1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/locks.c 4 * 5 * We implement four types of file locks: BSD locks, posix locks, open 6 * file description locks, and leases. For details about BSD locks, 7 * see the flock(2) man page; for details about the other three, see 8 * fcntl(2). 9 * 10 * 11 * Locking conflicts and dependencies: 12 * If multiple threads attempt to lock the same byte (or flock the same file) 13 * only one can be granted the lock, and other must wait their turn. 14 * The first lock has been "applied" or "granted", the others are "waiting" 15 * and are "blocked" by the "applied" lock.. 16 * 17 * Waiting and applied locks are all kept in trees whose properties are: 18 * 19 * - the root of a tree may be an applied or waiting lock. 20 * - every other node in the tree is a waiting lock that 21 * conflicts with every ancestor of that node. 22 * 23 * Every such tree begins life as a waiting singleton which obviously 24 * satisfies the above properties. 25 * 26 * The only ways we modify trees preserve these properties: 27 * 28 * 1. We may add a new leaf node, but only after first verifying that it 29 * conflicts with all of its ancestors. 30 * 2. We may remove the root of a tree, creating a new singleton 31 * tree from the root and N new trees rooted in the immediate 32 * children. 33 * 3. If the root of a tree is not currently an applied lock, we may 34 * apply it (if possible). 35 * 4. We may upgrade the root of the tree (either extend its range, 36 * or upgrade its entire range from read to write). 37 * 38 * When an applied lock is modified in a way that reduces or downgrades any 39 * part of its range, we remove all its children (2 above). This particularly 40 * happens when a lock is unlocked. 41 * 42 * For each of those child trees we "wake up" the thread which is 43 * waiting for the lock so it can continue handling as follows: if the 44 * root of the tree applies, we do so (3). If it doesn't, it must 45 * conflict with some applied lock. We remove (wake up) all of its children 46 * (2), and add it is a new leaf to the tree rooted in the applied 47 * lock (1). We then repeat the process recursively with those 48 * children. 49 * 50 */ 51 #include <linux/capability.h> 52 #include <linux/file.h> 53 #include <linux/fdtable.h> 54 #include <linux/filelock.h> 55 #include <linux/fs.h> 56 #include <linux/init.h> 57 #include <linux/security.h> 58 #include <linux/slab.h> 59 #include <linux/syscalls.h> 60 #include <linux/time.h> 61 #include <linux/rcupdate.h> 62 #include <linux/pid_namespace.h> 63 #include <linux/hashtable.h> 64 #include <linux/percpu.h> 65 #include <linux/sysctl.h> 66 67 #define CREATE_TRACE_POINTS 68 #include <trace/events/filelock.h> 69 70 #include <linux/uaccess.h> 71 72 static struct file_lock *file_lock(struct file_lock_core *flc) 73 { 74 return container_of(flc, struct file_lock, c); 75 } 76 77 static struct file_lease *file_lease(struct file_lock_core *flc) 78 { 79 return container_of(flc, struct file_lease, c); 80 } 81 82 static bool lease_breaking(struct file_lease *fl) 83 { 84 return fl->c.flc_flags & (FL_UNLOCK_PENDING | FL_DOWNGRADE_PENDING); 85 } 86 87 static int target_leasetype(struct file_lease *fl) 88 { 89 if (fl->c.flc_flags & FL_UNLOCK_PENDING) 90 return F_UNLCK; 91 if (fl->c.flc_flags & FL_DOWNGRADE_PENDING) 92 return F_RDLCK; 93 return fl->c.flc_type; 94 } 95 96 static int leases_enable = 1; 97 static int lease_break_time = 45; 98 99 #ifdef CONFIG_SYSCTL 100 static const struct ctl_table locks_sysctls[] = { 101 { 102 .procname = "leases-enable", 103 .data = &leases_enable, 104 .maxlen = sizeof(int), 105 .mode = 0644, 106 .proc_handler = proc_dointvec, 107 }, 108 #ifdef CONFIG_MMU 109 { 110 .procname = "lease-break-time", 111 .data = &lease_break_time, 112 .maxlen = sizeof(int), 113 .mode = 0644, 114 .proc_handler = proc_dointvec, 115 }, 116 #endif /* CONFIG_MMU */ 117 }; 118 119 static int __init init_fs_locks_sysctls(void) 120 { 121 register_sysctl_init("fs", locks_sysctls); 122 return 0; 123 } 124 early_initcall(init_fs_locks_sysctls); 125 #endif /* CONFIG_SYSCTL */ 126 127 /* 128 * The global file_lock_list is only used for displaying /proc/locks, so we 129 * keep a list on each CPU, with each list protected by its own spinlock. 130 * Global serialization is done using file_rwsem. 131 * 132 * Note that alterations to the list also require that the relevant flc_lock is 133 * held. 134 */ 135 struct file_lock_list_struct { 136 spinlock_t lock; 137 struct hlist_head hlist; 138 }; 139 static DEFINE_PER_CPU(struct file_lock_list_struct, file_lock_list); 140 DEFINE_STATIC_PERCPU_RWSEM(file_rwsem); 141 142 143 /* 144 * The blocked_hash is used to find POSIX lock loops for deadlock detection. 145 * It is protected by blocked_lock_lock. 146 * 147 * We hash locks by lockowner in order to optimize searching for the lock a 148 * particular lockowner is waiting on. 149 * 150 * FIXME: make this value scale via some heuristic? We generally will want more 151 * buckets when we have more lockowners holding locks, but that's a little 152 * difficult to determine without knowing what the workload will look like. 153 */ 154 #define BLOCKED_HASH_BITS 7 155 static DEFINE_HASHTABLE(blocked_hash, BLOCKED_HASH_BITS); 156 157 /* 158 * This lock protects the blocked_hash. Generally, if you're accessing it, you 159 * want to be holding this lock. 160 * 161 * In addition, it also protects the fl->fl_blocked_requests list, and the 162 * fl->fl_blocker pointer for file_lock structures that are acting as lock 163 * requests (in contrast to those that are acting as records of acquired locks). 164 * 165 * Note that when we acquire this lock in order to change the above fields, 166 * we often hold the flc_lock as well. In certain cases, when reading the fields 167 * protected by this lock, we can skip acquiring it iff we already hold the 168 * flc_lock. 169 */ 170 static DEFINE_SPINLOCK(blocked_lock_lock); 171 172 static struct kmem_cache *flctx_cache __ro_after_init; 173 static struct kmem_cache *filelock_cache __ro_after_init; 174 static struct kmem_cache *filelease_cache __ro_after_init; 175 176 static struct file_lock_context * 177 locks_get_lock_context(struct inode *inode, int type) 178 { 179 struct file_lock_context *ctx; 180 181 ctx = locks_inode_context(inode); 182 if (likely(ctx) || type == F_UNLCK) 183 goto out; 184 185 ctx = kmem_cache_alloc(flctx_cache, GFP_KERNEL); 186 if (!ctx) 187 goto out; 188 189 spin_lock_init(&ctx->flc_lock); 190 INIT_LIST_HEAD(&ctx->flc_flock); 191 INIT_LIST_HEAD(&ctx->flc_posix); 192 INIT_LIST_HEAD(&ctx->flc_lease); 193 194 /* 195 * Assign the pointer if it's not already assigned. If it is, then 196 * free the context we just allocated. 197 */ 198 spin_lock(&inode->i_lock); 199 if (!(inode->i_opflags & IOP_FLCTX)) { 200 VFS_BUG_ON_INODE(inode->i_flctx, inode); 201 WRITE_ONCE(inode->i_flctx, ctx); 202 /* 203 * Paired with locks_inode_context(). 204 */ 205 smp_store_release(&inode->i_opflags, inode->i_opflags | IOP_FLCTX); 206 spin_unlock(&inode->i_lock); 207 } else { 208 VFS_BUG_ON_INODE(!inode->i_flctx, inode); 209 spin_unlock(&inode->i_lock); 210 kmem_cache_free(flctx_cache, ctx); 211 ctx = locks_inode_context(inode); 212 } 213 out: 214 trace_locks_get_lock_context(inode, type, ctx); 215 return ctx; 216 } 217 218 static void 219 locks_dump_ctx_list(struct list_head *list, char *list_type) 220 { 221 struct file_lock_core *flc; 222 223 list_for_each_entry(flc, list, flc_list) 224 pr_warn("%s: fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n", 225 list_type, flc->flc_owner, flc->flc_flags, 226 flc->flc_type, flc->flc_pid); 227 } 228 229 static void 230 locks_check_ctx_lists(struct inode *inode) 231 { 232 struct file_lock_context *ctx = inode->i_flctx; 233 234 if (unlikely(!list_empty(&ctx->flc_flock) || 235 !list_empty(&ctx->flc_posix) || 236 !list_empty(&ctx->flc_lease))) { 237 pr_warn("Leaked locks on dev=0x%x:0x%x ino=0x%lx:\n", 238 MAJOR(inode->i_sb->s_dev), MINOR(inode->i_sb->s_dev), 239 inode->i_ino); 240 locks_dump_ctx_list(&ctx->flc_flock, "FLOCK"); 241 locks_dump_ctx_list(&ctx->flc_posix, "POSIX"); 242 locks_dump_ctx_list(&ctx->flc_lease, "LEASE"); 243 } 244 } 245 246 static void 247 locks_check_ctx_file_list(struct file *filp, struct list_head *list, char *list_type) 248 { 249 struct file_lock_core *flc; 250 struct inode *inode = file_inode(filp); 251 252 list_for_each_entry(flc, list, flc_list) 253 if (flc->flc_file == filp) 254 pr_warn("Leaked %s lock on dev=0x%x:0x%x ino=0x%lx " 255 " fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n", 256 list_type, MAJOR(inode->i_sb->s_dev), 257 MINOR(inode->i_sb->s_dev), inode->i_ino, 258 flc->flc_owner, flc->flc_flags, 259 flc->flc_type, flc->flc_pid); 260 } 261 262 void 263 locks_free_lock_context(struct inode *inode) 264 { 265 struct file_lock_context *ctx = locks_inode_context(inode); 266 267 if (unlikely(ctx)) { 268 locks_check_ctx_lists(inode); 269 kmem_cache_free(flctx_cache, ctx); 270 } 271 } 272 273 static void locks_init_lock_heads(struct file_lock_core *flc) 274 { 275 INIT_HLIST_NODE(&flc->flc_link); 276 INIT_LIST_HEAD(&flc->flc_list); 277 INIT_LIST_HEAD(&flc->flc_blocked_requests); 278 INIT_LIST_HEAD(&flc->flc_blocked_member); 279 init_waitqueue_head(&flc->flc_wait); 280 } 281 282 /* Allocate an empty lock structure. */ 283 struct file_lock *locks_alloc_lock(void) 284 { 285 struct file_lock *fl = kmem_cache_zalloc(filelock_cache, GFP_KERNEL); 286 287 if (fl) 288 locks_init_lock_heads(&fl->c); 289 290 return fl; 291 } 292 EXPORT_SYMBOL_GPL(locks_alloc_lock); 293 294 /* Allocate an empty lock structure. */ 295 struct file_lease *locks_alloc_lease(void) 296 { 297 struct file_lease *fl = kmem_cache_zalloc(filelease_cache, GFP_KERNEL); 298 299 if (fl) 300 locks_init_lock_heads(&fl->c); 301 302 return fl; 303 } 304 EXPORT_SYMBOL_GPL(locks_alloc_lease); 305 306 void locks_release_private(struct file_lock *fl) 307 { 308 struct file_lock_core *flc = &fl->c; 309 310 BUG_ON(waitqueue_active(&flc->flc_wait)); 311 BUG_ON(!list_empty(&flc->flc_list)); 312 BUG_ON(!list_empty(&flc->flc_blocked_requests)); 313 BUG_ON(!list_empty(&flc->flc_blocked_member)); 314 BUG_ON(!hlist_unhashed(&flc->flc_link)); 315 316 if (fl->fl_ops) { 317 if (fl->fl_ops->fl_release_private) 318 fl->fl_ops->fl_release_private(fl); 319 fl->fl_ops = NULL; 320 } 321 322 if (fl->fl_lmops) { 323 if (fl->fl_lmops->lm_put_owner) { 324 fl->fl_lmops->lm_put_owner(flc->flc_owner); 325 flc->flc_owner = NULL; 326 } 327 fl->fl_lmops = NULL; 328 } 329 } 330 EXPORT_SYMBOL_GPL(locks_release_private); 331 332 /** 333 * locks_owner_has_blockers - Check for blocking lock requests 334 * @flctx: file lock context 335 * @owner: lock owner 336 * 337 * Return values: 338 * %true: @owner has at least one blocker 339 * %false: @owner has no blockers 340 */ 341 bool locks_owner_has_blockers(struct file_lock_context *flctx, fl_owner_t owner) 342 { 343 struct file_lock_core *flc; 344 345 spin_lock(&flctx->flc_lock); 346 list_for_each_entry(flc, &flctx->flc_posix, flc_list) { 347 if (flc->flc_owner != owner) 348 continue; 349 if (!list_empty(&flc->flc_blocked_requests)) { 350 spin_unlock(&flctx->flc_lock); 351 return true; 352 } 353 } 354 spin_unlock(&flctx->flc_lock); 355 return false; 356 } 357 EXPORT_SYMBOL_GPL(locks_owner_has_blockers); 358 359 /* Free a lock which is not in use. */ 360 void locks_free_lock(struct file_lock *fl) 361 { 362 locks_release_private(fl); 363 kmem_cache_free(filelock_cache, fl); 364 } 365 EXPORT_SYMBOL(locks_free_lock); 366 367 /* Free a lease which is not in use. */ 368 void locks_free_lease(struct file_lease *fl) 369 { 370 kmem_cache_free(filelease_cache, fl); 371 } 372 EXPORT_SYMBOL(locks_free_lease); 373 374 static void 375 locks_dispose_list(struct list_head *dispose) 376 { 377 struct file_lock_core *flc; 378 379 while (!list_empty(dispose)) { 380 flc = list_first_entry(dispose, struct file_lock_core, flc_list); 381 list_del_init(&flc->flc_list); 382 locks_free_lock(file_lock(flc)); 383 } 384 } 385 386 static void 387 lease_dispose_list(struct list_head *dispose) 388 { 389 struct file_lock_core *flc; 390 391 while (!list_empty(dispose)) { 392 flc = list_first_entry(dispose, struct file_lock_core, flc_list); 393 list_del_init(&flc->flc_list); 394 locks_free_lease(file_lease(flc)); 395 } 396 } 397 398 void locks_init_lock(struct file_lock *fl) 399 { 400 memset(fl, 0, sizeof(struct file_lock)); 401 locks_init_lock_heads(&fl->c); 402 } 403 EXPORT_SYMBOL(locks_init_lock); 404 405 void locks_init_lease(struct file_lease *fl) 406 { 407 memset(fl, 0, sizeof(*fl)); 408 locks_init_lock_heads(&fl->c); 409 } 410 EXPORT_SYMBOL(locks_init_lease); 411 412 /* 413 * Initialize a new lock from an existing file_lock structure. 