1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/sched/mm.h>
10 #include <linux/spinlock.h>
11 #include <linux/blkdev.h>
12 #include <linux/swap.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/prefetch.h>
16 #include <linux/fsverity.h>
17 #include "extent_io.h"
18 #include "extent-io-tree.h"
19 #include "extent_map.h"
20 #include "ctree.h"
21 #include "btrfs_inode.h"
22 #include "bio.h"
23 #include "locking.h"
24 #include "backref.h"
25 #include "disk-io.h"
26 #include "subpage.h"
27 #include "zoned.h"
28 #include "block-group.h"
29 #include "compression.h"
30 #include "fs.h"
31 #include "accessors.h"
32 #include "file-item.h"
33 #include "file.h"
34 #include "dev-replace.h"
35 #include "super.h"
36 #include "transaction.h"
37
38 static struct kmem_cache *extent_buffer_cache;
39
40 #ifdef CONFIG_BTRFS_DEBUG
btrfs_leak_debug_add_eb(struct extent_buffer * eb)41 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
42 {
43 struct btrfs_fs_info *fs_info = eb->fs_info;
44 unsigned long flags;
45
46 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
47 list_add(&eb->leak_list, &fs_info->allocated_ebs);
48 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
49 }
50
btrfs_leak_debug_del_eb(struct extent_buffer * eb)51 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
52 {
53 struct btrfs_fs_info *fs_info = eb->fs_info;
54 unsigned long flags;
55
56 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
57 list_del(&eb->leak_list);
58 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
59 }
60
btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info * fs_info)61 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
62 {
63 struct extent_buffer *eb;
64 unsigned long flags;
65
66 /*
67 * If we didn't get into open_ctree our allocated_ebs will not be
68 * initialized, so just skip this.
69 */
70 if (!fs_info->allocated_ebs.next)
71 return;
72
73 WARN_ON(!list_empty(&fs_info->allocated_ebs));
74 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75 while (!list_empty(&fs_info->allocated_ebs)) {
76 eb = list_first_entry(&fs_info->allocated_ebs,
77 struct extent_buffer, leak_list);
78 btrfs_err(fs_info,
79 "buffer leak start %llu len %u refs %d bflags %lu owner %llu",
80 eb->start, eb->len, refcount_read(&eb->refs), eb->bflags,
81 btrfs_header_owner(eb));
82 list_del(&eb->leak_list);
83 WARN_ON_ONCE(1);
84 kmem_cache_free(extent_buffer_cache, eb);
85 }
86 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
87 }
88 #else
89 #define btrfs_leak_debug_add_eb(eb) do {} while (0)
90 #define btrfs_leak_debug_del_eb(eb) do {} while (0)
91 #endif
92
93 /*
94 * Structure to record info about the bio being assembled, and other info like
95 * how many bytes are there before stripe/ordered extent boundary.
96 */
97 struct btrfs_bio_ctrl {
98 struct btrfs_bio *bbio;
99 /* Last byte contained in bbio + 1 . */
100 loff_t next_file_offset;
101 enum btrfs_compression_type compress_type;
102 u32 len_to_oe_boundary;
103 blk_opf_t opf;
104 btrfs_bio_end_io_t end_io_func;
105 struct writeback_control *wbc;
106
107 /*
108 * The sectors of the page which are going to be submitted by
109 * extent_writepage_io().
110 * This is to avoid touching ranges covered by compression/inline.
111 */
112 unsigned long submit_bitmap;
113 struct readahead_control *ractl;
114
115 /*
116 * The start offset of the last used extent map by a read operation.
117 *
118 * This is for proper compressed read merge.
119 * U64_MAX means we are starting the read and have made no progress yet.
120 *
121 * The current btrfs_bio_is_contig() only uses disk_bytenr as
122 * the condition to check if the read can be merged with previous
123 * bio, which is not correct. E.g. two file extents pointing to the
124 * same extent but with different offset.
125 *
126 * So here we need to do extra checks to only merge reads that are
127 * covered by the same extent map.
128 * Just extent_map::start will be enough, as they are unique
129 * inside the same inode.
130 */
131 u64 last_em_start;
132 };
133
submit_one_bio(struct btrfs_bio_ctrl * bio_ctrl)134 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
135 {
136 struct btrfs_bio *bbio = bio_ctrl->bbio;
137
138 if (!bbio)
139 return;
140
141 /* Caller should ensure the bio has at least some range added */
142 ASSERT(bbio->bio.bi_iter.bi_size);
143
144 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
145 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
146 btrfs_submit_compressed_read(bbio);
147 else
148 btrfs_submit_bbio(bbio, 0);
149
150 /* The bbio is owned by the end_io handler now */
151 bio_ctrl->bbio = NULL;
152 }
153
154 /*
155 * Submit or fail the current bio in the bio_ctrl structure.
156 */
submit_write_bio(struct btrfs_bio_ctrl * bio_ctrl,int ret)157 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
158 {
159 struct btrfs_bio *bbio = bio_ctrl->bbio;
160
161 if (!bbio)
162 return;
163
164 if (ret) {
165 ASSERT(ret < 0);
166 btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
167 /* The bio is owned by the end_io handler now */
168 bio_ctrl->bbio = NULL;
169 } else {
170 submit_one_bio(bio_ctrl);
171 }
172 }
173
extent_buffer_init_cachep(void)174 int __init extent_buffer_init_cachep(void)
175 {
176 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
177 sizeof(struct extent_buffer), 0, 0,
178 NULL);
179 if (!extent_buffer_cache)
180 return -ENOMEM;
181
182 return 0;
183 }
184
extent_buffer_free_cachep(void)185 void __cold extent_buffer_free_cachep(void)
186 {
187 /*
188 * Make sure all delayed rcu free are flushed before we
189 * destroy caches.
190 */
191 rcu_barrier();
192 kmem_cache_destroy(extent_buffer_cache);
193 }
194
process_one_folio(struct btrfs_fs_info * fs_info,struct folio * folio,const struct folio * locked_folio,unsigned long page_ops,u64 start,u64 end)195 static void process_one_folio(struct btrfs_fs_info *fs_info,
196 struct folio *folio, const struct folio *locked_folio,
197 unsigned long page_ops, u64 start, u64 end)
198 {
199 u32 len;
200
201 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
202 len = end + 1 - start;
203
204 if (page_ops & PAGE_SET_ORDERED)
205 btrfs_folio_clamp_set_ordered(fs_info, folio, start, len);
206 if (page_ops & PAGE_START_WRITEBACK) {
207 btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len);
208 btrfs_folio_clamp_set_writeback(fs_info, folio, start, len);
209 }
210 if (page_ops & PAGE_END_WRITEBACK)
211 btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len);
212
213 if (folio != locked_folio && (page_ops & PAGE_UNLOCK))
214 btrfs_folio_end_lock(fs_info, folio, start, len);
215 }
216
__process_folios_contig(struct address_space * mapping,const struct folio * locked_folio,u64 start,u64 end,unsigned long page_ops)217 static void __process_folios_contig(struct address_space *mapping,
218 const struct folio *locked_folio, u64 start,
219 u64 end, unsigned long page_ops)
220 {
221 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
222 pgoff_t index = start >> PAGE_SHIFT;
223 pgoff_t end_index = end >> PAGE_SHIFT;
224 struct folio_batch fbatch;
225 int i;
226
227 folio_batch_init(&fbatch);
228 while (index <= end_index) {
229 int found_folios;
230
231 found_folios = filemap_get_folios_contig(mapping, &index,
232 end_index, &fbatch);
233 for (i = 0; i < found_folios; i++) {
234 struct folio *folio = fbatch.folios[i];
235
236 process_one_folio(fs_info, folio, locked_folio,
237 page_ops, start, end);
238 }
239 folio_batch_release(&fbatch);
240 cond_resched();
241 }
242 }
243
unlock_delalloc_folio(const struct inode * inode,struct folio * locked_folio,u64 start,u64 end)244 static noinline void unlock_delalloc_folio(const struct inode *inode,
245 struct folio *locked_folio,
246 u64 start, u64 end)
247 {
248 ASSERT(locked_folio);
249
250 __process_folios_contig(inode->i_mapping, locked_folio, start, end,
251 PAGE_UNLOCK);
252 }
253
lock_delalloc_folios(struct inode * inode,struct folio * locked_folio,u64 start,u64 end)254 static noinline int lock_delalloc_folios(struct inode *inode,
255 struct folio *locked_folio,
256 u64 start, u64 end)
257 {
258 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
259 struct address_space *mapping = inode->i_mapping;
260 pgoff_t index = start >> PAGE_SHIFT;
261 pgoff_t end_index = end >> PAGE_SHIFT;
262 u64 processed_end = start;
263 struct folio_batch fbatch;
264
265 folio_batch_init(&fbatch);
266 while (index <= end_index) {
267 unsigned int found_folios, i;
268
269 found_folios = filemap_get_folios_contig(mapping, &index,
270 end_index, &fbatch);
271 if (found_folios == 0)
272 goto out;
273
274 for (i = 0; i < found_folios; i++) {
275 struct folio *folio = fbatch.folios[i];
276 u64 range_start;
277 u32 range_len;
278
279 if (folio == locked_folio)
280 continue;
281
282 folio_lock(folio);
283 if (!folio_test_dirty(folio) || folio->mapping != mapping) {
284 folio_unlock(folio);
285 goto out;
286 }
287 range_start = max_t(u64, folio_pos(folio), start);
288 range_len = min_t(u64, folio_end(folio), end + 1) - range_start;
289 btrfs_folio_set_lock(fs_info, folio, range_start, range_len);
290
291 processed_end = range_start + range_len - 1;
292 }
293 folio_batch_release(&fbatch);
294 cond_resched();
295 }
296
297 return 0;
298 out:
299 folio_batch_release(&fbatch);
300 if (processed_end > start)
301 unlock_delalloc_folio(inode, locked_folio, start, processed_end);
302 return -EAGAIN;
303 }
304
305 /*
306 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
307 * more than @max_bytes.
308 *
309 * @start: The original start bytenr to search.
310 * Will store the extent range start bytenr.
311 * @end: The original end bytenr of the search range
312 * Will store the extent range end bytenr.
313 *
314 * Return true if we find a delalloc range which starts inside the original
315 * range, and @start/@end will store the delalloc range start/end.
316 *
317 * Return false if we can't find any delalloc range which starts inside the
318 * original range, and @start/@end will be the non-delalloc range start/end.
319 */
320 EXPORT_FOR_TESTS
find_lock_delalloc_range(struct inode * inode,struct folio * locked_folio,u64 * start,u64 * end)321 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
322 struct folio *locked_folio,
323 u64 *start, u64 *end)
324 {
325 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
326 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
327 const u64 orig_start = *start;
328 const u64 orig_end = *end;
329 /* The sanity tests may not set a valid fs_info. */
330 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
331 u64 delalloc_start;
332 u64 delalloc_end;
333 bool found;
334 struct extent_state *cached_state = NULL;
335 int ret;
336 int loops = 0;
337
338 /* Caller should pass a valid @end to indicate the search range end */
339 ASSERT(orig_end > orig_start);
340
341 /* The range should at least cover part of the folio */
342 ASSERT(!(orig_start >= folio_end(locked_folio) ||
343 orig_end <= folio_pos(locked_folio)));
344 again:
345 /* step one, find a bunch of delalloc bytes starting at start */
346 delalloc_start = *start;
347 delalloc_end = 0;
348 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
349 max_bytes, &cached_state);
350 if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
351 *start = delalloc_start;
352
353 /* @delalloc_end can be -1, never go beyond @orig_end */
354 *end = min(delalloc_end, orig_end);
355 btrfs_free_extent_state(cached_state);
356 return false;
357 }
358
359 /*
360 * start comes from the offset of locked_folio. We have to lock
361 * folios in order, so we can't process delalloc bytes before
362 * locked_folio
363 */
364 if (delalloc_start < *start)
365 delalloc_start = *start;
366
367 /*
368 * make sure to limit the number of folios we try to lock down
369 */
370 if (delalloc_end + 1 - delalloc_start > max_bytes)
371 delalloc_end = delalloc_start + max_bytes - 1;
372
373 /* step two, lock all the folioss after the folios that has start */
374 ret = lock_delalloc_folios(inode, locked_folio, delalloc_start,
375 delalloc_end);
376 ASSERT(!ret || ret == -EAGAIN);
377 if (ret == -EAGAIN) {
378 /* some of the folios are gone, lets avoid looping by
379 * shortening the size of the delalloc range we're searching
380 */
381 btrfs_free_extent_state(cached_state);
382 cached_state = NULL;
383 if (!loops) {
384 max_bytes = PAGE_SIZE;
385 loops = 1;
386 goto again;
387 } else {
388 found = false;
389 goto out_failed;
390 }
391 }
392
393 /* step three, lock the state bits for the whole range */
394 btrfs_lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
395
396 /* then test to make sure it is all still delalloc */
397 ret = btrfs_test_range_bit(tree, delalloc_start, delalloc_end,
398 EXTENT_DELALLOC, cached_state);
399
400 btrfs_unlock_extent(tree, delalloc_start, delalloc_end, &cached_state);
401 if (!ret) {
402 unlock_delalloc_folio(inode, locked_folio, delalloc_start,
403 delalloc_end);
404 cond_resched();
405 goto again;
406 }
407 *start = delalloc_start;
408 *end = delalloc_end;
409 out_failed:
410 return found;
411 }
412
extent_clear_unlock_delalloc(struct btrfs_inode * inode,u64 start,u64 end,const struct folio * locked_folio,struct extent_state ** cached,u32 clear_bits,unsigned long page_ops)413 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
414 const struct folio *locked_folio,
415 struct extent_state **cached,
416 u32 clear_bits, unsigned long page_ops)
417 {
418 btrfs_clear_extent_bit(&inode->io_tree, start, end, clear_bits, cached);
419
420 __process_folios_contig(inode->vfs_inode.i_mapping, locked_folio, start,
421 end, page_ops);
422 }
423
btrfs_verify_folio(struct folio * folio,u64 start,u32 len)424 static bool btrfs_verify_folio(struct folio *folio, u64 start, u32 len)
425 {
426 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
427
428 if (!fsverity_active(folio->mapping->host) ||
429 btrfs_folio_test_uptodate(fs_info, folio, start, len) ||
430 start >= i_size_read(folio->mapping->host))
431 return true;
432 return fsverity_verify_folio(folio);
433 }
434
end_folio_read(struct folio * folio,bool uptodate,u64 start,u32 len)435 static void end_folio_read(struct folio *folio, bool uptodate, u64 start, u32 len)
436 {
437 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
438
439 ASSERT(folio_pos(folio) <= start &&
440 start + len <= folio_end(folio));
441
442 if (uptodate && btrfs_verify_folio(folio, start, len))
443 btrfs_folio_set_uptodate(fs_info, folio, start, len);
444 else
445 btrfs_folio_clear_uptodate(fs_info, folio, start, len);
446
447 if (!btrfs_is_subpage(fs_info, folio))
448 folio_unlock(folio);
449 else
450 btrfs_folio_end_lock(fs_info, folio, start, len);
451 }
452
453 /*
454 * After a write IO is done, we need to:
455 *
456 * - clear the uptodate bits on error
457 * - clear the writeback bits in the extent tree for the range
458 * - filio_end_writeback() if there is no more pending io for the folio
459 *
460 * Scheduling is not allowed, so the extent state tree is expected
461 * to have one and only one object corresponding to this IO.
462 */
end_bbio_data_write(struct btrfs_bio * bbio)463 static void end_bbio_data_write(struct btrfs_bio *bbio)
464 {
465 struct btrfs_fs_info *fs_info = bbio->fs_info;
466 struct bio *bio = &bbio->bio;
467 int error = blk_status_to_errno(bio->bi_status);
468 struct folio_iter fi;
469 const u32 sectorsize = fs_info->sectorsize;
470
471 ASSERT(!bio_flagged(bio, BIO_CLONED));
472 bio_for_each_folio_all(fi, bio) {
473 struct folio *folio = fi.folio;
474 u64 start = folio_pos(folio) + fi.offset;
475 u32 len = fi.length;
476
477 /* Our read/write should always be sector aligned. */
478 if (!IS_ALIGNED(fi.offset, sectorsize))
479 btrfs_err(fs_info,
480 "partial page write in btrfs with offset %zu and length %zu",
481 fi.offset, fi.length);
482 else if (!IS_ALIGNED(fi.length, sectorsize))
483 btrfs_info(fs_info,
484 "incomplete page write with offset %zu and length %zu",
485 fi.offset, fi.length);
486
487 btrfs_finish_ordered_extent(bbio->ordered, folio, start, len,
488 !error);
489 if (error)
490 mapping_set_error(folio->mapping, error);
491 btrfs_folio_clear_writeback(fs_info, folio, start, len);
492 }
493
494 bio_put(bio);
495 }
496
begin_folio_read(struct btrfs_fs_info * fs_info,struct folio * folio)497 static void begin_folio_read(struct btrfs_fs_info *fs_info, struct folio *folio)
498 {
499 ASSERT(folio_test_locked(folio));
500 if (!btrfs_is_subpage(fs_info, folio))
501 return;
502
503 ASSERT(folio_test_private(folio));
504 btrfs_folio_set_lock(fs_info, folio, folio_pos(folio), folio_size(folio));
505 }
506
507 /*
508 * After a data read IO is done, we need to:
509 *
510 * - clear the uptodate bits on error
511 * - set the uptodate bits if things worked
512 * - set the folio up to date if all extents in the tree are uptodate
513 * - clear the lock bit in the extent tree
514 * - unlock the folio if there are no other extents locked for it
515 *
516 * Scheduling is not allowed, so the extent state tree is expected
517 * to have one and only one object corresponding to this IO.
518 */
end_bbio_data_read(struct btrfs_bio * bbio)519 static void end_bbio_data_read(struct btrfs_bio *bbio)
520 {
521 struct btrfs_fs_info *fs_info = bbio->fs_info;
522 struct bio *bio = &bbio->bio;
523 struct folio_iter fi;
524
525 ASSERT(!bio_flagged(bio, BIO_CLONED));
526 bio_for_each_folio_all(fi, &bbio->bio) {
527 bool uptodate = !bio->bi_status;
528 struct folio *folio = fi.folio;
529 struct inode *inode = folio->mapping->host;
530 u64 start = folio_pos(folio) + fi.offset;
531
532 btrfs_debug(fs_info,
533 "%s: bi_sector=%llu, err=%d, mirror=%u",
534 __func__, bio->bi_iter.bi_sector, bio->bi_status,
535 bbio->mirror_num);
536
537
538 if (likely(uptodate)) {
539 u64 end = start + fi.length - 1;
540 loff_t i_size = i_size_read(inode);
541
542 /*
543 * Zero out the remaining part if this range straddles
544 * i_size.
545 *
546 * Here we should only zero the range inside the folio,
547 * not touch anything else.
548 *
549 * NOTE: i_size is exclusive while end is inclusive and
550 * folio_contains() takes PAGE_SIZE units.
551 */
552 if (folio_contains(folio, i_size >> PAGE_SHIFT) &&
553 i_size <= end) {
554 u32 zero_start = max(offset_in_folio(folio, i_size),
555 offset_in_folio(folio, start));
556 u32 zero_len = offset_in_folio(folio, end) + 1 -
557 zero_start;
558
559 folio_zero_range(folio, zero_start, zero_len);
560 }
561 }
562
563 /* Update page status and unlock. */
564 end_folio_read(folio, uptodate, start, fi.length);
565 }
566 bio_put(bio);
567 }
568
569 /*
570 * Populate every free slot in a provided array with folios using GFP_NOFS.
571 *
572 * @nr_folios: number of folios to allocate
573 * @folio_array: the array to fill with folios; any existing non-NULL entries in
574 * the array will be skipped
575 *
576 * Return: 0 if all folios were able to be allocated;
577 * -ENOMEM otherwise, the partially allocated folios would be freed and
578 * the array slots zeroed
579 */
btrfs_alloc_folio_array(unsigned int nr_folios,struct folio ** folio_array)580 int btrfs_alloc_folio_array(unsigned int nr_folios, struct folio **folio_array)
581 {
582 for (int i = 0; i < nr_folios; i++) {
583 if (folio_array[i])
584 continue;
585 folio_array[i] = folio_alloc(GFP_NOFS, 0);
586 if (!folio_array[i])
587 goto error;
588 }
589 return 0;
590 error:
591 for (int i = 0; i < nr_folios; i++) {
592 if (folio_array[i])
593 folio_put(folio_array[i]);
594 }
595 return -ENOMEM;
596 }
597
598 /*
599 * Populate every free slot in a provided array with pages, using GFP_NOFS.
