTR_TO_DYNPTR,
9061 	}
9062 };
9063 
9064 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
9065 	[ARG_PTR_TO_MAP_KEY]		= &mem_types,
9066 	[ARG_PTR_TO_MAP_VALUE]		= &mem_types,
9067 	[ARG_CONST_SIZE]		= &scalar_types,
9068 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
9069 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
9070 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
9071 	[ARG_PTR_TO_CTX]		= &context_types,
9072 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
9073 #ifdef CONFIG_NET
9074 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
9075 #endif
9076 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
9077 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
9078 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
9079 	[ARG_PTR_TO_MEM]		= &mem_types,
9080 	[ARG_PTR_TO_RINGBUF_MEM]	= &ringbuf_mem_types,
9081 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
9082 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
9083 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
9084 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
9085 	[ARG_PTR_TO_TIMER]		= &timer_types,
9086 	[ARG_KPTR_XCHG_DEST]		= &kptr_xchg_dest_types,
9087 	[ARG_PTR_TO_DYNPTR]		= &dynptr_types,
9088 };
9089 
check_reg_type(struct bpf_verifier_env * env,u32 regno,enum bpf_arg_type arg_type,const u32 * arg_btf_id,struct bpf_call_arg_meta * meta)9090 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
9091 			  enum bpf_arg_type arg_type,
9092 			  const u32 *arg_btf_id,
9093 			  struct bpf_call_arg_meta *meta)
9094 {
9095 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
9096 	enum bpf_reg_type expected, type = reg->type;
9097 	const struct bpf_reg_types *compatible;
9098 	int i, j;
9099 
9100 	compatible = compatible_reg_types[base_type(arg_type)];
9101 	if (!compatible) {
9102 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
9103 		return -EFAULT;
9104 	}
9105 
9106 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
9107 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
9108 	 *
9109 	 * Same for MAYBE_NULL:
9110 	 *
9111 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
9112 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
9113 	 *
9114 	 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
9115 	 *
9116 	 * Therefore we fold these flags depending on the arg_type before comparison.
9117 	 */
9118 	if (arg_type & MEM_RDONLY)
9119 		type &= ~MEM_RDONLY;
9120 	if (arg_type & PTR_MAYBE_NULL)
9121 		type &= ~PTR_MAYBE_NULL;
9122 	if (base_type(arg_type) == ARG_PTR_TO_MEM)
9123 		type &= ~DYNPTR_TYPE_FLAG_MASK;
9124 
9125 	/* Local kptr types are allowed as the source argument of bpf_kptr_xchg */
9126 	if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type) && regno == BPF_REG_2) {
9127 		type &= ~MEM_ALLOC;
9128 		type &= ~MEM_PERCPU;
9129 	}
9130 
9131 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
9132 		expected = compatible->types[i];
9133 		if (expected == NOT_INIT)
9134 			break;
9135 
9136 		if (type == expected)
9137 			goto found;
9138 	}
9139 
9140 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
9141 	for (j = 0; j + 1 < i; j++)
9142 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
9143 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
9144 	return -EACCES;
9145 
9146 found:
9147 	if (base_type(reg->type) != PTR_TO_BTF_ID)
9148 		return 0;
9149 
9150 	if (compatible == &mem_types) {
9151 		if (!(arg_type & MEM_RDONLY)) {
9152 			verbose(env,
9153 				"%s() may write into memory pointed by R%d type=%s\n",
9154 				func_id_name(meta->func_id),
9155 				regno, reg_type_str(env, reg->type));
9156 			return -EACCES;
9157 		}
9158 		return 0;
9159 	}
9160 
9161 	switch ((int)reg->type) {
9162 	case PTR_TO_BTF_ID:
9163 	case PTR_TO_BTF_ID | PTR_TRUSTED:
9164 	case PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL:
9165 	case PTR_TO_BTF_ID | MEM_RCU:
9166 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
9167 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
9168 	{
9169 		/* For bpf_sk_release, it needs to match against first member
9170 		 * 'struct sock_common', hence make an exception for it. This
9171 		 * allows bpf_sk_release to work for multiple socket types.
9172 		 */
9173 		bool strict_type_match = arg_type_is_release(arg_type) &&
9174 					 meta->func_id != BPF_FUNC_sk_release;
9175 
9176 		if (type_may_be_null(reg->type) &&
9177 		    (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
9178 			verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
9179 			return -EACCES;
9180 		}
9181 
9182 		if (!arg_btf_id) {
9183 			if (!compatible->btf_id) {
9184 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
9185 				return -EFAULT;
9186 			}
9187 			arg_btf_id = compatible->btf_id;
9188 		}
9189 
9190 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
9191 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
9192 				return -EACCES;
9193 		} else {
9194 			if (arg_btf_id == BPF_PTR_POISON) {
9195 				verbose(env, "verifier internal error:");
9196 				verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
9197 					regno);
9198 				return -EACCES;
9199 			}
9200 
9201 			if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
9202 						  btf_vmlinux, *arg_btf_id,
9203 						  strict_type_match)) {
9204 				verbose(env, "R%d is of type %s but %s is expected\n",
9205 					regno, btf_type_name(reg->btf, reg->btf_id),
9206 					btf_type_name(btf_vmlinux, *arg_btf_id));
9207 				return -EACCES;
9208 			}
9209 		}
9210 		break;
9211 	}
9212 	case PTR_TO_BTF_ID | MEM_ALLOC:
9213 	case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC:
9214 		if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
9215 		    meta->func_id != BPF_FUNC_kptr_xchg) {
9216 			verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
9217 			return -EFAULT;
9218 		}
9219 		/* Check if local kptr in src arg matches kptr in dst arg */
9220 		if (meta->func_id == BPF_FUNC_kptr_xchg && regno == BPF_REG_2) {
9221 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
9222 				return -EACCES;
9223 		}
9224 		break;
9225 	case PTR_TO_BTF_ID | MEM_PERCPU:
9226 	case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU:
9227 	case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
9228 		/* Handled by helper specific checks */
9229 		break;
9230 	default:
9231 		verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
9232 		return -EFAULT;
9233 	}
9234 	return 0;
9235 }
9236 
9237 static struct btf_field *
reg_find_field_offset(const struct bpf_reg_state * reg,s32 off,u32 fields)9238 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
9239 {
9240 	struct btf_field *field;
9241 	struct btf_record *rec;
9242 
9243 	rec = reg_btf_record(reg);
9244 	if (!rec)
9245 		return NULL;
9246 
9247 	field = btf_record_find(rec, off, fields);
9248 	if (!field)
9249 		return NULL;
9250 
9251 	return field;
9252 }
9253 
check_func_arg_reg_off(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,enum bpf_arg_type arg_type)9254 static int check_func_arg_reg_off(struct bpf_verifier_env *env,
9255 				  const struct bpf_reg_state *reg, int regno,
9256 				  enum bpf_arg_type arg_type)
9257 {
9258 	u32 type = reg->type;
9259 
9260 	/* When referenced register is passed to release function, its fixed
9261 	 * offset must be 0.
9262 	 *
9263 	 * We will check arg_type_is_release reg has ref_obj_id when storing
9264 	 * meta->release_regno.
9265 	 */
9266 	if (arg_type_is_release(arg_type)) {
9267 		/* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
9268 		 * may not directly point to the object being released, but to
9269 		 * dynptr pointing to such object, which might be at some offset
9270 		 * on the stack. In that case, we simply to fallback to the
9271 		 * default handling.
9272 		 */
9273 		if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
9274 			return 0;
9275 
9276 		/* Doing check_ptr_off_reg check for the offset will catch this
9277 		 * because fixed_off_ok is false, but checking here allows us
9278 		 * to give the user a better error message.
9279 		 */
9280 		if (reg->off) {
9281 			verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
9282 				regno);
9283 			return -EINVAL;
9284 		}
9285 		return __check_ptr_off_reg(env, reg, regno, false);
9286 	}
9287 
9288 	switch (type) {
9289 	/* Pointer types where both fixed and variable offset is explicitly allowed: */
9290 	case PTR_TO_STACK:
9291 	case PTR_TO_PACKET:
9292 	case PTR_TO_PACKET_META:
9293 	case PTR_TO_MAP_KEY:
9294 	case PTR_TO_MAP_VALUE:
9295 	case PTR_TO_MEM:
9296 	case PTR_TO_MEM | MEM_RDONLY:
9297 	case PTR_TO_MEM | MEM_RINGBUF:
9298 	case PTR_TO_BUF:
9299 	case PTR_TO_BUF | MEM_RDONLY:
9300 	case PTR_TO_ARENA:
9301 	case SCALAR_VALUE:
9302 		return 0;
9303 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
9304 	 * fixed offset.
9305 	 */
9306 	case PTR_TO_BTF_ID:
9307 	case PTR_TO_BTF_ID | MEM_ALLOC:
9308 	case PTR_TO_BTF_ID | PTR_TRUSTED:
9309 	case PTR_TO_BTF_ID | MEM_RCU:
9310 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
9311 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU:
9312 		/* When referenced PTR_TO_BTF_ID is passed to release function,
9313 		 * its fixed offset must be 0. In the other cases, fixed offset
9314 		 * can be non-zero. This was already checked above. So pass
9315 		 * fixed_off_ok as true to allow fixed offset for all other
9316 		 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
9317 		 * still need to do checks instead of returning.
9318 		 */
9319 		return __check_ptr_off_reg(env, reg, regno, true);
9320 	default:
9321 		return __check_ptr_off_reg(env, reg, regno, false);
9322 	}
9323 }
9324 
get_dynptr_arg_reg(struct bpf_verifier_env * env,const struct bpf_func_proto * fn,struct bpf_reg_state * regs)9325 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
9326 						const struct bpf_func_proto *fn,
9327 						struct bpf_reg_state *regs)
9328 {
9329 	struct bpf_reg_state *state = NULL;
9330 	int i;
9331 
9332 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
9333 		if (arg_type_is_dynptr(fn->arg_type[i])) {
9334 			if (state) {
9335 				verbose(env, "verifier internal error: multiple dynptr args\n");
9336 				return NULL;
9337 			}
9338 			state = &regs[BPF_REG_1 + i];
9339 		}
9340 
9341 	if (!state)
9342 		verbose(env, "verifier internal error: no dynptr arg found\n");
9343 
9344 	return state;
9345 }
9346 
dynptr_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg)9347 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
9348 {
9349 	struct bpf_func_state *state = func(env, reg);
9350 	int spi;
9351 
9352 	if (reg->type == CONST_PTR_TO_DYNPTR)
9353 		return reg->id;
9354 	spi = dynptr_get_spi(env, reg);
9355 	if (spi < 0)
9356 		return spi;
9357 	return state->stack[spi].spilled_ptr.id;
9358 }
9359 
dynptr_ref_obj_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg)9360 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
9361 {
9362 	struct bpf_func_state *state = func(env, reg);
9363 	int spi;
9364 
9365 	if (reg->type == CONST_PTR_TO_DYNPTR)
9366 		return reg->ref_obj_id;
9367 	spi = dynptr_get_spi(env, reg);
9368 	if (spi < 0)
9369 		return spi;
9370 	return state->stack[spi].spilled_ptr.ref_obj_id;
9371 }
9372 
dynptr_get_type(struct bpf_verifier_env * env,struct bpf_reg_state * reg)9373 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
9374 					    struct bpf_reg_state *reg)
9375 {
9376 	struct bpf_func_state *state = func(env, reg);
9377 	int spi;
9378 
9379 	if (reg->type == CONST_PTR_TO_DYNPTR)
9380 		return reg->dynptr.type;
9381 
9382 	spi = __get_spi(reg->off);
9383 	if (spi < 0) {
9384 		verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
9385 		return BPF_DYNPTR_TYPE_INVALID;
9386 	}
9387 
9388 	return state->stack[spi].spilled_ptr.dynptr.type;
9389 }
9390 
check_reg_const_str(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno)9391 static int check_reg_const_str(struct bpf_verifier_env *env,
9392 			       struct bpf_reg_state *reg, u32 regno)
9393 {
9394 	struct bpf_map *map = reg->map_ptr;
9395 	int err;
9396 	int map_off;
9397 	u64 map_addr;
9398 	char *str_ptr;
9399 
9400 	if (reg->type != PTR_TO_MAP_VALUE)
9401 		return -EINVAL;
9402 
9403 	if (!bpf_map_is_rdonly(map)) {
9404 		verbose(env, "R%d does not point to a readonly map'\n", regno);
9405 		return -EACCES;
9406 	}
9407 
9408 	if (!tnum_is_const(reg->var_off)) {
9409 		verbose(env, "R%d is not a constant address'\n", regno);
9410 		return -EACCES;
9411 	}
9412 
9413 	if (!map->ops->map_direct_value_addr) {
9414 		verbose(env, "no direct value access support for this map type\n");
9415 		return -EACCES;
9416 	}
9417 
9418 	err = check_map_access(env, regno, reg->off,
9419 			       map->value_size - reg->off, false,
9420 			       ACCESS_HELPER);
9421 	if (err)
9422 		return err;
9423 
9424 	map_off = reg->off + reg->var_off.value;
9425 	err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
9426 	if (err) {
9427 		verbose(env, "direct value access on string failed\n");
9428 		return err;
9429 	}
9430 
9431 	str_ptr = (char *)(long)(map_addr);
9432 	if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
9433 		verbose(env, "string is not zero-terminated\n");
9434 		return -EINVAL;
9435 	}
9436 	return 0;
9437 }
9438 
9439 /* Returns constant key value in `value` if possible, else negative error */
get_constant_map_key(struct bpf_verifier_env * env,struct bpf_reg_state * key,u32 key_size,s64 * value)9440 static int get_constant_map_key(struct bpf_verifier_env *env,
9441 				struct bpf_reg_state *key,
9442 				u32 key_size,
9443 				s64 *value)
9444 {
9445 	struct bpf_func_state *state = func(env, key);
9446 	struct bpf_reg_state *reg;
9447 	int slot, spi, off;
9448 	int spill_size = 0;
9449 	int zero_size = 0;
9450 	int stack_off;
9451 	int i, err;
9452 	u8 *stype;
9453 
9454 	if (!env->bpf_capable)
9455 		return -EOPNOTSUPP;
9456 	if (key->type != PTR_TO_STACK)
9457 		return -EOPNOTSUPP;
9458 	if (!tnum_is_const(key->var_off))
9459 		return -EOPNOTSUPP;
9460 
9461 	stack_off = key->off + key->var_off.value;
9462 	slot = -stack_off - 1;
9463 	spi = slot / BPF_REG_SIZE;
9464 	off = slot % BPF_REG_SIZE;
9465 	stype = state->stack[spi].slot_type;
9466 
9467 	/* First handle precisely tracked STACK_ZERO */
9468 	for (i = off; i >= 0 && stype[i] == STACK_ZERO; i--)
9469 		zero_size++;
9470 	if (zero_size >= key_size) {
9471 		*value = 0;
9472 		return 0;
9473 	}
9474 
9475 	/* Check that stack contains a scalar spill of expected size */
9476 	if (!is_spilled_scalar_reg(&state->stack[spi]))
9477 		return -EOPNOTSUPP;
9478 	for (i = off; i >= 0 && stype[i] == STACK_SPILL; i--)
9479 		spill_size++;
9480 	if (spill_size != key_size)
9481 		return -EOPNOTSUPP;
9482 
9483 	reg = &state->stack[spi].spilled_ptr;
9484 	if (!tnum_is_const(reg->var_off))
9485 		/* Stack value not statically known */
9486 		return -EOPNOTSUPP;
9487 
9488 	/* We are relying on a constant value. So mark as precise
9489 	 * to prevent pruning on it.
9490 	 */
9491 	bt_set_frame_slot(&env->bt, key->frameno, spi);
9492 	err = mark_chain_precision_batch(env);
9493 	if (err < 0)
9494 		return err;
9495 
9496 	*value = reg->var_off.value;
9497 	return 0;
9498 }
9499 
9500 static bool can_elide_value_nullness(enum bpf_map_type type);
9501 
check_func_arg(struct bpf_verifier_env * env,u32 arg,struct bpf_call_arg_meta * meta,const struct bpf_func_proto * fn,int insn_idx)9502 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
9503 			  struct bpf_call_arg_meta *meta,
9504 			  const struct bpf_func_proto *fn,
9505 			  int insn_idx)
9506 {
9507 	u32 regno = BPF_REG_1 + arg;
9508 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
9509 	enum bpf_arg_type arg_type = fn->arg_type[arg];
9510 	enum bpf_reg_type type = reg->type;
9511 	u32 *arg_btf_id = NULL;
9512 	u32 key_size;
9513 	int err = 0;
9514 
9515 	if (arg_type == ARG_DONTCARE)
9516 		return 0;
9517 
9518 	err = check_reg_arg(env, regno, SRC_OP);
9519 	if (err)
9520 		return err;
9521 
9522 	if (arg_type == ARG_ANYTHING) {
9523 		if (is_pointer_value(env, regno)) {
9524 			verbose(env, "R%d leaks addr into helper function\n",
9525 				regno);
9526 			return -EACCES;
9527 		}
9528 		return 0;
9529 	}
9530 
9531 	if (type_is_pkt_pointer(type) &&
9532 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
9533 		verbose(env, "helper access to the packet is not allowed\n");
9534 		return -EACCES;
9535 	}
9536 
9537 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
9538 		err = resolve_map_arg_type(env, meta, &arg_type);
9539 		if (err)
9540 			return err;
9541 	}
9542 
9543 	if (register_is_null(reg) && type_may_be_null(arg_type))
9544 		/* A NULL register has a SCALAR_VALUE type, so skip
9545 		 * type checking.
9546 		 */
9547 		goto skip_type_check;
9548 
9549 	/* arg_btf_id and arg_size are in a union. */
9550 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
9551 	    base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
9552 		arg_btf_id = fn->arg_btf_id[arg];
9553 
9554 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
9555 	if (err)
9556 		return err;
9557 
9558 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
9559 	if (err)
9560 		return err;
9561 
9562 skip_type_check:
9563 	if (arg_type_is_release(arg_type)) {
9564 		if (arg_type_is_dynptr(arg_type)) {
9565 			struct bpf_func_state *state = func(env, reg);
9566 			int spi;
9567 
9568 			/* Only dynptr created on stack can be released, thus
9569 			 * the get_spi and stack state checks for spilled_ptr
9570 			 * should only be done before process_dynptr_func for
9571 			 * PTR_TO_STACK.
9572 			 */
9573 			if (reg->type == PTR_TO_STACK) {
9574 				spi = dynptr_get_spi(env, reg);
9575 				if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
9576 					verbose(env, "arg %d is an unacquired reference\n", regno);
9577 					return -EINVAL;
9578 				}
9579 			} else {
9580 				verbose(env, "cannot release unowned const bpf_dynptr\n");
9581 				return -EINVAL;
9582 			}
9583 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
9584 			verbose(env, "R%d must be referenced when passed to release function\n",
9585 				regno);
9586 			return -EINVAL;
9587 		}
9588 		if (meta->release_regno) {
9589 			verbose(env, "verifier internal error: more than one release argument\n");
9590 			return -EFAULT;
9591 		}
9592 		meta->release_regno = regno;
9593 	}
9594 
9595 	if (reg->ref_obj_id && base_type(arg_type) != ARG_KPTR_XCHG_DEST) {
9596 		if (meta->ref_obj_id) {
9597 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
9598 				regno, reg->ref_obj_id,
9599 				meta->ref_obj_id);
9600 			return -EFAULT;
9601 		}
9602 		meta->ref_obj_id = reg->ref_obj_id;
9603 	}
9604 
9605 	switch (base_type(arg_type)) {
9606 	case ARG_CONST_MAP_PTR:
9607 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
9608 		if (meta->map_ptr) {
9609 			/* Use map_uid (which is unique id of inner map) to reject:
9610 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
9611 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
9612 			 * if (inner_map1 && inner_map2) {
9613 			 *     timer = bpf_map_lookup_elem(inner_map1);
9614 			 *     if (timer)
9615 			 *         // mismatch would have been allowed
9616 			 *         bpf_timer_init(timer, inner_map2);
9617 			 * }
9618 			 *
9619 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
9620 			 */
9621 			if (meta->map_ptr != reg->map_ptr ||
9622 			    meta->map_uid != reg->map_uid) {
9623 				verbose(env,
9624 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
9625 					meta->map_uid, reg->map_uid);
9626 				return -EINVAL;
9627 			}
9628 		}
9629 		meta->map_ptr = reg->map_ptr;
9630 		meta->map_uid = reg->map_uid;
9631 		break;
9632 	case ARG_PTR_TO_MAP_KEY:
9633 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
9634 		 * check that [key, key + map->key_size) are within
9635 		 * stack limits and initialized
9636 		 */
9637 		if (!meta->map_ptr) {
9638 			/* in function declaration map_ptr must come before
9639 			 * map_key, so that it's verified and known before
9640 			 * we have to check map_key here. Otherwise it means
9641 			 * that kernel subsystem misconfigured verifier
9642 			 */
9643 			verbose(env, "invalid map_ptr to access map->key\n");
9644 			return -EACCES;
9645 		}
9646 		key_size = meta->map_ptr->key_size;
9647 		err = check_helper_mem_access(env, regno, key_size, BPF_READ, false, NULL);
9648 		if (err)
9649 			return err;
9650 		if (can_elide_value_nullness(meta->map_ptr->map_type)) {
9651 			err = get_constant_map_key(env, reg, key_size, &meta->const_map_key);
9652 			if (err < 0) {
9653 				meta->const_map_key = -1;
9654 				if (err == -EOPNOTSUPP)
9655 					err = 0;
9656 				else
9657 					return err;
9658 			}
9659 		}
9660 		break;
9661 	case ARG_PTR_TO_MAP_VALUE:
9662 		if (type_may_be_null(arg_type) && register_is_null(reg))
9663 			return 0;
9664 
9665 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
9666 		 * check [value, value + map->value_size) validity
9667 		 */
9668 		if (!meta->map_ptr) {
9669 			/* kernel subsystem misconfigured verifier */
9670 			verbose(env, "invalid map_ptr to access map->value\n");
9671 			return -EACCES;
9672 		}
9673 		meta->raw_mode = arg_type & MEM_UNINIT;
9674 		err = check_helper_mem_access(env, regno, meta->map_ptr->value_size,
9675 					      arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ,
9676 					      false, meta);
9677 		break;
9678 	case ARG_PTR_TO_PERCPU_BTF_ID:
9679 		if (!reg->btf_id) {
9680 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
9681 			return -EACCES;
9682 		}
9683 		meta->ret_btf = reg->btf;
9684 		meta->ret_btf_id = reg->btf_id;
9685 		break;
9686 	case ARG_PTR_TO_SPIN_LOCK:
9687 		if (in_rbtree_lock_required_cb(env)) {
9688 			verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
9689 			return -EACCES;
9690 		}
9691 		if (meta->func_id == BPF_FUNC_spin_lock) {
9692 			err = process_spin_lock(env, regno, PROCESS_SPIN_LOCK);
9693 			if (err)
9694 				return err;
9695 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
9696 			err = process_spin_lock(env, regno, 0);
9697 			if (err)
9698 				return err;
9699 		} else {
9700 			verbose(env, "verifier internal error\n");
9701 			return -EFAULT;
9702 		}
9703 		break;
9704 	case ARG_PTR_TO_TIMER:
9705 		err = process_timer_func(env, regno, meta);
9706 		if (err)
9707 			return err;
9708 		break;
9709 	case ARG_PTR_TO_FUNC:
9710 		meta->subprogno = reg->subprogno;
9711 		break;
9712 	case ARG_PTR_TO_MEM:
9713 		/* The access to this pointer is only checked when we hit the
9714 		 * next is_mem_size argument below.
9715 		 */
9716 		meta->raw_mode = arg_type & MEM_UNINIT;
9717 		if (arg_type & MEM_FIXED_SIZE) {
9718 			err = check_helper_mem_access(env, regno, fn->arg_size[arg],
9719 						      arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ,
9720 						      false, meta);
9721 			if (err)
9722 				return err;
9723 			if (arg_type & MEM_ALIGNED)
9724 				err = check_ptr_alignment(env, reg, 0, fn->arg_size[arg], true);
9725 		}
9726 		break;
9727 	case ARG_CONST_SIZE:
9728 		err = check_mem_size_reg(env, reg, regno,
9729 					 fn->arg_type[arg - 1] & MEM_WRITE ?
9730 					 BPF_WRITE : BPF_READ,
9731 					 false, meta);
9732 		break;
9733 	case ARG_CONST_SIZE_OR_ZERO:
9734 		err = check_mem_size_reg(env, reg, regno,
9735 					 fn->arg_type[arg - 1] & MEM_WRITE ?
9736 					 BPF_WRITE : BPF_READ,
9737 					 true, meta);
9738 		break;
9739 	case ARG_PTR_TO_DYNPTR:
9740 		err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
9741 		if (err)
9742 			return err;
9743 		break;
9744 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
9745 		if (!tnum_is_const(reg->var_off)) {
9746 			verbose(env, "R%d is not a known constant'\n",
9747 				regno);
9748 			return -EACCES;
9749 		}
9750 		meta->mem_size = reg->var_off.value;
9751 		err = mark_chain_precision(env, regno);
9752 		if (err)
9753 			return err;
9754 		break;
9755 	case ARG_PTR_TO_CONST_STR:
9756 	{
9757 		err = check_reg_const_str(env, reg, regno);
9758 		if (err)
9759 			return err;
9760 		break;
9761 	}
9762 	case ARG_KPTR_XCHG_DEST:
9763 		err = process_kptr_func(env, regno, meta);
9764 		if (err)
9765 			return err;
9766 		break;
9767 	}
9768 
9769 	return err;
9770 }
9771 
may_update_sockmap(struct bpf_verifier_env * env,int func_id)9772 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
9773 {
9774 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
9775 	enum bpf_prog_type type = resolve_prog_type(env->prog);
9776 
9777 	if (func_id != BPF_FUNC_map_update_elem &&
9778 	    func_id != BPF_FUNC_map_delete_elem)
9779 		return false;
9780 
9781 	/* It's not possible to get access to a locked struct sock in these
9782 	 * contexts, so updating is safe.
9783 	 */
9784 	switch (type) {
9785 	case BPF_PROG_TYPE_TRACING:
9786 		if (eatype == BPF_TRACE_ITER)
9787 			return true;
9788 		break;
9789 	case BPF_PROG_TYPE_SOCK_OPS:
9790 		/* map_update allowed only via dedicated helpers with event type checks */
9791 		if (func_id == BPF_FUNC_map_delete_elem)
9792 			return true;
9793 		break;
9794 	case BPF_PROG_TYPE_SOCKET_FILTER:
9795 	case BPF_PROG_TYPE_SCHED_CLS:
9796 	case BPF_PROG_TYPE_SCHED_ACT:
9797 	case BPF_PROG_TYPE_XDP:
9798 	case BPF_PROG_TYPE_SK_REUSEPORT:
9799 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
9800 	case BPF_PROG_TYPE_SK_LOOKUP:
9801 		return true;
9802 	default:
9803 		break;
9804 	}
9805 
9806 	verbose(env, "cannot update sockmap in this context\n");
9807 	return false;
9808 }
9809 
allow_tail_call_in_subprogs(struct bpf_verifier_env * env)9810 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
9811 {
9812 	return env->prog->jit_requested &&
9813 	       bpf_jit_supports_subprog_tailcalls();
9814 }
9815 
check_map_func_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,int func_id)9816 static int check_map_func_compatibility(struct bpf_verifier_env *env,
9817 					struct bpf_map *map, int func_id)
9818 {
9819 	if (!map)
9820 		return 0;
9821 
9822 	/* We need a two way check, first is from map perspective ... */
9823 	switch (map->map_type) {
9824 	case BPF_MAP_TYPE_PROG_ARRAY:
9825 		if (func_id != BPF_FUNC_tail_call)
9826 			goto error;
9827 		break;
9828 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
9829 		if (func_id != BPF_FUNC_perf_event_read &&
9830 		    func_id != BPF_FUNC_perf_event_output &&
9831 		    func_id != BPF_FUNC_skb_output &&
9832 		    func_id != BPF_FUNC_perf_event_read_value &&
9833 		    func_id != BPF_FUNC_xdp_output)
9834 			goto error;
9835 		break;
9836 	case BPF_MAP_TYPE_RINGBUF:
9837 		if (func_id != BPF_FUNC_ringbuf_output &&
9838 		    func_id != BPF_FUNC_ringbuf_reserve &&
9839 		    func_id != BPF_FUNC_ringbuf_query &&
9840 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
9841 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
9842 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
9843 			goto error;
9844 		break;
9845 	case BPF_MAP_TYPE_USER_RINGBUF:
9846 		if (func_id != BPF_FUNC_user_ringbuf_drain)
9847 			goto error;
9848 		break;
9849 	case BPF_MAP_TYPE_STACK_TRACE:
9850 		if (func_id != BPF_FUNC_get_stackid)
9851 			goto error;
9852 		break;
9853 	case BPF_MAP_TYPE_CGROUP_ARRAY:
9854 		if (func_id != BPF_FUNC_skb_under_cgroup &&
9855 		    func_id != BPF_FUNC_current_task_under_cgroup)
9856 			goto error;
9857 		break;
9858 	case BPF_MAP_TYPE_CGROUP_STORAGE:
9859 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
9860 		if (func_id != BPF_FUNC_get_local_storage)
9861 			goto error;
9862 		break;
9863 	case BPF_MAP_TYPE_DEVMAP:
9864 	case BPF_MAP_TYPE_DEVMAP_HASH:
9865 		if (func_id != BPF_FUNC_redirect_map &&
9866 		    func_id != BPF_FUNC_map_lookup_elem)
9867 			goto error;
9868 		break;
9869 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
9870 	 * appear.
9871 	 */
9872 	case BPF_MAP_TYPE_CPUMAP:
9873 		if (func_id != BPF_FUNC_redirect_map)
9874 			goto error;
9875 		break;
9876 	case BPF_MAP_TYPE_XSKMAP:
9877 		if (func_id != BPF_FUNC_redirect_map &&
9878 		    func_id != BPF_FUNC_map_lookup_elem)
9879 			goto error;
9880 		break;
9881 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
9882 	case BPF_MAP_TYPE_HASH_OF_MAPS:
9883 		if (func_id != BPF_FUNC_map_lookup_elem)
9884 			goto error;
9885 		break;
9886 	case BPF_MAP_TYPE_SOCKMAP:
9887 		if (func_id != BPF_FUNC_sk_redirect_map &&
9888 		    func_id != BPF_FUNC_sock_map_update &&
9889 		    func_id != BPF_FUNC_msg_redirect_map &&
9890 		    func_id != BPF_FUNC_sk_select_reuseport &&
9891 		    func_id != BPF_FUNC_map_lookup_elem &&
9892 		    !may_update_sockmap(env, func_id))
9893 			goto error;
9894 		break;
9895 	case BPF_MAP_TYPE_SOCKHASH:
9896 		if (func_id != BPF_FUNC_sk_redirect_hash &&
9897 		    func_id != BPF_FUNC_sock_hash_update &&
9898 		    func_id != BPF_FUNC_msg_redirect_hash &&
9899 		    func_id != BPF_FUNC_sk_select_reuseport &&
9900 		    func_id != BPF_FUNC_map_lookup_elem &&
9901 		    !may_update_sockmap(env, func_id))
9902 			goto error;
9903 		break;
9904 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
9905 		if (func_id != BPF_FUNC_sk_select_reuseport)
9906 			goto error;
9907 		break;
9908 	case BPF_MAP_TYPE_QUEUE:
9909 	case BPF_MAP_TYPE_STACK:
9910 		if (func_id != BPF_FUNC_map_peek_elem &&
9911 		    func_id != BPF_FUNC_map_pop_elem &&
9912 		    func_id != BPF_FUNC_map_push_elem)
9913 			goto error;
9914 		break;
9915 	case BPF_MAP_TYPE_SK_STORAGE:
9916 		if (func_id != BPF_FUNC_sk_storage_get &&
9917 		    func_id != BPF_FUNC_sk_storage_delete &&
9918 		    func_id != BPF_FUNC_kptr_xchg)
9919 			goto error;
9920 		break;
9921 	case BPF_MAP_TYPE_INODE_STORAGE:
9922 		if (func_id != BPF_FUNC_inode_storage_get &&
9923 		    func_id != BPF_FUNC_inode_storage_delete &&
9924 		    func_id != BPF_FUNC_kptr_xchg)
9925 			goto error;
9926 		break;
9927 	case BPF_MAP_TYPE_TASK_STORAGE:
9928 		if (func_id != BPF_FUNC_task_storage_get &&
9929 		    func_id != BPF_FUNC_task_storage_delete &&
9930 		    func_id != BPF_FUNC_kptr_xchg)
9931 			goto error;
9932 		break;
9933 	case BPF_MAP_TYPE_CGRP_STORAGE:
9934 		if (func_id != BPF_FUNC_cgrp_storage_get &&
9935 		    func_id != BPF_FUNC_cgrp_storage_delete &&
9936 		    func_id != BPF_FUNC_kptr_xchg)
9937 			goto error;
9938 		break;
9939 	case BPF_MAP_TYPE_BLOOM_FILTER:
9940 		if (func_id != BPF_FUNC_map_peek_elem &&
9941 		    func_id != BPF_FUNC_map_push_elem)
9942 			goto error;
9943 		break;
9944 	default:
9945 		break;
9946 	}
9947 
9948 	/* ... and second from the function itself. */
9949 	switch (func_id) {
9950 	case BPF_FUNC_tail_call:
9951 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
9952 			goto error;
9953 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
9954 			verbose(env, "mixing of tail_calls and bpf-to-bpf calls is not supported\n");
9955 			return -EINVAL;
9956 		}
9957 		break;
9958 	case BPF_FUNC_perf_event_read:
9959 	case BPF_FUNC_perf_event_output:
9960 	case BPF_FUNC_perf_event_read_value:
9961 	case BPF_FUNC_skb_output:
9962 	case BPF_FUNC_xdp_output:
9963 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
9964 			goto error;
9965 		break;
9966 	case BPF_FUNC_ringbuf_output:
9967 	case BPF_FUNC_ringbuf_reserve:
9968 	case BPF_FUNC_ringbuf_query:
9969 	case BPF_FUNC_ringbuf_reserve_dynptr:
9970 	case BPF_FUNC_ringbuf_submit_dynptr:
9971 	case BPF_FUNC_ringbuf_discard_dynptr:
9972 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
9973 			goto error;
9974 		break;
9975 	case BPF_FUNC_user_ringbuf_drain:
9976 		if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
9977 			goto error;
9978 		break;
9979 	case BPF_FUNC_get_stackid:
9980 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
9981 			goto error;
9982 		break;
9983 	case BPF_FUNC_current_task_under_cgroup:
9984 	case BPF_FUNC_skb_under_cgroup:
9985 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
9986 			goto error;
9987 		break;
9988 	case BPF_FUNC_redirect_map:
9989 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
9990 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
9991 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
9992 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
9993 			goto error;
9994 		break;
9995 	case BPF_FUNC_sk_redirect_map:
9996 	case BPF_FUNC_msg_redirect_map:
9997 	case BPF_FUNC_sock_map_update:
9998 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
9999 			goto error;
10000 		break;
10001 	case BPF_FUNC_sk_redirect_hash:
10002 	case BPF_FUNC_msg_redirect_hash:
10003 	case BPF_FUNC_sock_hash_update:
10004 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
10005 			goto error;
10006 		break;
10007 	case BPF_FUNC_get_local_storage:
10008 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
10009 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
10010 			goto error;
10011 		break;
10012 	case BPF_FUNC_sk_select_reuseport:
10013 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
10014 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
10015 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
10016 			goto error;
10017 		break;
10018 	case BPF_FUNC_map_pop_elem:
10019 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
10020 		    map->map_type != BPF_MAP_TYPE_STACK)
10021 			goto error;
10022 		break;
10023 	case BPF_FUNC_map_peek_elem:
10024 	case BPF_FUNC_map_push_elem:
10025 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
10026 		    map->map_type != BPF_MAP_TYPE_STACK &&
10027 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
10028 			goto error;
10029 		break;
10030 	case BPF_FUNC_map_lookup_percpu_elem:
10031 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
10032 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
10033 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
10034 			goto error;
10035 		break;
10036 	case BPF_FUNC_sk_storage_get:
10037 	case BPF_FUNC_sk_storage_delete:
10038 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
10039 			goto error;
10040 		break;
10041 	case BPF_FUNC_inode_storage_get:
10042 	case BPF_FUNC_inode_storage_delete:
10043 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
10044 			goto error;
10045 		break;
10046 	case BPF_FUNC_task_storage_get:
10047 	case BPF_FUNC_task_storage_delete:
10048 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
10049 			goto error;
10050 		break;
10051 	case BPF_FUNC_cgrp_storage_get:
10052 	case BPF_FUNC_cgrp_storage_delete:
10053 		if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
10054 			goto error;
10055 		break;
10056 	default:
10057 		break;
10058 	}
10059 
10060 	return 0;
10061 error:
10062 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
10063 		map->map_type, func_id_name(func_id), func_id);
10064 	return -EINVAL;
10065 }
10066 
check_raw_mode_ok(const struct bpf_func_proto * fn)10067 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
10068 {
10069 	int count = 0;
10070 
10071 	if (arg_type_is_raw_mem(fn->arg1_type))
10072 		count++;
10073 	if (arg_type_is_raw_mem(fn->arg2_type))
10074 		count++;
10075 	if (arg_type_is_raw_mem(fn->arg3_type))
10076 		count++;
10077 	if (arg_type_is_raw_mem(fn->arg4_type))
10078 		count++;
10079 	if (arg_type_is_raw_mem(fn->arg5_type))
10080 		count++;
10081 
10082 	/* We only support one arg being in raw mode at the moment,
10083 	 * which is sufficient for the helper functions we have
10084 	 * right now.
10085 	 */
10086 	return count <= 1;
10087 }
10088 
check_args_pair_invalid(const struct bpf_func_proto * fn,int arg)10089 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
10090 {
10091 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
10092 	bool has_size = fn->arg_size[arg] != 0;
10093 	bool is_next_size = false;
10094 
10095 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
10096 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
10097 
10098 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
10099 		return is_next_size;
10100 
10101 	return has_size == is_next_size || is_next_size == is_fixed;
10102 }
10103 
check_arg_pair_ok(const struct bpf_func_proto * fn)10104 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
10105 {
10106 	/* bpf_xxx(..., buf, len) call will access 'len'
10107 	 * bytes from memory 'buf'. Both arg types need
10108 	 * to be paired, so make sure there's no buggy
10109 	 * helper function specification.
10110 	 */
10111 	if (arg_type_is_mem_size(fn->arg1_type) ||
10112 	    check_args_pair_invalid(fn, 0) ||
10113 	    check_args_pair_invalid(fn, 1) ||
10114 	    check_args_pair_invalid(fn, 2) ||
10115 	    check_args_pair_invalid(fn, 3) ||
10116 	    check_args_pair_invalid(fn, 4))
10117 		return false;
10118 
10119 	return true;
10120 }
10121 
check_btf_id_ok(const struct bpf_func_proto * fn)10122 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
10123 {
10124 	int i;
10125 
10126 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
10127 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
10128 			return !!fn->arg_btf_id[i];
10129 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
10130 			return fn->arg_btf_id[i] == BPF_PTR_POISON;
10131 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
10132 		    /* arg_btf_id and arg_size are in a union. */
10133 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
10134 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
10135 			return false;
10136 	}
10137 
10138 	return true;
10139 }
10140 
check_func_proto(const struct bpf_func_proto * fn,int func_id)10141 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
10142 {
10143 	return check_raw_mode_ok(fn) &&
10144 	       check_arg_pair_ok(fn) &&
10145 	       check_btf_id_ok(fn) ? 0 : -EINVAL;
10146 }
10147 
10148 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
10149  * are now invalid, so turn them into unknown SCALAR_VALUE.
10150  *
10151  * This also applies to dynptr slices belonging to skb and xdp dynptrs,
10152  * since these slices point to packet data.
10153  */
clear_all_pkt_pointers(struct bpf_verifier_env * env)10154 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
10155 {
10156 	struct bpf_func_state *state;
10157 	struct bpf_reg_state *reg;
10158 
10159 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
10160 		if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
10161 			mark_reg_invalid(env, reg);
10162 	}));
10163 }
10164 
10165 enum {
10166 	AT_PKT_END = -1,
10167 	BEYOND_PKT_END = -2,
10168 };
10169 
mark_pkt_end(struct bpf_verifier_state * vstate,int regn,bool range_open)10170 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
10171 {
10172 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
10173 	struct bpf_reg_state *reg = &state->regs[regn];
10174 
10175 	if (reg->type != PTR_TO_PACKET)
10176 		/* PTR_TO_PACKET_META is not supported yet */
10177 		return;
10178 
10179 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
10180 	 * How far beyond pkt_end it goes is unknown.
10181 	 * if (!range_open) it's the case of pkt >= pkt_end
10182 	 * if (range_open) it's the case of pkt > pkt_end
10183 	 * hence this pointer is at least 1 byte bigger than pkt_end
10184 	 */
10185 	if (range_open)
10186 		reg->range = BEYOND_PKT_END;
10187 	else
10188 		reg->range = AT_PKT_END;
10189 }
10190 
release_reference_nomark(struct bpf_verifier_state * state,int ref_obj_id)10191 static int release_reference_nomark(struct bpf_verifier_state *state, int ref_obj_id)
10192 {
10193 	int i;
10194 
10195 	for (i = 0; i < state->acquired_refs; i++) {
10196 		if (state->refs[i].type != REF_TYPE_PTR)
10197 			continue;
10198 		if (state->refs[i].id == ref_obj_id) {
10199 			release_reference_state(state, i);
10200 			return 0;
10201 		}
10202 	}
10203 	return -EINVAL;
10204 }
10205 
10206 /* The pointer with the specified id has released its reference to kernel
10207  * resources. Identify all copies of the same pointer and clear the reference.
10208  *
10209  * This is the release function corresponding to acquire_reference(). Idempotent.
10210  */
release_reference(struct bpf_verifier_env * env,int ref_obj_id)10211 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id)
10212 {
10213 	struct bpf_verifier_state *vstate = env->cur_state;
10214 	struct bpf_func_state *state;
10215 	struct bpf_reg_state *reg;
10216 	int err;
10217 
10218 	err = release_reference_nomark(vstate, ref_obj_id);
10219 	if (err)
10220 		return err;
10221 
10222 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
10223 		if (reg->ref_obj_id == ref_obj_id)
10224 			mark_reg_invalid(env, reg);
10225 	}));
10226 
10227 	return 0;
10228 }
10229 
invalidate_non_owning_refs(struct bpf_verifier_env * env)10230 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
10231 {
10232 	struct bpf_func_state *unused;
10233 	struct bpf_reg_state *reg;
10234 
10235 	bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
10236 		if (type_is_non_owning_ref(reg->type))
10237 			mark_reg_invalid(env, reg);
10238 	}));
10239 }
10240 
clear_caller_saved_regs(struct bpf_verifier_env * env,struct bpf_reg_state * regs)10241 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
10242 				    struct bpf_reg_state *regs)
10243 {
10244 	int i;
10245 
10246 	/* after the call registers r0 - r5 were scratched */
10247 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
10248 		mark_reg_not_init(env, regs, caller_saved[i]);
10249 		__check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK);
10250 	}
10251 }
10252 
10253 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
10254 				   struct bpf_func_state *caller,
10255 				   struct bpf_func_state *callee,
10256 				   int insn_idx);
10257 
10258 static int set_callee_state(struct bpf_verifier_env *env,
10259 			    struct bpf_func_state *caller,
10260 			    struct bpf_func_state *callee, int insn_idx);
10261 
setup_func_entry(struct bpf_verifier_env * env,int subprog,int callsite,set_callee_state_fn set_callee_state_cb,struct bpf_verifier_state * state)10262 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite,
10263 			    set_callee_state_fn set_callee_state_cb,
10264 			    struct bpf_verifier_state *state)
10265 {
10266 	struct bpf_func_state *caller, *callee;
10267 	int err;
10268 
10269 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
10270 		verbose(env, "the call stack of %d frames is too deep\n",
10271 			state->curframe + 2);
10272 		return -E2BIG;
10273 	}
10274 
10275 	if (state->frame[state->curframe + 1]) {
10276 		verifier_bug(env, "Frame %d already allocated", state->curframe + 1);
10277 		return -EFAULT;
10278 	}
10279 
10280 	caller = state->frame[state->curframe];
10281 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
10282 	if (!callee)
10283 		return -ENOMEM;
10284 	state->frame[state->curframe + 1] = callee;
10285 
10286 	/* callee cannot access r0, r6 - r9 for reading and has to write
10287 	 * into its own stack before reading from it.
10288 	 * callee can read/write into caller's stack
10289 	 */
10290 	init_func_state(env, callee,
10291 			/* remember the callsite, it will be used by bpf_exit */
10292 			callsite,
10293 			state->curframe + 1 /* frameno within this callchain */,
10294 			subprog /* subprog number within this prog */);
10295 	err = set_callee_state_cb(env, caller, callee, callsite);
10296 	if (err)
10297 		goto err_out;
10298 
10299 	/* only increment it after check_reg_arg() finished */
10300 	state->curframe++;
10301 
10302 	return 0;
10303 
10304 err_out:
10305 	free_func_state(callee);
10306 	state->frame[state->curframe + 1] = NULL;
10307 	return err;
10308 }
10309 
btf_check_func_arg_match(struct bpf_verifier_env * env,int subprog,const struct btf * btf,struct bpf_reg_state * regs)10310 static int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog,
10311 				    const struct btf *btf,
10312 				    struct bpf_reg_state *regs)
10313 {
10314 	struct bpf_subprog_info *sub = subprog_info(env, subprog);
10315 	struct bpf_verifier_log *log = &env->log;
10316 	u32 i;
10317 	int ret;
10318 
10319 	ret = btf_prepare_func_args(env, subprog);
10320 	if (ret)
10321 		return ret;
10322 
10323 	/* check that BTF function arguments match actual types that the
10324 	 * verifier sees.
10325 	 */
10326 	for (i = 0; i < sub->arg_cnt; i++) {
10327 		u32 regno = i + 1;
10328 		struct bpf_reg_state *reg = &regs[regno];
10329 		struct bpf_subprog_arg_info *arg = &sub->args[i];
10330 
10331 		if (arg->arg_type == ARG_ANYTHING) {
10332 			if (reg->type != SCALAR_VALUE) {
10333 				bpf_log(log, "R%d is not a scalar\n", regno);
10334 				return -EINVAL;
10335 			}
10336 		} else if (arg->arg_type == ARG_PTR_TO_CTX) {
10337 			ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE);
10338 			if (ret < 0)
10339 				return ret;
10340 			/* If function expects ctx type in BTF check that caller
10341 			 * is passing PTR_TO_CTX.
10342 			 */
10343 			if (reg->type != PTR_TO_CTX) {
10344 				bpf_log(log, "arg#%d expects pointer to ctx\n", i);
10345 				return -EINVAL;
10346 			}
10347 		} else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) {
10348 			ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE);
10349 			if (ret < 0)
10350 				return ret;
10351 			if (check_mem_reg(env, reg, regno, arg->mem_size))
10352 				return -EINVAL;
10353 			if (!(arg->arg_type & PTR_MAYBE_NULL) && (reg->type & PTR_MAYBE_NULL)) {
10354 				bpf_log(log, "arg#%d is expected to be non-NULL\n", i);
10355 				return -EINVAL;
10356 			}
10357 		} else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) {
10358 			/*
10359 			 * Can pass any value and the kernel won't crash, but
10360 			 * only PTR_TO_ARENA or SCALAR make sense. Everything
10361 			 * else is a bug in the bpf program. Point it out to
10362 			 * the user at the verification time instead of
10363 			 * run-time debug nightmare.
10364 			 */
10365 			if (reg->type != PTR_TO_ARENA && reg->type != SCALAR_VALUE) {
10366 				bpf_log(log, "R%d is not a pointer to arena or scalar.\n", regno);
10367 				return -EINVAL;
10368 			}
10369 		} else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) {
10370 			ret = check_func_arg_reg_off(env, reg, regno, ARG_PTR_TO_DYNPTR);
10371 			if (ret)
10372 				return ret;
10373 
10374 			ret = process_dynptr_func(env, regno, -1, arg->arg_type, 0);
10375 			if (ret)
10376 				return ret;
10377 		} else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) {
10378 			struct bpf_call_arg_meta meta;
10379 			int err;
10380 
10381 			if (register_is_null(reg) && type_may_be_null(arg->arg_type))
10382 				continue;
10383 
10384 			memset(&meta, 0, sizeof(meta)); /* leave func_id as zero */
10385 			err = check_reg_type(env, regno, arg->arg_type, &arg->btf_id, &meta);
10386 			err = err ?: check_func_arg_reg_off(env, reg, regno, arg->arg_type);
10387 			if (err)
10388 				return err;
10389 		} else {
10390 			verifier_bug(env, "unrecognized arg#%d type %d", i, arg->arg_type);
10391 			return -EFAULT;
10392 		}
10393 	}
10394 
10395 	return 0;
10396 }
10397 
10398 /* Compare BTF of a function call with given bpf_reg_state.
10399  * Returns:
10400  * EFAULT - there is a verifier bug. Abort verification.
10401  * EINVAL - there is a type mismatch or BTF is not available.
10402  * 0 - BTF matches with what bpf_reg_state expects.
10403  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
10404  */
btf_check_subprog_call(struct bpf_verifier_env * env,int subprog,struct bpf_reg_state * regs)10405 static int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
10406 				  struct bpf_reg_state *regs)
10407 {
10408 	struct bpf_prog *prog = env->prog;
10409 	struct btf *btf = prog->aux->btf;
10410 	u32 btf_id;
10411 	int err;
10412 
10413 	if (!prog->aux->func_info)
10414 		return -EINVAL;
10415 
10416 	btf_id = prog->aux->func_info[subprog].type_id;
10417 	if (!btf_id)
10418 		return -EFAULT;
10419 
10420 	if (prog->aux->func_info_aux[subprog].unreliable)
10421 		return -EINVAL;
10422 
10423 	err = btf_check_func_arg_match(env, subprog, btf, regs);
10424 	/* Compiler optimizations can remove arguments from static functions
10425 	 * or mismatched type can be passed into a global function.
10426 	 * In such cases mark the function as unreliable from BTF point of view.
10427 	 */
10428 	if (err)
10429 		prog->aux->func_info_aux[subprog].unreliable = true;
10430 	return err;
10431 }
10432 
push_callback_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int insn_idx,int subprog,set_callee_state_fn set_callee_state_cb)10433 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
10434 			      int insn_idx, int subprog,
10435 			      set_callee_state_fn set_callee_state_cb)
10436 {
10437 	struct bpf_verifier_state *state = env->cur_state, *callback_state;
10438 	struct bpf_func_state *caller, *callee;
10439 	int err;
10440 
10441 	caller = state->frame[state->curframe];
10442 	err = btf_check_subprog_call(env, subprog, caller->regs);
10443 	if (err == -EFAULT)
10444 		return err;
10445 
10446 	/* set_callee_state is used for direct subprog calls, but we are
10447 	 * interested in validating only BPF helpers that can call subprogs as
10448 	 * callbacks
10449 	 */
10450 	env->subprog_info[subprog].is_cb = true;
10451 	if (bpf_pseudo_kfunc_call(insn) &&
10452 	    !is_callback_calling_kfunc(insn->imm)) {
10453 		verifier_bug(env, "kfunc %s#%d not marked as callback-calling",
10454 			     func_id_name(insn->imm), insn->imm);
10455 		return -EFAULT;
10456 	} else if (!bpf_pseudo_kfunc_call(insn) &&
10457 		   !is_callback_calling_function(insn->imm)) { /* helper */
10458 		verifier_bug(env, "helper %s#%d not marked as callback-calling",
10459 			     func_id_name(insn->imm), insn->imm);
10460 		return -EFAULT;
10461 	}
10462 
10463 	if (is_async_callback_calling_insn(insn)) {
10464 		struct bpf_verifier_state *async_cb;
10465 
10466 		/* there is no real recursion here. timer and workqueue callbacks are async */
10467 		env->subprog_info[subprog].is_async_cb = true;
10468 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
10469 					 insn_idx, subprog,
10470 					 is_bpf_wq_set_callback_impl_kfunc(insn->imm));
10471 		if (!async_cb)
10472 			return -EFAULT;
10473 		callee = async_cb->frame[0];
10474 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
10475 
10476 		/* Convert bpf_timer_set_callback() args into timer callback args */
10477 		err = set_callee_state_cb(env, caller, callee, insn_idx);
10478 		if (err)
10479 			return err;
10480 
10481 		return 0;
10482 	}
10483 
10484 	/* for callback functions enqueue entry to callback and
10485 	 * proceed with next instruction within current frame.
10486 	 */
10487 	callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false);
10488 	if (!callback_state)
10489 		return -ENOMEM;
10490 
10491 	err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb,
10492 			       callback_state);
10493 	if (err)
10494 		return err;
10495 
10496 	callback_state->callback_unroll_depth++;
10497 	callback_state->frame[callback_state->curframe - 1]->callback_depth++;
10498 	caller->callback_depth = 0;
10499 	return 0;
10500 }
10501 
check_func_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)10502 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
10503 			   int *insn_idx)
10504 {
10505 	struct bpf_verifier_state *state = env->cur_state;
10506 	struct bpf_func_state *caller;
10507 	int err, subprog, target_insn;
10508 
10509 	target_insn = *insn_idx + insn->imm + 1;
10510 	subprog = find_subprog(env, target_insn);
10511 	if (verifier_bug_if(subprog < 0, env, "target of func call at insn %d is not a program",
10512 			    target_insn))
10513 		return -EFAULT;
10514 
10515 	caller = state->frame[state->curframe];
10516 	err = btf_check_subprog_call(env, subprog, caller->regs);
10517 	if (err == -EFAULT)
10518 		return err;
10519 	if (subprog_is_global(env, subprog)) {
10520 		const char *sub_name = subprog_name(env, subprog);
10521 
10522 		if (env->cur_state->active_locks) {
10523 			verbose(env, "global function calls are not allowed while holding a lock,\n"
10524 				     "use static function instead\n");
10525 			return -EINVAL;
10526 		}
10527 
10528 		if (env->subprog_info[subprog].might_sleep &&
10529 		    (env->cur_state->active_rcu_lock || env->cur_state->active_preempt_locks ||
10530 		     env->cur_state->active_irq_id || !in_sleepable(env))) {
10531 			verbose(env, "global functions that may sleep are not allowed in non-sleepable context,\n"
10532 				     "i.e., in a RCU/IRQ/preempt-disabled section, or in\n"
10533 				     "a non-sleepable BPF program context\n");
10534 			return -EINVAL;
10535 		}
10536 
10537 		if (err) {
10538 			verbose(env, "Caller passes invalid args into func#%d ('%s')\n",
10539 				subprog, sub_name);
10540 			return err;
10541 		}
10542 
10543 		verbose(env, "Func#%d ('%s') is global and assumed valid.\n",
10544 			subprog, sub_name);
10545 		if (env->subprog_info[subprog].changes_pkt_data)
10546 			clear_all_pkt_pointers(env);
10547 		/* mark global subprog for verifying after main prog */
10548 		subprog_aux(env, subprog)->called = true;
10549 		clear_caller_saved_regs(env, caller->regs);
10550 
10551 		/* All global functions return a 64-bit SCALAR_VALUE */
10552 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
10553 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
10554 
10555 		/* continue with next insn after call */
10556 		return 0;
10557 	}
10558 
10559 	/* for regular function entry setup new frame and continue
10560 	 * from that frame.
10561 	 */
10562 	err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state);
10563 	if (err)
10564 		return err;
10565 
10566 	clear_caller_saved_regs(env, caller->regs);
10567 
10568 	/* and go analyze first insn of the callee */
10569 	*insn_idx = env->subprog_info[subprog].start - 1;
10570 
10571 	if (env->log.level & BPF_LOG_LEVEL) {
10572 		verbose(env, "caller:\n");
10573 		print_verifier_state(env, state, caller->frameno, true);
10574 		verbose(env, "callee:\n");
10575 		print_verifier_state(env, state, state->curframe, true);
10576 	}
10577 
10578 	return 0;
10579 }
10580 
map_set_for_each_callback_args(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee)10581 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
10582 				   struct bpf_func_state *caller,
10583 				   struct bpf_func_state *callee)
10584 {
10585 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
10586 	 *      void *callback_ctx, u64 flags);
10587 	 * callback_fn(struct bpf_map *map, void *key, void *value,
10588 	 *      void *callback_ctx);
10589 	 */
10590 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
10591 
10592 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
10593 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
10594 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
10595 
10596 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
10597 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
10598 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
10599 
10600 	/* pointer to stack or null */
10601 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
10602 
10603 	/* unused */
10604 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10605 	return 0;
10606 }
10607 
set_callee_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)10608 static int set_callee_state(struct bpf_verifier_env *env,
10609 			    struct bpf_func_state *caller,
10610 			    struct bpf_func_state *callee, int insn_idx)
10611 {
10612 	int i;
10613 
10614 	/* copy r1 - r5 args that callee can access.  The copy includes parent
10615 	 * pointers, which connects us up to the liveness chain
10616 	 */
10617 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
10618 		callee->regs[i] = caller->regs[i];
10619 	return 0;
10620 }
10621 
set_map_elem_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)10622 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
10623 				       struct bpf_func_state *caller,
10624 				       struct bpf_func_state *callee,
10625 				       int insn_idx)
10626 {
10627 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
10628 	struct bpf_map *map;
10629 	int err;
10630 
10631 	/* valid map_ptr and poison value does not matter */
10632 	map = insn_aux->map_ptr_state.map_ptr;
10633 	if (!map->ops->map_set_for_each_callback_args ||
10634 	    !map->ops->map_for_each_callback) {
10635 		verbose(env, "callback function not allowed for map\n");
10636 		return -ENOTSUPP;
10637 	}
10638 
10639 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
10640 	if (err)
10641 		return err;
10642 
10643 	callee->in_callback_fn = true;
10644 	callee->callback_ret_range = retval_range(0, 1);
10645 	return 0;
10646 }
10647 
set_loop_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)10648 static int set_loop_callback_state(struct bpf_verifier_env *env,
10649 				   struct bpf_func_state *caller,
10650 				   struct bpf_func_state *callee,
10651 				   int insn_idx)
10652 {
10653 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
10654 	 *	    u64 flags);
10655 	 * callback_fn(u64 index, void *callback_ctx);
10656 	 */
10657 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
10658 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
10659 
10660 	/* unused */
10661 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
10662 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10663 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10664 
10665 	callee->in_callback_fn = true;
10666 	callee->callback_ret_range = retval_range(0, 1);
10667 	return 0;
10668 }
10669 
set_timer_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)10670 static int set_timer_callback_state(struct bpf_verifier_env *env,
10671 				    struct bpf_func_state *caller,
10672 				    struct bpf_func_state *callee,
10673 				    int insn_idx)
10674 {
10675 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
10676 
10677 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
10678 	 * callback_fn(struct bpf_map *map, void *key, void *value);
10679 	 */
10680 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
10681 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
10682 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
10683 
10684 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
10685 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
10686 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
10687 
10688 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
10689 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
10690 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
10691 
10692 	/* unused */
10693 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10694 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10695 	callee->in_async_callback_fn = true;
10696 	callee->callback_ret_range = retval_range(0, 1);
10697 	return 0;
10698 }
10699 
set_find_vma_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)10700 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
10701 				       struct bpf_func_state *caller,
10702 				       struct bpf_func_state *callee,
10703 				       int insn_idx)
10704 {
10705 	/* bpf_find_vma(struct task_struct *task, u64 addr,
10706 	 *               void *callback_fn, void *callback_ctx, u64 flags)
10707 	 * (callback_fn)(struct task_struct *task,
10708 	 *               struct vm_area_struct *vma, void *callback_ctx);
10709 	 */
10710 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
10711 
10712 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
10713 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
10714 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
10715 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA];
10716 
10717 	/* pointer to stack or null */
10718 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
10719 
10720 	/* unused */
10721 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10722 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10723 	callee->in_callback_fn = true;
10724 	callee->callback_ret_range = retval_range(0, 1);
10725 	return 0;
10726 }
10727 
set_user_ringbuf_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)10728 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
10729 					   struct bpf_func_state *caller,
10730 					   struct bpf_func_state *callee,
10731 					   int insn_idx)
10732 {
10733 	/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
10734 	 *			  callback_ctx, u64 flags);
10735 	 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
10736 	 */
10737 	__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
10738 	mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
10739 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
10740 
10741 	/* unused */
10742 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
10743 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10744 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10745 
10746 	callee->in_callback_fn = true;
10747 	callee->callback_ret_range = retval_range(0, 1);
10748 	return 0;
10749 }
10750 
set_rbtree_add_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)10751 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
10752 					 struct bpf_func_state *caller,
10753 					 struct bpf_func_state *callee,
10754 					 int insn_idx)
10755 {
10756 	/* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
10757 	 *                     bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
10758 	 *
10759 	 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
10760 	 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
10761 	 * by this point, so look at 'root'
10762 	 */
10763 	struct btf_field *field;
10764 
10765 	field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
10766 				      BPF_RB_ROOT);
10767 	if (!field || !field->graph_root.value_btf_id)
10768 		return -EFAULT;
10769 
10770 	mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
10771 	ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
10772 	mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
10773 	ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
10774 
10775 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
10776 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10777 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10778 	callee->in_callback_fn = true;
10779 	callee->callback_ret_range = retval_range(0, 1);
10780 	return 0;
10781 }
10782 
10783 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
10784 
10785 /* Are we currently verifying the callback for a rbtree helper that must
10786  * be called with lock held? If so, no need to complain about unreleased
10787  * lock
10788  */
in_rbtree_lock_required_cb(struct bpf_verifier_env * env)10789 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
10790 {
10791 	struct bpf_verifier_state *state = env->cur_state;
10792 	struct bpf_insn *insn = env->prog->insnsi;
10793 	struct bpf_func_state *callee;
10794 	int kfunc_btf_id;
10795 
10796 	if (!state->curframe)
10797 		return false;
10798 
10799 	callee = state->frame[state->curframe];
10800 
10801 	if (!callee->in_callback_fn)
10802 		return false;
10803 
10804 	kfunc_btf_id = insn[callee->callsite].imm;
10805 	return is_rbtree_lock_required_kfunc(kfunc_btf_id);
10806 }
10807 
retval_range_within(struct bpf_retval_range range,const struct bpf_reg_state * reg,bool return_32bit)10808 static bool retval_range_within(struct bpf_retval_range range, const struct bpf_reg_state *reg,
10809 				bool return_32bit)
10810 {
10811 	if (return_32bit)
10812 		return range.minval <= reg->s32_min_value && reg->s32_max_value <= range.maxval;
10813 	else
10814 		return range.minval <= reg->smin_value && reg->smax_value <= range.maxval;
10815 }
10816 
prepare_func_exit(struct bpf_verifier_env * env,int * insn_idx)10817 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
10818 {
10819 	struct bpf_verifier_state *state = env->cur_state, *prev_st;
10820 	struct bpf_func_state *caller, *callee;
10821 	struct bpf_reg_state *r0;
10822 	bool in_callback_fn;
10823 	int err;
10824 
10825 	callee = state->frame[state->curframe];
10826 	r0 = &callee->regs[BPF_REG_0];
10827 	if (r0->type == PTR_TO_STACK) {
10828 		/* technically it's ok to return caller's stack pointer
10829 		 * (or caller's caller's pointer) back to the caller,
10830 		 * since these pointers are valid. Only current stack
10831 		 * pointer will be invalid as soon as function exits,
10832 		 * but let's be conservative
10833 		 */
10834 		verbose(env, "cannot return stack pointer to the caller\n");
10835 		return -EINVAL;
10836 	}
10837 
10838 	caller = state->frame[state->curframe - 1];
10839 	if (callee->in_callback_fn) {
10840 		if (r0->type != SCALAR_VALUE) {
10841 			verbose(env, "R0 not a scalar value\n");
10842 			return -EACCES;
10843 		}
10844 
10845 		/* we are going to rely on register's precise value */
10846 		err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64);
10847 		err = err ?: mark_chain_precision(env, BPF_REG_0);
10848 		if (err)
10849 			return err;
10850 
10851 		/* enforce R0 return value range, and bpf_callback_t returns 64bit */
10852 		if (!retval_range_within(callee->callback_ret_range, r0, false)) {
10853 			verbose_invalid_scalar(env, r0, callee->callback_ret_range,
10854 					       "At callback return", "R0");
10855 			return -EINVAL;
10856 		}
10857 		if (!calls_callback(env, callee->callsite)) {
10858 			verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n",
10859 				*insn_idx, callee->callsite);
10860 			return -EFAULT;
10861 		}
10862 	} else {
10863 		/* return to the caller whatever r0 had in the callee */
10864 		caller->regs[BPF_REG_0] = *r0;
10865 	}
10866 
10867 	/* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite,
10868 	 * there function call logic would reschedule callback visit. If iteration
10869 	 * converges is_state_visited() would prune that visit eventually.
10870 	 */
10871 	in_callback_fn = callee->in_callback_fn;
10872 	if (in_callback_fn)
10873 		*insn_idx = callee->callsite;
10874 	else
10875 		*insn_idx = callee->callsite + 1;
10876 
10877 	if (env->log.level & BPF_LOG_LEVEL) {
10878 		verbose(env, "returning from callee:\n");
10879 		print_verifier_state(env, state, callee->frameno, true);
10880 		verbose(env, "to caller at %d:\n", *insn_idx);
10881 		print_verifier_state(env, state, caller->frameno, true);
10882 	}
10883 	/* clear everything in the callee. In case of exceptional exits using
10884 	 * bpf_throw, this will be done by copy_verifier_state for extra frames. */
10885 	free_func_state(callee);
10886 	state->frame[state->curframe--] = NULL;
10887 
10888 	/* for callbacks widen imprecise scalars to make programs like below verify:
10889 	 *
10890 	 *   struct ctx { int i; }
10891 	 *   void cb(int idx, struct ctx *ctx) { ctx->i++; ... }
10892 	 *   ...
10893 	 *   struct ctx = { .i = 0; }
10894 	 *   bpf_loop(100, cb, &ctx, 0);
10895 	 *
10896 	 * This is similar to what is done in process_iter_next_call() for open
10897 	 * coded iterators.
10898 	 */
10899 	prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL;
10900 	if (prev_st) {
10901 		err = widen_imprecise_scalars(env, prev_st, state);
10902 		if (err)
10903 			return err;
10904 	}
10905 	return 0;
10906 }
10907 
do_refine_retval_range(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int ret_type,int func_id,struct bpf_call_arg_meta * meta)10908 static int do_refine_retval_range(struct bpf_verifier_env *env,
10909 				  struct bpf_reg_state *regs, int ret_type,
10910 				  int func_id,
10911 				  struct bpf_call_arg_meta *meta)
10912 {
10913 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
10914 
10915 	if (ret_type != RET_INTEGER)
10916 		return 0;
10917 
10918 	switch (func_id) {
10919 	case BPF_FUNC_get_stack:
10920 	case BPF_FUNC_get_task_stack:
10921 	case BPF_FUNC_probe_read_str:
10922 	case BPF_FUNC_probe_read_kernel_str:
10923 	case BPF_FUNC_probe_read_user_str:
10924 		ret_reg->smax_value = meta->msize_max_value;
10925 		ret_reg->s32_max_value = meta->msize_max_value;
10926 		ret_reg->smin_value = -MAX_ERRNO;
10927 		ret_reg->s32_min_value = -MAX_ERRNO;
10928 		reg_bounds_sync(ret_reg);
10929 		break;
10930 	case BPF_FUNC_get_smp_processor_id:
10931 		ret_reg->umax_value = nr_cpu_ids - 1;
10932 		ret_reg->u32_max_value = nr_cpu_ids - 1;
10933 		ret_reg->smax_value = nr_cpu_ids - 1;
10934 		ret_reg->s32_max_value = nr_cpu_ids - 1;
10935 		ret_reg->umin_value = 0;
10936 		ret_reg->u32_min_value = 0;
10937 		ret_reg->smin_value = 0;
10938 		ret_reg->s32_min_value = 0;
10939 		reg_bounds_sync(ret_reg);
10940 		break;
10941 	}
10942 
10943 	return reg_bounds_sanity_check(env, ret_reg, "retval");
10944 }
10945 
10946 static int
record_func_map(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)10947 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
10948 		int func_id, int insn_idx)
10949 {
10950 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
10951 	struct bpf_map *map = meta->map_ptr;
10952 
10953 	if (func_id != BPF_FUNC_tail_call &&
10954 	    func_id != BPF_FUNC_map_lookup_elem &&
10955 	    func_id != BPF_FUNC_map_update_elem &&
10956 	    func_id != BPF_FUNC_map_delete_elem &&
10957 	    func_id != BPF_FUNC_map_push_elem &&
10958 	    func_id != BPF_FUNC_map_pop_elem &&
10959 	    func_id != BPF_FUNC_map_peek_elem &&
10960 	    func_id != BPF_FUNC_for_each_map_elem &&
10961 	    func_id != BPF_FUNC_redirect_map &&
10962 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
10963 		return 0;
10964 
10965 	if (map == NULL) {
10966 		verbose(env, "kernel subsystem misconfigured verifier\n");
10967 		return -EINVAL;
10968 	}
10969 
10970 	/* In case of read-only, some additional restrictions
10971 	 * need to be applied in order to prevent altering the
10972 	 * state of the map from program side.
10973 	 */
10974 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
10975 	    (func_id == BPF_FUNC_map_delete_elem ||
10976 	     func_id == BPF_FUNC_map_update_elem ||
10977 	     func_id == BPF_FUNC_map_push_elem ||
10978 	     func_id == BPF_FUNC_map_pop_elem)) {
10979 		verbose(env, "write into map forbidden\n");
10980 		return -EACCES;
10981 	}
10982 
10983 	if (!aux->map_ptr_state.map_ptr)
10984 		bpf_map_ptr_store(aux, meta->map_ptr,
10985 				  !meta->map_ptr->bypass_spec_v1, false);
10986 	else if (aux->map_ptr_state.map_ptr != meta->map_ptr)
10987 		bpf_map_ptr_store(aux, meta->map_ptr,
10988 				  !meta->map_ptr->bypass_spec_v1, true);
10989 	return 0;
10990 }
10991 
10992 static int
record_func_key(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)10993 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
10994 		int func_id, int insn_idx)
10995 {
10996 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
10997 	struct bpf_reg_state *regs = cur_regs(env), *reg;
10998 	struct bpf_map *map = meta->map_ptr;
10999 	u64 val, max;
11000 	int err;
11001 
11002 	if (func_id != BPF_FUNC_tail_call)
11003 		return 0;
11004 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
11005 		verbose(env, "kernel subsystem misconfigured verifier\n");
11006 		return -EINVAL;
11007 	}
11008 
11009 	reg = &regs[BPF_REG_3];
11010 	val = reg->var_off.value;
11011 	max = map->max_entries;
11012 
11013 	if (!(is_reg_const(reg, false) && val < max)) {
11014 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
11015 		return 0;
11016 	}
11017 
11018 	err = mark_chain_precision(env, BPF_REG_3);
11019 	if (err)
11020 		return err;
11021 	if (bpf_map_key_unseen(aux))
11022 		bpf_map_key_store(aux, val);
11023 	else if (!bpf_map_key_poisoned(aux) &&
11024 		  bpf_map_key_immediate(aux) != val)
11025 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
11026 	return 0;
11027 }
11028 
check_reference_leak(struct bpf_verifier_env * env,bool exception_exit)11029 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit)
11030 {
11031 	struct bpf_verifier_state *state = env->cur_state;
11032 	enum bpf_prog_type type = resolve_prog_type(env->prog);
11033 	struct bpf_reg_state *reg = reg_state(env, BPF_REG_0);
11034 	bool refs_lingering = false;
11035 	int i;
11036 
11037 	if (!exception_exit && cur_func(env)->frameno)
11038 		return 0;
11039 
11040 	for (i = 0; i < state->acquired_refs; i++) {
11041 		if (state->refs[i].type != REF_TYPE_PTR)
11042 			continue;
11043 		/* Allow struct_ops programs to return a referenced kptr back to
11044 		 * kernel. Type checks are performed later in check_return_code.
