xref: /linux/kernel/bpf/verifier.c (revision 5e3fee34f626a8cb8715f5b5409416c481714ebf)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 #include <linux/cpumask.h>
29 #include <linux/bpf_mem_alloc.h>
30 #include <net/xdp.h>
31 #include <linux/trace_events.h>
32 #include <linux/kallsyms.h>
33 
34 #include "disasm.h"
35 
36 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
37 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
38 	[_id] = & _name ## _verifier_ops,
39 #define BPF_MAP_TYPE(_id, _ops)
40 #define BPF_LINK_TYPE(_id, _name)
41 #include <linux/bpf_types.h>
42 #undef BPF_PROG_TYPE
43 #undef BPF_MAP_TYPE
44 #undef BPF_LINK_TYPE
45 };
46 
47 enum bpf_features {
48 	BPF_FEAT_RDONLY_CAST_TO_VOID = 0,
49 	BPF_FEAT_STREAMS	     = 1,
50 	__MAX_BPF_FEAT,
51 };
52 
53 struct bpf_mem_alloc bpf_global_percpu_ma;
54 static bool bpf_global_percpu_ma_set;
55 
56 /* bpf_check() is a static code analyzer that walks eBPF program
57  * instruction by instruction and updates register/stack state.
58  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
59  *
60  * The first pass is depth-first-search to check that the program is a DAG.
61  * It rejects the following programs:
62  * - larger than BPF_MAXINSNS insns
63  * - if loop is present (detected via back-edge)
64  * - unreachable insns exist (shouldn't be a forest. program = one function)
65  * - out of bounds or malformed jumps
66  * The second pass is all possible path descent from the 1st insn.
67  * Since it's analyzing all paths through the program, the length of the
68  * analysis is limited to 64k insn, which may be hit even if total number of
69  * insn is less then 4K, but there are too many branches that change stack/regs.
70  * Number of 'branches to be analyzed' is limited to 1k
71  *
72  * On entry to each instruction, each register has a type, and the instruction
73  * changes the types of the registers depending on instruction semantics.
74  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
75  * copied to R1.
76  *
77  * All registers are 64-bit.
78  * R0 - return register
79  * R1-R5 argument passing registers
80  * R6-R9 callee saved registers
81  * R10 - frame pointer read-only
82  *
83  * At the start of BPF program the register R1 contains a pointer to bpf_context
84  * and has type PTR_TO_CTX.
85  *
86  * Verifier tracks arithmetic operations on pointers in case:
87  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
88  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
89  * 1st insn copies R10 (which has FRAME_PTR) type into R1
90  * and 2nd arithmetic instruction is pattern matched to recognize
91  * that it wants to construct a pointer to some element within stack.
92  * So after 2nd insn, the register R1 has type PTR_TO_STACK
93  * (and -20 constant is saved for further stack bounds checking).
94  * Meaning that this reg is a pointer to stack plus known immediate constant.
95  *
96  * Most of the time the registers have SCALAR_VALUE type, which
97  * means the register has some value, but it's not a valid pointer.
98  * (like pointer plus pointer becomes SCALAR_VALUE type)
99  *
100  * When verifier sees load or store instructions the type of base register
101  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
102  * four pointer types recognized by check_mem_access() function.
103  *
104  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
105  * and the range of [ptr, ptr + map's value_size) is accessible.
106  *
107  * registers used to pass values to function calls are checked against
108  * function argument constraints.
109  *
110  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
111  * It means that the register type passed to this function must be
112  * PTR_TO_STACK and it will be used inside the function as
113  * 'pointer to map element key'
114  *
115  * For example the argument constraints for bpf_map_lookup_elem():
116  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
117  *   .arg1_type = ARG_CONST_MAP_PTR,
118  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
119  *
120  * ret_type says that this function returns 'pointer to map elem value or null'
121  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
122  * 2nd argument should be a pointer to stack, which will be used inside
123  * the helper function as a pointer to map element key.
124  *
125  * On the kernel side the helper function looks like:
126  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
127  * {
128  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
129  *    void *key = (void *) (unsigned long) r2;
130  *    void *value;
131  *
132  *    here kernel can access 'key' and 'map' pointers safely, knowing that
133  *    [key, key + map->key_size) bytes are valid and were initialized on
134  *    the stack of eBPF program.
135  * }
136  *
137  * Corresponding eBPF program may look like:
138  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
139  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
140  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
141  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
142  * here verifier looks at prototype of map_lookup_elem() and sees:
143  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
144  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
145  *
146  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
147  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
148  * and were initialized prior to this call.
149  * If it's ok, then verifier allows this BPF_CALL insn and looks at
150  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
151  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
152  * returns either pointer to map value or NULL.
153  *
154  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
155  * insn, the register holding that pointer in the true branch changes state to
156  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
157  * branch. See check_cond_jmp_op().
158  *
159  * After the call R0 is set to return type of the function and registers R1-R5
160  * are set to NOT_INIT to indicate that they are no longer readable.
161  *
162  * The following reference types represent a potential reference to a kernel
163  * resource which, after first being allocated, must be checked and freed by
164  * the BPF program:
165  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
166  *
167  * When the verifier sees a helper call return a reference type, it allocates a
168  * pointer id for the reference and stores it in the current function state.
169  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
170  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
171  * passes through a NULL-check conditional. For the branch wherein the state is
172  * changed to CONST_IMM, the verifier releases the reference.
173  *
174  * For each helper function that allocates a reference, such as
175  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
176  * bpf_sk_release(). When a reference type passes into the release function,
177  * the verifier also releases the reference. If any unchecked or unreleased
178  * reference remains at the end of the program, the verifier rejects it.
179  */
180 
181 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
182 struct bpf_verifier_stack_elem {
183 	/* verifier state is 'st'
184 	 * before processing instruction 'insn_idx'
185 	 * and after processing instruction 'prev_insn_idx'
186 	 */
187 	struct bpf_verifier_state st;
188 	int insn_idx;
189 	int prev_insn_idx;
190 	struct bpf_verifier_stack_elem *next;
191 	/* length of verifier log at the time this state was pushed on stack */
192 	u32 log_pos;
193 };
194 
195 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
196 #define BPF_COMPLEXITY_LIMIT_STATES	64
197 
198 #define BPF_MAP_KEY_POISON	(1ULL << 63)
199 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
200 
201 #define BPF_GLOBAL_PERCPU_MA_MAX_SIZE  512
202 
203 #define BPF_PRIV_STACK_MIN_SIZE		64
204 
205 static int acquire_reference(struct bpf_verifier_env *env, int insn_idx);
206 static int release_reference_nomark(struct bpf_verifier_state *state, int ref_obj_id);
207 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
208 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
209 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
210 static int ref_set_non_owning(struct bpf_verifier_env *env,
211 			      struct bpf_reg_state *reg);
212 static void specialize_kfunc(struct bpf_verifier_env *env,
213 			     u32 func_id, u16 offset, unsigned long *addr);
214 static bool is_trusted_reg(const struct bpf_reg_state *reg);
215 
216 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
217 {
218 	return aux->map_ptr_state.poison;
219 }
220 
221 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
222 {
223 	return aux->map_ptr_state.unpriv;
224 }
225 
226 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
227 			      struct bpf_map *map,
228 			      bool unpriv, bool poison)
229 {
230 	unpriv |= bpf_map_ptr_unpriv(aux);
231 	aux->map_ptr_state.unpriv = unpriv;
232 	aux->map_ptr_state.poison = poison;
233 	aux->map_ptr_state.map_ptr = map;
234 }
235 
236 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
237 {
238 	return aux->map_key_state & BPF_MAP_KEY_POISON;
239 }
240 
241 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
242 {
243 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
244 }
245 
246 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
247 {
248 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
249 }
250 
251 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
252 {
253 	bool poisoned = bpf_map_key_poisoned(aux);
254 
255 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
256 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
257 }
258 
259 static bool bpf_helper_call(const struct bpf_insn *insn)
260 {
261 	return insn->code == (BPF_JMP | BPF_CALL) &&
262 	       insn->src_reg == 0;
263 }
264 
265 static bool bpf_pseudo_call(const struct bpf_insn *insn)
266 {
267 	return insn->code == (BPF_JMP | BPF_CALL) &&
268 	       insn->src_reg == BPF_PSEUDO_CALL;
269 }
270 
271 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
272 {
273 	return insn->code == (BPF_JMP | BPF_CALL) &&
274 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
275 }
276 
277 struct bpf_call_arg_meta {
278 	struct bpf_map *map_ptr;
279 	bool raw_mode;
280 	bool pkt_access;
281 	u8 release_regno;
282 	int regno;
283 	int access_size;
284 	int mem_size;
285 	u64 msize_max_value;
286 	int ref_obj_id;
287 	int dynptr_id;
288 	int map_uid;
289 	int func_id;
290 	struct btf *btf;
291 	u32 btf_id;
292 	struct btf *ret_btf;
293 	u32 ret_btf_id;
294 	u32 subprogno;
295 	struct btf_field *kptr_field;
296 	s64 const_map_key;
297 };
298 
299 struct bpf_kfunc_call_arg_meta {
300 	/* In parameters */
301 	struct btf *btf;
302 	u32 func_id;
303 	u32 kfunc_flags;
304 	const struct btf_type *func_proto;
305 	const char *func_name;
306 	/* Out parameters */
307 	u32 ref_obj_id;
308 	u8 release_regno;
309 	bool r0_rdonly;
310 	u32 ret_btf_id;
311 	u64 r0_size;
312 	u32 subprogno;
313 	struct {
314 		u64 value;
315 		bool found;
316 	} arg_constant;
317 
318 	/* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
319 	 * generally to pass info about user-defined local kptr types to later
320 	 * verification logic
321 	 *   bpf_obj_drop/bpf_percpu_obj_drop
322 	 *     Record the local kptr type to be drop'd
323 	 *   bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
324 	 *     Record the local kptr type to be refcount_incr'd and use
325 	 *     arg_owning_ref to determine whether refcount_acquire should be
326 	 *     fallible
327 	 */
328 	struct btf *arg_btf;
329 	u32 arg_btf_id;
330 	bool arg_owning_ref;
331 	bool arg_prog;
332 
333 	struct {
334 		struct btf_field *field;
335 	} arg_list_head;
336 	struct {
337 		struct btf_field *field;
338 	} arg_rbtree_root;
339 	struct {
340 		enum bpf_dynptr_type type;
341 		u32 id;
342 		u32 ref_obj_id;
343 	} initialized_dynptr;
344 	struct {
345 		u8 spi;
346 		u8 frameno;
347 	} iter;
348 	struct {
349 		struct bpf_map *ptr;
350 		int uid;
351 	} map;
352 	u64 mem_size;
353 };
354 
355 struct btf *btf_vmlinux;
356 
357 static const char *btf_type_name(const struct btf *btf, u32 id)
358 {
359 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
360 }
361 
362 static DEFINE_MUTEX(bpf_verifier_lock);
363 static DEFINE_MUTEX(bpf_percpu_ma_lock);
364 
365 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
366 {
367 	struct bpf_verifier_env *env = private_data;
368 	va_list args;
369 
370 	if (!bpf_verifier_log_needed(&env->log))
371 		return;
372 
373 	va_start(args, fmt);
374 	bpf_verifier_vlog(&env->log, fmt, args);
375 	va_end(args);
376 }
377 
378 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
379 				   struct bpf_reg_state *reg,
380 				   struct bpf_retval_range range, const char *ctx,
381 				   const char *reg_name)
382 {
383 	bool unknown = true;
384 
385 	verbose(env, "%s the register %s has", ctx, reg_name);
386 	if (reg->smin_value > S64_MIN) {
387 		verbose(env, " smin=%lld", reg->smin_value);
388 		unknown = false;
389 	}
390 	if (reg->smax_value < S64_MAX) {
391 		verbose(env, " smax=%lld", reg->smax_value);
392 		unknown = false;
393 	}
394 	if (unknown)
395 		verbose(env, " unknown scalar value");
396 	verbose(env, " should have been in [%d, %d]\n", range.minval, range.maxval);
397 }
398 
399 static bool reg_not_null(const struct bpf_reg_state *reg)
400 {
401 	enum bpf_reg_type type;
402 
403 	type = reg->type;
404 	if (type_may_be_null(type))
405 		return false;
406 
407 	type = base_type(type);
408 	return type == PTR_TO_SOCKET ||
409 		type == PTR_TO_TCP_SOCK ||
410 		type == PTR_TO_MAP_VALUE ||
411 		type == PTR_TO_MAP_KEY ||
412 		type == PTR_TO_SOCK_COMMON ||
413 		(type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
414 		(type == PTR_TO_MEM && !(reg->type & PTR_UNTRUSTED)) ||
415 		type == CONST_PTR_TO_MAP;
416 }
417 
418 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
419 {
420 	struct btf_record *rec = NULL;
421 	struct btf_struct_meta *meta;
422 
423 	if (reg->type == PTR_TO_MAP_VALUE) {
424 		rec = reg->map_ptr->record;
425 	} else if (type_is_ptr_alloc_obj(reg->type)) {
426 		meta = btf_find_struct_meta(reg->btf, reg->btf_id);
427 		if (meta)
428 			rec = meta->record;
429 	}
430 	return rec;
431 }
432 
433 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
434 {
435 	struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
436 
437 	return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
438 }
439 
440 static const char *subprog_name(const struct bpf_verifier_env *env, int subprog)
441 {
442 	struct bpf_func_info *info;
443 
444 	if (!env->prog->aux->func_info)
445 		return "";
446 
447 	info = &env->prog->aux->func_info[subprog];
448 	return btf_type_name(env->prog->aux->btf, info->type_id);
449 }
450 
451 static void mark_subprog_exc_cb(struct bpf_verifier_env *env, int subprog)
452 {
453 	struct bpf_subprog_info *info = subprog_info(env, subprog);
454 
455 	info->is_cb = true;
456 	info->is_async_cb = true;
457 	info->is_exception_cb = true;
458 }
459 
460 static bool subprog_is_exc_cb(struct bpf_verifier_env *env, int subprog)
461 {
462 	return subprog_info(env, subprog)->is_exception_cb;
463 }
464 
465 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
466 {
467 	return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK);
468 }
469 
470 static bool type_is_rdonly_mem(u32 type)
471 {
472 	return type & MEM_RDONLY;
473 }
474 
475 static bool is_acquire_function(enum bpf_func_id func_id,
476 				const struct bpf_map *map)
477 {
478 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
479 
480 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
481 	    func_id == BPF_FUNC_sk_lookup_udp ||
482 	    func_id == BPF_FUNC_skc_lookup_tcp ||
483 	    func_id == BPF_FUNC_ringbuf_reserve ||
484 	    func_id == BPF_FUNC_kptr_xchg)
485 		return true;
486 
487 	if (func_id == BPF_FUNC_map_lookup_elem &&
488 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
489 	     map_type == BPF_MAP_TYPE_SOCKHASH))
490 		return true;
491 
492 	return false;
493 }
494 
495 static bool is_ptr_cast_function(enum bpf_func_id func_id)
496 {
497 	return func_id == BPF_FUNC_tcp_sock ||
498 		func_id == BPF_FUNC_sk_fullsock ||
499 		func_id == BPF_FUNC_skc_to_tcp_sock ||
500 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
501 		func_id == BPF_FUNC_skc_to_udp6_sock ||
502 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
503 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
504 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
505 }
506 
507 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
508 {
509 	return func_id == BPF_FUNC_dynptr_data;
510 }
511 
512 static bool is_sync_callback_calling_kfunc(u32 btf_id);
513 static bool is_async_callback_calling_kfunc(u32 btf_id);
514 static bool is_callback_calling_kfunc(u32 btf_id);
515 static bool is_bpf_throw_kfunc(struct bpf_insn *insn);
516 
517 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id);
518 
519 static bool is_sync_callback_calling_function(enum bpf_func_id func_id)
520 {
521 	return func_id == BPF_FUNC_for_each_map_elem ||
522 	       func_id == BPF_FUNC_find_vma ||
523 	       func_id == BPF_FUNC_loop ||
524 	       func_id == BPF_FUNC_user_ringbuf_drain;
525 }
526 
527 static bool is_async_callback_calling_function(enum bpf_func_id func_id)
528 {
529 	return func_id == BPF_FUNC_timer_set_callback;
530 }
531 
532 static bool is_callback_calling_function(enum bpf_func_id func_id)
533 {
534 	return is_sync_callback_calling_function(func_id) ||
535 	       is_async_callback_calling_function(func_id);
536 }
537 
538 static bool is_sync_callback_calling_insn(struct bpf_insn *insn)
539 {
540 	return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) ||
541 	       (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm));
542 }
543 
544 static bool is_async_callback_calling_insn(struct bpf_insn *insn)
545 {
546 	return (bpf_helper_call(insn) && is_async_callback_calling_function(insn->imm)) ||
547 	       (bpf_pseudo_kfunc_call(insn) && is_async_callback_calling_kfunc(insn->imm));
548 }
549 
550 static bool is_may_goto_insn(struct bpf_insn *insn)
551 {
552 	return insn->code == (BPF_JMP | BPF_JCOND) && insn->src_reg == BPF_MAY_GOTO;
553 }
554 
555 static bool is_may_goto_insn_at(struct bpf_verifier_env *env, int insn_idx)
556 {
557 	return is_may_goto_insn(&env->prog->insnsi[insn_idx]);
558 }
559 
560 static bool is_storage_get_function(enum bpf_func_id func_id)
561 {
562 	return func_id == BPF_FUNC_sk_storage_get ||
563 	       func_id == BPF_FUNC_inode_storage_get ||
564 	       func_id == BPF_FUNC_task_storage_get ||
565 	       func_id == BPF_FUNC_cgrp_storage_get;
566 }
567 
568 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
569 					const struct bpf_map *map)
570 {
571 	int ref_obj_uses = 0;
572 
573 	if (is_ptr_cast_function(func_id))
574 		ref_obj_uses++;
575 	if (is_acquire_function(func_id, map))
576 		ref_obj_uses++;
577 	if (is_dynptr_ref_function(func_id))
578 		ref_obj_uses++;
579 
580 	return ref_obj_uses > 1;
581 }
582 
583 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
584 {
585 	return BPF_CLASS(insn->code) == BPF_STX &&
586 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
587 	       insn->imm == BPF_CMPXCHG;
588 }
589 
590 static bool is_atomic_load_insn(const struct bpf_insn *insn)
591 {
592 	return BPF_CLASS(insn->code) == BPF_STX &&
593 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
594 	       insn->imm == BPF_LOAD_ACQ;
595 }
596 
597 static int __get_spi(s32 off)
598 {
599 	return (-off - 1) / BPF_REG_SIZE;
600 }
601 
602 static struct bpf_func_state *func(struct bpf_verifier_env *env,
603 				   const struct bpf_reg_state *reg)
604 {
605 	struct bpf_verifier_state *cur = env->cur_state;
606 
607 	return cur->frame[reg->frameno];
608 }
609 
610 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
611 {
612        int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
613 
614        /* We need to check that slots between [spi - nr_slots + 1, spi] are
615 	* within [0, allocated_stack).
616 	*
617 	* Please note that the spi grows downwards. For example, a dynptr
618 	* takes the size of two stack slots; the first slot will be at
619 	* spi and the second slot will be at spi - 1.
620 	*/
621        return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
622 }
623 
624 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
625 			          const char *obj_kind, int nr_slots)
626 {
627 	int off, spi;
628 
629 	if (!tnum_is_const(reg->var_off)) {
630 		verbose(env, "%s has to be at a constant offset\n", obj_kind);
631 		return -EINVAL;
632 	}
633 
634 	off = reg->off + reg->var_off.value;
635 	if (off % BPF_REG_SIZE) {
636 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
637 		return -EINVAL;
638 	}
639 
640 	spi = __get_spi(off);
641 	if (spi + 1 < nr_slots) {
642 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
643 		return -EINVAL;
644 	}
645 
646 	if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
647 		return -ERANGE;
648 	return spi;
649 }
650 
651 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
652 {
653 	return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
654 }
655 
656 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
657 {
658 	return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
659 }
660 
661 static int irq_flag_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
662 {
663 	return stack_slot_obj_get_spi(env, reg, "irq_flag", 1);
664 }
665 
666 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
667 {
668 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
669 	case DYNPTR_TYPE_LOCAL:
670 		return BPF_DYNPTR_TYPE_LOCAL;
671 	case DYNPTR_TYPE_RINGBUF:
672 		return BPF_DYNPTR_TYPE_RINGBUF;
673 	case DYNPTR_TYPE_SKB:
674 		return BPF_DYNPTR_TYPE_SKB;
675 	case DYNPTR_TYPE_XDP:
676 		return BPF_DYNPTR_TYPE_XDP;
677 	case DYNPTR_TYPE_SKB_META:
678 		return BPF_DYNPTR_TYPE_SKB_META;
679 	default:
680 		return BPF_DYNPTR_TYPE_INVALID;
681 	}
682 }
683 
684 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
685 {
686 	switch (type) {
687 	case BPF_DYNPTR_TYPE_LOCAL:
688 		return DYNPTR_TYPE_LOCAL;
689 	case BPF_DYNPTR_TYPE_RINGBUF:
690 		return DYNPTR_TYPE_RINGBUF;
691 	case BPF_DYNPTR_TYPE_SKB:
692 		return DYNPTR_TYPE_SKB;
693 	case BPF_DYNPTR_TYPE_XDP:
694 		return DYNPTR_TYPE_XDP;
695 	case BPF_DYNPTR_TYPE_SKB_META:
696 		return DYNPTR_TYPE_SKB_META;
697 	default:
698 		return 0;
699 	}
700 }
701 
702 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
703 {
704 	return type == BPF_DYNPTR_TYPE_RINGBUF;
705 }
706 
707 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
708 			      enum bpf_dynptr_type type,
709 			      bool first_slot, int dynptr_id);
710 
711 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
712 				struct bpf_reg_state *reg);
713 
714 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
715 				   struct bpf_reg_state *sreg1,
716 				   struct bpf_reg_state *sreg2,
717 				   enum bpf_dynptr_type type)
718 {
719 	int id = ++env->id_gen;
720 
721 	__mark_dynptr_reg(sreg1, type, true, id);
722 	__mark_dynptr_reg(sreg2, type, false, id);
723 }
724 
725 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
726 			       struct bpf_reg_state *reg,
727 			       enum bpf_dynptr_type type)
728 {
729 	__mark_dynptr_reg(reg, type, true, ++env->id_gen);
730 }
731 
732 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
733 				        struct bpf_func_state *state, int spi);
734 
735 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
736 				   enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
737 {
738 	struct bpf_func_state *state = func(env, reg);
739 	enum bpf_dynptr_type type;
740 	int spi, i, err;
741 
742 	spi = dynptr_get_spi(env, reg);
743 	if (spi < 0)
744 		return spi;
745 
746 	/* We cannot assume both spi and spi - 1 belong to the same dynptr,
747 	 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
748 	 * to ensure that for the following example:
749 	 *	[d1][d1][d2][d2]
750 	 * spi    3   2   1   0
751 	 * So marking spi = 2 should lead to destruction of both d1 and d2. In
752 	 * case they do belong to same dynptr, second call won't see slot_type
753 	 * as STACK_DYNPTR and will simply skip destruction.
754 	 */
755 	err = destroy_if_dynptr_stack_slot(env, state, spi);
756 	if (err)
757 		return err;
758 	err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
759 	if (err)
760 		return err;
761 
762 	for (i = 0; i < BPF_REG_SIZE; i++) {
763 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
764 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
765 	}
766 
767 	type = arg_to_dynptr_type(arg_type);
768 	if (type == BPF_DYNPTR_TYPE_INVALID)
769 		return -EINVAL;
770 
771 	mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
772 			       &state->stack[spi - 1].spilled_ptr, type);
773 
774 	if (dynptr_type_refcounted(type)) {
775 		/* The id is used to track proper releasing */
776 		int id;
777 
778 		if (clone_ref_obj_id)
779 			id = clone_ref_obj_id;
780 		else
781 			id = acquire_reference(env, insn_idx);
782 
783 		if (id < 0)
784 			return id;
785 
786 		state->stack[spi].spilled_ptr.ref_obj_id = id;
787 		state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
788 	}
789 
790 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
791 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
792 
793 	return 0;
794 }
795 
796 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
797 {
798 	int i;
799 
800 	for (i = 0; i < BPF_REG_SIZE; i++) {
801 		state->stack[spi].slot_type[i] = STACK_INVALID;
802 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
803 	}
804 
805 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
806 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
807 
808 	/* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
809 	 *
810 	 * While we don't allow reading STACK_INVALID, it is still possible to
811 	 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
812 	 * helpers or insns can do partial read of that part without failing,
813 	 * but check_stack_range_initialized, check_stack_read_var_off, and
814 	 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
815 	 * the slot conservatively. Hence we need to prevent those liveness
816 	 * marking walks.
817 	 *
818 	 * This was not a problem before because STACK_INVALID is only set by
819 	 * default (where the default reg state has its reg->parent as NULL), or
820 	 * in clean_live_states after REG_LIVE_DONE (at which point
821 	 * mark_reg_read won't walk reg->parent chain), but not randomly during
822 	 * verifier state exploration (like we did above). Hence, for our case
823 	 * parentage chain will still be live (i.e. reg->parent may be
824 	 * non-NULL), while earlier reg->parent was NULL, so we need
825 	 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
826 	 * done later on reads or by mark_dynptr_read as well to unnecessary
827 	 * mark registers in verifier state.
828 	 */
829 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
830 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
831 }
832 
833 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
834 {
835 	struct bpf_func_state *state = func(env, reg);
836 	int spi, ref_obj_id, i;
837 
838 	spi = dynptr_get_spi(env, reg);
839 	if (spi < 0)
840 		return spi;
841 
842 	if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
843 		invalidate_dynptr(env, state, spi);
844 		return 0;
845 	}
846 
847 	ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
848 
849 	/* If the dynptr has a ref_obj_id, then we need to invalidate
850 	 * two things:
851 	 *
852 	 * 1) Any dynptrs with a matching ref_obj_id (clones)
853 	 * 2) Any slices derived from this dynptr.
854 	 */
855 
856 	/* Invalidate any slices associated with this dynptr */
857 	WARN_ON_ONCE(release_reference(env, ref_obj_id));
858 
859 	/* Invalidate any dynptr clones */
860 	for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
861 		if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
862 			continue;
863 
864 		/* it should always be the case that if the ref obj id
865 		 * matches then the stack slot also belongs to a
866 		 * dynptr
867 		 */
868 		if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
869 			verifier_bug(env, "misconfigured ref_obj_id");
870 			return -EFAULT;
871 		}
872 		if (state->stack[i].spilled_ptr.dynptr.first_slot)
873 			invalidate_dynptr(env, state, i);
874 	}
875 
876 	return 0;
877 }
878 
879 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
880 			       struct bpf_reg_state *reg);
881 
882 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
883 {
884 	if (!env->allow_ptr_leaks)
885 		__mark_reg_not_init(env, reg);
886 	else
887 		__mark_reg_unknown(env, reg);
888 }
889 
890 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
891 				        struct bpf_func_state *state, int spi)
892 {
893 	struct bpf_func_state *fstate;
894 	struct bpf_reg_state *dreg;
895 	int i, dynptr_id;
896 
897 	/* We always ensure that STACK_DYNPTR is never set partially,
898 	 * hence just checking for slot_type[0] is enough. This is
899 	 * different for STACK_SPILL, where it may be only set for
900 	 * 1 byte, so code has to use is_spilled_reg.
901 	 */
902 	if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
903 		return 0;
904 
905 	/* Reposition spi to first slot */
906 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
907 		spi = spi + 1;
908 
909 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
910 		verbose(env, "cannot overwrite referenced dynptr\n");
911 		return -EINVAL;
912 	}
913 
914 	mark_stack_slot_scratched(env, spi);
915 	mark_stack_slot_scratched(env, spi - 1);
916 
917 	/* Writing partially to one dynptr stack slot destroys both. */
918 	for (i = 0; i < BPF_REG_SIZE; i++) {
919 		state->stack[spi].slot_type[i] = STACK_INVALID;
920 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
921 	}
922 
923 	dynptr_id = state->stack[spi].spilled_ptr.id;
924 	/* Invalidate any slices associated with this dynptr */
925 	bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
926 		/* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
927 		if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
928 			continue;
929 		if (dreg->dynptr_id == dynptr_id)
930 			mark_reg_invalid(env, dreg);
931 	}));
932 
933 	/* Do not release reference state, we are destroying dynptr on stack,
934 	 * not using some helper to release it. Just reset register.
935 	 */
936 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
937 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
938 
939 	/* Same reason as unmark_stack_slots_dynptr above */
940 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
941 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
942 
943 	return 0;
944 }
945 
946 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
947 {
948 	int spi;
949 
950 	if (reg->type == CONST_PTR_TO_DYNPTR)
951 		return false;
952 
953 	spi = dynptr_get_spi(env, reg);
954 
955 	/* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
956 	 * error because this just means the stack state hasn't been updated yet.
957 	 * We will do check_mem_access to check and update stack bounds later.
958 	 */
959 	if (spi < 0 && spi != -ERANGE)
960 		return false;
961 
962 	/* We don't need to check if the stack slots are marked by previous
963 	 * dynptr initializations because we allow overwriting existing unreferenced
964 	 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
965 	 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
966 	 * touching are completely destructed before we reinitialize them for a new
967 	 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
968 	 * instead of delaying it until the end where the user will get "Unreleased
969 	 * reference" error.
970 	 */
971 	return true;
972 }
973 
974 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
975 {
976 	struct bpf_func_state *state = func(env, reg);
977 	int i, spi;
978 
979 	/* This already represents first slot of initialized bpf_dynptr.
980 	 *
981 	 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
982 	 * check_func_arg_reg_off's logic, so we don't need to check its
983 	 * offset and alignment.
984 	 */
985 	if (reg->type == CONST_PTR_TO_DYNPTR)
986 		return true;
987 
988 	spi = dynptr_get_spi(env, reg);
989 	if (spi < 0)
990 		return false;
991 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
992 		return false;
993 
994 	for (i = 0; i < BPF_REG_SIZE; i++) {
995 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
996 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
997 			return false;
998 	}
999 
1000 	return true;
1001 }
1002 
1003 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1004 				    enum bpf_arg_type arg_type)
1005 {
1006 	struct bpf_func_state *state = func(env, reg);
1007 	enum bpf_dynptr_type dynptr_type;
1008 	int spi;
1009 
1010 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
1011 	if (arg_type == ARG_PTR_TO_DYNPTR)
1012 		return true;
1013 
1014 	dynptr_type = arg_to_dynptr_type(arg_type);
1015 	if (reg->type == CONST_PTR_TO_DYNPTR) {
1016 		return reg->dynptr.type == dynptr_type;
1017 	} else {
1018 		spi = dynptr_get_spi(env, reg);
1019 		if (spi < 0)
1020 			return false;
1021 		return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
1022 	}
1023 }
1024 
1025 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
1026 
1027 static bool in_rcu_cs(struct bpf_verifier_env *env);
1028 
1029 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta);
1030 
1031 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1032 				 struct bpf_kfunc_call_arg_meta *meta,
1033 				 struct bpf_reg_state *reg, int insn_idx,
1034 				 struct btf *btf, u32 btf_id, int nr_slots)
1035 {
1036 	struct bpf_func_state *state = func(env, reg);
1037 	int spi, i, j, id;
1038 
1039 	spi = iter_get_spi(env, reg, nr_slots);
1040 	if (spi < 0)
1041 		return spi;
1042 
1043 	id = acquire_reference(env, insn_idx);
1044 	if (id < 0)
1045 		return id;
1046 
1047 	for (i = 0; i < nr_slots; i++) {
1048 		struct bpf_stack_state *slot = &state->stack[spi - i];
1049 		struct bpf_reg_state *st = &slot->spilled_ptr;
1050 
1051 		__mark_reg_known_zero(st);
1052 		st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1053 		if (is_kfunc_rcu_protected(meta)) {
1054 			if (in_rcu_cs(env))
1055 				st->type |= MEM_RCU;
1056 			else
1057 				st->type |= PTR_UNTRUSTED;
1058 		}
1059 		st->live |= REG_LIVE_WRITTEN;
1060 		st->ref_obj_id = i == 0 ? id : 0;
1061 		st->iter.btf = btf;
1062 		st->iter.btf_id = btf_id;
1063 		st->iter.state = BPF_ITER_STATE_ACTIVE;
1064 		st->iter.depth = 0;
1065 
1066 		for (j = 0; j < BPF_REG_SIZE; j++)
1067 			slot->slot_type[j] = STACK_ITER;
1068 
1069 		mark_stack_slot_scratched(env, spi - i);
1070 	}
1071 
1072 	return 0;
1073 }
1074 
1075 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1076 				   struct bpf_reg_state *reg, int nr_slots)
1077 {
1078 	struct bpf_func_state *state = func(env, reg);
1079 	int spi, i, j;
1080 
1081 	spi = iter_get_spi(env, reg, nr_slots);
1082 	if (spi < 0)
1083 		return spi;
1084 
1085 	for (i = 0; i < nr_slots; i++) {
1086 		struct bpf_stack_state *slot = &state->stack[spi - i];
1087 		struct bpf_reg_state *st = &slot->spilled_ptr;
1088 
1089 		if (i == 0)
1090 			WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1091 
1092 		__mark_reg_not_init(env, st);
1093 
1094 		/* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1095 		st->live |= REG_LIVE_WRITTEN;
1096 
1097 		for (j = 0; j < BPF_REG_SIZE; j++)
1098 			slot->slot_type[j] = STACK_INVALID;
1099 
1100 		mark_stack_slot_scratched(env, spi - i);
1101 	}
1102 
1103 	return 0;
1104 }
1105 
1106 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1107 				     struct bpf_reg_state *reg, int nr_slots)
1108 {
1109 	struct bpf_func_state *state = func(env, reg);
1110 	int spi, i, j;
1111 
1112 	/* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1113 	 * will do check_mem_access to check and update stack bounds later, so
1114 	 * return true for that case.
1115 	 */
1116 	spi = iter_get_spi(env, reg, nr_slots);
1117 	if (spi == -ERANGE)
1118 		return true;
1119 	if (spi < 0)
1120 		return false;
1121 
1122 	for (i = 0; i < nr_slots; i++) {
1123 		struct bpf_stack_state *slot = &state->stack[spi - i];
1124 
1125 		for (j = 0; j < BPF_REG_SIZE; j++)
1126 			if (slot->slot_type[j] == STACK_ITER)
1127 				return false;
1128 	}
1129 
1130 	return true;
1131 }
1132 
1133 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1134 				   struct btf *btf, u32 btf_id, int nr_slots)
1135 {
1136 	struct bpf_func_state *state = func(env, reg);
1137 	int spi, i, j;
1138 
1139 	spi = iter_get_spi(env, reg, nr_slots);
1140 	if (spi < 0)
1141 		return -EINVAL;
1142 
1143 	for (i = 0; i < nr_slots; i++) {
1144 		struct bpf_stack_state *slot = &state->stack[spi - i];
1145 		struct bpf_reg_state *st = &slot->spilled_ptr;
1146 
1147 		if (st->type & PTR_UNTRUSTED)
1148 			return -EPROTO;
1149 		/* only main (first) slot has ref_obj_id set */
1150 		if (i == 0 && !st->ref_obj_id)
1151 			return -EINVAL;
1152 		if (i != 0 && st->ref_obj_id)
1153 			return -EINVAL;
1154 		if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1155 			return -EINVAL;
1156 
1157 		for (j = 0; j < BPF_REG_SIZE; j++)
1158 			if (slot->slot_type[j] != STACK_ITER)
1159 				return -EINVAL;
1160 	}
1161 
1162 	return 0;
1163 }
1164 
1165 static int acquire_irq_state(struct bpf_verifier_env *env, int insn_idx);
1166 static int release_irq_state(struct bpf_verifier_state *state, int id);
1167 
1168 static int mark_stack_slot_irq_flag(struct bpf_verifier_env *env,
1169 				     struct bpf_kfunc_call_arg_meta *meta,
1170 				     struct bpf_reg_state *reg, int insn_idx,
1171 				     int kfunc_class)
1172 {
1173 	struct bpf_func_state *state = func(env, reg);
1174 	struct bpf_stack_state *slot;
1175 	struct bpf_reg_state *st;
1176 	int spi, i, id;
1177 
1178 	spi = irq_flag_get_spi(env, reg);
1179 	if (spi < 0)
1180 		return spi;
1181 
1182 	id = acquire_irq_state(env, insn_idx);
1183 	if (id < 0)
1184 		return id;
1185 
1186 	slot = &state->stack[spi];
1187 	st = &slot->spilled_ptr;
1188 
1189 	__mark_reg_known_zero(st);
1190 	st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1191 	st->live |= REG_LIVE_WRITTEN;
1192 	st->ref_obj_id = id;
1193 	st->irq.kfunc_class = kfunc_class;
1194 
1195 	for (i = 0; i < BPF_REG_SIZE; i++)
1196 		slot->slot_type[i] = STACK_IRQ_FLAG;
1197 
1198 	mark_stack_slot_scratched(env, spi);
1199 	return 0;
1200 }
1201 
1202 static int unmark_stack_slot_irq_flag(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1203 				      int kfunc_class)
1204 {
1205 	struct bpf_func_state *state = func(env, reg);
1206 	struct bpf_stack_state *slot;
1207 	struct bpf_reg_state *st;
1208 	int spi, i, err;
1209 
1210 	spi = irq_flag_get_spi(env, reg);
1211 	if (spi < 0)
1212 		return spi;
1213 
1214 	slot = &state->stack[spi];
1215 	st = &slot->spilled_ptr;
1216 
1217 	if (st->irq.kfunc_class != kfunc_class) {
1218 		const char *flag_kfunc = st->irq.kfunc_class == IRQ_NATIVE_KFUNC ? "native" : "lock";
1219 		const char *used_kfunc = kfunc_class == IRQ_NATIVE_KFUNC ? "native" : "lock";
1220 
1221 		verbose(env, "irq flag acquired by %s kfuncs cannot be restored with %s kfuncs\n",
1222 			flag_kfunc, used_kfunc);
1223 		return -EINVAL;
1224 	}
1225 
1226 	err = release_irq_state(env->cur_state, st->ref_obj_id);
1227 	WARN_ON_ONCE(err && err != -EACCES);
1228 	if (err) {
1229 		int insn_idx = 0;
1230 
1231 		for (int i = 0; i < env->cur_state->acquired_refs; i++) {
1232 			if (env->cur_state->refs[i].id == env->cur_state->active_irq_id) {
1233 				insn_idx = env->cur_state->refs[i].insn_idx;
1234 				break;
1235 			}
1236 		}
1237 
1238 		verbose(env, "cannot restore irq state out of order, expected id=%d acquired at insn_idx=%d\n",
1239 			env->cur_state->active_irq_id, insn_idx);
1240 		return err;
1241 	}
1242 
1243 	__mark_reg_not_init(env, st);
1244 
1245 	/* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1246 	st->live |= REG_LIVE_WRITTEN;
1247 
1248 	for (i = 0; i < BPF_REG_SIZE; i++)
1249 		slot->slot_type[i] = STACK_INVALID;
1250 
1251 	mark_stack_slot_scratched(env, spi);
1252 	return 0;
1253 }
1254 
1255 static bool is_irq_flag_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1256 {
1257 	struct bpf_func_state *state = func(env, reg);
1258 	struct bpf_stack_state *slot;
1259 	int spi, i;
1260 
1261 	/* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1262 	 * will do check_mem_access to check and update stack bounds later, so
1263 	 * return true for that case.
1264 	 */
1265 	spi = irq_flag_get_spi(env, reg);
1266 	if (spi == -ERANGE)
1267 		return true;
1268 	if (spi < 0)
1269 		return false;
1270 
1271 	slot = &state->stack[spi];
1272 
1273 	for (i = 0; i < BPF_REG_SIZE; i++)
1274 		if (slot->slot_type[i] == STACK_IRQ_FLAG)
1275 			return false;
1276 	return true;
1277 }
1278 
1279 static int is_irq_flag_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1280 {
1281 	struct bpf_func_state *state = func(env, reg);
1282 	struct bpf_stack_state *slot;
1283 	struct bpf_reg_state *st;
1284 	int spi, i;
1285 
1286 	spi = irq_flag_get_spi(env, reg);
1287 	if (spi < 0)
1288 		return -EINVAL;
1289 
1290 	slot = &state->stack[spi];
1291 	st = &slot->spilled_ptr;
1292 
1293 	if (!st->ref_obj_id)
1294 		return -EINVAL;
1295 
1296 	for (i = 0; i < BPF_REG_SIZE; i++)
1297 		if (slot->slot_type[i] != STACK_IRQ_FLAG)
1298 			return -EINVAL;
1299 	return 0;
1300 }
1301 
1302 /* Check if given stack slot is "special":
1303  *   - spilled register state (STACK_SPILL);
1304  *   - dynptr state (STACK_DYNPTR);
1305  *   - iter state (STACK_ITER).
1306  *   - irq flag state (STACK_IRQ_FLAG)
1307  */
1308 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1309 {
1310 	enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1311 
1312 	switch (type) {
1313 	case STACK_SPILL:
1314 	case STACK_DYNPTR:
1315 	case STACK_ITER:
1316 	case STACK_IRQ_FLAG:
1317 		return true;
1318 	case STACK_INVALID:
1319 	case STACK_MISC:
1320 	case STACK_ZERO:
1321 		return false;
1322 	default:
1323 		WARN_ONCE(1, "unknown stack slot type %d\n", type);
1324 		return true;
1325 	}
1326 }
1327 
1328 /* The reg state of a pointer or a bounded scalar was saved when
1329  * it was spilled to the stack.
1330  */
1331 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1332 {
1333 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1334 }
1335 
1336 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1337 {
1338 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1339 	       stack->spilled_ptr.type == SCALAR_VALUE;
1340 }
1341 
1342 static bool is_spilled_scalar_reg64(const struct bpf_stack_state *stack)
1343 {
1344 	return stack->slot_type[0] == STACK_SPILL &&
1345 	       stack->spilled_ptr.type == SCALAR_VALUE;
1346 }
1347 
1348 /* Mark stack slot as STACK_MISC, unless it is already STACK_INVALID, in which
1349  * case they are equivalent, or it's STACK_ZERO, in which case we preserve
1350  * more precise STACK_ZERO.
1351  * Regardless of allow_ptr_leaks setting (i.e., privileged or unprivileged
1352  * mode), we won't promote STACK_INVALID to STACK_MISC. In privileged case it is
1353  * unnecessary as both are considered equivalent when loading data and pruning,
1354  * in case of unprivileged mode it will be incorrect to allow reads of invalid
1355  * slots.
1356  */
1357 static void mark_stack_slot_misc(struct bpf_verifier_env *env, u8 *stype)
1358 {
1359 	if (*stype == STACK_ZERO)
1360 		return;
1361 	if (*stype == STACK_INVALID)
1362 		return;
1363 	*stype = STACK_MISC;
1364 }
1365 
1366 static void scrub_spilled_slot(u8 *stype)
1367 {
1368 	if (*stype != STACK_INVALID)
1369 		*stype = STACK_MISC;
1370 }
1371 
1372 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1373  * small to hold src. This is different from krealloc since we don't want to preserve
1374  * the contents of dst.
1375  *
1376  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1377  * not be allocated.
1378  */
1379 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1380 {
1381 	size_t alloc_bytes;
1382 	void *orig = dst;
1383 	size_t bytes;
1384 
1385 	if (ZERO_OR_NULL_PTR(src))
1386 		goto out;
1387 
1388 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1389 		return NULL;
1390 
1391 	alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1392 	dst = krealloc(orig, alloc_bytes, flags);
1393 	if (!dst) {
1394 		kfree(orig);
1395 		return NULL;
1396 	}
1397 
1398 	memcpy(dst, src, bytes);
1399 out:
1400 	return dst ? dst : ZERO_SIZE_PTR;
1401 }
1402 
1403 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1404  * small to hold new_n items. new items are zeroed out if the array grows.
1405  *
1406  * Contrary to krealloc_array, does not free arr if new_n is zero.
1407  */
1408 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1409 {
1410 	size_t alloc_size;
1411 	void *new_arr;
1412 
1413 	if (!new_n || old_n == new_n)
1414 		goto out;
1415 
1416 	alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1417 	new_arr = krealloc(arr, alloc_size, GFP_KERNEL_ACCOUNT);
1418 	if (!new_arr) {
1419 		kfree(arr);
1420 		return NULL;
1421 	}
1422 	arr = new_arr;
1423 
1424 	if (new_n > old_n)
1425 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1426 
1427 out:
1428 	return arr ? arr : ZERO_SIZE_PTR;
1429 }
1430 
1431 static int copy_reference_state(struct bpf_verifier_state *dst, const struct bpf_verifier_state *src)
1432 {
1433 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1434 			       sizeof(struct bpf_reference_state), GFP_KERNEL_ACCOUNT);
1435 	if (!dst->refs)
1436 		return -ENOMEM;
1437 
1438 	dst->acquired_refs = src->acquired_refs;
1439 	dst->active_locks = src->active_locks;
1440 	dst->active_preempt_locks = src->active_preempt_locks;
1441 	dst->active_rcu_lock = src->active_rcu_lock;
1442 	dst->active_irq_id = src->active_irq_id;
1443 	dst->active_lock_id = src->active_lock_id;
1444 	dst->active_lock_ptr = src->active_lock_ptr;
1445 	return 0;
1446 }
1447 
1448 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1449 {
1450 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1451 
1452 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1453 				GFP_KERNEL_ACCOUNT);
1454 	if (!dst->stack)
1455 		return -ENOMEM;
1456 
1457 	dst->allocated_stack = src->allocated_stack;
1458 	return 0;
1459 }
1460 
1461 static int resize_reference_state(struct bpf_verifier_state *state, size_t n)
1462 {
1463 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1464 				    sizeof(struct bpf_reference_state));
1465 	if (!state->refs)
1466 		return -ENOMEM;
1467 
1468 	state->acquired_refs = n;
1469 	return 0;
1470 }
1471 
1472 /* Possibly update state->allocated_stack to be at least size bytes. Also
1473  * possibly update the function's high-water mark in its bpf_subprog_info.
1474  */
1475 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size)
1476 {
1477 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n;
1478 
1479 	/* The stack size is always a multiple of BPF_REG_SIZE. */
1480 	size = round_up(size, BPF_REG_SIZE);
1481 	n = size / BPF_REG_SIZE;
1482 
1483 	if (old_n >= n)
1484 		return 0;
1485 
1486 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1487 	if (!state->stack)
1488 		return -ENOMEM;
1489 
1490 	state->allocated_stack = size;
1491 
1492 	/* update known max for given subprogram */
1493 	if (env->subprog_info[state->subprogno].stack_depth < size)
1494 		env->subprog_info[state->subprogno].stack_depth = size;
1495 
1496 	return 0;
1497 }
1498 
1499 /* Acquire a pointer id from the env and update the state->refs to include
1500  * this new pointer reference.
1501  * On success, returns a valid pointer id to associate with the register
1502  * On failure, returns a negative errno.
1503  */
1504 static struct bpf_reference_state *acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1505 {
1506 	struct bpf_verifier_state *state = env->cur_state;
1507 	int new_ofs = state->acquired_refs;
1508 	int err;
1509 
1510 	err = resize_reference_state(state, state->acquired_refs + 1);
1511 	if (err)
1512 		return NULL;
1513 	state->refs[new_ofs].insn_idx = insn_idx;
1514 
1515 	return &state->refs[new_ofs];
1516 }
1517 
1518 static int acquire_reference(struct bpf_verifier_env *env, int insn_idx)
1519 {
1520 	struct bpf_reference_state *s;
1521 
1522 	s = acquire_reference_state(env, insn_idx);
1523 	if (!s)
1524 		return -ENOMEM;
1525 	s->type = REF_TYPE_PTR;
1526 	s->id = ++env->id_gen;
1527 	return s->id;
1528 }
1529 
1530 static int acquire_lock_state(struct bpf_verifier_env *env, int insn_idx, enum ref_state_type type,
1531 			      int id, void *ptr)
1532 {
1533 	struct bpf_verifier_state *state = env->cur_state;
1534 	struct bpf_reference_state *s;
1535 
1536 	s = acquire_reference_state(env, insn_idx);
1537 	if (!s)
1538 		return -ENOMEM;
1539 	s->type = type;
1540 	s->id = id;
1541 	s->ptr = ptr;
1542 
1543 	state->active_locks++;
1544 	state->active_lock_id = id;
1545 	state->active_lock_ptr = ptr;
1546 	return 0;
1547 }
1548 
1549 static int acquire_irq_state(struct bpf_verifier_env *env, int insn_idx)
1550 {
1551 	struct bpf_verifier_state *state = env->cur_state;
1552 	struct bpf_reference_state *s;
1553 
1554 	s = acquire_reference_state(env, insn_idx);
1555 	if (!s)
1556 		return -ENOMEM;
1557 	s->type = REF_TYPE_IRQ;
1558 	s->id = ++env->id_gen;
1559 
1560 	state->active_irq_id = s->id;
1561 	return s->id;
1562 }
1563 
1564 static void release_reference_state(struct bpf_verifier_state *state, int idx)
1565 {
1566 	int last_idx;
1567 	size_t rem;
1568 
1569 	/* IRQ state requires the relative ordering of elements remaining the
1570 	 * same, since it relies on the refs array to behave as a stack, so that
1571 	 * it can detect out-of-order IRQ restore. Hence use memmove to shift
1572 	 * the array instead of swapping the final element into the deleted idx.
1573 	 */
1574 	last_idx = state->acquired_refs - 1;
1575 	rem = state->acquired_refs - idx - 1;
1576 	if (last_idx && idx != last_idx)
1577 		memmove(&state->refs[idx], &state->refs[idx + 1], sizeof(*state->refs) * rem);
1578 	memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1579 	state->acquired_refs--;
1580 	return;
1581 }
1582 
1583 static bool find_reference_state(struct bpf_verifier_state *state, int ptr_id)
1584 {
1585 	int i;
1586 
1587 	for (i = 0; i < state->acquired_refs; i++)
1588 		if (state->refs[i].id == ptr_id)
1589 			return true;
1590 
1591 	return false;
1592 }
1593 
1594 static int release_lock_state(struct bpf_verifier_state *state, int type, int id, void *ptr)
1595 {
1596 	void *prev_ptr = NULL;
1597 	u32 prev_id = 0;
1598 	int i;
1599 
1600 	for (i = 0; i < state->acquired_refs; i++) {
1601 		if (state->refs[i].type == type && state->refs[i].id == id &&
1602 		    state->refs[i].ptr == ptr) {
1603 			release_reference_state(state, i);
1604 			state->active_locks--;
1605 			/* Reassign active lock (id, ptr). */
1606 			state->active_lock_id = prev_id;
1607 			state->active_lock_ptr = prev_ptr;
1608 			return 0;
1609 		}
1610 		if (state->refs[i].type & REF_TYPE_LOCK_MASK) {
1611 			prev_id = state->refs[i].id;
1612 			prev_ptr = state->refs[i].ptr;
1613 		}
1614 	}
1615 	return -EINVAL;
1616 }
1617 
1618 static int release_irq_state(struct bpf_verifier_state *state, int id)
1619 {
1620 	u32 prev_id = 0;
1621 	int i;
1622 
1623 	if (id != state->active_irq_id)
1624 		return -EACCES;
1625 
1626 	for (i = 0; i < state->acquired_refs; i++) {
1627 		if (state->refs[i].type != REF_TYPE_IRQ)
1628 			continue;
1629 		if (state->refs[i].id == id) {
1630 			release_reference_state(state, i);
1631 			state->active_irq_id = prev_id;
1632 			return 0;
1633 		} else {
1634 			prev_id = state->refs[i].id;
1635 		}
1636 	}
1637 	return -EINVAL;
1638 }
1639 
1640 static struct bpf_reference_state *find_lock_state(struct bpf_verifier_state *state, enum ref_state_type type,
1641 						   int id, void *ptr)
1642 {
1643 	int i;
1644 
1645 	for (i = 0; i < state->acquired_refs; i++) {
1646 		struct bpf_reference_state *s = &state->refs[i];
1647 
1648 		if (!(s->type & type))
1649 			continue;
1650 
1651 		if (s->id == id && s->ptr == ptr)
1652 			return s;
1653 	}
1654 	return NULL;
1655 }
1656 
1657 static void update_peak_states(struct bpf_verifier_env *env)
1658 {
1659 	u32 cur_states;
1660 
1661 	cur_states = env->explored_states_size + env->free_list_size + env->num_backedges;
1662 	env->peak_states = max(env->peak_states, cur_states);
1663 }
1664 
1665 static void free_func_state(struct bpf_func_state *state)
1666 {
1667 	if (!state)
1668 		return;
1669 	kfree(state->stack);
1670 	kfree(state);
1671 }
1672 
1673 static void clear_jmp_history(struct bpf_verifier_state *state)
1674 {
1675 	kfree(state->jmp_history);
1676 	state->jmp_history = NULL;
1677 	state->jmp_history_cnt = 0;
1678 }
1679 
1680 static void free_verifier_state(struct bpf_verifier_state *state,
1681 				bool free_self)
1682 {
1683 	int i;
1684 
1685 	for (i = 0; i <= state->curframe; i++) {
1686 		free_func_state(state->frame[i]);
1687 		state->frame[i] = NULL;
1688 	}
1689 	kfree(state->refs);
1690 	clear_jmp_history(state);
1691 	if (free_self)
1692 		kfree(state);
1693 }
1694 
1695 /* struct bpf_verifier_state->parent refers to states
1696  * that are in either of env->{expored_states,free_list}.
1697  * In both cases the state is contained in struct bpf_verifier_state_list.
1698  */
1699 static struct bpf_verifier_state_list *state_parent_as_list(struct bpf_verifier_state *st)
1700 {
1701 	if (st->parent)
1702 		return container_of(st->parent, struct bpf_verifier_state_list, state);
1703 	return NULL;
1704 }
1705 
1706 static bool incomplete_read_marks(struct bpf_verifier_env *env,
1707 				  struct bpf_verifier_state *st);
1708 
1709 /* A state can be freed if it is no longer referenced:
1710  * - is in the env->free_list;
1711  * - has no children states;
1712  */
1713 static void maybe_free_verifier_state(struct bpf_verifier_env *env,
1714 				      struct bpf_verifier_state_list *sl)
1715 {
1716 	if (!sl->in_free_list
1717 	    || sl->state.branches != 0
1718 	    || incomplete_read_marks(env, &sl->state))
1719 		return;
1720 	list_del(&sl->node);
1721 	free_verifier_state(&sl->state, false);
1722 	kfree(sl);
1723 	env->free_list_size--;
1724 }
1725 
1726 /* copy verifier state from src to dst growing dst stack space
1727  * when necessary to accommodate larger src stack
1728  */
1729 static int copy_func_state(struct bpf_func_state *dst,
1730 			   const struct bpf_func_state *src)
1731 {
1732 	memcpy(dst, src, offsetof(struct bpf_func_state, stack));
1733 	return copy_stack_state(dst, src);
1734 }
1735 
1736 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1737 			       const struct bpf_verifier_state *src)
1738 {
1739 	struct bpf_func_state *dst;
1740 	int i, err;
1741 
1742 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1743 					  src->jmp_history_cnt, sizeof(*dst_state->jmp_history),
1744 					  GFP_KERNEL_ACCOUNT);
1745 	if (!dst_state->jmp_history)
1746 		return -ENOMEM;
1747 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1748 
1749 	/* if dst has more stack frames then src frame, free them, this is also
1750 	 * necessary in case of exceptional exits using bpf_throw.
1751 	 */
1752 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1753 		free_func_state(dst_state->frame[i]);
1754 		dst_state->frame[i] = NULL;
1755 	}
1756 	err = copy_reference_state(dst_state, src);
1757 	if (err)
1758 		return err;
1759 	dst_state->speculative = src->speculative;
1760 	dst_state->in_sleepable = src->in_sleepable;
1761 	dst_state->curframe = src->curframe;
1762 	dst_state->branches = src->branches;
1763 	dst_state->parent = src->parent;
1764 	dst_state->first_insn_idx = src->first_insn_idx;
1765 	dst_state->last_insn_idx = src->last_insn_idx;
1766 	dst_state->dfs_depth = src->dfs_depth;
1767 	dst_state->callback_unroll_depth = src->callback_unroll_depth;
1768 	dst_state->may_goto_depth = src->may_goto_depth;
1769 	dst_state->equal_state = src->equal_state;
1770 	for (i = 0; i <= src->curframe; i++) {
1771 		dst = dst_state->frame[i];
1772 		if (!dst) {
1773 			dst = kzalloc(sizeof(*dst), GFP_KERNEL_ACCOUNT);
1774 			if (!dst)
1775 				return -ENOMEM;
1776 			dst_state->frame[i] = dst;
1777 		}
1778 		err = copy_func_state(dst, src->frame[i]);
1779 		if (err)
1780 			return err;
1781 	}
1782 	return 0;
1783 }
1784 
1785 static u32 state_htab_size(struct bpf_verifier_env *env)
1786 {
1787 	return env->prog->len;
1788 }
1789 
1790 static struct list_head *explored_state(struct bpf_verifier_env *env, int idx)
1791 {
1792 	struct bpf_verifier_state *cur = env->cur_state;
1793 	struct bpf_func_state *state = cur->frame[cur->curframe];
1794 
1795 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
1796 }
1797 
1798 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b)
1799 {
1800 	int fr;
1801 
1802 	if (a->curframe != b->curframe)
1803 		return false;
1804 
1805 	for (fr = a->curframe; fr >= 0; fr--)
1806 		if (a->frame[fr]->callsite != b->frame[fr]->callsite)
1807 			return false;
1808 
1809 	return true;
1810 }
1811 
1812 /* Return IP for a given frame in a call stack */
1813 static u32 frame_insn_idx(struct bpf_verifier_state *st, u32 frame)
1814 {
1815 	return frame == st->curframe
1816 	       ? st->insn_idx
1817 	       : st->frame[frame + 1]->callsite;
1818 }
1819 
1820 /* For state @st look for a topmost frame with frame_insn_idx() in some SCC,
1821  * if such frame exists form a corresponding @callchain as an array of
1822  * call sites leading to this frame and SCC id.
1823  * E.g.:
1824  *
1825  *    void foo()  { A: loop {... SCC#1 ...}; }
1826  *    void bar()  { B: loop { C: foo(); ... SCC#2 ... }
1827  *                  D: loop { E: foo(); ... SCC#3 ... } }
1828  *    void main() { F: bar(); }
1829  *
1830  * @callchain at (A) would be either (F,SCC#2) or (F,SCC#3) depending
1831  * on @st frame call sites being (F,C,A) or (F,E,A).
1832  */
1833 static bool compute_scc_callchain(struct bpf_verifier_env *env,
1834 				  struct bpf_verifier_state *st,
1835 				  struct bpf_scc_callchain *callchain)
1836 {
1837 	u32 i, scc, insn_idx;
1838 
1839 	memset(callchain, 0, sizeof(*callchain));
1840 	for (i = 0; i <= st->curframe; i++) {
1841 		insn_idx = frame_insn_idx(st, i);
1842 		scc = env->insn_aux_data[insn_idx].scc;
1843 		if (scc) {
1844 			callchain->scc = scc;
1845 			break;
1846 		} else if (i < st->curframe) {
1847 			callchain->callsites[i] = insn_idx;
1848 		} else {
1849 			return false;
1850 		}
1851 	}
1852 	return true;
1853 }
1854 
1855 /* Check if bpf_scc_visit instance for @callchain exists. */
1856 static struct bpf_scc_visit *scc_visit_lookup(struct bpf_verifier_env *env,
1857 					      struct bpf_scc_callchain *callchain)
1858 {
1859 	struct bpf_scc_info *info = env->scc_info[callchain->scc];
1860 	struct bpf_scc_visit *visits = info->visits;
1861 	u32 i;
1862 
1863 	if (!info)
1864 		return NULL;
1865 	for (i = 0; i < info->num_visits; i++)
1866 		if (memcmp(callchain, &visits[i].callchain, sizeof(*callchain)) == 0)
1867 			return &visits[i];
1868 	return NULL;
1869 }
1870 
1871 /* Allocate a new bpf_scc_visit instance corresponding to @callchain.
1872  * Allocated instances are alive for a duration of the do_check_common()
1873  * call and are freed by free_states().
1874  */
1875 static struct bpf_scc_visit *scc_visit_alloc(struct bpf_verifier_env *env,
1876 					     struct bpf_scc_callchain *callchain)
1877 {
1878 	struct bpf_scc_visit *visit;
1879 	struct bpf_scc_info *info;
1880 	u32 scc, num_visits;
1881 	u64 new_sz;
1882 
1883 	scc = callchain->scc;
1884 	info = env->scc_info[scc];
1885 	num_visits = info ? info->num_visits : 0;
1886 	new_sz = sizeof(*info) + sizeof(struct bpf_scc_visit) * (num_visits + 1);
1887 	info = kvrealloc(env->scc_info[scc], new_sz, GFP_KERNEL_ACCOUNT);
1888 	if (!info)
1889 		return NULL;
1890 	env->scc_info[scc] = info;
1891 	info->num_visits = num_visits + 1;
1892 	visit = &info->visits[num_visits];
1893 	memset(visit, 0, sizeof(*visit));
1894 	memcpy(&visit->callchain, callchain, sizeof(*callchain));
1895 	return visit;
1896 }
1897 
1898 /* Form a string '(callsite#1,callsite#2,...,scc)' in env->tmp_str_buf */
1899 static char *format_callchain(struct bpf_verifier_env *env, struct bpf_scc_callchain *callchain)
1900 {
1901 	char *buf = env->tmp_str_buf;
1902 	int i, delta = 0;
1903 
1904 	delta += snprintf(buf + delta, TMP_STR_BUF_LEN - delta, "(");
1905 	for (i = 0; i < ARRAY_SIZE(callchain->callsites); i++) {
1906 		if (!callchain->callsites[i])
1907 			break;
1908 		delta += snprintf(buf + delta, TMP_STR_BUF_LEN - delta, "%u,",
1909 				  callchain->callsites[i]);
1910 	}
1911 	delta += snprintf(buf + delta, TMP_STR_BUF_LEN - delta, "%u)", callchain->scc);
1912 	return env->tmp_str_buf;
1913 }
1914 
1915 /* If callchain for @st exists (@st is in some SCC), ensure that
1916  * bpf_scc_visit instance for this callchain exists.
1917  * If instance does not exist or is empty, assign visit->entry_state to @st.
1918  */
1919 static int maybe_enter_scc(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1920 {
1921 	struct bpf_scc_callchain *callchain = &env->callchain_buf;
1922 	struct bpf_scc_visit *visit;
1923 
1924 	if (!compute_scc_callchain(env, st, callchain))
1925 		return 0;
1926 	visit = scc_visit_lookup(env, callchain);
1927 	visit = visit ?: scc_visit_alloc(env, callchain);
1928 	if (!visit)
1929 		return -ENOMEM;
1930 	if (!visit->entry_state) {
1931 		visit->entry_state = st;
1932 		if (env->log.level & BPF_LOG_LEVEL2)
1933 			verbose(env, "SCC enter %s\n", format_callchain(env, callchain));
1934 	}
1935 	return 0;
1936 }
1937 
1938 static int propagate_backedges(struct bpf_verifier_env *env, struct bpf_scc_visit *visit);
1939 
1940 /* If callchain for @st exists (@st is in some SCC), make it empty:
1941  * - set visit->entry_state to NULL;
1942  * - flush accumulated backedges.
1943  */
1944 static int maybe_exit_scc(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1945 {
1946 	struct bpf_scc_callchain *callchain = &env->callchain_buf;
1947 	struct bpf_scc_visit *visit;
1948 
1949 	if (!compute_scc_callchain(env, st, callchain))
1950 		return 0;
1951 	visit = scc_visit_lookup(env, callchain);
1952 	if (!visit) {
1953 		verifier_bug(env, "scc exit: no visit info for call chain %s",
1954 			     format_callchain(env, callchain));
1955 		return -EFAULT;
1956 	}
1957 	if (visit->entry_state != st)
1958 		return 0;
1959 	if (env->log.level & BPF_LOG_LEVEL2)
1960 		verbose(env, "SCC exit %s\n", format_callchain(env, callchain));
1961 	visit->entry_state = NULL;
1962 	env->num_backedges -= visit->num_backedges;
1963 	visit->num_backedges = 0;
1964 	update_peak_states(env);
1965 	return propagate_backedges(env, visit);
1966 }
1967 
1968 /* Lookup an bpf_scc_visit instance corresponding to @st callchain
1969  * and add @backedge to visit->backedges. @st callchain must exist.
1970  */
1971 static int add_scc_backedge(struct bpf_verifier_env *env,
1972 			    struct bpf_verifier_state *st,
1973 			    struct bpf_scc_backedge *backedge)
1974 {
1975 	struct bpf_scc_callchain *callchain = &env->callchain_buf;
1976 	struct bpf_scc_visit *visit;
1977 
1978 	if (!compute_scc_callchain(env, st, callchain)) {
1979 		verifier_bug(env, "add backedge: no SCC in verification path, insn_idx %d",
1980 			     st->insn_idx);
1981 		return -EFAULT;
1982 	}
1983 	visit = scc_visit_lookup(env, callchain);
1984 	if (!visit) {
1985 		verifier_bug(env, "add backedge: no visit info for call chain %s",
1986 			     format_callchain(env, callchain));
1987 		return -EFAULT;
1988 	}
1989 	if (env->log.level & BPF_LOG_LEVEL2)
1990 		verbose(env, "SCC backedge %s\n", format_callchain(env, callchain));
1991 	backedge->next = visit->backedges;
1992 	visit->backedges = backedge;
1993 	visit->num_backedges++;
1994 	env->num_backedges++;
1995 	update_peak_states(env);
1996 	return 0;
1997 }
1998 
1999 /* bpf_reg_state->live marks for registers in a state @st are incomplete,
2000  * if state @st is in some SCC and not all execution paths starting at this
2001  * SCC are fully explored.
2002  */
2003 static bool incomplete_read_marks(struct bpf_verifier_env *env,
2004 				  struct bpf_verifier_state *st)
2005 {
2006 	struct bpf_scc_callchain *callchain = &env->callchain_buf;
2007 	struct bpf_scc_visit *visit;
2008 
2009 	if (!compute_scc_callchain(env, st, callchain))
2010 		return false;
2011 	visit = scc_visit_lookup(env, callchain);
2012 	if (!visit)
2013 		return false;
2014 	return !!visit->backedges;
2015 }
2016 
2017 static void free_backedges(struct bpf_scc_visit *visit)
2018 {
2019 	struct bpf_scc_backedge *backedge, *next;
2020 
2021 	for (backedge = visit->backedges; backedge; backedge = next) {
2022 		free_verifier_state(&backedge->state, false);
2023 		next = backedge->next;
2024 		kvfree(backedge);
2025 	}
2026 	visit->backedges = NULL;
2027 }
2028 
2029 static int update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
2030 {
2031 	struct bpf_verifier_state_list *sl = NULL, *parent_sl;
2032 	struct bpf_verifier_state *parent;
2033 	int err;
2034 
2035 	while (st) {
2036 		u32 br = --st->branches;
2037 
2038 		/* verifier_bug_if(br > 1, ...) technically makes sense here,
2039 		 * but see comment in push_stack(), hence:
2040 		 */
2041 		verifier_bug_if((int)br < 0, env, "%s:branches_to_explore=%d", __func__, br);
2042 		if (br)
2043 			break;
2044 		err = maybe_exit_scc(env, st);
2045 		if (err)
2046 			return err;
2047 		parent = st->parent;
2048 		parent_sl = state_parent_as_list(st);
2049 		if (sl)
2050 			maybe_free_verifier_state(env, sl);
2051 		st = parent;
2052 		sl = parent_sl;
2053 	}
2054 	return 0;
2055 }
2056 
2057 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
2058 		     int *insn_idx, bool pop_log)
2059 {
2060 	struct bpf_verifier_state *cur = env->cur_state;
2061 	struct bpf_verifier_stack_elem *elem, *head = env->head;
2062 	int err;
2063 
2064 	if (env->head == NULL)
2065 		return -ENOENT;
2066 
2067 	if (cur) {
2068 		err = copy_verifier_state(cur, &head->st);
2069 		if (err)
2070 			return err;
2071 	}
2072 	if (pop_log)
2073 		bpf_vlog_reset(&env->log, head->log_pos);
2074 	if (insn_idx)
2075 		*insn_idx = head->insn_idx;
2076 	if (prev_insn_idx)
2077 		*prev_insn_idx = head->prev_insn_idx;
2078 	elem = head->next;
2079 	free_verifier_state(&head->st, false);
2080 	kfree(head);
2081 	env->head = elem;
2082 	env->stack_size--;
2083 	return 0;
2084 }
2085 
2086 static bool error_recoverable_with_nospec(int err)
2087 {
2088 	/* Should only return true for non-fatal errors that are allowed to
2089 	 * occur during speculative verification. For these we can insert a
2090 	 * nospec and the program might still be accepted. Do not include
2091 	 * something like ENOMEM because it is likely to re-occur for the next
2092 	 * architectural path once it has been recovered-from in all speculative
2093 	 * paths.
2094 	 */
2095 	return err == -EPERM || err == -EACCES || err == -EINVAL;
2096 }
2097 
2098 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
2099 					     int insn_idx, int prev_insn_idx,
2100 					     bool speculative)
2101 {
2102 	struct bpf_verifier_state *cur = env->cur_state;
2103 	struct bpf_verifier_stack_elem *elem;
2104 	int err;
2105 
2106 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL_ACCOUNT);
2107 	if (!elem)
2108 		return NULL;
2109 
2110 	elem->insn_idx = insn_idx;
2111 	elem->prev_insn_idx = prev_insn_idx;
2112 	elem->next = env->head;
2113 	elem->log_pos = env->log.end_pos;
2114 	env->head = elem;
2115 	env->stack_size++;
2116 	err = copy_verifier_state(&elem->st, cur);
2117 	if (err)
2118 		return NULL;
2119 	elem->st.speculative |= speculative;
2120 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2121 		verbose(env, "The sequence of %d jumps is too complex.\n",
2122 			env->stack_size);
2123 		return NULL;
2124 	}
2125 	if (elem->st.parent) {
2126 		++elem->st.parent->branches;
2127 		/* WARN_ON(branches > 2) technically makes sense here,
2128 		 * but
2129 		 * 1. speculative states will bump 'branches' for non-branch
2130 		 * instructions
2131 		 * 2. is_state_visited() heuristics may decide not to create
2132 		 * a new state for a sequence of branches and all such current
2133 		 * and cloned states will be pointing to a single parent state
2134 		 * which might have large 'branches' count.
2135 		 */
2136 	}
2137 	return &elem->st;
2138 }
2139 
2140 #define CALLER_SAVED_REGS 6
2141 static const int caller_saved[CALLER_SAVED_REGS] = {
2142 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
2143 };
2144 
2145 /* This helper doesn't clear reg->id */
2146 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
2147 {
2148 	reg->var_off = tnum_const(imm);
2149 	reg->smin_value = (s64)imm;
2150 	reg->smax_value = (s64)imm;
2151 	reg->umin_value = imm;
2152 	reg->umax_value = imm;
2153 
2154 	reg->s32_min_value = (s32)imm;
2155 	reg->s32_max_value = (s32)imm;
2156 	reg->u32_min_value = (u32)imm;
2157 	reg->u32_max_value = (u32)imm;
2158 }
2159 
2160 /* Mark the unknown part of a register (variable offset or scalar value) as
2161  * known to have the value @imm.
2162  */
2163 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
2164 {
2165 	/* Clear off and union(map_ptr, range) */
2166 	memset(((u8 *)reg) + sizeof(reg->type), 0,
2167 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
2168 	reg->id = 0;
2169 	reg->ref_obj_id = 0;
2170 	___mark_reg_known(reg, imm);
2171 }
2172 
2173 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
2174 {
2175 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
2176 	reg->s32_min_value = (s32)imm;
2177 	reg->s32_max_value = (s32)imm;
2178 	reg->u32_min_value = (u32)imm;
2179 	reg->u32_max_value = (u32)imm;
2180 }
2181 
2182 /* Mark the 'variable offset' part of a register as zero.  This should be
2183  * used only on registers holding a pointer type.
2184  */
2185 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
2186 {
2187 	__mark_reg_known(reg, 0);
2188 }
2189 
2190 static void __mark_reg_const_zero(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
2191 {
2192 	__mark_reg_known(reg, 0);
2193 	reg->type = SCALAR_VALUE;
2194 	/* all scalars are assumed imprecise initially (unless unprivileged,
2195 	 * in which case everything is forced to be precise)
2196 	 */
2197 	reg->precise = !env->bpf_capable;
2198 }
2199 
2200 static void mark_reg_known_zero(struct bpf_verifier_env *env,
2201 				struct bpf_reg_state *regs, u32 regno)
2202 {
2203 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2204 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
2205 		/* Something bad happened, let's kill all regs */
2206 		for (regno = 0; regno < MAX_BPF_REG; regno++)
2207 			__mark_reg_not_init(env, regs + regno);
2208 		return;
2209 	}
2210 	__mark_reg_known_zero(regs + regno);
2211 }
2212 
2213 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
2214 			      bool first_slot, int dynptr_id)
2215 {
2216 	/* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
2217 	 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
2218 	 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
2219 	 */
2220 	__mark_reg_known_zero(reg);
2221 	reg->type = CONST_PTR_TO_DYNPTR;
2222 	/* Give each dynptr a unique id to uniquely associate slices to it. */
2223 	reg->id = dynptr_id;
2224 	reg->dynptr.type = type;
2225 	reg->dynptr.first_slot = first_slot;
2226 }
2227 
2228 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
2229 {
2230 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
2231 		const struct bpf_map *map = reg->map_ptr;
2232 
2233 		if (map->inner_map_meta) {
2234 			reg->type = CONST_PTR_TO_MAP;
2235 			reg->map_ptr = map->inner_map_meta;
2236 			/* transfer reg's id which is unique for every map_lookup_elem
2237 			 * as UID of the inner map.
2238 			 */
2239 			if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
2240 				reg->map_uid = reg->id;
2241 			if (btf_record_has_field(map->inner_map_meta->record, BPF_WORKQUEUE))
2242 				reg->map_uid = reg->id;
2243 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
2244 			reg->type = PTR_TO_XDP_SOCK;
2245 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
2246 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
2247 			reg->type = PTR_TO_SOCKET;
2248 		} else {
2249 			reg->type = PTR_TO_MAP_VALUE;
2250 		}
2251 		return;
2252 	}
2253 
2254 	reg->type &= ~PTR_MAYBE_NULL;
2255 }
2256 
2257 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
2258 				struct btf_field_graph_root *ds_head)
2259 {
2260 	__mark_reg_known_zero(&regs[regno]);
2261 	regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
2262 	regs[regno].btf = ds_head->btf;
2263 	regs[regno].btf_id = ds_head->value_btf_id;
2264 	regs[regno].off = ds_head->node_offset;
2265 }
2266 
2267 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
2268 {
2269 	return type_is_pkt_pointer(reg->type);
2270 }
2271 
2272 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
2273 {
2274 	return reg_is_pkt_pointer(reg) ||
2275 	       reg->type == PTR_TO_PACKET_END;
2276 }
2277 
2278 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
2279 {
2280 	return base_type(reg->type) == PTR_TO_MEM &&
2281 	       (reg->type &
2282 		(DYNPTR_TYPE_SKB | DYNPTR_TYPE_XDP | DYNPTR_TYPE_SKB_META));
2283 }
2284 
2285 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
2286 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
2287 				    enum bpf_reg_type which)
2288 {
2289 	/* The register can already have a range from prior markings.
2290 	 * This is fine as long as it hasn't been advanced from its
2291 	 * origin.
2292 	 */
2293 	return reg->type == which &&
2294 	       reg->id == 0 &&
2295 	       reg->off == 0 &&
2296 	       tnum_equals_const(reg->var_off, 0);
2297 }
2298 
2299 /* Reset the min/max bounds of a register */
2300 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
2301 {
2302 	reg->smin_value = S64_MIN;
2303 	reg->smax_value = S64_MAX;
2304 	reg->umin_value = 0;
2305 	reg->umax_value = U64_MAX;
2306 
2307 	reg->s32_min_value = S32_MIN;
2308 	reg->s32_max_value = S32_MAX;
2309 	reg->u32_min_value = 0;
2310 	reg->u32_max_value = U32_MAX;
2311 }
2312 
2313 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
2314 {
2315 	reg->smin_value = S64_MIN;
2316 	reg->smax_value = S64_MAX;
2317 	reg->umin_value = 0;
2318 	reg->umax_value = U64_MAX;
2319 }
2320 
2321 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
2322 {
2323 	reg->s32_min_value = S32_MIN;
2324 	reg->s32_max_value = S32_MAX;
2325 	reg->u32_min_value = 0;
2326 	reg->u32_max_value = U32_MAX;
2327 }
2328 
2329 static void __update_reg32_bounds(struct bpf_reg_state *reg)
2330 {
2331 	struct tnum var32_off = tnum_subreg(reg->var_off);
2332 
2333 	/* min signed is max(sign bit) | min(other bits) */
2334 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
2335 			var32_off.value | (var32_off.mask & S32_MIN));
2336 	/* max signed is min(sign bit) | max(other bits) */
2337 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
2338 			var32_off.value | (var32_off.mask & S32_MAX));
2339 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
2340 	reg->u32_max_value = min(reg->u32_max_value,
2341 				 (u32)(var32_off.value | var32_off.mask));
2342 }
2343 
2344 static void __update_reg64_bounds(struct bpf_reg_state *reg)
2345 {
2346 	/* min signed is max(sign bit) | min(other bits) */
2347 	reg->smin_value = max_t(s64, reg->smin_value,
2348 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
2349 	/* max signed is min(sign bit) | max(other bits) */
2350 	reg->smax_value = min_t(s64, reg->smax_value,
2351 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
2352 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
2353 	reg->umax_value = min(reg->umax_value,
2354 			      reg->var_off.value | reg->var_off.mask);
2355 }
2356 
2357 static void __update_reg_bounds(struct bpf_reg_state *reg)
2358 {
2359 	__update_reg32_bounds(reg);
2360 	__update_reg64_bounds(reg);
2361 }
2362 
2363 /* Uses signed min/max values to inform unsigned, and vice-versa */
2364 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
2365 {
2366 	/* If upper 32 bits of u64/s64 range don't change, we can use lower 32
2367 	 * bits to improve our u32/s32 boundaries.