600 *
601 * @nr_pages: number of pages to allocate
602 * @page_array: the array to fill with pages; any existing non-null entries in
603 * the array will be skipped
604 * @nofail: whether using __GFP_NOFAIL flag
605 *
606 * Return: 0 if all pages were able to be allocated;
607 * -ENOMEM otherwise, the partially allocated pages would be freed and
608 * the array slots zeroed
609 */
btrfs_alloc_page_array(unsigned int nr_pages,struct page ** page_array,bool nofail)610 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array,
611 bool nofail)
612 {
613 const gfp_t gfp = nofail ? (GFP_NOFS | __GFP_NOFAIL) : GFP_NOFS;
614 unsigned int allocated;
615
616 for (allocated = 0; allocated < nr_pages;) {
617 unsigned int last = allocated;
618
619 allocated = alloc_pages_bulk(gfp, nr_pages, page_array);
620 if (unlikely(allocated == last)) {
621 /* No progress, fail and do cleanup. */
622 for (int i = 0; i < allocated; i++) {
623 __free_page(page_array[i]);
624 page_array[i] = NULL;
625 }
626 return -ENOMEM;
627 }
628 }
629 return 0;
630 }
631
632 /*
633 * Populate needed folios for the extent buffer.
634 *
635 * For now, the folios populated are always in order 0 (aka, single page).
636 */
alloc_eb_folio_array(struct extent_buffer * eb,bool nofail)637 static int alloc_eb_folio_array(struct extent_buffer *eb, bool nofail)
638 {
639 struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 };
640 int num_pages = num_extent_pages(eb);
641 int ret;
642
643 ret = btrfs_alloc_page_array(num_pages, page_array, nofail);
644 if (ret < 0)
645 return ret;
646
647 for (int i = 0; i < num_pages; i++)
648 eb->folios[i] = page_folio(page_array[i]);
649 eb->folio_size = PAGE_SIZE;
650 eb->folio_shift = PAGE_SHIFT;
651 return 0;
652 }
653
btrfs_bio_is_contig(struct btrfs_bio_ctrl * bio_ctrl,u64 disk_bytenr,loff_t file_offset)654 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
655 u64 disk_bytenr, loff_t file_offset)
656 {
657 struct bio *bio = &bio_ctrl->bbio->bio;
658 const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
659
660 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
661 /*
662 * For compression, all IO should have its logical bytenr set
663 * to the starting bytenr of the compressed extent.
664 */
665 return bio->bi_iter.bi_sector == sector;
666 }
667
668 /*
669 * To merge into a bio both the disk sector and the logical offset in
670 * the file need to be contiguous.
671 */
672 return bio_ctrl->next_file_offset == file_offset &&
673 bio_end_sector(bio) == sector;
674 }
675
alloc_new_bio(struct btrfs_inode * inode,struct btrfs_bio_ctrl * bio_ctrl,u64 disk_bytenr,u64 file_offset)676 static void alloc_new_bio(struct btrfs_inode *inode,
677 struct btrfs_bio_ctrl *bio_ctrl,
678 u64 disk_bytenr, u64 file_offset)
679 {
680 struct btrfs_fs_info *fs_info = inode->root->fs_info;
681 struct btrfs_bio *bbio;
682
683 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info,
684 bio_ctrl->end_io_func, NULL);
685 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
686 bbio->bio.bi_write_hint = inode->vfs_inode.i_write_hint;
687 bbio->inode = inode;
688 bbio->file_offset = file_offset;
689 bio_ctrl->bbio = bbio;
690 bio_ctrl->len_to_oe_boundary = U32_MAX;
691 bio_ctrl->next_file_offset = file_offset;
692
693 /* Limit data write bios to the ordered boundary. */
694 if (bio_ctrl->wbc) {
695 struct btrfs_ordered_extent *ordered;
696
697 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
698 if (ordered) {
699 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
700 ordered->file_offset +
701 ordered->disk_num_bytes - file_offset);
702 bbio->ordered = ordered;
703 }
704
705 /*
706 * Pick the last added device to support cgroup writeback. For
707 * multi-device file systems this means blk-cgroup policies have
708 * to always be set on the last added/replaced device.
709 * This is a bit odd but has been like that for a long time.
710 */
711 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
712 wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
713 }
714 }
715
716 /*
717 * @disk_bytenr: logical bytenr where the write will be
718 * @page: page to add to the bio
719 * @size: portion of page that we want to write to
720 * @pg_offset: offset of the new bio or to check whether we are adding
721 * a contiguous page to the previous one
722 *
723 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
724 * new one in @bio_ctrl->bbio.
725 * The mirror number for this IO should already be initizlied in
726 * @bio_ctrl->mirror_num.
727 */
submit_extent_folio(struct btrfs_bio_ctrl * bio_ctrl,u64 disk_bytenr,struct folio * folio,size_t size,unsigned long pg_offset)728 static void submit_extent_folio(struct btrfs_bio_ctrl *bio_ctrl,
729 u64 disk_bytenr, struct folio *folio,
730 size_t size, unsigned long pg_offset)
731 {
732 struct btrfs_inode *inode = folio_to_inode(folio);
733 loff_t file_offset = folio_pos(folio) + pg_offset;
734
735 ASSERT(pg_offset + size <= folio_size(folio));
736 ASSERT(bio_ctrl->end_io_func);
737
738 if (bio_ctrl->bbio &&
739 !btrfs_bio_is_contig(bio_ctrl, disk_bytenr, file_offset))
740 submit_one_bio(bio_ctrl);
741
742 do {
743 u32 len = size;
744
745 /* Allocate new bio if needed */
746 if (!bio_ctrl->bbio)
747 alloc_new_bio(inode, bio_ctrl, disk_bytenr, file_offset);
748
749 /* Cap to the current ordered extent boundary if there is one. */
750 if (len > bio_ctrl->len_to_oe_boundary) {
751 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
752 ASSERT(is_data_inode(inode));
753 len = bio_ctrl->len_to_oe_boundary;
754 }
755
756 if (!bio_add_folio(&bio_ctrl->bbio->bio, folio, len, pg_offset)) {
757 /* bio full: move on to a new one */
758 submit_one_bio(bio_ctrl);
759 continue;
760 }
761 bio_ctrl->next_file_offset += len;
762
763 if (bio_ctrl->wbc)
764 wbc_account_cgroup_owner(bio_ctrl->wbc, folio, len);
765
766 size -= len;
767 pg_offset += len;
768 disk_bytenr += len;
769 file_offset += len;
770
771 /*
772 * len_to_oe_boundary defaults to U32_MAX, which isn't folio or
773 * sector aligned. alloc_new_bio() then sets it to the end of
774 * our ordered extent for writes into zoned devices.
775 *
776 * When len_to_oe_boundary is tracking an ordered extent, we
777 * trust the ordered extent code to align things properly, and
778 * the check above to cap our write to the ordered extent
779 * boundary is correct.
780 *
781 * When len_to_oe_boundary is U32_MAX, the cap above would
782 * result in a 4095 byte IO for the last folio right before
783 * we hit the bio limit of UINT_MAX. bio_add_folio() has all
784 * the checks required to make sure we don't overflow the bio,
785 * and we should just ignore len_to_oe_boundary completely
786 * unless we're using it to track an ordered extent.
787 *
788 * It's pretty hard to make a bio sized U32_MAX, but it can
789 * happen when the page cache is able to feed us contiguous
790 * folios for large extents.
791 */
792 if (bio_ctrl->len_to_oe_boundary != U32_MAX)
793 bio_ctrl->len_to_oe_boundary -= len;
794
795 /* Ordered extent boundary: move on to a new bio. */
796 if (bio_ctrl->len_to_oe_boundary == 0)
797 submit_one_bio(bio_ctrl);
798 } while (size);
799 }
800
attach_extent_buffer_folio(struct extent_buffer * eb,struct folio * folio,struct btrfs_folio_state * prealloc)801 static int attach_extent_buffer_folio(struct extent_buffer *eb,
802 struct folio *folio,
803 struct btrfs_folio_state *prealloc)
804 {
805 struct btrfs_fs_info *fs_info = eb->fs_info;
806 int ret = 0;
807
808 /*
809 * If the page is mapped to btree inode, we should hold the private
810 * lock to prevent race.
811 * For cloned or dummy extent buffers, their pages are not mapped and
812 * will not race with any other ebs.
813 */
814 if (folio->mapping)
815 lockdep_assert_held(&folio->mapping->i_private_lock);
816
817 if (!btrfs_meta_is_subpage(fs_info)) {
818 if (!folio_test_private(folio))
819 folio_attach_private(folio, eb);
820 else
821 WARN_ON(folio_get_private(folio) != eb);
822 return 0;
823 }
824
825 /* Already mapped, just free prealloc */
826 if (folio_test_private(folio)) {
827 btrfs_free_folio_state(prealloc);
828 return 0;
829 }
830
831 if (prealloc)
832 /* Has preallocated memory for subpage */
833 folio_attach_private(folio, prealloc);
834 else
835 /* Do new allocation to attach subpage */
836 ret = btrfs_attach_folio_state(fs_info, folio, BTRFS_SUBPAGE_METADATA);
837 return ret;
838 }
839
set_folio_extent_mapped(struct folio * folio)840 int set_folio_extent_mapped(struct folio *folio)
841 {
842 struct btrfs_fs_info *fs_info;
843
844 ASSERT(folio->mapping);
845
846 if (folio_test_private(folio))
847 return 0;
848
849 fs_info = folio_to_fs_info(folio);
850
851 if (btrfs_is_subpage(fs_info, folio))
852 return btrfs_attach_folio_state(fs_info, folio, BTRFS_SUBPAGE_DATA);
853
854 folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE);
855 return 0;
856 }
857
clear_folio_extent_mapped(struct folio * folio)858 void clear_folio_extent_mapped(struct folio *folio)
859 {
860 struct btrfs_fs_info *fs_info;
861
862 ASSERT(folio->mapping);
863
864 if (!folio_test_private(folio))
865 return;
866
867 fs_info = folio_to_fs_info(folio);
868 if (btrfs_is_subpage(fs_info, folio))
869 return btrfs_detach_folio_state(fs_info, folio, BTRFS_SUBPAGE_DATA);
870
871 folio_detach_private(folio);
872 }
873
get_extent_map(struct btrfs_inode * inode,struct folio * folio,u64 start,u64 len,struct extent_map ** em_cached)874 static struct extent_map *get_extent_map(struct btrfs_inode *inode,
875 struct folio *folio, u64 start,
876 u64 len, struct extent_map **em_cached)
877 {
878 struct extent_map *em;
879
880 ASSERT(em_cached);
881
882 if (*em_cached) {
883 em = *em_cached;
884 if (btrfs_extent_map_in_tree(em) && start >= em->start &&
885 start < btrfs_extent_map_end(em)) {
886 refcount_inc(&em->refs);
887 return em;
888 }
889
890 btrfs_free_extent_map(em);
891 *em_cached = NULL;
892 }
893
894 em = btrfs_get_extent(inode, folio, start, len);
895 if (!IS_ERR(em)) {
896 BUG_ON(*em_cached);
897 refcount_inc(&em->refs);
898 *em_cached = em;
899 }
900
901 return em;
902 }
903
btrfs_readahead_expand(struct readahead_control * ractl,const struct extent_map * em)904 static void btrfs_readahead_expand(struct readahead_control *ractl,
905 const struct extent_map *em)
906 {
907 const u64 ra_pos = readahead_pos(ractl);
908 const u64 ra_end = ra_pos + readahead_length(ractl);
909 const u64 em_end = em->start + em->ram_bytes;
910
911 /* No expansion for holes and inline extents. */
912 if (em->disk_bytenr > EXTENT_MAP_LAST_BYTE)
913 return;
914
915 ASSERT(em_end >= ra_pos,
916 "extent_map %llu %llu ends before current readahead position %llu",
917 em->start, em->len, ra_pos);
918 if (em_end > ra_end)
919 readahead_expand(ractl, ra_pos, em_end - ra_pos);
920 }
921
922 /*
923 * basic readpage implementation. Locked extent state structs are inserted
924 * into the tree that are removed when the IO is done (by the end_io
925 * handlers)
926 * XXX JDM: This needs looking at to ensure proper page locking
927 * return 0 on success, otherwise return error
928 */
btrfs_do_readpage(struct folio * folio,struct extent_map ** em_cached,struct btrfs_bio_ctrl * bio_ctrl)929 static int btrfs_do_readpage(struct folio *folio, struct extent_map **em_cached,
930 struct btrfs_bio_ctrl *bio_ctrl)
931 {
932 struct inode *inode = folio->mapping->host;
933 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
934 u64 start = folio_pos(folio);
935 const u64 end = start + folio_size(folio) - 1;
936 u64 extent_offset;
937 u64 last_byte = i_size_read(inode);
938 struct extent_map *em;
939 int ret = 0;
940 const size_t blocksize = fs_info->sectorsize;
941
942 ret = set_folio_extent_mapped(folio);
943 if (ret < 0) {
944 folio_unlock(folio);
945 return ret;
946 }
947
948 if (folio_contains(folio, last_byte >> PAGE_SHIFT)) {
949 size_t zero_offset = offset_in_folio(folio, last_byte);
950
951 if (zero_offset)
952 folio_zero_range(folio, zero_offset,
953 folio_size(folio) - zero_offset);
954 }
955 bio_ctrl->end_io_func = end_bbio_data_read;
956 begin_folio_read(fs_info, folio);
957 for (u64 cur = start; cur <= end; cur += blocksize) {
958 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
959 unsigned long pg_offset = offset_in_folio(folio, cur);
960 bool force_bio_submit = false;
961 u64 disk_bytenr;
962 u64 block_start;
963
964 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
965 if (cur >= last_byte) {
966 folio_zero_range(folio, pg_offset, end - cur + 1);
967 end_folio_read(folio, true, cur, end - cur + 1);
968 break;
969 }
970 if (btrfs_folio_test_uptodate(fs_info, folio, cur, blocksize)) {
971 end_folio_read(folio, true, cur, blocksize);
972 continue;
973 }
974 em = get_extent_map(BTRFS_I(inode), folio, cur, end - cur + 1, em_cached);
975 if (IS_ERR(em)) {
976 end_folio_read(folio, false, cur, end + 1 - cur);
977 return PTR_ERR(em);
978 }
979 extent_offset = cur - em->start;
980 BUG_ON(btrfs_extent_map_end(em) <= cur);
981 BUG_ON(end < cur);
982
983 compress_type = btrfs_extent_map_compression(em);
984
985 /*
986 * Only expand readahead for extents which are already creating
987 * the pages anyway in add_ra_bio_pages, which is compressed
988 * extents in the non subpage case.
989 */
990 if (bio_ctrl->ractl &&
991 !btrfs_is_subpage(fs_info, folio) &&
992 compress_type != BTRFS_COMPRESS_NONE)
993 btrfs_readahead_expand(bio_ctrl->ractl, em);
994
995 if (compress_type != BTRFS_COMPRESS_NONE)
996 disk_bytenr = em->disk_bytenr;
997 else
998 disk_bytenr = btrfs_extent_map_block_start(em) + extent_offset;
999
1000 if (em->flags & EXTENT_FLAG_PREALLOC)
1001 block_start = EXTENT_MAP_HOLE;
1002 else
1003 block_start = btrfs_extent_map_block_start(em);
1004
1005 /*
1006 * If we have a file range that points to a compressed extent
1007 * and it's followed by a consecutive file range that points
1008 * to the same compressed extent (possibly with a different
1009 * offset and/or length, so it either points to the whole extent
1010 * or only part of it), we must make sure we do not submit a
1011 * single bio to populate the folios for the 2 ranges because
1012 * this makes the compressed extent read zero out the folios
1013 * belonging to the 2nd range. Imagine the following scenario:
1014 *
1015 * File layout
1016 * [0 - 8K] [8K - 24K]
1017 * | |
1018 * | |
1019 * points to extent X, points to extent X,
1020 * offset 4K, length of 8K offset 0, length 16K
1021 *
1022 * [extent X, compressed length = 4K uncompressed length = 16K]
1023 *
1024 * If the bio to read the compressed extent covers both ranges,
1025 * it will decompress extent X into the folios belonging to the
1026 * first range and then it will stop, zeroing out the remaining
1027 * folios that belong to the other range that points to extent X.
1028 * So here we make sure we submit 2 bios, one for the first
1029 * range and another one for the third range. Both will target
1030 * the same physical extent from disk, but we can't currently
1031 * make the compressed bio endio callback populate the folios
1032 * for both ranges because each compressed bio is tightly
1033 * coupled with a single extent map, and each range can have
1034 * an extent map with a different offset value relative to the
1035 * uncompressed data of our extent and different lengths. This
1036 * is a corner case so we prioritize correctness over
1037 * non-optimal behavior (submitting 2 bios for the same extent).
1038 */
1039 if (compress_type != BTRFS_COMPRESS_NONE &&
1040 bio_ctrl->last_em_start != U64_MAX &&
1041 bio_ctrl->last_em_start != em->start)
1042 force_bio_submit = true;
1043
1044 bio_ctrl->last_em_start = em->start;
1045
1046 btrfs_free_extent_map(em);
1047 em = NULL;
1048
1049 /* we've found a hole, just zero and go on */
1050 if (block_start == EXTENT_MAP_HOLE) {
1051 folio_zero_range(folio, pg_offset, blocksize);
1052 end_folio_read(folio, true, cur, blocksize);
1053 continue;
1054 }
1055 /* the get_extent function already copied into the folio */
1056 if (block_start == EXTENT_MAP_INLINE) {
1057 end_folio_read(folio, true, cur, blocksize);
1058 continue;
1059 }
1060
1061 if (bio_ctrl->compress_type != compress_type) {
1062 submit_one_bio(bio_ctrl);
1063 bio_ctrl->compress_type = compress_type;
1064 }
1065
1066 if (force_bio_submit)
1067 submit_one_bio(bio_ctrl);
1068 submit_extent_folio(bio_ctrl, disk_bytenr, folio, blocksize,
1069 pg_offset);
1070 }
1071 return 0;
1072 }
1073
1074 /*
1075 * Check if we can skip waiting the @ordered extent covering the block at @fileoff.
1076 *
1077 * @fileoff: Both input and output.
1078 * Input as the file offset where the check should start at.
1079 * Output as where the next check should start at,
1080 * if the function returns true.
1081 *
1082 * Return true if we can skip to @fileoff. The caller needs to check the new
1083 * @fileoff value to make sure it covers the full range, before skipping the
1084 * full OE.
1085 *
1086 * Return false if we must wait for the ordered extent.
1087 */
can_skip_one_ordered_range(struct btrfs_inode * inode,struct btrfs_ordered_extent * ordered,u64 * fileoff)1088 static bool can_skip_one_ordered_range(struct btrfs_inode *inode,
1089 struct btrfs_ordered_extent *ordered,
1090 u64 *fileoff)
1091 {
1092 const struct btrfs_fs_info *fs_info = inode->root->fs_info;
1093 struct folio *folio;
1094 const u32 blocksize = fs_info->sectorsize;
1095 u64 cur = *fileoff;
1096 bool ret;
1097
1098 folio = filemap_get_folio(inode->vfs_inode.i_mapping, cur >> PAGE_SHIFT);
1099
1100 /*
1101 * We should have locked the folio(s) for range [start, end], thus
1102 * there must be a folio and it must be locked.
1103 */
1104 ASSERT(!IS_ERR(folio));
1105 ASSERT(folio_test_locked(folio));
1106
1107 /*
1108 * There are several cases for the folio and OE combination:
1109 *
1110 * 1) Folio has no private flag
1111 * The OE has all its IO done but not yet finished, and folio got
1112 * invalidated.
1113 *
1114 * Have we have to wait for the OE to finish, as it may contain the
1115 * to-be-inserted data checksum.
1116 * Without the data checksum inserted into the csum tree, read will
1117 * just fail with missing csum.
1118 */
1119 if (!folio_test_private(folio)) {
1120 ret = false;
1121 goto out;
1122 }
1123
1124 /*
1125 * 2) The first block is DIRTY.
1126 *
1127 * This means the OE is created by some other folios whose file pos is
1128 * before this one. And since we are holding the folio lock, the writeback
1129 * of this folio cannot start.
1130 *
1131 * We must skip the whole OE, because it will never start until we
1132 * finished our folio read and unlocked the folio.
1133 */
1134 if (btrfs_folio_test_dirty(fs_info, folio, cur, blocksize)) {
1135 u64 range_len = min(folio_end(folio),
1136 ordered->file_offset + ordered->num_bytes) - cur;
1137
1138 ret = true;
1139 /*
1140 * At least inside the folio, all the remaining blocks should
1141 * also be dirty.