414 */ 415 void locks_copy_conflock(struct file_lock *new, struct file_lock *fl) 416 { 417 new->c.flc_owner = fl->c.flc_owner; 418 new->c.flc_pid = fl->c.flc_pid; 419 new->c.flc_file = NULL; 420 new->c.flc_flags = fl->c.flc_flags; 421 new->c.flc_type = fl->c.flc_type; 422 new->fl_start = fl->fl_start; 423 new->fl_end = fl->fl_end; 424 new->fl_lmops = fl->fl_lmops; 425 new->fl_ops = NULL; 426 427 if (fl->fl_lmops) { 428 if (fl->fl_lmops->lm_get_owner) 429 fl->fl_lmops->lm_get_owner(fl->c.flc_owner); 430 } 431 } 432 EXPORT_SYMBOL(locks_copy_conflock); 433 434 void locks_copy_lock(struct file_lock *new, struct file_lock *fl) 435 { 436 /* "new" must be a freshly-initialized lock */ 437 WARN_ON_ONCE(new->fl_ops); 438 439 locks_copy_conflock(new, fl); 440 441 new->c.flc_file = fl->c.flc_file; 442 new->fl_ops = fl->fl_ops; 443 444 if (fl->fl_ops) { 445 if (fl->fl_ops->fl_copy_lock) 446 fl->fl_ops->fl_copy_lock(new, fl); 447 } 448 } 449 EXPORT_SYMBOL(locks_copy_lock); 450 451 static void locks_move_blocks(struct file_lock *new, struct file_lock *fl) 452 { 453 struct file_lock *f; 454 455 /* 456 * As ctx->flc_lock is held, new requests cannot be added to 457 * ->flc_blocked_requests, so we don't need a lock to check if it 458 * is empty. 459 */ 460 if (list_empty(&fl->c.flc_blocked_requests)) 461 return; 462 spin_lock(&blocked_lock_lock); 463 list_splice_init(&fl->c.flc_blocked_requests, 464 &new->c.flc_blocked_requests); 465 list_for_each_entry(f, &new->c.flc_blocked_requests, 466 c.flc_blocked_member) 467 f->c.flc_blocker = &new->c; 468 spin_unlock(&blocked_lock_lock); 469 } 470 471 static inline int flock_translate_cmd(int cmd) { 472 switch (cmd) { 473 case LOCK_SH: 474 return F_RDLCK; 475 case LOCK_EX: 476 return F_WRLCK; 477 case LOCK_UN: 478 return F_UNLCK; 479 } 480 return -EINVAL; 481 } 482 483 /* Fill in a file_lock structure with an appropriate FLOCK lock. */ 484 static void flock_make_lock(struct file *filp, struct file_lock *fl, int type) 485 { 486 locks_init_lock(fl); 487 488 fl->c.flc_file = filp; 489 fl->c.flc_owner = filp; 490 fl->c.flc_pid = current->tgid; 491 fl->c.flc_flags = FL_FLOCK; 492 fl->c.flc_type = type; 493 fl->fl_end = OFFSET_MAX; 494 } 495 496 static int assign_type(struct file_lock_core *flc, int type) 497 { 498 switch (type) { 499 case F_RDLCK: 500 case F_WRLCK: 501 case F_UNLCK: 502 flc->flc_type = type; 503 break; 504 default: 505 return -EINVAL; 506 } 507 return 0; 508 } 509 510 static int flock64_to_posix_lock(struct file *filp, struct file_lock *fl, 511 struct flock64 *l) 512 { 513 switch (l->l_whence) { 514 case SEEK_SET: 515 fl->fl_start = 0; 516 break; 517 case SEEK_CUR: 518 fl->fl_start = filp->f_pos; 519 break; 520 case SEEK_END: 521 fl->fl_start = i_size_read(file_inode(filp)); 522 break; 523 default: 524 return -EINVAL; 525 } 526 if (l->l_start > OFFSET_MAX - fl->fl_start) 527 return -EOVERFLOW; 528 fl->fl_start += l->l_start; 529 if (fl->fl_start < 0) 530 return -EINVAL; 531 532 /* POSIX-1996 leaves the case l->l_len < 0 undefined; 533 POSIX-2001 defines it. */ 534 if (l->l_len > 0) { 535 if (l->l_len - 1 > OFFSET_MAX - fl->fl_start) 536 return -EOVERFLOW; 537 fl->fl_end = fl->fl_start + (l->l_len - 1); 538 539 } else if (l->l_len < 0) { 540 if (fl->fl_start + l->l_len < 0) 541 return -EINVAL; 542 fl->fl_end = fl->fl_start - 1; 543 fl->fl_start += l->l_len; 544 } else 545 fl->fl_end = OFFSET_MAX; 546 547 fl->c.flc_owner = current->files; 548 fl->c.flc_pid = current->tgid; 549 fl->c.flc_file = filp; 550 fl->c.flc_flags = FL_POSIX; 551 fl->fl_ops = NULL; 552 fl->fl_lmops = NULL; 553 554 return assign_type(&fl->c, l->l_type); 555 } 556 557 /* Verify a "struct flock" and copy it to a "struct file_lock" as a POSIX 558 * style lock. 559 */ 560 static int flock_to_posix_lock(struct file *filp, struct file_lock *fl, 561 struct flock *l) 562 { 563 struct flock64 ll = { 564 .l_type = l->l_type, 565 .l_whence = l->l_whence, 566 .l_start = l->l_start, 567 .l_len = l->l_len, 568 }; 569 570 return flock64_to_posix_lock(filp, fl, &ll); 571 } 572 573 /* default lease lock manager operations */ 574 static bool 575 lease_break_callback(struct file_lease *fl) 576 { 577 kill_fasync(&fl->fl_fasync, SIGIO, POLL_MSG); 578 return false; 579 } 580 581 static void 582 lease_setup(struct file_lease *fl, void **priv) 583 { 584 struct file *filp = fl->c.flc_file; 585 struct fasync_struct *fa = *priv; 586 587 /* 588 * fasync_insert_entry() returns the old entry if any. If there was no 589 * old entry, then it used "priv" and inserted it into the fasync list. 590 * Clear the pointer to indicate that it shouldn't be freed. 591 */ 592 if (!fasync_insert_entry(fa->fa_fd, filp, &fl->fl_fasync, fa)) 593 *priv = NULL; 594 595 __f_setown(filp, task_pid(current), PIDTYPE_TGID, 0); 596 } 597 598 /** 599 * lease_open_conflict - see if the given file points to an inode that has 600 * an existing open that would conflict with the 601 * desired lease. 602 * @filp: file to check 603 * @arg: type of lease that we're trying to acquire 604 * 605 * Check to see if there's an existing open fd on this file that would 606 * conflict with the lease we're trying to set. 607 */ 608 static int 609 lease_open_conflict(struct file *filp, const int arg) 610 { 611 struct inode *inode = file_inode(filp); 612 int self_wcount = 0, self_rcount = 0; 613 614 if (arg == F_RDLCK) 615 return inode_is_open_for_write(inode) ? -EAGAIN : 0; 616 else if (arg != F_WRLCK) 617 return 0; 618 619 /* 620 * Make sure that only read/write count is from lease requestor. 621 * Note that this will result in denying write leases when i_writecount 622 * is negative, which is what we want. (We shouldn't grant write leases 623 * on files open for execution.) 624 */ 625 if (filp->f_mode & FMODE_WRITE) 626 self_wcount = 1; 627 else if (filp->f_mode & FMODE_READ) 628 self_rcount = 1; 629 630 if (atomic_read(&inode->i_writecount) != self_wcount || 631 atomic_read(&inode->i_readcount) != self_rcount) 632 return -EAGAIN; 633 634 return 0; 635 } 636 637 static const struct lease_manager_operations lease_manager_ops = { 638 .lm_break = lease_break_callback, 639 .lm_change = lease_modify, 640 .lm_setup = lease_setup, 641 .lm_open_conflict = lease_open_conflict, 642 }; 643 644 /* 645 * Initialize a lease, use the default lock manager operations 646 */ 647 static int lease_init(struct file *filp, unsigned int flags, int type, struct file_lease *fl) 648 { 649 if (assign_type(&fl->c, type) != 0) 650 return -EINVAL; 651 652 fl->c.flc_owner = filp; 653 fl->c.flc_pid = current->tgid; 654 655 fl->c.flc_file = filp; 656 fl->c.flc_flags = flags; 657 fl->fl_lmops = &lease_manager_ops; 658 return 0; 659 } 660 661 /* Allocate a file_lock initialised to this type of lease */ 662 static struct file_lease *lease_alloc(struct file *filp, unsigned int flags, int type) 663 { 664 struct file_lease *fl = locks_alloc_lease(); 665 int error = -ENOMEM; 666 667 if (fl == NULL) 668 return ERR_PTR(error); 669 670 error = lease_init(filp, flags, type, fl); 671 if (error) { 672 locks_free_lease(fl); 673 return ERR_PTR(error); 674 } 675 return fl; 676 } 677 678 /* Check if two locks overlap each other. 679 */ 680 static inline int locks_overlap(struct file_lock *fl1, struct file_lock *fl2) 681 { 682 return ((fl1->fl_end >= fl2->fl_start) && 683 (fl2->fl_end >= fl1->fl_start)); 684 } 685 686 /* 687 * Check whether two locks have the same owner. 688 */ 689 static int posix_same_owner(struct file_lock_core *fl1, struct file_lock_core *fl2) 690 { 691 return fl1->flc_owner == fl2->flc_owner; 692 } 693 694 /* Must be called with the flc_lock held! */ 695 static void locks_insert_global_locks(struct file_lock_core *flc) 696 { 697 struct file_lock_list_struct *fll = this_cpu_ptr(&file_lock_list); 698 699 percpu_rwsem_assert_held(&file_rwsem); 700 701 spin_lock(&fll->lock); 702 flc->flc_link_cpu = smp_processor_id(); 703 hlist_add_head(&flc->flc_link, &fll->hlist); 704 spin_unlock(&fll->lock); 705 } 706 707 /* Must be called with the flc_lock held! */ 708 static void locks_delete_global_locks(struct file_lock_core *flc) 709 { 710 struct file_lock_list_struct *fll; 711 712 percpu_rwsem_assert_held(&file_rwsem); 713 714 /* 715 * Avoid taking lock if already unhashed. This is safe since this check 716 * is done while holding the flc_lock, and new insertions into the list 717 * also require that it be held. 718 */ 719 if (hlist_unhashed(&flc->flc_link)) 720 return; 721 722 fll = per_cpu_ptr(&file_lock_list, flc->flc_link_cpu); 723 spin_lock(&fll->lock); 724 hlist_del_init(&flc->flc_link); 725 spin_unlock(&fll->lock); 726 } 727 728 static unsigned long 729 posix_owner_key(struct file_lock_core *flc) 730 { 731 return (unsigned long) flc->flc_owner; 732 } 733 734 static void locks_insert_global_blocked(struct file_lock_core *waiter) 735 { 736 lockdep_assert_held(&blocked_lock_lock); 737 738 hash_add(blocked_hash, &waiter->flc_link, posix_owner_key(waiter)); 739 } 740 741 static void locks_delete_global_blocked(struct file_lock_core *waiter) 742 { 743 lockdep_assert_held(&blocked_lock_lock); 744 745 hash_del(&waiter->flc_link); 746 } 747 748 /* Remove waiter from blocker's block list. 749 * When blocker ends up pointing to itself then the list is empty. 750 * 751 * Must be called with blocked_lock_lock held. 752 */ 753 static void __locks_unlink_block(struct file_lock_core *waiter) 754 { 755 locks_delete_global_blocked(waiter); 756 list_del_init(&waiter->flc_blocked_member); 757 } 758 759 static void __locks_wake_up_blocks(struct file_lock_core *blocker) 760 { 761 while (!list_empty(&blocker->flc_blocked_requests)) { 762 struct file_lock_core *waiter; 763 struct file_lock *fl; 764 765 waiter = list_first_entry(&blocker->flc_blocked_requests, 766 struct file_lock_core, flc_blocked_member); 767 768 fl = file_lock(waiter); 769 __locks_unlink_block(waiter); 770 if ((waiter->flc_flags & (FL_POSIX | FL_FLOCK)) && 771 fl->fl_lmops && fl->fl_lmops->lm_notify) 772 fl->fl_lmops->lm_notify(fl); 773 else 774 locks_wake_up_waiter(waiter); 775 776 /* 777 * The setting of flc_blocker to NULL marks the "done" 778 * point in deleting a block. Paired with acquire at the top 779 * of locks_delete_block(). 780 */ 781 smp_store_release(&waiter->flc_blocker, NULL); 782 } 783 } 784 785 static int __locks_delete_block(struct file_lock_core *waiter) 786 { 787 int status = -ENOENT; 788 789 /* 790 * If fl_blocker is NULL, it won't be set again as this thread "owns" 791 * the lock and is the only one that might try to claim the lock. 792 * 793 * We use acquire/release to manage fl_blocker so that we can 794 * optimize away taking the blocked_lock_lock in many cases. 