2368 	 *
2369 	 * E.g., the case where we have upper 32 bits as zero ([10, 20] in
2370 	 * u64) is pretty trivial, it's obvious that in u32 we'll also have
2371 	 * [10, 20] range. But this property holds for any 64-bit range as
2372 	 * long as upper 32 bits in that entire range of values stay the same.
2373 	 *
2374 	 * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311]
2375 	 * in decimal) has the same upper 32 bits throughout all the values in
2376 	 * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15])
2377 	 * range.
2378 	 *
2379 	 * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32,
2380 	 * following the rules outlined below about u64/s64 correspondence
2381 	 * (which equally applies to u32 vs s32 correspondence). In general it
2382 	 * depends on actual hexadecimal values of 32-bit range. They can form
2383 	 * only valid u32, or only valid s32 ranges in some cases.
2384 	 *
2385 	 * So we use all these insights to derive bounds for subregisters here.
2386 	 */
2387 	if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) {
2388 		/* u64 to u32 casting preserves validity of low 32 bits as
2389 		 * a range, if upper 32 bits are the same
2390 		 */
2391 		reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value);
2392 		reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value);
2393 
2394 		if ((s32)reg->umin_value <= (s32)reg->umax_value) {
2395 			reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
2396 			reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
2397 		}
2398 	}
2399 	if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) {
2400 		/* low 32 bits should form a proper u32 range */
2401 		if ((u32)reg->smin_value <= (u32)reg->smax_value) {
2402 			reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value);
2403 			reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value);
2404 		}
2405 		/* low 32 bits should form a proper s32 range */
2406 		if ((s32)reg->smin_value <= (s32)reg->smax_value) {
2407 			reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
2408 			reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
2409 		}
2410 	}
2411 	/* Special case where upper bits form a small sequence of two
2412 	 * sequential numbers (in 32-bit unsigned space, so 0xffffffff to
2413 	 * 0x00000000 is also valid), while lower bits form a proper s32 range
2414 	 * going from negative numbers to positive numbers. E.g., let's say we
2415 	 * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]).
2416 	 * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff,
2417 	 * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits,
2418 	 * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]).
2419 	 * Note that it doesn't have to be 0xffffffff going to 0x00000000 in
2420 	 * upper 32 bits. As a random example, s64 range
2421 	 * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range
2422 	 * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister.
2423 	 */
2424 	if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) &&
2425 	    (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) {
2426 		reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
2427 		reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
2428 	}
2429 	if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) &&
2430 	    (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) {
2431 		reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
2432 		reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
2433 	}
2434 	/* if u32 range forms a valid s32 range (due to matching sign bit),
2435 	 * try to learn from that
2436 	 */
2437 	if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) {
2438 		reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value);
2439 		reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value);
2440 	}
2441 	/* If we cannot cross the sign boundary, then signed and unsigned bounds
2442 	 * are the same, so combine.  This works even in the negative case, e.g.
2443 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2444 	 */
2445 	if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) {
2446 		reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value);
2447 		reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value);
2448 	}
2449 }
2450 
2451 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2452 {
2453 	/* If u64 range forms a valid s64 range (due to matching sign bit),
2454 	 * try to learn from that. Let's do a bit of ASCII art to see when
2455 	 * this is happening. Let's take u64 range first:
2456 	 *
2457 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
2458 	 * |-------------------------------|--------------------------------|
2459 	 *
2460 	 * Valid u64 range is formed when umin and umax are anywhere in the
2461 	 * range [0, U64_MAX], and umin <= umax. u64 case is simple and
2462 	 * straightforward. Let's see how s64 range maps onto the same range
2463 	 * of values, annotated below the line for comparison:
2464 	 *
2465 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
2466 	 * |-------------------------------|--------------------------------|
2467 	 * 0                        S64_MAX S64_MIN                        -1
2468 	 *
2469 	 * So s64 values basically start in the middle and they are logically
2470 	 * contiguous to the right of it, wrapping around from -1 to 0, and
2471 	 * then finishing as S64_MAX (0x7fffffffffffffff) right before
2472 	 * S64_MIN. We can try drawing the continuity of u64 vs s64 values
2473 	 * more visually as mapped to sign-agnostic range of hex values.
2474 	 *
2475 	 *  u64 start                                               u64 end
2476 	 *  _______________________________________________________________
2477 	 * /                                                               \
2478 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
2479 	 * |-------------------------------|--------------------------------|
2480 	 * 0                        S64_MAX S64_MIN                        -1
2481 	 *                                / \
2482 	 * >------------------------------   ------------------------------->
2483 	 * s64 continues...        s64 end   s64 start          s64 "midpoint"
2484 	 *
2485 	 * What this means is that, in general, we can't always derive
2486 	 * something new about u64 from any random s64 range, and vice versa.
2487 	 *
2488 	 * But we can do that in two particular cases. One is when entire
2489 	 * u64/s64 range is *entirely* contained within left half of the above
2490 	 * diagram or when it is *entirely* contained in the right half. I.e.:
2491 	 *
2492 	 * |-------------------------------|--------------------------------|
2493 	 *     ^                   ^            ^                 ^
2494 	 *     A                   B            C                 D
2495 	 *
2496 	 * [A, B] and [C, D] are contained entirely in their respective halves
2497 	 * and form valid contiguous ranges as both u64 and s64 values. [A, B]
2498 	 * will be non-negative both as u64 and s64 (and in fact it will be
2499 	 * identical ranges no matter the signedness). [C, D] treated as s64
2500 	 * will be a range of negative values, while in u64 it will be
2501 	 * non-negative range of values larger than 0x8000000000000000.
2502 	 *
2503 	 * Now, any other range here can't be represented in both u64 and s64
2504 	 * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid
2505 	 * contiguous u64 ranges, but they are discontinuous in s64. [B, C]
2506 	 * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX],
2507 	 * for example. Similarly, valid s64 range [D, A] (going from negative
2508 	 * to positive values), would be two separate [D, U64_MAX] and [0, A]
2509 	 * ranges as u64. Currently reg_state can't represent two segments per
2510 	 * numeric domain, so in such situations we can only derive maximal
2511 	 * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64).
2512 	 *
2513 	 * So we use these facts to derive umin/umax from smin/smax and vice
2514 	 * versa only if they stay within the same "half". This is equivalent
2515 	 * to checking sign bit: lower half will have sign bit as zero, upper
2516 	 * half have sign bit 1. Below in code we simplify this by just
2517 	 * casting umin/umax as smin/smax and checking if they form valid
2518 	 * range, and vice versa. Those are equivalent checks.
2519 	 */
2520 	if ((s64)reg->umin_value <= (s64)reg->umax_value) {
2521 		reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value);
2522 		reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value);
2523 	}
2524 	/* If we cannot cross the sign boundary, then signed and unsigned bounds
2525 	 * are the same, so combine.  This works even in the negative case, e.g.
2526 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2527 	 */
2528 	if ((u64)reg->smin_value <= (u64)reg->smax_value) {
2529 		reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value);
2530 		reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value);
2531 	} else {
2532 		/* If the s64 range crosses the sign boundary, then it's split
2533 		 * between the beginning and end of the U64 domain. In that
2534 		 * case, we can derive new bounds if the u64 range overlaps
2535 		 * with only one end of the s64 range.
2536 		 *
2537 		 * In the following example, the u64 range overlaps only with
2538 		 * positive portion of the s64 range.
2539 		 *
2540 		 * 0                                                   U64_MAX
2541 		 * |  [xxxxxxxxxxxxxx u64 range xxxxxxxxxxxxxx]              |
2542 		 * |----------------------------|----------------------------|
2543 		 * |xxxxx s64 range xxxxxxxxx]                       [xxxxxxx|
2544 		 * 0                     S64_MAX S64_MIN                    -1
2545 		 *
2546 		 * We can thus derive the following new s64 and u64 ranges.
2547 		 *
2548 		 * 0                                                   U64_MAX
2549 		 * |  [xxxxxx u64 range xxxxx]                               |
2550 		 * |----------------------------|----------------------------|
2551 		 * |  [xxxxxx s64 range xxxxx]                               |
2552 		 * 0                     S64_MAX S64_MIN                    -1
2553 		 *
2554 		 * If they overlap in two places, we can't derive anything
2555 		 * because reg_state can't represent two ranges per numeric
2556 		 * domain.
2557 		 *
2558 		 * 0                                                   U64_MAX
2559 		 * |  [xxxxxxxxxxxxxxxxx u64 range xxxxxxxxxxxxxxxxx]        |
2560 		 * |----------------------------|----------------------------|
2561 		 * |xxxxx s64 range xxxxxxxxx]                    [xxxxxxxxxx|
2562 		 * 0                     S64_MAX S64_MIN                    -1
2563 		 *
2564 		 * The first condition below corresponds to the first diagram
2565 		 * above.
2566 		 */
2567 		if (reg->umax_value < (u64)reg->smin_value) {
2568 			reg->smin_value = (s64)reg->umin_value;
2569 			reg->umax_value = min_t(u64, reg->umax_value, reg->smax_value);
2570 		} else if ((u64)reg->smax_value < reg->umin_value) {
2571 			/* This second condition considers the case where the u64 range
2572 			 * overlaps with the negative portion of the s64 range:
2573 			 *
2574 			 * 0                                                   U64_MAX
2575 			 * |              [xxxxxxxxxxxxxx u64 range xxxxxxxxxxxxxx]  |
2576 			 * |----------------------------|----------------------------|
2577 			 * |xxxxxxxxx]                       [xxxxxxxxxxxx s64 range |
2578 			 * 0                     S64_MAX S64_MIN                    -1
2579 			 */
2580 			reg->smax_value = (s64)reg->umax_value;
2581 			reg->umin_value = max_t(u64, reg->umin_value, reg->smin_value);
2582 		}
2583 	}
2584 }
2585 
2586 static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg)
2587 {
2588 	/* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit
2589 	 * values on both sides of 64-bit range in hope to have tighter range.
2590 	 * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from
2591 	 * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff].
2592 	 * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound
2593 	 * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of
2594 	 * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a
2595 	 * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff].
2596 	 * We just need to make sure that derived bounds we are intersecting
2597 	 * with are well-formed ranges in respective s64 or u64 domain, just
2598 	 * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments.
2599 	 */
2600 	__u64 new_umin, new_umax;
2601 	__s64 new_smin, new_smax;
2602 
2603 	/* u32 -> u64 tightening, it's always well-formed */
2604 	new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value;
2605 	new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value;
2606 	reg->umin_value = max_t(u64, reg->umin_value, new_umin);
2607 	reg->umax_value = min_t(u64, reg->umax_value, new_umax);
2608 	/* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */
2609 	new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value;
2610 	new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value;
2611 	reg->smin_value = max_t(s64, reg->smin_value, new_smin);
2612 	reg->smax_value = min_t(s64, reg->smax_value, new_smax);
2613 
2614 	/* Here we would like to handle a special case after sign extending load,
2615 	 * when upper bits for a 64-bit range are all 1s or all 0s.
2616 	 *
2617 	 * Upper bits are all 1s when register is in a range:
2618 	 *   [0xffff_ffff_0000_0000, 0xffff_ffff_ffff_ffff]
2619 	 * Upper bits are all 0s when register is in a range:
2620 	 *   [0x0000_0000_0000_0000, 0x0000_0000_ffff_ffff]
2621 	 * Together this forms are continuous range:
2622 	 *   [0xffff_ffff_0000_0000, 0x0000_0000_ffff_ffff]
2623 	 *
2624 	 * Now, suppose that register range is in fact tighter:
2625 	 *   [0xffff_ffff_8000_0000, 0x0000_0000_ffff_ffff] (R)
2626 	 * Also suppose that it's 32-bit range is positive,
2627 	 * meaning that lower 32-bits of the full 64-bit register
2628 	 * are in the range:
2629 	 *   [0x0000_0000, 0x7fff_ffff] (W)
2630 	 *
2631 	 * If this happens, then any value in a range:
2632 	 *   [0xffff_ffff_0000_0000, 0xffff_ffff_7fff_ffff]
2633 	 * is smaller than a lowest bound of the range (R):
2634 	 *   0xffff_ffff_8000_0000
2635 	 * which means that upper bits of the full 64-bit register
2636 	 * can't be all 1s, when lower bits are in range (W).
2637 	 *
2638 	 * Note that:
2639 	 *  - 0xffff_ffff_8000_0000 == (s64)S32_MIN
2640 	 *  - 0x0000_0000_7fff_ffff == (s64)S32_MAX
2641 	 * These relations are used in the conditions below.
2642 	 */
2643 	if (reg->s32_min_value >= 0 && reg->smin_value >= S32_MIN && reg->smax_value <= S32_MAX) {
2644 		reg->smin_value = reg->s32_min_value;
2645 		reg->smax_value = reg->s32_max_value;
2646 		reg->umin_value = reg->s32_min_value;
2647 		reg->umax_value = reg->s32_max_value;
2648 		reg->var_off = tnum_intersect(reg->var_off,
2649 					      tnum_range(reg->smin_value, reg->smax_value));
2650 	}
2651 }
2652 
2653 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2654 {
2655 	__reg32_deduce_bounds(reg);
2656 	__reg64_deduce_bounds(reg);
2657 	__reg_deduce_mixed_bounds(reg);
2658 }
2659 
2660 /* Attempts to improve var_off based on unsigned min/max information */
2661 static void __reg_bound_offset(struct bpf_reg_state *reg)
2662 {
2663 	struct tnum var64_off = tnum_intersect(reg->var_off,
2664 					       tnum_range(reg->umin_value,
2665 							  reg->umax_value));
2666 	struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2667 					       tnum_range(reg->u32_min_value,
2668 							  reg->u32_max_value));
2669 
2670 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2671 }
2672 
2673 static void reg_bounds_sync(struct bpf_reg_state *reg)
2674 {
2675 	/* We might have learned new bounds from the var_off. */
2676 	__update_reg_bounds(reg);
2677 	/* We might have learned something about the sign bit. */
2678 	__reg_deduce_bounds(reg);
2679 	__reg_deduce_bounds(reg);
2680 	__reg_deduce_bounds(reg);
2681 	/* We might have learned some bits from the bounds. */
2682 	__reg_bound_offset(reg);
2683 	/* Intersecting with the old var_off might have improved our bounds
2684 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2685 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2686 	 */
2687 	__update_reg_bounds(reg);
2688 }
2689 
2690 static int reg_bounds_sanity_check(struct bpf_verifier_env *env,
2691 				   struct bpf_reg_state *reg, const char *ctx)
2692 {
2693 	const char *msg;
2694 
2695 	if (reg->umin_value > reg->umax_value ||
2696 	    reg->smin_value > reg->smax_value ||
2697 	    reg->u32_min_value > reg->u32_max_value ||
2698 	    reg->s32_min_value > reg->s32_max_value) {
2699 		    msg = "range bounds violation";
2700 		    goto out;
2701 	}
2702 
2703 	if (tnum_is_const(reg->var_off)) {
2704 		u64 uval = reg->var_off.value;
2705 		s64 sval = (s64)uval;
2706 
2707 		if (reg->umin_value != uval || reg->umax_value != uval ||
2708 		    reg->smin_value != sval || reg->smax_value != sval) {
2709 			msg = "const tnum out of sync with range bounds";
2710 			goto out;
2711 		}
2712 	}
2713 
2714 	if (tnum_subreg_is_const(reg->var_off)) {
2715 		u32 uval32 = tnum_subreg(reg->var_off).value;
2716 		s32 sval32 = (s32)uval32;
2717 
2718 		if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 ||
2719 		    reg->s32_min_value != sval32 || reg->s32_max_value != sval32) {
2720 			msg = "const subreg tnum out of sync with range bounds";
2721 			goto out;
2722 		}
2723 	}
2724 
2725 	return 0;
2726 out:
2727 	verifier_bug(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] "
2728 		     "s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)",
2729 		     ctx, msg, reg->umin_value, reg->umax_value,
2730 		     reg->smin_value, reg->smax_value,
2731 		     reg->u32_min_value, reg->u32_max_value,
2732 		     reg->s32_min_value, reg->s32_max_value,
2733 		     reg->var_off.value, reg->var_off.mask);
2734 	if (env->test_reg_invariants)
2735 		return -EFAULT;
2736 	__mark_reg_unbounded(reg);
2737 	return 0;
2738 }
2739 
2740 static bool __reg32_bound_s64(s32 a)
2741 {
2742 	return a >= 0 && a <= S32_MAX;
2743 }
2744 
2745 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2746 {
2747 	reg->umin_value = reg->u32_min_value;
2748 	reg->umax_value = reg->u32_max_value;
2749 
2750 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2751 	 * be positive otherwise set to worse case bounds and refine later
2752 	 * from tnum.
2753 	 */
2754 	if (__reg32_bound_s64(reg->s32_min_value) &&
2755 	    __reg32_bound_s64(reg->s32_max_value)) {
2756 		reg->smin_value = reg->s32_min_value;
2757 		reg->smax_value = reg->s32_max_value;
2758 	} else {
2759 		reg->smin_value = 0;
2760 		reg->smax_value = U32_MAX;
2761 	}
2762 }
2763 
2764 /* Mark a register as having a completely unknown (scalar) value. */
2765 static void __mark_reg_unknown_imprecise(struct bpf_reg_state *reg)
2766 {
2767 	/*
2768 	 * Clear type, off, and union(map_ptr, range) and
2769 	 * padding between 'type' and union
2770 	 */
2771 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2772 	reg->type = SCALAR_VALUE;
2773 	reg->id = 0;
2774 	reg->ref_obj_id = 0;
2775 	reg->var_off = tnum_unknown;
2776 	reg->frameno = 0;
2777 	reg->precise = false;
2778 	__mark_reg_unbounded(reg);
2779 }
2780 
2781 /* Mark a register as having a completely unknown (scalar) value,
2782  * initialize .precise as true when not bpf capable.
2783  */
2784 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2785 			       struct bpf_reg_state *reg)
2786 {
2787 	__mark_reg_unknown_imprecise(reg);
2788 	reg->precise = !env->bpf_capable;
2789 }
2790 
2791 static void mark_reg_unknown(struct bpf_verifier_env *env,
2792 			     struct bpf_reg_state *regs, u32 regno)
2793 {
2794 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2795 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2796 		/* Something bad happened, let's kill all regs except FP */
2797 		for (regno = 0; regno < BPF_REG_FP; regno++)
2798 			__mark_reg_not_init(env, regs + regno);
2799 		return;
2800 	}
2801 	__mark_reg_unknown(env, regs + regno);
2802 }
2803 
2804 static int __mark_reg_s32_range(struct bpf_verifier_env *env,
2805 				struct bpf_reg_state *regs,
2806 				u32 regno,
2807 				s32 s32_min,
2808 				s32 s32_max)
2809 {
2810 	struct bpf_reg_state *reg = regs + regno;
2811 
2812 	reg->s32_min_value = max_t(s32, reg->s32_min_value, s32_min);
2813 	reg->s32_max_value = min_t(s32, reg->s32_max_value, s32_max);
2814 
2815 	reg->smin_value = max_t(s64, reg->smin_value, s32_min);
2816 	reg->smax_value = min_t(s64, reg->smax_value, s32_max);
2817 
2818 	reg_bounds_sync(reg);
2819 
2820 	return reg_bounds_sanity_check(env, reg, "s32_range");
2821 }
2822 
2823 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2824 				struct bpf_reg_state *reg)
2825 {
2826 	__mark_reg_unknown(env, reg);
2827 	reg->type = NOT_INIT;
2828 }
2829 
2830 static void mark_reg_not_init(struct bpf_verifier_env *env,
2831 			      struct bpf_reg_state *regs, u32 regno)
2832 {
2833 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2834 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2835 		/* Something bad happened, let's kill all regs except FP */
2836 		for (regno = 0; regno < BPF_REG_FP; regno++)
2837 			__mark_reg_not_init(env, regs + regno);
2838 		return;
2839 	}
2840 	__mark_reg_not_init(env, regs + regno);
2841 }
2842 
2843 static int mark_btf_ld_reg(struct bpf_verifier_env *env,
2844 			   struct bpf_reg_state *regs, u32 regno,
2845 			   enum bpf_reg_type reg_type,
2846 			   struct btf *btf, u32 btf_id,
2847 			   enum bpf_type_flag flag)
2848 {
2849 	switch (reg_type) {
2850 	case SCALAR_VALUE:
2851 		mark_reg_unknown(env, regs, regno);
2852 		return 0;
2853 	case PTR_TO_BTF_ID:
2854 		mark_reg_known_zero(env, regs, regno);
2855 		regs[regno].type = PTR_TO_BTF_ID | flag;
2856 		regs[regno].btf = btf;
2857 		regs[regno].btf_id = btf_id;
2858 		if (type_may_be_null(flag))
2859 			regs[regno].id = ++env->id_gen;
2860 		return 0;
2861 	case PTR_TO_MEM:
2862 		mark_reg_known_zero(env, regs, regno);
2863 		regs[regno].type = PTR_TO_MEM | flag;
2864 		regs[regno].mem_size = 0;
2865 		return 0;
2866 	default:
2867 		verifier_bug(env, "unexpected reg_type %d in %s\n", reg_type, __func__);
2868 		return -EFAULT;
2869 	}
2870 }
2871 
2872 #define DEF_NOT_SUBREG	(0)
2873 static void init_reg_state(struct bpf_verifier_env *env,
2874 			   struct bpf_func_state *state)
2875 {
2876 	struct bpf_reg_state *regs = state->regs;
2877 	int i;
2878 
2879 	for (i = 0; i < MAX_BPF_REG; i++) {
2880 		mark_reg_not_init(env, regs, i);
2881 		regs[i].live = REG_LIVE_NONE;
2882 		regs[i].parent = NULL;
2883 		regs[i].subreg_def = DEF_NOT_SUBREG;
2884 	}
2885 
2886 	/* frame pointer */
2887 	regs[BPF_REG_FP].type = PTR_TO_STACK;
2888 	mark_reg_known_zero(env, regs, BPF_REG_FP);
2889 	regs[BPF_REG_FP].frameno = state->frameno;
2890 }
2891 
2892 static struct bpf_retval_range retval_range(s32 minval, s32 maxval)
2893 {
2894 	return (struct bpf_retval_range){ minval, maxval };
2895 }
2896 
2897 #define BPF_MAIN_FUNC (-1)
2898 static void init_func_state(struct bpf_verifier_env *env,
2899 			    struct bpf_func_state *state,
2900 			    int callsite, int frameno, int subprogno)
2901 {
2902 	state->callsite = callsite;
2903 	state->frameno = frameno;
2904 	state->subprogno = subprogno;
2905 	state->callback_ret_range = retval_range(0, 0);
2906 	init_reg_state(env, state);
2907 	mark_verifier_state_scratched(env);
2908 }
2909 
2910 /* Similar to push_stack(), but for async callbacks */
2911 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2912 						int insn_idx, int prev_insn_idx,
2913 						int subprog, bool is_sleepable)
2914 {
2915 	struct bpf_verifier_stack_elem *elem;
2916 	struct bpf_func_state *frame;
2917 
2918 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL_ACCOUNT);
2919 	if (!elem)
2920 		return NULL;
2921 
2922 	elem->insn_idx = insn_idx;
2923 	elem->prev_insn_idx = prev_insn_idx;
2924 	elem->next = env->head;
2925 	elem->log_pos = env->log.end_pos;
2926 	env->head = elem;
2927 	env->stack_size++;
2928 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2929 		verbose(env,
2930 			"The sequence of %d jumps is too complex for async cb.\n",
2931 			env->stack_size);
2932 		return NULL;
2933 	}
2934 	/* Unlike push_stack() do not copy_verifier_state().
2935 	 * The caller state doesn't matter.
2936 	 * This is async callback. It starts in a fresh stack.
2937 	 * Initialize it similar to do_check_common().
2938 	 */
2939 	elem->st.branches = 1;
2940 	elem->st.in_sleepable = is_sleepable;
2941 	frame = kzalloc(sizeof(*frame), GFP_KERNEL_ACCOUNT);
2942 	if (!frame)
2943 		return NULL;
2944 	init_func_state(env, frame,
2945 			BPF_MAIN_FUNC /* callsite */,
2946 			0 /* frameno within this callchain */,
2947 			subprog /* subprog number within this prog */);
2948 	elem->st.frame[0] = frame;
2949 	return &elem->st;
2950 }
2951 
2952 
2953 enum reg_arg_type {
2954 	SRC_OP,		/* register is used as source operand */
2955 	DST_OP,		/* register is used as destination operand */
2956 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
2957 };
2958 
2959 static int cmp_subprogs(const void *a, const void *b)
2960 {
2961 	return ((struct bpf_subprog_info *)a)->start -
2962 	       ((struct bpf_subprog_info *)b)->start;
2963 }
2964 
2965 /* Find subprogram that contains instruction at 'off' */
2966 static struct bpf_subprog_info *find_containing_subprog(struct bpf_verifier_env *env, int off)
2967 {
2968 	struct bpf_subprog_info *vals = env->subprog_info;
2969 	int l, r, m;
2970 
2971 	if (off >= env->prog->len || off < 0 || env->subprog_cnt == 0)
2972 		return NULL;
2973 
2974 	l = 0;
2975 	r = env->subprog_cnt - 1;
2976 	while (l < r) {
2977 		m = l + (r - l + 1) / 2;
2978 		if (vals[m].start <= off)
2979 			l = m;
2980 		else
2981 			r = m - 1;
2982 	}
2983 	return &vals[l];
2984 }
2985 
2986 /* Find subprogram that starts exactly at 'off' */
2987 static int find_subprog(struct bpf_verifier_env *env, int off)
2988 {
2989 	struct bpf_subprog_info *p;
2990 
2991 	p = find_containing_subprog(env, off);
2992 	if (!p || p->start != off)
2993 		return -ENOENT;
2994 	return p - env->subprog_info;
2995 }
2996 
2997 static int add_subprog(struct bpf_verifier_env *env, int off)
2998 {
2999 	int insn_cnt = env->prog->len;
3000 	int ret;
3001 
3002 	if (off >= insn_cnt || off < 0) {
3003 		verbose(env, "call to invalid destination\n");
3004 		return -EINVAL;
3005 	}
3006 	ret = find_subprog(env, off);
3007 	if (ret >= 0)
3008 		return ret;
3009 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
3010 		verbose(env, "too many subprograms\n");
3011 		return -E2BIG;
3012 	}
3013 	/* determine subprog starts. The end is one before the next starts */
3014 	env->subprog_info[env->subprog_cnt++].start = off;
3015 	sort(env->subprog_info, env->subprog_cnt,
3016 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
3017 	return env->subprog_cnt - 1;
3018 }
3019 
3020 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env)
3021 {
3022 	struct bpf_prog_aux *aux = env->prog->aux;
3023 	struct btf *btf = aux->btf;
3024 	const struct btf_type *t;
3025 	u32 main_btf_id, id;
3026 	const char *name;
3027 	int ret, i;
3028 
3029 	/* Non-zero func_info_cnt implies valid btf */
3030 	if (!aux->func_info_cnt)
3031 		return 0;
3032 	main_btf_id = aux->func_info[0].type_id;
3033 
3034 	t = btf_type_by_id(btf, main_btf_id);
3035 	if (!t) {
3036 		verbose(env, "invalid btf id for main subprog in func_info\n");
3037 		return -EINVAL;
3038 	}
3039 
3040 	name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:");
3041 	if (IS_ERR(name)) {
3042 		ret = PTR_ERR(name);
3043 		/* If there is no tag present, there is no exception callback */
3044 		if (ret == -ENOENT)
3045 			ret = 0;
3046 		else if (ret == -EEXIST)
3047 			verbose(env, "multiple exception callback tags for main subprog\n");
3048 		return ret;
3049 	}
3050 
3051 	ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC);
3052 	if (ret < 0) {
3053 		verbose(env, "exception callback '%s' could not be found in BTF\n", name);
3054 		return ret;
3055 	}
3056 	id = ret;
3057 	t = btf_type_by_id(btf, id);
3058 	if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
3059 		verbose(env, "exception callback '%s' must have global linkage\n", name);
3060 		return -EINVAL;
3061 	}
3062 	ret = 0;
3063 	for (i = 0; i < aux->func_info_cnt; i++) {
3064 		if (aux->func_info[i].type_id != id)
3065 			continue;
3066 		ret = aux->func_info[i].insn_off;
3067 		/* Further func_info and subprog checks will also happen
3068 		 * later, so assume this is the right insn_off for now.
3069 		 */
3070 		if (!ret) {
3071 			verbose(env, "invalid exception callback insn_off in func_info: 0\n");
3072 			ret = -EINVAL;
3073 		}
3074 	}
3075 	if (!ret) {
3076 		verbose(env, "exception callback type id not found in func_info\n");
3077 		ret = -EINVAL;
3078 	}
3079 	return ret;
3080 }
3081 
3082 #define MAX_KFUNC_DESCS 256
3083 #define MAX_KFUNC_BTFS	256
3084 
3085 struct bpf_kfunc_desc {
3086 	struct btf_func_model func_model;
3087 	u32 func_id;
3088 	s32 imm;
3089 	u16 offset;
3090 	unsigned long addr;
3091 };
3092 
3093 struct bpf_kfunc_btf {
3094 	struct btf *btf;
3095 	struct module *module;
3096 	u16 offset;
3097 };
3098 
3099 struct bpf_kfunc_desc_tab {
3100 	/* Sorted by func_id (BTF ID) and offset (fd_array offset) during
3101 	 * verification. JITs do lookups by bpf_insn, where func_id may not be
3102 	 * available, therefore at the end of verification do_misc_fixups()
3103 	 * sorts this by imm and offset.
3104 	 */
3105 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
3106 	u32 nr_descs;
3107 };
3108 
3109 struct bpf_kfunc_btf_tab {
3110 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
3111 	u32 nr_descs;
3112 };
3113 
3114 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
3115 {
3116 	const struct bpf_kfunc_desc *d0 = a;
3117 	const struct bpf_kfunc_desc *d1 = b;
3118 
3119 	/* func_id is not greater than BTF_MAX_TYPE */
3120 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
3121 }
3122 
3123 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
3124 {
3125 	const struct bpf_kfunc_btf *d0 = a;
3126 	const struct bpf_kfunc_btf *d1 = b;
3127 
3128 	return d0->offset - d1->offset;
3129 }
3130 
3131 static const struct bpf_kfunc_desc *
3132 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
3133 {
3134 	struct bpf_kfunc_desc desc = {
3135 		.func_id = func_id,
3136 		.offset = offset,
3137 	};
3138 	struct bpf_kfunc_desc_tab *tab;
3139 
3140 	tab = prog->aux->kfunc_tab;
3141 	return bsearch(&desc, tab->descs, tab->nr_descs,
3142 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
3143 }
3144 
3145 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
3146 		       u16 btf_fd_idx, u8 **func_addr)
3147 {
3148 	const struct bpf_kfunc_desc *desc;
3149 
3150 	desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
3151 	if (!desc)
3152 		return -EFAULT;
3153 
3154 	*func_addr = (u8 *)desc->addr;
3155 	return 0;
3156 }
3157 
3158 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
3159 					 s16 offset)
3160 {
3161 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
3162 	struct bpf_kfunc_btf_tab *tab;
3163 	struct bpf_kfunc_btf *b;
3164 	struct module *mod;
3165 	struct btf *btf;
3166 	int btf_fd;
3167 
3168 	tab = env->prog->aux->kfunc_btf_tab;
3169 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
3170 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
3171 	if (!b) {
3172 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
3173 			verbose(env, "too many different module BTFs\n");
3174 			return ERR_PTR(-E2BIG);
3175 		}
3176 
3177 		if (bpfptr_is_null(env->fd_array)) {
3178 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
3179 			return ERR_PTR(-EPROTO);
3180 		}
3181 
3182 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
3183 					    offset * sizeof(btf_fd),
3184 					    sizeof(btf_fd)))
3185 			return ERR_PTR(-EFAULT);
3186 
3187 		btf = btf_get_by_fd(btf_fd);
3188 		if (IS_ERR(btf)) {
3189 			verbose(env, "invalid module BTF fd specified\n");
3190 			return btf;
3191 		}
3192 
3193 		if (!btf_is_module(btf)) {
3194 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
3195 			btf_put(btf);
3196 			return ERR_PTR(-EINVAL);
3197 		}
3198 
3199 		mod = btf_try_get_module(btf);
3200 		if (!mod) {
3201 			btf_put(btf);
3202 			return ERR_PTR(-ENXIO);
3203 		}
3204 
3205 		b = &tab->descs[tab->nr_descs++];
3206 		b->btf = btf;
3207 		b->module = mod;
3208 		b->offset = offset;
3209 
3210 		/* sort() reorders entries by value, so b may no longer point
3211 		 * to the right entry after this
3212 		 */
3213 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
3214 		     kfunc_btf_cmp_by_off, NULL);
3215 	} else {
3216 		btf = b->btf;
3217 	}
3218 
3219 	return btf;
3220 }
3221 
3222 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
3223 {
3224 	if (!tab)
3225 		return;
3226 
3227 	while (tab->nr_descs--) {
3228 		module_put(tab->descs[tab->nr_descs].module);
3229 		btf_put(tab->descs[tab->nr_descs].btf);
3230 	}
3231 	kfree(tab);
3232 }
3233 
3234 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
3235 {
3236 	if (offset) {
3237 		if (offset < 0) {
3238 			/* In the future, this can be allowed to increase limit
3239 			 * of fd index into fd_array, interpreted as u16.
3240 			 */
3241 			verbose(env, "negative offset disallowed for kernel module function call\n");
3242 			return ERR_PTR(-EINVAL);
3243 		}
3244 
3245 		return __find_kfunc_desc_btf(env, offset);
3246 	}
3247 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
3248 }
3249 
3250 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
3251 {
3252 	const struct btf_type *func, *func_proto;
3253 	struct bpf_kfunc_btf_tab *btf_tab;
3254 	struct bpf_kfunc_desc_tab *tab;
3255 	struct bpf_prog_aux *prog_aux;
3256 	struct bpf_kfunc_desc *desc;
3257 	const char *func_name;
3258 	struct btf *desc_btf;
3259 	unsigned long call_imm;
3260 	unsigned long addr;
3261 	int err;
3262 
3263 	prog_aux = env->prog->aux;
3264 	tab = prog_aux->kfunc_tab;
3265 	btf_tab = prog_aux->kfunc_btf_tab;
3266 	if (!tab) {
3267 		if (!btf_vmlinux) {
3268 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
3269 			return -ENOTSUPP;
3270 		}
3271 
3272 		if (!env->prog->jit_requested) {
3273 			verbose(env, "JIT is required for calling kernel function\n");
3274 			return -ENOTSUPP;
3275 		}
3276 
3277 		if (!bpf_jit_supports_kfunc_call()) {
3278 			verbose(env, "JIT does not support calling kernel function\n");
3279 			return -ENOTSUPP;
3280 		}
3281 
3282 		if (!env->prog->gpl_compatible) {
3283 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
3284 			return -EINVAL;
3285 		}
3286 
3287 		tab = kzalloc(sizeof(*tab), GFP_KERNEL_ACCOUNT);
3288 		if (!tab)
3289 			return -ENOMEM;
3290 		prog_aux->kfunc_tab = tab;
3291 	}
3292 
3293 	/* func_id == 0 is always invalid, but instead of returning an error, be
3294 	 * conservative and wait until the code elimination pass before returning
3295 	 * error, so that invalid calls that get pruned out can be in BPF programs
3296 	 * loaded from userspace.  It is also required that offset be untouched
3297 	 * for such calls.
3298 	 */
3299 	if (!func_id && !offset)
3300 		return 0;
3301 
3302 	if (!btf_tab && offset) {
3303 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL_ACCOUNT);
3304 		if (!btf_tab)
3305 			return -ENOMEM;
3306 		prog_aux->kfunc_btf_tab = btf_tab;
3307 	}
3308 
3309 	desc_btf = find_kfunc_desc_btf(env, offset);
3310 	if (IS_ERR(desc_btf)) {
3311 		verbose(env, "failed to find BTF for kernel function\n");
3312 		return PTR_ERR(desc_btf);
3313 	}
3314 
3315 	if (find_kfunc_desc(env->prog, func_id, offset))
3316 		return 0;
3317 
3318 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
3319 		verbose(env, "too many different kernel function calls\n");
3320 		return -E2BIG;
3321 	}
3322 
3323 	func = btf_type_by_id(desc_btf, func_id);
3324 	if (!func || !btf_type_is_func(func)) {
3325 		verbose(env, "kernel btf_id %u is not a function\n",
3326 			func_id);
3327 		return -EINVAL;
3328 	}
3329 	func_proto = btf_type_by_id(desc_btf, func->type);
3330 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
3331 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
3332 			func_id);
3333 		return -EINVAL;
3334 	}
3335 
3336 	func_name = btf_name_by_offset(desc_btf, func->name_off);
3337 	addr = kallsyms_lookup_name(func_name);
3338 	if (!addr) {
3339 		verbose(env, "cannot find address for kernel function %s\n",
3340 			func_name);
3341 		return -EINVAL;
3342 	}
3343 	specialize_kfunc(env, func_id, offset, &addr);
3344 
3345 	if (bpf_jit_supports_far_kfunc_call()) {
3346 		call_imm = func_id;
3347 	} else {
3348 		call_imm = BPF_CALL_IMM(addr);
3349 		/* Check whether the relative offset overflows desc->imm */
3350 		if ((unsigned long)(s32)call_imm != call_imm) {
3351 			verbose(env, "address of kernel function %s is out of range\n",
3352 				func_name);
3353 			return -EINVAL;
3354 		}
3355 	}
3356 
3357 	if (bpf_dev_bound_kfunc_id(func_id)) {
3358 		err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
3359 		if (err)
3360 			return err;
3361 	}
3362 
3363 	desc = &tab->descs[tab->nr_descs++];
3364 	desc->func_id = func_id;
3365 	desc->imm = call_imm;
3366 	desc->offset = offset;
3367 	desc->addr = addr;
3368 	err = btf_distill_func_proto(&env->log, desc_btf,
3369 				     func_proto, func_name,
3370 				     &desc->func_model);
3371 	if (!err)
3372 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
3373 		     kfunc_desc_cmp_by_id_off, NULL);
3374 	return err;
3375 }
3376 
3377 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
3378 {
3379 	const struct bpf_kfunc_desc *d0 = a;
3380 	const struct bpf_kfunc_desc *d1 = b;
3381 
3382 	if (d0->imm != d1->imm)
3383 		return d0->imm < d1->imm ? -1 : 1;
3384 	if (d0->offset != d1->offset)
3385 		return d0->offset < d1->offset ? -1 : 1;
3386 	return 0;
3387 }
3388 
3389 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
3390 {
3391 	struct bpf_kfunc_desc_tab *tab;
3392 
3393 	tab = prog->aux->kfunc_tab;
3394 	if (!tab)
3395 		return;
3396 
3397 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
3398 	     kfunc_desc_cmp_by_imm_off, NULL);
3399 }
3400 
3401 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
3402 {
3403 	return !!prog->aux->kfunc_tab;
3404 }
3405 
3406 const struct btf_func_model *
3407 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
3408 			 const struct bpf_insn *insn)
3409 {
3410 	const struct bpf_kfunc_desc desc = {
3411 		.imm = insn->imm,
3412 		.offset = insn->off,
3413 	};
3414 	const struct bpf_kfunc_desc *res;
3415 	struct bpf_kfunc_desc_tab *tab;
3416 
3417 	tab = prog->aux->kfunc_tab;
3418 	res = bsearch(&desc, tab->descs, tab->nr_descs,
3419 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
3420 
3421 	return res ? &res->func_model : NULL;
3422 }
3423 
3424 static int add_kfunc_in_insns(struct bpf_verifier_env *env,
3425 			      struct bpf_insn *insn, int cnt)
3426 {
3427 	int i, ret;
3428 
3429 	for (i = 0; i < cnt; i++, insn++) {
3430 		if (bpf_pseudo_kfunc_call(insn)) {
3431 			ret = add_kfunc_call(env, insn->imm, insn->off);
3432 			if (ret < 0)
3433 				return ret;
3434 		}
3435 	}
3436 	return 0;
3437 }
3438 
3439 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
3440 {
3441 	struct bpf_subprog_info *subprog = env->subprog_info;
3442 	int i, ret, insn_cnt = env->prog->len, ex_cb_insn;
3443 	struct bpf_insn *insn = env->prog->insnsi;
3444 
3445 	/* Add entry function. */
3446 	ret = add_subprog(env, 0);
3447 	if (ret)
3448 		return ret;
3449 
3450 	for (i = 0; i < insn_cnt; i++, insn++) {
3451 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
3452 		    !bpf_pseudo_kfunc_call(insn))
3453 			continue;
3454 
3455 		if (!env->bpf_capable) {
3456 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
3457 			return -EPERM;
3458 		}
3459 
3460 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
3461 			ret = add_subprog(env, i + insn->imm + 1);
3462 		else
3463 			ret = add_kfunc_call(env, insn->imm, insn->off);
3464 
3465 		if (ret < 0)
3466 			return ret;
3467 	}
3468 
3469 	ret = bpf_find_exception_callback_insn_off(env);
3470 	if (ret < 0)
3471 		return ret;
3472 	ex_cb_insn = ret;
3473 
3474 	/* If ex_cb_insn > 0, this means that the main program has a subprog
3475 	 * marked using BTF decl tag to serve as the exception callback.
3476 	 */
3477 	if (ex_cb_insn) {
3478 		ret = add_subprog(env, ex_cb_insn);
3479 		if (ret < 0)
3480 			return ret;
3481 		for (i = 1; i < env->subprog_cnt; i++) {
3482 			if (env->subprog_info[i].start != ex_cb_insn)
3483 				continue;
3484 			env->exception_callback_subprog = i;
3485 			mark_subprog_exc_cb(env, i);
3486 			break;
3487 		}
3488 	}
3489 
3490 	/* Add a fake 'exit' subprog which could simplify subprog iteration
3491 	 * logic. 'subprog_cnt' should not be increased.
3492 	 */
3493 	subprog[env->subprog_cnt].start = insn_cnt;
3494 
3495 	if (env->log.level & BPF_LOG_LEVEL2)
3496 		for (i = 0; i < env->subprog_cnt; i++)
3497 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
3498 
3499 	return 0;
3500 }
3501 
3502 static int jmp_offset(struct bpf_insn *insn)
3503 {
3504 	u8 code = insn->code;
3505 
3506 	if (code == (BPF_JMP32 | BPF_JA))
3507 		return insn->imm;
3508 	return insn->off;
3509 }
3510 
3511 static int check_subprogs(struct bpf_verifier_env *env)
3512 {
3513 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
3514 	struct bpf_subprog_info *subprog = env->subprog_info;
3515 	struct bpf_insn *insn = env->prog->insnsi;
3516 	int insn_cnt = env->prog->len;
3517 
3518 	/* now check that all jumps are within the same subprog */
3519 	subprog_start = subprog[cur_subprog].start;
3520 	subprog_end = subprog[cur_subprog + 1].start;
3521 	for (i = 0; i < insn_cnt; i++) {
3522 		u8 code = insn[i].code;
3523 
3524 		if (code == (BPF_JMP | BPF_CALL) &&
3525 		    insn[i].src_reg == 0 &&
3526 		    insn[i].imm == BPF_FUNC_tail_call) {
3527 			subprog[cur_subprog].has_tail_call = true;
3528 			subprog[cur_subprog].tail_call_reachable = true;
3529 		}
3530 		if (BPF_CLASS(code) == BPF_LD &&
3531 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
3532 			subprog[cur_subprog].has_ld_abs = true;
3533 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
3534 			goto next;
3535 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
3536 			goto next;
3537 		off = i + jmp_offset(&insn[i]) + 1;
3538 		if (off < subprog_start || off >= subprog_end) {
3539 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
3540 			return -EINVAL;
3541 		}
3542 next:
3543 		if (i == subprog_end - 1) {
3544 			/* to avoid fall-through from one subprog into another
3545 			 * the last insn of the subprog should be either exit
3546 			 * or unconditional jump back or bpf_throw call
3547 			 */
3548 			if (code != (BPF_JMP | BPF_EXIT) &&
3549 			    code != (BPF_JMP32 | BPF_JA) &&
3550 			    code != (BPF_JMP | BPF_JA)) {
3551 				verbose(env, "last insn is not an exit or jmp\n");
3552 				return -EINVAL;
3553 			}
3554 			subprog_start = subprog_end;
3555 			cur_subprog++;
3556 			if (cur_subprog < env->subprog_cnt)
3557 				subprog_end = subprog[cur_subprog + 1].start;
3558 		}
3559 	}
3560 	return 0;
3561 }
3562 
3563 /* Parentage chain of this register (or stack slot) should take care of all
3564  * issues like callee-saved registers, stack slot allocation time, etc.
3565  */
3566 static int mark_reg_read(struct bpf_verifier_env *env,
3567 			 const struct bpf_reg_state *state,
3568 			 struct bpf_reg_state *parent, u8 flag)
3569 {
3570 	bool writes = parent == state->parent; /* Observe write marks */
3571 	int cnt = 0;
3572 
3573 	while (parent) {
3574 		/* if read wasn't screened by an earlier write ... */
3575 		if (writes && state->live & REG_LIVE_WRITTEN)
3576 			break;
3577 		if (verifier_bug_if(parent->live & REG_LIVE_DONE, env,
3578 				    "type %s var_off %lld off %d",
3579 				    reg_type_str(env, parent->type),
3580 				    parent->var_off.value, parent->off))
3581 			return -EFAULT;
3582 		/* The first condition is more likely to be true than the
3583 		 * second, checked it first.
3584 		 */
3585 		if ((parent->live & REG_LIVE_READ) == flag ||
3586 		    parent->live & REG_LIVE_READ64)
3587 			/* The parentage chain never changes and
3588 			 * this parent was already marked as LIVE_READ.
3589 			 * There is no need to keep walking the chain again and
3590 			 * keep re-marking all parents as LIVE_READ.
3591 			 * This case happens when the same register is read
3592 			 * multiple times without writes into it in-between.
3593 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
3594 			 * then no need to set the weak REG_LIVE_READ32.
3595 			 */
3596 			break;
3597 		/* ... then we depend on parent's value */
3598 		parent->live |= flag;
3599 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
3600 		if (flag == REG_LIVE_READ64)
3601 			parent->live &= ~REG_LIVE_READ32;
3602 		state = parent;
3603 		parent = state->parent;
3604 		writes = true;
3605 		cnt++;
3606 	}
3607 
3608 	if (env->longest_mark_read_walk < cnt)
3609 		env->longest_mark_read_walk = cnt;
3610 	return 0;
3611 }
3612 
3613 static int mark_stack_slot_obj_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
3614 				    int spi, int nr_slots)
3615 {
3616 	struct bpf_func_state *state = func(env, reg);
3617 	int err, i;
3618 
3619 	for (i = 0; i < nr_slots; i++) {
3620 		struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
3621 
3622 		err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
3623 		if (err)
3624 			return err;
3625 
3626 		mark_stack_slot_scratched(env, spi - i);
3627 	}
3628 	return 0;
3629 }
3630 
3631 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
3632 {
3633 	int spi;
3634 
3635 	/* For CONST_PTR_TO_DYNPTR, it must have already been done by
3636 	 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
3637 	 * check_kfunc_call.
3638 	 */
3639 	if (reg->type == CONST_PTR_TO_DYNPTR)
3640 		return 0;
3641 	spi = dynptr_get_spi(env, reg);
3642 	if (spi < 0)
3643 		return spi;
3644 	/* Caller ensures dynptr is valid and initialized, which means spi is in
3645 	 * bounds and spi is the first dynptr slot. Simply mark stack slot as
3646 	 * read.
3647 	 */
3648 	return mark_stack_slot_obj_read(env, reg, spi, BPF_DYNPTR_NR_SLOTS);
3649 }
3650 
3651 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
3652 			  int spi, int nr_slots)
3653 {
3654 	return mark_stack_slot_obj_read(env, reg, spi, nr_slots);
3655 }
3656 
3657 static int mark_irq_flag_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
3658 {
3659 	int spi;
3660 
3661 	spi = irq_flag_get_spi(env, reg);
3662 	if (spi < 0)
3663 		return spi;
3664 	return mark_stack_slot_obj_read(env, reg, spi, 1);
3665 }
3666 
3667 /* This function is supposed to be used by the following 32-bit optimization
3668  * code only. It returns TRUE if the source or destination register operates
3669  * on 64-bit, otherwise return FALSE.
3670  */
3671 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
3672 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
3673 {
3674 	u8 code, class, op;
3675 
3676 	code = insn->code;
3677 	class = BPF_CLASS(code);
3678 	op = BPF_OP(code);
3679 	if (class == BPF_JMP) {
3680 		/* BPF_EXIT for "main" will reach here. Return TRUE
3681 		 * conservatively.
3682 		 */
3683 		if (op == BPF_EXIT)
3684 			return true;
3685 		if (op == BPF_CALL) {
3686 			/* BPF to BPF call will reach here because of marking
3687 			 * caller saved clobber with DST_OP_NO_MARK for which we
3688 			 * don't care the register def because they are anyway
3689 			 * marked as NOT_INIT already.
3690 			 */
3691 			if (insn->src_reg == BPF_PSEUDO_CALL)
3692 				return false;
3693 			/* Helper call will reach here because of arg type
3694 			 * check, conservatively return TRUE.
3695 			 */
3696 			if (t == SRC_OP)
3697 				return true;
3698 
3699 			return false;
3700 		}
3701 	}
3702 
3703 	if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
3704 		return false;
3705 
3706 	if (class == BPF_ALU64 || class == BPF_JMP ||
3707 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3708 		return true;
3709 
3710 	if (class == BPF_ALU || class == BPF_JMP32)
3711 		return false;
3712 
3713 	if (class == BPF_LDX) {
3714 		if (t != SRC_OP)
3715 			return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX;
3716 		/* LDX source must be ptr. */
3717 		return true;
3718 	}
3719 
3720 	if (class == BPF_STX) {
3721 		/* BPF_STX (including atomic variants) has one or more source
3722 		 * operands, one of which is a ptr. Check whether the caller is
3723 		 * asking about it.
3724 		 */
3725 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
3726 			return true;
3727 		return BPF_SIZE(code) == BPF_DW;
3728 	}
3729 
3730 	if (class == BPF_LD) {
3731 		u8 mode = BPF_MODE(code);
3732 
3733 		/* LD_IMM64 */
3734 		if (mode == BPF_IMM)
3735 			return true;
3736 
3737 		/* Both LD_IND and LD_ABS return 32-bit data. */
3738 		if (t != SRC_OP)
3739 			return  false;
3740 
3741 		/* Implicit ctx ptr. */
3742 		if (regno == BPF_REG_6)
3743 			return true;
3744 
3745 		/* Explicit source could be any width. */
3746 		return true;
3747 	}
3748 
3749 	if (class == BPF_ST)
3750 		/* The only source register for BPF_ST is a ptr. */
3751 		return true;
3752 
3753 	/* Conservatively return true at default. */
3754 	return true;
3755 }
3756 
3757 /* Return the regno defined by the insn, or -1. */
3758 static int insn_def_regno(const struct bpf_insn *insn)
3759 {
3760 	switch (BPF_CLASS(insn->code)) {
3761 	case BPF_JMP:
3762 	case BPF_JMP32:
3763 	case BPF_ST:
3764 		return -1;
3765 	case BPF_STX:
3766 		if (BPF_MODE(insn->code) == BPF_ATOMIC ||
3767 		    BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) {
3768 			if (insn->imm == BPF_CMPXCHG)
3769 				return BPF_REG_0;
3770 			else if (insn->imm == BPF_LOAD_ACQ)
3771 				return insn->dst_reg;
3772 			else if (insn->imm & BPF_FETCH)
3773 				return insn->src_reg;
3774 		}
3775 		return -1;
3776 	default:
3777 		return insn->dst_reg;
3778 	}
3779 }
3780 
3781 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
3782 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3783 {
3784 	int dst_reg = insn_def_regno(insn);
3785 
3786 	if (dst_reg == -1)
3787 		return false;
3788 
3789 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
3790 }
3791 
3792 static void mark_insn_zext(struct bpf_verifier_env *env,
3793 			   struct bpf_reg_state *reg)
3794 {
3795 	s32 def_idx = reg->subreg_def;
3796 
3797 	if (def_idx == DEF_NOT_SUBREG)
3798 		return;
3799 
3800 	env->insn_aux_data[def_idx - 1].zext_dst = true;
3801 	/* The dst will be zero extended, so won't be sub-register anymore. */
3802 	reg->subreg_def = DEF_NOT_SUBREG;
3803 }
3804 
3805 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno,
3806 			   enum reg_arg_type t)
3807 {
3808 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3809 	struct bpf_reg_state *reg;
3810 	bool rw64;
3811 
3812 	if (regno >= MAX_BPF_REG) {
3813 		verbose(env, "R%d is invalid\n", regno);
3814 		return -EINVAL;
3815 	}
3816 
3817 	mark_reg_scratched(env, regno);
3818 
3819 	reg = &regs[regno];
3820 	rw64 = is_reg64(env, insn, regno, reg, t);
3821 	if (t == SRC_OP) {
3822 		/* check whether register used as source operand can be read */
3823 		if (reg->type == NOT_INIT) {
3824 			verbose(env, "R%d !read_ok\n", regno);
3825 			return -EACCES;
3826 		}
3827 		/* We don't need to worry about FP liveness because it's read-only */
3828 		if (regno == BPF_REG_FP)
3829 			return 0;
3830 
3831 		if (rw64)
3832 			mark_insn_zext(env, reg);
3833 
3834 		return mark_reg_read(env, reg, reg->parent,
3835 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
3836 	} else {
3837 		/* check whether register used as dest operand can be written to */
3838 		if (regno == BPF_REG_FP) {
3839 			verbose(env, "frame pointer is read only\n");
3840 			return -EACCES;
3841 		}
3842 		reg->live |= REG_LIVE_WRITTEN;
3843 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3844 		if (t == DST_OP)
3845 			mark_reg_unknown(env, regs, regno);
3846 	}
3847 	return 0;
3848 }
3849 
3850 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3851 			 enum reg_arg_type t)
3852 {
3853 	struct bpf_verifier_state *vstate = env->cur_state;
3854 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3855 
3856 	return __check_reg_arg(env, state->regs, regno, t);
3857 }
3858 
3859 static int insn_stack_access_flags(int frameno, int spi)
3860 {
3861 	return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno;
3862 }
3863 
3864 static int insn_stack_access_spi(int insn_flags)
3865 {
3866 	return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK;
3867 }
3868 
3869 static int insn_stack_access_frameno(int insn_flags)
3870 {
3871 	return insn_flags & INSN_F_FRAMENO_MASK;
3872 }
3873 
3874 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3875 {
3876 	env->insn_aux_data[idx].jmp_point = true;
3877 }
3878 
3879 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3880 {
3881 	return env->insn_aux_data[insn_idx].jmp_point;
3882 }
3883 
3884 #define LR_FRAMENO_BITS	3
3885 #define LR_SPI_BITS	6
3886 #define LR_ENTRY_BITS	(LR_SPI_BITS + LR_FRAMENO_BITS + 1)
3887 #define LR_SIZE_BITS	4
3888 #define LR_FRAMENO_MASK	((1ull << LR_FRAMENO_BITS) - 1)
3889 #define LR_SPI_MASK	((1ull << LR_SPI_BITS)     - 1)
3890 #define LR_SIZE_MASK	((1ull << LR_SIZE_BITS)    - 1)
3891 #define LR_SPI_OFF	LR_FRAMENO_BITS
3892 #define LR_IS_REG_OFF	(LR_SPI_BITS + LR_FRAMENO_BITS)
3893 #define LINKED_REGS_MAX	6
3894 
3895 struct linked_reg {
3896 	u8 frameno;
3897 	union {
3898 		u8 spi;
3899 		u8 regno;
3900 	};
3901 	bool is_reg;
3902 };
3903 
3904 struct linked_regs {
3905 	int cnt;
3906 	struct linked_reg entries[LINKED_REGS_MAX];
3907 };
3908 
3909 static struct linked_reg *linked_regs_push(struct linked_regs *s)
3910 {
3911 	if (s->cnt < LINKED_REGS_MAX)
3912 		return &s->entries[s->cnt++];
3913 
3914 	return NULL;
3915 }
3916 
3917 /* Use u64 as a vector of 6 10-bit values, use first 4-bits to track
3918  * number of elements currently in stack.
3919  * Pack one history entry for linked registers as 10 bits in the following format:
3920  * - 3-bits frameno
3921  * - 6-bits spi_or_reg
3922  * - 1-bit  is_reg
3923  */
3924 static u64 linked_regs_pack(struct linked_regs *s)
3925 {
3926 	u64 val = 0;
3927 	int i;
3928 
3929 	for (i = 0; i < s->cnt; ++i) {
3930 		struct linked_reg *e = &s->entries[i];
3931 		u64 tmp = 0;
3932 
3933 		tmp |= e->frameno;
3934 		tmp |= e->spi << LR_SPI_OFF;
3935 		tmp |= (e->is_reg ? 1 : 0) << LR_IS_REG_OFF;
3936 
3937 		val <<= LR_ENTRY_BITS;
3938 		val |= tmp;
3939 	}
3940 	val <<= LR_SIZE_BITS;
3941 	val |= s->cnt;
3942 	return val;
3943 }
3944 
3945 static void linked_regs_unpack(u64 val, struct linked_regs *s)
3946 {
3947 	int i;
3948 
3949 	s->cnt = val & LR_SIZE_MASK;
3950 	val >>= LR_SIZE_BITS;
3951 
3952 	for (i = 0; i < s->cnt; ++i) {
3953 		struct linked_reg *e = &s->entries[i];
3954 
3955 		e->frameno =  val & LR_FRAMENO_MASK;
3956 		e->spi     = (val >> LR_SPI_OFF) & LR_SPI_MASK;
3957 		e->is_reg  = (val >> LR_IS_REG_OFF) & 0x1;
3958 		val >>= LR_ENTRY_BITS;
3959 	}
3960 }
3961 
3962 /* for any branch, call, exit record the history of jmps in the given state */
3963 static int push_jmp_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur,
3964 			    int insn_flags, u64 linked_regs)
3965 {
3966 	u32 cnt = cur->jmp_history_cnt;
3967 	struct bpf_jmp_history_entry *p;
3968 	size_t alloc_size;
3969 
3970 	/* combine instruction flags if we already recorded this instruction */
3971 	if (env->cur_hist_ent) {
3972 		/* atomic instructions push insn_flags twice, for READ and
3973 		 * WRITE sides, but they should agree on stack slot
3974 		 */
3975 		verifier_bug_if((env->cur_hist_ent->flags & insn_flags) &&
3976 				(env->cur_hist_ent->flags & insn_flags) != insn_flags,
3977 				env, "insn history: insn_idx %d cur flags %x new flags %x",
3978 				env->insn_idx, env->cur_hist_ent->flags, insn_flags);
3979 		env->cur_hist_ent->flags |= insn_flags;
3980 		verifier_bug_if(env->cur_hist_ent->linked_regs != 0, env,
3981 				"insn history: insn_idx %d linked_regs: %#llx",
3982 				env->insn_idx, env->cur_hist_ent->linked_regs);
3983 		env->cur_hist_ent->linked_regs = linked_regs;
3984 		return 0;
3985 	}
3986 
3987 	cnt++;
3988 	alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3989 	p = krealloc(cur->jmp_history, alloc_size, GFP_KERNEL_ACCOUNT);
3990 	if (!p)
3991 		return -ENOMEM;
3992 	cur->jmp_history = p;
3993 
3994 	p = &cur->jmp_history[cnt - 1];
3995 	p->idx = env->insn_idx;
3996 	p->prev_idx = env->prev_insn_idx;
3997 	p->flags = insn_flags;
3998 	p->linked_regs = linked_regs;
3999 	cur->jmp_history_cnt = cnt;
4000 	env->cur_hist_ent = p;
4001 
4002 	return 0;
4003 }
4004 
4005 static struct bpf_jmp_history_entry *get_jmp_hist_entry(struct bpf_verifier_state *st,
4006 						        u32 hist_end, int insn_idx)
4007 {
4008 	if (hist_end > 0 && st->jmp_history[hist_end - 1].idx == insn_idx)
4009 		return &st->jmp_history[hist_end - 1];
4010 	return NULL;
4011 }
4012 
4013 /* Backtrack one insn at a time. If idx is not at the top of recorded
4014  * history then previous instruction came from straight line execution.
4015  * Return -ENOENT if we exhausted all instructions within given state.
4016  *
4017  * It's legal to have a bit of a looping with the same starting and ending
4018  * insn index within the same state, e.g.: 3->4->5->3, so just because current
4019  * instruction index is the same as state's first_idx doesn't mean we are
4020  * done. If there is still some jump history left, we should keep going. We
4021  * need to take into account that we might have a jump history between given
4022  * state's parent and itself, due to checkpointing. In this case, we'll have
4023  * history entry recording a jump from last instruction of parent state and
4024  * first instruction of given state.
4025  */
4026 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
4027 			     u32 *history)
4028 {
4029 	u32 cnt = *history;
4030 
4031 	if (i == st->first_insn_idx) {
4032 		if (cnt == 0)
4033 			return -ENOENT;
4034 		if (cnt == 1 && st->jmp_history[0].idx == i)
4035 			return -ENOENT;
4036 	}
4037 
4038 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
4039 		i = st->jmp_history[cnt - 1].prev_idx;
4040 		(*history)--;
4041 	} else {
4042 		i--;
4043 	}
4044 	return i;
4045 }
4046 
4047 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
4048 {
4049 	const struct btf_type *func;
4050 	struct btf *desc_btf;
4051 
4052 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
4053 		return NULL;
4054 
4055 	desc_btf = find_kfunc_desc_btf(data, insn->off);
4056 	if (IS_ERR(desc_btf))
4057 		return "<error>";
4058 
4059 	func = btf_type_by_id(desc_btf, insn->imm);
4060 	return btf_name_by_offset(desc_btf, func->name_off);
4061 }
4062 
4063 static void verbose_insn(struct bpf_verifier_env *env, struct bpf_insn *insn)
4064 {
4065 	const struct bpf_insn_cbs cbs = {
4066 		.cb_call	= disasm_kfunc_name,
4067 		.cb_print	= verbose,
4068 		.private_data	= env,
4069 	};
4070 
4071 	print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
4072 }
4073 
4074 static inline void bt_init(struct backtrack_state *bt, u32 frame)
4075 {
4076 	bt->frame = frame;
4077 }
4078 
4079 static inline void bt_reset(struct backtrack_state *bt)
4080 {
4081 	struct bpf_verifier_env *env = bt->env;
4082 
4083 	memset(bt, 0, sizeof(*bt));
4084 	bt->env = env;
4085 }
4086 
4087 static inline u32 bt_empty(struct backtrack_state *bt)
4088 {
4089 	u64 mask = 0;
4090 	int i;
4091 
4092 	for (i = 0; i <= bt->frame; i++)
4093 		mask |= bt->reg_masks[i] | bt->stack_masks[i];
4094 
4095 	return mask == 0;
4096 }
4097 
4098 static inline int bt_subprog_enter(struct backtrack_state *bt)
4099 {
4100 	if (bt->frame == MAX_CALL_FRAMES - 1) {
4101 		verifier_bug(bt->env, "subprog enter from frame %d", bt->frame);
4102 		return -EFAULT;
4103 	}
4104 	bt->frame++;
4105 	return 0;
4106 }
4107 
4108 static inline int bt_subprog_exit(struct backtrack_state *bt)
4109 {
4110 	if (bt->frame == 0) {
4111 		verifier_bug(bt->env, "subprog exit from frame 0");
4112 		return -EFAULT;
4113 	}
4114 	bt->frame--;
4115 	return 0;
4116 }
4117 
4118 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
4119 {
4120 	bt->reg_masks[frame] |= 1 << reg;
4121 }
4122 
4123 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
4124 {
4125 	bt->reg_masks[frame] &= ~(1 << reg);
4126 }
4127 
4128 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
4129 {
4130 	bt_set_frame_reg(bt, bt->frame, reg);
4131 }
4132 
4133 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
4134 {
4135 	bt_clear_frame_reg(bt, bt->frame, reg);
4136 }
4137 
4138 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
4139 {
4140 	bt->stack_masks[frame] |= 1ull << slot;
4141 }
4142 
4143 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
4144 {
4145 	bt->stack_masks[frame] &= ~(1ull << slot);
4146 }
4147 
4148 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
4149 {
4150 	return bt->reg_masks[frame];
4151 }
4152 
4153 static inline u32 bt_reg_mask(struct backtrack_state *bt)
4154 {
4155 	return bt->reg_masks[bt->frame];
4156 }
4157 
4158 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
4159 {
4160 	return bt->stack_masks[frame];
4161 }
4162 
4163 static inline u64 bt_stack_mask(struct backtrack_state *bt)
4164 {
4165 	return bt->stack_masks[bt->frame];
4166 }
4167 
4168 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
4169 {
4170 	return bt->reg_masks[bt->frame] & (1 << reg);
4171 }
4172 
4173 static inline bool bt_is_frame_reg_set(struct backtrack_state *bt, u32 frame, u32 reg)
4174 {
4175 	return bt->reg_masks[frame] & (1 << reg);
4176 }
4177 
4178 static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot)
4179 {
4180 	return bt->stack_masks[frame] & (1ull << slot);
4181 }
4182 
4183 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
4184 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
4185 {
4186 	DECLARE_BITMAP(mask, 64);
4187 	bool first = true;
4188 	int i, n;
4189 
4190 	buf[0] = '\0';
4191 
4192 	bitmap_from_u64(mask, reg_mask);
4193 	for_each_set_bit(i, mask, 32) {
4194 		n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
4195 		first = false;
4196 		buf += n;
4197 		buf_sz -= n;
4198 		if (buf_sz < 0)
4199 			break;
4200 	}
4201 }
4202 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
4203 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
4204 {
4205 	DECLARE_BITMAP(mask, 64);
4206 	bool first = true;
4207 	int i, n;
4208 
4209 	buf[0] = '\0';
4210 
4211 	bitmap_from_u64(mask, stack_mask);
4212 	for_each_set_bit(i, mask, 64) {
4213 		n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
4214 		first = false;
4215 		buf += n;
4216 		buf_sz -= n;
4217 		if (buf_sz < 0)
4218 			break;
4219 	}
4220 }
4221 
4222 /* If any register R in hist->linked_regs is marked as precise in bt,
4223  * do bt_set_frame_{reg,slot}(bt, R) for all registers in hist->linked_regs.
4224  */
4225 static void bt_sync_linked_regs(struct backtrack_state *bt, struct bpf_jmp_history_entry *hist)
4226 {
4227 	struct linked_regs linked_regs;
4228 	bool some_precise = false;
4229 	int i;
4230 
4231 	if (!hist || hist->linked_regs == 0)
4232 		return;
4233 
4234 	linked_regs_unpack(hist->linked_regs, &linked_regs);
4235 	for (i = 0; i < linked_regs.cnt; ++i) {
4236 		struct linked_reg *e = &linked_regs.entries[i];
4237 
4238 		if ((e->is_reg && bt_is_frame_reg_set(bt, e->frameno, e->regno)) ||
4239 		    (!e->is_reg && bt_is_frame_slot_set(bt, e->frameno, e->spi))) {
4240 			some_precise = true;
4241 			break;
4242 		}
4243 	}
4244 
4245 	if (!some_precise)
4246 		return;
4247 
4248 	for (i = 0; i < linked_regs.cnt; ++i) {
4249 		struct linked_reg *e = &linked_regs.entries[i];
4250 
4251 		if (e->is_reg)
4252 			bt_set_frame_reg(bt, e->frameno, e->regno);
4253 		else
4254 			bt_set_frame_slot(bt, e->frameno, e->spi);
4255 	}
4256 }
4257 
4258 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx);
4259 
4260 /* For given verifier state backtrack_insn() is called from the last insn to
4261  * the first insn. Its purpose is to compute a bitmask of registers and
4262  * stack slots that needs precision in the parent verifier state.
4263  *
4264  * @idx is an index of the instruction we are currently processing;
4265  * @subseq_idx is an index of the subsequent instruction that:
4266  *   - *would be* executed next, if jump history is viewed in forward order;
4267  *   - *was* processed previously during backtracking.
4268  */
4269 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
4270 			  struct bpf_jmp_history_entry *hist, struct backtrack_state *bt)
4271 {
4272 	struct bpf_insn *insn = env->prog->insnsi + idx;
4273 	u8 class = BPF_CLASS(insn->code);
4274 	u8 opcode = BPF_OP(insn->code);
4275 	u8 mode = BPF_MODE(insn->code);
4276 	u32 dreg = insn->dst_reg;
4277 	u32 sreg = insn->src_reg;
4278 	u32 spi, i, fr;
4279 
4280 	if (insn->code == 0)
4281 		return 0;
4282 	if (env->log.level & BPF_LOG_LEVEL2) {
4283 		fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
4284 		verbose(env, "mark_precise: frame%d: regs=%s ",
4285 			bt->frame, env->tmp_str_buf);
4286 		fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
4287 		verbose(env, "stack=%s before ", env->tmp_str_buf);
4288 		verbose(env, "%d: ", idx);
4289 		verbose_insn(env, insn);
4290 	}
4291 
4292 	/* If there is a history record that some registers gained range at this insn,
4293 	 * propagate precision marks to those registers, so that bt_is_reg_set()
4294 	 * accounts for these registers.
4295 	 */
4296 	bt_sync_linked_regs(bt, hist);
4297 
4298 	if (class == BPF_ALU || class == BPF_ALU64) {
4299 		if (!bt_is_reg_set(bt, dreg))
4300 			return 0;
4301 		if (opcode == BPF_END || opcode == BPF_NEG) {
4302 			/* sreg is reserved and unused
4303 			 * dreg still need precision before this insn
4304 			 */
4305 			return 0;
4306 		} else if (opcode == BPF_MOV) {
4307 			if (BPF_SRC(insn->code) == BPF_X) {
4308 				/* dreg = sreg or dreg = (s8, s16, s32)sreg
4309 				 * dreg needs precision after this insn
4310 				 * sreg needs precision before this insn
4311 				 */
4312 				bt_clear_reg(bt, dreg);
4313 				if (sreg != BPF_REG_FP)
4314 					bt_set_reg(bt, sreg);
4315 			} else {
4316 				/* dreg = K
4317 				 * dreg needs precision after this insn.
4318 				 * Corresponding register is already marked
4319 				 * as precise=true in this verifier state.
4320 				 * No further markings in parent are necessary
4321 				 */
4322 				bt_clear_reg(bt, dreg);
4323 			}
4324 		} else {
4325 			if (BPF_SRC(insn->code) == BPF_X) {
4326 				/* dreg += sreg
4327 				 * both dreg and sreg need precision
4328 				 * before this insn
4329 				 */
4330 				if (sreg != BPF_REG_FP)
4331 					bt_set_reg(bt, sreg);
4332 			} /* else dreg += K
4333 			   * dreg still needs precision before this insn
4334 			   */
4335 		}
4336 	} else if (class == BPF_LDX || is_atomic_load_insn(insn)) {
4337 		if (!bt_is_reg_set(bt, dreg))
4338 			return 0;
4339 		bt_clear_reg(bt, dreg);
4340 
4341 		/* scalars can only be spilled into stack w/o losing precision.
4342 		 * Load from any other memory can be zero extended.
4343 		 * The desire to keep that precision is already indicated
4344 		 * by 'precise' mark in corresponding register of this state.
4345 		 * No further tracking necessary.
4346 		 */
4347 		if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
4348 			return 0;
4349 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
4350 		 * that [fp - off] slot contains scalar that needs to be
4351 		 * tracked with precision
4352 		 */
4353 		spi = insn_stack_access_spi(hist->flags);
4354 		fr = insn_stack_access_frameno(hist->flags);
4355 		bt_set_frame_slot(bt, fr, spi);
4356 	} else if (class == BPF_STX || class == BPF_ST) {
4357 		if (bt_is_reg_set(bt, dreg))
4358 			/* stx & st shouldn't be using _scalar_ dst_reg
4359 			 * to access memory. It means backtracking
4360 			 * encountered a case of pointer subtraction.
4361 			 */
4362 			return -ENOTSUPP;
4363 		/* scalars can only be spilled into stack */
4364 		if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
4365 			return 0;
4366 		spi = insn_stack_access_spi(hist->flags);
4367 		fr = insn_stack_access_frameno(hist->flags);
4368 		if (!bt_is_frame_slot_set(bt, fr, spi))
4369 			return 0;
4370 		bt_clear_frame_slot(bt, fr, spi);
4371 		if (class == BPF_STX)
4372 			bt_set_reg(bt, sreg);
4373 	} else if (class == BPF_JMP || class == BPF_JMP32) {
4374 		if (bpf_pseudo_call(insn)) {
4375 			int subprog_insn_idx, subprog;
4376 
4377 			subprog_insn_idx = idx + insn->imm + 1;
4378 			subprog = find_subprog(env, subprog_insn_idx);
4379 			if (subprog < 0)
4380 				return -EFAULT;
4381 
4382 			if (subprog_is_global(env, subprog)) {
4383 				/* check that jump history doesn't have any
4384 				 * extra instructions from subprog; the next
4385 				 * instruction after call to global subprog
4386 				 * should be literally next instruction in
4387 				 * caller program
4388 				 */
4389 				verifier_bug_if(idx + 1 != subseq_idx, env,
4390 						"extra insn from subprog");
4391 				/* r1-r5 are invalidated after subprog call,
4392 				 * so for global func call it shouldn't be set
4393 				 * anymore
4394 				 */
4395 				if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
4396 					verifier_bug(env, "global subprog unexpected regs %x",
4397 						     bt_reg_mask(bt));
4398 					return -EFAULT;
4399 				}
4400 				/* global subprog always sets R0 */
4401 				bt_clear_reg(bt, BPF_REG_0);
4402 				return 0;
4403 			} else {
4404 				/* static subprog call instruction, which
4405 				 * means that we are exiting current subprog,
4406 				 * so only r1-r5 could be still requested as
4407 				 * precise, r0 and r6-r10 or any stack slot in
4408 				 * the current frame should be zero by now
4409 				 */
4410 				if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
4411 					verifier_bug(env, "static subprog unexpected regs %x",
4412 						     bt_reg_mask(bt));
4413 					return -EFAULT;
4414 				}
4415 				/* we are now tracking register spills correctly,
4416 				 * so any instance of leftover slots is a bug
4417 				 */
4418 				if (bt_stack_mask(bt) != 0) {
4419 					verifier_bug(env,
4420 						     "static subprog leftover stack slots %llx",
4421 						     bt_stack_mask(bt));
4422 					return -EFAULT;
4423 				}
4424 				/* propagate r1-r5 to the caller */
4425 				for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
4426 					if (bt_is_reg_set(bt, i)) {
4427 						bt_clear_reg(bt, i);
4428 						bt_set_frame_reg(bt, bt->frame - 1, i);
4429 					}
4430 				}
4431 				if (bt_subprog_exit(bt))
4432 					return -EFAULT;
4433 				return 0;
4434 			}
4435 		} else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) {
4436 			/* exit from callback subprog to callback-calling helper or
4437 			 * kfunc call. Use idx/subseq_idx check to discern it from
4438 			 * straight line code backtracking.
4439 			 * Unlike the subprog call handling above, we shouldn't
4440 			 * propagate precision of r1-r5 (if any requested), as they are
4441 			 * not actually arguments passed directly to callback subprogs
4442 			 */
4443 			if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
4444 				verifier_bug(env, "callback unexpected regs %x",
4445 					     bt_reg_mask(bt));
4446 				return -EFAULT;
4447 			}
4448 			if (bt_stack_mask(bt) != 0) {
4449 				verifier_bug(env, "callback leftover stack slots %llx",
4450 					     bt_stack_mask(bt));
4451 				return -EFAULT;
4452 			}
4453 			/* clear r1-r5 in callback subprog's mask */
4454 			for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4455 				bt_clear_reg(bt, i);
4456 			if (bt_subprog_exit(bt))
4457 				return -EFAULT;
4458 			return 0;
4459 		} else if (opcode == BPF_CALL) {
4460 			/* kfunc with imm==0 is invalid and fixup_kfunc_call will
4461 			 * catch this error later. Make backtracking conservative
4462 			 * with ENOTSUPP.
4463 			 */
4464 			if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
4465 				return -ENOTSUPP;
4466 			/* regular helper call sets R0 */
4467 			bt_clear_reg(bt, BPF_REG_0);
4468 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
4469 				/* if backtracking was looking for registers R1-R5
4470 				 * they should have been found already.
4471 				 */
4472 				verifier_bug(env, "backtracking call unexpected regs %x",
4473 					     bt_reg_mask(bt));
4474 				return -EFAULT;
4475 			}
4476 		} else if (opcode == BPF_EXIT) {
4477 			bool r0_precise;
4478 
4479 			/* Backtracking to a nested function call, 'idx' is a part of
4480 			 * the inner frame 'subseq_idx' is a part of the outer frame.
4481 			 * In case of a regular function call, instructions giving
4482 			 * precision to registers R1-R5 should have been found already.
4483 			 * In case of a callback, it is ok to have R1-R5 marked for
4484 			 * backtracking, as these registers are set by the function
4485 			 * invoking callback.
4486 			 */
4487 			if (subseq_idx >= 0 && calls_callback(env, subseq_idx))
4488 				for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4489 					bt_clear_reg(bt, i);
4490 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
4491 				verifier_bug(env, "backtracking exit unexpected regs %x",
4492 					     bt_reg_mask(bt));
4493 				return -EFAULT;
4494 			}
4495 
4496 			/* BPF_EXIT in subprog or callback always returns
4497 			 * right after the call instruction, so by checking
4498 			 * whether the instruction at subseq_idx-1 is subprog
4499 			 * call or not we can distinguish actual exit from
4500 			 * *subprog* from exit from *callback*. In the former
4501 			 * case, we need to propagate r0 precision, if
4502 			 * necessary. In the former we never do that.
4503 			 */
4504 			r0_precise = subseq_idx - 1 >= 0 &&
4505 				     bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
4506 				     bt_is_reg_set(bt, BPF_REG_0);
4507 
4508 			bt_clear_reg(bt, BPF_REG_0);
4509 			if (bt_subprog_enter(bt))
4510 				return -EFAULT;
4511 
4512 			if (r0_precise)
4513 				bt_set_reg(bt, BPF_REG_0);
4514 			/* r6-r9 and stack slots will stay set in caller frame
4515 			 * bitmasks until we return back from callee(s)
4516 			 */
4517 			return 0;
4518 		} else if (BPF_SRC(insn->code) == BPF_X) {
4519 			if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
4520 				return 0;
4521 			/* dreg <cond> sreg
4522 			 * Both dreg and sreg need precision before
4523 			 * this insn. If only sreg was marked precise
4524 			 * before it would be equally necessary to
4525 			 * propagate it to dreg.