1142 */
1143 ASSERT(btrfs_folio_test_dirty(fs_info, folio, cur, range_len));
1144 *fileoff = ordered->file_offset + ordered->num_bytes;
1145 goto out;
1146 }
1147
1148 /*
1149 * 3) The first block is uptodate.
1150 *
1151 * At least the first block can be skipped, but we are still not fully
1152 * sure. E.g. if the OE has some other folios in the range that cannot
1153 * be skipped.
1154 * So we return true and update @next_ret to the OE/folio boundary.
1155 */
1156 if (btrfs_folio_test_uptodate(fs_info, folio, cur, blocksize)) {
1157 u64 range_len = min(folio_end(folio),
1158 ordered->file_offset + ordered->num_bytes) - cur;
1159
1160 /*
1161 * The whole range to the OE end or folio boundary should also
1162 * be uptodate.
1163 */
1164 ASSERT(btrfs_folio_test_uptodate(fs_info, folio, cur, range_len));
1165 ret = true;
1166 *fileoff = cur + range_len;
1167 goto out;
1168 }
1169
1170 /*
1171 * 4) The first block is not uptodate.
1172 *
1173 * This means the folio is invalidated after the writeback was finished,
1174 * but by some other operations (e.g. block aligned buffered write) the
1175 * folio is inserted into filemap.
1176 * Very much the same as case 1).
1177 */
1178 ret = false;
1179 out:
1180 folio_put(folio);
1181 return ret;
1182 }
1183
can_skip_ordered_extent(struct btrfs_inode * inode,struct btrfs_ordered_extent * ordered,u64 start,u64 end)1184 static bool can_skip_ordered_extent(struct btrfs_inode *inode,
1185 struct btrfs_ordered_extent *ordered,
1186 u64 start, u64 end)
1187 {
1188 const u64 range_end = min(end, ordered->file_offset + ordered->num_bytes - 1);
1189 u64 cur = max(start, ordered->file_offset);
1190
1191 while (cur < range_end) {
1192 bool can_skip;
1193
1194 can_skip = can_skip_one_ordered_range(inode, ordered, &cur);
1195 if (!can_skip)
1196 return false;
1197 }
1198 return true;
1199 }
1200
1201 /*
1202 * Locking helper to make sure we get a stable view of extent maps for the
1203 * involved range.
1204 *
1205 * This is for folio read paths (read and readahead), thus the involved range
1206 * should have all the folios locked.
1207 */
lock_extents_for_read(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state)1208 static void lock_extents_for_read(struct btrfs_inode *inode, u64 start, u64 end,
1209 struct extent_state **cached_state)
1210 {
1211 u64 cur_pos;
1212
1213 /* Caller must provide a valid @cached_state. */
1214 ASSERT(cached_state);
1215
1216 /* The range must at least be page aligned, as all read paths are folio based. */
1217 ASSERT(IS_ALIGNED(start, PAGE_SIZE));
1218 ASSERT(IS_ALIGNED(end + 1, PAGE_SIZE));
1219
1220 again:
1221 btrfs_lock_extent(&inode->io_tree, start, end, cached_state);
1222 cur_pos = start;
1223 while (cur_pos < end) {
1224 struct btrfs_ordered_extent *ordered;
1225
1226 ordered = btrfs_lookup_ordered_range(inode, cur_pos,
1227 end - cur_pos + 1);
1228 /*
1229 * No ordered extents in the range, and we hold the extent lock,
1230 * no one can modify the extent maps in the range, we're safe to return.
1231 */
1232 if (!ordered)
1233 break;
1234
1235 /* Check if we can skip waiting for the whole OE. */
1236 if (can_skip_ordered_extent(inode, ordered, start, end)) {
1237 cur_pos = min(ordered->file_offset + ordered->num_bytes,
1238 end + 1);
1239 btrfs_put_ordered_extent(ordered);
1240 continue;
1241 }
1242
1243 /* Now wait for the OE to finish. */
1244 btrfs_unlock_extent(&inode->io_tree, start, end, cached_state);
1245 btrfs_start_ordered_extent_nowriteback(ordered, start, end + 1 - start);
1246 btrfs_put_ordered_extent(ordered);
1247 /* We have unlocked the whole range, restart from the beginning. */
1248 goto again;
1249 }
1250 }
1251
btrfs_read_folio(struct file * file,struct folio * folio)1252 int btrfs_read_folio(struct file *file, struct folio *folio)
1253 {
1254 struct btrfs_inode *inode = folio_to_inode(folio);
1255 const u64 start = folio_pos(folio);
1256 const u64 end = start + folio_size(folio) - 1;
1257 struct extent_state *cached_state = NULL;
1258 struct btrfs_bio_ctrl bio_ctrl = {
1259 .opf = REQ_OP_READ,
1260 .last_em_start = U64_MAX,
1261 };
1262 struct extent_map *em_cached = NULL;
1263 int ret;
1264
1265 lock_extents_for_read(inode, start, end, &cached_state);
1266 ret = btrfs_do_readpage(folio, &em_cached, &bio_ctrl);
1267 btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state);
1268
1269 btrfs_free_extent_map(em_cached);
1270
1271 /*
1272 * If btrfs_do_readpage() failed we will want to submit the assembled
1273 * bio to do the cleanup.
1274 */
1275 submit_one_bio(&bio_ctrl);
1276 return ret;
1277 }
1278
set_delalloc_bitmap(struct folio * folio,unsigned long * delalloc_bitmap,u64 start,u32 len)1279 static void set_delalloc_bitmap(struct folio *folio, unsigned long *delalloc_bitmap,
1280 u64 start, u32 len)
1281 {
1282 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1283 const u64 folio_start = folio_pos(folio);
1284 unsigned int start_bit;
1285 unsigned int nbits;
1286
1287 ASSERT(start >= folio_start && start + len <= folio_start + folio_size(folio));
1288 start_bit = (start - folio_start) >> fs_info->sectorsize_bits;
1289 nbits = len >> fs_info->sectorsize_bits;
1290 ASSERT(bitmap_test_range_all_zero(delalloc_bitmap, start_bit, nbits));
1291 bitmap_set(delalloc_bitmap, start_bit, nbits);
1292 }
1293
find_next_delalloc_bitmap(struct folio * folio,unsigned long * delalloc_bitmap,u64 start,u64 * found_start,u32 * found_len)1294 static bool find_next_delalloc_bitmap(struct folio *folio,
1295 unsigned long *delalloc_bitmap, u64 start,
1296 u64 *found_start, u32 *found_len)
1297 {
1298 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1299 const u64 folio_start = folio_pos(folio);
1300 const unsigned int bitmap_size = btrfs_blocks_per_folio(fs_info, folio);
1301 unsigned int start_bit;
1302 unsigned int first_zero;
1303 unsigned int first_set;
1304
1305 ASSERT(start >= folio_start && start < folio_start + folio_size(folio));
1306
1307 start_bit = (start - folio_start) >> fs_info->sectorsize_bits;
1308 first_set = find_next_bit(delalloc_bitmap, bitmap_size, start_bit);
1309 if (first_set >= bitmap_size)
1310 return false;
1311
1312 *found_start = folio_start + (first_set << fs_info->sectorsize_bits);
1313 first_zero = find_next_zero_bit(delalloc_bitmap, bitmap_size, first_set);
1314 *found_len = (first_zero - first_set) << fs_info->sectorsize_bits;
1315 return true;
1316 }
1317
1318 /*
1319 * Do all of the delayed allocation setup.
1320 *
1321 * Return >0 if all the dirty blocks are submitted async (compression) or inlined.
1322 * The @folio should no longer be touched (treat it as already unlocked).
1323 *
1324 * Return 0 if there is still dirty block that needs to be submitted through
1325 * extent_writepage_io().
1326 * bio_ctrl->submit_bitmap will indicate which blocks of the folio should be
1327 * submitted, and @folio is still kept locked.
1328 *
1329 * Return <0 if there is any error hit.
1330 * Any allocated ordered extent range covering this folio will be marked
1331 * finished (IOERR), and @folio is still kept locked.
1332 */
writepage_delalloc(struct btrfs_inode * inode,struct folio * folio,struct btrfs_bio_ctrl * bio_ctrl)1333 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1334 struct folio *folio,
1335 struct btrfs_bio_ctrl *bio_ctrl)
1336 {
1337 struct btrfs_fs_info *fs_info = inode_to_fs_info(&inode->vfs_inode);
1338 struct writeback_control *wbc = bio_ctrl->wbc;
1339 const bool is_subpage = btrfs_is_subpage(fs_info, folio);
1340 const u64 page_start = folio_pos(folio);
1341 const u64 page_end = page_start + folio_size(folio) - 1;
1342 const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio);
1343 unsigned long delalloc_bitmap = 0;
1344 /*
1345 * Save the last found delalloc end. As the delalloc end can go beyond
1346 * page boundary, thus we cannot rely on subpage bitmap to locate the
1347 * last delalloc end.
1348 */
1349 u64 last_delalloc_end = 0;
1350 /*
1351 * The range end (exclusive) of the last successfully finished delalloc
1352 * range.
1353 * Any range covered by ordered extent must either be manually marked
1354 * finished (error handling), or has IO submitted (and finish the
1355 * ordered extent normally).
1356 *
1357 * This records the end of ordered extent cleanup if we hit an error.
1358 */
1359 u64 last_finished_delalloc_end = page_start;
1360 u64 delalloc_start = page_start;
1361 u64 delalloc_end = page_end;
1362 u64 delalloc_to_write = 0;
1363 int ret = 0;
1364 int bit;
1365
1366 /* Save the dirty bitmap as our submission bitmap will be a subset of it. */
1367 if (btrfs_is_subpage(fs_info, folio)) {
1368 ASSERT(blocks_per_folio > 1);
1369 btrfs_get_subpage_dirty_bitmap(fs_info, folio, &bio_ctrl->submit_bitmap);
1370 } else {
1371 bio_ctrl->submit_bitmap = 1;
1372 }
1373
1374 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, blocks_per_folio) {
1375 u64 start = page_start + (bit << fs_info->sectorsize_bits);
1376
1377 btrfs_folio_set_lock(fs_info, folio, start, fs_info->sectorsize);
1378 }
1379
1380 /* Lock all (subpage) delalloc ranges inside the folio first. */
1381 while (delalloc_start < page_end) {
1382 delalloc_end = page_end;
1383 if (!find_lock_delalloc_range(&inode->vfs_inode, folio,
1384 &delalloc_start, &delalloc_end)) {
1385 delalloc_start = delalloc_end + 1;
1386 continue;
1387 }
1388 set_delalloc_bitmap(folio, &delalloc_bitmap, delalloc_start,
1389 min(delalloc_end, page_end) + 1 - delalloc_start);
1390 last_delalloc_end = delalloc_end;
1391 delalloc_start = delalloc_end + 1;
1392 }
1393 delalloc_start = page_start;
1394
1395 if (!last_delalloc_end)
1396 goto out;
1397
1398 /* Run the delalloc ranges for the above locked ranges. */
1399 while (delalloc_start < page_end) {
1400 u64 found_start;
1401 u32 found_len;
1402 bool found;
1403
1404 if (!is_subpage) {
1405 /*
1406 * For non-subpage case, the found delalloc range must
1407 * cover this folio and there must be only one locked
1408 * delalloc range.
1409 */
1410 found_start = page_start;
1411 found_len = last_delalloc_end + 1 - found_start;
1412 found = true;
1413 } else {
1414 found = find_next_delalloc_bitmap(folio, &delalloc_bitmap,
1415 delalloc_start, &found_start, &found_len);
1416 }
1417 if (!found)
1418 break;
1419 /*
1420 * The subpage range covers the last sector, the delalloc range may
1421 * end beyond the folio boundary, use the saved delalloc_end
1422 * instead.
1423 */
1424 if (found_start + found_len >= page_end)
1425 found_len = last_delalloc_end + 1 - found_start;
1426
1427 if (ret >= 0) {
1428 /*
1429 * Some delalloc range may be created by previous folios.
1430 * Thus we still need to clean up this range during error
1431 * handling.
1432 */
1433 last_finished_delalloc_end = found_start;
1434 /* No errors hit so far, run the current delalloc range. */
1435 ret = btrfs_run_delalloc_range(inode, folio,
1436 found_start,
1437 found_start + found_len - 1,
1438 wbc);
1439 if (ret >= 0)
1440 last_finished_delalloc_end = found_start + found_len;
1441 if (unlikely(ret < 0))
1442 btrfs_err_rl(fs_info,
1443 "failed to run delalloc range, root=%lld ino=%llu folio=%llu submit_bitmap=%*pbl start=%llu len=%u: %d",
1444 btrfs_root_id(inode->root),
1445 btrfs_ino(inode),
1446 folio_pos(folio),
1447 blocks_per_folio,
1448 &bio_ctrl->submit_bitmap,
1449 found_start, found_len, ret);
1450 } else {
1451 /*
1452 * We've hit an error during previous delalloc range,
1453 * have to cleanup the remaining locked ranges.
1454 */
1455 btrfs_unlock_extent(&inode->io_tree, found_start,
1456 found_start + found_len - 1, NULL);
1457 unlock_delalloc_folio(&inode->vfs_inode, folio,
1458 found_start,
1459 found_start + found_len - 1);
1460 }
1461
1462 /*
1463 * We have some ranges that's going to be submitted asynchronously
1464 * (compression or inline). These range have their own control
1465 * on when to unlock the pages. We should not touch them
1466 * anymore, so clear the range from the submission bitmap.
1467 */
1468 if (ret > 0) {
1469 unsigned int start_bit = (found_start - page_start) >>
1470 fs_info->sectorsize_bits;
1471 unsigned int end_bit = (min(page_end + 1, found_start + found_len) -
1472 page_start) >> fs_info->sectorsize_bits;
1473 bitmap_clear(&bio_ctrl->submit_bitmap, start_bit, end_bit - start_bit);
1474 }
1475 /*
1476 * Above btrfs_run_delalloc_range() may have unlocked the folio,
1477 * thus for the last range, we cannot touch the folio anymore.
1478 */
1479 if (found_start + found_len >= last_delalloc_end + 1)
1480 break;
1481
1482 delalloc_start = found_start + found_len;
1483 }
1484 /*
1485 * It's possible we had some ordered extents created before we hit
1486 * an error, cleanup non-async successfully created delalloc ranges.
1487 */
1488 if (unlikely(ret < 0)) {
1489 unsigned int bitmap_size = min(
1490 (last_finished_delalloc_end - page_start) >>
1491 fs_info->sectorsize_bits,
1492 blocks_per_folio);
1493
1494 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, bitmap_size)
1495 btrfs_mark_ordered_io_finished(inode, folio,
1496 page_start + (bit << fs_info->sectorsize_bits),
1497 fs_info->sectorsize, false);
1498 return ret;
1499 }
1500 out:
1501 if (last_delalloc_end)
1502 delalloc_end = last_delalloc_end;
1503 else
1504 delalloc_end = page_end;
1505 /*
1506 * delalloc_end is already one less than the total length, so
1507 * we don't subtract one from PAGE_SIZE.
1508 */
1509 delalloc_to_write +=
1510 DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE);
1511
1512 /*
1513 * If all ranges are submitted asynchronously, we just need to account
1514 * for them here.
1515 */
1516 if (bitmap_empty(&bio_ctrl->submit_bitmap, blocks_per_folio)) {
1517 wbc->nr_to_write -= delalloc_to_write;
1518 return 1;
1519 }
1520
1521 if (wbc->nr_to_write < delalloc_to_write) {
1522 int thresh = 8192;
1523
1524 if (delalloc_to_write < thresh * 2)
1525 thresh = delalloc_to_write;
1526 wbc->nr_to_write = min_t(u64, delalloc_to_write,
1527 thresh);
1528 }
1529
1530 return 0;
1531 }
1532
1533 /*
1534 * Return 0 if we have submitted or queued the sector for submission.
1535 * Return <0 for critical errors, and the sector will have its dirty flag cleared.
1536 *
1537 * Caller should make sure filepos < i_size and handle filepos >= i_size case.
1538 */
submit_one_sector(struct btrfs_inode * inode,struct folio * folio,u64 filepos,struct btrfs_bio_ctrl * bio_ctrl,loff_t i_size)1539 static int submit_one_sector(struct btrfs_inode *inode,
1540 struct folio *folio,
1541 u64 filepos, struct btrfs_bio_ctrl *bio_ctrl,
1542 loff_t i_size)
1543 {
1544 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1545 struct extent_map *em;
1546 u64 block_start;
1547 u64 disk_bytenr;
1548 u64 extent_offset;
1549 u64 em_end;
1550 const u32 sectorsize = fs_info->sectorsize;
1551
1552 ASSERT(IS_ALIGNED(filepos, sectorsize));
1553
1554 /* @filepos >= i_size case should be handled by the caller. */
1555 ASSERT(filepos < i_size);
1556
1557 em = btrfs_get_extent(inode, NULL, filepos, sectorsize);
1558 if (IS_ERR(em)) {
1559 /*
1560 * When submission failed, we should still clear the folio dirty.
1561 * Or the folio will be written back again but without any
1562 * ordered extent.
1563 */
1564 btrfs_folio_clear_dirty(fs_info, folio, filepos, sectorsize);
1565 btrfs_folio_set_writeback(fs_info, folio, filepos, sectorsize);
1566 btrfs_folio_clear_writeback(fs_info, folio, filepos, sectorsize);
1567 return PTR_ERR(em);
1568 }
1569
1570 extent_offset = filepos - em->start;
1571 em_end = btrfs_extent_map_end(em);
1572 ASSERT(filepos <= em_end);
1573 ASSERT(IS_ALIGNED(em->start, sectorsize));
1574 ASSERT(IS_ALIGNED(em->len, sectorsize));
1575
1576 block_start = btrfs_extent_map_block_start(em);
1577 disk_bytenr = btrfs_extent_map_block_start(em) + extent_offset;
1578
1579 ASSERT(!btrfs_extent_map_is_compressed(em));
1580 ASSERT(block_start != EXTENT_MAP_HOLE);
1581 ASSERT(block_start != EXTENT_MAP_INLINE);
1582
1583 btrfs_free_extent_map(em);
1584 em = NULL;
1585
1586 /*
1587 * Although the PageDirty bit is cleared before entering this
1588 * function, subpage dirty bit is not cleared.
1589 * So clear subpage dirty bit here so next time we won't submit
1590 * a folio for a range already written to disk.
1591 */
1592 btrfs_folio_clear_dirty(fs_info, folio, filepos, sectorsize);
1593 btrfs_folio_set_writeback(fs_info, folio, filepos, sectorsize);
1594 /*
1595 * Above call should set the whole folio with writeback flag, even
1596 * just for a single subpage sector.
1597 * As long as the folio is properly locked and the range is correct,
1598 * we should always get the folio with writeback flag.
1599 */
1600 ASSERT(folio_test_writeback(folio));
1601
1602 submit_extent_folio(bio_ctrl, disk_bytenr, folio,
1603 sectorsize, filepos - folio_pos(folio));
1604 return 0;
1605 }
1606
1607 /*
1608 * Helper for extent_writepage(). This calls the writepage start hooks,
1609 * and does the loop to map the page into extents and bios.
1610 *
1611 * We return 1 if the IO is started and the page is unlocked,
1612 * 0 if all went well (page still locked)
1613 * < 0 if there were errors (page still locked)
1614 */
extent_writepage_io(struct btrfs_inode * inode,struct folio * folio,u64 start,u32 len,struct btrfs_bio_ctrl * bio_ctrl,loff_t i_size)1615 static noinline_for_stack int extent_writepage_io(struct btrfs_inode *inode,
1616 struct folio *folio,
1617 u64 start, u32 len,
1618 struct btrfs_bio_ctrl *bio_ctrl,
1619 loff_t i_size)
1620 {
1621 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1622 unsigned long range_bitmap = 0;
1623 bool submitted_io = false;
1624 bool error = false;
1625 const u64 folio_start = folio_pos(folio);
1626 const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio);
1627 u64 cur;
1628 int bit;
1629 int ret = 0;
1630
1631 ASSERT(start >= folio_start &&
1632 start + len <= folio_start + folio_size(folio));
1633
1634 ret = btrfs_writepage_cow_fixup(folio);
1635 if (ret == -EAGAIN) {
1636 /* Fixup worker will requeue */
1637 folio_redirty_for_writepage(bio_ctrl->wbc, folio);
1638 folio_unlock(folio);
1639 return 1;
1640 }
1641 if (ret < 0) {
1642 btrfs_folio_clear_dirty(fs_info, folio, start, len);
1643 btrfs_folio_set_writeback(fs_info, folio, start, len);
1644 btrfs_folio_clear_writeback(fs_info, folio, start, len);
1645 return ret;
1646 }
1647
1648 for (cur = start; cur < start + len; cur += fs_info->sectorsize)
1649 set_bit((cur - folio_start) >> fs_info->sectorsize_bits, &range_bitmap);
1650 bitmap_and(&bio_ctrl->submit_bitmap, &bio_ctrl->submit_bitmap, &range_bitmap,
1651 blocks_per_folio);
1652
1653 bio_ctrl->end_io_func = end_bbio_data_write;
1654
1655 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, blocks_per_folio) {
1656 cur = folio_pos(folio) + (bit << fs_info->sectorsize_bits);
1657
1658 if (cur >= i_size) {
1659 btrfs_mark_ordered_io_finished(inode, folio, cur,
1660 start + len - cur, true);
1661 /*
1662 * This range is beyond i_size, thus we don't need to
1663 * bother writing back.