11045 		 */
11046 		if (type == BPF_PROG_TYPE_STRUCT_OPS && !exception_exit &&
11047 		    reg->ref_obj_id == state->refs[i].id)
11048 			continue;
11049 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
11050 			state->refs[i].id, state->refs[i].insn_idx);
11051 		refs_lingering = true;
11052 	}
11053 	return refs_lingering ? -EINVAL : 0;
11054 }
11055 
check_resource_leak(struct bpf_verifier_env * env,bool exception_exit,bool check_lock,const char * prefix)11056 static int check_resource_leak(struct bpf_verifier_env *env, bool exception_exit, bool check_lock, const char *prefix)
11057 {
11058 	int err;
11059 
11060 	if (check_lock && env->cur_state->active_locks) {
11061 		verbose(env, "%s cannot be used inside bpf_spin_lock-ed region\n", prefix);
11062 		return -EINVAL;
11063 	}
11064 
11065 	err = check_reference_leak(env, exception_exit);
11066 	if (err) {
11067 		verbose(env, "%s would lead to reference leak\n", prefix);
11068 		return err;
11069 	}
11070 
11071 	if (check_lock && env->cur_state->active_irq_id) {
11072 		verbose(env, "%s cannot be used inside bpf_local_irq_save-ed region\n", prefix);
11073 		return -EINVAL;
11074 	}
11075 
11076 	if (check_lock && env->cur_state->active_rcu_lock) {
11077 		verbose(env, "%s cannot be used inside bpf_rcu_read_lock-ed region\n", prefix);
11078 		return -EINVAL;
11079 	}
11080 
11081 	if (check_lock && env->cur_state->active_preempt_locks) {
11082 		verbose(env, "%s cannot be used inside bpf_preempt_disable-ed region\n", prefix);
11083 		return -EINVAL;
11084 	}
11085 
11086 	return 0;
11087 }
11088 
check_bpf_snprintf_call(struct bpf_verifier_env * env,struct bpf_reg_state * regs)11089 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
11090 				   struct bpf_reg_state *regs)
11091 {
11092 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
11093 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
11094 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
11095 	struct bpf_bprintf_data data = {};
11096 	int err, fmt_map_off, num_args;
11097 	u64 fmt_addr;
11098 	char *fmt;
11099 
11100 	/* data must be an array of u64 */
11101 	if (data_len_reg->var_off.value % 8)
11102 		return -EINVAL;
11103 	num_args = data_len_reg->var_off.value / 8;
11104 
11105 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
11106 	 * and map_direct_value_addr is set.
11107 	 */
11108 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
11109 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
11110 						  fmt_map_off);
11111 	if (err) {
11112 		verbose(env, "failed to retrieve map value address\n");
11113 		return -EFAULT;
11114 	}
11115 	fmt = (char *)(long)fmt_addr + fmt_map_off;
11116 
11117 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
11118 	 * can focus on validating the format specifiers.
11119 	 */
11120 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
11121 	if (err < 0)
11122 		verbose(env, "Invalid format string\n");
11123 
11124 	return err;
11125 }
11126 
check_get_func_ip(struct bpf_verifier_env * env)11127 static int check_get_func_ip(struct bpf_verifier_env *env)
11128 {
11129 	enum bpf_prog_type type = resolve_prog_type(env->prog);
11130 	int func_id = BPF_FUNC_get_func_ip;
11131 
11132 	if (type == BPF_PROG_TYPE_TRACING) {
11133 		if (!bpf_prog_has_trampoline(env->prog)) {
11134 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
11135 				func_id_name(func_id), func_id);
11136 			return -ENOTSUPP;
11137 		}
11138 		return 0;
11139 	} else if (type == BPF_PROG_TYPE_KPROBE) {
11140 		return 0;
11141 	}
11142 
11143 	verbose(env, "func %s#%d not supported for program type %d\n",
11144 		func_id_name(func_id), func_id, type);
11145 	return -ENOTSUPP;
11146 }
11147 
cur_aux(struct bpf_verifier_env * env)11148 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
11149 {
11150 	return &env->insn_aux_data[env->insn_idx];
11151 }
11152 
loop_flag_is_zero(struct bpf_verifier_env * env)11153 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
11154 {
11155 	struct bpf_reg_state *regs = cur_regs(env);
11156 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
11157 	bool reg_is_null = register_is_null(reg);
11158 
11159 	if (reg_is_null)
11160 		mark_chain_precision(env, BPF_REG_4);
11161 
11162 	return reg_is_null;
11163 }
11164 
update_loop_inline_state(struct bpf_verifier_env * env,u32 subprogno)11165 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
11166 {
11167 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
11168 
11169 	if (!state->initialized) {
11170 		state->initialized = 1;
11171 		state->fit_for_inline = loop_flag_is_zero(env);
11172 		state->callback_subprogno = subprogno;
11173 		return;
11174 	}
11175 
11176 	if (!state->fit_for_inline)
11177 		return;
11178 
11179 	state->fit_for_inline = (loop_flag_is_zero(env) &&
11180 				 state->callback_subprogno == subprogno);
11181 }
11182 
11183 /* Returns whether or not the given map type can potentially elide
11184  * lookup return value nullness check. This is possible if the key
11185  * is statically known.
11186  */
can_elide_value_nullness(enum bpf_map_type type)11187 static bool can_elide_value_nullness(enum bpf_map_type type)
11188 {
11189 	switch (type) {
11190 	case BPF_MAP_TYPE_ARRAY:
11191 	case BPF_MAP_TYPE_PERCPU_ARRAY:
11192 		return true;
11193 	default:
11194 		return false;
11195 	}
11196 }
11197 
get_helper_proto(struct bpf_verifier_env * env,int func_id,const struct bpf_func_proto ** ptr)11198 static int get_helper_proto(struct bpf_verifier_env *env, int func_id,
11199 			    const struct bpf_func_proto **ptr)
11200 {
11201 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID)
11202 		return -ERANGE;
11203 
11204 	if (!env->ops->get_func_proto)
11205 		return -EINVAL;
11206 
11207 	*ptr = env->ops->get_func_proto(func_id, env->prog);
11208 	return *ptr ? 0 : -EINVAL;
11209 }
11210 
check_helper_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx_p)11211 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
11212 			     int *insn_idx_p)
11213 {
11214 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
11215 	bool returns_cpu_specific_alloc_ptr = false;
11216 	const struct bpf_func_proto *fn = NULL;
11217 	enum bpf_return_type ret_type;
11218 	enum bpf_type_flag ret_flag;
11219 	struct bpf_reg_state *regs;
11220 	struct bpf_call_arg_meta meta;
11221 	int insn_idx = *insn_idx_p;
11222 	bool changes_data;
11223 	int i, err, func_id;
11224 
11225 	/* find function prototype */
11226 	func_id = insn->imm;
11227 	err = get_helper_proto(env, insn->imm, &fn);
11228 	if (err == -ERANGE) {
11229 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id), func_id);
11230 		return -EINVAL;
11231 	}
11232 
11233 	if (err) {
11234 		verbose(env, "program of this type cannot use helper %s#%d\n",
11235 			func_id_name(func_id), func_id);
11236 		return err;
11237 	}
11238 
11239 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
11240 	if (!env->prog->gpl_compatible && fn->gpl_only) {
11241 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
11242 		return -EINVAL;
11243 	}
11244 
11245 	if (fn->allowed && !fn->allowed(env->prog)) {
11246 		verbose(env, "helper call is not allowed in probe\n");
11247 		return -EINVAL;
11248 	}
11249 
11250 	if (!in_sleepable(env) && fn->might_sleep) {
11251 		verbose(env, "helper call might sleep in a non-sleepable prog\n");
11252 		return -EINVAL;
11253 	}
11254 
11255 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
11256 	changes_data = bpf_helper_changes_pkt_data(func_id);
11257 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
11258 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
11259 			func_id_name(func_id), func_id);
11260 		return -EINVAL;
11261 	}
11262 
11263 	memset(&meta, 0, sizeof(meta));
11264 	meta.pkt_access = fn->pkt_access;
11265 
11266 	err = check_func_proto(fn, func_id);
11267 	if (err) {
11268 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
11269 			func_id_name(func_id), func_id);
11270 		return err;
11271 	}
11272 
11273 	if (env->cur_state->active_rcu_lock) {
11274 		if (fn->might_sleep) {
11275 			verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
11276 				func_id_name(func_id), func_id);
11277 			return -EINVAL;
11278 		}
11279 
11280 		if (in_sleepable(env) && is_storage_get_function(func_id))
11281 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
11282 	}
11283 
11284 	if (env->cur_state->active_preempt_locks) {
11285 		if (fn->might_sleep) {
11286 			verbose(env, "sleepable helper %s#%d in non-preemptible region\n",
11287 				func_id_name(func_id), func_id);
11288 			return -EINVAL;
11289 		}
11290 
11291 		if (in_sleepable(env) && is_storage_get_function(func_id))
11292 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
11293 	}
11294 
11295 	if (env->cur_state->active_irq_id) {
11296 		if (fn->might_sleep) {
11297 			verbose(env, "sleepable helper %s#%d in IRQ-disabled region\n",
11298 				func_id_name(func_id), func_id);
11299 			return -EINVAL;
11300 		}
11301 
11302 		if (in_sleepable(env) && is_storage_get_function(func_id))
11303 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
11304 	}
11305 
11306 	meta.func_id = func_id;
11307 	/* check args */
11308 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
11309 		err = check_func_arg(env, i, &meta, fn, insn_idx);
11310 		if (err)
11311 			return err;
11312 	}
11313 
11314 	err = record_func_map(env, &meta, func_id, insn_idx);
11315 	if (err)
11316 		return err;
11317 
11318 	err = record_func_key(env, &meta, func_id, insn_idx);
11319 	if (err)
11320 		return err;
11321 
11322 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
11323 	 * is inferred from register state.
11324 	 */
11325 	for (i = 0; i < meta.access_size; i++) {
11326 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
11327 				       BPF_WRITE, -1, false, false);
11328 		if (err)
11329 			return err;
11330 	}
11331 
11332 	regs = cur_regs(env);
11333 
11334 	if (meta.release_regno) {
11335 		err = -EINVAL;
11336 		/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
11337 		 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
11338 		 * is safe to do directly.
11339 		 */
11340 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
11341 			if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
11342 				verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
11343 				return -EFAULT;
11344 			}
11345 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
11346 		} else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) {
11347 			u32 ref_obj_id = meta.ref_obj_id;
11348 			bool in_rcu = in_rcu_cs(env);
11349 			struct bpf_func_state *state;
11350 			struct bpf_reg_state *reg;
11351 
11352 			err = release_reference_nomark(env->cur_state, ref_obj_id);
11353 			if (!err) {
11354 				bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
11355 					if (reg->ref_obj_id == ref_obj_id) {
11356 						if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) {
11357 							reg->ref_obj_id = 0;
11358 							reg->type &= ~MEM_ALLOC;
11359 							reg->type |= MEM_RCU;
11360 						} else {
11361 							mark_reg_invalid(env, reg);
11362 						}
11363 					}
11364 				}));
11365 			}
11366 		} else if (meta.ref_obj_id) {
11367 			err = release_reference(env, meta.ref_obj_id);
11368 		} else if (register_is_null(&regs[meta.release_regno])) {
11369 			/* meta.ref_obj_id can only be 0 if register that is meant to be
11370 			 * released is NULL, which must be > R0.
11371 			 */
11372 			err = 0;
11373 		}
11374 		if (err) {
11375 			verbose(env, "func %s#%d reference has not been acquired before\n",
11376 				func_id_name(func_id), func_id);
11377 			return err;
11378 		}
11379 	}
11380 
11381 	switch (func_id) {
11382 	case BPF_FUNC_tail_call:
11383 		err = check_resource_leak(env, false, true, "tail_call");
11384 		if (err)
11385 			return err;
11386 		break;
11387 	case BPF_FUNC_get_local_storage:
11388 		/* check that flags argument in get_local_storage(map, flags) is 0,
11389 		 * this is required because get_local_storage() can't return an error.
11390 		 */
11391 		if (!register_is_null(&regs[BPF_REG_2])) {
11392 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
11393 			return -EINVAL;
11394 		}
11395 		break;
11396 	case BPF_FUNC_for_each_map_elem:
11397 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
11398 					 set_map_elem_callback_state);
11399 		break;
11400 	case BPF_FUNC_timer_set_callback:
11401 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
11402 					 set_timer_callback_state);
11403 		break;
11404 	case BPF_FUNC_find_vma:
11405 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
11406 					 set_find_vma_callback_state);
11407 		break;
11408 	case BPF_FUNC_snprintf:
11409 		err = check_bpf_snprintf_call(env, regs);
11410 		break;
11411 	case BPF_FUNC_loop:
11412 		update_loop_inline_state(env, meta.subprogno);
11413 		/* Verifier relies on R1 value to determine if bpf_loop() iteration
11414 		 * is finished, thus mark it precise.
11415 		 */
11416 		err = mark_chain_precision(env, BPF_REG_1);
11417 		if (err)
11418 			return err;
11419 		if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) {
11420 			err = push_callback_call(env, insn, insn_idx, meta.subprogno,
11421 						 set_loop_callback_state);
11422 		} else {
11423 			cur_func(env)->callback_depth = 0;
11424 			if (env->log.level & BPF_LOG_LEVEL2)
11425 				verbose(env, "frame%d bpf_loop iteration limit reached\n",
11426 					env->cur_state->curframe);
11427 		}
11428 		break;
11429 	case BPF_FUNC_dynptr_from_mem:
11430 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
11431 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
11432 				reg_type_str(env, regs[BPF_REG_1].type));
11433 			return -EACCES;
11434 		}
11435 		break;
11436 	case BPF_FUNC_set_retval:
11437 		if (prog_type == BPF_PROG_TYPE_LSM &&
11438 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
11439 			if (!env->prog->aux->attach_func_proto->type) {
11440 				/* Make sure programs that attach to void
11441 				 * hooks don't try to modify return value.
11442 				 */
11443 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
11444 				return -EINVAL;
11445 			}
11446 		}
11447 		break;
11448 	case BPF_FUNC_dynptr_data:
11449 	{
11450 		struct bpf_reg_state *reg;
11451 		int id, ref_obj_id;
11452 
11453 		reg = get_dynptr_arg_reg(env, fn, regs);
11454 		if (!reg)
11455 			return -EFAULT;
11456 
11457 
11458 		if (meta.dynptr_id) {
11459 			verbose(env, "verifier internal error: meta.dynptr_id already set\n");
11460 			return -EFAULT;
11461 		}
11462 		if (meta.ref_obj_id) {
11463 			verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
11464 			return -EFAULT;
11465 		}
11466 
11467 		id = dynptr_id(env, reg);
11468 		if (id < 0) {
11469 			verbose(env, "verifier internal error: failed to obtain dynptr id\n");
11470 			return id;
11471 		}
11472 
11473 		ref_obj_id = dynptr_ref_obj_id(env, reg);
11474 		if (ref_obj_id < 0) {
11475 			verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
11476 			return ref_obj_id;
11477 		}
11478 
11479 		meta.dynptr_id = id;
11480 		meta.ref_obj_id = ref_obj_id;
11481 
11482 		break;
11483 	}
11484 	case BPF_FUNC_dynptr_write:
11485 	{
11486 		enum bpf_dynptr_type dynptr_type;
11487 		struct bpf_reg_state *reg;
11488 
11489 		reg = get_dynptr_arg_reg(env, fn, regs);
11490 		if (!reg)
11491 			return -EFAULT;
11492 
11493 		dynptr_type = dynptr_get_type(env, reg);
11494 		if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
11495 			return -EFAULT;
11496 
11497 		if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
11498 			/* this will trigger clear_all_pkt_pointers(), which will
11499 			 * invalidate all dynptr slices associated with the skb
11500 			 */
11501 			changes_data = true;
11502 
11503 		break;
11504 	}
11505 	case BPF_FUNC_per_cpu_ptr:
11506 	case BPF_FUNC_this_cpu_ptr:
11507 	{
11508 		struct bpf_reg_state *reg = &regs[BPF_REG_1];
11509 		const struct btf_type *type;
11510 
11511 		if (reg->type & MEM_RCU) {
11512 			type = btf_type_by_id(reg->btf, reg->btf_id);
11513 			if (!type || !btf_type_is_struct(type)) {
11514 				verbose(env, "Helper has invalid btf/btf_id in R1\n");
11515 				return -EFAULT;
11516 			}
11517 			returns_cpu_specific_alloc_ptr = true;
11518 			env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true;
11519 		}
11520 		break;
11521 	}
11522 	case BPF_FUNC_user_ringbuf_drain:
11523 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
11524 					 set_user_ringbuf_callback_state);
11525 		break;
11526 	}
11527 
11528 	if (err)
11529 		return err;
11530 
11531 	/* reset caller saved regs */
11532 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
11533 		mark_reg_not_init(env, regs, caller_saved[i]);
11534 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
11535 	}
11536 
11537 	/* helper call returns 64-bit value. */
11538 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
11539 
11540 	/* update return register (already marked as written above) */
11541 	ret_type = fn->ret_type;
11542 	ret_flag = type_flag(ret_type);
11543 
11544 	switch (base_type(ret_type)) {
11545 	case RET_INTEGER:
11546 		/* sets type to SCALAR_VALUE */
11547 		mark_reg_unknown(env, regs, BPF_REG_0);
11548 		break;
11549 	case RET_VOID:
11550 		regs[BPF_REG_0].type = NOT_INIT;
11551 		break;
11552 	case RET_PTR_TO_MAP_VALUE:
11553 		/* There is no offset yet applied, variable or fixed */
11554 		mark_reg_known_zero(env, regs, BPF_REG_0);
11555 		/* remember map_ptr, so that check_map_access()
11556 		 * can check 'value_size' boundary of memory access
11557 		 * to map element returned from bpf_map_lookup_elem()
11558 		 */
11559 		if (meta.map_ptr == NULL) {
11560 			verbose(env,
11561 				"kernel subsystem misconfigured verifier\n");
11562 			return -EINVAL;
11563 		}
11564 
11565 		if (func_id == BPF_FUNC_map_lookup_elem &&
11566 		    can_elide_value_nullness(meta.map_ptr->map_type) &&
11567 		    meta.const_map_key >= 0 &&
11568 		    meta.const_map_key < meta.map_ptr->max_entries)
11569 			ret_flag &= ~PTR_MAYBE_NULL;
11570 
11571 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
11572 		regs[BPF_REG_0].map_uid = meta.map_uid;
11573 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
11574 		if (!type_may_be_null(ret_flag) &&
11575 		    btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK)) {
11576 			regs[BPF_REG_0].id = ++env->id_gen;
11577 		}
11578 		break;
11579 	case RET_PTR_TO_SOCKET:
11580 		mark_reg_known_zero(env, regs, BPF_REG_0);
11581 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
11582 		break;
11583 	case RET_PTR_TO_SOCK_COMMON:
11584 		mark_reg_known_zero(env, regs, BPF_REG_0);
11585 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
11586 		break;
11587 	case RET_PTR_TO_TCP_SOCK:
11588 		mark_reg_known_zero(env, regs, BPF_REG_0);
11589 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
11590 		break;
11591 	case RET_PTR_TO_MEM:
11592 		mark_reg_known_zero(env, regs, BPF_REG_0);
11593 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
11594 		regs[BPF_REG_0].mem_size = meta.mem_size;
11595 		break;
11596 	case RET_PTR_TO_MEM_OR_BTF_ID:
11597 	{
11598 		const struct btf_type *t;
11599 
11600 		mark_reg_known_zero(env, regs, BPF_REG_0);
11601 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
11602 		if (!btf_type_is_struct(t)) {
11603 			u32 tsize;
11604 			const struct btf_type *ret;
11605 			const char *tname;
11606 
11607 			/* resolve the type size of ksym. */
11608 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
11609 			if (IS_ERR(ret)) {
11610 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
11611 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
11612 					tname, PTR_ERR(ret));
11613 				return -EINVAL;
11614 			}
11615 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
11616 			regs[BPF_REG_0].mem_size = tsize;
11617 		} else {
11618 			if (returns_cpu_specific_alloc_ptr) {
11619 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU;
11620 			} else {
11621 				/* MEM_RDONLY may be carried from ret_flag, but it
11622 				 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
11623 				 * it will confuse the check of PTR_TO_BTF_ID in
11624 				 * check_mem_access().
11625 				 */
11626 				ret_flag &= ~MEM_RDONLY;
11627 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
11628 			}
11629 
11630 			regs[BPF_REG_0].btf = meta.ret_btf;
11631 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
11632 		}
11633 		break;
11634 	}
11635 	case RET_PTR_TO_BTF_ID:
11636 	{
11637 		struct btf *ret_btf;
11638 		int ret_btf_id;
11639 
11640 		mark_reg_known_zero(env, regs, BPF_REG_0);
11641 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
11642 		if (func_id == BPF_FUNC_kptr_xchg) {
11643 			ret_btf = meta.kptr_field->kptr.btf;
11644 			ret_btf_id = meta.kptr_field->kptr.btf_id;
11645 			if (!btf_is_kernel(ret_btf)) {
11646 				regs[BPF_REG_0].type |= MEM_ALLOC;
11647 				if (meta.kptr_field->type == BPF_KPTR_PERCPU)
11648 					regs[BPF_REG_0].type |= MEM_PERCPU;
11649 			}
11650 		} else {
11651 			if (fn->ret_btf_id == BPF_PTR_POISON) {
11652 				verbose(env, "verifier internal error:");
11653 				verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
11654 					func_id_name(func_id));
11655 				return -EINVAL;
11656 			}
11657 			ret_btf = btf_vmlinux;
11658 			ret_btf_id = *fn->ret_btf_id;
11659 		}
11660 		if (ret_btf_id == 0) {
11661 			verbose(env, "invalid return type %u of func %s#%d\n",
11662 				base_type(ret_type), func_id_name(func_id),
11663 				func_id);
11664 			return -EINVAL;
11665 		}
11666 		regs[BPF_REG_0].btf = ret_btf;
11667 		regs[BPF_REG_0].btf_id = ret_btf_id;
11668 		break;
11669 	}
11670 	default:
11671 		verbose(env, "unknown return type %u of func %s#%d\n",
11672 			base_type(ret_type), func_id_name(func_id), func_id);
11673 		return -EINVAL;
11674 	}
11675 
11676 	if (type_may_be_null(regs[BPF_REG_0].type))
11677 		regs[BPF_REG_0].id = ++env->id_gen;
11678 
11679 	if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
11680 		verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
11681 			func_id_name(func_id), func_id);
11682 		return -EFAULT;
11683 	}
11684 
11685 	if (is_dynptr_ref_function(func_id))
11686 		regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
11687 
11688 	if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
11689 		/* For release_reference() */
11690 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
11691 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
11692 		int id = acquire_reference(env, insn_idx);
11693 
11694 		if (id < 0)
11695 			return id;
11696 		/* For mark_ptr_or_null_reg() */
11697 		regs[BPF_REG_0].id = id;
11698 		/* For release_reference() */
11699 		regs[BPF_REG_0].ref_obj_id = id;
11700 	}
11701 
11702 	err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta);
11703 	if (err)
11704 		return err;
11705 
11706 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
11707 	if (err)
11708 		return err;
11709 
11710 	if ((func_id == BPF_FUNC_get_stack ||
11711 	     func_id == BPF_FUNC_get_task_stack) &&
11712 	    !env->prog->has_callchain_buf) {
11713 		const char *err_str;
11714 
11715 #ifdef CONFIG_PERF_EVENTS
11716 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
11717 		err_str = "cannot get callchain buffer for func %s#%d\n";
11718 #else
11719 		err = -ENOTSUPP;
11720 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
11721 #endif
11722 		if (err) {
11723 			verbose(env, err_str, func_id_name(func_id), func_id);
11724 			return err;
11725 		}
11726 
11727 		env->prog->has_callchain_buf = true;
11728 	}
11729 
11730 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
11731 		env->prog->call_get_stack = true;
11732 
11733 	if (func_id == BPF_FUNC_get_func_ip) {
11734 		if (check_get_func_ip(env))
11735 			return -ENOTSUPP;
11736 		env->prog->call_get_func_ip = true;
11737 	}
11738 
11739 	if (changes_data)
11740 		clear_all_pkt_pointers(env);
11741 	return 0;
11742 }
11743 
11744 /* mark_btf_func_reg_size() is used when the reg size is determined by
11745  * the BTF func_proto's return value size and argument.
11746  */
__mark_btf_func_reg_size(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,size_t reg_size)11747 static void __mark_btf_func_reg_size(struct bpf_verifier_env *env, struct bpf_reg_state *regs,
11748 				     u32 regno, size_t reg_size)
11749 {
11750 	struct bpf_reg_state *reg = &regs[regno];
11751 
11752 	if (regno == BPF_REG_0) {
11753 		/* Function return value */
11754 		reg->live |= REG_LIVE_WRITTEN;
11755 		reg->subreg_def = reg_size == sizeof(u64) ?
11756 			DEF_NOT_SUBREG : env->insn_idx + 1;
11757 	} else {
11758 		/* Function argument */
11759 		if (reg_size == sizeof(u64)) {
11760 			mark_insn_zext(env, reg);
11761 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
11762 		} else {
11763 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
11764 		}
11765 	}
11766 }
11767 
mark_btf_func_reg_size(struct bpf_verifier_env * env,u32 regno,size_t reg_size)11768 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
11769 				   size_t reg_size)
11770 {
11771 	return __mark_btf_func_reg_size(env, cur_regs(env), regno, reg_size);
11772 }
11773 
is_kfunc_acquire(struct bpf_kfunc_call_arg_meta * meta)11774 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
11775 {
11776 	return meta->kfunc_flags & KF_ACQUIRE;
11777 }
11778 
is_kfunc_release(struct bpf_kfunc_call_arg_meta * meta)11779 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
11780 {
11781 	return meta->kfunc_flags & KF_RELEASE;
11782 }
11783 
is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta * meta)11784 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
11785 {
11786 	return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
11787 }
11788 
is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta * meta)11789 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
11790 {
11791 	return meta->kfunc_flags & KF_SLEEPABLE;
11792 }
11793 
is_kfunc_destructive(struct bpf_kfunc_call_arg_meta * meta)11794 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
11795 {
11796 	return meta->kfunc_flags & KF_DESTRUCTIVE;
11797 }
11798 
is_kfunc_rcu(struct bpf_kfunc_call_arg_meta * meta)11799 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
11800 {
11801 	return meta->kfunc_flags & KF_RCU;
11802 }
11803 
is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta * meta)11804 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta)
11805 {
11806 	return meta->kfunc_flags & KF_RCU_PROTECTED;
11807 }
11808 
is_kfunc_arg_mem_size(const struct btf * btf,const struct btf_param * arg,const struct bpf_reg_state * reg)11809 static bool is_kfunc_arg_mem_size(const struct btf *btf,
11810 				  const struct btf_param *arg,
11811 				  const struct bpf_reg_state *reg)
11812 {
11813 	const struct btf_type *t;
11814 
11815 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
11816 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
11817 		return false;
11818 
11819 	return btf_param_match_suffix(btf, arg, "__sz");
11820 }
11821 
is_kfunc_arg_const_mem_size(const struct btf * btf,const struct btf_param * arg,const struct bpf_reg_state * reg)11822 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
11823 					const struct btf_param *arg,
11824 					const struct bpf_reg_state *reg)
11825 {
11826 	const struct btf_type *t;
11827 
11828 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
11829 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
11830 		return false;
11831 
11832 	return btf_param_match_suffix(btf, arg, "__szk");
11833 }
11834 
is_kfunc_arg_optional(const struct btf * btf,const struct btf_param * arg)11835 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg)
11836 {
11837 	return btf_param_match_suffix(btf, arg, "__opt");
11838 }
11839 
is_kfunc_arg_constant(const struct btf * btf,const struct btf_param * arg)11840 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
11841 {
11842 	return btf_param_match_suffix(btf, arg, "__k");
11843 }
11844 
is_kfunc_arg_ignore(const struct btf * btf,const struct btf_param * arg)11845 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
11846 {
11847 	return btf_param_match_suffix(btf, arg, "__ign");
11848 }
11849 
is_kfunc_arg_map(const struct btf * btf,const struct btf_param * arg)11850 static bool is_kfunc_arg_map(const struct btf *btf, const struct btf_param *arg)
11851 {
11852 	return btf_param_match_suffix(btf, arg, "__map");
11853 }
11854 
is_kfunc_arg_alloc_obj(const struct btf * btf,const struct btf_param * arg)11855 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
11856 {
11857 	return btf_param_match_suffix(btf, arg, "__alloc");
11858 }
11859 
is_kfunc_arg_uninit(const struct btf * btf,const struct btf_param * arg)11860 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
11861 {
11862 	return btf_param_match_suffix(btf, arg, "__uninit");
11863 }
11864 
is_kfunc_arg_refcounted_kptr(const struct btf * btf,const struct btf_param * arg)11865 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
11866 {
11867 	return btf_param_match_suffix(btf, arg, "__refcounted_kptr");
11868 }
11869 
is_kfunc_arg_nullable(const struct btf * btf,const struct btf_param * arg)11870 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg)
11871 {
11872 	return btf_param_match_suffix(btf, arg, "__nullable");
11873 }
11874 
is_kfunc_arg_const_str(const struct btf * btf,const struct btf_param * arg)11875 static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg)
11876 {
11877 	return btf_param_match_suffix(btf, arg, "__str");
11878 }
11879 
is_kfunc_arg_irq_flag(const struct btf * btf,const struct btf_param * arg)11880 static bool is_kfunc_arg_irq_flag(const struct btf *btf, const struct btf_param *arg)
11881 {
11882 	return btf_param_match_suffix(btf, arg, "__irq_flag");
11883 }
11884 
is_kfunc_arg_prog(const struct btf * btf,const struct btf_param * arg)11885 static bool is_kfunc_arg_prog(const struct btf *btf, const struct btf_param *arg)
11886 {
11887 	return btf_param_match_suffix(btf, arg, "__prog");
11888 }
11889 
is_kfunc_arg_scalar_with_name(const struct btf * btf,const struct btf_param * arg,const char * name)11890 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
11891 					  const struct btf_param *arg,
11892 					  const char *name)
11893 {
11894 	int len, target_len = strlen(name);
11895 	const char *param_name;
11896 
11897 	param_name = btf_name_by_offset(btf, arg->name_off);
11898 	if (str_is_empty(param_name))
11899 		return false;
11900 	len = strlen(param_name);
11901 	if (len != target_len)
11902 		return false;
11903 	if (strcmp(param_name, name))
11904 		return false;
11905 
11906 	return true;
11907 }
11908 
11909 enum {
11910 	KF_ARG_DYNPTR_ID,
11911 	KF_ARG_LIST_HEAD_ID,
11912 	KF_ARG_LIST_NODE_ID,
11913 	KF_ARG_RB_ROOT_ID,
11914 	KF_ARG_RB_NODE_ID,
11915 	KF_ARG_WORKQUEUE_ID,
11916 	KF_ARG_RES_SPIN_LOCK_ID,
11917 };
11918 
11919 BTF_ID_LIST(kf_arg_btf_ids)
BTF_ID(struct,bpf_dynptr)11920 BTF_ID(struct, bpf_dynptr)
11921 BTF_ID(struct, bpf_list_head)
11922 BTF_ID(struct, bpf_list_node)
11923 BTF_ID(struct, bpf_rb_root)
11924 BTF_ID(struct, bpf_rb_node)
11925 BTF_ID(struct, bpf_wq)
11926 BTF_ID(struct, bpf_res_spin_lock)
11927 
11928 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
11929 				    const struct btf_param *arg, int type)
11930 {
11931 	const struct btf_type *t;
11932 	u32 res_id;
11933 
11934 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
11935 	if (!t)
11936 		return false;
11937 	if (!btf_type_is_ptr(t))
11938 		return false;
11939 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
11940 	if (!t)
11941 		return false;
11942 	return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
11943 }
11944 
is_kfunc_arg_dynptr(const struct btf * btf,const struct btf_param * arg)11945 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
11946 {
11947 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
11948 }
11949 
is_kfunc_arg_list_head(const struct btf * btf,const struct btf_param * arg)11950 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
11951 {
11952 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
11953 }
11954 
is_kfunc_arg_list_node(const struct btf * btf,const struct btf_param * arg)11955 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
11956 {
11957 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
11958 }
11959 
is_kfunc_arg_rbtree_root(const struct btf * btf,const struct btf_param * arg)11960 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
11961 {
11962 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
11963 }
11964 
is_kfunc_arg_rbtree_node(const struct btf * btf,const struct btf_param * arg)11965 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
11966 {
11967 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
11968 }
11969 
is_kfunc_arg_wq(const struct btf * btf,const struct btf_param * arg)11970 static bool is_kfunc_arg_wq(const struct btf *btf, const struct btf_param *arg)
11971 {
11972 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_WORKQUEUE_ID);
11973 }
11974 
is_kfunc_arg_res_spin_lock(const struct btf * btf,const struct btf_param * arg)11975 static bool is_kfunc_arg_res_spin_lock(const struct btf *btf, const struct btf_param *arg)
11976 {
11977 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RES_SPIN_LOCK_ID);
11978 }
11979 
is_rbtree_node_type(const struct btf_type * t)11980 static bool is_rbtree_node_type(const struct btf_type *t)
11981 {
11982 	return t == btf_type_by_id(btf_vmlinux, kf_arg_btf_ids[KF_ARG_RB_NODE_ID]);
11983 }
11984 
is_list_node_type(const struct btf_type * t)11985 static bool is_list_node_type(const struct btf_type *t)
11986 {
11987 	return t == btf_type_by_id(btf_vmlinux, kf_arg_btf_ids[KF_ARG_LIST_NODE_ID]);
11988 }
11989 
is_kfunc_arg_callback(struct bpf_verifier_env * env,const struct btf * btf,const struct btf_param * arg)11990 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
11991 				  const struct btf_param *arg)
11992 {
11993 	const struct btf_type *t;
11994 
11995 	t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
11996 	if (!t)
11997 		return false;
11998 
11999 	return true;
12000 }
12001 
12002 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
__btf_type_is_scalar_struct(struct bpf_verifier_env * env,const struct btf * btf,const struct btf_type * t,int rec)12003 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
12004 					const struct btf *btf,
12005 					const struct btf_type *t, int rec)
12006 {
12007 	const struct btf_type *member_type;
12008 	const struct btf_member *member;
12009 	u32 i;
12010 
12011 	if (!btf_type_is_struct(t))
12012 		return false;
12013 
12014 	for_each_member(i, t, member) {
12015 		const struct btf_array *array;
12016 
12017 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
12018 		if (btf_type_is_struct(member_type)) {
12019 			if (rec >= 3) {
12020 				verbose(env, "max struct nesting depth exceeded\n");
12021 				return false;
12022 			}
12023 			if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
12024 				return false;
12025 			continue;
12026 		}
12027 		if (btf_type_is_array(member_type)) {
12028 			array = btf_array(member_type);
12029 			if (!array->nelems)
12030 				return false;
12031 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
12032 			if (!btf_type_is_scalar(member_type))
12033 				return false;
12034 			continue;
12035 		}
12036 		if (!btf_type_is_scalar(member_type))
12037 			return false;
12038 	}
12039 	return true;
12040 }
12041 
12042 enum kfunc_ptr_arg_type {
12043 	KF_ARG_PTR_TO_CTX,
12044 	KF_ARG_PTR_TO_ALLOC_BTF_ID,    /* Allocated object */
12045 	KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
12046 	KF_ARG_PTR_TO_DYNPTR,
12047 	KF_ARG_PTR_TO_ITER,
12048 	KF_ARG_PTR_TO_LIST_HEAD,
12049 	KF_ARG_PTR_TO_LIST_NODE,
12050 	KF_ARG_PTR_TO_BTF_ID,	       /* Also covers reg2btf_ids conversions */
12051 	KF_ARG_PTR_TO_MEM,
12052 	KF_ARG_PTR_TO_MEM_SIZE,	       /* Size derived from next argument, skip it */
12053 	KF_ARG_PTR_TO_CALLBACK,
12054 	KF_ARG_PTR_TO_RB_ROOT,
12055 	KF_ARG_PTR_TO_RB_NODE,
12056 	KF_ARG_PTR_TO_NULL,
12057 	KF_ARG_PTR_TO_CONST_STR,
12058 	KF_ARG_PTR_TO_MAP,
12059 	KF_ARG_PTR_TO_WORKQUEUE,
12060 	KF_ARG_PTR_TO_IRQ_FLAG,
12061 	KF_ARG_PTR_TO_RES_SPIN_LOCK,
12062 };
12063 
12064 enum special_kfunc_type {
12065 	KF_bpf_obj_new_impl,
12066 	KF_bpf_obj_drop_impl,
12067 	KF_bpf_refcount_acquire_impl,
12068 	KF_bpf_list_push_front_impl,
12069 	KF_bpf_list_push_back_impl,
12070 	KF_bpf_list_pop_front,
12071 	KF_bpf_list_pop_back,
12072 	KF_bpf_list_front,
12073 	KF_bpf_list_back,
12074 	KF_bpf_cast_to_kern_ctx,
12075 	KF_bpf_rdonly_cast,
12076 	KF_bpf_rcu_read_lock,
12077 	KF_bpf_rcu_read_unlock,
12078 	KF_bpf_rbtree_remove,
12079 	KF_bpf_rbtree_add_impl,
12080 	KF_bpf_rbtree_first,
12081 	KF_bpf_rbtree_root,
12082 	KF_bpf_rbtree_left,
12083 	KF_bpf_rbtree_right,
12084 	KF_bpf_dynptr_from_skb,
12085 	KF_bpf_dynptr_from_xdp,
12086 	KF_bpf_dynptr_slice,
12087 	KF_bpf_dynptr_slice_rdwr,
12088 	KF_bpf_dynptr_clone,
12089 	KF_bpf_percpu_obj_new_impl,
12090 	KF_bpf_percpu_obj_drop_impl,
12091 	KF_bpf_throw,
12092 	KF_bpf_wq_set_callback_impl,
12093 	KF_bpf_preempt_disable,
12094 	KF_bpf_preempt_enable,
12095 	KF_bpf_iter_css_task_new,
12096 	KF_bpf_session_cookie,
12097 	KF_bpf_get_kmem_cache,
12098 	KF_bpf_local_irq_save,
12099 	KF_bpf_local_irq_restore,
12100 	KF_bpf_iter_num_new,
12101 	KF_bpf_iter_num_next,
12102 	KF_bpf_iter_num_destroy,
12103 	KF_bpf_set_dentry_xattr,
12104 	KF_bpf_remove_dentry_xattr,
12105 	KF_bpf_res_spin_lock,
12106 	KF_bpf_res_spin_unlock,
12107 	KF_bpf_res_spin_lock_irqsave,
12108 	KF_bpf_res_spin_unlock_irqrestore,
12109 	KF___bpf_trap,
12110 };
12111 
12112 BTF_ID_LIST(special_kfunc_list)
BTF_ID(func,bpf_obj_new_impl)12113 BTF_ID(func, bpf_obj_new_impl)
12114 BTF_ID(func, bpf_obj_drop_impl)
12115 BTF_ID(func, bpf_refcount_acquire_impl)
12116 BTF_ID(func, bpf_list_push_front_impl)
12117 BTF_ID(func, bpf_list_push_back_impl)
12118 BTF_ID(func, bpf_list_pop_front)
12119 BTF_ID(func, bpf_list_pop_back)
12120 BTF_ID(func, bpf_list_front)
12121 BTF_ID(func, bpf_list_back)
12122 BTF_ID(func, bpf_cast_to_kern_ctx)
12123 BTF_ID(func, bpf_rdonly_cast)
12124 BTF_ID(func, bpf_rcu_read_lock)
12125 BTF_ID(func, bpf_rcu_read_unlock)
12126 BTF_ID(func, bpf_rbtree_remove)
12127 BTF_ID(func, bpf_rbtree_add_impl)
12128 BTF_ID(func, bpf_rbtree_first)
12129 BTF_ID(func, bpf_rbtree_root)
12130 BTF_ID(func, bpf_rbtree_left)
12131 BTF_ID(func, bpf_rbtree_right)
12132 #ifdef CONFIG_NET
12133 BTF_ID(func, bpf_dynptr_from_skb)
12134 BTF_ID(func, bpf_dynptr_from_xdp)
12135 #else
12136 BTF_ID_UNUSED
12137 BTF_ID_UNUSED
12138 #endif
12139 BTF_ID(func, bpf_dynptr_slice)
12140 BTF_ID(func, bpf_dynptr_slice_rdwr)
12141 BTF_ID(func, bpf_dynptr_clone)
12142 BTF_ID(func, bpf_percpu_obj_new_impl)
12143 BTF_ID(func, bpf_percpu_obj_drop_impl)
12144 BTF_ID(func, bpf_throw)
12145 BTF_ID(func, bpf_wq_set_callback_impl)
12146 BTF_ID(func, bpf_preempt_disable)
12147 BTF_ID(func, bpf_preempt_enable)
12148 #ifdef CONFIG_CGROUPS
12149 BTF_ID(func, bpf_iter_css_task_new)
12150 #else
12151 BTF_ID_UNUSED
12152 #endif
12153 #ifdef CONFIG_BPF_EVENTS
12154 BTF_ID(func, bpf_session_cookie)
12155 #else
12156 BTF_ID_UNUSED
12157 #endif
12158 BTF_ID(func, bpf_get_kmem_cache)
12159 BTF_ID(func, bpf_local_irq_save)
12160 BTF_ID(func, bpf_local_irq_restore)
12161 BTF_ID(func, bpf_iter_num_new)
12162 BTF_ID(func, bpf_iter_num_next)
12163 BTF_ID(func, bpf_iter_num_destroy)
12164 #ifdef CONFIG_BPF_LSM
12165 BTF_ID(func, bpf_set_dentry_xattr)
12166 BTF_ID(func, bpf_remove_dentry_xattr)
12167 #else
12168 BTF_ID_UNUSED
12169 BTF_ID_UNUSED
12170 #endif
12171 BTF_ID(func, bpf_res_spin_lock)
12172 BTF_ID(func, bpf_res_spin_unlock)
12173 BTF_ID(func, bpf_res_spin_lock_irqsave)
12174 BTF_ID(func, bpf_res_spin_unlock_irqrestore)
12175 BTF_ID(func, __bpf_trap)
12176 
12177 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
12178 {
12179 	if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
12180 	    meta->arg_owning_ref) {
12181 		return false;
12182 	}
12183 
12184 	return meta->kfunc_flags & KF_RET_NULL;
12185 }
12186 
is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta * meta)12187 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
12188 {
12189 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
12190 }
12191 
is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta * meta)12192 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
12193 {
12194 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
12195 }
12196 
is_kfunc_bpf_preempt_disable(struct bpf_kfunc_call_arg_meta * meta)12197 static bool is_kfunc_bpf_preempt_disable(struct bpf_kfunc_call_arg_meta *meta)
12198 {
12199 	return meta->func_id == special_kfunc_list[KF_bpf_preempt_disable];
12200 }
12201 
is_kfunc_bpf_preempt_enable(struct bpf_kfunc_call_arg_meta * meta)12202 static bool is_kfunc_bpf_preempt_enable(struct bpf_kfunc_call_arg_meta *meta)
12203 {
12204 	return meta->func_id == special_kfunc_list[KF_bpf_preempt_enable];
12205 }
12206 
12207 static enum kfunc_ptr_arg_type
get_kfunc_ptr_arg_type(struct bpf_verifier_env * env,struct bpf_kfunc_call_arg_meta * meta,const struct btf_type * t,const struct btf_type * ref_t,const char * ref_tname,const struct btf_param * args,int argno,int nargs)12208 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
12209 		       struct bpf_kfunc_call_arg_meta *meta,
12210 		       const struct btf_type *t, const struct btf_type *ref_t,
12211 		       const char *ref_tname, const struct btf_param *args,
12212 		       int argno, int nargs)
12213 {
12214 	u32 regno = argno + 1;
12215 	struct bpf_reg_state *regs = cur_regs(env);
12216 	struct bpf_reg_state *reg = &regs[regno];
12217 	bool arg_mem_size = false;
12218 
12219 	if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
12220 		return KF_ARG_PTR_TO_CTX;
12221 
12222 	/* In this function, we verify the kfunc's BTF as per the argument type,
12223 	 * leaving the rest of the verification with respect to the register
12224 	 * type to our caller. When a set of conditions hold in the BTF type of
12225 	 * arguments, we resolve it to a known kfunc_ptr_arg_type.
12226 	 */
12227 	if (btf_is_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
12228 		return KF_ARG_PTR_TO_CTX;
12229 
12230 	if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg))
12231 		return KF_ARG_PTR_TO_NULL;
12232 
12233 	if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
12234 		return KF_ARG_PTR_TO_ALLOC_BTF_ID;
12235 
12236 	if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
12237 		return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
12238 
12239 	if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
12240 		return KF_ARG_PTR_TO_DYNPTR;
12241 
12242 	if (is_kfunc_arg_iter(meta, argno, &args[argno]))
12243 		return KF_ARG_PTR_TO_ITER;
12244 
12245 	if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
12246 		return KF_ARG_PTR_TO_LIST_HEAD;
12247 
12248 	if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
12249 		return KF_ARG_PTR_TO_LIST_NODE;
12250 
12251 	if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
12252 		return KF_ARG_PTR_TO_RB_ROOT;
12253 
12254 	if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
12255 		return KF_ARG_PTR_TO_RB_NODE;
12256 
12257 	if (is_kfunc_arg_const_str(meta->btf, &args[argno]))
12258 		return KF_ARG_PTR_TO_CONST_STR;
12259 
12260 	if (is_kfunc_arg_map(meta->btf, &args[argno]))
12261 		return KF_ARG_PTR_TO_MAP;
12262 
12263 	if (is_kfunc_arg_wq(meta->btf, &args[argno]))
12264 		return KF_ARG_PTR_TO_WORKQUEUE;
12265 
12266 	if (is_kfunc_arg_irq_flag(meta->btf, &args[argno]))
12267 		return KF_ARG_PTR_TO_IRQ_FLAG;
12268 
12269 	if (is_kfunc_arg_res_spin_lock(meta->btf, &args[argno]))
12270 		return KF_ARG_PTR_TO_RES_SPIN_LOCK;
12271 
12272 	if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
12273 		if (!btf_type_is_struct(ref_t)) {
12274 			verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
12275 				meta->func_name, argno, btf_type_str(ref_t), ref_tname);
12276 			return -EINVAL;
12277 		}
12278 		return KF_ARG_PTR_TO_BTF_ID;
12279 	}
12280 
12281 	if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
12282 		return KF_ARG_PTR_TO_CALLBACK;
12283 
12284 	if (argno + 1 < nargs &&
12285 	    (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]) ||
12286 	     is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1])))
12287 		arg_mem_size = true;
12288 
12289 	/* This is the catch all argument type of register types supported by
12290 	 * check_helper_mem_access. However, we only allow when argument type is
12291 	 * pointer to scalar, or struct composed (recursively) of scalars. When
12292 	 * arg_mem_size is true, the pointer can be void *.
12293 	 */
12294 	if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
12295 	    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
12296 		verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
12297 			argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
12298 		return -EINVAL;
12299 	}
12300 	return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
12301 }
12302 
process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const struct btf_type * ref_t,const char * ref_tname,u32 ref_id,struct bpf_kfunc_call_arg_meta * meta,int argno)12303 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
12304 					struct bpf_reg_state *reg,
12305 					const struct btf_type *ref_t,
12306 					const char *ref_tname, u32 ref_id,
12307 					struct bpf_kfunc_call_arg_meta *meta,
12308 					int argno)
12309 {
12310 	const struct btf_type *reg_ref_t;
12311 	bool strict_type_match = false;
12312 	const struct btf *reg_btf;
12313 	const char *reg_ref_tname;
12314 	bool taking_projection;
12315 	bool struct_same;
12316 	u32 reg_ref_id;
12317 
12318 	if (base_type(reg->type) == PTR_TO_BTF_ID) {
12319 		reg_btf = reg->btf;
12320 		reg_ref_id = reg->btf_id;
12321 	} else {
12322 		reg_btf = btf_vmlinux;
12323 		reg_ref_id = *reg2btf_ids[base_type(reg->type)];
12324 	}
12325 
12326 	/* Enforce strict type matching for calls to kfuncs that are acquiring
12327 	 * or releasing a reference, or are no-cast aliases. We do _not_
12328 	 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
12329 	 * as we want to enable BPF programs to pass types that are bitwise
12330 	 * equivalent without forcing them to explicitly cast with something
12331 	 * like bpf_cast_to_kern_ctx().
12332 	 *
12333 	 * For example, say we had a type like the following:
12334 	 *
12335 	 * struct bpf_cpumask {
12336 	 *	cpumask_t cpumask;
12337 	 *	refcount_t usage;
12338 	 * };
12339 	 *
12340 	 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
12341 	 * to a struct cpumask, so it would be safe to pass a struct
12342 	 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
12343 	 *
12344 	 * The philosophy here is similar to how we allow scalars of different
12345 	 * types to be passed to kfuncs as long as the size is the same. The
12346 	 * only difference here is that we're simply allowing
12347 	 * btf_struct_ids_match() to walk the struct at the 0th offset, and
12348 	 * resolve types.
12349 	 */
12350 	if ((is_kfunc_release(meta) && reg->ref_obj_id) ||
12351 	    btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
12352 		strict_type_match = true;
12353 
12354 	WARN_ON_ONCE(is_kfunc_release(meta) &&
12355 		     (reg->off || !tnum_is_const(reg->var_off) ||
12356 		      reg->var_off.value));
12357 
12358 	reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
12359 	reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
12360 	struct_same = btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match);
12361 	/* If kfunc is accepting a projection type (ie. __sk_buff), it cannot
12362 	 * actually use it -- it must cast to the underlying type. So we allow
12363 	 * caller to pass in the underlying type.
12364 	 */
12365 	taking_projection = btf_is_projection_of(ref_tname, reg_ref_tname);
12366 	if (!taking_projection && !struct_same) {
12367 		verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
12368 			meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
12369 			btf_type_str(reg_ref_t), reg_ref_tname);
12370 		return -EINVAL;
12371 	}
12372 	return 0;
12373 }
12374 
process_irq_flag(struct bpf_verifier_env * env,int regno,struct bpf_kfunc_call_arg_meta * meta)12375 static int process_irq_flag(struct bpf_verifier_env *env, int regno,
12376 			     struct bpf_kfunc_call_arg_meta *meta)
12377 {
12378 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
12379 	int err, kfunc_class = IRQ_NATIVE_KFUNC;
12380 	bool irq_save;
12381 
12382 	if (meta->func_id == special_kfunc_list[KF_bpf_local_irq_save] ||
12383 	    meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave]) {
12384 		irq_save = true;
12385 		if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave])
12386 			kfunc_class = IRQ_LOCK_KFUNC;
12387 	} else if (meta->func_id == special_kfunc_list[KF_bpf_local_irq_restore] ||
12388 		   meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]) {
12389 		irq_save = false;
12390 		if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore])
12391 			kfunc_class = IRQ_LOCK_KFUNC;
12392 	} else {
12393 		verbose(env, "verifier internal error: unknown irq flags kfunc\n");
12394 		return -EFAULT;
12395 	}
12396 
12397 	if (irq_save) {
12398 		if (!is_irq_flag_reg_valid_uninit(env, reg)) {
12399 			verbose(env, "expected uninitialized irq flag as arg#%d\n", regno - 1);
12400 			return -EINVAL;
12401 		}
12402 
12403 		err = check_mem_access(env, env->insn_idx, regno, 0, BPF_DW, BPF_WRITE, -1, false, false);
12404 		if (err)
12405 			return err;
12406 
12407 		err = mark_stack_slot_irq_flag(env, meta, reg, env->insn_idx, kfunc_class);
12408 		if (err)
12409 			return err;
12410 	} else {
12411 		err = is_irq_flag_reg_valid_init(env, reg);
12412 		if (err) {
12413 			verbose(env, "expected an initialized irq flag as arg#%d\n", regno - 1);
12414 			return err;
12415 		}
12416 
12417 		err = mark_irq_flag_read(env, reg);
12418 		if (err)
12419 			return err;
12420 
12421 		err = unmark_stack_slot_irq_flag(env, reg, kfunc_class);
12422 		if (err)
12423 			return err;
12424 	}
12425 	return 0;
12426 }
12427 
12428 
ref_set_non_owning(struct bpf_verifier_env * env,struct bpf_reg_state * reg)12429 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
12430 {
12431 	struct btf_record *rec = reg_btf_record(reg);
12432 
12433 	if (!env->cur_state->active_locks) {
12434 		verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
12435 		return -EFAULT;
12436 	}
12437 
12438 	if (type_flag(reg->type) & NON_OWN_REF) {
12439 		verbose(env, "verifier internal error: NON_OWN_REF already set\n");
12440 		return -EFAULT;
12441 	}
12442 
12443 	reg->type |= NON_OWN_REF;
12444 	if (rec->refcount_off >= 0)
12445 		reg->type |= MEM_RCU;
12446 
12447 	return 0;
12448 }
12449 
ref_convert_owning_non_owning(struct bpf_verifier_env * env,u32 ref_obj_id)12450 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
12451 {
12452 	struct bpf_verifier_state *state = env->cur_state;
12453 	struct bpf_func_state *unused;
12454 	struct bpf_reg_state *reg;
12455 	int i;
12456 
12457 	if (!ref_obj_id) {
12458 		verbose(env, "verifier internal error: ref_obj_id is zero for "
12459 			     "owning -> non-owning conversion\n");
12460 		return -EFAULT;
12461 	}
12462 
12463 	for (i = 0; i < state->acquired_refs; i++) {
12464 		if (state->refs[i].id != ref_obj_id)
12465 			continue;
12466 
12467 		/* Clear ref_obj_id here so release_reference doesn't clobber
12468 		 * the whole reg
12469 		 */
12470 		bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
12471 			if (reg->ref_obj_id == ref_obj_id) {
12472 				reg->ref_obj_id = 0;
12473 				ref_set_non_owning(env, reg);
12474 			}
12475 		}));
12476 		return 0;
12477 	}
12478 
12479 	verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
12480 	return -EFAULT;
12481 }
12482 
12483 /* Implementation details:
12484  *
12485  * Each register points to some region of memory, which we define as an
12486  * allocation. Each allocation may embed a bpf_spin_lock which protects any
12487  * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
12488  * allocation. The lock and the data it protects are colocated in the same
12489  * memory region.
12490  *
12491  * Hence, everytime a register holds a pointer value pointing to such
12492  * allocation, the verifier preserves a unique reg->id for it.
12493  *
12494  * The verifier remembers the lock 'ptr' and the lock 'id' whenever
12495  * bpf_spin_lock is called.
12496  *
12497  * To enable this, lock state in the verifier captures two values:
12498  *	active_lock.ptr = Register's type specific pointer
12499  *	active_lock.id  = A unique ID for each register pointer value
12500  *
12501  * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
12502  * supported register types.
12503  *
12504  * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
12505  * allocated objects is the reg->btf pointer.
12506  *
12507  * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
12508  * can establish the provenance of the map value statically for each distinct
12509  * lookup into such maps. They always contain a single map value hence unique
12510  * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
12511  *
12512  * So, in case of global variables, they use array maps with max_entries = 1,
12513  * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
12514  * into the same map value as max_entries is 1, as described above).
12515  *
12516  * In case of inner map lookups, the inner map pointer has same map_ptr as the
12517  * outer map pointer (in verifier context), but each lookup into an inner map
12518  * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
12519  * maps from the same outer map share the same map_ptr as active_lock.ptr, they
12520  * will get different reg->id assigned to each lookup, hence different
12521  * active_lock.id.
12522  *
12523  * In case of allocated objects, active_lock.ptr is the reg->btf, and the
12524  * reg->id is a unique ID preserved after the NULL pointer check on the pointer
12525  * returned from bpf_obj_new. Each allocation receives a new reg->id.
12526  */
check_reg_allocation_locked(struct bpf_verifier_env * env,struct bpf_reg_state * reg)12527 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
12528 {
12529 	struct bpf_reference_state *s;
12530 	void *ptr;
12531 	u32 id;
12532 
12533 	switch ((int)reg->type) {
12534 	case PTR_TO_MAP_VALUE:
12535 		ptr = reg->map_ptr;
12536 		break;
12537 	case PTR_TO_BTF_ID | MEM_ALLOC:
12538 		ptr = reg->btf;
12539 		break;
12540 	default:
12541 		verbose(env, "verifier internal error: unknown reg type for lock check\n");
12542 		return -EFAULT;
12543 	}
12544 	id = reg->id;
12545 
12546 	if (!env->cur_state->active_locks)
12547 		return -EINVAL;
12548 	s = find_lock_state(env->cur_state, REF_TYPE_LOCK_MASK, id, ptr);
12549 	if (!s) {
12550 		verbose(env, "held lock and object are not in the same allocation\n");
12551 		return -EINVAL;
12552 	}
12553 	return 0;
12554 }
12555 
is_bpf_list_api_kfunc(u32 btf_id)12556 static bool is_bpf_list_api_kfunc(u32 btf_id)
12557 {
12558 	return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
12559 	       btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
12560 	       btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
12561 	       btf_id == special_kfunc_list[KF_bpf_list_pop_back] ||
12562 	       btf_id == special_kfunc_list[KF_bpf_list_front] ||
12563 	       btf_id == special_kfunc_list[KF_bpf_list_back];
12564 }
12565 
is_bpf_rbtree_api_kfunc(u32 btf_id)12566 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
12567 {
12568 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
12569 	       btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
12570 	       btf_id == special_kfunc_list[KF_bpf_rbtree_first] ||
12571 	       btf_id == special_kfunc_list[KF_bpf_rbtree_root] ||
12572 	       btf_id == special_kfunc_list[KF_bpf_rbtree_left] ||
12573 	       btf_id == special_kfunc_list[KF_bpf_rbtree_right];
12574 }
12575 
is_bpf_iter_num_api_kfunc(u32 btf_id)12576 static bool is_bpf_iter_num_api_kfunc(u32 btf_id)
12577 {
12578 	return btf_id == special_kfunc_list[KF_bpf_iter_num_new] ||
12579 	       btf_id == special_kfunc_list[KF_bpf_iter_num_next] ||
12580 	       btf_id == special_kfunc_list[KF_bpf_iter_num_destroy];
12581 }
12582 
is_bpf_graph_api_kfunc(u32 btf_id)12583 static bool is_bpf_graph_api_kfunc(u32 btf_id)
12584 {
12585 	return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
12586 	       btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
12587 }
12588 
is_bpf_res_spin_lock_kfunc(u32 btf_id)12589 static bool is_bpf_res_spin_lock_kfunc(u32 btf_id)
12590 {
12591 	return btf_id == special_kfunc_list[KF_bpf_res_spin_lock] ||
12592 	       btf_id == special_kfunc_list[KF_bpf_res_spin_unlock] ||
12593 	       btf_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave] ||
12594 	       btf_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore];
12595 }
12596 
kfunc_spin_allowed(u32 btf_id)12597 static bool kfunc_spin_allowed(u32 btf_id)
12598 {
12599 	return is_bpf_graph_api_kfunc(btf_id) || is_bpf_iter_num_api_kfunc(btf_id) ||
12600 	       is_bpf_res_spin_lock_kfunc(btf_id);
12601 }
12602 
is_sync_callback_calling_kfunc(u32 btf_id)12603 static bool is_sync_callback_calling_kfunc(u32 btf_id)
12604 {
12605 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
12606 }
12607 
is_async_callback_calling_kfunc(u32 btf_id)12608 static bool is_async_callback_calling_kfunc(u32 btf_id)
12609 {
12610 	return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl];
12611 }
12612 
is_bpf_throw_kfunc(struct bpf_insn * insn)12613 static bool is_bpf_throw_kfunc(struct bpf_insn *insn)
12614 {
12615 	return bpf_pseudo_kfunc_call(insn) && insn->off == 0 &&
12616 	       insn->imm == special_kfunc_list[KF_bpf_throw];
12617 }
12618 
is_bpf_wq_set_callback_impl_kfunc(u32 btf_id)12619 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id)
12620 {
12621 	return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl];
12622 }
12623 
is_callback_calling_kfunc(u32 btf_id)12624 static bool is_callback_calling_kfunc(u32 btf_id)
12625 {
12626 	return is_sync_callback_calling_kfunc(btf_id) ||
12627 	       is_async_callback_calling_kfunc(btf_id);
12628 }
12629 
is_rbtree_lock_required_kfunc(u32 btf_id)12630 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
12631 {
12632 	return is_bpf_rbtree_api_kfunc(btf_id);
12633 }
12634 
check_kfunc_is_graph_root_api(struct bpf_verifier_env * env,enum btf_field_type head_field_type,u32 kfunc_btf_id)12635 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
12636 					  enum btf_field_type head_field_type,
12637 					  u32 kfunc_btf_id)
12638 {
12639 	bool ret;
12640 
12641 	switch (head_field_type) {
12642 	case BPF_LIST_HEAD:
12643 		ret = is_bpf_list_api_kfunc(kfunc_btf_id);
12644 		break;
12645 	case BPF_RB_ROOT:
12646 		ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
12647 		break;
12648 	default:
12649 		verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
12650 			btf_field_type_name(head_field_type));
12651 		return false;
12652 	}
12653 
12654 	if (!ret)
12655 		verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
12656 			btf_field_type_name(head_field_type));
12657 	return ret;
12658 }
12659 
check_kfunc_is_graph_node_api(struct bpf_verifier_env * env,enum btf_field_type node_field_type,u32 kfunc_btf_id)12660 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
12661 					  enum btf_field_type node_field_type,
12662 					  u32 kfunc_btf_id)
12663 {
12664 	bool ret;
12665 
12666 	switch (node_field_type) {
12667 	case BPF_LIST_NODE:
12668 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
12669 		       kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
12670 		break;
12671 	case BPF_RB_NODE:
12672 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
12673 		       kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
12674 		       kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_left] ||
12675 		       kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_right]);
12676 		break;
12677 	default:
12678 		verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
12679 			btf_field_type_name(node_field_type));
12680 		return false;
12681 	}
12682 
12683 	if (!ret)
12684 		verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
12685 			btf_field_type_name(node_field_type));
12686 	return ret;
12687 }
12688 
12689 static int
__process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta,enum btf_field_type head_field_type,struct btf_field ** head_field)12690 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
12691 				   struct bpf_reg_state *reg, u32 regno,
12692 				   struct bpf_kfunc_call_arg_meta *meta,
12693 				   enum btf_field_type head_field_type,
12694 				   struct btf_field **head_field)
12695 {
12696 	const char *head_type_name;
12697 	struct btf_field *field;
12698 	struct btf_record *rec;
12699 	u32 head_off;
12700 
12701 	if (meta->btf != btf_vmlinux) {
12702 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
12703 		return -EFAULT;
12704 	}
12705 
12706 	if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
12707 		return -EFAULT;
12708 
12709 	head_type_name = btf_field_type_name(head_field_type);
12710 	if (!tnum_is_const(reg->var_off)) {
12711 		verbose(env,
12712 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
12713 			regno, head_type_name);
12714 		return -EINVAL;
12715 	}
12716 
12717 	rec = reg_btf_record(reg);
12718 	head_off = reg->off + reg->var_off.value;
12719 	field = btf_record_find(rec, head_off, head_field_type);
12720 	if (!field) {
12721 		verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
12722 		return -EINVAL;
12723 	}
12724 
12725 	/* All functions require bpf_list_head to be protected using a bpf_spin_lock */
12726 	if (check_reg_allocation_locked(env, reg)) {
12727 		verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
12728 			rec->spin_lock_off, head_type_name);
12729 		return -EINVAL;
12730 	}
12731 
12732 	if (*head_field) {
12733 		verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
12734 		return -EFAULT;
12735 	}
12736 	*head_field = field;
12737 	return 0;
12738 }
12739 
process_kf_arg_ptr_to_list_head(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)12740 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
12741 					   struct bpf_reg_state *reg, u32 regno,
12742 					   struct bpf_kfunc_call_arg_meta *meta)
12743 {
12744 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
12745 							  &meta->arg_list_head.field);
12746 }
12747 
process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)12748 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
12749 					     struct bpf_reg_state *reg, u32 regno,
12750 					     struct bpf_kfunc_call_arg_meta *meta)
12751 {
12752 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
12753 							  &meta->arg_rbtree_root.field);
12754 }
12755 
12756 static int
__process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta,enum btf_field_type head_field_type,enum btf_field_type node_field_type,struct btf_field ** node_field)12757 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
12758 				   struct bpf_reg_state *reg, u32 regno,
12759 				   struct bpf_kfunc_call_arg_meta *meta,
12760 				   enum btf_field_type head_field_type,
12761 				   enum btf_field_type node_field_type,
12762 				   struct btf_field **node_field)
12763 {
12764 	const char *node_type_name;
12765 	const struct btf_type *et, *t;
12766 	struct btf_field *field;
12767 	u32 node_off;
12768 
12769 	if (meta->btf != btf_vmlinux) {
12770 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
12771 		return -EFAULT;
12772 	}
12773 
12774 	if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
12775 		return -EFAULT;
12776 
12777 	node_type_name = btf_field_type_name(node_field_type);
12778 	if (!tnum_is_const(reg->var_off)) {
12779 		verbose(env,
12780 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
12781 			regno, node_type_name);
12782 		return -EINVAL;
12783 	}
12784 
12785 	node_off = reg->off + reg->var_off.value;
12786 	field = reg_find_field_offset(reg, node_off, node_field_type);
12787 	if (!field) {
12788 		verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
12789 		return -EINVAL;
12790 	}
12791 
12792 	field = *node_field;
12793 
12794 	et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
12795 	t = btf_type_by_id(reg->btf, reg->btf_id);
12796 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
12797 				  field->graph_root.value_btf_id, true)) {
12798 		verbose(env, "operation on %s expects arg#1 %s at offset=%d "
12799 			"in struct %s, but arg is at offset=%d in struct %s\n",
12800 			btf_field_type_name(head_field_type),
12801 			btf_field_type_name(node_field_type),
12802 			field->graph_root.node_offset,
12803 			btf_name_by_offset(field->graph_root.btf, et->name_off),
12804 			node_off, btf_name_by_offset(reg->btf, t->name_off));
12805 		return -EINVAL;
12806 	}
12807 	meta->arg_btf = reg->btf;
12808 	meta->arg_btf_id = reg->btf_id;
12809 
12810 	if (node_off != field->graph_root.node_offset) {
12811 		verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
12812 			node_off, btf_field_type_name(node_field_type),
12813 			field->graph_root.node_offset,
12814 			btf_name_by_offset(field->graph_root.btf, et->name_off));
12815 		return -EINVAL;
12816 	}
12817 
12818 	return 0;
12819 }
12820 
process_kf_arg_ptr_to_list_node(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)12821 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
12822 					   struct bpf_reg_state *reg, u32 regno,
12823 					   struct bpf_kfunc_call_arg_meta *meta)
12824 {
12825 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
12826 						  BPF_LIST_HEAD, BPF_LIST_NODE,
12827 						  &meta->arg_list_head.field);
12828 }
12829 
process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)12830 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
12831 					     struct bpf_reg_state *reg, u32 regno,
12832 					     struct bpf_kfunc_call_arg_meta *meta)
12833 {
12834 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
12835 						  BPF_RB_ROOT, BPF_RB_NODE,
12836 						  &meta->arg_rbtree_root.field);
12837 }
12838 
12839 /*
12840  * css_task iter allowlist is needed to avoid dead locking on css_set_lock.
12841  * LSM hooks and iters (both sleepable and non-sleepable) are safe.
12842  * Any sleepable progs are also safe since bpf_check_attach_target() enforce
12843  * them can only be attached to some specific hook points.
12844  */
check_css_task_iter_allowlist(struct bpf_verifier_env * env)12845 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env)
12846 {
12847 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
12848 
12849 	switch (prog_type) {
12850 	case BPF_PROG_TYPE_LSM:
12851 		return true;
12852 	case BPF_PROG_TYPE_TRACING:
12853 		if (env->prog->expected_attach_type == BPF_TRACE_ITER)
12854 			return true;
12855 		fallthrough;
12856 	default:
12857 		return in_sleepable(env);
12858 	}
12859 }
12860 
check_kfunc_args(struct bpf_verifier_env * env,struct bpf_kfunc_call_arg_meta * meta,int insn_idx)12861 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
12862 			    int insn_idx)
12863 {
12864 	const char *func_name = meta->func_name, *ref_tname;
12865 	const struct btf *btf = meta->btf;
12866 	const struct btf_param *args;
12867 	struct btf_record *rec;
12868 	u32 i, nargs;
12869 	int ret;
12870 
12871 	args = (const struct btf_param *)(meta->func_proto + 1);
12872 	nargs = btf_type_vlen(meta->func_proto);
12873 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
12874 		verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
12875 			MAX_BPF_FUNC_REG_ARGS);
12876 		return -EINVAL;
12877 	}
12878 
12879 	/* Check that BTF function arguments match actual types that the
12880 	 * verifier sees.