4526 			 */
4527 			if (!hist || !(hist->flags & INSN_F_SRC_REG_STACK))
4528 				bt_set_reg(bt, sreg);
4529 			if (!hist || !(hist->flags & INSN_F_DST_REG_STACK))
4530 				bt_set_reg(bt, dreg);
4531 		} else if (BPF_SRC(insn->code) == BPF_K) {
4532 			 /* dreg <cond> K
4533 			  * Only dreg still needs precision before
4534 			  * this insn, so for the K-based conditional
4535 			  * there is nothing new to be marked.
4536 			  */
4537 		}
4538 	} else if (class == BPF_LD) {
4539 		if (!bt_is_reg_set(bt, dreg))
4540 			return 0;
4541 		bt_clear_reg(bt, dreg);
4542 		/* It's ld_imm64 or ld_abs or ld_ind.
4543 		 * For ld_imm64 no further tracking of precision
4544 		 * into parent is necessary
4545 		 */
4546 		if (mode == BPF_IND || mode == BPF_ABS)
4547 			/* to be analyzed */
4548 			return -ENOTSUPP;
4549 	}
4550 	/* Propagate precision marks to linked registers, to account for
4551 	 * registers marked as precise in this function.
4552 	 */
4553 	bt_sync_linked_regs(bt, hist);
4554 	return 0;
4555 }
4556 
4557 /* the scalar precision tracking algorithm:
4558  * . at the start all registers have precise=false.
4559  * . scalar ranges are tracked as normal through alu and jmp insns.
4560  * . once precise value of the scalar register is used in:
4561  *   .  ptr + scalar alu
4562  *   . if (scalar cond K|scalar)
4563  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
4564  *   backtrack through the verifier states and mark all registers and
4565  *   stack slots with spilled constants that these scalar registers
4566  *   should be precise.
4567  * . during state pruning two registers (or spilled stack slots)
4568  *   are equivalent if both are not precise.
4569  *
4570  * Note the verifier cannot simply walk register parentage chain,
4571  * since many different registers and stack slots could have been
4572  * used to compute single precise scalar.
4573  *
4574  * The approach of starting with precise=true for all registers and then
4575  * backtrack to mark a register as not precise when the verifier detects
4576  * that program doesn't care about specific value (e.g., when helper
4577  * takes register as ARG_ANYTHING parameter) is not safe.
4578  *
4579  * It's ok to walk single parentage chain of the verifier states.
4580  * It's possible that this backtracking will go all the way till 1st insn.
4581  * All other branches will be explored for needing precision later.
4582  *
4583  * The backtracking needs to deal with cases like:
4584  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
4585  * r9 -= r8
4586  * r5 = r9
4587  * if r5 > 0x79f goto pc+7
4588  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
4589  * r5 += 1
4590  * ...
4591  * call bpf_perf_event_output#25
4592  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
4593  *
4594  * and this case:
4595  * r6 = 1
4596  * call foo // uses callee's r6 inside to compute r0
4597  * r0 += r6
4598  * if r0 == 0 goto
4599  *
4600  * to track above reg_mask/stack_mask needs to be independent for each frame.
4601  *
4602  * Also if parent's curframe > frame where backtracking started,
4603  * the verifier need to mark registers in both frames, otherwise callees
4604  * may incorrectly prune callers. This is similar to
4605  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
4606  *
4607  * For now backtracking falls back into conservative marking.
4608  */
4609 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
4610 				     struct bpf_verifier_state *st)
4611 {
4612 	struct bpf_func_state *func;
4613 	struct bpf_reg_state *reg;
4614 	int i, j;
4615 
4616 	if (env->log.level & BPF_LOG_LEVEL2) {
4617 		verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
4618 			st->curframe);
4619 	}
4620 
4621 	/* big hammer: mark all scalars precise in this path.
4622 	 * pop_stack may still get !precise scalars.
4623 	 * We also skip current state and go straight to first parent state,
4624 	 * because precision markings in current non-checkpointed state are
4625 	 * not needed. See why in the comment in __mark_chain_precision below.
4626 	 */
4627 	for (st = st->parent; st; st = st->parent) {
4628 		for (i = 0; i <= st->curframe; i++) {
4629 			func = st->frame[i];
4630 			for (j = 0; j < BPF_REG_FP; j++) {
4631 				reg = &func->regs[j];
4632 				if (reg->type != SCALAR_VALUE || reg->precise)
4633 					continue;
4634 				reg->precise = true;
4635 				if (env->log.level & BPF_LOG_LEVEL2) {
4636 					verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
4637 						i, j);
4638 				}
4639 			}
4640 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4641 				if (!is_spilled_reg(&func->stack[j]))
4642 					continue;
4643 				reg = &func->stack[j].spilled_ptr;
4644 				if (reg->type != SCALAR_VALUE || reg->precise)
4645 					continue;
4646 				reg->precise = true;
4647 				if (env->log.level & BPF_LOG_LEVEL2) {
4648 					verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
4649 						i, -(j + 1) * 8);
4650 				}
4651 			}
4652 		}
4653 	}
4654 }
4655 
4656 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
4657 {
4658 	struct bpf_func_state *func;
4659 	struct bpf_reg_state *reg;
4660 	int i, j;
4661 
4662 	for (i = 0; i <= st->curframe; i++) {
4663 		func = st->frame[i];
4664 		for (j = 0; j < BPF_REG_FP; j++) {
4665 			reg = &func->regs[j];
4666 			if (reg->type != SCALAR_VALUE)
4667 				continue;
4668 			reg->precise = false;
4669 		}
4670 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4671 			if (!is_spilled_reg(&func->stack[j]))
4672 				continue;
4673 			reg = &func->stack[j].spilled_ptr;
4674 			if (reg->type != SCALAR_VALUE)
4675 				continue;
4676 			reg->precise = false;
4677 		}
4678 	}
4679 }
4680 
4681 /*
4682  * __mark_chain_precision() backtracks BPF program instruction sequence and
4683  * chain of verifier states making sure that register *regno* (if regno >= 0)
4684  * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
4685  * SCALARS, as well as any other registers and slots that contribute to
4686  * a tracked state of given registers/stack slots, depending on specific BPF
4687  * assembly instructions (see backtrack_insns() for exact instruction handling
4688  * logic). This backtracking relies on recorded jmp_history and is able to
4689  * traverse entire chain of parent states. This process ends only when all the
4690  * necessary registers/slots and their transitive dependencies are marked as
4691  * precise.
4692  *
4693  * One important and subtle aspect is that precise marks *do not matter* in
4694  * the currently verified state (current state). It is important to understand
4695  * why this is the case.
4696  *
4697  * First, note that current state is the state that is not yet "checkpointed",
4698  * i.e., it is not yet put into env->explored_states, and it has no children
4699  * states as well. It's ephemeral, and can end up either a) being discarded if
4700  * compatible explored state is found at some point or BPF_EXIT instruction is
4701  * reached or b) checkpointed and put into env->explored_states, branching out
4702  * into one or more children states.
4703  *
4704  * In the former case, precise markings in current state are completely
4705  * ignored by state comparison code (see regsafe() for details). Only
4706  * checkpointed ("old") state precise markings are important, and if old
4707  * state's register/slot is precise, regsafe() assumes current state's
4708  * register/slot as precise and checks value ranges exactly and precisely. If
4709  * states turn out to be compatible, current state's necessary precise
4710  * markings and any required parent states' precise markings are enforced
4711  * after the fact with propagate_precision() logic, after the fact. But it's
4712  * important to realize that in this case, even after marking current state
4713  * registers/slots as precise, we immediately discard current state. So what
4714  * actually matters is any of the precise markings propagated into current
4715  * state's parent states, which are always checkpointed (due to b) case above).
4716  * As such, for scenario a) it doesn't matter if current state has precise
4717  * markings set or not.
4718  *
4719  * Now, for the scenario b), checkpointing and forking into child(ren)
4720  * state(s). Note that before current state gets to checkpointing step, any
4721  * processed instruction always assumes precise SCALAR register/slot
4722  * knowledge: if precise value or range is useful to prune jump branch, BPF
4723  * verifier takes this opportunity enthusiastically. Similarly, when
4724  * register's value is used to calculate offset or memory address, exact
4725  * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
4726  * what we mentioned above about state comparison ignoring precise markings
4727  * during state comparison, BPF verifier ignores and also assumes precise
4728  * markings *at will* during instruction verification process. But as verifier
4729  * assumes precision, it also propagates any precision dependencies across
4730  * parent states, which are not yet finalized, so can be further restricted
4731  * based on new knowledge gained from restrictions enforced by their children
4732  * states. This is so that once those parent states are finalized, i.e., when
4733  * they have no more active children state, state comparison logic in
4734  * is_state_visited() would enforce strict and precise SCALAR ranges, if
4735  * required for correctness.
4736  *
4737  * To build a bit more intuition, note also that once a state is checkpointed,
4738  * the path we took to get to that state is not important. This is crucial
4739  * property for state pruning. When state is checkpointed and finalized at
4740  * some instruction index, it can be correctly and safely used to "short
4741  * circuit" any *compatible* state that reaches exactly the same instruction
4742  * index. I.e., if we jumped to that instruction from a completely different
4743  * code path than original finalized state was derived from, it doesn't
4744  * matter, current state can be discarded because from that instruction
4745  * forward having a compatible state will ensure we will safely reach the
4746  * exit. States describe preconditions for further exploration, but completely
4747  * forget the history of how we got here.
4748  *
4749  * This also means that even if we needed precise SCALAR range to get to
4750  * finalized state, but from that point forward *that same* SCALAR register is
4751  * never used in a precise context (i.e., it's precise value is not needed for
4752  * correctness), it's correct and safe to mark such register as "imprecise"
4753  * (i.e., precise marking set to false). This is what we rely on when we do
4754  * not set precise marking in current state. If no child state requires
4755  * precision for any given SCALAR register, it's safe to dictate that it can
4756  * be imprecise. If any child state does require this register to be precise,
4757  * we'll mark it precise later retroactively during precise markings
4758  * propagation from child state to parent states.
4759  *
4760  * Skipping precise marking setting in current state is a mild version of
4761  * relying on the above observation. But we can utilize this property even
4762  * more aggressively by proactively forgetting any precise marking in the
4763  * current state (which we inherited from the parent state), right before we
4764  * checkpoint it and branch off into new child state. This is done by
4765  * mark_all_scalars_imprecise() to hopefully get more permissive and generic
4766  * finalized states which help in short circuiting more future states.
4767  */
4768 static int __mark_chain_precision(struct bpf_verifier_env *env,
4769 				  struct bpf_verifier_state *starting_state,
4770 				  int regno,
4771 				  bool *changed)
4772 {
4773 	struct bpf_verifier_state *st = starting_state;
4774 	struct backtrack_state *bt = &env->bt;
4775 	int first_idx = st->first_insn_idx;
4776 	int last_idx = starting_state->insn_idx;
4777 	int subseq_idx = -1;
4778 	struct bpf_func_state *func;
4779 	bool tmp, skip_first = true;
4780 	struct bpf_reg_state *reg;
4781 	int i, fr, err;
4782 
4783 	if (!env->bpf_capable)
4784 		return 0;
4785 
4786 	changed = changed ?: &tmp;
4787 	/* set frame number from which we are starting to backtrack */
4788 	bt_init(bt, starting_state->curframe);
4789 
4790 	/* Do sanity checks against current state of register and/or stack
4791 	 * slot, but don't set precise flag in current state, as precision
4792 	 * tracking in the current state is unnecessary.
4793 	 */
4794 	func = st->frame[bt->frame];
4795 	if (regno >= 0) {
4796 		reg = &func->regs[regno];
4797 		if (reg->type != SCALAR_VALUE) {
4798 			verifier_bug(env, "backtracking misuse");
4799 			return -EFAULT;
4800 		}
4801 		bt_set_reg(bt, regno);
4802 	}
4803 
4804 	if (bt_empty(bt))
4805 		return 0;
4806 
4807 	for (;;) {
4808 		DECLARE_BITMAP(mask, 64);
4809 		u32 history = st->jmp_history_cnt;
4810 		struct bpf_jmp_history_entry *hist;
4811 
4812 		if (env->log.level & BPF_LOG_LEVEL2) {
4813 			verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
4814 				bt->frame, last_idx, first_idx, subseq_idx);
4815 		}
4816 
4817 		if (last_idx < 0) {
4818 			/* we are at the entry into subprog, which
4819 			 * is expected for global funcs, but only if
4820 			 * requested precise registers are R1-R5
4821 			 * (which are global func's input arguments)
4822 			 */
4823 			if (st->curframe == 0 &&
4824 			    st->frame[0]->subprogno > 0 &&
4825 			    st->frame[0]->callsite == BPF_MAIN_FUNC &&
4826 			    bt_stack_mask(bt) == 0 &&
4827 			    (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
4828 				bitmap_from_u64(mask, bt_reg_mask(bt));
4829 				for_each_set_bit(i, mask, 32) {
4830 					reg = &st->frame[0]->regs[i];
4831 					bt_clear_reg(bt, i);
4832 					if (reg->type == SCALAR_VALUE) {
4833 						reg->precise = true;
4834 						*changed = true;
4835 					}
4836 				}
4837 				return 0;
4838 			}
4839 
4840 			verifier_bug(env, "backtracking func entry subprog %d reg_mask %x stack_mask %llx",
4841 				     st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
4842 			return -EFAULT;
4843 		}
4844 
4845 		for (i = last_idx;;) {
4846 			if (skip_first) {
4847 				err = 0;
4848 				skip_first = false;
4849 			} else {
4850 				hist = get_jmp_hist_entry(st, history, i);
4851 				err = backtrack_insn(env, i, subseq_idx, hist, bt);
4852 			}
4853 			if (err == -ENOTSUPP) {
4854 				mark_all_scalars_precise(env, starting_state);
4855 				bt_reset(bt);
4856 				return 0;
4857 			} else if (err) {
4858 				return err;
4859 			}
4860 			if (bt_empty(bt))
4861 				/* Found assignment(s) into tracked register in this state.
4862 				 * Since this state is already marked, just return.
4863 				 * Nothing to be tracked further in the parent state.
4864 				 */
4865 				return 0;
4866 			subseq_idx = i;
4867 			i = get_prev_insn_idx(st, i, &history);
4868 			if (i == -ENOENT)
4869 				break;
4870 			if (i >= env->prog->len) {
4871 				/* This can happen if backtracking reached insn 0
4872 				 * and there are still reg_mask or stack_mask
4873 				 * to backtrack.
4874 				 * It means the backtracking missed the spot where
4875 				 * particular register was initialized with a constant.
4876 				 */
4877 				verifier_bug(env, "backtracking idx %d", i);
4878 				return -EFAULT;
4879 			}
4880 		}
4881 		st = st->parent;
4882 		if (!st)
4883 			break;
4884 
4885 		for (fr = bt->frame; fr >= 0; fr--) {
4886 			func = st->frame[fr];
4887 			bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4888 			for_each_set_bit(i, mask, 32) {
4889 				reg = &func->regs[i];
4890 				if (reg->type != SCALAR_VALUE) {
4891 					bt_clear_frame_reg(bt, fr, i);
4892 					continue;
4893 				}
4894 				if (reg->precise) {
4895 					bt_clear_frame_reg(bt, fr, i);
4896 				} else {
4897 					reg->precise = true;
4898 					*changed = true;
4899 				}
4900 			}
4901 
4902 			bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4903 			for_each_set_bit(i, mask, 64) {
4904 				if (verifier_bug_if(i >= func->allocated_stack / BPF_REG_SIZE,
4905 						    env, "stack slot %d, total slots %d",
4906 						    i, func->allocated_stack / BPF_REG_SIZE))
4907 					return -EFAULT;
4908 
4909 				if (!is_spilled_scalar_reg(&func->stack[i])) {
4910 					bt_clear_frame_slot(bt, fr, i);
4911 					continue;
4912 				}
4913 				reg = &func->stack[i].spilled_ptr;
4914 				if (reg->precise) {
4915 					bt_clear_frame_slot(bt, fr, i);
4916 				} else {
4917 					reg->precise = true;
4918 					*changed = true;
4919 				}
4920 			}
4921 			if (env->log.level & BPF_LOG_LEVEL2) {
4922 				fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4923 					     bt_frame_reg_mask(bt, fr));
4924 				verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4925 					fr, env->tmp_str_buf);
4926 				fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4927 					       bt_frame_stack_mask(bt, fr));
4928 				verbose(env, "stack=%s: ", env->tmp_str_buf);
4929 				print_verifier_state(env, st, fr, true);
4930 			}
4931 		}
4932 
4933 		if (bt_empty(bt))
4934 			return 0;
4935 
4936 		subseq_idx = first_idx;
4937 		last_idx = st->last_insn_idx;
4938 		first_idx = st->first_insn_idx;
4939 	}
4940 
4941 	/* if we still have requested precise regs or slots, we missed
4942 	 * something (e.g., stack access through non-r10 register), so
4943 	 * fallback to marking all precise
4944 	 */
4945 	if (!bt_empty(bt)) {
4946 		mark_all_scalars_precise(env, starting_state);
4947 		bt_reset(bt);
4948 	}
4949 
4950 	return 0;
4951 }
4952 
4953 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
4954 {
4955 	return __mark_chain_precision(env, env->cur_state, regno, NULL);
4956 }
4957 
4958 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to
4959  * desired reg and stack masks across all relevant frames
4960  */
4961 static int mark_chain_precision_batch(struct bpf_verifier_env *env,
4962 				      struct bpf_verifier_state *starting_state)
4963 {
4964 	return __mark_chain_precision(env, starting_state, -1, NULL);
4965 }
4966 
4967 static bool is_spillable_regtype(enum bpf_reg_type type)
4968 {
4969 	switch (base_type(type)) {
4970 	case PTR_TO_MAP_VALUE:
4971 	case PTR_TO_STACK:
4972 	case PTR_TO_CTX:
4973 	case PTR_TO_PACKET:
4974 	case PTR_TO_PACKET_META:
4975 	case PTR_TO_PACKET_END:
4976 	case PTR_TO_FLOW_KEYS:
4977 	case CONST_PTR_TO_MAP:
4978 	case PTR_TO_SOCKET:
4979 	case PTR_TO_SOCK_COMMON:
4980 	case PTR_TO_TCP_SOCK:
4981 	case PTR_TO_XDP_SOCK:
4982 	case PTR_TO_BTF_ID:
4983 	case PTR_TO_BUF:
4984 	case PTR_TO_MEM:
4985 	case PTR_TO_FUNC:
4986 	case PTR_TO_MAP_KEY:
4987 	case PTR_TO_ARENA:
4988 		return true;
4989 	default:
4990 		return false;
4991 	}
4992 }
4993 
4994 /* Does this register contain a constant zero? */
4995 static bool register_is_null(struct bpf_reg_state *reg)
4996 {
4997 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
4998 }
4999 
5000 /* check if register is a constant scalar value */
5001 static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32)
5002 {
5003 	return reg->type == SCALAR_VALUE &&
5004 	       tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off);
5005 }
5006 
5007 /* assuming is_reg_const() is true, return constant value of a register */
5008 static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32)
5009 {
5010 	return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value;
5011 }
5012 
5013 static bool __is_pointer_value(bool allow_ptr_leaks,
5014 			       const struct bpf_reg_state *reg)
5015 {
5016 	if (allow_ptr_leaks)
5017 		return false;
5018 
5019 	return reg->type != SCALAR_VALUE;
5020 }
5021 
5022 static void assign_scalar_id_before_mov(struct bpf_verifier_env *env,
5023 					struct bpf_reg_state *src_reg)
5024 {
5025 	if (src_reg->type != SCALAR_VALUE)
5026 		return;
5027 
5028 	if (src_reg->id & BPF_ADD_CONST) {
5029 		/*
5030 		 * The verifier is processing rX = rY insn and
5031 		 * rY->id has special linked register already.
5032 		 * Cleared it, since multiple rX += const are not supported.
5033 		 */
5034 		src_reg->id = 0;
5035 		src_reg->off = 0;
5036 	}
5037 
5038 	if (!src_reg->id && !tnum_is_const(src_reg->var_off))
5039 		/* Ensure that src_reg has a valid ID that will be copied to
5040 		 * dst_reg and then will be used by sync_linked_regs() to
5041 		 * propagate min/max range.
5042 		 */
5043 		src_reg->id = ++env->id_gen;
5044 }
5045 
5046 /* Copy src state preserving dst->parent and dst->live fields */
5047 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
5048 {
5049 	struct bpf_reg_state *parent = dst->parent;
5050 	enum bpf_reg_liveness live = dst->live;
5051 
5052 	*dst = *src;
5053 	dst->parent = parent;
5054 	dst->live = live;
5055 }
5056 
5057 static void save_register_state(struct bpf_verifier_env *env,
5058 				struct bpf_func_state *state,
5059 				int spi, struct bpf_reg_state *reg,
5060 				int size)
5061 {
5062 	int i;
5063 
5064 	copy_register_state(&state->stack[spi].spilled_ptr, reg);
5065 	if (size == BPF_REG_SIZE)
5066 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
5067 
5068 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
5069 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
5070 
5071 	/* size < 8 bytes spill */
5072 	for (; i; i--)
5073 		mark_stack_slot_misc(env, &state->stack[spi].slot_type[i - 1]);
5074 }
5075 
5076 static bool is_bpf_st_mem(struct bpf_insn *insn)
5077 {
5078 	return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
5079 }
5080 
5081 static int get_reg_width(struct bpf_reg_state *reg)
5082 {
5083 	return fls64(reg->umax_value);
5084 }
5085 
5086 /* See comment for mark_fastcall_pattern_for_call() */
5087 static void check_fastcall_stack_contract(struct bpf_verifier_env *env,
5088 					  struct bpf_func_state *state, int insn_idx, int off)
5089 {
5090 	struct bpf_subprog_info *subprog = &env->subprog_info[state->subprogno];
5091 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
5092 	int i;
5093 
5094 	if (subprog->fastcall_stack_off <= off || aux[insn_idx].fastcall_pattern)
5095 		return;
5096 	/* access to the region [max_stack_depth .. fastcall_stack_off)
5097 	 * from something that is not a part of the fastcall pattern,
5098 	 * disable fastcall rewrites for current subprogram by setting
5099 	 * fastcall_stack_off to a value smaller than any possible offset.
5100 	 */
5101 	subprog->fastcall_stack_off = S16_MIN;
5102 	/* reset fastcall aux flags within subprogram,
5103 	 * happens at most once per subprogram
5104 	 */
5105 	for (i = subprog->start; i < (subprog + 1)->start; ++i) {
5106 		aux[i].fastcall_spills_num = 0;
5107 		aux[i].fastcall_pattern = 0;
5108 	}
5109 }
5110 
5111 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
5112  * stack boundary and alignment are checked in check_mem_access()
5113  */
5114 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
5115 				       /* stack frame we're writing to */
5116 				       struct bpf_func_state *state,
5117 				       int off, int size, int value_regno,
5118 				       int insn_idx)
5119 {
5120 	struct bpf_func_state *cur; /* state of the current function */
5121 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
5122 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5123 	struct bpf_reg_state *reg = NULL;
5124 	int insn_flags = insn_stack_access_flags(state->frameno, spi);
5125 
5126 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
5127 	 * so it's aligned access and [off, off + size) are within stack limits
5128 	 */
5129 	if (!env->allow_ptr_leaks &&
5130 	    is_spilled_reg(&state->stack[spi]) &&
5131 	    !is_spilled_scalar_reg(&state->stack[spi]) &&
5132 	    size != BPF_REG_SIZE) {
5133 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
5134 		return -EACCES;
5135 	}
5136 
5137 	cur = env->cur_state->frame[env->cur_state->curframe];
5138 	if (value_regno >= 0)
5139 		reg = &cur->regs[value_regno];
5140 	if (!env->bypass_spec_v4) {
5141 		bool sanitize = reg && is_spillable_regtype(reg->type);
5142 
5143 		for (i = 0; i < size; i++) {
5144 			u8 type = state->stack[spi].slot_type[i];
5145 
5146 			if (type != STACK_MISC && type != STACK_ZERO) {
5147 				sanitize = true;
5148 				break;
5149 			}
5150 		}
5151 
5152 		if (sanitize)
5153 			env->insn_aux_data[insn_idx].nospec_result = true;
5154 	}
5155 
5156 	err = destroy_if_dynptr_stack_slot(env, state, spi);
5157 	if (err)
5158 		return err;
5159 
5160 	check_fastcall_stack_contract(env, state, insn_idx, off);
5161 	mark_stack_slot_scratched(env, spi);
5162 	if (reg && !(off % BPF_REG_SIZE) && reg->type == SCALAR_VALUE && env->bpf_capable) {
5163 		bool reg_value_fits;
5164 
5165 		reg_value_fits = get_reg_width(reg) <= BITS_PER_BYTE * size;
5166 		/* Make sure that reg had an ID to build a relation on spill. */
5167 		if (reg_value_fits)
5168 			assign_scalar_id_before_mov(env, reg);
5169 		save_register_state(env, state, spi, reg, size);
5170 		/* Break the relation on a narrowing spill. */
5171 		if (!reg_value_fits)
5172 			state->stack[spi].spilled_ptr.id = 0;
5173 	} else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
5174 		   env->bpf_capable) {
5175 		struct bpf_reg_state *tmp_reg = &env->fake_reg[0];
5176 
5177 		memset(tmp_reg, 0, sizeof(*tmp_reg));
5178 		__mark_reg_known(tmp_reg, insn->imm);
5179 		tmp_reg->type = SCALAR_VALUE;
5180 		save_register_state(env, state, spi, tmp_reg, size);
5181 	} else if (reg && is_spillable_regtype(reg->type)) {
5182 		/* register containing pointer is being spilled into stack */
5183 		if (size != BPF_REG_SIZE) {
5184 			verbose_linfo(env, insn_idx, "; ");
5185 			verbose(env, "invalid size of register spill\n");
5186 			return -EACCES;
5187 		}
5188 		if (state != cur && reg->type == PTR_TO_STACK) {
5189 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
5190 			return -EINVAL;
5191 		}
5192 		save_register_state(env, state, spi, reg, size);
5193 	} else {
5194 		u8 type = STACK_MISC;
5195 
5196 		/* regular write of data into stack destroys any spilled ptr */
5197 		state->stack[spi].spilled_ptr.type = NOT_INIT;
5198 		/* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
5199 		if (is_stack_slot_special(&state->stack[spi]))
5200 			for (i = 0; i < BPF_REG_SIZE; i++)
5201 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
5202 
5203 		/* only mark the slot as written if all 8 bytes were written
5204 		 * otherwise read propagation may incorrectly stop too soon
5205 		 * when stack slots are partially written.
5206 		 * This heuristic means that read propagation will be
5207 		 * conservative, since it will add reg_live_read marks
5208 		 * to stack slots all the way to first state when programs
5209 		 * writes+reads less than 8 bytes
5210 		 */
5211 		if (size == BPF_REG_SIZE)
5212 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
5213 
5214 		/* when we zero initialize stack slots mark them as such */
5215 		if ((reg && register_is_null(reg)) ||
5216 		    (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
5217 			/* STACK_ZERO case happened because register spill
5218 			 * wasn't properly aligned at the stack slot boundary,
5219 			 * so it's not a register spill anymore; force
5220 			 * originating register to be precise to make
5221 			 * STACK_ZERO correct for subsequent states
5222 			 */
5223 			err = mark_chain_precision(env, value_regno);
5224 			if (err)
5225 				return err;
5226 			type = STACK_ZERO;
5227 		}
5228 
5229 		/* Mark slots affected by this stack write. */
5230 		for (i = 0; i < size; i++)
5231 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type;
5232 		insn_flags = 0; /* not a register spill */
5233 	}
5234 
5235 	if (insn_flags)
5236 		return push_jmp_history(env, env->cur_state, insn_flags, 0);
5237 	return 0;
5238 }
5239 
5240 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
5241  * known to contain a variable offset.
5242  * This function checks whether the write is permitted and conservatively
5243  * tracks the effects of the write, considering that each stack slot in the
5244  * dynamic range is potentially written to.
5245  *
5246  * 'off' includes 'regno->off'.
5247  * 'value_regno' can be -1, meaning that an unknown value is being written to
5248  * the stack.
5249  *
5250  * Spilled pointers in range are not marked as written because we don't know
5251  * what's going to be actually written. This means that read propagation for
5252  * future reads cannot be terminated by this write.
5253  *
5254  * For privileged programs, uninitialized stack slots are considered
5255  * initialized by this write (even though we don't know exactly what offsets
5256  * are going to be written to). The idea is that we don't want the verifier to
5257  * reject future reads that access slots written to through variable offsets.
5258  */
5259 static int check_stack_write_var_off(struct bpf_verifier_env *env,
5260 				     /* func where register points to */
5261 				     struct bpf_func_state *state,
5262 				     int ptr_regno, int off, int size,
5263 				     int value_regno, int insn_idx)
5264 {
5265 	struct bpf_func_state *cur; /* state of the current function */
5266 	int min_off, max_off;
5267 	int i, err;
5268 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
5269 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5270 	bool writing_zero = false;
5271 	/* set if the fact that we're writing a zero is used to let any
5272 	 * stack slots remain STACK_ZERO
5273 	 */
5274 	bool zero_used = false;
5275 
5276 	cur = env->cur_state->frame[env->cur_state->curframe];
5277 	ptr_reg = &cur->regs[ptr_regno];
5278 	min_off = ptr_reg->smin_value + off;
5279 	max_off = ptr_reg->smax_value + off + size;
5280 	if (value_regno >= 0)
5281 		value_reg = &cur->regs[value_regno];
5282 	if ((value_reg && register_is_null(value_reg)) ||
5283 	    (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
5284 		writing_zero = true;
5285 
5286 	for (i = min_off; i < max_off; i++) {
5287 		int spi;
5288 
5289 		spi = __get_spi(i);
5290 		err = destroy_if_dynptr_stack_slot(env, state, spi);
5291 		if (err)
5292 			return err;
5293 	}
5294 
5295 	check_fastcall_stack_contract(env, state, insn_idx, min_off);
5296 	/* Variable offset writes destroy any spilled pointers in range. */
5297 	for (i = min_off; i < max_off; i++) {
5298 		u8 new_type, *stype;
5299 		int slot, spi;
5300 
5301 		slot = -i - 1;
5302 		spi = slot / BPF_REG_SIZE;
5303 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
5304 		mark_stack_slot_scratched(env, spi);
5305 
5306 		if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
5307 			/* Reject the write if range we may write to has not
5308 			 * been initialized beforehand. If we didn't reject
5309 			 * here, the ptr status would be erased below (even
5310 			 * though not all slots are actually overwritten),
5311 			 * possibly opening the door to leaks.
5312 			 *
5313 			 * We do however catch STACK_INVALID case below, and
5314 			 * only allow reading possibly uninitialized memory
5315 			 * later for CAP_PERFMON, as the write may not happen to
5316 			 * that slot.
5317 			 */
5318 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
5319 				insn_idx, i);
5320 			return -EINVAL;
5321 		}
5322 
5323 		/* If writing_zero and the spi slot contains a spill of value 0,
5324 		 * maintain the spill type.
5325 		 */
5326 		if (writing_zero && *stype == STACK_SPILL &&
5327 		    is_spilled_scalar_reg(&state->stack[spi])) {
5328 			struct bpf_reg_state *spill_reg = &state->stack[spi].spilled_ptr;
5329 
5330 			if (tnum_is_const(spill_reg->var_off) && spill_reg->var_off.value == 0) {
5331 				zero_used = true;
5332 				continue;
5333 			}
5334 		}
5335 
5336 		/* Erase all other spilled pointers. */
5337 		state->stack[spi].spilled_ptr.type = NOT_INIT;
5338 
5339 		/* Update the slot type. */
5340 		new_type = STACK_MISC;
5341 		if (writing_zero && *stype == STACK_ZERO) {
5342 			new_type = STACK_ZERO;
5343 			zero_used = true;
5344 		}
5345 		/* If the slot is STACK_INVALID, we check whether it's OK to
5346 		 * pretend that it will be initialized by this write. The slot
5347 		 * might not actually be written to, and so if we mark it as
5348 		 * initialized future reads might leak uninitialized memory.
5349 		 * For privileged programs, we will accept such reads to slots
5350 		 * that may or may not be written because, if we're reject
5351 		 * them, the error would be too confusing.
5352 		 */
5353 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
5354 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
5355 					insn_idx, i);
5356 			return -EINVAL;
5357 		}
5358 		*stype = new_type;
5359 	}
5360 	if (zero_used) {
5361 		/* backtracking doesn't work for STACK_ZERO yet. */
5362 		err = mark_chain_precision(env, value_regno);
5363 		if (err)
5364 			return err;
5365 	}
5366 	return 0;
5367 }
5368 
5369 /* When register 'dst_regno' is assigned some values from stack[min_off,
5370  * max_off), we set the register's type according to the types of the
5371  * respective stack slots. If all the stack values are known to be zeros, then
5372  * so is the destination reg. Otherwise, the register is considered to be
5373  * SCALAR. This function does not deal with register filling; the caller must
5374  * ensure that all spilled registers in the stack range have been marked as
5375  * read.
5376  */
5377 static void mark_reg_stack_read(struct bpf_verifier_env *env,
5378 				/* func where src register points to */
5379 				struct bpf_func_state *ptr_state,
5380 				int min_off, int max_off, int dst_regno)
5381 {
5382 	struct bpf_verifier_state *vstate = env->cur_state;
5383 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5384 	int i, slot, spi;
5385 	u8 *stype;
5386 	int zeros = 0;
5387 
5388 	for (i = min_off; i < max_off; i++) {
5389 		slot = -i - 1;
5390 		spi = slot / BPF_REG_SIZE;
5391 		mark_stack_slot_scratched(env, spi);
5392 		stype = ptr_state->stack[spi].slot_type;
5393 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
5394 			break;
5395 		zeros++;
5396 	}
5397 	if (zeros == max_off - min_off) {
5398 		/* Any access_size read into register is zero extended,
5399 		 * so the whole register == const_zero.
5400 		 */
5401 		__mark_reg_const_zero(env, &state->regs[dst_regno]);
5402 	} else {
5403 		/* have read misc data from the stack */
5404 		mark_reg_unknown(env, state->regs, dst_regno);
5405 	}
5406 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
5407 }
5408 
5409 /* Read the stack at 'off' and put the results into the register indicated by
5410  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
5411  * spilled reg.
5412  *
5413  * 'dst_regno' can be -1, meaning that the read value is not going to a
5414  * register.
5415  *
5416  * The access is assumed to be within the current stack bounds.
5417  */
5418 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
5419 				      /* func where src register points to */
5420 				      struct bpf_func_state *reg_state,
5421 				      int off, int size, int dst_regno)
5422 {
5423 	struct bpf_verifier_state *vstate = env->cur_state;
5424 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5425 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
5426 	struct bpf_reg_state *reg;
5427 	u8 *stype, type;
5428 	int insn_flags = insn_stack_access_flags(reg_state->frameno, spi);
5429 
5430 	stype = reg_state->stack[spi].slot_type;
5431 	reg = &reg_state->stack[spi].spilled_ptr;
5432 
5433 	mark_stack_slot_scratched(env, spi);
5434 	check_fastcall_stack_contract(env, state, env->insn_idx, off);
5435 
5436 	if (is_spilled_reg(&reg_state->stack[spi])) {
5437 		u8 spill_size = 1;
5438 
5439 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
5440 			spill_size++;
5441 
5442 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
5443 			if (reg->type != SCALAR_VALUE) {
5444 				verbose_linfo(env, env->insn_idx, "; ");
5445 				verbose(env, "invalid size of register fill\n");
5446 				return -EACCES;
5447 			}
5448 
5449 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
5450 			if (dst_regno < 0)
5451 				return 0;
5452 
5453 			if (size <= spill_size &&
5454 			    bpf_stack_narrow_access_ok(off, size, spill_size)) {
5455 				/* The earlier check_reg_arg() has decided the
5456 				 * subreg_def for this insn.  Save it first.
5457 				 */
5458 				s32 subreg_def = state->regs[dst_regno].subreg_def;
5459 
5460 				copy_register_state(&state->regs[dst_regno], reg);
5461 				state->regs[dst_regno].subreg_def = subreg_def;
5462 
5463 				/* Break the relation on a narrowing fill.
5464 				 * coerce_reg_to_size will adjust the boundaries.
5465 				 */
5466 				if (get_reg_width(reg) > size * BITS_PER_BYTE)
5467 					state->regs[dst_regno].id = 0;
5468 			} else {
5469 				int spill_cnt = 0, zero_cnt = 0;
5470 
5471 				for (i = 0; i < size; i++) {
5472 					type = stype[(slot - i) % BPF_REG_SIZE];
5473 					if (type == STACK_SPILL) {
5474 						spill_cnt++;
5475 						continue;
5476 					}
5477 					if (type == STACK_MISC)
5478 						continue;
5479 					if (type == STACK_ZERO) {
5480 						zero_cnt++;
5481 						continue;
5482 					}
5483 					if (type == STACK_INVALID && env->allow_uninit_stack)
5484 						continue;
5485 					verbose(env, "invalid read from stack off %d+%d size %d\n",
5486 						off, i, size);
5487 					return -EACCES;
5488 				}
5489 
5490 				if (spill_cnt == size &&
5491 				    tnum_is_const(reg->var_off) && reg->var_off.value == 0) {
5492 					__mark_reg_const_zero(env, &state->regs[dst_regno]);
5493 					/* this IS register fill, so keep insn_flags */
5494 				} else if (zero_cnt == size) {
5495 					/* similarly to mark_reg_stack_read(), preserve zeroes */
5496 					__mark_reg_const_zero(env, &state->regs[dst_regno]);
5497 					insn_flags = 0; /* not restoring original register state */
5498 				} else {
5499 					mark_reg_unknown(env, state->regs, dst_regno);
5500 					insn_flags = 0; /* not restoring original register state */
5501 				}
5502 			}
5503 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
5504 		} else if (dst_regno >= 0) {
5505 			/* restore register state from stack */
5506 			copy_register_state(&state->regs[dst_regno], reg);
5507 			/* mark reg as written since spilled pointer state likely
5508 			 * has its liveness marks cleared by is_state_visited()
5509 			 * which resets stack/reg liveness for state transitions
5510 			 */
5511 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
5512 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
5513 			/* If dst_regno==-1, the caller is asking us whether
5514 			 * it is acceptable to use this value as a SCALAR_VALUE
5515 			 * (e.g. for XADD).
5516 			 * We must not allow unprivileged callers to do that
5517 			 * with spilled pointers.
5518 			 */
5519 			verbose(env, "leaking pointer from stack off %d\n",
5520 				off);
5521 			return -EACCES;
5522 		}
5523 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
5524 	} else {
5525 		for (i = 0; i < size; i++) {
5526 			type = stype[(slot - i) % BPF_REG_SIZE];
5527 			if (type == STACK_MISC)
5528 				continue;
5529 			if (type == STACK_ZERO)
5530 				continue;
5531 			if (type == STACK_INVALID && env->allow_uninit_stack)
5532 				continue;
5533 			verbose(env, "invalid read from stack off %d+%d size %d\n",
5534 				off, i, size);
5535 			return -EACCES;
5536 		}
5537 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
5538 		if (dst_regno >= 0)
5539 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
5540 		insn_flags = 0; /* we are not restoring spilled register */
5541 	}
5542 	if (insn_flags)
5543 		return push_jmp_history(env, env->cur_state, insn_flags, 0);
5544 	return 0;
5545 }
5546 
5547 enum bpf_access_src {
5548 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
5549 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
5550 };
5551 
5552 static int check_stack_range_initialized(struct bpf_verifier_env *env,
5553 					 int regno, int off, int access_size,
5554 					 bool zero_size_allowed,
5555 					 enum bpf_access_type type,
5556 					 struct bpf_call_arg_meta *meta);
5557 
5558 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
5559 {
5560 	return cur_regs(env) + regno;
5561 }
5562 
5563 /* Read the stack at 'ptr_regno + off' and put the result into the register
5564  * 'dst_regno'.
5565  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
5566  * but not its variable offset.
5567  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
5568  *
5569  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
5570  * filling registers (i.e. reads of spilled register cannot be detected when
5571  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
5572  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
5573  * offset; for a fixed offset check_stack_read_fixed_off should be used
5574  * instead.
5575  */
5576 static int check_stack_read_var_off(struct bpf_verifier_env *env,
5577 				    int ptr_regno, int off, int size, int dst_regno)
5578 {
5579 	/* The state of the source register. */
5580 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5581 	struct bpf_func_state *ptr_state = func(env, reg);
5582 	int err;
5583 	int min_off, max_off;
5584 
5585 	/* Note that we pass a NULL meta, so raw access will not be permitted.
5586 	 */
5587 	err = check_stack_range_initialized(env, ptr_regno, off, size,
5588 					    false, BPF_READ, NULL);
5589 	if (err)
5590 		return err;
5591 
5592 	min_off = reg->smin_value + off;
5593 	max_off = reg->smax_value + off;
5594 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
5595 	check_fastcall_stack_contract(env, ptr_state, env->insn_idx, min_off);
5596 	return 0;
5597 }
5598 
5599 /* check_stack_read dispatches to check_stack_read_fixed_off or
5600  * check_stack_read_var_off.
5601  *
5602  * The caller must ensure that the offset falls within the allocated stack
5603  * bounds.
5604  *
5605  * 'dst_regno' is a register which will receive the value from the stack. It
5606  * can be -1, meaning that the read value is not going to a register.
5607  */
5608 static int check_stack_read(struct bpf_verifier_env *env,
5609 			    int ptr_regno, int off, int size,
5610 			    int dst_regno)
5611 {
5612 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5613 	struct bpf_func_state *state = func(env, reg);
5614 	int err;
5615 	/* Some accesses are only permitted with a static offset. */
5616 	bool var_off = !tnum_is_const(reg->var_off);
5617 
5618 	/* The offset is required to be static when reads don't go to a
5619 	 * register, in order to not leak pointers (see
5620 	 * check_stack_read_fixed_off).
5621 	 */
5622 	if (dst_regno < 0 && var_off) {
5623 		char tn_buf[48];
5624 
5625 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5626 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
5627 			tn_buf, off, size);
5628 		return -EACCES;
5629 	}
5630 	/* Variable offset is prohibited for unprivileged mode for simplicity
5631 	 * since it requires corresponding support in Spectre masking for stack
5632 	 * ALU. See also retrieve_ptr_limit(). The check in
5633 	 * check_stack_access_for_ptr_arithmetic() called by
5634 	 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
5635 	 * with variable offsets, therefore no check is required here. Further,
5636 	 * just checking it here would be insufficient as speculative stack
5637 	 * writes could still lead to unsafe speculative behaviour.
5638 	 */
5639 	if (!var_off) {
5640 		off += reg->var_off.value;
5641 		err = check_stack_read_fixed_off(env, state, off, size,
5642 						 dst_regno);
5643 	} else {
5644 		/* Variable offset stack reads need more conservative handling
5645 		 * than fixed offset ones. Note that dst_regno >= 0 on this
5646 		 * branch.
5647 		 */
5648 		err = check_stack_read_var_off(env, ptr_regno, off, size,
5649 					       dst_regno);
5650 	}
5651 	return err;
5652 }
5653 
5654 
5655 /* check_stack_write dispatches to check_stack_write_fixed_off or
5656  * check_stack_write_var_off.
5657  *
5658  * 'ptr_regno' is the register used as a pointer into the stack.
5659  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
5660  * 'value_regno' is the register whose value we're writing to the stack. It can
5661  * be -1, meaning that we're not writing from a register.
5662  *
5663  * The caller must ensure that the offset falls within the maximum stack size.
5664  */
5665 static int check_stack_write(struct bpf_verifier_env *env,
5666 			     int ptr_regno, int off, int size,
5667 			     int value_regno, int insn_idx)
5668 {
5669 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5670 	struct bpf_func_state *state = func(env, reg);
5671 	int err;
5672 
5673 	if (tnum_is_const(reg->var_off)) {
5674 		off += reg->var_off.value;
5675 		err = check_stack_write_fixed_off(env, state, off, size,
5676 						  value_regno, insn_idx);
5677 	} else {
5678 		/* Variable offset stack reads need more conservative handling
5679 		 * than fixed offset ones.
5680 		 */
5681 		err = check_stack_write_var_off(env, state,
5682 						ptr_regno, off, size,
5683 						value_regno, insn_idx);
5684 	}
5685 	return err;
5686 }
5687 
5688 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
5689 				 int off, int size, enum bpf_access_type type)
5690 {
5691 	struct bpf_reg_state *regs = cur_regs(env);
5692 	struct bpf_map *map = regs[regno].map_ptr;
5693 	u32 cap = bpf_map_flags_to_cap(map);
5694 
5695 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
5696 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
5697 			map->value_size, off, size);
5698 		return -EACCES;
5699 	}
5700 
5701 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
5702 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
5703 			map->value_size, off, size);
5704 		return -EACCES;
5705 	}
5706 
5707 	return 0;
5708 }
5709 
5710 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
5711 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
5712 			      int off, int size, u32 mem_size,
5713 			      bool zero_size_allowed)
5714 {
5715 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
5716 	struct bpf_reg_state *reg;
5717 
5718 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
5719 		return 0;
5720 
5721 	reg = &cur_regs(env)[regno];
5722 	switch (reg->type) {
5723 	case PTR_TO_MAP_KEY:
5724 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
5725 			mem_size, off, size);
5726 		break;
5727 	case PTR_TO_MAP_VALUE:
5728 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
5729 			mem_size, off, size);
5730 		break;
5731 	case PTR_TO_PACKET:
5732 	case PTR_TO_PACKET_META:
5733 	case PTR_TO_PACKET_END:
5734 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
5735 			off, size, regno, reg->id, off, mem_size);
5736 		break;
5737 	case PTR_TO_MEM:
5738 	default:
5739 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
5740 			mem_size, off, size);
5741 	}
5742 
5743 	return -EACCES;
5744 }
5745 
5746 /* check read/write into a memory region with possible variable offset */
5747 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
5748 				   int off, int size, u32 mem_size,
5749 				   bool zero_size_allowed)
5750 {
5751 	struct bpf_verifier_state *vstate = env->cur_state;
5752 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5753 	struct bpf_reg_state *reg = &state->regs[regno];
5754 	int err;
5755 
5756 	/* We may have adjusted the register pointing to memory region, so we
5757 	 * need to try adding each of min_value and max_value to off
5758 	 * to make sure our theoretical access will be safe.
5759 	 *
5760 	 * The minimum value is only important with signed
5761 	 * comparisons where we can't assume the floor of a
5762 	 * value is 0.  If we are using signed variables for our
5763 	 * index'es we need to make sure that whatever we use
5764 	 * will have a set floor within our range.
5765 	 */
5766 	if (reg->smin_value < 0 &&
5767 	    (reg->smin_value == S64_MIN ||
5768 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
5769 	      reg->smin_value + off < 0)) {
5770 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5771 			regno);
5772 		return -EACCES;
5773 	}
5774 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
5775 				 mem_size, zero_size_allowed);
5776 	if (err) {
5777 		verbose(env, "R%d min value is outside of the allowed memory range\n",
5778 			regno);
5779 		return err;
5780 	}
5781 
5782 	/* If we haven't set a max value then we need to bail since we can't be
5783 	 * sure we won't do bad things.
5784 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
5785 	 */
5786 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
5787 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
5788 			regno);
5789 		return -EACCES;
5790 	}
5791 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
5792 				 mem_size, zero_size_allowed);
5793 	if (err) {
5794 		verbose(env, "R%d max value is outside of the allowed memory range\n",
5795 			regno);
5796 		return err;
5797 	}
5798 
5799 	return 0;
5800 }
5801 
5802 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
5803 			       const struct bpf_reg_state *reg, int regno,
5804 			       bool fixed_off_ok)
5805 {
5806 	/* Access to this pointer-typed register or passing it to a helper
5807 	 * is only allowed in its original, unmodified form.
5808 	 */
5809 
5810 	if (reg->off < 0) {
5811 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
5812 			reg_type_str(env, reg->type), regno, reg->off);
5813 		return -EACCES;
5814 	}
5815 
5816 	if (!fixed_off_ok && reg->off) {
5817 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
5818 			reg_type_str(env, reg->type), regno, reg->off);
5819 		return -EACCES;
5820 	}
5821 
5822 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5823 		char tn_buf[48];
5824 
5825 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5826 		verbose(env, "variable %s access var_off=%s disallowed\n",
5827 			reg_type_str(env, reg->type), tn_buf);
5828 		return -EACCES;
5829 	}
5830 
5831 	return 0;
5832 }
5833 
5834 static int check_ptr_off_reg(struct bpf_verifier_env *env,
5835 		             const struct bpf_reg_state *reg, int regno)
5836 {
5837 	return __check_ptr_off_reg(env, reg, regno, false);
5838 }
5839 
5840 static int map_kptr_match_type(struct bpf_verifier_env *env,
5841 			       struct btf_field *kptr_field,
5842 			       struct bpf_reg_state *reg, u32 regno)
5843 {
5844 	const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
5845 	int perm_flags;
5846 	const char *reg_name = "";
5847 
5848 	if (btf_is_kernel(reg->btf)) {
5849 		perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
5850 
5851 		/* Only unreferenced case accepts untrusted pointers */
5852 		if (kptr_field->type == BPF_KPTR_UNREF)
5853 			perm_flags |= PTR_UNTRUSTED;
5854 	} else {
5855 		perm_flags = PTR_MAYBE_NULL | MEM_ALLOC;
5856 		if (kptr_field->type == BPF_KPTR_PERCPU)
5857 			perm_flags |= MEM_PERCPU;
5858 	}
5859 
5860 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
5861 		goto bad_type;
5862 
5863 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
5864 	reg_name = btf_type_name(reg->btf, reg->btf_id);
5865 
5866 	/* For ref_ptr case, release function check should ensure we get one
5867 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
5868 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
5869 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
5870 	 * reg->off and reg->ref_obj_id are not needed here.
5871 	 */
5872 	if (__check_ptr_off_reg(env, reg, regno, true))
5873 		return -EACCES;
5874 
5875 	/* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and
5876 	 * we also need to take into account the reg->off.
5877 	 *
5878 	 * We want to support cases like:
5879 	 *
5880 	 * struct foo {
5881 	 *         struct bar br;
5882 	 *         struct baz bz;
5883 	 * };
5884 	 *
5885 	 * struct foo *v;
5886 	 * v = func();	      // PTR_TO_BTF_ID
5887 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
5888 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
5889 	 *                    // first member type of struct after comparison fails
5890 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
5891 	 *                    // to match type
5892 	 *
5893 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
5894 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
5895 	 * the struct to match type against first member of struct, i.e. reject
5896 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
5897 	 * strict mode to true for type match.
5898 	 */
5899 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5900 				  kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5901 				  kptr_field->type != BPF_KPTR_UNREF))
5902 		goto bad_type;
5903 	return 0;
5904 bad_type:
5905 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
5906 		reg_type_str(env, reg->type), reg_name);
5907 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
5908 	if (kptr_field->type == BPF_KPTR_UNREF)
5909 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
5910 			targ_name);
5911 	else
5912 		verbose(env, "\n");
5913 	return -EINVAL;
5914 }
5915 
5916 static bool in_sleepable(struct bpf_verifier_env *env)
5917 {
5918 	return env->prog->sleepable ||
5919 	       (env->cur_state && env->cur_state->in_sleepable);
5920 }
5921 
5922 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
5923  * can dereference RCU protected pointers and result is PTR_TRUSTED.
5924  */
5925 static bool in_rcu_cs(struct bpf_verifier_env *env)
5926 {
5927 	return env->cur_state->active_rcu_lock ||
5928 	       env->cur_state->active_locks ||
5929 	       !in_sleepable(env);
5930 }
5931 
5932 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
5933 BTF_SET_START(rcu_protected_types)
5934 #ifdef CONFIG_NET
5935 BTF_ID(struct, prog_test_ref_kfunc)
5936 #endif
5937 #ifdef CONFIG_CGROUPS
5938 BTF_ID(struct, cgroup)
5939 #endif
5940 #ifdef CONFIG_BPF_JIT
5941 BTF_ID(struct, bpf_cpumask)
5942 #endif
5943 BTF_ID(struct, task_struct)
5944 #ifdef CONFIG_CRYPTO
5945 BTF_ID(struct, bpf_crypto_ctx)
5946 #endif
5947 BTF_SET_END(rcu_protected_types)
5948 
5949 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
5950 {
5951 	if (!btf_is_kernel(btf))
5952 		return true;
5953 	return btf_id_set_contains(&rcu_protected_types, btf_id);
5954 }
5955 
5956 static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field)
5957 {
5958 	struct btf_struct_meta *meta;
5959 
5960 	if (btf_is_kernel(kptr_field->kptr.btf))
5961 		return NULL;
5962 
5963 	meta = btf_find_struct_meta(kptr_field->kptr.btf,
5964 				    kptr_field->kptr.btf_id);
5965 
5966 	return meta ? meta->record : NULL;
5967 }
5968 
5969 static bool rcu_safe_kptr(const struct btf_field *field)
5970 {
5971 	const struct btf_field_kptr *kptr = &field->kptr;
5972 
5973 	return field->type == BPF_KPTR_PERCPU ||
5974 	       (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id));
5975 }
5976 
5977 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field)
5978 {
5979 	struct btf_record *rec;
5980 	u32 ret;
5981 
5982 	ret = PTR_MAYBE_NULL;
5983 	if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) {
5984 		ret |= MEM_RCU;
5985 		if (kptr_field->type == BPF_KPTR_PERCPU)
5986 			ret |= MEM_PERCPU;
5987 		else if (!btf_is_kernel(kptr_field->kptr.btf))
5988 			ret |= MEM_ALLOC;
5989 
5990 		rec = kptr_pointee_btf_record(kptr_field);
5991 		if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE))
5992 			ret |= NON_OWN_REF;
5993 	} else {
5994 		ret |= PTR_UNTRUSTED;
5995 	}
5996 
5997 	return ret;
5998 }
5999 
6000 static int mark_uptr_ld_reg(struct bpf_verifier_env *env, u32 regno,
6001 			    struct btf_field *field)
6002 {
6003 	struct bpf_reg_state *reg;
6004 	const struct btf_type *t;
6005 
6006 	t = btf_type_by_id(field->kptr.btf, field->kptr.btf_id);
6007 	mark_reg_known_zero(env, cur_regs(env), regno);
6008 	reg = reg_state(env, regno);
6009 	reg->type = PTR_TO_MEM | PTR_MAYBE_NULL;
6010 	reg->mem_size = t->size;
6011 	reg->id = ++env->id_gen;
6012 
6013 	return 0;
6014 }
6015 
6016 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
6017 				 int value_regno, int insn_idx,
6018 				 struct btf_field *kptr_field)
6019 {
6020 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
6021 	int class = BPF_CLASS(insn->code);
6022 	struct bpf_reg_state *val_reg;
6023 	int ret;
6024 
6025 	/* Things we already checked for in check_map_access and caller:
6026 	 *  - Reject cases where variable offset may touch kptr
6027 	 *  - size of access (must be BPF_DW)
6028 	 *  - tnum_is_const(reg->var_off)
6029 	 *  - kptr_field->offset == off + reg->var_off.value
6030 	 */
6031 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
6032 	if (BPF_MODE(insn->code) != BPF_MEM) {
6033 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
6034 		return -EACCES;
6035 	}
6036 
6037 	/* We only allow loading referenced kptr, since it will be marked as
6038 	 * untrusted, similar to unreferenced kptr.
6039 	 */
6040 	if (class != BPF_LDX &&
6041 	    (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) {
6042 		verbose(env, "store to referenced kptr disallowed\n");
6043 		return -EACCES;
6044 	}
6045 	if (class != BPF_LDX && kptr_field->type == BPF_UPTR) {
6046 		verbose(env, "store to uptr disallowed\n");
6047 		return -EACCES;
6048 	}
6049 
6050 	if (class == BPF_LDX) {
6051 		if (kptr_field->type == BPF_UPTR)
6052 			return mark_uptr_ld_reg(env, value_regno, kptr_field);
6053 
6054 		/* We can simply mark the value_regno receiving the pointer
6055 		 * value from map as PTR_TO_BTF_ID, with the correct type.
6056 		 */
6057 		ret = mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID,
6058 				      kptr_field->kptr.btf, kptr_field->kptr.btf_id,
6059 				      btf_ld_kptr_type(env, kptr_field));
6060 		if (ret < 0)
6061 			return ret;
6062 	} else if (class == BPF_STX) {
6063 		val_reg = reg_state(env, value_regno);
6064 		if (!register_is_null(val_reg) &&
6065 		    map_kptr_match_type(env, kptr_field, val_reg, value_regno))
6066 			return -EACCES;
6067 	} else if (class == BPF_ST) {
6068 		if (insn->imm) {
6069 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
6070 				kptr_field->offset);
6071 			return -EACCES;
6072 		}
6073 	} else {
6074 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
6075 		return -EACCES;
6076 	}
6077 	return 0;
6078 }
6079 
6080 /* check read/write into a map element with possible variable offset */
6081 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
6082 			    int off, int size, bool zero_size_allowed,
6083 			    enum bpf_access_src src)
6084 {
6085 	struct bpf_verifier_state *vstate = env->cur_state;
6086 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
6087 	struct bpf_reg_state *reg = &state->regs[regno];
6088 	struct bpf_map *map = reg->map_ptr;
6089 	struct btf_record *rec;
6090 	int err, i;
6091 
6092 	err = check_mem_region_access(env, regno, off, size, map->value_size,
6093 				      zero_size_allowed);
6094 	if (err)
6095 		return err;
6096 
6097 	if (IS_ERR_OR_NULL(map->record))
6098 		return 0;
6099 	rec = map->record;
6100 	for (i = 0; i < rec->cnt; i++) {
6101 		struct btf_field *field = &rec->fields[i];
6102 		u32 p = field->offset;
6103 
6104 		/* If any part of a field  can be touched by load/store, reject
6105 		 * this program. To check that [x1, x2) overlaps with [y1, y2),
6106 		 * it is sufficient to check x1 < y2 && y1 < x2.
6107 		 */
6108 		if (reg->smin_value + off < p + field->size &&
6109 		    p < reg->umax_value + off + size) {
6110 			switch (field->type) {
6111 			case BPF_KPTR_UNREF:
6112 			case BPF_KPTR_REF:
6113 			case BPF_KPTR_PERCPU:
6114 			case BPF_UPTR:
6115 				if (src != ACCESS_DIRECT) {
6116 					verbose(env, "%s cannot be accessed indirectly by helper\n",
6117 						btf_field_type_name(field->type));
6118 					return -EACCES;
6119 				}
6120 				if (!tnum_is_const(reg->var_off)) {
6121 					verbose(env, "%s access cannot have variable offset\n",
6122 						btf_field_type_name(field->type));
6123 					return -EACCES;
6124 				}
6125 				if (p != off + reg->var_off.value) {
6126 					verbose(env, "%s access misaligned expected=%u off=%llu\n",
6127 						btf_field_type_name(field->type),
6128 						p, off + reg->var_off.value);
6129 					return -EACCES;
6130 				}
6131 				if (size != bpf_size_to_bytes(BPF_DW)) {
6132 					verbose(env, "%s access size must be BPF_DW\n",
6133 						btf_field_type_name(field->type));
6134 					return -EACCES;
6135 				}
6136 				break;
6137 			default:
6138 				verbose(env, "%s cannot be accessed directly by load/store\n",
6139 					btf_field_type_name(field->type));
6140 				return -EACCES;
6141 			}
6142 		}
6143 	}
6144 	return 0;
6145 }
6146 
6147 #define MAX_PACKET_OFF 0xffff
6148 
6149 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
6150 				       const struct bpf_call_arg_meta *meta,
6151 				       enum bpf_access_type t)
6152 {
6153 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
6154 
6155 	switch (prog_type) {
6156 	/* Program types only with direct read access go here! */
6157 	case BPF_PROG_TYPE_LWT_IN:
6158 	case BPF_PROG_TYPE_LWT_OUT:
6159 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
6160 	case BPF_PROG_TYPE_SK_REUSEPORT:
6161 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
6162 	case BPF_PROG_TYPE_CGROUP_SKB:
6163 		if (t == BPF_WRITE)
6164 			return false;
6165 		fallthrough;
6166 
6167 	/* Program types with direct read + write access go here! */
6168 	case BPF_PROG_TYPE_SCHED_CLS:
6169 	case BPF_PROG_TYPE_SCHED_ACT:
6170 	case BPF_PROG_TYPE_XDP:
6171 	case BPF_PROG_TYPE_LWT_XMIT:
6172 	case BPF_PROG_TYPE_SK_SKB:
6173 	case BPF_PROG_TYPE_SK_MSG:
6174 		if (meta)
6175 			return meta->pkt_access;
6176 
6177 		env->seen_direct_write = true;
6178 		return true;
6179 
6180 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
6181 		if (t == BPF_WRITE)
6182 			env->seen_direct_write = true;
6183 
6184 		return true;
6185 
6186 	default:
6187 		return false;
6188 	}
6189 }
6190 
6191 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
6192 			       int size, bool zero_size_allowed)
6193 {
6194 	struct bpf_reg_state *regs = cur_regs(env);
6195 	struct bpf_reg_state *reg = &regs[regno];
6196 	int err;
6197 
6198 	/* We may have added a variable offset to the packet pointer; but any
6199 	 * reg->range we have comes after that.  We are only checking the fixed
6200 	 * offset.
6201 	 */
6202 
6203 	/* We don't allow negative numbers, because we aren't tracking enough
6204 	 * detail to prove they're safe.
6205 	 */
6206 	if (reg->smin_value < 0) {
6207 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
6208 			regno);
6209 		return -EACCES;
6210 	}
6211 
6212 	err = reg->range < 0 ? -EINVAL :
6213 	      __check_mem_access(env, regno, off, size, reg->range,
6214 				 zero_size_allowed);
6215 	if (err) {
6216 		verbose(env, "R%d offset is outside of the packet\n", regno);
6217 		return err;
6218 	}
6219 
6220 	/* __check_mem_access has made sure "off + size - 1" is within u16.
6221 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
6222 	 * otherwise find_good_pkt_pointers would have refused to set range info
6223 	 * that __check_mem_access would have rejected this pkt access.
6224 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
6225 	 */
6226 	env->prog->aux->max_pkt_offset =
6227 		max_t(u32, env->prog->aux->max_pkt_offset,
6228 		      off + reg->umax_value + size - 1);
6229 
6230 	return err;
6231 }
6232 
6233 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
6234 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
6235 			    enum bpf_access_type t, struct bpf_insn_access_aux *info)
6236 {
6237 	if (env->ops->is_valid_access &&
6238 	    env->ops->is_valid_access(off, size, t, env->prog, info)) {
6239 		/* A non zero info.ctx_field_size indicates that this field is a
6240 		 * candidate for later verifier transformation to load the whole
6241 		 * field and then apply a mask when accessed with a narrower
6242 		 * access than actual ctx access size. A zero info.ctx_field_size
6243 		 * will only allow for whole field access and rejects any other
6244 		 * type of narrower access.
6245 		 */
6246 		if (base_type(info->reg_type) == PTR_TO_BTF_ID) {
6247 			if (info->ref_obj_id &&
6248 			    !find_reference_state(env->cur_state, info->ref_obj_id)) {
6249 				verbose(env, "invalid bpf_context access off=%d. Reference may already be released\n",
6250 					off);
6251 				return -EACCES;
6252 			}
6253 		} else {
6254 			env->insn_aux_data[insn_idx].ctx_field_size = info->ctx_field_size;
6255 		}
6256 		/* remember the offset of last byte accessed in ctx */
6257 		if (env->prog->aux->max_ctx_offset < off + size)
6258 			env->prog->aux->max_ctx_offset = off + size;
6259 		return 0;
6260 	}
6261 
6262 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
6263 	return -EACCES;
6264 }
6265 
6266 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
6267 				  int size)
6268 {
6269 	if (size < 0 || off < 0 ||
6270 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
6271 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
6272 			off, size);
6273 		return -EACCES;
6274 	}
6275 	return 0;
6276 }
6277 
6278 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
6279 			     u32 regno, int off, int size,
6280 			     enum bpf_access_type t)
6281 {
6282 	struct bpf_reg_state *regs = cur_regs(env);
6283 	struct bpf_reg_state *reg = &regs[regno];
6284 	struct bpf_insn_access_aux info = {};
6285 	bool valid;
6286 
6287 	if (reg->smin_value < 0) {
6288 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
6289 			regno);
6290 		return -EACCES;
6291 	}
6292 
6293 	switch (reg->type) {
6294 	case PTR_TO_SOCK_COMMON:
6295 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
6296 		break;
6297 	case PTR_TO_SOCKET:
6298 		valid = bpf_sock_is_valid_access(off, size, t, &info);
6299 		break;
6300 	case PTR_TO_TCP_SOCK:
6301 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
6302 		break;
6303 	case PTR_TO_XDP_SOCK:
6304 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
6305 		break;
6306 	default:
6307 		valid = false;
6308 	}
6309 
6310 
6311 	if (valid) {
6312 		env->insn_aux_data[insn_idx].ctx_field_size =
6313 			info.ctx_field_size;
6314 		return 0;
6315 	}
6316 
6317 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
6318 		regno, reg_type_str(env, reg->type), off, size);
6319 
6320 	return -EACCES;
6321 }
6322 
6323 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
6324 {
6325 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
6326 }
6327 
6328 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
6329 {
6330 	const struct bpf_reg_state *reg = reg_state(env, regno);
6331 
6332 	return reg->type == PTR_TO_CTX;
6333 }
6334 
6335 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
6336 {
6337 	const struct bpf_reg_state *reg = reg_state(env, regno);
6338 
6339 	return type_is_sk_pointer(reg->type);
6340 }
6341 
6342 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
6343 {
6344 	const struct bpf_reg_state *reg = reg_state(env, regno);
6345 
6346 	return type_is_pkt_pointer(reg->type);
6347 }
6348 
6349 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
6350 {
6351 	const struct bpf_reg_state *reg = reg_state(env, regno);
6352 
6353 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
6354 	return reg->type == PTR_TO_FLOW_KEYS;
6355 }
6356 
6357 static bool is_arena_reg(struct bpf_verifier_env *env, int regno)
6358 {
6359 	const struct bpf_reg_state *reg = reg_state(env, regno);
6360 
6361 	return reg->type == PTR_TO_ARENA;
6362 }
6363 
6364 /* Return false if @regno contains a pointer whose type isn't supported for
6365  * atomic instruction @insn.
6366  */
6367 static bool atomic_ptr_type_ok(struct bpf_verifier_env *env, int regno,
6368 			       struct bpf_insn *insn)
6369 {
6370 	if (is_ctx_reg(env, regno))
6371 		return false;
6372 	if (is_pkt_reg(env, regno))
6373 		return false;
6374 	if (is_flow_key_reg(env, regno))
6375 		return false;
6376 	if (is_sk_reg(env, regno))
6377 		return false;
6378 	if (is_arena_reg(env, regno))
6379 		return bpf_jit_supports_insn(insn, true);
6380 
6381 	return true;
6382 }
6383 
6384 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
6385 #ifdef CONFIG_NET
6386 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
6387 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
6388 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
6389 #endif
6390 	[CONST_PTR_TO_MAP] = btf_bpf_map_id,
6391 };
6392 
6393 static bool is_trusted_reg(const struct bpf_reg_state *reg)
6394 {
6395 	/* A referenced register is always trusted. */
6396 	if (reg->ref_obj_id)
6397 		return true;
6398 
6399 	/* Types listed in the reg2btf_ids are always trusted */
6400 	if (reg2btf_ids[base_type(reg->type)] &&
6401 	    !bpf_type_has_unsafe_modifiers(reg->type))
6402 		return true;
6403 
6404 	/* If a register is not referenced, it is trusted if it has the
6405 	 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
6406 	 * other type modifiers may be safe, but we elect to take an opt-in
6407 	 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
6408 	 * not.
6409 	 *
6410 	 * Eventually, we should make PTR_TRUSTED the single source of truth
6411 	 * for whether a register is trusted.
6412 	 */
6413 	return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
6414 	       !bpf_type_has_unsafe_modifiers(reg->type);
6415 }
6416 
6417 static bool is_rcu_reg(const struct bpf_reg_state *reg)
6418 {
6419 	return reg->type & MEM_RCU;
6420 }
6421 
6422 static void clear_trusted_flags(enum bpf_type_flag *flag)
6423 {
6424 	*flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
6425 }
6426 
6427 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
6428 				   const struct bpf_reg_state *reg,
6429 				   int off, int size, bool strict)
6430 {
6431 	struct tnum reg_off;
6432 	int ip_align;
6433 
6434 	/* Byte size accesses are always allowed. */
6435 	if (!strict || size == 1)
6436 		return 0;
6437 
6438 	/* For platforms that do not have a Kconfig enabling
6439 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
6440 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
6441 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
6442 	 * to this code only in strict mode where we want to emulate
6443 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
6444 	 * unconditional IP align value of '2'.
6445 	 */
6446 	ip_align = 2;
6447 
6448 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
6449 	if (!tnum_is_aligned(reg_off, size)) {
6450 		char tn_buf[48];
6451 
6452 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6453 		verbose(env,
6454 			"misaligned packet access off %d+%s+%d+%d size %d\n",
6455 			ip_align, tn_buf, reg->off, off, size);
6456 		return -EACCES;
6457 	}
6458 
6459 	return 0;
6460 }
6461 
6462 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
6463 				       const struct bpf_reg_state *reg,
6464 				       const char *pointer_desc,
6465 				       int off, int size, bool strict)
6466 {
6467 	struct tnum reg_off;
6468 
6469 	/* Byte size accesses are always allowed. */
6470 	if (!strict || size == 1)
6471 		return 0;
6472 
6473 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
6474 	if (!tnum_is_aligned(reg_off, size)) {
6475 		char tn_buf[48];
6476 
6477 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6478 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
6479 			pointer_desc, tn_buf, reg->off, off, size);
6480 		return -EACCES;
6481 	}
6482 
6483 	return 0;
6484 }
6485 
6486 static int check_ptr_alignment(struct bpf_verifier_env *env,
6487 			       const struct bpf_reg_state *reg, int off,
6488 			       int size, bool strict_alignment_once)
6489 {
6490 	bool strict = env->strict_alignment || strict_alignment_once;
6491 	const char *pointer_desc = "";
6492 
6493 	switch (reg->type) {
6494 	case PTR_TO_PACKET:
6495 	case PTR_TO_PACKET_META:
6496 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
6497 		 * right in front, treat it the very same way.
6498 		 */
6499 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
6500 	case PTR_TO_FLOW_KEYS:
6501 		pointer_desc = "flow keys ";
6502 		break;
6503 	case PTR_TO_MAP_KEY:
6504 		pointer_desc = "key ";
6505 		break;
6506 	case PTR_TO_MAP_VALUE:
6507 		pointer_desc = "value ";
6508 		break;
6509 	case PTR_TO_CTX:
6510 		pointer_desc = "context ";
6511 		break;
6512 	case PTR_TO_STACK:
6513 		pointer_desc = "stack ";
6514 		/* The stack spill tracking logic in check_stack_write_fixed_off()
6515 		 * and check_stack_read_fixed_off() relies on stack accesses being
6516 		 * aligned.
6517 		 */
6518 		strict = true;
6519 		break;
6520 	case PTR_TO_SOCKET:
6521 		pointer_desc = "sock ";
6522 		break;
6523 	case PTR_TO_SOCK_COMMON:
6524 		pointer_desc = "sock_common ";
6525 		break;
6526 	case PTR_TO_TCP_SOCK:
6527 		pointer_desc = "tcp_sock ";
6528 		break;
6529 	case PTR_TO_XDP_SOCK:
6530 		pointer_desc = "xdp_sock ";
6531 		break;
6532 	case PTR_TO_ARENA:
6533 		return 0;
6534 	default:
6535 		break;
6536 	}
6537 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
6538 					   strict);
6539 }
6540 
6541 static enum priv_stack_mode bpf_enable_priv_stack(struct bpf_prog *prog)
6542 {
6543 	if (!bpf_jit_supports_private_stack())
6544 		return NO_PRIV_STACK;
6545 
6546 	/* bpf_prog_check_recur() checks all prog types that use bpf trampoline
6547 	 * while kprobe/tp/perf_event/raw_tp don't use trampoline hence checked
6548 	 * explicitly.
6549 	 */
6550 	switch (prog->type) {
6551 	case BPF_PROG_TYPE_KPROBE:
6552 	case BPF_PROG_TYPE_TRACEPOINT:
6553 	case BPF_PROG_TYPE_PERF_EVENT:
6554 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
6555 		return PRIV_STACK_ADAPTIVE;
6556 	case BPF_PROG_TYPE_TRACING:
6557 	case BPF_PROG_TYPE_LSM:
6558 	case BPF_PROG_TYPE_STRUCT_OPS:
6559 		if (prog->aux->priv_stack_requested || bpf_prog_check_recur(prog))
6560 			return PRIV_STACK_ADAPTIVE;
6561 		fallthrough;
6562 	default:
6563 		break;
6564 	}
6565 
6566 	return NO_PRIV_STACK;
6567 }
6568 
6569 static int round_up_stack_depth(struct bpf_verifier_env *env, int stack_depth)
6570 {
6571 	if (env->prog->jit_requested)
6572 		return round_up(stack_depth, 16);
6573 
6574 	/* round up to 32-bytes, since this is granularity
6575 	 * of interpreter stack size
6576 	 */
6577 	return round_up(max_t(u32, stack_depth, 1), 32);
6578 }
6579 
6580 /* starting from main bpf function walk all instructions of the function
6581  * and recursively walk all callees that given function can call.
6582  * Ignore jump and exit insns.
6583  * Since recursion is prevented by check_cfg() this algorithm
6584  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
6585  */
6586 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx,
6587 					 bool priv_stack_supported)
6588 {
6589 	struct bpf_subprog_info *subprog = env->subprog_info;
6590 	struct bpf_insn *insn = env->prog->insnsi;
6591 	int depth = 0, frame = 0, i, subprog_end, subprog_depth;
6592 	bool tail_call_reachable = false;
6593 	int ret_insn[MAX_CALL_FRAMES];
6594 	int ret_prog[MAX_CALL_FRAMES];
6595 	int j;
6596 
6597 	i = subprog[idx].start;
6598 	if (!priv_stack_supported)
6599 		subprog[idx].priv_stack_mode = NO_PRIV_STACK;
6600 process_func:
6601 	/* protect against potential stack overflow that might happen when
6602 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
6603 	 * depth for such case down to 256 so that the worst case scenario
6604 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
6605 	 * 8k).
6606 	 *
6607 	 * To get the idea what might happen, see an example:
6608 	 * func1 -> sub rsp, 128
6609 	 *  subfunc1 -> sub rsp, 256
6610 	 *  tailcall1 -> add rsp, 256
6611 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
6612 	 *   subfunc2 -> sub rsp, 64
6613 	 *   subfunc22 -> sub rsp, 128
6614 	 *   tailcall2 -> add rsp, 128
6615 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
6616 	 *
6617 	 * tailcall will unwind the current stack frame but it will not get rid
6618 	 * of caller's stack as shown on the example above.
6619 	 */
6620 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
6621 		verbose(env,
6622 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
6623 			depth);
6624 		return -EACCES;
6625 	}
6626 
6627 	subprog_depth = round_up_stack_depth(env, subprog[idx].stack_depth);
6628 	if (priv_stack_supported) {
6629 		/* Request private stack support only if the subprog stack
6630 		 * depth is no less than BPF_PRIV_STACK_MIN_SIZE. This is to
6631 		 * avoid jit penalty if the stack usage is small.
