xref: /linux/arch/mips/kernel/sync-r4k.c (revision a1ff5a7d78a036d6c2178ee5acd6ba4946243800)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Count register synchronisation.
4  *
5  * Derived from arch/x86/kernel/tsc_sync.c
6  * Copyright (C) 2006, Red Hat, Inc., Ingo Molnar
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/irqflags.h>
11 #include <linux/cpumask.h>
12 #include <linux/atomic.h>
13 #include <linux/nmi.h>
14 #include <linux/smp.h>
15 #include <linux/spinlock.h>
16 
17 #include <asm/r4k-timer.h>
18 #include <asm/mipsregs.h>
19 #include <asm/time.h>
20 
21 #define COUNTON		100
22 #define NR_LOOPS	3
23 #define LOOP_TIMEOUT	20
24 
25 /*
26  * Entry/exit counters that make sure that both CPUs
27  * run the measurement code at once:
28  */
29 static atomic_t start_count;
30 static atomic_t stop_count;
31 static atomic_t test_runs;
32 
33 /*
34  * We use a raw spinlock in this exceptional case, because
35  * we want to have the fastest, inlined, non-debug version
36  * of a critical section, to be able to prove counter time-warps:
37  */
38 static arch_spinlock_t sync_lock = __ARCH_SPIN_LOCK_UNLOCKED;
39 
40 static uint32_t last_counter;
41 static uint32_t max_warp;
42 static int nr_warps;
43 static int random_warps;
44 
45 /*
46  * Counter warp measurement loop running on both CPUs.
47  */
check_counter_warp(void)48 static uint32_t check_counter_warp(void)
49 {
50 	uint32_t start, now, prev, end, cur_max_warp = 0;
51 	int i, cur_warps = 0;
52 
53 	start = read_c0_count();
54 	end = start + (uint32_t) mips_hpt_frequency / 1000 * LOOP_TIMEOUT;
55 
56 	for (i = 0; ; i++) {
57 		/*
58 		 * We take the global lock, measure counter, save the
59 		 * previous counter that was measured (possibly on
60 		 * another CPU) and update the previous counter timestamp.
61 		 */
62 		arch_spin_lock(&sync_lock);
63 		prev = last_counter;
64 		now = read_c0_count();
65 		last_counter = now;
66 		arch_spin_unlock(&sync_lock);
67 
68 		/*
69 		 * Be nice every now and then (and also check whether
70 		 * measurement is done [we also insert a 10 million
71 		 * loops safety exit, so we dont lock up in case the
72 		 * counter is totally broken]):
73 		 */
74 		if (unlikely(!(i & 7))) {
75 			if (now > end || i > 10000000)
76 				break;
77 			cpu_relax();
78 			touch_nmi_watchdog();
79 		}
80 		/*
81 		 * Outside the critical section we can now see whether
82 		 * we saw a time-warp of the counter going backwards:
83 		 */
84 		if (unlikely(prev > now)) {
85 			arch_spin_lock(&sync_lock);
86 			max_warp = max(max_warp, prev - now);
87 			cur_max_warp = max_warp;
88 			/*
89 			 * Check whether this bounces back and forth. Only
90 			 * one CPU should observe time going backwards.
91 			 */
92 			if (cur_warps != nr_warps)
93 				random_warps++;
94 			nr_warps++;
95 			cur_warps = nr_warps;
96 			arch_spin_unlock(&sync_lock);
97 		}
98 	}
99 	WARN(!(now-start),
100 		"Warning: zero counter calibration delta: %d [max: %d]\n",
101 			now-start, end-start);
102 	return cur_max_warp;
103 }
104 
105 /*
106  * The freshly booted CPU initiates this via an async SMP function call.
107  */
check_counter_sync_source(void * __cpu)108 static void check_counter_sync_source(void *__cpu)
109 {
110 	unsigned int cpu = (unsigned long)__cpu;
111 	int cpus = 2;
112 
113 	atomic_set(&test_runs, NR_LOOPS);
114 retry:
115 	/* Wait for the target to start. */
116 	while (atomic_read(&start_count) != cpus - 1)
117 		cpu_relax();
118 
119 	/*
120 	 * Trigger the target to continue into the measurement too:
121 	 */
122 	atomic_inc(&start_count);
123 
124 	check_counter_warp();
125 
126 	while (atomic_read(&stop_count) != cpus-1)
127 		cpu_relax();
128 
129 	/*
130 	 * If the test was successful set the number of runs to zero and
131 	 * stop. If not, decrement the number of runs an check if we can
132 	 * retry. In case of random warps no retry is attempted.