12881 	 */
12882 	for (i = 0; i < nargs; i++) {
12883 		struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
12884 		const struct btf_type *t, *ref_t, *resolve_ret;
12885 		enum bpf_arg_type arg_type = ARG_DONTCARE;
12886 		u32 regno = i + 1, ref_id, type_size;
12887 		bool is_ret_buf_sz = false;
12888 		int kf_arg_type;
12889 
12890 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
12891 
12892 		if (is_kfunc_arg_ignore(btf, &args[i]))
12893 			continue;
12894 
12895 		if (is_kfunc_arg_prog(btf, &args[i])) {
12896 			/* Used to reject repeated use of __prog. */
12897 			if (meta->arg_prog) {
12898 				verbose(env, "Only 1 prog->aux argument supported per-kfunc\n");
12899 				return -EFAULT;
12900 			}
12901 			meta->arg_prog = true;
12902 			cur_aux(env)->arg_prog = regno;
12903 			continue;
12904 		}
12905 
12906 		if (btf_type_is_scalar(t)) {
12907 			if (reg->type != SCALAR_VALUE) {
12908 				verbose(env, "R%d is not a scalar\n", regno);
12909 				return -EINVAL;
12910 			}
12911 
12912 			if (is_kfunc_arg_constant(meta->btf, &args[i])) {
12913 				if (meta->arg_constant.found) {
12914 					verbose(env, "verifier internal error: only one constant argument permitted\n");
12915 					return -EFAULT;
12916 				}
12917 				if (!tnum_is_const(reg->var_off)) {
12918 					verbose(env, "R%d must be a known constant\n", regno);
12919 					return -EINVAL;
12920 				}
12921 				ret = mark_chain_precision(env, regno);
12922 				if (ret < 0)
12923 					return ret;
12924 				meta->arg_constant.found = true;
12925 				meta->arg_constant.value = reg->var_off.value;
12926 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
12927 				meta->r0_rdonly = true;
12928 				is_ret_buf_sz = true;
12929 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
12930 				is_ret_buf_sz = true;
12931 			}
12932 
12933 			if (is_ret_buf_sz) {
12934 				if (meta->r0_size) {
12935 					verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
12936 					return -EINVAL;
12937 				}
12938 
12939 				if (!tnum_is_const(reg->var_off)) {
12940 					verbose(env, "R%d is not a const\n", regno);
12941 					return -EINVAL;
12942 				}
12943 
12944 				meta->r0_size = reg->var_off.value;
12945 				ret = mark_chain_precision(env, regno);
12946 				if (ret)
12947 					return ret;
12948 			}
12949 			continue;
12950 		}
12951 
12952 		if (!btf_type_is_ptr(t)) {
12953 			verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
12954 			return -EINVAL;
12955 		}
12956 
12957 		if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
12958 		    (register_is_null(reg) || type_may_be_null(reg->type)) &&
12959 			!is_kfunc_arg_nullable(meta->btf, &args[i])) {
12960 			verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
12961 			return -EACCES;
12962 		}
12963 
12964 		if (reg->ref_obj_id) {
12965 			if (is_kfunc_release(meta) && meta->ref_obj_id) {
12966 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
12967 					regno, reg->ref_obj_id,
12968 					meta->ref_obj_id);
12969 				return -EFAULT;
12970 			}
12971 			meta->ref_obj_id = reg->ref_obj_id;
12972 			if (is_kfunc_release(meta))
12973 				meta->release_regno = regno;
12974 		}
12975 
12976 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
12977 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
12978 
12979 		kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
12980 		if (kf_arg_type < 0)
12981 			return kf_arg_type;
12982 
12983 		switch (kf_arg_type) {
12984 		case KF_ARG_PTR_TO_NULL:
12985 			continue;
12986 		case KF_ARG_PTR_TO_MAP:
12987 			if (!reg->map_ptr) {
12988 				verbose(env, "pointer in R%d isn't map pointer\n", regno);
12989 				return -EINVAL;
12990 			}
12991 			if (meta->map.ptr && reg->map_ptr->record->wq_off >= 0) {
12992 				/* Use map_uid (which is unique id of inner map) to reject:
12993 				 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
12994 				 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
12995 				 * if (inner_map1 && inner_map2) {
12996 				 *     wq = bpf_map_lookup_elem(inner_map1);
12997 				 *     if (wq)
12998 				 *         // mismatch would have been allowed
12999 				 *         bpf_wq_init(wq, inner_map2);
13000 				 * }
13001 				 *
13002 				 * Comparing map_ptr is enough to distinguish normal and outer maps.
13003 				 */
13004 				if (meta->map.ptr != reg->map_ptr ||
13005 				    meta->map.uid != reg->map_uid) {
13006 					verbose(env,
13007 						"workqueue pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
13008 						meta->map.uid, reg->map_uid);
13009 					return -EINVAL;
13010 				}
13011 			}
13012 			meta->map.ptr = reg->map_ptr;
13013 			meta->map.uid = reg->map_uid;
13014 			fallthrough;
13015 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
13016 		case KF_ARG_PTR_TO_BTF_ID:
13017 			if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
13018 				break;
13019 
13020 			if (!is_trusted_reg(reg)) {
13021 				if (!is_kfunc_rcu(meta)) {
13022 					verbose(env, "R%d must be referenced or trusted\n", regno);
13023 					return -EINVAL;
13024 				}
13025 				if (!is_rcu_reg(reg)) {
13026 					verbose(env, "R%d must be a rcu pointer\n", regno);
13027 					return -EINVAL;
13028 				}
13029 			}
13030 			fallthrough;
13031 		case KF_ARG_PTR_TO_CTX:
13032 		case KF_ARG_PTR_TO_DYNPTR:
13033 		case KF_ARG_PTR_TO_ITER:
13034 		case KF_ARG_PTR_TO_LIST_HEAD:
13035 		case KF_ARG_PTR_TO_LIST_NODE:
13036 		case KF_ARG_PTR_TO_RB_ROOT:
13037 		case KF_ARG_PTR_TO_RB_NODE:
13038 		case KF_ARG_PTR_TO_MEM:
13039 		case KF_ARG_PTR_TO_MEM_SIZE:
13040 		case KF_ARG_PTR_TO_CALLBACK:
13041 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
13042 		case KF_ARG_PTR_TO_CONST_STR:
13043 		case KF_ARG_PTR_TO_WORKQUEUE:
13044 		case KF_ARG_PTR_TO_IRQ_FLAG:
13045 		case KF_ARG_PTR_TO_RES_SPIN_LOCK:
13046 			break;
13047 		default:
13048 			WARN_ON_ONCE(1);
13049 			return -EFAULT;
13050 		}
13051 
13052 		if (is_kfunc_release(meta) && reg->ref_obj_id)
13053 			arg_type |= OBJ_RELEASE;
13054 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
13055 		if (ret < 0)
13056 			return ret;
13057 
13058 		switch (kf_arg_type) {
13059 		case KF_ARG_PTR_TO_CTX:
13060 			if (reg->type != PTR_TO_CTX) {
13061 				verbose(env, "arg#%d expected pointer to ctx, but got %s\n",
13062 					i, reg_type_str(env, reg->type));
13063 				return -EINVAL;
13064 			}
13065 
13066 			if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
13067 				ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
13068 				if (ret < 0)
13069 					return -EINVAL;
13070 				meta->ret_btf_id  = ret;
13071 			}
13072 			break;
13073 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
13074 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) {
13075 				if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) {
13076 					verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i);
13077 					return -EINVAL;
13078 				}
13079 			} else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) {
13080 				if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
13081 					verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i);
13082 					return -EINVAL;
13083 				}
13084 			} else {
13085 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
13086 				return -EINVAL;
13087 			}
13088 			if (!reg->ref_obj_id) {
13089 				verbose(env, "allocated object must be referenced\n");
13090 				return -EINVAL;
13091 			}
13092 			if (meta->btf == btf_vmlinux) {
13093 				meta->arg_btf = reg->btf;
13094 				meta->arg_btf_id = reg->btf_id;
13095 			}
13096 			break;
13097 		case KF_ARG_PTR_TO_DYNPTR:
13098 		{
13099 			enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
13100 			int clone_ref_obj_id = 0;
13101 
13102 			if (reg->type == CONST_PTR_TO_DYNPTR)
13103 				dynptr_arg_type |= MEM_RDONLY;
13104 
13105 			if (is_kfunc_arg_uninit(btf, &args[i]))
13106 				dynptr_arg_type |= MEM_UNINIT;
13107 
13108 			if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
13109 				dynptr_arg_type |= DYNPTR_TYPE_SKB;
13110 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
13111 				dynptr_arg_type |= DYNPTR_TYPE_XDP;
13112 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
13113 				   (dynptr_arg_type & MEM_UNINIT)) {
13114 				enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
13115 
13116 				if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
13117 					verbose(env, "verifier internal error: no dynptr type for parent of clone\n");
13118 					return -EFAULT;
13119 				}
13120 
13121 				dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
13122 				clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
13123 				if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
13124 					verbose(env, "verifier internal error: missing ref obj id for parent of clone\n");
13125 					return -EFAULT;
13126 				}
13127 			}
13128 
13129 			ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
13130 			if (ret < 0)
13131 				return ret;
13132 
13133 			if (!(dynptr_arg_type & MEM_UNINIT)) {
13134 				int id = dynptr_id(env, reg);
13135 
13136 				if (id < 0) {
13137 					verbose(env, "verifier internal error: failed to obtain dynptr id\n");
13138 					return id;
13139 				}
13140 				meta->initialized_dynptr.id = id;
13141 				meta->initialized_dynptr.type = dynptr_get_type(env, reg);
13142 				meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
13143 			}
13144 
13145 			break;
13146 		}
13147 		case KF_ARG_PTR_TO_ITER:
13148 			if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) {
13149 				if (!check_css_task_iter_allowlist(env)) {
13150 					verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n");
13151 					return -EINVAL;
13152 				}
13153 			}
13154 			ret = process_iter_arg(env, regno, insn_idx, meta);
13155 			if (ret < 0)
13156 				return ret;
13157 			break;
13158 		case KF_ARG_PTR_TO_LIST_HEAD:
13159 			if (reg->type != PTR_TO_MAP_VALUE &&
13160 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
13161 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
13162 				return -EINVAL;
13163 			}
13164 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
13165 				verbose(env, "allocated object must be referenced\n");
13166 				return -EINVAL;
13167 			}
13168 			ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
13169 			if (ret < 0)
13170 				return ret;
13171 			break;
13172 		case KF_ARG_PTR_TO_RB_ROOT:
13173 			if (reg->type != PTR_TO_MAP_VALUE &&
13174 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
13175 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
13176 				return -EINVAL;
13177 			}
13178 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
13179 				verbose(env, "allocated object must be referenced\n");
13180 				return -EINVAL;
13181 			}
13182 			ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
13183 			if (ret < 0)
13184 				return ret;
13185 			break;
13186 		case KF_ARG_PTR_TO_LIST_NODE:
13187 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
13188 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
13189 				return -EINVAL;
13190 			}
13191 			if (!reg->ref_obj_id) {
13192 				verbose(env, "allocated object must be referenced\n");
13193 				return -EINVAL;
13194 			}
13195 			ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
13196 			if (ret < 0)
13197 				return ret;
13198 			break;
13199 		case KF_ARG_PTR_TO_RB_NODE:
13200 			if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
13201 				if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
13202 					verbose(env, "arg#%d expected pointer to allocated object\n", i);
13203 					return -EINVAL;
13204 				}
13205 				if (!reg->ref_obj_id) {
13206 					verbose(env, "allocated object must be referenced\n");
13207 					return -EINVAL;
13208 				}
13209 			} else {
13210 				if (!type_is_non_owning_ref(reg->type) && !reg->ref_obj_id) {
13211 					verbose(env, "%s can only take non-owning or refcounted bpf_rb_node pointer\n", func_name);
13212 					return -EINVAL;
13213 				}
13214 				if (in_rbtree_lock_required_cb(env)) {
13215 					verbose(env, "%s not allowed in rbtree cb\n", func_name);
13216 					return -EINVAL;
13217 				}
13218 			}
13219 
13220 			ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
13221 			if (ret < 0)
13222 				return ret;
13223 			break;
13224 		case KF_ARG_PTR_TO_MAP:
13225 			/* If argument has '__map' suffix expect 'struct bpf_map *' */
13226 			ref_id = *reg2btf_ids[CONST_PTR_TO_MAP];
13227 			ref_t = btf_type_by_id(btf_vmlinux, ref_id);
13228 			ref_tname = btf_name_by_offset(btf, ref_t->name_off);
13229 			fallthrough;
13230 		case KF_ARG_PTR_TO_BTF_ID:
13231 			/* Only base_type is checked, further checks are done here */
13232 			if ((base_type(reg->type) != PTR_TO_BTF_ID ||
13233 			     (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
13234 			    !reg2btf_ids[base_type(reg->type)]) {
13235 				verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
13236 				verbose(env, "expected %s or socket\n",
13237 					reg_type_str(env, base_type(reg->type) |
13238 							  (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
13239 				return -EINVAL;
13240 			}
13241 			ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
13242 			if (ret < 0)
13243 				return ret;
13244 			break;
13245 		case KF_ARG_PTR_TO_MEM:
13246 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
13247 			if (IS_ERR(resolve_ret)) {
13248 				verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
13249 					i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
13250 				return -EINVAL;
13251 			}
13252 			ret = check_mem_reg(env, reg, regno, type_size);
13253 			if (ret < 0)
13254 				return ret;
13255 			break;
13256 		case KF_ARG_PTR_TO_MEM_SIZE:
13257 		{
13258 			struct bpf_reg_state *buff_reg = &regs[regno];
13259 			const struct btf_param *buff_arg = &args[i];
13260 			struct bpf_reg_state *size_reg = &regs[regno + 1];
13261 			const struct btf_param *size_arg = &args[i + 1];
13262 
13263 			if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) {
13264 				ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
13265 				if (ret < 0) {
13266 					verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
13267 					return ret;
13268 				}
13269 			}
13270 
13271 			if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
13272 				if (meta->arg_constant.found) {
13273 					verbose(env, "verifier internal error: only one constant argument permitted\n");
13274 					return -EFAULT;
13275 				}
13276 				if (!tnum_is_const(size_reg->var_off)) {
13277 					verbose(env, "R%d must be a known constant\n", regno + 1);
13278 					return -EINVAL;
13279 				}
13280 				meta->arg_constant.found = true;
13281 				meta->arg_constant.value = size_reg->var_off.value;
13282 			}
13283 
13284 			/* Skip next '__sz' or '__szk' argument */
13285 			i++;
13286 			break;
13287 		}
13288 		case KF_ARG_PTR_TO_CALLBACK:
13289 			if (reg->type != PTR_TO_FUNC) {
13290 				verbose(env, "arg%d expected pointer to func\n", i);
13291 				return -EINVAL;
13292 			}
13293 			meta->subprogno = reg->subprogno;
13294 			break;
13295 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
13296 			if (!type_is_ptr_alloc_obj(reg->type)) {
13297 				verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
13298 				return -EINVAL;
13299 			}
13300 			if (!type_is_non_owning_ref(reg->type))
13301 				meta->arg_owning_ref = true;
13302 
13303 			rec = reg_btf_record(reg);
13304 			if (!rec) {
13305 				verbose(env, "verifier internal error: Couldn't find btf_record\n");
13306 				return -EFAULT;
13307 			}
13308 
13309 			if (rec->refcount_off < 0) {
13310 				verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
13311 				return -EINVAL;
13312 			}
13313 
13314 			meta->arg_btf = reg->btf;
13315 			meta->arg_btf_id = reg->btf_id;
13316 			break;
13317 		case KF_ARG_PTR_TO_CONST_STR:
13318 			if (reg->type != PTR_TO_MAP_VALUE) {
13319 				verbose(env, "arg#%d doesn't point to a const string\n", i);
13320 				return -EINVAL;
13321 			}
13322 			ret = check_reg_const_str(env, reg, regno);
13323 			if (ret)
13324 				return ret;
13325 			break;
13326 		case KF_ARG_PTR_TO_WORKQUEUE:
13327 			if (reg->type != PTR_TO_MAP_VALUE) {
13328 				verbose(env, "arg#%d doesn't point to a map value\n", i);
13329 				return -EINVAL;
13330 			}
13331 			ret = process_wq_func(env, regno, meta);
13332 			if (ret < 0)
13333 				return ret;
13334 			break;
13335 		case KF_ARG_PTR_TO_IRQ_FLAG:
13336 			if (reg->type != PTR_TO_STACK) {
13337 				verbose(env, "arg#%d doesn't point to an irq flag on stack\n", i);
13338 				return -EINVAL;
13339 			}
13340 			ret = process_irq_flag(env, regno, meta);
13341 			if (ret < 0)
13342 				return ret;
13343 			break;
13344 		case KF_ARG_PTR_TO_RES_SPIN_LOCK:
13345 		{
13346 			int flags = PROCESS_RES_LOCK;
13347 
13348 			if (reg->type != PTR_TO_MAP_VALUE && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
13349 				verbose(env, "arg#%d doesn't point to map value or allocated object\n", i);
13350 				return -EINVAL;
13351 			}
13352 
13353 			if (!is_bpf_res_spin_lock_kfunc(meta->func_id))
13354 				return -EFAULT;
13355 			if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock] ||
13356 			    meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave])
13357 				flags |= PROCESS_SPIN_LOCK;
13358 			if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave] ||
13359 			    meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore])
13360 				flags |= PROCESS_LOCK_IRQ;
13361 			ret = process_spin_lock(env, regno, flags);
13362 			if (ret < 0)
13363 				return ret;
13364 			break;
13365 		}
13366 		}
13367 	}
13368 
13369 	if (is_kfunc_release(meta) && !meta->release_regno) {
13370 		verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
13371 			func_name);
13372 		return -EINVAL;
13373 	}
13374 
13375 	return 0;
13376 }
13377 
fetch_kfunc_meta(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_kfunc_call_arg_meta * meta,const char ** kfunc_name)13378 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
13379 			    struct bpf_insn *insn,
13380 			    struct bpf_kfunc_call_arg_meta *meta,
13381 			    const char **kfunc_name)
13382 {
13383 	const struct btf_type *func, *func_proto;
13384 	u32 func_id, *kfunc_flags;
13385 	const char *func_name;
13386 	struct btf *desc_btf;
13387 
13388 	if (kfunc_name)
13389 		*kfunc_name = NULL;
13390 
13391 	if (!insn->imm)
13392 		return -EINVAL;
13393 
13394 	desc_btf = find_kfunc_desc_btf(env, insn->off);
13395 	if (IS_ERR(desc_btf))
13396 		return PTR_ERR(desc_btf);
13397 
13398 	func_id = insn->imm;
13399 	func = btf_type_by_id(desc_btf, func_id);
13400 	func_name = btf_name_by_offset(desc_btf, func->name_off);
13401 	if (kfunc_name)
13402 		*kfunc_name = func_name;
13403 	func_proto = btf_type_by_id(desc_btf, func->type);
13404 
13405 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog);
13406 	if (!kfunc_flags) {
13407 		return -EACCES;
13408 	}
13409 
13410 	memset(meta, 0, sizeof(*meta));
13411 	meta->btf = desc_btf;
13412 	meta->func_id = func_id;
13413 	meta->kfunc_flags = *kfunc_flags;
13414 	meta->func_proto = func_proto;
13415 	meta->func_name = func_name;
13416 
13417 	return 0;
13418 }
13419 
13420 /* check special kfuncs and return:
13421  *  1  - not fall-through to 'else' branch, continue verification
13422  *  0  - fall-through to 'else' branch
13423  * < 0 - not fall-through to 'else' branch, return error
13424  */
check_special_kfunc(struct bpf_verifier_env * env,struct bpf_kfunc_call_arg_meta * meta,struct bpf_reg_state * regs,struct bpf_insn_aux_data * insn_aux,const struct btf_type * ptr_type,struct btf * desc_btf)13425 static int check_special_kfunc(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
13426 			       struct bpf_reg_state *regs, struct bpf_insn_aux_data *insn_aux,
13427 			       const struct btf_type *ptr_type, struct btf *desc_btf)
13428 {
13429 	const struct btf_type *ret_t;
13430 	int err = 0;
13431 
13432 	if (meta->btf != btf_vmlinux)
13433 		return 0;
13434 
13435 	if (meta->func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
13436 	    meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
13437 		struct btf_struct_meta *struct_meta;
13438 		struct btf *ret_btf;
13439 		u32 ret_btf_id;
13440 
13441 		if (meta->func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set)
13442 			return -ENOMEM;
13443 
13444 		if (((u64)(u32)meta->arg_constant.value) != meta->arg_constant.value) {
13445 			verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
13446 			return -EINVAL;
13447 		}
13448 
13449 		ret_btf = env->prog->aux->btf;
13450 		ret_btf_id = meta->arg_constant.value;
13451 
13452 		/* This may be NULL due to user not supplying a BTF */
13453 		if (!ret_btf) {
13454 			verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n");
13455 			return -EINVAL;
13456 		}
13457 
13458 		ret_t = btf_type_by_id(ret_btf, ret_btf_id);
13459 		if (!ret_t || !__btf_type_is_struct(ret_t)) {
13460 			verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n");
13461 			return -EINVAL;
13462 		}
13463 
13464 		if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
13465 			if (ret_t->size > BPF_GLOBAL_PERCPU_MA_MAX_SIZE) {
13466 				verbose(env, "bpf_percpu_obj_new type size (%d) is greater than %d\n",
13467 					ret_t->size, BPF_GLOBAL_PERCPU_MA_MAX_SIZE);
13468 				return -EINVAL;
13469 			}
13470 
13471 			if (!bpf_global_percpu_ma_set) {
13472 				mutex_lock(&bpf_percpu_ma_lock);
13473 				if (!bpf_global_percpu_ma_set) {
13474 					/* Charge memory allocated with bpf_global_percpu_ma to
13475 					 * root memcg. The obj_cgroup for root memcg is NULL.
13476 					 */
13477 					err = bpf_mem_alloc_percpu_init(&bpf_global_percpu_ma, NULL);
13478 					if (!err)
13479 						bpf_global_percpu_ma_set = true;
13480 				}
13481 				mutex_unlock(&bpf_percpu_ma_lock);
13482 				if (err)
13483 					return err;
13484 			}
13485 
13486 			mutex_lock(&bpf_percpu_ma_lock);
13487 			err = bpf_mem_alloc_percpu_unit_init(&bpf_global_percpu_ma, ret_t->size);
13488 			mutex_unlock(&bpf_percpu_ma_lock);
13489 			if (err)
13490 				return err;
13491 		}
13492 
13493 		struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id);
13494 		if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
13495 			if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) {
13496 				verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n");
13497 				return -EINVAL;
13498 			}
13499 
13500 			if (struct_meta) {
13501 				verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n");
13502 				return -EINVAL;
13503 			}
13504 		}
13505 
13506 		mark_reg_known_zero(env, regs, BPF_REG_0);
13507 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
13508 		regs[BPF_REG_0].btf = ret_btf;
13509 		regs[BPF_REG_0].btf_id = ret_btf_id;
13510 		if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl])
13511 			regs[BPF_REG_0].type |= MEM_PERCPU;
13512 
13513 		insn_aux->obj_new_size = ret_t->size;
13514 		insn_aux->kptr_struct_meta = struct_meta;
13515 	} else if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
13516 		mark_reg_known_zero(env, regs, BPF_REG_0);
13517 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
13518 		regs[BPF_REG_0].btf = meta->arg_btf;
13519 		regs[BPF_REG_0].btf_id = meta->arg_btf_id;
13520 
13521 		insn_aux->kptr_struct_meta =
13522 			btf_find_struct_meta(meta->arg_btf,
13523 					     meta->arg_btf_id);
13524 	} else if (is_list_node_type(ptr_type)) {
13525 		struct btf_field *field = meta->arg_list_head.field;
13526 
13527 		mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
13528 	} else if (is_rbtree_node_type(ptr_type)) {
13529 		struct btf_field *field = meta->arg_rbtree_root.field;
13530 
13531 		mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
13532 	} else if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
13533 		mark_reg_known_zero(env, regs, BPF_REG_0);
13534 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
13535 		regs[BPF_REG_0].btf = desc_btf;
13536 		regs[BPF_REG_0].btf_id = meta->ret_btf_id;
13537 	} else if (meta->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
13538 		ret_t = btf_type_by_id(desc_btf, meta->arg_constant.value);
13539 		if (!ret_t || !btf_type_is_struct(ret_t)) {
13540 			verbose(env,
13541 				"kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
13542 			return -EINVAL;
13543 		}
13544 
13545 		mark_reg_known_zero(env, regs, BPF_REG_0);
13546 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
13547 		regs[BPF_REG_0].btf = desc_btf;
13548 		regs[BPF_REG_0].btf_id = meta->arg_constant.value;
13549 	} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
13550 		   meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
13551 		enum bpf_type_flag type_flag = get_dynptr_type_flag(meta->initialized_dynptr.type);
13552 
13553 		mark_reg_known_zero(env, regs, BPF_REG_0);
13554 
13555 		if (!meta->arg_constant.found) {
13556 			verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
13557 			return -EFAULT;
13558 		}
13559 
13560 		regs[BPF_REG_0].mem_size = meta->arg_constant.value;
13561 
13562 		/* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
13563 		regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
13564 
13565 		if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
13566 			regs[BPF_REG_0].type |= MEM_RDONLY;
13567 		} else {
13568 			/* this will set env->seen_direct_write to true */
13569 			if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
13570 				verbose(env, "the prog does not allow writes to packet data\n");
13571 				return -EINVAL;
13572 			}
13573 		}
13574 
13575 		if (!meta->initialized_dynptr.id) {
13576 			verbose(env, "verifier internal error: no dynptr id\n");
13577 			return -EFAULT;
13578 		}
13579 		regs[BPF_REG_0].dynptr_id = meta->initialized_dynptr.id;
13580 
13581 		/* we don't need to set BPF_REG_0's ref obj id
13582 		 * because packet slices are not refcounted (see
13583 		 * dynptr_type_refcounted)
13584 		 */
13585 	} else {
13586 		return 0;
13587 	}
13588 
13589 	return 1;
13590 }
13591 
13592 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name);
13593 
check_kfunc_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx_p)13594 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
13595 			    int *insn_idx_p)
13596 {
13597 	bool sleepable, rcu_lock, rcu_unlock, preempt_disable, preempt_enable;
13598 	u32 i, nargs, ptr_type_id, release_ref_obj_id;
13599 	struct bpf_reg_state *regs = cur_regs(env);
13600 	const char *func_name, *ptr_type_name;
13601 	const struct btf_type *t, *ptr_type;
13602 	struct bpf_kfunc_call_arg_meta meta;
13603 	struct bpf_insn_aux_data *insn_aux;
13604 	int err, insn_idx = *insn_idx_p;
13605 	const struct btf_param *args;
13606 	struct btf *desc_btf;
13607 
13608 	/* skip for now, but return error when we find this in fixup_kfunc_call */
13609 	if (!insn->imm)
13610 		return 0;
13611 
13612 	err = fetch_kfunc_meta(env, insn, &meta, &func_name);
13613 	if (err == -EACCES && func_name)
13614 		verbose(env, "calling kernel function %s is not allowed\n", func_name);
13615 	if (err)
13616 		return err;
13617 	desc_btf = meta.btf;
13618 	insn_aux = &env->insn_aux_data[insn_idx];
13619 
13620 	insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
13621 
13622 	if (!insn->off &&
13623 	    (insn->imm == special_kfunc_list[KF_bpf_res_spin_lock] ||
13624 	     insn->imm == special_kfunc_list[KF_bpf_res_spin_lock_irqsave])) {
13625 		struct bpf_verifier_state *branch;
13626 		struct bpf_reg_state *regs;
13627 
13628 		branch = push_stack(env, env->insn_idx + 1, env->insn_idx, false);
13629 		if (!branch) {
13630 			verbose(env, "failed to push state for failed lock acquisition\n");
13631 			return -ENOMEM;
13632 		}
13633 
13634 		regs = branch->frame[branch->curframe]->regs;
13635 
13636 		/* Clear r0-r5 registers in forked state */
13637 		for (i = 0; i < CALLER_SAVED_REGS; i++)
13638 			mark_reg_not_init(env, regs, caller_saved[i]);
13639 
13640 		mark_reg_unknown(env, regs, BPF_REG_0);
13641 		err = __mark_reg_s32_range(env, regs, BPF_REG_0, -MAX_ERRNO, -1);
13642 		if (err) {
13643 			verbose(env, "failed to mark s32 range for retval in forked state for lock\n");
13644 			return err;
13645 		}
13646 		__mark_btf_func_reg_size(env, regs, BPF_REG_0, sizeof(u32));
13647 	} else if (!insn->off && insn->imm == special_kfunc_list[KF___bpf_trap]) {
13648 		verbose(env, "unexpected __bpf_trap() due to uninitialized variable?\n");
13649 		return -EFAULT;
13650 	}
13651 
13652 	if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
13653 		verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
13654 		return -EACCES;
13655 	}
13656 
13657 	sleepable = is_kfunc_sleepable(&meta);
13658 	if (sleepable && !in_sleepable(env)) {
13659 		verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
13660 		return -EACCES;
13661 	}
13662 
13663 	/* Check the arguments */
13664 	err = check_kfunc_args(env, &meta, insn_idx);
13665 	if (err < 0)
13666 		return err;
13667 
13668 	if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
13669 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
13670 					 set_rbtree_add_callback_state);
13671 		if (err) {
13672 			verbose(env, "kfunc %s#%d failed callback verification\n",
13673 				func_name, meta.func_id);
13674 			return err;
13675 		}
13676 	}
13677 
13678 	if (meta.func_id == special_kfunc_list[KF_bpf_session_cookie]) {
13679 		meta.r0_size = sizeof(u64);
13680 		meta.r0_rdonly = false;
13681 	}
13682 
13683 	if (is_bpf_wq_set_callback_impl_kfunc(meta.func_id)) {
13684 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
13685 					 set_timer_callback_state);
13686 		if (err) {
13687 			verbose(env, "kfunc %s#%d failed callback verification\n",
13688 				func_name, meta.func_id);
13689 			return err;
13690 		}
13691 	}
13692 
13693 	rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
13694 	rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
13695 
13696 	preempt_disable = is_kfunc_bpf_preempt_disable(&meta);
13697 	preempt_enable = is_kfunc_bpf_preempt_enable(&meta);
13698 
13699 	if (env->cur_state->active_rcu_lock) {
13700 		struct bpf_func_state *state;
13701 		struct bpf_reg_state *reg;
13702 		u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER);
13703 
13704 		if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
13705 			verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
13706 			return -EACCES;
13707 		}
13708 
13709 		if (rcu_lock) {
13710 			verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
13711 			return -EINVAL;
13712 		} else if (rcu_unlock) {
13713 			bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({
13714 				if (reg->type & MEM_RCU) {
13715 					reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
13716 					reg->type |= PTR_UNTRUSTED;
13717 				}
13718 			}));
13719 			env->cur_state->active_rcu_lock = false;
13720 		} else if (sleepable) {
13721 			verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
13722 			return -EACCES;
13723 		}
13724 	} else if (rcu_lock) {
13725 		env->cur_state->active_rcu_lock = true;
13726 	} else if (rcu_unlock) {
13727 		verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
13728 		return -EINVAL;
13729 	}
13730 
13731 	if (env->cur_state->active_preempt_locks) {
13732 		if (preempt_disable) {
13733 			env->cur_state->active_preempt_locks++;
13734 		} else if (preempt_enable) {
13735 			env->cur_state->active_preempt_locks--;
13736 		} else if (sleepable) {
13737 			verbose(env, "kernel func %s is sleepable within non-preemptible region\n", func_name);
13738 			return -EACCES;
13739 		}
13740 	} else if (preempt_disable) {
13741 		env->cur_state->active_preempt_locks++;
13742 	} else if (preempt_enable) {
13743 		verbose(env, "unmatched attempt to enable preemption (kernel function %s)\n", func_name);
13744 		return -EINVAL;
13745 	}
13746 
13747 	if (env->cur_state->active_irq_id && sleepable) {
13748 		verbose(env, "kernel func %s is sleepable within IRQ-disabled region\n", func_name);
13749 		return -EACCES;
13750 	}
13751 
13752 	/* In case of release function, we get register number of refcounted
13753 	 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
13754 	 */
13755 	if (meta.release_regno) {
13756 		err = release_reference(env, regs[meta.release_regno].ref_obj_id);
13757 		if (err) {
13758 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
13759 				func_name, meta.func_id);
13760 			return err;
13761 		}
13762 	}
13763 
13764 	if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
13765 	    meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
13766 	    meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
13767 		release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
13768 		insn_aux->insert_off = regs[BPF_REG_2].off;
13769 		insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
13770 		err = ref_convert_owning_non_owning(env, release_ref_obj_id);
13771 		if (err) {
13772 			verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
13773 				func_name, meta.func_id);
13774 			return err;
13775 		}
13776 
13777 		err = release_reference(env, release_ref_obj_id);
13778 		if (err) {
13779 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
13780 				func_name, meta.func_id);
13781 			return err;
13782 		}
13783 	}
13784 
13785 	if (meta.func_id == special_kfunc_list[KF_bpf_throw]) {
13786 		if (!bpf_jit_supports_exceptions()) {
13787 			verbose(env, "JIT does not support calling kfunc %s#%d\n",
13788 				func_name, meta.func_id);
13789 			return -ENOTSUPP;
13790 		}
13791 		env->seen_exception = true;
13792 
13793 		/* In the case of the default callback, the cookie value passed
13794 		 * to bpf_throw becomes the return value of the program.
13795 		 */
13796 		if (!env->exception_callback_subprog) {
13797 			err = check_return_code(env, BPF_REG_1, "R1");
13798 			if (err < 0)
13799 				return err;
13800 		}
13801 	}
13802 
13803 	for (i = 0; i < CALLER_SAVED_REGS; i++)
13804 		mark_reg_not_init(env, regs, caller_saved[i]);
13805 
13806 	/* Check return type */
13807 	t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
13808 
13809 	if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
13810 		/* Only exception is bpf_obj_new_impl */
13811 		if (meta.btf != btf_vmlinux ||
13812 		    (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
13813 		     meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] &&
13814 		     meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
13815 			verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
13816 			return -EINVAL;
13817 		}
13818 	}
13819 
13820 	if (btf_type_is_scalar(t)) {
13821 		mark_reg_unknown(env, regs, BPF_REG_0);
13822 		if (meta.btf == btf_vmlinux && (meta.func_id == special_kfunc_list[KF_bpf_res_spin_lock] ||
13823 		    meta.func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave]))
13824 			__mark_reg_const_zero(env, &regs[BPF_REG_0]);
13825 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
13826 	} else if (btf_type_is_ptr(t)) {
13827 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
13828 		err = check_special_kfunc(env, &meta, regs, insn_aux, ptr_type, desc_btf);
13829 		if (err) {
13830 			if (err < 0)
13831 				return err;
13832 		} else if (btf_type_is_void(ptr_type)) {
13833 			/* kfunc returning 'void *' is equivalent to returning scalar */
13834 			mark_reg_unknown(env, regs, BPF_REG_0);
13835 		} else if (!__btf_type_is_struct(ptr_type)) {
13836 			if (!meta.r0_size) {
13837 				__u32 sz;
13838 
13839 				if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
13840 					meta.r0_size = sz;
13841 					meta.r0_rdonly = true;
13842 				}
13843 			}
13844 			if (!meta.r0_size) {
13845 				ptr_type_name = btf_name_by_offset(desc_btf,
13846 								   ptr_type->name_off);
13847 				verbose(env,
13848 					"kernel function %s returns pointer type %s %s is not supported\n",
13849 					func_name,
13850 					btf_type_str(ptr_type),
13851 					ptr_type_name);
13852 				return -EINVAL;
13853 			}
13854 
13855 			mark_reg_known_zero(env, regs, BPF_REG_0);
13856 			regs[BPF_REG_0].type = PTR_TO_MEM;
13857 			regs[BPF_REG_0].mem_size = meta.r0_size;
13858 
13859 			if (meta.r0_rdonly)
13860 				regs[BPF_REG_0].type |= MEM_RDONLY;
13861 
13862 			/* Ensures we don't access the memory after a release_reference() */
13863 			if (meta.ref_obj_id)
13864 				regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
13865 		} else {
13866 			mark_reg_known_zero(env, regs, BPF_REG_0);
13867 			regs[BPF_REG_0].btf = desc_btf;
13868 			regs[BPF_REG_0].type = PTR_TO_BTF_ID;
13869 			regs[BPF_REG_0].btf_id = ptr_type_id;
13870 
13871 			if (meta.func_id == special_kfunc_list[KF_bpf_get_kmem_cache])
13872 				regs[BPF_REG_0].type |= PTR_UNTRUSTED;
13873 
13874 			if (is_iter_next_kfunc(&meta)) {
13875 				struct bpf_reg_state *cur_iter;
13876 
13877 				cur_iter = get_iter_from_state(env->cur_state, &meta);
13878 
13879 				if (cur_iter->type & MEM_RCU) /* KF_RCU_PROTECTED */
13880 					regs[BPF_REG_0].type |= MEM_RCU;
13881 				else
13882 					regs[BPF_REG_0].type |= PTR_TRUSTED;
13883 			}
13884 		}
13885 
13886 		if (is_kfunc_ret_null(&meta)) {
13887 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
13888 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
13889 			regs[BPF_REG_0].id = ++env->id_gen;
13890 		}
13891 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
13892 		if (is_kfunc_acquire(&meta)) {
13893 			int id = acquire_reference(env, insn_idx);
13894 
13895 			if (id < 0)
13896 				return id;
13897 			if (is_kfunc_ret_null(&meta))
13898 				regs[BPF_REG_0].id = id;
13899 			regs[BPF_REG_0].ref_obj_id = id;
13900 		} else if (is_rbtree_node_type(ptr_type) || is_list_node_type(ptr_type)) {
13901 			ref_set_non_owning(env, &regs[BPF_REG_0]);
13902 		}
13903 
13904 		if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
13905 			regs[BPF_REG_0].id = ++env->id_gen;
13906 	} else if (btf_type_is_void(t)) {
13907 		if (meta.btf == btf_vmlinux) {
13908 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
13909 			    meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
13910 				insn_aux->kptr_struct_meta =
13911 					btf_find_struct_meta(meta.arg_btf,
13912 							     meta.arg_btf_id);
13913 			}
13914 		}
13915 	}
13916 
13917 	nargs = btf_type_vlen(meta.func_proto);
13918 	args = (const struct btf_param *)(meta.func_proto + 1);
13919 	for (i = 0; i < nargs; i++) {
13920 		u32 regno = i + 1;
13921 
13922 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
13923 		if (btf_type_is_ptr(t))
13924 			mark_btf_func_reg_size(env, regno, sizeof(void *));
13925 		else
13926 			/* scalar. ensured by btf_check_kfunc_arg_match() */
13927 			mark_btf_func_reg_size(env, regno, t->size);
13928 	}
13929 
13930 	if (is_iter_next_kfunc(&meta)) {
13931 		err = process_iter_next_call(env, insn_idx, &meta);
13932 		if (err)
13933 			return err;
13934 	}
13935 
13936 	return 0;
13937 }
13938 
check_reg_sane_offset(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,enum bpf_reg_type type)13939 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
13940 				  const struct bpf_reg_state *reg,
13941 				  enum bpf_reg_type type)
13942 {
13943 	bool known = tnum_is_const(reg->var_off);
13944 	s64 val = reg->var_off.value;
13945 	s64 smin = reg->smin_value;
13946 
13947 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
13948 		verbose(env, "math between %s pointer and %lld is not allowed\n",
13949 			reg_type_str(env, type), val);
13950 		return false;
13951 	}
13952 
13953 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
13954 		verbose(env, "%s pointer offset %d is not allowed\n",
13955 			reg_type_str(env, type), reg->off);
13956 		return false;
13957 	}
13958 
13959 	if (smin == S64_MIN) {
13960 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
13961 			reg_type_str(env, type));
13962 		return false;
13963 	}
13964 
13965 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
13966 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
13967 			smin, reg_type_str(env, type));
13968 		return false;
13969 	}
13970 
13971 	return true;
13972 }
13973 
13974 enum {
13975 	REASON_BOUNDS	= -1,
13976 	REASON_TYPE	= -2,
13977 	REASON_PATHS	= -3,
13978 	REASON_LIMIT	= -4,
13979 	REASON_STACK	= -5,
13980 };
13981 
retrieve_ptr_limit(const struct bpf_reg_state * ptr_reg,u32 * alu_limit,bool mask_to_left)13982 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
13983 			      u32 *alu_limit, bool mask_to_left)
13984 {
13985 	u32 max = 0, ptr_limit = 0;
13986 
13987 	switch (ptr_reg->type) {
13988 	case PTR_TO_STACK:
13989 		/* Offset 0 is out-of-bounds, but acceptable start for the
13990 		 * left direction, see BPF_REG_FP. Also, unknown scalar
13991 		 * offset where we would need to deal with min/max bounds is
13992 		 * currently prohibited for unprivileged.
13993 		 */
13994 		max = MAX_BPF_STACK + mask_to_left;
13995 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
13996 		break;
13997 	case PTR_TO_MAP_VALUE:
13998 		max = ptr_reg->map_ptr->value_size;
13999 		ptr_limit = (mask_to_left ?
14000 			     ptr_reg->smin_value :
14001 			     ptr_reg->umax_value) + ptr_reg->off;
14002 		break;
14003 	default:
14004 		return REASON_TYPE;
14005 	}
14006 
14007 	if (ptr_limit >= max)
14008 		return REASON_LIMIT;
14009 	*alu_limit = ptr_limit;
14010 	return 0;
14011 }
14012 
can_skip_alu_sanitation(const struct bpf_verifier_env * env,const struct bpf_insn * insn)14013 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
14014 				    const struct bpf_insn *insn)
14015 {
14016 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
14017 }
14018 
update_alu_sanitation_state(struct bpf_insn_aux_data * aux,u32 alu_state,u32 alu_limit)14019 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
14020 				       u32 alu_state, u32 alu_limit)
14021 {
14022 	/* If we arrived here from different branches with different
14023 	 * state or limits to sanitize, then this won't work.
14024 	 */
14025 	if (aux->alu_state &&
14026 	    (aux->alu_state != alu_state ||
14027 	     aux->alu_limit != alu_limit))
14028 		return REASON_PATHS;
14029 
14030 	/* Corresponding fixup done in do_misc_fixups(). */
14031 	aux->alu_state = alu_state;
14032 	aux->alu_limit = alu_limit;
14033 	return 0;
14034 }
14035 
sanitize_val_alu(struct bpf_verifier_env * env,struct bpf_insn * insn)14036 static int sanitize_val_alu(struct bpf_verifier_env *env,
14037 			    struct bpf_insn *insn)
14038 {
14039 	struct bpf_insn_aux_data *aux = cur_aux(env);
14040 
14041 	if (can_skip_alu_sanitation(env, insn))
14042 		return 0;
14043 
14044 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
14045 }
14046 
sanitize_needed(u8 opcode)14047 static bool sanitize_needed(u8 opcode)
14048 {
14049 	return opcode == BPF_ADD || opcode == BPF_SUB;
14050 }
14051 
14052 struct bpf_sanitize_info {
14053 	struct bpf_insn_aux_data aux;
14054 	bool mask_to_left;
14055 };
14056 
14057 static struct bpf_verifier_state *
sanitize_speculative_path(struct bpf_verifier_env * env,const struct bpf_insn * insn,u32 next_idx,u32 curr_idx)14058 sanitize_speculative_path(struct bpf_verifier_env *env,
14059 			  const struct bpf_insn *insn,
14060 			  u32 next_idx, u32 curr_idx)
14061 {
14062 	struct bpf_verifier_state *branch;
14063 	struct bpf_reg_state *regs;
14064 
14065 	branch = push_stack(env, next_idx, curr_idx, true);
14066 	if (branch && insn) {
14067 		regs = branch->frame[branch->curframe]->regs;
14068 		if (BPF_SRC(insn->code) == BPF_K) {
14069 			mark_reg_unknown(env, regs, insn->dst_reg);
14070 		} else if (BPF_SRC(insn->code) == BPF_X) {
14071 			mark_reg_unknown(env, regs, insn->dst_reg);
14072 			mark_reg_unknown(env, regs, insn->src_reg);
14073 		}
14074 	}
14075 	return branch;
14076 }
14077 
sanitize_ptr_alu(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg,struct bpf_reg_state * dst_reg,struct bpf_sanitize_info * info,const bool commit_window)14078 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
14079 			    struct bpf_insn *insn,
14080 			    const struct bpf_reg_state *ptr_reg,
14081 			    const struct bpf_reg_state *off_reg,
14082 			    struct bpf_reg_state *dst_reg,
14083 			    struct bpf_sanitize_info *info,
14084 			    const bool commit_window)
14085 {
14086 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
14087 	struct bpf_verifier_state *vstate = env->cur_state;
14088 	bool off_is_imm = tnum_is_const(off_reg->var_off);
14089 	bool off_is_neg = off_reg->smin_value < 0;
14090 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
14091 	u8 opcode = BPF_OP(insn->code);
14092 	u32 alu_state, alu_limit;
14093 	struct bpf_reg_state tmp;
14094 	bool ret;
14095 	int err;
14096 
14097 	if (can_skip_alu_sanitation(env, insn))
14098 		return 0;
14099 
14100 	/* We already marked aux for masking from non-speculative
14101 	 * paths, thus we got here in the first place. We only care
14102 	 * to explore bad access from here.
14103 	 */
14104 	if (vstate->speculative)
14105 		goto do_sim;
14106 
14107 	if (!commit_window) {
14108 		if (!tnum_is_const(off_reg->var_off) &&
14109 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
14110 			return REASON_BOUNDS;
14111 
14112 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
14113 				     (opcode == BPF_SUB && !off_is_neg);
14114 	}
14115 
14116 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
14117 	if (err < 0)
14118 		return err;
14119 
14120 	if (commit_window) {
14121 		/* In commit phase we narrow the masking window based on
14122 		 * the observed pointer move after the simulated operation.
14123 		 */
14124 		alu_state = info->aux.alu_state;
14125 		alu_limit = abs(info->aux.alu_limit - alu_limit);
14126 	} else {
14127 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
14128 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
14129 		alu_state |= ptr_is_dst_reg ?
14130 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
14131 
14132 		/* Limit pruning on unknown scalars to enable deep search for
14133 		 * potential masking differences from other program paths.
14134 		 */
14135 		if (!off_is_imm)
14136 			env->explore_alu_limits = true;
14137 	}
14138 
14139 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
14140 	if (err < 0)
14141 		return err;
14142 do_sim:
14143 	/* If we're in commit phase, we're done here given we already
14144 	 * pushed the truncated dst_reg into the speculative verification
14145 	 * stack.
14146 	 *
14147 	 * Also, when register is a known constant, we rewrite register-based
14148 	 * operation to immediate-based, and thus do not need masking (and as
14149 	 * a consequence, do not need to simulate the zero-truncation either).
14150 	 */
14151 	if (commit_window || off_is_imm)
14152 		return 0;
14153 
14154 	/* Simulate and find potential out-of-bounds access under
14155 	 * speculative execution from truncation as a result of
14156 	 * masking when off was not within expected range. If off
14157 	 * sits in dst, then we temporarily need to move ptr there
14158 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
14159 	 * for cases where we use K-based arithmetic in one direction
14160 	 * and truncated reg-based in the other in order to explore
14161 	 * bad access.
14162 	 */
14163 	if (!ptr_is_dst_reg) {
14164 		tmp = *dst_reg;
14165 		copy_register_state(dst_reg, ptr_reg);
14166 	}
14167 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
14168 					env->insn_idx);
14169 	if (!ptr_is_dst_reg && ret)
14170 		*dst_reg = tmp;
14171 	return !ret ? REASON_STACK : 0;
14172 }
14173 
sanitize_mark_insn_seen(struct bpf_verifier_env * env)14174 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
14175 {
14176 	struct bpf_verifier_state *vstate = env->cur_state;
14177 
14178 	/* If we simulate paths under speculation, we don't update the
14179 	 * insn as 'seen' such that when we verify unreachable paths in
14180 	 * the non-speculative domain, sanitize_dead_code() can still
14181 	 * rewrite/sanitize them.
14182 	 */
14183 	if (!vstate->speculative)
14184 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
14185 }
14186 
sanitize_err(struct bpf_verifier_env * env,const struct bpf_insn * insn,int reason,const struct bpf_reg_state * off_reg,const struct bpf_reg_state * dst_reg)14187 static int sanitize_err(struct bpf_verifier_env *env,
14188 			const struct bpf_insn *insn, int reason,
14189 			const struct bpf_reg_state *off_reg,
14190 			const struct bpf_reg_state *dst_reg)
14191 {
14192 	static const char *err = "pointer arithmetic with it prohibited for !root";
14193 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
14194 	u32 dst = insn->dst_reg, src = insn->src_reg;
14195 
14196 	switch (reason) {
14197 	case REASON_BOUNDS:
14198 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
14199 			off_reg == dst_reg ? dst : src, err);
14200 		break;
14201 	case REASON_TYPE:
14202 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
14203 			off_reg == dst_reg ? src : dst, err);
14204 		break;
14205 	case REASON_PATHS:
14206 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
14207 			dst, op, err);
14208 		break;
14209 	case REASON_LIMIT:
14210 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
14211 			dst, op, err);
14212 		break;
14213 	case REASON_STACK:
14214 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
14215 			dst, err);
14216 		break;
14217 	default:
14218 		verbose(env, "verifier internal error: unknown reason (%d)\n",
14219 			reason);
14220 		break;
14221 	}
14222 
14223 	return -EACCES;
14224 }
14225 
14226 /* check that stack access falls within stack limits and that 'reg' doesn't
14227  * have a variable offset.
14228  *
14229  * Variable offset is prohibited for unprivileged mode for simplicity since it
14230  * requires corresponding support in Spectre masking for stack ALU.  See also
14231  * retrieve_ptr_limit().
14232  *
14233  *
14234  * 'off' includes 'reg->off'.
14235  */
check_stack_access_for_ptr_arithmetic(struct bpf_verifier_env * env,int regno,const struct bpf_reg_state * reg,int off)14236 static int check_stack_access_for_ptr_arithmetic(
14237 				struct bpf_verifier_env *env,
14238 				int regno,
14239 				const struct bpf_reg_state *reg,
14240 				int off)
14241 {
14242 	if (!tnum_is_const(reg->var_off)) {
14243 		char tn_buf[48];
14244 
14245 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
14246 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
14247 			regno, tn_buf, off);
14248 		return -EACCES;
14249 	}
14250 
14251 	if (off >= 0 || off < -MAX_BPF_STACK) {
14252 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
14253 			"prohibited for !root; off=%d\n", regno, off);
14254 		return -EACCES;
14255 	}
14256 
14257 	return 0;
14258 }
14259 
sanitize_check_bounds(struct bpf_verifier_env * env,const struct bpf_insn * insn,const struct bpf_reg_state * dst_reg)14260 static int sanitize_check_bounds(struct bpf_verifier_env *env,
14261 				 const struct bpf_insn *insn,
14262 				 const struct bpf_reg_state *dst_reg)
14263 {
14264 	u32 dst = insn->dst_reg;
14265 
14266 	/* For unprivileged we require that resulting offset must be in bounds
14267 	 * in order to be able to sanitize access later on.
14268 	 */
14269 	if (env->bypass_spec_v1)
14270 		return 0;
14271 
14272 	switch (dst_reg->type) {
14273 	case PTR_TO_STACK:
14274 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
14275 					dst_reg->off + dst_reg->var_off.value))
14276 			return -EACCES;
14277 		break;
14278 	case PTR_TO_MAP_VALUE:
14279 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
14280 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
14281 				"prohibited for !root\n", dst);
14282 			return -EACCES;
14283 		}
14284 		break;
14285 	default:
14286 		break;
14287 	}
14288 
14289 	return 0;
14290 }
14291 
14292 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
14293  * Caller should also handle BPF_MOV case separately.
14294  * If we return -EACCES, caller may want to try again treating pointer as a
14295  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
14296  */
adjust_ptr_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg)14297 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
14298 				   struct bpf_insn *insn,
14299 				   const struct bpf_reg_state *ptr_reg,
14300 				   const struct bpf_reg_state *off_reg)
14301 {
14302 	struct bpf_verifier_state *vstate = env->cur_state;
14303 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
14304 	struct bpf_reg_state *regs = state->regs, *dst_reg;
14305 	bool known = tnum_is_const(off_reg->var_off);
14306 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
14307 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
14308 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
14309 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
14310 	struct bpf_sanitize_info info = {};
14311 	u8 opcode = BPF_OP(insn->code);
14312 	u32 dst = insn->dst_reg;
14313 	int ret;
14314 
14315 	dst_reg = &regs[dst];
14316 
14317 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
14318 	    smin_val > smax_val || umin_val > umax_val) {
14319 		/* Taint dst register if offset had invalid bounds derived from
14320 		 * e.g. dead branches.
14321 		 */
14322 		__mark_reg_unknown(env, dst_reg);
14323 		return 0;
14324 	}
14325 
14326 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
14327 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
14328 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
14329 			__mark_reg_unknown(env, dst_reg);
14330 			return 0;
14331 		}
14332 
14333 		verbose(env,
14334 			"R%d 32-bit pointer arithmetic prohibited\n",
14335 			dst);
14336 		return -EACCES;
14337 	}
14338 
14339 	if (ptr_reg->type & PTR_MAYBE_NULL) {
14340 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
14341 			dst, reg_type_str(env, ptr_reg->type));
14342 		return -EACCES;
14343 	}
14344 
14345 	switch (base_type(ptr_reg->type)) {
14346 	case PTR_TO_CTX:
14347 	case PTR_TO_MAP_VALUE:
14348 	case PTR_TO_MAP_KEY:
14349 	case PTR_TO_STACK:
14350 	case PTR_TO_PACKET_META:
14351 	case PTR_TO_PACKET:
14352 	case PTR_TO_TP_BUFFER:
14353 	case PTR_TO_BTF_ID:
14354 	case PTR_TO_MEM:
14355 	case PTR_TO_BUF:
14356 	case PTR_TO_FUNC:
14357 	case CONST_PTR_TO_DYNPTR:
14358 		break;
14359 	case PTR_TO_FLOW_KEYS:
14360 		if (known)
14361 			break;
14362 		fallthrough;
14363 	case CONST_PTR_TO_MAP:
14364 		/* smin_val represents the known value */
14365 		if (known && smin_val == 0 && opcode == BPF_ADD)
14366 			break;
14367 		fallthrough;
14368 	default:
14369 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
14370 			dst, reg_type_str(env, ptr_reg->type));
14371 		return -EACCES;
14372 	}
14373 
14374 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
14375 	 * The id may be overwritten later if we create a new variable offset.
14376 	 */
14377 	dst_reg->type = ptr_reg->type;
14378 	dst_reg->id = ptr_reg->id;
14379 
14380 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
14381 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
14382 		return -EINVAL;
14383 
14384 	/* pointer types do not carry 32-bit bounds at the moment. */
14385 	__mark_reg32_unbounded(dst_reg);
14386 
14387 	if (sanitize_needed(opcode)) {
14388 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
14389 				       &info, false);
14390 		if (ret < 0)
14391 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
14392 	}
14393 
14394 	switch (opcode) {
14395 	case BPF_ADD:
14396 		/* We can take a fixed offset as long as it doesn't overflow
14397 		 * the s32 'off' field
14398 		 */
14399 		if (known && (ptr_reg->off + smin_val ==
14400 			      (s64)(s32)(ptr_reg->off + smin_val))) {
14401 			/* pointer += K.  Accumulate it into fixed offset */
14402 			dst_reg->smin_value = smin_ptr;
14403 			dst_reg->smax_value = smax_ptr;
14404 			dst_reg->umin_value = umin_ptr;
14405 			dst_reg->umax_value = umax_ptr;
14406 			dst_reg->var_off = ptr_reg->var_off;
14407 			dst_reg->off = ptr_reg->off + smin_val;
14408 			dst_reg->raw = ptr_reg->raw;
14409 			break;
14410 		}
14411 		/* A new variable offset is created.  Note that off_reg->off
14412 		 * == 0, since it's a scalar.
14413 		 * dst_reg gets the pointer type and since some positive
14414 		 * integer value was added to the pointer, give it a new 'id'
14415 		 * if it's a PTR_TO_PACKET.
14416 		 * this creates a new 'base' pointer, off_reg (variable) gets
14417 		 * added into the variable offset, and we copy the fixed offset
14418 		 * from ptr_reg.
14419 		 */
14420 		if (check_add_overflow(smin_ptr, smin_val, &dst_reg->smin_value) ||
14421 		    check_add_overflow(smax_ptr, smax_val, &dst_reg->smax_value)) {
14422 			dst_reg->smin_value = S64_MIN;
14423 			dst_reg->smax_value = S64_MAX;
14424 		}
14425 		if (check_add_overflow(umin_ptr, umin_val, &dst_reg->umin_value) ||
14426 		    check_add_overflow(umax_ptr, umax_val, &dst_reg->umax_value)) {
14427 			dst_reg->umin_value = 0;
14428 			dst_reg->umax_value = U64_MAX;
14429 		}
14430 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
14431 		dst_reg->off = ptr_reg->off;
14432 		dst_reg->raw = ptr_reg->raw;
14433 		if (reg_is_pkt_pointer(ptr_reg)) {
14434 			dst_reg->id = ++env->id_gen;
14435 			/* something was added to pkt_ptr, set range to zero */
14436 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
14437 		}
14438 		break;
14439 	case BPF_SUB:
14440 		if (dst_reg == off_reg) {
14441 			/* scalar -= pointer.  Creates an unknown scalar */
14442 			verbose(env, "R%d tried to subtract pointer from scalar\n",
14443 				dst);
14444 			return -EACCES;
14445 		}
14446 		/* We don't allow subtraction from FP, because (according to
14447 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
14448 		 * be able to deal with it.
14449 		 */
14450 		if (ptr_reg->type == PTR_TO_STACK) {
14451 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
14452 				dst);
14453 			return -EACCES;
14454 		}
14455 		if (known && (ptr_reg->off - smin_val ==
14456 			      (s64)(s32)(ptr_reg->off - smin_val))) {
14457 			/* pointer -= K.  Subtract it from fixed offset */
14458 			dst_reg->smin_value = smin_ptr;
14459 			dst_reg->smax_value = smax_ptr;
14460 			dst_reg->umin_value = umin_ptr;
14461 			dst_reg->umax_value = umax_ptr;
14462 			dst_reg->var_off = ptr_reg->var_off;
14463 			dst_reg->id = ptr_reg->id;
14464 			dst_reg->off = ptr_reg->off - smin_val;
14465 			dst_reg->raw = ptr_reg->raw;
14466 			break;
14467 		}
14468 		/* A new variable offset is created.  If the subtrahend is known
14469 		 * nonnegative, then any reg->range we had before is still good.
14470 		 */
14471 		if (check_sub_overflow(smin_ptr, smax_val, &dst_reg->smin_value) ||
14472 		    check_sub_overflow(smax_ptr, smin_val, &dst_reg->smax_value)) {
14473 			/* Overflow possible, we know nothing */
14474 			dst_reg->smin_value = S64_MIN;
14475 			dst_reg->smax_value = S64_MAX;
14476 		}
14477 		if (umin_ptr < umax_val) {
14478 			/* Overflow possible, we know nothing */
14479 			dst_reg->umin_value = 0;
14480 			dst_reg->umax_value = U64_MAX;
14481 		} else {
14482 			/* Cannot overflow (as long as bounds are consistent) */
14483 			dst_reg->umin_value = umin_ptr - umax_val;
14484 			dst_reg->umax_value = umax_ptr - umin_val;
14485 		}
14486 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
14487 		dst_reg->off = ptr_reg->off;
14488 		dst_reg->raw = ptr_reg->raw;
14489 		if (reg_is_pkt_pointer(ptr_reg)) {
14490 			dst_reg->id = ++env->id_gen;
14491 			/* something was added to pkt_ptr, set range to zero */
14492 			if (smin_val < 0)
14493 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
14494 		}
14495 		break;
14496 	case BPF_AND:
14497 	case BPF_OR:
14498 	case BPF_XOR:
14499 		/* bitwise ops on pointers are troublesome, prohibit. */
14500 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
14501 			dst, bpf_alu_string[opcode >> 4]);
14502 		return -EACCES;
14503 	default:
14504 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
14505 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
14506 			dst, bpf_alu_string[opcode >> 4]);
14507 		return -EACCES;
14508 	}
14509 
14510 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
14511 		return -EINVAL;
14512 	reg_bounds_sync(dst_reg);
14513 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
14514 		return -EACCES;
14515 	if (sanitize_needed(opcode)) {
14516 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
14517 				       &info, true);
14518 		if (ret < 0)
14519 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
14520 	}
14521 
14522 	return 0;
14523 }
14524 
scalar32_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)14525 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
14526 				 struct bpf_reg_state *src_reg)
14527 {
14528 	s32 *dst_smin = &dst_reg->s32_min_value;
14529 	s32 *dst_smax = &dst_reg->s32_max_value;
14530 	u32 *dst_umin = &dst_reg->u32_min_value;
14531 	u32 *dst_umax = &dst_reg->u32_max_value;
14532 
14533 	if (check_add_overflow(*dst_smin, src_reg->s32_min_value, dst_smin) ||
14534 	    check_add_overflow(*dst_smax, src_reg->s32_max_value, dst_smax)) {
14535 		*dst_smin = S32_MIN;
14536 		*dst_smax = S32_MAX;
14537 	}
14538 	if (check_add_overflow(*dst_umin, src_reg->u32_min_value, dst_umin) ||
14539 	    check_add_overflow(*dst_umax, src_reg->u32_max_value, dst_umax)) {
14540 		*dst_umin = 0;
14541 		*dst_umax = U32_MAX;
14542 	}
14543 }
14544 
scalar_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)14545 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
14546 			       struct bpf_reg_state *src_reg)
14547 {
14548 	s64 *dst_smin = &dst_reg->smin_value;
14549 	s64 *dst_smax = &dst_reg->smax_value;
14550 	u64 *dst_umin = &dst_reg->umin_value;
14551 	u64 *dst_umax = &dst_reg->umax_value;
14552 
14553 	if (check_add_overflow(*dst_smin, src_reg->smin_value, dst_smin) ||
14554 	    check_add_overflow(*dst_smax, src_reg->smax_value, dst_smax)) {
14555 		*dst_smin = S64_MIN;
14556 		*dst_smax = S64_MAX;
14557 	}
14558 	if (check_add_overflow(*dst_umin, src_reg->umin_value, dst_umin) ||
14559 	    check_add_overflow(*dst_umax, src_reg->umax_value, dst_umax)) {
14560 		*dst_umin = 0;
14561 		*dst_umax = U64_MAX;
14562 	}
14563 }
14564 
scalar32_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)14565 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
14566 				 struct bpf_reg_state *src_reg)
14567 {
14568 	s32 *dst_smin = &dst_reg->s32_min_value;
14569 	s32 *dst_smax = &dst_reg->s32_max_value;
14570 	u32 umin_val = src_reg->u32_min_value;
14571 	u32 umax_val = src_reg->u32_max_value;
14572 
14573 	if (check_sub_overflow(*dst_smin, src_reg->s32_max_value, dst_smin) ||
14574 	    check_sub_overflow(*dst_smax, src_reg->s32_min_value, dst_smax)) {
14575 		/* Overflow possible, we know nothing */
14576 		*dst_smin = S32_MIN;
14577 		*dst_smax = S32_MAX;
14578 	}
14579 	if (dst_reg->u32_min_value < umax_val) {
14580 		/* Overflow possible, we know nothing */
14581 		dst_reg->u32_min_value = 0;
14582 		dst_reg->u32_max_value = U32_MAX;
14583 	} else {
14584 		/* Cannot overflow (as long as bounds are consistent) */
14585 		dst_reg->u32_min_value -= umax_val;
14586 		dst_reg->u32_max_value -= umin_val;
14587 	}
14588 }
14589 
scalar_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)14590 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
14591 			       struct bpf_reg_state *src_reg)
14592 {
14593 	s64 *dst_smin = &dst_reg->smin_value;
14594 	s64 *dst_smax = &dst_reg->smax_value;
14595 	u64 umin_val = src_reg->umin_value;
14596 	u64 umax_val = src_reg->umax_value;
14597 
14598 	if (check_sub_overflow(*dst_smin, src_reg->smax_value, dst_smin) ||
14599 	    check_sub_overflow(*dst_smax, src_reg->smin_value, dst_smax)) {
14600 		/* Overflow possible, we know nothing */
14601 		*dst_smin = S64_MIN;
14602 		*dst_smax = S64_MAX;
14603 	}
14604 	if (dst_reg->umin_value < umax_val) {
14605 		/* Overflow possible, we know nothing */
14606 		dst_reg->umin_value = 0;
14607 		dst_reg->umax_value = U64_MAX;
14608 	} else {
14609 		/* Cannot overflow (as long as bounds are consistent) */
14610 		dst_reg->umin_value -= umax_val;
14611 		dst_reg->umax_value -= umin_val;
14612 	}
14613 }
14614 
scalar32_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)14615 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
14616 				 struct bpf_reg_state *src_reg)
14617 {
14618 	s32 *dst_smin = &dst_reg->s32_min_value;
14619 	s32 *dst_smax = &dst_reg->s32_max_value;
14620 	u32 *dst_umin = &dst_reg->u32_min_value;
14621 	u32 *dst_umax = &dst_reg->u32_max_value;
14622 	s32 tmp_prod[4];
14623 
14624 	if (check_mul_overflow(*dst_umax, src_reg->u32_max_value, dst_umax) ||
14625 	    check_mul_overflow(*dst_umin, src_reg->u32_min_value, dst_umin)) {
14626 		/* Overflow possible, we know nothing */
14627 		*dst_umin = 0;
14628 		*dst_umax = U32_MAX;
14629 	}
14630 	if (check_mul_overflow(*dst_smin, src_reg->s32_min_value, &tmp_prod[0]) ||
14631 	    check_mul_overflow(*dst_smin, src_reg->s32_max_value, &tmp_prod[1]) ||
14632 	    check_mul_overflow(*dst_smax, src_reg->s32_min_value, &tmp_prod[2]) ||
14633 	    check_mul_overflow(*dst_smax, src_reg->s32_max_value, &tmp_prod[3])) {
14634 		/* Overflow possible, we know nothing */
14635 		*dst_smin = S32_MIN;
14636 		*dst_smax = S32_MAX;
14637 	} else {
14638 		*dst_smin = min_array(tmp_prod, 4);
14639 		*dst_smax = max_array(tmp_prod, 4);
14640 	}
14641 }
14642 
scalar_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)14643 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
14644 			       struct bpf_reg_state *src_reg)
14645 {
14646 	s64 *dst_smin = &dst_reg->smin_value;
14647 	s64 *dst_smax = &dst_reg->smax_value;
14648 	u64 *dst_umin = &dst_reg->umin_value;
14649 	u64 *dst_umax = &dst_reg->umax_value;
14650 	s64 tmp_prod[4];
14651 
14652 	if (check_mul_overflow(*dst_umax, src_reg->umax_value, dst_umax) ||
14653 	    check_mul_overflow(*dst_umin, src_reg->umin_value, dst_umin)) {
14654 		/* Overflow possible, we know nothing */
14655 		*dst_umin = 0;
14656 		*dst_umax = U64_MAX;
14657 	}
14658 	if (check_mul_overflow(*dst_smin, src_reg->smin_value, &tmp_prod[0]) ||
14659 	    check_mul_overflow(*dst_smin, src_reg->smax_value, &tmp_prod[1]) ||
14660 	    check_mul_overflow(*dst_smax, src_reg->smin_value, &tmp_prod[2]) ||
14661 	    check_mul_overflow(*dst_smax, src_reg->smax_value, &tmp_prod[3])) {
14662 		/* Overflow possible, we know nothing */
14663 		*dst_smin = S64_MIN;
14664 		*dst_smax = S64_MAX;
14665 	} else {
14666 		*dst_smin = min_array(tmp_prod, 4);
14667 		*dst_smax = max_array(tmp_prod, 4);
14668 	}
14669 }
14670 
scalar32_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)14671 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
14672 				 struct bpf_reg_state *src_reg)
14673 {
14674 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
14675 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
14676 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
14677 	u32 umax_val = src_reg->u32_max_value;
14678 
14679 	if (src_known && dst_known) {
14680 		__mark_reg32_known(dst_reg, var32_off.value);
14681 		return;
14682 	}
14683 
14684 	/* We get our minimum from the var_off, since that's inherently
14685 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
14686 	 */
14687 	dst_reg->u32_min_value = var32_off.value;
14688 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
14689 
14690 	/* Safe to set s32 bounds by casting u32 result into s32 when u32
14691 	 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
14692 	 */
14693 	if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
14694 		dst_reg->s32_min_value = dst_reg->u32_min_value;
14695 		dst_reg->s32_max_value = dst_reg->u32_max_value;
14696 	} else {
14697 		dst_reg->s32_min_value = S32_MIN;
14698 		dst_reg->s32_max_value = S32_MAX;
14699 	}
14700 }
14701 
scalar_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)14702 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
14703 			       struct bpf_reg_state *src_reg)
14704 {
14705 	bool src_known = tnum_is_const(src_reg->var_off);
14706 	bool dst_known = tnum_is_const(dst_reg->var_off);
14707 	u64 umax_val = src_reg->umax_value;
14708 
14709 	if (src_known && dst_known) {
14710 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
14711 		return;
14712 	}
14713 
14714 	/* We get our minimum from the var_off, since that's inherently
14715 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
14716 	 */
14717 	dst_reg->umin_value = dst_reg->var_off.value;
14718 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
14719 
14720 	/* Safe to set s64 bounds by casting u64 result into s64 when u64
14721 	 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
14722 	 */
14723 	if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
14724 		dst_reg->smin_value = dst_reg->umin_value;
14725 		dst_reg->smax_value = dst_reg->umax_value;
14726 	} else {
14727 		dst_reg->smin_value = S64_MIN;
14728 		dst_reg->smax_value = S64_MAX;
14729 	}
14730 	/* We may learn something more from the var_off */
14731 	__update_reg_bounds(dst_reg);
14732 }
14733 
scalar32_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)14734 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
14735 				struct bpf_reg_state *src_reg)
14736 {
14737 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
14738 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
14739 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
14740 	u32 umin_val = src_reg->u32_min_value;
14741 
14742 	if (src_known && dst_known) {
14743 		__mark_reg32_known(dst_reg, var32_off.value);
14744 		return;
14745 	}
14746 
14747 	/* We get our maximum from the var_off, and our minimum is the
14748 	 * maximum of the operands' minima
14749 	 */
14750 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
14751 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
14752 
14753 	/* Safe to set s32 bounds by casting u32 result into s32 when u32
14754 	 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
14755 	 */
14756 	if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
14757 		dst_reg->s32_min_value = dst_reg->u32_min_value;
14758 		dst_reg->s32_max_value = dst_reg->u32_max_value;
14759 	} else {
14760 		dst_reg->s32_min_value = S32_MIN;
14761 		dst_reg->s32_max_value = S32_MAX;
14762 	}
14763 }
14764 
scalar_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)14765 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
14766 			      struct bpf_reg_state *src_reg)
14767 {
14768 	bool src_known = tnum_is_const(src_reg->var_off);
14769 	bool dst_known = tnum_is_const(dst_reg->var_off);
14770 	u64 umin_val = src_reg->umin_value;
14771 
14772 	if (src_known && dst_known) {
14773 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
14774 		return;
14775 	}
14776 
14777 	/* We get our maximum from the var_off, and our minimum is the
14778 	 * maximum of the operands' minima
14779 	 */
14780 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
14781 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
14782 
14783 	/* Safe to set s64 bounds by casting u64 result into s64 when u64
14784 	 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
14785 	 */
14786 	if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
14787 		dst_reg->smin_value = dst_reg->umin_value;
14788 		dst_reg->smax_value = dst_reg->umax_value;
14789 	} else {
14790 		dst_reg->smin_value = S64_MIN;
14791 		dst_reg->smax_value = S64_MAX;
14792 	}
14793 	/* We may learn something more from the var_off */
14794 	__update_reg_bounds(dst_reg);
14795 }
14796 
scalar32_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)14797 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
14798 				 struct bpf_reg_state *src_reg)
14799 {
14800 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
14801 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
14802 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
14803 
14804 	if (src_known && dst_known) {
14805 		__mark_reg32_known(dst_reg, var32_off.value);
14806 		return;
14807 	}
14808 
14809 	/* We get both minimum and maximum from the var32_off. */
14810 	dst_reg->u32_min_value = var32_off.value;
14811 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
14812 
14813 	/* Safe to set s32 bounds by casting u32 result into s32 when u32
14814 	 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
14815 	 */
14816 	if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
14817 		dst_reg->s32_min_value = dst_reg->u32_min_value;
14818 		dst_reg->s32_max_value = dst_reg->u32_max_value;
14819 	} else {
14820 		dst_reg->s32_min_value = S32_MIN;
14821 		dst_reg->s32_max_value = S32_MAX;
14822 	}
14823 }
14824 
scalar_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)14825 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
14826 			       struct bpf_reg_state *src_reg)
14827 {
14828 	bool src_known = tnum_is_const(src_reg->var_off);
14829 	bool dst_known = tnum_is_const(dst_reg->var_off);
14830 
14831 	if (src_known && dst_known) {
14832 		/* dst_reg->var_off.value has been updated earlier */
14833 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
14834 		return;
14835 	}
14836 
14837 	/* We get both minimum and maximum from the var_off. */
14838 	dst_reg->umin_value = dst_reg->var_off.value;
14839 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
14840 
14841 	/* Safe to set s64 bounds by casting u64 result into s64 when u64
14842 	 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
14843 	 */
14844 	if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
14845 		dst_reg->smin_value = dst_reg->umin_value;
14846 		dst_reg->smax_value = dst_reg->umax_value;
14847 	} else {
14848 		dst_reg->smin_value = S64_MIN;
14849 		dst_reg->smax_value = S64_MAX;
14850 	}
14851 
14852 	__update_reg_bounds(dst_reg);
14853 }
14854 
__scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)14855 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
14856 				   u64 umin_val, u64 umax_val)
14857 {
14858 	/* We lose all sign bit information (except what we can pick
14859 	 * up from var_off)
14860 	 */
14861 	dst_reg->s32_min_value = S32_MIN;
14862 	dst_reg->s32_max_value = S32_MAX;
14863 	/* If we might shift our top bit out, then we know nothing */
14864 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
14865 		dst_reg->u32_min_value = 0;
14866 		dst_reg->u32_max_value = U32_MAX;
14867 	} else {
14868 		dst_reg->u32_min_value <<= umin_val;
14869 		dst_reg->u32_max_value <<= umax_val;
14870 	}
14871 }
14872 
scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)14873 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
14874 				 struct bpf_reg_state *src_reg)
14875 {
14876 	u32 umax_val = src_reg->u32_max_value;
14877 	u32 umin_val = src_reg->u32_min_value;
14878 	/* u32 alu operation will zext upper bits */
14879 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
14880 
14881 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
14882 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
14883 	/* Not required but being careful mark reg64 bounds as unknown so
14884 	 * that we are forced to pick them up from tnum and zext later and
14885 	 * if some path skips this step we are still safe.