795 * 796 * The smp_load_acquire guarantees two things: 797 * 798 * 1/ that fl_blocked_requests can be tested locklessly. If something 799 * was recently added to that list it must have been in a locked region 800 * *before* the locked region when fl_blocker was set to NULL. 801 * 802 * 2/ that no other thread is accessing 'waiter', so it is safe to free 803 * it. __locks_wake_up_blocks is careful not to touch waiter after 804 * fl_blocker is released. 805 * 806 * If a lockless check of fl_blocker shows it to be NULL, we know that 807 * no new locks can be inserted into its fl_blocked_requests list, and 808 * can avoid doing anything further if the list is empty. 809 */ 810 if (!smp_load_acquire(&waiter->flc_blocker) && 811 list_empty(&waiter->flc_blocked_requests)) 812 return status; 813 814 spin_lock(&blocked_lock_lock); 815 if (waiter->flc_blocker) 816 status = 0; 817 __locks_wake_up_blocks(waiter); 818 __locks_unlink_block(waiter); 819 820 /* 821 * The setting of fl_blocker to NULL marks the "done" point in deleting 822 * a block. Paired with acquire at the top of this function. 823 */ 824 smp_store_release(&waiter->flc_blocker, NULL); 825 spin_unlock(&blocked_lock_lock); 826 return status; 827 } 828 829 /** 830 * locks_delete_block - stop waiting for a file lock 831 * @waiter: the lock which was waiting 832 * 833 * lockd/nfsd need to disconnect the lock while working on it. 834 */ 835 int locks_delete_block(struct file_lock *waiter) 836 { 837 return __locks_delete_block(&waiter->c); 838 } 839 EXPORT_SYMBOL(locks_delete_block); 840 841 /* Insert waiter into blocker's block list. 842 * We use a circular list so that processes can be easily woken up in 843 * the order they blocked. The documentation doesn't require this but 844 * it seems like the reasonable thing to do. 845 * 846 * Must be called with both the flc_lock and blocked_lock_lock held. The 847 * fl_blocked_requests list itself is protected by the blocked_lock_lock, 848 * but by ensuring that the flc_lock is also held on insertions we can avoid 849 * taking the blocked_lock_lock in some cases when we see that the 850 * fl_blocked_requests list is empty. 851 * 852 * Rather than just adding to the list, we check for conflicts with any existing 853 * waiters, and add beneath any waiter that blocks the new waiter. 854 * Thus wakeups don't happen until needed. 855 */ 856 static void __locks_insert_block(struct file_lock_core *blocker, 857 struct file_lock_core *waiter, 858 bool conflict(struct file_lock_core *, 859 struct file_lock_core *)) 860 { 861 struct file_lock_core *flc; 862 863 BUG_ON(!list_empty(&waiter->flc_blocked_member)); 864 new_blocker: 865 list_for_each_entry(flc, &blocker->flc_blocked_requests, flc_blocked_member) 866 if (conflict(flc, waiter)) { 867 blocker = flc; 868 goto new_blocker; 869 } 870 waiter->flc_blocker = blocker; 871 list_add_tail(&waiter->flc_blocked_member, 872 &blocker->flc_blocked_requests); 873 874 if ((blocker->flc_flags & (FL_POSIX|FL_OFDLCK)) == FL_POSIX) 875 locks_insert_global_blocked(waiter); 876 877 /* The requests in waiter->flc_blocked are known to conflict with 878 * waiter, but might not conflict with blocker, or the requests 879 * and lock which block it. So they all need to be woken. 880 */ 881 __locks_wake_up_blocks(waiter); 882 } 883 884 /* Must be called with flc_lock held. */ 885 static void locks_insert_block(struct file_lock_core *blocker, 886 struct file_lock_core *waiter, 887 bool conflict(struct file_lock_core *, 888 struct file_lock_core *)) 889 { 890 spin_lock(&blocked_lock_lock); 891 __locks_insert_block(blocker, waiter, conflict); 892 spin_unlock(&blocked_lock_lock); 893 } 894 895 /* 896 * Wake up processes blocked waiting for blocker. 897 * 898 * Must be called with the inode->flc_lock held! 899 */ 900 static void locks_wake_up_blocks(struct file_lock_core *blocker) 901 { 902 /* 903 * Avoid taking global lock if list is empty. This is safe since new 904 * blocked requests are only added to the list under the flc_lock, and 905 * the flc_lock is always held here. Note that removal from the 906 * fl_blocked_requests list does not require the flc_lock, so we must 907 * recheck list_empty() after acquiring the blocked_lock_lock. 908 */ 909 if (list_empty(&blocker->flc_blocked_requests)) 910 return; 911 912 spin_lock(&blocked_lock_lock); 913 __locks_wake_up_blocks(blocker); 914 spin_unlock(&blocked_lock_lock); 915 } 916 917 static void 918 locks_insert_lock_ctx(struct file_lock_core *fl, struct list_head *before) 919 { 920 list_add_tail(&fl->flc_list, before); 921 locks_insert_global_locks(fl); 922 } 923 924 static void 925 locks_unlink_lock_ctx(struct file_lock_core *fl) 926 { 927 locks_delete_global_locks(fl); 928 list_del_init(&fl->flc_list); 929 locks_wake_up_blocks(fl); 930 } 931 932 static void 933 locks_delete_lock_ctx(struct file_lock_core *fl, struct list_head *dispose) 934 { 935 locks_unlink_lock_ctx(fl); 936 if (dispose) 937 list_add(&fl->flc_list, dispose); 938 else 939 locks_free_lock(file_lock(fl)); 940 } 941 942 /* Determine if lock sys_fl blocks lock caller_fl. Common functionality 943 * checks for shared/exclusive status of overlapping locks. 944 */ 945 static bool locks_conflict(struct file_lock_core *caller_flc, 946 struct file_lock_core *sys_flc) 947 { 948 if (sys_flc->flc_type == F_WRLCK) 949 return true; 950 if (caller_flc->flc_type == F_WRLCK) 951 return true; 952 return false; 953 } 954 955 /* Determine if lock sys_fl blocks lock caller_fl. POSIX specific 956 * checking before calling the locks_conflict(). 957 */ 958 static bool posix_locks_conflict(struct file_lock_core *caller_flc, 959 struct file_lock_core *sys_flc) 960 { 961 struct file_lock *caller_fl = file_lock(caller_flc); 962 struct file_lock *sys_fl = file_lock(sys_flc); 963 964 /* POSIX locks owned by the same process do not conflict with 965 * each other. 966 */ 967 if (posix_same_owner(caller_flc, sys_flc)) 968 return false; 969 970 /* Check whether they overlap */ 971 if (!locks_overlap(caller_fl, sys_fl)) 972 return false; 973 974 return locks_conflict(caller_flc, sys_flc); 975 } 976 977 /* Determine if lock sys_fl blocks lock caller_fl. Used on xx_GETLK 978 * path so checks for additional GETLK-specific things like F_UNLCK. 979 */ 980 static bool posix_test_locks_conflict(struct file_lock *caller_fl, 981 struct file_lock *sys_fl) 982 { 983 struct file_lock_core *caller = &caller_fl->c; 984 struct file_lock_core *sys = &sys_fl->c; 985 986 /* F_UNLCK checks any locks on the same fd. */ 987 if (lock_is_unlock(caller_fl)) { 988 if (!posix_same_owner(caller, sys)) 989 return false; 990 return locks_overlap(caller_fl, sys_fl); 991 } 992 return posix_locks_conflict(caller, sys); 993 } 994 995 /* Determine if lock sys_fl blocks lock caller_fl. FLOCK specific 996 * checking before calling the locks_conflict(). 997 */ 998 static bool flock_locks_conflict(struct file_lock_core *caller_flc, 999 struct file_lock_core *sys_flc) 1000 { 1001 /* FLOCK locks referring to the same filp do not conflict with 1002 * each other. 1003 */ 1004 if (caller_flc->flc_file == sys_flc->flc_file) 1005 return false; 1006 1007 return locks_conflict(caller_flc, sys_flc); 1008 } 1009 1010 void 1011 posix_test_lock(struct file *filp, struct file_lock *fl) 1012 { 1013 struct file_lock *cfl; 1014 struct file_lock_context *ctx; 1015 struct inode *inode = file_inode(filp); 1016 void *owner; 1017 void (*func)(void); 1018 1019 ctx = locks_inode_context(inode); 1020 if (!ctx || list_empty_careful(&ctx->flc_posix)) { 1021 fl->c.flc_type = F_UNLCK; 1022 return; 1023 } 1024 1025 retry: 1026 spin_lock(&ctx->flc_lock); 1027 list_for_each_entry(cfl, &ctx->flc_posix, c.flc_list) { 1028 if (!posix_test_locks_conflict(fl, cfl)) 1029 continue; 1030 if (cfl->fl_lmops && cfl->fl_lmops->lm_lock_expirable 1031 && (*cfl->fl_lmops->lm_lock_expirable)(cfl)) { 1032 owner = cfl->fl_lmops->lm_mod_owner; 1033 func = cfl->fl_lmops->lm_expire_lock; 1034 __module_get(owner); 1035 spin_unlock(&ctx->flc_lock); 1036 (*func)(); 1037 module_put(owner); 1038 goto retry; 1039 } 1040 locks_copy_conflock(fl, cfl); 1041 goto out; 1042 } 1043 fl->c.flc_type = F_UNLCK; 1044 out: 1045 spin_unlock(&ctx->flc_lock); 1046 return; 1047 } 1048 EXPORT_SYMBOL(posix_test_lock); 1049 1050 /* 1051 * Deadlock detection: 1052 * 1053 * We attempt to detect deadlocks that are due purely to posix file 1054 * locks. 1055 * 1056 * We assume that a task can be waiting for at most one lock at a time. 1057 * So for any acquired lock, the process holding that lock may be 1058 * waiting on at most one other lock. That lock in turns may be held by 1059 * someone waiting for at most one other lock. Given a requested lock 1060 * caller_fl which is about to wait for a conflicting lock block_fl, we 1061 * follow this chain of waiters to ensure we are not about to create a 1062 * cycle. 1063 * 1064 * Since we do this before we ever put a process to sleep on a lock, we 1065 * are ensured that there is never a cycle; that is what guarantees that 1066 * the while() loop in posix_locks_deadlock() eventually completes. 1067 * 1068 * Note: the above assumption may not be true when handling lock 1069 * requests from a broken NFS client. It may also fail in the presence 1070 * of tasks (such as posix threads) sharing the same open file table. 1071 * To handle those cases, we just bail out after a few iterations. 1072 * 1073 * For FL_OFDLCK locks, the owner is the filp, not the files_struct. 1074 * Because the owner is not even nominally tied to a thread of 1075 * execution, the deadlock detection below can't reasonably work well. Just 1076 * skip it for those. 1077 * 1078 * In principle, we could do a more limited deadlock detection on FL_OFDLCK 1079 * locks that just checks for the case where two tasks are attempting to 1080 * upgrade from read to write locks on the same inode. 1081 */ 1082 1083 #define MAX_DEADLK_ITERATIONS 10 1084 1085 /* Find a lock that the owner of the given @blocker is blocking on. */ 1086 static struct file_lock_core *what_owner_is_waiting_for(struct file_lock_core *blocker) 1087 { 1088 struct file_lock_core *flc; 1089 1090 hash_for_each_possible(blocked_hash, flc, flc_link, posix_owner_key(blocker)) { 1091 if (posix_same_owner(flc, blocker)) { 1092 while (flc->flc_blocker) 1093 flc = flc->flc_blocker; 1094 return flc; 1095 } 1096 } 1097 return NULL; 1098 } 1099 1100 /* Must be called with the blocked_lock_lock held! */ 1101 static bool posix_locks_deadlock(struct file_lock *caller_fl, 1102 struct file_lock *block_fl) 1103 { 1104 struct file_lock_core *caller = &caller_fl->c; 1105 struct file_lock_core *blocker = &block_fl->c; 1106 int i = 0; 1107 1108 lockdep_assert_held(&blocked_lock_lock); 1109 1110 /* 1111 * This deadlock detector can't reasonably detect deadlocks with 1112 * FL_OFDLCK locks, since they aren't owned by a process, per-se. 1113 */ 1114 if (caller->flc_flags & FL_OFDLCK) 1115 return false; 1116 1117 while ((blocker = what_owner_is_waiting_for(blocker))) { 1118 if (i++ > MAX_DEADLK_ITERATIONS) 1119 return false; 1120 if (posix_same_owner(caller, blocker)) 1121 return true; 1122 } 1123 return false; 1124 } 1125 1126 /* Try to create a FLOCK lock on filp. We always insert new FLOCK locks 1127 * after any leases, but before any posix locks. 1128 * 1129 * Note that if called with an FL_EXISTS argument, the caller may determine 1130 * whether or not a lock was successfully freed by testing the return 1131 * value for -ENOENT. 