6632 		 */
6633 		if (subprog[idx].priv_stack_mode == PRIV_STACK_UNKNOWN &&
6634 		    subprog_depth >= BPF_PRIV_STACK_MIN_SIZE)
6635 			subprog[idx].priv_stack_mode = PRIV_STACK_ADAPTIVE;
6636 	}
6637 
6638 	if (subprog[idx].priv_stack_mode == PRIV_STACK_ADAPTIVE) {
6639 		if (subprog_depth > MAX_BPF_STACK) {
6640 			verbose(env, "stack size of subprog %d is %d. Too large\n",
6641 				idx, subprog_depth);
6642 			return -EACCES;
6643 		}
6644 	} else {
6645 		depth += subprog_depth;
6646 		if (depth > MAX_BPF_STACK) {
6647 			verbose(env, "combined stack size of %d calls is %d. Too large\n",
6648 				frame + 1, depth);
6649 			return -EACCES;
6650 		}
6651 	}
6652 continue_func:
6653 	subprog_end = subprog[idx + 1].start;
6654 	for (; i < subprog_end; i++) {
6655 		int next_insn, sidx;
6656 
6657 		if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) {
6658 			bool err = false;
6659 
6660 			if (!is_bpf_throw_kfunc(insn + i))
6661 				continue;
6662 			if (subprog[idx].is_cb)
6663 				err = true;
6664 			for (int c = 0; c < frame && !err; c++) {
6665 				if (subprog[ret_prog[c]].is_cb) {
6666 					err = true;
6667 					break;
6668 				}
6669 			}
6670 			if (!err)
6671 				continue;
6672 			verbose(env,
6673 				"bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n",
6674 				i, idx);
6675 			return -EINVAL;
6676 		}
6677 
6678 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
6679 			continue;
6680 		/* remember insn and function to return to */
6681 		ret_insn[frame] = i + 1;
6682 		ret_prog[frame] = idx;
6683 
6684 		/* find the callee */
6685 		next_insn = i + insn[i].imm + 1;
6686 		sidx = find_subprog(env, next_insn);
6687 		if (verifier_bug_if(sidx < 0, env, "callee not found at insn %d", next_insn))
6688 			return -EFAULT;
6689 		if (subprog[sidx].is_async_cb) {
6690 			if (subprog[sidx].has_tail_call) {
6691 				verifier_bug(env, "subprog has tail_call and async cb");
6692 				return -EFAULT;
6693 			}
6694 			/* async callbacks don't increase bpf prog stack size unless called directly */
6695 			if (!bpf_pseudo_call(insn + i))
6696 				continue;
6697 			if (subprog[sidx].is_exception_cb) {
6698 				verbose(env, "insn %d cannot call exception cb directly", i);
6699 				return -EINVAL;
6700 			}
6701 		}
6702 		i = next_insn;
6703 		idx = sidx;
6704 		if (!priv_stack_supported)
6705 			subprog[idx].priv_stack_mode = NO_PRIV_STACK;
6706 
6707 		if (subprog[idx].has_tail_call)
6708 			tail_call_reachable = true;
6709 
6710 		frame++;
6711 		if (frame >= MAX_CALL_FRAMES) {
6712 			verbose(env, "the call stack of %d frames is too deep !\n",
6713 				frame);
6714 			return -E2BIG;
6715 		}
6716 		goto process_func;
6717 	}
6718 	/* if tail call got detected across bpf2bpf calls then mark each of the
6719 	 * currently present subprog frames as tail call reachable subprogs;
6720 	 * this info will be utilized by JIT so that we will be preserving the
6721 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
6722 	 */
6723 	if (tail_call_reachable)
6724 		for (j = 0; j < frame; j++) {
6725 			if (subprog[ret_prog[j]].is_exception_cb) {
6726 				verbose(env, "cannot tail call within exception cb\n");
6727 				return -EINVAL;
6728 			}
6729 			subprog[ret_prog[j]].tail_call_reachable = true;
6730 		}
6731 	if (subprog[0].tail_call_reachable)
6732 		env->prog->aux->tail_call_reachable = true;
6733 
6734 	/* end of for() loop means the last insn of the 'subprog'
6735 	 * was reached. Doesn't matter whether it was JA or EXIT
6736 	 */
6737 	if (frame == 0)
6738 		return 0;
6739 	if (subprog[idx].priv_stack_mode != PRIV_STACK_ADAPTIVE)
6740 		depth -= round_up_stack_depth(env, subprog[idx].stack_depth);
6741 	frame--;
6742 	i = ret_insn[frame];
6743 	idx = ret_prog[frame];
6744 	goto continue_func;
6745 }
6746 
6747 static int check_max_stack_depth(struct bpf_verifier_env *env)
6748 {
6749 	enum priv_stack_mode priv_stack_mode = PRIV_STACK_UNKNOWN;
6750 	struct bpf_subprog_info *si = env->subprog_info;
6751 	bool priv_stack_supported;
6752 	int ret;
6753 
6754 	for (int i = 0; i < env->subprog_cnt; i++) {
6755 		if (si[i].has_tail_call) {
6756 			priv_stack_mode = NO_PRIV_STACK;
6757 			break;
6758 		}
6759 	}
6760 
6761 	if (priv_stack_mode == PRIV_STACK_UNKNOWN)
6762 		priv_stack_mode = bpf_enable_priv_stack(env->prog);
6763 
6764 	/* All async_cb subprogs use normal kernel stack. If a particular
6765 	 * subprog appears in both main prog and async_cb subtree, that
6766 	 * subprog will use normal kernel stack to avoid potential nesting.
6767 	 * The reverse subprog traversal ensures when main prog subtree is
6768 	 * checked, the subprogs appearing in async_cb subtrees are already
6769 	 * marked as using normal kernel stack, so stack size checking can
6770 	 * be done properly.
6771 	 */
6772 	for (int i = env->subprog_cnt - 1; i >= 0; i--) {
6773 		if (!i || si[i].is_async_cb) {
6774 			priv_stack_supported = !i && priv_stack_mode == PRIV_STACK_ADAPTIVE;
6775 			ret = check_max_stack_depth_subprog(env, i, priv_stack_supported);
6776 			if (ret < 0)
6777 				return ret;
6778 		}
6779 	}
6780 
6781 	for (int i = 0; i < env->subprog_cnt; i++) {
6782 		if (si[i].priv_stack_mode == PRIV_STACK_ADAPTIVE) {
6783 			env->prog->aux->jits_use_priv_stack = true;
6784 			break;
6785 		}
6786 	}
6787 
6788 	return 0;
6789 }
6790 
6791 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
6792 static int get_callee_stack_depth(struct bpf_verifier_env *env,
6793 				  const struct bpf_insn *insn, int idx)
6794 {
6795 	int start = idx + insn->imm + 1, subprog;
6796 
6797 	subprog = find_subprog(env, start);
6798 	if (verifier_bug_if(subprog < 0, env, "get stack depth: no program at insn %d", start))
6799 		return -EFAULT;
6800 	return env->subprog_info[subprog].stack_depth;
6801 }
6802 #endif
6803 
6804 static int __check_buffer_access(struct bpf_verifier_env *env,
6805 				 const char *buf_info,
6806 				 const struct bpf_reg_state *reg,
6807 				 int regno, int off, int size)
6808 {
6809 	if (off < 0) {
6810 		verbose(env,
6811 			"R%d invalid %s buffer access: off=%d, size=%d\n",
6812 			regno, buf_info, off, size);
6813 		return -EACCES;
6814 	}
6815 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6816 		char tn_buf[48];
6817 
6818 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6819 		verbose(env,
6820 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
6821 			regno, off, tn_buf);
6822 		return -EACCES;
6823 	}
6824 
6825 	return 0;
6826 }
6827 
6828 static int check_tp_buffer_access(struct bpf_verifier_env *env,
6829 				  const struct bpf_reg_state *reg,
6830 				  int regno, int off, int size)
6831 {
6832 	int err;
6833 
6834 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
6835 	if (err)
6836 		return err;
6837 
6838 	if (off + size > env->prog->aux->max_tp_access)
6839 		env->prog->aux->max_tp_access = off + size;
6840 
6841 	return 0;
6842 }
6843 
6844 static int check_buffer_access(struct bpf_verifier_env *env,
6845 			       const struct bpf_reg_state *reg,
6846 			       int regno, int off, int size,
6847 			       bool zero_size_allowed,
6848 			       u32 *max_access)
6849 {
6850 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
6851 	int err;
6852 
6853 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
6854 	if (err)
6855 		return err;
6856 
6857 	if (off + size > *max_access)
6858 		*max_access = off + size;
6859 
6860 	return 0;
6861 }
6862 
6863 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
6864 static void zext_32_to_64(struct bpf_reg_state *reg)
6865 {
6866 	reg->var_off = tnum_subreg(reg->var_off);
6867 	__reg_assign_32_into_64(reg);
6868 }
6869 
6870 /* truncate register to smaller size (in bytes)
6871  * must be called with size < BPF_REG_SIZE
6872  */
6873 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
6874 {
6875 	u64 mask;
6876 
6877 	/* clear high bits in bit representation */
6878 	reg->var_off = tnum_cast(reg->var_off, size);
6879 
6880 	/* fix arithmetic bounds */
6881 	mask = ((u64)1 << (size * 8)) - 1;
6882 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
6883 		reg->umin_value &= mask;
6884 		reg->umax_value &= mask;
6885 	} else {
6886 		reg->umin_value = 0;
6887 		reg->umax_value = mask;
6888 	}
6889 	reg->smin_value = reg->umin_value;
6890 	reg->smax_value = reg->umax_value;
6891 
6892 	/* If size is smaller than 32bit register the 32bit register
6893 	 * values are also truncated so we push 64-bit bounds into
6894 	 * 32-bit bounds. Above were truncated < 32-bits already.
6895 	 */
6896 	if (size < 4)
6897 		__mark_reg32_unbounded(reg);
6898 
6899 	reg_bounds_sync(reg);
6900 }
6901 
6902 static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
6903 {
6904 	if (size == 1) {
6905 		reg->smin_value = reg->s32_min_value = S8_MIN;
6906 		reg->smax_value = reg->s32_max_value = S8_MAX;
6907 	} else if (size == 2) {
6908 		reg->smin_value = reg->s32_min_value = S16_MIN;
6909 		reg->smax_value = reg->s32_max_value = S16_MAX;
6910 	} else {
6911 		/* size == 4 */
6912 		reg->smin_value = reg->s32_min_value = S32_MIN;
6913 		reg->smax_value = reg->s32_max_value = S32_MAX;
6914 	}
6915 	reg->umin_value = reg->u32_min_value = 0;
6916 	reg->umax_value = U64_MAX;
6917 	reg->u32_max_value = U32_MAX;
6918 	reg->var_off = tnum_unknown;
6919 }
6920 
6921 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
6922 {
6923 	s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
6924 	u64 top_smax_value, top_smin_value;
6925 	u64 num_bits = size * 8;
6926 
6927 	if (tnum_is_const(reg->var_off)) {
6928 		u64_cval = reg->var_off.value;
6929 		if (size == 1)
6930 			reg->var_off = tnum_const((s8)u64_cval);
6931 		else if (size == 2)
6932 			reg->var_off = tnum_const((s16)u64_cval);
6933 		else
6934 			/* size == 4 */
6935 			reg->var_off = tnum_const((s32)u64_cval);
6936 
6937 		u64_cval = reg->var_off.value;
6938 		reg->smax_value = reg->smin_value = u64_cval;
6939 		reg->umax_value = reg->umin_value = u64_cval;
6940 		reg->s32_max_value = reg->s32_min_value = u64_cval;
6941 		reg->u32_max_value = reg->u32_min_value = u64_cval;
6942 		return;
6943 	}
6944 
6945 	top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
6946 	top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
6947 
6948 	if (top_smax_value != top_smin_value)
6949 		goto out;
6950 
6951 	/* find the s64_min and s64_min after sign extension */
6952 	if (size == 1) {
6953 		init_s64_max = (s8)reg->smax_value;
6954 		init_s64_min = (s8)reg->smin_value;
6955 	} else if (size == 2) {
6956 		init_s64_max = (s16)reg->smax_value;
6957 		init_s64_min = (s16)reg->smin_value;
6958 	} else {
6959 		init_s64_max = (s32)reg->smax_value;
6960 		init_s64_min = (s32)reg->smin_value;
6961 	}
6962 
6963 	s64_max = max(init_s64_max, init_s64_min);
6964 	s64_min = min(init_s64_max, init_s64_min);
6965 
6966 	/* both of s64_max/s64_min positive or negative */
6967 	if ((s64_max >= 0) == (s64_min >= 0)) {
6968 		reg->s32_min_value = reg->smin_value = s64_min;
6969 		reg->s32_max_value = reg->smax_value = s64_max;
6970 		reg->u32_min_value = reg->umin_value = s64_min;
6971 		reg->u32_max_value = reg->umax_value = s64_max;
6972 		reg->var_off = tnum_range(s64_min, s64_max);
6973 		return;
6974 	}
6975 
6976 out:
6977 	set_sext64_default_val(reg, size);
6978 }
6979 
6980 static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
6981 {
6982 	if (size == 1) {
6983 		reg->s32_min_value = S8_MIN;
6984 		reg->s32_max_value = S8_MAX;
6985 	} else {
6986 		/* size == 2 */
6987 		reg->s32_min_value = S16_MIN;
6988 		reg->s32_max_value = S16_MAX;
6989 	}
6990 	reg->u32_min_value = 0;
6991 	reg->u32_max_value = U32_MAX;
6992 	reg->var_off = tnum_subreg(tnum_unknown);
6993 }
6994 
6995 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
6996 {
6997 	s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
6998 	u32 top_smax_value, top_smin_value;
6999 	u32 num_bits = size * 8;
7000 
7001 	if (tnum_is_const(reg->var_off)) {
7002 		u32_val = reg->var_off.value;
7003 		if (size == 1)
7004 			reg->var_off = tnum_const((s8)u32_val);
7005 		else
7006 			reg->var_off = tnum_const((s16)u32_val);
7007 
7008 		u32_val = reg->var_off.value;
7009 		reg->s32_min_value = reg->s32_max_value = u32_val;
7010 		reg->u32_min_value = reg->u32_max_value = u32_val;
7011 		return;
7012 	}
7013 
7014 	top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
7015 	top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
7016 
7017 	if (top_smax_value != top_smin_value)
7018 		goto out;
7019 
7020 	/* find the s32_min and s32_min after sign extension */
7021 	if (size == 1) {
7022 		init_s32_max = (s8)reg->s32_max_value;
7023 		init_s32_min = (s8)reg->s32_min_value;
7024 	} else {
7025 		/* size == 2 */
7026 		init_s32_max = (s16)reg->s32_max_value;
7027 		init_s32_min = (s16)reg->s32_min_value;
7028 	}
7029 	s32_max = max(init_s32_max, init_s32_min);
7030 	s32_min = min(init_s32_max, init_s32_min);
7031 
7032 	if ((s32_min >= 0) == (s32_max >= 0)) {
7033 		reg->s32_min_value = s32_min;
7034 		reg->s32_max_value = s32_max;
7035 		reg->u32_min_value = (u32)s32_min;
7036 		reg->u32_max_value = (u32)s32_max;
7037 		reg->var_off = tnum_subreg(tnum_range(s32_min, s32_max));
7038 		return;
7039 	}
7040 
7041 out:
7042 	set_sext32_default_val(reg, size);
7043 }
7044 
7045 static bool bpf_map_is_rdonly(const struct bpf_map *map)
7046 {
7047 	/* A map is considered read-only if the following condition are true:
7048 	 *
7049 	 * 1) BPF program side cannot change any of the map content. The
7050 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
7051 	 *    and was set at map creation time.
7052 	 * 2) The map value(s) have been initialized from user space by a
7053 	 *    loader and then "frozen", such that no new map update/delete
7054 	 *    operations from syscall side are possible for the rest of
7055 	 *    the map's lifetime from that point onwards.
7056 	 * 3) Any parallel/pending map update/delete operations from syscall
7057 	 *    side have been completed. Only after that point, it's safe to
7058 	 *    assume that map value(s) are immutable.
7059 	 */
7060 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
7061 	       READ_ONCE(map->frozen) &&
7062 	       !bpf_map_write_active(map);
7063 }
7064 
7065 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
7066 			       bool is_ldsx)
7067 {
7068 	void *ptr;
7069 	u64 addr;
7070 	int err;
7071 
7072 	err = map->ops->map_direct_value_addr(map, &addr, off);
7073 	if (err)
7074 		return err;
7075 	ptr = (void *)(long)addr + off;
7076 
7077 	switch (size) {
7078 	case sizeof(u8):
7079 		*val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
7080 		break;
7081 	case sizeof(u16):
7082 		*val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
7083 		break;
7084 	case sizeof(u32):
7085 		*val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
7086 		break;
7087 	case sizeof(u64):
7088 		*val = *(u64 *)ptr;
7089 		break;
7090 	default:
7091 		return -EINVAL;
7092 	}
7093 	return 0;
7094 }
7095 
7096 #define BTF_TYPE_SAFE_RCU(__type)  __PASTE(__type, __safe_rcu)
7097 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type)  __PASTE(__type, __safe_rcu_or_null)
7098 #define BTF_TYPE_SAFE_TRUSTED(__type)  __PASTE(__type, __safe_trusted)
7099 #define BTF_TYPE_SAFE_TRUSTED_OR_NULL(__type)  __PASTE(__type, __safe_trusted_or_null)
7100 
7101 /*
7102  * Allow list few fields as RCU trusted or full trusted.
7103  * This logic doesn't allow mix tagging and will be removed once GCC supports
7104  * btf_type_tag.
7105  */
7106 
7107 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
7108 BTF_TYPE_SAFE_RCU(struct task_struct) {
7109 	const cpumask_t *cpus_ptr;
7110 	struct css_set __rcu *cgroups;
7111 	struct task_struct __rcu *real_parent;
7112 	struct task_struct *group_leader;
7113 };
7114 
7115 BTF_TYPE_SAFE_RCU(struct cgroup) {
7116 	/* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
7117 	struct kernfs_node *kn;
7118 };
7119 
7120 BTF_TYPE_SAFE_RCU(struct css_set) {
7121 	struct cgroup *dfl_cgrp;
7122 };
7123 
7124 BTF_TYPE_SAFE_RCU(struct cgroup_subsys_state) {
7125 	struct cgroup *cgroup;
7126 };
7127 
7128 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
7129 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
7130 	struct file __rcu *exe_file;
7131 };
7132 
7133 /* skb->sk, req->sk are not RCU protected, but we mark them as such
7134  * because bpf prog accessible sockets are SOCK_RCU_FREE.
7135  */
7136 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
7137 	struct sock *sk;
7138 };
7139 
7140 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
7141 	struct sock *sk;
7142 };
7143 
7144 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
7145 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
7146 	struct seq_file *seq;
7147 };
7148 
7149 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
7150 	struct bpf_iter_meta *meta;
7151 	struct task_struct *task;
7152 };
7153 
7154 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
7155 	struct file *file;
7156 };
7157 
7158 BTF_TYPE_SAFE_TRUSTED(struct file) {
7159 	struct inode *f_inode;
7160 };
7161 
7162 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct dentry) {
7163 	struct inode *d_inode;
7164 };
7165 
7166 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) {
7167 	struct sock *sk;
7168 };
7169 
7170 static bool type_is_rcu(struct bpf_verifier_env *env,
7171 			struct bpf_reg_state *reg,
7172 			const char *field_name, u32 btf_id)
7173 {
7174 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
7175 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
7176 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
7177 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup_subsys_state));
7178 
7179 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
7180 }
7181 
7182 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
7183 				struct bpf_reg_state *reg,
7184 				const char *field_name, u32 btf_id)
7185 {
7186 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
7187 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
7188 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
7189 
7190 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
7191 }
7192 
7193 static bool type_is_trusted(struct bpf_verifier_env *env,
7194 			    struct bpf_reg_state *reg,
7195 			    const char *field_name, u32 btf_id)
7196 {
7197 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
7198 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
7199 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
7200 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
7201 
7202 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
7203 }
7204 
7205 static bool type_is_trusted_or_null(struct bpf_verifier_env *env,
7206 				    struct bpf_reg_state *reg,
7207 				    const char *field_name, u32 btf_id)
7208 {
7209 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket));
7210 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct dentry));
7211 
7212 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id,
7213 					  "__safe_trusted_or_null");
7214 }
7215 
7216 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
7217 				   struct bpf_reg_state *regs,
7218 				   int regno, int off, int size,
7219 				   enum bpf_access_type atype,
7220 				   int value_regno)
7221 {
7222 	struct bpf_reg_state *reg = regs + regno;
7223 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
7224 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
7225 	const char *field_name = NULL;
7226 	enum bpf_type_flag flag = 0;
7227 	u32 btf_id = 0;
7228 	int ret;
7229 
7230 	if (!env->allow_ptr_leaks) {
7231 		verbose(env,
7232 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
7233 			tname);
7234 		return -EPERM;
7235 	}
7236 	if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
7237 		verbose(env,
7238 			"Cannot access kernel 'struct %s' from non-GPL compatible program\n",
7239 			tname);
7240 		return -EINVAL;
7241 	}
7242 	if (off < 0) {
7243 		verbose(env,
7244 			"R%d is ptr_%s invalid negative access: off=%d\n",
7245 			regno, tname, off);
7246 		return -EACCES;
7247 	}
7248 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
7249 		char tn_buf[48];
7250 
7251 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7252 		verbose(env,
7253 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
7254 			regno, tname, off, tn_buf);
7255 		return -EACCES;
7256 	}
7257 
7258 	if (reg->type & MEM_USER) {
7259 		verbose(env,
7260 			"R%d is ptr_%s access user memory: off=%d\n",
7261 			regno, tname, off);
7262 		return -EACCES;
7263 	}
7264 
7265 	if (reg->type & MEM_PERCPU) {
7266 		verbose(env,
7267 			"R%d is ptr_%s access percpu memory: off=%d\n",
7268 			regno, tname, off);
7269 		return -EACCES;
7270 	}
7271 
7272 	if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
7273 		if (!btf_is_kernel(reg->btf)) {
7274 			verifier_bug(env, "reg->btf must be kernel btf");
7275 			return -EFAULT;
7276 		}
7277 		ret = env->ops->btf_struct_access(&env->log, reg, off, size);
7278 	} else {
7279 		/* Writes are permitted with default btf_struct_access for
7280 		 * program allocated objects (which always have ref_obj_id > 0),
7281 		 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
7282 		 */
7283 		if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
7284 			verbose(env, "only read is supported\n");
7285 			return -EACCES;
7286 		}
7287 
7288 		if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
7289 		    !(reg->type & MEM_RCU) && !reg->ref_obj_id) {
7290 			verifier_bug(env, "ref_obj_id for allocated object must be non-zero");
7291 			return -EFAULT;
7292 		}
7293 
7294 		ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
7295 	}
7296 
7297 	if (ret < 0)
7298 		return ret;
7299 
7300 	if (ret != PTR_TO_BTF_ID) {
7301 		/* just mark; */
7302 
7303 	} else if (type_flag(reg->type) & PTR_UNTRUSTED) {
7304 		/* If this is an untrusted pointer, all pointers formed by walking it
7305 		 * also inherit the untrusted flag.
7306 		 */
7307 		flag = PTR_UNTRUSTED;
7308 
7309 	} else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
7310 		/* By default any pointer obtained from walking a trusted pointer is no
7311 		 * longer trusted, unless the field being accessed has explicitly been
7312 		 * marked as inheriting its parent's state of trust (either full or RCU).
7313 		 * For example:
7314 		 * 'cgroups' pointer is untrusted if task->cgroups dereference
7315 		 * happened in a sleepable program outside of bpf_rcu_read_lock()
7316 		 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
7317 		 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
7318 		 *
7319 		 * A regular RCU-protected pointer with __rcu tag can also be deemed
7320 		 * trusted if we are in an RCU CS. Such pointer can be NULL.
7321 		 */
7322 		if (type_is_trusted(env, reg, field_name, btf_id)) {
7323 			flag |= PTR_TRUSTED;
7324 		} else if (type_is_trusted_or_null(env, reg, field_name, btf_id)) {
7325 			flag |= PTR_TRUSTED | PTR_MAYBE_NULL;
7326 		} else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
7327 			if (type_is_rcu(env, reg, field_name, btf_id)) {
7328 				/* ignore __rcu tag and mark it MEM_RCU */
7329 				flag |= MEM_RCU;
7330 			} else if (flag & MEM_RCU ||
7331 				   type_is_rcu_or_null(env, reg, field_name, btf_id)) {
7332 				/* __rcu tagged pointers can be NULL */
7333 				flag |= MEM_RCU | PTR_MAYBE_NULL;
7334 
7335 				/* We always trust them */
7336 				if (type_is_rcu_or_null(env, reg, field_name, btf_id) &&
7337 				    flag & PTR_UNTRUSTED)
7338 					flag &= ~PTR_UNTRUSTED;
7339 			} else if (flag & (MEM_PERCPU | MEM_USER)) {
7340 				/* keep as-is */
7341 			} else {
7342 				/* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
7343 				clear_trusted_flags(&flag);
7344 			}
7345 		} else {
7346 			/*
7347 			 * If not in RCU CS or MEM_RCU pointer can be NULL then
7348 			 * aggressively mark as untrusted otherwise such
7349 			 * pointers will be plain PTR_TO_BTF_ID without flags
7350 			 * and will be allowed to be passed into helpers for
7351 			 * compat reasons.
7352 			 */
7353 			flag = PTR_UNTRUSTED;
7354 		}
7355 	} else {
7356 		/* Old compat. Deprecated */
7357 		clear_trusted_flags(&flag);
7358 	}
7359 
7360 	if (atype == BPF_READ && value_regno >= 0) {
7361 		ret = mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
7362 		if (ret < 0)
7363 			return ret;
7364 	}
7365 
7366 	return 0;
7367 }
7368 
7369 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
7370 				   struct bpf_reg_state *regs,
7371 				   int regno, int off, int size,
7372 				   enum bpf_access_type atype,
7373 				   int value_regno)
7374 {
7375 	struct bpf_reg_state *reg = regs + regno;
7376 	struct bpf_map *map = reg->map_ptr;
7377 	struct bpf_reg_state map_reg;
7378 	enum bpf_type_flag flag = 0;
7379 	const struct btf_type *t;
7380 	const char *tname;
7381 	u32 btf_id;
7382 	int ret;
7383 
7384 	if (!btf_vmlinux) {
7385 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
7386 		return -ENOTSUPP;
7387 	}
7388 
7389 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
7390 		verbose(env, "map_ptr access not supported for map type %d\n",
7391 			map->map_type);
7392 		return -ENOTSUPP;
7393 	}
7394 
7395 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
7396 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
7397 
7398 	if (!env->allow_ptr_leaks) {
7399 		verbose(env,
7400 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
7401 			tname);
7402 		return -EPERM;
7403 	}
7404 
7405 	if (off < 0) {
7406 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
7407 			regno, tname, off);
7408 		return -EACCES;
7409 	}
7410 
7411 	if (atype != BPF_READ) {
7412 		verbose(env, "only read from %s is supported\n", tname);
7413 		return -EACCES;
7414 	}
7415 
7416 	/* Simulate access to a PTR_TO_BTF_ID */
7417 	memset(&map_reg, 0, sizeof(map_reg));
7418 	ret = mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID,
7419 			      btf_vmlinux, *map->ops->map_btf_id, 0);
7420 	if (ret < 0)
7421 		return ret;
7422 	ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
7423 	if (ret < 0)
7424 		return ret;
7425 
7426 	if (value_regno >= 0) {
7427 		ret = mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
7428 		if (ret < 0)
7429 			return ret;
7430 	}
7431 
7432 	return 0;
7433 }
7434 
7435 /* Check that the stack access at the given offset is within bounds. The
7436  * maximum valid offset is -1.
7437  *
7438  * The minimum valid offset is -MAX_BPF_STACK for writes, and
7439  * -state->allocated_stack for reads.
7440  */
7441 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env,
7442                                           s64 off,
7443                                           struct bpf_func_state *state,
7444                                           enum bpf_access_type t)
7445 {
7446 	int min_valid_off;
7447 
7448 	if (t == BPF_WRITE || env->allow_uninit_stack)
7449 		min_valid_off = -MAX_BPF_STACK;
7450 	else
7451 		min_valid_off = -state->allocated_stack;
7452 
7453 	if (off < min_valid_off || off > -1)
7454 		return -EACCES;
7455 	return 0;
7456 }
7457 
7458 /* Check that the stack access at 'regno + off' falls within the maximum stack
7459  * bounds.
7460  *
7461  * 'off' includes `regno->offset`, but not its dynamic part (if any).
7462  */
7463 static int check_stack_access_within_bounds(
7464 		struct bpf_verifier_env *env,
7465 		int regno, int off, int access_size,
7466 		enum bpf_access_type type)
7467 {
7468 	struct bpf_reg_state *regs = cur_regs(env);
7469 	struct bpf_reg_state *reg = regs + regno;
7470 	struct bpf_func_state *state = func(env, reg);
7471 	s64 min_off, max_off;
7472 	int err;
7473 	char *err_extra;
7474 
7475 	if (type == BPF_READ)
7476 		err_extra = " read from";
7477 	else
7478 		err_extra = " write to";
7479 
7480 	if (tnum_is_const(reg->var_off)) {
7481 		min_off = (s64)reg->var_off.value + off;
7482 		max_off = min_off + access_size;
7483 	} else {
7484 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
7485 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
7486 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
7487 				err_extra, regno);
7488 			return -EACCES;
7489 		}
7490 		min_off = reg->smin_value + off;
7491 		max_off = reg->smax_value + off + access_size;
7492 	}
7493 
7494 	err = check_stack_slot_within_bounds(env, min_off, state, type);
7495 	if (!err && max_off > 0)
7496 		err = -EINVAL; /* out of stack access into non-negative offsets */
7497 	if (!err && access_size < 0)
7498 		/* access_size should not be negative (or overflow an int); others checks
7499 		 * along the way should have prevented such an access.
7500 		 */
7501 		err = -EFAULT; /* invalid negative access size; integer overflow? */
7502 
7503 	if (err) {
7504 		if (tnum_is_const(reg->var_off)) {
7505 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
7506 				err_extra, regno, off, access_size);
7507 		} else {
7508 			char tn_buf[48];
7509 
7510 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7511 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s off=%d size=%d\n",
7512 				err_extra, regno, tn_buf, off, access_size);
7513 		}
7514 		return err;
7515 	}
7516 
7517 	/* Note that there is no stack access with offset zero, so the needed stack
7518 	 * size is -min_off, not -min_off+1.
7519 	 */
7520 	return grow_stack_state(env, state, -min_off /* size */);
7521 }
7522 
7523 static bool get_func_retval_range(struct bpf_prog *prog,
7524 				  struct bpf_retval_range *range)
7525 {
7526 	if (prog->type == BPF_PROG_TYPE_LSM &&
7527 		prog->expected_attach_type == BPF_LSM_MAC &&
7528 		!bpf_lsm_get_retval_range(prog, range)) {
7529 		return true;
7530 	}
7531 	return false;
7532 }
7533 
7534 /* check whether memory at (regno + off) is accessible for t = (read | write)
7535  * if t==write, value_regno is a register which value is stored into memory
7536  * if t==read, value_regno is a register which will receive the value from memory
7537  * if t==write && value_regno==-1, some unknown value is stored into memory
7538  * if t==read && value_regno==-1, don't care what we read from memory
7539  */
7540 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
7541 			    int off, int bpf_size, enum bpf_access_type t,
7542 			    int value_regno, bool strict_alignment_once, bool is_ldsx)
7543 {
7544 	struct bpf_reg_state *regs = cur_regs(env);
7545 	struct bpf_reg_state *reg = regs + regno;
7546 	int size, err = 0;
7547 
7548 	size = bpf_size_to_bytes(bpf_size);
7549 	if (size < 0)
7550 		return size;
7551 
7552 	/* alignment checks will add in reg->off themselves */
7553 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
7554 	if (err)
7555 		return err;
7556 
7557 	/* for access checks, reg->off is just part of off */
7558 	off += reg->off;
7559 
7560 	if (reg->type == PTR_TO_MAP_KEY) {
7561 		if (t == BPF_WRITE) {
7562 			verbose(env, "write to change key R%d not allowed\n", regno);
7563 			return -EACCES;
7564 		}
7565 
7566 		err = check_mem_region_access(env, regno, off, size,
7567 					      reg->map_ptr->key_size, false);
7568 		if (err)
7569 			return err;
7570 		if (value_regno >= 0)
7571 			mark_reg_unknown(env, regs, value_regno);
7572 	} else if (reg->type == PTR_TO_MAP_VALUE) {
7573 		struct btf_field *kptr_field = NULL;
7574 
7575 		if (t == BPF_WRITE && value_regno >= 0 &&
7576 		    is_pointer_value(env, value_regno)) {
7577 			verbose(env, "R%d leaks addr into map\n", value_regno);
7578 			return -EACCES;
7579 		}
7580 		err = check_map_access_type(env, regno, off, size, t);
7581 		if (err)
7582 			return err;
7583 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
7584 		if (err)
7585 			return err;
7586 		if (tnum_is_const(reg->var_off))
7587 			kptr_field = btf_record_find(reg->map_ptr->record,
7588 						     off + reg->var_off.value, BPF_KPTR | BPF_UPTR);
7589 		if (kptr_field) {
7590 			err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
7591 		} else if (t == BPF_READ && value_regno >= 0) {
7592 			struct bpf_map *map = reg->map_ptr;
7593 
7594 			/* if map is read-only, track its contents as scalars */
7595 			if (tnum_is_const(reg->var_off) &&
7596 			    bpf_map_is_rdonly(map) &&
7597 			    map->ops->map_direct_value_addr) {
7598 				int map_off = off + reg->var_off.value;
7599 				u64 val = 0;
7600 
7601 				err = bpf_map_direct_read(map, map_off, size,
7602 							  &val, is_ldsx);
7603 				if (err)
7604 					return err;
7605 
7606 				regs[value_regno].type = SCALAR_VALUE;
7607 				__mark_reg_known(&regs[value_regno], val);
7608 			} else {
7609 				mark_reg_unknown(env, regs, value_regno);
7610 			}
7611 		}
7612 	} else if (base_type(reg->type) == PTR_TO_MEM) {
7613 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
7614 		bool rdonly_untrusted = rdonly_mem && (reg->type & PTR_UNTRUSTED);
7615 
7616 		if (type_may_be_null(reg->type)) {
7617 			verbose(env, "R%d invalid mem access '%s'\n", regno,
7618 				reg_type_str(env, reg->type));
7619 			return -EACCES;
7620 		}
7621 
7622 		if (t == BPF_WRITE && rdonly_mem) {
7623 			verbose(env, "R%d cannot write into %s\n",
7624 				regno, reg_type_str(env, reg->type));
7625 			return -EACCES;
7626 		}
7627 
7628 		if (t == BPF_WRITE && value_regno >= 0 &&
7629 		    is_pointer_value(env, value_regno)) {
7630 			verbose(env, "R%d leaks addr into mem\n", value_regno);
7631 			return -EACCES;
7632 		}
7633 
7634 		/*
7635 		 * Accesses to untrusted PTR_TO_MEM are done through probe
7636 		 * instructions, hence no need to check bounds in that case.
7637 		 */
7638 		if (!rdonly_untrusted)
7639 			err = check_mem_region_access(env, regno, off, size,
7640 						      reg->mem_size, false);
7641 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
7642 			mark_reg_unknown(env, regs, value_regno);
7643 	} else if (reg->type == PTR_TO_CTX) {
7644 		struct bpf_retval_range range;
7645 		struct bpf_insn_access_aux info = {
7646 			.reg_type = SCALAR_VALUE,
7647 			.is_ldsx = is_ldsx,
7648 			.log = &env->log,
7649 		};
7650 
7651 		if (t == BPF_WRITE && value_regno >= 0 &&
7652 		    is_pointer_value(env, value_regno)) {
7653 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
7654 			return -EACCES;
7655 		}
7656 
7657 		err = check_ptr_off_reg(env, reg, regno);
7658 		if (err < 0)
7659 			return err;
7660 
7661 		err = check_ctx_access(env, insn_idx, off, size, t, &info);
7662 		if (err)
7663 			verbose_linfo(env, insn_idx, "; ");
7664 		if (!err && t == BPF_READ && value_regno >= 0) {
7665 			/* ctx access returns either a scalar, or a
7666 			 * PTR_TO_PACKET[_META,_END]. In the latter
7667 			 * case, we know the offset is zero.
7668 			 */
7669 			if (info.reg_type == SCALAR_VALUE) {
7670 				if (info.is_retval && get_func_retval_range(env->prog, &range)) {
7671 					err = __mark_reg_s32_range(env, regs, value_regno,
7672 								   range.minval, range.maxval);
7673 					if (err)
7674 						return err;
7675 				} else {
7676 					mark_reg_unknown(env, regs, value_regno);
7677 				}
7678 			} else {
7679 				mark_reg_known_zero(env, regs,
7680 						    value_regno);
7681 				if (type_may_be_null(info.reg_type))
7682 					regs[value_regno].id = ++env->id_gen;
7683 				/* A load of ctx field could have different
7684 				 * actual load size with the one encoded in the
7685 				 * insn. When the dst is PTR, it is for sure not
7686 				 * a sub-register.
7687 				 */
7688 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
7689 				if (base_type(info.reg_type) == PTR_TO_BTF_ID) {
7690 					regs[value_regno].btf = info.btf;
7691 					regs[value_regno].btf_id = info.btf_id;
7692 					regs[value_regno].ref_obj_id = info.ref_obj_id;
7693 				}
7694 			}
7695 			regs[value_regno].type = info.reg_type;
7696 		}
7697 
7698 	} else if (reg->type == PTR_TO_STACK) {
7699 		/* Basic bounds checks. */
7700 		err = check_stack_access_within_bounds(env, regno, off, size, t);
7701 		if (err)
7702 			return err;
7703 
7704 		if (t == BPF_READ)
7705 			err = check_stack_read(env, regno, off, size,
7706 					       value_regno);
7707 		else
7708 			err = check_stack_write(env, regno, off, size,
7709 						value_regno, insn_idx);
7710 	} else if (reg_is_pkt_pointer(reg)) {
7711 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
7712 			verbose(env, "cannot write into packet\n");
7713 			return -EACCES;
7714 		}
7715 		if (t == BPF_WRITE && value_regno >= 0 &&
7716 		    is_pointer_value(env, value_regno)) {
7717 			verbose(env, "R%d leaks addr into packet\n",
7718 				value_regno);
7719 			return -EACCES;
7720 		}
7721 		err = check_packet_access(env, regno, off, size, false);
7722 		if (!err && t == BPF_READ && value_regno >= 0)
7723 			mark_reg_unknown(env, regs, value_regno);
7724 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
7725 		if (t == BPF_WRITE && value_regno >= 0 &&
7726 		    is_pointer_value(env, value_regno)) {
7727 			verbose(env, "R%d leaks addr into flow keys\n",
7728 				value_regno);
7729 			return -EACCES;
7730 		}
7731 
7732 		err = check_flow_keys_access(env, off, size);
7733 		if (!err && t == BPF_READ && value_regno >= 0)
7734 			mark_reg_unknown(env, regs, value_regno);
7735 	} else if (type_is_sk_pointer(reg->type)) {
7736 		if (t == BPF_WRITE) {
7737 			verbose(env, "R%d cannot write into %s\n",
7738 				regno, reg_type_str(env, reg->type));
7739 			return -EACCES;
7740 		}
7741 		err = check_sock_access(env, insn_idx, regno, off, size, t);
7742 		if (!err && value_regno >= 0)
7743 			mark_reg_unknown(env, regs, value_regno);
7744 	} else if (reg->type == PTR_TO_TP_BUFFER) {
7745 		err = check_tp_buffer_access(env, reg, regno, off, size);
7746 		if (!err && t == BPF_READ && value_regno >= 0)
7747 			mark_reg_unknown(env, regs, value_regno);
7748 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
7749 		   !type_may_be_null(reg->type)) {
7750 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
7751 					      value_regno);
7752 	} else if (reg->type == CONST_PTR_TO_MAP) {
7753 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
7754 					      value_regno);
7755 	} else if (base_type(reg->type) == PTR_TO_BUF) {
7756 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
7757 		u32 *max_access;
7758 
7759 		if (rdonly_mem) {
7760 			if (t == BPF_WRITE) {
7761 				verbose(env, "R%d cannot write into %s\n",
7762 					regno, reg_type_str(env, reg->type));
7763 				return -EACCES;
7764 			}
7765 			max_access = &env->prog->aux->max_rdonly_access;
7766 		} else {
7767 			max_access = &env->prog->aux->max_rdwr_access;
7768 		}
7769 
7770 		err = check_buffer_access(env, reg, regno, off, size, false,
7771 					  max_access);
7772 
7773 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
7774 			mark_reg_unknown(env, regs, value_regno);
7775 	} else if (reg->type == PTR_TO_ARENA) {
7776 		if (t == BPF_READ && value_regno >= 0)
7777 			mark_reg_unknown(env, regs, value_regno);
7778 	} else {
7779 		verbose(env, "R%d invalid mem access '%s'\n", regno,
7780 			reg_type_str(env, reg->type));
7781 		return -EACCES;
7782 	}
7783 
7784 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
7785 	    regs[value_regno].type == SCALAR_VALUE) {
7786 		if (!is_ldsx)
7787 			/* b/h/w load zero-extends, mark upper bits as known 0 */
7788 			coerce_reg_to_size(&regs[value_regno], size);
7789 		else
7790 			coerce_reg_to_size_sx(&regs[value_regno], size);
7791 	}
7792 	return err;
7793 }
7794 
7795 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
7796 			     bool allow_trust_mismatch);
7797 
7798 static int check_load_mem(struct bpf_verifier_env *env, struct bpf_insn *insn,
7799 			  bool strict_alignment_once, bool is_ldsx,
7800 			  bool allow_trust_mismatch, const char *ctx)
7801 {
7802 	struct bpf_reg_state *regs = cur_regs(env);
7803 	enum bpf_reg_type src_reg_type;
7804 	int err;
7805 
7806 	/* check src operand */
7807 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
7808 	if (err)
7809 		return err;
7810 
7811 	/* check dst operand */
7812 	err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7813 	if (err)
7814 		return err;
7815 
7816 	src_reg_type = regs[insn->src_reg].type;
7817 
7818 	/* Check if (src_reg + off) is readable. The state of dst_reg will be
7819 	 * updated by this call.
7820 	 */
7821 	err = check_mem_access(env, env->insn_idx, insn->src_reg, insn->off,
7822 			       BPF_SIZE(insn->code), BPF_READ, insn->dst_reg,
7823 			       strict_alignment_once, is_ldsx);
7824 	err = err ?: save_aux_ptr_type(env, src_reg_type,
7825 				       allow_trust_mismatch);
7826 	err = err ?: reg_bounds_sanity_check(env, &regs[insn->dst_reg], ctx);
7827 
7828 	return err;
7829 }
7830 
7831 static int check_store_reg(struct bpf_verifier_env *env, struct bpf_insn *insn,
7832 			   bool strict_alignment_once)
7833 {
7834 	struct bpf_reg_state *regs = cur_regs(env);
7835 	enum bpf_reg_type dst_reg_type;
7836 	int err;
7837 
7838 	/* check src1 operand */
7839 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
7840 	if (err)
7841 		return err;
7842 
7843 	/* check src2 operand */
7844 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7845 	if (err)
7846 		return err;
7847 
7848 	dst_reg_type = regs[insn->dst_reg].type;
7849 
7850 	/* Check if (dst_reg + off) is writeable. */
7851 	err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off,
7852 			       BPF_SIZE(insn->code), BPF_WRITE, insn->src_reg,
7853 			       strict_alignment_once, false);
7854 	err = err ?: save_aux_ptr_type(env, dst_reg_type, false);
7855 
7856 	return err;
7857 }
7858 
7859 static int check_atomic_rmw(struct bpf_verifier_env *env,
7860 			    struct bpf_insn *insn)
7861 {
7862 	int load_reg;
7863 	int err;
7864 
7865 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
7866 		verbose(env, "invalid atomic operand size\n");
7867 		return -EINVAL;
7868 	}
7869 
7870 	/* check src1 operand */
7871 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
7872 	if (err)
7873 		return err;
7874 
7875 	/* check src2 operand */
7876 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7877 	if (err)
7878 		return err;
7879 
7880 	if (insn->imm == BPF_CMPXCHG) {
7881 		/* Check comparison of R0 with memory location */
7882 		const u32 aux_reg = BPF_REG_0;
7883 
7884 		err = check_reg_arg(env, aux_reg, SRC_OP);
7885 		if (err)
7886 			return err;
7887 
7888 		if (is_pointer_value(env, aux_reg)) {
7889 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
7890 			return -EACCES;
7891 		}
7892 	}
7893 
7894 	if (is_pointer_value(env, insn->src_reg)) {
7895 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
7896 		return -EACCES;
7897 	}
7898 
7899 	if (!atomic_ptr_type_ok(env, insn->dst_reg, insn)) {
7900 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
7901 			insn->dst_reg,
7902 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
7903 		return -EACCES;
7904 	}
7905 
7906 	if (insn->imm & BPF_FETCH) {
7907 		if (insn->imm == BPF_CMPXCHG)
7908 			load_reg = BPF_REG_0;
7909 		else
7910 			load_reg = insn->src_reg;
7911 
7912 		/* check and record load of old value */
7913 		err = check_reg_arg(env, load_reg, DST_OP);
7914 		if (err)
7915 			return err;
7916 	} else {
7917 		/* This instruction accesses a memory location but doesn't
7918 		 * actually load it into a register.
7919 		 */
7920 		load_reg = -1;
7921 	}
7922 
7923 	/* Check whether we can read the memory, with second call for fetch
7924 	 * case to simulate the register fill.
7925 	 */
7926 	err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off,
7927 			       BPF_SIZE(insn->code), BPF_READ, -1, true, false);
7928 	if (!err && load_reg >= 0)
7929 		err = check_mem_access(env, env->insn_idx, insn->dst_reg,
7930 				       insn->off, BPF_SIZE(insn->code),
7931 				       BPF_READ, load_reg, true, false);
7932 	if (err)
7933 		return err;
7934 
7935 	if (is_arena_reg(env, insn->dst_reg)) {
7936 		err = save_aux_ptr_type(env, PTR_TO_ARENA, false);
7937 		if (err)
7938 			return err;
7939 	}
7940 	/* Check whether we can write into the same memory. */
7941 	err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off,
7942 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
7943 	if (err)
7944 		return err;
7945 	return 0;
7946 }
7947 
7948 static int check_atomic_load(struct bpf_verifier_env *env,
7949 			     struct bpf_insn *insn)
7950 {
7951 	int err;
7952 
7953 	err = check_load_mem(env, insn, true, false, false, "atomic_load");
7954 	if (err)
7955 		return err;
7956 
7957 	if (!atomic_ptr_type_ok(env, insn->src_reg, insn)) {
7958 		verbose(env, "BPF_ATOMIC loads from R%d %s is not allowed\n",
7959 			insn->src_reg,
7960 			reg_type_str(env, reg_state(env, insn->src_reg)->type));
7961 		return -EACCES;
7962 	}
7963 
7964 	return 0;
7965 }
7966 
7967 static int check_atomic_store(struct bpf_verifier_env *env,
7968 			      struct bpf_insn *insn)
7969 {
7970 	int err;
7971 
7972 	err = check_store_reg(env, insn, true);
7973 	if (err)
7974 		return err;
7975 
7976 	if (!atomic_ptr_type_ok(env, insn->dst_reg, insn)) {
7977 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
7978 			insn->dst_reg,
7979 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
7980 		return -EACCES;
7981 	}
7982 
7983 	return 0;
7984 }
7985 
7986 static int check_atomic(struct bpf_verifier_env *env, struct bpf_insn *insn)
7987 {
7988 	switch (insn->imm) {
7989 	case BPF_ADD:
7990 	case BPF_ADD | BPF_FETCH:
7991 	case BPF_AND:
7992 	case BPF_AND | BPF_FETCH:
7993 	case BPF_OR:
7994 	case BPF_OR | BPF_FETCH:
7995 	case BPF_XOR:
7996 	case BPF_XOR | BPF_FETCH:
7997 	case BPF_XCHG:
7998 	case BPF_CMPXCHG:
7999 		return check_atomic_rmw(env, insn);
8000 	case BPF_LOAD_ACQ:
8001 		if (BPF_SIZE(insn->code) == BPF_DW && BITS_PER_LONG != 64) {
8002 			verbose(env,
8003 				"64-bit load-acquires are only supported on 64-bit arches\n");
8004 			return -EOPNOTSUPP;
8005 		}
8006 		return check_atomic_load(env, insn);
8007 	case BPF_STORE_REL:
8008 		if (BPF_SIZE(insn->code) == BPF_DW && BITS_PER_LONG != 64) {
8009 			verbose(env,
8010 				"64-bit store-releases are only supported on 64-bit arches\n");
8011 			return -EOPNOTSUPP;
8012 		}
8013 		return check_atomic_store(env, insn);
8014 	default:
8015 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n",
8016 			insn->imm);
8017 		return -EINVAL;
8018 	}
8019 }
8020 
8021 /* When register 'regno' is used to read the stack (either directly or through
8022  * a helper function) make sure that it's within stack boundary and, depending
8023  * on the access type and privileges, that all elements of the stack are
8024  * initialized.
8025  *
8026  * 'off' includes 'regno->off', but not its dynamic part (if any).
8027  *
8028  * All registers that have been spilled on the stack in the slots within the
8029  * read offsets are marked as read.
8030  */
8031 static int check_stack_range_initialized(
8032 		struct bpf_verifier_env *env, int regno, int off,
8033 		int access_size, bool zero_size_allowed,
8034 		enum bpf_access_type type, struct bpf_call_arg_meta *meta)
8035 {
8036 	struct bpf_reg_state *reg = reg_state(env, regno);
8037 	struct bpf_func_state *state = func(env, reg);
8038 	int err, min_off, max_off, i, j, slot, spi;
8039 	/* Some accesses can write anything into the stack, others are
8040 	 * read-only.
8041 	 */
8042 	bool clobber = false;
8043 
8044 	if (access_size == 0 && !zero_size_allowed) {
8045 		verbose(env, "invalid zero-sized read\n");
8046 		return -EACCES;
8047 	}
8048 
8049 	if (type == BPF_WRITE)
8050 		clobber = true;
8051 
8052 	err = check_stack_access_within_bounds(env, regno, off, access_size, type);
8053 	if (err)
8054 		return err;
8055 
8056 
8057 	if (tnum_is_const(reg->var_off)) {
8058 		min_off = max_off = reg->var_off.value + off;
8059 	} else {
8060 		/* Variable offset is prohibited for unprivileged mode for
8061 		 * simplicity since it requires corresponding support in
8062 		 * Spectre masking for stack ALU.
8063 		 * See also retrieve_ptr_limit().
8064 		 */
8065 		if (!env->bypass_spec_v1) {
8066 			char tn_buf[48];
8067 
8068 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
8069 			verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
8070 				regno, tn_buf);
8071 			return -EACCES;
8072 		}
8073 		/* Only initialized buffer on stack is allowed to be accessed
8074 		 * with variable offset. With uninitialized buffer it's hard to
8075 		 * guarantee that whole memory is marked as initialized on
8076 		 * helper return since specific bounds are unknown what may
8077 		 * cause uninitialized stack leaking.
8078 		 */
8079 		if (meta && meta->raw_mode)
8080 			meta = NULL;
8081 
8082 		min_off = reg->smin_value + off;
8083 		max_off = reg->smax_value + off;
8084 	}
8085 
8086 	if (meta && meta->raw_mode) {
8087 		/* Ensure we won't be overwriting dynptrs when simulating byte
8088 		 * by byte access in check_helper_call using meta.access_size.
8089 		 * This would be a problem if we have a helper in the future
8090 		 * which takes:
8091 		 *
8092 		 *	helper(uninit_mem, len, dynptr)
8093 		 *
8094 		 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
8095 		 * may end up writing to dynptr itself when touching memory from
8096 		 * arg 1. This can be relaxed on a case by case basis for known
8097 		 * safe cases, but reject due to the possibilitiy of aliasing by
8098 		 * default.
8099 		 */
8100 		for (i = min_off; i < max_off + access_size; i++) {
8101 			int stack_off = -i - 1;
8102 
8103 			spi = __get_spi(i);
8104 			/* raw_mode may write past allocated_stack */
8105 			if (state->allocated_stack <= stack_off)
8106 				continue;
8107 			if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
8108 				verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
8109 				return -EACCES;
8110 			}
8111 		}
8112 		meta->access_size = access_size;
8113 		meta->regno = regno;
8114 		return 0;
8115 	}
8116 
8117 	for (i = min_off; i < max_off + access_size; i++) {
8118 		u8 *stype;
8119 
8120 		slot = -i - 1;
8121 		spi = slot / BPF_REG_SIZE;
8122 		if (state->allocated_stack <= slot) {
8123 			verbose(env, "allocated_stack too small\n");
8124 			return -EFAULT;
8125 		}
8126 
8127 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
8128 		if (*stype == STACK_MISC)
8129 			goto mark;
8130 		if ((*stype == STACK_ZERO) ||
8131 		    (*stype == STACK_INVALID && env->allow_uninit_stack)) {
8132 			if (clobber) {
8133 				/* helper can write anything into the stack */
8134 				*stype = STACK_MISC;
8135 			}
8136 			goto mark;
8137 		}
8138 
8139 		if (is_spilled_reg(&state->stack[spi]) &&
8140 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
8141 		     env->allow_ptr_leaks)) {
8142 			if (clobber) {
8143 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
8144 				for (j = 0; j < BPF_REG_SIZE; j++)
8145 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
8146 			}
8147 			goto mark;
8148 		}
8149 
8150 		if (tnum_is_const(reg->var_off)) {
8151 			verbose(env, "invalid read from stack R%d off %d+%d size %d\n",
8152 				regno, min_off, i - min_off, access_size);
8153 		} else {
8154 			char tn_buf[48];
8155 
8156 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
8157 			verbose(env, "invalid read from stack R%d var_off %s+%d size %d\n",
8158 				regno, tn_buf, i - min_off, access_size);
8159 		}
8160 		return -EACCES;
8161 mark:
8162 		/* reading any byte out of 8-byte 'spill_slot' will cause
8163 		 * the whole slot to be marked as 'read'
8164 		 */
8165 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
8166 			      state->stack[spi].spilled_ptr.parent,
8167 			      REG_LIVE_READ64);
8168 		/* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
8169 		 * be sure that whether stack slot is written to or not. Hence,
8170 		 * we must still conservatively propagate reads upwards even if
8171 		 * helper may write to the entire memory range.
8172 		 */
8173 	}
8174 	return 0;
8175 }
8176 
8177 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
8178 				   int access_size, enum bpf_access_type access_type,
8179 				   bool zero_size_allowed,
8180 				   struct bpf_call_arg_meta *meta)
8181 {
8182 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8183 	u32 *max_access;
8184 
8185 	switch (base_type(reg->type)) {
8186 	case PTR_TO_PACKET:
8187 	case PTR_TO_PACKET_META:
8188 		return check_packet_access(env, regno, reg->off, access_size,
8189 					   zero_size_allowed);
8190 	case PTR_TO_MAP_KEY:
8191 		if (access_type == BPF_WRITE) {
8192 			verbose(env, "R%d cannot write into %s\n", regno,
8193 				reg_type_str(env, reg->type));
8194 			return -EACCES;
8195 		}
8196 		return check_mem_region_access(env, regno, reg->off, access_size,
8197 					       reg->map_ptr->key_size, false);
8198 	case PTR_TO_MAP_VALUE:
8199 		if (check_map_access_type(env, regno, reg->off, access_size, access_type))
8200 			return -EACCES;
8201 		return check_map_access(env, regno, reg->off, access_size,
8202 					zero_size_allowed, ACCESS_HELPER);
8203 	case PTR_TO_MEM:
8204 		if (type_is_rdonly_mem(reg->type)) {
8205 			if (access_type == BPF_WRITE) {
8206 				verbose(env, "R%d cannot write into %s\n", regno,
8207 					reg_type_str(env, reg->type));
8208 				return -EACCES;
8209 			}
8210 		}
8211 		return check_mem_region_access(env, regno, reg->off,
8212 					       access_size, reg->mem_size,
8213 					       zero_size_allowed);
8214 	case PTR_TO_BUF:
8215 		if (type_is_rdonly_mem(reg->type)) {
8216 			if (access_type == BPF_WRITE) {
8217 				verbose(env, "R%d cannot write into %s\n", regno,
8218 					reg_type_str(env, reg->type));
8219 				return -EACCES;
8220 			}
8221 
8222 			max_access = &env->prog->aux->max_rdonly_access;
8223 		} else {
8224 			max_access = &env->prog->aux->max_rdwr_access;
8225 		}
8226 		return check_buffer_access(env, reg, regno, reg->off,
8227 					   access_size, zero_size_allowed,
8228 					   max_access);
8229 	case PTR_TO_STACK:
8230 		return check_stack_range_initialized(
8231 				env,
8232 				regno, reg->off, access_size,
8233 				zero_size_allowed, access_type, meta);
8234 	case PTR_TO_BTF_ID:
8235 		return check_ptr_to_btf_access(env, regs, regno, reg->off,
8236 					       access_size, BPF_READ, -1);
8237 	case PTR_TO_CTX:
8238 		/* in case the function doesn't know how to access the context,
8239 		 * (because we are in a program of type SYSCALL for example), we
8240 		 * can not statically check its size.
8241 		 * Dynamically check it now.
8242 		 */
8243 		if (!env->ops->convert_ctx_access) {
8244 			int offset = access_size - 1;
8245 
8246 			/* Allow zero-byte read from PTR_TO_CTX */
8247 			if (access_size == 0)
8248 				return zero_size_allowed ? 0 : -EACCES;
8249 
8250 			return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
8251 						access_type, -1, false, false);
8252 		}
8253 
8254 		fallthrough;
8255 	default: /* scalar_value or invalid ptr */
8256 		/* Allow zero-byte read from NULL, regardless of pointer type */
8257 		if (zero_size_allowed && access_size == 0 &&
8258 		    register_is_null(reg))
8259 			return 0;
8260 
8261 		verbose(env, "R%d type=%s ", regno,
8262 			reg_type_str(env, reg->type));
8263 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
8264 		return -EACCES;
8265 	}
8266 }
8267 
8268 /* verify arguments to helpers or kfuncs consisting of a pointer and an access
8269  * size.
8270  *
8271  * @regno is the register containing the access size. regno-1 is the register
8272  * containing the pointer.
8273  */
8274 static int check_mem_size_reg(struct bpf_verifier_env *env,
8275 			      struct bpf_reg_state *reg, u32 regno,
8276 			      enum bpf_access_type access_type,
8277 			      bool zero_size_allowed,
8278 			      struct bpf_call_arg_meta *meta)
8279 {
8280 	int err;
8281 
8282 	/* This is used to refine r0 return value bounds for helpers
8283 	 * that enforce this value as an upper bound on return values.
8284 	 * See do_refine_retval_range() for helpers that can refine
8285 	 * the return value. C type of helper is u32 so we pull register
8286 	 * bound from umax_value however, if negative verifier errors
8287 	 * out. Only upper bounds can be learned because retval is an
8288 	 * int type and negative retvals are allowed.
8289 	 */
8290 	meta->msize_max_value = reg->umax_value;
8291 
8292 	/* The register is SCALAR_VALUE; the access check happens using
8293 	 * its boundaries. For unprivileged variable accesses, disable
8294 	 * raw mode so that the program is required to initialize all
8295 	 * the memory that the helper could just partially fill up.
8296 	 */
8297 	if (!tnum_is_const(reg->var_off))
8298 		meta = NULL;
8299 
8300 	if (reg->smin_value < 0) {
8301 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
8302 			regno);
8303 		return -EACCES;
8304 	}
8305 
8306 	if (reg->umin_value == 0 && !zero_size_allowed) {
8307 		verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n",
8308 			regno, reg->umin_value, reg->umax_value);
8309 		return -EACCES;
8310 	}
8311 
8312 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
8313 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
8314 			regno);
8315 		return -EACCES;
8316 	}
8317 	err = check_helper_mem_access(env, regno - 1, reg->umax_value,
8318 				      access_type, zero_size_allowed, meta);
8319 	if (!err)
8320 		err = mark_chain_precision(env, regno);
8321 	return err;
8322 }
8323 
8324 static int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
8325 			 u32 regno, u32 mem_size)
8326 {
8327 	bool may_be_null = type_may_be_null(reg->type);
8328 	struct bpf_reg_state saved_reg;
8329 	int err;
8330 
8331 	if (register_is_null(reg))
8332 		return 0;
8333 
8334 	/* Assuming that the register contains a value check if the memory
8335 	 * access is safe. Temporarily save and restore the register's state as
8336 	 * the conversion shouldn't be visible to a caller.
8337 	 */
8338 	if (may_be_null) {
8339 		saved_reg = *reg;
8340 		mark_ptr_not_null_reg(reg);
8341 	}
8342 
8343 	err = check_helper_mem_access(env, regno, mem_size, BPF_READ, true, NULL);
8344 	err = err ?: check_helper_mem_access(env, regno, mem_size, BPF_WRITE, true, NULL);
8345 
8346 	if (may_be_null)
8347 		*reg = saved_reg;
8348 
8349 	return err;
8350 }
8351 
8352 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
8353 				    u32 regno)
8354 {
8355 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
8356 	bool may_be_null = type_may_be_null(mem_reg->type);
8357 	struct bpf_reg_state saved_reg;
8358 	struct bpf_call_arg_meta meta;
8359 	int err;
8360 
8361 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
8362 
8363 	memset(&meta, 0, sizeof(meta));
8364 
8365 	if (may_be_null) {
8366 		saved_reg = *mem_reg;
8367 		mark_ptr_not_null_reg(mem_reg);
8368 	}
8369 
8370 	err = check_mem_size_reg(env, reg, regno, BPF_READ, true, &meta);
8371 	err = err ?: check_mem_size_reg(env, reg, regno, BPF_WRITE, true, &meta);
8372 
8373 	if (may_be_null)
8374 		*mem_reg = saved_reg;
8375 
8376 	return err;
8377 }
8378 
8379 enum {
8380 	PROCESS_SPIN_LOCK = (1 << 0),
8381 	PROCESS_RES_LOCK  = (1 << 1),
8382 	PROCESS_LOCK_IRQ  = (1 << 2),
8383 };
8384 
8385 /* Implementation details:
8386  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
8387  * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
8388  * Two bpf_map_lookups (even with the same key) will have different reg->id.
8389  * Two separate bpf_obj_new will also have different reg->id.
8390  * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
8391  * clears reg->id after value_or_null->value transition, since the verifier only
8392  * cares about the range of access to valid map value pointer and doesn't care
8393  * about actual address of the map element.
8394  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
8395  * reg->id > 0 after value_or_null->value transition. By doing so
8396  * two bpf_map_lookups will be considered two different pointers that
8397  * point to different bpf_spin_locks. Likewise for pointers to allocated objects
8398  * returned from bpf_obj_new.
8399  * The verifier allows taking only one bpf_spin_lock at a time to avoid
8400  * dead-locks.
8401  * Since only one bpf_spin_lock is allowed the checks are simpler than
8402  * reg_is_refcounted() logic. The verifier needs to remember only
8403  * one spin_lock instead of array of acquired_refs.
8404  * env->cur_state->active_locks remembers which map value element or allocated
8405  * object got locked and clears it after bpf_spin_unlock.
8406  */
8407 static int process_spin_lock(struct bpf_verifier_env *env, int regno, int flags)
8408 {
8409 	bool is_lock = flags & PROCESS_SPIN_LOCK, is_res_lock = flags & PROCESS_RES_LOCK;
8410 	const char *lock_str = is_res_lock ? "bpf_res_spin" : "bpf_spin";
8411 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8412 	struct bpf_verifier_state *cur = env->cur_state;
8413 	bool is_const = tnum_is_const(reg->var_off);
8414 	bool is_irq = flags & PROCESS_LOCK_IRQ;
8415 	u64 val = reg->var_off.value;
8416 	struct bpf_map *map = NULL;
8417 	struct btf *btf = NULL;
8418 	struct btf_record *rec;
8419 	u32 spin_lock_off;
8420 	int err;
8421 
8422 	if (!is_const) {
8423 		verbose(env,
8424 			"R%d doesn't have constant offset. %s_lock has to be at the constant offset\n",
8425 			regno, lock_str);
8426 		return -EINVAL;
8427 	}
8428 	if (reg->type == PTR_TO_MAP_VALUE) {
8429 		map = reg->map_ptr;
8430 		if (!map->btf) {
8431 			verbose(env,
8432 				"map '%s' has to have BTF in order to use %s_lock\n",
8433 				map->name, lock_str);
8434 			return -EINVAL;
8435 		}
8436 	} else {
8437 		btf = reg->btf;
8438 	}
8439 
8440 	rec = reg_btf_record(reg);
8441 	if (!btf_record_has_field(rec, is_res_lock ? BPF_RES_SPIN_LOCK : BPF_SPIN_LOCK)) {
8442 		verbose(env, "%s '%s' has no valid %s_lock\n", map ? "map" : "local",
8443 			map ? map->name : "kptr", lock_str);
8444 		return -EINVAL;
8445 	}
8446 	spin_lock_off = is_res_lock ? rec->res_spin_lock_off : rec->spin_lock_off;
8447 	if (spin_lock_off != val + reg->off) {
8448 		verbose(env, "off %lld doesn't point to 'struct %s_lock' that is at %d\n",
8449 			val + reg->off, lock_str, spin_lock_off);
8450 		return -EINVAL;
8451 	}
8452 	if (is_lock) {
8453 		void *ptr;
8454 		int type;
8455 
8456 		if (map)
8457 			ptr = map;
8458 		else
8459 			ptr = btf;
8460 
8461 		if (!is_res_lock && cur->active_locks) {
8462 			if (find_lock_state(env->cur_state, REF_TYPE_LOCK, 0, NULL)) {
8463 				verbose(env,
8464 					"Locking two bpf_spin_locks are not allowed\n");
8465 				return -EINVAL;
8466 			}
8467 		} else if (is_res_lock && cur->active_locks) {
8468 			if (find_lock_state(env->cur_state, REF_TYPE_RES_LOCK | REF_TYPE_RES_LOCK_IRQ, reg->id, ptr)) {
8469 				verbose(env, "Acquiring the same lock again, AA deadlock detected\n");
8470 				return -EINVAL;
8471 			}
8472 		}
8473 
8474 		if (is_res_lock && is_irq)
8475 			type = REF_TYPE_RES_LOCK_IRQ;
8476 		else if (is_res_lock)
8477 			type = REF_TYPE_RES_LOCK;
8478 		else
8479 			type = REF_TYPE_LOCK;
8480 		err = acquire_lock_state(env, env->insn_idx, type, reg->id, ptr);
8481 		if (err < 0) {
8482 			verbose(env, "Failed to acquire lock state\n");
8483 			return err;
8484 		}
8485 	} else {
8486 		void *ptr;
8487 		int type;
8488 
8489 		if (map)
8490 			ptr = map;
8491 		else
8492 			ptr = btf;
8493 
8494 		if (!cur->active_locks) {
8495 			verbose(env, "%s_unlock without taking a lock\n", lock_str);
8496 			return -EINVAL;
8497 		}
8498 
8499 		if (is_res_lock && is_irq)
8500 			type = REF_TYPE_RES_LOCK_IRQ;
8501 		else if (is_res_lock)
8502 			type = REF_TYPE_RES_LOCK;
8503 		else
8504 			type = REF_TYPE_LOCK;
8505 		if (!find_lock_state(cur, type, reg->id, ptr)) {
8506 			verbose(env, "%s_unlock of different lock\n", lock_str);
8507 			return -EINVAL;
8508 		}
8509 		if (reg->id != cur->active_lock_id || ptr != cur->active_lock_ptr) {
8510 			verbose(env, "%s_unlock cannot be out of order\n", lock_str);
8511 			return -EINVAL;
8512 		}
8513 		if (release_lock_state(cur, type, reg->id, ptr)) {
8514 			verbose(env, "%s_unlock of different lock\n", lock_str);
8515 			return -EINVAL;
8516 		}
8517 
8518 		invalidate_non_owning_refs(env);
8519 	}
8520 	return 0;
8521 }
8522 
8523 static int process_timer_func(struct bpf_verifier_env *env, int regno,
8524 			      struct bpf_call_arg_meta *meta)
8525 {
8526 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8527 	bool is_const = tnum_is_const(reg->var_off);
8528 	struct bpf_map *map = reg->map_ptr;
8529 	u64 val = reg->var_off.value;
8530 
8531 	if (!is_const) {
8532 		verbose(env,
8533 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
8534 			regno);
8535 		return -EINVAL;
8536 	}
8537 	if (!map->btf) {
8538 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
8539 			map->name);
8540 		return -EINVAL;
8541 	}
8542 	if (!btf_record_has_field(map->record, BPF_TIMER)) {
8543 		verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
8544 		return -EINVAL;
8545 	}
8546 	if (map->record->timer_off != val + reg->off) {
8547 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
8548 			val + reg->off, map->record->timer_off);
8549 		return -EINVAL;
8550 	}
8551 	if (meta->map_ptr) {
8552 		verifier_bug(env, "Two map pointers in a timer helper");
8553 		return -EFAULT;
8554 	}
8555 	if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
8556 		verbose(env, "bpf_timer cannot be used for PREEMPT_RT.\n");
8557 		return -EOPNOTSUPP;
8558 	}
8559 	meta->map_uid = reg->map_uid;
8560 	meta->map_ptr = map;
8561 	return 0;
8562 }
8563 
8564 static int process_wq_func(struct bpf_verifier_env *env, int regno,
8565 			   struct bpf_kfunc_call_arg_meta *meta)
8566 {
8567 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8568 	struct bpf_map *map = reg->map_ptr;
8569 	u64 val = reg->var_off.value;
8570 
8571 	if (map->record->wq_off != val + reg->off) {
8572 		verbose(env, "off %lld doesn't point to 'struct bpf_wq' that is at %d\n",
8573 			val + reg->off, map->record->wq_off);
8574 		return -EINVAL;
8575 	}
8576 	meta->map.uid = reg->map_uid;
8577 	meta->map.ptr = map;
8578 	return 0;
8579 }
8580 
8581 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
8582 			     struct bpf_call_arg_meta *meta)
8583 {
8584 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8585 	struct btf_field *kptr_field;
8586 	struct bpf_map *map_ptr;
8587 	struct btf_record *rec;
8588 	u32 kptr_off;
8589 
8590 	if (type_is_ptr_alloc_obj(reg->type)) {
8591 		rec = reg_btf_record(reg);
8592 	} else { /* PTR_TO_MAP_VALUE */
8593 		map_ptr = reg->map_ptr;
8594 		if (!map_ptr->btf) {
8595 			verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
8596 				map_ptr->name);
8597 			return -EINVAL;
8598 		}
8599 		rec = map_ptr->record;
8600 		meta->map_ptr = map_ptr;
8601 	}
8602 
8603 	if (!tnum_is_const(reg->var_off)) {
8604 		verbose(env,
8605 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
8606 			regno);
8607 		return -EINVAL;
8608 	}
8609 
8610 	if (!btf_record_has_field(rec, BPF_KPTR)) {
8611 		verbose(env, "R%d has no valid kptr\n", regno);
8612 		return -EINVAL;
8613 	}
8614 
8615 	kptr_off = reg->off + reg->var_off.value;
8616 	kptr_field = btf_record_find(rec, kptr_off, BPF_KPTR);
8617 	if (!kptr_field) {
8618 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
8619 		return -EACCES;
8620 	}
8621 	if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) {
8622 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
8623 		return -EACCES;
8624 	}
8625 	meta->kptr_field = kptr_field;
8626 	return 0;
8627 }
8628 
8629 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
8630  * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
8631  *
8632  * In both cases we deal with the first 8 bytes, but need to mark the next 8
8633  * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
8634  * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
8635  *
8636  * Mutability of bpf_dynptr is at two levels, one is at the level of struct
8637  * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
8638  * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
8639  * mutate the view of the dynptr and also possibly destroy it. In the latter
8640  * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
8641  * memory that dynptr points to.
8642  *
8643  * The verifier will keep track both levels of mutation (bpf_dynptr's in
8644  * reg->type and the memory's in reg->dynptr.type), but there is no support for
8645  * readonly dynptr view yet, hence only the first case is tracked and checked.
8646  *
8647  * This is consistent with how C applies the const modifier to a struct object,
8648  * where the pointer itself inside bpf_dynptr becomes const but not what it
8649  * points to.
8650  *
8651  * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
8652  * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
8653  */
8654 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
8655 			       enum bpf_arg_type arg_type, int clone_ref_obj_id)
8656 {
8657 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8658 	int err;
8659 
8660 	if (reg->type != PTR_TO_STACK && reg->type != CONST_PTR_TO_DYNPTR) {
8661 		verbose(env,
8662 			"arg#%d expected pointer to stack or const struct bpf_dynptr\n",
8663 			regno - 1);
8664 		return -EINVAL;
8665 	}
8666 
8667 	/* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
8668 	 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
8669 	 */
8670 	if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
8671 		verifier_bug(env, "misconfigured dynptr helper type flags");
8672 		return -EFAULT;
8673 	}
8674 
8675 	/*  MEM_UNINIT - Points to memory that is an appropriate candidate for
8676 	 *		 constructing a mutable bpf_dynptr object.
8677 	 *
8678 	 *		 Currently, this is only possible with PTR_TO_STACK
8679 	 *		 pointing to a region of at least 16 bytes which doesn't
8680 	 *		 contain an existing bpf_dynptr.
8681 	 *
8682 	 *  MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
8683 	 *		 mutated or destroyed. However, the memory it points to
8684 	 *		 may be mutated.
8685 	 *
8686 	 *  None       - Points to a initialized dynptr that can be mutated and
8687 	 *		 destroyed, including mutation of the memory it points
8688 	 *		 to.
8689 	 */
8690 	if (arg_type & MEM_UNINIT) {
8691 		int i;
8692 
8693 		if (!is_dynptr_reg_valid_uninit(env, reg)) {
8694 			verbose(env, "Dynptr has to be an uninitialized dynptr\n");
8695 			return -EINVAL;
8696 		}
8697 
8698 		/* we write BPF_DW bits (8 bytes) at a time */
8699 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
8700 			err = check_mem_access(env, insn_idx, regno,
8701 					       i, BPF_DW, BPF_WRITE, -1, false, false);
8702 			if (err)
8703 				return err;
8704 		}
8705 
8706 		err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
8707 	} else /* MEM_RDONLY and None case from above */ {
8708 		/* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
8709 		if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
8710 			verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
8711 			return -EINVAL;
8712 		}
8713 
8714 		if (!is_dynptr_reg_valid_init(env, reg)) {
8715 			verbose(env,
8716 				"Expected an initialized dynptr as arg #%d\n",
8717 				regno - 1);
8718 			return -EINVAL;
8719 		}
8720 
8721 		/* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
8722 		if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
8723 			verbose(env,
8724 				"Expected a dynptr of type %s as arg #%d\n",
8725 				dynptr_type_str(arg_to_dynptr_type(arg_type)), regno - 1);
8726 			return -EINVAL;
8727 		}
8728 
8729 		err = mark_dynptr_read(env, reg);
8730 	}
8731 	return err;
8732 }
8733 
8734 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
8735 {
8736 	struct bpf_func_state *state = func(env, reg);
8737 
8738 	return state->stack[spi].spilled_ptr.ref_obj_id;
8739 }
8740 
8741 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
8742 {
8743 	return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
8744 }
8745 
8746 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
8747 {
8748 	return meta->kfunc_flags & KF_ITER_NEW;
8749 }
8750 
8751 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
8752 {
8753 	return meta->kfunc_flags & KF_ITER_NEXT;
8754 }
8755 
8756 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
8757 {
8758 	return meta->kfunc_flags & KF_ITER_DESTROY;
8759 }
8760 
8761 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg_idx,
8762 			      const struct btf_param *arg)
8763 {
8764 	/* btf_check_iter_kfuncs() guarantees that first argument of any iter
8765 	 * kfunc is iter state pointer
8766 	 */
8767 	if (is_iter_kfunc(meta))
8768 		return arg_idx == 0;
8769 
8770 	/* iter passed as an argument to a generic kfunc */
8771 	return btf_param_match_suffix(meta->btf, arg, "__iter");
8772 }
8773 
8774 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
8775 			    struct bpf_kfunc_call_arg_meta *meta)
8776 {
8777 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8778 	const struct btf_type *t;
8779 	int spi, err, i, nr_slots, btf_id;
8780 
8781 	if (reg->type != PTR_TO_STACK) {
8782 		verbose(env, "arg#%d expected pointer to an iterator on stack\n", regno - 1);
8783 		return -EINVAL;
8784 	}
8785 
8786 	/* For iter_{new,next,destroy} functions, btf_check_iter_kfuncs()
8787 	 * ensures struct convention, so we wouldn't need to do any BTF
8788 	 * validation here. But given iter state can be passed as a parameter
8789 	 * to any kfunc, if arg has "__iter" suffix, we need to be a bit more
8790 	 * conservative here.
8791 	 */
8792 	btf_id = btf_check_iter_arg(meta->btf, meta->func_proto, regno - 1);
8793 	if (btf_id < 0) {
8794 		verbose(env, "expected valid iter pointer as arg #%d\n", regno - 1);
8795 		return -EINVAL;
8796 	}
8797 	t = btf_type_by_id(meta->btf, btf_id);
8798 	nr_slots = t->size / BPF_REG_SIZE;
8799 
8800 	if (is_iter_new_kfunc(meta)) {
8801 		/* bpf_iter_<type>_new() expects pointer to uninit iter state */
8802 		if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
8803 			verbose(env, "expected uninitialized iter_%s as arg #%d\n",
8804 				iter_type_str(meta->btf, btf_id), regno - 1);
8805 			return -EINVAL;
8806 		}
8807 
8808 		for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
8809 			err = check_mem_access(env, insn_idx, regno,
8810 					       i, BPF_DW, BPF_WRITE, -1, false, false);
8811 			if (err)
8812 				return err;
8813 		}
8814 
8815 		err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots);
8816 		if (err)
8817 			return err;
8818 	} else {
8819 		/* iter_next() or iter_destroy(), as well as any kfunc
8820 		 * accepting iter argument, expect initialized iter state
8821 		 */
8822 		err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots);
8823 		switch (err) {
8824 		case 0:
8825 			break;
8826 		case -EINVAL:
8827 			verbose(env, "expected an initialized iter_%s as arg #%d\n",
8828 				iter_type_str(meta->btf, btf_id), regno - 1);
8829 			return err;
8830 		case -EPROTO:
8831 			verbose(env, "expected an RCU CS when using %s\n", meta->func_name);
8832 			return err;
8833 		default:
8834 			return err;
8835 		}
8836 
8837 		spi = iter_get_spi(env, reg, nr_slots);
8838 		if (spi < 0)
8839 			return spi;
8840 
8841 		err = mark_iter_read(env, reg, spi, nr_slots);
8842 		if (err)
8843 			return err;
8844 
8845 		/* remember meta->iter info for process_iter_next_call() */
8846 		meta->iter.spi = spi;
8847 		meta->iter.frameno = reg->frameno;
8848 		meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
8849 
8850 		if (is_iter_destroy_kfunc(meta)) {
8851 			err = unmark_stack_slots_iter(env, reg, nr_slots);
8852 			if (err)
8853 				return err;
8854 		}
8855 	}
8856 
8857 	return 0;
8858 }
8859 
8860 /* Look for a previous loop entry at insn_idx: nearest parent state
8861  * stopped at insn_idx with callsites matching those in cur->frame.
8862  */
8863 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env,
8864 						  struct bpf_verifier_state *cur,
8865 						  int insn_idx)
8866 {
8867 	struct bpf_verifier_state_list *sl;
8868 	struct bpf_verifier_state *st;
8869 	struct list_head *pos, *head;
8870 
8871 	/* Explored states are pushed in stack order, most recent states come first */
8872 	head = explored_state(env, insn_idx);
8873 	list_for_each(pos, head) {
8874 		sl = container_of(pos, struct bpf_verifier_state_list, node);
8875 		/* If st->branches != 0 state is a part of current DFS verification path,
8876 		 * hence cur & st for a loop.