14886 	 */
14887 	__mark_reg64_unbounded(dst_reg);
14888 	__update_reg32_bounds(dst_reg);
14889 }
14890 
__scalar64_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)14891 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
14892 				   u64 umin_val, u64 umax_val)
14893 {
14894 	/* Special case <<32 because it is a common compiler pattern to sign
14895 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
14896 	 * positive we know this shift will also be positive so we can track
14897 	 * bounds correctly. Otherwise we lose all sign bit information except
14898 	 * what we can pick up from var_off. Perhaps we can generalize this
14899 	 * later to shifts of any length.
14900 	 */
14901 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
14902 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
14903 	else
14904 		dst_reg->smax_value = S64_MAX;
14905 
14906 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
14907 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
14908 	else
14909 		dst_reg->smin_value = S64_MIN;
14910 
14911 	/* If we might shift our top bit out, then we know nothing */
14912 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
14913 		dst_reg->umin_value = 0;
14914 		dst_reg->umax_value = U64_MAX;
14915 	} else {
14916 		dst_reg->umin_value <<= umin_val;
14917 		dst_reg->umax_value <<= umax_val;
14918 	}
14919 }
14920 
scalar_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)14921 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
14922 			       struct bpf_reg_state *src_reg)
14923 {
14924 	u64 umax_val = src_reg->umax_value;
14925 	u64 umin_val = src_reg->umin_value;
14926 
14927 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
14928 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
14929 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
14930 
14931 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
14932 	/* We may learn something more from the var_off */
14933 	__update_reg_bounds(dst_reg);
14934 }
14935 
scalar32_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)14936 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
14937 				 struct bpf_reg_state *src_reg)
14938 {
14939 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
14940 	u32 umax_val = src_reg->u32_max_value;
14941 	u32 umin_val = src_reg->u32_min_value;
14942 
14943 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
14944 	 * be negative, then either:
14945 	 * 1) src_reg might be zero, so the sign bit of the result is
14946 	 *    unknown, so we lose our signed bounds
14947 	 * 2) it's known negative, thus the unsigned bounds capture the
14948 	 *    signed bounds
14949 	 * 3) the signed bounds cross zero, so they tell us nothing
14950 	 *    about the result
14951 	 * If the value in dst_reg is known nonnegative, then again the
14952 	 * unsigned bounds capture the signed bounds.
14953 	 * Thus, in all cases it suffices to blow away our signed bounds
14954 	 * and rely on inferring new ones from the unsigned bounds and
14955 	 * var_off of the result.
14956 	 */
14957 	dst_reg->s32_min_value = S32_MIN;
14958 	dst_reg->s32_max_value = S32_MAX;
14959 
14960 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
14961 	dst_reg->u32_min_value >>= umax_val;
14962 	dst_reg->u32_max_value >>= umin_val;
14963 
14964 	__mark_reg64_unbounded(dst_reg);
14965 	__update_reg32_bounds(dst_reg);
14966 }
14967 
scalar_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)14968 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
14969 			       struct bpf_reg_state *src_reg)
14970 {
14971 	u64 umax_val = src_reg->umax_value;
14972 	u64 umin_val = src_reg->umin_value;
14973 
14974 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
14975 	 * be negative, then either:
14976 	 * 1) src_reg might be zero, so the sign bit of the result is
14977 	 *    unknown, so we lose our signed bounds
14978 	 * 2) it's known negative, thus the unsigned bounds capture the
14979 	 *    signed bounds
14980 	 * 3) the signed bounds cross zero, so they tell us nothing
14981 	 *    about the result
14982 	 * If the value in dst_reg is known nonnegative, then again the
14983 	 * unsigned bounds capture the signed bounds.
14984 	 * Thus, in all cases it suffices to blow away our signed bounds
14985 	 * and rely on inferring new ones from the unsigned bounds and
14986 	 * var_off of the result.
14987 	 */
14988 	dst_reg->smin_value = S64_MIN;
14989 	dst_reg->smax_value = S64_MAX;
14990 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
14991 	dst_reg->umin_value >>= umax_val;
14992 	dst_reg->umax_value >>= umin_val;
14993 
14994 	/* Its not easy to operate on alu32 bounds here because it depends
14995 	 * on bits being shifted in. Take easy way out and mark unbounded
14996 	 * so we can recalculate later from tnum.
14997 	 */
14998 	__mark_reg32_unbounded(dst_reg);
14999 	__update_reg_bounds(dst_reg);
15000 }
15001 
scalar32_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15002 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
15003 				  struct bpf_reg_state *src_reg)
15004 {
15005 	u64 umin_val = src_reg->u32_min_value;
15006 
15007 	/* Upon reaching here, src_known is true and
15008 	 * umax_val is equal to umin_val.
15009 	 */
15010 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
15011 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
15012 
15013 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
15014 
15015 	/* blow away the dst_reg umin_value/umax_value and rely on
15016 	 * dst_reg var_off to refine the result.
15017 	 */
15018 	dst_reg->u32_min_value = 0;
15019 	dst_reg->u32_max_value = U32_MAX;
15020 
15021 	__mark_reg64_unbounded(dst_reg);
15022 	__update_reg32_bounds(dst_reg);
15023 }
15024 
scalar_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)15025 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
15026 				struct bpf_reg_state *src_reg)
15027 {
15028 	u64 umin_val = src_reg->umin_value;
15029 
15030 	/* Upon reaching here, src_known is true and umax_val is equal
15031 	 * to umin_val.
15032 	 */
15033 	dst_reg->smin_value >>= umin_val;
15034 	dst_reg->smax_value >>= umin_val;
15035 
15036 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
15037 
15038 	/* blow away the dst_reg umin_value/umax_value and rely on
15039 	 * dst_reg var_off to refine the result.
15040 	 */
15041 	dst_reg->umin_value = 0;
15042 	dst_reg->umax_value = U64_MAX;
15043 
15044 	/* Its not easy to operate on alu32 bounds here because it depends
15045 	 * on bits being shifted in from upper 32-bits. Take easy way out
15046 	 * and mark unbounded so we can recalculate later from tnum.
15047 	 */
15048 	__mark_reg32_unbounded(dst_reg);
15049 	__update_reg_bounds(dst_reg);
15050 }
15051 
is_safe_to_compute_dst_reg_range(struct bpf_insn * insn,const struct bpf_reg_state * src_reg)15052 static bool is_safe_to_compute_dst_reg_range(struct bpf_insn *insn,
15053 					     const struct bpf_reg_state *src_reg)
15054 {
15055 	bool src_is_const = false;
15056 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
15057 
15058 	if (insn_bitness == 32) {
15059 		if (tnum_subreg_is_const(src_reg->var_off)
15060 		    && src_reg->s32_min_value == src_reg->s32_max_value
15061 		    && src_reg->u32_min_value == src_reg->u32_max_value)
15062 			src_is_const = true;
15063 	} else {
15064 		if (tnum_is_const(src_reg->var_off)
15065 		    && src_reg->smin_value == src_reg->smax_value
15066 		    && src_reg->umin_value == src_reg->umax_value)
15067 			src_is_const = true;
15068 	}
15069 
15070 	switch (BPF_OP(insn->code)) {
15071 	case BPF_ADD:
15072 	case BPF_SUB:
15073 	case BPF_AND:
15074 	case BPF_XOR:
15075 	case BPF_OR:
15076 	case BPF_MUL:
15077 		return true;
15078 
15079 	/* Shift operators range is only computable if shift dimension operand
15080 	 * is a constant. Shifts greater than 31 or 63 are undefined. This
15081 	 * includes shifts by a negative number.
15082 	 */
15083 	case BPF_LSH:
15084 	case BPF_RSH:
15085 	case BPF_ARSH:
15086 		return (src_is_const && src_reg->umax_value < insn_bitness);
15087 	default:
15088 		return false;
15089 	}
15090 }
15091 
15092 /* WARNING: This function does calculations on 64-bit values, but the actual
15093  * execution may occur on 32-bit values. Therefore, things like bitshifts
15094  * need extra checks in the 32-bit case.
15095  */
adjust_scalar_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state src_reg)15096 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
15097 				      struct bpf_insn *insn,
15098 				      struct bpf_reg_state *dst_reg,
15099 				      struct bpf_reg_state src_reg)
15100 {
15101 	u8 opcode = BPF_OP(insn->code);
15102 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
15103 	int ret;
15104 
15105 	if (!is_safe_to_compute_dst_reg_range(insn, &src_reg)) {
15106 		__mark_reg_unknown(env, dst_reg);
15107 		return 0;
15108 	}
15109 
15110 	if (sanitize_needed(opcode)) {
15111 		ret = sanitize_val_alu(env, insn);
15112 		if (ret < 0)
15113 			return sanitize_err(env, insn, ret, NULL, NULL);
15114 	}
15115 
15116 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
15117 	 * There are two classes of instructions: The first class we track both
15118 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
15119 	 * greatest amount of precision when alu operations are mixed with jmp32
15120 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
15121 	 * and BPF_OR. This is possible because these ops have fairly easy to
15122 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
15123 	 * See alu32 verifier tests for examples. The second class of
15124 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
15125 	 * with regards to tracking sign/unsigned bounds because the bits may
15126 	 * cross subreg boundaries in the alu64 case. When this happens we mark
15127 	 * the reg unbounded in the subreg bound space and use the resulting
15128 	 * tnum to calculate an approximation of the sign/unsigned bounds.
15129 	 */
15130 	switch (opcode) {
15131 	case BPF_ADD:
15132 		scalar32_min_max_add(dst_reg, &src_reg);
15133 		scalar_min_max_add(dst_reg, &src_reg);
15134 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
15135 		break;
15136 	case BPF_SUB:
15137 		scalar32_min_max_sub(dst_reg, &src_reg);
15138 		scalar_min_max_sub(dst_reg, &src_reg);
15139 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
15140 		break;
15141 	case BPF_MUL:
15142 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
15143 		scalar32_min_max_mul(dst_reg, &src_reg);
15144 		scalar_min_max_mul(dst_reg, &src_reg);
15145 		break;
15146 	case BPF_AND:
15147 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
15148 		scalar32_min_max_and(dst_reg, &src_reg);
15149 		scalar_min_max_and(dst_reg, &src_reg);
15150 		break;
15151 	case BPF_OR:
15152 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
15153 		scalar32_min_max_or(dst_reg, &src_reg);
15154 		scalar_min_max_or(dst_reg, &src_reg);
15155 		break;
15156 	case BPF_XOR:
15157 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
15158 		scalar32_min_max_xor(dst_reg, &src_reg);
15159 		scalar_min_max_xor(dst_reg, &src_reg);
15160 		break;
15161 	case BPF_LSH:
15162 		if (alu32)
15163 			scalar32_min_max_lsh(dst_reg, &src_reg);
15164 		else
15165 			scalar_min_max_lsh(dst_reg, &src_reg);
15166 		break;
15167 	case BPF_RSH:
15168 		if (alu32)
15169 			scalar32_min_max_rsh(dst_reg, &src_reg);
15170 		else
15171 			scalar_min_max_rsh(dst_reg, &src_reg);
15172 		break;
15173 	case BPF_ARSH:
15174 		if (alu32)
15175 			scalar32_min_max_arsh(dst_reg, &src_reg);
15176 		else
15177 			scalar_min_max_arsh(dst_reg, &src_reg);
15178 		break;
15179 	default:
15180 		break;
15181 	}
15182 
15183 	/* ALU32 ops are zero extended into 64bit register */
15184 	if (alu32)
15185 		zext_32_to_64(dst_reg);
15186 	reg_bounds_sync(dst_reg);
15187 	return 0;
15188 }
15189 
15190 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
15191  * and var_off.
15192  */
adjust_reg_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn)15193 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
15194 				   struct bpf_insn *insn)
15195 {
15196 	struct bpf_verifier_state *vstate = env->cur_state;
15197 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
15198 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
15199 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
15200 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
15201 	u8 opcode = BPF_OP(insn->code);
15202 	int err;
15203 
15204 	dst_reg = &regs[insn->dst_reg];
15205 	src_reg = NULL;
15206 
15207 	if (dst_reg->type == PTR_TO_ARENA) {
15208 		struct bpf_insn_aux_data *aux = cur_aux(env);
15209 
15210 		if (BPF_CLASS(insn->code) == BPF_ALU64)
15211 			/*
15212 			 * 32-bit operations zero upper bits automatically.
15213 			 * 64-bit operations need to be converted to 32.
15214 			 */
15215 			aux->needs_zext = true;
15216 
15217 		/* Any arithmetic operations are allowed on arena pointers */
15218 		return 0;
15219 	}
15220 
15221 	if (dst_reg->type != SCALAR_VALUE)
15222 		ptr_reg = dst_reg;
15223 
15224 	if (BPF_SRC(insn->code) == BPF_X) {
15225 		src_reg = &regs[insn->src_reg];
15226 		if (src_reg->type != SCALAR_VALUE) {
15227 			if (dst_reg->type != SCALAR_VALUE) {
15228 				/* Combining two pointers by any ALU op yields
15229 				 * an arbitrary scalar. Disallow all math except
15230 				 * pointer subtraction
15231 				 */
15232 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
15233 					mark_reg_unknown(env, regs, insn->dst_reg);
15234 					return 0;
15235 				}
15236 				verbose(env, "R%d pointer %s pointer prohibited\n",
15237 					insn->dst_reg,
15238 					bpf_alu_string[opcode >> 4]);
15239 				return -EACCES;
15240 			} else {
15241 				/* scalar += pointer
15242 				 * This is legal, but we have to reverse our
15243 				 * src/dest handling in computing the range
15244 				 */
15245 				err = mark_chain_precision(env, insn->dst_reg);
15246 				if (err)
15247 					return err;
15248 				return adjust_ptr_min_max_vals(env, insn,
15249 							       src_reg, dst_reg);
15250 			}
15251 		} else if (ptr_reg) {
15252 			/* pointer += scalar */
15253 			err = mark_chain_precision(env, insn->src_reg);
15254 			if (err)
15255 				return err;
15256 			return adjust_ptr_min_max_vals(env, insn,
15257 						       dst_reg, src_reg);
15258 		} else if (dst_reg->precise) {
15259 			/* if dst_reg is precise, src_reg should be precise as well */
15260 			err = mark_chain_precision(env, insn->src_reg);
15261 			if (err)
15262 				return err;
15263 		}
15264 	} else {
15265 		/* Pretend the src is a reg with a known value, since we only
15266 		 * need to be able to read from this state.
15267 		 */
15268 		off_reg.type = SCALAR_VALUE;
15269 		__mark_reg_known(&off_reg, insn->imm);
15270 		src_reg = &off_reg;
15271 		if (ptr_reg) /* pointer += K */
15272 			return adjust_ptr_min_max_vals(env, insn,
15273 						       ptr_reg, src_reg);
15274 	}
15275 
15276 	/* Got here implies adding two SCALAR_VALUEs */
15277 	if (WARN_ON_ONCE(ptr_reg)) {
15278 		print_verifier_state(env, vstate, vstate->curframe, true);
15279 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
15280 		return -EINVAL;
15281 	}
15282 	if (WARN_ON(!src_reg)) {
15283 		print_verifier_state(env, vstate, vstate->curframe, true);
15284 		verbose(env, "verifier internal error: no src_reg\n");
15285 		return -EINVAL;
15286 	}
15287 	err = adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
15288 	if (err)
15289 		return err;
15290 	/*
15291 	 * Compilers can generate the code
15292 	 * r1 = r2
15293 	 * r1 += 0x1
15294 	 * if r2 < 1000 goto ...
15295 	 * use r1 in memory access
15296 	 * So for 64-bit alu remember constant delta between r2 and r1 and
15297 	 * update r1 after 'if' condition.
15298 	 */
15299 	if (env->bpf_capable &&
15300 	    BPF_OP(insn->code) == BPF_ADD && !alu32 &&
15301 	    dst_reg->id && is_reg_const(src_reg, false)) {
15302 		u64 val = reg_const_value(src_reg, false);
15303 
15304 		if ((dst_reg->id & BPF_ADD_CONST) ||
15305 		    /* prevent overflow in sync_linked_regs() later */
15306 		    val > (u32)S32_MAX) {
15307 			/*
15308 			 * If the register already went through rX += val
15309 			 * we cannot accumulate another val into rx->off.
15310 			 */
15311 			dst_reg->off = 0;
15312 			dst_reg->id = 0;
15313 		} else {
15314 			dst_reg->id |= BPF_ADD_CONST;
15315 			dst_reg->off = val;
15316 		}
15317 	} else {
15318 		/*
15319 		 * Make sure ID is cleared otherwise dst_reg min/max could be
15320 		 * incorrectly propagated into other registers by sync_linked_regs()
15321 		 */
15322 		dst_reg->id = 0;
15323 	}
15324 	return 0;
15325 }
15326 
15327 /* check validity of 32-bit and 64-bit arithmetic operations */
check_alu_op(struct bpf_verifier_env * env,struct bpf_insn * insn)15328 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
15329 {
15330 	struct bpf_reg_state *regs = cur_regs(env);
15331 	u8 opcode = BPF_OP(insn->code);
15332 	int err;
15333 
15334 	if (opcode == BPF_END || opcode == BPF_NEG) {
15335 		if (opcode == BPF_NEG) {
15336 			if (BPF_SRC(insn->code) != BPF_K ||
15337 			    insn->src_reg != BPF_REG_0 ||
15338 			    insn->off != 0 || insn->imm != 0) {
15339 				verbose(env, "BPF_NEG uses reserved fields\n");
15340 				return -EINVAL;
15341 			}
15342 		} else {
15343 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
15344 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
15345 			    (BPF_CLASS(insn->code) == BPF_ALU64 &&
15346 			     BPF_SRC(insn->code) != BPF_TO_LE)) {
15347 				verbose(env, "BPF_END uses reserved fields\n");
15348 				return -EINVAL;
15349 			}
15350 		}
15351 
15352 		/* check src operand */
15353 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
15354 		if (err)
15355 			return err;
15356 
15357 		if (is_pointer_value(env, insn->dst_reg)) {
15358 			verbose(env, "R%d pointer arithmetic prohibited\n",
15359 				insn->dst_reg);
15360 			return -EACCES;
15361 		}
15362 
15363 		/* check dest operand */
15364 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
15365 		if (err)
15366 			return err;
15367 
15368 	} else if (opcode == BPF_MOV) {
15369 
15370 		if (BPF_SRC(insn->code) == BPF_X) {
15371 			if (BPF_CLASS(insn->code) == BPF_ALU) {
15372 				if ((insn->off != 0 && insn->off != 8 && insn->off != 16) ||
15373 				    insn->imm) {
15374 					verbose(env, "BPF_MOV uses reserved fields\n");
15375 					return -EINVAL;
15376 				}
15377 			} else if (insn->off == BPF_ADDR_SPACE_CAST) {
15378 				if (insn->imm != 1 && insn->imm != 1u << 16) {
15379 					verbose(env, "addr_space_cast insn can only convert between address space 1 and 0\n");
15380 					return -EINVAL;
15381 				}
15382 				if (!env->prog->aux->arena) {
15383 					verbose(env, "addr_space_cast insn can only be used in a program that has an associated arena\n");
15384 					return -EINVAL;
15385 				}
15386 			} else {
15387 				if ((insn->off != 0 && insn->off != 8 && insn->off != 16 &&
15388 				     insn->off != 32) || insn->imm) {
15389 					verbose(env, "BPF_MOV uses reserved fields\n");
15390 					return -EINVAL;
15391 				}
15392 			}
15393 
15394 			/* check src operand */
15395 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
15396 			if (err)
15397 				return err;
15398 		} else {
15399 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
15400 				verbose(env, "BPF_MOV uses reserved fields\n");
15401 				return -EINVAL;
15402 			}
15403 		}
15404 
15405 		/* check dest operand, mark as required later */
15406 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
15407 		if (err)
15408 			return err;
15409 
15410 		if (BPF_SRC(insn->code) == BPF_X) {
15411 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
15412 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
15413 
15414 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
15415 				if (insn->imm) {
15416 					/* off == BPF_ADDR_SPACE_CAST */
15417 					mark_reg_unknown(env, regs, insn->dst_reg);
15418 					if (insn->imm == 1) { /* cast from as(1) to as(0) */
15419 						dst_reg->type = PTR_TO_ARENA;
15420 						/* PTR_TO_ARENA is 32-bit */
15421 						dst_reg->subreg_def = env->insn_idx + 1;
15422 					}
15423 				} else if (insn->off == 0) {
15424 					/* case: R1 = R2
15425 					 * copy register state to dest reg
15426 					 */
15427 					assign_scalar_id_before_mov(env, src_reg);
15428 					copy_register_state(dst_reg, src_reg);
15429 					dst_reg->live |= REG_LIVE_WRITTEN;
15430 					dst_reg->subreg_def = DEF_NOT_SUBREG;
15431 				} else {
15432 					/* case: R1 = (s8, s16 s32)R2 */
15433 					if (is_pointer_value(env, insn->src_reg)) {
15434 						verbose(env,
15435 							"R%d sign-extension part of pointer\n",
15436 							insn->src_reg);
15437 						return -EACCES;
15438 					} else if (src_reg->type == SCALAR_VALUE) {
15439 						bool no_sext;
15440 
15441 						no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
15442 						if (no_sext)
15443 							assign_scalar_id_before_mov(env, src_reg);
15444 						copy_register_state(dst_reg, src_reg);
15445 						if (!no_sext)
15446 							dst_reg->id = 0;
15447 						coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
15448 						dst_reg->live |= REG_LIVE_WRITTEN;
15449 						dst_reg->subreg_def = DEF_NOT_SUBREG;
15450 					} else {
15451 						mark_reg_unknown(env, regs, insn->dst_reg);
15452 					}
15453 				}
15454 			} else {
15455 				/* R1 = (u32) R2 */
15456 				if (is_pointer_value(env, insn->src_reg)) {
15457 					verbose(env,
15458 						"R%d partial copy of pointer\n",
15459 						insn->src_reg);
15460 					return -EACCES;
15461 				} else if (src_reg->type == SCALAR_VALUE) {
15462 					if (insn->off == 0) {
15463 						bool is_src_reg_u32 = get_reg_width(src_reg) <= 32;
15464 
15465 						if (is_src_reg_u32)
15466 							assign_scalar_id_before_mov(env, src_reg);
15467 						copy_register_state(dst_reg, src_reg);
15468 						/* Make sure ID is cleared if src_reg is not in u32
15469 						 * range otherwise dst_reg min/max could be incorrectly
15470 						 * propagated into src_reg by sync_linked_regs()
15471 						 */
15472 						if (!is_src_reg_u32)
15473 							dst_reg->id = 0;
15474 						dst_reg->live |= REG_LIVE_WRITTEN;
15475 						dst_reg->subreg_def = env->insn_idx + 1;
15476 					} else {
15477 						/* case: W1 = (s8, s16)W2 */
15478 						bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
15479 
15480 						if (no_sext)
15481 							assign_scalar_id_before_mov(env, src_reg);
15482 						copy_register_state(dst_reg, src_reg);
15483 						if (!no_sext)
15484 							dst_reg->id = 0;
15485 						dst_reg->live |= REG_LIVE_WRITTEN;
15486 						dst_reg->subreg_def = env->insn_idx + 1;
15487 						coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
15488 					}
15489 				} else {
15490 					mark_reg_unknown(env, regs,
15491 							 insn->dst_reg);
15492 				}
15493 				zext_32_to_64(dst_reg);
15494 				reg_bounds_sync(dst_reg);
15495 			}
15496 		} else {
15497 			/* case: R = imm
15498 			 * remember the value we stored into this reg
15499 			 */
15500 			/* clear any state __mark_reg_known doesn't set */
15501 			mark_reg_unknown(env, regs, insn->dst_reg);
15502 			regs[insn->dst_reg].type = SCALAR_VALUE;
15503 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
15504 				__mark_reg_known(regs + insn->dst_reg,
15505 						 insn->imm);
15506 			} else {
15507 				__mark_reg_known(regs + insn->dst_reg,
15508 						 (u32)insn->imm);
15509 			}
15510 		}
15511 
15512 	} else if (opcode > BPF_END) {
15513 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
15514 		return -EINVAL;
15515 
15516 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
15517 
15518 		if (BPF_SRC(insn->code) == BPF_X) {
15519 			if (insn->imm != 0 || insn->off > 1 ||
15520 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
15521 				verbose(env, "BPF_ALU uses reserved fields\n");
15522 				return -EINVAL;
15523 			}
15524 			/* check src1 operand */
15525 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
15526 			if (err)
15527 				return err;
15528 		} else {
15529 			if (insn->src_reg != BPF_REG_0 || insn->off > 1 ||
15530 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
15531 				verbose(env, "BPF_ALU uses reserved fields\n");
15532 				return -EINVAL;
15533 			}
15534 		}
15535 
15536 		/* check src2 operand */
15537 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
15538 		if (err)
15539 			return err;
15540 
15541 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
15542 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
15543 			verbose(env, "div by zero\n");
15544 			return -EINVAL;
15545 		}
15546 
15547 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
15548 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
15549 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
15550 
15551 			if (insn->imm < 0 || insn->imm >= size) {
15552 				verbose(env, "invalid shift %d\n", insn->imm);
15553 				return -EINVAL;
15554 			}
15555 		}
15556 
15557 		/* check dest operand */
15558 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
15559 		err = err ?: adjust_reg_min_max_vals(env, insn);
15560 		if (err)
15561 			return err;
15562 	}
15563 
15564 	return reg_bounds_sanity_check(env, &regs[insn->dst_reg], "alu");
15565 }
15566 
find_good_pkt_pointers(struct bpf_verifier_state * vstate,struct bpf_reg_state * dst_reg,enum bpf_reg_type type,bool range_right_open)15567 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
15568 				   struct bpf_reg_state *dst_reg,
15569 				   enum bpf_reg_type type,
15570 				   bool range_right_open)
15571 {
15572 	struct bpf_func_state *state;
15573 	struct bpf_reg_state *reg;
15574 	int new_range;
15575 
15576 	if (dst_reg->off < 0 ||
15577 	    (dst_reg->off == 0 && range_right_open))
15578 		/* This doesn't give us any range */
15579 		return;
15580 
15581 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
15582 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
15583 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
15584 		 * than pkt_end, but that's because it's also less than pkt.
15585 		 */
15586 		return;
15587 
15588 	new_range = dst_reg->off;
15589 	if (range_right_open)
15590 		new_range++;
15591 
15592 	/* Examples for register markings:
15593 	 *
15594 	 * pkt_data in dst register:
15595 	 *
15596 	 *   r2 = r3;
15597 	 *   r2 += 8;
15598 	 *   if (r2 > pkt_end) goto <handle exception>
15599 	 *   <access okay>
15600 	 *
15601 	 *   r2 = r3;
15602 	 *   r2 += 8;
15603 	 *   if (r2 < pkt_end) goto <access okay>
15604 	 *   <handle exception>
15605 	 *
15606 	 *   Where:
15607 	 *     r2 == dst_reg, pkt_end == src_reg
15608 	 *     r2=pkt(id=n,off=8,r=0)
15609 	 *     r3=pkt(id=n,off=0,r=0)
15610 	 *
15611 	 * pkt_data in src register:
15612 	 *
15613 	 *   r2 = r3;
15614 	 *   r2 += 8;
15615 	 *   if (pkt_end >= r2) goto <access okay>
15616 	 *   <handle exception>
15617 	 *
15618 	 *   r2 = r3;
15619 	 *   r2 += 8;
15620 	 *   if (pkt_end <= r2) goto <handle exception>
15621 	 *   <access okay>
15622 	 *
15623 	 *   Where:
15624 	 *     pkt_end == dst_reg, r2 == src_reg
15625 	 *     r2=pkt(id=n,off=8,r=0)
15626 	 *     r3=pkt(id=n,off=0,r=0)
15627 	 *
15628 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
15629 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
15630 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
15631 	 * the check.
15632 	 */
15633 
15634 	/* If our ids match, then we must have the same max_value.  And we
15635 	 * don't care about the other reg's fixed offset, since if it's too big
15636 	 * the range won't allow anything.
15637 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
15638 	 */
15639 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
15640 		if (reg->type == type && reg->id == dst_reg->id)
15641 			/* keep the maximum range already checked */
15642 			reg->range = max(reg->range, new_range);
15643 	}));
15644 }
15645 
15646 /*
15647  * <reg1> <op> <reg2>, currently assuming reg2 is a constant
15648  */
is_scalar_branch_taken(struct bpf_reg_state * reg1,struct bpf_reg_state * reg2,u8 opcode,bool is_jmp32)15649 static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
15650 				  u8 opcode, bool is_jmp32)
15651 {
15652 	struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off;
15653 	struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off;
15654 	u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value;
15655 	u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value;
15656 	s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value;
15657 	s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value;
15658 	u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value;
15659 	u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value;
15660 	s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value;
15661 	s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value;
15662 
15663 	switch (opcode) {
15664 	case BPF_JEQ:
15665 		/* constants, umin/umax and smin/smax checks would be
15666 		 * redundant in this case because they all should match
15667 		 */
15668 		if (tnum_is_const(t1) && tnum_is_const(t2))
15669 			return t1.value == t2.value;
15670 		/* non-overlapping ranges */
15671 		if (umin1 > umax2 || umax1 < umin2)
15672 			return 0;
15673 		if (smin1 > smax2 || smax1 < smin2)
15674 			return 0;
15675 		if (!is_jmp32) {
15676 			/* if 64-bit ranges are inconclusive, see if we can
15677 			 * utilize 32-bit subrange knowledge to eliminate
15678 			 * branches that can't be taken a priori
15679 			 */
15680 			if (reg1->u32_min_value > reg2->u32_max_value ||
15681 			    reg1->u32_max_value < reg2->u32_min_value)
15682 				return 0;
15683 			if (reg1->s32_min_value > reg2->s32_max_value ||
15684 			    reg1->s32_max_value < reg2->s32_min_value)
15685 				return 0;
15686 		}
15687 		break;
15688 	case BPF_JNE:
15689 		/* constants, umin/umax and smin/smax checks would be
15690 		 * redundant in this case because they all should match
15691 		 */
15692 		if (tnum_is_const(t1) && tnum_is_const(t2))
15693 			return t1.value != t2.value;
15694 		/* non-overlapping ranges */
15695 		if (umin1 > umax2 || umax1 < umin2)
15696 			return 1;
15697 		if (smin1 > smax2 || smax1 < smin2)
15698 			return 1;
15699 		if (!is_jmp32) {
15700 			/* if 64-bit ranges are inconclusive, see if we can
15701 			 * utilize 32-bit subrange knowledge to eliminate
15702 			 * branches that can't be taken a priori
15703 			 */
15704 			if (reg1->u32_min_value > reg2->u32_max_value ||
15705 			    reg1->u32_max_value < reg2->u32_min_value)
15706 				return 1;
15707 			if (reg1->s32_min_value > reg2->s32_max_value ||
15708 			    reg1->s32_max_value < reg2->s32_min_value)
15709 				return 1;
15710 		}
15711 		break;
15712 	case BPF_JSET:
15713 		if (!is_reg_const(reg2, is_jmp32)) {
15714 			swap(reg1, reg2);
15715 			swap(t1, t2);
15716 		}
15717 		if (!is_reg_const(reg2, is_jmp32))
15718 			return -1;
15719 		if ((~t1.mask & t1.value) & t2.value)
15720 			return 1;
15721 		if (!((t1.mask | t1.value) & t2.value))
15722 			return 0;
15723 		break;
15724 	case BPF_JGT:
15725 		if (umin1 > umax2)
15726 			return 1;
15727 		else if (umax1 <= umin2)
15728 			return 0;
15729 		break;
15730 	case BPF_JSGT:
15731 		if (smin1 > smax2)
15732 			return 1;
15733 		else if (smax1 <= smin2)
15734 			return 0;
15735 		break;
15736 	case BPF_JLT:
15737 		if (umax1 < umin2)
15738 			return 1;
15739 		else if (umin1 >= umax2)
15740 			return 0;
15741 		break;
15742 	case BPF_JSLT:
15743 		if (smax1 < smin2)
15744 			return 1;
15745 		else if (smin1 >= smax2)
15746 			return 0;
15747 		break;
15748 	case BPF_JGE:
15749 		if (umin1 >= umax2)
15750 			return 1;
15751 		else if (umax1 < umin2)
15752 			return 0;
15753 		break;
15754 	case BPF_JSGE:
15755 		if (smin1 >= smax2)
15756 			return 1;
15757 		else if (smax1 < smin2)
15758 			return 0;
15759 		break;
15760 	case BPF_JLE:
15761 		if (umax1 <= umin2)
15762 			return 1;
15763 		else if (umin1 > umax2)
15764 			return 0;
15765 		break;
15766 	case BPF_JSLE:
15767 		if (smax1 <= smin2)
15768 			return 1;
15769 		else if (smin1 > smax2)
15770 			return 0;
15771 		break;
15772 	}
15773 
15774 	return -1;
15775 }
15776 
flip_opcode(u32 opcode)15777 static int flip_opcode(u32 opcode)
15778 {
15779 	/* How can we transform "a <op> b" into "b <op> a"? */
15780 	static const u8 opcode_flip[16] = {
15781 		/* these stay the same */
15782 		[BPF_JEQ  >> 4] = BPF_JEQ,
15783 		[BPF_JNE  >> 4] = BPF_JNE,
15784 		[BPF_JSET >> 4] = BPF_JSET,
15785 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
15786 		[BPF_JGE  >> 4] = BPF_JLE,
15787 		[BPF_JGT  >> 4] = BPF_JLT,
15788 		[BPF_JLE  >> 4] = BPF_JGE,
15789 		[BPF_JLT  >> 4] = BPF_JGT,
15790 		[BPF_JSGE >> 4] = BPF_JSLE,
15791 		[BPF_JSGT >> 4] = BPF_JSLT,
15792 		[BPF_JSLE >> 4] = BPF_JSGE,
15793 		[BPF_JSLT >> 4] = BPF_JSGT
15794 	};
15795 	return opcode_flip[opcode >> 4];
15796 }
15797 
is_pkt_ptr_branch_taken(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,u8 opcode)15798 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
15799 				   struct bpf_reg_state *src_reg,
15800 				   u8 opcode)
15801 {
15802 	struct bpf_reg_state *pkt;
15803 
15804 	if (src_reg->type == PTR_TO_PACKET_END) {
15805 		pkt = dst_reg;
15806 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
15807 		pkt = src_reg;
15808 		opcode = flip_opcode(opcode);
15809 	} else {
15810 		return -1;
15811 	}
15812 
15813 	if (pkt->range >= 0)
15814 		return -1;
15815 
15816 	switch (opcode) {
15817 	case BPF_JLE:
15818 		/* pkt <= pkt_end */
15819 		fallthrough;
15820 	case BPF_JGT:
15821 		/* pkt > pkt_end */
15822 		if (pkt->range == BEYOND_PKT_END)
15823 			/* pkt has at last one extra byte beyond pkt_end */
15824 			return opcode == BPF_JGT;
15825 		break;
15826 	case BPF_JLT:
15827 		/* pkt < pkt_end */
15828 		fallthrough;
15829 	case BPF_JGE:
15830 		/* pkt >= pkt_end */
15831 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
15832 			return opcode == BPF_JGE;
15833 		break;
15834 	}
15835 	return -1;
15836 }
15837 
15838 /* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;"
15839  * and return:
15840  *  1 - branch will be taken and "goto target" will be executed
15841  *  0 - branch will not be taken and fall-through to next insn
15842  * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value
15843  *      range [0,10]
15844  */
is_branch_taken(struct bpf_reg_state * reg1,struct bpf_reg_state * reg2,u8 opcode,bool is_jmp32)15845 static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
15846 			   u8 opcode, bool is_jmp32)
15847 {
15848 	if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32)
15849 		return is_pkt_ptr_branch_taken(reg1, reg2, opcode);
15850 
15851 	if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) {
15852 		u64 val;
15853 
15854 		/* arrange that reg2 is a scalar, and reg1 is a pointer */
15855 		if (!is_reg_const(reg2, is_jmp32)) {
15856 			opcode = flip_opcode(opcode);
15857 			swap(reg1, reg2);
15858 		}
15859 		/* and ensure that reg2 is a constant */
15860 		if (!is_reg_const(reg2, is_jmp32))
15861 			return -1;
15862 
15863 		if (!reg_not_null(reg1))
15864 			return -1;
15865 
15866 		/* If pointer is valid tests against zero will fail so we can
15867 		 * use this to direct branch taken.
15868 		 */
15869 		val = reg_const_value(reg2, is_jmp32);
15870 		if (val != 0)
15871 			return -1;
15872 
15873 		switch (opcode) {
15874 		case BPF_JEQ:
15875 			return 0;
15876 		case BPF_JNE:
15877 			return 1;
15878 		default:
15879 			return -1;
15880 		}
15881 	}
15882 
15883 	/* now deal with two scalars, but not necessarily constants */
15884 	return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32);
15885 }
15886 
15887 /* Opcode that corresponds to a *false* branch condition.
15888  * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2
15889  */
rev_opcode(u8 opcode)15890 static u8 rev_opcode(u8 opcode)
15891 {
15892 	switch (opcode) {
15893 	case BPF_JEQ:		return BPF_JNE;
15894 	case BPF_JNE:		return BPF_JEQ;
15895 	/* JSET doesn't have it's reverse opcode in BPF, so add
15896 	 * BPF_X flag to denote the reverse of that operation
15897 	 */
15898 	case BPF_JSET:		return BPF_JSET | BPF_X;
15899 	case BPF_JSET | BPF_X:	return BPF_JSET;
15900 	case BPF_JGE:		return BPF_JLT;
15901 	case BPF_JGT:		return BPF_JLE;
15902 	case BPF_JLE:		return BPF_JGT;
15903 	case BPF_JLT:		return BPF_JGE;
15904 	case BPF_JSGE:		return BPF_JSLT;
15905 	case BPF_JSGT:		return BPF_JSLE;
15906 	case BPF_JSLE:		return BPF_JSGT;
15907 	case BPF_JSLT:		return BPF_JSGE;
15908 	default:		return 0;
15909 	}
15910 }
15911 
15912 /* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */
regs_refine_cond_op(struct bpf_reg_state * reg1,struct bpf_reg_state * reg2,u8 opcode,bool is_jmp32)15913 static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
15914 				u8 opcode, bool is_jmp32)
15915 {
15916 	struct tnum t;
15917 	u64 val;
15918 
15919 	/* In case of GE/GT/SGE/JST, reuse LE/LT/SLE/SLT logic from below */
15920 	switch (opcode) {
15921 	case BPF_JGE:
15922 	case BPF_JGT:
15923 	case BPF_JSGE:
15924 	case BPF_JSGT:
15925 		opcode = flip_opcode(opcode);
15926 		swap(reg1, reg2);
15927 		break;
15928 	default:
15929 		break;
15930 	}
15931 
15932 	switch (opcode) {
15933 	case BPF_JEQ:
15934 		if (is_jmp32) {
15935 			reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value);
15936 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value);
15937 			reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value);
15938 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value);
15939 			reg2->u32_min_value = reg1->u32_min_value;
15940 			reg2->u32_max_value = reg1->u32_max_value;
15941 			reg2->s32_min_value = reg1->s32_min_value;
15942 			reg2->s32_max_value = reg1->s32_max_value;
15943 
15944 			t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off));
15945 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
15946 			reg2->var_off = tnum_with_subreg(reg2->var_off, t);
15947 		} else {
15948 			reg1->umin_value = max(reg1->umin_value, reg2->umin_value);
15949 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value);
15950 			reg1->smin_value = max(reg1->smin_value, reg2->smin_value);
15951 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value);
15952 			reg2->umin_value = reg1->umin_value;
15953 			reg2->umax_value = reg1->umax_value;
15954 			reg2->smin_value = reg1->smin_value;
15955 			reg2->smax_value = reg1->smax_value;
15956 
15957 			reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off);
15958 			reg2->var_off = reg1->var_off;
15959 		}
15960 		break;
15961 	case BPF_JNE:
15962 		if (!is_reg_const(reg2, is_jmp32))
15963 			swap(reg1, reg2);
15964 		if (!is_reg_const(reg2, is_jmp32))
15965 			break;
15966 
15967 		/* try to recompute the bound of reg1 if reg2 is a const and
15968 		 * is exactly the edge of reg1.
15969 		 */
15970 		val = reg_const_value(reg2, is_jmp32);
15971 		if (is_jmp32) {
15972 			/* u32_min_value is not equal to 0xffffffff at this point,
15973 			 * because otherwise u32_max_value is 0xffffffff as well,
15974 			 * in such a case both reg1 and reg2 would be constants,
15975 			 * jump would be predicted and reg_set_min_max() won't
15976 			 * be called.
15977 			 *
15978 			 * Same reasoning works for all {u,s}{min,max}{32,64} cases
15979 			 * below.
15980 			 */
15981 			if (reg1->u32_min_value == (u32)val)
15982 				reg1->u32_min_value++;
15983 			if (reg1->u32_max_value == (u32)val)
15984 				reg1->u32_max_value--;
15985 			if (reg1->s32_min_value == (s32)val)
15986 				reg1->s32_min_value++;
15987 			if (reg1->s32_max_value == (s32)val)
15988 				reg1->s32_max_value--;
15989 		} else {
15990 			if (reg1->umin_value == (u64)val)
15991 				reg1->umin_value++;
15992 			if (reg1->umax_value == (u64)val)
15993 				reg1->umax_value--;
15994 			if (reg1->smin_value == (s64)val)
15995 				reg1->smin_value++;
15996 			if (reg1->smax_value == (s64)val)
15997 				reg1->smax_value--;
15998 		}
15999 		break;
16000 	case BPF_JSET:
16001 		if (!is_reg_const(reg2, is_jmp32))
16002 			swap(reg1, reg2);
16003 		if (!is_reg_const(reg2, is_jmp32))
16004 			break;
16005 		val = reg_const_value(reg2, is_jmp32);
16006 		/* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X)
16007 		 * requires single bit to learn something useful. E.g., if we
16008 		 * know that `r1 & 0x3` is true, then which bits (0, 1, or both)
16009 		 * are actually set? We can learn something definite only if
16010 		 * it's a single-bit value to begin with.
16011 		 *
16012 		 * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have
16013 		 * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor
16014 		 * bit 1 is set, which we can readily use in adjustments.
16015 		 */
16016 		if (!is_power_of_2(val))
16017 			break;
16018 		if (is_jmp32) {
16019 			t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val));
16020 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
16021 		} else {
16022 			reg1->var_off = tnum_or(reg1->var_off, tnum_const(val));
16023 		}
16024 		break;
16025 	case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */
16026 		if (!is_reg_const(reg2, is_jmp32))
16027 			swap(reg1, reg2);
16028 		if (!is_reg_const(reg2, is_jmp32))
16029 			break;
16030 		val = reg_const_value(reg2, is_jmp32);
16031 		if (is_jmp32) {
16032 			t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val));
16033 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
16034 		} else {
16035 			reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val));
16036 		}
16037 		break;
16038 	case BPF_JLE:
16039 		if (is_jmp32) {
16040 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value);
16041 			reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value);
16042 		} else {
16043 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value);
16044 			reg2->umin_value = max(reg1->umin_value, reg2->umin_value);
16045 		}
16046 		break;
16047 	case BPF_JLT:
16048 		if (is_jmp32) {
16049 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1);
16050 			reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value);
16051 		} else {
16052 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1);
16053 			reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value);
16054 		}
16055 		break;
16056 	case BPF_JSLE:
16057 		if (is_jmp32) {
16058 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value);
16059 			reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value);
16060 		} else {
16061 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value);
16062 			reg2->smin_value = max(reg1->smin_value, reg2->smin_value);
16063 		}
16064 		break;
16065 	case BPF_JSLT:
16066 		if (is_jmp32) {
16067 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1);
16068 			reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value);
16069 		} else {
16070 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1);
16071 			reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value);
16072 		}
16073 		break;
16074 	default:
16075 		return;
16076 	}
16077 }
16078 
16079 /* Adjusts the register min/max values in the case that the dst_reg and
16080  * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K
16081  * check, in which case we have a fake SCALAR_VALUE representing insn->imm).
16082  * Technically we can do similar adjustments for pointers to the same object,
16083  * but we don't support that right now.
16084  */
reg_set_min_max(struct bpf_verifier_env * env,struct bpf_reg_state * true_reg1,struct bpf_reg_state * true_reg2,struct bpf_reg_state * false_reg1,struct bpf_reg_state * false_reg2,u8 opcode,bool is_jmp32)16085 static int reg_set_min_max(struct bpf_verifier_env *env,
16086 			   struct bpf_reg_state *true_reg1,
16087 			   struct bpf_reg_state *true_reg2,
16088 			   struct bpf_reg_state *false_reg1,
16089 			   struct bpf_reg_state *false_reg2,
16090 			   u8 opcode, bool is_jmp32)
16091 {
16092 	int err;
16093 
16094 	/* If either register is a pointer, we can't learn anything about its
16095 	 * variable offset from the compare (unless they were a pointer into
16096 	 * the same object, but we don't bother with that).
16097 	 */
16098 	if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE)
16099 		return 0;
16100 
16101 	/* fallthrough (FALSE) branch */
16102 	regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32);
16103 	reg_bounds_sync(false_reg1);
16104 	reg_bounds_sync(false_reg2);
16105 
16106 	/* jump (TRUE) branch */
16107 	regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32);
16108 	reg_bounds_sync(true_reg1);
16109 	reg_bounds_sync(true_reg2);
16110 
16111 	err = reg_bounds_sanity_check(env, true_reg1, "true_reg1");
16112 	err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2");
16113 	err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1");
16114 	err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2");
16115 	return err;
16116 }
16117 
mark_ptr_or_null_reg(struct bpf_func_state * state,struct bpf_reg_state * reg,u32 id,bool is_null)16118 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
16119 				 struct bpf_reg_state *reg, u32 id,
16120 				 bool is_null)
16121 {
16122 	if (type_may_be_null(reg->type) && reg->id == id &&
16123 	    (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
16124 		/* Old offset (both fixed and variable parts) should have been
16125 		 * known-zero, because we don't allow pointer arithmetic on
16126 		 * pointers that might be NULL. If we see this happening, don't
16127 		 * convert the register.
16128 		 *
16129 		 * But in some cases, some helpers that return local kptrs
16130 		 * advance offset for the returned pointer. In those cases, it
16131 		 * is fine to expect to see reg->off.
16132 		 */
16133 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
16134 			return;
16135 		if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
16136 		    WARN_ON_ONCE(reg->off))
16137 			return;
16138 
16139 		if (is_null) {
16140 			reg->type = SCALAR_VALUE;
16141 			/* We don't need id and ref_obj_id from this point
16142 			 * onwards anymore, thus we should better reset it,
16143 			 * so that state pruning has chances to take effect.
16144 			 */
16145 			reg->id = 0;
16146 			reg->ref_obj_id = 0;
16147 
16148 			return;
16149 		}
16150 
16151 		mark_ptr_not_null_reg(reg);
16152 
16153 		if (!reg_may_point_to_spin_lock(reg)) {
16154 			/* For not-NULL ptr, reg->ref_obj_id will be reset
16155 			 * in release_reference().
16156 			 *
16157 			 * reg->id is still used by spin_lock ptr. Other
16158 			 * than spin_lock ptr type, reg->id can be reset.
16159 			 */
16160 			reg->id = 0;
16161 		}
16162 	}
16163 }
16164 
16165 /* The logic is similar to find_good_pkt_pointers(), both could eventually
16166  * be folded together at some point.
16167  */
mark_ptr_or_null_regs(struct bpf_verifier_state * vstate,u32 regno,bool is_null)16168 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
16169 				  bool is_null)
16170 {
16171 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
16172 	struct bpf_reg_state *regs = state->regs, *reg;
16173 	u32 ref_obj_id = regs[regno].ref_obj_id;
16174 	u32 id = regs[regno].id;
16175 
16176 	if (ref_obj_id && ref_obj_id == id && is_null)
16177 		/* regs[regno] is in the " == NULL" branch.
16178 		 * No one could have freed the reference state before
16179 		 * doing the NULL check.
16180 		 */
16181 		WARN_ON_ONCE(release_reference_nomark(vstate, id));
16182 
16183 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
16184 		mark_ptr_or_null_reg(state, reg, id, is_null);
16185 	}));
16186 }
16187 
try_match_pkt_pointers(const struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,struct bpf_verifier_state * this_branch,struct bpf_verifier_state * other_branch)16188 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
16189 				   struct bpf_reg_state *dst_reg,
16190 				   struct bpf_reg_state *src_reg,
16191 				   struct bpf_verifier_state *this_branch,
16192 				   struct bpf_verifier_state *other_branch)
16193 {
16194 	if (BPF_SRC(insn->code) != BPF_X)
16195 		return false;
16196 
16197 	/* Pointers are always 64-bit. */
16198 	if (BPF_CLASS(insn->code) == BPF_JMP32)
16199 		return false;
16200 
16201 	switch (BPF_OP(insn->code)) {
16202 	case BPF_JGT:
16203 		if ((dst_reg->type == PTR_TO_PACKET &&
16204 		     src_reg->type == PTR_TO_PACKET_END) ||
16205 		    (dst_reg->type == PTR_TO_PACKET_META &&
16206 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
16207 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
16208 			find_good_pkt_pointers(this_branch, dst_reg,
16209 					       dst_reg->type, false);
16210 			mark_pkt_end(other_branch, insn->dst_reg, true);
16211 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
16212 			    src_reg->type == PTR_TO_PACKET) ||
16213 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
16214 			    src_reg->type == PTR_TO_PACKET_META)) {
16215 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
16216 			find_good_pkt_pointers(other_branch, src_reg,
16217 					       src_reg->type, true);
16218 			mark_pkt_end(this_branch, insn->src_reg, false);
16219 		} else {
16220 			return false;
16221 		}
16222 		break;
16223 	case BPF_JLT:
16224 		if ((dst_reg->type == PTR_TO_PACKET &&
16225 		     src_reg->type == PTR_TO_PACKET_END) ||
16226 		    (dst_reg->type == PTR_TO_PACKET_META &&
16227 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
16228 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
16229 			find_good_pkt_pointers(other_branch, dst_reg,
16230 					       dst_reg->type, true);
16231 			mark_pkt_end(this_branch, insn->dst_reg, false);
16232 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
16233 			    src_reg->type == PTR_TO_PACKET) ||
16234 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
16235 			    src_reg->type == PTR_TO_PACKET_META)) {
16236 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
16237 			find_good_pkt_pointers(this_branch, src_reg,
16238 					       src_reg->type, false);
16239 			mark_pkt_end(other_branch, insn->src_reg, true);
16240 		} else {
16241 			return false;
16242 		}
16243 		break;
16244 	case BPF_JGE:
16245 		if ((dst_reg->type == PTR_TO_PACKET &&
16246 		     src_reg->type == PTR_TO_PACKET_END) ||
16247 		    (dst_reg->type == PTR_TO_PACKET_META &&
16248 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
16249 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
16250 			find_good_pkt_pointers(this_branch, dst_reg,
16251 					       dst_reg->type, true);
16252 			mark_pkt_end(other_branch, insn->dst_reg, false);
16253 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
16254 			    src_reg->type == PTR_TO_PACKET) ||
16255 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
16256 			    src_reg->type == PTR_TO_PACKET_META)) {
16257 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
16258 			find_good_pkt_pointers(other_branch, src_reg,
16259 					       src_reg->type, false);
16260 			mark_pkt_end(this_branch, insn->src_reg, true);
16261 		} else {
16262 			return false;
16263 		}
16264 		break;
16265 	case BPF_JLE:
16266 		if ((dst_reg->type == PTR_TO_PACKET &&
16267 		     src_reg->type == PTR_TO_PACKET_END) ||
16268 		    (dst_reg->type == PTR_TO_PACKET_META &&
16269 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
16270 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
16271 			find_good_pkt_pointers(other_branch, dst_reg,
16272 					       dst_reg->type, false);
16273 			mark_pkt_end(this_branch, insn->dst_reg, true);
16274 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
16275 			    src_reg->type == PTR_TO_PACKET) ||
16276 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
16277 			    src_reg->type == PTR_TO_PACKET_META)) {
16278 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
16279 			find_good_pkt_pointers(this_branch, src_reg,
16280 					       src_reg->type, true);
16281 			mark_pkt_end(other_branch, insn->src_reg, false);
16282 		} else {
16283 			return false;
16284 		}
16285 		break;
16286 	default:
16287 		return false;
16288 	}
16289 
16290 	return true;
16291 }
16292 
__collect_linked_regs(struct linked_regs * reg_set,struct bpf_reg_state * reg,u32 id,u32 frameno,u32 spi_or_reg,bool is_reg)16293 static void __collect_linked_regs(struct linked_regs *reg_set, struct bpf_reg_state *reg,
16294 				  u32 id, u32 frameno, u32 spi_or_reg, bool is_reg)
16295 {
16296 	struct linked_reg *e;
16297 
16298 	if (reg->type != SCALAR_VALUE || (reg->id & ~BPF_ADD_CONST) != id)
16299 		return;
16300 
16301 	e = linked_regs_push(reg_set);
16302 	if (e) {
16303 		e->frameno = frameno;
16304 		e->is_reg = is_reg;
16305 		e->regno = spi_or_reg;
16306 	} else {
16307 		reg->id = 0;
16308 	}
16309 }
16310 
16311 /* For all R being scalar registers or spilled scalar registers
16312  * in verifier state, save R in linked_regs if R->id == id.
16313  * If there are too many Rs sharing same id, reset id for leftover Rs.
16314  */
collect_linked_regs(struct bpf_verifier_state * vstate,u32 id,struct linked_regs * linked_regs)16315 static void collect_linked_regs(struct bpf_verifier_state *vstate, u32 id,
16316 				struct linked_regs *linked_regs)
16317 {
16318 	struct bpf_func_state *func;
16319 	struct bpf_reg_state *reg;
16320 	int i, j;
16321 
16322 	id = id & ~BPF_ADD_CONST;
16323 	for (i = vstate->curframe; i >= 0; i--) {
16324 		func = vstate->frame[i];
16325 		for (j = 0; j < BPF_REG_FP; j++) {
16326 			reg = &func->regs[j];
16327 			__collect_linked_regs(linked_regs, reg, id, i, j, true);
16328 		}
16329 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
16330 			if (!is_spilled_reg(&func->stack[j]))
16331 				continue;
16332 			reg = &func->stack[j].spilled_ptr;
16333 			__collect_linked_regs(linked_regs, reg, id, i, j, false);
16334 		}
16335 	}
16336 }
16337 
16338 /* For all R in linked_regs, copy known_reg range into R
16339  * if R->id == known_reg->id.
16340  */
sync_linked_regs(struct bpf_verifier_state * vstate,struct bpf_reg_state * known_reg,struct linked_regs * linked_regs)16341 static void sync_linked_regs(struct bpf_verifier_state *vstate, struct bpf_reg_state *known_reg,
16342 			     struct linked_regs *linked_regs)
16343 {
16344 	struct bpf_reg_state fake_reg;
16345 	struct bpf_reg_state *reg;
16346 	struct linked_reg *e;
16347 	int i;
16348 
16349 	for (i = 0; i < linked_regs->cnt; ++i) {
16350 		e = &linked_regs->entries[i];
16351 		reg = e->is_reg ? &vstate->frame[e->frameno]->regs[e->regno]
16352 				: &vstate->frame[e->frameno]->stack[e->spi].spilled_ptr;
16353 		if (reg->type != SCALAR_VALUE || reg == known_reg)
16354 			continue;
16355 		if ((reg->id & ~BPF_ADD_CONST) != (known_reg->id & ~BPF_ADD_CONST))
16356 			continue;
16357 		if ((!(reg->id & BPF_ADD_CONST) && !(known_reg->id & BPF_ADD_CONST)) ||
16358 		    reg->off == known_reg->off) {
16359 			s32 saved_subreg_def = reg->subreg_def;
16360 
16361 			copy_register_state(reg, known_reg);
16362 			reg->subreg_def = saved_subreg_def;
16363 		} else {
16364 			s32 saved_subreg_def = reg->subreg_def;
16365 			s32 saved_off = reg->off;
16366 
16367 			fake_reg.type = SCALAR_VALUE;
16368 			__mark_reg_known(&fake_reg, (s32)reg->off - (s32)known_reg->off);
16369 
16370 			/* reg = known_reg; reg += delta */
16371 			copy_register_state(reg, known_reg);
16372 			/*
16373 			 * Must preserve off, id and add_const flag,
16374 			 * otherwise another sync_linked_regs() will be incorrect.
16375 			 */
16376 			reg->off = saved_off;
16377 			reg->subreg_def = saved_subreg_def;
16378 
16379 			scalar32_min_max_add(reg, &fake_reg);
16380 			scalar_min_max_add(reg, &fake_reg);
16381 			reg->var_off = tnum_add(reg->var_off, fake_reg.var_off);
16382 		}
16383 	}
16384 }
16385 
check_cond_jmp_op(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)16386 static int check_cond_jmp_op(struct bpf_verifier_env *env,
16387 			     struct bpf_insn *insn, int *insn_idx)
16388 {
16389 	struct bpf_verifier_state *this_branch = env->cur_state;
16390 	struct bpf_verifier_state *other_branch;
16391 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
16392 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
16393 	struct bpf_reg_state *eq_branch_regs;
16394 	struct linked_regs linked_regs = {};
16395 	u8 opcode = BPF_OP(insn->code);
16396 	int insn_flags = 0;
16397 	bool is_jmp32;
16398 	int pred = -1;
16399 	int err;
16400 
16401 	/* Only conditional jumps are expected to reach here. */
16402 	if (opcode == BPF_JA || opcode > BPF_JCOND) {
16403 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
16404 		return -EINVAL;
16405 	}
16406 
16407 	if (opcode == BPF_JCOND) {
16408 		struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
16409 		int idx = *insn_idx;
16410 
16411 		if (insn->code != (BPF_JMP | BPF_JCOND) ||
16412 		    insn->src_reg != BPF_MAY_GOTO ||
16413 		    insn->dst_reg || insn->imm) {
16414 			verbose(env, "invalid may_goto imm %d\n", insn->imm);
16415 			return -EINVAL;
16416 		}
16417 		prev_st = find_prev_entry(env, cur_st->parent, idx);
16418 
16419 		/* branch out 'fallthrough' insn as a new state to explore */
16420 		queued_st = push_stack(env, idx + 1, idx, false);
16421 		if (!queued_st)
16422 			return -ENOMEM;
16423 
16424 		queued_st->may_goto_depth++;
16425 		if (prev_st)
16426 			widen_imprecise_scalars(env, prev_st, queued_st);
16427 		*insn_idx += insn->off;
16428 		return 0;
16429 	}
16430 
16431 	/* check src2 operand */
16432 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
16433 	if (err)
16434 		return err;
16435 
16436 	dst_reg = &regs[insn->dst_reg];
16437 	if (BPF_SRC(insn->code) == BPF_X) {
16438 		if (insn->imm != 0) {
16439 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
16440 			return -EINVAL;
16441 		}
16442 
16443 		/* check src1 operand */
16444 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
16445 		if (err)
16446 			return err;
16447 
16448 		src_reg = &regs[insn->src_reg];
16449 		if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
16450 		    is_pointer_value(env, insn->src_reg)) {
16451 			verbose(env, "R%d pointer comparison prohibited\n",
16452 				insn->src_reg);
16453 			return -EACCES;
16454 		}
16455 
16456 		if (src_reg->type == PTR_TO_STACK)
16457 			insn_flags |= INSN_F_SRC_REG_STACK;
16458 		if (dst_reg->type == PTR_TO_STACK)
16459 			insn_flags |= INSN_F_DST_REG_STACK;
16460 	} else {
16461 		if (insn->src_reg != BPF_REG_0) {
16462 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
16463 			return -EINVAL;
16464 		}
16465 		src_reg = &env->fake_reg[0];
16466 		memset(src_reg, 0, sizeof(*src_reg));
16467 		src_reg->type = SCALAR_VALUE;
16468 		__mark_reg_known(src_reg, insn->imm);
16469 
16470 		if (dst_reg->type == PTR_TO_STACK)
16471 			insn_flags |= INSN_F_DST_REG_STACK;
16472 	}
16473 
16474 	if (insn_flags) {
16475 		err = push_insn_history(env, this_branch, insn_flags, 0);
16476 		if (err)
16477 			return err;
16478 	}
16479 
16480 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
16481 	pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32);
16482 	if (pred >= 0) {
16483 		/* If we get here with a dst_reg pointer type it is because
16484 		 * above is_branch_taken() special cased the 0 comparison.
16485 		 */
16486 		if (!__is_pointer_value(false, dst_reg))
16487 			err = mark_chain_precision(env, insn->dst_reg);
16488 		if (BPF_SRC(insn->code) == BPF_X && !err &&
16489 		    !__is_pointer_value(false, src_reg))
16490 			err = mark_chain_precision(env, insn->src_reg);
16491 		if (err)
16492 			return err;
16493 	}
16494 
16495 	if (pred == 1) {
16496 		/* Only follow the goto, ignore fall-through. If needed, push
16497 		 * the fall-through branch for simulation under speculative
16498 		 * execution.
16499 		 */
16500 		if (!env->bypass_spec_v1 &&
16501 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
16502 					       *insn_idx))
16503 			return -EFAULT;
16504 		if (env->log.level & BPF_LOG_LEVEL)
16505 			print_insn_state(env, this_branch, this_branch->curframe);
16506 		*insn_idx += insn->off;
16507 		return 0;
16508 	} else if (pred == 0) {
16509 		/* Only follow the fall-through branch, since that's where the
16510 		 * program will go. If needed, push the goto branch for
16511 		 * simulation under speculative execution.
16512 		 */
16513 		if (!env->bypass_spec_v1 &&
16514 		    !sanitize_speculative_path(env, insn,
16515 					       *insn_idx + insn->off + 1,
16516 					       *insn_idx))
16517 			return -EFAULT;
16518 		if (env->log.level & BPF_LOG_LEVEL)
16519 			print_insn_state(env, this_branch, this_branch->curframe);
16520 		return 0;
16521 	}
16522 
16523 	/* Push scalar registers sharing same ID to jump history,
16524 	 * do this before creating 'other_branch', so that both
16525 	 * 'this_branch' and 'other_branch' share this history
16526 	 * if parent state is created.
16527 	 */
16528 	if (BPF_SRC(insn->code) == BPF_X && src_reg->type == SCALAR_VALUE && src_reg->id)
16529 		collect_linked_regs(this_branch, src_reg->id, &linked_regs);
16530 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id)
16531 		collect_linked_regs(this_branch, dst_reg->id, &linked_regs);
16532 	if (linked_regs.cnt > 1) {
16533 		err = push_insn_history(env, this_branch, 0, linked_regs_pack(&linked_regs));
16534 		if (err)
16535 			return err;
16536 	}
16537 
16538 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
16539 				  false);
16540 	if (!other_branch)
16541 		return -EFAULT;
16542 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
16543 
16544 	if (BPF_SRC(insn->code) == BPF_X) {
16545 		err = reg_set_min_max(env,
16546 				      &other_branch_regs[insn->dst_reg],
16547 				      &other_branch_regs[insn->src_reg],
16548 				      dst_reg, src_reg, opcode, is_jmp32);
16549 	} else /* BPF_SRC(insn->code) == BPF_K */ {
16550 		/* reg_set_min_max() can mangle the fake_reg. Make a copy
16551 		 * so that these are two different memory locations. The
16552 		 * src_reg is not used beyond here in context of K.
16553 		 */
16554 		memcpy(&env->fake_reg[1], &env->fake_reg[0],
16555 		       sizeof(env->fake_reg[0]));
16556 		err = reg_set_min_max(env,
16557 				      &other_branch_regs[insn->dst_reg],
16558 				      &env->fake_reg[0],
16559 				      dst_reg, &env->fake_reg[1],
16560 				      opcode, is_jmp32);
16561 	}
16562 	if (err)
16563 		return err;
16564 
16565 	if (BPF_SRC(insn->code) == BPF_X &&
16566 	    src_reg->type == SCALAR_VALUE && src_reg->id &&
16567 	    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
16568 		sync_linked_regs(this_branch, src_reg, &linked_regs);
16569 		sync_linked_regs(other_branch, &other_branch_regs[insn->src_reg], &linked_regs);
16570 	}
16571 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
16572 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
16573 		sync_linked_regs(this_branch, dst_reg, &linked_regs);
16574 		sync_linked_regs(other_branch, &other_branch_regs[insn->dst_reg], &linked_regs);
16575 	}
16576 
16577 	/* if one pointer register is compared to another pointer
16578 	 * register check if PTR_MAYBE_NULL could be lifted.
16579 	 * E.g. register A - maybe null
16580 	 *      register B - not null
16581 	 * for JNE A, B, ... - A is not null in the false branch;
16582 	 * for JEQ A, B, ... - A is not null in the true branch.
16583 	 *
16584 	 * Since PTR_TO_BTF_ID points to a kernel struct that does
16585 	 * not need to be null checked by the BPF program, i.e.,
16586 	 * could be null even without PTR_MAYBE_NULL marking, so
16587 	 * only propagate nullness when neither reg is that type.
16588 	 */
16589 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
16590 	    __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
16591 	    type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
16592 	    base_type(src_reg->type) != PTR_TO_BTF_ID &&
16593 	    base_type(dst_reg->type) != PTR_TO_BTF_ID) {
16594 		eq_branch_regs = NULL;
16595 		switch (opcode) {
16596 		case BPF_JEQ:
16597 			eq_branch_regs = other_branch_regs;
16598 			break;
16599 		case BPF_JNE:
16600 			eq_branch_regs = regs;
16601 			break;
16602 		default:
16603 			/* do nothing */
16604 			break;
16605 		}
16606 		if (eq_branch_regs) {
16607 			if (type_may_be_null(src_reg->type))
16608 				mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
16609 			else
16610 				mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
16611 		}
16612 	}
16613 
16614 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
16615 	 * NOTE: these optimizations below are related with pointer comparison
16616 	 *       which will never be JMP32.
16617 	 */
16618 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
16619 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
16620 	    type_may_be_null(dst_reg->type)) {
16621 		/* Mark all identical registers in each branch as either
16622 		 * safe or unknown depending R == 0 or R != 0 conditional.
16623 		 */
16624 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
16625 				      opcode == BPF_JNE);
16626 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
16627 				      opcode == BPF_JEQ);
16628 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
16629 					   this_branch, other_branch) &&
16630 		   is_pointer_value(env, insn->dst_reg)) {
16631 		verbose(env, "R%d pointer comparison prohibited\n",
16632 			insn->dst_reg);
16633 		return -EACCES;
16634 	}
16635 	if (env->log.level & BPF_LOG_LEVEL)
16636 		print_insn_state(env, this_branch, this_branch->curframe);
16637 	return 0;
16638 }
16639 
16640 /* verify BPF_LD_IMM64 instruction */
check_ld_imm(struct bpf_verifier_env * env,struct bpf_insn * insn)16641 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
16642 {
16643 	struct bpf_insn_aux_data *aux = cur_aux(env);
16644 	struct bpf_reg_state *regs = cur_regs(env);
16645 	struct bpf_reg_state *dst_reg;
16646 	struct bpf_map *map;
16647 	int err;
16648 
16649 	if (BPF_SIZE(insn->code) != BPF_DW) {
16650 		verbose(env, "invalid BPF_LD_IMM insn\n");
16651 		return -EINVAL;
16652 	}
16653 	if (insn->off != 0) {
16654 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
16655 		return -EINVAL;
16656 	}
16657 
16658 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
16659 	if (err)
16660 		return err;
16661 
16662 	dst_reg = &regs[insn->dst_reg];
16663 	if (insn->src_reg == 0) {
16664 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
16665 
16666 		dst_reg->type = SCALAR_VALUE;
16667 		__mark_reg_known(&regs[insn->dst_reg], imm);
16668 		return 0;
16669 	}
16670 
16671 	/* All special src_reg cases are listed below. From this point onwards
16672 	 * we either succeed and assign a corresponding dst_reg->type after
16673 	 * zeroing the offset, or fail and reject the program.