1132 */ 1133 static int flock_lock_inode(struct inode *inode, struct file_lock *request) 1134 { 1135 struct file_lock *new_fl = NULL; 1136 struct file_lock *fl; 1137 struct file_lock_context *ctx; 1138 int error = 0; 1139 bool found = false; 1140 LIST_HEAD(dispose); 1141 1142 ctx = locks_get_lock_context(inode, request->c.flc_type); 1143 if (!ctx) { 1144 if (request->c.flc_type != F_UNLCK) 1145 return -ENOMEM; 1146 return (request->c.flc_flags & FL_EXISTS) ? -ENOENT : 0; 1147 } 1148 1149 if (!(request->c.flc_flags & FL_ACCESS) && (request->c.flc_type != F_UNLCK)) { 1150 new_fl = locks_alloc_lock(); 1151 if (!new_fl) 1152 return -ENOMEM; 1153 } 1154 1155 percpu_down_read(&file_rwsem); 1156 spin_lock(&ctx->flc_lock); 1157 if (request->c.flc_flags & FL_ACCESS) 1158 goto find_conflict; 1159 1160 list_for_each_entry(fl, &ctx->flc_flock, c.flc_list) { 1161 if (request->c.flc_file != fl->c.flc_file) 1162 continue; 1163 if (request->c.flc_type == fl->c.flc_type) 1164 goto out; 1165 found = true; 1166 locks_delete_lock_ctx(&fl->c, &dispose); 1167 break; 1168 } 1169 1170 if (lock_is_unlock(request)) { 1171 if ((request->c.flc_flags & FL_EXISTS) && !found) 1172 error = -ENOENT; 1173 goto out; 1174 } 1175 1176 find_conflict: 1177 list_for_each_entry(fl, &ctx->flc_flock, c.flc_list) { 1178 if (!flock_locks_conflict(&request->c, &fl->c)) 1179 continue; 1180 error = -EAGAIN; 1181 if (!(request->c.flc_flags & FL_SLEEP)) 1182 goto out; 1183 error = FILE_LOCK_DEFERRED; 1184 locks_insert_block(&fl->c, &request->c, flock_locks_conflict); 1185 goto out; 1186 } 1187 if (request->c.flc_flags & FL_ACCESS) 1188 goto out; 1189 locks_copy_lock(new_fl, request); 1190 locks_move_blocks(new_fl, request); 1191 locks_insert_lock_ctx(&new_fl->c, &ctx->flc_flock); 1192 new_fl = NULL; 1193 error = 0; 1194 1195 out: 1196 spin_unlock(&ctx->flc_lock); 1197 percpu_up_read(&file_rwsem); 1198 if (new_fl) 1199 locks_free_lock(new_fl); 1200 locks_dispose_list(&dispose); 1201 trace_flock_lock_inode(inode, request, error); 1202 return error; 1203 } 1204 1205 static int posix_lock_inode(struct inode *inode, struct file_lock *request, 1206 struct file_lock *conflock) 1207 { 1208 struct file_lock *fl, *tmp; 1209 struct file_lock *new_fl = NULL; 1210 struct file_lock *new_fl2 = NULL; 1211 struct file_lock *left = NULL; 1212 struct file_lock *right = NULL; 1213 struct file_lock_context *ctx; 1214 int error; 1215 bool added = false; 1216 LIST_HEAD(dispose); 1217 void *owner; 1218 void (*func)(void); 1219 1220 ctx = locks_get_lock_context(inode, request->c.flc_type); 1221 if (!ctx) 1222 return lock_is_unlock(request) ? 0 : -ENOMEM; 1223 1224 /* 1225 * We may need two file_lock structures for this operation, 1226 * so we get them in advance to avoid races. 1227 * 1228 * In some cases we can be sure, that no new locks will be needed 1229 */ 1230 if (!(request->c.flc_flags & FL_ACCESS) && 1231 (request->c.flc_type != F_UNLCK || 1232 request->fl_start != 0 || request->fl_end != OFFSET_MAX)) { 1233 new_fl = locks_alloc_lock(); 1234 new_fl2 = locks_alloc_lock(); 1235 } 1236 1237 retry: 1238 percpu_down_read(&file_rwsem); 1239 spin_lock(&ctx->flc_lock); 1240 /* 1241 * New lock request. Walk all POSIX locks and look for conflicts. If 1242 * there are any, either return error or put the request on the 1243 * blocker's list of waiters and the global blocked_hash. 1244 */ 1245 if (request->c.flc_type != F_UNLCK) { 1246 list_for_each_entry(fl, &ctx->flc_posix, c.flc_list) { 1247 if (!posix_locks_conflict(&request->c, &fl->c)) 1248 continue; 1249 if (fl->fl_lmops && fl->fl_lmops->lm_lock_expirable 1250 && (*fl->fl_lmops->lm_lock_expirable)(fl)) { 1251 owner = fl->fl_lmops->lm_mod_owner; 1252 func = fl->fl_lmops->lm_expire_lock; 1253 __module_get(owner); 1254 spin_unlock(&ctx->flc_lock); 1255 percpu_up_read(&file_rwsem); 1256 (*func)(); 1257 module_put(owner); 1258 goto retry; 1259 } 1260 if (conflock) 1261 locks_copy_conflock(conflock, fl); 1262 error = -EAGAIN; 1263 if (!(request->c.flc_flags & FL_SLEEP)) 1264 goto out; 1265 /* 1266 * Deadlock detection and insertion into the blocked 1267 * locks list must be done while holding the same lock! 1268 */ 1269 error = -EDEADLK; 1270 spin_lock(&blocked_lock_lock); 1271 /* 1272 * Ensure that we don't find any locks blocked on this 1273 * request during deadlock detection. 1274 */ 1275 __locks_wake_up_blocks(&request->c); 1276 if (likely(!posix_locks_deadlock(request, fl))) { 1277 error = FILE_LOCK_DEFERRED; 1278 __locks_insert_block(&fl->c, &request->c, 1279 posix_locks_conflict); 1280 } 1281 spin_unlock(&blocked_lock_lock); 1282 goto out; 1283 } 1284 } 1285 1286 /* If we're just looking for a conflict, we're done. */ 1287 error = 0; 1288 if (request->c.flc_flags & FL_ACCESS) 1289 goto out; 1290 1291 /* Find the first old lock with the same owner as the new lock */ 1292 list_for_each_entry(fl, &ctx->flc_posix, c.flc_list) { 1293 if (posix_same_owner(&request->c, &fl->c)) 1294 break; 1295 } 1296 1297 /* Process locks with this owner. */ 1298 list_for_each_entry_safe_from(fl, tmp, &ctx->flc_posix, c.flc_list) { 1299 if (!posix_same_owner(&request->c, &fl->c)) 1300 break; 1301 1302 /* Detect adjacent or overlapping regions (if same lock type) */ 1303 if (request->c.flc_type == fl->c.flc_type) { 1304 /* In all comparisons of start vs end, use 1305 * "start - 1" rather than "end + 1". If end 1306 * is OFFSET_MAX, end + 1 will become negative. 1307 */ 1308 if (fl->fl_end < request->fl_start - 1) 1309 continue; 1310 /* If the next lock in the list has entirely bigger 1311 * addresses than the new one, insert the lock here. 1312 */ 1313 if (fl->fl_start - 1 > request->fl_end) 1314 break; 1315 1316 /* If we come here, the new and old lock are of the 1317 * same type and adjacent or overlapping. Make one 1318 * lock yielding from the lower start address of both 1319 * locks to the higher end address. 1320 */ 1321 if (fl->fl_start > request->fl_start) 1322 fl->fl_start = request->fl_start; 1323 else 1324 request->fl_start = fl->fl_start; 1325 if (fl->fl_end < request->fl_end) 1326 fl->fl_end = request->fl_end; 1327 else 1328 request->fl_end = fl->fl_end; 1329 if (added) { 1330 locks_delete_lock_ctx(&fl->c, &dispose); 1331 continue; 1332 } 1333 request = fl; 1334 added = true; 1335 } else { 1336 /* Processing for different lock types is a bit 1337 * more complex. 1338 */ 1339 if (fl->fl_end < request->fl_start) 1340 continue; 1341 if (fl->fl_start > request->fl_end) 1342 break; 1343 if (lock_is_unlock(request)) 1344 added = true; 1345 if (fl->fl_start < request->fl_start) 1346 left = fl; 1347 /* If the next lock in the list has a higher end 1348 * address than the new one, insert the new one here. 1349 */ 1350 if (fl->fl_end > request->fl_end) { 1351 right = fl; 1352 break; 1353 } 1354 if (fl->fl_start >= request->fl_start) { 1355 /* The new lock completely replaces an old 1356 * one (This may happen several times). 1357 */ 1358 if (added) { 1359 locks_delete_lock_ctx(&fl->c, &dispose); 1360 continue; 1361 } 1362 /* 1363 * Replace the old lock with new_fl, and 1364 * remove the old one. It's safe to do the 1365 * insert here since we know that we won't be 1366 * using new_fl later, and that the lock is 1367 * just replacing an existing lock. 1368 */ 1369 error = -ENOLCK; 1370 if (!new_fl) 1371 goto out; 1372 locks_copy_lock(new_fl, request); 1373 locks_move_blocks(new_fl, request); 1374 request = new_fl; 1375 new_fl = NULL; 1376 locks_insert_lock_ctx(&request->c, 1377 &fl->c.flc_list); 1378 locks_delete_lock_ctx(&fl->c, &dispose); 1379 added = true; 1380 } 1381 } 1382 } 1383 1384 /* 1385 * The above code only modifies existing locks in case of merging or 1386 * replacing. If new lock(s) need to be inserted all modifications are 1387 * done below this, so it's safe yet to bail out. 1388 */ 1389 error = -ENOLCK; /* "no luck" */ 1390 if (right && left == right && !new_fl2) 1391 goto out; 1392 1393 error = 0; 1394 if (!added) { 1395 if (lock_is_unlock(request)) { 1396 if (request->c.flc_flags & FL_EXISTS) 1397 error = -ENOENT; 1398 goto out; 1399 } 1400 1401 if (!new_fl) { 1402 error = -ENOLCK; 1403 goto out; 1404 } 1405 locks_copy_lock(new_fl, request); 1406 locks_move_blocks(new_fl, request); 1407 locks_insert_lock_ctx(&new_fl->c, &fl->c.flc_list); 1408 fl = new_fl; 1409 new_fl = NULL; 1410 } 1411 if (right) { 1412 if (left == right) { 1413 /* The new lock breaks the old one in two pieces, 1414 * so we have to use the second new lock. 1415 */ 1416 left = new_fl2; 1417 new_fl2 = NULL; 1418 locks_copy_lock(left, right); 1419 locks_insert_lock_ctx(&left->c, &fl->c.flc_list); 1420 } 1421 right->fl_start = request->fl_end + 1; 1422 locks_wake_up_blocks(&right->c); 1423 } 1424 if (left) { 1425 left->fl_end = request->fl_start - 1; 1426 locks_wake_up_blocks(&left->c); 1427 } 1428 out: 1429 trace_posix_lock_inode(inode, request, error); 1430 spin_unlock(&ctx->flc_lock); 1431 percpu_up_read(&file_rwsem); 1432 /* 1433 * Free any unused locks. 1434 */ 1435 if (new_fl) 1436 locks_free_lock(new_fl); 1437 if (new_fl2) 1438 locks_free_lock(new_fl2); 1439 locks_dispose_list(&dispose); 1440 1441 return error; 1442 } 1443 1444 /** 1445 * posix_lock_file - Apply a POSIX-style lock to a file 1446 * @filp: The file to apply the lock to 1447 * @fl: The lock to be applied 1448 * @conflock: Place to return a copy of the conflicting lock, if found. 1449 * 1450 * Add a POSIX style lock to a file. 1451 * We merge adjacent & overlapping locks whenever possible. 1452 * POSIX locks are sorted by owner task, then by starting address 1453 * 1454 * Note that if called with an FL_EXISTS argument, the caller may determine 1455 * whether or not a lock was successfully freed by testing the return 1456 * value for -ENOENT. 1457 */ 1458 int posix_lock_file(struct file *filp, struct file_lock *fl, 1459 struct file_lock *conflock) 1460 { 1461 return posix_lock_inode(file_inode(filp), fl, conflock); 1462 } 1463 EXPORT_SYMBOL(posix_lock_file); 1464 1465 /** 1466 * posix_lock_inode_wait - Apply a POSIX-style lock to a file 1467 * @inode: inode of file to which lock request should be applied 1468 * @fl: The lock to be applied 1469 * 1470 * Apply a POSIX style lock request to an inode. 