8877 		 */
8878 		st = &sl->state;
8879 		if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) &&
8880 		    st->dfs_depth < cur->dfs_depth)
8881 			return st;
8882 	}
8883 
8884 	return NULL;
8885 }
8886 
8887 static void reset_idmap_scratch(struct bpf_verifier_env *env);
8888 static bool regs_exact(const struct bpf_reg_state *rold,
8889 		       const struct bpf_reg_state *rcur,
8890 		       struct bpf_idmap *idmap);
8891 
8892 static void maybe_widen_reg(struct bpf_verifier_env *env,
8893 			    struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
8894 			    struct bpf_idmap *idmap)
8895 {
8896 	if (rold->type != SCALAR_VALUE)
8897 		return;
8898 	if (rold->type != rcur->type)
8899 		return;
8900 	if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap))
8901 		return;
8902 	__mark_reg_unknown(env, rcur);
8903 }
8904 
8905 static int widen_imprecise_scalars(struct bpf_verifier_env *env,
8906 				   struct bpf_verifier_state *old,
8907 				   struct bpf_verifier_state *cur)
8908 {
8909 	struct bpf_func_state *fold, *fcur;
8910 	int i, fr;
8911 
8912 	reset_idmap_scratch(env);
8913 	for (fr = old->curframe; fr >= 0; fr--) {
8914 		fold = old->frame[fr];
8915 		fcur = cur->frame[fr];
8916 
8917 		for (i = 0; i < MAX_BPF_REG; i++)
8918 			maybe_widen_reg(env,
8919 					&fold->regs[i],
8920 					&fcur->regs[i],
8921 					&env->idmap_scratch);
8922 
8923 		for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) {
8924 			if (!is_spilled_reg(&fold->stack[i]) ||
8925 			    !is_spilled_reg(&fcur->stack[i]))
8926 				continue;
8927 
8928 			maybe_widen_reg(env,
8929 					&fold->stack[i].spilled_ptr,
8930 					&fcur->stack[i].spilled_ptr,
8931 					&env->idmap_scratch);
8932 		}
8933 	}
8934 	return 0;
8935 }
8936 
8937 static struct bpf_reg_state *get_iter_from_state(struct bpf_verifier_state *cur_st,
8938 						 struct bpf_kfunc_call_arg_meta *meta)
8939 {
8940 	int iter_frameno = meta->iter.frameno;
8941 	int iter_spi = meta->iter.spi;
8942 
8943 	return &cur_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
8944 }
8945 
8946 /* process_iter_next_call() is called when verifier gets to iterator's next
8947  * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
8948  * to it as just "iter_next()" in comments below.
8949  *
8950  * BPF verifier relies on a crucial contract for any iter_next()
8951  * implementation: it should *eventually* return NULL, and once that happens
8952  * it should keep returning NULL. That is, once iterator exhausts elements to
8953  * iterate, it should never reset or spuriously return new elements.
8954  *
8955  * With the assumption of such contract, process_iter_next_call() simulates
8956  * a fork in the verifier state to validate loop logic correctness and safety
8957  * without having to simulate infinite amount of iterations.
8958  *
8959  * In current state, we first assume that iter_next() returned NULL and
8960  * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
8961  * conditions we should not form an infinite loop and should eventually reach
8962  * exit.
8963  *
8964  * Besides that, we also fork current state and enqueue it for later
8965  * verification. In a forked state we keep iterator state as ACTIVE
8966  * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
8967  * also bump iteration depth to prevent erroneous infinite loop detection
8968  * later on (see iter_active_depths_differ() comment for details). In this
8969  * state we assume that we'll eventually loop back to another iter_next()
8970  * calls (it could be in exactly same location or in some other instruction,
8971  * it doesn't matter, we don't make any unnecessary assumptions about this,
8972  * everything revolves around iterator state in a stack slot, not which
8973  * instruction is calling iter_next()). When that happens, we either will come
8974  * to iter_next() with equivalent state and can conclude that next iteration
8975  * will proceed in exactly the same way as we just verified, so it's safe to
8976  * assume that loop converges. If not, we'll go on another iteration
8977  * simulation with a different input state, until all possible starting states
8978  * are validated or we reach maximum number of instructions limit.
8979  *
8980  * This way, we will either exhaustively discover all possible input states
8981  * that iterator loop can start with and eventually will converge, or we'll
8982  * effectively regress into bounded loop simulation logic and either reach
8983  * maximum number of instructions if loop is not provably convergent, or there
8984  * is some statically known limit on number of iterations (e.g., if there is
8985  * an explicit `if n > 100 then break;` statement somewhere in the loop).
8986  *
8987  * Iteration convergence logic in is_state_visited() relies on exact
8988  * states comparison, which ignores read and precision marks.
8989  * This is necessary because read and precision marks are not finalized
8990  * while in the loop. Exact comparison might preclude convergence for
8991  * simple programs like below:
8992  *
8993  *     i = 0;
8994  *     while(iter_next(&it))
8995  *       i++;
8996  *
8997  * At each iteration step i++ would produce a new distinct state and
8998  * eventually instruction processing limit would be reached.
8999  *
9000  * To avoid such behavior speculatively forget (widen) range for
9001  * imprecise scalar registers, if those registers were not precise at the
9002  * end of the previous iteration and do not match exactly.
9003  *
9004  * This is a conservative heuristic that allows to verify wide range of programs,
9005  * however it precludes verification of programs that conjure an
9006  * imprecise value on the first loop iteration and use it as precise on a second.
9007  * For example, the following safe program would fail to verify:
9008  *
9009  *     struct bpf_num_iter it;
9010  *     int arr[10];
9011  *     int i = 0, a = 0;
9012  *     bpf_iter_num_new(&it, 0, 10);
9013  *     while (bpf_iter_num_next(&it)) {
9014  *       if (a == 0) {
9015  *         a = 1;
9016  *         i = 7; // Because i changed verifier would forget
9017  *                // it's range on second loop entry.
9018  *       } else {
9019  *         arr[i] = 42; // This would fail to verify.
9020  *       }
9021  *     }
9022  *     bpf_iter_num_destroy(&it);
9023  */
9024 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
9025 				  struct bpf_kfunc_call_arg_meta *meta)
9026 {
9027 	struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
9028 	struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
9029 	struct bpf_reg_state *cur_iter, *queued_iter;
9030 
9031 	BTF_TYPE_EMIT(struct bpf_iter);
9032 
9033 	cur_iter = get_iter_from_state(cur_st, meta);
9034 
9035 	if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
9036 	    cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
9037 		verifier_bug(env, "unexpected iterator state %d (%s)",
9038 			     cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
9039 		return -EFAULT;
9040 	}
9041 
9042 	if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
9043 		/* Because iter_next() call is a checkpoint is_state_visitied()
9044 		 * should guarantee parent state with same call sites and insn_idx.
9045 		 */
9046 		if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx ||
9047 		    !same_callsites(cur_st->parent, cur_st)) {
9048 			verifier_bug(env, "bad parent state for iter next call");
9049 			return -EFAULT;
9050 		}
9051 		/* Note cur_st->parent in the call below, it is necessary to skip
9052 		 * checkpoint created for cur_st by is_state_visited()
9053 		 * right at this instruction.
9054 		 */
9055 		prev_st = find_prev_entry(env, cur_st->parent, insn_idx);
9056 		/* branch out active iter state */
9057 		queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
9058 		if (!queued_st)
9059 			return -ENOMEM;
9060 
9061 		queued_iter = get_iter_from_state(queued_st, meta);
9062 		queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
9063 		queued_iter->iter.depth++;
9064 		if (prev_st)
9065 			widen_imprecise_scalars(env, prev_st, queued_st);
9066 
9067 		queued_fr = queued_st->frame[queued_st->curframe];
9068 		mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
9069 	}
9070 
9071 	/* switch to DRAINED state, but keep the depth unchanged */
9072 	/* mark current iter state as drained and assume returned NULL */
9073 	cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
9074 	__mark_reg_const_zero(env, &cur_fr->regs[BPF_REG_0]);
9075 
9076 	return 0;
9077 }
9078 
9079 static bool arg_type_is_mem_size(enum bpf_arg_type type)
9080 {
9081 	return type == ARG_CONST_SIZE ||
9082 	       type == ARG_CONST_SIZE_OR_ZERO;
9083 }
9084 
9085 static bool arg_type_is_raw_mem(enum bpf_arg_type type)
9086 {
9087 	return base_type(type) == ARG_PTR_TO_MEM &&
9088 	       type & MEM_UNINIT;
9089 }
9090 
9091 static bool arg_type_is_release(enum bpf_arg_type type)
9092 {
9093 	return type & OBJ_RELEASE;
9094 }
9095 
9096 static bool arg_type_is_dynptr(enum bpf_arg_type type)
9097 {
9098 	return base_type(type) == ARG_PTR_TO_DYNPTR;
9099 }
9100 
9101 static int resolve_map_arg_type(struct bpf_verifier_env *env,
9102 				 const struct bpf_call_arg_meta *meta,
9103 				 enum bpf_arg_type *arg_type)
9104 {
9105 	if (!meta->map_ptr) {
9106 		/* kernel subsystem misconfigured verifier */
9107 		verifier_bug(env, "invalid map_ptr to access map->type");
9108 		return -EFAULT;
9109 	}
9110 
9111 	switch (meta->map_ptr->map_type) {
9112 	case BPF_MAP_TYPE_SOCKMAP:
9113 	case BPF_MAP_TYPE_SOCKHASH:
9114 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
9115 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
9116 		} else {
9117 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
9118 			return -EINVAL;
9119 		}
9120 		break;
9121 	case BPF_MAP_TYPE_BLOOM_FILTER:
9122 		if (meta->func_id == BPF_FUNC_map_peek_elem)
9123 			*arg_type = ARG_PTR_TO_MAP_VALUE;
9124 		break;
9125 	default:
9126 		break;
9127 	}
9128 	return 0;
9129 }
9130 
9131 struct bpf_reg_types {
9132 	const enum bpf_reg_type types[10];
9133 	u32 *btf_id;
9134 };
9135 
9136 static const struct bpf_reg_types sock_types = {
9137 	.types = {
9138 		PTR_TO_SOCK_COMMON,
9139 		PTR_TO_SOCKET,
9140 		PTR_TO_TCP_SOCK,
9141 		PTR_TO_XDP_SOCK,
9142 	},
9143 };
9144 
9145 #ifdef CONFIG_NET
9146 static const struct bpf_reg_types btf_id_sock_common_types = {
9147 	.types = {
9148 		PTR_TO_SOCK_COMMON,
9149 		PTR_TO_SOCKET,
9150 		PTR_TO_TCP_SOCK,
9151 		PTR_TO_XDP_SOCK,
9152 		PTR_TO_BTF_ID,
9153 		PTR_TO_BTF_ID | PTR_TRUSTED,
9154 	},
9155 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
9156 };
9157 #endif
9158 
9159 static const struct bpf_reg_types mem_types = {
9160 	.types = {
9161 		PTR_TO_STACK,
9162 		PTR_TO_PACKET,
9163 		PTR_TO_PACKET_META,
9164 		PTR_TO_MAP_KEY,
9165 		PTR_TO_MAP_VALUE,
9166 		PTR_TO_MEM,
9167 		PTR_TO_MEM | MEM_RINGBUF,
9168 		PTR_TO_BUF,
9169 		PTR_TO_BTF_ID | PTR_TRUSTED,
9170 	},
9171 };
9172 
9173 static const struct bpf_reg_types spin_lock_types = {
9174 	.types = {
9175 		PTR_TO_MAP_VALUE,
9176 		PTR_TO_BTF_ID | MEM_ALLOC,
9177 	}
9178 };
9179 
9180 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
9181 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
9182 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
9183 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
9184 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
9185 static const struct bpf_reg_types btf_ptr_types = {
9186 	.types = {
9187 		PTR_TO_BTF_ID,
9188 		PTR_TO_BTF_ID | PTR_TRUSTED,
9189 		PTR_TO_BTF_ID | MEM_RCU,
9190 	},
9191 };
9192 static const struct bpf_reg_types percpu_btf_ptr_types = {
9193 	.types = {
9194 		PTR_TO_BTF_ID | MEM_PERCPU,
9195 		PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU,
9196 		PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
9197 	}
9198 };
9199 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
9200 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
9201 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
9202 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
9203 static const struct bpf_reg_types kptr_xchg_dest_types = {
9204 	.types = {
9205 		PTR_TO_MAP_VALUE,
9206 		PTR_TO_BTF_ID | MEM_ALLOC
9207 	}
9208 };
9209 static const struct bpf_reg_types dynptr_types = {
9210 	.types = {
9211 		PTR_TO_STACK,
9212 		CONST_PTR_TO_DYNPTR,
9213 	}
9214 };
9215 
9216 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
9217 	[ARG_PTR_TO_MAP_KEY]		= &mem_types,
9218 	[ARG_PTR_TO_MAP_VALUE]		= &mem_types,
9219 	[ARG_CONST_SIZE]		= &scalar_types,
9220 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
9221 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
9222 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
9223 	[ARG_PTR_TO_CTX]		= &context_types,
9224 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
9225 #ifdef CONFIG_NET
9226 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
9227 #endif
9228 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
9229 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
9230 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
9231 	[ARG_PTR_TO_MEM]		= &mem_types,
9232 	[ARG_PTR_TO_RINGBUF_MEM]	= &ringbuf_mem_types,
9233 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
9234 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
9235 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
9236 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
9237 	[ARG_PTR_TO_TIMER]		= &timer_types,
9238 	[ARG_KPTR_XCHG_DEST]		= &kptr_xchg_dest_types,
9239 	[ARG_PTR_TO_DYNPTR]		= &dynptr_types,
9240 };
9241 
9242 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
9243 			  enum bpf_arg_type arg_type,
9244 			  const u32 *arg_btf_id,
9245 			  struct bpf_call_arg_meta *meta)
9246 {
9247 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
9248 	enum bpf_reg_type expected, type = reg->type;
9249 	const struct bpf_reg_types *compatible;
9250 	int i, j;
9251 
9252 	compatible = compatible_reg_types[base_type(arg_type)];
9253 	if (!compatible) {
9254 		verifier_bug(env, "unsupported arg type %d", arg_type);
9255 		return -EFAULT;
9256 	}
9257 
9258 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
9259 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
9260 	 *
9261 	 * Same for MAYBE_NULL:
9262 	 *
9263 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
9264 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
9265 	 *
9266 	 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
9267 	 *
9268 	 * Therefore we fold these flags depending on the arg_type before comparison.
9269 	 */
9270 	if (arg_type & MEM_RDONLY)
9271 		type &= ~MEM_RDONLY;
9272 	if (arg_type & PTR_MAYBE_NULL)
9273 		type &= ~PTR_MAYBE_NULL;
9274 	if (base_type(arg_type) == ARG_PTR_TO_MEM)
9275 		type &= ~DYNPTR_TYPE_FLAG_MASK;
9276 
9277 	/* Local kptr types are allowed as the source argument of bpf_kptr_xchg */
9278 	if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type) && regno == BPF_REG_2) {
9279 		type &= ~MEM_ALLOC;
9280 		type &= ~MEM_PERCPU;
9281 	}
9282 
9283 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
9284 		expected = compatible->types[i];
9285 		if (expected == NOT_INIT)
9286 			break;
9287 
9288 		if (type == expected)
9289 			goto found;
9290 	}
9291 
9292 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
9293 	for (j = 0; j + 1 < i; j++)
9294 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
9295 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
9296 	return -EACCES;
9297 
9298 found:
9299 	if (base_type(reg->type) != PTR_TO_BTF_ID)
9300 		return 0;
9301 
9302 	if (compatible == &mem_types) {
9303 		if (!(arg_type & MEM_RDONLY)) {
9304 			verbose(env,
9305 				"%s() may write into memory pointed by R%d type=%s\n",
9306 				func_id_name(meta->func_id),
9307 				regno, reg_type_str(env, reg->type));
9308 			return -EACCES;
9309 		}
9310 		return 0;
9311 	}
9312 
9313 	switch ((int)reg->type) {
9314 	case PTR_TO_BTF_ID:
9315 	case PTR_TO_BTF_ID | PTR_TRUSTED:
9316 	case PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL:
9317 	case PTR_TO_BTF_ID | MEM_RCU:
9318 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
9319 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
9320 	{
9321 		/* For bpf_sk_release, it needs to match against first member
9322 		 * 'struct sock_common', hence make an exception for it. This
9323 		 * allows bpf_sk_release to work for multiple socket types.
9324 		 */
9325 		bool strict_type_match = arg_type_is_release(arg_type) &&
9326 					 meta->func_id != BPF_FUNC_sk_release;
9327 
9328 		if (type_may_be_null(reg->type) &&
9329 		    (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
9330 			verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
9331 			return -EACCES;
9332 		}
9333 
9334 		if (!arg_btf_id) {
9335 			if (!compatible->btf_id) {
9336 				verifier_bug(env, "missing arg compatible BTF ID");
9337 				return -EFAULT;
9338 			}
9339 			arg_btf_id = compatible->btf_id;
9340 		}
9341 
9342 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
9343 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
9344 				return -EACCES;
9345 		} else {
9346 			if (arg_btf_id == BPF_PTR_POISON) {
9347 				verbose(env, "verifier internal error:");
9348 				verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
9349 					regno);
9350 				return -EACCES;
9351 			}
9352 
9353 			if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
9354 						  btf_vmlinux, *arg_btf_id,
9355 						  strict_type_match)) {
9356 				verbose(env, "R%d is of type %s but %s is expected\n",
9357 					regno, btf_type_name(reg->btf, reg->btf_id),
9358 					btf_type_name(btf_vmlinux, *arg_btf_id));
9359 				return -EACCES;
9360 			}
9361 		}
9362 		break;
9363 	}
9364 	case PTR_TO_BTF_ID | MEM_ALLOC:
9365 	case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC:
9366 		if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
9367 		    meta->func_id != BPF_FUNC_kptr_xchg) {
9368 			verifier_bug(env, "unimplemented handling of MEM_ALLOC");
9369 			return -EFAULT;
9370 		}
9371 		/* Check if local kptr in src arg matches kptr in dst arg */
9372 		if (meta->func_id == BPF_FUNC_kptr_xchg && regno == BPF_REG_2) {
9373 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
9374 				return -EACCES;
9375 		}
9376 		break;
9377 	case PTR_TO_BTF_ID | MEM_PERCPU:
9378 	case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU:
9379 	case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
9380 		/* Handled by helper specific checks */
9381 		break;
9382 	default:
9383 		verifier_bug(env, "invalid PTR_TO_BTF_ID register for type match");
9384 		return -EFAULT;
9385 	}
9386 	return 0;
9387 }
9388 
9389 static struct btf_field *
9390 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
9391 {
9392 	struct btf_field *field;
9393 	struct btf_record *rec;
9394 
9395 	rec = reg_btf_record(reg);
9396 	if (!rec)
9397 		return NULL;
9398 
9399 	field = btf_record_find(rec, off, fields);
9400 	if (!field)
9401 		return NULL;
9402 
9403 	return field;
9404 }
9405 
9406 static int check_func_arg_reg_off(struct bpf_verifier_env *env,
9407 				  const struct bpf_reg_state *reg, int regno,
9408 				  enum bpf_arg_type arg_type)
9409 {
9410 	u32 type = reg->type;
9411 
9412 	/* When referenced register is passed to release function, its fixed
9413 	 * offset must be 0.
9414 	 *
9415 	 * We will check arg_type_is_release reg has ref_obj_id when storing
9416 	 * meta->release_regno.
9417 	 */
9418 	if (arg_type_is_release(arg_type)) {
9419 		/* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
9420 		 * may not directly point to the object being released, but to
9421 		 * dynptr pointing to such object, which might be at some offset
9422 		 * on the stack. In that case, we simply to fallback to the
9423 		 * default handling.
9424 		 */
9425 		if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
9426 			return 0;
9427 
9428 		/* Doing check_ptr_off_reg check for the offset will catch this
9429 		 * because fixed_off_ok is false, but checking here allows us
9430 		 * to give the user a better error message.
9431 		 */
9432 		if (reg->off) {
9433 			verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
9434 				regno);
9435 			return -EINVAL;
9436 		}
9437 		return __check_ptr_off_reg(env, reg, regno, false);
9438 	}
9439 
9440 	switch (type) {
9441 	/* Pointer types where both fixed and variable offset is explicitly allowed: */
9442 	case PTR_TO_STACK:
9443 	case PTR_TO_PACKET:
9444 	case PTR_TO_PACKET_META:
9445 	case PTR_TO_MAP_KEY:
9446 	case PTR_TO_MAP_VALUE:
9447 	case PTR_TO_MEM:
9448 	case PTR_TO_MEM | MEM_RDONLY:
9449 	case PTR_TO_MEM | MEM_RINGBUF:
9450 	case PTR_TO_BUF:
9451 	case PTR_TO_BUF | MEM_RDONLY:
9452 	case PTR_TO_ARENA:
9453 	case SCALAR_VALUE:
9454 		return 0;
9455 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
9456 	 * fixed offset.
9457 	 */
9458 	case PTR_TO_BTF_ID:
9459 	case PTR_TO_BTF_ID | MEM_ALLOC:
9460 	case PTR_TO_BTF_ID | PTR_TRUSTED:
9461 	case PTR_TO_BTF_ID | MEM_RCU:
9462 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
9463 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU:
9464 		/* When referenced PTR_TO_BTF_ID is passed to release function,
9465 		 * its fixed offset must be 0. In the other cases, fixed offset
9466 		 * can be non-zero. This was already checked above. So pass
9467 		 * fixed_off_ok as true to allow fixed offset for all other
9468 		 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
9469 		 * still need to do checks instead of returning.
9470 		 */
9471 		return __check_ptr_off_reg(env, reg, regno, true);
9472 	default:
9473 		return __check_ptr_off_reg(env, reg, regno, false);
9474 	}
9475 }
9476 
9477 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
9478 						const struct bpf_func_proto *fn,
9479 						struct bpf_reg_state *regs)
9480 {
9481 	struct bpf_reg_state *state = NULL;
9482 	int i;
9483 
9484 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
9485 		if (arg_type_is_dynptr(fn->arg_type[i])) {
9486 			if (state) {
9487 				verbose(env, "verifier internal error: multiple dynptr args\n");
9488 				return NULL;
9489 			}
9490 			state = &regs[BPF_REG_1 + i];
9491 		}
9492 
9493 	if (!state)
9494 		verbose(env, "verifier internal error: no dynptr arg found\n");
9495 
9496 	return state;
9497 }
9498 
9499 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
9500 {
9501 	struct bpf_func_state *state = func(env, reg);
9502 	int spi;
9503 
9504 	if (reg->type == CONST_PTR_TO_DYNPTR)
9505 		return reg->id;
9506 	spi = dynptr_get_spi(env, reg);
9507 	if (spi < 0)
9508 		return spi;
9509 	return state->stack[spi].spilled_ptr.id;
9510 }
9511 
9512 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
9513 {
9514 	struct bpf_func_state *state = func(env, reg);
9515 	int spi;
9516 
9517 	if (reg->type == CONST_PTR_TO_DYNPTR)
9518 		return reg->ref_obj_id;
9519 	spi = dynptr_get_spi(env, reg);
9520 	if (spi < 0)
9521 		return spi;
9522 	return state->stack[spi].spilled_ptr.ref_obj_id;
9523 }
9524 
9525 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
9526 					    struct bpf_reg_state *reg)
9527 {
9528 	struct bpf_func_state *state = func(env, reg);
9529 	int spi;
9530 
9531 	if (reg->type == CONST_PTR_TO_DYNPTR)
9532 		return reg->dynptr.type;
9533 
9534 	spi = __get_spi(reg->off);
9535 	if (spi < 0) {
9536 		verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
9537 		return BPF_DYNPTR_TYPE_INVALID;
9538 	}
9539 
9540 	return state->stack[spi].spilled_ptr.dynptr.type;
9541 }
9542 
9543 static int check_reg_const_str(struct bpf_verifier_env *env,
9544 			       struct bpf_reg_state *reg, u32 regno)
9545 {
9546 	struct bpf_map *map = reg->map_ptr;
9547 	int err;
9548 	int map_off;
9549 	u64 map_addr;
9550 	char *str_ptr;
9551 
9552 	if (reg->type != PTR_TO_MAP_VALUE)
9553 		return -EINVAL;
9554 
9555 	if (!bpf_map_is_rdonly(map)) {
9556 		verbose(env, "R%d does not point to a readonly map'\n", regno);
9557 		return -EACCES;
9558 	}
9559 
9560 	if (!tnum_is_const(reg->var_off)) {
9561 		verbose(env, "R%d is not a constant address'\n", regno);
9562 		return -EACCES;
9563 	}
9564 
9565 	if (!map->ops->map_direct_value_addr) {
9566 		verbose(env, "no direct value access support for this map type\n");
9567 		return -EACCES;
9568 	}
9569 
9570 	err = check_map_access(env, regno, reg->off,
9571 			       map->value_size - reg->off, false,
9572 			       ACCESS_HELPER);
9573 	if (err)
9574 		return err;
9575 
9576 	map_off = reg->off + reg->var_off.value;
9577 	err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
9578 	if (err) {
9579 		verbose(env, "direct value access on string failed\n");
9580 		return err;
9581 	}
9582 
9583 	str_ptr = (char *)(long)(map_addr);
9584 	if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
9585 		verbose(env, "string is not zero-terminated\n");
9586 		return -EINVAL;
9587 	}
9588 	return 0;
9589 }
9590 
9591 /* Returns constant key value in `value` if possible, else negative error */
9592 static int get_constant_map_key(struct bpf_verifier_env *env,
9593 				struct bpf_reg_state *key,
9594 				u32 key_size,
9595 				s64 *value)
9596 {
9597 	struct bpf_func_state *state = func(env, key);
9598 	struct bpf_reg_state *reg;
9599 	int slot, spi, off;
9600 	int spill_size = 0;
9601 	int zero_size = 0;
9602 	int stack_off;
9603 	int i, err;
9604 	u8 *stype;
9605 
9606 	if (!env->bpf_capable)
9607 		return -EOPNOTSUPP;
9608 	if (key->type != PTR_TO_STACK)
9609 		return -EOPNOTSUPP;
9610 	if (!tnum_is_const(key->var_off))
9611 		return -EOPNOTSUPP;
9612 
9613 	stack_off = key->off + key->var_off.value;
9614 	slot = -stack_off - 1;
9615 	spi = slot / BPF_REG_SIZE;
9616 	off = slot % BPF_REG_SIZE;
9617 	stype = state->stack[spi].slot_type;
9618 
9619 	/* First handle precisely tracked STACK_ZERO */
9620 	for (i = off; i >= 0 && stype[i] == STACK_ZERO; i--)
9621 		zero_size++;
9622 	if (zero_size >= key_size) {
9623 		*value = 0;
9624 		return 0;
9625 	}
9626 
9627 	/* Check that stack contains a scalar spill of expected size */
9628 	if (!is_spilled_scalar_reg(&state->stack[spi]))
9629 		return -EOPNOTSUPP;
9630 	for (i = off; i >= 0 && stype[i] == STACK_SPILL; i--)
9631 		spill_size++;
9632 	if (spill_size != key_size)
9633 		return -EOPNOTSUPP;
9634 
9635 	reg = &state->stack[spi].spilled_ptr;
9636 	if (!tnum_is_const(reg->var_off))
9637 		/* Stack value not statically known */
9638 		return -EOPNOTSUPP;
9639 
9640 	/* We are relying on a constant value. So mark as precise
9641 	 * to prevent pruning on it.
9642 	 */
9643 	bt_set_frame_slot(&env->bt, key->frameno, spi);
9644 	err = mark_chain_precision_batch(env, env->cur_state);
9645 	if (err < 0)
9646 		return err;
9647 
9648 	*value = reg->var_off.value;
9649 	return 0;
9650 }
9651 
9652 static bool can_elide_value_nullness(enum bpf_map_type type);
9653 
9654 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
9655 			  struct bpf_call_arg_meta *meta,
9656 			  const struct bpf_func_proto *fn,
9657 			  int insn_idx)
9658 {
9659 	u32 regno = BPF_REG_1 + arg;
9660 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
9661 	enum bpf_arg_type arg_type = fn->arg_type[arg];
9662 	enum bpf_reg_type type = reg->type;
9663 	u32 *arg_btf_id = NULL;
9664 	u32 key_size;
9665 	int err = 0;
9666 
9667 	if (arg_type == ARG_DONTCARE)
9668 		return 0;
9669 
9670 	err = check_reg_arg(env, regno, SRC_OP);
9671 	if (err)
9672 		return err;
9673 
9674 	if (arg_type == ARG_ANYTHING) {
9675 		if (is_pointer_value(env, regno)) {
9676 			verbose(env, "R%d leaks addr into helper function\n",
9677 				regno);
9678 			return -EACCES;
9679 		}
9680 		return 0;
9681 	}
9682 
9683 	if (type_is_pkt_pointer(type) &&
9684 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
9685 		verbose(env, "helper access to the packet is not allowed\n");
9686 		return -EACCES;
9687 	}
9688 
9689 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
9690 		err = resolve_map_arg_type(env, meta, &arg_type);
9691 		if (err)
9692 			return err;
9693 	}
9694 
9695 	if (register_is_null(reg) && type_may_be_null(arg_type))
9696 		/* A NULL register has a SCALAR_VALUE type, so skip
9697 		 * type checking.
9698 		 */
9699 		goto skip_type_check;
9700 
9701 	/* arg_btf_id and arg_size are in a union. */
9702 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
9703 	    base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
9704 		arg_btf_id = fn->arg_btf_id[arg];
9705 
9706 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
9707 	if (err)
9708 		return err;
9709 
9710 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
9711 	if (err)
9712 		return err;
9713 
9714 skip_type_check:
9715 	if (arg_type_is_release(arg_type)) {
9716 		if (arg_type_is_dynptr(arg_type)) {
9717 			struct bpf_func_state *state = func(env, reg);
9718 			int spi;
9719 
9720 			/* Only dynptr created on stack can be released, thus
9721 			 * the get_spi and stack state checks for spilled_ptr
9722 			 * should only be done before process_dynptr_func for
9723 			 * PTR_TO_STACK.
9724 			 */
9725 			if (reg->type == PTR_TO_STACK) {
9726 				spi = dynptr_get_spi(env, reg);
9727 				if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
9728 					verbose(env, "arg %d is an unacquired reference\n", regno);
9729 					return -EINVAL;
9730 				}
9731 			} else {
9732 				verbose(env, "cannot release unowned const bpf_dynptr\n");
9733 				return -EINVAL;
9734 			}
9735 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
9736 			verbose(env, "R%d must be referenced when passed to release function\n",
9737 				regno);
9738 			return -EINVAL;
9739 		}
9740 		if (meta->release_regno) {
9741 			verifier_bug(env, "more than one release argument");
9742 			return -EFAULT;
9743 		}
9744 		meta->release_regno = regno;
9745 	}
9746 
9747 	if (reg->ref_obj_id && base_type(arg_type) != ARG_KPTR_XCHG_DEST) {
9748 		if (meta->ref_obj_id) {
9749 			verbose(env, "more than one arg with ref_obj_id R%d %u %u",
9750 				regno, reg->ref_obj_id,
9751 				meta->ref_obj_id);
9752 			return -EACCES;
9753 		}
9754 		meta->ref_obj_id = reg->ref_obj_id;
9755 	}
9756 
9757 	switch (base_type(arg_type)) {
9758 	case ARG_CONST_MAP_PTR:
9759 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
9760 		if (meta->map_ptr) {
9761 			/* Use map_uid (which is unique id of inner map) to reject:
9762 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
9763 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
9764 			 * if (inner_map1 && inner_map2) {
9765 			 *     timer = bpf_map_lookup_elem(inner_map1);
9766 			 *     if (timer)
9767 			 *         // mismatch would have been allowed
9768 			 *         bpf_timer_init(timer, inner_map2);
9769 			 * }
9770 			 *
9771 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
9772 			 */
9773 			if (meta->map_ptr != reg->map_ptr ||
9774 			    meta->map_uid != reg->map_uid) {
9775 				verbose(env,
9776 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
9777 					meta->map_uid, reg->map_uid);
9778 				return -EINVAL;
9779 			}
9780 		}
9781 		meta->map_ptr = reg->map_ptr;
9782 		meta->map_uid = reg->map_uid;
9783 		break;
9784 	case ARG_PTR_TO_MAP_KEY:
9785 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
9786 		 * check that [key, key + map->key_size) are within
9787 		 * stack limits and initialized
9788 		 */
9789 		if (!meta->map_ptr) {
9790 			/* in function declaration map_ptr must come before
9791 			 * map_key, so that it's verified and known before
9792 			 * we have to check map_key here. Otherwise it means
9793 			 * that kernel subsystem misconfigured verifier
9794 			 */
9795 			verifier_bug(env, "invalid map_ptr to access map->key");
9796 			return -EFAULT;
9797 		}
9798 		key_size = meta->map_ptr->key_size;
9799 		err = check_helper_mem_access(env, regno, key_size, BPF_READ, false, NULL);
9800 		if (err)
9801 			return err;
9802 		if (can_elide_value_nullness(meta->map_ptr->map_type)) {
9803 			err = get_constant_map_key(env, reg, key_size, &meta->const_map_key);
9804 			if (err < 0) {
9805 				meta->const_map_key = -1;
9806 				if (err == -EOPNOTSUPP)
9807 					err = 0;
9808 				else
9809 					return err;
9810 			}
9811 		}
9812 		break;
9813 	case ARG_PTR_TO_MAP_VALUE:
9814 		if (type_may_be_null(arg_type) && register_is_null(reg))
9815 			return 0;
9816 
9817 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
9818 		 * check [value, value + map->value_size) validity
9819 		 */
9820 		if (!meta->map_ptr) {
9821 			/* kernel subsystem misconfigured verifier */
9822 			verifier_bug(env, "invalid map_ptr to access map->value");
9823 			return -EFAULT;
9824 		}
9825 		meta->raw_mode = arg_type & MEM_UNINIT;
9826 		err = check_helper_mem_access(env, regno, meta->map_ptr->value_size,
9827 					      arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ,
9828 					      false, meta);
9829 		break;
9830 	case ARG_PTR_TO_PERCPU_BTF_ID:
9831 		if (!reg->btf_id) {
9832 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
9833 			return -EACCES;
9834 		}
9835 		meta->ret_btf = reg->btf;
9836 		meta->ret_btf_id = reg->btf_id;
9837 		break;
9838 	case ARG_PTR_TO_SPIN_LOCK:
9839 		if (in_rbtree_lock_required_cb(env)) {
9840 			verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
9841 			return -EACCES;
9842 		}
9843 		if (meta->func_id == BPF_FUNC_spin_lock) {
9844 			err = process_spin_lock(env, regno, PROCESS_SPIN_LOCK);
9845 			if (err)
9846 				return err;
9847 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
9848 			err = process_spin_lock(env, regno, 0);
9849 			if (err)
9850 				return err;
9851 		} else {
9852 			verifier_bug(env, "spin lock arg on unexpected helper");
9853 			return -EFAULT;
9854 		}
9855 		break;
9856 	case ARG_PTR_TO_TIMER:
9857 		err = process_timer_func(env, regno, meta);
9858 		if (err)
9859 			return err;
9860 		break;
9861 	case ARG_PTR_TO_FUNC:
9862 		meta->subprogno = reg->subprogno;
9863 		break;
9864 	case ARG_PTR_TO_MEM:
9865 		/* The access to this pointer is only checked when we hit the
9866 		 * next is_mem_size argument below.
9867 		 */
9868 		meta->raw_mode = arg_type & MEM_UNINIT;
9869 		if (arg_type & MEM_FIXED_SIZE) {
9870 			err = check_helper_mem_access(env, regno, fn->arg_size[arg],
9871 						      arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ,
9872 						      false, meta);
9873 			if (err)
9874 				return err;
9875 			if (arg_type & MEM_ALIGNED)
9876 				err = check_ptr_alignment(env, reg, 0, fn->arg_size[arg], true);
9877 		}
9878 		break;
9879 	case ARG_CONST_SIZE:
9880 		err = check_mem_size_reg(env, reg, regno,
9881 					 fn->arg_type[arg - 1] & MEM_WRITE ?
9882 					 BPF_WRITE : BPF_READ,
9883 					 false, meta);
9884 		break;
9885 	case ARG_CONST_SIZE_OR_ZERO:
9886 		err = check_mem_size_reg(env, reg, regno,
9887 					 fn->arg_type[arg - 1] & MEM_WRITE ?
9888 					 BPF_WRITE : BPF_READ,
9889 					 true, meta);
9890 		break;
9891 	case ARG_PTR_TO_DYNPTR:
9892 		err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
9893 		if (err)
9894 			return err;
9895 		break;
9896 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
9897 		if (!tnum_is_const(reg->var_off)) {
9898 			verbose(env, "R%d is not a known constant'\n",
9899 				regno);
9900 			return -EACCES;
9901 		}
9902 		meta->mem_size = reg->var_off.value;
9903 		err = mark_chain_precision(env, regno);
9904 		if (err)
9905 			return err;
9906 		break;
9907 	case ARG_PTR_TO_CONST_STR:
9908 	{
9909 		err = check_reg_const_str(env, reg, regno);
9910 		if (err)
9911 			return err;
9912 		break;
9913 	}
9914 	case ARG_KPTR_XCHG_DEST:
9915 		err = process_kptr_func(env, regno, meta);
9916 		if (err)
9917 			return err;
9918 		break;
9919 	}
9920 
9921 	return err;
9922 }
9923 
9924 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
9925 {
9926 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
9927 	enum bpf_prog_type type = resolve_prog_type(env->prog);
9928 
9929 	if (func_id != BPF_FUNC_map_update_elem &&
9930 	    func_id != BPF_FUNC_map_delete_elem)
9931 		return false;
9932 
9933 	/* It's not possible to get access to a locked struct sock in these
9934 	 * contexts, so updating is safe.
9935 	 */
9936 	switch (type) {
9937 	case BPF_PROG_TYPE_TRACING:
9938 		if (eatype == BPF_TRACE_ITER)
9939 			return true;
9940 		break;
9941 	case BPF_PROG_TYPE_SOCK_OPS:
9942 		/* map_update allowed only via dedicated helpers with event type checks */
9943 		if (func_id == BPF_FUNC_map_delete_elem)
9944 			return true;
9945 		break;
9946 	case BPF_PROG_TYPE_SOCKET_FILTER:
9947 	case BPF_PROG_TYPE_SCHED_CLS:
9948 	case BPF_PROG_TYPE_SCHED_ACT:
9949 	case BPF_PROG_TYPE_XDP:
9950 	case BPF_PROG_TYPE_SK_REUSEPORT:
9951 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
9952 	case BPF_PROG_TYPE_SK_LOOKUP:
9953 		return true;
9954 	default:
9955 		break;
9956 	}
9957 
9958 	verbose(env, "cannot update sockmap in this context\n");
9959 	return false;
9960 }
9961 
9962 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
9963 {
9964 	return env->prog->jit_requested &&
9965 	       bpf_jit_supports_subprog_tailcalls();
9966 }
9967 
9968 static int check_map_func_compatibility(struct bpf_verifier_env *env,
9969 					struct bpf_map *map, int func_id)
9970 {
9971 	if (!map)
9972 		return 0;
9973 
9974 	/* We need a two way check, first is from map perspective ... */
9975 	switch (map->map_type) {
9976 	case BPF_MAP_TYPE_PROG_ARRAY:
9977 		if (func_id != BPF_FUNC_tail_call)
9978 			goto error;
9979 		break;
9980 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
9981 		if (func_id != BPF_FUNC_perf_event_read &&
9982 		    func_id != BPF_FUNC_perf_event_output &&
9983 		    func_id != BPF_FUNC_skb_output &&
9984 		    func_id != BPF_FUNC_perf_event_read_value &&
9985 		    func_id != BPF_FUNC_xdp_output)
9986 			goto error;
9987 		break;
9988 	case BPF_MAP_TYPE_RINGBUF:
9989 		if (func_id != BPF_FUNC_ringbuf_output &&
9990 		    func_id != BPF_FUNC_ringbuf_reserve &&
9991 		    func_id != BPF_FUNC_ringbuf_query &&
9992 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
9993 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
9994 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
9995 			goto error;
9996 		break;
9997 	case BPF_MAP_TYPE_USER_RINGBUF:
9998 		if (func_id != BPF_FUNC_user_ringbuf_drain)
9999 			goto error;
10000 		break;
10001 	case BPF_MAP_TYPE_STACK_TRACE:
10002 		if (func_id != BPF_FUNC_get_stackid)
10003 			goto error;
10004 		break;
10005 	case BPF_MAP_TYPE_CGROUP_ARRAY:
10006 		if (func_id != BPF_FUNC_skb_under_cgroup &&
10007 		    func_id != BPF_FUNC_current_task_under_cgroup)
10008 			goto error;
10009 		break;
10010 	case BPF_MAP_TYPE_CGROUP_STORAGE:
10011 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
10012 		if (func_id != BPF_FUNC_get_local_storage)
10013 			goto error;
10014 		break;
10015 	case BPF_MAP_TYPE_DEVMAP:
10016 	case BPF_MAP_TYPE_DEVMAP_HASH:
10017 		if (func_id != BPF_FUNC_redirect_map &&
10018 		    func_id != BPF_FUNC_map_lookup_elem)
10019 			goto error;
10020 		break;
10021 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
10022 	 * appear.
10023 	 */
10024 	case BPF_MAP_TYPE_CPUMAP:
10025 		if (func_id != BPF_FUNC_redirect_map)
10026 			goto error;
10027 		break;
10028 	case BPF_MAP_TYPE_XSKMAP:
10029 		if (func_id != BPF_FUNC_redirect_map &&
10030 		    func_id != BPF_FUNC_map_lookup_elem)
10031 			goto error;
10032 		break;
10033 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
10034 	case BPF_MAP_TYPE_HASH_OF_MAPS:
10035 		if (func_id != BPF_FUNC_map_lookup_elem)
10036 			goto error;
10037 		break;
10038 	case BPF_MAP_TYPE_SOCKMAP:
10039 		if (func_id != BPF_FUNC_sk_redirect_map &&
10040 		    func_id != BPF_FUNC_sock_map_update &&
10041 		    func_id != BPF_FUNC_msg_redirect_map &&
10042 		    func_id != BPF_FUNC_sk_select_reuseport &&
10043 		    func_id != BPF_FUNC_map_lookup_elem &&
10044 		    !may_update_sockmap(env, func_id))
10045 			goto error;
10046 		break;
10047 	case BPF_MAP_TYPE_SOCKHASH:
10048 		if (func_id != BPF_FUNC_sk_redirect_hash &&
10049 		    func_id != BPF_FUNC_sock_hash_update &&
10050 		    func_id != BPF_FUNC_msg_redirect_hash &&
10051 		    func_id != BPF_FUNC_sk_select_reuseport &&
10052 		    func_id != BPF_FUNC_map_lookup_elem &&
10053 		    !may_update_sockmap(env, func_id))
10054 			goto error;
10055 		break;
10056 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
10057 		if (func_id != BPF_FUNC_sk_select_reuseport)
10058 			goto error;
10059 		break;
10060 	case BPF_MAP_TYPE_QUEUE:
10061 	case BPF_MAP_TYPE_STACK:
10062 		if (func_id != BPF_FUNC_map_peek_elem &&
10063 		    func_id != BPF_FUNC_map_pop_elem &&
10064 		    func_id != BPF_FUNC_map_push_elem)
10065 			goto error;
10066 		break;
10067 	case BPF_MAP_TYPE_SK_STORAGE:
10068 		if (func_id != BPF_FUNC_sk_storage_get &&
10069 		    func_id != BPF_FUNC_sk_storage_delete &&
10070 		    func_id != BPF_FUNC_kptr_xchg)
10071 			goto error;
10072 		break;
10073 	case BPF_MAP_TYPE_INODE_STORAGE:
10074 		if (func_id != BPF_FUNC_inode_storage_get &&
10075 		    func_id != BPF_FUNC_inode_storage_delete &&
10076 		    func_id != BPF_FUNC_kptr_xchg)
10077 			goto error;
10078 		break;
10079 	case BPF_MAP_TYPE_TASK_STORAGE:
10080 		if (func_id != BPF_FUNC_task_storage_get &&
10081 		    func_id != BPF_FUNC_task_storage_delete &&
10082 		    func_id != BPF_FUNC_kptr_xchg)
10083 			goto error;
10084 		break;
10085 	case BPF_MAP_TYPE_CGRP_STORAGE:
10086 		if (func_id != BPF_FUNC_cgrp_storage_get &&
10087 		    func_id != BPF_FUNC_cgrp_storage_delete &&
10088 		    func_id != BPF_FUNC_kptr_xchg)
10089 			goto error;
10090 		break;
10091 	case BPF_MAP_TYPE_BLOOM_FILTER:
10092 		if (func_id != BPF_FUNC_map_peek_elem &&
10093 		    func_id != BPF_FUNC_map_push_elem)
10094 			goto error;
10095 		break;
10096 	default:
10097 		break;
10098 	}
10099 
10100 	/* ... and second from the function itself. */
10101 	switch (func_id) {
10102 	case BPF_FUNC_tail_call:
10103 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
10104 			goto error;
10105 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
10106 			verbose(env, "mixing of tail_calls and bpf-to-bpf calls is not supported\n");
10107 			return -EINVAL;
10108 		}
10109 		break;
10110 	case BPF_FUNC_perf_event_read:
10111 	case BPF_FUNC_perf_event_output:
10112 	case BPF_FUNC_perf_event_read_value:
10113 	case BPF_FUNC_skb_output:
10114 	case BPF_FUNC_xdp_output:
10115 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
10116 			goto error;
10117 		break;
10118 	case BPF_FUNC_ringbuf_output:
10119 	case BPF_FUNC_ringbuf_reserve:
10120 	case BPF_FUNC_ringbuf_query:
10121 	case BPF_FUNC_ringbuf_reserve_dynptr:
10122 	case BPF_FUNC_ringbuf_submit_dynptr:
10123 	case BPF_FUNC_ringbuf_discard_dynptr:
10124 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
10125 			goto error;
10126 		break;
10127 	case BPF_FUNC_user_ringbuf_drain:
10128 		if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
10129 			goto error;
10130 		break;
10131 	case BPF_FUNC_get_stackid:
10132 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
10133 			goto error;
10134 		break;
10135 	case BPF_FUNC_current_task_under_cgroup:
10136 	case BPF_FUNC_skb_under_cgroup:
10137 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
10138 			goto error;
10139 		break;
10140 	case BPF_FUNC_redirect_map:
10141 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
10142 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
10143 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
10144 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
10145 			goto error;
10146 		break;
10147 	case BPF_FUNC_sk_redirect_map:
10148 	case BPF_FUNC_msg_redirect_map:
10149 	case BPF_FUNC_sock_map_update:
10150 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
10151 			goto error;
10152 		break;
10153 	case BPF_FUNC_sk_redirect_hash:
10154 	case BPF_FUNC_msg_redirect_hash:
10155 	case BPF_FUNC_sock_hash_update:
10156 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
10157 			goto error;
10158 		break;
10159 	case BPF_FUNC_get_local_storage:
10160 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
10161 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
10162 			goto error;
10163 		break;
10164 	case BPF_FUNC_sk_select_reuseport:
10165 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
10166 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
10167 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
10168 			goto error;
10169 		break;
10170 	case BPF_FUNC_map_pop_elem:
10171 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
10172 		    map->map_type != BPF_MAP_TYPE_STACK)
10173 			goto error;
10174 		break;
10175 	case BPF_FUNC_map_peek_elem:
10176 	case BPF_FUNC_map_push_elem:
10177 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
10178 		    map->map_type != BPF_MAP_TYPE_STACK &&
10179 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
10180 			goto error;
10181 		break;
10182 	case BPF_FUNC_map_lookup_percpu_elem:
10183 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
10184 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
10185 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
10186 			goto error;
10187 		break;
10188 	case BPF_FUNC_sk_storage_get:
10189 	case BPF_FUNC_sk_storage_delete:
10190 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
10191 			goto error;
10192 		break;
10193 	case BPF_FUNC_inode_storage_get:
10194 	case BPF_FUNC_inode_storage_delete:
10195 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
10196 			goto error;
10197 		break;
10198 	case BPF_FUNC_task_storage_get:
10199 	case BPF_FUNC_task_storage_delete:
10200 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
10201 			goto error;
10202 		break;
10203 	case BPF_FUNC_cgrp_storage_get:
10204 	case BPF_FUNC_cgrp_storage_delete:
10205 		if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
10206 			goto error;
10207 		break;
10208 	default:
10209 		break;
10210 	}
10211 
10212 	return 0;
10213 error:
10214 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
10215 		map->map_type, func_id_name(func_id), func_id);
10216 	return -EINVAL;
10217 }
10218 
10219 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
10220 {
10221 	int count = 0;
10222 
10223 	if (arg_type_is_raw_mem(fn->arg1_type))
10224 		count++;
10225 	if (arg_type_is_raw_mem(fn->arg2_type))
10226 		count++;
10227 	if (arg_type_is_raw_mem(fn->arg3_type))
10228 		count++;
10229 	if (arg_type_is_raw_mem(fn->arg4_type))
10230 		count++;
10231 	if (arg_type_is_raw_mem(fn->arg5_type))
10232 		count++;
10233 
10234 	/* We only support one arg being in raw mode at the moment,
10235 	 * which is sufficient for the helper functions we have
10236 	 * right now.
10237 	 */
10238 	return count <= 1;
10239 }
10240 
10241 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
10242 {
10243 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
10244 	bool has_size = fn->arg_size[arg] != 0;
10245 	bool is_next_size = false;
10246 
10247 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
10248 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
10249 
10250 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
10251 		return is_next_size;
10252 
10253 	return has_size == is_next_size || is_next_size == is_fixed;
10254 }
10255 
10256 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
10257 {
10258 	/* bpf_xxx(..., buf, len) call will access 'len'
10259 	 * bytes from memory 'buf'. Both arg types need
10260 	 * to be paired, so make sure there's no buggy
10261 	 * helper function specification.
10262 	 */
10263 	if (arg_type_is_mem_size(fn->arg1_type) ||
10264 	    check_args_pair_invalid(fn, 0) ||
10265 	    check_args_pair_invalid(fn, 1) ||
10266 	    check_args_pair_invalid(fn, 2) ||
10267 	    check_args_pair_invalid(fn, 3) ||
10268 	    check_args_pair_invalid(fn, 4))
10269 		return false;
10270 
10271 	return true;
10272 }
10273 
10274 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
10275 {
10276 	int i;
10277 
10278 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
10279 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
10280 			return !!fn->arg_btf_id[i];
10281 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
10282 			return fn->arg_btf_id[i] == BPF_PTR_POISON;
10283 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
10284 		    /* arg_btf_id and arg_size are in a union. */
10285 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
10286 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
10287 			return false;
10288 	}
10289 
10290 	return true;
10291 }
10292 
10293 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
10294 {
10295 	return check_raw_mode_ok(fn) &&
10296 	       check_arg_pair_ok(fn) &&
10297 	       check_btf_id_ok(fn) ? 0 : -EINVAL;
10298 }
10299 
10300 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
10301  * are now invalid, so turn them into unknown SCALAR_VALUE.
10302  *
10303  * This also applies to dynptr slices belonging to skb and xdp dynptrs,
10304  * since these slices point to packet data.
10305  */
10306 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
10307 {
10308 	struct bpf_func_state *state;
10309 	struct bpf_reg_state *reg;
10310 
10311 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
10312 		if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
10313 			mark_reg_invalid(env, reg);
10314 	}));
10315 }
10316 
10317 enum {
10318 	AT_PKT_END = -1,
10319 	BEYOND_PKT_END = -2,
10320 };
10321 
10322 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
10323 {
10324 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
10325 	struct bpf_reg_state *reg = &state->regs[regn];
10326 
10327 	if (reg->type != PTR_TO_PACKET)
10328 		/* PTR_TO_PACKET_META is not supported yet */
10329 		return;
10330 
10331 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
10332 	 * How far beyond pkt_end it goes is unknown.
10333 	 * if (!range_open) it's the case of pkt >= pkt_end
10334 	 * if (range_open) it's the case of pkt > pkt_end
10335 	 * hence this pointer is at least 1 byte bigger than pkt_end
10336 	 */
10337 	if (range_open)
10338 		reg->range = BEYOND_PKT_END;
10339 	else
10340 		reg->range = AT_PKT_END;
10341 }
10342 
10343 static int release_reference_nomark(struct bpf_verifier_state *state, int ref_obj_id)
10344 {
10345 	int i;
10346 
10347 	for (i = 0; i < state->acquired_refs; i++) {
10348 		if (state->refs[i].type != REF_TYPE_PTR)
10349 			continue;
10350 		if (state->refs[i].id == ref_obj_id) {
10351 			release_reference_state(state, i);
10352 			return 0;
10353 		}
10354 	}
10355 	return -EINVAL;
10356 }
10357 
10358 /* The pointer with the specified id has released its reference to kernel
10359  * resources. Identify all copies of the same pointer and clear the reference.
10360  *
10361  * This is the release function corresponding to acquire_reference(). Idempotent.
10362  */
10363 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id)
10364 {
10365 	struct bpf_verifier_state *vstate = env->cur_state;
10366 	struct bpf_func_state *state;
10367 	struct bpf_reg_state *reg;
10368 	int err;
10369 
10370 	err = release_reference_nomark(vstate, ref_obj_id);
10371 	if (err)
10372 		return err;
10373 
10374 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
10375 		if (reg->ref_obj_id == ref_obj_id)
10376 			mark_reg_invalid(env, reg);
10377 	}));
10378 
10379 	return 0;
10380 }
10381 
10382 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
10383 {
10384 	struct bpf_func_state *unused;
10385 	struct bpf_reg_state *reg;
10386 
10387 	bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
10388 		if (type_is_non_owning_ref(reg->type))
10389 			mark_reg_invalid(env, reg);
10390 	}));
10391 }
10392 
10393 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
10394 				    struct bpf_reg_state *regs)
10395 {
10396 	int i;
10397 
10398 	/* after the call registers r0 - r5 were scratched */
10399 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
10400 		mark_reg_not_init(env, regs, caller_saved[i]);
10401 		__check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK);
10402 	}
10403 }
10404 
10405 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
10406 				   struct bpf_func_state *caller,
10407 				   struct bpf_func_state *callee,
10408 				   int insn_idx);
10409 
10410 static int set_callee_state(struct bpf_verifier_env *env,
10411 			    struct bpf_func_state *caller,
10412 			    struct bpf_func_state *callee, int insn_idx);
10413 
10414 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite,
10415 			    set_callee_state_fn set_callee_state_cb,
10416 			    struct bpf_verifier_state *state)
10417 {
10418 	struct bpf_func_state *caller, *callee;
10419 	int err;
10420 
10421 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
10422 		verbose(env, "the call stack of %d frames is too deep\n",
10423 			state->curframe + 2);
10424 		return -E2BIG;
10425 	}
10426 
10427 	if (state->frame[state->curframe + 1]) {
10428 		verifier_bug(env, "Frame %d already allocated", state->curframe + 1);
10429 		return -EFAULT;
10430 	}
10431 
10432 	caller = state->frame[state->curframe];
10433 	callee = kzalloc(sizeof(*callee), GFP_KERNEL_ACCOUNT);
10434 	if (!callee)
10435 		return -ENOMEM;
10436 	state->frame[state->curframe + 1] = callee;
10437 
10438 	/* callee cannot access r0, r6 - r9 for reading and has to write
10439 	 * into its own stack before reading from it.
10440 	 * callee can read/write into caller's stack
10441 	 */
10442 	init_func_state(env, callee,
10443 			/* remember the callsite, it will be used by bpf_exit */
10444 			callsite,
10445 			state->curframe + 1 /* frameno within this callchain */,
10446 			subprog /* subprog number within this prog */);
10447 	err = set_callee_state_cb(env, caller, callee, callsite);
10448 	if (err)
10449 		goto err_out;
10450 
10451 	/* only increment it after check_reg_arg() finished */
10452 	state->curframe++;
10453 
10454 	return 0;
10455 
10456 err_out:
10457 	free_func_state(callee);
10458 	state->frame[state->curframe + 1] = NULL;
10459 	return err;
10460 }
10461 
10462 static int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog,
10463 				    const struct btf *btf,
10464 				    struct bpf_reg_state *regs)
10465 {
10466 	struct bpf_subprog_info *sub = subprog_info(env, subprog);
10467 	struct bpf_verifier_log *log = &env->log;
10468 	u32 i;
10469 	int ret;
10470 
10471 	ret = btf_prepare_func_args(env, subprog);
10472 	if (ret)
10473 		return ret;
10474 
10475 	/* check that BTF function arguments match actual types that the
10476 	 * verifier sees.
10477 	 */
10478 	for (i = 0; i < sub->arg_cnt; i++) {
10479 		u32 regno = i + 1;
10480 		struct bpf_reg_state *reg = &regs[regno];
10481 		struct bpf_subprog_arg_info *arg = &sub->args[i];
10482 
10483 		if (arg->arg_type == ARG_ANYTHING) {
10484 			if (reg->type != SCALAR_VALUE) {
10485 				bpf_log(log, "R%d is not a scalar\n", regno);
10486 				return -EINVAL;
10487 			}
10488 		} else if (arg->arg_type & PTR_UNTRUSTED) {
10489 			/*
10490 			 * Anything is allowed for untrusted arguments, as these are
10491 			 * read-only and probe read instructions would protect against
10492 			 * invalid memory access.
10493 			 */
10494 		} else if (arg->arg_type == ARG_PTR_TO_CTX) {
10495 			ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE);
10496 			if (ret < 0)
10497 				return ret;
10498 			/* If function expects ctx type in BTF check that caller
10499 			 * is passing PTR_TO_CTX.
10500 			 */
10501 			if (reg->type != PTR_TO_CTX) {
10502 				bpf_log(log, "arg#%d expects pointer to ctx\n", i);
10503 				return -EINVAL;
10504 			}
10505 		} else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) {
10506 			ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE);
10507 			if (ret < 0)
10508 				return ret;
10509 			if (check_mem_reg(env, reg, regno, arg->mem_size))
10510 				return -EINVAL;
10511 			if (!(arg->arg_type & PTR_MAYBE_NULL) && (reg->type & PTR_MAYBE_NULL)) {
10512 				bpf_log(log, "arg#%d is expected to be non-NULL\n", i);
10513 				return -EINVAL;
10514 			}
10515 		} else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) {
10516 			/*
10517 			 * Can pass any value and the kernel won't crash, but
10518 			 * only PTR_TO_ARENA or SCALAR make sense. Everything
10519 			 * else is a bug in the bpf program. Point it out to
10520 			 * the user at the verification time instead of
10521 			 * run-time debug nightmare.
10522 			 */
10523 			if (reg->type != PTR_TO_ARENA && reg->type != SCALAR_VALUE) {
10524 				bpf_log(log, "R%d is not a pointer to arena or scalar.\n", regno);
10525 				return -EINVAL;
10526 			}
10527 		} else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) {
10528 			ret = check_func_arg_reg_off(env, reg, regno, ARG_PTR_TO_DYNPTR);
10529 			if (ret)
10530 				return ret;
10531 
10532 			ret = process_dynptr_func(env, regno, -1, arg->arg_type, 0);
10533 			if (ret)
10534 				return ret;
10535 		} else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) {
10536 			struct bpf_call_arg_meta meta;
10537 			int err;
10538 
10539 			if (register_is_null(reg) && type_may_be_null(arg->arg_type))
10540 				continue;
10541 
10542 			memset(&meta, 0, sizeof(meta)); /* leave func_id as zero */
10543 			err = check_reg_type(env, regno, arg->arg_type, &arg->btf_id, &meta);
10544 			err = err ?: check_func_arg_reg_off(env, reg, regno, arg->arg_type);
10545 			if (err)
10546 				return err;
10547 		} else {
10548 			verifier_bug(env, "unrecognized arg#%d type %d", i, arg->arg_type);
10549 			return -EFAULT;
10550 		}
10551 	}
10552 
10553 	return 0;
10554 }
10555 
10556 /* Compare BTF of a function call with given bpf_reg_state.
10557  * Returns:
10558  * EFAULT - there is a verifier bug. Abort verification.
10559  * EINVAL - there is a type mismatch or BTF is not available.
10560  * 0 - BTF matches with what bpf_reg_state expects.
10561  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
10562  */
10563 static int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
10564 				  struct bpf_reg_state *regs)
10565 {
10566 	struct bpf_prog *prog = env->prog;
10567 	struct btf *btf = prog->aux->btf;
10568 	u32 btf_id;
10569 	int err;
10570 
10571 	if (!prog->aux->func_info)
10572 		return -EINVAL;
10573 
10574 	btf_id = prog->aux->func_info[subprog].type_id;
10575 	if (!btf_id)
10576 		return -EFAULT;
10577 
10578 	if (prog->aux->func_info_aux[subprog].unreliable)
10579 		return -EINVAL;
10580 
10581 	err = btf_check_func_arg_match(env, subprog, btf, regs);
10582 	/* Compiler optimizations can remove arguments from static functions
10583 	 * or mismatched type can be passed into a global function.
10584 	 * In such cases mark the function as unreliable from BTF point of view.
10585 	 */
10586 	if (err)
10587 		prog->aux->func_info_aux[subprog].unreliable = true;
10588 	return err;
10589 }
10590 
10591 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
10592 			      int insn_idx, int subprog,
10593 			      set_callee_state_fn set_callee_state_cb)
10594 {
10595 	struct bpf_verifier_state *state = env->cur_state, *callback_state;
10596 	struct bpf_func_state *caller, *callee;
10597 	int err;
10598 
10599 	caller = state->frame[state->curframe];
10600 	err = btf_check_subprog_call(env, subprog, caller->regs);
10601 	if (err == -EFAULT)
10602 		return err;
10603 
10604 	/* set_callee_state is used for direct subprog calls, but we are
10605 	 * interested in validating only BPF helpers that can call subprogs as
10606 	 * callbacks
10607 	 */
10608 	env->subprog_info[subprog].is_cb = true;
10609 	if (bpf_pseudo_kfunc_call(insn) &&
10610 	    !is_callback_calling_kfunc(insn->imm)) {
10611 		verifier_bug(env, "kfunc %s#%d not marked as callback-calling",
10612 			     func_id_name(insn->imm), insn->imm);
10613 		return -EFAULT;
10614 	} else if (!bpf_pseudo_kfunc_call(insn) &&
10615 		   !is_callback_calling_function(insn->imm)) { /* helper */
10616 		verifier_bug(env, "helper %s#%d not marked as callback-calling",
10617 			     func_id_name(insn->imm), insn->imm);
10618 		return -EFAULT;
10619 	}
10620 
10621 	if (is_async_callback_calling_insn(insn)) {
10622 		struct bpf_verifier_state *async_cb;
10623 
10624 		/* there is no real recursion here. timer and workqueue callbacks are async */
10625 		env->subprog_info[subprog].is_async_cb = true;
10626 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
10627 					 insn_idx, subprog,
10628 					 is_bpf_wq_set_callback_impl_kfunc(insn->imm));
10629 		if (!async_cb)
10630 			return -EFAULT;
10631 		callee = async_cb->frame[0];
10632 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
10633 
10634 		/* Convert bpf_timer_set_callback() args into timer callback args */
10635 		err = set_callee_state_cb(env, caller, callee, insn_idx);
10636 		if (err)
10637 			return err;
10638 
10639 		return 0;
10640 	}
10641 
10642 	/* for callback functions enqueue entry to callback and
10643 	 * proceed with next instruction within current frame.
10644 	 */
10645 	callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false);
10646 	if (!callback_state)
10647 		return -ENOMEM;
10648 
10649 	err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb,
10650 			       callback_state);
10651 	if (err)
10652 		return err;
10653 
10654 	callback_state->callback_unroll_depth++;
10655 	callback_state->frame[callback_state->curframe - 1]->callback_depth++;
10656 	caller->callback_depth = 0;
10657 	return 0;
10658 }
10659 
10660 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
10661 			   int *insn_idx)
10662 {
10663 	struct bpf_verifier_state *state = env->cur_state;
10664 	struct bpf_func_state *caller;
10665 	int err, subprog, target_insn;
10666 
10667 	target_insn = *insn_idx + insn->imm + 1;
10668 	subprog = find_subprog(env, target_insn);
10669 	if (verifier_bug_if(subprog < 0, env, "target of func call at insn %d is not a program",
10670 			    target_insn))
10671 		return -EFAULT;
10672 
10673 	caller = state->frame[state->curframe];
10674 	err = btf_check_subprog_call(env, subprog, caller->regs);
10675 	if (err == -EFAULT)
10676 		return err;
10677 	if (subprog_is_global(env, subprog)) {
10678 		const char *sub_name = subprog_name(env, subprog);
10679 
10680 		if (env->cur_state->active_locks) {
10681 			verbose(env, "global function calls are not allowed while holding a lock,\n"
10682 				     "use static function instead\n");
10683 			return -EINVAL;
10684 		}
10685 
10686 		if (env->subprog_info[subprog].might_sleep &&
10687 		    (env->cur_state->active_rcu_lock || env->cur_state->active_preempt_locks ||
10688 		     env->cur_state->active_irq_id || !in_sleepable(env))) {
10689 			verbose(env, "global functions that may sleep are not allowed in non-sleepable context,\n"
10690 				     "i.e., in a RCU/IRQ/preempt-disabled section, or in\n"
10691 				     "a non-sleepable BPF program context\n");
10692 			return -EINVAL;
10693 		}
10694 
10695 		if (err) {
10696 			verbose(env, "Caller passes invalid args into func#%d ('%s')\n",
10697 				subprog, sub_name);
10698 			return err;
10699 		}
10700 
10701 		verbose(env, "Func#%d ('%s') is global and assumed valid.\n",
10702 			subprog, sub_name);
10703 		if (env->subprog_info[subprog].changes_pkt_data)
10704 			clear_all_pkt_pointers(env);
10705 		/* mark global subprog for verifying after main prog */
10706 		subprog_aux(env, subprog)->called = true;
10707 		clear_caller_saved_regs(env, caller->regs);
10708 
10709 		/* All global functions return a 64-bit SCALAR_VALUE */
10710 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
10711 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
10712 
10713 		/* continue with next insn after call */
10714 		return 0;
10715 	}
10716 
10717 	/* for regular function entry setup new frame and continue
10718 	 * from that frame.
10719 	 */
10720 	err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state);
10721 	if (err)
10722 		return err;
10723 
10724 	clear_caller_saved_regs(env, caller->regs);
10725 
10726 	/* and go analyze first insn of the callee */
10727 	*insn_idx = env->subprog_info[subprog].start - 1;
10728 
10729 	if (env->log.level & BPF_LOG_LEVEL) {
10730 		verbose(env, "caller:\n");
10731 		print_verifier_state(env, state, caller->frameno, true);
10732 		verbose(env, "callee:\n");
10733 		print_verifier_state(env, state, state->curframe, true);
10734 	}
10735 
10736 	return 0;
10737 }
10738 
10739 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
10740 				   struct bpf_func_state *caller,
10741 				   struct bpf_func_state *callee)
10742 {
10743 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
10744 	 *      void *callback_ctx, u64 flags);
10745 	 * callback_fn(struct bpf_map *map, void *key, void *value,
10746 	 *      void *callback_ctx);
10747 	 */
10748 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
10749 
10750 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
10751 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
10752 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
10753 
10754 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
10755 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
10756 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
10757 
10758 	/* pointer to stack or null */
10759 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
10760 
10761 	/* unused */
10762 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10763 	return 0;
10764 }
10765 
10766 static int set_callee_state(struct bpf_verifier_env *env,
10767 			    struct bpf_func_state *caller,
10768 			    struct bpf_func_state *callee, int insn_idx)
10769 {
10770 	int i;
10771 
10772 	/* copy r1 - r5 args that callee can access.  The copy includes parent
10773 	 * pointers, which connects us up to the liveness chain
10774 	 */
10775 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
10776 		callee->regs[i] = caller->regs[i];
10777 	return 0;
10778 }
10779 
10780 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
10781 				       struct bpf_func_state *caller,
10782 				       struct bpf_func_state *callee,
10783 				       int insn_idx)
10784 {
10785 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
10786 	struct bpf_map *map;
10787 	int err;
10788 
10789 	/* valid map_ptr and poison value does not matter */
10790 	map = insn_aux->map_ptr_state.map_ptr;
10791 	if (!map->ops->map_set_for_each_callback_args ||
10792 	    !map->ops->map_for_each_callback) {
10793 		verbose(env, "callback function not allowed for map\n");
10794 		return -ENOTSUPP;
10795 	}
10796 
10797 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
10798 	if (err)
10799 		return err;
10800 
10801 	callee->in_callback_fn = true;
10802 	callee->callback_ret_range = retval_range(0, 1);
10803 	return 0;
10804 }
10805 
10806 static int set_loop_callback_state(struct bpf_verifier_env *env,
10807 				   struct bpf_func_state *caller,
10808 				   struct bpf_func_state *callee,
10809 				   int insn_idx)
10810 {
10811 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
10812 	 *	    u64 flags);
10813 	 * callback_fn(u64 index, void *callback_ctx);
10814 	 */
10815 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
10816 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
10817 
10818 	/* unused */
10819 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
10820 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10821 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10822 
10823 	callee->in_callback_fn = true;
10824 	callee->callback_ret_range = retval_range(0, 1);
10825 	return 0;
10826 }
10827 
10828 static int set_timer_callback_state(struct bpf_verifier_env *env,
10829 				    struct bpf_func_state *caller,
10830 				    struct bpf_func_state *callee,
10831 				    int insn_idx)
10832 {
10833 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
10834 
10835 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
10836 	 * callback_fn(struct bpf_map *map, void *key, void *value);
10837 	 */
10838 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
10839 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
10840 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
10841 
10842 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
10843 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
10844 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
10845 
10846 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
10847 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
10848 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
10849 
10850 	/* unused */
10851 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10852 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10853 	callee->in_async_callback_fn = true;
10854 	callee->callback_ret_range = retval_range(0, 1);
10855 	return 0;
10856 }
10857 
10858 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
10859 				       struct bpf_func_state *caller,
10860 				       struct bpf_func_state *callee,
10861 				       int insn_idx)
10862 {
10863 	/* bpf_find_vma(struct task_struct *task, u64 addr,
10864 	 *               void *callback_fn, void *callback_ctx, u64 flags)
10865 	 * (callback_fn)(struct task_struct *task,
10866 	 *               struct vm_area_struct *vma, void *callback_ctx);
10867 	 */
10868 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
10869 
10870 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
10871 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
10872 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
10873 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA];
10874 
10875 	/* pointer to stack or null */
10876 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
10877 
10878 	/* unused */
10879 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10880 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10881 	callee->in_callback_fn = true;
10882 	callee->callback_ret_range = retval_range(0, 1);
10883 	return 0;
10884 }
10885 
10886 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
10887 					   struct bpf_func_state *caller,
10888 					   struct bpf_func_state *callee,
10889 					   int insn_idx)
10890 {
10891 	/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
10892 	 *			  callback_ctx, u64 flags);
10893 	 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
10894 	 */
10895 	__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
10896 	mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
10897 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
10898 
10899 	/* unused */
10900 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
10901 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10902 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10903 
10904 	callee->in_callback_fn = true;
10905 	callee->callback_ret_range = retval_range(0, 1);
10906 	return 0;
10907 }
10908 
10909 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
10910 					 struct bpf_func_state *caller,
10911 					 struct bpf_func_state *callee,
10912 					 int insn_idx)
10913 {
10914 	/* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
10915 	 *                     bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
10916 	 *
10917 	 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
10918 	 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
10919 	 * by this point, so look at 'root'
10920 	 */
10921 	struct btf_field *field;
10922 
10923 	field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
10924 				      BPF_RB_ROOT);
10925 	if (!field || !field->graph_root.value_btf_id)
10926 		return -EFAULT;
10927 
10928 	mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
10929 	ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
10930 	mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
10931 	ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
10932 
10933 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
10934 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10935 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10936 	callee->in_callback_fn = true;
10937 	callee->callback_ret_range = retval_range(0, 1);
10938 	return 0;
10939 }
10940 
10941 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
10942 
10943 /* Are we currently verifying the callback for a rbtree helper that must
10944  * be called with lock held? If so, no need to complain about unreleased
10945  * lock
10946  */
10947 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
10948 {
10949 	struct bpf_verifier_state *state = env->cur_state;
10950 	struct bpf_insn *insn = env->prog->insnsi;
10951 	struct bpf_func_state *callee;
10952 	int kfunc_btf_id;
10953 
10954 	if (!state->curframe)
10955 		return false;
10956 
10957 	callee = state->frame[state->curframe];
10958 
10959 	if (!callee->in_callback_fn)
10960 		return false;
10961 
10962 	kfunc_btf_id = insn[callee->callsite].imm;
10963 	return is_rbtree_lock_required_kfunc(kfunc_btf_id);
10964 }
10965 
10966 static bool retval_range_within(struct bpf_retval_range range, const struct bpf_reg_state *reg,
10967 				bool return_32bit)
10968 {
10969 	if (return_32bit)
10970 		return range.minval <= reg->s32_min_value && reg->s32_max_value <= range.maxval;
10971 	else
10972 		return range.minval <= reg->smin_value && reg->smax_value <= range.maxval;
10973 }
10974 
10975 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
10976 {
10977 	struct bpf_verifier_state *state = env->cur_state, *prev_st;
10978 	struct bpf_func_state *caller, *callee;
10979 	struct bpf_reg_state *r0;
10980 	bool in_callback_fn;
10981 	int err;
10982 
10983 	callee = state->frame[state->curframe];
10984 	r0 = &callee->regs[BPF_REG_0];
10985 	if (r0->type == PTR_TO_STACK) {
10986 		/* technically it's ok to return caller's stack pointer
10987 		 * (or caller's caller's pointer) back to the caller,
10988 		 * since these pointers are valid. Only current stack
10989 		 * pointer will be invalid as soon as function exits,
10990 		 * but let's be conservative
10991 		 */
10992 		verbose(env, "cannot return stack pointer to the caller\n");
10993 		return -EINVAL;
10994 	}
10995 
10996 	caller = state->frame[state->curframe - 1];
10997 	if (callee->in_callback_fn) {
10998 		if (r0->type != SCALAR_VALUE) {
10999 			verbose(env, "R0 not a scalar value\n");
11000 			return -EACCES;
11001 		}
11002 
11003 		/* we are going to rely on register's precise value */
11004 		err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64);
11005 		err = err ?: mark_chain_precision(env, BPF_REG_0);
11006 		if (err)
11007 			return err;
11008 
11009 		/* enforce R0 return value range, and bpf_callback_t returns 64bit */
11010 		if (!retval_range_within(callee->callback_ret_range, r0, false)) {
11011 			verbose_invalid_scalar(env, r0, callee->callback_ret_range,
11012 					       "At callback return", "R0");
11013 			return -EINVAL;
11014 		}
11015 		if (!calls_callback(env, callee->callsite)) {
11016 			verifier_bug(env, "in callback at %d, callsite %d !calls_callback",
11017 				     *insn_idx, callee->callsite);
11018 			return -EFAULT;
11019 		}
11020 	} else {
11021 		/* return to the caller whatever r0 had in the callee */
11022 		caller->regs[BPF_REG_0] = *r0;
11023 	}
11024 
11025 	/* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite,
11026 	 * there function call logic would reschedule callback visit. If iteration
11027 	 * converges is_state_visited() would prune that visit eventually.
11028 	 */
11029 	in_callback_fn = callee->in_callback_fn;
11030 	if (in_callback_fn)
11031 		*insn_idx = callee->callsite;
11032 	else
11033 		*insn_idx = callee->callsite + 1;
11034 
11035 	if (env->log.level & BPF_LOG_LEVEL) {
11036 		verbose(env, "returning from callee:\n");
11037 		print_verifier_state(env, state, callee->frameno, true);
11038 		verbose(env, "to caller at %d:\n", *insn_idx);
11039 		print_verifier_state(env, state, caller->frameno, true);
11040 	}
11041 	/* clear everything in the callee. In case of exceptional exits using
11042 	 * bpf_throw, this will be done by copy_verifier_state for extra frames. */
11043 	free_func_state(callee);
11044 	state->frame[state->curframe--] = NULL;
11045 
11046 	/* for callbacks widen imprecise scalars to make programs like below verify:
11047 	 *
11048 	 *   struct ctx { int i; }
11049 	 *   void cb(int idx, struct ctx *ctx) { ctx->i++; ... }
11050 	 *   ...
11051 	 *   struct ctx = { .i = 0; }
11052 	 *   bpf_loop(100, cb, &ctx, 0);
11053 	 *
11054 	 * This is similar to what is done in process_iter_next_call() for open
11055 	 * coded iterators.
11056 	 */
11057 	prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL;
11058 	if (prev_st) {
11059 		err = widen_imprecise_scalars(env, prev_st, state);
11060 		if (err)
11061 			return err;
11062 	}
11063 	return 0;
11064 }
11065 
11066 static int do_refine_retval_range(struct bpf_verifier_env *env,
11067 				  struct bpf_reg_state *regs, int ret_type,
11068 				  int func_id,
11069 				  struct bpf_call_arg_meta *meta)
11070 {
11071 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
11072 
11073 	if (ret_type != RET_INTEGER)
11074 		return 0;
11075 
11076 	switch (func_id) {
11077 	case BPF_FUNC_get_stack:
11078 	case BPF_FUNC_get_task_stack:
11079 	case BPF_FUNC_probe_read_str:
11080 	case BPF_FUNC_probe_read_kernel_str:
11081 	case BPF_FUNC_probe_read_user_str:
11082 		ret_reg->smax_value = meta->msize_max_value;
11083 		ret_reg->s32_max_value = meta->msize_max_value;
11084 		ret_reg->smin_value = -MAX_ERRNO;
11085 		ret_reg->s32_min_value = -MAX_ERRNO;
11086 		reg_bounds_sync(ret_reg);
11087 		break;
11088 	case BPF_FUNC_get_smp_processor_id:
11089 		ret_reg->umax_value = nr_cpu_ids - 1;
11090 		ret_reg->u32_max_value = nr_cpu_ids - 1;
11091 		ret_reg->smax_value = nr_cpu_ids - 1;
11092 		ret_reg->s32_max_value = nr_cpu_ids - 1;
11093 		ret_reg->umin_value = 0;
11094 		ret_reg->u32_min_value = 0;
11095 		ret_reg->smin_value = 0;
11096 		ret_reg->s32_min_value = 0;
11097 		reg_bounds_sync(ret_reg);
11098 		break;
11099 	}
11100 
11101 	return reg_bounds_sanity_check(env, ret_reg, "retval");
11102 }
11103 
11104 static int
11105 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
11106 		int func_id, int insn_idx)
11107 {
11108 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
11109 	struct bpf_map *map = meta->map_ptr;
11110 
11111 	if (func_id != BPF_FUNC_tail_call &&
11112 	    func_id != BPF_FUNC_map_lookup_elem &&
11113 	    func_id != BPF_FUNC_map_update_elem &&
11114 	    func_id != BPF_FUNC_map_delete_elem &&
11115 	    func_id != BPF_FUNC_map_push_elem &&
11116 	    func_id != BPF_FUNC_map_pop_elem &&
11117 	    func_id != BPF_FUNC_map_peek_elem &&
11118 	    func_id != BPF_FUNC_for_each_map_elem &&
11119 	    func_id != BPF_FUNC_redirect_map &&
11120 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
11121 		return 0;
11122 
11123 	if (map == NULL) {
11124 		verifier_bug(env, "expected map for helper call");
11125 		return -EFAULT;
11126 	}
11127 
11128 	/* In case of read-only, some additional restrictions
11129 	 * need to be applied in order to prevent altering the
11130 	 * state of the map from program side.