16674 	 */
16675 	mark_reg_known_zero(env, regs, insn->dst_reg);
16676 
16677 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
16678 		dst_reg->type = aux->btf_var.reg_type;
16679 		switch (base_type(dst_reg->type)) {
16680 		case PTR_TO_MEM:
16681 			dst_reg->mem_size = aux->btf_var.mem_size;
16682 			break;
16683 		case PTR_TO_BTF_ID:
16684 			dst_reg->btf = aux->btf_var.btf;
16685 			dst_reg->btf_id = aux->btf_var.btf_id;
16686 			break;
16687 		default:
16688 			verbose(env, "bpf verifier is misconfigured\n");
16689 			return -EFAULT;
16690 		}
16691 		return 0;
16692 	}
16693 
16694 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
16695 		struct bpf_prog_aux *aux = env->prog->aux;
16696 		u32 subprogno = find_subprog(env,
16697 					     env->insn_idx + insn->imm + 1);
16698 
16699 		if (!aux->func_info) {
16700 			verbose(env, "missing btf func_info\n");
16701 			return -EINVAL;
16702 		}
16703 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
16704 			verbose(env, "callback function not static\n");
16705 			return -EINVAL;
16706 		}
16707 
16708 		dst_reg->type = PTR_TO_FUNC;
16709 		dst_reg->subprogno = subprogno;
16710 		return 0;
16711 	}
16712 
16713 	map = env->used_maps[aux->map_index];
16714 	dst_reg->map_ptr = map;
16715 
16716 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
16717 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
16718 		if (map->map_type == BPF_MAP_TYPE_ARENA) {
16719 			__mark_reg_unknown(env, dst_reg);
16720 			return 0;
16721 		}
16722 		dst_reg->type = PTR_TO_MAP_VALUE;
16723 		dst_reg->off = aux->map_off;
16724 		WARN_ON_ONCE(map->max_entries != 1);
16725 		/* We want reg->id to be same (0) as map_value is not distinct */
16726 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
16727 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
16728 		dst_reg->type = CONST_PTR_TO_MAP;
16729 	} else {
16730 		verbose(env, "bpf verifier is misconfigured\n");
16731 		return -EINVAL;
16732 	}
16733 
16734 	return 0;
16735 }
16736 
may_access_skb(enum bpf_prog_type type)16737 static bool may_access_skb(enum bpf_prog_type type)
16738 {
16739 	switch (type) {
16740 	case BPF_PROG_TYPE_SOCKET_FILTER:
16741 	case BPF_PROG_TYPE_SCHED_CLS:
16742 	case BPF_PROG_TYPE_SCHED_ACT:
16743 		return true;
16744 	default:
16745 		return false;
16746 	}
16747 }
16748 
16749 /* verify safety of LD_ABS|LD_IND instructions:
16750  * - they can only appear in the programs where ctx == skb
16751  * - since they are wrappers of function calls, they scratch R1-R5 registers,
16752  *   preserve R6-R9, and store return value into R0
16753  *
16754  * Implicit input:
16755  *   ctx == skb == R6 == CTX
16756  *
16757  * Explicit input:
16758  *   SRC == any register
16759  *   IMM == 32-bit immediate
16760  *
16761  * Output:
16762  *   R0 - 8/16/32-bit skb data converted to cpu endianness
16763  */
check_ld_abs(struct bpf_verifier_env * env,struct bpf_insn * insn)16764 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
16765 {
16766 	struct bpf_reg_state *regs = cur_regs(env);
16767 	static const int ctx_reg = BPF_REG_6;
16768 	u8 mode = BPF_MODE(insn->code);
16769 	int i, err;
16770 
16771 	if (!may_access_skb(resolve_prog_type(env->prog))) {
16772 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
16773 		return -EINVAL;
16774 	}
16775 
16776 	if (!env->ops->gen_ld_abs) {
16777 		verbose(env, "bpf verifier is misconfigured\n");
16778 		return -EINVAL;
16779 	}
16780 
16781 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
16782 	    BPF_SIZE(insn->code) == BPF_DW ||
16783 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
16784 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
16785 		return -EINVAL;
16786 	}
16787 
16788 	/* check whether implicit source operand (register R6) is readable */
16789 	err = check_reg_arg(env, ctx_reg, SRC_OP);
16790 	if (err)
16791 		return err;
16792 
16793 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
16794 	 * gen_ld_abs() may terminate the program at runtime, leading to
16795 	 * reference leak.
16796 	 */
16797 	err = check_resource_leak(env, false, true, "BPF_LD_[ABS|IND]");
16798 	if (err)
16799 		return err;
16800 
16801 	if (regs[ctx_reg].type != PTR_TO_CTX) {
16802 		verbose(env,
16803 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
16804 		return -EINVAL;
16805 	}
16806 
16807 	if (mode == BPF_IND) {
16808 		/* check explicit source operand */
16809 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
16810 		if (err)
16811 			return err;
16812 	}
16813 
16814 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
16815 	if (err < 0)
16816 		return err;
16817 
16818 	/* reset caller saved regs to unreadable */
16819 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
16820 		mark_reg_not_init(env, regs, caller_saved[i]);
16821 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
16822 	}
16823 
16824 	/* mark destination R0 register as readable, since it contains
16825 	 * the value fetched from the packet.
16826 	 * Already marked as written above.
16827 	 */
16828 	mark_reg_unknown(env, regs, BPF_REG_0);
16829 	/* ld_abs load up to 32-bit skb data. */
16830 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
16831 	return 0;
16832 }
16833 
check_return_code(struct bpf_verifier_env * env,int regno,const char * reg_name)16834 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name)
16835 {
16836 	const char *exit_ctx = "At program exit";
16837 	struct tnum enforce_attach_type_range = tnum_unknown;
16838 	const struct bpf_prog *prog = env->prog;
16839 	struct bpf_reg_state *reg = reg_state(env, regno);
16840 	struct bpf_retval_range range = retval_range(0, 1);
16841 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
16842 	int err;
16843 	struct bpf_func_state *frame = env->cur_state->frame[0];
16844 	const bool is_subprog = frame->subprogno;
16845 	bool return_32bit = false;
16846 	const struct btf_type *reg_type, *ret_type = NULL;
16847 
16848 	/* LSM and struct_ops func-ptr's return type could be "void" */
16849 	if (!is_subprog || frame->in_exception_callback_fn) {
16850 		switch (prog_type) {
16851 		case BPF_PROG_TYPE_LSM:
16852 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
16853 				/* See below, can be 0 or 0-1 depending on hook. */
16854 				break;
16855 			if (!prog->aux->attach_func_proto->type)
16856 				return 0;
16857 			break;
16858 		case BPF_PROG_TYPE_STRUCT_OPS:
16859 			if (!prog->aux->attach_func_proto->type)
16860 				return 0;
16861 
16862 			if (frame->in_exception_callback_fn)
16863 				break;
16864 
16865 			/* Allow a struct_ops program to return a referenced kptr if it
16866 			 * matches the operator's return type and is in its unmodified
16867 			 * form. A scalar zero (i.e., a null pointer) is also allowed.
16868 			 */
16869 			reg_type = reg->btf ? btf_type_by_id(reg->btf, reg->btf_id) : NULL;
16870 			ret_type = btf_type_resolve_ptr(prog->aux->attach_btf,
16871 							prog->aux->attach_func_proto->type,
16872 							NULL);
16873 			if (ret_type && ret_type == reg_type && reg->ref_obj_id)
16874 				return __check_ptr_off_reg(env, reg, regno, false);
16875 			break;
16876 		default:
16877 			break;
16878 		}
16879 	}
16880 
16881 	/* eBPF calling convention is such that R0 is used
16882 	 * to return the value from eBPF program.
16883 	 * Make sure that it's readable at this time
16884 	 * of bpf_exit, which means that program wrote
16885 	 * something into it earlier
16886 	 */
16887 	err = check_reg_arg(env, regno, SRC_OP);
16888 	if (err)
16889 		return err;
16890 
16891 	if (is_pointer_value(env, regno)) {
16892 		verbose(env, "R%d leaks addr as return value\n", regno);
16893 		return -EACCES;
16894 	}
16895 
16896 	if (frame->in_async_callback_fn) {
16897 		/* enforce return zero from async callbacks like timer */
16898 		exit_ctx = "At async callback return";
16899 		range = retval_range(0, 0);
16900 		goto enforce_retval;
16901 	}
16902 
16903 	if (is_subprog && !frame->in_exception_callback_fn) {
16904 		if (reg->type != SCALAR_VALUE) {
16905 			verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n",
16906 				regno, reg_type_str(env, reg->type));
16907 			return -EINVAL;
16908 		}
16909 		return 0;
16910 	}
16911 
16912 	switch (prog_type) {
16913 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
16914 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
16915 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
16916 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG ||
16917 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
16918 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
16919 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME ||
16920 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
16921 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME ||
16922 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME)
16923 			range = retval_range(1, 1);
16924 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
16925 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
16926 			range = retval_range(0, 3);
16927 		break;
16928 	case BPF_PROG_TYPE_CGROUP_SKB:
16929 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
16930 			range = retval_range(0, 3);
16931 			enforce_attach_type_range = tnum_range(2, 3);
16932 		}
16933 		break;
16934 	case BPF_PROG_TYPE_CGROUP_SOCK:
16935 	case BPF_PROG_TYPE_SOCK_OPS:
16936 	case BPF_PROG_TYPE_CGROUP_DEVICE:
16937 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
16938 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
16939 		break;
16940 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
16941 		if (!env->prog->aux->attach_btf_id)
16942 			return 0;
16943 		range = retval_range(0, 0);
16944 		break;
16945 	case BPF_PROG_TYPE_TRACING:
16946 		switch (env->prog->expected_attach_type) {
16947 		case BPF_TRACE_FENTRY:
16948 		case BPF_TRACE_FEXIT:
16949 			range = retval_range(0, 0);
16950 			break;
16951 		case BPF_TRACE_RAW_TP:
16952 		case BPF_MODIFY_RETURN:
16953 			return 0;
16954 		case BPF_TRACE_ITER:
16955 			break;
16956 		default:
16957 			return -ENOTSUPP;
16958 		}
16959 		break;
16960 	case BPF_PROG_TYPE_KPROBE:
16961 		switch (env->prog->expected_attach_type) {
16962 		case BPF_TRACE_KPROBE_SESSION:
16963 		case BPF_TRACE_UPROBE_SESSION:
16964 			range = retval_range(0, 1);
16965 			break;
16966 		default:
16967 			return 0;
16968 		}
16969 		break;
16970 	case BPF_PROG_TYPE_SK_LOOKUP:
16971 		range = retval_range(SK_DROP, SK_PASS);
16972 		break;
16973 
16974 	case BPF_PROG_TYPE_LSM:
16975 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
16976 			/* no range found, any return value is allowed */
16977 			if (!get_func_retval_range(env->prog, &range))
16978 				return 0;
16979 			/* no restricted range, any return value is allowed */
16980 			if (range.minval == S32_MIN && range.maxval == S32_MAX)
16981 				return 0;
16982 			return_32bit = true;
16983 		} else if (!env->prog->aux->attach_func_proto->type) {
16984 			/* Make sure programs that attach to void
16985 			 * hooks don't try to modify return value.
16986 			 */
16987 			range = retval_range(1, 1);
16988 		}
16989 		break;
16990 
16991 	case BPF_PROG_TYPE_NETFILTER:
16992 		range = retval_range(NF_DROP, NF_ACCEPT);
16993 		break;
16994 	case BPF_PROG_TYPE_STRUCT_OPS:
16995 		if (!ret_type)
16996 			return 0;
16997 		range = retval_range(0, 0);
16998 		break;
16999 	case BPF_PROG_TYPE_EXT:
17000 		/* freplace program can return anything as its return value
17001 		 * depends on the to-be-replaced kernel func or bpf program.
17002 		 */
17003 	default:
17004 		return 0;
17005 	}
17006 
17007 enforce_retval:
17008 	if (reg->type != SCALAR_VALUE) {
17009 		verbose(env, "%s the register R%d is not a known value (%s)\n",
17010 			exit_ctx, regno, reg_type_str(env, reg->type));
17011 		return -EINVAL;
17012 	}
17013 
17014 	err = mark_chain_precision(env, regno);
17015 	if (err)
17016 		return err;
17017 
17018 	if (!retval_range_within(range, reg, return_32bit)) {
17019 		verbose_invalid_scalar(env, reg, range, exit_ctx, reg_name);
17020 		if (!is_subprog &&
17021 		    prog->expected_attach_type == BPF_LSM_CGROUP &&
17022 		    prog_type == BPF_PROG_TYPE_LSM &&
17023 		    !prog->aux->attach_func_proto->type)
17024 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
17025 		return -EINVAL;
17026 	}
17027 
17028 	if (!tnum_is_unknown(enforce_attach_type_range) &&
17029 	    tnum_in(enforce_attach_type_range, reg->var_off))
17030 		env->prog->enforce_expected_attach_type = 1;
17031 	return 0;
17032 }
17033 
mark_subprog_changes_pkt_data(struct bpf_verifier_env * env,int off)17034 static void mark_subprog_changes_pkt_data(struct bpf_verifier_env *env, int off)
17035 {
17036 	struct bpf_subprog_info *subprog;
17037 
17038 	subprog = find_containing_subprog(env, off);
17039 	subprog->changes_pkt_data = true;
17040 }
17041 
mark_subprog_might_sleep(struct bpf_verifier_env * env,int off)17042 static void mark_subprog_might_sleep(struct bpf_verifier_env *env, int off)
17043 {
17044 	struct bpf_subprog_info *subprog;
17045 
17046 	subprog = find_containing_subprog(env, off);
17047 	subprog->might_sleep = true;
17048 }
17049 
17050 /* 't' is an index of a call-site.
17051  * 'w' is a callee entry point.
17052  * Eventually this function would be called when env->cfg.insn_state[w] == EXPLORED.
17053  * Rely on DFS traversal order and absence of recursive calls to guarantee that
17054  * callee's change_pkt_data marks would be correct at that moment.
17055  */
merge_callee_effects(struct bpf_verifier_env * env,int t,int w)17056 static void merge_callee_effects(struct bpf_verifier_env *env, int t, int w)
17057 {
17058 	struct bpf_subprog_info *caller, *callee;
17059 
17060 	caller = find_containing_subprog(env, t);
17061 	callee = find_containing_subprog(env, w);
17062 	caller->changes_pkt_data |= callee->changes_pkt_data;
17063 	caller->might_sleep |= callee->might_sleep;
17064 }
17065 
17066 /* non-recursive DFS pseudo code
17067  * 1  procedure DFS-iterative(G,v):
17068  * 2      label v as discovered
17069  * 3      let S be a stack
17070  * 4      S.push(v)
17071  * 5      while S is not empty
17072  * 6            t <- S.peek()
17073  * 7            if t is what we're looking for:
17074  * 8                return t
17075  * 9            for all edges e in G.adjacentEdges(t) do
17076  * 10               if edge e is already labelled
17077  * 11                   continue with the next edge
17078  * 12               w <- G.adjacentVertex(t,e)
17079  * 13               if vertex w is not discovered and not explored
17080  * 14                   label e as tree-edge
17081  * 15                   label w as discovered
17082  * 16                   S.push(w)
17083  * 17                   continue at 5
17084  * 18               else if vertex w is discovered
17085  * 19                   label e as back-edge
17086  * 20               else
17087  * 21                   // vertex w is explored
17088  * 22                   label e as forward- or cross-edge
17089  * 23           label t as explored
17090  * 24           S.pop()
17091  *
17092  * convention:
17093  * 0x10 - discovered
17094  * 0x11 - discovered and fall-through edge labelled
17095  * 0x12 - discovered and fall-through and branch edges labelled
17096  * 0x20 - explored
17097  */
17098 
17099 enum {
17100 	DISCOVERED = 0x10,
17101 	EXPLORED = 0x20,
17102 	FALLTHROUGH = 1,
17103 	BRANCH = 2,
17104 };
17105 
mark_prune_point(struct bpf_verifier_env * env,int idx)17106 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
17107 {
17108 	env->insn_aux_data[idx].prune_point = true;
17109 }
17110 
is_prune_point(struct bpf_verifier_env * env,int insn_idx)17111 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
17112 {
17113 	return env->insn_aux_data[insn_idx].prune_point;
17114 }
17115 
mark_force_checkpoint(struct bpf_verifier_env * env,int idx)17116 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
17117 {
17118 	env->insn_aux_data[idx].force_checkpoint = true;
17119 }
17120 
is_force_checkpoint(struct bpf_verifier_env * env,int insn_idx)17121 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
17122 {
17123 	return env->insn_aux_data[insn_idx].force_checkpoint;
17124 }
17125 
mark_calls_callback(struct bpf_verifier_env * env,int idx)17126 static void mark_calls_callback(struct bpf_verifier_env *env, int idx)
17127 {
17128 	env->insn_aux_data[idx].calls_callback = true;
17129 }
17130 
calls_callback(struct bpf_verifier_env * env,int insn_idx)17131 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx)
17132 {
17133 	return env->insn_aux_data[insn_idx].calls_callback;
17134 }
17135 
17136 enum {
17137 	DONE_EXPLORING = 0,
17138 	KEEP_EXPLORING = 1,
17139 };
17140 
17141 /* t, w, e - match pseudo-code above:
17142  * t - index of current instruction
17143  * w - next instruction
17144  * e - edge
17145  */
push_insn(int t,int w,int e,struct bpf_verifier_env * env)17146 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
17147 {
17148 	int *insn_stack = env->cfg.insn_stack;
17149 	int *insn_state = env->cfg.insn_state;
17150 
17151 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
17152 		return DONE_EXPLORING;
17153 
17154 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
17155 		return DONE_EXPLORING;
17156 
17157 	if (w < 0 || w >= env->prog->len) {
17158 		verbose_linfo(env, t, "%d: ", t);
17159 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
17160 		return -EINVAL;
17161 	}
17162 
17163 	if (e == BRANCH) {
17164 		/* mark branch target for state pruning */
17165 		mark_prune_point(env, w);
17166 		mark_jmp_point(env, w);
17167 	}
17168 
17169 	if (insn_state[w] == 0) {
17170 		/* tree-edge */
17171 		insn_state[t] = DISCOVERED | e;
17172 		insn_state[w] = DISCOVERED;
17173 		if (env->cfg.cur_stack >= env->prog->len)
17174 			return -E2BIG;
17175 		insn_stack[env->cfg.cur_stack++] = w;
17176 		return KEEP_EXPLORING;
17177 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
17178 		if (env->bpf_capable)
17179 			return DONE_EXPLORING;
17180 		verbose_linfo(env, t, "%d: ", t);
17181 		verbose_linfo(env, w, "%d: ", w);
17182 		verbose(env, "back-edge from insn %d to %d\n", t, w);
17183 		return -EINVAL;
17184 	} else if (insn_state[w] == EXPLORED) {
17185 		/* forward- or cross-edge */
17186 		insn_state[t] = DISCOVERED | e;
17187 	} else {
17188 		verbose(env, "insn state internal bug\n");
17189 		return -EFAULT;
17190 	}
17191 	return DONE_EXPLORING;
17192 }
17193 
visit_func_call_insn(int t,struct bpf_insn * insns,struct bpf_verifier_env * env,bool visit_callee)17194 static int visit_func_call_insn(int t, struct bpf_insn *insns,
17195 				struct bpf_verifier_env *env,
17196 				bool visit_callee)
17197 {
17198 	int ret, insn_sz;
17199 	int w;
17200 
17201 	insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1;
17202 	ret = push_insn(t, t + insn_sz, FALLTHROUGH, env);
17203 	if (ret)
17204 		return ret;
17205 
17206 	mark_prune_point(env, t + insn_sz);
17207 	/* when we exit from subprog, we need to record non-linear history */
17208 	mark_jmp_point(env, t + insn_sz);
17209 
17210 	if (visit_callee) {
17211 		w = t + insns[t].imm + 1;
17212 		mark_prune_point(env, t);
17213 		merge_callee_effects(env, t, w);
17214 		ret = push_insn(t, w, BRANCH, env);
17215 	}
17216 	return ret;
17217 }
17218 
17219 /* Bitmask with 1s for all caller saved registers */
17220 #define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1)
17221 
17222 /* True if do_misc_fixups() replaces calls to helper number 'imm',
17223  * replacement patch is presumed to follow bpf_fastcall contract
17224  * (see mark_fastcall_pattern_for_call() below).
17225  */
verifier_inlines_helper_call(struct bpf_verifier_env * env,s32 imm)17226 static bool verifier_inlines_helper_call(struct bpf_verifier_env *env, s32 imm)
17227 {
17228 	switch (imm) {
17229 #ifdef CONFIG_X86_64
17230 	case BPF_FUNC_get_smp_processor_id:
17231 		return env->prog->jit_requested && bpf_jit_supports_percpu_insn();
17232 #endif
17233 	default:
17234 		return false;
17235 	}
17236 }
17237 
17238 struct call_summary {
17239 	u8 num_params;
17240 	bool is_void;
17241 	bool fastcall;
17242 };
17243 
17244 /* If @call is a kfunc or helper call, fills @cs and returns true,
17245  * otherwise returns false.
17246  */
get_call_summary(struct bpf_verifier_env * env,struct bpf_insn * call,struct call_summary * cs)17247 static bool get_call_summary(struct bpf_verifier_env *env, struct bpf_insn *call,
17248 			     struct call_summary *cs)
17249 {
17250 	struct bpf_kfunc_call_arg_meta meta;
17251 	const struct bpf_func_proto *fn;
17252 	int i;
17253 
17254 	if (bpf_helper_call(call)) {
17255 
17256 		if (get_helper_proto(env, call->imm, &fn) < 0)
17257 			/* error would be reported later */
17258 			return false;
17259 		cs->fastcall = fn->allow_fastcall &&
17260 			       (verifier_inlines_helper_call(env, call->imm) ||
17261 				bpf_jit_inlines_helper_call(call->imm));
17262 		cs->is_void = fn->ret_type == RET_VOID;
17263 		cs->num_params = 0;
17264 		for (i = 0; i < ARRAY_SIZE(fn->arg_type); ++i) {
17265 			if (fn->arg_type[i] == ARG_DONTCARE)
17266 				break;
17267 			cs->num_params++;
17268 		}
17269 		return true;
17270 	}
17271 
17272 	if (bpf_pseudo_kfunc_call(call)) {
17273 		int err;
17274 
17275 		err = fetch_kfunc_meta(env, call, &meta, NULL);
17276 		if (err < 0)
17277 			/* error would be reported later */
17278 			return false;
17279 		cs->num_params = btf_type_vlen(meta.func_proto);
17280 		cs->fastcall = meta.kfunc_flags & KF_FASTCALL;
17281 		cs->is_void = btf_type_is_void(btf_type_by_id(meta.btf, meta.func_proto->type));
17282 		return true;
17283 	}
17284 
17285 	return false;
17286 }
17287 
17288 /* LLVM define a bpf_fastcall function attribute.
17289  * This attribute means that function scratches only some of
17290  * the caller saved registers defined by ABI.
17291  * For BPF the set of such registers could be defined as follows:
17292  * - R0 is scratched only if function is non-void;
17293  * - R1-R5 are scratched only if corresponding parameter type is defined
17294  *   in the function prototype.
17295  *
17296  * The contract between kernel and clang allows to simultaneously use
17297  * such functions and maintain backwards compatibility with old
17298  * kernels that don't understand bpf_fastcall calls:
17299  *
17300  * - for bpf_fastcall calls clang allocates registers as-if relevant r0-r5
17301  *   registers are not scratched by the call;
17302  *
17303  * - as a post-processing step, clang visits each bpf_fastcall call and adds
17304  *   spill/fill for every live r0-r5;
17305  *
17306  * - stack offsets used for the spill/fill are allocated as lowest
17307  *   stack offsets in whole function and are not used for any other
17308  *   purposes;
17309  *
17310  * - when kernel loads a program, it looks for such patterns
17311  *   (bpf_fastcall function surrounded by spills/fills) and checks if
17312  *   spill/fill stack offsets are used exclusively in fastcall patterns;
17313  *
17314  * - if so, and if verifier or current JIT inlines the call to the
17315  *   bpf_fastcall function (e.g. a helper call), kernel removes unnecessary
17316  *   spill/fill pairs;
17317  *
17318  * - when old kernel loads a program, presence of spill/fill pairs
17319  *   keeps BPF program valid, albeit slightly less efficient.
17320  *
17321  * For example:
17322  *
17323  *   r1 = 1;
17324  *   r2 = 2;
17325  *   *(u64 *)(r10 - 8)  = r1;            r1 = 1;
17326  *   *(u64 *)(r10 - 16) = r2;            r2 = 2;
17327  *   call %[to_be_inlined]         -->   call %[to_be_inlined]
17328  *   r2 = *(u64 *)(r10 - 16);            r0 = r1;
17329  *   r1 = *(u64 *)(r10 - 8);             r0 += r2;
17330  *   r0 = r1;                            exit;
17331  *   r0 += r2;
17332  *   exit;
17333  *
17334  * The purpose of mark_fastcall_pattern_for_call is to:
17335  * - look for such patterns;
17336  * - mark spill and fill instructions in env->insn_aux_data[*].fastcall_pattern;
17337  * - mark set env->insn_aux_data[*].fastcall_spills_num for call instruction;
17338  * - update env->subprog_info[*]->fastcall_stack_off to find an offset
17339  *   at which bpf_fastcall spill/fill stack slots start;
17340  * - update env->subprog_info[*]->keep_fastcall_stack.
17341  *
17342  * The .fastcall_pattern and .fastcall_stack_off are used by
17343  * check_fastcall_stack_contract() to check if every stack access to
17344  * fastcall spill/fill stack slot originates from spill/fill
17345  * instructions, members of fastcall patterns.
17346  *
17347  * If such condition holds true for a subprogram, fastcall patterns could
17348  * be rewritten by remove_fastcall_spills_fills().
17349  * Otherwise bpf_fastcall patterns are not changed in the subprogram
17350  * (code, presumably, generated by an older clang version).
17351  *
17352  * For example, it is *not* safe to remove spill/fill below:
17353  *
17354  *   r1 = 1;
17355  *   *(u64 *)(r10 - 8)  = r1;            r1 = 1;
17356  *   call %[to_be_inlined]         -->   call %[to_be_inlined]
17357  *   r1 = *(u64 *)(r10 - 8);             r0 = *(u64 *)(r10 - 8);  <---- wrong !!!
17358  *   r0 = *(u64 *)(r10 - 8);             r0 += r1;
17359  *   r0 += r1;                           exit;
17360  *   exit;
17361  */
mark_fastcall_pattern_for_call(struct bpf_verifier_env * env,struct bpf_subprog_info * subprog,int insn_idx,s16 lowest_off)17362 static void mark_fastcall_pattern_for_call(struct bpf_verifier_env *env,
17363 					   struct bpf_subprog_info *subprog,
17364 					   int insn_idx, s16 lowest_off)
17365 {
17366 	struct bpf_insn *insns = env->prog->insnsi, *stx, *ldx;
17367 	struct bpf_insn *call = &env->prog->insnsi[insn_idx];
17368 	u32 clobbered_regs_mask;
17369 	struct call_summary cs;
17370 	u32 expected_regs_mask;
17371 	s16 off;
17372 	int i;
17373 
17374 	if (!get_call_summary(env, call, &cs))
17375 		return;
17376 
17377 	/* A bitmask specifying which caller saved registers are clobbered
17378 	 * by a call to a helper/kfunc *as if* this helper/kfunc follows
17379 	 * bpf_fastcall contract:
17380 	 * - includes R0 if function is non-void;
17381 	 * - includes R1-R5 if corresponding parameter has is described
17382 	 *   in the function prototype.
17383 	 */
17384 	clobbered_regs_mask = GENMASK(cs.num_params, cs.is_void ? 1 : 0);
17385 	/* e.g. if helper call clobbers r{0,1}, expect r{2,3,4,5} in the pattern */
17386 	expected_regs_mask = ~clobbered_regs_mask & ALL_CALLER_SAVED_REGS;
17387 
17388 	/* match pairs of form:
17389 	 *
17390 	 * *(u64 *)(r10 - Y) = rX   (where Y % 8 == 0)
17391 	 * ...
17392 	 * call %[to_be_inlined]
17393 	 * ...
17394 	 * rX = *(u64 *)(r10 - Y)
17395 	 */
17396 	for (i = 1, off = lowest_off; i <= ARRAY_SIZE(caller_saved); ++i, off += BPF_REG_SIZE) {
17397 		if (insn_idx - i < 0 || insn_idx + i >= env->prog->len)
17398 			break;
17399 		stx = &insns[insn_idx - i];
17400 		ldx = &insns[insn_idx + i];
17401 		/* must be a stack spill/fill pair */
17402 		if (stx->code != (BPF_STX | BPF_MEM | BPF_DW) ||
17403 		    ldx->code != (BPF_LDX | BPF_MEM | BPF_DW) ||
17404 		    stx->dst_reg != BPF_REG_10 ||
17405 		    ldx->src_reg != BPF_REG_10)
17406 			break;
17407 		/* must be a spill/fill for the same reg */
17408 		if (stx->src_reg != ldx->dst_reg)
17409 			break;
17410 		/* must be one of the previously unseen registers */
17411 		if ((BIT(stx->src_reg) & expected_regs_mask) == 0)
17412 			break;
17413 		/* must be a spill/fill for the same expected offset,
17414 		 * no need to check offset alignment, BPF_DW stack access
17415 		 * is always 8-byte aligned.
17416 		 */
17417 		if (stx->off != off || ldx->off != off)
17418 			break;
17419 		expected_regs_mask &= ~BIT(stx->src_reg);
17420 		env->insn_aux_data[insn_idx - i].fastcall_pattern = 1;
17421 		env->insn_aux_data[insn_idx + i].fastcall_pattern = 1;
17422 	}
17423 	if (i == 1)
17424 		return;
17425 
17426 	/* Conditionally set 'fastcall_spills_num' to allow forward
17427 	 * compatibility when more helper functions are marked as
17428 	 * bpf_fastcall at compile time than current kernel supports, e.g:
17429 	 *
17430 	 *   1: *(u64 *)(r10 - 8) = r1
17431 	 *   2: call A                  ;; assume A is bpf_fastcall for current kernel
17432 	 *   3: r1 = *(u64 *)(r10 - 8)
17433 	 *   4: *(u64 *)(r10 - 8) = r1
17434 	 *   5: call B                  ;; assume B is not bpf_fastcall for current kernel
17435 	 *   6: r1 = *(u64 *)(r10 - 8)
17436 	 *
17437 	 * There is no need to block bpf_fastcall rewrite for such program.
17438 	 * Set 'fastcall_pattern' for both calls to keep check_fastcall_stack_contract() happy,
17439 	 * don't set 'fastcall_spills_num' for call B so that remove_fastcall_spills_fills()
17440 	 * does not remove spill/fill pair {4,6}.
17441 	 */
17442 	if (cs.fastcall)
17443 		env->insn_aux_data[insn_idx].fastcall_spills_num = i - 1;
17444 	else
17445 		subprog->keep_fastcall_stack = 1;
17446 	subprog->fastcall_stack_off = min(subprog->fastcall_stack_off, off);
17447 }
17448 
mark_fastcall_patterns(struct bpf_verifier_env * env)17449 static int mark_fastcall_patterns(struct bpf_verifier_env *env)
17450 {
17451 	struct bpf_subprog_info *subprog = env->subprog_info;
17452 	struct bpf_insn *insn;
17453 	s16 lowest_off;
17454 	int s, i;
17455 
17456 	for (s = 0; s < env->subprog_cnt; ++s, ++subprog) {
17457 		/* find lowest stack spill offset used in this subprog */
17458 		lowest_off = 0;
17459 		for (i = subprog->start; i < (subprog + 1)->start; ++i) {
17460 			insn = env->prog->insnsi + i;
17461 			if (insn->code != (BPF_STX | BPF_MEM | BPF_DW) ||
17462 			    insn->dst_reg != BPF_REG_10)
17463 				continue;
17464 			lowest_off = min(lowest_off, insn->off);
17465 		}
17466 		/* use this offset to find fastcall patterns */
17467 		for (i = subprog->start; i < (subprog + 1)->start; ++i) {
17468 			insn = env->prog->insnsi + i;
17469 			if (insn->code != (BPF_JMP | BPF_CALL))
17470 				continue;
17471 			mark_fastcall_pattern_for_call(env, subprog, i, lowest_off);
17472 		}
17473 	}
17474 	return 0;
17475 }
17476 
17477 /* Visits the instruction at index t and returns one of the following:
17478  *  < 0 - an error occurred
17479  *  DONE_EXPLORING - the instruction was fully explored
17480  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
17481  */
visit_insn(int t,struct bpf_verifier_env * env)17482 static int visit_insn(int t, struct bpf_verifier_env *env)
17483 {
17484 	struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
17485 	int ret, off, insn_sz;
17486 
17487 	if (bpf_pseudo_func(insn))
17488 		return visit_func_call_insn(t, insns, env, true);
17489 
17490 	/* All non-branch instructions have a single fall-through edge. */
17491 	if (BPF_CLASS(insn->code) != BPF_JMP &&
17492 	    BPF_CLASS(insn->code) != BPF_JMP32) {
17493 		insn_sz = bpf_is_ldimm64(insn) ? 2 : 1;
17494 		return push_insn(t, t + insn_sz, FALLTHROUGH, env);
17495 	}
17496 
17497 	switch (BPF_OP(insn->code)) {
17498 	case BPF_EXIT:
17499 		return DONE_EXPLORING;
17500 
17501 	case BPF_CALL:
17502 		if (is_async_callback_calling_insn(insn))
17503 			/* Mark this call insn as a prune point to trigger
17504 			 * is_state_visited() check before call itself is
17505 			 * processed by __check_func_call(). Otherwise new
17506 			 * async state will be pushed for further exploration.
17507 			 */
17508 			mark_prune_point(env, t);
17509 		/* For functions that invoke callbacks it is not known how many times
17510 		 * callback would be called. Verifier models callback calling functions
17511 		 * by repeatedly visiting callback bodies and returning to origin call
17512 		 * instruction.
17513 		 * In order to stop such iteration verifier needs to identify when a
17514 		 * state identical some state from a previous iteration is reached.
17515 		 * Check below forces creation of checkpoint before callback calling
17516 		 * instruction to allow search for such identical states.
17517 		 */
17518 		if (is_sync_callback_calling_insn(insn)) {
17519 			mark_calls_callback(env, t);
17520 			mark_force_checkpoint(env, t);
17521 			mark_prune_point(env, t);
17522 			mark_jmp_point(env, t);
17523 		}
17524 		if (bpf_helper_call(insn)) {
17525 			const struct bpf_func_proto *fp;
17526 
17527 			ret = get_helper_proto(env, insn->imm, &fp);
17528 			/* If called in a non-sleepable context program will be
17529 			 * rejected anyway, so we should end up with precise
17530 			 * sleepable marks on subprogs, except for dead code
17531 			 * elimination.
17532 			 */
17533 			if (ret == 0 && fp->might_sleep)
17534 				mark_subprog_might_sleep(env, t);
17535 			if (bpf_helper_changes_pkt_data(insn->imm))
17536 				mark_subprog_changes_pkt_data(env, t);
17537 		} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
17538 			struct bpf_kfunc_call_arg_meta meta;
17539 
17540 			ret = fetch_kfunc_meta(env, insn, &meta, NULL);
17541 			if (ret == 0 && is_iter_next_kfunc(&meta)) {
17542 				mark_prune_point(env, t);
17543 				/* Checking and saving state checkpoints at iter_next() call
17544 				 * is crucial for fast convergence of open-coded iterator loop
17545 				 * logic, so we need to force it. If we don't do that,
17546 				 * is_state_visited() might skip saving a checkpoint, causing
17547 				 * unnecessarily long sequence of not checkpointed
17548 				 * instructions and jumps, leading to exhaustion of jump
17549 				 * history buffer, and potentially other undesired outcomes.
17550 				 * It is expected that with correct open-coded iterators
17551 				 * convergence will happen quickly, so we don't run a risk of
17552 				 * exhausting memory.
17553 				 */
17554 				mark_force_checkpoint(env, t);
17555 			}
17556 			/* Same as helpers, if called in a non-sleepable context
17557 			 * program will be rejected anyway, so we should end up
17558 			 * with precise sleepable marks on subprogs, except for
17559 			 * dead code elimination.
17560 			 */
17561 			if (ret == 0 && is_kfunc_sleepable(&meta))
17562 				mark_subprog_might_sleep(env, t);
17563 		}
17564 		return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
17565 
17566 	case BPF_JA:
17567 		if (BPF_SRC(insn->code) != BPF_K)
17568 			return -EINVAL;
17569 
17570 		if (BPF_CLASS(insn->code) == BPF_JMP)
17571 			off = insn->off;
17572 		else
17573 			off = insn->imm;
17574 
17575 		/* unconditional jump with single edge */
17576 		ret = push_insn(t, t + off + 1, FALLTHROUGH, env);
17577 		if (ret)
17578 			return ret;
17579 
17580 		mark_prune_point(env, t + off + 1);
17581 		mark_jmp_point(env, t + off + 1);
17582 
17583 		return ret;
17584 
17585 	default:
17586 		/* conditional jump with two edges */
17587 		mark_prune_point(env, t);
17588 		if (is_may_goto_insn(insn))
17589 			mark_force_checkpoint(env, t);
17590 
17591 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
17592 		if (ret)
17593 			return ret;
17594 
17595 		return push_insn(t, t + insn->off + 1, BRANCH, env);
17596 	}
17597 }
17598 
17599 /* non-recursive depth-first-search to detect loops in BPF program
17600  * loop == back-edge in directed graph
17601  */
check_cfg(struct bpf_verifier_env * env)17602 static int check_cfg(struct bpf_verifier_env *env)
17603 {
17604 	int insn_cnt = env->prog->len;
17605 	int *insn_stack, *insn_state, *insn_postorder;
17606 	int ex_insn_beg, i, ret = 0;
17607 
17608 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
17609 	if (!insn_state)
17610 		return -ENOMEM;
17611 
17612 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
17613 	if (!insn_stack) {
17614 		kvfree(insn_state);
17615 		return -ENOMEM;
17616 	}
17617 
17618 	insn_postorder = env->cfg.insn_postorder = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
17619 	if (!insn_postorder) {
17620 		kvfree(insn_state);
17621 		kvfree(insn_stack);
17622 		return -ENOMEM;
17623 	}
17624 
17625 	ex_insn_beg = env->exception_callback_subprog
17626 		      ? env->subprog_info[env->exception_callback_subprog].start
17627 		      : 0;
17628 
17629 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
17630 	insn_stack[0] = 0; /* 0 is the first instruction */
17631 	env->cfg.cur_stack = 1;
17632 
17633 walk_cfg:
17634 	while (env->cfg.cur_stack > 0) {
17635 		int t = insn_stack[env->cfg.cur_stack - 1];
17636 
17637 		ret = visit_insn(t, env);
17638 		switch (ret) {
17639 		case DONE_EXPLORING:
17640 			insn_state[t] = EXPLORED;
17641 			env->cfg.cur_stack--;
17642 			insn_postorder[env->cfg.cur_postorder++] = t;
17643 			break;
17644 		case KEEP_EXPLORING:
17645 			break;
17646 		default:
17647 			if (ret > 0) {
17648 				verbose(env, "visit_insn internal bug\n");
17649 				ret = -EFAULT;
17650 			}
17651 			goto err_free;
17652 		}
17653 	}
17654 
17655 	if (env->cfg.cur_stack < 0) {
17656 		verbose(env, "pop stack internal bug\n");
17657 		ret = -EFAULT;
17658 		goto err_free;
17659 	}
17660 
17661 	if (ex_insn_beg && insn_state[ex_insn_beg] != EXPLORED) {
17662 		insn_state[ex_insn_beg] = DISCOVERED;
17663 		insn_stack[0] = ex_insn_beg;
17664 		env->cfg.cur_stack = 1;
17665 		goto walk_cfg;
17666 	}
17667 
17668 	for (i = 0; i < insn_cnt; i++) {
17669 		struct bpf_insn *insn = &env->prog->insnsi[i];
17670 
17671 		if (insn_state[i] != EXPLORED) {
17672 			verbose(env, "unreachable insn %d\n", i);
17673 			ret = -EINVAL;
17674 			goto err_free;
17675 		}
17676 		if (bpf_is_ldimm64(insn)) {
17677 			if (insn_state[i + 1] != 0) {
17678 				verbose(env, "jump into the middle of ldimm64 insn %d\n", i);
17679 				ret = -EINVAL;
17680 				goto err_free;
17681 			}
17682 			i++; /* skip second half of ldimm64 */
17683 		}
17684 	}
17685 	ret = 0; /* cfg looks good */
17686 	env->prog->aux->changes_pkt_data = env->subprog_info[0].changes_pkt_data;
17687 	env->prog->aux->might_sleep = env->subprog_info[0].might_sleep;
17688 
17689 err_free:
17690 	kvfree(insn_state);
17691 	kvfree(insn_stack);
17692 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
17693 	return ret;
17694 }
17695 
check_abnormal_return(struct bpf_verifier_env * env)17696 static int check_abnormal_return(struct bpf_verifier_env *env)
17697 {
17698 	int i;
17699 
17700 	for (i = 1; i < env->subprog_cnt; i++) {
17701 		if (env->subprog_info[i].has_ld_abs) {
17702 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
17703 			return -EINVAL;
17704 		}
17705 		if (env->subprog_info[i].has_tail_call) {
17706 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
17707 			return -EINVAL;
17708 		}
17709 	}
17710 	return 0;
17711 }
17712 
17713 /* The minimum supported BTF func info size */
17714 #define MIN_BPF_FUNCINFO_SIZE	8
17715 #define MAX_FUNCINFO_REC_SIZE	252
17716 
check_btf_func_early(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)17717 static int check_btf_func_early(struct bpf_verifier_env *env,
17718 				const union bpf_attr *attr,
17719 				bpfptr_t uattr)
17720 {
17721 	u32 krec_size = sizeof(struct bpf_func_info);
17722 	const struct btf_type *type, *func_proto;
17723 	u32 i, nfuncs, urec_size, min_size;
17724 	struct bpf_func_info *krecord;
17725 	struct bpf_prog *prog;
17726 	const struct btf *btf;
17727 	u32 prev_offset = 0;
17728 	bpfptr_t urecord;
17729 	int ret = -ENOMEM;
17730 
17731 	nfuncs = attr->func_info_cnt;
17732 	if (!nfuncs) {
17733 		if (check_abnormal_return(env))
17734 			return -EINVAL;
17735 		return 0;
17736 	}
17737 
17738 	urec_size = attr->func_info_rec_size;
17739 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
17740 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
17741 	    urec_size % sizeof(u32)) {
17742 		verbose(env, "invalid func info rec size %u\n", urec_size);
17743 		return -EINVAL;
17744 	}
17745 
17746 	prog = env->prog;
17747 	btf = prog->aux->btf;
17748 
17749 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
17750 	min_size = min_t(u32, krec_size, urec_size);
17751 
17752 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
17753 	if (!krecord)
17754 		return -ENOMEM;
17755 
17756 	for (i = 0; i < nfuncs; i++) {
17757 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
17758 		if (ret) {
17759 			if (ret == -E2BIG) {
17760 				verbose(env, "nonzero tailing record in func info");
17761 				/* set the size kernel expects so loader can zero
17762 				 * out the rest of the record.
17763 				 */
17764 				if (copy_to_bpfptr_offset(uattr,
17765 							  offsetof(union bpf_attr, func_info_rec_size),
17766 							  &min_size, sizeof(min_size)))
17767 					ret = -EFAULT;
17768 			}
17769 			goto err_free;
17770 		}
17771 
17772 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
17773 			ret = -EFAULT;
17774 			goto err_free;
17775 		}
17776 
17777 		/* check insn_off */
17778 		ret = -EINVAL;
17779 		if (i == 0) {
17780 			if (krecord[i].insn_off) {
17781 				verbose(env,
17782 					"nonzero insn_off %u for the first func info record",
17783 					krecord[i].insn_off);
17784 				goto err_free;
17785 			}
17786 		} else if (krecord[i].insn_off <= prev_offset) {
17787 			verbose(env,
17788 				"same or smaller insn offset (%u) than previous func info record (%u)",
17789 				krecord[i].insn_off, prev_offset);
17790 			goto err_free;
17791 		}
17792 
17793 		/* check type_id */
17794 		type = btf_type_by_id(btf, krecord[i].type_id);
17795 		if (!type || !btf_type_is_func(type)) {
17796 			verbose(env, "invalid type id %d in func info",
17797 				krecord[i].type_id);
17798 			goto err_free;
17799 		}
17800 
17801 		func_proto = btf_type_by_id(btf, type->type);
17802 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
17803 			/* btf_func_check() already verified it during BTF load */
17804 			goto err_free;
17805 
17806 		prev_offset = krecord[i].insn_off;
17807 		bpfptr_add(&urecord, urec_size);
17808 	}
17809 
17810 	prog->aux->func_info = krecord;
17811 	prog->aux->func_info_cnt = nfuncs;
17812 	return 0;
17813 
17814 err_free:
17815 	kvfree(krecord);
17816 	return ret;
17817 }
17818 
check_btf_func(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)17819 static int check_btf_func(struct bpf_verifier_env *env,
17820 			  const union bpf_attr *attr,
17821 			  bpfptr_t uattr)
17822 {
17823 	const struct btf_type *type, *func_proto, *ret_type;
17824 	u32 i, nfuncs, urec_size;
17825 	struct bpf_func_info *krecord;
17826 	struct bpf_func_info_aux *info_aux = NULL;
17827 	struct bpf_prog *prog;
17828 	const struct btf *btf;
17829 	bpfptr_t urecord;
17830 	bool scalar_return;
17831 	int ret = -ENOMEM;
17832 
17833 	nfuncs = attr->func_info_cnt;
17834 	if (!nfuncs) {
17835 		if (check_abnormal_return(env))
17836 			return -EINVAL;
17837 		return 0;
17838 	}
17839 	if (nfuncs != env->subprog_cnt) {
17840 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
17841 		return -EINVAL;
17842 	}
17843 
17844 	urec_size = attr->func_info_rec_size;
17845 
17846 	prog = env->prog;
17847 	btf = prog->aux->btf;
17848 
17849 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
17850 
17851 	krecord = prog->aux->func_info;
17852 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
17853 	if (!info_aux)
17854 		return -ENOMEM;
17855 
17856 	for (i = 0; i < nfuncs; i++) {
17857 		/* check insn_off */
17858 		ret = -EINVAL;
17859 
17860 		if (env->subprog_info[i].start != krecord[i].insn_off) {
17861 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
17862 			goto err_free;
17863 		}
17864 
17865 		/* Already checked type_id */
17866 		type = btf_type_by_id(btf, krecord[i].type_id);
17867 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
17868 		/* Already checked func_proto */
17869 		func_proto = btf_type_by_id(btf, type->type);
17870 
17871 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
17872 		scalar_return =
17873 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
17874 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
17875 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
17876 			goto err_free;
17877 		}
17878 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
17879 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
17880 			goto err_free;
17881 		}
17882 
17883 		bpfptr_add(&urecord, urec_size);
17884 	}
17885 
17886 	prog->aux->func_info_aux = info_aux;
17887 	return 0;
17888 
17889 err_free:
17890 	kfree(info_aux);
17891 	return ret;
17892 }
17893 
adjust_btf_func(struct bpf_verifier_env * env)17894 static void adjust_btf_func(struct bpf_verifier_env *env)
17895 {
17896 	struct bpf_prog_aux *aux = env->prog->aux;
17897 	int i;
17898 
17899 	if (!aux->func_info)
17900 		return;
17901 
17902 	/* func_info is not available for hidden subprogs */
17903 	for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++)
17904 		aux->func_info[i].insn_off = env->subprog_info[i].start;
17905 }
17906 
17907 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
17908 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
17909 
check_btf_line(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)17910 static int check_btf_line(struct bpf_verifier_env *env,
17911 			  const union bpf_attr *attr,
17912 			  bpfptr_t uattr)
17913 {
17914 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
17915 	struct bpf_subprog_info *sub;
17916 	struct bpf_line_info *linfo;
17917 	struct bpf_prog *prog;
17918 	const struct btf *btf;
17919 	bpfptr_t ulinfo;
17920 	int err;
17921 
17922 	nr_linfo = attr->line_info_cnt;
17923 	if (!nr_linfo)
17924 		return 0;
17925 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
17926 		return -EINVAL;
17927 
17928 	rec_size = attr->line_info_rec_size;
17929 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
17930 	    rec_size > MAX_LINEINFO_REC_SIZE ||
17931 	    rec_size & (sizeof(u32) - 1))
17932 		return -EINVAL;
17933 
17934 	/* Need to zero it in case the userspace may
17935 	 * pass in a smaller bpf_line_info object.
17936 	 */
17937 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
17938 			 GFP_KERNEL | __GFP_NOWARN);
17939 	if (!linfo)
17940 		return -ENOMEM;
17941 
17942 	prog = env->prog;
17943 	btf = prog->aux->btf;
17944 
17945 	s = 0;
17946 	sub = env->subprog_info;
17947 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
17948 	expected_size = sizeof(struct bpf_line_info);
17949 	ncopy = min_t(u32, expected_size, rec_size);
17950 	for (i = 0; i < nr_linfo; i++) {
17951 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
17952 		if (err) {
17953 			if (err == -E2BIG) {
17954 				verbose(env, "nonzero tailing record in line_info");
17955 				if (copy_to_bpfptr_offset(uattr,
17956 							  offsetof(union bpf_attr, line_info_rec_size),
17957 							  &expected_size, sizeof(expected_size)))
17958 					err = -EFAULT;
17959 			}
17960 			goto err_free;
17961 		}
17962 
17963 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
17964 			err = -EFAULT;
17965 			goto err_free;
17966 		}
17967 
17968 		/*
17969 		 * Check insn_off to ensure
17970 		 * 1) strictly increasing AND
17971 		 * 2) bounded by prog->len
17972 		 *
17973 		 * The linfo[0].insn_off == 0 check logically falls into
17974 		 * the later "missing bpf_line_info for func..." case
17975 		 * because the first linfo[0].insn_off must be the
17976 		 * first sub also and the first sub must have
17977 		 * subprog_info[0].start == 0.
17978 		 */
17979 		if ((i && linfo[i].insn_off <= prev_offset) ||
17980 		    linfo[i].insn_off >= prog->len) {
17981 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
17982 				i, linfo[i].insn_off, prev_offset,
17983 				prog->len);
17984 			err = -EINVAL;
17985 			goto err_free;
17986 		}
17987 
17988 		if (!prog->insnsi[linfo[i].insn_off].code) {
17989 			verbose(env,
17990 				"Invalid insn code at line_info[%u].insn_off\n",
17991 				i);
17992 			err = -EINVAL;
17993 			goto err_free;
17994 		}
17995 
17996 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
17997 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
17998 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
17999 			err = -EINVAL;
18000 			goto err_free;
18001 		}
18002 
18003 		if (s != env->subprog_cnt) {
18004 			if (linfo[i].insn_off == sub[s].start) {
18005 				sub[s].linfo_idx = i;
18006 				s++;
18007 			} else if (sub[s].start < linfo[i].insn_off) {
18008 				verbose(env, "missing bpf_line_info for func#%u\n", s);
18009 				err = -EINVAL;
18010 				goto err_free;
18011 			}
18012 		}
18013 
18014 		prev_offset = linfo[i].insn_off;
18015 		bpfptr_add(&ulinfo, rec_size);
18016 	}
18017 
18018 	if (s != env->subprog_cnt) {
18019 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
18020 			env->subprog_cnt - s, s);
18021 		err = -EINVAL;
18022 		goto err_free;
18023 	}
18024 
18025 	prog->aux->linfo = linfo;
18026 	prog->aux->nr_linfo = nr_linfo;
18027 
18028 	return 0;
18029 
18030 err_free:
18031 	kvfree(linfo);
18032 	return err;
18033 }
18034 
18035 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
18036 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
18037 
check_core_relo(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)18038 static int check_core_relo(struct bpf_verifier_env *env,
18039 			   const union bpf_attr *attr,
18040 			   bpfptr_t uattr)
18041 {
18042 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
18043 	struct bpf_core_relo core_relo = {};
18044 	struct bpf_prog *prog = env->prog;
18045 	const struct btf *btf = prog->aux->btf;
18046 	struct bpf_core_ctx ctx = {
18047 		.log = &env->log,
18048 		.btf = btf,
18049 	};
18050 	bpfptr_t u_core_relo;
18051 	int err;
18052 
18053 	nr_core_relo = attr->core_relo_cnt;
18054 	if (!nr_core_relo)
18055 		return 0;
18056 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
18057 		return -EINVAL;
18058 
18059 	rec_size = attr->core_relo_rec_size;
18060 	if (rec_size < MIN_CORE_RELO_SIZE ||
18061 	    rec_size > MAX_CORE_RELO_SIZE ||
18062 	    rec_size % sizeof(u32))
18063 		return -EINVAL;
18064 
18065 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
18066 	expected_size = sizeof(struct bpf_core_relo);
18067 	ncopy = min_t(u32, expected_size, rec_size);
18068 
18069 	/* Unlike func_info and line_info, copy and apply each CO-RE
18070 	 * relocation record one at a time.
18071 	 */
18072 	for (i = 0; i < nr_core_relo; i++) {
18073 		/* future proofing when sizeof(bpf_core_relo) changes */
18074 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
18075 		if (err) {
18076 			if (err == -E2BIG) {
18077 				verbose(env, "nonzero tailing record in core_relo");
18078 				if (copy_to_bpfptr_offset(uattr,
18079 							  offsetof(union bpf_attr, core_relo_rec_size),
18080 							  &expected_size, sizeof(expected_size)))
18081 					err = -EFAULT;
18082 			}
18083 			break;
18084 		}
18085 
18086 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
18087 			err = -EFAULT;
18088 			break;
18089 		}
18090 
18091 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
18092 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
18093 				i, core_relo.insn_off, prog->len);
18094 			err = -EINVAL;
18095 			break;
18096 		}
18097 
18098 		err = bpf_core_apply(&ctx, &core_relo, i,
18099 				     &prog->insnsi[core_relo.insn_off / 8]);
18100 		if (err)
18101 			break;
18102 		bpfptr_add(&u_core_relo, rec_size);
18103 	}
18104 	return err;
18105 }
18106 
check_btf_info_early(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)18107 static int check_btf_info_early(struct bpf_verifier_env *env,
18108 				const union bpf_attr *attr,
18109 				bpfptr_t uattr)
18110 {
18111 	struct btf *btf;
18112 	int err;
18113 
18114 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
18115 		if (check_abnormal_return(env))
18116 			return -EINVAL;
18117 		return 0;
18118 	}
18119 
18120 	btf = btf_get_by_fd(attr->prog_btf_fd);
18121 	if (IS_ERR(btf))
18122 		return PTR_ERR(btf);
18123 	if (btf_is_kernel(btf)) {
18124 		btf_put(btf);
18125 		return -EACCES;
18126 	}
18127 	env->prog->aux->btf = btf;
18128 
18129 	err = check_btf_func_early(env, attr, uattr);
18130 	if (err)
18131 		return err;
18132 	return 0;
18133 }
18134 
check_btf_info(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)18135 static int check_btf_info(struct bpf_verifier_env *env,
18136 			  const union bpf_attr *attr,
18137 			  bpfptr_t uattr)
18138 {
18139 	int err;
18140 
18141 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
18142 		if (check_abnormal_return(env))
18143 			return -EINVAL;
18144 		return 0;
18145 	}
18146 
18147 	err = check_btf_func(env, attr, uattr);
18148 	if (err)
18149 		return err;
18150 
18151 	err = check_btf_line(env, attr, uattr);
18152 	if (err)
18153 		return err;
18154 
18155 	err = check_core_relo(env, attr, uattr);
18156 	if (err)
18157 		return err;
18158 
18159 	return 0;
18160 }
18161 
18162 /* check %cur's range satisfies %old's */
range_within(const struct bpf_reg_state * old,const struct bpf_reg_state * cur)18163 static bool range_within(const struct bpf_reg_state *old,
18164 			 const struct bpf_reg_state *cur)
18165 {
18166 	return old->umin_value <= cur->umin_value &&
18167 	       old->umax_value >= cur->umax_value &&
18168 	       old->smin_value <= cur->smin_value &&
18169 	       old->smax_value >= cur->smax_value &&
18170 	       old->u32_min_value <= cur->u32_min_value &&
18171 	       old->u32_max_value >= cur->u32_max_value &&
18172 	       old->s32_min_value <= cur->s32_min_value &&
18173 	       old->s32_max_value >= cur->s32_max_value;
18174 }
18175 
18176 /* If in the old state two registers had the same id, then they need to have
18177  * the same id in the new state as well.  But that id could be different from
18178  * the old state, so we need to track the mapping from old to new ids.
18179  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
18180  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
18181  * regs with a different old id could still have new id 9, we don't care about
18182  * that.
18183  * So we look through our idmap to see if this old id has been seen before.  If
18184  * so, we require the new id to match; otherwise, we add the id pair to the map.
18185  */
check_ids(u32 old_id,u32 cur_id,struct bpf_idmap * idmap)18186 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
18187 {
18188 	struct bpf_id_pair *map = idmap->map;
18189 	unsigned int i;
18190 
18191 	/* either both IDs should be set or both should be zero */
18192 	if (!!old_id != !!cur_id)
18193 		return false;
18194 
18195 	if (old_id == 0) /* cur_id == 0 as well */
18196 		return true;
18197 
18198 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
18199 		if (!map[i].old) {
18200 			/* Reached an empty slot; haven't seen this id before */
18201 			map[i].old = old_id;
18202 			map[i].cur = cur_id;
18203 			return true;
18204 		}
18205 		if (map[i].old == old_id)
18206 			return map[i].cur == cur_id;
18207 		if (map[i].cur == cur_id)
18208 			return false;
18209 	}
18210 	/* We ran out of idmap slots, which should be impossible */
18211 	WARN_ON_ONCE(1);
18212 	return false;
18213 }
18214 
18215 /* Similar to check_ids(), but allocate a unique temporary ID
18216  * for 'old_id' or 'cur_id' of zero.
18217  * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid.
18218  */
check_scalar_ids(u32 old_id,u32 cur_id,struct bpf_idmap * idmap)18219 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
18220 {
18221 	old_id = old_id ? old_id : ++idmap->tmp_id_gen;
18222 	cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
18223 
18224 	return check_ids(old_id, cur_id, idmap);
18225 }
18226 
clean_func_state(struct bpf_verifier_env * env,struct bpf_func_state * st)18227 static void clean_func_state(struct bpf_verifier_env *env,
18228 			     struct bpf_func_state *st)
18229 {
18230 	enum bpf_reg_liveness live;
18231 	int i, j;
18232 
18233 	for (i = 0; i < BPF_REG_FP; i++) {
18234 		live = st->regs[i].live;
18235 		/* liveness must not touch this register anymore */
18236 		st->regs[i].live |= REG_LIVE_DONE;
18237 		if (!(live & REG_LIVE_READ))
18238 			/* since the register is unused, clear its state
18239 			 * to make further comparison simpler
18240 			 */
18241 			__mark_reg_not_init(env, &st->regs[i]);
18242 	}
18243 
18244 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
18245 		live = st->stack[i].spilled_ptr.live;
18246 		/* liveness must not touch this stack slot anymore */
18247 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
18248 		if (!(live & REG_LIVE_READ)) {
18249 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
18250 			for (j = 0; j < BPF_REG_SIZE; j++)
18251 				st->stack[i].slot_type[j] = STACK_INVALID;
18252 		}
18253 	}
18254 }
18255 
clean_verifier_state(struct bpf_verifier_env * env,struct bpf_verifier_state * st)18256 static void clean_verifier_state(struct bpf_verifier_env *env,
18257 				 struct bpf_verifier_state *st)
18258 {
18259 	int i;
18260 
18261 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
18262 		/* all regs in this state in all frames were already marked */
18263 		return;
18264 
18265 	for (i = 0; i <= st->curframe; i++)
18266 		clean_func_state(env, st->frame[i]);
18267 }
18268 
18269 /* the parentage chains form a tree.
18270  * the verifier states are added to state lists at given insn and
18271  * pushed into state stack for future exploration.
18272  * when the verifier reaches bpf_exit insn some of the verifer states
18273  * stored in the state lists have their final liveness state already,
18274  * but a lot of states will get revised from liveness point of view when
18275  * the verifier explores other branches.
18276  * Example:
18277  * 1: r0 = 1
18278  * 2: if r1 == 100 goto pc+1
18279  * 3: r0 = 2
18280  * 4: exit
18281  * when the verifier reaches exit insn the register r0 in the state list of
18282  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
18283  * of insn 2 and goes exploring further. At the insn 4 it will walk the
18284  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
18285  *
18286  * Since the verifier pushes the branch states as it sees them while exploring
18287  * the program the condition of walking the branch instruction for the second
18288  * time means that all states below this branch were already explored and
18289  * their final liveness marks are already propagated.
18290  * Hence when the verifier completes the search of state list in is_state_visited()
18291  * we can call this clean_live_states() function to mark all liveness states
18292  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
18293  * will not be used.
18294  * This function also clears the registers and stack for states that !READ
18295  * to simplify state merging.
18296  *
18297  * Important note here that walking the same branch instruction in the callee
18298  * doesn't meant that the states are DONE. The verifier has to compare
18299  * the callsites
18300  */
clean_live_states(struct bpf_verifier_env * env,int insn,struct bpf_verifier_state * cur)18301 static void clean_live_states(struct bpf_verifier_env *env, int insn,
18302 			      struct bpf_verifier_state *cur)
18303 {
18304 	struct bpf_verifier_state *loop_entry;
18305 	struct bpf_verifier_state_list *sl;
18306 	struct list_head *pos, *head;
18307 
18308 	head = explored_state(env, insn);
18309 	list_for_each(pos, head) {
18310 		sl = container_of(pos, struct bpf_verifier_state_list, node);
18311 		if (sl->state.branches)
18312 			continue;
18313 		loop_entry = get_loop_entry(env, &sl->state);
18314 		if (!IS_ERR_OR_NULL(loop_entry) && loop_entry->branches)
18315 			continue;
18316 		if (sl->state.insn_idx != insn ||
18317 		    !same_callsites(&sl->state, cur))
18318 			continue;
18319 		clean_verifier_state(env, &sl->state);
18320 	}
18321 }
18322 
regs_exact(const struct bpf_reg_state * rold,const struct bpf_reg_state * rcur,struct bpf_idmap * idmap)18323 static bool regs_exact(const struct bpf_reg_state *rold,
18324 		       const struct bpf_reg_state *rcur,
18325 		       struct bpf_idmap *idmap)
18326 {
18327 	return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
18328 	       check_ids(rold->id, rcur->id, idmap) &&
18329 	       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
18330 }
18331 
18332 enum exact_level {
18333 	NOT_EXACT,
18334 	EXACT,
18335 	RANGE_WITHIN
18336 };
18337 
18338 /* Returns true if (rold safe implies rcur safe) */
regsafe(struct bpf_verifier_env * env,struct bpf_reg_state * rold,struct bpf_reg_state * rcur,struct bpf_idmap * idmap,enum exact_level exact)18339 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
18340 		    struct bpf_reg_state *rcur, struct bpf_idmap *idmap,
18341 		    enum exact_level exact)
18342 {
18343 	if (exact == EXACT)
18344 		return regs_exact(rold, rcur, idmap);
18345 
18346 	if (!(rold->live & REG_LIVE_READ) && exact == NOT_EXACT)
18347 		/* explored state didn't use this */
18348 		return true;
18349 	if (rold->type == NOT_INIT) {
18350 		if (exact == NOT_EXACT || rcur->type == NOT_INIT)
18351 			/* explored state can't have used this */
18352 			return true;
18353 	}
18354 
18355 	/* Enforce that register types have to match exactly, including their
18356 	 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
18357 	 * rule.
18358 	 *
18359 	 * One can make a point that using a pointer register as unbounded
18360 	 * SCALAR would be technically acceptable, but this could lead to
18361 	 * pointer leaks because scalars are allowed to leak while pointers
18362 	 * are not. We could make this safe in special cases if root is
18363 	 * calling us, but it's probably not worth the hassle.
18364 	 *
18365 	 * Also, register types that are *not* MAYBE_NULL could technically be
18366 	 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
18367 	 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
18368 	 * to the same map).
18369 	 * However, if the old MAYBE_NULL register then got NULL checked,
18370 	 * doing so could have affected others with the same id, and we can't
18371 	 * check for that because we lost the id when we converted to
18372 	 * a non-MAYBE_NULL variant.
18373 	 * So, as a general rule we don't allow mixing MAYBE_NULL and
18374 	 * non-MAYBE_NULL registers as well.
18375 	 */
18376 	if (rold->type != rcur->type)
18377 		return false;
18378 
18379 	switch (base_type(rold->type)) {
18380 	case SCALAR_VALUE:
18381 		if (env->explore_alu_limits) {
18382 			/* explore_alu_limits disables tnum_in() and range_within()
18383 			 * logic and requires everything to be strict
18384 			 */
18385 			return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
18386 			       check_scalar_ids(rold->id, rcur->id, idmap);
18387 		}
18388 		if (!rold->precise && exact == NOT_EXACT)
18389 			return true;
18390 		if ((rold->id & BPF_ADD_CONST) != (rcur->id & BPF_ADD_CONST))
18391 			return false;
18392 		if ((rold->id & BPF_ADD_CONST) && (rold->off != rcur->off))
18393 			return false;
18394 		/* Why check_ids() for scalar registers?
18395 		 *
18396 		 * Consider the following BPF code:
18397 		 *   1: r6 = ... unbound scalar, ID=a ...
18398 		 *   2: r7 = ... unbound scalar, ID=b ...
18399 		 *   3: if (r6 > r7) goto +1
18400 		 *   4: r6 = r7
18401 		 *   5: if (r6 > X) goto ...
18402 		 *   6: ... memory operation using r7 ...
18403 		 *
18404 		 * First verification path is [1-6]:
18405 		 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
18406 		 * - at (5) r6 would be marked <= X, sync_linked_regs() would also mark
18407 		 *   r7 <= X, because r6 and r7 share same id.
18408 		 * Next verification path is [1-4, 6].
18409 		 *
18410 		 * Instruction (6) would be reached in two states:
18411 		 *   I.  r6{.id=b}, r7{.id=b} via path 1-6;
18412 		 *   II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
18413 		 *
18414 		 * Use check_ids() to distinguish these states.
18415 		 * ---
18416 		 * Also verify that new value satisfies old value range knowledge.
18417 		 */
18418 		return range_within(rold, rcur) &&
18419 		       tnum_in(rold->var_off, rcur->var_off) &&
18420 		       check_scalar_ids(rold->id, rcur->id, idmap);
18421 	case PTR_TO_MAP_KEY:
18422 	case PTR_TO_MAP_VALUE:
18423 	case PTR_TO_MEM:
18424 	case PTR_TO_BUF:
18425 	case PTR_TO_TP_BUFFER:
18426 		/* If the new min/max/var_off satisfy the old ones and
18427 		 * everything else matches, we are OK.
18428 		 */
18429 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
18430 		       range_within(rold, rcur) &&
18431 		       tnum_in(rold->var_off, rcur->var_off) &&
18432 		       check_ids(rold->id, rcur->id, idmap) &&
18433 		       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
18434 	case PTR_TO_PACKET_META:
18435 	case PTR_TO_PACKET:
18436 		/* We must have at least as much range as the old ptr
18437 		 * did, so that any accesses which were safe before are
18438 		 * still safe.  This is true even if old range < old off,
18439 		 * since someone could have accessed through (ptr - k), or
18440 		 * even done ptr -= k in a register, to get a safe access.
18441 		 */
18442 		if (rold->range > rcur->range)
18443 			return false;
18444 		/* If the offsets don't match, we can't trust our alignment;
18445 		 * nor can we be sure that we won't fall out of range.
18446 		 */
18447 		if (rold->off != rcur->off)
18448 			return false;
18449 		/* id relations must be preserved */
18450 		if (!check_ids(rold->id, rcur->id, idmap))
18451 			return false;
18452 		/* new val must satisfy old val knowledge */
18453 		return range_within(rold, rcur) &&
18454 		       tnum_in(rold->var_off, rcur->var_off);
18455 	case PTR_TO_STACK:
18456 		/* two stack pointers are equal only if they're pointing to
18457 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
18458 		 */
18459 		return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
18460 	case PTR_TO_ARENA:
18461 		return true;
18462 	default:
18463 		return regs_exact(rold, rcur, idmap);
18464 	}
18465 }
18466 
18467 static struct bpf_reg_state unbound_reg;
18468 
unbound_reg_init(void)18469 static __init int unbound_reg_init(void)
18470 {
18471 	__mark_reg_unknown_imprecise(&unbound_reg);
18472 	unbound_reg.live |= REG_LIVE_READ;
18473 	return 0;
18474 }
18475 late_initcall(unbound_reg_init);
18476 
is_stack_all_misc(struct bpf_verifier_env * env,struct bpf_stack_state * stack)18477 static bool is_stack_all_misc(struct bpf_verifier_env *env,
18478 			      struct bpf_stack_state *stack)
18479 {
18480 	u32 i;
18481 
18482 	for (i = 0; i < ARRAY_SIZE(stack->slot_type); ++i) {
18483 		if ((stack->slot_type[i] == STACK_MISC) ||
18484 		    (stack->slot_type[i] == STACK_INVALID && env->allow_uninit_stack))
18485 			continue;
18486 		return false;
18487 	}
18488 
18489 	return true;
18490 }
18491 
scalar_reg_for_stack(struct bpf_verifier_env * env,struct bpf_stack_state * stack)18492 static struct bpf_reg_state *scalar_reg_for_stack(struct bpf_verifier_env *env,
18493 						  struct bpf_stack_state *stack)
18494 {
18495 	if (is_spilled_scalar_reg64(stack))
18496 		return &stack->spilled_ptr;
18497 
18498 	if (is_stack_all_misc(env, stack))
18499 		return &unbound_reg;
18500 
18501 	return NULL;
18502 }
18503 
stacksafe(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur,struct bpf_idmap * idmap,enum exact_level exact)18504 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
18505 		      struct bpf_func_state *cur, struct bpf_idmap *idmap,
18506 		      enum exact_level exact)
18507 {
18508 	int i, spi;
18509 
18510 	/* walk slots of the explored stack and ignore any additional
18511 	 * slots in the current stack, since explored(safe) state
18512 	 * didn't use them
18513 	 */
18514 	for (i = 0; i < old->allocated_stack; i++) {
18515 		struct bpf_reg_state *old_reg, *cur_reg;
18516 
18517 		spi = i / BPF_REG_SIZE;
18518 
18519 		if (exact != NOT_EXACT &&
18520 		    (i >= cur->allocated_stack ||
18521 		     old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
18522 		     cur->stack[spi].slot_type[i % BPF_REG_SIZE]))
18523 			return false;
18524 
18525 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)
18526 		    && exact == NOT_EXACT) {
18527 			i += BPF_REG_SIZE - 1;
18528 			/* explored state didn't use this */
18529 			continue;
18530 		}
18531 
18532 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
18533 			continue;
18534 
18535 		if (env->allow_uninit_stack &&
18536 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
18537 			continue;
18538 
18539 		/* explored stack has more populated slots than current stack
18540 		 * and these slots were used
18541 		 */
18542 		if (i >= cur->allocated_stack)
18543 			return false;
18544 
18545 		/* 64-bit scalar spill vs all slots MISC and vice versa.