1664 * But we still need to clear the dirty subpage bit, or
1665 * the next time the folio gets dirtied, we will try to
1666 * writeback the sectors with subpage dirty bits,
1667 * causing writeback without ordered extent.
1668 */
1669 btrfs_folio_clear_dirty(fs_info, folio, cur,
1670 start + len - cur);
1671 break;
1672 }
1673 ret = submit_one_sector(inode, folio, cur, bio_ctrl, i_size);
1674 if (unlikely(ret < 0)) {
1675 /*
1676 * bio_ctrl may contain a bio crossing several folios.
1677 * Submit it immediately so that the bio has a chance
1678 * to finish normally, other than marked as error.
1679 */
1680 submit_one_bio(bio_ctrl);
1681 /*
1682 * Failed to grab the extent map which should be very rare.
1683 * Since there is no bio submitted to finish the ordered
1684 * extent, we have to manually finish this sector.
1685 */
1686 btrfs_mark_ordered_io_finished(inode, folio, cur,
1687 fs_info->sectorsize, false);
1688 error = true;
1689 continue;
1690 }
1691 submitted_io = true;
1692 }
1693
1694 /*
1695 * If we didn't submitted any sector (>= i_size), folio dirty get
1696 * cleared but PAGECACHE_TAG_DIRTY is not cleared (only cleared
1697 * by folio_start_writeback() if the folio is not dirty).
1698 *
1699 * Here we set writeback and clear for the range. If the full folio
1700 * is no longer dirty then we clear the PAGECACHE_TAG_DIRTY tag.
1701 *
1702 * If we hit any error, the corresponding sector will have its dirty
1703 * flag cleared and writeback finished, thus no need to handle the error case.
1704 */
1705 if (!submitted_io && !error) {
1706 btrfs_folio_set_writeback(fs_info, folio, start, len);
1707 btrfs_folio_clear_writeback(fs_info, folio, start, len);
1708 }
1709 return ret;
1710 }
1711
1712 /*
1713 * the writepage semantics are similar to regular writepage. extent
1714 * records are inserted to lock ranges in the tree, and as dirty areas
1715 * are found, they are marked writeback. Then the lock bits are removed
1716 * and the end_io handler clears the writeback ranges
1717 *
1718 * Return 0 if everything goes well.
1719 * Return <0 for error.
1720 */
extent_writepage(struct folio * folio,struct btrfs_bio_ctrl * bio_ctrl)1721 static int extent_writepage(struct folio *folio, struct btrfs_bio_ctrl *bio_ctrl)
1722 {
1723 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
1724 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1725 int ret;
1726 size_t pg_offset;
1727 loff_t i_size = i_size_read(&inode->vfs_inode);
1728 const pgoff_t end_index = i_size >> PAGE_SHIFT;
1729 const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio);
1730
1731 trace_extent_writepage(folio, &inode->vfs_inode, bio_ctrl->wbc);
1732
1733 WARN_ON(!folio_test_locked(folio));
1734
1735 pg_offset = offset_in_folio(folio, i_size);
1736 if (folio->index > end_index ||
1737 (folio->index == end_index && !pg_offset)) {
1738 folio_invalidate(folio, 0, folio_size(folio));
1739 folio_unlock(folio);
1740 return 0;
1741 }
1742
1743 if (folio_contains(folio, end_index))
1744 folio_zero_range(folio, pg_offset, folio_size(folio) - pg_offset);
1745
1746 /*
1747 * Default to unlock the whole folio.
1748 * The proper bitmap can only be initialized until writepage_delalloc().
1749 */
1750 bio_ctrl->submit_bitmap = (unsigned long)-1;
1751
1752 /*
1753 * If the page is dirty but without private set, it's marked dirty
1754 * without informing the fs.
1755 * Nowadays that is a bug, since the introduction of
1756 * pin_user_pages*().
1757 *
1758 * So here we check if the page has private set to rule out such
1759 * case.
1760 * But we also have a long history of relying on the COW fixup,
1761 * so here we only enable this check for experimental builds until
1762 * we're sure it's safe.
1763 */
1764 if (IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL) &&
1765 unlikely(!folio_test_private(folio))) {
1766 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
1767 btrfs_err_rl(fs_info,
1768 "root %lld ino %llu folio %llu is marked dirty without notifying the fs",
1769 btrfs_root_id(inode->root),
1770 btrfs_ino(inode), folio_pos(folio));
1771 ret = -EUCLEAN;
1772 goto done;
1773 }
1774
1775 ret = set_folio_extent_mapped(folio);
1776 if (ret < 0)
1777 goto done;
1778
1779 ret = writepage_delalloc(inode, folio, bio_ctrl);
1780 if (ret == 1)
1781 return 0;
1782 if (ret)
1783 goto done;
1784
1785 ret = extent_writepage_io(inode, folio, folio_pos(folio),
1786 folio_size(folio), bio_ctrl, i_size);
1787 if (ret == 1)
1788 return 0;
1789 if (ret < 0)
1790 btrfs_err_rl(fs_info,
1791 "failed to submit blocks, root=%lld inode=%llu folio=%llu submit_bitmap=%*pbl: %d",
1792 btrfs_root_id(inode->root), btrfs_ino(inode),
1793 folio_pos(folio), blocks_per_folio,
1794 &bio_ctrl->submit_bitmap, ret);
1795
1796 bio_ctrl->wbc->nr_to_write--;
1797
1798 done:
1799 if (ret < 0)
1800 mapping_set_error(folio->mapping, ret);
1801 /*
1802 * Only unlock ranges that are submitted. As there can be some async
1803 * submitted ranges inside the folio.
1804 */
1805 btrfs_folio_end_lock_bitmap(fs_info, folio, bio_ctrl->submit_bitmap);
1806 ASSERT(ret <= 0);
1807 return ret;
1808 }
1809
1810 /*
1811 * Lock extent buffer status and pages for writeback.
1812 *
1813 * Return %false if the extent buffer doesn't need to be submitted (e.g. the
1814 * extent buffer is not dirty)
1815 * Return %true is the extent buffer is submitted to bio.
1816 */
lock_extent_buffer_for_io(struct extent_buffer * eb,struct writeback_control * wbc)1817 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
1818 struct writeback_control *wbc)
1819 {
1820 struct btrfs_fs_info *fs_info = eb->fs_info;
1821 bool ret = false;
1822
1823 btrfs_tree_lock(eb);
1824 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
1825 btrfs_tree_unlock(eb);
1826 if (wbc->sync_mode != WB_SYNC_ALL)
1827 return false;
1828 wait_on_extent_buffer_writeback(eb);
1829 btrfs_tree_lock(eb);
1830 }
1831
1832 /*
1833 * We need to do this to prevent races in people who check if the eb is
1834 * under IO since we can end up having no IO bits set for a short period
1835 * of time.
1836 */
1837 spin_lock(&eb->refs_lock);
1838 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1839 XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->nodesize_bits);
1840 unsigned long flags;
1841
1842 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1843 spin_unlock(&eb->refs_lock);
1844
1845 xas_lock_irqsave(&xas, flags);
1846 xas_load(&xas);
1847 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
1848 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
1849 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
1850 xas_unlock_irqrestore(&xas, flags);
1851
1852 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
1853 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1854 -eb->len,
1855 fs_info->dirty_metadata_batch);
1856 ret = true;
1857 } else {
1858 spin_unlock(&eb->refs_lock);
1859 }
1860 btrfs_tree_unlock(eb);
1861 return ret;
1862 }
1863
set_btree_ioerr(struct extent_buffer * eb)1864 static void set_btree_ioerr(struct extent_buffer *eb)
1865 {
1866 struct btrfs_fs_info *fs_info = eb->fs_info;
1867
1868 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1869
1870 /*
1871 * A read may stumble upon this buffer later, make sure that it gets an
1872 * error and knows there was an error.
1873 */
1874 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1875
1876 /*
1877 * We need to set the mapping with the io error as well because a write
1878 * error will flip the file system readonly, and then syncfs() will
1879 * return a 0 because we are readonly if we don't modify the err seq for
1880 * the superblock.
1881 */
1882 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
1883
1884 /*
1885 * If writeback for a btree extent that doesn't belong to a log tree
1886 * failed, increment the counter transaction->eb_write_errors.
1887 * We do this because while the transaction is running and before it's
1888 * committing (when we call filemap_fdata[write|wait]_range against
1889 * the btree inode), we might have
1890 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1891 * returns an error or an error happens during writeback, when we're
1892 * committing the transaction we wouldn't know about it, since the pages
1893 * can be no longer dirty nor marked anymore for writeback (if a
1894 * subsequent modification to the extent buffer didn't happen before the
1895 * transaction commit), which makes filemap_fdata[write|wait]_range not
1896 * able to find the pages which contain errors at transaction
1897 * commit time. So if this happens we must abort the transaction,
1898 * otherwise we commit a super block with btree roots that point to
1899 * btree nodes/leafs whose content on disk is invalid - either garbage
1900 * or the content of some node/leaf from a past generation that got
1901 * cowed or deleted and is no longer valid.
1902 *
1903 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1904 * not be enough - we need to distinguish between log tree extents vs
1905 * non-log tree extents, and the next filemap_fdatawait_range() call
1906 * will catch and clear such errors in the mapping - and that call might
1907 * be from a log sync and not from a transaction commit. Also, checking
1908 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1909 * not done and would not be reliable - the eb might have been released
1910 * from memory and reading it back again means that flag would not be
1911 * set (since it's a runtime flag, not persisted on disk).
1912 *
1913 * Using the flags below in the btree inode also makes us achieve the
1914 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
1915 * writeback for all dirty pages and before filemap_fdatawait_range()
1916 * is called, the writeback for all dirty pages had already finished
1917 * with errors - because we were not using AS_EIO/AS_ENOSPC,
1918 * filemap_fdatawait_range() would return success, as it could not know
1919 * that writeback errors happened (the pages were no longer tagged for
1920 * writeback).
1921 */
1922 switch (eb->log_index) {
1923 case -1:
1924 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
1925 break;
1926 case 0:
1927 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
1928 break;
1929 case 1:
1930 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
1931 break;
1932 default:
1933 BUG(); /* unexpected, logic error */
1934 }
1935 }
1936
buffer_tree_set_mark(const struct extent_buffer * eb,xa_mark_t mark)1937 static void buffer_tree_set_mark(const struct extent_buffer *eb, xa_mark_t mark)
1938 {
1939 struct btrfs_fs_info *fs_info = eb->fs_info;
1940 XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->nodesize_bits);
1941 unsigned long flags;
1942
1943 xas_lock_irqsave(&xas, flags);
1944 xas_load(&xas);
1945 xas_set_mark(&xas, mark);
1946 xas_unlock_irqrestore(&xas, flags);
1947 }
1948
buffer_tree_clear_mark(const struct extent_buffer * eb,xa_mark_t mark)1949 static void buffer_tree_clear_mark(const struct extent_buffer *eb, xa_mark_t mark)
1950 {
1951 struct btrfs_fs_info *fs_info = eb->fs_info;
1952 XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->nodesize_bits);
1953 unsigned long flags;
1954
1955 xas_lock_irqsave(&xas, flags);
1956 xas_load(&xas);
1957 xas_clear_mark(&xas, mark);
1958 xas_unlock_irqrestore(&xas, flags);
1959 }
1960
buffer_tree_tag_for_writeback(struct btrfs_fs_info * fs_info,unsigned long start,unsigned long end)1961 static void buffer_tree_tag_for_writeback(struct btrfs_fs_info *fs_info,
1962 unsigned long start, unsigned long end)
1963 {
1964 XA_STATE(xas, &fs_info->buffer_tree, start);
1965 unsigned int tagged = 0;
1966 void *eb;
1967
1968 xas_lock_irq(&xas);
1969 xas_for_each_marked(&xas, eb, end, PAGECACHE_TAG_DIRTY) {
1970 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
1971 if (++tagged % XA_CHECK_SCHED)
1972 continue;
1973 xas_pause(&xas);
1974 xas_unlock_irq(&xas);
1975 cond_resched();
1976 xas_lock_irq(&xas);
1977 }
1978 xas_unlock_irq(&xas);
1979 }
1980
1981 struct eb_batch {
1982 unsigned int nr;
1983 unsigned int cur;
1984 struct extent_buffer *ebs[PAGEVEC_SIZE];
1985 };
1986
eb_batch_add(struct eb_batch * batch,struct extent_buffer * eb)1987 static inline bool eb_batch_add(struct eb_batch *batch, struct extent_buffer *eb)
1988 {
1989 batch->ebs[batch->nr++] = eb;
1990 return (batch->nr < PAGEVEC_SIZE);
1991 }
1992
eb_batch_init(struct eb_batch * batch)1993 static inline void eb_batch_init(struct eb_batch *batch)
1994 {
1995 batch->nr = 0;
1996 batch->cur = 0;
1997 }
1998
eb_batch_next(struct eb_batch * batch)1999 static inline struct extent_buffer *eb_batch_next(struct eb_batch *batch)
2000 {
2001 if (batch->cur >= batch->nr)
2002 return NULL;
2003 return batch->ebs[batch->cur++];
2004 }
2005
eb_batch_release(struct eb_batch * batch)2006 static inline void eb_batch_release(struct eb_batch *batch)
2007 {
2008 for (unsigned int i = 0; i < batch->nr; i++)
2009 free_extent_buffer(batch->ebs[i]);
2010 eb_batch_init(batch);
2011 }
2012
find_get_eb(struct xa_state * xas,unsigned long max,xa_mark_t mark)2013 static inline struct extent_buffer *find_get_eb(struct xa_state *xas, unsigned long max,
2014 xa_mark_t mark)
2015 {
2016 struct extent_buffer *eb;
2017
2018 retry:
2019 eb = xas_find_marked(xas, max, mark);
2020
2021 if (xas_retry(xas, eb))
2022 goto retry;
2023
2024 if (!eb)
2025 return NULL;
2026
2027 if (!refcount_inc_not_zero(&eb->refs)) {
2028 xas_reset(xas);
2029 goto retry;
2030 }
2031
2032 if (unlikely(eb != xas_reload(xas))) {
2033 free_extent_buffer(eb);
2034 xas_reset(xas);
2035 goto retry;
2036 }
2037
2038 return eb;
2039 }
2040
buffer_tree_get_ebs_tag(struct btrfs_fs_info * fs_info,unsigned long * start,unsigned long end,xa_mark_t tag,struct eb_batch * batch)2041 static unsigned int buffer_tree_get_ebs_tag(struct btrfs_fs_info *fs_info,
2042 unsigned long *start,
2043 unsigned long end, xa_mark_t tag,
2044 struct eb_batch *batch)
2045 {
2046 XA_STATE(xas, &fs_info->buffer_tree, *start);
2047 struct extent_buffer *eb;
2048
2049 rcu_read_lock();
2050 while ((eb = find_get_eb(&xas, end, tag)) != NULL) {
2051 if (!eb_batch_add(batch, eb)) {
2052 *start = ((eb->start + eb->len) >> fs_info->nodesize_bits);
2053 goto out;
2054 }
2055 }
2056 if (end == ULONG_MAX)
2057 *start = ULONG_MAX;
2058 else
2059 *start = end + 1;
2060 out:
2061 rcu_read_unlock();
2062
2063 return batch->nr;
2064 }
2065
2066 /*
2067 * The endio specific version which won't touch any unsafe spinlock in endio
2068 * context.
2069 */
find_extent_buffer_nolock(struct btrfs_fs_info * fs_info,u64 start)2070 static struct extent_buffer *find_extent_buffer_nolock(
2071 struct btrfs_fs_info *fs_info, u64 start)
2072 {
2073 struct extent_buffer *eb;
2074 unsigned long index = (start >> fs_info->nodesize_bits);
2075
2076 rcu_read_lock();
2077 eb = xa_load(&fs_info->buffer_tree, index);
2078 if (eb && !refcount_inc_not_zero(&eb->refs))
2079 eb = NULL;
2080 rcu_read_unlock();
2081 return eb;
2082 }
2083
end_bbio_meta_write(struct btrfs_bio * bbio)2084 static void end_bbio_meta_write(struct btrfs_bio *bbio)
2085 {
2086 struct extent_buffer *eb = bbio->private;
2087 struct folio_iter fi;
2088
2089 if (bbio->bio.bi_status != BLK_STS_OK)
2090 set_btree_ioerr(eb);
2091
2092 bio_for_each_folio_all(fi, &bbio->bio) {
2093 btrfs_meta_folio_clear_writeback(fi.folio, eb);
2094 }
2095
2096 buffer_tree_clear_mark(eb, PAGECACHE_TAG_WRITEBACK);
2097 clear_and_wake_up_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
2098 bio_put(&bbio->bio);
2099 }
2100
prepare_eb_write(struct extent_buffer * eb)2101 static void prepare_eb_write(struct extent_buffer *eb)
2102 {
2103 u32 nritems;
2104 unsigned long start;
2105 unsigned long end;
2106
2107 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
2108
2109 /* Set btree blocks beyond nritems with 0 to avoid stale content */
2110 nritems = btrfs_header_nritems(eb);
2111 if (btrfs_header_level(eb) > 0) {
2112 end = btrfs_node_key_ptr_offset(eb, nritems);
2113 memzero_extent_buffer(eb, end, eb->len - end);
2114 } else {
2115 /*
2116 * Leaf:
2117 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
2118 */
2119 start = btrfs_item_nr_offset(eb, nritems);
2120 end = btrfs_item_nr_offset(eb, 0);
2121 if (nritems == 0)
2122 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
2123 else
2124 end += btrfs_item_offset(eb, nritems - 1);
2125 memzero_extent_buffer(eb, start, end - start);
2126 }
2127 }
2128
write_one_eb(struct extent_buffer * eb,struct writeback_control * wbc)2129 static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
2130 struct writeback_control *wbc)
2131 {
2132 struct btrfs_fs_info *fs_info = eb->fs_info;
2133 struct btrfs_bio *bbio;
2134
2135 prepare_eb_write(eb);
2136
2137 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
2138 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
2139 eb->fs_info, end_bbio_meta_write, eb);
2140 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
2141 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
2142 wbc_init_bio(wbc, &bbio->bio);
2143 bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
2144 bbio->file_offset = eb->start;
2145 for (int i = 0; i < num_extent_folios(eb); i++) {
2146 struct folio *folio = eb->folios[i];
2147 u64 range_start = max_t(u64, eb->start, folio_pos(folio));
2148 u32 range_len = min_t(u64, folio_end(folio),
2149 eb->start + eb->len) - range_start;
2150
2151 folio_lock(folio);
2152 btrfs_meta_folio_clear_dirty(folio, eb);
2153 btrfs_meta_folio_set_writeback(folio, eb);
2154 if (!folio_test_dirty(folio))
2155 wbc->nr_to_write -= folio_nr_pages(folio);
2156 bio_add_folio_nofail(&bbio->bio, folio, range_len,
2157 offset_in_folio(folio, range_start));
2158 wbc_account_cgroup_owner(wbc, folio, range_len);
2159 folio_unlock(folio);
2160 }
2161 btrfs_submit_bbio(bbio, 0);
2162 }
2163
2164 /*
2165 * Wait for all eb writeback in the given range to finish.
2166 *
2167 * @fs_info: The fs_info for this file system.
2168 * @start: The offset of the range to start waiting on writeback.
2169 * @end: The end of the range, inclusive. This is meant to be used in
2170 * conjuction with wait_marked_extents, so this will usually be
2171 * the_next_eb->start - 1.