11131 	 */
11132 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
11133 	    (func_id == BPF_FUNC_map_delete_elem ||
11134 	     func_id == BPF_FUNC_map_update_elem ||
11135 	     func_id == BPF_FUNC_map_push_elem ||
11136 	     func_id == BPF_FUNC_map_pop_elem)) {
11137 		verbose(env, "write into map forbidden\n");
11138 		return -EACCES;
11139 	}
11140 
11141 	if (!aux->map_ptr_state.map_ptr)
11142 		bpf_map_ptr_store(aux, meta->map_ptr,
11143 				  !meta->map_ptr->bypass_spec_v1, false);
11144 	else if (aux->map_ptr_state.map_ptr != meta->map_ptr)
11145 		bpf_map_ptr_store(aux, meta->map_ptr,
11146 				  !meta->map_ptr->bypass_spec_v1, true);
11147 	return 0;
11148 }
11149 
11150 static int
11151 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
11152 		int func_id, int insn_idx)
11153 {
11154 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
11155 	struct bpf_reg_state *regs = cur_regs(env), *reg;
11156 	struct bpf_map *map = meta->map_ptr;
11157 	u64 val, max;
11158 	int err;
11159 
11160 	if (func_id != BPF_FUNC_tail_call)
11161 		return 0;
11162 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
11163 		verbose(env, "expected prog array map for tail call");
11164 		return -EINVAL;
11165 	}
11166 
11167 	reg = &regs[BPF_REG_3];
11168 	val = reg->var_off.value;
11169 	max = map->max_entries;
11170 
11171 	if (!(is_reg_const(reg, false) && val < max)) {
11172 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
11173 		return 0;
11174 	}
11175 
11176 	err = mark_chain_precision(env, BPF_REG_3);
11177 	if (err)
11178 		return err;
11179 	if (bpf_map_key_unseen(aux))
11180 		bpf_map_key_store(aux, val);
11181 	else if (!bpf_map_key_poisoned(aux) &&
11182 		  bpf_map_key_immediate(aux) != val)
11183 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
11184 	return 0;
11185 }
11186 
11187 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit)
11188 {
11189 	struct bpf_verifier_state *state = env->cur_state;
11190 	enum bpf_prog_type type = resolve_prog_type(env->prog);
11191 	struct bpf_reg_state *reg = reg_state(env, BPF_REG_0);
11192 	bool refs_lingering = false;
11193 	int i;
11194 
11195 	if (!exception_exit && cur_func(env)->frameno)
11196 		return 0;
11197 
11198 	for (i = 0; i < state->acquired_refs; i++) {
11199 		if (state->refs[i].type != REF_TYPE_PTR)
11200 			continue;
11201 		/* Allow struct_ops programs to return a referenced kptr back to
11202 		 * kernel. Type checks are performed later in check_return_code.
11203 		 */
11204 		if (type == BPF_PROG_TYPE_STRUCT_OPS && !exception_exit &&
11205 		    reg->ref_obj_id == state->refs[i].id)
11206 			continue;
11207 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
11208 			state->refs[i].id, state->refs[i].insn_idx);
11209 		refs_lingering = true;
11210 	}
11211 	return refs_lingering ? -EINVAL : 0;
11212 }
11213 
11214 static int check_resource_leak(struct bpf_verifier_env *env, bool exception_exit, bool check_lock, const char *prefix)
11215 {
11216 	int err;
11217 
11218 	if (check_lock && env->cur_state->active_locks) {
11219 		verbose(env, "%s cannot be used inside bpf_spin_lock-ed region\n", prefix);
11220 		return -EINVAL;
11221 	}
11222 
11223 	err = check_reference_leak(env, exception_exit);
11224 	if (err) {
11225 		verbose(env, "%s would lead to reference leak\n", prefix);
11226 		return err;
11227 	}
11228 
11229 	if (check_lock && env->cur_state->active_irq_id) {
11230 		verbose(env, "%s cannot be used inside bpf_local_irq_save-ed region\n", prefix);
11231 		return -EINVAL;
11232 	}
11233 
11234 	if (check_lock && env->cur_state->active_rcu_lock) {
11235 		verbose(env, "%s cannot be used inside bpf_rcu_read_lock-ed region\n", prefix);
11236 		return -EINVAL;
11237 	}
11238 
11239 	if (check_lock && env->cur_state->active_preempt_locks) {
11240 		verbose(env, "%s cannot be used inside bpf_preempt_disable-ed region\n", prefix);
11241 		return -EINVAL;
11242 	}
11243 
11244 	return 0;
11245 }
11246 
11247 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
11248 				   struct bpf_reg_state *regs)
11249 {
11250 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
11251 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
11252 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
11253 	struct bpf_bprintf_data data = {};
11254 	int err, fmt_map_off, num_args;
11255 	u64 fmt_addr;
11256 	char *fmt;
11257 
11258 	/* data must be an array of u64 */
11259 	if (data_len_reg->var_off.value % 8)
11260 		return -EINVAL;
11261 	num_args = data_len_reg->var_off.value / 8;
11262 
11263 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
11264 	 * and map_direct_value_addr is set.
11265 	 */
11266 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
11267 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
11268 						  fmt_map_off);
11269 	if (err) {
11270 		verbose(env, "failed to retrieve map value address\n");
11271 		return -EFAULT;
11272 	}
11273 	fmt = (char *)(long)fmt_addr + fmt_map_off;
11274 
11275 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
11276 	 * can focus on validating the format specifiers.
11277 	 */
11278 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
11279 	if (err < 0)
11280 		verbose(env, "Invalid format string\n");
11281 
11282 	return err;
11283 }
11284 
11285 static int check_get_func_ip(struct bpf_verifier_env *env)
11286 {
11287 	enum bpf_prog_type type = resolve_prog_type(env->prog);
11288 	int func_id = BPF_FUNC_get_func_ip;
11289 
11290 	if (type == BPF_PROG_TYPE_TRACING) {
11291 		if (!bpf_prog_has_trampoline(env->prog)) {
11292 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
11293 				func_id_name(func_id), func_id);
11294 			return -ENOTSUPP;
11295 		}
11296 		return 0;
11297 	} else if (type == BPF_PROG_TYPE_KPROBE) {
11298 		return 0;
11299 	}
11300 
11301 	verbose(env, "func %s#%d not supported for program type %d\n",
11302 		func_id_name(func_id), func_id, type);
11303 	return -ENOTSUPP;
11304 }
11305 
11306 static struct bpf_insn_aux_data *cur_aux(const struct bpf_verifier_env *env)
11307 {
11308 	return &env->insn_aux_data[env->insn_idx];
11309 }
11310 
11311 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
11312 {
11313 	struct bpf_reg_state *regs = cur_regs(env);
11314 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
11315 	bool reg_is_null = register_is_null(reg);
11316 
11317 	if (reg_is_null)
11318 		mark_chain_precision(env, BPF_REG_4);
11319 
11320 	return reg_is_null;
11321 }
11322 
11323 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
11324 {
11325 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
11326 
11327 	if (!state->initialized) {
11328 		state->initialized = 1;
11329 		state->fit_for_inline = loop_flag_is_zero(env);
11330 		state->callback_subprogno = subprogno;
11331 		return;
11332 	}
11333 
11334 	if (!state->fit_for_inline)
11335 		return;
11336 
11337 	state->fit_for_inline = (loop_flag_is_zero(env) &&
11338 				 state->callback_subprogno == subprogno);
11339 }
11340 
11341 /* Returns whether or not the given map type can potentially elide
11342  * lookup return value nullness check. This is possible if the key
11343  * is statically known.
11344  */
11345 static bool can_elide_value_nullness(enum bpf_map_type type)
11346 {
11347 	switch (type) {
11348 	case BPF_MAP_TYPE_ARRAY:
11349 	case BPF_MAP_TYPE_PERCPU_ARRAY:
11350 		return true;
11351 	default:
11352 		return false;
11353 	}
11354 }
11355 
11356 static int get_helper_proto(struct bpf_verifier_env *env, int func_id,
11357 			    const struct bpf_func_proto **ptr)
11358 {
11359 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID)
11360 		return -ERANGE;
11361 
11362 	if (!env->ops->get_func_proto)
11363 		return -EINVAL;
11364 
11365 	*ptr = env->ops->get_func_proto(func_id, env->prog);
11366 	return *ptr && (*ptr)->func ? 0 : -EINVAL;
11367 }
11368 
11369 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
11370 			     int *insn_idx_p)
11371 {
11372 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
11373 	bool returns_cpu_specific_alloc_ptr = false;
11374 	const struct bpf_func_proto *fn = NULL;
11375 	enum bpf_return_type ret_type;
11376 	enum bpf_type_flag ret_flag;
11377 	struct bpf_reg_state *regs;
11378 	struct bpf_call_arg_meta meta;
11379 	int insn_idx = *insn_idx_p;
11380 	bool changes_data;
11381 	int i, err, func_id;
11382 
11383 	/* find function prototype */
11384 	func_id = insn->imm;
11385 	err = get_helper_proto(env, insn->imm, &fn);
11386 	if (err == -ERANGE) {
11387 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id), func_id);
11388 		return -EINVAL;
11389 	}
11390 
11391 	if (err) {
11392 		verbose(env, "program of this type cannot use helper %s#%d\n",
11393 			func_id_name(func_id), func_id);
11394 		return err;
11395 	}
11396 
11397 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
11398 	if (!env->prog->gpl_compatible && fn->gpl_only) {
11399 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
11400 		return -EINVAL;
11401 	}
11402 
11403 	if (fn->allowed && !fn->allowed(env->prog)) {
11404 		verbose(env, "helper call is not allowed in probe\n");
11405 		return -EINVAL;
11406 	}
11407 
11408 	if (!in_sleepable(env) && fn->might_sleep) {
11409 		verbose(env, "helper call might sleep in a non-sleepable prog\n");
11410 		return -EINVAL;
11411 	}
11412 
11413 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
11414 	changes_data = bpf_helper_changes_pkt_data(func_id);
11415 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
11416 		verifier_bug(env, "func %s#%d: r1 != ctx", func_id_name(func_id), func_id);
11417 		return -EFAULT;
11418 	}
11419 
11420 	memset(&meta, 0, sizeof(meta));
11421 	meta.pkt_access = fn->pkt_access;
11422 
11423 	err = check_func_proto(fn, func_id);
11424 	if (err) {
11425 		verifier_bug(env, "incorrect func proto %s#%d", func_id_name(func_id), func_id);
11426 		return err;
11427 	}
11428 
11429 	if (env->cur_state->active_rcu_lock) {
11430 		if (fn->might_sleep) {
11431 			verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
11432 				func_id_name(func_id), func_id);
11433 			return -EINVAL;
11434 		}
11435 
11436 		if (in_sleepable(env) && is_storage_get_function(func_id))
11437 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
11438 	}
11439 
11440 	if (env->cur_state->active_preempt_locks) {
11441 		if (fn->might_sleep) {
11442 			verbose(env, "sleepable helper %s#%d in non-preemptible region\n",
11443 				func_id_name(func_id), func_id);
11444 			return -EINVAL;
11445 		}
11446 
11447 		if (in_sleepable(env) && is_storage_get_function(func_id))
11448 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
11449 	}
11450 
11451 	if (env->cur_state->active_irq_id) {
11452 		if (fn->might_sleep) {
11453 			verbose(env, "sleepable helper %s#%d in IRQ-disabled region\n",
11454 				func_id_name(func_id), func_id);
11455 			return -EINVAL;
11456 		}
11457 
11458 		if (in_sleepable(env) && is_storage_get_function(func_id))
11459 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
11460 	}
11461 
11462 	meta.func_id = func_id;
11463 	/* check args */
11464 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
11465 		err = check_func_arg(env, i, &meta, fn, insn_idx);
11466 		if (err)
11467 			return err;
11468 	}
11469 
11470 	err = record_func_map(env, &meta, func_id, insn_idx);
11471 	if (err)
11472 		return err;
11473 
11474 	err = record_func_key(env, &meta, func_id, insn_idx);
11475 	if (err)
11476 		return err;
11477 
11478 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
11479 	 * is inferred from register state.
11480 	 */
11481 	for (i = 0; i < meta.access_size; i++) {
11482 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
11483 				       BPF_WRITE, -1, false, false);
11484 		if (err)
11485 			return err;
11486 	}
11487 
11488 	regs = cur_regs(env);
11489 
11490 	if (meta.release_regno) {
11491 		err = -EINVAL;
11492 		/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
11493 		 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
11494 		 * is safe to do directly.
11495 		 */
11496 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
11497 			if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
11498 				verifier_bug(env, "CONST_PTR_TO_DYNPTR cannot be released");
11499 				return -EFAULT;
11500 			}
11501 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
11502 		} else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) {
11503 			u32 ref_obj_id = meta.ref_obj_id;
11504 			bool in_rcu = in_rcu_cs(env);
11505 			struct bpf_func_state *state;
11506 			struct bpf_reg_state *reg;
11507 
11508 			err = release_reference_nomark(env->cur_state, ref_obj_id);
11509 			if (!err) {
11510 				bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
11511 					if (reg->ref_obj_id == ref_obj_id) {
11512 						if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) {
11513 							reg->ref_obj_id = 0;
11514 							reg->type &= ~MEM_ALLOC;
11515 							reg->type |= MEM_RCU;
11516 						} else {
11517 							mark_reg_invalid(env, reg);
11518 						}
11519 					}
11520 				}));
11521 			}
11522 		} else if (meta.ref_obj_id) {
11523 			err = release_reference(env, meta.ref_obj_id);
11524 		} else if (register_is_null(&regs[meta.release_regno])) {
11525 			/* meta.ref_obj_id can only be 0 if register that is meant to be
11526 			 * released is NULL, which must be > R0.
11527 			 */
11528 			err = 0;
11529 		}
11530 		if (err) {
11531 			verbose(env, "func %s#%d reference has not been acquired before\n",
11532 				func_id_name(func_id), func_id);
11533 			return err;
11534 		}
11535 	}
11536 
11537 	switch (func_id) {
11538 	case BPF_FUNC_tail_call:
11539 		err = check_resource_leak(env, false, true, "tail_call");
11540 		if (err)
11541 			return err;
11542 		break;
11543 	case BPF_FUNC_get_local_storage:
11544 		/* check that flags argument in get_local_storage(map, flags) is 0,
11545 		 * this is required because get_local_storage() can't return an error.
11546 		 */
11547 		if (!register_is_null(&regs[BPF_REG_2])) {
11548 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
11549 			return -EINVAL;
11550 		}
11551 		break;
11552 	case BPF_FUNC_for_each_map_elem:
11553 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
11554 					 set_map_elem_callback_state);
11555 		break;
11556 	case BPF_FUNC_timer_set_callback:
11557 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
11558 					 set_timer_callback_state);
11559 		break;
11560 	case BPF_FUNC_find_vma:
11561 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
11562 					 set_find_vma_callback_state);
11563 		break;
11564 	case BPF_FUNC_snprintf:
11565 		err = check_bpf_snprintf_call(env, regs);
11566 		break;
11567 	case BPF_FUNC_loop:
11568 		update_loop_inline_state(env, meta.subprogno);
11569 		/* Verifier relies on R1 value to determine if bpf_loop() iteration
11570 		 * is finished, thus mark it precise.
11571 		 */
11572 		err = mark_chain_precision(env, BPF_REG_1);
11573 		if (err)
11574 			return err;
11575 		if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) {
11576 			err = push_callback_call(env, insn, insn_idx, meta.subprogno,
11577 						 set_loop_callback_state);
11578 		} else {
11579 			cur_func(env)->callback_depth = 0;
11580 			if (env->log.level & BPF_LOG_LEVEL2)
11581 				verbose(env, "frame%d bpf_loop iteration limit reached\n",
11582 					env->cur_state->curframe);
11583 		}
11584 		break;
11585 	case BPF_FUNC_dynptr_from_mem:
11586 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
11587 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
11588 				reg_type_str(env, regs[BPF_REG_1].type));
11589 			return -EACCES;
11590 		}
11591 		break;
11592 	case BPF_FUNC_set_retval:
11593 		if (prog_type == BPF_PROG_TYPE_LSM &&
11594 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
11595 			if (!env->prog->aux->attach_func_proto->type) {
11596 				/* Make sure programs that attach to void
11597 				 * hooks don't try to modify return value.
11598 				 */
11599 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
11600 				return -EINVAL;
11601 			}
11602 		}
11603 		break;
11604 	case BPF_FUNC_dynptr_data:
11605 	{
11606 		struct bpf_reg_state *reg;
11607 		int id, ref_obj_id;
11608 
11609 		reg = get_dynptr_arg_reg(env, fn, regs);
11610 		if (!reg)
11611 			return -EFAULT;
11612 
11613 
11614 		if (meta.dynptr_id) {
11615 			verifier_bug(env, "meta.dynptr_id already set");
11616 			return -EFAULT;
11617 		}
11618 		if (meta.ref_obj_id) {
11619 			verifier_bug(env, "meta.ref_obj_id already set");
11620 			return -EFAULT;
11621 		}
11622 
11623 		id = dynptr_id(env, reg);
11624 		if (id < 0) {
11625 			verifier_bug(env, "failed to obtain dynptr id");
11626 			return id;
11627 		}
11628 
11629 		ref_obj_id = dynptr_ref_obj_id(env, reg);
11630 		if (ref_obj_id < 0) {
11631 			verifier_bug(env, "failed to obtain dynptr ref_obj_id");
11632 			return ref_obj_id;
11633 		}
11634 
11635 		meta.dynptr_id = id;
11636 		meta.ref_obj_id = ref_obj_id;
11637 
11638 		break;
11639 	}
11640 	case BPF_FUNC_dynptr_write:
11641 	{
11642 		enum bpf_dynptr_type dynptr_type;
11643 		struct bpf_reg_state *reg;
11644 
11645 		reg = get_dynptr_arg_reg(env, fn, regs);
11646 		if (!reg)
11647 			return -EFAULT;
11648 
11649 		dynptr_type = dynptr_get_type(env, reg);
11650 		if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
11651 			return -EFAULT;
11652 
11653 		if (dynptr_type == BPF_DYNPTR_TYPE_SKB ||
11654 		    dynptr_type == BPF_DYNPTR_TYPE_SKB_META)
11655 			/* this will trigger clear_all_pkt_pointers(), which will
11656 			 * invalidate all dynptr slices associated with the skb
11657 			 */
11658 			changes_data = true;
11659 
11660 		break;
11661 	}
11662 	case BPF_FUNC_per_cpu_ptr:
11663 	case BPF_FUNC_this_cpu_ptr:
11664 	{
11665 		struct bpf_reg_state *reg = &regs[BPF_REG_1];
11666 		const struct btf_type *type;
11667 
11668 		if (reg->type & MEM_RCU) {
11669 			type = btf_type_by_id(reg->btf, reg->btf_id);
11670 			if (!type || !btf_type_is_struct(type)) {
11671 				verbose(env, "Helper has invalid btf/btf_id in R1\n");
11672 				return -EFAULT;
11673 			}
11674 			returns_cpu_specific_alloc_ptr = true;
11675 			env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true;
11676 		}
11677 		break;
11678 	}
11679 	case BPF_FUNC_user_ringbuf_drain:
11680 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
11681 					 set_user_ringbuf_callback_state);
11682 		break;
11683 	}
11684 
11685 	if (err)
11686 		return err;
11687 
11688 	/* reset caller saved regs */
11689 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
11690 		mark_reg_not_init(env, regs, caller_saved[i]);
11691 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
11692 	}
11693 
11694 	/* helper call returns 64-bit value. */
11695 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
11696 
11697 	/* update return register (already marked as written above) */
11698 	ret_type = fn->ret_type;
11699 	ret_flag = type_flag(ret_type);
11700 
11701 	switch (base_type(ret_type)) {
11702 	case RET_INTEGER:
11703 		/* sets type to SCALAR_VALUE */
11704 		mark_reg_unknown(env, regs, BPF_REG_0);
11705 		break;
11706 	case RET_VOID:
11707 		regs[BPF_REG_0].type = NOT_INIT;
11708 		break;
11709 	case RET_PTR_TO_MAP_VALUE:
11710 		/* There is no offset yet applied, variable or fixed */
11711 		mark_reg_known_zero(env, regs, BPF_REG_0);
11712 		/* remember map_ptr, so that check_map_access()
11713 		 * can check 'value_size' boundary of memory access
11714 		 * to map element returned from bpf_map_lookup_elem()
11715 		 */
11716 		if (meta.map_ptr == NULL) {
11717 			verifier_bug(env, "unexpected null map_ptr");
11718 			return -EFAULT;
11719 		}
11720 
11721 		if (func_id == BPF_FUNC_map_lookup_elem &&
11722 		    can_elide_value_nullness(meta.map_ptr->map_type) &&
11723 		    meta.const_map_key >= 0 &&
11724 		    meta.const_map_key < meta.map_ptr->max_entries)
11725 			ret_flag &= ~PTR_MAYBE_NULL;
11726 
11727 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
11728 		regs[BPF_REG_0].map_uid = meta.map_uid;
11729 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
11730 		if (!type_may_be_null(ret_flag) &&
11731 		    btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK)) {
11732 			regs[BPF_REG_0].id = ++env->id_gen;
11733 		}
11734 		break;
11735 	case RET_PTR_TO_SOCKET:
11736 		mark_reg_known_zero(env, regs, BPF_REG_0);
11737 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
11738 		break;
11739 	case RET_PTR_TO_SOCK_COMMON:
11740 		mark_reg_known_zero(env, regs, BPF_REG_0);
11741 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
11742 		break;
11743 	case RET_PTR_TO_TCP_SOCK:
11744 		mark_reg_known_zero(env, regs, BPF_REG_0);
11745 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
11746 		break;
11747 	case RET_PTR_TO_MEM:
11748 		mark_reg_known_zero(env, regs, BPF_REG_0);
11749 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
11750 		regs[BPF_REG_0].mem_size = meta.mem_size;
11751 		break;
11752 	case RET_PTR_TO_MEM_OR_BTF_ID:
11753 	{
11754 		const struct btf_type *t;
11755 
11756 		mark_reg_known_zero(env, regs, BPF_REG_0);
11757 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
11758 		if (!btf_type_is_struct(t)) {
11759 			u32 tsize;
11760 			const struct btf_type *ret;
11761 			const char *tname;
11762 
11763 			/* resolve the type size of ksym. */
11764 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
11765 			if (IS_ERR(ret)) {
11766 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
11767 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
11768 					tname, PTR_ERR(ret));
11769 				return -EINVAL;
11770 			}
11771 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
11772 			regs[BPF_REG_0].mem_size = tsize;
11773 		} else {
11774 			if (returns_cpu_specific_alloc_ptr) {
11775 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU;
11776 			} else {
11777 				/* MEM_RDONLY may be carried from ret_flag, but it
11778 				 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
11779 				 * it will confuse the check of PTR_TO_BTF_ID in
11780 				 * check_mem_access().
11781 				 */
11782 				ret_flag &= ~MEM_RDONLY;
11783 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
11784 			}
11785 
11786 			regs[BPF_REG_0].btf = meta.ret_btf;
11787 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
11788 		}
11789 		break;
11790 	}
11791 	case RET_PTR_TO_BTF_ID:
11792 	{
11793 		struct btf *ret_btf;
11794 		int ret_btf_id;
11795 
11796 		mark_reg_known_zero(env, regs, BPF_REG_0);
11797 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
11798 		if (func_id == BPF_FUNC_kptr_xchg) {
11799 			ret_btf = meta.kptr_field->kptr.btf;
11800 			ret_btf_id = meta.kptr_field->kptr.btf_id;
11801 			if (!btf_is_kernel(ret_btf)) {
11802 				regs[BPF_REG_0].type |= MEM_ALLOC;
11803 				if (meta.kptr_field->type == BPF_KPTR_PERCPU)
11804 					regs[BPF_REG_0].type |= MEM_PERCPU;
11805 			}
11806 		} else {
11807 			if (fn->ret_btf_id == BPF_PTR_POISON) {
11808 				verifier_bug(env, "func %s has non-overwritten BPF_PTR_POISON return type",
11809 					     func_id_name(func_id));
11810 				return -EFAULT;
11811 			}
11812 			ret_btf = btf_vmlinux;
11813 			ret_btf_id = *fn->ret_btf_id;
11814 		}
11815 		if (ret_btf_id == 0) {
11816 			verbose(env, "invalid return type %u of func %s#%d\n",
11817 				base_type(ret_type), func_id_name(func_id),
11818 				func_id);
11819 			return -EINVAL;
11820 		}
11821 		regs[BPF_REG_0].btf = ret_btf;
11822 		regs[BPF_REG_0].btf_id = ret_btf_id;
11823 		break;
11824 	}
11825 	default:
11826 		verbose(env, "unknown return type %u of func %s#%d\n",
11827 			base_type(ret_type), func_id_name(func_id), func_id);
11828 		return -EINVAL;
11829 	}
11830 
11831 	if (type_may_be_null(regs[BPF_REG_0].type))
11832 		regs[BPF_REG_0].id = ++env->id_gen;
11833 
11834 	if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
11835 		verifier_bug(env, "func %s#%d sets ref_obj_id more than once",
11836 			     func_id_name(func_id), func_id);
11837 		return -EFAULT;
11838 	}
11839 
11840 	if (is_dynptr_ref_function(func_id))
11841 		regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
11842 
11843 	if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
11844 		/* For release_reference() */
11845 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
11846 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
11847 		int id = acquire_reference(env, insn_idx);
11848 
11849 		if (id < 0)
11850 			return id;
11851 		/* For mark_ptr_or_null_reg() */
11852 		regs[BPF_REG_0].id = id;
11853 		/* For release_reference() */
11854 		regs[BPF_REG_0].ref_obj_id = id;
11855 	}
11856 
11857 	err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta);
11858 	if (err)
11859 		return err;
11860 
11861 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
11862 	if (err)
11863 		return err;
11864 
11865 	if ((func_id == BPF_FUNC_get_stack ||
11866 	     func_id == BPF_FUNC_get_task_stack) &&
11867 	    !env->prog->has_callchain_buf) {
11868 		const char *err_str;
11869 
11870 #ifdef CONFIG_PERF_EVENTS
11871 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
11872 		err_str = "cannot get callchain buffer for func %s#%d\n";
11873 #else
11874 		err = -ENOTSUPP;
11875 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
11876 #endif
11877 		if (err) {
11878 			verbose(env, err_str, func_id_name(func_id), func_id);
11879 			return err;
11880 		}
11881 
11882 		env->prog->has_callchain_buf = true;
11883 	}
11884 
11885 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
11886 		env->prog->call_get_stack = true;
11887 
11888 	if (func_id == BPF_FUNC_get_func_ip) {
11889 		if (check_get_func_ip(env))
11890 			return -ENOTSUPP;
11891 		env->prog->call_get_func_ip = true;
11892 	}
11893 
11894 	if (changes_data)
11895 		clear_all_pkt_pointers(env);
11896 	return 0;
11897 }
11898 
11899 /* mark_btf_func_reg_size() is used when the reg size is determined by
11900  * the BTF func_proto's return value size and argument.
11901  */
11902 static void __mark_btf_func_reg_size(struct bpf_verifier_env *env, struct bpf_reg_state *regs,
11903 				     u32 regno, size_t reg_size)
11904 {
11905 	struct bpf_reg_state *reg = &regs[regno];
11906 
11907 	if (regno == BPF_REG_0) {
11908 		/* Function return value */
11909 		reg->live |= REG_LIVE_WRITTEN;
11910 		reg->subreg_def = reg_size == sizeof(u64) ?
11911 			DEF_NOT_SUBREG : env->insn_idx + 1;
11912 	} else {
11913 		/* Function argument */
11914 		if (reg_size == sizeof(u64)) {
11915 			mark_insn_zext(env, reg);
11916 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
11917 		} else {
11918 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
11919 		}
11920 	}
11921 }
11922 
11923 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
11924 				   size_t reg_size)
11925 {
11926 	return __mark_btf_func_reg_size(env, cur_regs(env), regno, reg_size);
11927 }
11928 
11929 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
11930 {
11931 	return meta->kfunc_flags & KF_ACQUIRE;
11932 }
11933 
11934 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
11935 {
11936 	return meta->kfunc_flags & KF_RELEASE;
11937 }
11938 
11939 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
11940 {
11941 	return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
11942 }
11943 
11944 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
11945 {
11946 	return meta->kfunc_flags & KF_SLEEPABLE;
11947 }
11948 
11949 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
11950 {
11951 	return meta->kfunc_flags & KF_DESTRUCTIVE;
11952 }
11953 
11954 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
11955 {
11956 	return meta->kfunc_flags & KF_RCU;
11957 }
11958 
11959 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta)
11960 {
11961 	return meta->kfunc_flags & KF_RCU_PROTECTED;
11962 }
11963 
11964 static bool is_kfunc_arg_mem_size(const struct btf *btf,
11965 				  const struct btf_param *arg,
11966 				  const struct bpf_reg_state *reg)
11967 {
11968 	const struct btf_type *t;
11969 
11970 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
11971 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
11972 		return false;
11973 
11974 	return btf_param_match_suffix(btf, arg, "__sz");
11975 }
11976 
11977 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
11978 					const struct btf_param *arg,
11979 					const struct bpf_reg_state *reg)
11980 {
11981 	const struct btf_type *t;
11982 
11983 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
11984 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
11985 		return false;
11986 
11987 	return btf_param_match_suffix(btf, arg, "__szk");
11988 }
11989 
11990 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg)
11991 {
11992 	return btf_param_match_suffix(btf, arg, "__opt");
11993 }
11994 
11995 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
11996 {
11997 	return btf_param_match_suffix(btf, arg, "__k");
11998 }
11999 
12000 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
12001 {
12002 	return btf_param_match_suffix(btf, arg, "__ign");
12003 }
12004 
12005 static bool is_kfunc_arg_map(const struct btf *btf, const struct btf_param *arg)
12006 {
12007 	return btf_param_match_suffix(btf, arg, "__map");
12008 }
12009 
12010 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
12011 {
12012 	return btf_param_match_suffix(btf, arg, "__alloc");
12013 }
12014 
12015 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
12016 {
12017 	return btf_param_match_suffix(btf, arg, "__uninit");
12018 }
12019 
12020 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
12021 {
12022 	return btf_param_match_suffix(btf, arg, "__refcounted_kptr");
12023 }
12024 
12025 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg)
12026 {
12027 	return btf_param_match_suffix(btf, arg, "__nullable");
12028 }
12029 
12030 static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg)
12031 {
12032 	return btf_param_match_suffix(btf, arg, "__str");
12033 }
12034 
12035 static bool is_kfunc_arg_irq_flag(const struct btf *btf, const struct btf_param *arg)
12036 {
12037 	return btf_param_match_suffix(btf, arg, "__irq_flag");
12038 }
12039 
12040 static bool is_kfunc_arg_prog(const struct btf *btf, const struct btf_param *arg)
12041 {
12042 	return btf_param_match_suffix(btf, arg, "__prog");
12043 }
12044 
12045 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
12046 					  const struct btf_param *arg,
12047 					  const char *name)
12048 {
12049 	int len, target_len = strlen(name);
12050 	const char *param_name;
12051 
12052 	param_name = btf_name_by_offset(btf, arg->name_off);
12053 	if (str_is_empty(param_name))
12054 		return false;
12055 	len = strlen(param_name);
12056 	if (len != target_len)
12057 		return false;
12058 	if (strcmp(param_name, name))
12059 		return false;
12060 
12061 	return true;
12062 }
12063 
12064 enum {
12065 	KF_ARG_DYNPTR_ID,
12066 	KF_ARG_LIST_HEAD_ID,
12067 	KF_ARG_LIST_NODE_ID,
12068 	KF_ARG_RB_ROOT_ID,
12069 	KF_ARG_RB_NODE_ID,
12070 	KF_ARG_WORKQUEUE_ID,
12071 	KF_ARG_RES_SPIN_LOCK_ID,
12072 };
12073 
12074 BTF_ID_LIST(kf_arg_btf_ids)
12075 BTF_ID(struct, bpf_dynptr)
12076 BTF_ID(struct, bpf_list_head)
12077 BTF_ID(struct, bpf_list_node)
12078 BTF_ID(struct, bpf_rb_root)
12079 BTF_ID(struct, bpf_rb_node)
12080 BTF_ID(struct, bpf_wq)
12081 BTF_ID(struct, bpf_res_spin_lock)
12082 
12083 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
12084 				    const struct btf_param *arg, int type)
12085 {
12086 	const struct btf_type *t;
12087 	u32 res_id;
12088 
12089 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
12090 	if (!t)
12091 		return false;
12092 	if (!btf_type_is_ptr(t))
12093 		return false;
12094 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
12095 	if (!t)
12096 		return false;
12097 	return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
12098 }
12099 
12100 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
12101 {
12102 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
12103 }
12104 
12105 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
12106 {
12107 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
12108 }
12109 
12110 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
12111 {
12112 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
12113 }
12114 
12115 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
12116 {
12117 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
12118 }
12119 
12120 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
12121 {
12122 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
12123 }
12124 
12125 static bool is_kfunc_arg_wq(const struct btf *btf, const struct btf_param *arg)
12126 {
12127 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_WORKQUEUE_ID);
12128 }
12129 
12130 static bool is_kfunc_arg_res_spin_lock(const struct btf *btf, const struct btf_param *arg)
12131 {
12132 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RES_SPIN_LOCK_ID);
12133 }
12134 
12135 static bool is_rbtree_node_type(const struct btf_type *t)
12136 {
12137 	return t == btf_type_by_id(btf_vmlinux, kf_arg_btf_ids[KF_ARG_RB_NODE_ID]);
12138 }
12139 
12140 static bool is_list_node_type(const struct btf_type *t)
12141 {
12142 	return t == btf_type_by_id(btf_vmlinux, kf_arg_btf_ids[KF_ARG_LIST_NODE_ID]);
12143 }
12144 
12145 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
12146 				  const struct btf_param *arg)
12147 {
12148 	const struct btf_type *t;
12149 
12150 	t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
12151 	if (!t)
12152 		return false;
12153 
12154 	return true;
12155 }
12156 
12157 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
12158 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
12159 					const struct btf *btf,
12160 					const struct btf_type *t, int rec)
12161 {
12162 	const struct btf_type *member_type;
12163 	const struct btf_member *member;
12164 	u32 i;
12165 
12166 	if (!btf_type_is_struct(t))
12167 		return false;
12168 
12169 	for_each_member(i, t, member) {
12170 		const struct btf_array *array;
12171 
12172 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
12173 		if (btf_type_is_struct(member_type)) {
12174 			if (rec >= 3) {
12175 				verbose(env, "max struct nesting depth exceeded\n");
12176 				return false;
12177 			}
12178 			if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
12179 				return false;
12180 			continue;
12181 		}
12182 		if (btf_type_is_array(member_type)) {
12183 			array = btf_array(member_type);
12184 			if (!array->nelems)
12185 				return false;
12186 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
12187 			if (!btf_type_is_scalar(member_type))
12188 				return false;
12189 			continue;
12190 		}
12191 		if (!btf_type_is_scalar(member_type))
12192 			return false;
12193 	}
12194 	return true;
12195 }
12196 
12197 enum kfunc_ptr_arg_type {
12198 	KF_ARG_PTR_TO_CTX,
12199 	KF_ARG_PTR_TO_ALLOC_BTF_ID,    /* Allocated object */
12200 	KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
12201 	KF_ARG_PTR_TO_DYNPTR,
12202 	KF_ARG_PTR_TO_ITER,
12203 	KF_ARG_PTR_TO_LIST_HEAD,
12204 	KF_ARG_PTR_TO_LIST_NODE,
12205 	KF_ARG_PTR_TO_BTF_ID,	       /* Also covers reg2btf_ids conversions */
12206 	KF_ARG_PTR_TO_MEM,
12207 	KF_ARG_PTR_TO_MEM_SIZE,	       /* Size derived from next argument, skip it */
12208 	KF_ARG_PTR_TO_CALLBACK,
12209 	KF_ARG_PTR_TO_RB_ROOT,
12210 	KF_ARG_PTR_TO_RB_NODE,
12211 	KF_ARG_PTR_TO_NULL,
12212 	KF_ARG_PTR_TO_CONST_STR,
12213 	KF_ARG_PTR_TO_MAP,
12214 	KF_ARG_PTR_TO_WORKQUEUE,
12215 	KF_ARG_PTR_TO_IRQ_FLAG,
12216 	KF_ARG_PTR_TO_RES_SPIN_LOCK,
12217 };
12218 
12219 enum special_kfunc_type {
12220 	KF_bpf_obj_new_impl,
12221 	KF_bpf_obj_drop_impl,
12222 	KF_bpf_refcount_acquire_impl,
12223 	KF_bpf_list_push_front_impl,
12224 	KF_bpf_list_push_back_impl,
12225 	KF_bpf_list_pop_front,
12226 	KF_bpf_list_pop_back,
12227 	KF_bpf_list_front,
12228 	KF_bpf_list_back,
12229 	KF_bpf_cast_to_kern_ctx,
12230 	KF_bpf_rdonly_cast,
12231 	KF_bpf_rcu_read_lock,
12232 	KF_bpf_rcu_read_unlock,
12233 	KF_bpf_rbtree_remove,
12234 	KF_bpf_rbtree_add_impl,
12235 	KF_bpf_rbtree_first,
12236 	KF_bpf_rbtree_root,
12237 	KF_bpf_rbtree_left,
12238 	KF_bpf_rbtree_right,
12239 	KF_bpf_dynptr_from_skb,
12240 	KF_bpf_dynptr_from_xdp,
12241 	KF_bpf_dynptr_from_skb_meta,
12242 	KF_bpf_xdp_pull_data,
12243 	KF_bpf_dynptr_slice,
12244 	KF_bpf_dynptr_slice_rdwr,
12245 	KF_bpf_dynptr_clone,
12246 	KF_bpf_percpu_obj_new_impl,
12247 	KF_bpf_percpu_obj_drop_impl,
12248 	KF_bpf_throw,
12249 	KF_bpf_wq_set_callback_impl,
12250 	KF_bpf_preempt_disable,
12251 	KF_bpf_preempt_enable,
12252 	KF_bpf_iter_css_task_new,
12253 	KF_bpf_session_cookie,
12254 	KF_bpf_get_kmem_cache,
12255 	KF_bpf_local_irq_save,
12256 	KF_bpf_local_irq_restore,
12257 	KF_bpf_iter_num_new,
12258 	KF_bpf_iter_num_next,
12259 	KF_bpf_iter_num_destroy,
12260 	KF_bpf_set_dentry_xattr,
12261 	KF_bpf_remove_dentry_xattr,
12262 	KF_bpf_res_spin_lock,
12263 	KF_bpf_res_spin_unlock,
12264 	KF_bpf_res_spin_lock_irqsave,
12265 	KF_bpf_res_spin_unlock_irqrestore,
12266 	KF___bpf_trap,
12267 };
12268 
12269 BTF_ID_LIST(special_kfunc_list)
12270 BTF_ID(func, bpf_obj_new_impl)
12271 BTF_ID(func, bpf_obj_drop_impl)
12272 BTF_ID(func, bpf_refcount_acquire_impl)
12273 BTF_ID(func, bpf_list_push_front_impl)
12274 BTF_ID(func, bpf_list_push_back_impl)
12275 BTF_ID(func, bpf_list_pop_front)
12276 BTF_ID(func, bpf_list_pop_back)
12277 BTF_ID(func, bpf_list_front)
12278 BTF_ID(func, bpf_list_back)
12279 BTF_ID(func, bpf_cast_to_kern_ctx)
12280 BTF_ID(func, bpf_rdonly_cast)
12281 BTF_ID(func, bpf_rcu_read_lock)
12282 BTF_ID(func, bpf_rcu_read_unlock)
12283 BTF_ID(func, bpf_rbtree_remove)
12284 BTF_ID(func, bpf_rbtree_add_impl)
12285 BTF_ID(func, bpf_rbtree_first)
12286 BTF_ID(func, bpf_rbtree_root)
12287 BTF_ID(func, bpf_rbtree_left)
12288 BTF_ID(func, bpf_rbtree_right)
12289 #ifdef CONFIG_NET
12290 BTF_ID(func, bpf_dynptr_from_skb)
12291 BTF_ID(func, bpf_dynptr_from_xdp)
12292 BTF_ID(func, bpf_dynptr_from_skb_meta)
12293 BTF_ID(func, bpf_xdp_pull_data)
12294 #else
12295 BTF_ID_UNUSED
12296 BTF_ID_UNUSED
12297 BTF_ID_UNUSED
12298 BTF_ID_UNUSED
12299 #endif
12300 BTF_ID(func, bpf_dynptr_slice)
12301 BTF_ID(func, bpf_dynptr_slice_rdwr)
12302 BTF_ID(func, bpf_dynptr_clone)
12303 BTF_ID(func, bpf_percpu_obj_new_impl)
12304 BTF_ID(func, bpf_percpu_obj_drop_impl)
12305 BTF_ID(func, bpf_throw)
12306 BTF_ID(func, bpf_wq_set_callback_impl)
12307 BTF_ID(func, bpf_preempt_disable)
12308 BTF_ID(func, bpf_preempt_enable)
12309 #ifdef CONFIG_CGROUPS
12310 BTF_ID(func, bpf_iter_css_task_new)
12311 #else
12312 BTF_ID_UNUSED
12313 #endif
12314 #ifdef CONFIG_BPF_EVENTS
12315 BTF_ID(func, bpf_session_cookie)
12316 #else
12317 BTF_ID_UNUSED
12318 #endif
12319 BTF_ID(func, bpf_get_kmem_cache)
12320 BTF_ID(func, bpf_local_irq_save)
12321 BTF_ID(func, bpf_local_irq_restore)
12322 BTF_ID(func, bpf_iter_num_new)
12323 BTF_ID(func, bpf_iter_num_next)
12324 BTF_ID(func, bpf_iter_num_destroy)
12325 #ifdef CONFIG_BPF_LSM
12326 BTF_ID(func, bpf_set_dentry_xattr)
12327 BTF_ID(func, bpf_remove_dentry_xattr)
12328 #else
12329 BTF_ID_UNUSED
12330 BTF_ID_UNUSED
12331 #endif
12332 BTF_ID(func, bpf_res_spin_lock)
12333 BTF_ID(func, bpf_res_spin_unlock)
12334 BTF_ID(func, bpf_res_spin_lock_irqsave)
12335 BTF_ID(func, bpf_res_spin_unlock_irqrestore)
12336 BTF_ID(func, __bpf_trap)
12337 
12338 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
12339 {
12340 	if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
12341 	    meta->arg_owning_ref) {
12342 		return false;
12343 	}
12344 
12345 	return meta->kfunc_flags & KF_RET_NULL;
12346 }
12347 
12348 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
12349 {
12350 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
12351 }
12352 
12353 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
12354 {
12355 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
12356 }
12357 
12358 static bool is_kfunc_bpf_preempt_disable(struct bpf_kfunc_call_arg_meta *meta)
12359 {
12360 	return meta->func_id == special_kfunc_list[KF_bpf_preempt_disable];
12361 }
12362 
12363 static bool is_kfunc_bpf_preempt_enable(struct bpf_kfunc_call_arg_meta *meta)
12364 {
12365 	return meta->func_id == special_kfunc_list[KF_bpf_preempt_enable];
12366 }
12367 
12368 static bool is_kfunc_pkt_changing(struct bpf_kfunc_call_arg_meta *meta)
12369 {
12370 	return meta->func_id == special_kfunc_list[KF_bpf_xdp_pull_data];
12371 }
12372 
12373 static enum kfunc_ptr_arg_type
12374 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
12375 		       struct bpf_kfunc_call_arg_meta *meta,
12376 		       const struct btf_type *t, const struct btf_type *ref_t,
12377 		       const char *ref_tname, const struct btf_param *args,
12378 		       int argno, int nargs)
12379 {
12380 	u32 regno = argno + 1;
12381 	struct bpf_reg_state *regs = cur_regs(env);
12382 	struct bpf_reg_state *reg = &regs[regno];
12383 	bool arg_mem_size = false;
12384 
12385 	if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
12386 		return KF_ARG_PTR_TO_CTX;
12387 
12388 	/* In this function, we verify the kfunc's BTF as per the argument type,
12389 	 * leaving the rest of the verification with respect to the register
12390 	 * type to our caller. When a set of conditions hold in the BTF type of
12391 	 * arguments, we resolve it to a known kfunc_ptr_arg_type.
12392 	 */
12393 	if (btf_is_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
12394 		return KF_ARG_PTR_TO_CTX;
12395 
12396 	if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg))
12397 		return KF_ARG_PTR_TO_NULL;
12398 
12399 	if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
12400 		return KF_ARG_PTR_TO_ALLOC_BTF_ID;
12401 
12402 	if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
12403 		return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
12404 
12405 	if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
12406 		return KF_ARG_PTR_TO_DYNPTR;
12407 
12408 	if (is_kfunc_arg_iter(meta, argno, &args[argno]))
12409 		return KF_ARG_PTR_TO_ITER;
12410 
12411 	if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
12412 		return KF_ARG_PTR_TO_LIST_HEAD;
12413 
12414 	if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
12415 		return KF_ARG_PTR_TO_LIST_NODE;
12416 
12417 	if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
12418 		return KF_ARG_PTR_TO_RB_ROOT;
12419 
12420 	if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
12421 		return KF_ARG_PTR_TO_RB_NODE;
12422 
12423 	if (is_kfunc_arg_const_str(meta->btf, &args[argno]))
12424 		return KF_ARG_PTR_TO_CONST_STR;
12425 
12426 	if (is_kfunc_arg_map(meta->btf, &args[argno]))
12427 		return KF_ARG_PTR_TO_MAP;
12428 
12429 	if (is_kfunc_arg_wq(meta->btf, &args[argno]))
12430 		return KF_ARG_PTR_TO_WORKQUEUE;
12431 
12432 	if (is_kfunc_arg_irq_flag(meta->btf, &args[argno]))
12433 		return KF_ARG_PTR_TO_IRQ_FLAG;
12434 
12435 	if (is_kfunc_arg_res_spin_lock(meta->btf, &args[argno]))
12436 		return KF_ARG_PTR_TO_RES_SPIN_LOCK;
12437 
12438 	if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
12439 		if (!btf_type_is_struct(ref_t)) {
12440 			verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
12441 				meta->func_name, argno, btf_type_str(ref_t), ref_tname);
12442 			return -EINVAL;
12443 		}
12444 		return KF_ARG_PTR_TO_BTF_ID;
12445 	}
12446 
12447 	if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
12448 		return KF_ARG_PTR_TO_CALLBACK;
12449 
12450 	if (argno + 1 < nargs &&
12451 	    (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]) ||
12452 	     is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1])))
12453 		arg_mem_size = true;
12454 
12455 	/* This is the catch all argument type of register types supported by
12456 	 * check_helper_mem_access. However, we only allow when argument type is
12457 	 * pointer to scalar, or struct composed (recursively) of scalars. When
12458 	 * arg_mem_size is true, the pointer can be void *.
12459 	 */
12460 	if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
12461 	    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
12462 		verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
12463 			argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
12464 		return -EINVAL;
12465 	}
12466 	return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
12467 }
12468 
12469 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
12470 					struct bpf_reg_state *reg,
12471 					const struct btf_type *ref_t,
12472 					const char *ref_tname, u32 ref_id,
12473 					struct bpf_kfunc_call_arg_meta *meta,
12474 					int argno)
12475 {
12476 	const struct btf_type *reg_ref_t;
12477 	bool strict_type_match = false;
12478 	const struct btf *reg_btf;
12479 	const char *reg_ref_tname;
12480 	bool taking_projection;
12481 	bool struct_same;
12482 	u32 reg_ref_id;
12483 
12484 	if (base_type(reg->type) == PTR_TO_BTF_ID) {
12485 		reg_btf = reg->btf;
12486 		reg_ref_id = reg->btf_id;
12487 	} else {
12488 		reg_btf = btf_vmlinux;
12489 		reg_ref_id = *reg2btf_ids[base_type(reg->type)];
12490 	}
12491 
12492 	/* Enforce strict type matching for calls to kfuncs that are acquiring
12493 	 * or releasing a reference, or are no-cast aliases. We do _not_
12494 	 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
12495 	 * as we want to enable BPF programs to pass types that are bitwise
12496 	 * equivalent without forcing them to explicitly cast with something
12497 	 * like bpf_cast_to_kern_ctx().
12498 	 *
12499 	 * For example, say we had a type like the following:
12500 	 *
12501 	 * struct bpf_cpumask {
12502 	 *	cpumask_t cpumask;
12503 	 *	refcount_t usage;
12504 	 * };
12505 	 *
12506 	 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
12507 	 * to a struct cpumask, so it would be safe to pass a struct
12508 	 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
12509 	 *
12510 	 * The philosophy here is similar to how we allow scalars of different
12511 	 * types to be passed to kfuncs as long as the size is the same. The
12512 	 * only difference here is that we're simply allowing
12513 	 * btf_struct_ids_match() to walk the struct at the 0th offset, and
12514 	 * resolve types.
12515 	 */
12516 	if ((is_kfunc_release(meta) && reg->ref_obj_id) ||
12517 	    btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
12518 		strict_type_match = true;
12519 
12520 	WARN_ON_ONCE(is_kfunc_release(meta) &&
12521 		     (reg->off || !tnum_is_const(reg->var_off) ||
12522 		      reg->var_off.value));
12523 
12524 	reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
12525 	reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
12526 	struct_same = btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match);
12527 	/* If kfunc is accepting a projection type (ie. __sk_buff), it cannot
12528 	 * actually use it -- it must cast to the underlying type. So we allow
12529 	 * caller to pass in the underlying type.
12530 	 */
12531 	taking_projection = btf_is_projection_of(ref_tname, reg_ref_tname);
12532 	if (!taking_projection && !struct_same) {
12533 		verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
12534 			meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
12535 			btf_type_str(reg_ref_t), reg_ref_tname);
12536 		return -EINVAL;
12537 	}
12538 	return 0;
12539 }
12540 
12541 static int process_irq_flag(struct bpf_verifier_env *env, int regno,
12542 			     struct bpf_kfunc_call_arg_meta *meta)
12543 {
12544 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
12545 	int err, kfunc_class = IRQ_NATIVE_KFUNC;
12546 	bool irq_save;
12547 
12548 	if (meta->func_id == special_kfunc_list[KF_bpf_local_irq_save] ||
12549 	    meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave]) {
12550 		irq_save = true;
12551 		if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave])
12552 			kfunc_class = IRQ_LOCK_KFUNC;
12553 	} else if (meta->func_id == special_kfunc_list[KF_bpf_local_irq_restore] ||
12554 		   meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]) {
12555 		irq_save = false;
12556 		if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore])
12557 			kfunc_class = IRQ_LOCK_KFUNC;
12558 	} else {
12559 		verifier_bug(env, "unknown irq flags kfunc");
12560 		return -EFAULT;
12561 	}
12562 
12563 	if (irq_save) {
12564 		if (!is_irq_flag_reg_valid_uninit(env, reg)) {
12565 			verbose(env, "expected uninitialized irq flag as arg#%d\n", regno - 1);
12566 			return -EINVAL;
12567 		}
12568 
12569 		err = check_mem_access(env, env->insn_idx, regno, 0, BPF_DW, BPF_WRITE, -1, false, false);
12570 		if (err)
12571 			return err;
12572 
12573 		err = mark_stack_slot_irq_flag(env, meta, reg, env->insn_idx, kfunc_class);
12574 		if (err)
12575 			return err;
12576 	} else {
12577 		err = is_irq_flag_reg_valid_init(env, reg);
12578 		if (err) {
12579 			verbose(env, "expected an initialized irq flag as arg#%d\n", regno - 1);
12580 			return err;
12581 		}
12582 
12583 		err = mark_irq_flag_read(env, reg);
12584 		if (err)
12585 			return err;
12586 
12587 		err = unmark_stack_slot_irq_flag(env, reg, kfunc_class);
12588 		if (err)
12589 			return err;
12590 	}
12591 	return 0;
12592 }
12593 
12594 
12595 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
12596 {
12597 	struct btf_record *rec = reg_btf_record(reg);
12598 
12599 	if (!env->cur_state->active_locks) {
12600 		verifier_bug(env, "%s w/o active lock", __func__);
12601 		return -EFAULT;
12602 	}
12603 
12604 	if (type_flag(reg->type) & NON_OWN_REF) {
12605 		verifier_bug(env, "NON_OWN_REF already set");
12606 		return -EFAULT;
12607 	}
12608 
12609 	reg->type |= NON_OWN_REF;
12610 	if (rec->refcount_off >= 0)
12611 		reg->type |= MEM_RCU;
12612 
12613 	return 0;
12614 }
12615 
12616 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
12617 {
12618 	struct bpf_verifier_state *state = env->cur_state;
12619 	struct bpf_func_state *unused;
12620 	struct bpf_reg_state *reg;
12621 	int i;
12622 
12623 	if (!ref_obj_id) {
12624 		verifier_bug(env, "ref_obj_id is zero for owning -> non-owning conversion");
12625 		return -EFAULT;
12626 	}
12627 
12628 	for (i = 0; i < state->acquired_refs; i++) {
12629 		if (state->refs[i].id != ref_obj_id)
12630 			continue;
12631 
12632 		/* Clear ref_obj_id here so release_reference doesn't clobber
12633 		 * the whole reg
12634 		 */
12635 		bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
12636 			if (reg->ref_obj_id == ref_obj_id) {
12637 				reg->ref_obj_id = 0;
12638 				ref_set_non_owning(env, reg);
12639 			}
12640 		}));
12641 		return 0;
12642 	}
12643 
12644 	verifier_bug(env, "ref state missing for ref_obj_id");
12645 	return -EFAULT;
12646 }
12647 
12648 /* Implementation details:
12649  *
12650  * Each register points to some region of memory, which we define as an
12651  * allocation. Each allocation may embed a bpf_spin_lock which protects any
12652  * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
12653  * allocation. The lock and the data it protects are colocated in the same
12654  * memory region.
12655  *
12656  * Hence, everytime a register holds a pointer value pointing to such
12657  * allocation, the verifier preserves a unique reg->id for it.
12658  *
12659  * The verifier remembers the lock 'ptr' and the lock 'id' whenever
12660  * bpf_spin_lock is called.
12661  *
12662  * To enable this, lock state in the verifier captures two values:
12663  *	active_lock.ptr = Register's type specific pointer
12664  *	active_lock.id  = A unique ID for each register pointer value
12665  *
12666  * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
12667  * supported register types.
12668  *
12669  * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
12670  * allocated objects is the reg->btf pointer.
12671  *
12672  * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
12673  * can establish the provenance of the map value statically for each distinct
12674  * lookup into such maps. They always contain a single map value hence unique
12675  * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
12676  *
12677  * So, in case of global variables, they use array maps with max_entries = 1,
12678  * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
12679  * into the same map value as max_entries is 1, as described above).
12680  *
12681  * In case of inner map lookups, the inner map pointer has same map_ptr as the
12682  * outer map pointer (in verifier context), but each lookup into an inner map
12683  * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
12684  * maps from the same outer map share the same map_ptr as active_lock.ptr, they
12685  * will get different reg->id assigned to each lookup, hence different
12686  * active_lock.id.
12687  *
12688  * In case of allocated objects, active_lock.ptr is the reg->btf, and the
12689  * reg->id is a unique ID preserved after the NULL pointer check on the pointer
12690  * returned from bpf_obj_new. Each allocation receives a new reg->id.
12691  */
12692 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
12693 {
12694 	struct bpf_reference_state *s;
12695 	void *ptr;
12696 	u32 id;
12697 
12698 	switch ((int)reg->type) {
12699 	case PTR_TO_MAP_VALUE:
12700 		ptr = reg->map_ptr;
12701 		break;
12702 	case PTR_TO_BTF_ID | MEM_ALLOC:
12703 		ptr = reg->btf;
12704 		break;
12705 	default:
12706 		verifier_bug(env, "unknown reg type for lock check");
12707 		return -EFAULT;
12708 	}
12709 	id = reg->id;
12710 
12711 	if (!env->cur_state->active_locks)
12712 		return -EINVAL;
12713 	s = find_lock_state(env->cur_state, REF_TYPE_LOCK_MASK, id, ptr);
12714 	if (!s) {
12715 		verbose(env, "held lock and object are not in the same allocation\n");
12716 		return -EINVAL;
12717 	}
12718 	return 0;
12719 }
12720 
12721 static bool is_bpf_list_api_kfunc(u32 btf_id)
12722 {
12723 	return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
12724 	       btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
12725 	       btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
12726 	       btf_id == special_kfunc_list[KF_bpf_list_pop_back] ||
12727 	       btf_id == special_kfunc_list[KF_bpf_list_front] ||
12728 	       btf_id == special_kfunc_list[KF_bpf_list_back];
12729 }
12730 
12731 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
12732 {
12733 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
12734 	       btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
12735 	       btf_id == special_kfunc_list[KF_bpf_rbtree_first] ||
12736 	       btf_id == special_kfunc_list[KF_bpf_rbtree_root] ||
12737 	       btf_id == special_kfunc_list[KF_bpf_rbtree_left] ||
12738 	       btf_id == special_kfunc_list[KF_bpf_rbtree_right];
12739 }
12740 
12741 static bool is_bpf_iter_num_api_kfunc(u32 btf_id)
12742 {
12743 	return btf_id == special_kfunc_list[KF_bpf_iter_num_new] ||
12744 	       btf_id == special_kfunc_list[KF_bpf_iter_num_next] ||
12745 	       btf_id == special_kfunc_list[KF_bpf_iter_num_destroy];
12746 }
12747 
12748 static bool is_bpf_graph_api_kfunc(u32 btf_id)
12749 {
12750 	return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
12751 	       btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
12752 }
12753 
12754 static bool is_bpf_res_spin_lock_kfunc(u32 btf_id)
12755 {
12756 	return btf_id == special_kfunc_list[KF_bpf_res_spin_lock] ||
12757 	       btf_id == special_kfunc_list[KF_bpf_res_spin_unlock] ||
12758 	       btf_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave] ||
12759 	       btf_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore];
12760 }
12761 
12762 static bool kfunc_spin_allowed(u32 btf_id)
12763 {
12764 	return is_bpf_graph_api_kfunc(btf_id) || is_bpf_iter_num_api_kfunc(btf_id) ||
12765 	       is_bpf_res_spin_lock_kfunc(btf_id);
12766 }
12767 
12768 static bool is_sync_callback_calling_kfunc(u32 btf_id)
12769 {
12770 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
12771 }
12772 
12773 static bool is_async_callback_calling_kfunc(u32 btf_id)
12774 {
12775 	return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl];
12776 }
12777 
12778 static bool is_bpf_throw_kfunc(struct bpf_insn *insn)
12779 {
12780 	return bpf_pseudo_kfunc_call(insn) && insn->off == 0 &&
12781 	       insn->imm == special_kfunc_list[KF_bpf_throw];
12782 }
12783 
12784 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id)
12785 {
12786 	return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl];
12787 }
12788 
12789 static bool is_callback_calling_kfunc(u32 btf_id)
12790 {
12791 	return is_sync_callback_calling_kfunc(btf_id) ||
12792 	       is_async_callback_calling_kfunc(btf_id);
12793 }
12794 
12795 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
12796 {
12797 	return is_bpf_rbtree_api_kfunc(btf_id);
12798 }
12799 
12800 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
12801 					  enum btf_field_type head_field_type,
12802 					  u32 kfunc_btf_id)
12803 {
12804 	bool ret;
12805 
12806 	switch (head_field_type) {
12807 	case BPF_LIST_HEAD:
12808 		ret = is_bpf_list_api_kfunc(kfunc_btf_id);
12809 		break;
12810 	case BPF_RB_ROOT:
12811 		ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
12812 		break;
12813 	default:
12814 		verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
12815 			btf_field_type_name(head_field_type));
12816 		return false;
12817 	}
12818 
12819 	if (!ret)
12820 		verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
12821 			btf_field_type_name(head_field_type));
12822 	return ret;
12823 }
12824 
12825 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
12826 					  enum btf_field_type node_field_type,
12827 					  u32 kfunc_btf_id)
12828 {
12829 	bool ret;
12830 
12831 	switch (node_field_type) {
12832 	case BPF_LIST_NODE:
12833 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
12834 		       kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
12835 		break;
12836 	case BPF_RB_NODE:
12837 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
12838 		       kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
12839 		       kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_left] ||
12840 		       kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_right]);
12841 		break;
12842 	default:
12843 		verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
12844 			btf_field_type_name(node_field_type));
12845 		return false;
12846 	}
12847 
12848 	if (!ret)
12849 		verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
12850 			btf_field_type_name(node_field_type));
12851 	return ret;
12852 }
12853 
12854 static int
12855 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
12856 				   struct bpf_reg_state *reg, u32 regno,
12857 				   struct bpf_kfunc_call_arg_meta *meta,
12858 				   enum btf_field_type head_field_type,
12859 				   struct btf_field **head_field)
12860 {
12861 	const char *head_type_name;
12862 	struct btf_field *field;
12863 	struct btf_record *rec;
12864 	u32 head_off;
12865 
12866 	if (meta->btf != btf_vmlinux) {
12867 		verifier_bug(env, "unexpected btf mismatch in kfunc call");
12868 		return -EFAULT;
12869 	}
12870 
12871 	if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
12872 		return -EFAULT;
12873 
12874 	head_type_name = btf_field_type_name(head_field_type);
12875 	if (!tnum_is_const(reg->var_off)) {
12876 		verbose(env,
12877 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
12878 			regno, head_type_name);
12879 		return -EINVAL;
12880 	}
12881 
12882 	rec = reg_btf_record(reg);
12883 	head_off = reg->off + reg->var_off.value;
12884 	field = btf_record_find(rec, head_off, head_field_type);
12885 	if (!field) {
12886 		verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
12887 		return -EINVAL;
12888 	}
12889 
12890 	/* All functions require bpf_list_head to be protected using a bpf_spin_lock */
12891 	if (check_reg_allocation_locked(env, reg)) {
12892 		verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
12893 			rec->spin_lock_off, head_type_name);
12894 		return -EINVAL;
12895 	}
12896 
12897 	if (*head_field) {
12898 		verifier_bug(env, "repeating %s arg", head_type_name);
12899 		return -EFAULT;
12900 	}
12901 	*head_field = field;
12902 	return 0;
12903 }
12904 
12905 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
12906 					   struct bpf_reg_state *reg, u32 regno,
12907 					   struct bpf_kfunc_call_arg_meta *meta)
12908 {
12909 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
12910 							  &meta->arg_list_head.field);
12911 }
12912 
12913 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
12914 					     struct bpf_reg_state *reg, u32 regno,
12915 					     struct bpf_kfunc_call_arg_meta *meta)
12916 {
12917 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
12918 							  &meta->arg_rbtree_root.field);
12919 }
12920 
12921 static int
12922 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
12923 				   struct bpf_reg_state *reg, u32 regno,
12924 				   struct bpf_kfunc_call_arg_meta *meta,
12925 				   enum btf_field_type head_field_type,
12926 				   enum btf_field_type node_field_type,
12927 				   struct btf_field **node_field)
12928 {
12929 	const char *node_type_name;
12930 	const struct btf_type *et, *t;
12931 	struct btf_field *field;
12932 	u32 node_off;
12933 
12934 	if (meta->btf != btf_vmlinux) {
12935 		verifier_bug(env, "unexpected btf mismatch in kfunc call");
12936 		return -EFAULT;
12937 	}
12938 
12939 	if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
12940 		return -EFAULT;
12941 
12942 	node_type_name = btf_field_type_name(node_field_type);
12943 	if (!tnum_is_const(reg->var_off)) {
12944 		verbose(env,
12945 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
12946 			regno, node_type_name);
12947 		return -EINVAL;
12948 	}
12949 
12950 	node_off = reg->off + reg->var_off.value;
12951 	field = reg_find_field_offset(reg, node_off, node_field_type);
12952 	if (!field) {
12953 		verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
12954 		return -EINVAL;
12955 	}
12956 
12957 	field = *node_field;
12958 
12959 	et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
12960 	t = btf_type_by_id(reg->btf, reg->btf_id);
12961 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
12962 				  field->graph_root.value_btf_id, true)) {
12963 		verbose(env, "operation on %s expects arg#1 %s at offset=%d "
12964 			"in struct %s, but arg is at offset=%d in struct %s\n",
12965 			btf_field_type_name(head_field_type),
12966 			btf_field_type_name(node_field_type),
12967 			field->graph_root.node_offset,
12968 			btf_name_by_offset(field->graph_root.btf, et->name_off),
12969 			node_off, btf_name_by_offset(reg->btf, t->name_off));
12970 		return -EINVAL;
12971 	}
12972 	meta->arg_btf = reg->btf;
12973 	meta->arg_btf_id = reg->btf_id;
12974 
12975 	if (node_off != field->graph_root.node_offset) {
12976 		verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
12977 			node_off, btf_field_type_name(node_field_type),
12978 			field->graph_root.node_offset,
12979 			btf_name_by_offset(field->graph_root.btf, et->name_off));
12980 		return -EINVAL;
12981 	}
12982 
12983 	return 0;
12984 }
12985 
12986 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
12987 					   struct bpf_reg_state *reg, u32 regno,
12988 					   struct bpf_kfunc_call_arg_meta *meta)
12989 {
12990 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
12991 						  BPF_LIST_HEAD, BPF_LIST_NODE,
12992 						  &meta->arg_list_head.field);
12993 }
12994 
12995 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
12996 					     struct bpf_reg_state *reg, u32 regno,
12997 					     struct bpf_kfunc_call_arg_meta *meta)
12998 {
12999 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
13000 						  BPF_RB_ROOT, BPF_RB_NODE,
13001 						  &meta->arg_rbtree_root.field);
13002 }
13003 
13004 /*
13005  * css_task iter allowlist is needed to avoid dead locking on css_set_lock.
13006  * LSM hooks and iters (both sleepable and non-sleepable) are safe.
13007  * Any sleepable progs are also safe since bpf_check_attach_target() enforce
13008  * them can only be attached to some specific hook points.
13009  */
13010 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env)
13011 {
13012 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
13013 
13014 	switch (prog_type) {
13015 	case BPF_PROG_TYPE_LSM:
13016 		return true;
13017 	case BPF_PROG_TYPE_TRACING:
13018 		if (env->prog->expected_attach_type == BPF_TRACE_ITER)
13019 			return true;
13020 		fallthrough;
13021 	default:
13022 		return in_sleepable(env);
13023 	}
13024 }
13025 
13026 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
13027 			    int insn_idx)
13028 {
13029 	const char *func_name = meta->func_name, *ref_tname;
13030 	const struct btf *btf = meta->btf;
13031 	const struct btf_param *args;
13032 	struct btf_record *rec;
13033 	u32 i, nargs;
13034 	int ret;
13035 
13036 	args = (const struct btf_param *)(meta->func_proto + 1);
13037 	nargs = btf_type_vlen(meta->func_proto);
13038 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
13039 		verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
13040 			MAX_BPF_FUNC_REG_ARGS);
13041 		return -EINVAL;
13042 	}
13043 
13044 	/* Check that BTF function arguments match actual types that the
13045 	 * verifier sees.
13046 	 */
13047 	for (i = 0; i < nargs; i++) {
13048 		struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
13049 		const struct btf_type *t, *ref_t, *resolve_ret;
13050 		enum bpf_arg_type arg_type = ARG_DONTCARE;
13051 		u32 regno = i + 1, ref_id, type_size;
13052 		bool is_ret_buf_sz = false;
13053 		int kf_arg_type;
13054 
13055 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
13056 
13057 		if (is_kfunc_arg_ignore(btf, &args[i]))
13058 			continue;
13059 
13060 		if (is_kfunc_arg_prog(btf, &args[i])) {
13061 			/* Used to reject repeated use of __prog. */
13062 			if (meta->arg_prog) {
13063 				verifier_bug(env, "Only 1 prog->aux argument supported per-kfunc");
13064 				return -EFAULT;
13065 			}
13066 			meta->arg_prog = true;
13067 			cur_aux(env)->arg_prog = regno;
13068 			continue;
13069 		}
13070 
13071 		if (btf_type_is_scalar(t)) {
13072 			if (reg->type != SCALAR_VALUE) {
13073 				verbose(env, "R%d is not a scalar\n", regno);
13074 				return -EINVAL;
13075 			}
13076 
13077 			if (is_kfunc_arg_constant(meta->btf, &args[i])) {
13078 				if (meta->arg_constant.found) {
13079 					verifier_bug(env, "only one constant argument permitted");
13080 					return -EFAULT;
13081 				}
13082 				if (!tnum_is_const(reg->var_off)) {
13083 					verbose(env, "R%d must be a known constant\n", regno);
13084 					return -EINVAL;
13085 				}
13086 				ret = mark_chain_precision(env, regno);
13087 				if (ret < 0)
13088 					return ret;
13089 				meta->arg_constant.found = true;
13090 				meta->arg_constant.value = reg->var_off.value;
13091 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
13092 				meta->r0_rdonly = true;
13093 				is_ret_buf_sz = true;
13094 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
13095 				is_ret_buf_sz = true;
13096 			}
13097 
13098 			if (is_ret_buf_sz) {
13099 				if (meta->r0_size) {
13100 					verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
13101 					return -EINVAL;
13102 				}
13103 
13104 				if (!tnum_is_const(reg->var_off)) {
13105 					verbose(env, "R%d is not a const\n", regno);
13106 					return -EINVAL;
13107 				}
13108 
13109 				meta->r0_size = reg->var_off.value;
13110 				ret = mark_chain_precision(env, regno);
13111 				if (ret)
13112 					return ret;
13113 			}
13114 			continue;
13115 		}
13116 
13117 		if (!btf_type_is_ptr(t)) {
13118 			verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
13119 			return -EINVAL;
13120 		}
13121 
13122 		if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
13123 		    (register_is_null(reg) || type_may_be_null(reg->type)) &&
13124 			!is_kfunc_arg_nullable(meta->btf, &args[i])) {
13125 			verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
13126 			return -EACCES;
13127 		}
13128 
13129 		if (reg->ref_obj_id) {
13130 			if (is_kfunc_release(meta) && meta->ref_obj_id) {
13131 				verifier_bug(env, "more than one arg with ref_obj_id R%d %u %u",
13132 					     regno, reg->ref_obj_id,
13133 					     meta->ref_obj_id);
13134 				return -EFAULT;
13135 			}
13136 			meta->ref_obj_id = reg->ref_obj_id;
13137 			if (is_kfunc_release(meta))
13138 				meta->release_regno = regno;
13139 		}
13140 
13141 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
13142 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
13143 
13144 		kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
13145 		if (kf_arg_type < 0)
13146 			return kf_arg_type;
13147 
13148 		switch (kf_arg_type) {
13149 		case KF_ARG_PTR_TO_NULL:
13150 			continue;
13151 		case KF_ARG_PTR_TO_MAP:
13152 			if (!reg->map_ptr) {
13153 				verbose(env, "pointer in R%d isn't map pointer\n", regno);
13154 				return -EINVAL;
13155 			}
13156 			if (meta->map.ptr && reg->map_ptr->record->wq_off >= 0) {
13157 				/* Use map_uid (which is unique id of inner map) to reject:
13158 				 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
13159 				 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
13160 				 * if (inner_map1 && inner_map2) {
13161 				 *     wq = bpf_map_lookup_elem(inner_map1);
13162 				 *     if (wq)
13163 				 *         // mismatch would have been allowed
13164 				 *         bpf_wq_init(wq, inner_map2);
13165 				 * }
13166 				 *
13167 				 * Comparing map_ptr is enough to distinguish normal and outer maps.