18546 		 * Load from all slots MISC produces unbound scalar.
18547 		 * Construct a fake register for such stack and call
18548 		 * regsafe() to ensure scalar ids are compared.
18549 		 */
18550 		old_reg = scalar_reg_for_stack(env, &old->stack[spi]);
18551 		cur_reg = scalar_reg_for_stack(env, &cur->stack[spi]);
18552 		if (old_reg && cur_reg) {
18553 			if (!regsafe(env, old_reg, cur_reg, idmap, exact))
18554 				return false;
18555 			i += BPF_REG_SIZE - 1;
18556 			continue;
18557 		}
18558 
18559 		/* if old state was safe with misc data in the stack
18560 		 * it will be safe with zero-initialized stack.
18561 		 * The opposite is not true
18562 		 */
18563 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
18564 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
18565 			continue;
18566 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
18567 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
18568 			/* Ex: old explored (safe) state has STACK_SPILL in
18569 			 * this stack slot, but current has STACK_MISC ->
18570 			 * this verifier states are not equivalent,
18571 			 * return false to continue verification of this path
18572 			 */
18573 			return false;
18574 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
18575 			continue;
18576 		/* Both old and cur are having same slot_type */
18577 		switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
18578 		case STACK_SPILL:
18579 			/* when explored and current stack slot are both storing
18580 			 * spilled registers, check that stored pointers types
18581 			 * are the same as well.
18582 			 * Ex: explored safe path could have stored
18583 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
18584 			 * but current path has stored:
18585 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
18586 			 * such verifier states are not equivalent.
18587 			 * return false to continue verification of this path
18588 			 */
18589 			if (!regsafe(env, &old->stack[spi].spilled_ptr,
18590 				     &cur->stack[spi].spilled_ptr, idmap, exact))
18591 				return false;
18592 			break;
18593 		case STACK_DYNPTR:
18594 			old_reg = &old->stack[spi].spilled_ptr;
18595 			cur_reg = &cur->stack[spi].spilled_ptr;
18596 			if (old_reg->dynptr.type != cur_reg->dynptr.type ||
18597 			    old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
18598 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
18599 				return false;
18600 			break;
18601 		case STACK_ITER:
18602 			old_reg = &old->stack[spi].spilled_ptr;
18603 			cur_reg = &cur->stack[spi].spilled_ptr;
18604 			/* iter.depth is not compared between states as it
18605 			 * doesn't matter for correctness and would otherwise
18606 			 * prevent convergence; we maintain it only to prevent
18607 			 * infinite loop check triggering, see
18608 			 * iter_active_depths_differ()
18609 			 */
18610 			if (old_reg->iter.btf != cur_reg->iter.btf ||
18611 			    old_reg->iter.btf_id != cur_reg->iter.btf_id ||
18612 			    old_reg->iter.state != cur_reg->iter.state ||
18613 			    /* ignore {old_reg,cur_reg}->iter.depth, see above */
18614 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
18615 				return false;
18616 			break;
18617 		case STACK_IRQ_FLAG:
18618 			old_reg = &old->stack[spi].spilled_ptr;
18619 			cur_reg = &cur->stack[spi].spilled_ptr;
18620 			if (!check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap) ||
18621 			    old_reg->irq.kfunc_class != cur_reg->irq.kfunc_class)
18622 				return false;
18623 			break;
18624 		case STACK_MISC:
18625 		case STACK_ZERO:
18626 		case STACK_INVALID:
18627 			continue;
18628 		/* Ensure that new unhandled slot types return false by default */
18629 		default:
18630 			return false;
18631 		}
18632 	}
18633 	return true;
18634 }
18635 
refsafe(struct bpf_verifier_state * old,struct bpf_verifier_state * cur,struct bpf_idmap * idmap)18636 static bool refsafe(struct bpf_verifier_state *old, struct bpf_verifier_state *cur,
18637 		    struct bpf_idmap *idmap)
18638 {
18639 	int i;
18640 
18641 	if (old->acquired_refs != cur->acquired_refs)
18642 		return false;
18643 
18644 	if (old->active_locks != cur->active_locks)
18645 		return false;
18646 
18647 	if (old->active_preempt_locks != cur->active_preempt_locks)
18648 		return false;
18649 
18650 	if (old->active_rcu_lock != cur->active_rcu_lock)
18651 		return false;
18652 
18653 	if (!check_ids(old->active_irq_id, cur->active_irq_id, idmap))
18654 		return false;
18655 
18656 	if (!check_ids(old->active_lock_id, cur->active_lock_id, idmap) ||
18657 	    old->active_lock_ptr != cur->active_lock_ptr)
18658 		return false;
18659 
18660 	for (i = 0; i < old->acquired_refs; i++) {
18661 		if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap) ||
18662 		    old->refs[i].type != cur->refs[i].type)
18663 			return false;
18664 		switch (old->refs[i].type) {
18665 		case REF_TYPE_PTR:
18666 		case REF_TYPE_IRQ:
18667 			break;
18668 		case REF_TYPE_LOCK:
18669 		case REF_TYPE_RES_LOCK:
18670 		case REF_TYPE_RES_LOCK_IRQ:
18671 			if (old->refs[i].ptr != cur->refs[i].ptr)
18672 				return false;
18673 			break;
18674 		default:
18675 			WARN_ONCE(1, "Unhandled enum type for reference state: %d\n", old->refs[i].type);
18676 			return false;
18677 		}
18678 	}
18679 
18680 	return true;
18681 }
18682 
18683 /* compare two verifier states
18684  *
18685  * all states stored in state_list are known to be valid, since
18686  * verifier reached 'bpf_exit' instruction through them
18687  *
18688  * this function is called when verifier exploring different branches of
18689  * execution popped from the state stack. If it sees an old state that has
18690  * more strict register state and more strict stack state then this execution
18691  * branch doesn't need to be explored further, since verifier already
18692  * concluded that more strict state leads to valid finish.
18693  *
18694  * Therefore two states are equivalent if register state is more conservative
18695  * and explored stack state is more conservative than the current one.
18696  * Example:
18697  *       explored                   current
18698  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
18699  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
18700  *
18701  * In other words if current stack state (one being explored) has more
18702  * valid slots than old one that already passed validation, it means
18703  * the verifier can stop exploring and conclude that current state is valid too
18704  *
18705  * Similarly with registers. If explored state has register type as invalid
18706  * whereas register type in current state is meaningful, it means that
18707  * the current state will reach 'bpf_exit' instruction safely
18708  */
func_states_equal(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur,u32 insn_idx,enum exact_level exact)18709 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
18710 			      struct bpf_func_state *cur, u32 insn_idx, enum exact_level exact)
18711 {
18712 	u16 live_regs = env->insn_aux_data[insn_idx].live_regs_before;
18713 	u16 i;
18714 
18715 	if (old->callback_depth > cur->callback_depth)
18716 		return false;
18717 
18718 	for (i = 0; i < MAX_BPF_REG; i++)
18719 		if (((1 << i) & live_regs) &&
18720 		    !regsafe(env, &old->regs[i], &cur->regs[i],
18721 			     &env->idmap_scratch, exact))
18722 			return false;
18723 
18724 	if (!stacksafe(env, old, cur, &env->idmap_scratch, exact))
18725 		return false;
18726 
18727 	return true;
18728 }
18729 
reset_idmap_scratch(struct bpf_verifier_env * env)18730 static void reset_idmap_scratch(struct bpf_verifier_env *env)
18731 {
18732 	env->idmap_scratch.tmp_id_gen = env->id_gen;
18733 	memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
18734 }
18735 
states_equal(struct bpf_verifier_env * env,struct bpf_verifier_state * old,struct bpf_verifier_state * cur,enum exact_level exact)18736 static bool states_equal(struct bpf_verifier_env *env,
18737 			 struct bpf_verifier_state *old,
18738 			 struct bpf_verifier_state *cur,
18739 			 enum exact_level exact)
18740 {
18741 	u32 insn_idx;
18742 	int i;
18743 
18744 	if (old->curframe != cur->curframe)
18745 		return false;
18746 
18747 	reset_idmap_scratch(env);
18748 
18749 	/* Verification state from speculative execution simulation
18750 	 * must never prune a non-speculative execution one.
18751 	 */
18752 	if (old->speculative && !cur->speculative)
18753 		return false;
18754 
18755 	if (old->in_sleepable != cur->in_sleepable)
18756 		return false;
18757 
18758 	if (!refsafe(old, cur, &env->idmap_scratch))
18759 		return false;
18760 
18761 	/* for states to be equal callsites have to be the same
18762 	 * and all frame states need to be equivalent
18763 	 */
18764 	for (i = 0; i <= old->curframe; i++) {
18765 		insn_idx = i == old->curframe
18766 			   ? env->insn_idx
18767 			   : old->frame[i + 1]->callsite;
18768 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
18769 			return false;
18770 		if (!func_states_equal(env, old->frame[i], cur->frame[i], insn_idx, exact))
18771 			return false;
18772 	}
18773 	return true;
18774 }
18775 
18776 /* Return 0 if no propagation happened. Return negative error code if error
18777  * happened. Otherwise, return the propagated bit.
18778  */
propagate_liveness_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct bpf_reg_state * parent_reg)18779 static int propagate_liveness_reg(struct bpf_verifier_env *env,
18780 				  struct bpf_reg_state *reg,
18781 				  struct bpf_reg_state *parent_reg)
18782 {
18783 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
18784 	u8 flag = reg->live & REG_LIVE_READ;
18785 	int err;
18786 
18787 	/* When comes here, read flags of PARENT_REG or REG could be any of
18788 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
18789 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
18790 	 */
18791 	if (parent_flag == REG_LIVE_READ64 ||
18792 	    /* Or if there is no read flag from REG. */
18793 	    !flag ||
18794 	    /* Or if the read flag from REG is the same as PARENT_REG. */
18795 	    parent_flag == flag)
18796 		return 0;
18797 
18798 	err = mark_reg_read(env, reg, parent_reg, flag);
18799 	if (err)
18800 		return err;
18801 
18802 	return flag;
18803 }
18804 
18805 /* A write screens off any subsequent reads; but write marks come from the
18806  * straight-line code between a state and its parent.  When we arrive at an
18807  * equivalent state (jump target or such) we didn't arrive by the straight-line
18808  * code, so read marks in the state must propagate to the parent regardless
18809  * of the state's write marks. That's what 'parent == state->parent' comparison
18810  * in mark_reg_read() is for.
18811  */
propagate_liveness(struct bpf_verifier_env * env,const struct bpf_verifier_state * vstate,struct bpf_verifier_state * vparent)18812 static int propagate_liveness(struct bpf_verifier_env *env,
18813 			      const struct bpf_verifier_state *vstate,
18814 			      struct bpf_verifier_state *vparent)
18815 {
18816 	struct bpf_reg_state *state_reg, *parent_reg;
18817 	struct bpf_func_state *state, *parent;
18818 	int i, frame, err = 0;
18819 
18820 	if (vparent->curframe != vstate->curframe) {
18821 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
18822 		     vparent->curframe, vstate->curframe);
18823 		return -EFAULT;
18824 	}
18825 	/* Propagate read liveness of registers... */
18826 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
18827 	for (frame = 0; frame <= vstate->curframe; frame++) {
18828 		parent = vparent->frame[frame];
18829 		state = vstate->frame[frame];
18830 		parent_reg = parent->regs;
18831 		state_reg = state->regs;
18832 		/* We don't need to worry about FP liveness, it's read-only */
18833 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
18834 			err = propagate_liveness_reg(env, &state_reg[i],
18835 						     &parent_reg[i]);
18836 			if (err < 0)
18837 				return err;
18838 			if (err == REG_LIVE_READ64)
18839 				mark_insn_zext(env, &parent_reg[i]);
18840 		}
18841 
18842 		/* Propagate stack slots. */
18843 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
18844 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
18845 			parent_reg = &parent->stack[i].spilled_ptr;
18846 			state_reg = &state->stack[i].spilled_ptr;
18847 			err = propagate_liveness_reg(env, state_reg,
18848 						     parent_reg);
18849 			if (err < 0)
18850 				return err;
18851 		}
18852 	}
18853 	return 0;
18854 }
18855 
18856 /* find precise scalars in the previous equivalent state and
18857  * propagate them into the current state
18858  */
propagate_precision(struct bpf_verifier_env * env,const struct bpf_verifier_state * old)18859 static int propagate_precision(struct bpf_verifier_env *env,
18860 			       const struct bpf_verifier_state *old)
18861 {
18862 	struct bpf_reg_state *state_reg;
18863 	struct bpf_func_state *state;
18864 	int i, err = 0, fr;
18865 	bool first;
18866 
18867 	for (fr = old->curframe; fr >= 0; fr--) {
18868 		state = old->frame[fr];
18869 		state_reg = state->regs;
18870 		first = true;
18871 		for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
18872 			if (state_reg->type != SCALAR_VALUE ||
18873 			    !state_reg->precise ||
18874 			    !(state_reg->live & REG_LIVE_READ))
18875 				continue;
18876 			if (env->log.level & BPF_LOG_LEVEL2) {
18877 				if (first)
18878 					verbose(env, "frame %d: propagating r%d", fr, i);
18879 				else
18880 					verbose(env, ",r%d", i);
18881 			}
18882 			bt_set_frame_reg(&env->bt, fr, i);
18883 			first = false;
18884 		}
18885 
18886 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
18887 			if (!is_spilled_reg(&state->stack[i]))
18888 				continue;
18889 			state_reg = &state->stack[i].spilled_ptr;
18890 			if (state_reg->type != SCALAR_VALUE ||
18891 			    !state_reg->precise ||
18892 			    !(state_reg->live & REG_LIVE_READ))
18893 				continue;
18894 			if (env->log.level & BPF_LOG_LEVEL2) {
18895 				if (first)
18896 					verbose(env, "frame %d: propagating fp%d",
18897 						fr, (-i - 1) * BPF_REG_SIZE);
18898 				else
18899 					verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
18900 			}
18901 			bt_set_frame_slot(&env->bt, fr, i);
18902 			first = false;
18903 		}
18904 		if (!first)
18905 			verbose(env, "\n");
18906 	}
18907 
18908 	err = mark_chain_precision_batch(env);
18909 	if (err < 0)
18910 		return err;
18911 
18912 	return 0;
18913 }
18914 
states_maybe_looping(struct bpf_verifier_state * old,struct bpf_verifier_state * cur)18915 static bool states_maybe_looping(struct bpf_verifier_state *old,
18916 				 struct bpf_verifier_state *cur)
18917 {
18918 	struct bpf_func_state *fold, *fcur;
18919 	int i, fr = cur->curframe;
18920 
18921 	if (old->curframe != fr)
18922 		return false;
18923 
18924 	fold = old->frame[fr];
18925 	fcur = cur->frame[fr];
18926 	for (i = 0; i < MAX_BPF_REG; i++)
18927 		if (memcmp(&fold->regs[i], &fcur->regs[i],
18928 			   offsetof(struct bpf_reg_state, parent)))
18929 			return false;
18930 	return true;
18931 }
18932 
is_iter_next_insn(struct bpf_verifier_env * env,int insn_idx)18933 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
18934 {
18935 	return env->insn_aux_data[insn_idx].is_iter_next;
18936 }
18937 
18938 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
18939  * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
18940  * states to match, which otherwise would look like an infinite loop. So while
18941  * iter_next() calls are taken care of, we still need to be careful and
18942  * prevent erroneous and too eager declaration of "ininite loop", when
18943  * iterators are involved.
18944  *
18945  * Here's a situation in pseudo-BPF assembly form:
18946  *
18947  *   0: again:                          ; set up iter_next() call args
18948  *   1:   r1 = &it                      ; <CHECKPOINT HERE>
18949  *   2:   call bpf_iter_num_next        ; this is iter_next() call
18950  *   3:   if r0 == 0 goto done
18951  *   4:   ... something useful here ...
18952  *   5:   goto again                    ; another iteration
18953  *   6: done:
18954  *   7:   r1 = &it
18955  *   8:   call bpf_iter_num_destroy     ; clean up iter state
18956  *   9:   exit
18957  *
18958  * This is a typical loop. Let's assume that we have a prune point at 1:,
18959  * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
18960  * again`, assuming other heuristics don't get in a way).
18961  *
18962  * When we first time come to 1:, let's say we have some state X. We proceed
18963  * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
18964  * Now we come back to validate that forked ACTIVE state. We proceed through
18965  * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
18966  * are converging. But the problem is that we don't know that yet, as this
18967  * convergence has to happen at iter_next() call site only. So if nothing is
18968  * done, at 1: verifier will use bounded loop logic and declare infinite
18969  * looping (and would be *technically* correct, if not for iterator's
18970  * "eventual sticky NULL" contract, see process_iter_next_call()). But we
18971  * don't want that. So what we do in process_iter_next_call() when we go on
18972  * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
18973  * a different iteration. So when we suspect an infinite loop, we additionally
18974  * check if any of the *ACTIVE* iterator states depths differ. If yes, we
18975  * pretend we are not looping and wait for next iter_next() call.
18976  *
18977  * This only applies to ACTIVE state. In DRAINED state we don't expect to
18978  * loop, because that would actually mean infinite loop, as DRAINED state is
18979  * "sticky", and so we'll keep returning into the same instruction with the
18980  * same state (at least in one of possible code paths).
18981  *
18982  * This approach allows to keep infinite loop heuristic even in the face of
18983  * active iterator. E.g., C snippet below is and will be detected as
18984  * inifintely looping:
18985  *
18986  *   struct bpf_iter_num it;
18987  *   int *p, x;
18988  *
18989  *   bpf_iter_num_new(&it, 0, 10);
18990  *   while ((p = bpf_iter_num_next(&t))) {
18991  *       x = p;
18992  *       while (x--) {} // <<-- infinite loop here
18993  *   }
18994  *
18995  */
iter_active_depths_differ(struct bpf_verifier_state * old,struct bpf_verifier_state * cur)18996 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
18997 {
18998 	struct bpf_reg_state *slot, *cur_slot;
18999 	struct bpf_func_state *state;
19000 	int i, fr;
19001 
19002 	for (fr = old->curframe; fr >= 0; fr--) {
19003 		state = old->frame[fr];
19004 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
19005 			if (state->stack[i].slot_type[0] != STACK_ITER)
19006 				continue;
19007 
19008 			slot = &state->stack[i].spilled_ptr;
19009 			if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
19010 				continue;
19011 
19012 			cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
19013 			if (cur_slot->iter.depth != slot->iter.depth)
19014 				return true;
19015 		}
19016 	}
19017 	return false;
19018 }
19019 
is_state_visited(struct bpf_verifier_env * env,int insn_idx)19020 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
19021 {
19022 	struct bpf_verifier_state_list *new_sl;
19023 	struct bpf_verifier_state_list *sl;
19024 	struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry;
19025 	int i, j, n, err, states_cnt = 0;
19026 	bool force_new_state, add_new_state, force_exact;
19027 	struct list_head *pos, *tmp, *head;
19028 
19029 	force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx) ||
19030 			  /* Avoid accumulating infinitely long jmp history */
19031 			  cur->insn_hist_end - cur->insn_hist_start > 40;
19032 
19033 	/* bpf progs typically have pruning point every 4 instructions
19034 	 * http://vger.kernel.org/bpfconf2019.html#session-1
19035 	 * Do not add new state for future pruning if the verifier hasn't seen
19036 	 * at least 2 jumps and at least 8 instructions.
19037 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
19038 	 * In tests that amounts to up to 50% reduction into total verifier
19039 	 * memory consumption and 20% verifier time speedup.
19040 	 */
19041 	add_new_state = force_new_state;
19042 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
19043 	    env->insn_processed - env->prev_insn_processed >= 8)
19044 		add_new_state = true;
19045 
19046 	clean_live_states(env, insn_idx, cur);
19047 
19048 	head = explored_state(env, insn_idx);
19049 	list_for_each_safe(pos, tmp, head) {
19050 		sl = container_of(pos, struct bpf_verifier_state_list, node);
19051 		states_cnt++;
19052 		if (sl->state.insn_idx != insn_idx)
19053 			continue;
19054 
19055 		if (sl->state.branches) {
19056 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
19057 
19058 			if (frame->in_async_callback_fn &&
19059 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
19060 				/* Different async_entry_cnt means that the verifier is
19061 				 * processing another entry into async callback.
19062 				 * Seeing the same state is not an indication of infinite
19063 				 * loop or infinite recursion.
19064 				 * But finding the same state doesn't mean that it's safe
19065 				 * to stop processing the current state. The previous state
19066 				 * hasn't yet reached bpf_exit, since state.branches > 0.
19067 				 * Checking in_async_callback_fn alone is not enough either.
19068 				 * Since the verifier still needs to catch infinite loops
19069 				 * inside async callbacks.
19070 				 */
19071 				goto skip_inf_loop_check;
19072 			}
19073 			/* BPF open-coded iterators loop detection is special.
19074 			 * states_maybe_looping() logic is too simplistic in detecting
19075 			 * states that *might* be equivalent, because it doesn't know
19076 			 * about ID remapping, so don't even perform it.
19077 			 * See process_iter_next_call() and iter_active_depths_differ()
19078 			 * for overview of the logic. When current and one of parent
19079 			 * states are detected as equivalent, it's a good thing: we prove
19080 			 * convergence and can stop simulating further iterations.
19081 			 * It's safe to assume that iterator loop will finish, taking into
19082 			 * account iter_next() contract of eventually returning
19083 			 * sticky NULL result.
19084 			 *
19085 			 * Note, that states have to be compared exactly in this case because
19086 			 * read and precision marks might not be finalized inside the loop.
19087 			 * E.g. as in the program below:
19088 			 *
19089 			 *     1. r7 = -16
19090 			 *     2. r6 = bpf_get_prandom_u32()
19091 			 *     3. while (bpf_iter_num_next(&fp[-8])) {
19092 			 *     4.   if (r6 != 42) {
19093 			 *     5.     r7 = -32
19094 			 *     6.     r6 = bpf_get_prandom_u32()
19095 			 *     7.     continue
19096 			 *     8.   }
19097 			 *     9.   r0 = r10
19098 			 *    10.   r0 += r7
19099 			 *    11.   r8 = *(u64 *)(r0 + 0)
19100 			 *    12.   r6 = bpf_get_prandom_u32()
19101 			 *    13. }
19102 			 *
19103 			 * Here verifier would first visit path 1-3, create a checkpoint at 3
19104 			 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does
19105 			 * not have read or precision mark for r7 yet, thus inexact states
19106 			 * comparison would discard current state with r7=-32
19107 			 * => unsafe memory access at 11 would not be caught.
19108 			 */
19109 			if (is_iter_next_insn(env, insn_idx)) {
19110 				if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) {
19111 					struct bpf_func_state *cur_frame;
19112 					struct bpf_reg_state *iter_state, *iter_reg;
19113 					int spi;
19114 
19115 					cur_frame = cur->frame[cur->curframe];
19116 					/* btf_check_iter_kfuncs() enforces that
19117 					 * iter state pointer is always the first arg
19118 					 */
19119 					iter_reg = &cur_frame->regs[BPF_REG_1];
19120 					/* current state is valid due to states_equal(),
19121 					 * so we can assume valid iter and reg state,
19122 					 * no need for extra (re-)validations
19123 					 */
19124 					spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
19125 					iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
19126 					if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) {
19127 						update_loop_entry(env, cur, &sl->state);
19128 						goto hit;
19129 					}
19130 				}
19131 				goto skip_inf_loop_check;
19132 			}
19133 			if (is_may_goto_insn_at(env, insn_idx)) {
19134 				if (sl->state.may_goto_depth != cur->may_goto_depth &&
19135 				    states_equal(env, &sl->state, cur, RANGE_WITHIN)) {
19136 					update_loop_entry(env, cur, &sl->state);
19137 					goto hit;
19138 				}
19139 			}
19140 			if (calls_callback(env, insn_idx)) {
19141 				if (states_equal(env, &sl->state, cur, RANGE_WITHIN))
19142 					goto hit;
19143 				goto skip_inf_loop_check;
19144 			}
19145 			/* attempt to detect infinite loop to avoid unnecessary doomed work */
19146 			if (states_maybe_looping(&sl->state, cur) &&
19147 			    states_equal(env, &sl->state, cur, EXACT) &&
19148 			    !iter_active_depths_differ(&sl->state, cur) &&
19149 			    sl->state.may_goto_depth == cur->may_goto_depth &&
19150 			    sl->state.callback_unroll_depth == cur->callback_unroll_depth) {
19151 				verbose_linfo(env, insn_idx, "; ");
19152 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
19153 				verbose(env, "cur state:");
19154 				print_verifier_state(env, cur, cur->curframe, true);
19155 				verbose(env, "old state:");
19156 				print_verifier_state(env, &sl->state, cur->curframe, true);
19157 				return -EINVAL;
19158 			}
19159 			/* if the verifier is processing a loop, avoid adding new state
19160 			 * too often, since different loop iterations have distinct
19161 			 * states and may not help future pruning.
19162 			 * This threshold shouldn't be too low to make sure that
19163 			 * a loop with large bound will be rejected quickly.
19164 			 * The most abusive loop will be:
19165 			 * r1 += 1
19166 			 * if r1 < 1000000 goto pc-2
19167 			 * 1M insn_procssed limit / 100 == 10k peak states.
19168 			 * This threshold shouldn't be too high either, since states
19169 			 * at the end of the loop are likely to be useful in pruning.
19170 			 */
19171 skip_inf_loop_check:
19172 			if (!force_new_state &&
19173 			    env->jmps_processed - env->prev_jmps_processed < 20 &&
19174 			    env->insn_processed - env->prev_insn_processed < 100)
19175 				add_new_state = false;
19176 			goto miss;
19177 		}
19178 		/* If sl->state is a part of a loop and this loop's entry is a part of
19179 		 * current verification path then states have to be compared exactly.
19180 		 * 'force_exact' is needed to catch the following case:
19181 		 *
19182 		 *                initial     Here state 'succ' was processed first,
19183 		 *                  |         it was eventually tracked to produce a
19184 		 *                  V         state identical to 'hdr'.
19185 		 *     .---------> hdr        All branches from 'succ' had been explored
19186 		 *     |            |         and thus 'succ' has its .branches == 0.
19187 		 *     |            V
19188 		 *     |    .------...        Suppose states 'cur' and 'succ' correspond
19189 		 *     |    |       |         to the same instruction + callsites.
19190 		 *     |    V       V         In such case it is necessary to check
19191 		 *     |   ...     ...        if 'succ' and 'cur' are states_equal().
19192 		 *     |    |       |         If 'succ' and 'cur' are a part of the
19193 		 *     |    V       V         same loop exact flag has to be set.
19194 		 *     |   succ <- cur        To check if that is the case, verify
19195 		 *     |    |                 if loop entry of 'succ' is in current
19196 		 *     |    V                 DFS path.
19197 		 *     |   ...
19198 		 *     |    |
19199 		 *     '----'
19200 		 *
19201 		 * Additional details are in the comment before get_loop_entry().
19202 		 */
19203 		loop_entry = get_loop_entry(env, &sl->state);
19204 		if (IS_ERR(loop_entry))
19205 			return PTR_ERR(loop_entry);
19206 		force_exact = loop_entry && loop_entry->branches > 0;
19207 		if (states_equal(env, &sl->state, cur, force_exact ? RANGE_WITHIN : NOT_EXACT)) {
19208 			if (force_exact)
19209 				update_loop_entry(env, cur, loop_entry);
19210 hit:
19211 			sl->hit_cnt++;
19212 			/* reached equivalent register/stack state,
19213 			 * prune the search.
19214 			 * Registers read by the continuation are read by us.
19215 			 * If we have any write marks in env->cur_state, they
19216 			 * will prevent corresponding reads in the continuation
19217 			 * from reaching our parent (an explored_state).  Our
19218 			 * own state will get the read marks recorded, but
19219 			 * they'll be immediately forgotten as we're pruning
19220 			 * this state and will pop a new one.
19221 			 */
19222 			err = propagate_liveness(env, &sl->state, cur);
19223 
19224 			/* if previous state reached the exit with precision and
19225 			 * current state is equivalent to it (except precision marks)
19226 			 * the precision needs to be propagated back in
19227 			 * the current state.
19228 			 */
19229 			if (is_jmp_point(env, env->insn_idx))
19230 				err = err ? : push_insn_history(env, cur, 0, 0);
19231 			err = err ? : propagate_precision(env, &sl->state);
19232 			if (err)
19233 				return err;
19234 			return 1;
19235 		}
19236 miss:
19237 		/* when new state is not going to be added do not increase miss count.
19238 		 * Otherwise several loop iterations will remove the state
19239 		 * recorded earlier. The goal of these heuristics is to have
19240 		 * states from some iterations of the loop (some in the beginning
19241 		 * and some at the end) to help pruning.
19242 		 */
19243 		if (add_new_state)
19244 			sl->miss_cnt++;
19245 		/* heuristic to determine whether this state is beneficial
19246 		 * to keep checking from state equivalence point of view.
19247 		 * Higher numbers increase max_states_per_insn and verification time,
19248 		 * but do not meaningfully decrease insn_processed.
19249 		 * 'n' controls how many times state could miss before eviction.
19250 		 * Use bigger 'n' for checkpoints because evicting checkpoint states
19251 		 * too early would hinder iterator convergence.
19252 		 */
19253 		n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3;
19254 		if (sl->miss_cnt > sl->hit_cnt * n + n) {
19255 			/* the state is unlikely to be useful. Remove it to
19256 			 * speed up verification
19257 			 */
19258 			sl->in_free_list = true;
19259 			list_del(&sl->node);
19260 			list_add(&sl->node, &env->free_list);
19261 			env->free_list_size++;
19262 			env->explored_states_size--;
19263 			maybe_free_verifier_state(env, sl);
19264 		}
19265 	}
19266 
19267 	if (env->max_states_per_insn < states_cnt)
19268 		env->max_states_per_insn = states_cnt;
19269 
19270 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
19271 		return 0;
19272 
19273 	if (!add_new_state)
19274 		return 0;
19275 
19276 	/* There were no equivalent states, remember the current one.
19277 	 * Technically the current state is not proven to be safe yet,
19278 	 * but it will either reach outer most bpf_exit (which means it's safe)
19279 	 * or it will be rejected. When there are no loops the verifier won't be
19280 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
19281 	 * again on the way to bpf_exit.
19282 	 * When looping the sl->state.branches will be > 0 and this state
19283 	 * will not be considered for equivalence until branches == 0.
19284 	 */
19285 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
19286 	if (!new_sl)
19287 		return -ENOMEM;
19288 	env->total_states++;
19289 	env->explored_states_size++;
19290 	update_peak_states(env);
19291 	env->prev_jmps_processed = env->jmps_processed;
19292 	env->prev_insn_processed = env->insn_processed;
19293 
19294 	/* forget precise markings we inherited, see __mark_chain_precision */
19295 	if (env->bpf_capable)
19296 		mark_all_scalars_imprecise(env, cur);
19297 
19298 	/* add new state to the head of linked list */
19299 	new = &new_sl->state;
19300 	err = copy_verifier_state(new, cur);
19301 	if (err) {
19302 		free_verifier_state(new, false);
19303 		kfree(new_sl);
19304 		return err;
19305 	}
19306 	new->insn_idx = insn_idx;
19307 	WARN_ONCE(new->branches != 1,
19308 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
19309 
19310 	cur->parent = new;
19311 	cur->first_insn_idx = insn_idx;
19312 	cur->insn_hist_start = cur->insn_hist_end;
19313 	cur->dfs_depth = new->dfs_depth + 1;
19314 	list_add(&new_sl->node, head);
19315 
19316 	/* connect new state to parentage chain. Current frame needs all
19317 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
19318 	 * to the stack implicitly by JITs) so in callers' frames connect just
19319 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
19320 	 * the state of the call instruction (with WRITTEN set), and r0 comes
19321 	 * from callee with its full parentage chain, anyway.
19322 	 */
19323 	/* clear write marks in current state: the writes we did are not writes
19324 	 * our child did, so they don't screen off its reads from us.
19325 	 * (There are no read marks in current state, because reads always mark
19326 	 * their parent and current state never has children yet.  Only
19327 	 * explored_states can get read marks.)
19328 	 */
19329 	for (j = 0; j <= cur->curframe; j++) {
19330 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
19331 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
19332 		for (i = 0; i < BPF_REG_FP; i++)
19333 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
19334 	}
19335 
19336 	/* all stack frames are accessible from callee, clear them all */
19337 	for (j = 0; j <= cur->curframe; j++) {
19338 		struct bpf_func_state *frame = cur->frame[j];
19339 		struct bpf_func_state *newframe = new->frame[j];
19340 
19341 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
19342 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
19343 			frame->stack[i].spilled_ptr.parent =
19344 						&newframe->stack[i].spilled_ptr;
19345 		}
19346 	}
19347 	return 0;
19348 }
19349 
19350 /* Return true if it's OK to have the same insn return a different type. */
reg_type_mismatch_ok(enum bpf_reg_type type)19351 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
19352 {
19353 	switch (base_type(type)) {
19354 	case PTR_TO_CTX:
19355 	case PTR_TO_SOCKET:
19356 	case PTR_TO_SOCK_COMMON:
19357 	case PTR_TO_TCP_SOCK:
19358 	case PTR_TO_XDP_SOCK:
19359 	case PTR_TO_BTF_ID:
19360 	case PTR_TO_ARENA:
19361 		return false;
19362 	default:
19363 		return true;
19364 	}
19365 }
19366 
19367 /* If an instruction was previously used with particular pointer types, then we
19368  * need to be careful to avoid cases such as the below, where it may be ok
19369  * for one branch accessing the pointer, but not ok for the other branch:
19370  *
19371  * R1 = sock_ptr
19372  * goto X;
19373  * ...
19374  * R1 = some_other_valid_ptr;
19375  * goto X;
19376  * ...
19377  * R2 = *(u32 *)(R1 + 0);
19378  */
reg_type_mismatch(enum bpf_reg_type src,enum bpf_reg_type prev)19379 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
19380 {
19381 	return src != prev && (!reg_type_mismatch_ok(src) ||
19382 			       !reg_type_mismatch_ok(prev));
19383 }
19384 
save_aux_ptr_type(struct bpf_verifier_env * env,enum bpf_reg_type type,bool allow_trust_mismatch)19385 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
19386 			     bool allow_trust_mismatch)
19387 {
19388 	enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
19389 
19390 	if (*prev_type == NOT_INIT) {
19391 		/* Saw a valid insn
19392 		 * dst_reg = *(u32 *)(src_reg + off)
19393 		 * save type to validate intersecting paths
19394 		 */
19395 		*prev_type = type;
19396 	} else if (reg_type_mismatch(type, *prev_type)) {
19397 		/* Abuser program is trying to use the same insn
19398 		 * dst_reg = *(u32*) (src_reg + off)
19399 		 * with different pointer types:
19400 		 * src_reg == ctx in one branch and
19401 		 * src_reg == stack|map in some other branch.
19402 		 * Reject it.
19403 		 */
19404 		if (allow_trust_mismatch &&
19405 		    base_type(type) == PTR_TO_BTF_ID &&
19406 		    base_type(*prev_type) == PTR_TO_BTF_ID) {
19407 			/*
19408 			 * Have to support a use case when one path through
19409 			 * the program yields TRUSTED pointer while another
19410 			 * is UNTRUSTED. Fallback to UNTRUSTED to generate
19411 			 * BPF_PROBE_MEM/BPF_PROBE_MEMSX.
19412 			 */
19413 			*prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
19414 		} else {
19415 			verbose(env, "same insn cannot be used with different pointers\n");
19416 			return -EINVAL;
19417 		}
19418 	}
19419 
19420 	return 0;
19421 }
19422 
do_check(struct bpf_verifier_env * env)19423 static int do_check(struct bpf_verifier_env *env)
19424 {
19425 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
19426 	struct bpf_verifier_state *state = env->cur_state;
19427 	struct bpf_insn *insns = env->prog->insnsi;
19428 	struct bpf_reg_state *regs;
19429 	int insn_cnt = env->prog->len;
19430 	bool do_print_state = false;
19431 	int prev_insn_idx = -1;
19432 
19433 	for (;;) {
19434 		bool exception_exit = false;
19435 		struct bpf_insn *insn;
19436 		u8 class;
19437 		int err;
19438 
19439 		/* reset current history entry on each new instruction */
19440 		env->cur_hist_ent = NULL;
19441 
19442 		env->prev_insn_idx = prev_insn_idx;
19443 		if (env->insn_idx >= insn_cnt) {
19444 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
19445 				env->insn_idx, insn_cnt);
19446 			return -EFAULT;
19447 		}
19448 
19449 		insn = &insns[env->insn_idx];
19450 		class = BPF_CLASS(insn->code);
19451 
19452 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
19453 			verbose(env,
19454 				"BPF program is too large. Processed %d insn\n",
19455 				env->insn_processed);
19456 			return -E2BIG;
19457 		}
19458 
19459 		state->last_insn_idx = env->prev_insn_idx;
19460 
19461 		if (is_prune_point(env, env->insn_idx)) {
19462 			err = is_state_visited(env, env->insn_idx);
19463 			if (err < 0)
19464 				return err;
19465 			if (err == 1) {
19466 				/* found equivalent state, can prune the search */
19467 				if (env->log.level & BPF_LOG_LEVEL) {
19468 					if (do_print_state)
19469 						verbose(env, "\nfrom %d to %d%s: safe\n",
19470 							env->prev_insn_idx, env->insn_idx,
19471 							env->cur_state->speculative ?
19472 							" (speculative execution)" : "");
19473 					else
19474 						verbose(env, "%d: safe\n", env->insn_idx);
19475 				}
19476 				goto process_bpf_exit;
19477 			}
19478 		}
19479 
19480 		if (is_jmp_point(env, env->insn_idx)) {
19481 			err = push_insn_history(env, state, 0, 0);
19482 			if (err)
19483 				return err;
19484 		}
19485 
19486 		if (signal_pending(current))
19487 			return -EAGAIN;
19488 
19489 		if (need_resched())
19490 			cond_resched();
19491 
19492 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
19493 			verbose(env, "\nfrom %d to %d%s:",
19494 				env->prev_insn_idx, env->insn_idx,
19495 				env->cur_state->speculative ?
19496 				" (speculative execution)" : "");
19497 			print_verifier_state(env, state, state->curframe, true);
19498 			do_print_state = false;
19499 		}
19500 
19501 		if (env->log.level & BPF_LOG_LEVEL) {
19502 			if (verifier_state_scratched(env))
19503 				print_insn_state(env, state, state->curframe);
19504 
19505 			verbose_linfo(env, env->insn_idx, "; ");
19506 			env->prev_log_pos = env->log.end_pos;
19507 			verbose(env, "%d: ", env->insn_idx);
19508 			verbose_insn(env, insn);
19509 			env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
19510 			env->prev_log_pos = env->log.end_pos;
19511 		}
19512 
19513 		if (bpf_prog_is_offloaded(env->prog->aux)) {
19514 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
19515 							   env->prev_insn_idx);
19516 			if (err)
19517 				return err;
19518 		}
19519 
19520 		regs = cur_regs(env);
19521 		sanitize_mark_insn_seen(env);
19522 		prev_insn_idx = env->insn_idx;
19523 
19524 		if (class == BPF_ALU || class == BPF_ALU64) {
19525 			err = check_alu_op(env, insn);
19526 			if (err)
19527 				return err;
19528 
19529 		} else if (class == BPF_LDX) {
19530 			bool is_ldsx = BPF_MODE(insn->code) == BPF_MEMSX;
19531 
19532 			/* Check for reserved fields is already done in
19533 			 * resolve_pseudo_ldimm64().
19534 			 */
19535 			err = check_load_mem(env, insn, false, is_ldsx, true,
19536 					     "ldx");
19537 			if (err)
19538 				return err;
19539 		} else if (class == BPF_STX) {
19540 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
19541 				err = check_atomic(env, insn);
19542 				if (err)
19543 					return err;
19544 				env->insn_idx++;
19545 				continue;
19546 			}
19547 
19548 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
19549 				verbose(env, "BPF_STX uses reserved fields\n");
19550 				return -EINVAL;
19551 			}
19552 
19553 			err = check_store_reg(env, insn, false);
19554 			if (err)
19555 				return err;
19556 		} else if (class == BPF_ST) {
19557 			enum bpf_reg_type dst_reg_type;
19558 
19559 			if (BPF_MODE(insn->code) != BPF_MEM ||
19560 			    insn->src_reg != BPF_REG_0) {
19561 				verbose(env, "BPF_ST uses reserved fields\n");
19562 				return -EINVAL;
19563 			}
19564 			/* check src operand */
19565 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
19566 			if (err)
19567 				return err;
19568 
19569 			dst_reg_type = regs[insn->dst_reg].type;
19570 
19571 			/* check that memory (dst_reg + off) is writeable */
19572 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
19573 					       insn->off, BPF_SIZE(insn->code),
19574 					       BPF_WRITE, -1, false, false);
19575 			if (err)
19576 				return err;
19577 
19578 			err = save_aux_ptr_type(env, dst_reg_type, false);
19579 			if (err)
19580 				return err;
19581 		} else if (class == BPF_JMP || class == BPF_JMP32) {
19582 			u8 opcode = BPF_OP(insn->code);
19583 
19584 			env->jmps_processed++;
19585 			if (opcode == BPF_CALL) {
19586 				if (BPF_SRC(insn->code) != BPF_K ||
19587 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
19588 				     && insn->off != 0) ||
19589 				    (insn->src_reg != BPF_REG_0 &&
19590 				     insn->src_reg != BPF_PSEUDO_CALL &&
19591 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
19592 				    insn->dst_reg != BPF_REG_0 ||
19593 				    class == BPF_JMP32) {
19594 					verbose(env, "BPF_CALL uses reserved fields\n");
19595 					return -EINVAL;
19596 				}
19597 
19598 				if (env->cur_state->active_locks) {
19599 					if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
19600 					    (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
19601 					     (insn->off != 0 || !kfunc_spin_allowed(insn->imm)))) {
19602 						verbose(env, "function calls are not allowed while holding a lock\n");
19603 						return -EINVAL;
19604 					}
19605 				}
19606 				if (insn->src_reg == BPF_PSEUDO_CALL) {
19607 					err = check_func_call(env, insn, &env->insn_idx);
19608 				} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
19609 					err = check_kfunc_call(env, insn, &env->insn_idx);
19610 					if (!err && is_bpf_throw_kfunc(insn)) {
19611 						exception_exit = true;
19612 						goto process_bpf_exit_full;
19613 					}
19614 				} else {
19615 					err = check_helper_call(env, insn, &env->insn_idx);
19616 				}
19617 				if (err)
19618 					return err;
19619 
19620 				mark_reg_scratched(env, BPF_REG_0);
19621 			} else if (opcode == BPF_JA) {
19622 				if (BPF_SRC(insn->code) != BPF_K ||
19623 				    insn->src_reg != BPF_REG_0 ||
19624 				    insn->dst_reg != BPF_REG_0 ||
19625 				    (class == BPF_JMP && insn->imm != 0) ||
19626 				    (class == BPF_JMP32 && insn->off != 0)) {
19627 					verbose(env, "BPF_JA uses reserved fields\n");
19628 					return -EINVAL;
19629 				}
19630 
19631 				if (class == BPF_JMP)
19632 					env->insn_idx += insn->off + 1;
19633 				else
19634 					env->insn_idx += insn->imm + 1;
19635 				continue;
19636 
19637 			} else if (opcode == BPF_EXIT) {
19638 				if (BPF_SRC(insn->code) != BPF_K ||
19639 				    insn->imm != 0 ||
19640 				    insn->src_reg != BPF_REG_0 ||
19641 				    insn->dst_reg != BPF_REG_0 ||
19642 				    class == BPF_JMP32) {
19643 					verbose(env, "BPF_EXIT uses reserved fields\n");
19644 					return -EINVAL;
19645 				}
19646 process_bpf_exit_full:
19647 				/* We must do check_reference_leak here before
19648 				 * prepare_func_exit to handle the case when
19649 				 * state->curframe > 0, it may be a callback
19650 				 * function, for which reference_state must
19651 				 * match caller reference state when it exits.
19652 				 */
19653 				err = check_resource_leak(env, exception_exit, !env->cur_state->curframe,
19654 							  "BPF_EXIT instruction in main prog");
19655 				if (err)
19656 					return err;
19657 
19658 				/* The side effect of the prepare_func_exit
19659 				 * which is being skipped is that it frees
19660 				 * bpf_func_state. Typically, process_bpf_exit
19661 				 * will only be hit with outermost exit.
19662 				 * copy_verifier_state in pop_stack will handle
19663 				 * freeing of any extra bpf_func_state left over
19664 				 * from not processing all nested function
19665 				 * exits. We also skip return code checks as
19666 				 * they are not needed for exceptional exits.
19667 				 */
19668 				if (exception_exit)
19669 					goto process_bpf_exit;
19670 
19671 				if (state->curframe) {
19672 					/* exit from nested function */
19673 					err = prepare_func_exit(env, &env->insn_idx);
19674 					if (err)
19675 						return err;
19676 					do_print_state = true;
19677 					continue;
19678 				}
19679 
19680 				err = check_return_code(env, BPF_REG_0, "R0");
19681 				if (err)
19682 					return err;
19683 process_bpf_exit:
19684 				mark_verifier_state_scratched(env);
19685 				update_branch_counts(env, env->cur_state);
19686 				err = pop_stack(env, &prev_insn_idx,
19687 						&env->insn_idx, pop_log);
19688 				if (err < 0) {
19689 					if (err != -ENOENT)
19690 						return err;
19691 					break;
19692 				} else {
19693 					if (verifier_bug_if(env->cur_state->loop_entry, env,
19694 							    "broken loop detection"))
19695 						return -EFAULT;
19696 					do_print_state = true;
19697 					continue;
19698 				}
19699 			} else {
19700 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
19701 				if (err)
19702 					return err;
19703 			}
19704 		} else if (class == BPF_LD) {
19705 			u8 mode = BPF_MODE(insn->code);
19706 
19707 			if (mode == BPF_ABS || mode == BPF_IND) {
19708 				err = check_ld_abs(env, insn);
19709 				if (err)
19710 					return err;
19711 
19712 			} else if (mode == BPF_IMM) {
19713 				err = check_ld_imm(env, insn);
19714 				if (err)
19715 					return err;
19716 
19717 				env->insn_idx++;
19718 				sanitize_mark_insn_seen(env);
19719 			} else {
19720 				verbose(env, "invalid BPF_LD mode\n");
19721 				return -EINVAL;
19722 			}
19723 		} else {
19724 			verbose(env, "unknown insn class %d\n", class);
19725 			return -EINVAL;
19726 		}
19727 
19728 		env->insn_idx++;
19729 	}
19730 
19731 	return 0;
19732 }
19733 
find_btf_percpu_datasec(struct btf * btf)19734 static int find_btf_percpu_datasec(struct btf *btf)
19735 {
19736 	const struct btf_type *t;
19737 	const char *tname;
19738 	int i, n;
19739 
19740 	/*
19741 	 * Both vmlinux and module each have their own ".data..percpu"
19742 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
19743 	 * types to look at only module's own BTF types.
19744 	 */
19745 	n = btf_nr_types(btf);
19746 	if (btf_is_module(btf))
19747 		i = btf_nr_types(btf_vmlinux);
19748 	else
19749 		i = 1;
19750 
19751 	for(; i < n; i++) {
19752 		t = btf_type_by_id(btf, i);
19753 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
19754 			continue;
19755 
19756 		tname = btf_name_by_offset(btf, t->name_off);
19757 		if (!strcmp(tname, ".data..percpu"))
19758 			return i;
19759 	}
19760 
19761 	return -ENOENT;
19762 }
19763 
19764 /*
19765  * Add btf to the used_btfs array and return the index. (If the btf was
19766  * already added, then just return the index.) Upon successful insertion
19767  * increase btf refcnt, and, if present, also refcount the corresponding
19768  * kernel module.
19769  */
__add_used_btf(struct bpf_verifier_env * env,struct btf * btf)19770 static int __add_used_btf(struct bpf_verifier_env *env, struct btf *btf)
19771 {
19772 	struct btf_mod_pair *btf_mod;
19773 	int i;
19774 
19775 	/* check whether we recorded this BTF (and maybe module) already */
19776 	for (i = 0; i < env->used_btf_cnt; i++)
19777 		if (env->used_btfs[i].btf == btf)
19778 			return i;
19779 
19780 	if (env->used_btf_cnt >= MAX_USED_BTFS)
19781 		return -E2BIG;
19782 
19783 	btf_get(btf);
19784 
19785 	btf_mod = &env->used_btfs[env->used_btf_cnt];
19786 	btf_mod->btf = btf;
19787 	btf_mod->module = NULL;
19788 
19789 	/* if we reference variables from kernel module, bump its refcount */
19790 	if (btf_is_module(btf)) {
19791 		btf_mod->module = btf_try_get_module(btf);
19792 		if (!btf_mod->module) {
19793 			btf_put(btf);
19794 			return -ENXIO;
19795 		}
19796 	}
19797 
19798 	return env->used_btf_cnt++;
19799 }
19800 
19801 /* replace pseudo btf_id with kernel symbol address */
__check_pseudo_btf_id(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_insn_aux_data * aux,struct btf * btf)19802 static int __check_pseudo_btf_id(struct bpf_verifier_env *env,
19803 				 struct bpf_insn *insn,
19804 				 struct bpf_insn_aux_data *aux,
19805 				 struct btf *btf)
19806 {
19807 	const struct btf_var_secinfo *vsi;
19808 	const struct btf_type *datasec;
19809 	const struct btf_type *t;
19810 	const char *sym_name;
19811 	bool percpu = false;
19812 	u32 type, id = insn->imm;
19813 	s32 datasec_id;
19814 	u64 addr;
19815 	int i;
19816 
19817 	t = btf_type_by_id(btf, id);
19818 	if (!t) {
19819 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
19820 		return -ENOENT;
19821 	}
19822 
19823 	if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
19824 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
19825 		return -EINVAL;
19826 	}
19827 
19828 	sym_name = btf_name_by_offset(btf, t->name_off);
19829 	addr = kallsyms_lookup_name(sym_name);
19830 	if (!addr) {
19831 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
19832 			sym_name);
19833 		return -ENOENT;
19834 	}
19835 	insn[0].imm = (u32)addr;
19836 	insn[1].imm = addr >> 32;
19837 
19838 	if (btf_type_is_func(t)) {
19839 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
19840 		aux->btf_var.mem_size = 0;
19841 		return 0;
19842 	}
19843 
19844 	datasec_id = find_btf_percpu_datasec(btf);
19845 	if (datasec_id > 0) {
19846 		datasec = btf_type_by_id(btf, datasec_id);
19847 		for_each_vsi(i, datasec, vsi) {
19848 			if (vsi->type == id) {
19849 				percpu = true;
19850 				break;
19851 			}
19852 		}
19853 	}
19854 
19855 	type = t->type;
19856 	t = btf_type_skip_modifiers(btf, type, NULL);
19857 	if (percpu) {
19858 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
19859 		aux->btf_var.btf = btf;
19860 		aux->btf_var.btf_id = type;
19861 	} else if (!btf_type_is_struct(t)) {
19862 		const struct btf_type *ret;
19863 		const char *tname;
19864 		u32 tsize;
19865 
19866 		/* resolve the type size of ksym. */
19867 		ret = btf_resolve_size(btf, t, &tsize);
19868 		if (IS_ERR(ret)) {
19869 			tname = btf_name_by_offset(btf, t->name_off);
19870 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
19871 				tname, PTR_ERR(ret));
19872 			return -EINVAL;
19873 		}
19874 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
19875 		aux->btf_var.mem_size = tsize;
19876 	} else {
19877 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
19878 		aux->btf_var.btf = btf;
19879 		aux->btf_var.btf_id = type;
19880 	}
19881 
19882 	return 0;
19883 }
19884 
check_pseudo_btf_id(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_insn_aux_data * aux)19885 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
19886 			       struct bpf_insn *insn,
19887 			       struct bpf_insn_aux_data *aux)
19888 {
19889 	struct btf *btf;
19890 	int btf_fd;
19891 	int err;
19892 
19893 	btf_fd = insn[1].imm;
19894 	if (btf_fd) {
19895 		CLASS(fd, f)(btf_fd);
19896 
19897 		btf = __btf_get_by_fd(f);
19898 		if (IS_ERR(btf)) {
19899 			verbose(env, "invalid module BTF object FD specified.\n");
19900 			return -EINVAL;
19901 		}
19902 	} else {
19903 		if (!btf_vmlinux) {
19904 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
19905 			return -EINVAL;
19906 		}
19907 		btf = btf_vmlinux;
19908 	}
19909 
19910 	err = __check_pseudo_btf_id(env, insn, aux, btf);
19911 	if (err)
19912 		return err;
19913 
19914 	err = __add_used_btf(env, btf);
19915 	if (err < 0)
19916 		return err;
19917 	return 0;
19918 }
19919 
is_tracing_prog_type(enum bpf_prog_type type)19920 static bool is_tracing_prog_type(enum bpf_prog_type type)
19921 {
19922 	switch (type) {
19923 	case BPF_PROG_TYPE_KPROBE:
19924 	case BPF_PROG_TYPE_TRACEPOINT:
19925 	case BPF_PROG_TYPE_PERF_EVENT:
19926 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
19927 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
19928 		return true;
19929 	default:
19930 		return false;
19931 	}
19932 }
19933 
bpf_map_is_cgroup_storage(struct bpf_map * map)19934 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
19935 {
19936 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
19937 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
19938 }
19939 
check_map_prog_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,struct bpf_prog * prog)19940 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
19941 					struct bpf_map *map,
19942 					struct bpf_prog *prog)
19943 
19944 {
19945 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
19946 
19947 	if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
19948 	    btf_record_has_field(map->record, BPF_RB_ROOT)) {
19949 		if (is_tracing_prog_type(prog_type)) {
19950 			verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
19951 			return -EINVAL;
19952 		}
19953 	}
19954 
19955 	if (btf_record_has_field(map->record, BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK)) {
19956 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
19957 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
19958 			return -EINVAL;
19959 		}
19960 
19961 		if (is_tracing_prog_type(prog_type)) {
19962 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
19963 			return -EINVAL;
19964 		}
19965 	}
19966 
19967 	if (btf_record_has_field(map->record, BPF_TIMER)) {
19968 		if (is_tracing_prog_type(prog_type)) {
19969 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
19970 			return -EINVAL;
19971 		}
19972 	}
19973 
19974 	if (btf_record_has_field(map->record, BPF_WORKQUEUE)) {
19975 		if (is_tracing_prog_type(prog_type)) {
19976 			verbose(env, "tracing progs cannot use bpf_wq yet\n");
19977 			return -EINVAL;
19978 		}
19979 	}
19980 
19981 	if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
19982 	    !bpf_offload_prog_map_match(prog, map)) {
19983 		verbose(env, "offload device mismatch between prog and map\n");
19984 		return -EINVAL;
19985 	}
19986 
19987 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
19988 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
19989 		return -EINVAL;
19990 	}
19991 
19992 	if (prog->sleepable)
19993 		switch (map->map_type) {
19994 		case BPF_MAP_TYPE_HASH:
19995 		case BPF_MAP_TYPE_LRU_HASH:
19996 		case BPF_MAP_TYPE_ARRAY:
19997 		case BPF_MAP_TYPE_PERCPU_HASH:
19998 		case BPF_MAP_TYPE_PERCPU_ARRAY:
19999 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
20000 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
20001 		case BPF_MAP_TYPE_HASH_OF_MAPS:
20002 		case BPF_MAP_TYPE_RINGBUF:
20003 		case BPF_MAP_TYPE_USER_RINGBUF:
20004 		case BPF_MAP_TYPE_INODE_STORAGE:
20005 		case BPF_MAP_TYPE_SK_STORAGE:
20006 		case BPF_MAP_TYPE_TASK_STORAGE:
20007 		case BPF_MAP_TYPE_CGRP_STORAGE:
20008 		case BPF_MAP_TYPE_QUEUE:
20009 		case BPF_MAP_TYPE_STACK:
20010 		case BPF_MAP_TYPE_ARENA:
20011 			break;
20012 		default:
20013 			verbose(env,
20014 				"Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
20015 			return -EINVAL;
20016 		}
20017 
20018 	if (bpf_map_is_cgroup_storage(map) &&
20019 	    bpf_cgroup_storage_assign(env->prog->aux, map)) {
20020 		verbose(env, "only one cgroup storage of each type is allowed\n");
20021 		return -EBUSY;
20022 	}
20023 
20024 	if (map->map_type == BPF_MAP_TYPE_ARENA) {
20025 		if (env->prog->aux->arena) {
20026 			verbose(env, "Only one arena per program\n");
20027 			return -EBUSY;
20028 		}
20029 		if (!env->allow_ptr_leaks || !env->bpf_capable) {
20030 			verbose(env, "CAP_BPF and CAP_PERFMON are required to use arena\n");
20031 			return -EPERM;
20032 		}
20033 		if (!env->prog->jit_requested) {
20034 			verbose(env, "JIT is required to use arena\n");
20035 			return -EOPNOTSUPP;
20036 		}
20037 		if (!bpf_jit_supports_arena()) {
20038 			verbose(env, "JIT doesn't support arena\n");
20039 			return -EOPNOTSUPP;
20040 		}
20041 		env->prog->aux->arena = (void *)map;
20042 		if (!bpf_arena_get_user_vm_start(env->prog->aux->arena)) {
20043 			verbose(env, "arena's user address must be set via map_extra or mmap()\n");
20044 			return -EINVAL;
20045 		}
20046 	}
20047 
20048 	return 0;
20049 }
20050 
__add_used_map(struct bpf_verifier_env * env,struct bpf_map * map)20051 static int __add_used_map(struct bpf_verifier_env *env, struct bpf_map *map)
20052 {
20053 	int i, err;
20054 
20055 	/* check whether we recorded this map already */
20056 	for (i = 0; i < env->used_map_cnt; i++)
20057 		if (env->used_maps[i] == map)
20058 			return i;
20059 
20060 	if (env->used_map_cnt >= MAX_USED_MAPS) {
20061 		verbose(env, "The total number of maps per program has reached the limit of %u\n",
20062 			MAX_USED_MAPS);
20063 		return -E2BIG;
20064 	}
20065 
20066 	err = check_map_prog_compatibility(env, map, env->prog);
20067 	if (err)
20068 		return err;
20069 
20070 	if (env->prog->sleepable)
20071 		atomic64_inc(&map->sleepable_refcnt);
20072 
20073 	/* hold the map. If the program is rejected by verifier,
20074 	 * the map will be released by release_maps() or it
20075 	 * will be used by the valid program until it's unloaded
20076 	 * and all maps are released in bpf_free_used_maps()
20077 	 */
20078 	bpf_map_inc(map);
20079 
20080 	env->used_maps[env->used_map_cnt++] = map;
20081 
20082 	return env->used_map_cnt - 1;
20083 }
20084 
20085 /* Add map behind fd to used maps list, if it's not already there, and return
20086  * its index.
20087  * Returns <0 on error, or >= 0 index, on success.
20088  */
add_used_map(struct bpf_verifier_env * env,int fd)20089 static int add_used_map(struct bpf_verifier_env *env, int fd)
20090 {
20091 	struct bpf_map *map;
20092 	CLASS(fd, f)(fd);
20093 
20094 	map = __bpf_map_get(f);
20095 	if (IS_ERR(map)) {
20096 		verbose(env, "fd %d is not pointing to valid bpf_map\n", fd);
20097 		return PTR_ERR(map);
20098 	}
20099 
20100 	return __add_used_map(env, map);
20101 }
20102 
20103 /* find and rewrite pseudo imm in ld_imm64 instructions:
20104  *
20105  * 1. if it accesses map FD, replace it with actual map pointer.
20106  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
20107  *
20108  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
20109  */
resolve_pseudo_ldimm64(struct bpf_verifier_env * env)20110 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
20111 {
20112 	struct bpf_insn *insn = env->prog->insnsi;
20113 	int insn_cnt = env->prog->len;
20114 	int i, err;
20115 
20116 	err = bpf_prog_calc_tag(env->prog);
20117 	if (err)
20118 		return err;
20119 
20120 	for (i = 0; i < insn_cnt; i++, insn++) {
20121 		if (BPF_CLASS(insn->code) == BPF_LDX &&
20122 		    ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
20123 		    insn->imm != 0)) {
20124 			verbose(env, "BPF_LDX uses reserved fields\n");
20125 			return -EINVAL;
20126 		}
20127 
20128 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
20129 			struct bpf_insn_aux_data *aux;
20130 			struct bpf_map *map;
20131 			int map_idx;
20132 			u64 addr;
20133 			u32 fd;
20134 
20135 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
20136 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
20137 			    insn[1].off != 0) {
20138 				verbose(env, "invalid bpf_ld_imm64 insn\n");
20139 				return -EINVAL;
20140 			}
20141 
20142 			if (insn[0].src_reg == 0)
20143 				/* valid generic load 64-bit imm */
20144 				goto next_insn;
20145 
20146 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
20147 				aux = &env->insn_aux_data[i];
20148 				err = check_pseudo_btf_id(env, insn, aux);
20149 				if (err)
20150 					return err;
20151 				goto next_insn;
20152 			}
20153 
20154 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
20155 				aux = &env->insn_aux_data[i];
20156 				aux->ptr_type = PTR_TO_FUNC;
20157 				goto next_insn;
20158 			}
20159 
20160 			/* In final convert_pseudo_ld_imm64() step, this is
20161 			 * converted into regular 64-bit imm load insn.
20162 			 */
20163 			switch (insn[0].src_reg) {
20164 			case BPF_PSEUDO_MAP_VALUE:
20165 			case BPF_PSEUDO_MAP_IDX_VALUE:
20166 				break;
20167 			case BPF_PSEUDO_MAP_FD:
20168 			case BPF_PSEUDO_MAP_IDX:
20169 				if (insn[1].imm == 0)
20170 					break;
20171 				fallthrough;
20172 			default:
20173 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
20174 				return -EINVAL;
20175 			}
20176 
20177 			switch (insn[0].src_reg) {
20178 			case BPF_PSEUDO_MAP_IDX_VALUE:
20179 			case BPF_PSEUDO_MAP_IDX:
20180 				if (bpfptr_is_null(env->fd_array)) {
20181 					verbose(env, "fd_idx without fd_array is invalid\n");
20182 					return -EPROTO;
20183 				}
20184 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
20185 							    insn[0].imm * sizeof(fd),
20186 							    sizeof(fd)))
20187 					return -EFAULT;
20188 				break;
20189 			default:
20190 				fd = insn[0].imm;
20191 				break;
20192 			}
20193 
20194 			map_idx = add_used_map(env, fd);
20195 			if (map_idx < 0)
20196 				return map_idx;
20197 			map = env->used_maps[map_idx];
20198 
20199 			aux = &env->insn_aux_data[i];
20200 			aux->map_index = map_idx;
20201 
20202 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
20203 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
20204 				addr = (unsigned long)map;
20205 			} else {
20206 				u32 off = insn[1].imm;
20207 
20208 				if (off >= BPF_MAX_VAR_OFF) {
20209 					verbose(env, "direct value offset of %u is not allowed\n", off);
20210 					return -EINVAL;
20211 				}
20212 
20213 				if (!map->ops->map_direct_value_addr) {
20214 					verbose(env, "no direct value access support for this map type\n");
20215 					return -EINVAL;
20216 				}
20217 
20218 				err = map->ops->map_direct_value_addr(map, &addr, off);
20219 				if (err) {
20220 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
20221 						map->value_size, off);
20222 					return err;
20223 				}
20224 
20225 				aux->map_off = off;
20226 				addr += off;
20227 			}
20228 
20229 			insn[0].imm = (u32)addr;
20230 			insn[1].imm = addr >> 32;
20231 
20232 next_insn:
20233 			insn++;
20234 			i++;
20235 			continue;
20236 		}
20237 
20238 		/* Basic sanity check before we invest more work here. */
20239 		if (!bpf_opcode_in_insntable(insn->code)) {
20240 			verbose(env, "unknown opcode %02x\n", insn->code);
20241 			return -EINVAL;
20242 		}
20243 	}
20244 
20245 	/* now all pseudo BPF_LD_IMM64 instructions load valid
20246 	 * 'struct bpf_map *' into a register instead of user map_fd.
20247 	 * These pointers will be used later by verifier to validate map access.
20248 	 */
20249 	return 0;
20250 }
20251 
20252 /* drop refcnt of maps used by the rejected program */
release_maps(struct bpf_verifier_env * env)20253 static void release_maps(struct bpf_verifier_env *env)
20254 {
20255 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
20256 			     env->used_map_cnt);
20257 }
20258 
20259 /* drop refcnt of maps used by the rejected program */
release_btfs(struct bpf_verifier_env * env)20260 static void release_btfs(struct bpf_verifier_env *env)
20261 {
20262 	__bpf_free_used_btfs(env->used_btfs, env->used_btf_cnt);
20263 }
20264 
20265 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
convert_pseudo_ld_imm64(struct bpf_verifier_env * env)20266 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
20267 {
20268 	struct bpf_insn *insn = env->prog->insnsi;
20269 	int insn_cnt = env->prog->len;
20270 	int i;
20271 
20272 	for (i = 0; i < insn_cnt; i++, insn++) {
20273 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
20274 			continue;
20275 		if (insn->src_reg == BPF_PSEUDO_FUNC)
20276 			continue;
20277 		insn->src_reg = 0;
20278 	}
20279 }
20280 
20281 /* single env->prog->insni[off] instruction was replaced with the range
20282  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
20283  * [0, off) and [off, end) to new locations, so the patched range stays zero
20284  */
adjust_insn_aux_data(struct bpf_verifier_env * env,struct bpf_insn_aux_data * new_data,struct bpf_prog * new_prog,u32 off,u32 cnt)20285 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
20286 				 struct bpf_insn_aux_data *new_data,
20287 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
20288 {
20289 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
20290 	struct bpf_insn *insn = new_prog->insnsi;
20291 	u32 old_seen = old_data[off].seen;
20292 	u32 prog_len;
20293 	int i;
20294 
20295 	/* aux info at OFF always needs adjustment, no matter fast path
20296 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
20297 	 * original insn at old prog.
20298 	 */
20299 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
20300 
20301 	if (cnt == 1)
20302 		return;
20303 	prog_len = new_prog->len;
20304 
20305 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
20306 	memcpy(new_data + off + cnt - 1, old_data + off,
20307 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
20308 	for (i = off; i < off + cnt - 1; i++) {
20309 		/* Expand insni[off]'s seen count to the patched range. */
20310 		new_data[i].seen = old_seen;
20311 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
20312 	}
20313 	env->insn_aux_data = new_data;
20314 	vfree(old_data);
20315 }
20316 
adjust_subprog_starts(struct bpf_verifier_env * env,u32 off,u32 len)20317 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
20318 {
20319 	int i;
20320 
20321 	if (len == 1)
20322 		return;
20323 	/* NOTE: fake 'exit' subprog should be updated as well. */
20324 	for (i = 0; i <= env->subprog_cnt; i++) {
20325 		if (env->subprog_info[i].start <= off)
20326 			continue;
20327 		env->subprog_info[i].start += len - 1;
20328 	}
20329 }
20330 
adjust_poke_descs(struct bpf_prog * prog,u32 off,u32 len)20331 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
20332 {
20333 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
20334 	int i, sz = prog->aux->size_poke_tab;
20335 	struct bpf_jit_poke_descriptor *desc;
20336 
20337 	for (i = 0; i < sz; i++) {
20338 		desc = &tab[i];
20339 		if (desc->insn_idx <= off)
20340 			continue;
20341 		desc->insn_idx += len - 1;
20342 	}
20343 }
20344 
bpf_patch_insn_data(struct bpf_verifier_env * env,u32 off,const struct bpf_insn * patch,u32 len)20345 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
20346 					    const struct bpf_insn *patch, u32 len)
20347 {
20348 	struct bpf_prog *new_prog;
20349 	struct bpf_insn_aux_data *new_data = NULL;
20350 
20351 	if (len > 1) {
20352 		new_data = vzalloc(array_size(env->prog->len + len - 1,
20353 					      sizeof(struct bpf_insn_aux_data)));
20354 		if (!new_data)
20355 			return NULL;
20356 	}
20357 
20358 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
20359 	if (IS_ERR(new_prog)) {
20360 		if (PTR_ERR(new_prog) == -ERANGE)
20361 			verbose(env,
20362 				"insn %d cannot be patched due to 16-bit range\n",
20363 				env->insn_aux_data[off].orig_idx);
20364 		vfree(new_data);
20365 		return NULL;
20366 	}
20367 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
20368 	adjust_subprog_starts(env, off, len);
20369 	adjust_poke_descs(new_prog, off, len);
20370 	return new_prog;
20371 }
20372 
20373 /*
20374  * For all jmp insns in a given 'prog' that point to 'tgt_idx' insn adjust the
20375  * jump offset by 'delta'.