1471 */ 1472 static int posix_lock_inode_wait(struct inode *inode, struct file_lock *fl) 1473 { 1474 int error; 1475 might_sleep (); 1476 for (;;) { 1477 error = posix_lock_inode(inode, fl, NULL); 1478 if (error != FILE_LOCK_DEFERRED) 1479 break; 1480 error = wait_event_interruptible(fl->c.flc_wait, 1481 list_empty(&fl->c.flc_blocked_member)); 1482 if (error) 1483 break; 1484 } 1485 locks_delete_block(fl); 1486 return error; 1487 } 1488 1489 static void lease_clear_pending(struct file_lease *fl, int arg) 1490 { 1491 switch (arg) { 1492 case F_UNLCK: 1493 fl->c.flc_flags &= ~FL_UNLOCK_PENDING; 1494 fallthrough; 1495 case F_RDLCK: 1496 fl->c.flc_flags &= ~FL_DOWNGRADE_PENDING; 1497 } 1498 } 1499 1500 /* We already had a lease on this file; just change its type */ 1501 int lease_modify(struct file_lease *fl, int arg, struct list_head *dispose) 1502 { 1503 int error = assign_type(&fl->c, arg); 1504 1505 if (error) 1506 return error; 1507 lease_clear_pending(fl, arg); 1508 locks_wake_up_blocks(&fl->c); 1509 if (arg == F_UNLCK) { 1510 struct file *filp = fl->c.flc_file; 1511 1512 f_delown(filp); 1513 file_f_owner(filp)->signum = 0; 1514 fasync_helper(0, fl->c.flc_file, 0, &fl->fl_fasync); 1515 if (fl->fl_fasync != NULL) { 1516 printk(KERN_ERR "locks_delete_lock: fasync == %p\n", fl->fl_fasync); 1517 fl->fl_fasync = NULL; 1518 } 1519 locks_delete_lock_ctx(&fl->c, dispose); 1520 } 1521 return 0; 1522 } 1523 EXPORT_SYMBOL(lease_modify); 1524 1525 static bool past_time(unsigned long then) 1526 { 1527 if (!then) 1528 /* 0 is a special value meaning "this never expires": */ 1529 return false; 1530 return time_after(jiffies, then); 1531 } 1532 1533 static void time_out_leases(struct inode *inode, struct list_head *dispose) 1534 { 1535 struct file_lock_context *ctx = inode->i_flctx; 1536 struct file_lease *fl, *tmp; 1537 1538 lockdep_assert_held(&ctx->flc_lock); 1539 1540 list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, c.flc_list) { 1541 trace_time_out_leases(inode, fl); 1542 if (past_time(fl->fl_downgrade_time)) 1543 lease_modify(fl, F_RDLCK, dispose); 1544 if (past_time(fl->fl_break_time)) 1545 lease_modify(fl, F_UNLCK, dispose); 1546 } 1547 } 1548 1549 static bool leases_conflict(struct file_lock_core *lc, struct file_lock_core *bc) 1550 { 1551 bool rc; 1552 struct file_lease *lease = file_lease(lc); 1553 struct file_lease *breaker = file_lease(bc); 1554 1555 if (lease->fl_lmops->lm_breaker_owns_lease 1556 && lease->fl_lmops->lm_breaker_owns_lease(lease)) 1557 return false; 1558 if ((bc->flc_flags & FL_LAYOUT) != (lc->flc_flags & FL_LAYOUT)) { 1559 rc = false; 1560 goto trace; 1561 } 1562 if ((bc->flc_flags & FL_DELEG) && (lc->flc_flags & FL_LEASE)) { 1563 rc = false; 1564 goto trace; 1565 } 1566 1567 rc = locks_conflict(bc, lc); 1568 trace: 1569 trace_leases_conflict(rc, lease, breaker); 1570 return rc; 1571 } 1572 1573 static bool 1574 any_leases_conflict(struct inode *inode, struct file_lease *breaker) 1575 { 1576 struct file_lock_context *ctx = inode->i_flctx; 1577 struct file_lock_core *flc; 1578 1579 lockdep_assert_held(&ctx->flc_lock); 1580 1581 list_for_each_entry(flc, &ctx->flc_lease, flc_list) { 1582 if (leases_conflict(flc, &breaker->c)) 1583 return true; 1584 } 1585 return false; 1586 } 1587 1588 /** 1589 * __break_lease - revoke all outstanding leases on file 1590 * @inode: the inode of the file to return 1591 * @flags: LEASE_BREAK_* flags 1592 * 1593 * break_lease (inlined for speed) has checked there already is at least 1594 * some kind of lock (maybe a lease) on this file. Leases are broken on 1595 * a call to open() or truncate(). This function can block waiting for the 1596 * lease break unless you specify LEASE_BREAK_NONBLOCK. 1597 */ 1598 int __break_lease(struct inode *inode, unsigned int flags) 1599 { 1600 struct file_lease *new_fl, *fl, *tmp; 1601 struct file_lock_context *ctx; 1602 unsigned long break_time; 1603 unsigned int type; 1604 LIST_HEAD(dispose); 1605 bool want_write = !(flags & LEASE_BREAK_OPEN_RDONLY); 1606 int error = 0; 1607 1608 if (flags & LEASE_BREAK_LEASE) 1609 type = FL_LEASE; 1610 else if (flags & LEASE_BREAK_DELEG) 1611 type = FL_DELEG; 1612 else if (flags & LEASE_BREAK_LAYOUT) 1613 type = FL_LAYOUT; 1614 else 1615 return -EINVAL; 1616 1617 new_fl = lease_alloc(NULL, type, want_write ? F_WRLCK : F_RDLCK); 1618 if (IS_ERR(new_fl)) 1619 return PTR_ERR(new_fl); 1620 1621 /* typically we will check that ctx is non-NULL before calling */ 1622 ctx = locks_inode_context(inode); 1623 if (!ctx) { 1624 WARN_ON_ONCE(1); 1625 goto free_lock; 1626 } 1627 1628 percpu_down_read(&file_rwsem); 1629 spin_lock(&ctx->flc_lock); 1630 1631 time_out_leases(inode, &dispose); 1632 1633 if (!any_leases_conflict(inode, new_fl)) 1634 goto out; 1635 1636 break_time = 0; 1637 if (lease_break_time > 0) { 1638 break_time = jiffies + lease_break_time * HZ; 1639 if (break_time == 0) 1640 break_time++; /* so that 0 means no break time */ 1641 } 1642 1643 list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, c.flc_list) { 1644 if (!leases_conflict(&fl->c, &new_fl->c)) 1645 continue; 1646 if (want_write) { 1647 if (fl->c.flc_flags & FL_UNLOCK_PENDING) 1648 continue; 1649 fl->c.flc_flags |= FL_UNLOCK_PENDING; 1650 fl->fl_break_time = break_time; 1651 } else { 1652 if (lease_breaking(fl)) 1653 continue; 1654 fl->c.flc_flags |= FL_DOWNGRADE_PENDING; 1655 fl->fl_downgrade_time = break_time; 1656 } 1657 if (fl->fl_lmops->lm_break(fl)) 1658 locks_delete_lock_ctx(&fl->c, &dispose); 1659 } 1660 1661 if (list_empty(&ctx->flc_lease)) 1662 goto out; 1663 1664 if (flags & LEASE_BREAK_NONBLOCK) { 1665 trace_break_lease_noblock(inode, new_fl); 1666 error = -EWOULDBLOCK; 1667 goto out; 1668 } 1669 1670 restart: 1671 fl = list_first_entry(&ctx->flc_lease, struct file_lease, c.flc_list); 1672 break_time = fl->fl_break_time; 1673 if (break_time != 0) 1674 break_time -= jiffies; 1675 if (break_time == 0) 1676 break_time++; 1677 locks_insert_block(&fl->c, &new_fl->c, leases_conflict); 1678 trace_break_lease_block(inode, new_fl); 1679 spin_unlock(&ctx->flc_lock); 1680 percpu_up_read(&file_rwsem); 1681 1682 lease_dispose_list(&dispose); 1683 error = wait_event_interruptible_timeout(new_fl->c.flc_wait, 1684 list_empty(&new_fl->c.flc_blocked_member), 1685 break_time); 1686 1687 percpu_down_read(&file_rwsem); 1688 spin_lock(&ctx->flc_lock); 1689 trace_break_lease_unblock(inode, new_fl); 1690 __locks_delete_block(&new_fl->c); 1691 if (error >= 0) { 1692 /* 1693 * Wait for the next conflicting lease that has not been 1694 * broken yet 1695 */ 1696 if (error == 0) 1697 time_out_leases(inode, &dispose); 1698 if (any_leases_conflict(inode, new_fl)) 1699 goto restart; 1700 error = 0; 1701 } 1702 out: 1703 spin_unlock(&ctx->flc_lock); 1704 percpu_up_read(&file_rwsem); 1705 lease_dispose_list(&dispose); 1706 free_lock: 1707 locks_free_lease(new_fl); 1708 return error; 1709 } 1710 EXPORT_SYMBOL(__break_lease); 1711 1712 /** 1713 * lease_get_mtime - update modified time of an inode with exclusive lease 1714 * @inode: the inode 1715 * @time: pointer to a timespec which contains the last modified time 1716 * 1717 * This is to force NFS clients to flush their caches for files with 1718 * exclusive leases. The justification is that if someone has an 1719 * exclusive lease, then they could be modifying it. 1720 */ 1721 void lease_get_mtime(struct inode *inode, struct timespec64 *time) 1722 { 1723 bool has_lease = false; 1724 struct file_lock_context *ctx; 1725 struct file_lock_core *flc; 1726 1727 ctx = locks_inode_context(inode); 1728 if (ctx && !list_empty_careful(&ctx->flc_lease)) { 1729 spin_lock(&ctx->flc_lock); 1730 flc = list_first_entry_or_null(&ctx->flc_lease, 1731 struct file_lock_core, flc_list); 1732 if (flc && flc->flc_type == F_WRLCK) 1733 has_lease = true; 1734 spin_unlock(&ctx->flc_lock); 1735 } 1736 1737 if (has_lease) 1738 *time = current_time(inode); 1739 } 1740 EXPORT_SYMBOL(lease_get_mtime); 1741 1742 /** 1743 * __fcntl_getlease - Enquire what lease is currently active 1744 * @filp: the file 1745 * @flavor: type of lease flags to check 1746 * 1747 * The value returned by this function will be one of 1748 * (if no lease break is pending): 1749 * 1750 * %F_RDLCK to indicate a shared lease is held. 1751 * 1752 * %F_WRLCK to indicate an exclusive lease is held. 1753 * 1754 * %F_UNLCK to indicate no lease is held. 1755 * 1756 * (if a lease break is pending): 1757 * 1758 * %F_RDLCK to indicate an exclusive lease needs to be 1759 * changed to a shared lease (or removed). 1760 * 1761 * %F_UNLCK to indicate the lease needs to be removed. 1762 * 1763 * XXX: sfr & willy disagree over whether F_INPROGRESS 1764 * should be returned to userspace. 1765 */ 1766 static int __fcntl_getlease(struct file *filp, unsigned int flavor) 1767 { 1768 struct file_lease *fl; 1769 struct inode *inode = file_inode(filp); 1770 struct file_lock_context *ctx; 1771 int type = F_UNLCK; 1772 LIST_HEAD(dispose); 1773 1774 ctx = locks_inode_context(inode); 1775 if (ctx && !list_empty_careful(&ctx->flc_lease)) { 1776 percpu_down_read(&file_rwsem); 1777 spin_lock(&ctx->flc_lock); 1778 time_out_leases(inode, &dispose); 1779 list_for_each_entry(fl, &ctx->flc_lease, c.flc_list) { 1780 if (fl->c.flc_file != filp) 1781 continue; 1782 if (fl->c.flc_flags & flavor) 1783 type = target_leasetype(fl); 1784 break; 1785 } 1786 spin_unlock(&ctx->flc_lock); 1787 percpu_up_read(&file_rwsem); 1788 1789 lease_dispose_list(&dispose); 1790 } 1791 return type; 1792 } 1793 1794 int fcntl_getlease(struct file *filp) 1795 { 1796 return __fcntl_getlease(filp, FL_LEASE); 1797 } 1798 1799 int fcntl_getdeleg(struct file *filp, struct delegation *deleg) 1800 { 1801 if (deleg->d_flags != 0 || deleg->__pad != 0) 1802 return -EINVAL; 1803 deleg->d_type = __fcntl_getlease(filp, FL_DELEG); 1804 return 0; 1805 } 1806 1807 static int 1808 generic_add_lease(struct file *filp, int arg, struct file_lease **flp, void **priv) 1809 { 1810 struct file_lease *fl, *my_fl = NULL, *lease; 1811 struct inode *inode = file_inode(filp); 1812 struct file_lock_context *ctx; 1813 bool is_deleg = (*flp)->c.flc_flags & FL_DELEG; 1814 int error; 1815 LIST_HEAD(dispose); 1816 1817 lease = *flp; 1818 trace_generic_add_lease(inode, lease); 1819 1820 error = file_f_owner_allocate(filp); 1821 if (error) 1822 return error; 1823 1824 /* Note that arg is never F_UNLCK here */ 1825 ctx = locks_get_lock_context(inode, arg); 1826 if (!ctx) 1827 return -ENOMEM; 1828 1829 /* 1830 * In the delegation case we need mutual exclusion with 1831 * a number of operations that take the i_rwsem. We trylock 1832 * because delegations are an optional optimization, and if 1833 * there's some chance of a conflict--we'd rather not 1834 * bother, maybe that's a sign this just isn't a good file to 1835 * hand out a delegation on. 1836 */ 1837 if (is_deleg && !inode_trylock(inode)) 1838 return -EAGAIN; 1839 1840 percpu_down_read(&file_rwsem); 1841 spin_lock(&ctx->flc_lock); 1842 time_out_leases(inode, &dispose); 1843 error = lease->fl_lmops->lm_open_conflict(filp, arg); 1844 if (error) 1845 goto out; 1846 1847 /* 1848 * At this point, we know that if there is an exclusive 1849 * lease on this file, then we hold it on this filp 1850 * (otherwise our open of this file would have blocked). 1851 * And if we are trying to acquire an exclusive lease, 1852 * then the file is not open by anyone (including us) 1853 * except for this filp. 1854 */ 1855 error = -EAGAIN; 1856 list_for_each_entry(fl, &ctx->flc_lease, c.flc_list) { 1857 if (fl->c.flc_file == filp && 1858 fl->c.flc_owner == lease->c.flc_owner) { 1859 my_fl = fl; 1860 continue; 1861 } 1862 1863 /* 1864 * No exclusive leases if someone else has a lease on 1865 * this file: 1866 */ 1867 if (arg == F_WRLCK) 1868 goto out; 1869 /* 1870 * Modifying our existing lease is OK, but no getting a 1871 * new lease if someone else is opening for write: 1872 */ 1873 if (fl->c.flc_flags & FL_UNLOCK_PENDING) 1874 goto out; 1875 } 1876 1877 if (my_fl != NULL) { 1878 lease = my_fl; 1879 error = lease->fl_lmops->lm_change(lease, arg, &dispose); 1880 if (error) 1881 goto out; 1882 goto out_setup; 1883 } 1884 1885 error = -EINVAL; 1886 if (!leases_enable) 1887 goto out; 1888 1889 locks_insert_lock_ctx(&lease->c, &ctx->flc_lease); 1890 /* 1891 * The check in break_lease() is lockless. It's possible for another 1892 * open to race in after we did the earlier check for a conflicting 1893 * open but before the lease was inserted. Check again for a 1894 * conflicting open and cancel the lease if there is one. 1895 * 1896 * We also add a barrier here to ensure that the insertion of the lock 1897 * precedes these checks. 