2172 */
btrfs_btree_wait_writeback_range(struct btrfs_fs_info * fs_info,u64 start,u64 end)2173 void btrfs_btree_wait_writeback_range(struct btrfs_fs_info *fs_info, u64 start,
2174 u64 end)
2175 {
2176 struct eb_batch batch;
2177 unsigned long start_index = (start >> fs_info->nodesize_bits);
2178 unsigned long end_index = (end >> fs_info->nodesize_bits);
2179
2180 eb_batch_init(&batch);
2181 while (start_index <= end_index) {
2182 struct extent_buffer *eb;
2183 unsigned int nr_ebs;
2184
2185 nr_ebs = buffer_tree_get_ebs_tag(fs_info, &start_index, end_index,
2186 PAGECACHE_TAG_WRITEBACK, &batch);
2187 if (!nr_ebs)
2188 break;
2189
2190 while ((eb = eb_batch_next(&batch)) != NULL)
2191 wait_on_extent_buffer_writeback(eb);
2192 eb_batch_release(&batch);
2193 cond_resched();
2194 }
2195 }
2196
btree_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc)2197 int btree_write_cache_pages(struct address_space *mapping,
2198 struct writeback_control *wbc)
2199 {
2200 struct btrfs_eb_write_context ctx = { .wbc = wbc };
2201 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
2202 int ret = 0;
2203 int done = 0;
2204 int nr_to_write_done = 0;
2205 struct eb_batch batch;
2206 unsigned int nr_ebs;
2207 unsigned long index;
2208 unsigned long end;
2209 int scanned = 0;
2210 xa_mark_t tag;
2211
2212 eb_batch_init(&batch);
2213 if (wbc->range_cyclic) {
2214 index = ((mapping->writeback_index << PAGE_SHIFT) >> fs_info->nodesize_bits);
2215 end = -1;
2216
2217 /*
2218 * Start from the beginning does not need to cycle over the
2219 * range, mark it as scanned.
2220 */
2221 scanned = (index == 0);
2222 } else {
2223 index = (wbc->range_start >> fs_info->nodesize_bits);
2224 end = (wbc->range_end >> fs_info->nodesize_bits);
2225
2226 scanned = 1;
2227 }
2228 if (wbc->sync_mode == WB_SYNC_ALL)
2229 tag = PAGECACHE_TAG_TOWRITE;
2230 else
2231 tag = PAGECACHE_TAG_DIRTY;
2232 btrfs_zoned_meta_io_lock(fs_info);
2233 retry:
2234 if (wbc->sync_mode == WB_SYNC_ALL)
2235 buffer_tree_tag_for_writeback(fs_info, index, end);
2236 while (!done && !nr_to_write_done && (index <= end) &&
2237 (nr_ebs = buffer_tree_get_ebs_tag(fs_info, &index, end, tag, &batch))) {
2238 struct extent_buffer *eb;
2239
2240 while ((eb = eb_batch_next(&batch)) != NULL) {
2241 ctx.eb = eb;
2242
2243 ret = btrfs_check_meta_write_pointer(eb->fs_info, &ctx);
2244 if (ret) {
2245 if (ret == -EBUSY)
2246 ret = 0;
2247
2248 if (ret) {
2249 done = 1;
2250 break;
2251 }
2252 continue;
2253 }
2254
2255 if (!lock_extent_buffer_for_io(eb, wbc))
2256 continue;
2257
2258 /* Implies write in zoned mode. */
2259 if (ctx.zoned_bg) {
2260 /* Mark the last eb in the block group. */
2261 btrfs_schedule_zone_finish_bg(ctx.zoned_bg, eb);
2262 ctx.zoned_bg->meta_write_pointer += eb->len;
2263 }
2264 write_one_eb(eb, wbc);
2265 }
2266 nr_to_write_done = (wbc->nr_to_write <= 0);
2267 eb_batch_release(&batch);
2268 cond_resched();
2269 }
2270 if (!scanned && !done) {
2271 /*
2272 * We hit the last page and there is more work to be done: wrap
2273 * back to the start of the file
2274 */
2275 scanned = 1;
2276 index = 0;
2277 goto retry;
2278 }
2279 /*
2280 * If something went wrong, don't allow any metadata write bio to be
2281 * submitted.
2282 *
2283 * This would prevent use-after-free if we had dirty pages not
2284 * cleaned up, which can still happen by fuzzed images.
2285 *
2286 * - Bad extent tree
2287 * Allowing existing tree block to be allocated for other trees.
2288 *
2289 * - Log tree operations
2290 * Exiting tree blocks get allocated to log tree, bumps its
2291 * generation, then get cleaned in tree re-balance.
2292 * Such tree block will not be written back, since it's clean,
2293 * thus no WRITTEN flag set.
2294 * And after log writes back, this tree block is not traced by
2295 * any dirty extent_io_tree.
2296 *
2297 * - Offending tree block gets re-dirtied from its original owner
2298 * Since it has bumped generation, no WRITTEN flag, it can be
2299 * reused without COWing. This tree block will not be traced
2300 * by btrfs_transaction::dirty_pages.
2301 *
2302 * Now such dirty tree block will not be cleaned by any dirty
2303 * extent io tree. Thus we don't want to submit such wild eb
2304 * if the fs already has error.
2305 *
2306 * We can get ret > 0 from submit_extent_folio() indicating how many ebs
2307 * were submitted. Reset it to 0 to avoid false alerts for the caller.
2308 */
2309 if (ret > 0)
2310 ret = 0;
2311 if (!ret && BTRFS_FS_ERROR(fs_info))
2312 ret = -EROFS;
2313
2314 if (ctx.zoned_bg)
2315 btrfs_put_block_group(ctx.zoned_bg);
2316 btrfs_zoned_meta_io_unlock(fs_info);
2317 return ret;
2318 }
2319
2320 /*
2321 * Walk the list of dirty pages of the given address space and write all of them.
2322 *
2323 * @mapping: address space structure to write
2324 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2325 * @bio_ctrl: holds context for the write, namely the bio
2326 *
2327 * If a page is already under I/O, write_cache_pages() skips it, even
2328 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2329 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2330 * and msync() need to guarantee that all the data which was dirty at the time
2331 * the call was made get new I/O started against them. If wbc->sync_mode is
2332 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2333 * existing IO to complete.
2334 */
extent_write_cache_pages(struct address_space * mapping,struct btrfs_bio_ctrl * bio_ctrl)2335 static int extent_write_cache_pages(struct address_space *mapping,
2336 struct btrfs_bio_ctrl *bio_ctrl)
2337 {
2338 struct writeback_control *wbc = bio_ctrl->wbc;
2339 struct inode *inode = mapping->host;
2340 int ret = 0;
2341 int done = 0;
2342 int nr_to_write_done = 0;
2343 struct folio_batch fbatch;
2344 unsigned int nr_folios;
2345 pgoff_t index;
2346 pgoff_t end; /* Inclusive */
2347 pgoff_t done_index;
2348 int range_whole = 0;
2349 int scanned = 0;
2350 xa_mark_t tag;
2351
2352 /*
2353 * We have to hold onto the inode so that ordered extents can do their
2354 * work when the IO finishes. The alternative to this is failing to add
2355 * an ordered extent if the igrab() fails there and that is a huge pain
2356 * to deal with, so instead just hold onto the inode throughout the
2357 * writepages operation. If it fails here we are freeing up the inode
2358 * anyway and we'd rather not waste our time writing out stuff that is
2359 * going to be truncated anyway.
2360 */
2361 if (!igrab(inode))
2362 return 0;
2363
2364 folio_batch_init(&fbatch);
2365 if (wbc->range_cyclic) {
2366 index = mapping->writeback_index; /* Start from prev offset */
2367 end = -1;
2368 /*
2369 * Start from the beginning does not need to cycle over the
2370 * range, mark it as scanned.
2371 */
2372 scanned = (index == 0);
2373 } else {
2374 index = wbc->range_start >> PAGE_SHIFT;
2375 end = wbc->range_end >> PAGE_SHIFT;
2376 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2377 range_whole = 1;
2378 scanned = 1;
2379 }
2380
2381 /*
2382 * We do the tagged writepage as long as the snapshot flush bit is set
2383 * and we are the first one who do the filemap_flush() on this inode.
2384 *
2385 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2386 * not race in and drop the bit.
2387 */
2388 if (range_whole && wbc->nr_to_write == LONG_MAX &&
2389 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2390 &BTRFS_I(inode)->runtime_flags))
2391 wbc->tagged_writepages = 1;
2392
2393 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2394 tag = PAGECACHE_TAG_TOWRITE;
2395 else
2396 tag = PAGECACHE_TAG_DIRTY;
2397 retry:
2398 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2399 tag_pages_for_writeback(mapping, index, end);
2400 done_index = index;
2401 while (!done && !nr_to_write_done && (index <= end) &&
2402 (nr_folios = filemap_get_folios_tag(mapping, &index,
2403 end, tag, &fbatch))) {
2404 unsigned i;
2405
2406 for (i = 0; i < nr_folios; i++) {
2407 struct folio *folio = fbatch.folios[i];
2408
2409 done_index = folio_next_index(folio);
2410 /*
2411 * At this point we hold neither the i_pages lock nor
2412 * the folio lock: the folio may be truncated or
2413 * invalidated (changing folio->mapping to NULL).
2414 */
2415 if (!folio_trylock(folio)) {
2416 submit_write_bio(bio_ctrl, 0);
2417 folio_lock(folio);
2418 }
2419
2420 if (unlikely(folio->mapping != mapping)) {
2421 folio_unlock(folio);
2422 continue;
2423 }
2424
2425 if (!folio_test_dirty(folio)) {
2426 /* Someone wrote it for us. */
2427 folio_unlock(folio);
2428 continue;
2429 }
2430
2431 /*
2432 * For subpage case, compression can lead to mixed
2433 * writeback and dirty flags, e.g:
2434 * 0 32K 64K 96K 128K
2435 * | |//////||/////| |//|
2436 *
2437 * In above case, [32K, 96K) is asynchronously submitted
2438 * for compression, and [124K, 128K) needs to be written back.
2439 *
2440 * If we didn't wait wrtiteback for page 64K, [128K, 128K)
2441 * won't be submitted as the page still has writeback flag
2442 * and will be skipped in the next check.
2443 *
2444 * This mixed writeback and dirty case is only possible for
2445 * subpage case.
2446 *
2447 * TODO: Remove this check after migrating compression to
2448 * regular submission.
2449 */
2450 if (wbc->sync_mode != WB_SYNC_NONE ||
2451 btrfs_is_subpage(inode_to_fs_info(inode), folio)) {
2452 if (folio_test_writeback(folio))
2453 submit_write_bio(bio_ctrl, 0);
2454 folio_wait_writeback(folio);
2455 }
2456
2457 if (folio_test_writeback(folio) ||
2458 !folio_clear_dirty_for_io(folio)) {
2459 folio_unlock(folio);
2460 continue;
2461 }
2462
2463 ret = extent_writepage(folio, bio_ctrl);
2464 if (ret < 0) {
2465 done = 1;
2466 break;
2467 }
2468
2469 /*
2470 * The filesystem may choose to bump up nr_to_write.
2471 * We have to make sure to honor the new nr_to_write
2472 * at any time.
2473 */
2474 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
2475 wbc->nr_to_write <= 0);
2476 }
2477 folio_batch_release(&fbatch);
2478 cond_resched();
2479 }
2480 if (!scanned && !done) {
2481 /*
2482 * We hit the last page and there is more work to be done: wrap
2483 * back to the start of the file
2484 */
2485 scanned = 1;
2486 index = 0;
2487
2488 /*
2489 * If we're looping we could run into a page that is locked by a
2490 * writer and that writer could be waiting on writeback for a
2491 * page in our current bio, and thus deadlock, so flush the
2492 * write bio here.
2493 */
2494 submit_write_bio(bio_ctrl, 0);
2495 goto retry;
2496 }
2497
2498 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2499 mapping->writeback_index = done_index;
2500
2501 btrfs_add_delayed_iput(BTRFS_I(inode));
2502 return ret;
2503 }
2504
2505 /*
2506 * Submit the pages in the range to bio for call sites which delalloc range has
2507 * already been ran (aka, ordered extent inserted) and all pages are still
2508 * locked.
2509 */
extent_write_locked_range(struct inode * inode,const struct folio * locked_folio,u64 start,u64 end,struct writeback_control * wbc,bool pages_dirty)2510 void extent_write_locked_range(struct inode *inode, const struct folio *locked_folio,
2511 u64 start, u64 end, struct writeback_control *wbc,
2512 bool pages_dirty)
2513 {
2514 bool found_error = false;
2515 int ret = 0;
2516 struct address_space *mapping = inode->i_mapping;
2517 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2518 const u32 sectorsize = fs_info->sectorsize;
2519 loff_t i_size = i_size_read(inode);
2520 u64 cur = start;
2521 struct btrfs_bio_ctrl bio_ctrl = {
2522 .wbc = wbc,
2523 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2524 };
2525
2526 if (wbc->no_cgroup_owner)
2527 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
2528
2529 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
2530
2531 while (cur <= end) {
2532 u64 cur_end;
2533 u32 cur_len;
2534 struct folio *folio;
2535
2536 folio = filemap_get_folio(mapping, cur >> PAGE_SHIFT);
2537
2538 /*
2539 * This shouldn't happen, the pages are pinned and locked, this
2540 * code is just in case, but shouldn't actually be run.
2541 */
2542 if (IS_ERR(folio)) {
2543 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
2544 cur_len = cur_end + 1 - cur;
2545 btrfs_mark_ordered_io_finished(BTRFS_I(inode), NULL,
2546 cur, cur_len, false);
2547 mapping_set_error(mapping, PTR_ERR(folio));
2548 cur = cur_end;
2549 continue;
2550 }
2551
2552 cur_end = min_t(u64, folio_end(folio) - 1, end);
2553 cur_len = cur_end + 1 - cur;
2554
2555 ASSERT(folio_test_locked(folio));
2556 if (pages_dirty && folio != locked_folio)
2557 ASSERT(folio_test_dirty(folio));
2558
2559 /*
2560 * Set the submission bitmap to submit all sectors.
2561 * extent_writepage_io() will do the truncation correctly.
2562 */
2563 bio_ctrl.submit_bitmap = (unsigned long)-1;
2564 ret = extent_writepage_io(BTRFS_I(inode), folio, cur, cur_len,
2565 &bio_ctrl, i_size);
2566 if (ret == 1)
2567 goto next_page;
2568
2569 if (ret)
2570 mapping_set_error(mapping, ret);
2571 btrfs_folio_end_lock(fs_info, folio, cur, cur_len);
2572 if (ret < 0)
2573 found_error = true;
2574 next_page:
2575 folio_put(folio);
2576 cur = cur_end + 1;
2577 }
2578
2579 submit_write_bio(&bio_ctrl, found_error ? ret : 0);
2580 }
2581
btrfs_writepages(struct address_space * mapping,struct writeback_control * wbc)2582 int btrfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
2583 {
2584 struct inode *inode = mapping->host;
2585 int ret = 0;
2586 struct btrfs_bio_ctrl bio_ctrl = {
2587 .wbc = wbc,
2588 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2589 };
2590
2591 /*
2592 * Allow only a single thread to do the reloc work in zoned mode to
2593 * protect the write pointer updates.
2594 */
2595 btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
2596 ret = extent_write_cache_pages(mapping, &bio_ctrl);
2597 submit_write_bio(&bio_ctrl, ret);
2598 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
2599 return ret;
2600 }
2601
btrfs_readahead(struct readahead_control * rac)2602 void btrfs_readahead(struct readahead_control *rac)
2603 {
2604 struct btrfs_bio_ctrl bio_ctrl = {
2605 .opf = REQ_OP_READ | REQ_RAHEAD,
2606 .ractl = rac,
2607 .last_em_start = U64_MAX,
2608 };
2609 struct folio *folio;
2610 struct btrfs_inode *inode = BTRFS_I(rac->mapping->host);
2611 const u64 start = readahead_pos(rac);
2612 const u64 end = start + readahead_length(rac) - 1;
2613 struct extent_state *cached_state = NULL;
2614 struct extent_map *em_cached = NULL;
2615
2616 lock_extents_for_read(inode, start, end, &cached_state);
2617
2618 while ((folio = readahead_folio(rac)) != NULL)
2619 btrfs_do_readpage(folio, &em_cached, &bio_ctrl);
2620
2621 btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state);
2622
2623 if (em_cached)
2624 btrfs_free_extent_map(em_cached);
2625 submit_one_bio(&bio_ctrl);
2626 }
2627
2628 /*
2629 * basic invalidate_folio code, this waits on any locked or writeback
2630 * ranges corresponding to the folio, and then deletes any extent state
2631 * records from the tree
2632 */
extent_invalidate_folio(struct extent_io_tree * tree,struct folio * folio,size_t offset)2633 int extent_invalidate_folio(struct extent_io_tree *tree,
2634 struct folio *folio, size_t offset)
2635 {
2636 struct extent_state *cached_state = NULL;
2637 u64 start = folio_pos(folio);
2638 u64 end = start + folio_size(folio) - 1;
2639 size_t blocksize = folio_to_fs_info(folio)->sectorsize;
2640
2641 /* This function is only called for the btree inode */
2642 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2643
2644 start += ALIGN(offset, blocksize);
2645 if (start > end)
2646 return 0;
2647
2648 btrfs_lock_extent(tree, start, end, &cached_state);
2649 folio_wait_writeback(folio);
2650
2651 /*
2652 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2653 * so here we only need to unlock the extent range to free any
2654 * existing extent state.
2655 */
2656 btrfs_unlock_extent(tree, start, end, &cached_state);
2657 return 0;
2658 }
2659
2660 /*
2661 * A helper for struct address_space_operations::release_folio, this tests for
2662 * areas of the folio that are locked or under IO and drops the related state
2663 * bits if it is safe to drop the folio.
2664 */
try_release_extent_state(struct extent_io_tree * tree,struct folio * folio)2665 static bool try_release_extent_state(struct extent_io_tree *tree,
2666 struct folio *folio)
2667 {
2668 struct extent_state *cached_state = NULL;
2669 u64 start = folio_pos(folio);
2670 u64 end = start + folio_size(folio) - 1;
2671 u32 range_bits;
2672 u32 clear_bits;
2673 bool ret = false;
2674 int ret2;
2675
2676 btrfs_get_range_bits(tree, start, end, &range_bits, &cached_state);
2677
2678 /*
2679 * We can release the folio if it's locked only for ordered extent
2680 * completion, since that doesn't require using the folio.
2681 */
2682 if ((range_bits & EXTENT_LOCKED) &&
2683 !(range_bits & EXTENT_FINISHING_ORDERED))
2684 goto out;
2685
2686 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW |
2687 EXTENT_CTLBITS | EXTENT_QGROUP_RESERVED |
2688 EXTENT_FINISHING_ORDERED);
2689 /*
2690 * At this point we can safely clear everything except the locked,
2691 * nodatasum, delalloc new and finishing ordered bits. The delalloc new
2692 * bit will be cleared by ordered extent completion.
2693 */
2694 ret2 = btrfs_clear_extent_bit(tree, start, end, clear_bits, &cached_state);
2695 /*
2696 * If clear_extent_bit failed for enomem reasons, we can't allow the
2697 * release to continue.
2698 */
2699 if (ret2 == 0)
2700 ret = true;
2701 out:
2702 btrfs_free_extent_state(cached_state);
2703
2704 return ret;
2705 }
2706
2707 /*
2708 * a helper for release_folio. As long as there are no locked extents
2709 * in the range corresponding to the page, both state records and extent
2710 * map records are removed
2711 */
try_release_extent_mapping(struct folio * folio,gfp_t mask)2712 bool try_release_extent_mapping(struct folio *folio, gfp_t mask)
2713 {
2714 u64 start = folio_pos(folio);
2715 u64 end = start + folio_size(folio) - 1;
2716 struct btrfs_inode *inode = folio_to_inode(folio);
2717 struct extent_io_tree *io_tree = &inode->io_tree;
2718
2719 while (start <= end) {
2720 const u64 cur_gen = btrfs_get_fs_generation(inode->root->fs_info);
2721 const u64 len = end - start + 1;
2722 struct extent_map_tree *extent_tree = &inode->extent_tree;
2723 struct extent_map *em;
2724
2725 write_lock(&extent_tree->lock);
2726 em = btrfs_lookup_extent_mapping(extent_tree, start, len);
2727 if (!em) {
2728 write_unlock(&extent_tree->lock);
2729 break;
2730 }
2731 if ((em->flags & EXTENT_FLAG_PINNED) || em->start != start) {
2732 write_unlock(&extent_tree->lock);
2733 btrfs_free_extent_map(em);
2734 break;
2735 }
2736 if (btrfs_test_range_bit_exists(io_tree, em->start,
2737 btrfs_extent_map_end(em) - 1,
2738 EXTENT_LOCKED))
2739 goto next;
2740 /*
2741 * If it's not in the list of modified extents, used by a fast
2742 * fsync, we can remove it. If it's being logged we can safely
2743 * remove it since fsync took an extra reference on the em.