20376  */
adjust_jmp_off(struct bpf_prog * prog,u32 tgt_idx,u32 delta)20377 static int adjust_jmp_off(struct bpf_prog *prog, u32 tgt_idx, u32 delta)
20378 {
20379 	struct bpf_insn *insn = prog->insnsi;
20380 	u32 insn_cnt = prog->len, i;
20381 	s32 imm;
20382 	s16 off;
20383 
20384 	for (i = 0; i < insn_cnt; i++, insn++) {
20385 		u8 code = insn->code;
20386 
20387 		if (tgt_idx <= i && i < tgt_idx + delta)
20388 			continue;
20389 
20390 		if ((BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) ||
20391 		    BPF_OP(code) == BPF_CALL || BPF_OP(code) == BPF_EXIT)
20392 			continue;
20393 
20394 		if (insn->code == (BPF_JMP32 | BPF_JA)) {
20395 			if (i + 1 + insn->imm != tgt_idx)
20396 				continue;
20397 			if (check_add_overflow(insn->imm, delta, &imm))
20398 				return -ERANGE;
20399 			insn->imm = imm;
20400 		} else {
20401 			if (i + 1 + insn->off != tgt_idx)
20402 				continue;
20403 			if (check_add_overflow(insn->off, delta, &off))
20404 				return -ERANGE;
20405 			insn->off = off;
20406 		}
20407 	}
20408 	return 0;
20409 }
20410 
adjust_subprog_starts_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)20411 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
20412 					      u32 off, u32 cnt)
20413 {
20414 	int i, j;
20415 
20416 	/* find first prog starting at or after off (first to remove) */
20417 	for (i = 0; i < env->subprog_cnt; i++)
20418 		if (env->subprog_info[i].start >= off)
20419 			break;
20420 	/* find first prog starting at or after off + cnt (first to stay) */
20421 	for (j = i; j < env->subprog_cnt; j++)
20422 		if (env->subprog_info[j].start >= off + cnt)
20423 			break;
20424 	/* if j doesn't start exactly at off + cnt, we are just removing
20425 	 * the front of previous prog
20426 	 */
20427 	if (env->subprog_info[j].start != off + cnt)
20428 		j--;
20429 
20430 	if (j > i) {
20431 		struct bpf_prog_aux *aux = env->prog->aux;
20432 		int move;
20433 
20434 		/* move fake 'exit' subprog as well */
20435 		move = env->subprog_cnt + 1 - j;
20436 
20437 		memmove(env->subprog_info + i,
20438 			env->subprog_info + j,
20439 			sizeof(*env->subprog_info) * move);
20440 		env->subprog_cnt -= j - i;
20441 
20442 		/* remove func_info */
20443 		if (aux->func_info) {
20444 			move = aux->func_info_cnt - j;
20445 
20446 			memmove(aux->func_info + i,
20447 				aux->func_info + j,
20448 				sizeof(*aux->func_info) * move);
20449 			aux->func_info_cnt -= j - i;
20450 			/* func_info->insn_off is set after all code rewrites,
20451 			 * in adjust_btf_func() - no need to adjust
20452 			 */
20453 		}
20454 	} else {
20455 		/* convert i from "first prog to remove" to "first to adjust" */
20456 		if (env->subprog_info[i].start == off)
20457 			i++;
20458 	}
20459 
20460 	/* update fake 'exit' subprog as well */
20461 	for (; i <= env->subprog_cnt; i++)
20462 		env->subprog_info[i].start -= cnt;
20463 
20464 	return 0;
20465 }
20466 
bpf_adj_linfo_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)20467 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
20468 				      u32 cnt)
20469 {
20470 	struct bpf_prog *prog = env->prog;
20471 	u32 i, l_off, l_cnt, nr_linfo;
20472 	struct bpf_line_info *linfo;
20473 
20474 	nr_linfo = prog->aux->nr_linfo;
20475 	if (!nr_linfo)
20476 		return 0;
20477 
20478 	linfo = prog->aux->linfo;
20479 
20480 	/* find first line info to remove, count lines to be removed */
20481 	for (i = 0; i < nr_linfo; i++)
20482 		if (linfo[i].insn_off >= off)
20483 			break;
20484 
20485 	l_off = i;
20486 	l_cnt = 0;
20487 	for (; i < nr_linfo; i++)
20488 		if (linfo[i].insn_off < off + cnt)
20489 			l_cnt++;
20490 		else
20491 			break;
20492 
20493 	/* First live insn doesn't match first live linfo, it needs to "inherit"
20494 	 * last removed linfo.  prog is already modified, so prog->len == off
20495 	 * means no live instructions after (tail of the program was removed).
20496 	 */
20497 	if (prog->len != off && l_cnt &&
20498 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
20499 		l_cnt--;
20500 		linfo[--i].insn_off = off + cnt;
20501 	}
20502 
20503 	/* remove the line info which refer to the removed instructions */
20504 	if (l_cnt) {
20505 		memmove(linfo + l_off, linfo + i,
20506 			sizeof(*linfo) * (nr_linfo - i));
20507 
20508 		prog->aux->nr_linfo -= l_cnt;
20509 		nr_linfo = prog->aux->nr_linfo;
20510 	}
20511 
20512 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
20513 	for (i = l_off; i < nr_linfo; i++)
20514 		linfo[i].insn_off -= cnt;
20515 
20516 	/* fix up all subprogs (incl. 'exit') which start >= off */
20517 	for (i = 0; i <= env->subprog_cnt; i++)
20518 		if (env->subprog_info[i].linfo_idx > l_off) {
20519 			/* program may have started in the removed region but
20520 			 * may not be fully removed
20521 			 */
20522 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
20523 				env->subprog_info[i].linfo_idx -= l_cnt;
20524 			else
20525 				env->subprog_info[i].linfo_idx = l_off;
20526 		}
20527 
20528 	return 0;
20529 }
20530 
verifier_remove_insns(struct bpf_verifier_env * env,u32 off,u32 cnt)20531 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
20532 {
20533 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
20534 	unsigned int orig_prog_len = env->prog->len;
20535 	int err;
20536 
20537 	if (bpf_prog_is_offloaded(env->prog->aux))
20538 		bpf_prog_offload_remove_insns(env, off, cnt);
20539 
20540 	err = bpf_remove_insns(env->prog, off, cnt);
20541 	if (err)
20542 		return err;
20543 
20544 	err = adjust_subprog_starts_after_remove(env, off, cnt);
20545 	if (err)
20546 		return err;
20547 
20548 	err = bpf_adj_linfo_after_remove(env, off, cnt);
20549 	if (err)
20550 		return err;
20551 
20552 	memmove(aux_data + off,	aux_data + off + cnt,
20553 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
20554 
20555 	return 0;
20556 }
20557 
20558 /* The verifier does more data flow analysis than llvm and will not
20559  * explore branches that are dead at run time. Malicious programs can
20560  * have dead code too. Therefore replace all dead at-run-time code
20561  * with 'ja -1'.
20562  *
20563  * Just nops are not optimal, e.g. if they would sit at the end of the
20564  * program and through another bug we would manage to jump there, then
20565  * we'd execute beyond program memory otherwise. Returning exception
20566  * code also wouldn't work since we can have subprogs where the dead
20567  * code could be located.
20568  */
sanitize_dead_code(struct bpf_verifier_env * env)20569 static void sanitize_dead_code(struct bpf_verifier_env *env)
20570 {
20571 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
20572 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
20573 	struct bpf_insn *insn = env->prog->insnsi;
20574 	const int insn_cnt = env->prog->len;
20575 	int i;
20576 
20577 	for (i = 0; i < insn_cnt; i++) {
20578 		if (aux_data[i].seen)
20579 			continue;
20580 		memcpy(insn + i, &trap, sizeof(trap));
20581 		aux_data[i].zext_dst = false;
20582 	}
20583 }
20584 
insn_is_cond_jump(u8 code)20585 static bool insn_is_cond_jump(u8 code)
20586 {
20587 	u8 op;
20588 
20589 	op = BPF_OP(code);
20590 	if (BPF_CLASS(code) == BPF_JMP32)
20591 		return op != BPF_JA;
20592 
20593 	if (BPF_CLASS(code) != BPF_JMP)
20594 		return false;
20595 
20596 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
20597 }
20598 
opt_hard_wire_dead_code_branches(struct bpf_verifier_env * env)20599 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
20600 {
20601 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
20602 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
20603 	struct bpf_insn *insn = env->prog->insnsi;
20604 	const int insn_cnt = env->prog->len;
20605 	int i;
20606 
20607 	for (i = 0; i < insn_cnt; i++, insn++) {
20608 		if (!insn_is_cond_jump(insn->code))
20609 			continue;
20610 
20611 		if (!aux_data[i + 1].seen)
20612 			ja.off = insn->off;
20613 		else if (!aux_data[i + 1 + insn->off].seen)
20614 			ja.off = 0;
20615 		else
20616 			continue;
20617 
20618 		if (bpf_prog_is_offloaded(env->prog->aux))
20619 			bpf_prog_offload_replace_insn(env, i, &ja);
20620 
20621 		memcpy(insn, &ja, sizeof(ja));
20622 	}
20623 }
20624 
opt_remove_dead_code(struct bpf_verifier_env * env)20625 static int opt_remove_dead_code(struct bpf_verifier_env *env)
20626 {
20627 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
20628 	int insn_cnt = env->prog->len;
20629 	int i, err;
20630 
20631 	for (i = 0; i < insn_cnt; i++) {
20632 		int j;
20633 
20634 		j = 0;
20635 		while (i + j < insn_cnt && !aux_data[i + j].seen)
20636 			j++;
20637 		if (!j)
20638 			continue;
20639 
20640 		err = verifier_remove_insns(env, i, j);
20641 		if (err)
20642 			return err;
20643 		insn_cnt = env->prog->len;
20644 	}
20645 
20646 	return 0;
20647 }
20648 
20649 static const struct bpf_insn NOP = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
20650 static const struct bpf_insn MAY_GOTO_0 = BPF_RAW_INSN(BPF_JMP | BPF_JCOND, 0, 0, 0, 0);
20651 
opt_remove_nops(struct bpf_verifier_env * env)20652 static int opt_remove_nops(struct bpf_verifier_env *env)
20653 {
20654 	struct bpf_insn *insn = env->prog->insnsi;
20655 	int insn_cnt = env->prog->len;
20656 	bool is_may_goto_0, is_ja;
20657 	int i, err;
20658 
20659 	for (i = 0; i < insn_cnt; i++) {
20660 		is_may_goto_0 = !memcmp(&insn[i], &MAY_GOTO_0, sizeof(MAY_GOTO_0));
20661 		is_ja = !memcmp(&insn[i], &NOP, sizeof(NOP));
20662 
20663 		if (!is_may_goto_0 && !is_ja)
20664 			continue;
20665 
20666 		err = verifier_remove_insns(env, i, 1);
20667 		if (err)
20668 			return err;
20669 		insn_cnt--;
20670 		/* Go back one insn to catch may_goto +1; may_goto +0 sequence */
20671 		i -= (is_may_goto_0 && i > 0) ? 2 : 1;
20672 	}
20673 
20674 	return 0;
20675 }
20676 
opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env * env,const union bpf_attr * attr)20677 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
20678 					 const union bpf_attr *attr)
20679 {
20680 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
20681 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
20682 	int i, patch_len, delta = 0, len = env->prog->len;
20683 	struct bpf_insn *insns = env->prog->insnsi;
20684 	struct bpf_prog *new_prog;
20685 	bool rnd_hi32;
20686 
20687 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
20688 	zext_patch[1] = BPF_ZEXT_REG(0);
20689 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
20690 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
20691 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
20692 	for (i = 0; i < len; i++) {
20693 		int adj_idx = i + delta;
20694 		struct bpf_insn insn;
20695 		int load_reg;
20696 
20697 		insn = insns[adj_idx];
20698 		load_reg = insn_def_regno(&insn);
20699 		if (!aux[adj_idx].zext_dst) {
20700 			u8 code, class;
20701 			u32 imm_rnd;
20702 
20703 			if (!rnd_hi32)
20704 				continue;
20705 
20706 			code = insn.code;
20707 			class = BPF_CLASS(code);
20708 			if (load_reg == -1)
20709 				continue;
20710 
20711 			/* NOTE: arg "reg" (the fourth one) is only used for
20712 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
20713 			 *       here.
20714 			 */
20715 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
20716 				if (class == BPF_LD &&
20717 				    BPF_MODE(code) == BPF_IMM)
20718 					i++;
20719 				continue;
20720 			}
20721 
20722 			/* ctx load could be transformed into wider load. */
20723 			if (class == BPF_LDX &&
20724 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
20725 				continue;
20726 
20727 			imm_rnd = get_random_u32();
20728 			rnd_hi32_patch[0] = insn;
20729 			rnd_hi32_patch[1].imm = imm_rnd;
20730 			rnd_hi32_patch[3].dst_reg = load_reg;
20731 			patch = rnd_hi32_patch;
20732 			patch_len = 4;
20733 			goto apply_patch_buffer;
20734 		}
20735 
20736 		/* Add in an zero-extend instruction if a) the JIT has requested
20737 		 * it or b) it's a CMPXCHG.
20738 		 *
20739 		 * The latter is because: BPF_CMPXCHG always loads a value into
20740 		 * R0, therefore always zero-extends. However some archs'
20741 		 * equivalent instruction only does this load when the
20742 		 * comparison is successful. This detail of CMPXCHG is
20743 		 * orthogonal to the general zero-extension behaviour of the
20744 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
20745 		 */
20746 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
20747 			continue;
20748 
20749 		/* Zero-extension is done by the caller. */
20750 		if (bpf_pseudo_kfunc_call(&insn))
20751 			continue;
20752 
20753 		if (verifier_bug_if(load_reg == -1, env,
20754 				    "zext_dst is set, but no reg is defined"))
20755 			return -EFAULT;
20756 
20757 		zext_patch[0] = insn;
20758 		zext_patch[1].dst_reg = load_reg;
20759 		zext_patch[1].src_reg = load_reg;
20760 		patch = zext_patch;
20761 		patch_len = 2;
20762 apply_patch_buffer:
20763 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
20764 		if (!new_prog)
20765 			return -ENOMEM;
20766 		env->prog = new_prog;
20767 		insns = new_prog->insnsi;
20768 		aux = env->insn_aux_data;
20769 		delta += patch_len - 1;
20770 	}
20771 
20772 	return 0;
20773 }
20774 
20775 /* convert load instructions that access fields of a context type into a
20776  * sequence of instructions that access fields of the underlying structure:
20777  *     struct __sk_buff    -> struct sk_buff
20778  *     struct bpf_sock_ops -> struct sock
20779  */
convert_ctx_accesses(struct bpf_verifier_env * env)20780 static int convert_ctx_accesses(struct bpf_verifier_env *env)
20781 {
20782 	struct bpf_subprog_info *subprogs = env->subprog_info;
20783 	const struct bpf_verifier_ops *ops = env->ops;
20784 	int i, cnt, size, ctx_field_size, ret, delta = 0, epilogue_cnt = 0;
20785 	const int insn_cnt = env->prog->len;
20786 	struct bpf_insn *epilogue_buf = env->epilogue_buf;
20787 	struct bpf_insn *insn_buf = env->insn_buf;
20788 	struct bpf_insn *insn;
20789 	u32 target_size, size_default, off;
20790 	struct bpf_prog *new_prog;
20791 	enum bpf_access_type type;
20792 	bool is_narrower_load;
20793 	int epilogue_idx = 0;
20794 
20795 	if (ops->gen_epilogue) {
20796 		epilogue_cnt = ops->gen_epilogue(epilogue_buf, env->prog,
20797 						 -(subprogs[0].stack_depth + 8));
20798 		if (epilogue_cnt >= INSN_BUF_SIZE) {
20799 			verbose(env, "bpf verifier is misconfigured\n");
20800 			return -EINVAL;
20801 		} else if (epilogue_cnt) {
20802 			/* Save the ARG_PTR_TO_CTX for the epilogue to use */
20803 			cnt = 0;
20804 			subprogs[0].stack_depth += 8;
20805 			insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_1,
20806 						      -subprogs[0].stack_depth);
20807 			insn_buf[cnt++] = env->prog->insnsi[0];
20808 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
20809 			if (!new_prog)
20810 				return -ENOMEM;
20811 			env->prog = new_prog;
20812 			delta += cnt - 1;
20813 
20814 			ret = add_kfunc_in_insns(env, epilogue_buf, epilogue_cnt - 1);
20815 			if (ret < 0)
20816 				return ret;
20817 		}
20818 	}
20819 
20820 	if (ops->gen_prologue || env->seen_direct_write) {
20821 		if (!ops->gen_prologue) {
20822 			verbose(env, "bpf verifier is misconfigured\n");
20823 			return -EINVAL;
20824 		}
20825 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
20826 					env->prog);
20827 		if (cnt >= INSN_BUF_SIZE) {
20828 			verbose(env, "bpf verifier is misconfigured\n");
20829 			return -EINVAL;
20830 		} else if (cnt) {
20831 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
20832 			if (!new_prog)
20833 				return -ENOMEM;
20834 
20835 			env->prog = new_prog;
20836 			delta += cnt - 1;
20837 
20838 			ret = add_kfunc_in_insns(env, insn_buf, cnt - 1);
20839 			if (ret < 0)
20840 				return ret;
20841 		}
20842 	}
20843 
20844 	if (delta)
20845 		WARN_ON(adjust_jmp_off(env->prog, 0, delta));
20846 
20847 	if (bpf_prog_is_offloaded(env->prog->aux))
20848 		return 0;
20849 
20850 	insn = env->prog->insnsi + delta;
20851 
20852 	for (i = 0; i < insn_cnt; i++, insn++) {
20853 		bpf_convert_ctx_access_t convert_ctx_access;
20854 		u8 mode;
20855 
20856 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
20857 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
20858 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
20859 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
20860 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
20861 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
20862 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
20863 			type = BPF_READ;
20864 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
20865 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
20866 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
20867 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
20868 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
20869 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
20870 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
20871 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
20872 			type = BPF_WRITE;
20873 		} else if ((insn->code == (BPF_STX | BPF_ATOMIC | BPF_B) ||
20874 			    insn->code == (BPF_STX | BPF_ATOMIC | BPF_H) ||
20875 			    insn->code == (BPF_STX | BPF_ATOMIC | BPF_W) ||
20876 			    insn->code == (BPF_STX | BPF_ATOMIC | BPF_DW)) &&
20877 			   env->insn_aux_data[i + delta].ptr_type == PTR_TO_ARENA) {
20878 			insn->code = BPF_STX | BPF_PROBE_ATOMIC | BPF_SIZE(insn->code);
20879 			env->prog->aux->num_exentries++;
20880 			continue;
20881 		} else if (insn->code == (BPF_JMP | BPF_EXIT) &&
20882 			   epilogue_cnt &&
20883 			   i + delta < subprogs[1].start) {
20884 			/* Generate epilogue for the main prog */
20885 			if (epilogue_idx) {
20886 				/* jump back to the earlier generated epilogue */
20887 				insn_buf[0] = BPF_JMP32_A(epilogue_idx - i - delta - 1);
20888 				cnt = 1;
20889 			} else {
20890 				memcpy(insn_buf, epilogue_buf,
20891 				       epilogue_cnt * sizeof(*epilogue_buf));
20892 				cnt = epilogue_cnt;
20893 				/* epilogue_idx cannot be 0. It must have at
20894 				 * least one ctx ptr saving insn before the
20895 				 * epilogue.
20896 				 */
20897 				epilogue_idx = i + delta;
20898 			}
20899 			goto patch_insn_buf;
20900 		} else {
20901 			continue;
20902 		}
20903 
20904 		if (type == BPF_WRITE &&
20905 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
20906 			struct bpf_insn patch[] = {
20907 				*insn,
20908 				BPF_ST_NOSPEC(),
20909 			};
20910 
20911 			cnt = ARRAY_SIZE(patch);
20912 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
20913 			if (!new_prog)
20914 				return -ENOMEM;
20915 
20916 			delta    += cnt - 1;
20917 			env->prog = new_prog;
20918 			insn      = new_prog->insnsi + i + delta;
20919 			continue;
20920 		}
20921 
20922 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
20923 		case PTR_TO_CTX:
20924 			if (!ops->convert_ctx_access)
20925 				continue;
20926 			convert_ctx_access = ops->convert_ctx_access;
20927 			break;
20928 		case PTR_TO_SOCKET:
20929 		case PTR_TO_SOCK_COMMON:
20930 			convert_ctx_access = bpf_sock_convert_ctx_access;
20931 			break;
20932 		case PTR_TO_TCP_SOCK:
20933 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
20934 			break;
20935 		case PTR_TO_XDP_SOCK:
20936 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
20937 			break;
20938 		case PTR_TO_BTF_ID:
20939 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
20940 		/* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
20941 		 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
20942 		 * be said once it is marked PTR_UNTRUSTED, hence we must handle
20943 		 * any faults for loads into such types. BPF_WRITE is disallowed
20944 		 * for this case.
20945 		 */
20946 		case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
20947 			if (type == BPF_READ) {
20948 				if (BPF_MODE(insn->code) == BPF_MEM)
20949 					insn->code = BPF_LDX | BPF_PROBE_MEM |
20950 						     BPF_SIZE((insn)->code);
20951 				else
20952 					insn->code = BPF_LDX | BPF_PROBE_MEMSX |
20953 						     BPF_SIZE((insn)->code);
20954 				env->prog->aux->num_exentries++;
20955 			}
20956 			continue;
20957 		case PTR_TO_ARENA:
20958 			if (BPF_MODE(insn->code) == BPF_MEMSX) {
20959 				verbose(env, "sign extending loads from arena are not supported yet\n");
20960 				return -EOPNOTSUPP;
20961 			}
20962 			insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32 | BPF_SIZE(insn->code);
20963 			env->prog->aux->num_exentries++;
20964 			continue;
20965 		default:
20966 			continue;
20967 		}
20968 
20969 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
20970 		size = BPF_LDST_BYTES(insn);
20971 		mode = BPF_MODE(insn->code);
20972 
20973 		/* If the read access is a narrower load of the field,
20974 		 * convert to a 4/8-byte load, to minimum program type specific
20975 		 * convert_ctx_access changes. If conversion is successful,
20976 		 * we will apply proper mask to the result.
20977 		 */
20978 		is_narrower_load = size < ctx_field_size;
20979 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
20980 		off = insn->off;
20981 		if (is_narrower_load) {
20982 			u8 size_code;
20983 
20984 			if (type == BPF_WRITE) {
20985 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
20986 				return -EINVAL;
20987 			}
20988 
20989 			size_code = BPF_H;
20990 			if (ctx_field_size == 4)
20991 				size_code = BPF_W;
20992 			else if (ctx_field_size == 8)
20993 				size_code = BPF_DW;
20994 
20995 			insn->off = off & ~(size_default - 1);
20996 			insn->code = BPF_LDX | BPF_MEM | size_code;
20997 		}
20998 
20999 		target_size = 0;
21000 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
21001 					 &target_size);
21002 		if (cnt == 0 || cnt >= INSN_BUF_SIZE ||
21003 		    (ctx_field_size && !target_size)) {
21004 			verbose(env, "bpf verifier is misconfigured\n");
21005 			return -EINVAL;
21006 		}
21007 
21008 		if (is_narrower_load && size < target_size) {
21009 			u8 shift = bpf_ctx_narrow_access_offset(
21010 				off, size, size_default) * 8;
21011 			if (shift && cnt + 1 >= INSN_BUF_SIZE) {
21012 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
21013 				return -EINVAL;
21014 			}
21015 			if (ctx_field_size <= 4) {
21016 				if (shift)
21017 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
21018 									insn->dst_reg,
21019 									shift);
21020 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
21021 								(1 << size * 8) - 1);
21022 			} else {
21023 				if (shift)
21024 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
21025 									insn->dst_reg,
21026 									shift);
21027 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
21028 								(1ULL << size * 8) - 1);
21029 			}
21030 		}
21031 		if (mode == BPF_MEMSX)
21032 			insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
21033 						       insn->dst_reg, insn->dst_reg,
21034 						       size * 8, 0);
21035 
21036 patch_insn_buf:
21037 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21038 		if (!new_prog)
21039 			return -ENOMEM;
21040 
21041 		delta += cnt - 1;
21042 
21043 		/* keep walking new program and skip insns we just inserted */
21044 		env->prog = new_prog;
21045 		insn      = new_prog->insnsi + i + delta;
21046 	}
21047 
21048 	return 0;
21049 }
21050 
jit_subprogs(struct bpf_verifier_env * env)21051 static int jit_subprogs(struct bpf_verifier_env *env)
21052 {
21053 	struct bpf_prog *prog = env->prog, **func, *tmp;
21054 	int i, j, subprog_start, subprog_end = 0, len, subprog;
21055 	struct bpf_map *map_ptr;
21056 	struct bpf_insn *insn;
21057 	void *old_bpf_func;
21058 	int err, num_exentries;
21059 
21060 	if (env->subprog_cnt <= 1)
21061 		return 0;
21062 
21063 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
21064 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
21065 			continue;
21066 
21067 		/* Upon error here we cannot fall back to interpreter but
21068 		 * need a hard reject of the program. Thus -EFAULT is
21069 		 * propagated in any case.
21070 		 */
21071 		subprog = find_subprog(env, i + insn->imm + 1);
21072 		if (verifier_bug_if(subprog < 0, env, "No program to jit at insn %d",
21073 				    i + insn->imm + 1))
21074 			return -EFAULT;
21075 		/* temporarily remember subprog id inside insn instead of
21076 		 * aux_data, since next loop will split up all insns into funcs
21077 		 */
21078 		insn->off = subprog;
21079 		/* remember original imm in case JIT fails and fallback
21080 		 * to interpreter will be needed
21081 		 */
21082 		env->insn_aux_data[i].call_imm = insn->imm;
21083 		/* point imm to __bpf_call_base+1 from JITs point of view */
21084 		insn->imm = 1;
21085 		if (bpf_pseudo_func(insn)) {
21086 #if defined(MODULES_VADDR)
21087 			u64 addr = MODULES_VADDR;
21088 #else
21089 			u64 addr = VMALLOC_START;
21090 #endif
21091 			/* jit (e.g. x86_64) may emit fewer instructions
21092 			 * if it learns a u32 imm is the same as a u64 imm.
21093 			 * Set close enough to possible prog address.
21094 			 */
21095 			insn[0].imm = (u32)addr;
21096 			insn[1].imm = addr >> 32;
21097 		}
21098 	}
21099 
21100 	err = bpf_prog_alloc_jited_linfo(prog);
21101 	if (err)
21102 		goto out_undo_insn;
21103 
21104 	err = -ENOMEM;
21105 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
21106 	if (!func)
21107 		goto out_undo_insn;
21108 
21109 	for (i = 0; i < env->subprog_cnt; i++) {
21110 		subprog_start = subprog_end;
21111 		subprog_end = env->subprog_info[i + 1].start;
21112 
21113 		len = subprog_end - subprog_start;
21114 		/* bpf_prog_run() doesn't call subprogs directly,
21115 		 * hence main prog stats include the runtime of subprogs.
21116 		 * subprogs don't have IDs and not reachable via prog_get_next_id
21117 		 * func[i]->stats will never be accessed and stays NULL
21118 		 */
21119 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
21120 		if (!func[i])
21121 			goto out_free;
21122 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
21123 		       len * sizeof(struct bpf_insn));
21124 		func[i]->type = prog->type;
21125 		func[i]->len = len;
21126 		if (bpf_prog_calc_tag(func[i]))
21127 			goto out_free;
21128 		func[i]->is_func = 1;
21129 		func[i]->sleepable = prog->sleepable;
21130 		func[i]->aux->func_idx = i;
21131 		/* Below members will be freed only at prog->aux */
21132 		func[i]->aux->btf = prog->aux->btf;
21133 		func[i]->aux->func_info = prog->aux->func_info;
21134 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
21135 		func[i]->aux->poke_tab = prog->aux->poke_tab;
21136 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
21137 
21138 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
21139 			struct bpf_jit_poke_descriptor *poke;
21140 
21141 			poke = &prog->aux->poke_tab[j];
21142 			if (poke->insn_idx < subprog_end &&
21143 			    poke->insn_idx >= subprog_start)
21144 				poke->aux = func[i]->aux;
21145 		}
21146 
21147 		func[i]->aux->name[0] = 'F';
21148 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
21149 		if (env->subprog_info[i].priv_stack_mode == PRIV_STACK_ADAPTIVE)
21150 			func[i]->aux->jits_use_priv_stack = true;
21151 
21152 		func[i]->jit_requested = 1;
21153 		func[i]->blinding_requested = prog->blinding_requested;
21154 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
21155 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
21156 		func[i]->aux->linfo = prog->aux->linfo;
21157 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
21158 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
21159 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
21160 		func[i]->aux->arena = prog->aux->arena;
21161 		num_exentries = 0;
21162 		insn = func[i]->insnsi;
21163 		for (j = 0; j < func[i]->len; j++, insn++) {
21164 			if (BPF_CLASS(insn->code) == BPF_LDX &&
21165 			    (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
21166 			     BPF_MODE(insn->code) == BPF_PROBE_MEM32 ||
21167 			     BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
21168 				num_exentries++;
21169 			if ((BPF_CLASS(insn->code) == BPF_STX ||
21170 			     BPF_CLASS(insn->code) == BPF_ST) &&
21171 			     BPF_MODE(insn->code) == BPF_PROBE_MEM32)
21172 				num_exentries++;
21173 			if (BPF_CLASS(insn->code) == BPF_STX &&
21174 			     BPF_MODE(insn->code) == BPF_PROBE_ATOMIC)
21175 				num_exentries++;
21176 		}
21177 		func[i]->aux->num_exentries = num_exentries;
21178 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
21179 		func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb;
21180 		func[i]->aux->changes_pkt_data = env->subprog_info[i].changes_pkt_data;
21181 		func[i]->aux->might_sleep = env->subprog_info[i].might_sleep;
21182 		if (!i)
21183 			func[i]->aux->exception_boundary = env->seen_exception;
21184 		func[i] = bpf_int_jit_compile(func[i]);
21185 		if (!func[i]->jited) {
21186 			err = -ENOTSUPP;
21187 			goto out_free;
21188 		}
21189 		cond_resched();
21190 	}
21191 
21192 	/* at this point all bpf functions were successfully JITed
21193 	 * now populate all bpf_calls with correct addresses and
21194 	 * run last pass of JIT
21195 	 */
21196 	for (i = 0; i < env->subprog_cnt; i++) {
21197 		insn = func[i]->insnsi;
21198 		for (j = 0; j < func[i]->len; j++, insn++) {
21199 			if (bpf_pseudo_func(insn)) {
21200 				subprog = insn->off;
21201 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
21202 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
21203 				continue;
21204 			}
21205 			if (!bpf_pseudo_call(insn))
21206 				continue;
21207 			subprog = insn->off;
21208 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
21209 		}
21210 
21211 		/* we use the aux data to keep a list of the start addresses
21212 		 * of the JITed images for each function in the program
21213 		 *
21214 		 * for some architectures, such as powerpc64, the imm field
21215 		 * might not be large enough to hold the offset of the start
21216 		 * address of the callee's JITed image from __bpf_call_base
21217 		 *
21218 		 * in such cases, we can lookup the start address of a callee
21219 		 * by using its subprog id, available from the off field of
21220 		 * the call instruction, as an index for this list
21221 		 */
21222 		func[i]->aux->func = func;
21223 		func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
21224 		func[i]->aux->real_func_cnt = env->subprog_cnt;
21225 	}
21226 	for (i = 0; i < env->subprog_cnt; i++) {
21227 		old_bpf_func = func[i]->bpf_func;
21228 		tmp = bpf_int_jit_compile(func[i]);
21229 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
21230 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
21231 			err = -ENOTSUPP;
21232 			goto out_free;
21233 		}
21234 		cond_resched();
21235 	}
21236 
21237 	/* finally lock prog and jit images for all functions and
21238 	 * populate kallsysm. Begin at the first subprogram, since
21239 	 * bpf_prog_load will add the kallsyms for the main program.
21240 	 */
21241 	for (i = 1; i < env->subprog_cnt; i++) {
21242 		err = bpf_prog_lock_ro(func[i]);
21243 		if (err)
21244 			goto out_free;
21245 	}
21246 
21247 	for (i = 1; i < env->subprog_cnt; i++)
21248 		bpf_prog_kallsyms_add(func[i]);
21249 
21250 	/* Last step: make now unused interpreter insns from main
21251 	 * prog consistent for later dump requests, so they can
21252 	 * later look the same as if they were interpreted only.
21253 	 */
21254 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
21255 		if (bpf_pseudo_func(insn)) {
21256 			insn[0].imm = env->insn_aux_data[i].call_imm;
21257 			insn[1].imm = insn->off;
21258 			insn->off = 0;
21259 			continue;
21260 		}
21261 		if (!bpf_pseudo_call(insn))
21262 			continue;
21263 		insn->off = env->insn_aux_data[i].call_imm;
21264 		subprog = find_subprog(env, i + insn->off + 1);
21265 		insn->imm = subprog;
21266 	}
21267 
21268 	prog->jited = 1;
21269 	prog->bpf_func = func[0]->bpf_func;
21270 	prog->jited_len = func[0]->jited_len;
21271 	prog->aux->extable = func[0]->aux->extable;
21272 	prog->aux->num_exentries = func[0]->aux->num_exentries;
21273 	prog->aux->func = func;
21274 	prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
21275 	prog->aux->real_func_cnt = env->subprog_cnt;
21276 	prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func;
21277 	prog->aux->exception_boundary = func[0]->aux->exception_boundary;
21278 	bpf_prog_jit_attempt_done(prog);
21279 	return 0;
21280 out_free:
21281 	/* We failed JIT'ing, so at this point we need to unregister poke
21282 	 * descriptors from subprogs, so that kernel is not attempting to
21283 	 * patch it anymore as we're freeing the subprog JIT memory.
21284 	 */
21285 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
21286 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
21287 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
21288 	}
21289 	/* At this point we're guaranteed that poke descriptors are not
21290 	 * live anymore. We can just unlink its descriptor table as it's
21291 	 * released with the main prog.
21292 	 */
21293 	for (i = 0; i < env->subprog_cnt; i++) {
21294 		if (!func[i])
21295 			continue;
21296 		func[i]->aux->poke_tab = NULL;
21297 		bpf_jit_free(func[i]);
21298 	}
21299 	kfree(func);
21300 out_undo_insn:
21301 	/* cleanup main prog to be interpreted */
21302 	prog->jit_requested = 0;
21303 	prog->blinding_requested = 0;
21304 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
21305 		if (!bpf_pseudo_call(insn))
21306 			continue;
21307 		insn->off = 0;
21308 		insn->imm = env->insn_aux_data[i].call_imm;
21309 	}
21310 	bpf_prog_jit_attempt_done(prog);
21311 	return err;
21312 }
21313 
fixup_call_args(struct bpf_verifier_env * env)21314 static int fixup_call_args(struct bpf_verifier_env *env)
21315 {
21316 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
21317 	struct bpf_prog *prog = env->prog;
21318 	struct bpf_insn *insn = prog->insnsi;
21319 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
21320 	int i, depth;
21321 #endif
21322 	int err = 0;
21323 
21324 	if (env->prog->jit_requested &&
21325 	    !bpf_prog_is_offloaded(env->prog->aux)) {
21326 		err = jit_subprogs(env);
21327 		if (err == 0)
21328 			return 0;
21329 		if (err == -EFAULT)
21330 			return err;
21331 	}
21332 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
21333 	if (has_kfunc_call) {
21334 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
21335 		return -EINVAL;
21336 	}
21337 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
21338 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
21339 		 * have to be rejected, since interpreter doesn't support them yet.
21340 		 */
21341 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
21342 		return -EINVAL;
21343 	}
21344 	for (i = 0; i < prog->len; i++, insn++) {
21345 		if (bpf_pseudo_func(insn)) {
21346 			/* When JIT fails the progs with callback calls
21347 			 * have to be rejected, since interpreter doesn't support them yet.
21348 			 */
21349 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
21350 			return -EINVAL;
21351 		}
21352 
21353 		if (!bpf_pseudo_call(insn))
21354 			continue;
21355 		depth = get_callee_stack_depth(env, insn, i);
21356 		if (depth < 0)
21357 			return depth;
21358 		bpf_patch_call_args(insn, depth);
21359 	}
21360 	err = 0;
21361 #endif
21362 	return err;
21363 }
21364 
21365 /* replace a generic kfunc with a specialized version if necessary */
specialize_kfunc(struct bpf_verifier_env * env,u32 func_id,u16 offset,unsigned long * addr)21366 static void specialize_kfunc(struct bpf_verifier_env *env,
21367 			     u32 func_id, u16 offset, unsigned long *addr)
21368 {
21369 	struct bpf_prog *prog = env->prog;
21370 	bool seen_direct_write;
21371 	void *xdp_kfunc;
21372 	bool is_rdonly;
21373 
21374 	if (bpf_dev_bound_kfunc_id(func_id)) {
21375 		xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
21376 		if (xdp_kfunc) {
21377 			*addr = (unsigned long)xdp_kfunc;
21378 			return;
21379 		}
21380 		/* fallback to default kfunc when not supported by netdev */
21381 	}
21382 
21383 	if (offset)
21384 		return;
21385 
21386 	if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
21387 		seen_direct_write = env->seen_direct_write;
21388 		is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
21389 
21390 		if (is_rdonly)
21391 			*addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
21392 
21393 		/* restore env->seen_direct_write to its original value, since
21394 		 * may_access_direct_pkt_data mutates it
21395 		 */
21396 		env->seen_direct_write = seen_direct_write;
21397 	}
21398 
21399 	if (func_id == special_kfunc_list[KF_bpf_set_dentry_xattr] &&
21400 	    bpf_lsm_has_d_inode_locked(prog))
21401 		*addr = (unsigned long)bpf_set_dentry_xattr_locked;
21402 
21403 	if (func_id == special_kfunc_list[KF_bpf_remove_dentry_xattr] &&
21404 	    bpf_lsm_has_d_inode_locked(prog))
21405 		*addr = (unsigned long)bpf_remove_dentry_xattr_locked;
21406 }
21407 
__fixup_collection_insert_kfunc(struct bpf_insn_aux_data * insn_aux,u16 struct_meta_reg,u16 node_offset_reg,struct bpf_insn * insn,struct bpf_insn * insn_buf,int * cnt)21408 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
21409 					    u16 struct_meta_reg,
21410 					    u16 node_offset_reg,
21411 					    struct bpf_insn *insn,
21412 					    struct bpf_insn *insn_buf,
21413 					    int *cnt)
21414 {
21415 	struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
21416 	struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
21417 
21418 	insn_buf[0] = addr[0];
21419 	insn_buf[1] = addr[1];
21420 	insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
21421 	insn_buf[3] = *insn;
21422 	*cnt = 4;
21423 }
21424 
fixup_kfunc_call(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_insn * insn_buf,int insn_idx,int * cnt)21425 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
21426 			    struct bpf_insn *insn_buf, int insn_idx, int *cnt)
21427 {
21428 	const struct bpf_kfunc_desc *desc;
21429 
21430 	if (!insn->imm) {
21431 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
21432 		return -EINVAL;
21433 	}
21434 
21435 	*cnt = 0;
21436 
21437 	/* insn->imm has the btf func_id. Replace it with an offset relative to
21438 	 * __bpf_call_base, unless the JIT needs to call functions that are
21439 	 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
21440 	 */
21441 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
21442 	if (!desc) {
21443 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
21444 			insn->imm);
21445 		return -EFAULT;
21446 	}
21447 
21448 	if (!bpf_jit_supports_far_kfunc_call())
21449 		insn->imm = BPF_CALL_IMM(desc->addr);
21450 	if (insn->off)
21451 		return 0;
21452 	if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
21453 	    desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
21454 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
21455 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
21456 		u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
21457 
21458 		if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) {
21459 			verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
21460 				insn_idx);
21461 			return -EFAULT;
21462 		}
21463 
21464 		insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
21465 		insn_buf[1] = addr[0];
21466 		insn_buf[2] = addr[1];
21467 		insn_buf[3] = *insn;
21468 		*cnt = 4;
21469 	} else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
21470 		   desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] ||
21471 		   desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
21472 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
21473 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
21474 
21475 		if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) {
21476 			verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
21477 				insn_idx);
21478 			return -EFAULT;
21479 		}
21480 
21481 		if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
21482 		    !kptr_struct_meta) {
21483 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
21484 				insn_idx);
21485 			return -EFAULT;
21486 		}
21487 
21488 		insn_buf[0] = addr[0];
21489 		insn_buf[1] = addr[1];
21490 		insn_buf[2] = *insn;
21491 		*cnt = 3;
21492 	} else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
21493 		   desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
21494 		   desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
21495 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
21496 		int struct_meta_reg = BPF_REG_3;
21497 		int node_offset_reg = BPF_REG_4;
21498 
21499 		/* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
21500 		if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
21501 			struct_meta_reg = BPF_REG_4;
21502 			node_offset_reg = BPF_REG_5;
21503 		}
21504 
21505 		if (!kptr_struct_meta) {
21506 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
21507 				insn_idx);
21508 			return -EFAULT;
21509 		}
21510 
21511 		__fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
21512 						node_offset_reg, insn, insn_buf, cnt);
21513 	} else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
21514 		   desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
21515 		insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
21516 		*cnt = 1;
21517 	}
21518 
21519 	if (env->insn_aux_data[insn_idx].arg_prog) {
21520 		u32 regno = env->insn_aux_data[insn_idx].arg_prog;
21521 		struct bpf_insn ld_addrs[2] = { BPF_LD_IMM64(regno, (long)env->prog->aux) };
21522 		int idx = *cnt;
21523 
21524 		insn_buf[idx++] = ld_addrs[0];
21525 		insn_buf[idx++] = ld_addrs[1];
21526 		insn_buf[idx++] = *insn;
21527 		*cnt = idx;
21528 	}
21529 	return 0;
21530 }
21531 
21532 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */
add_hidden_subprog(struct bpf_verifier_env * env,struct bpf_insn * patch,int len)21533 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len)
21534 {
21535 	struct bpf_subprog_info *info = env->subprog_info;
21536 	int cnt = env->subprog_cnt;
21537 	struct bpf_prog *prog;
21538 
21539 	/* We only reserve one slot for hidden subprogs in subprog_info. */
21540 	if (env->hidden_subprog_cnt) {
21541 		verbose(env, "verifier internal error: only one hidden subprog supported\n");
21542 		return -EFAULT;
21543 	}
21544 	/* We're not patching any existing instruction, just appending the new
21545 	 * ones for the hidden subprog. Hence all of the adjustment operations
21546 	 * in bpf_patch_insn_data are no-ops.
21547 	 */
21548 	prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len);
21549 	if (!prog)
21550 		return -ENOMEM;
21551 	env->prog = prog;
21552 	info[cnt + 1].start = info[cnt].start;
21553 	info[cnt].start = prog->len - len + 1;
21554 	env->subprog_cnt++;
21555 	env->hidden_subprog_cnt++;
21556 	return 0;
21557 }
21558 
21559 /* Do various post-verification rewrites in a single program pass.
21560  * These rewrites simplify JIT and interpreter implementations.
21561  */
do_misc_fixups(struct bpf_verifier_env * env)21562 static int do_misc_fixups(struct bpf_verifier_env *env)
21563 {
21564 	struct bpf_prog *prog = env->prog;
21565 	enum bpf_attach_type eatype = prog->expected_attach_type;
21566 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
21567 	struct bpf_insn *insn = prog->insnsi;
21568 	const struct bpf_func_proto *fn;
21569 	const int insn_cnt = prog->len;
21570 	const struct bpf_map_ops *ops;
21571 	struct bpf_insn_aux_data *aux;
21572 	struct bpf_insn *insn_buf = env->insn_buf;
21573 	struct bpf_prog *new_prog;
21574 	struct bpf_map *map_ptr;
21575 	int i, ret, cnt, delta = 0, cur_subprog = 0;
21576 	struct bpf_subprog_info *subprogs = env->subprog_info;
21577 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
21578 	u16 stack_depth_extra = 0;
21579 
21580 	if (env->seen_exception && !env->exception_callback_subprog) {
21581 		struct bpf_insn patch[] = {
21582 			env->prog->insnsi[insn_cnt - 1],
21583 			BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
21584 			BPF_EXIT_INSN(),
21585 		};
21586 
21587 		ret = add_hidden_subprog(env, patch, ARRAY_SIZE(patch));
21588 		if (ret < 0)
21589 			return ret;
21590 		prog = env->prog;
21591 		insn = prog->insnsi;
21592 
21593 		env->exception_callback_subprog = env->subprog_cnt - 1;
21594 		/* Don't update insn_cnt, as add_hidden_subprog always appends insns */
21595 		mark_subprog_exc_cb(env, env->exception_callback_subprog);
21596 	}
21597 
21598 	for (i = 0; i < insn_cnt;) {
21599 		if (insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->imm) {
21600 			if ((insn->off == BPF_ADDR_SPACE_CAST && insn->imm == 1) ||
21601 			    (((struct bpf_map *)env->prog->aux->arena)->map_flags & BPF_F_NO_USER_CONV)) {
21602 				/* convert to 32-bit mov that clears upper 32-bit */
21603 				insn->code = BPF_ALU | BPF_MOV | BPF_X;
21604 				/* clear off and imm, so it's a normal 'wX = wY' from JIT pov */
21605 				insn->off = 0;
21606 				insn->imm = 0;
21607 			} /* cast from as(0) to as(1) should be handled by JIT */
21608 			goto next_insn;
21609 		}
21610 
21611 		if (env->insn_aux_data[i + delta].needs_zext)
21612 			/* Convert BPF_CLASS(insn->code) == BPF_ALU64 to 32-bit ALU */
21613 			insn->code = BPF_ALU | BPF_OP(insn->code) | BPF_SRC(insn->code);
21614 
21615 		/* Make sdiv/smod divide-by-minus-one exceptions impossible. */
21616 		if ((insn->code == (BPF_ALU64 | BPF_MOD | BPF_K) ||
21617 		     insn->code == (BPF_ALU64 | BPF_DIV | BPF_K) ||
21618 		     insn->code == (BPF_ALU | BPF_MOD | BPF_K) ||
21619 		     insn->code == (BPF_ALU | BPF_DIV | BPF_K)) &&
21620 		    insn->off == 1 && insn->imm == -1) {
21621 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
21622 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
21623 			struct bpf_insn *patchlet;
21624 			struct bpf_insn chk_and_sdiv[] = {
21625 				BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
21626 					     BPF_NEG | BPF_K, insn->dst_reg,
21627 					     0, 0, 0),
21628 			};
21629 			struct bpf_insn chk_and_smod[] = {
21630 				BPF_MOV32_IMM(insn->dst_reg, 0),
21631 			};
21632 
21633 			patchlet = isdiv ? chk_and_sdiv : chk_and_smod;
21634 			cnt = isdiv ? ARRAY_SIZE(chk_and_sdiv) : ARRAY_SIZE(chk_and_smod);
21635 
21636 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
21637 			if (!new_prog)
21638 				return -ENOMEM;
21639 
21640 			delta    += cnt - 1;
21641 			env->prog = prog = new_prog;
21642 			insn      = new_prog->insnsi + i + delta;
21643 			goto next_insn;
21644 		}
21645 
21646 		/* Make divide-by-zero and divide-by-minus-one exceptions impossible. */
21647 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
21648 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
21649 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
21650 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
21651 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
21652 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
21653 			bool is_sdiv = isdiv && insn->off == 1;
21654 			bool is_smod = !isdiv && insn->off == 1;
21655 			struct bpf_insn *patchlet;
21656 			struct bpf_insn chk_and_div[] = {
21657 				/* [R,W]x div 0 -> 0 */
21658 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
21659 					     BPF_JNE | BPF_K, insn->src_reg,
21660 					     0, 2, 0),
21661 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
21662 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
21663 				*insn,
21664 			};
21665 			struct bpf_insn chk_and_mod[] = {
21666 				/* [R,W]x mod 0 -> [R,W]x */
21667 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
21668 					     BPF_JEQ | BPF_K, insn->src_reg,
21669 					     0, 1 + (is64 ? 0 : 1), 0),
21670 				*insn,
21671 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
21672 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
21673 			};
21674 			struct bpf_insn chk_and_sdiv[] = {
21675 				/* [R,W]x sdiv 0 -> 0
21676 				 * LLONG_MIN sdiv -1 -> LLONG_MIN
21677 				 * INT_MIN sdiv -1 -> INT_MIN
21678 				 */
21679 				BPF_MOV64_REG(BPF_REG_AX, insn->src_reg),
21680 				BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
21681 					     BPF_ADD | BPF_K, BPF_REG_AX,
21682 					     0, 0, 1),
21683 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
21684 					     BPF_JGT | BPF_K, BPF_REG_AX,
21685 					     0, 4, 1),
21686 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
21687 					     BPF_JEQ | BPF_K, BPF_REG_AX,
21688 					     0, 1, 0),
21689 				BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
21690 					     BPF_MOV | BPF_K, insn->dst_reg,
21691 					     0, 0, 0),
21692 				/* BPF_NEG(LLONG_MIN) == -LLONG_MIN == LLONG_MIN */
21693 				BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
21694 					     BPF_NEG | BPF_K, insn->dst_reg,
21695 					     0, 0, 0),
21696 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
21697 				*insn,
21698 			};
21699 			struct bpf_insn chk_and_smod[] = {
21700 				/* [R,W]x mod 0 -> [R,W]x */
21701 				/* [R,W]x mod -1 -> 0 */
21702 				BPF_MOV64_REG(BPF_REG_AX, insn->src_reg),
21703 				BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
21704 					     BPF_ADD | BPF_K, BPF_REG_AX,
21705 					     0, 0, 1),
21706 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
21707 					     BPF_JGT | BPF_K, BPF_REG_AX,
21708 					     0, 3, 1),
21709 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
21710 					     BPF_JEQ | BPF_K, BPF_REG_AX,
21711 					     0, 3 + (is64 ? 0 : 1), 1),
21712 				BPF_MOV32_IMM(insn->dst_reg, 0),
21713 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
21714 				*insn,
21715 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
21716 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
21717 			};
21718 
21719 			if (is_sdiv) {
21720 				patchlet = chk_and_sdiv;
21721 				cnt = ARRAY_SIZE(chk_and_sdiv);
21722 			} else if (is_smod) {
21723 				patchlet = chk_and_smod;
21724 				cnt = ARRAY_SIZE(chk_and_smod) - (is64 ? 2 : 0);
21725 			} else {
21726 				patchlet = isdiv ? chk_and_div : chk_and_mod;
21727 				cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
21728 					      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
21729 			}
21730 
21731 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
21732 			if (!new_prog)
21733 				return -ENOMEM;
21734 
21735 			delta    += cnt - 1;
21736 			env->prog = prog = new_prog;
21737 			insn      = new_prog->insnsi + i + delta;
21738 			goto next_insn;
21739 		}
21740 
21741 		/* Make it impossible to de-reference a userspace address */
21742 		if (BPF_CLASS(insn->code) == BPF_LDX &&
21743 		    (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
21744 		     BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) {
21745 			struct bpf_insn *patch = &insn_buf[0];
21746 			u64 uaddress_limit = bpf_arch_uaddress_limit();
21747 
21748 			if (!uaddress_limit)
21749 				goto next_insn;
21750 
21751 			*patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg);
21752 			if (insn->off)
21753 				*patch++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_AX, insn->off);
21754 			*patch++ = BPF_ALU64_IMM(BPF_RSH, BPF_REG_AX, 32);
21755 			*patch++ = BPF_JMP_IMM(BPF_JLE, BPF_REG_AX, uaddress_limit >> 32, 2);
21756 			*patch++ = *insn;
21757 			*patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
21758 			*patch++ = BPF_MOV64_IMM(insn->dst_reg, 0);
21759 
21760 			cnt = patch - insn_buf;
21761 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21762 			if (!new_prog)
21763 				return -ENOMEM;
21764 
21765 			delta    += cnt - 1;
21766 			env->prog = prog = new_prog;
21767 			insn      = new_prog->insnsi + i + delta;
21768 			goto next_insn;
21769 		}
21770 
21771 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
21772 		if (BPF_CLASS(insn->code) == BPF_LD &&
21773 		    (BPF_MODE(insn->code) == BPF_ABS ||
21774 		     BPF_MODE(insn->code) == BPF_IND)) {
21775 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
21776 			if (cnt == 0 || cnt >= INSN_BUF_SIZE) {
21777 				verbose(env, "bpf verifier is misconfigured\n");
21778 				return -EINVAL;
21779 			}
21780 
21781 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21782 			if (!new_prog)
21783 				return -ENOMEM;
21784 
21785 			delta    += cnt - 1;
21786 			env->prog = prog = new_prog;
21787 			insn      = new_prog->insnsi + i + delta;
21788 			goto next_insn;
21789 		}
21790 
21791 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
21792 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
21793 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
21794 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
21795 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
21796 			struct bpf_insn *patch = &insn_buf[0];
21797 			bool issrc, isneg, isimm;
21798 			u32 off_reg;
21799 
21800 			aux = &env->insn_aux_data[i + delta];
21801 			if (!aux->alu_state ||
21802 			    aux->alu_state == BPF_ALU_NON_POINTER)
21803 				goto next_insn;
21804 
21805 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
21806 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
21807 				BPF_ALU_SANITIZE_SRC;
21808 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
21809 
21810 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
21811 			if (isimm) {
21812 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
21813 			} else {
21814 				if (isneg)
21815 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
21816 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
21817 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
21818 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
21819 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
21820 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
21821 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
21822 			}
21823 			if (!issrc)
21824 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
21825 			insn->src_reg = BPF_REG_AX;
21826 			if (isneg)
21827 				insn->code = insn->code == code_add ?
21828 					     code_sub : code_add;
21829 			*patch++ = *insn;
21830 			if (issrc && isneg && !isimm)
21831 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
21832 			cnt = patch - insn_buf;
21833 
21834 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21835 			if (!new_prog)
21836 				return -ENOMEM;
21837 
21838 			delta    += cnt - 1;
21839 			env->prog = prog = new_prog;
21840 			insn      = new_prog->insnsi + i + delta;
21841 			goto next_insn;
21842 		}
21843 
21844 		if (is_may_goto_insn(insn) && bpf_jit_supports_timed_may_goto()) {
21845 			int stack_off_cnt = -stack_depth - 16;
21846 
21847 			/*
21848 			 * Two 8 byte slots, depth-16 stores the count, and
21849 			 * depth-8 stores the start timestamp of the loop.
21850 			 *
21851 			 * The starting value of count is BPF_MAX_TIMED_LOOPS
21852 			 * (0xffff).  Every iteration loads it and subs it by 1,
21853 			 * until the value becomes 0 in AX (thus, 1 in stack),
21854 			 * after which we call arch_bpf_timed_may_goto, which
21855 			 * either sets AX to 0xffff to keep looping, or to 0
21856 			 * upon timeout. AX is then stored into the stack. In
21857 			 * the next iteration, we either see 0 and break out, or
21858 			 * continue iterating until the next time value is 0
21859 			 * after subtraction, rinse and repeat.
21860 			 */
21861 			stack_depth_extra = 16;
21862 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off_cnt);
21863 			if (insn->off >= 0)
21864 				insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 5);
21865 			else
21866 				insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1);
21867 			insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1);
21868 			insn_buf[3] = BPF_JMP_IMM(BPF_JNE, BPF_REG_AX, 0, 2);
21869 			/*
21870 			 * AX is used as an argument to pass in stack_off_cnt
21871 			 * (to add to r10/fp), and also as the return value of
21872 			 * the call to arch_bpf_timed_may_goto.
21873 			 */
21874 			insn_buf[4] = BPF_MOV64_IMM(BPF_REG_AX, stack_off_cnt);
21875 			insn_buf[5] = BPF_EMIT_CALL(arch_bpf_timed_may_goto);
21876 			insn_buf[6] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off_cnt);
21877 			cnt = 7;
21878 
21879 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21880 			if (!new_prog)
21881 				return -ENOMEM;
21882 
21883 			delta += cnt - 1;
21884 			env->prog = prog = new_prog;
21885 			insn = new_prog->insnsi + i + delta;
21886 			goto next_insn;
21887 		} else if (is_may_goto_insn(insn)) {
21888 			int stack_off = -stack_depth - 8;
21889 
21890 			stack_depth_extra = 8;
21891 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off);
21892 			if (insn->off >= 0)
21893 				insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 2);
21894 			else
21895 				insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1);
21896 			insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1);
21897 			insn_buf[3] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off);
21898 			cnt = 4;
21899 
21900 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21901 			if (!new_prog)
21902 				return -ENOMEM;
21903 
21904 			delta += cnt - 1;
21905 			env->prog = prog = new_prog;
21906 			insn = new_prog->insnsi + i + delta;
21907 			goto next_insn;
21908 		}
21909 
21910 		if (insn->code != (BPF_JMP | BPF_CALL))
21911 			goto next_insn;
21912 		if (insn->src_reg == BPF_PSEUDO_CALL)
21913 			goto next_insn;
21914 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
21915 			ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
21916 			if (ret)
21917 				return ret;
21918 			if (cnt == 0)
21919 				goto next_insn;
21920 
21921 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21922 			if (!new_prog)
21923 				return -ENOMEM;
21924 
21925 			delta	 += cnt - 1;
21926 			env->prog = prog = new_prog;
21927 			insn	  = new_prog->insnsi + i + delta;
21928 			goto next_insn;
21929 		}
21930 
21931 		/* Skip inlining the helper call if the JIT does it. */
21932 		if (bpf_jit_inlines_helper_call(insn->imm))
21933 			goto next_insn;
21934 
21935 		if (insn->imm == BPF_FUNC_get_route_realm)
21936 			prog->dst_needed = 1;
21937 		if (insn->imm == BPF_FUNC_get_prandom_u32)
21938 			bpf_user_rnd_init_once();
21939 		if (insn->imm == BPF_FUNC_override_return)
21940 			prog->kprobe_override = 1;
21941 		if (insn->imm == BPF_FUNC_tail_call) {
21942 			/* If we tail call into other programs, we
21943 			 * cannot make any assumptions since they can
21944 			 * be replaced dynamically during runtime in
21945 			 * the program array.
21946 			 */
21947 			prog->cb_access = 1;
21948 			if (!allow_tail_call_in_subprogs(env))
21949 				prog->aux->stack_depth = MAX_BPF_STACK;
21950 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
21951 
21952 			/* mark bpf_tail_call as different opcode to avoid
21953 			 * conditional branch in the interpreter for every normal
21954 			 * call and to prevent accidental JITing by JIT compiler
21955 			 * that doesn't support bpf_tail_call yet
21956 			 */
21957 			insn->imm = 0;
21958 			insn->code = BPF_JMP | BPF_TAIL_CALL;
21959 
21960 			aux = &env->insn_aux_data[i + delta];
21961 			if (env->bpf_capable && !prog->blinding_requested &&
21962 			    prog->jit_requested &&
21963 			    !bpf_map_key_poisoned(aux) &&
21964 			    !bpf_map_ptr_poisoned(aux) &&
21965 			    !bpf_map_ptr_unpriv(aux)) {
21966 				struct bpf_jit_poke_descriptor desc = {
21967 					.reason = BPF_POKE_REASON_TAIL_CALL,
21968 					.tail_call.map = aux->map_ptr_state.map_ptr,
21969 					.tail_call.key = bpf_map_key_immediate(aux),
21970 					.insn_idx = i + delta,
21971 				};
21972 
21973 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
21974 				if (ret < 0) {
21975 					verbose(env, "adding tail call poke descriptor failed\n");
21976 					return ret;
21977 				}
21978 
21979 				insn->imm = ret + 1;
21980 				goto next_insn;
21981 			}
21982 
21983 			if (!bpf_map_ptr_unpriv(aux))
21984 				goto next_insn;
21985 
21986 			/* instead of changing every JIT dealing with tail_call
21987 			 * emit two extra insns:
21988 			 * if (index >= max_entries) goto out;
21989 			 * index &= array->index_mask;
21990 			 * to avoid out-of-bounds cpu speculation
21991 			 */
21992 			if (bpf_map_ptr_poisoned(aux)) {
21993 				verbose(env, "tail_call abusing map_ptr\n");
21994 				return -EINVAL;
21995 			}
21996 
21997 			map_ptr = aux->map_ptr_state.map_ptr;
21998 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
21999 						  map_ptr->max_entries, 2);
22000 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
22001 						    container_of(map_ptr,
22002 								 struct bpf_array,
22003 								 map)->index_mask);
22004 			insn_buf[2] = *insn;
22005 			cnt = 3;
22006 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22007 			if (!new_prog)
22008 				return -ENOMEM;
22009 
22010 			delta    += cnt - 1;
22011 			env->prog = prog = new_prog;
22012 			insn      = new_prog->insnsi + i + delta;
22013 			goto next_insn;
22014 		}
22015 
22016 		if (insn->imm == BPF_FUNC_timer_set_callback) {
22017 			/* The verifier will process callback_fn as many times as necessary
22018 			 * with different maps and the register states prepared by
22019 			 * set_timer_callback_state will be accurate.
22020 			 *
22021 			 * The following use case is valid:
22022 			 *   map1 is shared by prog1, prog2, prog3.
22023 			 *   prog1 calls bpf_timer_init for some map1 elements
22024 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
22025 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
22026 			 *   prog3 calls bpf_timer_start for some map1 elements.
22027 			 *     Those that were not both bpf_timer_init-ed and
22028 			 *     bpf_timer_set_callback-ed will return -EINVAL.
22029 			 */
22030 			struct bpf_insn ld_addrs[2] = {
22031 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
22032 			};
22033 
22034 			insn_buf[0] = ld_addrs[0];
22035 			insn_buf[1] = ld_addrs[1];
22036 			insn_buf[2] = *insn;
22037 			cnt = 3;
22038 
22039 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22040 			if (!new_prog)
22041 				return -ENOMEM;
22042 
22043 			delta    += cnt - 1;
22044 			env->prog = prog = new_prog;
22045 			insn      = new_prog->insnsi + i + delta;
22046 			goto patch_call_imm;
22047 		}
22048 
22049 		if (is_storage_get_function(insn->imm)) {
22050 			if (!in_sleepable(env) ||
22051 			    env->insn_aux_data[i + delta].storage_get_func_atomic)
22052 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
22053 			else
22054 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
22055 			insn_buf[1] = *insn;
22056 			cnt = 2;
22057 
22058 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22059 			if (!new_prog)
22060 				return -ENOMEM;
22061 
22062 			delta += cnt - 1;
22063 			env->prog = prog = new_prog;
22064 			insn = new_prog->insnsi + i + delta;
22065 			goto patch_call_imm;
22066 		}
22067 
22068 		/* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */
22069 		if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) {
22070 			/* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data,
22071 			 * bpf_mem_alloc() returns a ptr to the percpu data ptr.
22072 			 */
22073 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0);
22074 			insn_buf[1] = *insn;
22075 			cnt = 2;
22076 
22077 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22078 			if (!new_prog)
22079 				return -ENOMEM;
22080 
22081 			delta += cnt - 1;
22082 			env->prog = prog = new_prog;
22083 			insn = new_prog->insnsi + i + delta;
22084 			goto patch_call_imm;
22085 		}
22086 
22087 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
22088 		 * and other inlining handlers are currently limited to 64 bit
22089 		 * only.
22090 		 */
22091 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
22092 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
22093 		     insn->imm == BPF_FUNC_map_update_elem ||
22094 		     insn->imm == BPF_FUNC_map_delete_elem ||
22095 		     insn->imm == BPF_FUNC_map_push_elem   ||
22096 		     insn->imm == BPF_FUNC_map_pop_elem    ||
22097 		     insn->imm == BPF_FUNC_map_peek_elem   ||
22098 		     insn->imm == BPF_FUNC_redirect_map    ||
22099 		     insn->imm == BPF_FUNC_for_each_map_elem ||
22100 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
22101 			aux = &env->insn_aux_data[i + delta];
22102 			if (bpf_map_ptr_poisoned(aux))
22103 				goto patch_call_imm;
22104 
22105 			map_ptr = aux->map_ptr_state.map_ptr;
22106 			ops = map_ptr->ops;
22107 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
22108 			    ops->map_gen_lookup) {
22109 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
22110 				if (cnt == -EOPNOTSUPP)
22111 					goto patch_map_ops_generic;
22112 				if (cnt <= 0 || cnt >= INSN_BUF_SIZE) {
22113 					verbose(env, "bpf verifier is misconfigured\n");
22114 					return -EINVAL;
22115 				}
22116 
22117 				new_prog = bpf_patch_insn_data(env, i + delta,
22118 							       insn_buf, cnt);
22119 				if (!new_prog)
22120 					return -ENOMEM;
22121 
22122 				delta    += cnt - 1;
22123 				env->prog = prog = new_prog;
22124 				insn      = new_prog->insnsi + i + delta;
22125 				goto next_insn;
22126 			}
22127 
22128 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
22129 				     (void *(*)(struct bpf_map *map, void *key))NULL));
22130 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
22131 				     (long (*)(struct bpf_map *map, void *key))NULL));
22132 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
22133 				     (long (*)(struct bpf_map *map, void *key, void *value,
22134 					      u64 flags))NULL));
22135 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
22136 				     (long (*)(struct bpf_map *map, void *value,
22137 					      u64 flags))NULL));
22138 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
22139 				     (long (*)(struct bpf_map *map, void *value))NULL));
22140 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
22141 				     (long (*)(struct bpf_map *map, void *value))NULL));
22142 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
22143 				     (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
22144 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
22145 				     (long (*)(struct bpf_map *map,
22146 					      bpf_callback_t callback_fn,
22147 					      void *callback_ctx,
22148 					      u64 flags))NULL));
22149 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
22150 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
22151 
22152 patch_map_ops_generic:
22153 			switch (insn->imm) {
22154 			case BPF_FUNC_map_lookup_elem:
22155 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
22156 				goto next_insn;
22157 			case BPF_FUNC_map_update_elem:
22158 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
22159 				goto next_insn;
22160 			case BPF_FUNC_map_delete_elem:
22161 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
22162 				goto next_insn;
22163 			case BPF_FUNC_map_push_elem:
22164 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
22165 				goto next_insn;
22166 			case BPF_FUNC_map_pop_elem:
22167 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
22168 				goto next_insn;
22169 			case BPF_FUNC_map_peek_elem:
22170 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
22171 				goto next_insn;
22172 			case BPF_FUNC_redirect_map:
22173 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
22174 				goto next_insn;
22175 			case BPF_FUNC_for_each_map_elem:
22176 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
22177 				goto next_insn;
22178 			case BPF_FUNC_map_lookup_percpu_elem:
22179 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
22180 				goto next_insn;
22181 			}
22182 
22183 			goto patch_call_imm;
22184 		}
22185 
22186 		/* Implement bpf_jiffies64 inline. */
22187 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
22188 		    insn->imm == BPF_FUNC_jiffies64) {
22189 			struct bpf_insn ld_jiffies_addr[2] = {
22190 				BPF_LD_IMM64(BPF_REG_0,
22191 					     (unsigned long)&jiffies),
22192 			};
22193 
22194 			insn_buf[0] = ld_jiffies_addr[0];
22195 			insn_buf[1] = ld_jiffies_addr[1];
22196 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
22197 						  BPF_REG_0, 0);
22198 			cnt = 3;
22199 
22200 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
22201 						       cnt);
22202 			if (!new_prog)
22203 				return -ENOMEM;
22204 
22205 			delta    += cnt - 1;
22206 			env->prog = prog = new_prog;
22207 			insn      = new_prog->insnsi + i + delta;
22208 			goto next_insn;
22209 		}
22210 
22211 #if defined(CONFIG_X86_64) && !defined(CONFIG_UML)
22212 		/* Implement bpf_get_smp_processor_id() inline. */
22213 		if (insn->imm == BPF_FUNC_get_smp_processor_id &&
22214 		    verifier_inlines_helper_call(env, insn->imm)) {
22215 			/* BPF_FUNC_get_smp_processor_id inlining is an
22216 			 * optimization, so if cpu_number is ever
22217 			 * changed in some incompatible and hard to support
22218 			 * way, it's fine to back out this inlining logic
22219 			 */
22220 #ifdef CONFIG_SMP
22221 			insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, (u32)(unsigned long)&cpu_number);
22222 			insn_buf[1] = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0);
22223 			insn_buf[2] = BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, 0);
22224 			cnt = 3;
22225 #else
22226 			insn_buf[0] = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
22227 			cnt = 1;
22228 #endif
22229 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22230 			if (!new_prog)
22231 				return -ENOMEM;
22232 
22233 			delta    += cnt - 1;
22234 			env->prog = prog = new_prog;
22235 			insn      = new_prog->insnsi + i + delta;
22236 			goto next_insn;
22237 		}
22238 #endif
22239 		/* Implement bpf_get_func_arg inline. */
22240 		if (prog_type == BPF_PROG_TYPE_TRACING &&
22241 		    insn->imm == BPF_FUNC_get_func_arg) {
22242 			/* Load nr_args from ctx - 8 */
22243 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
22244 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
22245 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
22246 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
22247 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
22248 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
22249 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
22250 			insn_buf[7] = BPF_JMP_A(1);
22251 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
22252 			cnt = 9;
22253 
22254 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22255 			if (!new_prog)
22256 				return -ENOMEM;
22257 
22258 			delta    += cnt - 1;
22259 			env->prog = prog = new_prog;
22260 			insn      = new_prog->insnsi + i + delta;
22261 			goto next_insn;
22262 		}
22263 
22264 		/* Implement bpf_get_func_ret inline. */
22265 		if (prog_type == BPF_PROG_TYPE_TRACING &&
22266 		    insn->imm == BPF_FUNC_get_func_ret) {
22267 			if (eatype == BPF_TRACE_FEXIT ||
22268 			    eatype == BPF_MODIFY_RETURN) {
22269 				/* Load nr_args from ctx - 8 */
22270 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
22271 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
22272 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
22273 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
22274 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
22275 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
22276 				cnt = 6;
22277 			} else {
22278 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
22279 				cnt = 1;
22280 			}
22281 
22282 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22283 			if (!new_prog)
22284 				return -ENOMEM;
22285 
22286 			delta    += cnt - 1;
22287 			env->prog = prog = new_prog;
22288 			insn      = new_prog->insnsi + i + delta;
22289 			goto next_insn;
22290 		}
22291 
22292 		/* Implement get_func_arg_cnt inline. */
22293 		if (prog_type == BPF_PROG_TYPE_TRACING &&
22294 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
22295 			/* Load nr_args from ctx - 8 */
22296 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
22297 
22298 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
22299 			if (!new_prog)
22300 				return -ENOMEM;
22301 
22302 			env->prog = prog = new_prog;
22303 			insn      = new_prog->insnsi + i + delta;
22304 			goto next_insn;
22305 		}
22306 
22307 		/* Implement bpf_get_func_ip inline. */
22308 		if (prog_type == BPF_PROG_TYPE_TRACING &&
22309 		    insn->imm == BPF_FUNC_get_func_ip) {
22310 			/* Load IP address from ctx - 16 */
22311 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
22312 
22313 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
22314 			if (!new_prog)
22315 				return -ENOMEM;
22316 
22317 			env->prog = prog = new_prog;
22318 			insn      = new_prog->insnsi + i + delta;
22319 			goto next_insn;
22320 		}
22321 
22322 		/* Implement bpf_get_branch_snapshot inline. */
22323 		if (IS_ENABLED(CONFIG_PERF_EVENTS) &&
22324 		    prog->jit_requested && BITS_PER_LONG == 64 &&
22325 		    insn->imm == BPF_FUNC_get_branch_snapshot) {
22326 			/* We are dealing with the following func protos:
22327 			 * u64 bpf_get_branch_snapshot(void *buf, u32 size, u64 flags);
22328 			 * int perf_snapshot_branch_stack(struct perf_branch_entry *entries, u32 cnt);
22329 			 */
22330 			const u32 br_entry_size = sizeof(struct perf_branch_entry);
22331 
22332 			/* struct perf_branch_entry is part of UAPI and is
22333 			 * used as an array element, so extremely unlikely to
22334 			 * ever grow or shrink
22335 			 */
22336 			BUILD_BUG_ON(br_entry_size != 24);
22337 
22338 			/* if (unlikely(flags)) return -EINVAL */
22339 			insn_buf[0] = BPF_JMP_IMM(BPF_JNE, BPF_REG_3, 0, 7);
22340 
22341 			/* Transform size (bytes) into number of entries (cnt = size / 24).