1898 */ 1899 smp_mb(); 1900 error = lease->fl_lmops->lm_open_conflict(filp, arg); 1901 if (error) { 1902 locks_unlink_lock_ctx(&lease->c); 1903 goto out; 1904 } 1905 1906 out_setup: 1907 if (lease->fl_lmops->lm_setup) 1908 lease->fl_lmops->lm_setup(lease, priv); 1909 out: 1910 spin_unlock(&ctx->flc_lock); 1911 percpu_up_read(&file_rwsem); 1912 lease_dispose_list(&dispose); 1913 if (is_deleg) 1914 inode_unlock(inode); 1915 if (!error && !my_fl) 1916 *flp = NULL; 1917 return error; 1918 } 1919 1920 static int generic_delete_lease(struct file *filp, void *owner) 1921 { 1922 int error = -EAGAIN; 1923 struct file_lease *fl, *victim = NULL; 1924 struct inode *inode = file_inode(filp); 1925 struct file_lock_context *ctx; 1926 LIST_HEAD(dispose); 1927 1928 ctx = locks_inode_context(inode); 1929 if (!ctx) { 1930 trace_generic_delete_lease(inode, NULL); 1931 return error; 1932 } 1933 1934 percpu_down_read(&file_rwsem); 1935 spin_lock(&ctx->flc_lock); 1936 list_for_each_entry(fl, &ctx->flc_lease, c.flc_list) { 1937 if (fl->c.flc_file == filp && 1938 fl->c.flc_owner == owner) { 1939 victim = fl; 1940 break; 1941 } 1942 } 1943 trace_generic_delete_lease(inode, victim); 1944 if (victim) 1945 error = fl->fl_lmops->lm_change(victim, F_UNLCK, &dispose); 1946 spin_unlock(&ctx->flc_lock); 1947 percpu_up_read(&file_rwsem); 1948 lease_dispose_list(&dispose); 1949 return error; 1950 } 1951 1952 /** 1953 * generic_setlease - sets a lease on an open file 1954 * @filp: file pointer 1955 * @arg: type of lease to obtain 1956 * @flp: input - file_lock to use, output - file_lock inserted 1957 * @priv: private data for lm_setup (may be NULL if lm_setup 1958 * doesn't require it) 1959 * 1960 * The (input) flp->fl_lmops->lm_break function is required 1961 * by break_lease(). 1962 */ 1963 int generic_setlease(struct file *filp, int arg, struct file_lease **flp, 1964 void **priv) 1965 { 1966 struct inode *inode = file_inode(filp); 1967 1968 if (!S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode)) 1969 return -EINVAL; 1970 1971 switch (arg) { 1972 case F_UNLCK: 1973 return generic_delete_lease(filp, *priv); 1974 case F_WRLCK: 1975 if (S_ISDIR(inode->i_mode)) 1976 return -EINVAL; 1977 fallthrough; 1978 case F_RDLCK: 1979 if (!(*flp)->fl_lmops->lm_break) { 1980 WARN_ON_ONCE(1); 1981 return -ENOLCK; 1982 } 1983 1984 return generic_add_lease(filp, arg, flp, priv); 1985 default: 1986 return -EINVAL; 1987 } 1988 } 1989 EXPORT_SYMBOL(generic_setlease); 1990 1991 /* 1992 * Kernel subsystems can register to be notified on any attempt to set 1993 * a new lease with the lease_notifier_chain. This is used by (e.g.) nfsd 1994 * to close files that it may have cached when there is an attempt to set a 1995 * conflicting lease. 1996 */ 1997 static struct srcu_notifier_head lease_notifier_chain; 1998 1999 static inline void 2000 lease_notifier_chain_init(void) 2001 { 2002 srcu_init_notifier_head(&lease_notifier_chain); 2003 } 2004 2005 static inline void 2006 setlease_notifier(int arg, struct file_lease *lease) 2007 { 2008 if (arg != F_UNLCK) 2009 srcu_notifier_call_chain(&lease_notifier_chain, arg, lease); 2010 } 2011 2012 int lease_register_notifier(struct notifier_block *nb) 2013 { 2014 return srcu_notifier_chain_register(&lease_notifier_chain, nb); 2015 } 2016 EXPORT_SYMBOL_GPL(lease_register_notifier); 2017 2018 void lease_unregister_notifier(struct notifier_block *nb) 2019 { 2020 srcu_notifier_chain_unregister(&lease_notifier_chain, nb); 2021 } 2022 EXPORT_SYMBOL_GPL(lease_unregister_notifier); 2023 2024 2025 int 2026 kernel_setlease(struct file *filp, int arg, struct file_lease **lease, void **priv) 2027 { 2028 if (lease) 2029 setlease_notifier(arg, *lease); 2030 if (filp->f_op->setlease) 2031 return filp->f_op->setlease(filp, arg, lease, priv); 2032 return -EINVAL; 2033 } 2034 EXPORT_SYMBOL_GPL(kernel_setlease); 2035 2036 /** 2037 * vfs_setlease - sets a lease on an open file 2038 * @filp: file pointer 2039 * @arg: type of lease to obtain 2040 * @lease: file_lock to use when adding a lease 2041 * @priv: private info for lm_setup when adding a lease (may be 2042 * NULL if lm_setup doesn't require it) 2043 * 2044 * Call this to establish a lease on the file. The "lease" argument is not 2045 * used for F_UNLCK requests and may be NULL. For commands that set or alter 2046 * an existing lease, the ``(*lease)->fl_lmops->lm_break`` operation must be 2047 * set; if not, this function will return -ENOLCK (and generate a scary-looking 2048 * stack trace). 2049 * 2050 * The "priv" pointer is passed directly to the lm_setup function as-is. It 2051 * may be NULL if the lm_setup operation doesn't require it. 2052 */ 2053 int 2054 vfs_setlease(struct file *filp, int arg, struct file_lease **lease, void **priv) 2055 { 2056 struct inode *inode = file_inode(filp); 2057 vfsuid_t vfsuid = i_uid_into_vfsuid(file_mnt_idmap(filp), inode); 2058 int error; 2059 2060 if ((!vfsuid_eq_kuid(vfsuid, current_fsuid())) && !capable(CAP_LEASE)) 2061 return -EACCES; 2062 error = security_file_lock(filp, arg); 2063 if (error) 2064 return error; 2065 return kernel_setlease(filp, arg, lease, priv); 2066 } 2067 EXPORT_SYMBOL_GPL(vfs_setlease); 2068 2069 static int do_fcntl_add_lease(unsigned int fd, struct file *filp, unsigned int flavor, int arg) 2070 { 2071 struct file_lease *fl; 2072 struct fasync_struct *new; 2073 int error; 2074 2075 fl = lease_alloc(filp, flavor, arg); 2076 if (IS_ERR(fl)) 2077 return PTR_ERR(fl); 2078 2079 new = fasync_alloc(); 2080 if (!new) { 2081 locks_free_lease(fl); 2082 return -ENOMEM; 2083 } 2084 new->fa_fd = fd; 2085 2086 error = vfs_setlease(filp, arg, &fl, (void **)&new); 2087 if (fl) 2088 locks_free_lease(fl); 2089 if (new) 2090 fasync_free(new); 2091 return error; 2092 } 2093 2094 /** 2095 * fcntl_setlease - sets a lease on an open file 2096 * @fd: open file descriptor 2097 * @filp: file pointer 2098 * @arg: type of lease to obtain 2099 * 2100 * Call this fcntl to establish a lease on the file. 2101 * Note that you also need to call %F_SETSIG to 2102 * receive a signal when the lease is broken. 2103 */ 2104 int fcntl_setlease(unsigned int fd, struct file *filp, int arg) 2105 { 2106 if (S_ISDIR(file_inode(filp)->i_mode)) 2107 return -EINVAL; 2108 2109 if (arg == F_UNLCK) 2110 return vfs_setlease(filp, F_UNLCK, NULL, (void **)&filp); 2111 return do_fcntl_add_lease(fd, filp, FL_LEASE, arg); 2112 } 2113 2114 /** 2115 * fcntl_setdeleg - sets a delegation on an open file 2116 * @fd: open file descriptor 2117 * @filp: file pointer 2118 * @deleg: delegation request from userland 2119 * 2120 * Call this fcntl to establish a delegation on the file. 2121 * Note that you also need to call %F_SETSIG to 2122 * receive a signal when the lease is broken. 2123 */ 2124 int fcntl_setdeleg(unsigned int fd, struct file *filp, struct delegation *deleg) 2125 { 2126 /* For now, no flags are supported */ 2127 if (deleg->d_flags != 0 || deleg->__pad != 0) 2128 return -EINVAL; 2129 2130 if (deleg->d_type == F_UNLCK) 2131 return vfs_setlease(filp, F_UNLCK, NULL, (void **)&filp); 2132 return do_fcntl_add_lease(fd, filp, FL_DELEG, deleg->d_type); 2133 } 2134 2135 /** 2136 * flock_lock_inode_wait - Apply a FLOCK-style lock to a file 2137 * @inode: inode of the file to apply to 2138 * @fl: The lock to be applied 2139 * 2140 * Apply a FLOCK style lock request to an inode. 2141 */ 2142 static int flock_lock_inode_wait(struct inode *inode, struct file_lock *fl) 2143 { 2144 int error; 2145 might_sleep(); 2146 for (;;) { 2147 error = flock_lock_inode(inode, fl); 2148 if (error != FILE_LOCK_DEFERRED) 2149 break; 2150 error = wait_event_interruptible(fl->c.flc_wait, 2151 list_empty(&fl->c.flc_blocked_member)); 2152 if (error) 2153 break; 2154 } 2155 locks_delete_block(fl); 2156 return error; 2157 } 2158 2159 /** 2160 * locks_lock_inode_wait - Apply a lock to an inode 2161 * @inode: inode of the file to apply to 2162 * @fl: The lock to be applied 2163 * 2164 * Apply a POSIX or FLOCK style lock request to an inode. 2165 */ 2166 int locks_lock_inode_wait(struct inode *inode, struct file_lock *fl) 2167 { 2168 int res = 0; 2169 switch (fl->c.flc_flags & (FL_POSIX|FL_FLOCK)) { 2170 case FL_POSIX: 2171 res = posix_lock_inode_wait(inode, fl); 2172 break; 2173 case FL_FLOCK: 2174 res = flock_lock_inode_wait(inode, fl); 2175 break; 2176 default: 2177 BUG(); 2178 } 2179 return res; 2180 } 2181 EXPORT_SYMBOL(locks_lock_inode_wait); 2182 2183 /** 2184 * sys_flock: - flock() system call. 2185 * @fd: the file descriptor to lock. 2186 * @cmd: the type of lock to apply. 2187 * 2188 * Apply a %FL_FLOCK style lock to an open file descriptor. 2189 * The @cmd can be one of: 2190 * 2191 * - %LOCK_SH -- a shared lock. 2192 * - %LOCK_EX -- an exclusive lock. 2193 * - %LOCK_UN -- remove an existing lock. 2194 * - %LOCK_MAND -- a 'mandatory' flock. (DEPRECATED) 2195 * 2196 * %LOCK_MAND support has been removed from the kernel. 2197 */ 2198 SYSCALL_DEFINE2(flock, unsigned int, fd, unsigned int, cmd) 2199 { 2200 int can_sleep, error, type; 2201 struct file_lock fl; 2202 2203 /* 2204 * LOCK_MAND locks were broken for a long time in that they never 2205 * conflicted with one another and didn't prevent any sort of open, 2206 * read or write activity. 2207 * 2208 * Just ignore these requests now, to preserve legacy behavior, but 2209 * throw a warning to let people know that they don't actually work. 2210 */ 2211 if (cmd & LOCK_MAND) { 2212 pr_warn_once("%s(%d): Attempt to set a LOCK_MAND lock via flock(2). This support has been removed and the request ignored.\n", current->comm, current->pid); 2213 return 0; 2214 } 2215 2216 type = flock_translate_cmd(cmd & ~LOCK_NB); 2217 if (type < 0) 2218 return type; 2219 2220 CLASS(fd, f)(fd); 2221 if (fd_empty(f)) 2222 return -EBADF; 2223 2224 if (type != F_UNLCK && !(fd_file(f)->f_mode & (FMODE_READ | FMODE_WRITE))) 2225 return -EBADF; 2226 2227 flock_make_lock(fd_file(f), &fl, type); 2228 2229 error = security_file_lock(fd_file(f), fl.c.flc_type); 2230 if (error) 2231 return error; 2232 2233 can_sleep = !(cmd & LOCK_NB); 2234 if (can_sleep) 2235 fl.c.flc_flags |= FL_SLEEP; 2236 2237 if (fd_file(f)->f_op->flock) 2238 error = fd_file(f)->f_op->flock(fd_file(f), 2239 (can_sleep) ? F_SETLKW : F_SETLK, 2240 &fl); 2241 else 2242 error = locks_lock_file_wait(fd_file(f), &fl); 2243 2244 locks_release_private(&fl); 2245 return error; 2246 } 2247 2248 /** 2249 * vfs_test_lock - test file byte range lock 2250 * @filp: The file to test lock for 2251 * @fl: The byte-range in the file to test; also used to hold result 2252 * 2253 * On entry, @fl does not contain a lock, but identifies a range (fl_start, fl_end) 2254 * in the file (c.flc_file), and an owner (c.flc_owner) for whom existing locks 2255 * should be ignored. c.flc_type and c.flc_flags are ignored. 2256 * Both fl_lmops and fl_ops in @fl must be NULL. 2257 * Returns -ERRNO on failure. Indicates presence of conflicting lock by 2258 * setting fl->fl_type to something other than F_UNLCK. 2259 * 2260 * If vfs_test_lock() does find a lock and return it, the caller must 2261 * use locks_free_lock() or locks_release_private() on the returned lock. 2262 */ 2263 int vfs_test_lock(struct file *filp, struct file_lock *fl) 2264 { 2265 WARN_ON_ONCE(fl->fl_ops || fl->fl_lmops); 2266 WARN_ON_ONCE(filp != fl->c.flc_file); 2267 if (filp->f_op->lock) 2268 return filp->f_op->lock(filp, F_GETLK, fl); 2269 posix_test_lock(filp, fl); 2270 return 0; 2271 } 2272 EXPORT_SYMBOL_GPL(vfs_test_lock); 2273 2274 /** 2275 * locks_translate_pid - translate a file_lock's fl_pid number into a namespace 2276 * @fl: The file_lock who's fl_pid should be translated 2277 * @ns: The namespace into which the pid should be translated 2278 * 2279 * Used to translate a fl_pid into a namespace virtual pid number 2280 */ 2281 static pid_t locks_translate_pid(struct file_lock_core *fl, struct pid_namespace *ns) 2282 { 2283 pid_t vnr; 2284 struct pid *pid; 2285 2286 if (fl->flc_flags & FL_OFDLCK) 2287 return -1; 2288 2289 /* Remote locks report a negative pid value */ 2290 if (fl->flc_pid <= 0) 2291 return fl->flc_pid; 2292 2293 /* 2294 * If the flock owner process is dead and its pid has been already 2295 * freed, the translation below won't work, but we still want to show 2296 * flock owner pid number in init pidns. 