2744 */
2745 if (list_empty(&em->list) || (em->flags & EXTENT_FLAG_LOGGING))
2746 goto remove_em;
2747 /*
2748 * If it's in the list of modified extents, remove it only if
2749 * its generation is older then the current one, in which case
2750 * we don't need it for a fast fsync. Otherwise don't remove it,
2751 * we could be racing with an ongoing fast fsync that could miss
2752 * the new extent.
2753 */
2754 if (em->generation >= cur_gen)
2755 goto next;
2756 remove_em:
2757 /*
2758 * We only remove extent maps that are not in the list of
2759 * modified extents or that are in the list but with a
2760 * generation lower then the current generation, so there is no
2761 * need to set the full fsync flag on the inode (it hurts the
2762 * fsync performance for workloads with a data size that exceeds
2763 * or is close to the system's memory).
2764 */
2765 btrfs_remove_extent_mapping(inode, em);
2766 /* Once for the inode's extent map tree. */
2767 btrfs_free_extent_map(em);
2768 next:
2769 start = btrfs_extent_map_end(em);
2770 write_unlock(&extent_tree->lock);
2771
2772 /* Once for us, for the lookup_extent_mapping() reference. */
2773 btrfs_free_extent_map(em);
2774
2775 if (need_resched()) {
2776 /*
2777 * If we need to resched but we can't block just exit
2778 * and leave any remaining extent maps.
2779 */
2780 if (!gfpflags_allow_blocking(mask))
2781 break;
2782
2783 cond_resched();
2784 }
2785 }
2786 return try_release_extent_state(io_tree, folio);
2787 }
2788
extent_buffer_under_io(const struct extent_buffer * eb)2789 static int extent_buffer_under_io(const struct extent_buffer *eb)
2790 {
2791 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
2792 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
2793 }
2794
folio_range_has_eb(struct folio * folio)2795 static bool folio_range_has_eb(struct folio *folio)
2796 {
2797 struct btrfs_folio_state *bfs;
2798
2799 lockdep_assert_held(&folio->mapping->i_private_lock);
2800
2801 if (folio_test_private(folio)) {
2802 bfs = folio_get_private(folio);
2803 if (atomic_read(&bfs->eb_refs))
2804 return true;
2805 }
2806 return false;
2807 }
2808
detach_extent_buffer_folio(const struct extent_buffer * eb,struct folio * folio)2809 static void detach_extent_buffer_folio(const struct extent_buffer *eb, struct folio *folio)
2810 {
2811 struct btrfs_fs_info *fs_info = eb->fs_info;
2812 struct address_space *mapping = folio->mapping;
2813 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
2814
2815 /*
2816 * For mapped eb, we're going to change the folio private, which should
2817 * be done under the i_private_lock.
2818 */
2819 if (mapped)
2820 spin_lock(&mapping->i_private_lock);
2821
2822 if (!folio_test_private(folio)) {
2823 if (mapped)
2824 spin_unlock(&mapping->i_private_lock);
2825 return;
2826 }
2827
2828 if (!btrfs_meta_is_subpage(fs_info)) {
2829 /*
2830 * We do this since we'll remove the pages after we've removed
2831 * the eb from the xarray, so we could race and have this page
2832 * now attached to the new eb. So only clear folio if it's
2833 * still connected to this eb.
2834 */
2835 if (folio_test_private(folio) && folio_get_private(folio) == eb) {
2836 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
2837 BUG_ON(folio_test_dirty(folio));
2838 BUG_ON(folio_test_writeback(folio));
2839 /* We need to make sure we haven't be attached to a new eb. */
2840 folio_detach_private(folio);
2841 }
2842 if (mapped)
2843 spin_unlock(&mapping->i_private_lock);
2844 return;
2845 }
2846
2847 /*
2848 * For subpage, we can have dummy eb with folio private attached. In
2849 * this case, we can directly detach the private as such folio is only
2850 * attached to one dummy eb, no sharing.
2851 */
2852 if (!mapped) {
2853 btrfs_detach_folio_state(fs_info, folio, BTRFS_SUBPAGE_METADATA);
2854 return;
2855 }
2856
2857 btrfs_folio_dec_eb_refs(fs_info, folio);
2858
2859 /*
2860 * We can only detach the folio private if there are no other ebs in the
2861 * page range and no unfinished IO.
2862 */
2863 if (!folio_range_has_eb(folio))
2864 btrfs_detach_folio_state(fs_info, folio, BTRFS_SUBPAGE_METADATA);
2865
2866 spin_unlock(&mapping->i_private_lock);
2867 }
2868
2869 /* Release all folios attached to the extent buffer */
btrfs_release_extent_buffer_folios(const struct extent_buffer * eb)2870 static void btrfs_release_extent_buffer_folios(const struct extent_buffer *eb)
2871 {
2872 ASSERT(!extent_buffer_under_io(eb));
2873
2874 for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) {
2875 struct folio *folio = eb->folios[i];
2876
2877 if (!folio)
2878 continue;
2879
2880 detach_extent_buffer_folio(eb, folio);
2881 }
2882 }
2883
2884 /*
2885 * Helper for releasing the extent buffer.
2886 */
btrfs_release_extent_buffer(struct extent_buffer * eb)2887 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
2888 {
2889 btrfs_release_extent_buffer_folios(eb);
2890 btrfs_leak_debug_del_eb(eb);
2891 kmem_cache_free(extent_buffer_cache, eb);
2892 }
2893
__alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)2894 static struct extent_buffer *__alloc_extent_buffer(struct btrfs_fs_info *fs_info,
2895 u64 start)
2896 {
2897 struct extent_buffer *eb = NULL;
2898
2899 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
2900 eb->start = start;
2901 eb->len = fs_info->nodesize;
2902 eb->fs_info = fs_info;
2903 init_rwsem(&eb->lock);
2904
2905 btrfs_leak_debug_add_eb(eb);
2906
2907 spin_lock_init(&eb->refs_lock);
2908 refcount_set(&eb->refs, 1);
2909
2910 ASSERT(eb->len <= BTRFS_MAX_METADATA_BLOCKSIZE);
2911
2912 return eb;
2913 }
2914
2915 /*
2916 * For use in eb allocation error cleanup paths, as btrfs_release_extent_buffer()
2917 * does not call folio_put(), and we need to set the folios to NULL so that
2918 * btrfs_release_extent_buffer() will not detach them a second time.
2919 */
cleanup_extent_buffer_folios(struct extent_buffer * eb)2920 static void cleanup_extent_buffer_folios(struct extent_buffer *eb)
2921 {
2922 const int num_folios = num_extent_folios(eb);
2923
2924 /* We canont use num_extent_folios() as loop bound as eb->folios changes. */
2925 for (int i = 0; i < num_folios; i++) {
2926 ASSERT(eb->folios[i]);
2927 detach_extent_buffer_folio(eb, eb->folios[i]);
2928 folio_put(eb->folios[i]);
2929 eb->folios[i] = NULL;
2930 }
2931 }
2932
btrfs_clone_extent_buffer(const struct extent_buffer * src)2933 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
2934 {
2935 struct extent_buffer *new;
2936 int num_folios;
2937 int ret;
2938
2939 new = __alloc_extent_buffer(src->fs_info, src->start);
2940 if (new == NULL)
2941 return NULL;
2942
2943 /*
2944 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
2945 * btrfs_release_extent_buffer() have different behavior for
2946 * UNMAPPED subpage extent buffer.
2947 */
2948 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
2949
2950 ret = alloc_eb_folio_array(new, false);
2951 if (ret)
2952 goto release_eb;
2953
2954 ASSERT(num_extent_folios(src) == num_extent_folios(new),
2955 "%d != %d", num_extent_folios(src), num_extent_folios(new));
2956 /* Explicitly use the cached num_extent value from now on. */
2957 num_folios = num_extent_folios(src);
2958 for (int i = 0; i < num_folios; i++) {
2959 struct folio *folio = new->folios[i];
2960
2961 ret = attach_extent_buffer_folio(new, folio, NULL);
2962 if (ret < 0)
2963 goto cleanup_folios;
2964 WARN_ON(folio_test_dirty(folio));
2965 }
2966 for (int i = 0; i < num_folios; i++)
2967 folio_put(new->folios[i]);
2968
2969 copy_extent_buffer_full(new, src);
2970 set_extent_buffer_uptodate(new);
2971
2972 return new;
2973
2974 cleanup_folios:
2975 cleanup_extent_buffer_folios(new);
2976 release_eb:
2977 btrfs_release_extent_buffer(new);
2978 return NULL;
2979 }
2980
alloc_dummy_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)2981 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
2982 u64 start)
2983 {
2984 struct extent_buffer *eb;
2985 int ret;
2986
2987 eb = __alloc_extent_buffer(fs_info, start);
2988 if (!eb)
2989 return NULL;
2990
2991 ret = alloc_eb_folio_array(eb, false);
2992 if (ret)
2993 goto release_eb;
2994
2995 for (int i = 0; i < num_extent_folios(eb); i++) {
2996 ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL);
2997 if (ret < 0)
2998 goto cleanup_folios;
2999 }
3000 for (int i = 0; i < num_extent_folios(eb); i++)
3001 folio_put(eb->folios[i]);
3002
3003 set_extent_buffer_uptodate(eb);
3004 btrfs_set_header_nritems(eb, 0);
3005 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3006
3007 return eb;
3008
3009 cleanup_folios:
3010 cleanup_extent_buffer_folios(eb);
3011 release_eb:
3012 btrfs_release_extent_buffer(eb);
3013 return NULL;
3014 }
3015
check_buffer_tree_ref(struct extent_buffer * eb)3016 static void check_buffer_tree_ref(struct extent_buffer *eb)
3017 {
3018 int refs;
3019 /*
3020 * The TREE_REF bit is first set when the extent_buffer is added to the
3021 * xarray. It is also reset, if unset, when a new reference is created
3022 * by find_extent_buffer.
3023 *
3024 * It is only cleared in two cases: freeing the last non-tree
3025 * reference to the extent_buffer when its STALE bit is set or
3026 * calling release_folio when the tree reference is the only reference.
3027 *
3028 * In both cases, care is taken to ensure that the extent_buffer's
3029 * pages are not under io. However, release_folio can be concurrently
3030 * called with creating new references, which is prone to race
3031 * conditions between the calls to check_buffer_tree_ref in those
3032 * codepaths and clearing TREE_REF in try_release_extent_buffer.
3033 *
3034 * The actual lifetime of the extent_buffer in the xarray is adequately
3035 * protected by the refcount, but the TREE_REF bit and its corresponding
3036 * reference are not. To protect against this class of races, we call
3037 * check_buffer_tree_ref() from the code paths which trigger io. Note that
3038 * once io is initiated, TREE_REF can no longer be cleared, so that is
3039 * the moment at which any such race is best fixed.
3040 */
3041 refs = refcount_read(&eb->refs);
3042 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3043 return;
3044
3045 spin_lock(&eb->refs_lock);
3046 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3047 refcount_inc(&eb->refs);
3048 spin_unlock(&eb->refs_lock);
3049 }
3050
mark_extent_buffer_accessed(struct extent_buffer * eb)3051 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
3052 {
3053 check_buffer_tree_ref(eb);
3054
3055 for (int i = 0; i < num_extent_folios(eb); i++)
3056 folio_mark_accessed(eb->folios[i]);
3057 }
3058
find_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)3059 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
3060 u64 start)
3061 {
3062 struct extent_buffer *eb;
3063
3064 eb = find_extent_buffer_nolock(fs_info, start);
3065 if (!eb)
3066 return NULL;
3067 /*
3068 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
3069 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
3070 * another task running free_extent_buffer() might have seen that flag
3071 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
3072 * writeback flags not set) and it's still in the tree (flag
3073 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
3074 * decrementing the extent buffer's reference count twice. So here we
3075 * could race and increment the eb's reference count, clear its stale
3076 * flag, mark it as dirty and drop our reference before the other task
3077 * finishes executing free_extent_buffer, which would later result in
3078 * an attempt to free an extent buffer that is dirty.
3079 */
3080 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
3081 spin_lock(&eb->refs_lock);
3082 spin_unlock(&eb->refs_lock);
3083 }
3084 mark_extent_buffer_accessed(eb);
3085 return eb;
3086 }
3087
alloc_test_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)3088 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
3089 u64 start)
3090 {
3091 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3092 struct extent_buffer *eb, *exists = NULL;
3093 int ret;
3094
3095 eb = find_extent_buffer(fs_info, start);
3096 if (eb)
3097 return eb;
3098 eb = alloc_dummy_extent_buffer(fs_info, start);
3099 if (!eb)
3100 return ERR_PTR(-ENOMEM);
3101 eb->fs_info = fs_info;
3102 again:
3103 xa_lock_irq(&fs_info->buffer_tree);
3104 exists = __xa_cmpxchg(&fs_info->buffer_tree, start >> fs_info->nodesize_bits,
3105 NULL, eb, GFP_NOFS);
3106 if (xa_is_err(exists)) {
3107 ret = xa_err(exists);
3108 xa_unlock_irq(&fs_info->buffer_tree);
3109 btrfs_release_extent_buffer(eb);
3110 return ERR_PTR(ret);
3111 }
3112 if (exists) {
3113 if (!refcount_inc_not_zero(&exists->refs)) {
3114 /* The extent buffer is being freed, retry. */
3115 xa_unlock_irq(&fs_info->buffer_tree);
3116 goto again;
3117 }
3118 xa_unlock_irq(&fs_info->buffer_tree);
3119 btrfs_release_extent_buffer(eb);
3120 return exists;
3121 }
3122 xa_unlock_irq(&fs_info->buffer_tree);
3123 check_buffer_tree_ref(eb);
3124
3125 return eb;
3126 #else
3127 /* Stub to avoid linker error when compiled with optimizations turned off. */
3128 return NULL;
3129 #endif
3130 }
3131
grab_extent_buffer(struct btrfs_fs_info * fs_info,struct folio * folio)3132 static struct extent_buffer *grab_extent_buffer(struct btrfs_fs_info *fs_info,
3133 struct folio *folio)
3134 {
3135 struct extent_buffer *exists;
3136
3137 lockdep_assert_held(&folio->mapping->i_private_lock);
3138
3139 /*
3140 * For subpage case, we completely rely on xarray to ensure we don't try
3141 * to insert two ebs for the same bytenr. So here we always return NULL
3142 * and just continue.
3143 */
3144 if (btrfs_meta_is_subpage(fs_info))
3145 return NULL;
3146
3147 /* Page not yet attached to an extent buffer */
3148 if (!folio_test_private(folio))
3149 return NULL;
3150
3151 /*
3152 * We could have already allocated an eb for this folio and attached one
3153 * so lets see if we can get a ref on the existing eb, and if we can we
3154 * know it's good and we can just return that one, else we know we can
3155 * just overwrite folio private.
3156 */
3157 exists = folio_get_private(folio);
3158 if (refcount_inc_not_zero(&exists->refs))
3159 return exists;
3160
3161 WARN_ON(folio_test_dirty(folio));
3162 folio_detach_private(folio);
3163 return NULL;
3164 }
3165
3166 /*
3167 * Validate alignment constraints of eb at logical address @start.
3168 */
check_eb_alignment(struct btrfs_fs_info * fs_info,u64 start)3169 static bool check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
3170 {
3171 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
3172 btrfs_err(fs_info, "bad tree block start %llu", start);
3173 return true;
3174 }
3175
3176 if (fs_info->nodesize < PAGE_SIZE && !IS_ALIGNED(start, fs_info->nodesize)) {
3177 btrfs_err(fs_info,
3178 "tree block is not nodesize aligned, start %llu nodesize %u",
3179 start, fs_info->nodesize);
3180 return true;
3181 }
3182 if (fs_info->nodesize >= PAGE_SIZE &&
3183 !PAGE_ALIGNED(start)) {
3184 btrfs_err(fs_info,
3185 "tree block is not page aligned, start %llu nodesize %u",
3186 start, fs_info->nodesize);
3187 return true;
3188 }
3189 if (!IS_ALIGNED(start, fs_info->nodesize) &&
3190 !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) {
3191 btrfs_warn(fs_info,
3192 "tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance",
3193 start, fs_info->nodesize);
3194 }
3195 return false;
3196 }
3197
3198 /*
3199 * Return 0 if eb->folios[i] is attached to btree inode successfully.
3200 * Return >0 if there is already another extent buffer for the range,
3201 * and @found_eb_ret would be updated.
3202 * Return -EAGAIN if the filemap has an existing folio but with different size
3203 * than @eb.
3204 * The caller needs to free the existing folios and retry using the same order.
3205 */
attach_eb_folio_to_filemap(struct extent_buffer * eb,int i,struct btrfs_folio_state * prealloc,struct extent_buffer ** found_eb_ret)3206 static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i,
3207 struct btrfs_folio_state *prealloc,
3208 struct extent_buffer **found_eb_ret)
3209 {
3210
3211 struct btrfs_fs_info *fs_info = eb->fs_info;
3212 struct address_space *mapping = fs_info->btree_inode->i_mapping;
3213 const pgoff_t index = eb->start >> PAGE_SHIFT;
3214 struct folio *existing_folio;
3215 int ret;
3216
3217 ASSERT(found_eb_ret);
3218
3219 /* Caller should ensure the folio exists. */
3220 ASSERT(eb->folios[i]);
3221
3222 retry:
3223 existing_folio = NULL;
3224 ret = filemap_add_folio(mapping, eb->folios[i], index + i,
3225 GFP_NOFS | __GFP_NOFAIL);
3226 if (!ret)
3227 goto finish;
3228
3229 existing_folio = filemap_lock_folio(mapping, index + i);
3230 /* The page cache only exists for a very short time, just retry. */
3231 if (IS_ERR(existing_folio))
3232 goto retry;
3233
3234 /* For now, we should only have single-page folios for btree inode. */
3235 ASSERT(folio_nr_pages(existing_folio) == 1);
3236
3237 if (folio_size(existing_folio) != eb->folio_size) {
3238 folio_unlock(existing_folio);
3239 folio_put(existing_folio);
3240 return -EAGAIN;
3241 }
3242
3243 finish:
3244 spin_lock(&mapping->i_private_lock);
3245 if (existing_folio && btrfs_meta_is_subpage(fs_info)) {
3246 /* We're going to reuse the existing page, can drop our folio now. */
3247 __free_page(folio_page(eb->folios[i], 0));
3248 eb->folios[i] = existing_folio;
3249 } else if (existing_folio) {
3250 struct extent_buffer *existing_eb;
3251
3252 existing_eb = grab_extent_buffer(fs_info, existing_folio);
3253 if (existing_eb) {
3254 /* The extent buffer still exists, we can use it directly. */
3255 *found_eb_ret = existing_eb;
3256 spin_unlock(&mapping->i_private_lock);
3257 folio_unlock(existing_folio);
3258 folio_put(existing_folio);
3259 return 1;
3260 }
3261 /* The extent buffer no longer exists, we can reuse the folio. */
3262 __free_page(folio_page(eb->folios[i], 0));
3263 eb->folios[i] = existing_folio;
3264 }
3265 eb->folio_size = folio_size(eb->folios[i]);
3266 eb->folio_shift = folio_shift(eb->folios[i]);
3267 /* Should not fail, as we have preallocated the memory. */
3268 ret = attach_extent_buffer_folio(eb, eb->folios[i], prealloc);
3269 ASSERT(!ret);
3270 /*
3271 * To inform we have an extra eb under allocation, so that
3272 * detach_extent_buffer_page() won't release the folio private when the
3273 * eb hasn't been inserted into the xarray yet.
3274 *
3275 * The ref will be decreased when the eb releases the page, in
3276 * detach_extent_buffer_page(). Thus needs no special handling in the
3277 * error path.
3278 */
3279 btrfs_folio_inc_eb_refs(fs_info, eb->folios[i]);
3280 spin_unlock(&mapping->i_private_lock);
3281 return 0;
3282 }
3283
alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,u64 owner_root,int level)3284 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3285 u64 start, u64 owner_root, int level)
3286 {
3287 int attached = 0;
3288 struct extent_buffer *eb;
3289 struct extent_buffer *existing_eb = NULL;
3290 struct btrfs_folio_state *prealloc = NULL;
3291 u64 lockdep_owner = owner_root;
3292 bool page_contig = true;
3293 int uptodate = 1;
3294 int ret;
3295
3296 if (check_eb_alignment(fs_info, start))
3297 return ERR_PTR(-EINVAL);
3298
3299 #if BITS_PER_LONG == 32
3300 if (start >= MAX_LFS_FILESIZE) {
3301 btrfs_err_rl(fs_info,
3302 "extent buffer %llu is beyond 32bit page cache limit", start);
3303 btrfs_err_32bit_limit(fs_info);
3304 return ERR_PTR(-EOVERFLOW);
3305 }
3306 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3307 btrfs_warn_32bit_limit(fs_info);
3308 #endif
3309
3310 eb = find_extent_buffer(fs_info, start);
3311 if (eb)
3312 return eb;
3313
3314 eb = __alloc_extent_buffer(fs_info, start);
3315 if (!eb)
3316 return ERR_PTR(-ENOMEM);
3317
3318 /*
3319 * The reloc trees are just snapshots, so we need them to appear to be
3320 * just like any other fs tree WRT lockdep.