13168 				 */
13169 				if (meta->map.ptr != reg->map_ptr ||
13170 				    meta->map.uid != reg->map_uid) {
13171 					verbose(env,
13172 						"workqueue pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
13173 						meta->map.uid, reg->map_uid);
13174 					return -EINVAL;
13175 				}
13176 			}
13177 			meta->map.ptr = reg->map_ptr;
13178 			meta->map.uid = reg->map_uid;
13179 			fallthrough;
13180 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
13181 		case KF_ARG_PTR_TO_BTF_ID:
13182 			if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
13183 				break;
13184 
13185 			if (!is_trusted_reg(reg)) {
13186 				if (!is_kfunc_rcu(meta)) {
13187 					verbose(env, "R%d must be referenced or trusted\n", regno);
13188 					return -EINVAL;
13189 				}
13190 				if (!is_rcu_reg(reg)) {
13191 					verbose(env, "R%d must be a rcu pointer\n", regno);
13192 					return -EINVAL;
13193 				}
13194 			}
13195 			fallthrough;
13196 		case KF_ARG_PTR_TO_CTX:
13197 		case KF_ARG_PTR_TO_DYNPTR:
13198 		case KF_ARG_PTR_TO_ITER:
13199 		case KF_ARG_PTR_TO_LIST_HEAD:
13200 		case KF_ARG_PTR_TO_LIST_NODE:
13201 		case KF_ARG_PTR_TO_RB_ROOT:
13202 		case KF_ARG_PTR_TO_RB_NODE:
13203 		case KF_ARG_PTR_TO_MEM:
13204 		case KF_ARG_PTR_TO_MEM_SIZE:
13205 		case KF_ARG_PTR_TO_CALLBACK:
13206 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
13207 		case KF_ARG_PTR_TO_CONST_STR:
13208 		case KF_ARG_PTR_TO_WORKQUEUE:
13209 		case KF_ARG_PTR_TO_IRQ_FLAG:
13210 		case KF_ARG_PTR_TO_RES_SPIN_LOCK:
13211 			break;
13212 		default:
13213 			verifier_bug(env, "unknown kfunc arg type %d", kf_arg_type);
13214 			return -EFAULT;
13215 		}
13216 
13217 		if (is_kfunc_release(meta) && reg->ref_obj_id)
13218 			arg_type |= OBJ_RELEASE;
13219 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
13220 		if (ret < 0)
13221 			return ret;
13222 
13223 		switch (kf_arg_type) {
13224 		case KF_ARG_PTR_TO_CTX:
13225 			if (reg->type != PTR_TO_CTX) {
13226 				verbose(env, "arg#%d expected pointer to ctx, but got %s\n",
13227 					i, reg_type_str(env, reg->type));
13228 				return -EINVAL;
13229 			}
13230 
13231 			if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
13232 				ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
13233 				if (ret < 0)
13234 					return -EINVAL;
13235 				meta->ret_btf_id  = ret;
13236 			}
13237 			break;
13238 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
13239 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) {
13240 				if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) {
13241 					verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i);
13242 					return -EINVAL;
13243 				}
13244 			} else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) {
13245 				if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
13246 					verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i);
13247 					return -EINVAL;
13248 				}
13249 			} else {
13250 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
13251 				return -EINVAL;
13252 			}
13253 			if (!reg->ref_obj_id) {
13254 				verbose(env, "allocated object must be referenced\n");
13255 				return -EINVAL;
13256 			}
13257 			if (meta->btf == btf_vmlinux) {
13258 				meta->arg_btf = reg->btf;
13259 				meta->arg_btf_id = reg->btf_id;
13260 			}
13261 			break;
13262 		case KF_ARG_PTR_TO_DYNPTR:
13263 		{
13264 			enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
13265 			int clone_ref_obj_id = 0;
13266 
13267 			if (reg->type == CONST_PTR_TO_DYNPTR)
13268 				dynptr_arg_type |= MEM_RDONLY;
13269 
13270 			if (is_kfunc_arg_uninit(btf, &args[i]))
13271 				dynptr_arg_type |= MEM_UNINIT;
13272 
13273 			if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
13274 				dynptr_arg_type |= DYNPTR_TYPE_SKB;
13275 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
13276 				dynptr_arg_type |= DYNPTR_TYPE_XDP;
13277 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb_meta]) {
13278 				dynptr_arg_type |= DYNPTR_TYPE_SKB_META;
13279 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
13280 				   (dynptr_arg_type & MEM_UNINIT)) {
13281 				enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
13282 
13283 				if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
13284 					verifier_bug(env, "no dynptr type for parent of clone");
13285 					return -EFAULT;
13286 				}
13287 
13288 				dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
13289 				clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
13290 				if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
13291 					verifier_bug(env, "missing ref obj id for parent of clone");
13292 					return -EFAULT;
13293 				}
13294 			}
13295 
13296 			ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
13297 			if (ret < 0)
13298 				return ret;
13299 
13300 			if (!(dynptr_arg_type & MEM_UNINIT)) {
13301 				int id = dynptr_id(env, reg);
13302 
13303 				if (id < 0) {
13304 					verifier_bug(env, "failed to obtain dynptr id");
13305 					return id;
13306 				}
13307 				meta->initialized_dynptr.id = id;
13308 				meta->initialized_dynptr.type = dynptr_get_type(env, reg);
13309 				meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
13310 			}
13311 
13312 			break;
13313 		}
13314 		case KF_ARG_PTR_TO_ITER:
13315 			if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) {
13316 				if (!check_css_task_iter_allowlist(env)) {
13317 					verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n");
13318 					return -EINVAL;
13319 				}
13320 			}
13321 			ret = process_iter_arg(env, regno, insn_idx, meta);
13322 			if (ret < 0)
13323 				return ret;
13324 			break;
13325 		case KF_ARG_PTR_TO_LIST_HEAD:
13326 			if (reg->type != PTR_TO_MAP_VALUE &&
13327 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
13328 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
13329 				return -EINVAL;
13330 			}
13331 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
13332 				verbose(env, "allocated object must be referenced\n");
13333 				return -EINVAL;
13334 			}
13335 			ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
13336 			if (ret < 0)
13337 				return ret;
13338 			break;
13339 		case KF_ARG_PTR_TO_RB_ROOT:
13340 			if (reg->type != PTR_TO_MAP_VALUE &&
13341 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
13342 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
13343 				return -EINVAL;
13344 			}
13345 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
13346 				verbose(env, "allocated object must be referenced\n");
13347 				return -EINVAL;
13348 			}
13349 			ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
13350 			if (ret < 0)
13351 				return ret;
13352 			break;
13353 		case KF_ARG_PTR_TO_LIST_NODE:
13354 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
13355 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
13356 				return -EINVAL;
13357 			}
13358 			if (!reg->ref_obj_id) {
13359 				verbose(env, "allocated object must be referenced\n");
13360 				return -EINVAL;
13361 			}
13362 			ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
13363 			if (ret < 0)
13364 				return ret;
13365 			break;
13366 		case KF_ARG_PTR_TO_RB_NODE:
13367 			if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
13368 				if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
13369 					verbose(env, "arg#%d expected pointer to allocated object\n", i);
13370 					return -EINVAL;
13371 				}
13372 				if (!reg->ref_obj_id) {
13373 					verbose(env, "allocated object must be referenced\n");
13374 					return -EINVAL;
13375 				}
13376 			} else {
13377 				if (!type_is_non_owning_ref(reg->type) && !reg->ref_obj_id) {
13378 					verbose(env, "%s can only take non-owning or refcounted bpf_rb_node pointer\n", func_name);
13379 					return -EINVAL;
13380 				}
13381 				if (in_rbtree_lock_required_cb(env)) {
13382 					verbose(env, "%s not allowed in rbtree cb\n", func_name);
13383 					return -EINVAL;
13384 				}
13385 			}
13386 
13387 			ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
13388 			if (ret < 0)
13389 				return ret;
13390 			break;
13391 		case KF_ARG_PTR_TO_MAP:
13392 			/* If argument has '__map' suffix expect 'struct bpf_map *' */
13393 			ref_id = *reg2btf_ids[CONST_PTR_TO_MAP];
13394 			ref_t = btf_type_by_id(btf_vmlinux, ref_id);
13395 			ref_tname = btf_name_by_offset(btf, ref_t->name_off);
13396 			fallthrough;
13397 		case KF_ARG_PTR_TO_BTF_ID:
13398 			/* Only base_type is checked, further checks are done here */
13399 			if ((base_type(reg->type) != PTR_TO_BTF_ID ||
13400 			     (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
13401 			    !reg2btf_ids[base_type(reg->type)]) {
13402 				verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
13403 				verbose(env, "expected %s or socket\n",
13404 					reg_type_str(env, base_type(reg->type) |
13405 							  (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
13406 				return -EINVAL;
13407 			}
13408 			ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
13409 			if (ret < 0)
13410 				return ret;
13411 			break;
13412 		case KF_ARG_PTR_TO_MEM:
13413 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
13414 			if (IS_ERR(resolve_ret)) {
13415 				verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
13416 					i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
13417 				return -EINVAL;
13418 			}
13419 			ret = check_mem_reg(env, reg, regno, type_size);
13420 			if (ret < 0)
13421 				return ret;
13422 			break;
13423 		case KF_ARG_PTR_TO_MEM_SIZE:
13424 		{
13425 			struct bpf_reg_state *buff_reg = &regs[regno];
13426 			const struct btf_param *buff_arg = &args[i];
13427 			struct bpf_reg_state *size_reg = &regs[regno + 1];
13428 			const struct btf_param *size_arg = &args[i + 1];
13429 
13430 			if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) {
13431 				ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
13432 				if (ret < 0) {
13433 					verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
13434 					return ret;
13435 				}
13436 			}
13437 
13438 			if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
13439 				if (meta->arg_constant.found) {
13440 					verifier_bug(env, "only one constant argument permitted");
13441 					return -EFAULT;
13442 				}
13443 				if (!tnum_is_const(size_reg->var_off)) {
13444 					verbose(env, "R%d must be a known constant\n", regno + 1);
13445 					return -EINVAL;
13446 				}
13447 				meta->arg_constant.found = true;
13448 				meta->arg_constant.value = size_reg->var_off.value;
13449 			}
13450 
13451 			/* Skip next '__sz' or '__szk' argument */
13452 			i++;
13453 			break;
13454 		}
13455 		case KF_ARG_PTR_TO_CALLBACK:
13456 			if (reg->type != PTR_TO_FUNC) {
13457 				verbose(env, "arg%d expected pointer to func\n", i);
13458 				return -EINVAL;
13459 			}
13460 			meta->subprogno = reg->subprogno;
13461 			break;
13462 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
13463 			if (!type_is_ptr_alloc_obj(reg->type)) {
13464 				verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
13465 				return -EINVAL;
13466 			}
13467 			if (!type_is_non_owning_ref(reg->type))
13468 				meta->arg_owning_ref = true;
13469 
13470 			rec = reg_btf_record(reg);
13471 			if (!rec) {
13472 				verifier_bug(env, "Couldn't find btf_record");
13473 				return -EFAULT;
13474 			}
13475 
13476 			if (rec->refcount_off < 0) {
13477 				verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
13478 				return -EINVAL;
13479 			}
13480 
13481 			meta->arg_btf = reg->btf;
13482 			meta->arg_btf_id = reg->btf_id;
13483 			break;
13484 		case KF_ARG_PTR_TO_CONST_STR:
13485 			if (reg->type != PTR_TO_MAP_VALUE) {
13486 				verbose(env, "arg#%d doesn't point to a const string\n", i);
13487 				return -EINVAL;
13488 			}
13489 			ret = check_reg_const_str(env, reg, regno);
13490 			if (ret)
13491 				return ret;
13492 			break;
13493 		case KF_ARG_PTR_TO_WORKQUEUE:
13494 			if (reg->type != PTR_TO_MAP_VALUE) {
13495 				verbose(env, "arg#%d doesn't point to a map value\n", i);
13496 				return -EINVAL;
13497 			}
13498 			ret = process_wq_func(env, regno, meta);
13499 			if (ret < 0)
13500 				return ret;
13501 			break;
13502 		case KF_ARG_PTR_TO_IRQ_FLAG:
13503 			if (reg->type != PTR_TO_STACK) {
13504 				verbose(env, "arg#%d doesn't point to an irq flag on stack\n", i);
13505 				return -EINVAL;
13506 			}
13507 			ret = process_irq_flag(env, regno, meta);
13508 			if (ret < 0)
13509 				return ret;
13510 			break;
13511 		case KF_ARG_PTR_TO_RES_SPIN_LOCK:
13512 		{
13513 			int flags = PROCESS_RES_LOCK;
13514 
13515 			if (reg->type != PTR_TO_MAP_VALUE && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
13516 				verbose(env, "arg#%d doesn't point to map value or allocated object\n", i);
13517 				return -EINVAL;
13518 			}
13519 
13520 			if (!is_bpf_res_spin_lock_kfunc(meta->func_id))
13521 				return -EFAULT;
13522 			if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock] ||
13523 			    meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave])
13524 				flags |= PROCESS_SPIN_LOCK;
13525 			if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave] ||
13526 			    meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore])
13527 				flags |= PROCESS_LOCK_IRQ;
13528 			ret = process_spin_lock(env, regno, flags);
13529 			if (ret < 0)
13530 				return ret;
13531 			break;
13532 		}
13533 		}
13534 	}
13535 
13536 	if (is_kfunc_release(meta) && !meta->release_regno) {
13537 		verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
13538 			func_name);
13539 		return -EINVAL;
13540 	}
13541 
13542 	return 0;
13543 }
13544 
13545 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
13546 			    struct bpf_insn *insn,
13547 			    struct bpf_kfunc_call_arg_meta *meta,
13548 			    const char **kfunc_name)
13549 {
13550 	const struct btf_type *func, *func_proto;
13551 	u32 func_id, *kfunc_flags;
13552 	const char *func_name;
13553 	struct btf *desc_btf;
13554 
13555 	if (kfunc_name)
13556 		*kfunc_name = NULL;
13557 
13558 	if (!insn->imm)
13559 		return -EINVAL;
13560 
13561 	desc_btf = find_kfunc_desc_btf(env, insn->off);
13562 	if (IS_ERR(desc_btf))
13563 		return PTR_ERR(desc_btf);
13564 
13565 	func_id = insn->imm;
13566 	func = btf_type_by_id(desc_btf, func_id);
13567 	func_name = btf_name_by_offset(desc_btf, func->name_off);
13568 	if (kfunc_name)
13569 		*kfunc_name = func_name;
13570 	func_proto = btf_type_by_id(desc_btf, func->type);
13571 
13572 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog);
13573 	if (!kfunc_flags) {
13574 		return -EACCES;
13575 	}
13576 
13577 	memset(meta, 0, sizeof(*meta));
13578 	meta->btf = desc_btf;
13579 	meta->func_id = func_id;
13580 	meta->kfunc_flags = *kfunc_flags;
13581 	meta->func_proto = func_proto;
13582 	meta->func_name = func_name;
13583 
13584 	return 0;
13585 }
13586 
13587 /* check special kfuncs and return:
13588  *  1  - not fall-through to 'else' branch, continue verification
13589  *  0  - fall-through to 'else' branch
13590  * < 0 - not fall-through to 'else' branch, return error
13591  */
13592 static int check_special_kfunc(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
13593 			       struct bpf_reg_state *regs, struct bpf_insn_aux_data *insn_aux,
13594 			       const struct btf_type *ptr_type, struct btf *desc_btf)
13595 {
13596 	const struct btf_type *ret_t;
13597 	int err = 0;
13598 
13599 	if (meta->btf != btf_vmlinux)
13600 		return 0;
13601 
13602 	if (meta->func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
13603 	    meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
13604 		struct btf_struct_meta *struct_meta;
13605 		struct btf *ret_btf;
13606 		u32 ret_btf_id;
13607 
13608 		if (meta->func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set)
13609 			return -ENOMEM;
13610 
13611 		if (((u64)(u32)meta->arg_constant.value) != meta->arg_constant.value) {
13612 			verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
13613 			return -EINVAL;
13614 		}
13615 
13616 		ret_btf = env->prog->aux->btf;
13617 		ret_btf_id = meta->arg_constant.value;
13618 
13619 		/* This may be NULL due to user not supplying a BTF */
13620 		if (!ret_btf) {
13621 			verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n");
13622 			return -EINVAL;
13623 		}
13624 
13625 		ret_t = btf_type_by_id(ret_btf, ret_btf_id);
13626 		if (!ret_t || !__btf_type_is_struct(ret_t)) {
13627 			verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n");
13628 			return -EINVAL;
13629 		}
13630 
13631 		if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
13632 			if (ret_t->size > BPF_GLOBAL_PERCPU_MA_MAX_SIZE) {
13633 				verbose(env, "bpf_percpu_obj_new type size (%d) is greater than %d\n",
13634 					ret_t->size, BPF_GLOBAL_PERCPU_MA_MAX_SIZE);
13635 				return -EINVAL;
13636 			}
13637 
13638 			if (!bpf_global_percpu_ma_set) {
13639 				mutex_lock(&bpf_percpu_ma_lock);
13640 				if (!bpf_global_percpu_ma_set) {
13641 					/* Charge memory allocated with bpf_global_percpu_ma to
13642 					 * root memcg. The obj_cgroup for root memcg is NULL.
13643 					 */
13644 					err = bpf_mem_alloc_percpu_init(&bpf_global_percpu_ma, NULL);
13645 					if (!err)
13646 						bpf_global_percpu_ma_set = true;
13647 				}
13648 				mutex_unlock(&bpf_percpu_ma_lock);
13649 				if (err)
13650 					return err;
13651 			}
13652 
13653 			mutex_lock(&bpf_percpu_ma_lock);
13654 			err = bpf_mem_alloc_percpu_unit_init(&bpf_global_percpu_ma, ret_t->size);
13655 			mutex_unlock(&bpf_percpu_ma_lock);
13656 			if (err)
13657 				return err;
13658 		}
13659 
13660 		struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id);
13661 		if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
13662 			if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) {
13663 				verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n");
13664 				return -EINVAL;
13665 			}
13666 
13667 			if (struct_meta) {
13668 				verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n");
13669 				return -EINVAL;
13670 			}
13671 		}
13672 
13673 		mark_reg_known_zero(env, regs, BPF_REG_0);
13674 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
13675 		regs[BPF_REG_0].btf = ret_btf;
13676 		regs[BPF_REG_0].btf_id = ret_btf_id;
13677 		if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl])
13678 			regs[BPF_REG_0].type |= MEM_PERCPU;
13679 
13680 		insn_aux->obj_new_size = ret_t->size;
13681 		insn_aux->kptr_struct_meta = struct_meta;
13682 	} else if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
13683 		mark_reg_known_zero(env, regs, BPF_REG_0);
13684 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
13685 		regs[BPF_REG_0].btf = meta->arg_btf;
13686 		regs[BPF_REG_0].btf_id = meta->arg_btf_id;
13687 
13688 		insn_aux->kptr_struct_meta =
13689 			btf_find_struct_meta(meta->arg_btf,
13690 					     meta->arg_btf_id);
13691 	} else if (is_list_node_type(ptr_type)) {
13692 		struct btf_field *field = meta->arg_list_head.field;
13693 
13694 		mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
13695 	} else if (is_rbtree_node_type(ptr_type)) {
13696 		struct btf_field *field = meta->arg_rbtree_root.field;
13697 
13698 		mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
13699 	} else if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
13700 		mark_reg_known_zero(env, regs, BPF_REG_0);
13701 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
13702 		regs[BPF_REG_0].btf = desc_btf;
13703 		regs[BPF_REG_0].btf_id = meta->ret_btf_id;
13704 	} else if (meta->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
13705 		ret_t = btf_type_by_id(desc_btf, meta->arg_constant.value);
13706 		if (!ret_t) {
13707 			verbose(env, "Unknown type ID %lld passed to kfunc bpf_rdonly_cast\n",
13708 				meta->arg_constant.value);
13709 			return -EINVAL;
13710 		} else if (btf_type_is_struct(ret_t)) {
13711 			mark_reg_known_zero(env, regs, BPF_REG_0);
13712 			regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
13713 			regs[BPF_REG_0].btf = desc_btf;
13714 			regs[BPF_REG_0].btf_id = meta->arg_constant.value;
13715 		} else if (btf_type_is_void(ret_t)) {
13716 			mark_reg_known_zero(env, regs, BPF_REG_0);
13717 			regs[BPF_REG_0].type = PTR_TO_MEM | MEM_RDONLY | PTR_UNTRUSTED;
13718 			regs[BPF_REG_0].mem_size = 0;
13719 		} else {
13720 			verbose(env,
13721 				"kfunc bpf_rdonly_cast type ID argument must be of a struct or void\n");
13722 			return -EINVAL;
13723 		}
13724 	} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
13725 		   meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
13726 		enum bpf_type_flag type_flag = get_dynptr_type_flag(meta->initialized_dynptr.type);
13727 
13728 		mark_reg_known_zero(env, regs, BPF_REG_0);
13729 
13730 		if (!meta->arg_constant.found) {
13731 			verifier_bug(env, "bpf_dynptr_slice(_rdwr) no constant size");
13732 			return -EFAULT;
13733 		}
13734 
13735 		regs[BPF_REG_0].mem_size = meta->arg_constant.value;
13736 
13737 		/* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
13738 		regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
13739 
13740 		if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
13741 			regs[BPF_REG_0].type |= MEM_RDONLY;
13742 		} else {
13743 			/* this will set env->seen_direct_write to true */
13744 			if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
13745 				verbose(env, "the prog does not allow writes to packet data\n");
13746 				return -EINVAL;
13747 			}
13748 		}
13749 
13750 		if (!meta->initialized_dynptr.id) {
13751 			verifier_bug(env, "no dynptr id");
13752 			return -EFAULT;
13753 		}
13754 		regs[BPF_REG_0].dynptr_id = meta->initialized_dynptr.id;
13755 
13756 		/* we don't need to set BPF_REG_0's ref obj id
13757 		 * because packet slices are not refcounted (see
13758 		 * dynptr_type_refcounted)
13759 		 */
13760 	} else {
13761 		return 0;
13762 	}
13763 
13764 	return 1;
13765 }
13766 
13767 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name);
13768 
13769 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
13770 			    int *insn_idx_p)
13771 {
13772 	bool sleepable, rcu_lock, rcu_unlock, preempt_disable, preempt_enable;
13773 	u32 i, nargs, ptr_type_id, release_ref_obj_id;
13774 	struct bpf_reg_state *regs = cur_regs(env);
13775 	const char *func_name, *ptr_type_name;
13776 	const struct btf_type *t, *ptr_type;
13777 	struct bpf_kfunc_call_arg_meta meta;
13778 	struct bpf_insn_aux_data *insn_aux;
13779 	int err, insn_idx = *insn_idx_p;
13780 	const struct btf_param *args;
13781 	struct btf *desc_btf;
13782 
13783 	/* skip for now, but return error when we find this in fixup_kfunc_call */
13784 	if (!insn->imm)
13785 		return 0;
13786 
13787 	err = fetch_kfunc_meta(env, insn, &meta, &func_name);
13788 	if (err == -EACCES && func_name)
13789 		verbose(env, "calling kernel function %s is not allowed\n", func_name);
13790 	if (err)
13791 		return err;
13792 	desc_btf = meta.btf;
13793 	insn_aux = &env->insn_aux_data[insn_idx];
13794 
13795 	insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
13796 
13797 	if (!insn->off &&
13798 	    (insn->imm == special_kfunc_list[KF_bpf_res_spin_lock] ||
13799 	     insn->imm == special_kfunc_list[KF_bpf_res_spin_lock_irqsave])) {
13800 		struct bpf_verifier_state *branch;
13801 		struct bpf_reg_state *regs;
13802 
13803 		branch = push_stack(env, env->insn_idx + 1, env->insn_idx, false);
13804 		if (!branch) {
13805 			verbose(env, "failed to push state for failed lock acquisition\n");
13806 			return -ENOMEM;
13807 		}
13808 
13809 		regs = branch->frame[branch->curframe]->regs;
13810 
13811 		/* Clear r0-r5 registers in forked state */
13812 		for (i = 0; i < CALLER_SAVED_REGS; i++)
13813 			mark_reg_not_init(env, regs, caller_saved[i]);
13814 
13815 		mark_reg_unknown(env, regs, BPF_REG_0);
13816 		err = __mark_reg_s32_range(env, regs, BPF_REG_0, -MAX_ERRNO, -1);
13817 		if (err) {
13818 			verbose(env, "failed to mark s32 range for retval in forked state for lock\n");
13819 			return err;
13820 		}
13821 		__mark_btf_func_reg_size(env, regs, BPF_REG_0, sizeof(u32));
13822 	} else if (!insn->off && insn->imm == special_kfunc_list[KF___bpf_trap]) {
13823 		verbose(env, "unexpected __bpf_trap() due to uninitialized variable?\n");
13824 		return -EFAULT;
13825 	}
13826 
13827 	if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
13828 		verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
13829 		return -EACCES;
13830 	}
13831 
13832 	sleepable = is_kfunc_sleepable(&meta);
13833 	if (sleepable && !in_sleepable(env)) {
13834 		verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
13835 		return -EACCES;
13836 	}
13837 
13838 	/* Check the arguments */
13839 	err = check_kfunc_args(env, &meta, insn_idx);
13840 	if (err < 0)
13841 		return err;
13842 
13843 	if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
13844 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
13845 					 set_rbtree_add_callback_state);
13846 		if (err) {
13847 			verbose(env, "kfunc %s#%d failed callback verification\n",
13848 				func_name, meta.func_id);
13849 			return err;
13850 		}
13851 	}
13852 
13853 	if (meta.func_id == special_kfunc_list[KF_bpf_session_cookie]) {
13854 		meta.r0_size = sizeof(u64);
13855 		meta.r0_rdonly = false;
13856 	}
13857 
13858 	if (is_bpf_wq_set_callback_impl_kfunc(meta.func_id)) {
13859 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
13860 					 set_timer_callback_state);
13861 		if (err) {
13862 			verbose(env, "kfunc %s#%d failed callback verification\n",
13863 				func_name, meta.func_id);
13864 			return err;
13865 		}
13866 	}
13867 
13868 	rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
13869 	rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
13870 
13871 	preempt_disable = is_kfunc_bpf_preempt_disable(&meta);
13872 	preempt_enable = is_kfunc_bpf_preempt_enable(&meta);
13873 
13874 	if (env->cur_state->active_rcu_lock) {
13875 		struct bpf_func_state *state;
13876 		struct bpf_reg_state *reg;
13877 		u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER);
13878 
13879 		if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
13880 			verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
13881 			return -EACCES;
13882 		}
13883 
13884 		if (rcu_lock) {
13885 			verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
13886 			return -EINVAL;
13887 		} else if (rcu_unlock) {
13888 			bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({
13889 				if (reg->type & MEM_RCU) {
13890 					reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
13891 					reg->type |= PTR_UNTRUSTED;
13892 				}
13893 			}));
13894 			env->cur_state->active_rcu_lock = false;
13895 		} else if (sleepable) {
13896 			verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
13897 			return -EACCES;
13898 		}
13899 	} else if (rcu_lock) {
13900 		env->cur_state->active_rcu_lock = true;
13901 	} else if (rcu_unlock) {
13902 		verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
13903 		return -EINVAL;
13904 	}
13905 
13906 	if (env->cur_state->active_preempt_locks) {
13907 		if (preempt_disable) {
13908 			env->cur_state->active_preempt_locks++;
13909 		} else if (preempt_enable) {
13910 			env->cur_state->active_preempt_locks--;
13911 		} else if (sleepable) {
13912 			verbose(env, "kernel func %s is sleepable within non-preemptible region\n", func_name);
13913 			return -EACCES;
13914 		}
13915 	} else if (preempt_disable) {
13916 		env->cur_state->active_preempt_locks++;
13917 	} else if (preempt_enable) {
13918 		verbose(env, "unmatched attempt to enable preemption (kernel function %s)\n", func_name);
13919 		return -EINVAL;
13920 	}
13921 
13922 	if (env->cur_state->active_irq_id && sleepable) {
13923 		verbose(env, "kernel func %s is sleepable within IRQ-disabled region\n", func_name);
13924 		return -EACCES;
13925 	}
13926 
13927 	/* In case of release function, we get register number of refcounted
13928 	 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
13929 	 */
13930 	if (meta.release_regno) {
13931 		err = release_reference(env, regs[meta.release_regno].ref_obj_id);
13932 		if (err) {
13933 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
13934 				func_name, meta.func_id);
13935 			return err;
13936 		}
13937 	}
13938 
13939 	if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
13940 	    meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
13941 	    meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
13942 		release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
13943 		insn_aux->insert_off = regs[BPF_REG_2].off;
13944 		insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
13945 		err = ref_convert_owning_non_owning(env, release_ref_obj_id);
13946 		if (err) {
13947 			verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
13948 				func_name, meta.func_id);
13949 			return err;
13950 		}
13951 
13952 		err = release_reference(env, release_ref_obj_id);
13953 		if (err) {
13954 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
13955 				func_name, meta.func_id);
13956 			return err;
13957 		}
13958 	}
13959 
13960 	if (meta.func_id == special_kfunc_list[KF_bpf_throw]) {
13961 		if (!bpf_jit_supports_exceptions()) {
13962 			verbose(env, "JIT does not support calling kfunc %s#%d\n",
13963 				func_name, meta.func_id);
13964 			return -ENOTSUPP;
13965 		}
13966 		env->seen_exception = true;
13967 
13968 		/* In the case of the default callback, the cookie value passed
13969 		 * to bpf_throw becomes the return value of the program.
13970 		 */
13971 		if (!env->exception_callback_subprog) {
13972 			err = check_return_code(env, BPF_REG_1, "R1");
13973 			if (err < 0)
13974 				return err;
13975 		}
13976 	}
13977 
13978 	for (i = 0; i < CALLER_SAVED_REGS; i++)
13979 		mark_reg_not_init(env, regs, caller_saved[i]);
13980 
13981 	/* Check return type */
13982 	t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
13983 
13984 	if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
13985 		/* Only exception is bpf_obj_new_impl */
13986 		if (meta.btf != btf_vmlinux ||
13987 		    (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
13988 		     meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] &&
13989 		     meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
13990 			verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
13991 			return -EINVAL;
13992 		}
13993 	}
13994 
13995 	if (btf_type_is_scalar(t)) {
13996 		mark_reg_unknown(env, regs, BPF_REG_0);
13997 		if (meta.btf == btf_vmlinux && (meta.func_id == special_kfunc_list[KF_bpf_res_spin_lock] ||
13998 		    meta.func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave]))
13999 			__mark_reg_const_zero(env, &regs[BPF_REG_0]);
14000 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
14001 	} else if (btf_type_is_ptr(t)) {
14002 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
14003 		err = check_special_kfunc(env, &meta, regs, insn_aux, ptr_type, desc_btf);
14004 		if (err) {
14005 			if (err < 0)
14006 				return err;
14007 		} else if (btf_type_is_void(ptr_type)) {
14008 			/* kfunc returning 'void *' is equivalent to returning scalar */
14009 			mark_reg_unknown(env, regs, BPF_REG_0);
14010 		} else if (!__btf_type_is_struct(ptr_type)) {
14011 			if (!meta.r0_size) {
14012 				__u32 sz;
14013 
14014 				if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
14015 					meta.r0_size = sz;
14016 					meta.r0_rdonly = true;
14017 				}
14018 			}
14019 			if (!meta.r0_size) {
14020 				ptr_type_name = btf_name_by_offset(desc_btf,
14021 								   ptr_type->name_off);
14022 				verbose(env,
14023 					"kernel function %s returns pointer type %s %s is not supported\n",
14024 					func_name,
14025 					btf_type_str(ptr_type),
14026 					ptr_type_name);
14027 				return -EINVAL;
14028 			}
14029 
14030 			mark_reg_known_zero(env, regs, BPF_REG_0);
14031 			regs[BPF_REG_0].type = PTR_TO_MEM;
14032 			regs[BPF_REG_0].mem_size = meta.r0_size;
14033 
14034 			if (meta.r0_rdonly)
14035 				regs[BPF_REG_0].type |= MEM_RDONLY;
14036 
14037 			/* Ensures we don't access the memory after a release_reference() */
14038 			if (meta.ref_obj_id)
14039 				regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
14040 		} else {
14041 			mark_reg_known_zero(env, regs, BPF_REG_0);
14042 			regs[BPF_REG_0].btf = desc_btf;
14043 			regs[BPF_REG_0].type = PTR_TO_BTF_ID;
14044 			regs[BPF_REG_0].btf_id = ptr_type_id;
14045 
14046 			if (meta.func_id == special_kfunc_list[KF_bpf_get_kmem_cache])
14047 				regs[BPF_REG_0].type |= PTR_UNTRUSTED;
14048 
14049 			if (is_iter_next_kfunc(&meta)) {
14050 				struct bpf_reg_state *cur_iter;
14051 
14052 				cur_iter = get_iter_from_state(env->cur_state, &meta);
14053 
14054 				if (cur_iter->type & MEM_RCU) /* KF_RCU_PROTECTED */
14055 					regs[BPF_REG_0].type |= MEM_RCU;
14056 				else
14057 					regs[BPF_REG_0].type |= PTR_TRUSTED;
14058 			}
14059 		}
14060 
14061 		if (is_kfunc_ret_null(&meta)) {
14062 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
14063 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
14064 			regs[BPF_REG_0].id = ++env->id_gen;
14065 		}
14066 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
14067 		if (is_kfunc_acquire(&meta)) {
14068 			int id = acquire_reference(env, insn_idx);
14069 
14070 			if (id < 0)
14071 				return id;
14072 			if (is_kfunc_ret_null(&meta))
14073 				regs[BPF_REG_0].id = id;
14074 			regs[BPF_REG_0].ref_obj_id = id;
14075 		} else if (is_rbtree_node_type(ptr_type) || is_list_node_type(ptr_type)) {
14076 			ref_set_non_owning(env, &regs[BPF_REG_0]);
14077 		}
14078 
14079 		if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
14080 			regs[BPF_REG_0].id = ++env->id_gen;
14081 	} else if (btf_type_is_void(t)) {
14082 		if (meta.btf == btf_vmlinux) {
14083 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
14084 			    meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
14085 				insn_aux->kptr_struct_meta =
14086 					btf_find_struct_meta(meta.arg_btf,
14087 							     meta.arg_btf_id);
14088 			}
14089 		}
14090 	}
14091 
14092 	if (is_kfunc_pkt_changing(&meta))
14093 		clear_all_pkt_pointers(env);
14094 
14095 	nargs = btf_type_vlen(meta.func_proto);
14096 	args = (const struct btf_param *)(meta.func_proto + 1);
14097 	for (i = 0; i < nargs; i++) {
14098 		u32 regno = i + 1;
14099 
14100 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
14101 		if (btf_type_is_ptr(t))
14102 			mark_btf_func_reg_size(env, regno, sizeof(void *));
14103 		else
14104 			/* scalar. ensured by btf_check_kfunc_arg_match() */
14105 			mark_btf_func_reg_size(env, regno, t->size);
14106 	}
14107 
14108 	if (is_iter_next_kfunc(&meta)) {
14109 		err = process_iter_next_call(env, insn_idx, &meta);
14110 		if (err)
14111 			return err;
14112 	}
14113 
14114 	return 0;
14115 }
14116 
14117 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
14118 				  const struct bpf_reg_state *reg,
14119 				  enum bpf_reg_type type)
14120 {
14121 	bool known = tnum_is_const(reg->var_off);
14122 	s64 val = reg->var_off.value;
14123 	s64 smin = reg->smin_value;
14124 
14125 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
14126 		verbose(env, "math between %s pointer and %lld is not allowed\n",
14127 			reg_type_str(env, type), val);
14128 		return false;
14129 	}
14130 
14131 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
14132 		verbose(env, "%s pointer offset %d is not allowed\n",
14133 			reg_type_str(env, type), reg->off);
14134 		return false;
14135 	}
14136 
14137 	if (smin == S64_MIN) {
14138 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
14139 			reg_type_str(env, type));
14140 		return false;
14141 	}
14142 
14143 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
14144 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
14145 			smin, reg_type_str(env, type));
14146 		return false;
14147 	}
14148 
14149 	return true;
14150 }
14151 
14152 enum {
14153 	REASON_BOUNDS	= -1,
14154 	REASON_TYPE	= -2,
14155 	REASON_PATHS	= -3,
14156 	REASON_LIMIT	= -4,
14157 	REASON_STACK	= -5,
14158 };
14159 
14160 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
14161 			      u32 *alu_limit, bool mask_to_left)
14162 {
14163 	u32 max = 0, ptr_limit = 0;
14164 
14165 	switch (ptr_reg->type) {
14166 	case PTR_TO_STACK:
14167 		/* Offset 0 is out-of-bounds, but acceptable start for the
14168 		 * left direction, see BPF_REG_FP. Also, unknown scalar
14169 		 * offset where we would need to deal with min/max bounds is
14170 		 * currently prohibited for unprivileged.
14171 		 */
14172 		max = MAX_BPF_STACK + mask_to_left;
14173 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
14174 		break;
14175 	case PTR_TO_MAP_VALUE:
14176 		max = ptr_reg->map_ptr->value_size;
14177 		ptr_limit = (mask_to_left ?
14178 			     ptr_reg->smin_value :
14179 			     ptr_reg->umax_value) + ptr_reg->off;
14180 		break;
14181 	default:
14182 		return REASON_TYPE;
14183 	}
14184 
14185 	if (ptr_limit >= max)
14186 		return REASON_LIMIT;
14187 	*alu_limit = ptr_limit;
14188 	return 0;
14189 }
14190 
14191 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
14192 				    const struct bpf_insn *insn)
14193 {
14194 	return env->bypass_spec_v1 ||
14195 		BPF_SRC(insn->code) == BPF_K ||
14196 		cur_aux(env)->nospec;
14197 }
14198 
14199 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
14200 				       u32 alu_state, u32 alu_limit)
14201 {
14202 	/* If we arrived here from different branches with different
14203 	 * state or limits to sanitize, then this won't work.
14204 	 */
14205 	if (aux->alu_state &&
14206 	    (aux->alu_state != alu_state ||
14207 	     aux->alu_limit != alu_limit))
14208 		return REASON_PATHS;
14209 
14210 	/* Corresponding fixup done in do_misc_fixups(). */
14211 	aux->alu_state = alu_state;
14212 	aux->alu_limit = alu_limit;
14213 	return 0;
14214 }
14215 
14216 static int sanitize_val_alu(struct bpf_verifier_env *env,
14217 			    struct bpf_insn *insn)
14218 {
14219 	struct bpf_insn_aux_data *aux = cur_aux(env);
14220 
14221 	if (can_skip_alu_sanitation(env, insn))
14222 		return 0;
14223 
14224 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
14225 }
14226 
14227 static bool sanitize_needed(u8 opcode)
14228 {
14229 	return opcode == BPF_ADD || opcode == BPF_SUB;
14230 }
14231 
14232 struct bpf_sanitize_info {
14233 	struct bpf_insn_aux_data aux;
14234 	bool mask_to_left;
14235 };
14236 
14237 static struct bpf_verifier_state *
14238 sanitize_speculative_path(struct bpf_verifier_env *env,
14239 			  const struct bpf_insn *insn,
14240 			  u32 next_idx, u32 curr_idx)
14241 {
14242 	struct bpf_verifier_state *branch;
14243 	struct bpf_reg_state *regs;
14244 
14245 	branch = push_stack(env, next_idx, curr_idx, true);
14246 	if (branch && insn) {
14247 		regs = branch->frame[branch->curframe]->regs;
14248 		if (BPF_SRC(insn->code) == BPF_K) {
14249 			mark_reg_unknown(env, regs, insn->dst_reg);
14250 		} else if (BPF_SRC(insn->code) == BPF_X) {
14251 			mark_reg_unknown(env, regs, insn->dst_reg);
14252 			mark_reg_unknown(env, regs, insn->src_reg);
14253 		}
14254 	}
14255 	return branch;
14256 }
14257 
14258 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
14259 			    struct bpf_insn *insn,
14260 			    const struct bpf_reg_state *ptr_reg,
14261 			    const struct bpf_reg_state *off_reg,
14262 			    struct bpf_reg_state *dst_reg,
14263 			    struct bpf_sanitize_info *info,
14264 			    const bool commit_window)
14265 {
14266 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
14267 	struct bpf_verifier_state *vstate = env->cur_state;
14268 	bool off_is_imm = tnum_is_const(off_reg->var_off);
14269 	bool off_is_neg = off_reg->smin_value < 0;
14270 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
14271 	u8 opcode = BPF_OP(insn->code);
14272 	u32 alu_state, alu_limit;
14273 	struct bpf_reg_state tmp;
14274 	bool ret;
14275 	int err;
14276 
14277 	if (can_skip_alu_sanitation(env, insn))
14278 		return 0;
14279 
14280 	/* We already marked aux for masking from non-speculative
14281 	 * paths, thus we got here in the first place. We only care
14282 	 * to explore bad access from here.
14283 	 */
14284 	if (vstate->speculative)
14285 		goto do_sim;
14286 
14287 	if (!commit_window) {
14288 		if (!tnum_is_const(off_reg->var_off) &&
14289 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
14290 			return REASON_BOUNDS;
14291 
14292 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
14293 				     (opcode == BPF_SUB && !off_is_neg);
14294 	}
14295 
14296 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
14297 	if (err < 0)
14298 		return err;
14299 
14300 	if (commit_window) {
14301 		/* In commit phase we narrow the masking window based on
14302 		 * the observed pointer move after the simulated operation.
14303 		 */
14304 		alu_state = info->aux.alu_state;
14305 		alu_limit = abs(info->aux.alu_limit - alu_limit);
14306 	} else {
14307 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
14308 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
14309 		alu_state |= ptr_is_dst_reg ?
14310 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
14311 
14312 		/* Limit pruning on unknown scalars to enable deep search for
14313 		 * potential masking differences from other program paths.
14314 		 */
14315 		if (!off_is_imm)
14316 			env->explore_alu_limits = true;
14317 	}
14318 
14319 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
14320 	if (err < 0)
14321 		return err;
14322 do_sim:
14323 	/* If we're in commit phase, we're done here given we already
14324 	 * pushed the truncated dst_reg into the speculative verification
14325 	 * stack.
14326 	 *
14327 	 * Also, when register is a known constant, we rewrite register-based
14328 	 * operation to immediate-based, and thus do not need masking (and as
14329 	 * a consequence, do not need to simulate the zero-truncation either).
14330 	 */
14331 	if (commit_window || off_is_imm)
14332 		return 0;
14333 
14334 	/* Simulate and find potential out-of-bounds access under
14335 	 * speculative execution from truncation as a result of
14336 	 * masking when off was not within expected range. If off
14337 	 * sits in dst, then we temporarily need to move ptr there
14338 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
14339 	 * for cases where we use K-based arithmetic in one direction
14340 	 * and truncated reg-based in the other in order to explore
14341 	 * bad access.
14342 	 */
14343 	if (!ptr_is_dst_reg) {
14344 		tmp = *dst_reg;
14345 		copy_register_state(dst_reg, ptr_reg);
14346 	}
14347 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
14348 					env->insn_idx);
14349 	if (!ptr_is_dst_reg && ret)
14350 		*dst_reg = tmp;
14351 	return !ret ? REASON_STACK : 0;
14352 }
14353 
14354 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
14355 {
14356 	struct bpf_verifier_state *vstate = env->cur_state;
14357 
14358 	/* If we simulate paths under speculation, we don't update the
14359 	 * insn as 'seen' such that when we verify unreachable paths in
14360 	 * the non-speculative domain, sanitize_dead_code() can still
14361 	 * rewrite/sanitize them.
14362 	 */
14363 	if (!vstate->speculative)
14364 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
14365 }
14366 
14367 static int sanitize_err(struct bpf_verifier_env *env,
14368 			const struct bpf_insn *insn, int reason,
14369 			const struct bpf_reg_state *off_reg,
14370 			const struct bpf_reg_state *dst_reg)
14371 {
14372 	static const char *err = "pointer arithmetic with it prohibited for !root";
14373 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
14374 	u32 dst = insn->dst_reg, src = insn->src_reg;
14375 
14376 	switch (reason) {
14377 	case REASON_BOUNDS:
14378 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
14379 			off_reg == dst_reg ? dst : src, err);
14380 		break;
14381 	case REASON_TYPE:
14382 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
14383 			off_reg == dst_reg ? src : dst, err);
14384 		break;
14385 	case REASON_PATHS:
14386 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
14387 			dst, op, err);
14388 		break;
14389 	case REASON_LIMIT:
14390 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
14391 			dst, op, err);
14392 		break;
14393 	case REASON_STACK:
14394 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
14395 			dst, err);
14396 		return -ENOMEM;
14397 	default:
14398 		verifier_bug(env, "unknown reason (%d)", reason);
14399 		break;
14400 	}
14401 
14402 	return -EACCES;
14403 }
14404 
14405 /* check that stack access falls within stack limits and that 'reg' doesn't
14406  * have a variable offset.
14407  *
14408  * Variable offset is prohibited for unprivileged mode for simplicity since it
14409  * requires corresponding support in Spectre masking for stack ALU.  See also
14410  * retrieve_ptr_limit().
14411  *
14412  *
14413  * 'off' includes 'reg->off'.
14414  */
14415 static int check_stack_access_for_ptr_arithmetic(
14416 				struct bpf_verifier_env *env,
14417 				int regno,
14418 				const struct bpf_reg_state *reg,
14419 				int off)
14420 {
14421 	if (!tnum_is_const(reg->var_off)) {
14422 		char tn_buf[48];
14423 
14424 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
14425 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
14426 			regno, tn_buf, off);
14427 		return -EACCES;
14428 	}
14429 
14430 	if (off >= 0 || off < -MAX_BPF_STACK) {
14431 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
14432 			"prohibited for !root; off=%d\n", regno, off);
14433 		return -EACCES;
14434 	}
14435 
14436 	return 0;
14437 }
14438 
14439 static int sanitize_check_bounds(struct bpf_verifier_env *env,
14440 				 const struct bpf_insn *insn,
14441 				 const struct bpf_reg_state *dst_reg)
14442 {
14443 	u32 dst = insn->dst_reg;
14444 
14445 	/* For unprivileged we require that resulting offset must be in bounds
14446 	 * in order to be able to sanitize access later on.
14447 	 */
14448 	if (env->bypass_spec_v1)
14449 		return 0;
14450 
14451 	switch (dst_reg->type) {
14452 	case PTR_TO_STACK:
14453 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
14454 					dst_reg->off + dst_reg->var_off.value))
14455 			return -EACCES;
14456 		break;
14457 	case PTR_TO_MAP_VALUE:
14458 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
14459 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
14460 				"prohibited for !root\n", dst);
14461 			return -EACCES;
14462 		}
14463 		break;
14464 	default:
14465 		return -EOPNOTSUPP;
14466 	}
14467 
14468 	return 0;
14469 }
14470 
14471 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
14472  * Caller should also handle BPF_MOV case separately.
14473  * If we return -EACCES, caller may want to try again treating pointer as a
14474  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
14475  */
14476 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
14477 				   struct bpf_insn *insn,
14478 				   const struct bpf_reg_state *ptr_reg,
14479 				   const struct bpf_reg_state *off_reg)
14480 {
14481 	struct bpf_verifier_state *vstate = env->cur_state;
14482 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
14483 	struct bpf_reg_state *regs = state->regs, *dst_reg;
14484 	bool known = tnum_is_const(off_reg->var_off);
14485 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
14486 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
14487 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
14488 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
14489 	struct bpf_sanitize_info info = {};
14490 	u8 opcode = BPF_OP(insn->code);
14491 	u32 dst = insn->dst_reg;
14492 	int ret, bounds_ret;
14493 
14494 	dst_reg = &regs[dst];
14495 
14496 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
14497 	    smin_val > smax_val || umin_val > umax_val) {
14498 		/* Taint dst register if offset had invalid bounds derived from
14499 		 * e.g. dead branches.
14500 		 */
14501 		__mark_reg_unknown(env, dst_reg);
14502 		return 0;
14503 	}
14504 
14505 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
14506 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
14507 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
14508 			__mark_reg_unknown(env, dst_reg);
14509 			return 0;
14510 		}
14511 
14512 		verbose(env,
14513 			"R%d 32-bit pointer arithmetic prohibited\n",
14514 			dst);
14515 		return -EACCES;
14516 	}
14517 
14518 	if (ptr_reg->type & PTR_MAYBE_NULL) {
14519 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
14520 			dst, reg_type_str(env, ptr_reg->type));
14521 		return -EACCES;
14522 	}
14523 
14524 	/*
14525 	 * Accesses to untrusted PTR_TO_MEM are done through probe
14526 	 * instructions, hence no need to track offsets.
14527 	 */
14528 	if (base_type(ptr_reg->type) == PTR_TO_MEM && (ptr_reg->type & PTR_UNTRUSTED))
14529 		return 0;
14530 
14531 	switch (base_type(ptr_reg->type)) {
14532 	case PTR_TO_CTX:
14533 	case PTR_TO_MAP_VALUE:
14534 	case PTR_TO_MAP_KEY:
14535 	case PTR_TO_STACK:
14536 	case PTR_TO_PACKET_META:
14537 	case PTR_TO_PACKET:
14538 	case PTR_TO_TP_BUFFER:
14539 	case PTR_TO_BTF_ID:
14540 	case PTR_TO_MEM:
14541 	case PTR_TO_BUF:
14542 	case PTR_TO_FUNC:
14543 	case CONST_PTR_TO_DYNPTR:
14544 		break;
14545 	case PTR_TO_FLOW_KEYS:
14546 		if (known)
14547 			break;
14548 		fallthrough;
14549 	case CONST_PTR_TO_MAP:
14550 		/* smin_val represents the known value */
14551 		if (known && smin_val == 0 && opcode == BPF_ADD)
14552 			break;
14553 		fallthrough;
14554 	default:
14555 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
14556 			dst, reg_type_str(env, ptr_reg->type));
14557 		return -EACCES;
14558 	}
14559 
14560 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
14561 	 * The id may be overwritten later if we create a new variable offset.
14562 	 */
14563 	dst_reg->type = ptr_reg->type;
14564 	dst_reg->id = ptr_reg->id;
14565 
14566 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
14567 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
14568 		return -EINVAL;
14569 
14570 	/* pointer types do not carry 32-bit bounds at the moment. */
14571 	__mark_reg32_unbounded(dst_reg);
14572 
14573 	if (sanitize_needed(opcode)) {
14574 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
14575 				       &info, false);
14576 		if (ret < 0)
14577 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
14578 	}
14579 
14580 	switch (opcode) {
14581 	case BPF_ADD:
14582 		/* We can take a fixed offset as long as it doesn't overflow
14583 		 * the s32 'off' field
14584 		 */
14585 		if (known && (ptr_reg->off + smin_val ==
14586 			      (s64)(s32)(ptr_reg->off + smin_val))) {
14587 			/* pointer += K.  Accumulate it into fixed offset */
14588 			dst_reg->smin_value = smin_ptr;
14589 			dst_reg->smax_value = smax_ptr;
14590 			dst_reg->umin_value = umin_ptr;
14591 			dst_reg->umax_value = umax_ptr;
14592 			dst_reg->var_off = ptr_reg->var_off;
14593 			dst_reg->off = ptr_reg->off + smin_val;
14594 			dst_reg->raw = ptr_reg->raw;
14595 			break;
14596 		}
14597 		/* A new variable offset is created.  Note that off_reg->off
14598 		 * == 0, since it's a scalar.
14599 		 * dst_reg gets the pointer type and since some positive
14600 		 * integer value was added to the pointer, give it a new 'id'
14601 		 * if it's a PTR_TO_PACKET.
14602 		 * this creates a new 'base' pointer, off_reg (variable) gets
14603 		 * added into the variable offset, and we copy the fixed offset
14604 		 * from ptr_reg.
14605 		 */
14606 		if (check_add_overflow(smin_ptr, smin_val, &dst_reg->smin_value) ||
14607 		    check_add_overflow(smax_ptr, smax_val, &dst_reg->smax_value)) {
14608 			dst_reg->smin_value = S64_MIN;
14609 			dst_reg->smax_value = S64_MAX;
14610 		}
14611 		if (check_add_overflow(umin_ptr, umin_val, &dst_reg->umin_value) ||
14612 		    check_add_overflow(umax_ptr, umax_val, &dst_reg->umax_value)) {
14613 			dst_reg->umin_value = 0;
14614 			dst_reg->umax_value = U64_MAX;
14615 		}
14616 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
14617 		dst_reg->off = ptr_reg->off;
14618 		dst_reg->raw = ptr_reg->raw;
14619 		if (reg_is_pkt_pointer(ptr_reg)) {
14620 			dst_reg->id = ++env->id_gen;
14621 			/* something was added to pkt_ptr, set range to zero */
14622 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
14623 		}
14624 		break;
14625 	case BPF_SUB:
14626 		if (dst_reg == off_reg) {
14627 			/* scalar -= pointer.  Creates an unknown scalar */
14628 			verbose(env, "R%d tried to subtract pointer from scalar\n",
14629 				dst);
14630 			return -EACCES;
14631 		}
14632 		/* We don't allow subtraction from FP, because (according to
14633 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
14634 		 * be able to deal with it.
14635 		 */
14636 		if (ptr_reg->type == PTR_TO_STACK) {
14637 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
14638 				dst);
14639 			return -EACCES;
14640 		}
14641 		if (known && (ptr_reg->off - smin_val ==
14642 			      (s64)(s32)(ptr_reg->off - smin_val))) {
14643 			/* pointer -= K.  Subtract it from fixed offset */
14644 			dst_reg->smin_value = smin_ptr;
14645 			dst_reg->smax_value = smax_ptr;
14646 			dst_reg->umin_value = umin_ptr;
14647 			dst_reg->umax_value = umax_ptr;
14648 			dst_reg->var_off = ptr_reg->var_off;
14649 			dst_reg->id = ptr_reg->id;
14650 			dst_reg->off = ptr_reg->off - smin_val;
14651 			dst_reg->raw = ptr_reg->raw;
14652 			break;
14653 		}
14654 		/* A new variable offset is created.  If the subtrahend is known
14655 		 * nonnegative, then any reg->range we had before is still good.
14656 		 */
14657 		if (check_sub_overflow(smin_ptr, smax_val, &dst_reg->smin_value) ||
14658 		    check_sub_overflow(smax_ptr, smin_val, &dst_reg->smax_value)) {
14659 			/* Overflow possible, we know nothing */
14660 			dst_reg->smin_value = S64_MIN;
14661 			dst_reg->smax_value = S64_MAX;
14662 		}
14663 		if (umin_ptr < umax_val) {
14664 			/* Overflow possible, we know nothing */
14665 			dst_reg->umin_value = 0;
14666 			dst_reg->umax_value = U64_MAX;
14667 		} else {
14668 			/* Cannot overflow (as long as bounds are consistent) */
14669 			dst_reg->umin_value = umin_ptr - umax_val;
14670 			dst_reg->umax_value = umax_ptr - umin_val;
14671 		}
14672 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
14673 		dst_reg->off = ptr_reg->off;
14674 		dst_reg->raw = ptr_reg->raw;
14675 		if (reg_is_pkt_pointer(ptr_reg)) {
14676 			dst_reg->id = ++env->id_gen;
14677 			/* something was added to pkt_ptr, set range to zero */
14678 			if (smin_val < 0)
14679 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
14680 		}
14681 		break;
14682 	case BPF_AND:
14683 	case BPF_OR:
14684 	case BPF_XOR:
14685 		/* bitwise ops on pointers are troublesome, prohibit. */
14686 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
14687 			dst, bpf_alu_string[opcode >> 4]);
14688 		return -EACCES;
14689 	default:
14690 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
14691 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
14692 			dst, bpf_alu_string[opcode >> 4]);
14693 		return -EACCES;
14694 	}
14695 
14696 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
14697 		return -EINVAL;
14698 	reg_bounds_sync(dst_reg);
14699 	bounds_ret = sanitize_check_bounds(env, insn, dst_reg);
14700 	if (bounds_ret == -EACCES)
14701 		return bounds_ret;
14702 	if (sanitize_needed(opcode)) {
14703 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
14704 				       &info, true);
14705 		if (verifier_bug_if(!can_skip_alu_sanitation(env, insn)
14706 				    && !env->cur_state->speculative
14707 				    && bounds_ret
14708 				    && !ret,
14709 				    env, "Pointer type unsupported by sanitize_check_bounds() not rejected by retrieve_ptr_limit() as required")) {
14710 			return -EFAULT;
14711 		}
14712 		if (ret < 0)
14713 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
14714 	}
14715 
14716 	return 0;
14717 }
14718 
14719 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
14720 				 struct bpf_reg_state *src_reg)
14721 {
14722 	s32 *dst_smin = &dst_reg->s32_min_value;
14723 	s32 *dst_smax = &dst_reg->s32_max_value;
14724 	u32 *dst_umin = &dst_reg->u32_min_value;
14725 	u32 *dst_umax = &dst_reg->u32_max_value;
14726 	u32 umin_val = src_reg->u32_min_value;
14727 	u32 umax_val = src_reg->u32_max_value;
14728 	bool min_overflow, max_overflow;
14729 
14730 	if (check_add_overflow(*dst_smin, src_reg->s32_min_value, dst_smin) ||
14731 	    check_add_overflow(*dst_smax, src_reg->s32_max_value, dst_smax)) {
14732 		*dst_smin = S32_MIN;
14733 		*dst_smax = S32_MAX;
14734 	}
14735 
14736 	/* If either all additions overflow or no additions overflow, then
14737 	 * it is okay to set: dst_umin = dst_umin + src_umin, dst_umax =
14738 	 * dst_umax + src_umax. Otherwise (some additions overflow), set
14739 	 * the output bounds to unbounded.
14740 	 */
14741 	min_overflow = check_add_overflow(*dst_umin, umin_val, dst_umin);
14742 	max_overflow = check_add_overflow(*dst_umax, umax_val, dst_umax);
14743 
14744 	if (!min_overflow && max_overflow) {
14745 		*dst_umin = 0;
14746 		*dst_umax = U32_MAX;
14747 	}
14748 }
14749 
14750 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
14751 			       struct bpf_reg_state *src_reg)
14752 {
14753 	s64 *dst_smin = &dst_reg->smin_value;
14754 	s64 *dst_smax = &dst_reg->smax_value;
14755 	u64 *dst_umin = &dst_reg->umin_value;
14756 	u64 *dst_umax = &dst_reg->umax_value;
14757 	u64 umin_val = src_reg->umin_value;
14758 	u64 umax_val = src_reg->umax_value;
14759 	bool min_overflow, max_overflow;
14760 
14761 	if (check_add_overflow(*dst_smin, src_reg->smin_value, dst_smin) ||
14762 	    check_add_overflow(*dst_smax, src_reg->smax_value, dst_smax)) {
14763 		*dst_smin = S64_MIN;
14764 		*dst_smax = S64_MAX;
14765 	}
14766 
14767 	/* If either all additions overflow or no additions overflow, then
14768 	 * it is okay to set: dst_umin = dst_umin + src_umin, dst_umax =
14769 	 * dst_umax + src_umax. Otherwise (some additions overflow), set
14770 	 * the output bounds to unbounded.
14771 	 */
14772 	min_overflow = check_add_overflow(*dst_umin, umin_val, dst_umin);
14773 	max_overflow = check_add_overflow(*dst_umax, umax_val, dst_umax);
14774 
14775 	if (!min_overflow && max_overflow) {
14776 		*dst_umin = 0;
14777 		*dst_umax = U64_MAX;
14778 	}
14779 }
14780 
14781 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
14782 				 struct bpf_reg_state *src_reg)
14783 {
14784 	s32 *dst_smin = &dst_reg->s32_min_value;
14785 	s32 *dst_smax = &dst_reg->s32_max_value;
14786 	u32 *dst_umin = &dst_reg->u32_min_value;
14787 	u32 *dst_umax = &dst_reg->u32_max_value;
14788 	u32 umin_val = src_reg->u32_min_value;
14789 	u32 umax_val = src_reg->u32_max_value;
14790 	bool min_underflow, max_underflow;
14791 
14792 	if (check_sub_overflow(*dst_smin, src_reg->s32_max_value, dst_smin) ||
14793 	    check_sub_overflow(*dst_smax, src_reg->s32_min_value, dst_smax)) {
14794 		/* Overflow possible, we know nothing */
14795 		*dst_smin = S32_MIN;
14796 		*dst_smax = S32_MAX;
14797 	}
14798 
14799 	/* If either all subtractions underflow or no subtractions
14800 	 * underflow, it is okay to set: dst_umin = dst_umin - src_umax,
14801 	 * dst_umax = dst_umax - src_umin. Otherwise (some subtractions
14802 	 * underflow), set the output bounds to unbounded.
14803 	 */
14804 	min_underflow = check_sub_overflow(*dst_umin, umax_val, dst_umin);
14805 	max_underflow = check_sub_overflow(*dst_umax, umin_val, dst_umax);
14806 
14807 	if (min_underflow && !max_underflow) {
14808 		*dst_umin = 0;
14809 		*dst_umax = U32_MAX;
14810 	}
14811 }
14812 
14813 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
14814 			       struct bpf_reg_state *src_reg)
14815 {
14816 	s64 *dst_smin = &dst_reg->smin_value;
14817 	s64 *dst_smax = &dst_reg->smax_value;
14818 	u64 *dst_umin = &dst_reg->umin_value;
14819 	u64 *dst_umax = &dst_reg->umax_value;
14820 	u64 umin_val = src_reg->umin_value;
14821 	u64 umax_val = src_reg->umax_value;
14822 	bool min_underflow, max_underflow;
14823 
14824 	if (check_sub_overflow(*dst_smin, src_reg->smax_value, dst_smin) ||
14825 	    check_sub_overflow(*dst_smax, src_reg->smin_value, dst_smax)) {
14826 		/* Overflow possible, we know nothing */
14827 		*dst_smin = S64_MIN;
14828 		*dst_smax = S64_MAX;
14829 	}
14830 
14831 	/* If either all subtractions underflow or no subtractions
14832 	 * underflow, it is okay to set: dst_umin = dst_umin - src_umax,
14833 	 * dst_umax = dst_umax - src_umin. Otherwise (some subtractions
14834 	 * underflow), set the output bounds to unbounded.
14835 	 */
14836 	min_underflow = check_sub_overflow(*dst_umin, umax_val, dst_umin);
14837 	max_underflow = check_sub_overflow(*dst_umax, umin_val, dst_umax);
14838 
14839 	if (min_underflow && !max_underflow) {
14840 		*dst_umin = 0;
14841 		*dst_umax = U64_MAX;
14842 	}
14843 }
14844 
14845 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
14846 				 struct bpf_reg_state *src_reg)
14847 {
14848 	s32 *dst_smin = &dst_reg->s32_min_value;
14849 	s32 *dst_smax = &dst_reg->s32_max_value;
14850 	u32 *dst_umin = &dst_reg->u32_min_value;
14851 	u32 *dst_umax = &dst_reg->u32_max_value;
14852 	s32 tmp_prod[4];
14853 
14854 	if (check_mul_overflow(*dst_umax, src_reg->u32_max_value, dst_umax) ||
14855 	    check_mul_overflow(*dst_umin, src_reg->u32_min_value, dst_umin)) {
14856 		/* Overflow possible, we know nothing */
14857 		*dst_umin = 0;
14858 		*dst_umax = U32_MAX;
14859 	}
14860 	if (check_mul_overflow(*dst_smin, src_reg->s32_min_value, &tmp_prod[0]) ||
14861 	    check_mul_overflow(*dst_smin, src_reg->s32_max_value, &tmp_prod[1]) ||
14862 	    check_mul_overflow(*dst_smax, src_reg->s32_min_value, &tmp_prod[2]) ||
14863 	    check_mul_overflow(*dst_smax, src_reg->s32_max_value, &tmp_prod[3])) {
14864 		/* Overflow possible, we know nothing */
14865 		*dst_smin = S32_MIN;
14866 		*dst_smax = S32_MAX;
14867 	} else {
14868 		*dst_smin = min_array(tmp_prod, 4);
14869 		*dst_smax = max_array(tmp_prod, 4);
14870 	}
14871 }
14872 
14873 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
14874 			       struct bpf_reg_state *src_reg)
14875 {
14876 	s64 *dst_smin = &dst_reg->smin_value;
14877 	s64 *dst_smax = &dst_reg->smax_value;
14878 	u64 *dst_umin = &dst_reg->umin_value;
14879 	u64 *dst_umax = &dst_reg->umax_value;
14880 	s64 tmp_prod[4];
14881 
14882 	if (check_mul_overflow(*dst_umax, src_reg->umax_value, dst_umax) ||
14883 	    check_mul_overflow(*dst_umin, src_reg->umin_value, dst_umin)) {
14884 		/* Overflow possible, we know nothing */
14885 		*dst_umin = 0;
14886 		*dst_umax = U64_MAX;
14887 	}
14888 	if (check_mul_overflow(*dst_smin, src_reg->smin_value, &tmp_prod[0]) ||
14889 	    check_mul_overflow(*dst_smin, src_reg->smax_value, &tmp_prod[1]) ||
14890 	    check_mul_overflow(*dst_smax, src_reg->smin_value, &tmp_prod[2]) ||
14891 	    check_mul_overflow(*dst_smax, src_reg->smax_value, &tmp_prod[3])) {
14892 		/* Overflow possible, we know nothing */
14893 		*dst_smin = S64_MIN;
14894 		*dst_smax = S64_MAX;
14895 	} else {
14896 		*dst_smin = min_array(tmp_prod, 4);
14897 		*dst_smax = max_array(tmp_prod, 4);
14898 	}
14899 }
14900 
14901 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
14902 				 struct bpf_reg_state *src_reg)
14903 {
14904 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
14905 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
14906 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
14907 	u32 umax_val = src_reg->u32_max_value;
14908 
14909 	if (src_known && dst_known) {
14910 		__mark_reg32_known(dst_reg, var32_off.value);
14911 		return;
14912 	}
14913 
14914 	/* We get our minimum from the var_off, since that's inherently
14915 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
14916 	 */
14917 	dst_reg->u32_min_value = var32_off.value;
14918 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
14919 
14920 	/* Safe to set s32 bounds by casting u32 result into s32 when u32
14921 	 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
14922 	 */
14923 	if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
14924 		dst_reg->s32_min_value = dst_reg->u32_min_value;
14925 		dst_reg->s32_max_value = dst_reg->u32_max_value;
14926 	} else {
14927 		dst_reg->s32_min_value = S32_MIN;
14928 		dst_reg->s32_max_value = S32_MAX;
14929 	}
14930 }
14931 
14932 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
14933 			       struct bpf_reg_state *src_reg)
14934 {
14935 	bool src_known = tnum_is_const(src_reg->var_off);
14936 	bool dst_known = tnum_is_const(dst_reg->var_off);
14937 	u64 umax_val = src_reg->umax_value;
14938 
14939 	if (src_known && dst_known) {
14940 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
14941 		return;
14942 	}
14943 
14944 	/* We get our minimum from the var_off, since that's inherently
14945 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
14946 	 */
14947 	dst_reg->umin_value = dst_reg->var_off.value;
14948 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
14949 
14950 	/* Safe to set s64 bounds by casting u64 result into s64 when u64
14951 	 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
14952 	 */
14953 	if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
14954 		dst_reg->smin_value = dst_reg->umin_value;
14955 		dst_reg->smax_value = dst_reg->umax_value;
14956 	} else {
14957 		dst_reg->smin_value = S64_MIN;
14958 		dst_reg->smax_value = S64_MAX;
14959 	}
14960 	/* We may learn something more from the var_off */
14961 	__update_reg_bounds(dst_reg);
14962 }
14963 
14964 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
14965 				struct bpf_reg_state *src_reg)
14966 {
14967 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
14968 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
14969 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
14970 	u32 umin_val = src_reg->u32_min_value;
14971 
14972 	if (src_known && dst_known) {
14973 		__mark_reg32_known(dst_reg, var32_off.value);
14974 		return;
14975 	}
14976 
14977 	/* We get our maximum from the var_off, and our minimum is the
14978 	 * maximum of the operands' minima
14979 	 */
14980 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
14981 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
14982 
14983 	/* Safe to set s32 bounds by casting u32 result into s32 when u32
14984 	 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
14985 	 */
14986 	if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
14987 		dst_reg->s32_min_value = dst_reg->u32_min_value;
14988 		dst_reg->s32_max_value = dst_reg->u32_max_value;
14989 	} else {
14990 		dst_reg->s32_min_value = S32_MIN;
14991 		dst_reg->s32_max_value = S32_MAX;
14992 	}
14993 }
14994 
14995 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
14996 			      struct bpf_reg_state *src_reg)
14997 {
14998 	bool src_known = tnum_is_const(src_reg->var_off);
14999 	bool dst_known = tnum_is_const(dst_reg->var_off);
15000 	u64 umin_val = src_reg->umin_value;
15001 
15002 	if (src_known && dst_known) {
15003 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
15004 		return;
15005 	}
15006 
15007 	/* We get our maximum from the var_off, and our minimum is the
15008 	 * maximum of the operands' minima
15009 	 */
15010 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
15011 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
15012 
15013 	/* Safe to set s64 bounds by casting u64 result into s64 when u64
15014 	 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
15015 	 */
15016 	if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
15017 		dst_reg->smin_value = dst_reg->umin_value;
15018 		dst_reg->smax_value = dst_reg->umax_value;
15019 	} else {
15020 		dst_reg->smin_value = S64_MIN;
15021 		dst_reg->smax_value = S64_MAX;
15022 	}
15023 	/* We may learn something more from the var_off */
15024 	__update_reg_bounds(dst_reg);
15025 }
15026 
15027 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
15028 				 struct bpf_reg_state *src_reg)
15029 {
15030 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
15031 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
15032 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
15033 
15034 	if (src_known && dst_known) {
15035 		__mark_reg32_known(dst_reg, var32_off.value);
15036 		return;
15037 	}
15038 
15039 	/* We get both minimum and maximum from the var32_off. */
15040 	dst_reg->u32_min_value = var32_off.value;
15041 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
15042 
15043 	/* Safe to set s32 bounds by casting u32 result into s32 when u32
15044 	 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
15045 	 */
15046 	if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
15047 		dst_reg->s32_min_value = dst_reg->u32_min_value;
15048 		dst_reg->s32_max_value = dst_reg->u32_max_value;
15049 	} else {
15050 		dst_reg->s32_min_value = S32_MIN;
15051 		dst_reg->s32_max_value = S32_MAX;
15052 	}
15053 }
15054 
15055 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
15056 			       struct bpf_reg_state *src_reg)
15057 {
15058 	bool src_known = tnum_is_const(src_reg->var_off);
15059 	bool dst_known = tnum_is_const(dst_reg->var_off);
15060 
15061 	if (src_known && dst_known) {
15062 		/* dst_reg->var_off.value has been updated earlier */
15063 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
15064 		return;
15065 	}
15066 
15067 	/* We get both minimum and maximum from the var_off. */
15068 	dst_reg->umin_value = dst_reg->var_off.value;
15069 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
15070 
15071 	/* Safe to set s64 bounds by casting u64 result into s64 when u64
15072 	 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
15073 	 */
15074 	if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
15075 		dst_reg->smin_value = dst_reg->umin_value;
15076 		dst_reg->smax_value = dst_reg->umax_value;
15077 	} else {
15078 		dst_reg->smin_value = S64_MIN;
15079 		dst_reg->smax_value = S64_MAX;
15080 	}
15081 
15082 	__update_reg_bounds(dst_reg);
15083 }
15084 
15085 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
15086 				   u64 umin_val, u64 umax_val)
15087 {
15088 	/* We lose all sign bit information (except what we can pick
15089 	 * up from var_off)
15090 	 */
15091 	dst_reg->s32_min_value = S32_MIN;
15092 	dst_reg->s32_max_value = S32_MAX;
15093 	/* If we might shift our top bit out, then we know nothing */
15094 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
15095 		dst_reg->u32_min_value = 0;
15096 		dst_reg->u32_max_value = U32_MAX;
15097 	} else {
15098 		dst_reg->u32_min_value <<= umin_val;
15099 		dst_reg->u32_max_value <<= umax_val;
15100 	}
15101 }
15102 
15103 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
15104 				 struct bpf_reg_state *src_reg)
15105 {
15106 	u32 umax_val = src_reg->u32_max_value;
15107 	u32 umin_val = src_reg->u32_min_value;
15108 	/* u32 alu operation will zext upper bits */
15109 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
15110 
15111 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
15112 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
15113 	/* Not required but being careful mark reg64 bounds as unknown so
15114 	 * that we are forced to pick them up from tnum and zext later and
15115 	 * if some path skips this step we are still safe.
15116 	 */
15117 	__mark_reg64_unbounded(dst_reg);
15118 	__update_reg32_bounds(dst_reg);
15119 }
15120 
15121 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
15122 				   u64 umin_val, u64 umax_val)
15123 {
15124 	/* Special case <<32 because it is a common compiler pattern to sign
15125 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
15126 	 * positive we know this shift will also be positive so we can track
15127 	 * bounds correctly. Otherwise we lose all sign bit information except
15128 	 * what we can pick up from var_off. Perhaps we can generalize this
15129 	 * later to shifts of any length.
15130 	 */
15131 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
15132 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
15133 	else
15134 		dst_reg->smax_value = S64_MAX;
15135 
15136 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
15137 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
15138 	else
15139 		dst_reg->smin_value = S64_MIN;
15140 
15141 	/* If we might shift our top bit out, then we know nothing */
15142 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
15143 		dst_reg->umin_value = 0;
15144 		dst_reg->umax_value = U64_MAX;
15145 	} else {
15146 		dst_reg->umin_value <<= umin_val;
15147 		dst_reg->umax_value <<= umax_val;
15148 	}
15149 }
15150 
15151 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
15152 			       struct bpf_reg_state *src_reg)
15153 {
15154 	u64 umax_val = src_reg->umax_value;
15155 	u64 umin_val = src_reg->umin_value;
15156 
15157 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
15158 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
15159 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
15160 
15161 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
15162 	/* We may learn something more from the var_off */
15163 	__update_reg_bounds(dst_reg);
15164 }
15165 
15166 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
15167 				 struct bpf_reg_state *src_reg)
15168 {
15169 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
15170 	u32 umax_val = src_reg->u32_max_value;
15171 	u32 umin_val = src_reg->u32_min_value;
15172 
15173 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
15174 	 * be negative, then either:
15175 	 * 1) src_reg might be zero, so the sign bit of the result is
15176 	 *    unknown, so we lose our signed bounds
15177 	 * 2) it's known negative, thus the unsigned bounds capture the
15178 	 *    signed bounds
15179 	 * 3) the signed bounds cross zero, so they tell us nothing
15180 	 *    about the result
15181 	 * If the value in dst_reg is known nonnegative, then again the
15182 	 * unsigned bounds capture the signed bounds.
15183 	 * Thus, in all cases it suffices to blow away our signed bounds
15184 	 * and rely on inferring new ones from the unsigned bounds and
15185 	 * var_off of the result.
15186 	 */
15187 	dst_reg->s32_min_value = S32_MIN;
15188 	dst_reg->s32_max_value = S32_MAX;
15189 
15190 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
15191 	dst_reg->u32_min_value >>= umax_val;
15192 	dst_reg->u32_max_value >>= umin_val;
15193 
15194 	__mark_reg64_unbounded(dst_reg);
15195 	__update_reg32_bounds(dst_reg);
15196 }
15197 
15198 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
15199 			       struct bpf_reg_state *src_reg)
15200 {
15201 	u64 umax_val = src_reg->umax_value;
15202 	u64 umin_val = src_reg->umin_value;
15203 
15204 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
15205 	 * be negative, then either:
15206 	 * 1) src_reg might be zero, so the sign bit of the result is
15207 	 *    unknown, so we lose our signed bounds
15208 	 * 2) it's known negative, thus the unsigned bounds capture the
15209 	 *    signed bounds
15210 	 * 3) the signed bounds cross zero, so they tell us nothing
15211 	 *    about the result
15212 	 * If the value in dst_reg is known nonnegative, then again the
15213 	 * unsigned bounds capture the signed bounds.
15214 	 * Thus, in all cases it suffices to blow away our signed bounds
15215 	 * and rely on inferring new ones from the unsigned bounds and
15216 	 * var_off of the result.
15217 	 */
15218 	dst_reg->smin_value = S64_MIN;
15219 	dst_reg->smax_value = S64_MAX;
15220 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
15221 	dst_reg->umin_value >>= umax_val;
15222 	dst_reg->umax_value >>= umin_val;
15223 
15224 	/* Its not easy to operate on alu32 bounds here because it depends
15225 	 * on bits being shifted in. Take easy way out and mark unbounded
15226 	 * so we can recalculate later from tnum.
15227 	 */
15228 	__mark_reg32_unbounded(dst_reg);
15229 	__update_reg_bounds(dst_reg);
15230 }
15231 
15232 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
15233 				  struct bpf_reg_state *src_reg)
15234 {
15235 	u64 umin_val = src_reg->u32_min_value;
15236 
15237 	/* Upon reaching here, src_known is true and
15238 	 * umax_val is equal to umin_val.
15239 	 */
15240 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
15241 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
15242 
15243 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
15244 
15245 	/* blow away the dst_reg umin_value/umax_value and rely on
15246 	 * dst_reg var_off to refine the result.
15247 	 */
15248 	dst_reg->u32_min_value = 0;
15249 	dst_reg->u32_max_value = U32_MAX;
15250 
15251 	__mark_reg64_unbounded(dst_reg);
15252 	__update_reg32_bounds(dst_reg);
15253 }
15254 
15255 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
15256 				struct bpf_reg_state *src_reg)
15257 {
15258 	u64 umin_val = src_reg->umin_value;
15259 
15260 	/* Upon reaching here, src_known is true and umax_val is equal
15261 	 * to umin_val.
15262 	 */
15263 	dst_reg->smin_value >>= umin_val;
15264 	dst_reg->smax_value >>= umin_val;
15265 
15266 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
15267 
15268 	/* blow away the dst_reg umin_value/umax_value and rely on
15269 	 * dst_reg var_off to refine the result.
15270 	 */
15271 	dst_reg->umin_value = 0;
15272 	dst_reg->umax_value = U64_MAX;
15273 
15274 	/* Its not easy to operate on alu32 bounds here because it depends
15275 	 * on bits being shifted in from upper 32-bits. Take easy way out
15276 	 * and mark unbounded so we can recalculate later from tnum.
15277 	 */
15278 	__mark_reg32_unbounded(dst_reg);
15279 	__update_reg_bounds(dst_reg);
15280 }
15281 
15282 static bool is_safe_to_compute_dst_reg_range(struct bpf_insn *insn,
15283 					     const struct bpf_reg_state *src_reg)
15284 {
15285 	bool src_is_const = false;
15286 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
15287 
15288 	if (insn_bitness == 32) {
15289 		if (tnum_subreg_is_const(src_reg->var_off)
15290 		    && src_reg->s32_min_value == src_reg->s32_max_value
15291 		    && src_reg->u32_min_value == src_reg->u32_max_value)
15292 			src_is_const = true;
15293 	} else {
15294 		if (tnum_is_const(src_reg->var_off)
15295 		    && src_reg->smin_value == src_reg->smax_value
15296 		    && src_reg->umin_value == src_reg->umax_value)
15297 			src_is_const = true;
15298 	}
15299 
15300 	switch (BPF_OP(insn->code)) {
15301 	case BPF_ADD:
15302 	case BPF_SUB:
15303 	case BPF_NEG:
15304 	case BPF_AND:
15305 	case BPF_XOR:
15306 	case BPF_OR:
15307 	case BPF_MUL:
15308 		return true;
15309 
15310 	/* Shift operators range is only computable if shift dimension operand
15311 	 * is a constant. Shifts greater than 31 or 63 are undefined. This
15312 	 * includes shifts by a negative number.
15313 	 */
15314 	case BPF_LSH:
15315 	case BPF_RSH:
15316 	case BPF_ARSH:
15317 		return (src_is_const && src_reg->umax_value < insn_bitness);
15318 	default:
15319 		return false;
15320 	}
15321 }
15322 
15323 /* WARNING: This function does calculations on 64-bit values, but the actual
15324  * execution may occur on 32-bit values. Therefore, things like bitshifts
15325  * need extra checks in the 32-bit case.
15326  */
15327 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
15328 				      struct bpf_insn *insn,
15329 				      struct bpf_reg_state *dst_reg,
15330 				      struct bpf_reg_state src_reg)
15331 {
15332 	u8 opcode = BPF_OP(insn->code);
15333 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
15334 	int ret;
15335 
15336 	if (!is_safe_to_compute_dst_reg_range(insn, &src_reg)) {
15337 		__mark_reg_unknown(env, dst_reg);
15338 		return 0;
15339 	}
15340 
15341 	if (sanitize_needed(opcode)) {
15342 		ret = sanitize_val_alu(env, insn);
15343 		if (ret < 0)
15344 			return sanitize_err(env, insn, ret, NULL, NULL);
15345 	}
15346 
15347 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
15348 	 * There are two classes of instructions: The first class we track both
15349 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
15350 	 * greatest amount of precision when alu operations are mixed with jmp32
15351 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
15352 	 * and BPF_OR. This is possible because these ops have fairly easy to
15353 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
15354 	 * See alu32 verifier tests for examples. The second class of
15355 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
15356 	 * with regards to tracking sign/unsigned bounds because the bits may
15357 	 * cross subreg boundaries in the alu64 case. When this happens we mark
15358 	 * the reg unbounded in the subreg bound space and use the resulting
15359 	 * tnum to calculate an approximation of the sign/unsigned bounds.
15360 	 */
15361 	switch (opcode) {
15362 	case BPF_ADD:
15363 		scalar32_min_max_add(dst_reg, &src_reg);
15364 		scalar_min_max_add(dst_reg, &src_reg);
15365 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
15366 		break;
15367 	case BPF_SUB:
15368 		scalar32_min_max_sub(dst_reg, &src_reg);
15369 		scalar_min_max_sub(dst_reg, &src_reg);
15370 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
15371 		break;
15372 	case BPF_NEG:
15373 		env->fake_reg[0] = *dst_reg;
15374 		__mark_reg_known(dst_reg, 0);
15375 		scalar32_min_max_sub(dst_reg, &env->fake_reg[0]);
15376 		scalar_min_max_sub(dst_reg, &env->fake_reg[0]);
15377 		dst_reg->var_off = tnum_neg(env->fake_reg[0].var_off);
15378 		break;
15379 	case BPF_MUL:
15380 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
15381 		scalar32_min_max_mul(dst_reg, &src_reg);
15382 		scalar_min_max_mul(dst_reg, &src_reg);
15383 		break;
15384 	case BPF_AND:
15385 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
15386 		scalar32_min_max_and(dst_reg, &src_reg);
15387 		scalar_min_max_and(dst_reg, &src_reg);
15388 		break;
15389 	case BPF_OR:
15390 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
15391 		scalar32_min_max_or(dst_reg, &src_reg);
15392 		scalar_min_max_or(dst_reg, &src_reg);
15393 		break;
15394 	case BPF_XOR:
15395 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
15396 		scalar32_min_max_xor(dst_reg, &src_reg);
15397 		scalar_min_max_xor(dst_reg, &src_reg);
15398 		break;
15399 	case BPF_LSH:
15400 		if (alu32)
15401 			scalar32_min_max_lsh(dst_reg, &src_reg);
15402 		else
15403 			scalar_min_max_lsh(dst_reg, &src_reg);
15404 		break;
15405 	case BPF_RSH:
15406 		if (alu32)
15407 			scalar32_min_max_rsh(dst_reg, &src_reg);
15408 		else
15409 			scalar_min_max_rsh(dst_reg, &src_reg);
15410 		break;
15411 	case BPF_ARSH:
15412 		if (alu32)
15413 			scalar32_min_max_arsh(dst_reg, &src_reg);
15414 		else
15415 			scalar_min_max_arsh(dst_reg, &src_reg);
15416 		break;
15417 	default:
15418 		break;
15419 	}
15420 
15421 	/* ALU32 ops are zero extended into 64bit register */
15422 	if (alu32)
15423 		zext_32_to_64(dst_reg);
15424 	reg_bounds_sync(dst_reg);
15425 	return 0;
15426 }
15427 
15428 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
15429  * and var_off.
15430  */
15431 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
15432 				   struct bpf_insn *insn)
15433 {
15434 	struct bpf_verifier_state *vstate = env->cur_state;
15435 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
15436 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
15437 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
15438 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
15439 	u8 opcode = BPF_OP(insn->code);
15440 	int err;
15441 
15442 	dst_reg = &regs[insn->dst_reg];
15443 	src_reg = NULL;
15444 
15445 	if (dst_reg->type == PTR_TO_ARENA) {
15446 		struct bpf_insn_aux_data *aux = cur_aux(env);
15447 
15448 		if (BPF_CLASS(insn->code) == BPF_ALU64)
15449 			/*
15450 			 * 32-bit operations zero upper bits automatically.