2297 */ 2298 if (ns == &init_pid_ns) 2299 return (pid_t) fl->flc_pid; 2300 2301 rcu_read_lock(); 2302 pid = find_pid_ns(fl->flc_pid, &init_pid_ns); 2303 vnr = pid_nr_ns(pid, ns); 2304 rcu_read_unlock(); 2305 return vnr; 2306 } 2307 2308 static int posix_lock_to_flock(struct flock *flock, struct file_lock *fl) 2309 { 2310 flock->l_pid = locks_translate_pid(&fl->c, task_active_pid_ns(current)); 2311 #if BITS_PER_LONG == 32 2312 /* 2313 * Make sure we can represent the posix lock via 2314 * legacy 32bit flock. 2315 */ 2316 if (fl->fl_start > OFFT_OFFSET_MAX) 2317 return -EOVERFLOW; 2318 if (fl->fl_end != OFFSET_MAX && fl->fl_end > OFFT_OFFSET_MAX) 2319 return -EOVERFLOW; 2320 #endif 2321 flock->l_start = fl->fl_start; 2322 flock->l_len = fl->fl_end == OFFSET_MAX ? 0 : 2323 fl->fl_end - fl->fl_start + 1; 2324 flock->l_whence = 0; 2325 flock->l_type = fl->c.flc_type; 2326 return 0; 2327 } 2328 2329 #if BITS_PER_LONG == 32 2330 static void posix_lock_to_flock64(struct flock64 *flock, struct file_lock *fl) 2331 { 2332 flock->l_pid = locks_translate_pid(&fl->c, task_active_pid_ns(current)); 2333 flock->l_start = fl->fl_start; 2334 flock->l_len = fl->fl_end == OFFSET_MAX ? 0 : 2335 fl->fl_end - fl->fl_start + 1; 2336 flock->l_whence = 0; 2337 flock->l_type = fl->c.flc_type; 2338 } 2339 #endif 2340 2341 /* Report the first existing lock that would conflict with l. 2342 * This implements the F_GETLK command of fcntl(). 2343 */ 2344 int fcntl_getlk(struct file *filp, unsigned int cmd, struct flock *flock) 2345 { 2346 struct file_lock *fl; 2347 int error; 2348 2349 fl = locks_alloc_lock(); 2350 if (fl == NULL) 2351 return -ENOMEM; 2352 error = -EINVAL; 2353 if (cmd != F_OFD_GETLK && flock->l_type != F_RDLCK 2354 && flock->l_type != F_WRLCK) 2355 goto out; 2356 2357 error = flock_to_posix_lock(filp, fl, flock); 2358 if (error) 2359 goto out; 2360 2361 if (cmd == F_OFD_GETLK) { 2362 error = -EINVAL; 2363 if (flock->l_pid != 0) 2364 goto out; 2365 2366 fl->c.flc_flags |= FL_OFDLCK; 2367 fl->c.flc_owner = filp; 2368 } 2369 2370 error = vfs_test_lock(filp, fl); 2371 if (error) 2372 goto out; 2373 2374 flock->l_type = fl->c.flc_type; 2375 if (fl->c.flc_type != F_UNLCK) { 2376 error = posix_lock_to_flock(flock, fl); 2377 if (error) 2378 goto out; 2379 } 2380 out: 2381 locks_free_lock(fl); 2382 return error; 2383 } 2384 2385 /** 2386 * vfs_lock_file - file byte range lock 2387 * @filp: The file to apply the lock to 2388 * @cmd: type of locking operation (F_SETLK, F_GETLK, etc.) 2389 * @fl: The lock to be applied 2390 * @conf: Place to return a copy of the conflicting lock, if found. 2391 * 2392 * A caller that doesn't care about the conflicting lock may pass NULL 2393 * as the final argument. 2394 * 2395 * If the filesystem defines a private ->lock() method, then @conf will 2396 * be left unchanged; so a caller that cares should initialize it to 2397 * some acceptable default. 2398 * 2399 * To avoid blocking kernel daemons, such as lockd, that need to acquire POSIX 2400 * locks, the ->lock() interface may return asynchronously, before the lock has 2401 * been granted or denied by the underlying filesystem, if (and only if) 2402 * lm_grant is set. Additionally FOP_ASYNC_LOCK in file_operations fop_flags 2403 * need to be set. 2404 * 2405 * Callers expecting ->lock() to return asynchronously will only use F_SETLK, 2406 * not F_SETLKW; they will set FL_SLEEP if (and only if) the request is for a 2407 * blocking lock. When ->lock() does return asynchronously, it must return 2408 * FILE_LOCK_DEFERRED, and call ->lm_grant() when the lock request completes. 2409 * If the request is for non-blocking lock the file system should return 2410 * FILE_LOCK_DEFERRED then try to get the lock and call the callback routine 2411 * with the result. If the request timed out the callback routine will return a 2412 * nonzero return code and the file system should release the lock. The file 2413 * system is also responsible to keep a corresponding posix lock when it 2414 * grants a lock so the VFS can find out which locks are locally held and do 2415 * the correct lock cleanup when required. 2416 * The underlying filesystem must not drop the kernel lock or call 2417 * ->lm_grant() before returning to the caller with a FILE_LOCK_DEFERRED 2418 * return code. 2419 */ 2420 int vfs_lock_file(struct file *filp, unsigned int cmd, struct file_lock *fl, struct file_lock *conf) 2421 { 2422 WARN_ON_ONCE(filp != fl->c.flc_file); 2423 if (filp->f_op->lock) 2424 return filp->f_op->lock(filp, cmd, fl); 2425 else 2426 return posix_lock_file(filp, fl, conf); 2427 } 2428 EXPORT_SYMBOL_GPL(vfs_lock_file); 2429 2430 static int do_lock_file_wait(struct file *filp, unsigned int cmd, 2431 struct file_lock *fl) 2432 { 2433 int error; 2434 2435 error = security_file_lock(filp, fl->c.flc_type); 2436 if (error) 2437 return error; 2438 2439 for (;;) { 2440 error = vfs_lock_file(filp, cmd, fl, NULL); 2441 if (error != FILE_LOCK_DEFERRED) 2442 break; 2443 error = wait_event_interruptible(fl->c.flc_wait, 2444 list_empty(&fl->c.flc_blocked_member)); 2445 if (error) 2446 break; 2447 } 2448 locks_delete_block(fl); 2449 2450 return error; 2451 } 2452 2453 /* Ensure that fl->fl_file has compatible f_mode for F_SETLK calls */ 2454 static int 2455 check_fmode_for_setlk(struct file_lock *fl) 2456 { 2457 switch (fl->c.flc_type) { 2458 case F_RDLCK: 2459 if (!(fl->c.flc_file->f_mode & FMODE_READ)) 2460 return -EBADF; 2461 break; 2462 case F_WRLCK: 2463 if (!(fl->c.flc_file->f_mode & FMODE_WRITE)) 2464 return -EBADF; 2465 } 2466 return 0; 2467 } 2468 2469 /* Apply the lock described by l to an open file descriptor. 2470 * This implements both the F_SETLK and F_SETLKW commands of fcntl(). 2471 */ 2472 int fcntl_setlk(unsigned int fd, struct file *filp, unsigned int cmd, 2473 struct flock *flock) 2474 { 2475 struct file_lock *file_lock = locks_alloc_lock(); 2476 struct inode *inode = file_inode(filp); 2477 struct file *f; 2478 int error; 2479 2480 if (file_lock == NULL) 2481 return -ENOLCK; 2482 2483 error = flock_to_posix_lock(filp, file_lock, flock); 2484 if (error) 2485 goto out; 2486 2487 error = check_fmode_for_setlk(file_lock); 2488 if (error) 2489 goto out; 2490 2491 /* 2492 * If the cmd is requesting file-private locks, then set the 2493 * FL_OFDLCK flag and override the owner. 2494 */ 2495 switch (cmd) { 2496 case F_OFD_SETLK: 2497 error = -EINVAL; 2498 if (flock->l_pid != 0) 2499 goto out; 2500 2501 cmd = F_SETLK; 2502 file_lock->c.flc_flags |= FL_OFDLCK; 2503 file_lock->c.flc_owner = filp; 2504 break; 2505 case F_OFD_SETLKW: 2506 error = -EINVAL; 2507 if (flock->l_pid != 0) 2508 goto out; 2509 2510 cmd = F_SETLKW; 2511 file_lock->c.flc_flags |= FL_OFDLCK; 2512 file_lock->c.flc_owner = filp; 2513 fallthrough; 2514 case F_SETLKW: 2515 file_lock->c.flc_flags |= FL_SLEEP; 2516 } 2517 2518 error = do_lock_file_wait(filp, cmd, file_lock); 2519 2520 /* 2521 * Detect close/fcntl races and recover by zapping all POSIX locks 2522 * associated with this file and our files_struct, just like on 2523 * filp_flush(). There is no need to do that when we're 2524 * unlocking though, or for OFD locks. 2525 */ 2526 if (!error && file_lock->c.flc_type != F_UNLCK && 2527 !(file_lock->c.flc_flags & FL_OFDLCK)) { 2528 struct files_struct *files = current->files; 2529 /* 2530 * We need that spin_lock here - it prevents reordering between 2531 * update of i_flctx->flc_posix and check for it done in 2532 * close(). rcu_read_lock() wouldn't do. 2533 */ 2534 spin_lock(&files->file_lock); 2535 f = files_lookup_fd_locked(files, fd); 2536 spin_unlock(&files->file_lock); 2537 if (f != filp) { 2538 locks_remove_posix(filp, files); 2539 error = -EBADF; 2540 } 2541 } 2542 out: 2543 trace_fcntl_setlk(inode, file_lock, error); 2544 locks_free_lock(file_lock); 2545 return error; 2546 } 2547 2548 #if BITS_PER_LONG == 32 2549 /* Report the first existing lock that would conflict with l. 2550 * This implements the F_GETLK command of fcntl(). 2551 */ 2552 int fcntl_getlk64(struct file *filp, unsigned int cmd, struct flock64 *flock) 2553 { 2554 struct file_lock *fl; 2555 int error; 2556 2557 fl = locks_alloc_lock(); 2558 if (fl == NULL) 2559 return -ENOMEM; 2560 2561 error = -EINVAL; 2562 if (cmd != F_OFD_GETLK && flock->l_type != F_RDLCK 2563 && flock->l_type != F_WRLCK) 2564 goto out; 2565 2566 error = flock64_to_posix_lock(filp, fl, flock); 2567 if (error) 2568 goto out; 2569 2570 if (cmd == F_OFD_GETLK) { 2571 error = -EINVAL; 2572 if (flock->l_pid != 0) 2573 goto out; 2574 2575 fl->c.flc_flags |= FL_OFDLCK; 2576 fl->c.flc_owner = filp; 2577 } 2578 2579 error = vfs_test_lock(filp, fl); 2580 if (error) 2581 goto out; 2582 2583 flock->l_type = fl->c.flc_type; 2584 if (fl->c.flc_type != F_UNLCK) 2585 posix_lock_to_flock64(flock, fl); 2586 2587 out: 2588 locks_free_lock(fl); 2589 return error; 2590 } 2591 2592 /* Apply the lock described by l to an open file descriptor. 2593 * This implements both the F_SETLK and F_SETLKW commands of fcntl(). 2594 */ 2595 int fcntl_setlk64(unsigned int fd, struct file *filp, unsigned int cmd, 2596 struct flock64 *flock) 2597 { 2598 struct file_lock *file_lock = locks_alloc_lock(); 2599 struct file *f; 2600 int error; 2601 2602 if (file_lock == NULL) 2603 return -ENOLCK; 2604 2605 error = flock64_to_posix_lock(filp, file_lock, flock); 2606 if (error) 2607 goto out; 2608 2609 error = check_fmode_for_setlk(file_lock); 2610 if (error) 2611 goto out; 2612 2613 /* 2614 * If the cmd is requesting file-private locks, then set the 2615 * FL_OFDLCK flag and override the owner. 2616 */ 2617 switch (cmd) { 2618 case F_OFD_SETLK: 2619 error = -EINVAL; 2620 if (flock->l_pid != 0) 2621 goto out; 2622 2623 cmd = F_SETLK64; 2624 file_lock->c.flc_flags |= FL_OFDLCK; 2625 file_lock->c.flc_owner = filp; 2626 break; 2627 case F_OFD_SETLKW: 2628 error = -EINVAL; 2629 if (flock->l_pid != 0) 2630 goto out; 2631 2632 cmd = F_SETLKW64; 2633 file_lock->c.flc_flags |= FL_OFDLCK; 2634 file_lock->c.flc_owner = filp; 2635 fallthrough; 2636 case F_SETLKW64: 2637 file_lock->c.flc_flags |= FL_SLEEP; 2638 } 2639 2640 error = do_lock_file_wait(filp, cmd, file_lock); 2641 2642 /* 2643 * Detect close/fcntl races and recover by zapping all POSIX locks 2644 * associated with this file and our files_struct, just like on 2645 * filp_flush(). There is no need to do that when we're 2646 * unlocking though, or for OFD locks. 2647 */ 2648 if (!error && file_lock->c.flc_type != F_UNLCK && 2649 !(file_lock->c.flc_flags & FL_OFDLCK)) { 2650 struct files_struct *files = current->files; 2651 /* 2652 * We need that spin_lock here - it prevents reordering between 2653 * update of i_flctx->flc_posix and check for it done in 2654 * close(). rcu_read_lock() wouldn't do. 2655 */ 2656 spin_lock(&files->file_lock); 2657 f = files_lookup_fd_locked(files, fd); 2658 spin_unlock(&files->file_lock); 2659 if (f != filp) { 2660 locks_remove_posix(filp, files); 2661 error = -EBADF; 2662 } 2663 } 2664 out: 2665 locks_free_lock(file_lock); 2666 return error; 2667 } 2668 #endif /* BITS_PER_LONG == 32 */ 2669 2670 /* 2671 * This function is called when the file is being removed 2672 * from the task's fd array. POSIX locks belonging to this task 2673 * are deleted at this time. 2674 */ 2675 void locks_remove_posix(struct file *filp, fl_owner_t owner) 2676 { 2677 int error; 2678 struct inode *inode = file_inode(filp); 2679 struct file_lock lock; 2680 struct file_lock_context *ctx; 2681 2682 /* 2683 * If there are no locks held on this file, we don't need to call 2684 * posix_lock_file(). Another process could be setting a lock on this 2685 * file at the same time, but we wouldn't remove that lock anyway. 