3321 */
3322 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3323 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3324
3325 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
3326
3327 /*
3328 * Preallocate folio private for subpage case, so that we won't
3329 * allocate memory with i_private_lock nor page lock hold.
3330 *
3331 * The memory will be freed by attach_extent_buffer_page() or freed
3332 * manually if we exit earlier.
3333 */
3334 if (btrfs_meta_is_subpage(fs_info)) {
3335 prealloc = btrfs_alloc_folio_state(fs_info, PAGE_SIZE, BTRFS_SUBPAGE_METADATA);
3336 if (IS_ERR(prealloc)) {
3337 ret = PTR_ERR(prealloc);
3338 goto out;
3339 }
3340 }
3341
3342 reallocate:
3343 /* Allocate all pages first. */
3344 ret = alloc_eb_folio_array(eb, true);
3345 if (ret < 0) {
3346 btrfs_free_folio_state(prealloc);
3347 goto out;
3348 }
3349
3350 /* Attach all pages to the filemap. */
3351 for (int i = 0; i < num_extent_folios(eb); i++) {
3352 struct folio *folio;
3353
3354 ret = attach_eb_folio_to_filemap(eb, i, prealloc, &existing_eb);
3355 if (ret > 0) {
3356 ASSERT(existing_eb);
3357 goto out;
3358 }
3359
3360 /*
3361 * TODO: Special handling for a corner case where the order of
3362 * folios mismatch between the new eb and filemap.
3363 *
3364 * This happens when:
3365 *
3366 * - the new eb is using higher order folio
3367 *
3368 * - the filemap is still using 0-order folios for the range
3369 * This can happen at the previous eb allocation, and we don't
3370 * have higher order folio for the call.
3371 *
3372 * - the existing eb has already been freed
3373 *
3374 * In this case, we have to free the existing folios first, and
3375 * re-allocate using the same order.
3376 * Thankfully this is not going to happen yet, as we're still
3377 * using 0-order folios.
3378 */
3379 if (unlikely(ret == -EAGAIN)) {
3380 DEBUG_WARN("folio order mismatch between new eb and filemap");
3381 goto reallocate;
3382 }
3383 attached++;
3384
3385 /*
3386 * Only after attach_eb_folio_to_filemap(), eb->folios[] is
3387 * reliable, as we may choose to reuse the existing page cache
3388 * and free the allocated page.
3389 */
3390 folio = eb->folios[i];
3391 WARN_ON(btrfs_meta_folio_test_dirty(folio, eb));
3392
3393 /*
3394 * Check if the current page is physically contiguous with previous eb
3395 * page.
3396 * At this stage, either we allocated a large folio, thus @i
3397 * would only be 0, or we fall back to per-page allocation.
3398 */
3399 if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0))
3400 page_contig = false;
3401
3402 if (!btrfs_meta_folio_test_uptodate(folio, eb))
3403 uptodate = 0;
3404
3405 /*
3406 * We can't unlock the pages just yet since the extent buffer
3407 * hasn't been properly inserted into the xarray, this opens a
3408 * race with btree_release_folio() which can free a page while we
3409 * are still filling in all pages for the buffer and we could crash.
3410 */
3411 }
3412 if (uptodate)
3413 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3414 /* All pages are physically contiguous, can skip cross page handling. */
3415 if (page_contig)
3416 eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start);
3417 again:
3418 xa_lock_irq(&fs_info->buffer_tree);
3419 existing_eb = __xa_cmpxchg(&fs_info->buffer_tree,
3420 start >> fs_info->nodesize_bits, NULL, eb,
3421 GFP_NOFS);
3422 if (xa_is_err(existing_eb)) {
3423 ret = xa_err(existing_eb);
3424 xa_unlock_irq(&fs_info->buffer_tree);
3425 goto out;
3426 }
3427 if (existing_eb) {
3428 if (!refcount_inc_not_zero(&existing_eb->refs)) {
3429 xa_unlock_irq(&fs_info->buffer_tree);
3430 goto again;
3431 }
3432 xa_unlock_irq(&fs_info->buffer_tree);
3433 goto out;
3434 }
3435 xa_unlock_irq(&fs_info->buffer_tree);
3436
3437 /* add one reference for the tree */
3438 check_buffer_tree_ref(eb);
3439
3440 /*
3441 * Now it's safe to unlock the pages because any calls to
3442 * btree_release_folio will correctly detect that a page belongs to a
3443 * live buffer and won't free them prematurely.
3444 */
3445 for (int i = 0; i < num_extent_folios(eb); i++) {
3446 folio_unlock(eb->folios[i]);
3447 /*
3448 * A folio that has been added to an address_space mapping
3449 * should not continue holding the refcount from its original
3450 * allocation indefinitely.
3451 */
3452 folio_put(eb->folios[i]);
3453 }
3454 return eb;
3455
3456 out:
3457 WARN_ON(!refcount_dec_and_test(&eb->refs));
3458
3459 /*
3460 * Any attached folios need to be detached before we unlock them. This
3461 * is because when we're inserting our new folios into the mapping, and
3462 * then attaching our eb to that folio. If we fail to insert our folio
3463 * we'll lookup the folio for that index, and grab that EB. We do not
3464 * want that to grab this eb, as we're getting ready to free it. So we
3465 * have to detach it first and then unlock it.
3466 *
3467 * Note: the bounds is num_extent_pages() as we need to go through all slots.
3468 */
3469 for (int i = 0; i < num_extent_pages(eb); i++) {
3470 struct folio *folio = eb->folios[i];
3471
3472 if (i < attached) {
3473 ASSERT(folio);
3474 detach_extent_buffer_folio(eb, folio);
3475 folio_unlock(folio);
3476 } else if (!folio) {
3477 continue;
3478 }
3479
3480 folio_put(folio);
3481 eb->folios[i] = NULL;
3482 }
3483 btrfs_release_extent_buffer(eb);
3484 if (ret < 0)
3485 return ERR_PTR(ret);
3486 ASSERT(existing_eb);
3487 return existing_eb;
3488 }
3489
btrfs_release_extent_buffer_rcu(struct rcu_head * head)3490 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3491 {
3492 struct extent_buffer *eb =
3493 container_of(head, struct extent_buffer, rcu_head);
3494
3495 kmem_cache_free(extent_buffer_cache, eb);
3496 }
3497
release_extent_buffer(struct extent_buffer * eb)3498 static int release_extent_buffer(struct extent_buffer *eb)
3499 __releases(&eb->refs_lock)
3500 {
3501 lockdep_assert_held(&eb->refs_lock);
3502
3503 if (refcount_dec_and_test(&eb->refs)) {
3504 struct btrfs_fs_info *fs_info = eb->fs_info;
3505
3506 spin_unlock(&eb->refs_lock);
3507
3508 /*
3509 * We're erasing, theoretically there will be no allocations, so
3510 * just use GFP_ATOMIC.
3511 *
3512 * We use cmpxchg instead of erase because we do not know if
3513 * this eb is actually in the tree or not, we could be cleaning
3514 * up an eb that we allocated but never inserted into the tree.
3515 * Thus use cmpxchg to remove it from the tree if it is there,
3516 * or leave the other entry if this isn't in the tree.
3517 *
3518 * The documentation says that putting a NULL value is the same
3519 * as erase as long as XA_FLAGS_ALLOC is not set, which it isn't
3520 * in this case.
3521 */
3522 xa_cmpxchg_irq(&fs_info->buffer_tree,
3523 eb->start >> fs_info->nodesize_bits, eb, NULL,
3524 GFP_ATOMIC);
3525
3526 btrfs_leak_debug_del_eb(eb);
3527 /* Should be safe to release folios at this point. */
3528 btrfs_release_extent_buffer_folios(eb);
3529 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3530 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
3531 kmem_cache_free(extent_buffer_cache, eb);
3532 return 1;
3533 }
3534 #endif
3535 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
3536 return 1;
3537 }
3538 spin_unlock(&eb->refs_lock);
3539
3540 return 0;
3541 }
3542
free_extent_buffer(struct extent_buffer * eb)3543 void free_extent_buffer(struct extent_buffer *eb)
3544 {
3545 int refs;
3546 if (!eb)
3547 return;
3548
3549 refs = refcount_read(&eb->refs);
3550 while (1) {
3551 if (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags)) {
3552 if (refs == 1)
3553 break;
3554 } else if (refs <= 3) {
3555 break;
3556 }
3557
3558 /* Optimization to avoid locking eb->refs_lock. */
3559 if (atomic_try_cmpxchg(&eb->refs.refs, &refs, refs - 1))
3560 return;
3561 }
3562
3563 spin_lock(&eb->refs_lock);
3564 if (refcount_read(&eb->refs) == 2 &&
3565 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
3566 !extent_buffer_under_io(eb) &&
3567 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3568 refcount_dec(&eb->refs);
3569
3570 /*
3571 * I know this is terrible, but it's temporary until we stop tracking
3572 * the uptodate bits and such for the extent buffers.
3573 */
3574 release_extent_buffer(eb);
3575 }
3576
free_extent_buffer_stale(struct extent_buffer * eb)3577 void free_extent_buffer_stale(struct extent_buffer *eb)
3578 {
3579 if (!eb)
3580 return;
3581
3582 spin_lock(&eb->refs_lock);
3583 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
3584
3585 if (refcount_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3586 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3587 refcount_dec(&eb->refs);
3588 release_extent_buffer(eb);
3589 }
3590
btree_clear_folio_dirty_tag(struct folio * folio)3591 static void btree_clear_folio_dirty_tag(struct folio *folio)
3592 {
3593 ASSERT(!folio_test_dirty(folio));
3594 ASSERT(folio_test_locked(folio));
3595 xa_lock_irq(&folio->mapping->i_pages);
3596 if (!folio_test_dirty(folio))
3597 __xa_clear_mark(&folio->mapping->i_pages, folio->index,
3598 PAGECACHE_TAG_DIRTY);
3599 xa_unlock_irq(&folio->mapping->i_pages);
3600 }
3601
btrfs_clear_buffer_dirty(struct btrfs_trans_handle * trans,struct extent_buffer * eb)3602 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
3603 struct extent_buffer *eb)
3604 {
3605 struct btrfs_fs_info *fs_info = eb->fs_info;
3606
3607 btrfs_assert_tree_write_locked(eb);
3608
3609 if (trans && btrfs_header_generation(eb) != trans->transid)
3610 return;
3611
3612 /*
3613 * Instead of clearing the dirty flag off of the buffer, mark it as
3614 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve
3615 * write-ordering in zoned mode, without the need to later re-dirty
3616 * the extent_buffer.
3617 *
3618 * The actual zeroout of the buffer will happen later in
3619 * btree_csum_one_bio.
3620 */
3621 if (btrfs_is_zoned(fs_info) && test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3622 set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags);
3623 return;
3624 }
3625
3626 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
3627 return;
3628
3629 buffer_tree_clear_mark(eb, PAGECACHE_TAG_DIRTY);
3630 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
3631 fs_info->dirty_metadata_batch);
3632
3633 for (int i = 0; i < num_extent_folios(eb); i++) {
3634 struct folio *folio = eb->folios[i];
3635 bool last;
3636
3637 if (!folio_test_dirty(folio))
3638 continue;
3639 folio_lock(folio);
3640 last = btrfs_meta_folio_clear_and_test_dirty(folio, eb);
3641 if (last)
3642 btree_clear_folio_dirty_tag(folio);
3643 folio_unlock(folio);
3644 }
3645 WARN_ON(refcount_read(&eb->refs) == 0);
3646 }
3647
set_extent_buffer_dirty(struct extent_buffer * eb)3648 void set_extent_buffer_dirty(struct extent_buffer *eb)
3649 {
3650 bool was_dirty;
3651
3652 check_buffer_tree_ref(eb);
3653
3654 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3655
3656 WARN_ON(refcount_read(&eb->refs) == 0);
3657 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
3658 WARN_ON(test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags));
3659
3660 if (!was_dirty) {
3661 bool subpage = btrfs_meta_is_subpage(eb->fs_info);
3662
3663 /*
3664 * For subpage case, we can have other extent buffers in the
3665 * same page, and in clear_extent_buffer_dirty() we
3666 * have to clear page dirty without subpage lock held.
3667 * This can cause race where our page gets dirty cleared after
3668 * we just set it.
3669 *
3670 * Thankfully, clear_extent_buffer_dirty() has locked
3671 * its page for other reasons, we can use page lock to prevent
3672 * the above race.
3673 */
3674 if (subpage)
3675 folio_lock(eb->folios[0]);
3676 for (int i = 0; i < num_extent_folios(eb); i++)
3677 btrfs_meta_folio_set_dirty(eb->folios[i], eb);
3678 buffer_tree_set_mark(eb, PAGECACHE_TAG_DIRTY);
3679 if (subpage)
3680 folio_unlock(eb->folios[0]);
3681 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
3682 eb->len,
3683 eb->fs_info->dirty_metadata_batch);
3684 }
3685 #ifdef CONFIG_BTRFS_DEBUG
3686 for (int i = 0; i < num_extent_folios(eb); i++)
3687 ASSERT(folio_test_dirty(eb->folios[i]));
3688 #endif
3689 }
3690
clear_extent_buffer_uptodate(struct extent_buffer * eb)3691 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
3692 {
3693
3694 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3695 for (int i = 0; i < num_extent_folios(eb); i++) {
3696 struct folio *folio = eb->folios[i];
3697
3698 if (!folio)
3699 continue;
3700
3701 btrfs_meta_folio_clear_uptodate(folio, eb);
3702 }
3703 }
3704
set_extent_buffer_uptodate(struct extent_buffer * eb)3705 void set_extent_buffer_uptodate(struct extent_buffer *eb)
3706 {
3707
3708 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3709 for (int i = 0; i < num_extent_folios(eb); i++)
3710 btrfs_meta_folio_set_uptodate(eb->folios[i], eb);
3711 }
3712
clear_extent_buffer_reading(struct extent_buffer * eb)3713 static void clear_extent_buffer_reading(struct extent_buffer *eb)
3714 {
3715 clear_and_wake_up_bit(EXTENT_BUFFER_READING, &eb->bflags);
3716 }
3717
end_bbio_meta_read(struct btrfs_bio * bbio)3718 static void end_bbio_meta_read(struct btrfs_bio *bbio)
3719 {
3720 struct extent_buffer *eb = bbio->private;
3721 bool uptodate = !bbio->bio.bi_status;
3722
3723 /*
3724 * If the extent buffer is marked UPTODATE before the read operation
3725 * completes, other calls to read_extent_buffer_pages() will return
3726 * early without waiting for the read to finish, causing data races.
3727 */
3728 WARN_ON(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags));
3729
3730 eb->read_mirror = bbio->mirror_num;
3731
3732 if (uptodate &&
3733 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
3734 uptodate = false;
3735
3736 if (uptodate)
3737 set_extent_buffer_uptodate(eb);
3738 else
3739 clear_extent_buffer_uptodate(eb);
3740
3741 clear_extent_buffer_reading(eb);
3742 free_extent_buffer(eb);
3743
3744 bio_put(&bbio->bio);
3745 }
3746
read_extent_buffer_pages_nowait(struct extent_buffer * eb,int mirror_num,const struct btrfs_tree_parent_check * check)3747 int read_extent_buffer_pages_nowait(struct extent_buffer *eb, int mirror_num,
3748 const struct btrfs_tree_parent_check *check)
3749 {
3750 struct btrfs_bio *bbio;
3751
3752 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3753 return 0;
3754
3755 /*
3756 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
3757 * operation, which could potentially still be in flight. In this case
3758 * we simply want to return an error.
3759 */
3760 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
3761 return -EIO;
3762
3763 /* Someone else is already reading the buffer, just wait for it. */
3764 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
3765 return 0;
3766
3767 /*
3768 * Between the initial test_bit(EXTENT_BUFFER_UPTODATE) and the above
3769 * test_and_set_bit(EXTENT_BUFFER_READING), someone else could have
3770 * started and finished reading the same eb. In this case, UPTODATE
3771 * will now be set, and we shouldn't read it in again.
3772 */
3773 if (unlikely(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) {
3774 clear_extent_buffer_reading(eb);
3775 return 0;
3776 }
3777
3778 eb->read_mirror = 0;
3779 check_buffer_tree_ref(eb);
3780 refcount_inc(&eb->refs);
3781
3782 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
3783 REQ_OP_READ | REQ_META, eb->fs_info,
3784 end_bbio_meta_read, eb);
3785 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
3786 bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
3787 bbio->file_offset = eb->start;
3788 memcpy(&bbio->parent_check, check, sizeof(*check));
3789 for (int i = 0; i < num_extent_folios(eb); i++) {
3790 struct folio *folio = eb->folios[i];
3791 u64 range_start = max_t(u64, eb->start, folio_pos(folio));
3792 u32 range_len = min_t(u64, folio_end(folio),
3793 eb->start + eb->len) - range_start;
3794
3795 bio_add_folio_nofail(&bbio->bio, folio, range_len,
3796 offset_in_folio(folio, range_start));
3797 }
3798 btrfs_submit_bbio(bbio, mirror_num);
3799 return 0;
3800 }
3801
read_extent_buffer_pages(struct extent_buffer * eb,int mirror_num,const struct btrfs_tree_parent_check * check)3802 int read_extent_buffer_pages(struct extent_buffer *eb, int mirror_num,
3803 const struct btrfs_tree_parent_check *check)
3804 {
3805 int ret;
3806
3807 ret = read_extent_buffer_pages_nowait(eb, mirror_num, check);
3808 if (ret < 0)
3809 return ret;
3810
3811 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
3812 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3813 return -EIO;
3814 return 0;
3815 }
3816
report_eb_range(const struct extent_buffer * eb,unsigned long start,unsigned long len)3817 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
3818 unsigned long len)
3819 {
3820 btrfs_warn(eb->fs_info,
3821 "access to eb bytenr %llu len %u out of range start %lu len %lu",
3822 eb->start, eb->len, start, len);
3823 DEBUG_WARN();
3824
3825 return true;
3826 }
3827
3828 /*
3829 * Check if the [start, start + len) range is valid before reading/writing
3830 * the eb.
3831 * NOTE: @start and @len are offset inside the eb, not logical address.
3832 *
3833 * Caller should not touch the dst/src memory if this function returns error.
3834 */
check_eb_range(const struct extent_buffer * eb,unsigned long start,unsigned long len)3835 static inline int check_eb_range(const struct extent_buffer *eb,
3836 unsigned long start, unsigned long len)
3837 {
3838 unsigned long offset;
3839
3840 /* start, start + len should not go beyond eb->len nor overflow */
3841 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
3842 return report_eb_range(eb, start, len);
3843
3844 return false;
3845 }
3846
read_extent_buffer(const struct extent_buffer * eb,void * dstv,unsigned long start,unsigned long len)3847 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
3848 unsigned long start, unsigned long len)
3849 {
3850 const int unit_size = eb->folio_size;
3851 size_t cur;
3852 size_t offset;
3853 char *dst = (char *)dstv;
3854 unsigned long i = get_eb_folio_index(eb, start);
3855
3856 if (check_eb_range(eb, start, len)) {
3857 /*
3858 * Invalid range hit, reset the memory, so callers won't get
3859 * some random garbage for their uninitialized memory.