22342 			 * But to avoid expensive division instruction, we implement
22343 			 * divide-by-3 through multiplication, followed by further
22344 			 * division by 8 through 3-bit right shift.
22345 			 * Refer to book "Hacker's Delight, 2nd ed." by Henry S. Warren, Jr.,
22346 			 * p. 227, chapter "Unsigned Division by 3" for details and proofs.
22347 			 *
22348 			 * N / 3 <=> M * N / 2^33, where M = (2^33 + 1) / 3 = 0xaaaaaaab.
22349 			 */
22350 			insn_buf[1] = BPF_MOV32_IMM(BPF_REG_0, 0xaaaaaaab);
22351 			insn_buf[2] = BPF_ALU64_REG(BPF_MUL, BPF_REG_2, BPF_REG_0);
22352 			insn_buf[3] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 36);
22353 
22354 			/* call perf_snapshot_branch_stack implementation */
22355 			insn_buf[4] = BPF_EMIT_CALL(static_call_query(perf_snapshot_branch_stack));
22356 			/* if (entry_cnt == 0) return -ENOENT */
22357 			insn_buf[5] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4);
22358 			/* return entry_cnt * sizeof(struct perf_branch_entry) */
22359 			insn_buf[6] = BPF_ALU32_IMM(BPF_MUL, BPF_REG_0, br_entry_size);
22360 			insn_buf[7] = BPF_JMP_A(3);
22361 			/* return -EINVAL; */
22362 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
22363 			insn_buf[9] = BPF_JMP_A(1);
22364 			/* return -ENOENT; */
22365 			insn_buf[10] = BPF_MOV64_IMM(BPF_REG_0, -ENOENT);
22366 			cnt = 11;
22367 
22368 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22369 			if (!new_prog)
22370 				return -ENOMEM;
22371 
22372 			delta    += cnt - 1;
22373 			env->prog = prog = new_prog;
22374 			insn      = new_prog->insnsi + i + delta;
22375 			goto next_insn;
22376 		}
22377 
22378 		/* Implement bpf_kptr_xchg inline */
22379 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
22380 		    insn->imm == BPF_FUNC_kptr_xchg &&
22381 		    bpf_jit_supports_ptr_xchg()) {
22382 			insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_2);
22383 			insn_buf[1] = BPF_ATOMIC_OP(BPF_DW, BPF_XCHG, BPF_REG_1, BPF_REG_0, 0);
22384 			cnt = 2;
22385 
22386 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22387 			if (!new_prog)
22388 				return -ENOMEM;
22389 
22390 			delta    += cnt - 1;
22391 			env->prog = prog = new_prog;
22392 			insn      = new_prog->insnsi + i + delta;
22393 			goto next_insn;
22394 		}
22395 patch_call_imm:
22396 		fn = env->ops->get_func_proto(insn->imm, env->prog);
22397 		/* all functions that have prototype and verifier allowed
22398 		 * programs to call them, must be real in-kernel functions
22399 		 */
22400 		if (!fn->func) {
22401 			verbose(env,
22402 				"kernel subsystem misconfigured func %s#%d\n",
22403 				func_id_name(insn->imm), insn->imm);
22404 			return -EFAULT;
22405 		}
22406 		insn->imm = fn->func - __bpf_call_base;
22407 next_insn:
22408 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
22409 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
22410 			subprogs[cur_subprog].stack_extra = stack_depth_extra;
22411 
22412 			stack_depth = subprogs[cur_subprog].stack_depth;
22413 			if (stack_depth > MAX_BPF_STACK && !prog->jit_requested) {
22414 				verbose(env, "stack size %d(extra %d) is too large\n",
22415 					stack_depth, stack_depth_extra);
22416 				return -EINVAL;
22417 			}
22418 			cur_subprog++;
22419 			stack_depth = subprogs[cur_subprog].stack_depth;
22420 			stack_depth_extra = 0;
22421 		}
22422 		i++;
22423 		insn++;
22424 	}
22425 
22426 	env->prog->aux->stack_depth = subprogs[0].stack_depth;
22427 	for (i = 0; i < env->subprog_cnt; i++) {
22428 		int delta = bpf_jit_supports_timed_may_goto() ? 2 : 1;
22429 		int subprog_start = subprogs[i].start;
22430 		int stack_slots = subprogs[i].stack_extra / 8;
22431 		int slots = delta, cnt = 0;
22432 
22433 		if (!stack_slots)
22434 			continue;
22435 		/* We need two slots in case timed may_goto is supported. */
22436 		if (stack_slots > slots) {
22437 			verifier_bug(env, "stack_slots supports may_goto only");
22438 			return -EFAULT;
22439 		}
22440 
22441 		stack_depth = subprogs[i].stack_depth;
22442 		if (bpf_jit_supports_timed_may_goto()) {
22443 			insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth,
22444 						     BPF_MAX_TIMED_LOOPS);
22445 			insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth + 8, 0);
22446 		} else {
22447 			/* Add ST insn to subprog prologue to init extra stack */
22448 			insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth,
22449 						     BPF_MAX_LOOPS);
22450 		}
22451 		/* Copy first actual insn to preserve it */
22452 		insn_buf[cnt++] = env->prog->insnsi[subprog_start];
22453 
22454 		new_prog = bpf_patch_insn_data(env, subprog_start, insn_buf, cnt);
22455 		if (!new_prog)
22456 			return -ENOMEM;
22457 		env->prog = prog = new_prog;
22458 		/*
22459 		 * If may_goto is a first insn of a prog there could be a jmp
22460 		 * insn that points to it, hence adjust all such jmps to point
22461 		 * to insn after BPF_ST that inits may_goto count.
22462 		 * Adjustment will succeed because bpf_patch_insn_data() didn't fail.
22463 		 */
22464 		WARN_ON(adjust_jmp_off(env->prog, subprog_start, delta));
22465 	}
22466 
22467 	/* Since poke tab is now finalized, publish aux to tracker. */
22468 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
22469 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
22470 		if (!map_ptr->ops->map_poke_track ||
22471 		    !map_ptr->ops->map_poke_untrack ||
22472 		    !map_ptr->ops->map_poke_run) {
22473 			verbose(env, "bpf verifier is misconfigured\n");
22474 			return -EINVAL;
22475 		}
22476 
22477 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
22478 		if (ret < 0) {
22479 			verbose(env, "tracking tail call prog failed\n");
22480 			return ret;
22481 		}
22482 	}
22483 
22484 	sort_kfunc_descs_by_imm_off(env->prog);
22485 
22486 	return 0;
22487 }
22488 
inline_bpf_loop(struct bpf_verifier_env * env,int position,s32 stack_base,u32 callback_subprogno,u32 * total_cnt)22489 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
22490 					int position,
22491 					s32 stack_base,
22492 					u32 callback_subprogno,
22493 					u32 *total_cnt)
22494 {
22495 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
22496 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
22497 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
22498 	int reg_loop_max = BPF_REG_6;
22499 	int reg_loop_cnt = BPF_REG_7;
22500 	int reg_loop_ctx = BPF_REG_8;
22501 
22502 	struct bpf_insn *insn_buf = env->insn_buf;
22503 	struct bpf_prog *new_prog;
22504 	u32 callback_start;
22505 	u32 call_insn_offset;
22506 	s32 callback_offset;
22507 	u32 cnt = 0;
22508 
22509 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
22510 	 * be careful to modify this code in sync.
22511 	 */
22512 
22513 	/* Return error and jump to the end of the patch if
22514 	 * expected number of iterations is too big.
22515 	 */
22516 	insn_buf[cnt++] = BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2);
22517 	insn_buf[cnt++] = BPF_MOV32_IMM(BPF_REG_0, -E2BIG);
22518 	insn_buf[cnt++] = BPF_JMP_IMM(BPF_JA, 0, 0, 16);
22519 	/* spill R6, R7, R8 to use these as loop vars */
22520 	insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset);
22521 	insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset);
22522 	insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset);
22523 	/* initialize loop vars */
22524 	insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_max, BPF_REG_1);
22525 	insn_buf[cnt++] = BPF_MOV32_IMM(reg_loop_cnt, 0);
22526 	insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3);
22527 	/* loop header,
22528 	 * if reg_loop_cnt >= reg_loop_max skip the loop body
22529 	 */
22530 	insn_buf[cnt++] = BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5);
22531 	/* callback call,
22532 	 * correct callback offset would be set after patching
22533 	 */
22534 	insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt);
22535 	insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx);
22536 	insn_buf[cnt++] = BPF_CALL_REL(0);
22537 	/* increment loop counter */
22538 	insn_buf[cnt++] = BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1);
22539 	/* jump to loop header if callback returned 0 */
22540 	insn_buf[cnt++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6);
22541 	/* return value of bpf_loop,
22542 	 * set R0 to the number of iterations
22543 	 */
22544 	insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt);
22545 	/* restore original values of R6, R7, R8 */
22546 	insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset);
22547 	insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset);
22548 	insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset);
22549 
22550 	*total_cnt = cnt;
22551 	new_prog = bpf_patch_insn_data(env, position, insn_buf, cnt);
22552 	if (!new_prog)
22553 		return new_prog;
22554 
22555 	/* callback start is known only after patching */
22556 	callback_start = env->subprog_info[callback_subprogno].start;
22557 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
22558 	call_insn_offset = position + 12;
22559 	callback_offset = callback_start - call_insn_offset - 1;
22560 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
22561 
22562 	return new_prog;
22563 }
22564 
is_bpf_loop_call(struct bpf_insn * insn)22565 static bool is_bpf_loop_call(struct bpf_insn *insn)
22566 {
22567 	return insn->code == (BPF_JMP | BPF_CALL) &&
22568 		insn->src_reg == 0 &&
22569 		insn->imm == BPF_FUNC_loop;
22570 }
22571 
22572 /* For all sub-programs in the program (including main) check
22573  * insn_aux_data to see if there are bpf_loop calls that require
22574  * inlining. If such calls are found the calls are replaced with a
22575  * sequence of instructions produced by `inline_bpf_loop` function and
22576  * subprog stack_depth is increased by the size of 3 registers.
22577  * This stack space is used to spill values of the R6, R7, R8.  These
22578  * registers are used to store the loop bound, counter and context
22579  * variables.
22580  */
optimize_bpf_loop(struct bpf_verifier_env * env)22581 static int optimize_bpf_loop(struct bpf_verifier_env *env)
22582 {
22583 	struct bpf_subprog_info *subprogs = env->subprog_info;
22584 	int i, cur_subprog = 0, cnt, delta = 0;
22585 	struct bpf_insn *insn = env->prog->insnsi;
22586 	int insn_cnt = env->prog->len;
22587 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
22588 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
22589 	u16 stack_depth_extra = 0;
22590 
22591 	for (i = 0; i < insn_cnt; i++, insn++) {
22592 		struct bpf_loop_inline_state *inline_state =
22593 			&env->insn_aux_data[i + delta].loop_inline_state;
22594 
22595 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
22596 			struct bpf_prog *new_prog;
22597 
22598 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
22599 			new_prog = inline_bpf_loop(env,
22600 						   i + delta,
22601 						   -(stack_depth + stack_depth_extra),
22602 						   inline_state->callback_subprogno,
22603 						   &cnt);
22604 			if (!new_prog)
22605 				return -ENOMEM;
22606 
22607 			delta     += cnt - 1;
22608 			env->prog  = new_prog;
22609 			insn       = new_prog->insnsi + i + delta;
22610 		}
22611 
22612 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
22613 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
22614 			cur_subprog++;
22615 			stack_depth = subprogs[cur_subprog].stack_depth;
22616 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
22617 			stack_depth_extra = 0;
22618 		}
22619 	}
22620 
22621 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
22622 
22623 	return 0;
22624 }
22625 
22626 /* Remove unnecessary spill/fill pairs, members of fastcall pattern,
22627  * adjust subprograms stack depth when possible.
22628  */
remove_fastcall_spills_fills(struct bpf_verifier_env * env)22629 static int remove_fastcall_spills_fills(struct bpf_verifier_env *env)
22630 {
22631 	struct bpf_subprog_info *subprog = env->subprog_info;
22632 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
22633 	struct bpf_insn *insn = env->prog->insnsi;
22634 	int insn_cnt = env->prog->len;
22635 	u32 spills_num;
22636 	bool modified = false;
22637 	int i, j;
22638 
22639 	for (i = 0; i < insn_cnt; i++, insn++) {
22640 		if (aux[i].fastcall_spills_num > 0) {
22641 			spills_num = aux[i].fastcall_spills_num;
22642 			/* NOPs would be removed by opt_remove_nops() */
22643 			for (j = 1; j <= spills_num; ++j) {
22644 				*(insn - j) = NOP;
22645 				*(insn + j) = NOP;
22646 			}
22647 			modified = true;
22648 		}
22649 		if ((subprog + 1)->start == i + 1) {
22650 			if (modified && !subprog->keep_fastcall_stack)
22651 				subprog->stack_depth = -subprog->fastcall_stack_off;
22652 			subprog++;
22653 			modified = false;
22654 		}
22655 	}
22656 
22657 	return 0;
22658 }
22659 
free_states(struct bpf_verifier_env * env)22660 static void free_states(struct bpf_verifier_env *env)
22661 {
22662 	struct bpf_verifier_state_list *sl;
22663 	struct list_head *head, *pos, *tmp;
22664 	int i;
22665 
22666 	list_for_each_safe(pos, tmp, &env->free_list) {
22667 		sl = container_of(pos, struct bpf_verifier_state_list, node);
22668 		free_verifier_state(&sl->state, false);
22669 		kfree(sl);
22670 	}
22671 	INIT_LIST_HEAD(&env->free_list);
22672 
22673 	if (!env->explored_states)
22674 		return;
22675 
22676 	for (i = 0; i < state_htab_size(env); i++) {
22677 		head = &env->explored_states[i];
22678 
22679 		list_for_each_safe(pos, tmp, head) {
22680 			sl = container_of(pos, struct bpf_verifier_state_list, node);
22681 			free_verifier_state(&sl->state, false);
22682 			kfree(sl);
22683 		}
22684 		INIT_LIST_HEAD(&env->explored_states[i]);
22685 	}
22686 }
22687 
do_check_common(struct bpf_verifier_env * env,int subprog)22688 static int do_check_common(struct bpf_verifier_env *env, int subprog)
22689 {
22690 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
22691 	struct bpf_subprog_info *sub = subprog_info(env, subprog);
22692 	struct bpf_prog_aux *aux = env->prog->aux;
22693 	struct bpf_verifier_state *state;
22694 	struct bpf_reg_state *regs;
22695 	int ret, i;
22696 
22697 	env->prev_linfo = NULL;
22698 	env->pass_cnt++;
22699 
22700 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
22701 	if (!state)
22702 		return -ENOMEM;
22703 	state->curframe = 0;
22704 	state->speculative = false;
22705 	state->branches = 1;
22706 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
22707 	if (!state->frame[0]) {
22708 		kfree(state);
22709 		return -ENOMEM;
22710 	}
22711 	env->cur_state = state;
22712 	init_func_state(env, state->frame[0],
22713 			BPF_MAIN_FUNC /* callsite */,
22714 			0 /* frameno */,
22715 			subprog);
22716 	state->first_insn_idx = env->subprog_info[subprog].start;
22717 	state->last_insn_idx = -1;
22718 
22719 	regs = state->frame[state->curframe]->regs;
22720 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
22721 		const char *sub_name = subprog_name(env, subprog);
22722 		struct bpf_subprog_arg_info *arg;
22723 		struct bpf_reg_state *reg;
22724 
22725 		verbose(env, "Validating %s() func#%d...\n", sub_name, subprog);
22726 		ret = btf_prepare_func_args(env, subprog);
22727 		if (ret)
22728 			goto out;
22729 
22730 		if (subprog_is_exc_cb(env, subprog)) {
22731 			state->frame[0]->in_exception_callback_fn = true;
22732 			/* We have already ensured that the callback returns an integer, just
22733 			 * like all global subprogs. We need to determine it only has a single
22734 			 * scalar argument.
22735 			 */
22736 			if (sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_ANYTHING) {
22737 				verbose(env, "exception cb only supports single integer argument\n");
22738 				ret = -EINVAL;
22739 				goto out;
22740 			}
22741 		}
22742 		for (i = BPF_REG_1; i <= sub->arg_cnt; i++) {
22743 			arg = &sub->args[i - BPF_REG_1];
22744 			reg = &regs[i];
22745 
22746 			if (arg->arg_type == ARG_PTR_TO_CTX) {
22747 				reg->type = PTR_TO_CTX;
22748 				mark_reg_known_zero(env, regs, i);
22749 			} else if (arg->arg_type == ARG_ANYTHING) {
22750 				reg->type = SCALAR_VALUE;
22751 				mark_reg_unknown(env, regs, i);
22752 			} else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) {
22753 				/* assume unspecial LOCAL dynptr type */
22754 				__mark_dynptr_reg(reg, BPF_DYNPTR_TYPE_LOCAL, true, ++env->id_gen);
22755 			} else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) {
22756 				reg->type = PTR_TO_MEM;
22757 				if (arg->arg_type & PTR_MAYBE_NULL)
22758 					reg->type |= PTR_MAYBE_NULL;
22759 				mark_reg_known_zero(env, regs, i);
22760 				reg->mem_size = arg->mem_size;
22761 				reg->id = ++env->id_gen;
22762 			} else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) {
22763 				reg->type = PTR_TO_BTF_ID;
22764 				if (arg->arg_type & PTR_MAYBE_NULL)
22765 					reg->type |= PTR_MAYBE_NULL;
22766 				if (arg->arg_type & PTR_UNTRUSTED)
22767 					reg->type |= PTR_UNTRUSTED;
22768 				if (arg->arg_type & PTR_TRUSTED)
22769 					reg->type |= PTR_TRUSTED;
22770 				mark_reg_known_zero(env, regs, i);
22771 				reg->btf = bpf_get_btf_vmlinux(); /* can't fail at this point */
22772 				reg->btf_id = arg->btf_id;
22773 				reg->id = ++env->id_gen;
22774 			} else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) {
22775 				/* caller can pass either PTR_TO_ARENA or SCALAR */
22776 				mark_reg_unknown(env, regs, i);
22777 			} else {
22778 				WARN_ONCE(1, "BUG: unhandled arg#%d type %d\n",
22779 					  i - BPF_REG_1, arg->arg_type);
22780 				ret = -EFAULT;
22781 				goto out;
22782 			}
22783 		}
22784 	} else {
22785 		/* if main BPF program has associated BTF info, validate that
22786 		 * it's matching expected signature, and otherwise mark BTF
22787 		 * info for main program as unreliable
22788 		 */
22789 		if (env->prog->aux->func_info_aux) {
22790 			ret = btf_prepare_func_args(env, 0);
22791 			if (ret || sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_PTR_TO_CTX)
22792 				env->prog->aux->func_info_aux[0].unreliable = true;
22793 		}
22794 
22795 		/* 1st arg to a function */
22796 		regs[BPF_REG_1].type = PTR_TO_CTX;
22797 		mark_reg_known_zero(env, regs, BPF_REG_1);
22798 	}
22799 
22800 	/* Acquire references for struct_ops program arguments tagged with "__ref" */
22801 	if (!subprog && env->prog->type == BPF_PROG_TYPE_STRUCT_OPS) {
22802 		for (i = 0; i < aux->ctx_arg_info_size; i++)
22803 			aux->ctx_arg_info[i].ref_obj_id = aux->ctx_arg_info[i].refcounted ?
22804 							  acquire_reference(env, 0) : 0;
22805 	}
22806 
22807 	ret = do_check(env);
22808 out:
22809 	/* check for NULL is necessary, since cur_state can be freed inside
22810 	 * do_check() under memory pressure.
22811 	 */
22812 	if (env->cur_state) {
22813 		free_verifier_state(env->cur_state, true);
22814 		env->cur_state = NULL;
22815 	}
22816 	while (!pop_stack(env, NULL, NULL, false));
22817 	if (!ret && pop_log)
22818 		bpf_vlog_reset(&env->log, 0);
22819 	free_states(env);
22820 	return ret;
22821 }
22822 
22823 /* Lazily verify all global functions based on their BTF, if they are called
22824  * from main BPF program or any of subprograms transitively.
22825  * BPF global subprogs called from dead code are not validated.
22826  * All callable global functions must pass verification.
22827  * Otherwise the whole program is rejected.
22828  * Consider:
22829  * int bar(int);
22830  * int foo(int f)
22831  * {
22832  *    return bar(f);
22833  * }
22834  * int bar(int b)
22835  * {
22836  *    ...
22837  * }
22838  * foo() will be verified first for R1=any_scalar_value. During verification it
22839  * will be assumed that bar() already verified successfully and call to bar()
22840  * from foo() will be checked for type match only. Later bar() will be verified
22841  * independently to check that it's safe for R1=any_scalar_value.
22842  */
do_check_subprogs(struct bpf_verifier_env * env)22843 static int do_check_subprogs(struct bpf_verifier_env *env)
22844 {
22845 	struct bpf_prog_aux *aux = env->prog->aux;
22846 	struct bpf_func_info_aux *sub_aux;
22847 	int i, ret, new_cnt;
22848 
22849 	if (!aux->func_info)
22850 		return 0;
22851 
22852 	/* exception callback is presumed to be always called */
22853 	if (env->exception_callback_subprog)
22854 		subprog_aux(env, env->exception_callback_subprog)->called = true;
22855 
22856 again:
22857 	new_cnt = 0;
22858 	for (i = 1; i < env->subprog_cnt; i++) {
22859 		if (!subprog_is_global(env, i))
22860 			continue;
22861 
22862 		sub_aux = subprog_aux(env, i);
22863 		if (!sub_aux->called || sub_aux->verified)
22864 			continue;
22865 
22866 		env->insn_idx = env->subprog_info[i].start;
22867 		WARN_ON_ONCE(env->insn_idx == 0);
22868 		ret = do_check_common(env, i);
22869 		if (ret) {
22870 			return ret;
22871 		} else if (env->log.level & BPF_LOG_LEVEL) {
22872 			verbose(env, "Func#%d ('%s') is safe for any args that match its prototype\n",
22873 				i, subprog_name(env, i));
22874 		}
22875 
22876 		/* We verified new global subprog, it might have called some
22877 		 * more global subprogs that we haven't verified yet, so we
22878 		 * need to do another pass over subprogs to verify those.
22879 		 */
22880 		sub_aux->verified = true;
22881 		new_cnt++;
22882 	}
22883 
22884 	/* We can't loop forever as we verify at least one global subprog on
22885 	 * each pass.
22886 	 */
22887 	if (new_cnt)
22888 		goto again;
22889 
22890 	return 0;
22891 }
22892 
do_check_main(struct bpf_verifier_env * env)22893 static int do_check_main(struct bpf_verifier_env *env)
22894 {
22895 	int ret;
22896 
22897 	env->insn_idx = 0;
22898 	ret = do_check_common(env, 0);
22899 	if (!ret)
22900 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
22901 	return ret;
22902 }
22903 
22904 
print_verification_stats(struct bpf_verifier_env * env)22905 static void print_verification_stats(struct bpf_verifier_env *env)
22906 {
22907 	int i;
22908 
22909 	if (env->log.level & BPF_LOG_STATS) {
22910 		verbose(env, "verification time %lld usec\n",
22911 			div_u64(env->verification_time, 1000));
22912 		verbose(env, "stack depth ");
22913 		for (i = 0; i < env->subprog_cnt; i++) {
22914 			u32 depth = env->subprog_info[i].stack_depth;
22915 
22916 			verbose(env, "%d", depth);
22917 			if (i + 1 < env->subprog_cnt)
22918 				verbose(env, "+");
22919 		}
22920 		verbose(env, "\n");
22921 	}
22922 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
22923 		"total_states %d peak_states %d mark_read %d\n",
22924 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
22925 		env->max_states_per_insn, env->total_states,
22926 		env->peak_states, env->longest_mark_read_walk);
22927 }
22928 
bpf_prog_ctx_arg_info_init(struct bpf_prog * prog,const struct bpf_ctx_arg_aux * info,u32 cnt)22929 int bpf_prog_ctx_arg_info_init(struct bpf_prog *prog,
22930 			       const struct bpf_ctx_arg_aux *info, u32 cnt)
22931 {
22932 	prog->aux->ctx_arg_info = kmemdup_array(info, cnt, sizeof(*info), GFP_KERNEL);
22933 	prog->aux->ctx_arg_info_size = cnt;
22934 
22935 	return prog->aux->ctx_arg_info ? 0 : -ENOMEM;
22936 }
22937 
check_struct_ops_btf_id(struct bpf_verifier_env * env)22938 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
22939 {
22940 	const struct btf_type *t, *func_proto;
22941 	const struct bpf_struct_ops_desc *st_ops_desc;
22942 	const struct bpf_struct_ops *st_ops;
22943 	const struct btf_member *member;
22944 	struct bpf_prog *prog = env->prog;
22945 	bool has_refcounted_arg = false;
22946 	u32 btf_id, member_idx, member_off;
22947 	struct btf *btf;
22948 	const char *mname;
22949 	int i, err;
22950 
22951 	if (!prog->gpl_compatible) {
22952 		verbose(env, "struct ops programs must have a GPL compatible license\n");
22953 		return -EINVAL;
22954 	}
22955 
22956 	if (!prog->aux->attach_btf_id)
22957 		return -ENOTSUPP;
22958 
22959 	btf = prog->aux->attach_btf;
22960 	if (btf_is_module(btf)) {
22961 		/* Make sure st_ops is valid through the lifetime of env */
22962 		env->attach_btf_mod = btf_try_get_module(btf);
22963 		if (!env->attach_btf_mod) {
22964 			verbose(env, "struct_ops module %s is not found\n",
22965 				btf_get_name(btf));
22966 			return -ENOTSUPP;
22967 		}
22968 	}
22969 
22970 	btf_id = prog->aux->attach_btf_id;
22971 	st_ops_desc = bpf_struct_ops_find(btf, btf_id);
22972 	if (!st_ops_desc) {
22973 		verbose(env, "attach_btf_id %u is not a supported struct\n",
22974 			btf_id);
22975 		return -ENOTSUPP;
22976 	}
22977 	st_ops = st_ops_desc->st_ops;
22978 
22979 	t = st_ops_desc->type;
22980 	member_idx = prog->expected_attach_type;
22981 	if (member_idx >= btf_type_vlen(t)) {
22982 		verbose(env, "attach to invalid member idx %u of struct %s\n",
22983 			member_idx, st_ops->name);
22984 		return -EINVAL;
22985 	}
22986 
22987 	member = &btf_type_member(t)[member_idx];
22988 	mname = btf_name_by_offset(btf, member->name_off);
22989 	func_proto = btf_type_resolve_func_ptr(btf, member->type,
22990 					       NULL);
22991 	if (!func_proto) {
22992 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
22993 			mname, member_idx, st_ops->name);
22994 		return -EINVAL;
22995 	}
22996 
22997 	member_off = __btf_member_bit_offset(t, member) / 8;
22998 	err = bpf_struct_ops_supported(st_ops, member_off);
22999 	if (err) {
23000 		verbose(env, "attach to unsupported member %s of struct %s\n",
23001 			mname, st_ops->name);
23002 		return err;
23003 	}
23004 
23005 	if (st_ops->check_member) {
23006 		err = st_ops->check_member(t, member, prog);
23007 
23008 		if (err) {
23009 			verbose(env, "attach to unsupported member %s of struct %s\n",
23010 				mname, st_ops->name);
23011 			return err;
23012 		}
23013 	}
23014 
23015 	if (prog->aux->priv_stack_requested && !bpf_jit_supports_private_stack()) {
23016 		verbose(env, "Private stack not supported by jit\n");
23017 		return -EACCES;
23018 	}
23019 
23020 	for (i = 0; i < st_ops_desc->arg_info[member_idx].cnt; i++) {
23021 		if (st_ops_desc->arg_info[member_idx].info->refcounted) {
23022 			has_refcounted_arg = true;
23023 			break;
23024 		}
23025 	}
23026 
23027 	/* Tail call is not allowed for programs with refcounted arguments since we
23028 	 * cannot guarantee that valid refcounted kptrs will be passed to the callee.
23029 	 */
23030 	for (i = 0; i < env->subprog_cnt; i++) {
23031 		if (has_refcounted_arg && env->subprog_info[i].has_tail_call) {
23032 			verbose(env, "program with __ref argument cannot tail call\n");
23033 			return -EINVAL;
23034 		}
23035 	}
23036 
23037 	prog->aux->st_ops = st_ops;
23038 	prog->aux->attach_st_ops_member_off = member_off;
23039 
23040 	prog->aux->attach_func_proto = func_proto;
23041 	prog->aux->attach_func_name = mname;
23042 	env->ops = st_ops->verifier_ops;
23043 
23044 	return bpf_prog_ctx_arg_info_init(prog, st_ops_desc->arg_info[member_idx].info,
23045 					  st_ops_desc->arg_info[member_idx].cnt);
23046 }
23047 #define SECURITY_PREFIX "security_"
23048 
check_attach_modify_return(unsigned long addr,const char * func_name)23049 static int check_attach_modify_return(unsigned long addr, const char *func_name)
23050 {
23051 	if (within_error_injection_list(addr) ||
23052 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
23053 		return 0;
23054 
23055 	return -EINVAL;
23056 }
23057 
23058 /* list of non-sleepable functions that are otherwise on
23059  * ALLOW_ERROR_INJECTION list
23060  */
23061 BTF_SET_START(btf_non_sleepable_error_inject)
23062 /* Three functions below can be called from sleepable and non-sleepable context.
23063  * Assume non-sleepable from bpf safety point of view.
23064  */
BTF_ID(func,__filemap_add_folio)23065 BTF_ID(func, __filemap_add_folio)
23066 #ifdef CONFIG_FAIL_PAGE_ALLOC
23067 BTF_ID(func, should_fail_alloc_page)
23068 #endif
23069 #ifdef CONFIG_FAILSLAB
23070 BTF_ID(func, should_failslab)
23071 #endif
23072 BTF_SET_END(btf_non_sleepable_error_inject)
23073 
23074 static int check_non_sleepable_error_inject(u32 btf_id)
23075 {
23076 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
23077 }
23078 
bpf_check_attach_target(struct bpf_verifier_log * log,const struct bpf_prog * prog,const struct bpf_prog * tgt_prog,u32 btf_id,struct bpf_attach_target_info * tgt_info)23079 int bpf_check_attach_target(struct bpf_verifier_log *log,
23080 			    const struct bpf_prog *prog,
23081 			    const struct bpf_prog *tgt_prog,
23082 			    u32 btf_id,
23083 			    struct bpf_attach_target_info *tgt_info)
23084 {
23085 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
23086 	bool prog_tracing = prog->type == BPF_PROG_TYPE_TRACING;
23087 	char trace_symbol[KSYM_SYMBOL_LEN];
23088 	const char prefix[] = "btf_trace_";
23089 	struct bpf_raw_event_map *btp;
23090 	int ret = 0, subprog = -1, i;
23091 	const struct btf_type *t;
23092 	bool conservative = true;
23093 	const char *tname, *fname;
23094 	struct btf *btf;
23095 	long addr = 0;
23096 	struct module *mod = NULL;
23097 
23098 	if (!btf_id) {
23099 		bpf_log(log, "Tracing programs must provide btf_id\n");
23100 		return -EINVAL;
23101 	}
23102 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
23103 	if (!btf) {
23104 		bpf_log(log,
23105 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
23106 		return -EINVAL;
23107 	}
23108 	t = btf_type_by_id(btf, btf_id);
23109 	if (!t) {
23110 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
23111 		return -EINVAL;
23112 	}
23113 	tname = btf_name_by_offset(btf, t->name_off);
23114 	if (!tname) {
23115 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
23116 		return -EINVAL;
23117 	}
23118 	if (tgt_prog) {
23119 		struct bpf_prog_aux *aux = tgt_prog->aux;
23120 		bool tgt_changes_pkt_data;
23121 		bool tgt_might_sleep;
23122 
23123 		if (bpf_prog_is_dev_bound(prog->aux) &&
23124 		    !bpf_prog_dev_bound_match(prog, tgt_prog)) {
23125 			bpf_log(log, "Target program bound device mismatch");
23126 			return -EINVAL;
23127 		}
23128 
23129 		for (i = 0; i < aux->func_info_cnt; i++)
23130 			if (aux->func_info[i].type_id == btf_id) {
23131 				subprog = i;
23132 				break;
23133 			}
23134 		if (subprog == -1) {
23135 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
23136 			return -EINVAL;
23137 		}
23138 		if (aux->func && aux->func[subprog]->aux->exception_cb) {
23139 			bpf_log(log,
23140 				"%s programs cannot attach to exception callback\n",
23141 				prog_extension ? "Extension" : "FENTRY/FEXIT");
23142 			return -EINVAL;
23143 		}
23144 		conservative = aux->func_info_aux[subprog].unreliable;
23145 		if (prog_extension) {
23146 			if (conservative) {
23147 				bpf_log(log,
23148 					"Cannot replace static functions\n");
23149 				return -EINVAL;
23150 			}
23151 			if (!prog->jit_requested) {
23152 				bpf_log(log,
23153 					"Extension programs should be JITed\n");
23154 				return -EINVAL;
23155 			}
23156 			tgt_changes_pkt_data = aux->func
23157 					       ? aux->func[subprog]->aux->changes_pkt_data
23158 					       : aux->changes_pkt_data;
23159 			if (prog->aux->changes_pkt_data && !tgt_changes_pkt_data) {
23160 				bpf_log(log,
23161 					"Extension program changes packet data, while original does not\n");
23162 				return -EINVAL;
23163 			}
23164 
23165 			tgt_might_sleep = aux->func
23166 					  ? aux->func[subprog]->aux->might_sleep
23167 					  : aux->might_sleep;
23168 			if (prog->aux->might_sleep && !tgt_might_sleep) {
23169 				bpf_log(log,
23170 					"Extension program may sleep, while original does not\n");
23171 				return -EINVAL;
23172 			}
23173 		}
23174 		if (!tgt_prog->jited) {
23175 			bpf_log(log, "Can attach to only JITed progs\n");
23176 			return -EINVAL;
23177 		}
23178 		if (prog_tracing) {
23179 			if (aux->attach_tracing_prog) {
23180 				/*
23181 				 * Target program is an fentry/fexit which is already attached
23182 				 * to another tracing program. More levels of nesting
23183 				 * attachment are not allowed.
23184 				 */
23185 				bpf_log(log, "Cannot nest tracing program attach more than once\n");
23186 				return -EINVAL;
23187 			}
23188 		} else if (tgt_prog->type == prog->type) {
23189 			/*
23190 			 * To avoid potential call chain cycles, prevent attaching of a
23191 			 * program extension to another extension. It's ok to attach
23192 			 * fentry/fexit to extension program.
23193 			 */
23194 			bpf_log(log, "Cannot recursively attach\n");
23195 			return -EINVAL;
23196 		}
23197 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
23198 		    prog_extension &&
23199 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
23200 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
23201 			/* Program extensions can extend all program types
23202 			 * except fentry/fexit. The reason is the following.
23203 			 * The fentry/fexit programs are used for performance
23204 			 * analysis, stats and can be attached to any program
23205 			 * type. When extension program is replacing XDP function
23206 			 * it is necessary to allow performance analysis of all
23207 			 * functions. Both original XDP program and its program
23208 			 * extension. Hence attaching fentry/fexit to
23209 			 * BPF_PROG_TYPE_EXT is allowed. If extending of
23210 			 * fentry/fexit was allowed it would be possible to create
23211 			 * long call chain fentry->extension->fentry->extension
23212 			 * beyond reasonable stack size. Hence extending fentry
23213 			 * is not allowed.
23214 			 */
23215 			bpf_log(log, "Cannot extend fentry/fexit\n");
23216 			return -EINVAL;
23217 		}
23218 	} else {
23219 		if (prog_extension) {
23220 			bpf_log(log, "Cannot replace kernel functions\n");
23221 			return -EINVAL;
23222 		}
23223 	}
23224 
23225 	switch (prog->expected_attach_type) {
23226 	case BPF_TRACE_RAW_TP:
23227 		if (tgt_prog) {
23228 			bpf_log(log,
23229 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
23230 			return -EINVAL;
23231 		}
23232 		if (!btf_type_is_typedef(t)) {
23233 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
23234 				btf_id);
23235 			return -EINVAL;
23236 		}
23237 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
23238 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
23239 				btf_id, tname);
23240 			return -EINVAL;
23241 		}
23242 		tname += sizeof(prefix) - 1;
23243 
23244 		/* The func_proto of "btf_trace_##tname" is generated from typedef without argument
23245 		 * names. Thus using bpf_raw_event_map to get argument names.
23246 		 */
23247 		btp = bpf_get_raw_tracepoint(tname);
23248 		if (!btp)
23249 			return -EINVAL;
23250 		fname = kallsyms_lookup((unsigned long)btp->bpf_func, NULL, NULL, NULL,
23251 					trace_symbol);
23252 		bpf_put_raw_tracepoint(btp);
23253 
23254 		if (fname)
23255 			ret = btf_find_by_name_kind(btf, fname, BTF_KIND_FUNC);
23256 
23257 		if (!fname || ret < 0) {
23258 			bpf_log(log, "Cannot find btf of tracepoint template, fall back to %s%s.\n",
23259 				prefix, tname);
23260 			t = btf_type_by_id(btf, t->type);
23261 			if (!btf_type_is_ptr(t))
23262 				/* should never happen in valid vmlinux build */
23263 				return -EINVAL;
23264 		} else {
23265 			t = btf_type_by_id(btf, ret);
23266 			if (!btf_type_is_func(t))
23267 				/* should never happen in valid vmlinux build */
23268 				return -EINVAL;
23269 		}
23270 
23271 		t = btf_type_by_id(btf, t->type);
23272 		if (!btf_type_is_func_proto(t))
23273 			/* should never happen in valid vmlinux build */
23274 			return -EINVAL;
23275 
23276 		break;
23277 	case BPF_TRACE_ITER:
23278 		if (!btf_type_is_func(t)) {
23279 			bpf_log(log, "attach_btf_id %u is not a function\n",
23280 				btf_id);
23281 			return -EINVAL;
23282 		}
23283 		t = btf_type_by_id(btf, t->type);
23284 		if (!btf_type_is_func_proto(t))
23285 			return -EINVAL;
23286 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
23287 		if (ret)
23288 			return ret;
23289 		break;
23290 	default:
23291 		if (!prog_extension)
23292 			return -EINVAL;
23293 		fallthrough;
23294 	case BPF_MODIFY_RETURN:
23295 	case BPF_LSM_MAC:
23296 	case BPF_LSM_CGROUP:
23297 	case BPF_TRACE_FENTRY:
23298 	case BPF_TRACE_FEXIT:
23299 		if (!btf_type_is_func(t)) {
23300 			bpf_log(log, "attach_btf_id %u is not a function\n",
23301 				btf_id);
23302 			return -EINVAL;
23303 		}
23304 		if (prog_extension &&
23305 		    btf_check_type_match(log, prog, btf, t))
23306 			return -EINVAL;
23307 		t = btf_type_by_id(btf, t->type);
23308 		if (!btf_type_is_func_proto(t))
23309 			return -EINVAL;
23310 
23311 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
23312 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
23313 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
23314 			return -EINVAL;
23315 
23316 		if (tgt_prog && conservative)
23317 			t = NULL;
23318 
23319 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
23320 		if (ret < 0)
23321 			return ret;
23322 
23323 		if (tgt_prog) {
23324 			if (subprog == 0)
23325 				addr = (long) tgt_prog->bpf_func;
23326 			else
23327 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
23328 		} else {
23329 			if (btf_is_module(btf)) {
23330 				mod = btf_try_get_module(btf);
23331 				if (mod)
23332 					addr = find_kallsyms_symbol_value(mod, tname);
23333 				else
23334 					addr = 0;
23335 			} else {
23336 				addr = kallsyms_lookup_name(tname);
23337 			}
23338 			if (!addr) {
23339 				module_put(mod);
23340 				bpf_log(log,
23341 					"The address of function %s cannot be found\n",
23342 					tname);
23343 				return -ENOENT;
23344 			}
23345 		}
23346 
23347 		if (prog->sleepable) {
23348 			ret = -EINVAL;
23349 			switch (prog->type) {
23350 			case BPF_PROG_TYPE_TRACING:
23351 
23352 				/* fentry/fexit/fmod_ret progs can be sleepable if they are
23353 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
23354 				 */
23355 				if (!check_non_sleepable_error_inject(btf_id) &&
23356 				    within_error_injection_list(addr))
23357 					ret = 0;
23358 				/* fentry/fexit/fmod_ret progs can also be sleepable if they are
23359 				 * in the fmodret id set with the KF_SLEEPABLE flag.
23360 				 */
23361 				else {
23362 					u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
23363 										prog);
23364 
23365 					if (flags && (*flags & KF_SLEEPABLE))
23366 						ret = 0;
23367 				}
23368 				break;
23369 			case BPF_PROG_TYPE_LSM:
23370 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
23371 				 * Only some of them are sleepable.
23372 				 */
23373 				if (bpf_lsm_is_sleepable_hook(btf_id))
23374 					ret = 0;
23375 				break;
23376 			default:
23377 				break;
23378 			}
23379 			if (ret) {
23380 				module_put(mod);
23381 				bpf_log(log, "%s is not sleepable\n", tname);
23382 				return ret;
23383 			}
23384 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
23385 			if (tgt_prog) {
23386 				module_put(mod);
23387 				bpf_log(log, "can't modify return codes of BPF programs\n");
23388 				return -EINVAL;
23389 			}
23390 			ret = -EINVAL;
23391 			if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
23392 			    !check_attach_modify_return(addr, tname))
23393 				ret = 0;
23394 			if (ret) {
23395 				module_put(mod);
23396 				bpf_log(log, "%s() is not modifiable\n", tname);
23397 				return ret;
23398 			}
23399 		}
23400 
23401 		break;
23402 	}
23403 	tgt_info->tgt_addr = addr;
23404 	tgt_info->tgt_name = tname;
23405 	tgt_info->tgt_type = t;
23406 	tgt_info->tgt_mod = mod;
23407 	return 0;
23408 }
23409 
BTF_SET_START(btf_id_deny)23410 BTF_SET_START(btf_id_deny)
23411 BTF_ID_UNUSED
23412 #ifdef CONFIG_SMP
23413 BTF_ID(func, migrate_disable)
23414 BTF_ID(func, migrate_enable)
23415 #endif
23416 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
23417 BTF_ID(func, rcu_read_unlock_strict)
23418 #endif
23419 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
23420 BTF_ID(func, preempt_count_add)
23421 BTF_ID(func, preempt_count_sub)
23422 #endif
23423 #ifdef CONFIG_PREEMPT_RCU
23424 BTF_ID(func, __rcu_read_lock)
23425 BTF_ID(func, __rcu_read_unlock)
23426 #endif
23427 BTF_SET_END(btf_id_deny)
23428 
23429 /* fexit and fmod_ret can't be used to attach to __noreturn functions.
23430  * Currently, we must manually list all __noreturn functions here. Once a more
23431  * robust solution is implemented, this workaround can be removed.
23432  */
23433 BTF_SET_START(noreturn_deny)
23434 #ifdef CONFIG_IA32_EMULATION
23435 BTF_ID(func, __ia32_sys_exit)
23436 BTF_ID(func, __ia32_sys_exit_group)
23437 #endif
23438 #ifdef CONFIG_KUNIT
23439 BTF_ID(func, __kunit_abort)
23440 BTF_ID(func, kunit_try_catch_throw)
23441 #endif
23442 #ifdef CONFIG_MODULES
23443 BTF_ID(func, __module_put_and_kthread_exit)
23444 #endif
23445 #ifdef CONFIG_X86_64
23446 BTF_ID(func, __x64_sys_exit)
23447 BTF_ID(func, __x64_sys_exit_group)
23448 #endif
23449 BTF_ID(func, do_exit)
23450 BTF_ID(func, do_group_exit)
23451 BTF_ID(func, kthread_complete_and_exit)
23452 BTF_ID(func, kthread_exit)
23453 BTF_ID(func, make_task_dead)
23454 BTF_SET_END(noreturn_deny)
23455 
23456 static bool can_be_sleepable(struct bpf_prog *prog)
23457 {
23458 	if (prog->type == BPF_PROG_TYPE_TRACING) {
23459 		switch (prog->expected_attach_type) {
23460 		case BPF_TRACE_FENTRY:
23461 		case BPF_TRACE_FEXIT:
23462 		case BPF_MODIFY_RETURN:
23463 		case BPF_TRACE_ITER:
23464 			return true;
23465 		default:
23466 			return false;
23467 		}
23468 	}
23469 	return prog->type == BPF_PROG_TYPE_LSM ||
23470 	       prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
23471 	       prog->type == BPF_PROG_TYPE_STRUCT_OPS;
23472 }
23473 
check_attach_btf_id(struct bpf_verifier_env * env)23474 static int check_attach_btf_id(struct bpf_verifier_env *env)
23475 {
23476 	struct bpf_prog *prog = env->prog;
23477 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
23478 	struct bpf_attach_target_info tgt_info = {};
23479 	u32 btf_id = prog->aux->attach_btf_id;
23480 	struct bpf_trampoline *tr;
23481 	int ret;
23482 	u64 key;
23483 
23484 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
23485 		if (prog->sleepable)
23486 			/* attach_btf_id checked to be zero already */
23487 			return 0;
23488 		verbose(env, "Syscall programs can only be sleepable\n");
23489 		return -EINVAL;
23490 	}
23491 
23492 	if (prog->sleepable && !can_be_sleepable(prog)) {
23493 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
23494 		return -EINVAL;
23495 	}
23496 
23497 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
23498 		return check_struct_ops_btf_id(env);
23499 
23500 	if (prog->type != BPF_PROG_TYPE_TRACING &&
23501 	    prog->type != BPF_PROG_TYPE_LSM &&
23502 	    prog->type != BPF_PROG_TYPE_EXT)
23503 		return 0;
23504 
23505 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
23506 	if (ret)
23507 		return ret;
23508 
23509 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
23510 		/* to make freplace equivalent to their targets, they need to
23511 		 * inherit env->ops and expected_attach_type for the rest of the
23512 		 * verification
23513 		 */
23514 		env->ops = bpf_verifier_ops[tgt_prog->type];
23515 		prog->expected_attach_type = tgt_prog->expected_attach_type;
23516 	}
23517 
23518 	/* store info about the attachment target that will be used later */
23519 	prog->aux->attach_func_proto = tgt_info.tgt_type;
23520 	prog->aux->attach_func_name = tgt_info.tgt_name;
23521 	prog->aux->mod = tgt_info.tgt_mod;
23522 
23523 	if (tgt_prog) {
23524 		prog->aux->saved_dst_prog_type = tgt_prog->type;
23525 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
23526 	}
23527 
23528 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
23529 		prog->aux->attach_btf_trace = true;
23530 		return 0;
23531 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
23532 		return bpf_iter_prog_supported(prog);
23533 	}
23534 
23535 	if (prog->type == BPF_PROG_TYPE_LSM) {
23536 		ret = bpf_lsm_verify_prog(&env->log, prog);
23537 		if (ret < 0)
23538 			return ret;
23539 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
23540 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
23541 		return -EINVAL;
23542 	} else if ((prog->expected_attach_type == BPF_TRACE_FEXIT ||
23543 		   prog->expected_attach_type == BPF_MODIFY_RETURN) &&
23544 		   btf_id_set_contains(&noreturn_deny, btf_id)) {
23545 		verbose(env, "Attaching fexit/fmod_ret to __noreturn functions is rejected.\n");
23546 		return -EINVAL;
23547 	}
23548 
23549 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
23550 	tr = bpf_trampoline_get(key, &tgt_info);
23551 	if (!tr)
23552 		return -ENOMEM;
23553 
23554 	if (tgt_prog && tgt_prog->aux->tail_call_reachable)
23555 		tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX;
23556 
23557 	prog->aux->dst_trampoline = tr;
23558 	return 0;
23559 }
23560 
bpf_get_btf_vmlinux(void)23561 struct btf *bpf_get_btf_vmlinux(void)
23562 {
23563 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
23564 		mutex_lock(&bpf_verifier_lock);
23565 		if (!btf_vmlinux)
23566 			btf_vmlinux = btf_parse_vmlinux();
23567 		mutex_unlock(&bpf_verifier_lock);
23568 	}
23569 	return btf_vmlinux;
23570 }
23571 
23572 /*
23573  * The add_fd_from_fd_array() is executed only if fd_array_cnt is non-zero. In
23574  * this case expect that every file descriptor in the array is either a map or
23575  * a BTF. Everything else is considered to be trash.
23576  */
add_fd_from_fd_array(struct bpf_verifier_env * env,int fd)23577 static int add_fd_from_fd_array(struct bpf_verifier_env *env, int fd)
23578 {
23579 	struct bpf_map *map;
23580 	struct btf *btf;
23581 	CLASS(fd, f)(fd);
23582 	int err;
23583 
23584 	map = __bpf_map_get(f);
23585 	if (!IS_ERR(map)) {
23586 		err = __add_used_map(env, map);
23587 		if (err < 0)
23588 			return err;
23589 		return 0;
23590 	}
23591 
23592 	btf = __btf_get_by_fd(f);
23593 	if (!IS_ERR(btf)) {
23594 		err = __add_used_btf(env, btf);
23595 		if (err < 0)
23596 			return err;
23597 		return 0;
23598 	}
23599 
23600 	verbose(env, "fd %d is not pointing to valid bpf_map or btf\n", fd);
23601 	return PTR_ERR(map);
23602 }
23603 
process_fd_array(struct bpf_verifier_env * env,union bpf_attr * attr,bpfptr_t uattr)23604 static int process_fd_array(struct bpf_verifier_env *env, union bpf_attr *attr, bpfptr_t uattr)
23605 {
23606 	size_t size = sizeof(int);
23607 	int ret;
23608 	int fd;
23609 	u32 i;
23610 
23611 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
23612 
23613 	/*
23614 	 * The only difference between old (no fd_array_cnt is given) and new
23615 	 * APIs is that in the latter case the fd_array is expected to be
23616 	 * continuous and is scanned for map fds right away
23617 	 */
23618 	if (!attr->fd_array_cnt)
23619 		return 0;
23620 
23621 	/* Check for integer overflow */
23622 	if (attr->fd_array_cnt >= (U32_MAX / size)) {
23623 		verbose(env, "fd_array_cnt is too big (%u)\n", attr->fd_array_cnt);
23624 		return -EINVAL;
23625 	}
23626 
23627 	for (i = 0; i < attr->fd_array_cnt; i++) {
23628 		if (copy_from_bpfptr_offset(&fd, env->fd_array, i * size, size))
23629 			return -EFAULT;
23630 
23631 		ret = add_fd_from_fd_array(env, fd);
23632 		if (ret)
23633 			return ret;
23634 	}
23635 
23636 	return 0;
23637 }
23638 
can_fallthrough(struct bpf_insn * insn)23639 static bool can_fallthrough(struct bpf_insn *insn)
23640 {
23641 	u8 class = BPF_CLASS(insn->code);
23642 	u8 opcode = BPF_OP(insn->code);
23643 
23644 	if (class != BPF_JMP && class != BPF_JMP32)
23645 		return true;
23646 
23647 	if (opcode == BPF_EXIT || opcode == BPF_JA)
23648 		return false;
23649 
23650 	return true;
23651 }
23652 
can_jump(struct bpf_insn * insn)23653 static bool can_jump(struct bpf_insn *insn)
23654 {
23655 	u8 class = BPF_CLASS(insn->code);
23656 	u8 opcode = BPF_OP(insn->code);
23657 
23658 	if (class != BPF_JMP && class != BPF_JMP32)
23659 		return false;
23660 
23661 	switch (opcode) {
23662 	case BPF_JA:
23663 	case BPF_JEQ:
23664 	case BPF_JNE:
23665 	case BPF_JLT:
23666 	case BPF_JLE:
23667 	case BPF_JGT:
23668 	case BPF_JGE:
23669 	case BPF_JSGT:
23670 	case BPF_JSGE:
23671 	case BPF_JSLT:
23672 	case BPF_JSLE:
23673 	case BPF_JCOND:
23674 		return true;
23675 	}
23676 
23677 	return false;
23678 }
23679 
insn_successors(struct bpf_prog * prog,u32 idx,u32 succ[2])23680 static int insn_successors(struct bpf_prog *prog, u32 idx, u32 succ[2])
23681 {
23682 	struct bpf_insn *insn = &prog->insnsi[idx];
23683 	int i = 0, insn_sz;
23684 	u32 dst;
23685 
23686 	insn_sz = bpf_is_ldimm64(insn) ? 2 : 1;
23687 	if (can_fallthrough(insn) && idx + 1 < prog->len)
23688 		succ[i++] = idx + insn_sz;
23689 
23690 	if (can_jump(insn)) {
23691 		dst = idx + jmp_offset(insn) + 1;
23692 		if (i == 0 || succ[0] != dst)
23693 			succ[i++] = dst;
23694 	}
23695 
23696 	return i;
23697 }
23698 
23699 /* Each field is a register bitmask */
23700 struct insn_live_regs {
23701 	u16 use;	/* registers read by instruction */
23702 	u16 def;	/* registers written by instruction */
23703 	u16 in;		/* registers that may be alive before instruction */
23704 	u16 out;	/* registers that may be alive after instruction */
23705 };
23706 
23707 /* Bitmask with 1s for all caller saved registers */
23708 #define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1)
23709 
23710 /* Compute info->{use,def} fields for the instruction */
compute_insn_live_regs(struct bpf_verifier_env * env,struct bpf_insn * insn,struct insn_live_regs * info)23711 static void compute_insn_live_regs(struct bpf_verifier_env *env,
23712 				   struct bpf_insn *insn,
23713 				   struct insn_live_regs *info)
23714 {
23715 	struct call_summary cs;
23716 	u8 class = BPF_CLASS(insn->code);
23717 	u8 code = BPF_OP(insn->code);
23718 	u8 mode = BPF_MODE(insn->code);
23719 	u16 src = BIT(insn->src_reg);
23720 	u16 dst = BIT(insn->dst_reg);
23721 	u16 r0  = BIT(0);
23722 	u16 def = 0;
23723 	u16 use = 0xffff;
23724 
23725 	switch (class) {
23726 	case BPF_LD:
23727 		switch (mode) {
23728 		case BPF_IMM:
23729 			if (BPF_SIZE(insn->code) == BPF_DW) {
23730 				def = dst;
23731 				use = 0;
23732 			}
23733 			break;
23734 		case BPF_LD | BPF_ABS:
23735 		case BPF_LD | BPF_IND:
23736 			/* stick with defaults */
23737 			break;
23738 		}
23739 		break;
23740 	case BPF_LDX:
23741 		switch (mode) {
23742 		case BPF_MEM:
23743 		case BPF_MEMSX:
23744 			def = dst;
23745 			use = src;
23746 			break;
23747 		}
23748 		break;
23749 	case BPF_ST:
23750 		switch (mode) {
23751 		case BPF_MEM:
23752 			def = 0;
23753 			use = dst;
23754 			break;
23755 		}
23756 		break;
23757 	case BPF_STX:
23758 		switch (mode) {
23759 		case BPF_MEM:
23760 			def = 0;
23761 			use = dst | src;
23762 			break;
23763 		case BPF_ATOMIC:
23764 			switch (insn->imm) {
23765 			case BPF_CMPXCHG:
23766 				use = r0 | dst | src;
23767 				def = r0;
23768 				break;
23769 			case BPF_LOAD_ACQ:
23770 				def = dst;
23771 				use = src;
23772 				break;
23773 			case BPF_STORE_REL:
23774 				def = 0;
23775 				use = dst | src;
23776 				break;
23777 			default:
23778 				use = dst | src;
23779 				if (insn->imm & BPF_FETCH)
23780 					def = src;
23781 				else
23782 					def = 0;
23783 			}
23784 			break;
23785 		}
23786 		break;
23787 	case BPF_ALU:
23788 	case BPF_ALU64:
23789 		switch (code) {
23790 		case BPF_END:
23791 			use = dst;
23792 			def = dst;
23793 			break;
23794 		case BPF_MOV:
23795 			def = dst;
23796 			if (BPF_SRC(insn->code) == BPF_K)
23797 				use = 0;
23798 			else
23799 				use = src;
23800 			break;
23801 		default:
23802 			def = dst;
23803 			if (BPF_SRC(insn->code) == BPF_K)
23804 				use = dst;
23805 			else
23806 				use = dst | src;
23807 		}
23808 		break;
23809 	case BPF_JMP:
23810 	case BPF_JMP32:
23811 		switch (code) {
23812 		case BPF_JA:
23813 		case BPF_JCOND:
23814 			def = 0;
23815 			use = 0;
23816 			break;
23817 		case BPF_EXIT:
23818 			def = 0;
23819 			use = r0;
23820 			break;
23821 		case BPF_CALL:
23822 			def = ALL_CALLER_SAVED_REGS;
23823 			use = def & ~BIT(BPF_REG_0);
23824 			if (get_call_summary(env, insn, &cs))
23825 				use = GENMASK(cs.num_params, 1);
23826 			break;
23827 		default:
23828 			def = 0;
23829 			if (BPF_SRC(insn->code) == BPF_K)
23830 				use = dst;
23831 			else
23832 				use = dst | src;
23833 		}
23834 		break;
23835 	}
23836 
23837 	info->def = def;
23838 	info->use = use;
23839 }
23840 
23841 /* Compute may-live registers after each instruction in the program.
23842  * The register is live after the instruction I if it is read by some
23843  * instruction S following I during program execution and is not
23844  * overwritten between I and S.
23845  *
23846  * Store result in env->insn_aux_data[i].live_regs.
23847  */
compute_live_registers(struct bpf_verifier_env * env)23848 static int compute_live_registers(struct bpf_verifier_env *env)
23849 {
23850 	struct bpf_insn_aux_data *insn_aux = env->insn_aux_data;
23851 	struct bpf_insn *insns = env->prog->insnsi;
23852 	struct insn_live_regs *state;
23853 	int insn_cnt = env->prog->len;
23854 	int err = 0, i, j;
23855 	bool changed;
23856 
23857 	/* Use the following algorithm:
23858 	 * - define the following:
23859 	 *   - I.use : a set of all registers read by instruction I;
23860 	 *   - I.def : a set of all registers written by instruction I;
23861 	 *   - I.in  : a set of all registers that may be alive before I execution;
23862 	 *   - I.out : a set of all registers that may be alive after I execution;
23863 	 *   - insn_successors(I): a set of instructions S that might immediately
23864 	 *                         follow I for some program execution;
23865 	 * - associate separate empty sets 'I.in' and 'I.out' with each instruction;
23866 	 * - visit each instruction in a postorder and update
23867 	 *   state[i].in, state[i].out as follows:
23868 	 *
23869 	 *       state[i].out = U [state[s].in for S in insn_successors(i)]
23870 	 *       state[i].in  = (state[i].out / state[i].def) U state[i].use
23871 	 *
23872 	 *   (where U stands for set union, / stands for set difference)
23873 	 * - repeat the computation while {in,out} fields changes for
23874 	 *   any instruction.
23875 	 */
23876 	state = kvcalloc(insn_cnt, sizeof(*state), GFP_KERNEL);
23877 	if (!state) {
23878 		err = -ENOMEM;
23879 		goto out;
23880 	}
23881 
23882 	for (i = 0; i < insn_cnt; ++i)
23883 		compute_insn_live_regs(env, &insns[i], &state[i]);
23884 
23885 	changed = true;
23886 	while (changed) {
23887 		changed = false;
23888 		for (i = 0; i < env->cfg.cur_postorder; ++i) {
23889 			int insn_idx = env->cfg.insn_postorder[i];
23890 			struct insn_live_regs *live = &state[insn_idx];
23891 			int succ_num;
23892 			u32 succ[2];
23893 			u16 new_out = 0;
23894 			u16 new_in = 0;
23895 
23896 			succ_num = insn_successors(env->prog, insn_idx, succ);
23897 			for (int s = 0; s < succ_num; ++s)
23898 				new_out |= state[succ[s]].in;
23899 			new_in = (new_out & ~live->def) | live->use;
23900 			if (new_out != live->out || new_in != live->in) {
23901 				live->in = new_in;
23902 				live->out = new_out;
23903 				changed = true;
23904 			}
23905 		}
23906 	}
23907 
23908 	for (i = 0; i < insn_cnt; ++i)
23909 		insn_aux[i].live_regs_before = state[i].in;
23910 
23911 	if (env->log.level & BPF_LOG_LEVEL2) {
23912 		verbose(env, "Live regs before insn:\n");
23913 		for (i = 0; i < insn_cnt; ++i) {
23914 			verbose(env, "%3d: ", i);
23915 			for (j = BPF_REG_0; j < BPF_REG_10; ++j)
23916 				if (insn_aux[i].live_regs_before & BIT(j))
23917 					verbose(env, "%d", j);
23918 				else
23919 					verbose(env, ".");
23920 			verbose(env, " ");
23921 			verbose_insn(env, &insns[i]);
23922 			if (bpf_is_ldimm64(&insns[i]))
23923 				i++;
23924 		}
23925 	}
23926 
23927 out:
23928 	kvfree(state);
23929 	kvfree(env->cfg.insn_postorder);
23930 	env->cfg.insn_postorder = NULL;
23931 	env->cfg.cur_postorder = 0;
23932 	return err;
23933 }
23934 
bpf_check(struct bpf_prog ** prog,union bpf_attr * attr,bpfptr_t uattr,__u32 uattr_size)23935 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
23936 {
23937 	u64 start_time = ktime_get_ns();
23938 	struct bpf_verifier_env *env;
23939 	int i, len, ret = -EINVAL, err;
23940 	u32 log_true_size;
23941 	bool is_priv;
23942 
23943 	/* no program is valid */
23944 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
23945 		return -EINVAL;
23946 
23947 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
23948 	 * allocate/free it every time bpf_check() is called
23949 	 */
23950 	env = kvzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
23951 	if (!env)
23952 		return -ENOMEM;
23953 
23954 	env->bt.env = env;
23955 
23956 	len = (*prog)->len;
23957 	env->insn_aux_data =
23958 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
23959 	ret = -ENOMEM;
23960 	if (!env->insn_aux_data)
23961 		goto err_free_env;
23962 	for (i = 0; i < len; i++)
23963 		env->insn_aux_data[i].orig_idx = i;
23964 	env->prog = *prog;
23965 	env->ops = bpf_verifier_ops[env->prog->type];
23966 
23967 	env->allow_ptr_leaks = bpf_allow_ptr_leaks(env->prog->aux->token);
23968 	env->allow_uninit_stack = bpf_allow_uninit_stack(env->prog->aux->token);
23969 	env->bypass_spec_v1 = bpf_bypass_spec_v1(env->prog->aux->token);
23970 	env->bypass_spec_v4 = bpf_bypass_spec_v4(env->prog->aux->token);
23971 	env->bpf_capable = is_priv = bpf_token_capable(env->prog->aux->token, CAP_BPF);
23972 
23973 	bpf_get_btf_vmlinux();
23974 
23975 	/* grab the mutex to protect few globals used by verifier */
23976 	if (!is_priv)
23977 		mutex_lock(&bpf_verifier_lock);
23978 
23979 	/* user could have requested verbose verifier output
23980 	 * and supplied buffer to store the verification trace
23981 	 */
23982 	ret = bpf_vlog_init(&env->log, attr->log_level,
23983 			    (char __user *) (unsigned long) attr->log_buf,
23984 			    attr->log_size);
23985 	if (ret)
23986 		goto err_unlock;
23987 
23988 	ret = process_fd_array(env, attr, uattr);
23989 	if (ret)
23990 		goto skip_full_check;
23991 
23992 	mark_verifier_state_clean(env);
23993 
23994 	if (IS_ERR(btf_vmlinux)) {
23995 		/* Either gcc or pahole or kernel are broken. */
23996 		verbose(env, "in-kernel BTF is malformed\n");
23997 		ret = PTR_ERR(btf_vmlinux);
23998 		goto skip_full_check;
23999 	}
24000 
24001 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
24002 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
24003 		env->strict_alignment = true;
24004 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
24005 		env->strict_alignment = false;
24006 
24007 	if (is_priv)
24008 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
24009 	env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS;
24010 
24011 	env->explored_states = kvcalloc(state_htab_size(env),
24012 				       sizeof(struct list_head),
24013 				       GFP_USER);
24014 	ret = -ENOMEM;
24015 	if (!env->explored_states)
24016 		goto skip_full_check;
24017 
24018 	for (i = 0; i < state_htab_size(env); i++)
24019 		INIT_LIST_HEAD(&env->explored_states[i]);
24020 	INIT_LIST_HEAD(&env->free_list);
24021 
24022 	ret = check_btf_info_early(env, attr, uattr);
24023 	if (ret < 0)
24024 		goto skip_full_check;
24025 
24026 	ret = add_subprog_and_kfunc(env);
24027 	if (ret < 0)
24028 		goto skip_full_check;
24029 
24030 	ret = check_subprogs(env);
24031 	if (ret < 0)
24032 		goto skip_full_check;
24033 
24034 	ret = check_btf_info(env, attr, uattr);
24035 	if (ret < 0)
24036 		goto skip_full_check;
24037 
24038 	ret = resolve_pseudo_ldimm64(env);
24039 	if (ret < 0)
24040 		goto skip_full_check;
24041 
24042 	if (bpf_prog_is_offloaded(env->prog->aux)) {
24043 		ret = bpf_prog_offload_verifier_prep(env->prog);
24044 		if (ret)
24045 			goto skip_full_check;
24046 	}
24047 
24048 	ret = check_cfg(env);
24049 	if (ret < 0)
24050 		goto skip_full_check;
24051 
24052 	ret = check_attach_btf_id(env);
24053 	if (ret)
24054 		goto skip_full_check;
24055 
24056 	ret = compute_live_registers(env);
24057 	if (ret < 0)
24058 		goto skip_full_check;
24059 
24060 	ret = mark_fastcall_patterns(env);
24061 	if (ret < 0)
24062 		goto skip_full_check;
24063 
24064 	ret = do_check_main(env);
24065 	ret = ret ?: do_check_subprogs(env);
24066 
24067 	if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
24068 		ret = bpf_prog_offload_finalize(env);
24069 
24070 skip_full_check:
24071 	kvfree(env->explored_states);
24072 
24073 	/* might decrease stack depth, keep it before passes that
24074 	 * allocate additional slots.
24075 	 */
24076 	if (ret == 0)
24077 		ret = remove_fastcall_spills_fills(env);
24078 
24079 	if (ret == 0)
24080 		ret = check_max_stack_depth(env);
24081 
24082 	/* instruction rewrites happen after this point */
24083 	if (ret == 0)
24084 		ret = optimize_bpf_loop(env);
24085 
24086 	if (is_priv) {
24087 		if (ret == 0)
24088 			opt_hard_wire_dead_code_branches(env);
24089 		if (ret == 0)
24090 			ret = opt_remove_dead_code(env);
24091 		if (ret == 0)
24092 			ret = opt_remove_nops(env);
24093 	} else {
24094 		if (ret == 0)
24095 			sanitize_dead_code(env);
24096 	}
24097 
24098 	if (ret == 0)
24099 		/* program is valid, convert *(u32*)(ctx + off) accesses */
24100 		ret = convert_ctx_accesses(env);
24101 
24102 	if (ret == 0)
24103 		ret = do_misc_fixups(env);
24104 
24105 	/* do 32-bit optimization after insn patching has done so those patched
24106 	 * insns could be handled correctly.
24107 	 */
24108 	if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
24109 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
24110 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
24111 								     : false;
24112 	}
24113 
24114 	if (ret == 0)
24115 		ret = fixup_call_args(env);
24116 
24117 	env->verification_time = ktime_get_ns() - start_time;
24118 	print_verification_stats(env);
24119 	env->prog->aux->verified_insns = env->insn_processed;
24120 
24121 	/* preserve original error even if log finalization is successful */
24122 	err = bpf_vlog_finalize(&env->log, &log_true_size);
24123 	if (err)
24124 		ret = err;
24125 
24126 	if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
24127 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
24128 				  &log_true_size, sizeof(log_true_size))) {
24129 		ret = -EFAULT;
24130 		goto err_release_maps;
24131 	}
24132 
24133 	if (ret)
24134 		goto err_release_maps;
24135 
24136 	if (env->used_map_cnt) {
24137 		/* if program passed verifier, update used_maps in bpf_prog_info */
24138 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
24139 							  sizeof(env->used_maps[0]),
24140 							  GFP_KERNEL);
24141 
24142 		if (!env->prog->aux->used_maps) {
24143 			ret = -ENOMEM;
24144 			goto err_release_maps;
24145 		}
24146 
24147 		memcpy(env->prog->aux->used_maps, env->used_maps,
24148 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
24149 		env->prog->aux->used_map_cnt = env->used_map_cnt;
24150 	}
24151 	if (env->used_btf_cnt) {
24152 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
24153 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
24154 							  sizeof(env->used_btfs[0]),
24155 							  GFP_KERNEL);
24156 		if (!env->prog->aux->used_btfs) {
24157 			ret = -ENOMEM;
24158 			goto err_release_maps;
24159 		}
24160 
24161 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
24162 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
24163 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
24164 	}
24165 	if (env->used_map_cnt || env->used_btf_cnt) {
24166 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
24167 		 * bpf_ld_imm64 instructions
24168 		 */
24169 		convert_pseudo_ld_imm64(env);
24170 	}
24171 
24172 	adjust_btf_func(env);
24173 
24174 err_release_maps:
24175 	if (!env->prog->aux->used_maps)
24176 		/* if we didn't copy map pointers into bpf_prog_info, release
24177 		 * them now. Otherwise free_used_maps() will release them.
24178 		 */
24179 		release_maps(env);
24180 	if (!env->prog->aux->used_btfs)
24181 		release_btfs(env);
24182 
24183 	/* extension progs temporarily inherit the attach_type of their targets
24184 	   for verification purposes, so set it back to zero before returning
24185 	 */
24186 	if (env->prog->type == BPF_PROG_TYPE_EXT)
24187 		env->prog->expected_attach_type = 0;
24188 
24189 	*prog = env->prog;
24190 
24191 	module_put(env->attach_btf_mod);
24192 err_unlock:
24193 	if (!is_priv)
24194 		mutex_unlock(&bpf_verifier_lock);
24195 	vfree(env->insn_aux_data);
24196 	kvfree(env->insn_hist);
24197 err_free_env:
24198 	kvfree(env->cfg.insn_postorder);
24199 	kvfree(env);
24200 	return ret;
24201 }
24202