2686 */ 2687 ctx = locks_inode_context(inode); 2688 if (!ctx || list_empty(&ctx->flc_posix)) 2689 return; 2690 2691 locks_init_lock(&lock); 2692 lock.c.flc_type = F_UNLCK; 2693 lock.c.flc_flags = FL_POSIX | FL_CLOSE; 2694 lock.fl_start = 0; 2695 lock.fl_end = OFFSET_MAX; 2696 lock.c.flc_owner = owner; 2697 lock.c.flc_pid = current->tgid; 2698 lock.c.flc_file = filp; 2699 lock.fl_ops = NULL; 2700 lock.fl_lmops = NULL; 2701 2702 error = vfs_lock_file(filp, F_SETLK, &lock, NULL); 2703 2704 if (lock.fl_ops && lock.fl_ops->fl_release_private) 2705 lock.fl_ops->fl_release_private(&lock); 2706 trace_locks_remove_posix(inode, &lock, error); 2707 } 2708 EXPORT_SYMBOL(locks_remove_posix); 2709 2710 /* The i_flctx must be valid when calling into here */ 2711 static void 2712 locks_remove_flock(struct file *filp, struct file_lock_context *flctx) 2713 { 2714 struct file_lock fl; 2715 struct inode *inode = file_inode(filp); 2716 2717 if (list_empty(&flctx->flc_flock)) 2718 return; 2719 2720 flock_make_lock(filp, &fl, F_UNLCK); 2721 fl.c.flc_flags |= FL_CLOSE; 2722 2723 if (filp->f_op->flock) 2724 filp->f_op->flock(filp, F_SETLKW, &fl); 2725 else 2726 flock_lock_inode(inode, &fl); 2727 2728 if (fl.fl_ops && fl.fl_ops->fl_release_private) 2729 fl.fl_ops->fl_release_private(&fl); 2730 } 2731 2732 /* The i_flctx must be valid when calling into here */ 2733 static void 2734 locks_remove_lease(struct file *filp, struct file_lock_context *ctx) 2735 { 2736 struct file_lease *fl, *tmp; 2737 LIST_HEAD(dispose); 2738 2739 if (list_empty(&ctx->flc_lease)) 2740 return; 2741 2742 percpu_down_read(&file_rwsem); 2743 spin_lock(&ctx->flc_lock); 2744 list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, c.flc_list) 2745 if (filp == fl->c.flc_file) 2746 lease_modify(fl, F_UNLCK, &dispose); 2747 spin_unlock(&ctx->flc_lock); 2748 percpu_up_read(&file_rwsem); 2749 2750 lease_dispose_list(&dispose); 2751 } 2752 2753 /* 2754 * This function is called on the last close of an open file. 2755 */ 2756 void locks_remove_file(struct file *filp) 2757 { 2758 struct file_lock_context *ctx; 2759 2760 ctx = locks_inode_context(file_inode(filp)); 2761 if (!ctx) 2762 return; 2763 2764 /* remove any OFD locks */ 2765 locks_remove_posix(filp, filp); 2766 2767 /* remove flock locks */ 2768 locks_remove_flock(filp, ctx); 2769 2770 /* remove any leases */ 2771 locks_remove_lease(filp, ctx); 2772 2773 spin_lock(&ctx->flc_lock); 2774 locks_check_ctx_file_list(filp, &ctx->flc_posix, "POSIX"); 2775 locks_check_ctx_file_list(filp, &ctx->flc_flock, "FLOCK"); 2776 locks_check_ctx_file_list(filp, &ctx->flc_lease, "LEASE"); 2777 spin_unlock(&ctx->flc_lock); 2778 } 2779 2780 /** 2781 * vfs_cancel_lock - file byte range unblock lock 2782 * @filp: The file to apply the unblock to 2783 * @fl: The lock to be unblocked 2784 * 2785 * Used by lock managers to cancel blocked requests 2786 */ 2787 int vfs_cancel_lock(struct file *filp, struct file_lock *fl) 2788 { 2789 WARN_ON_ONCE(filp != fl->c.flc_file); 2790 if (filp->f_op->lock) 2791 return filp->f_op->lock(filp, F_CANCELLK, fl); 2792 return 0; 2793 } 2794 EXPORT_SYMBOL_GPL(vfs_cancel_lock); 2795 2796 /** 2797 * vfs_inode_has_locks - are any file locks held on @inode? 2798 * @inode: inode to check for locks 2799 * 2800 * Return true if there are any FL_POSIX or FL_FLOCK locks currently 2801 * set on @inode. 2802 */ 2803 bool vfs_inode_has_locks(struct inode *inode) 2804 { 2805 struct file_lock_context *ctx; 2806 bool ret; 2807 2808 ctx = locks_inode_context(inode); 2809 if (!ctx) 2810 return false; 2811 2812 spin_lock(&ctx->flc_lock); 2813 ret = !list_empty(&ctx->flc_posix) || !list_empty(&ctx->flc_flock); 2814 spin_unlock(&ctx->flc_lock); 2815 return ret; 2816 } 2817 EXPORT_SYMBOL_GPL(vfs_inode_has_locks); 2818 2819 #ifdef CONFIG_PROC_FS 2820 #include <linux/proc_fs.h> 2821 #include <linux/seq_file.h> 2822 2823 struct locks_iterator { 2824 int li_cpu; 2825 loff_t li_pos; 2826 }; 2827 2828 static void lock_get_status(struct seq_file *f, struct file_lock_core *flc, 2829 loff_t id, char *pfx, int repeat) 2830 { 2831 struct inode *inode = NULL; 2832 unsigned int pid; 2833 struct pid_namespace *proc_pidns = proc_pid_ns(file_inode(f->file)->i_sb); 2834 int type = flc->flc_type; 2835 struct file_lock *fl = file_lock(flc); 2836 2837 pid = locks_translate_pid(flc, proc_pidns); 2838 2839 /* 2840 * If lock owner is dead (and pid is freed) or not visible in current 2841 * pidns, zero is shown as a pid value. Check lock info from 2842 * init_pid_ns to get saved lock pid value. 2843 */ 2844 if (flc->flc_file != NULL) 2845 inode = file_inode(flc->flc_file); 2846 2847 seq_printf(f, "%lld: ", id); 2848 2849 if (repeat) 2850 seq_printf(f, "%*s", repeat - 1 + (int)strlen(pfx), pfx); 2851 2852 if (flc->flc_flags & FL_POSIX) { 2853 if (flc->flc_flags & FL_ACCESS) 2854 seq_puts(f, "ACCESS"); 2855 else if (flc->flc_flags & FL_OFDLCK) 2856 seq_puts(f, "OFDLCK"); 2857 else 2858 seq_puts(f, "POSIX "); 2859 2860 seq_printf(f, " %s ", 2861 (inode == NULL) ? "*NOINODE*" : "ADVISORY "); 2862 } else if (flc->flc_flags & FL_FLOCK) { 2863 seq_puts(f, "FLOCK ADVISORY "); 2864 } else if (flc->flc_flags & (FL_LEASE|FL_DELEG|FL_LAYOUT)) { 2865 struct file_lease *lease = file_lease(flc); 2866 2867 type = target_leasetype(lease); 2868 2869 if (flc->flc_flags & FL_DELEG) 2870 seq_puts(f, "DELEG "); 2871 else 2872 seq_puts(f, "LEASE "); 2873 2874 if (lease_breaking(lease)) 2875 seq_puts(f, "BREAKING "); 2876 else if (flc->flc_file) 2877 seq_puts(f, "ACTIVE "); 2878 else 2879 seq_puts(f, "BREAKER "); 2880 } else { 2881 seq_puts(f, "UNKNOWN UNKNOWN "); 2882 } 2883 2884 seq_printf(f, "%s ", (type == F_WRLCK) ? "WRITE" : 2885 (type == F_RDLCK) ? "READ" : "UNLCK"); 2886 if (inode) { 2887 /* userspace relies on this representation of dev_t */ 2888 seq_printf(f, "%d %02x:%02x:%lu ", pid, 2889 MAJOR(inode->i_sb->s_dev), 2890 MINOR(inode->i_sb->s_dev), inode->i_ino); 2891 } else { 2892 seq_printf(f, "%d <none>:0 ", pid); 2893 } 2894 if (flc->flc_flags & FL_POSIX) { 2895 if (fl->fl_end == OFFSET_MAX) 2896 seq_printf(f, "%Ld EOF\n", fl->fl_start); 2897 else 2898 seq_printf(f, "%Ld %Ld\n", fl->fl_start, fl->fl_end); 2899 } else { 2900 seq_puts(f, "0 EOF\n"); 2901 } 2902 } 2903 2904 static struct file_lock_core *get_next_blocked_member(struct file_lock_core *node) 2905 { 2906 struct file_lock_core *tmp; 2907 2908 /* NULL node or root node */ 2909 if (node == NULL || node->flc_blocker == NULL) 2910 return NULL; 2911 2912 /* Next member in the linked list could be itself */ 2913 tmp = list_next_entry(node, flc_blocked_member); 2914 if (list_entry_is_head(tmp, &node->flc_blocker->flc_blocked_requests, 2915 flc_blocked_member) 2916 || tmp == node) { 2917 return NULL; 2918 } 2919 2920 return tmp; 2921 } 2922 2923 static int locks_show(struct seq_file *f, void *v) 2924 { 2925 struct locks_iterator *iter = f->private; 2926 struct file_lock_core *cur, *tmp; 2927 struct pid_namespace *proc_pidns = proc_pid_ns(file_inode(f->file)->i_sb); 2928 int level = 0; 2929 2930 cur = hlist_entry(v, struct file_lock_core, flc_link); 2931 2932 if (locks_translate_pid(cur, proc_pidns) == 0) 2933 return 0; 2934 2935 /* View this crossed linked list as a binary tree, the first member of flc_blocked_requests 2936 * is the left child of current node, the next silibing in flc_blocked_member is the 2937 * right child, we can alse get the parent of current node from flc_blocker, so this 2938 * question becomes traversal of a binary tree 2939 */ 2940 while (cur != NULL) { 2941 if (level) 2942 lock_get_status(f, cur, iter->li_pos, "-> ", level); 2943 else 2944 lock_get_status(f, cur, iter->li_pos, "", level); 2945 2946 if (!list_empty(&cur->flc_blocked_requests)) { 2947 /* Turn left */ 2948 cur = list_first_entry_or_null(&cur->flc_blocked_requests, 2949 struct file_lock_core, 2950 flc_blocked_member); 2951 level++; 2952 } else { 2953 /* Turn right */ 2954 tmp = get_next_blocked_member(cur); 2955 /* Fall back to parent node */ 2956 while (tmp == NULL && cur->flc_blocker != NULL) { 2957 cur = cur->flc_blocker; 2958 level--; 2959 tmp = get_next_blocked_member(cur); 2960 } 2961 cur = tmp; 2962 } 2963 } 2964 2965 return 0; 2966 } 2967 2968 static void __show_fd_locks(struct seq_file *f, 2969 struct list_head *head, int *id, 2970 struct file *filp, struct files_struct *files) 2971 { 2972 struct file_lock_core *fl; 2973 2974 list_for_each_entry(fl, head, flc_list) { 2975 2976 if (filp != fl->flc_file) 2977 continue; 2978 if (fl->flc_owner != files && fl->flc_owner != filp) 2979 continue; 2980 2981 (*id)++; 2982 seq_puts(f, "lock:\t"); 2983 lock_get_status(f, fl, *id, "", 0); 2984 } 2985 } 2986 2987 void show_fd_locks(struct seq_file *f, 2988 struct file *filp, struct files_struct *files) 2989 { 2990 struct inode *inode = file_inode(filp); 2991 struct file_lock_context *ctx; 2992 int id = 0; 2993 2994 ctx = locks_inode_context(inode); 2995 if (!ctx) 2996 return; 2997 2998 spin_lock(&ctx->flc_lock); 2999 __show_fd_locks(f, &ctx->flc_flock, &id, filp, files); 3000 __show_fd_locks(f, &ctx->flc_posix, &id, filp, files); 3001 __show_fd_locks(f, &ctx->flc_lease, &id, filp, files); 3002 spin_unlock(&ctx->flc_lock); 3003 } 3004 3005 static void *locks_start(struct seq_file *f, loff_t *pos) 3006 __acquires(&blocked_lock_lock) 3007 { 3008 struct locks_iterator *iter = f->private; 3009 3010 iter->li_pos = *pos + 1; 3011 percpu_down_write(&file_rwsem); 3012 spin_lock(&blocked_lock_lock); 3013 return seq_hlist_start_percpu(&file_lock_list.hlist, &iter->li_cpu, *pos); 3014 } 3015 3016 static void *locks_next(struct seq_file *f, void *v, loff_t *pos) 3017 { 3018 struct locks_iterator *iter = f->private; 3019 3020 ++iter->li_pos; 3021 return seq_hlist_next_percpu(v, &file_lock_list.hlist, &iter->li_cpu, pos); 3022 } 3023 3024 static void locks_stop(struct seq_file *f, void *v) 3025 __releases(&blocked_lock_lock) 3026 { 3027 spin_unlock(&blocked_lock_lock); 3028 percpu_up_write(&file_rwsem); 3029 } 3030 3031 static const struct seq_operations locks_seq_operations = { 3032 .start = locks_start, 3033 .next = locks_next, 3034 .stop = locks_stop, 3035 .show = locks_show, 3036 }; 3037 3038 static int __init proc_locks_init(void) 3039 { 3040 proc_create_seq_private("locks", 0, NULL, &locks_seq_operations, 3041 sizeof(struct locks_iterator), NULL); 3042 return 0; 3043 } 3044 fs_initcall(proc_locks_init); 3045 #endif 3046 3047 static int __init filelock_init(void) 3048 { 3049 int i; 3050 3051 flctx_cache = kmem_cache_create("file_lock_ctx", 3052 sizeof(struct file_lock_context), 0, SLAB_PANIC, NULL); 3053 3054 filelock_cache = kmem_cache_create("file_lock_cache", 3055 sizeof(struct file_lock), 0, SLAB_PANIC, NULL); 3056 3057 filelease_cache = kmem_cache_create("file_lease_cache", 3058 sizeof(struct file_lease), 0, SLAB_PANIC, NULL); 3059 3060 for_each_possible_cpu(i) { 3061 struct file_lock_list_struct *fll = per_cpu_ptr(&file_lock_list, i); 3062 3063 spin_lock_init(&fll->lock); 3064 INIT_HLIST_HEAD(&fll->hlist); 3065 } 3066 3067 lease_notifier_chain_init(); 3068 return 0; 3069 } 3070 core_initcall(filelock_init); 3071