3860 */
3861 memset(dstv, 0, len);
3862 return;
3863 }
3864
3865 if (eb->addr) {
3866 memcpy(dstv, eb->addr + start, len);
3867 return;
3868 }
3869
3870 offset = get_eb_offset_in_folio(eb, start);
3871
3872 while (len > 0) {
3873 char *kaddr;
3874
3875 cur = min(len, unit_size - offset);
3876 kaddr = folio_address(eb->folios[i]);
3877 memcpy(dst, kaddr + offset, cur);
3878
3879 dst += cur;
3880 len -= cur;
3881 offset = 0;
3882 i++;
3883 }
3884 }
3885
read_extent_buffer_to_user_nofault(const struct extent_buffer * eb,void __user * dstv,unsigned long start,unsigned long len)3886 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
3887 void __user *dstv,
3888 unsigned long start, unsigned long len)
3889 {
3890 const int unit_size = eb->folio_size;
3891 size_t cur;
3892 size_t offset;
3893 char __user *dst = (char __user *)dstv;
3894 unsigned long i = get_eb_folio_index(eb, start);
3895 int ret = 0;
3896
3897 WARN_ON(start > eb->len);
3898 WARN_ON(start + len > eb->start + eb->len);
3899
3900 if (eb->addr) {
3901 if (copy_to_user_nofault(dstv, eb->addr + start, len))
3902 ret = -EFAULT;
3903 return ret;
3904 }
3905
3906 offset = get_eb_offset_in_folio(eb, start);
3907
3908 while (len > 0) {
3909 char *kaddr;
3910
3911 cur = min(len, unit_size - offset);
3912 kaddr = folio_address(eb->folios[i]);
3913 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
3914 ret = -EFAULT;
3915 break;
3916 }
3917
3918 dst += cur;
3919 len -= cur;
3920 offset = 0;
3921 i++;
3922 }
3923
3924 return ret;
3925 }
3926
memcmp_extent_buffer(const struct extent_buffer * eb,const void * ptrv,unsigned long start,unsigned long len)3927 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
3928 unsigned long start, unsigned long len)
3929 {
3930 const int unit_size = eb->folio_size;
3931 size_t cur;
3932 size_t offset;
3933 char *kaddr;
3934 char *ptr = (char *)ptrv;
3935 unsigned long i = get_eb_folio_index(eb, start);
3936 int ret = 0;
3937
3938 if (check_eb_range(eb, start, len))
3939 return -EINVAL;
3940
3941 if (eb->addr)
3942 return memcmp(ptrv, eb->addr + start, len);
3943
3944 offset = get_eb_offset_in_folio(eb, start);
3945
3946 while (len > 0) {
3947 cur = min(len, unit_size - offset);
3948 kaddr = folio_address(eb->folios[i]);
3949 ret = memcmp(ptr, kaddr + offset, cur);
3950 if (ret)
3951 break;
3952
3953 ptr += cur;
3954 len -= cur;
3955 offset = 0;
3956 i++;
3957 }
3958 return ret;
3959 }
3960
3961 /*
3962 * Check that the extent buffer is uptodate.
3963 *
3964 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
3965 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
3966 */
assert_eb_folio_uptodate(const struct extent_buffer * eb,int i)3967 static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i)
3968 {
3969 struct btrfs_fs_info *fs_info = eb->fs_info;
3970 struct folio *folio = eb->folios[i];
3971
3972 ASSERT(folio);
3973
3974 /*
3975 * If we are using the commit root we could potentially clear a page
3976 * Uptodate while we're using the extent buffer that we've previously
3977 * looked up. We don't want to complain in this case, as the page was
3978 * valid before, we just didn't write it out. Instead we want to catch
3979 * the case where we didn't actually read the block properly, which
3980 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
3981 */
3982 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3983 return;
3984
3985 if (btrfs_meta_is_subpage(fs_info)) {
3986 folio = eb->folios[0];
3987 ASSERT(i == 0);
3988 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio,
3989 eb->start, eb->len)))
3990 btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len);
3991 } else {
3992 WARN_ON(!folio_test_uptodate(folio));
3993 }
3994 }
3995
__write_extent_buffer(const struct extent_buffer * eb,const void * srcv,unsigned long start,unsigned long len,bool use_memmove)3996 static void __write_extent_buffer(const struct extent_buffer *eb,
3997 const void *srcv, unsigned long start,
3998 unsigned long len, bool use_memmove)
3999 {
4000 const int unit_size = eb->folio_size;
4001 size_t cur;
4002 size_t offset;
4003 char *kaddr;
4004 const char *src = (const char *)srcv;
4005 unsigned long i = get_eb_folio_index(eb, start);
4006 /* For unmapped (dummy) ebs, no need to check their uptodate status. */
4007 const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4008
4009 if (check_eb_range(eb, start, len))
4010 return;
4011
4012 if (eb->addr) {
4013 if (use_memmove)
4014 memmove(eb->addr + start, srcv, len);
4015 else
4016 memcpy(eb->addr + start, srcv, len);
4017 return;
4018 }
4019
4020 offset = get_eb_offset_in_folio(eb, start);
4021
4022 while (len > 0) {
4023 if (check_uptodate)
4024 assert_eb_folio_uptodate(eb, i);
4025
4026 cur = min(len, unit_size - offset);
4027 kaddr = folio_address(eb->folios[i]);
4028 if (use_memmove)
4029 memmove(kaddr + offset, src, cur);
4030 else
4031 memcpy(kaddr + offset, src, cur);
4032
4033 src += cur;
4034 len -= cur;
4035 offset = 0;
4036 i++;
4037 }
4038 }
4039
write_extent_buffer(const struct extent_buffer * eb,const void * srcv,unsigned long start,unsigned long len)4040 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
4041 unsigned long start, unsigned long len)
4042 {
4043 return __write_extent_buffer(eb, srcv, start, len, false);
4044 }
4045
memset_extent_buffer(const struct extent_buffer * eb,int c,unsigned long start,unsigned long len)4046 static void memset_extent_buffer(const struct extent_buffer *eb, int c,
4047 unsigned long start, unsigned long len)
4048 {
4049 const int unit_size = eb->folio_size;
4050 unsigned long cur = start;
4051
4052 if (eb->addr) {
4053 memset(eb->addr + start, c, len);
4054 return;
4055 }
4056
4057 while (cur < start + len) {
4058 unsigned long index = get_eb_folio_index(eb, cur);
4059 unsigned int offset = get_eb_offset_in_folio(eb, cur);
4060 unsigned int cur_len = min(start + len - cur, unit_size - offset);
4061
4062 assert_eb_folio_uptodate(eb, index);
4063 memset(folio_address(eb->folios[index]) + offset, c, cur_len);
4064
4065 cur += cur_len;
4066 }
4067 }
4068
memzero_extent_buffer(const struct extent_buffer * eb,unsigned long start,unsigned long len)4069 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
4070 unsigned long len)
4071 {
4072 if (check_eb_range(eb, start, len))
4073 return;
4074 return memset_extent_buffer(eb, 0, start, len);
4075 }
4076
copy_extent_buffer_full(const struct extent_buffer * dst,const struct extent_buffer * src)4077 void copy_extent_buffer_full(const struct extent_buffer *dst,
4078 const struct extent_buffer *src)
4079 {
4080 const int unit_size = src->folio_size;
4081 unsigned long cur = 0;
4082
4083 ASSERT(dst->len == src->len);
4084
4085 while (cur < src->len) {
4086 unsigned long index = get_eb_folio_index(src, cur);
4087 unsigned long offset = get_eb_offset_in_folio(src, cur);
4088 unsigned long cur_len = min(src->len, unit_size - offset);
4089 void *addr = folio_address(src->folios[index]) + offset;
4090
4091 write_extent_buffer(dst, addr, cur, cur_len);
4092
4093 cur += cur_len;
4094 }
4095 }
4096
copy_extent_buffer(const struct extent_buffer * dst,const struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,unsigned long len)4097 void copy_extent_buffer(const struct extent_buffer *dst,
4098 const struct extent_buffer *src,
4099 unsigned long dst_offset, unsigned long src_offset,
4100 unsigned long len)
4101 {
4102 const int unit_size = dst->folio_size;
4103 u64 dst_len = dst->len;
4104 size_t cur;
4105 size_t offset;
4106 char *kaddr;
4107 unsigned long i = get_eb_folio_index(dst, dst_offset);
4108
4109 if (check_eb_range(dst, dst_offset, len) ||
4110 check_eb_range(src, src_offset, len))
4111 return;
4112
4113 WARN_ON(src->len != dst_len);
4114
4115 offset = get_eb_offset_in_folio(dst, dst_offset);
4116
4117 while (len > 0) {
4118 assert_eb_folio_uptodate(dst, i);
4119
4120 cur = min(len, (unsigned long)(unit_size - offset));
4121
4122 kaddr = folio_address(dst->folios[i]);
4123 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4124
4125 src_offset += cur;
4126 len -= cur;
4127 offset = 0;
4128 i++;
4129 }
4130 }
4131
4132 /*
4133 * Calculate the folio and offset of the byte containing the given bit number.
4134 *
4135 * @eb: the extent buffer
4136 * @start: offset of the bitmap item in the extent buffer
4137 * @nr: bit number
4138 * @folio_index: return index of the folio in the extent buffer that contains
4139 * the given bit number
4140 * @folio_offset: return offset into the folio given by folio_index
4141 *
4142 * This helper hides the ugliness of finding the byte in an extent buffer which
4143 * contains a given bit.
4144 */
eb_bitmap_offset(const struct extent_buffer * eb,unsigned long start,unsigned long nr,unsigned long * folio_index,size_t * folio_offset)4145 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
4146 unsigned long start, unsigned long nr,
4147 unsigned long *folio_index,
4148 size_t *folio_offset)
4149 {
4150 size_t byte_offset = BIT_BYTE(nr);
4151 size_t offset;
4152
4153 /*
4154 * The byte we want is the offset of the extent buffer + the offset of
4155 * the bitmap item in the extent buffer + the offset of the byte in the
4156 * bitmap item.
4157 */
4158 offset = start + offset_in_eb_folio(eb, eb->start) + byte_offset;
4159
4160 *folio_index = offset >> eb->folio_shift;
4161 *folio_offset = offset_in_eb_folio(eb, offset);
4162 }
4163
4164 /*
4165 * Determine whether a bit in a bitmap item is set.
4166 *
4167 * @eb: the extent buffer
4168 * @start: offset of the bitmap item in the extent buffer
4169 * @nr: bit number to test
4170 */
extent_buffer_test_bit(const struct extent_buffer * eb,unsigned long start,unsigned long nr)4171 bool extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
4172 unsigned long nr)
4173 {
4174 unsigned long i;
4175 size_t offset;
4176 u8 *kaddr;
4177
4178 eb_bitmap_offset(eb, start, nr, &i, &offset);
4179 assert_eb_folio_uptodate(eb, i);
4180 kaddr = folio_address(eb->folios[i]);
4181 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
4182 }
4183
extent_buffer_get_byte(const struct extent_buffer * eb,unsigned long bytenr)4184 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr)
4185 {
4186 unsigned long index = get_eb_folio_index(eb, bytenr);
4187
4188 if (check_eb_range(eb, bytenr, 1))
4189 return NULL;
4190 return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr);
4191 }
4192
4193 /*
4194 * Set an area of a bitmap to 1.
4195 *
4196 * @eb: the extent buffer
4197 * @start: offset of the bitmap item in the extent buffer
4198 * @pos: bit number of the first bit
4199 * @len: number of bits to set
4200 */
extent_buffer_bitmap_set(const struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)4201 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
4202 unsigned long pos, unsigned long len)
4203 {
4204 unsigned int first_byte = start + BIT_BYTE(pos);
4205 unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4206 const bool same_byte = (first_byte == last_byte);
4207 u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4208 u8 *kaddr;
4209
4210 if (same_byte)
4211 mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4212
4213 /* Handle the first byte. */
4214 kaddr = extent_buffer_get_byte(eb, first_byte);
4215 *kaddr |= mask;
4216 if (same_byte)
4217 return;
4218
4219 /* Handle the byte aligned part. */
4220 ASSERT(first_byte + 1 <= last_byte);
4221 memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1);
4222
4223 /* Handle the last byte. */
4224 kaddr = extent_buffer_get_byte(eb, last_byte);
4225 *kaddr |= BITMAP_LAST_BYTE_MASK(pos + len);
4226 }
4227
4228
4229 /*
4230 * Clear an area of a bitmap.
4231 *
4232 * @eb: the extent buffer
4233 * @start: offset of the bitmap item in the extent buffer
4234 * @pos: bit number of the first bit
4235 * @len: number of bits to clear
4236 */
extent_buffer_bitmap_clear(const struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)4237 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
4238 unsigned long start, unsigned long pos,
4239 unsigned long len)
4240 {
4241 unsigned int first_byte = start + BIT_BYTE(pos);
4242 unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4243 const bool same_byte = (first_byte == last_byte);
4244 u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4245 u8 *kaddr;
4246
4247 if (same_byte)
4248 mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4249
4250 /* Handle the first byte. */
4251 kaddr = extent_buffer_get_byte(eb, first_byte);
4252 *kaddr &= ~mask;
4253 if (same_byte)
4254 return;
4255
4256 /* Handle the byte aligned part. */
4257 ASSERT(first_byte + 1 <= last_byte);
4258 memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1);
4259
4260 /* Handle the last byte. */
4261 kaddr = extent_buffer_get_byte(eb, last_byte);
4262 *kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len);
4263 }
4264
areas_overlap(unsigned long src,unsigned long dst,unsigned long len)4265 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4266 {
4267 unsigned long distance = (src > dst) ? src - dst : dst - src;
4268 return distance < len;
4269 }
4270
memcpy_extent_buffer(const struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)4271 void memcpy_extent_buffer(const struct extent_buffer *dst,
4272 unsigned long dst_offset, unsigned long src_offset,
4273 unsigned long len)
4274 {
4275 const int unit_size = dst->folio_size;
4276 unsigned long cur_off = 0;
4277
4278 if (check_eb_range(dst, dst_offset, len) ||
4279 check_eb_range(dst, src_offset, len))
4280 return;
4281
4282 if (dst->addr) {
4283 const bool use_memmove = areas_overlap(src_offset, dst_offset, len);
4284
4285 if (use_memmove)
4286 memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4287 else
4288 memcpy(dst->addr + dst_offset, dst->addr + src_offset, len);
4289 return;
4290 }
4291
4292 while (cur_off < len) {
4293 unsigned long cur_src = cur_off + src_offset;
4294 unsigned long folio_index = get_eb_folio_index(dst, cur_src);
4295 unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src);
4296 unsigned long cur_len = min(src_offset + len - cur_src,
4297 unit_size - folio_off);
4298 void *src_addr = folio_address(dst->folios[folio_index]) + folio_off;
4299 const bool use_memmove = areas_overlap(src_offset + cur_off,
4300 dst_offset + cur_off, cur_len);
4301
4302 __write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len,
4303 use_memmove);
4304 cur_off += cur_len;
4305 }
4306 }
4307
memmove_extent_buffer(const struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)4308 void memmove_extent_buffer(const struct extent_buffer *dst,
4309 unsigned long dst_offset, unsigned long src_offset,
4310 unsigned long len)
4311 {
4312 unsigned long dst_end = dst_offset + len - 1;
4313 unsigned long src_end = src_offset + len - 1;
4314
4315 if (check_eb_range(dst, dst_offset, len) ||
4316 check_eb_range(dst, src_offset, len))
4317 return;
4318
4319 if (dst_offset < src_offset) {
4320 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4321 return;
4322 }
4323
4324 if (dst->addr) {
4325 memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4326 return;
4327 }
4328
4329 while (len > 0) {
4330 unsigned long src_i;
4331 size_t cur;
4332 size_t dst_off_in_folio;
4333 size_t src_off_in_folio;
4334 void *src_addr;
4335 bool use_memmove;
4336
4337 src_i = get_eb_folio_index(dst, src_end);
4338
4339 dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end);
4340 src_off_in_folio = get_eb_offset_in_folio(dst, src_end);
4341
4342 cur = min_t(unsigned long, len, src_off_in_folio + 1);
4343 cur = min(cur, dst_off_in_folio + 1);
4344
4345 src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio -
4346 cur + 1;
4347 use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1,
4348 cur);
4349
4350 __write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur,
4351 use_memmove);
4352
4353 dst_end -= cur;
4354 src_end -= cur;
4355 len -= cur;
4356 }
4357 }
4358
try_release_subpage_extent_buffer(struct folio * folio)4359 static int try_release_subpage_extent_buffer(struct folio *folio)
4360 {
4361 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
4362 struct extent_buffer *eb;
4363 unsigned long start = (folio_pos(folio) >> fs_info->nodesize_bits);
4364 unsigned long index = start;
4365 unsigned long end = index + (PAGE_SIZE >> fs_info->nodesize_bits) - 1;
4366 int ret;
4367
4368 rcu_read_lock();
4369 xa_for_each_range(&fs_info->buffer_tree, index, eb, start, end) {
4370 /*
4371 * The same as try_release_extent_buffer(), to ensure the eb
4372 * won't disappear out from under us.
4373 */
4374 spin_lock(&eb->refs_lock);
4375 rcu_read_unlock();
4376
4377 if (refcount_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4378 spin_unlock(&eb->refs_lock);
4379 rcu_read_lock();
4380 continue;
4381 }
4382
4383 /*
4384 * If tree ref isn't set then we know the ref on this eb is a
4385 * real ref, so just return, this eb will likely be freed soon
4386 * anyway.
4387 */
4388 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4389 spin_unlock(&eb->refs_lock);
4390 break;
4391 }
4392
4393 /*
4394 * Here we don't care about the return value, we will always
4395 * check the folio private at the end. And
4396 * release_extent_buffer() will release the refs_lock.
4397 */
4398 release_extent_buffer(eb);
4399 rcu_read_lock();
4400 }
4401 rcu_read_unlock();
4402
4403 /*
4404 * Finally to check if we have cleared folio private, as if we have
4405 * released all ebs in the page, the folio private should be cleared now.
4406 */
4407 spin_lock(&folio->mapping->i_private_lock);
4408 if (!folio_test_private(folio))
4409 ret = 1;
4410 else
4411 ret = 0;
4412 spin_unlock(&folio->mapping->i_private_lock);
4413 return ret;
4414 }
4415
try_release_extent_buffer(struct folio * folio)4416 int try_release_extent_buffer(struct folio *folio)
4417 {
4418 struct extent_buffer *eb;
4419
4420 if (btrfs_meta_is_subpage(folio_to_fs_info(folio)))
4421 return try_release_subpage_extent_buffer(folio);
4422
4423 /*
4424 * We need to make sure nobody is changing folio private, as we rely on
4425 * folio private as the pointer to extent buffer.
4426 */
4427 spin_lock(&folio->mapping->i_private_lock);
4428 if (!folio_test_private(folio)) {
4429 spin_unlock(&folio->mapping->i_private_lock);
4430 return 1;
4431 }
4432
4433 eb = folio_get_private(folio);
4434 BUG_ON(!eb);
4435
4436 /*
4437 * This is a little awful but should be ok, we need to make sure that
4438 * the eb doesn't disappear out from under us while we're looking at
4439 * this page.
4440 */
4441 spin_lock(&eb->refs_lock);
4442 if (refcount_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4443 spin_unlock(&eb->refs_lock);
4444 spin_unlock(&folio->mapping->i_private_lock);
4445 return 0;
4446 }
4447 spin_unlock(&folio->mapping->i_private_lock);
4448
4449 /*
4450 * If tree ref isn't set then we know the ref on this eb is a real ref,
4451 * so just return, this page will likely be freed soon anyway.
4452 */
4453 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4454 spin_unlock(&eb->refs_lock);
4455 return 0;
4456 }
4457
4458 return release_extent_buffer(eb);
4459 }
4460
4461 /*
4462 * Attempt to readahead a child block.
4463 *
4464 * @fs_info: the fs_info
4465 * @bytenr: bytenr to read
4466 * @owner_root: objectid of the root that owns this eb
4467 * @gen: generation for the uptodate check, can be 0
4468 * @level: level for the eb
4469 *
4470 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a
4471 * normal uptodate check of the eb, without checking the generation. If we have
4472 * to read the block we will not block on anything.
4473 */
btrfs_readahead_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,u64 gen,int level)4474 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
4475 u64 bytenr, u64 owner_root, u64 gen, int level)
4476 {
4477 struct btrfs_tree_parent_check check = {
4478 .level = level,
4479 .transid = gen
4480 };
4481 struct extent_buffer *eb;
4482 int ret;
4483
4484 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
4485 if (IS_ERR(eb))
4486 return;
4487
4488 if (btrfs_buffer_uptodate(eb, gen, 1)) {
4489 free_extent_buffer(eb);
4490 return;
4491 }
4492
4493 ret = read_extent_buffer_pages_nowait(eb, 0, &check);
4494 if (ret < 0)
4495 free_extent_buffer_stale(eb);
4496 else
4497 free_extent_buffer(eb);
4498 }
4499
4500 /*
4501 * Readahead a node's child block.
4502 *
4503 * @node: parent node we're reading from
4504 * @slot: slot in the parent node for the child we want to read
4505 *
4506 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
4507 * the slot in the node provided.
4508 */
btrfs_readahead_node_child(struct extent_buffer * node,int slot)4509 void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
4510 {
4511 btrfs_readahead_tree_block(node->fs_info,
4512 btrfs_node_blockptr(node, slot),
4513 btrfs_header_owner(node),
4514 btrfs_node_ptr_generation(node, slot),
4515 btrfs_header_level(node) - 1);
4516 }
4517