133 	 */
134 	if (!nr_warps) {
135 		atomic_set(&test_runs, 0);
136 
137 		pr_info("Counter synchronization [CPU#%d -> CPU#%u]: passed\n",
138 			smp_processor_id(), cpu);
139 	} else if (atomic_dec_and_test(&test_runs) || random_warps) {
140 		/* Force it to 0 if random warps brought us here */
141 		atomic_set(&test_runs, 0);
142 
143 		pr_info("Counter synchronization [CPU#%d -> CPU#%u]:\n",
144 			smp_processor_id(), cpu);
145 		pr_info("Measured %d cycles counter warp between CPUs", max_warp);
146 		if (random_warps)
147 			pr_warn("Counter warped randomly between CPUs\n");
148 	}
149 
150 	/*
151 	 * Reset it - just in case we boot another CPU later:
152 	 */
153 	atomic_set(&start_count, 0);
154 	random_warps = 0;
155 	nr_warps = 0;
156 	max_warp = 0;
157 	last_counter = 0;
158 
159 	/*
160 	 * Let the target continue with the bootup:
161 	 */
162 	atomic_inc(&stop_count);
163 
164 	/*
165 	 * Retry, if there is a chance to do so.
166 	 */
167 	if (atomic_read(&test_runs) > 0)
168 		goto retry;
169 }
170 
171 /*
172  * Freshly booted CPUs call into this:
173  */
synchronise_count_slave(int cpu)174 void synchronise_count_slave(int cpu)
175 {
176 	uint32_t cur_max_warp, gbl_max_warp, count;
177 	int cpus = 2;
178 
179 	if (!cpu_has_counter || !mips_hpt_frequency)
180 		return;
181 
182 	/* Kick the control CPU into the counter synchronization function */
183 	smp_call_function_single(cpumask_first(cpu_online_mask),
184 				 check_counter_sync_source,
185 				 (unsigned long *)(unsigned long)cpu, 0);
186 retry:
187 	/*
188 	 * Register this CPU's participation and wait for the
189 	 * source CPU to start the measurement:
190 	 */
191 	atomic_inc(&start_count);
192 	while (atomic_read(&start_count) != cpus)
193 		cpu_relax();
194 
195 	cur_max_warp = check_counter_warp();
196 
197 	/*
198 	 * Store the maximum observed warp value for a potential retry:
199 	 */
200 	gbl_max_warp = max_warp;
201 
202 	/*
203 	 * Ok, we are done:
204 	 */
205 	atomic_inc(&stop_count);
206 
207 	/*
208 	 * Wait for the source CPU to print stuff:
209 	 */
210 	while (atomic_read(&stop_count) != cpus)
211 		cpu_relax();
212 
213 	/*
214 	 * Reset it for the next sync test:
215 	 */
216 	atomic_set(&stop_count, 0);
217 
218 	/*
219 	 * Check the number of remaining test runs. If not zero, the test
220 	 * failed and a retry with adjusted counter is possible. If zero the
221 	 * test was either successful or failed terminally.
222 	 */
223 	if (!atomic_read(&test_runs)) {
224 		/* Arrange for an interrupt in a short while */
225 		write_c0_compare(read_c0_count() + COUNTON);
226 		return;
227 	}
228 
229 	/*
230 	 * If the warp value of this CPU is 0, then the other CPU
231 	 * observed time going backwards so this counter was ahead and
232 	 * needs to move backwards.
233 	 */
234 	if (!cur_max_warp)
235 		cur_max_warp = -gbl_max_warp;
236 
237 	count = read_c0_count();
238 	count += cur_max_warp;
239 	write_c0_count(count);
240 
241 	pr_debug("Counter compensate: CPU%u observed %d warp\n", cpu, cur_max_warp);
242 
243 	goto retry;
244 
245 }
246