15451 			 * 64-bit operations need to be converted to 32.
15452 			 */
15453 			aux->needs_zext = true;
15454 
15455 		/* Any arithmetic operations are allowed on arena pointers */
15456 		return 0;
15457 	}
15458 
15459 	if (dst_reg->type != SCALAR_VALUE)
15460 		ptr_reg = dst_reg;
15461 
15462 	if (BPF_SRC(insn->code) == BPF_X) {
15463 		src_reg = &regs[insn->src_reg];
15464 		if (src_reg->type != SCALAR_VALUE) {
15465 			if (dst_reg->type != SCALAR_VALUE) {
15466 				/* Combining two pointers by any ALU op yields
15467 				 * an arbitrary scalar. Disallow all math except
15468 				 * pointer subtraction
15469 				 */
15470 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
15471 					mark_reg_unknown(env, regs, insn->dst_reg);
15472 					return 0;
15473 				}
15474 				verbose(env, "R%d pointer %s pointer prohibited\n",
15475 					insn->dst_reg,
15476 					bpf_alu_string[opcode >> 4]);
15477 				return -EACCES;
15478 			} else {
15479 				/* scalar += pointer
15480 				 * This is legal, but we have to reverse our
15481 				 * src/dest handling in computing the range
15482 				 */
15483 				err = mark_chain_precision(env, insn->dst_reg);
15484 				if (err)
15485 					return err;
15486 				return adjust_ptr_min_max_vals(env, insn,
15487 							       src_reg, dst_reg);
15488 			}
15489 		} else if (ptr_reg) {
15490 			/* pointer += scalar */
15491 			err = mark_chain_precision(env, insn->src_reg);
15492 			if (err)
15493 				return err;
15494 			return adjust_ptr_min_max_vals(env, insn,
15495 						       dst_reg, src_reg);
15496 		} else if (dst_reg->precise) {
15497 			/* if dst_reg is precise, src_reg should be precise as well */
15498 			err = mark_chain_precision(env, insn->src_reg);
15499 			if (err)
15500 				return err;
15501 		}
15502 	} else {
15503 		/* Pretend the src is a reg with a known value, since we only
15504 		 * need to be able to read from this state.
15505 		 */
15506 		off_reg.type = SCALAR_VALUE;
15507 		__mark_reg_known(&off_reg, insn->imm);
15508 		src_reg = &off_reg;
15509 		if (ptr_reg) /* pointer += K */
15510 			return adjust_ptr_min_max_vals(env, insn,
15511 						       ptr_reg, src_reg);
15512 	}
15513 
15514 	/* Got here implies adding two SCALAR_VALUEs */
15515 	if (WARN_ON_ONCE(ptr_reg)) {
15516 		print_verifier_state(env, vstate, vstate->curframe, true);
15517 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
15518 		return -EFAULT;
15519 	}
15520 	if (WARN_ON(!src_reg)) {
15521 		print_verifier_state(env, vstate, vstate->curframe, true);
15522 		verbose(env, "verifier internal error: no src_reg\n");
15523 		return -EFAULT;
15524 	}
15525 	err = adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
15526 	if (err)
15527 		return err;
15528 	/*
15529 	 * Compilers can generate the code
15530 	 * r1 = r2
15531 	 * r1 += 0x1
15532 	 * if r2 < 1000 goto ...
15533 	 * use r1 in memory access
15534 	 * So for 64-bit alu remember constant delta between r2 and r1 and
15535 	 * update r1 after 'if' condition.
15536 	 */
15537 	if (env->bpf_capable &&
15538 	    BPF_OP(insn->code) == BPF_ADD && !alu32 &&
15539 	    dst_reg->id && is_reg_const(src_reg, false)) {
15540 		u64 val = reg_const_value(src_reg, false);
15541 
15542 		if ((dst_reg->id & BPF_ADD_CONST) ||
15543 		    /* prevent overflow in sync_linked_regs() later */
15544 		    val > (u32)S32_MAX) {
15545 			/*
15546 			 * If the register already went through rX += val
15547 			 * we cannot accumulate another val into rx->off.
15548 			 */
15549 			dst_reg->off = 0;
15550 			dst_reg->id = 0;
15551 		} else {
15552 			dst_reg->id |= BPF_ADD_CONST;
15553 			dst_reg->off = val;
15554 		}
15555 	} else {
15556 		/*
15557 		 * Make sure ID is cleared otherwise dst_reg min/max could be
15558 		 * incorrectly propagated into other registers by sync_linked_regs()
15559 		 */
15560 		dst_reg->id = 0;
15561 	}
15562 	return 0;
15563 }
15564 
15565 /* check validity of 32-bit and 64-bit arithmetic operations */
15566 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
15567 {
15568 	struct bpf_reg_state *regs = cur_regs(env);
15569 	u8 opcode = BPF_OP(insn->code);
15570 	int err;
15571 
15572 	if (opcode == BPF_END || opcode == BPF_NEG) {
15573 		if (opcode == BPF_NEG) {
15574 			if (BPF_SRC(insn->code) != BPF_K ||
15575 			    insn->src_reg != BPF_REG_0 ||
15576 			    insn->off != 0 || insn->imm != 0) {
15577 				verbose(env, "BPF_NEG uses reserved fields\n");
15578 				return -EINVAL;
15579 			}
15580 		} else {
15581 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
15582 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
15583 			    (BPF_CLASS(insn->code) == BPF_ALU64 &&
15584 			     BPF_SRC(insn->code) != BPF_TO_LE)) {
15585 				verbose(env, "BPF_END uses reserved fields\n");
15586 				return -EINVAL;
15587 			}
15588 		}
15589 
15590 		/* check src operand */
15591 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
15592 		if (err)
15593 			return err;
15594 
15595 		if (is_pointer_value(env, insn->dst_reg)) {
15596 			verbose(env, "R%d pointer arithmetic prohibited\n",
15597 				insn->dst_reg);
15598 			return -EACCES;
15599 		}
15600 
15601 		/* check dest operand */
15602 		if (opcode == BPF_NEG) {
15603 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
15604 			err = err ?: adjust_scalar_min_max_vals(env, insn,
15605 							 &regs[insn->dst_reg],
15606 							 regs[insn->dst_reg]);
15607 		} else {
15608 			err = check_reg_arg(env, insn->dst_reg, DST_OP);
15609 		}
15610 		if (err)
15611 			return err;
15612 
15613 	} else if (opcode == BPF_MOV) {
15614 
15615 		if (BPF_SRC(insn->code) == BPF_X) {
15616 			if (BPF_CLASS(insn->code) == BPF_ALU) {
15617 				if ((insn->off != 0 && insn->off != 8 && insn->off != 16) ||
15618 				    insn->imm) {
15619 					verbose(env, "BPF_MOV uses reserved fields\n");
15620 					return -EINVAL;
15621 				}
15622 			} else if (insn->off == BPF_ADDR_SPACE_CAST) {
15623 				if (insn->imm != 1 && insn->imm != 1u << 16) {
15624 					verbose(env, "addr_space_cast insn can only convert between address space 1 and 0\n");
15625 					return -EINVAL;
15626 				}
15627 				if (!env->prog->aux->arena) {
15628 					verbose(env, "addr_space_cast insn can only be used in a program that has an associated arena\n");
15629 					return -EINVAL;
15630 				}
15631 			} else {
15632 				if ((insn->off != 0 && insn->off != 8 && insn->off != 16 &&
15633 				     insn->off != 32) || insn->imm) {
15634 					verbose(env, "BPF_MOV uses reserved fields\n");
15635 					return -EINVAL;
15636 				}
15637 			}
15638 
15639 			/* check src operand */
15640 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
15641 			if (err)
15642 				return err;
15643 		} else {
15644 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
15645 				verbose(env, "BPF_MOV uses reserved fields\n");
15646 				return -EINVAL;
15647 			}
15648 		}
15649 
15650 		/* check dest operand, mark as required later */
15651 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
15652 		if (err)
15653 			return err;
15654 
15655 		if (BPF_SRC(insn->code) == BPF_X) {
15656 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
15657 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
15658 
15659 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
15660 				if (insn->imm) {
15661 					/* off == BPF_ADDR_SPACE_CAST */
15662 					mark_reg_unknown(env, regs, insn->dst_reg);
15663 					if (insn->imm == 1) { /* cast from as(1) to as(0) */
15664 						dst_reg->type = PTR_TO_ARENA;
15665 						/* PTR_TO_ARENA is 32-bit */
15666 						dst_reg->subreg_def = env->insn_idx + 1;
15667 					}
15668 				} else if (insn->off == 0) {
15669 					/* case: R1 = R2
15670 					 * copy register state to dest reg
15671 					 */
15672 					assign_scalar_id_before_mov(env, src_reg);
15673 					copy_register_state(dst_reg, src_reg);
15674 					dst_reg->live |= REG_LIVE_WRITTEN;
15675 					dst_reg->subreg_def = DEF_NOT_SUBREG;
15676 				} else {
15677 					/* case: R1 = (s8, s16 s32)R2 */
15678 					if (is_pointer_value(env, insn->src_reg)) {
15679 						verbose(env,
15680 							"R%d sign-extension part of pointer\n",
15681 							insn->src_reg);
15682 						return -EACCES;
15683 					} else if (src_reg->type == SCALAR_VALUE) {
15684 						bool no_sext;
15685 
15686 						no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
15687 						if (no_sext)
15688 							assign_scalar_id_before_mov(env, src_reg);
15689 						copy_register_state(dst_reg, src_reg);
15690 						if (!no_sext)
15691 							dst_reg->id = 0;
15692 						coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
15693 						dst_reg->live |= REG_LIVE_WRITTEN;
15694 						dst_reg->subreg_def = DEF_NOT_SUBREG;
15695 					} else {
15696 						mark_reg_unknown(env, regs, insn->dst_reg);
15697 					}
15698 				}
15699 			} else {
15700 				/* R1 = (u32) R2 */
15701 				if (is_pointer_value(env, insn->src_reg)) {
15702 					verbose(env,
15703 						"R%d partial copy of pointer\n",
15704 						insn->src_reg);
15705 					return -EACCES;
15706 				} else if (src_reg->type == SCALAR_VALUE) {
15707 					if (insn->off == 0) {
15708 						bool is_src_reg_u32 = get_reg_width(src_reg) <= 32;
15709 
15710 						if (is_src_reg_u32)
15711 							assign_scalar_id_before_mov(env, src_reg);
15712 						copy_register_state(dst_reg, src_reg);
15713 						/* Make sure ID is cleared if src_reg is not in u32
15714 						 * range otherwise dst_reg min/max could be incorrectly
15715 						 * propagated into src_reg by sync_linked_regs()
15716 						 */
15717 						if (!is_src_reg_u32)
15718 							dst_reg->id = 0;
15719 						dst_reg->live |= REG_LIVE_WRITTEN;
15720 						dst_reg->subreg_def = env->insn_idx + 1;
15721 					} else {
15722 						/* case: W1 = (s8, s16)W2 */
15723 						bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
15724 
15725 						if (no_sext)
15726 							assign_scalar_id_before_mov(env, src_reg);
15727 						copy_register_state(dst_reg, src_reg);
15728 						if (!no_sext)
15729 							dst_reg->id = 0;
15730 						dst_reg->live |= REG_LIVE_WRITTEN;
15731 						dst_reg->subreg_def = env->insn_idx + 1;
15732 						coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
15733 					}
15734 				} else {
15735 					mark_reg_unknown(env, regs,
15736 							 insn->dst_reg);
15737 				}
15738 				zext_32_to_64(dst_reg);
15739 				reg_bounds_sync(dst_reg);
15740 			}
15741 		} else {
15742 			/* case: R = imm
15743 			 * remember the value we stored into this reg
15744 			 */
15745 			/* clear any state __mark_reg_known doesn't set */
15746 			mark_reg_unknown(env, regs, insn->dst_reg);
15747 			regs[insn->dst_reg].type = SCALAR_VALUE;
15748 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
15749 				__mark_reg_known(regs + insn->dst_reg,
15750 						 insn->imm);
15751 			} else {
15752 				__mark_reg_known(regs + insn->dst_reg,
15753 						 (u32)insn->imm);
15754 			}
15755 		}
15756 
15757 	} else if (opcode > BPF_END) {
15758 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
15759 		return -EINVAL;
15760 
15761 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
15762 
15763 		if (BPF_SRC(insn->code) == BPF_X) {
15764 			if (insn->imm != 0 || insn->off > 1 ||
15765 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
15766 				verbose(env, "BPF_ALU uses reserved fields\n");
15767 				return -EINVAL;
15768 			}
15769 			/* check src1 operand */
15770 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
15771 			if (err)
15772 				return err;
15773 		} else {
15774 			if (insn->src_reg != BPF_REG_0 || insn->off > 1 ||
15775 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
15776 				verbose(env, "BPF_ALU uses reserved fields\n");
15777 				return -EINVAL;
15778 			}
15779 		}
15780 
15781 		/* check src2 operand */
15782 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
15783 		if (err)
15784 			return err;
15785 
15786 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
15787 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
15788 			verbose(env, "div by zero\n");
15789 			return -EINVAL;
15790 		}
15791 
15792 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
15793 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
15794 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
15795 
15796 			if (insn->imm < 0 || insn->imm >= size) {
15797 				verbose(env, "invalid shift %d\n", insn->imm);
15798 				return -EINVAL;
15799 			}
15800 		}
15801 
15802 		/* check dest operand */
15803 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
15804 		err = err ?: adjust_reg_min_max_vals(env, insn);
15805 		if (err)
15806 			return err;
15807 	}
15808 
15809 	return reg_bounds_sanity_check(env, &regs[insn->dst_reg], "alu");
15810 }
15811 
15812 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
15813 				   struct bpf_reg_state *dst_reg,
15814 				   enum bpf_reg_type type,
15815 				   bool range_right_open)
15816 {
15817 	struct bpf_func_state *state;
15818 	struct bpf_reg_state *reg;
15819 	int new_range;
15820 
15821 	if (dst_reg->off < 0 ||
15822 	    (dst_reg->off == 0 && range_right_open))
15823 		/* This doesn't give us any range */
15824 		return;
15825 
15826 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
15827 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
15828 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
15829 		 * than pkt_end, but that's because it's also less than pkt.
15830 		 */
15831 		return;
15832 
15833 	new_range = dst_reg->off;
15834 	if (range_right_open)
15835 		new_range++;
15836 
15837 	/* Examples for register markings:
15838 	 *
15839 	 * pkt_data in dst register:
15840 	 *
15841 	 *   r2 = r3;
15842 	 *   r2 += 8;
15843 	 *   if (r2 > pkt_end) goto <handle exception>
15844 	 *   <access okay>
15845 	 *
15846 	 *   r2 = r3;
15847 	 *   r2 += 8;
15848 	 *   if (r2 < pkt_end) goto <access okay>
15849 	 *   <handle exception>
15850 	 *
15851 	 *   Where:
15852 	 *     r2 == dst_reg, pkt_end == src_reg
15853 	 *     r2=pkt(id=n,off=8,r=0)
15854 	 *     r3=pkt(id=n,off=0,r=0)
15855 	 *
15856 	 * pkt_data in src register:
15857 	 *
15858 	 *   r2 = r3;
15859 	 *   r2 += 8;
15860 	 *   if (pkt_end >= r2) goto <access okay>
15861 	 *   <handle exception>
15862 	 *
15863 	 *   r2 = r3;
15864 	 *   r2 += 8;
15865 	 *   if (pkt_end <= r2) goto <handle exception>
15866 	 *   <access okay>
15867 	 *
15868 	 *   Where:
15869 	 *     pkt_end == dst_reg, r2 == src_reg
15870 	 *     r2=pkt(id=n,off=8,r=0)
15871 	 *     r3=pkt(id=n,off=0,r=0)
15872 	 *
15873 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
15874 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
15875 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
15876 	 * the check.
15877 	 */
15878 
15879 	/* If our ids match, then we must have the same max_value.  And we
15880 	 * don't care about the other reg's fixed offset, since if it's too big
15881 	 * the range won't allow anything.
15882 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
15883 	 */
15884 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
15885 		if (reg->type == type && reg->id == dst_reg->id)
15886 			/* keep the maximum range already checked */
15887 			reg->range = max(reg->range, new_range);
15888 	}));
15889 }
15890 
15891 /*
15892  * <reg1> <op> <reg2>, currently assuming reg2 is a constant
15893  */
15894 static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
15895 				  u8 opcode, bool is_jmp32)
15896 {
15897 	struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off;
15898 	struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off;
15899 	u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value;
15900 	u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value;
15901 	s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value;
15902 	s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value;
15903 	u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value;
15904 	u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value;
15905 	s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value;
15906 	s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value;
15907 
15908 	switch (opcode) {
15909 	case BPF_JEQ:
15910 		/* constants, umin/umax and smin/smax checks would be
15911 		 * redundant in this case because they all should match
15912 		 */
15913 		if (tnum_is_const(t1) && tnum_is_const(t2))
15914 			return t1.value == t2.value;
15915 		/* non-overlapping ranges */
15916 		if (umin1 > umax2 || umax1 < umin2)
15917 			return 0;
15918 		if (smin1 > smax2 || smax1 < smin2)
15919 			return 0;
15920 		if (!is_jmp32) {
15921 			/* if 64-bit ranges are inconclusive, see if we can
15922 			 * utilize 32-bit subrange knowledge to eliminate
15923 			 * branches that can't be taken a priori
15924 			 */
15925 			if (reg1->u32_min_value > reg2->u32_max_value ||
15926 			    reg1->u32_max_value < reg2->u32_min_value)
15927 				return 0;
15928 			if (reg1->s32_min_value > reg2->s32_max_value ||
15929 			    reg1->s32_max_value < reg2->s32_min_value)
15930 				return 0;
15931 		}
15932 		break;
15933 	case BPF_JNE:
15934 		/* constants, umin/umax and smin/smax checks would be
15935 		 * redundant in this case because they all should match
15936 		 */
15937 		if (tnum_is_const(t1) && tnum_is_const(t2))
15938 			return t1.value != t2.value;
15939 		/* non-overlapping ranges */
15940 		if (umin1 > umax2 || umax1 < umin2)
15941 			return 1;
15942 		if (smin1 > smax2 || smax1 < smin2)
15943 			return 1;
15944 		if (!is_jmp32) {
15945 			/* if 64-bit ranges are inconclusive, see if we can
15946 			 * utilize 32-bit subrange knowledge to eliminate
15947 			 * branches that can't be taken a priori
15948 			 */
15949 			if (reg1->u32_min_value > reg2->u32_max_value ||
15950 			    reg1->u32_max_value < reg2->u32_min_value)
15951 				return 1;
15952 			if (reg1->s32_min_value > reg2->s32_max_value ||
15953 			    reg1->s32_max_value < reg2->s32_min_value)
15954 				return 1;
15955 		}
15956 		break;
15957 	case BPF_JSET:
15958 		if (!is_reg_const(reg2, is_jmp32)) {
15959 			swap(reg1, reg2);
15960 			swap(t1, t2);
15961 		}
15962 		if (!is_reg_const(reg2, is_jmp32))
15963 			return -1;
15964 		if ((~t1.mask & t1.value) & t2.value)
15965 			return 1;
15966 		if (!((t1.mask | t1.value) & t2.value))
15967 			return 0;
15968 		break;
15969 	case BPF_JGT:
15970 		if (umin1 > umax2)
15971 			return 1;
15972 		else if (umax1 <= umin2)
15973 			return 0;
15974 		break;
15975 	case BPF_JSGT:
15976 		if (smin1 > smax2)
15977 			return 1;
15978 		else if (smax1 <= smin2)
15979 			return 0;
15980 		break;
15981 	case BPF_JLT:
15982 		if (umax1 < umin2)
15983 			return 1;
15984 		else if (umin1 >= umax2)
15985 			return 0;
15986 		break;
15987 	case BPF_JSLT:
15988 		if (smax1 < smin2)
15989 			return 1;
15990 		else if (smin1 >= smax2)
15991 			return 0;
15992 		break;
15993 	case BPF_JGE:
15994 		if (umin1 >= umax2)
15995 			return 1;
15996 		else if (umax1 < umin2)
15997 			return 0;
15998 		break;
15999 	case BPF_JSGE:
16000 		if (smin1 >= smax2)
16001 			return 1;
16002 		else if (smax1 < smin2)
16003 			return 0;
16004 		break;
16005 	case BPF_JLE:
16006 		if (umax1 <= umin2)
16007 			return 1;
16008 		else if (umin1 > umax2)
16009 			return 0;
16010 		break;
16011 	case BPF_JSLE:
16012 		if (smax1 <= smin2)
16013 			return 1;
16014 		else if (smin1 > smax2)
16015 			return 0;
16016 		break;
16017 	}
16018 
16019 	return -1;
16020 }
16021 
16022 static int flip_opcode(u32 opcode)
16023 {
16024 	/* How can we transform "a <op> b" into "b <op> a"? */
16025 	static const u8 opcode_flip[16] = {
16026 		/* these stay the same */
16027 		[BPF_JEQ  >> 4] = BPF_JEQ,
16028 		[BPF_JNE  >> 4] = BPF_JNE,
16029 		[BPF_JSET >> 4] = BPF_JSET,
16030 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
16031 		[BPF_JGE  >> 4] = BPF_JLE,
16032 		[BPF_JGT  >> 4] = BPF_JLT,
16033 		[BPF_JLE  >> 4] = BPF_JGE,
16034 		[BPF_JLT  >> 4] = BPF_JGT,
16035 		[BPF_JSGE >> 4] = BPF_JSLE,
16036 		[BPF_JSGT >> 4] = BPF_JSLT,
16037 		[BPF_JSLE >> 4] = BPF_JSGE,
16038 		[BPF_JSLT >> 4] = BPF_JSGT
16039 	};
16040 	return opcode_flip[opcode >> 4];
16041 }
16042 
16043 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
16044 				   struct bpf_reg_state *src_reg,
16045 				   u8 opcode)
16046 {
16047 	struct bpf_reg_state *pkt;
16048 
16049 	if (src_reg->type == PTR_TO_PACKET_END) {
16050 		pkt = dst_reg;
16051 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
16052 		pkt = src_reg;
16053 		opcode = flip_opcode(opcode);
16054 	} else {
16055 		return -1;
16056 	}
16057 
16058 	if (pkt->range >= 0)
16059 		return -1;
16060 
16061 	switch (opcode) {
16062 	case BPF_JLE:
16063 		/* pkt <= pkt_end */
16064 		fallthrough;
16065 	case BPF_JGT:
16066 		/* pkt > pkt_end */
16067 		if (pkt->range == BEYOND_PKT_END)
16068 			/* pkt has at last one extra byte beyond pkt_end */
16069 			return opcode == BPF_JGT;
16070 		break;
16071 	case BPF_JLT:
16072 		/* pkt < pkt_end */
16073 		fallthrough;
16074 	case BPF_JGE:
16075 		/* pkt >= pkt_end */
16076 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
16077 			return opcode == BPF_JGE;
16078 		break;
16079 	}
16080 	return -1;
16081 }
16082 
16083 /* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;"
16084  * and return:
16085  *  1 - branch will be taken and "goto target" will be executed
16086  *  0 - branch will not be taken and fall-through to next insn
16087  * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value
16088  *      range [0,10]
16089  */
16090 static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
16091 			   u8 opcode, bool is_jmp32)
16092 {
16093 	if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32)
16094 		return is_pkt_ptr_branch_taken(reg1, reg2, opcode);
16095 
16096 	if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) {
16097 		u64 val;
16098 
16099 		/* arrange that reg2 is a scalar, and reg1 is a pointer */
16100 		if (!is_reg_const(reg2, is_jmp32)) {
16101 			opcode = flip_opcode(opcode);
16102 			swap(reg1, reg2);
16103 		}
16104 		/* and ensure that reg2 is a constant */
16105 		if (!is_reg_const(reg2, is_jmp32))
16106 			return -1;
16107 
16108 		if (!reg_not_null(reg1))
16109 			return -1;
16110 
16111 		/* If pointer is valid tests against zero will fail so we can
16112 		 * use this to direct branch taken.
16113 		 */
16114 		val = reg_const_value(reg2, is_jmp32);
16115 		if (val != 0)
16116 			return -1;
16117 
16118 		switch (opcode) {
16119 		case BPF_JEQ:
16120 			return 0;
16121 		case BPF_JNE:
16122 			return 1;
16123 		default:
16124 			return -1;
16125 		}
16126 	}
16127 
16128 	/* now deal with two scalars, but not necessarily constants */
16129 	return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32);
16130 }
16131 
16132 /* Opcode that corresponds to a *false* branch condition.
16133  * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2
16134  */
16135 static u8 rev_opcode(u8 opcode)
16136 {
16137 	switch (opcode) {
16138 	case BPF_JEQ:		return BPF_JNE;
16139 	case BPF_JNE:		return BPF_JEQ;
16140 	/* JSET doesn't have it's reverse opcode in BPF, so add
16141 	 * BPF_X flag to denote the reverse of that operation
16142 	 */
16143 	case BPF_JSET:		return BPF_JSET | BPF_X;
16144 	case BPF_JSET | BPF_X:	return BPF_JSET;
16145 	case BPF_JGE:		return BPF_JLT;
16146 	case BPF_JGT:		return BPF_JLE;
16147 	case BPF_JLE:		return BPF_JGT;
16148 	case BPF_JLT:		return BPF_JGE;
16149 	case BPF_JSGE:		return BPF_JSLT;
16150 	case BPF_JSGT:		return BPF_JSLE;
16151 	case BPF_JSLE:		return BPF_JSGT;
16152 	case BPF_JSLT:		return BPF_JSGE;
16153 	default:		return 0;
16154 	}
16155 }
16156 
16157 /* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */
16158 static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
16159 				u8 opcode, bool is_jmp32)
16160 {
16161 	struct tnum t;
16162 	u64 val;
16163 
16164 	/* In case of GE/GT/SGE/JST, reuse LE/LT/SLE/SLT logic from below */
16165 	switch (opcode) {
16166 	case BPF_JGE:
16167 	case BPF_JGT:
16168 	case BPF_JSGE:
16169 	case BPF_JSGT:
16170 		opcode = flip_opcode(opcode);
16171 		swap(reg1, reg2);
16172 		break;
16173 	default:
16174 		break;
16175 	}
16176 
16177 	switch (opcode) {
16178 	case BPF_JEQ:
16179 		if (is_jmp32) {
16180 			reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value);
16181 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value);
16182 			reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value);
16183 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value);
16184 			reg2->u32_min_value = reg1->u32_min_value;
16185 			reg2->u32_max_value = reg1->u32_max_value;
16186 			reg2->s32_min_value = reg1->s32_min_value;
16187 			reg2->s32_max_value = reg1->s32_max_value;
16188 
16189 			t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off));
16190 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
16191 			reg2->var_off = tnum_with_subreg(reg2->var_off, t);
16192 		} else {
16193 			reg1->umin_value = max(reg1->umin_value, reg2->umin_value);
16194 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value);
16195 			reg1->smin_value = max(reg1->smin_value, reg2->smin_value);
16196 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value);
16197 			reg2->umin_value = reg1->umin_value;
16198 			reg2->umax_value = reg1->umax_value;
16199 			reg2->smin_value = reg1->smin_value;
16200 			reg2->smax_value = reg1->smax_value;
16201 
16202 			reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off);
16203 			reg2->var_off = reg1->var_off;
16204 		}
16205 		break;
16206 	case BPF_JNE:
16207 		if (!is_reg_const(reg2, is_jmp32))
16208 			swap(reg1, reg2);
16209 		if (!is_reg_const(reg2, is_jmp32))
16210 			break;
16211 
16212 		/* try to recompute the bound of reg1 if reg2 is a const and
16213 		 * is exactly the edge of reg1.
16214 		 */
16215 		val = reg_const_value(reg2, is_jmp32);
16216 		if (is_jmp32) {
16217 			/* u32_min_value is not equal to 0xffffffff at this point,
16218 			 * because otherwise u32_max_value is 0xffffffff as well,
16219 			 * in such a case both reg1 and reg2 would be constants,
16220 			 * jump would be predicted and reg_set_min_max() won't
16221 			 * be called.
16222 			 *
16223 			 * Same reasoning works for all {u,s}{min,max}{32,64} cases
16224 			 * below.
16225 			 */
16226 			if (reg1->u32_min_value == (u32)val)
16227 				reg1->u32_min_value++;
16228 			if (reg1->u32_max_value == (u32)val)
16229 				reg1->u32_max_value--;
16230 			if (reg1->s32_min_value == (s32)val)
16231 				reg1->s32_min_value++;
16232 			if (reg1->s32_max_value == (s32)val)
16233 				reg1->s32_max_value--;
16234 		} else {
16235 			if (reg1->umin_value == (u64)val)
16236 				reg1->umin_value++;
16237 			if (reg1->umax_value == (u64)val)
16238 				reg1->umax_value--;
16239 			if (reg1->smin_value == (s64)val)
16240 				reg1->smin_value++;
16241 			if (reg1->smax_value == (s64)val)
16242 				reg1->smax_value--;
16243 		}
16244 		break;
16245 	case BPF_JSET:
16246 		if (!is_reg_const(reg2, is_jmp32))
16247 			swap(reg1, reg2);
16248 		if (!is_reg_const(reg2, is_jmp32))
16249 			break;
16250 		val = reg_const_value(reg2, is_jmp32);
16251 		/* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X)
16252 		 * requires single bit to learn something useful. E.g., if we
16253 		 * know that `r1 & 0x3` is true, then which bits (0, 1, or both)
16254 		 * are actually set? We can learn something definite only if
16255 		 * it's a single-bit value to begin with.
16256 		 *
16257 		 * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have
16258 		 * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor
16259 		 * bit 1 is set, which we can readily use in adjustments.
16260 		 */
16261 		if (!is_power_of_2(val))
16262 			break;
16263 		if (is_jmp32) {
16264 			t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val));
16265 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
16266 		} else {
16267 			reg1->var_off = tnum_or(reg1->var_off, tnum_const(val));
16268 		}
16269 		break;
16270 	case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */
16271 		if (!is_reg_const(reg2, is_jmp32))
16272 			swap(reg1, reg2);
16273 		if (!is_reg_const(reg2, is_jmp32))
16274 			break;
16275 		val = reg_const_value(reg2, is_jmp32);
16276 		/* Forget the ranges before narrowing tnums, to avoid invariant
16277 		 * violations if we're on a dead branch.
16278 		 */
16279 		__mark_reg_unbounded(reg1);
16280 		if (is_jmp32) {
16281 			t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val));
16282 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
16283 		} else {
16284 			reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val));
16285 		}
16286 		break;
16287 	case BPF_JLE:
16288 		if (is_jmp32) {
16289 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value);
16290 			reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value);
16291 		} else {
16292 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value);
16293 			reg2->umin_value = max(reg1->umin_value, reg2->umin_value);
16294 		}
16295 		break;
16296 	case BPF_JLT:
16297 		if (is_jmp32) {
16298 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1);
16299 			reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value);
16300 		} else {
16301 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1);
16302 			reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value);
16303 		}
16304 		break;
16305 	case BPF_JSLE:
16306 		if (is_jmp32) {
16307 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value);
16308 			reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value);
16309 		} else {
16310 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value);
16311 			reg2->smin_value = max(reg1->smin_value, reg2->smin_value);
16312 		}
16313 		break;
16314 	case BPF_JSLT:
16315 		if (is_jmp32) {
16316 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1);
16317 			reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value);
16318 		} else {
16319 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1);
16320 			reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value);
16321 		}
16322 		break;
16323 	default:
16324 		return;
16325 	}
16326 }
16327 
16328 /* Adjusts the register min/max values in the case that the dst_reg and
16329  * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K
16330  * check, in which case we have a fake SCALAR_VALUE representing insn->imm).
16331  * Technically we can do similar adjustments for pointers to the same object,
16332  * but we don't support that right now.
16333  */
16334 static int reg_set_min_max(struct bpf_verifier_env *env,
16335 			   struct bpf_reg_state *true_reg1,
16336 			   struct bpf_reg_state *true_reg2,
16337 			   struct bpf_reg_state *false_reg1,
16338 			   struct bpf_reg_state *false_reg2,
16339 			   u8 opcode, bool is_jmp32)
16340 {
16341 	int err;
16342 
16343 	/* If either register is a pointer, we can't learn anything about its
16344 	 * variable offset from the compare (unless they were a pointer into
16345 	 * the same object, but we don't bother with that).
16346 	 */
16347 	if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE)
16348 		return 0;
16349 
16350 	/* fallthrough (FALSE) branch */
16351 	regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32);
16352 	reg_bounds_sync(false_reg1);
16353 	reg_bounds_sync(false_reg2);
16354 
16355 	/* jump (TRUE) branch */
16356 	regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32);
16357 	reg_bounds_sync(true_reg1);
16358 	reg_bounds_sync(true_reg2);
16359 
16360 	err = reg_bounds_sanity_check(env, true_reg1, "true_reg1");
16361 	err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2");
16362 	err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1");
16363 	err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2");
16364 	return err;
16365 }
16366 
16367 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
16368 				 struct bpf_reg_state *reg, u32 id,
16369 				 bool is_null)
16370 {
16371 	if (type_may_be_null(reg->type) && reg->id == id &&
16372 	    (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
16373 		/* Old offset (both fixed and variable parts) should have been
16374 		 * known-zero, because we don't allow pointer arithmetic on
16375 		 * pointers that might be NULL. If we see this happening, don't
16376 		 * convert the register.
16377 		 *
16378 		 * But in some cases, some helpers that return local kptrs
16379 		 * advance offset for the returned pointer. In those cases, it
16380 		 * is fine to expect to see reg->off.
16381 		 */
16382 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
16383 			return;
16384 		if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
16385 		    WARN_ON_ONCE(reg->off))
16386 			return;
16387 
16388 		if (is_null) {
16389 			reg->type = SCALAR_VALUE;
16390 			/* We don't need id and ref_obj_id from this point
16391 			 * onwards anymore, thus we should better reset it,
16392 			 * so that state pruning has chances to take effect.
16393 			 */
16394 			reg->id = 0;
16395 			reg->ref_obj_id = 0;
16396 
16397 			return;
16398 		}
16399 
16400 		mark_ptr_not_null_reg(reg);
16401 
16402 		if (!reg_may_point_to_spin_lock(reg)) {
16403 			/* For not-NULL ptr, reg->ref_obj_id will be reset
16404 			 * in release_reference().
16405 			 *
16406 			 * reg->id is still used by spin_lock ptr. Other
16407 			 * than spin_lock ptr type, reg->id can be reset.
16408 			 */
16409 			reg->id = 0;
16410 		}
16411 	}
16412 }
16413 
16414 /* The logic is similar to find_good_pkt_pointers(), both could eventually
16415  * be folded together at some point.
16416  */
16417 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
16418 				  bool is_null)
16419 {
16420 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
16421 	struct bpf_reg_state *regs = state->regs, *reg;
16422 	u32 ref_obj_id = regs[regno].ref_obj_id;
16423 	u32 id = regs[regno].id;
16424 
16425 	if (ref_obj_id && ref_obj_id == id && is_null)
16426 		/* regs[regno] is in the " == NULL" branch.
16427 		 * No one could have freed the reference state before
16428 		 * doing the NULL check.
16429 		 */
16430 		WARN_ON_ONCE(release_reference_nomark(vstate, id));
16431 
16432 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
16433 		mark_ptr_or_null_reg(state, reg, id, is_null);
16434 	}));
16435 }
16436 
16437 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
16438 				   struct bpf_reg_state *dst_reg,
16439 				   struct bpf_reg_state *src_reg,
16440 				   struct bpf_verifier_state *this_branch,
16441 				   struct bpf_verifier_state *other_branch)
16442 {
16443 	if (BPF_SRC(insn->code) != BPF_X)
16444 		return false;
16445 
16446 	/* Pointers are always 64-bit. */
16447 	if (BPF_CLASS(insn->code) == BPF_JMP32)
16448 		return false;
16449 
16450 	switch (BPF_OP(insn->code)) {
16451 	case BPF_JGT:
16452 		if ((dst_reg->type == PTR_TO_PACKET &&
16453 		     src_reg->type == PTR_TO_PACKET_END) ||
16454 		    (dst_reg->type == PTR_TO_PACKET_META &&
16455 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
16456 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
16457 			find_good_pkt_pointers(this_branch, dst_reg,
16458 					       dst_reg->type, false);
16459 			mark_pkt_end(other_branch, insn->dst_reg, true);
16460 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
16461 			    src_reg->type == PTR_TO_PACKET) ||
16462 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
16463 			    src_reg->type == PTR_TO_PACKET_META)) {
16464 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
16465 			find_good_pkt_pointers(other_branch, src_reg,
16466 					       src_reg->type, true);
16467 			mark_pkt_end(this_branch, insn->src_reg, false);
16468 		} else {
16469 			return false;
16470 		}
16471 		break;
16472 	case BPF_JLT:
16473 		if ((dst_reg->type == PTR_TO_PACKET &&
16474 		     src_reg->type == PTR_TO_PACKET_END) ||
16475 		    (dst_reg->type == PTR_TO_PACKET_META &&
16476 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
16477 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
16478 			find_good_pkt_pointers(other_branch, dst_reg,
16479 					       dst_reg->type, true);
16480 			mark_pkt_end(this_branch, insn->dst_reg, false);
16481 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
16482 			    src_reg->type == PTR_TO_PACKET) ||
16483 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
16484 			    src_reg->type == PTR_TO_PACKET_META)) {
16485 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
16486 			find_good_pkt_pointers(this_branch, src_reg,
16487 					       src_reg->type, false);
16488 			mark_pkt_end(other_branch, insn->src_reg, true);
16489 		} else {
16490 			return false;
16491 		}
16492 		break;
16493 	case BPF_JGE:
16494 		if ((dst_reg->type == PTR_TO_PACKET &&
16495 		     src_reg->type == PTR_TO_PACKET_END) ||
16496 		    (dst_reg->type == PTR_TO_PACKET_META &&
16497 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
16498 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
16499 			find_good_pkt_pointers(this_branch, dst_reg,
16500 					       dst_reg->type, true);
16501 			mark_pkt_end(other_branch, insn->dst_reg, false);
16502 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
16503 			    src_reg->type == PTR_TO_PACKET) ||
16504 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
16505 			    src_reg->type == PTR_TO_PACKET_META)) {
16506 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
16507 			find_good_pkt_pointers(other_branch, src_reg,
16508 					       src_reg->type, false);
16509 			mark_pkt_end(this_branch, insn->src_reg, true);
16510 		} else {
16511 			return false;
16512 		}
16513 		break;
16514 	case BPF_JLE:
16515 		if ((dst_reg->type == PTR_TO_PACKET &&
16516 		     src_reg->type == PTR_TO_PACKET_END) ||
16517 		    (dst_reg->type == PTR_TO_PACKET_META &&
16518 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
16519 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
16520 			find_good_pkt_pointers(other_branch, dst_reg,
16521 					       dst_reg->type, false);
16522 			mark_pkt_end(this_branch, insn->dst_reg, true);
16523 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
16524 			    src_reg->type == PTR_TO_PACKET) ||
16525 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
16526 			    src_reg->type == PTR_TO_PACKET_META)) {
16527 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
16528 			find_good_pkt_pointers(this_branch, src_reg,
16529 					       src_reg->type, true);
16530 			mark_pkt_end(other_branch, insn->src_reg, false);
16531 		} else {
16532 			return false;
16533 		}
16534 		break;
16535 	default:
16536 		return false;
16537 	}
16538 
16539 	return true;
16540 }
16541 
16542 static void __collect_linked_regs(struct linked_regs *reg_set, struct bpf_reg_state *reg,
16543 				  u32 id, u32 frameno, u32 spi_or_reg, bool is_reg)
16544 {
16545 	struct linked_reg *e;
16546 
16547 	if (reg->type != SCALAR_VALUE || (reg->id & ~BPF_ADD_CONST) != id)
16548 		return;
16549 
16550 	e = linked_regs_push(reg_set);
16551 	if (e) {
16552 		e->frameno = frameno;
16553 		e->is_reg = is_reg;
16554 		e->regno = spi_or_reg;
16555 	} else {
16556 		reg->id = 0;
16557 	}
16558 }
16559 
16560 /* For all R being scalar registers or spilled scalar registers
16561  * in verifier state, save R in linked_regs if R->id == id.
16562  * If there are too many Rs sharing same id, reset id for leftover Rs.
16563  */
16564 static void collect_linked_regs(struct bpf_verifier_state *vstate, u32 id,
16565 				struct linked_regs *linked_regs)
16566 {
16567 	struct bpf_func_state *func;
16568 	struct bpf_reg_state *reg;
16569 	int i, j;
16570 
16571 	id = id & ~BPF_ADD_CONST;
16572 	for (i = vstate->curframe; i >= 0; i--) {
16573 		func = vstate->frame[i];
16574 		for (j = 0; j < BPF_REG_FP; j++) {
16575 			reg = &func->regs[j];
16576 			__collect_linked_regs(linked_regs, reg, id, i, j, true);
16577 		}
16578 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
16579 			if (!is_spilled_reg(&func->stack[j]))
16580 				continue;
16581 			reg = &func->stack[j].spilled_ptr;
16582 			__collect_linked_regs(linked_regs, reg, id, i, j, false);
16583 		}
16584 	}
16585 }
16586 
16587 /* For all R in linked_regs, copy known_reg range into R
16588  * if R->id == known_reg->id.
16589  */
16590 static void sync_linked_regs(struct bpf_verifier_state *vstate, struct bpf_reg_state *known_reg,
16591 			     struct linked_regs *linked_regs)
16592 {
16593 	struct bpf_reg_state fake_reg;
16594 	struct bpf_reg_state *reg;
16595 	struct linked_reg *e;
16596 	int i;
16597 
16598 	for (i = 0; i < linked_regs->cnt; ++i) {
16599 		e = &linked_regs->entries[i];
16600 		reg = e->is_reg ? &vstate->frame[e->frameno]->regs[e->regno]
16601 				: &vstate->frame[e->frameno]->stack[e->spi].spilled_ptr;
16602 		if (reg->type != SCALAR_VALUE || reg == known_reg)
16603 			continue;
16604 		if ((reg->id & ~BPF_ADD_CONST) != (known_reg->id & ~BPF_ADD_CONST))
16605 			continue;
16606 		if ((!(reg->id & BPF_ADD_CONST) && !(known_reg->id & BPF_ADD_CONST)) ||
16607 		    reg->off == known_reg->off) {
16608 			s32 saved_subreg_def = reg->subreg_def;
16609 
16610 			copy_register_state(reg, known_reg);
16611 			reg->subreg_def = saved_subreg_def;
16612 		} else {
16613 			s32 saved_subreg_def = reg->subreg_def;
16614 			s32 saved_off = reg->off;
16615 
16616 			fake_reg.type = SCALAR_VALUE;
16617 			__mark_reg_known(&fake_reg, (s32)reg->off - (s32)known_reg->off);
16618 
16619 			/* reg = known_reg; reg += delta */
16620 			copy_register_state(reg, known_reg);
16621 			/*
16622 			 * Must preserve off, id and add_const flag,
16623 			 * otherwise another sync_linked_regs() will be incorrect.
16624 			 */
16625 			reg->off = saved_off;
16626 			reg->subreg_def = saved_subreg_def;
16627 
16628 			scalar32_min_max_add(reg, &fake_reg);
16629 			scalar_min_max_add(reg, &fake_reg);
16630 			reg->var_off = tnum_add(reg->var_off, fake_reg.var_off);
16631 		}
16632 	}
16633 }
16634 
16635 static int check_cond_jmp_op(struct bpf_verifier_env *env,
16636 			     struct bpf_insn *insn, int *insn_idx)
16637 {
16638 	struct bpf_verifier_state *this_branch = env->cur_state;
16639 	struct bpf_verifier_state *other_branch;
16640 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
16641 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
16642 	struct bpf_reg_state *eq_branch_regs;
16643 	struct linked_regs linked_regs = {};
16644 	u8 opcode = BPF_OP(insn->code);
16645 	int insn_flags = 0;
16646 	bool is_jmp32;
16647 	int pred = -1;
16648 	int err;
16649 
16650 	/* Only conditional jumps are expected to reach here. */
16651 	if (opcode == BPF_JA || opcode > BPF_JCOND) {
16652 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
16653 		return -EINVAL;
16654 	}
16655 
16656 	if (opcode == BPF_JCOND) {
16657 		struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
16658 		int idx = *insn_idx;
16659 
16660 		if (insn->code != (BPF_JMP | BPF_JCOND) ||
16661 		    insn->src_reg != BPF_MAY_GOTO ||
16662 		    insn->dst_reg || insn->imm) {
16663 			verbose(env, "invalid may_goto imm %d\n", insn->imm);
16664 			return -EINVAL;
16665 		}
16666 		prev_st = find_prev_entry(env, cur_st->parent, idx);
16667 
16668 		/* branch out 'fallthrough' insn as a new state to explore */
16669 		queued_st = push_stack(env, idx + 1, idx, false);
16670 		if (!queued_st)
16671 			return -ENOMEM;
16672 
16673 		queued_st->may_goto_depth++;
16674 		if (prev_st)
16675 			widen_imprecise_scalars(env, prev_st, queued_st);
16676 		*insn_idx += insn->off;
16677 		return 0;
16678 	}
16679 
16680 	/* check src2 operand */
16681 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
16682 	if (err)
16683 		return err;
16684 
16685 	dst_reg = &regs[insn->dst_reg];
16686 	if (BPF_SRC(insn->code) == BPF_X) {
16687 		if (insn->imm != 0) {
16688 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
16689 			return -EINVAL;
16690 		}
16691 
16692 		/* check src1 operand */
16693 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
16694 		if (err)
16695 			return err;
16696 
16697 		src_reg = &regs[insn->src_reg];
16698 		if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
16699 		    is_pointer_value(env, insn->src_reg)) {
16700 			verbose(env, "R%d pointer comparison prohibited\n",
16701 				insn->src_reg);
16702 			return -EACCES;
16703 		}
16704 
16705 		if (src_reg->type == PTR_TO_STACK)
16706 			insn_flags |= INSN_F_SRC_REG_STACK;
16707 		if (dst_reg->type == PTR_TO_STACK)
16708 			insn_flags |= INSN_F_DST_REG_STACK;
16709 	} else {
16710 		if (insn->src_reg != BPF_REG_0) {
16711 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
16712 			return -EINVAL;
16713 		}
16714 		src_reg = &env->fake_reg[0];
16715 		memset(src_reg, 0, sizeof(*src_reg));
16716 		src_reg->type = SCALAR_VALUE;
16717 		__mark_reg_known(src_reg, insn->imm);
16718 
16719 		if (dst_reg->type == PTR_TO_STACK)
16720 			insn_flags |= INSN_F_DST_REG_STACK;
16721 	}
16722 
16723 	if (insn_flags) {
16724 		err = push_jmp_history(env, this_branch, insn_flags, 0);
16725 		if (err)
16726 			return err;
16727 	}
16728 
16729 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
16730 	pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32);
16731 	if (pred >= 0) {
16732 		/* If we get here with a dst_reg pointer type it is because
16733 		 * above is_branch_taken() special cased the 0 comparison.
16734 		 */
16735 		if (!__is_pointer_value(false, dst_reg))
16736 			err = mark_chain_precision(env, insn->dst_reg);
16737 		if (BPF_SRC(insn->code) == BPF_X && !err &&
16738 		    !__is_pointer_value(false, src_reg))
16739 			err = mark_chain_precision(env, insn->src_reg);
16740 		if (err)
16741 			return err;
16742 	}
16743 
16744 	if (pred == 1) {
16745 		/* Only follow the goto, ignore fall-through. If needed, push
16746 		 * the fall-through branch for simulation under speculative
16747 		 * execution.
16748 		 */
16749 		if (!env->bypass_spec_v1 &&
16750 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
16751 					       *insn_idx))
16752 			return -EFAULT;
16753 		if (env->log.level & BPF_LOG_LEVEL)
16754 			print_insn_state(env, this_branch, this_branch->curframe);
16755 		*insn_idx += insn->off;
16756 		return 0;
16757 	} else if (pred == 0) {
16758 		/* Only follow the fall-through branch, since that's where the
16759 		 * program will go. If needed, push the goto branch for
16760 		 * simulation under speculative execution.
16761 		 */
16762 		if (!env->bypass_spec_v1 &&
16763 		    !sanitize_speculative_path(env, insn,
16764 					       *insn_idx + insn->off + 1,
16765 					       *insn_idx))
16766 			return -EFAULT;
16767 		if (env->log.level & BPF_LOG_LEVEL)
16768 			print_insn_state(env, this_branch, this_branch->curframe);
16769 		return 0;
16770 	}
16771 
16772 	/* Push scalar registers sharing same ID to jump history,
16773 	 * do this before creating 'other_branch', so that both
16774 	 * 'this_branch' and 'other_branch' share this history
16775 	 * if parent state is created.
16776 	 */
16777 	if (BPF_SRC(insn->code) == BPF_X && src_reg->type == SCALAR_VALUE && src_reg->id)
16778 		collect_linked_regs(this_branch, src_reg->id, &linked_regs);
16779 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id)
16780 		collect_linked_regs(this_branch, dst_reg->id, &linked_regs);
16781 	if (linked_regs.cnt > 1) {
16782 		err = push_jmp_history(env, this_branch, 0, linked_regs_pack(&linked_regs));
16783 		if (err)
16784 			return err;
16785 	}
16786 
16787 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
16788 				  false);
16789 	if (!other_branch)
16790 		return -EFAULT;
16791 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
16792 
16793 	if (BPF_SRC(insn->code) == BPF_X) {
16794 		err = reg_set_min_max(env,
16795 				      &other_branch_regs[insn->dst_reg],
16796 				      &other_branch_regs[insn->src_reg],
16797 				      dst_reg, src_reg, opcode, is_jmp32);
16798 	} else /* BPF_SRC(insn->code) == BPF_K */ {
16799 		/* reg_set_min_max() can mangle the fake_reg. Make a copy
16800 		 * so that these are two different memory locations. The
16801 		 * src_reg is not used beyond here in context of K.
16802 		 */
16803 		memcpy(&env->fake_reg[1], &env->fake_reg[0],
16804 		       sizeof(env->fake_reg[0]));
16805 		err = reg_set_min_max(env,
16806 				      &other_branch_regs[insn->dst_reg],
16807 				      &env->fake_reg[0],
16808 				      dst_reg, &env->fake_reg[1],
16809 				      opcode, is_jmp32);
16810 	}
16811 	if (err)
16812 		return err;
16813 
16814 	if (BPF_SRC(insn->code) == BPF_X &&
16815 	    src_reg->type == SCALAR_VALUE && src_reg->id &&
16816 	    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
16817 		sync_linked_regs(this_branch, src_reg, &linked_regs);
16818 		sync_linked_regs(other_branch, &other_branch_regs[insn->src_reg], &linked_regs);
16819 	}
16820 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
16821 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
16822 		sync_linked_regs(this_branch, dst_reg, &linked_regs);
16823 		sync_linked_regs(other_branch, &other_branch_regs[insn->dst_reg], &linked_regs);
16824 	}
16825 
16826 	/* if one pointer register is compared to another pointer
16827 	 * register check if PTR_MAYBE_NULL could be lifted.
16828 	 * E.g. register A - maybe null
16829 	 *      register B - not null
16830 	 * for JNE A, B, ... - A is not null in the false branch;
16831 	 * for JEQ A, B, ... - A is not null in the true branch.
16832 	 *
16833 	 * Since PTR_TO_BTF_ID points to a kernel struct that does
16834 	 * not need to be null checked by the BPF program, i.e.,
16835 	 * could be null even without PTR_MAYBE_NULL marking, so
16836 	 * only propagate nullness when neither reg is that type.
16837 	 */
16838 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
16839 	    __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
16840 	    type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
16841 	    base_type(src_reg->type) != PTR_TO_BTF_ID &&
16842 	    base_type(dst_reg->type) != PTR_TO_BTF_ID) {
16843 		eq_branch_regs = NULL;
16844 		switch (opcode) {
16845 		case BPF_JEQ:
16846 			eq_branch_regs = other_branch_regs;
16847 			break;
16848 		case BPF_JNE:
16849 			eq_branch_regs = regs;
16850 			break;
16851 		default:
16852 			/* do nothing */
16853 			break;
16854 		}
16855 		if (eq_branch_regs) {
16856 			if (type_may_be_null(src_reg->type))
16857 				mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
16858 			else
16859 				mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
16860 		}
16861 	}
16862 
16863 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
16864 	 * NOTE: these optimizations below are related with pointer comparison
16865 	 *       which will never be JMP32.
16866 	 */
16867 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
16868 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
16869 	    type_may_be_null(dst_reg->type)) {
16870 		/* Mark all identical registers in each branch as either
16871 		 * safe or unknown depending R == 0 or R != 0 conditional.
16872 		 */
16873 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
16874 				      opcode == BPF_JNE);
16875 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
16876 				      opcode == BPF_JEQ);
16877 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
16878 					   this_branch, other_branch) &&
16879 		   is_pointer_value(env, insn->dst_reg)) {
16880 		verbose(env, "R%d pointer comparison prohibited\n",
16881 			insn->dst_reg);
16882 		return -EACCES;
16883 	}
16884 	if (env->log.level & BPF_LOG_LEVEL)
16885 		print_insn_state(env, this_branch, this_branch->curframe);
16886 	return 0;
16887 }
16888 
16889 /* verify BPF_LD_IMM64 instruction */
16890 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
16891 {
16892 	struct bpf_insn_aux_data *aux = cur_aux(env);
16893 	struct bpf_reg_state *regs = cur_regs(env);
16894 	struct bpf_reg_state *dst_reg;
16895 	struct bpf_map *map;
16896 	int err;
16897 
16898 	if (BPF_SIZE(insn->code) != BPF_DW) {
16899 		verbose(env, "invalid BPF_LD_IMM insn\n");
16900 		return -EINVAL;
16901 	}
16902 	if (insn->off != 0) {
16903 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
16904 		return -EINVAL;
16905 	}
16906 
16907 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
16908 	if (err)
16909 		return err;
16910 
16911 	dst_reg = &regs[insn->dst_reg];
16912 	if (insn->src_reg == 0) {
16913 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
16914 
16915 		dst_reg->type = SCALAR_VALUE;
16916 		__mark_reg_known(&regs[insn->dst_reg], imm);
16917 		return 0;
16918 	}
16919 
16920 	/* All special src_reg cases are listed below. From this point onwards
16921 	 * we either succeed and assign a corresponding dst_reg->type after
16922 	 * zeroing the offset, or fail and reject the program.
16923 	 */
16924 	mark_reg_known_zero(env, regs, insn->dst_reg);
16925 
16926 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
16927 		dst_reg->type = aux->btf_var.reg_type;
16928 		switch (base_type(dst_reg->type)) {
16929 		case PTR_TO_MEM:
16930 			dst_reg->mem_size = aux->btf_var.mem_size;
16931 			break;
16932 		case PTR_TO_BTF_ID:
16933 			dst_reg->btf = aux->btf_var.btf;
16934 			dst_reg->btf_id = aux->btf_var.btf_id;
16935 			break;
16936 		default:
16937 			verifier_bug(env, "pseudo btf id: unexpected dst reg type");
16938 			return -EFAULT;
16939 		}
16940 		return 0;
16941 	}
16942 
16943 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
16944 		struct bpf_prog_aux *aux = env->prog->aux;
16945 		u32 subprogno = find_subprog(env,
16946 					     env->insn_idx + insn->imm + 1);
16947 
16948 		if (!aux->func_info) {
16949 			verbose(env, "missing btf func_info\n");
16950 			return -EINVAL;
16951 		}
16952 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
16953 			verbose(env, "callback function not static\n");
16954 			return -EINVAL;
16955 		}
16956 
16957 		dst_reg->type = PTR_TO_FUNC;
16958 		dst_reg->subprogno = subprogno;
16959 		return 0;
16960 	}
16961 
16962 	map = env->used_maps[aux->map_index];
16963 	dst_reg->map_ptr = map;
16964 
16965 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
16966 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
16967 		if (map->map_type == BPF_MAP_TYPE_ARENA) {
16968 			__mark_reg_unknown(env, dst_reg);
16969 			return 0;
16970 		}
16971 		dst_reg->type = PTR_TO_MAP_VALUE;
16972 		dst_reg->off = aux->map_off;
16973 		WARN_ON_ONCE(map->max_entries != 1);
16974 		/* We want reg->id to be same (0) as map_value is not distinct */
16975 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
16976 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
16977 		dst_reg->type = CONST_PTR_TO_MAP;
16978 	} else {
16979 		verifier_bug(env, "unexpected src reg value for ldimm64");
16980 		return -EFAULT;
16981 	}
16982 
16983 	return 0;
16984 }
16985 
16986 static bool may_access_skb(enum bpf_prog_type type)
16987 {
16988 	switch (type) {
16989 	case BPF_PROG_TYPE_SOCKET_FILTER:
16990 	case BPF_PROG_TYPE_SCHED_CLS:
16991 	case BPF_PROG_TYPE_SCHED_ACT:
16992 		return true;
16993 	default:
16994 		return false;
16995 	}
16996 }
16997 
16998 /* verify safety of LD_ABS|LD_IND instructions:
16999  * - they can only appear in the programs where ctx == skb
17000  * - since they are wrappers of function calls, they scratch R1-R5 registers,
17001  *   preserve R6-R9, and store return value into R0
17002  *
17003  * Implicit input:
17004  *   ctx == skb == R6 == CTX
17005  *
17006  * Explicit input:
17007  *   SRC == any register
17008  *   IMM == 32-bit immediate
17009  *
17010  * Output:
17011  *   R0 - 8/16/32-bit skb data converted to cpu endianness
17012  */
17013 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
17014 {
17015 	struct bpf_reg_state *regs = cur_regs(env);
17016 	static const int ctx_reg = BPF_REG_6;
17017 	u8 mode = BPF_MODE(insn->code);
17018 	int i, err;
17019 
17020 	if (!may_access_skb(resolve_prog_type(env->prog))) {
17021 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
17022 		return -EINVAL;
17023 	}
17024 
17025 	if (!env->ops->gen_ld_abs) {
17026 		verifier_bug(env, "gen_ld_abs is null");
17027 		return -EFAULT;
17028 	}
17029 
17030 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
17031 	    BPF_SIZE(insn->code) == BPF_DW ||
17032 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
17033 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
17034 		return -EINVAL;
17035 	}
17036 
17037 	/* check whether implicit source operand (register R6) is readable */
17038 	err = check_reg_arg(env, ctx_reg, SRC_OP);
17039 	if (err)
17040 		return err;
17041 
17042 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
17043 	 * gen_ld_abs() may terminate the program at runtime, leading to
17044 	 * reference leak.
17045 	 */
17046 	err = check_resource_leak(env, false, true, "BPF_LD_[ABS|IND]");
17047 	if (err)
17048 		return err;
17049 
17050 	if (regs[ctx_reg].type != PTR_TO_CTX) {
17051 		verbose(env,
17052 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
17053 		return -EINVAL;
17054 	}
17055 
17056 	if (mode == BPF_IND) {
17057 		/* check explicit source operand */
17058 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
17059 		if (err)
17060 			return err;
17061 	}
17062 
17063 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
17064 	if (err < 0)
17065 		return err;
17066 
17067 	/* reset caller saved regs to unreadable */
17068 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
17069 		mark_reg_not_init(env, regs, caller_saved[i]);
17070 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
17071 	}
17072 
17073 	/* mark destination R0 register as readable, since it contains
17074 	 * the value fetched from the packet.
17075 	 * Already marked as written above.
17076 	 */
17077 	mark_reg_unknown(env, regs, BPF_REG_0);
17078 	/* ld_abs load up to 32-bit skb data. */
17079 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
17080 	return 0;
17081 }
17082 
17083 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name)
17084 {
17085 	const char *exit_ctx = "At program exit";
17086 	struct tnum enforce_attach_type_range = tnum_unknown;
17087 	const struct bpf_prog *prog = env->prog;
17088 	struct bpf_reg_state *reg = reg_state(env, regno);
17089 	struct bpf_retval_range range = retval_range(0, 1);
17090 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
17091 	int err;
17092 	struct bpf_func_state *frame = env->cur_state->frame[0];
17093 	const bool is_subprog = frame->subprogno;
17094 	bool return_32bit = false;
17095 	const struct btf_type *reg_type, *ret_type = NULL;
17096 
17097 	/* LSM and struct_ops func-ptr's return type could be "void" */
17098 	if (!is_subprog || frame->in_exception_callback_fn) {
17099 		switch (prog_type) {
17100 		case BPF_PROG_TYPE_LSM:
17101 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
17102 				/* See below, can be 0 or 0-1 depending on hook. */
17103 				break;
17104 			if (!prog->aux->attach_func_proto->type)
17105 				return 0;
17106 			break;
17107 		case BPF_PROG_TYPE_STRUCT_OPS:
17108 			if (!prog->aux->attach_func_proto->type)
17109 				return 0;
17110 
17111 			if (frame->in_exception_callback_fn)
17112 				break;
17113 
17114 			/* Allow a struct_ops program to return a referenced kptr if it
17115 			 * matches the operator's return type and is in its unmodified
17116 			 * form. A scalar zero (i.e., a null pointer) is also allowed.
17117 			 */
17118 			reg_type = reg->btf ? btf_type_by_id(reg->btf, reg->btf_id) : NULL;
17119 			ret_type = btf_type_resolve_ptr(prog->aux->attach_btf,
17120 							prog->aux->attach_func_proto->type,
17121 							NULL);
17122 			if (ret_type && ret_type == reg_type && reg->ref_obj_id)
17123 				return __check_ptr_off_reg(env, reg, regno, false);
17124 			break;
17125 		default:
17126 			break;
17127 		}
17128 	}
17129 
17130 	/* eBPF calling convention is such that R0 is used
17131 	 * to return the value from eBPF program.
17132 	 * Make sure that it's readable at this time
17133 	 * of bpf_exit, which means that program wrote
17134 	 * something into it earlier
17135 	 */
17136 	err = check_reg_arg(env, regno, SRC_OP);
17137 	if (err)
17138 		return err;
17139 
17140 	if (is_pointer_value(env, regno)) {
17141 		verbose(env, "R%d leaks addr as return value\n", regno);
17142 		return -EACCES;
17143 	}
17144 
17145 	if (frame->in_async_callback_fn) {
17146 		/* enforce return zero from async callbacks like timer */
17147 		exit_ctx = "At async callback return";
17148 		range = retval_range(0, 0);
17149 		goto enforce_retval;
17150 	}
17151 
17152 	if (is_subprog && !frame->in_exception_callback_fn) {
17153 		if (reg->type != SCALAR_VALUE) {
17154 			verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n",
17155 				regno, reg_type_str(env, reg->type));
17156 			return -EINVAL;
17157 		}
17158 		return 0;
17159 	}
17160 
17161 	switch (prog_type) {
17162 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
17163 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
17164 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
17165 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG ||
17166 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
17167 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
17168 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME ||
17169 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
17170 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME ||
17171 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME)
17172 			range = retval_range(1, 1);
17173 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
17174 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
17175 			range = retval_range(0, 3);
17176 		break;
17177 	case BPF_PROG_TYPE_CGROUP_SKB:
17178 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
17179 			range = retval_range(0, 3);
17180 			enforce_attach_type_range = tnum_range(2, 3);
17181 		}
17182 		break;
17183 	case BPF_PROG_TYPE_CGROUP_SOCK:
17184 	case BPF_PROG_TYPE_SOCK_OPS:
17185 	case BPF_PROG_TYPE_CGROUP_DEVICE:
17186 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
17187 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
17188 		break;
17189 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
17190 		if (!env->prog->aux->attach_btf_id)
17191 			return 0;
17192 		range = retval_range(0, 0);
17193 		break;
17194 	case BPF_PROG_TYPE_TRACING:
17195 		switch (env->prog->expected_attach_type) {
17196 		case BPF_TRACE_FENTRY:
17197 		case BPF_TRACE_FEXIT:
17198 			range = retval_range(0, 0);
17199 			break;
17200 		case BPF_TRACE_RAW_TP:
17201 		case BPF_MODIFY_RETURN:
17202 			return 0;
17203 		case BPF_TRACE_ITER:
17204 			break;
17205 		default:
17206 			return -ENOTSUPP;
17207 		}
17208 		break;
17209 	case BPF_PROG_TYPE_KPROBE:
17210 		switch (env->prog->expected_attach_type) {
17211 		case BPF_TRACE_KPROBE_SESSION:
17212 		case BPF_TRACE_UPROBE_SESSION:
17213 			range = retval_range(0, 1);
17214 			break;
17215 		default:
17216 			return 0;
17217 		}
17218 		break;
17219 	case BPF_PROG_TYPE_SK_LOOKUP:
17220 		range = retval_range(SK_DROP, SK_PASS);
17221 		break;
17222 
17223 	case BPF_PROG_TYPE_LSM:
17224 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
17225 			/* no range found, any return value is allowed */
17226 			if (!get_func_retval_range(env->prog, &range))
17227 				return 0;
17228 			/* no restricted range, any return value is allowed */
17229 			if (range.minval == S32_MIN && range.maxval == S32_MAX)
17230 				return 0;
17231 			return_32bit = true;
17232 		} else if (!env->prog->aux->attach_func_proto->type) {
17233 			/* Make sure programs that attach to void
17234 			 * hooks don't try to modify return value.
17235 			 */
17236 			range = retval_range(1, 1);
17237 		}
17238 		break;
17239 
17240 	case BPF_PROG_TYPE_NETFILTER:
17241 		range = retval_range(NF_DROP, NF_ACCEPT);
17242 		break;
17243 	case BPF_PROG_TYPE_STRUCT_OPS:
17244 		if (!ret_type)
17245 			return 0;
17246 		range = retval_range(0, 0);
17247 		break;
17248 	case BPF_PROG_TYPE_EXT:
17249 		/* freplace program can return anything as its return value
17250 		 * depends on the to-be-replaced kernel func or bpf program.
17251 		 */
17252 	default:
17253 		return 0;
17254 	}
17255 
17256 enforce_retval:
17257 	if (reg->type != SCALAR_VALUE) {
17258 		verbose(env, "%s the register R%d is not a known value (%s)\n",
17259 			exit_ctx, regno, reg_type_str(env, reg->type));
17260 		return -EINVAL;
17261 	}
17262 
17263 	err = mark_chain_precision(env, regno);
17264 	if (err)
17265 		return err;
17266 
17267 	if (!retval_range_within(range, reg, return_32bit)) {
17268 		verbose_invalid_scalar(env, reg, range, exit_ctx, reg_name);
17269 		if (!is_subprog &&
17270 		    prog->expected_attach_type == BPF_LSM_CGROUP &&
17271 		    prog_type == BPF_PROG_TYPE_LSM &&
17272 		    !prog->aux->attach_func_proto->type)
17273 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
17274 		return -EINVAL;
17275 	}
17276 
17277 	if (!tnum_is_unknown(enforce_attach_type_range) &&
17278 	    tnum_in(enforce_attach_type_range, reg->var_off))
17279 		env->prog->enforce_expected_attach_type = 1;
17280 	return 0;
17281 }
17282 
17283 static void mark_subprog_changes_pkt_data(struct bpf_verifier_env *env, int off)
17284 {
17285 	struct bpf_subprog_info *subprog;
17286 
17287 	subprog = find_containing_subprog(env, off);
17288 	subprog->changes_pkt_data = true;
17289 }
17290 
17291 static void mark_subprog_might_sleep(struct bpf_verifier_env *env, int off)
17292 {
17293 	struct bpf_subprog_info *subprog;
17294 
17295 	subprog = find_containing_subprog(env, off);
17296 	subprog->might_sleep = true;
17297 }
17298 
17299 /* 't' is an index of a call-site.
17300  * 'w' is a callee entry point.
17301  * Eventually this function would be called when env->cfg.insn_state[w] == EXPLORED.
17302  * Rely on DFS traversal order and absence of recursive calls to guarantee that
17303  * callee's change_pkt_data marks would be correct at that moment.
17304  */
17305 static void merge_callee_effects(struct bpf_verifier_env *env, int t, int w)
17306 {
17307 	struct bpf_subprog_info *caller, *callee;
17308 
17309 	caller = find_containing_subprog(env, t);
17310 	callee = find_containing_subprog(env, w);
17311 	caller->changes_pkt_data |= callee->changes_pkt_data;
17312 	caller->might_sleep |= callee->might_sleep;
17313 }
17314 
17315 /* non-recursive DFS pseudo code
17316  * 1  procedure DFS-iterative(G,v):
17317  * 2      label v as discovered
17318  * 3      let S be a stack
17319  * 4      S.push(v)
17320  * 5      while S is not empty
17321  * 6            t <- S.peek()
17322  * 7            if t is what we're looking for:
17323  * 8                return t
17324  * 9            for all edges e in G.adjacentEdges(t) do
17325  * 10               if edge e is already labelled
17326  * 11                   continue with the next edge
17327  * 12               w <- G.adjacentVertex(t,e)
17328  * 13               if vertex w is not discovered and not explored
17329  * 14                   label e as tree-edge
17330  * 15                   label w as discovered
17331  * 16                   S.push(w)
17332  * 17                   continue at 5
17333  * 18               else if vertex w is discovered
17334  * 19                   label e as back-edge
17335  * 20               else
17336  * 21                   // vertex w is explored
17337  * 22                   label e as forward- or cross-edge
17338  * 23           label t as explored
17339  * 24           S.pop()
17340  *
17341  * convention:
17342  * 0x10 - discovered
17343  * 0x11 - discovered and fall-through edge labelled
17344  * 0x12 - discovered and fall-through and branch edges labelled
17345  * 0x20 - explored
17346  */
17347 
17348 enum {
17349 	DISCOVERED = 0x10,
17350 	EXPLORED = 0x20,
17351 	FALLTHROUGH = 1,
17352 	BRANCH = 2,
17353 };
17354 
17355 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
17356 {
17357 	env->insn_aux_data[idx].prune_point = true;
17358 }
17359 
17360 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
17361 {
17362 	return env->insn_aux_data[insn_idx].prune_point;
17363 }
17364 
17365 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
17366 {
17367 	env->insn_aux_data[idx].force_checkpoint = true;
17368 }
17369 
17370 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
17371 {
17372 	return env->insn_aux_data[insn_idx].force_checkpoint;
17373 }
17374 
17375 static void mark_calls_callback(struct bpf_verifier_env *env, int idx)
17376 {
17377 	env->insn_aux_data[idx].calls_callback = true;
17378 }
17379 
17380 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx)
17381 {
17382 	return env->insn_aux_data[insn_idx].calls_callback;
17383 }
17384 
17385 enum {
17386 	DONE_EXPLORING = 0,
17387 	KEEP_EXPLORING = 1,
17388 };
17389 
17390 /* t, w, e - match pseudo-code above:
17391  * t - index of current instruction
17392  * w - next instruction
17393  * e - edge
17394  */
17395 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
17396 {
17397 	int *insn_stack = env->cfg.insn_stack;
17398 	int *insn_state = env->cfg.insn_state;
17399 
17400 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
17401 		return DONE_EXPLORING;
17402 
17403 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
17404 		return DONE_EXPLORING;
17405 
17406 	if (w < 0 || w >= env->prog->len) {
17407 		verbose_linfo(env, t, "%d: ", t);
17408 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
17409 		return -EINVAL;
17410 	}
17411 
17412 	if (e == BRANCH) {
17413 		/* mark branch target for state pruning */
17414 		mark_prune_point(env, w);
17415 		mark_jmp_point(env, w);
17416 	}
17417 
17418 	if (insn_state[w] == 0) {
17419 		/* tree-edge */
17420 		insn_state[t] = DISCOVERED | e;
17421 		insn_state[w] = DISCOVERED;
17422 		if (env->cfg.cur_stack >= env->prog->len)
17423 			return -E2BIG;
17424 		insn_stack[env->cfg.cur_stack++] = w;
17425 		return KEEP_EXPLORING;
17426 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
17427 		if (env->bpf_capable)
17428 			return DONE_EXPLORING;
17429 		verbose_linfo(env, t, "%d: ", t);
17430 		verbose_linfo(env, w, "%d: ", w);
17431 		verbose(env, "back-edge from insn %d to %d\n", t, w);
17432 		return -EINVAL;
17433 	} else if (insn_state[w] == EXPLORED) {
17434 		/* forward- or cross-edge */
17435 		insn_state[t] = DISCOVERED | e;
17436 	} else {
17437 		verifier_bug(env, "insn state internal bug");
17438 		return -EFAULT;
17439 	}
17440 	return DONE_EXPLORING;
17441 }
17442 
17443 static int visit_func_call_insn(int t, struct bpf_insn *insns,
17444 				struct bpf_verifier_env *env,
17445 				bool visit_callee)
17446 {
17447 	int ret, insn_sz;
17448 	int w;
17449 
17450 	insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1;
17451 	ret = push_insn(t, t + insn_sz, FALLTHROUGH, env);
17452 	if (ret)
17453 		return ret;
17454 
17455 	mark_prune_point(env, t + insn_sz);
17456 	/* when we exit from subprog, we need to record non-linear history */
17457 	mark_jmp_point(env, t + insn_sz);
17458 
17459 	if (visit_callee) {
17460 		w = t + insns[t].imm + 1;
17461 		mark_prune_point(env, t);
17462 		merge_callee_effects(env, t, w);
17463 		ret = push_insn(t, w, BRANCH, env);
17464 	}
17465 	return ret;
17466 }
17467 
17468 /* Bitmask with 1s for all caller saved registers */
17469 #define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1)
17470 
17471 /* True if do_misc_fixups() replaces calls to helper number 'imm',
17472  * replacement patch is presumed to follow bpf_fastcall contract
17473  * (see mark_fastcall_pattern_for_call() below).
17474  */
17475 static bool verifier_inlines_helper_call(struct bpf_verifier_env *env, s32 imm)
17476 {
17477 	switch (imm) {
17478 #ifdef CONFIG_X86_64
17479 	case BPF_FUNC_get_smp_processor_id:
17480 		return env->prog->jit_requested && bpf_jit_supports_percpu_insn();
17481 #endif
17482 	default:
17483 		return false;
17484 	}
17485 }
17486 
17487 struct call_summary {
17488 	u8 num_params;
17489 	bool is_void;
17490 	bool fastcall;
17491 };
17492 
17493 /* If @call is a kfunc or helper call, fills @cs and returns true,
17494  * otherwise returns false.
17495  */
17496 static bool get_call_summary(struct bpf_verifier_env *env, struct bpf_insn *call,
17497 			     struct call_summary *cs)
17498 {
17499 	struct bpf_kfunc_call_arg_meta meta;
17500 	const struct bpf_func_proto *fn;
17501 	int i;
17502 
17503 	if (bpf_helper_call(call)) {
17504 
17505 		if (get_helper_proto(env, call->imm, &fn) < 0)
17506 			/* error would be reported later */
17507 			return false;
17508 		cs->fastcall = fn->allow_fastcall &&
17509 			       (verifier_inlines_helper_call(env, call->imm) ||
17510 				bpf_jit_inlines_helper_call(call->imm));
17511 		cs->is_void = fn->ret_type == RET_VOID;
17512 		cs->num_params = 0;
17513 		for (i = 0; i < ARRAY_SIZE(fn->arg_type); ++i) {
17514 			if (fn->arg_type[i] == ARG_DONTCARE)
17515 				break;
17516 			cs->num_params++;
17517 		}
17518 		return true;
17519 	}
17520 
17521 	if (bpf_pseudo_kfunc_call(call)) {
17522 		int err;
17523 
17524 		err = fetch_kfunc_meta(env, call, &meta, NULL);
17525 		if (err < 0)
17526 			/* error would be reported later */
17527 			return false;
17528 		cs->num_params = btf_type_vlen(meta.func_proto);
17529 		cs->fastcall = meta.kfunc_flags & KF_FASTCALL;
17530 		cs->is_void = btf_type_is_void(btf_type_by_id(meta.btf, meta.func_proto->type));
17531 		return true;
17532 	}
17533 
17534 	return false;
17535 }
17536 
17537 /* LLVM define a bpf_fastcall function attribute.
17538  * This attribute means that function scratches only some of
17539  * the caller saved registers defined by ABI.
17540  * For BPF the set of such registers could be defined as follows:
17541  * - R0 is scratched only if function is non-void;
17542  * - R1-R5 are scratched only if corresponding parameter type is defined
17543  *   in the function prototype.
17544  *
17545  * The contract between kernel and clang allows to simultaneously use
17546  * such functions and maintain backwards compatibility with old
17547  * kernels that don't understand bpf_fastcall calls:
17548  *
17549  * - for bpf_fastcall calls clang allocates registers as-if relevant r0-r5
17550  *   registers are not scratched by the call;
17551  *
17552  * - as a post-processing step, clang visits each bpf_fastcall call and adds
17553  *   spill/fill for every live r0-r5;
17554  *
17555  * - stack offsets used for the spill/fill are allocated as lowest
17556  *   stack offsets in whole function and are not used for any other
17557  *   purposes;
17558  *
17559  * - when kernel loads a program, it looks for such patterns
17560  *   (bpf_fastcall function surrounded by spills/fills) and checks if
17561  *   spill/fill stack offsets are used exclusively in fastcall patterns;
17562  *
17563  * - if so, and if verifier or current JIT inlines the call to the
17564  *   bpf_fastcall function (e.g. a helper call), kernel removes unnecessary
17565  *   spill/fill pairs;
17566  *
17567  * - when old kernel loads a program, presence of spill/fill pairs
17568  *   keeps BPF program valid, albeit slightly less efficient.
17569  *
17570  * For example:
17571  *
17572  *   r1 = 1;
17573  *   r2 = 2;
17574  *   *(u64 *)(r10 - 8)  = r1;            r1 = 1;
17575  *   *(u64 *)(r10 - 16) = r2;            r2 = 2;
17576  *   call %[to_be_inlined]         -->   call %[to_be_inlined]
17577  *   r2 = *(u64 *)(r10 - 16);            r0 = r1;
17578  *   r1 = *(u64 *)(r10 - 8);             r0 += r2;
17579  *   r0 = r1;                            exit;
17580  *   r0 += r2;
17581  *   exit;
17582  *
17583  * The purpose of mark_fastcall_pattern_for_call is to:
17584  * - look for such patterns;
17585  * - mark spill and fill instructions in env->insn_aux_data[*].fastcall_pattern;
17586  * - mark set env->insn_aux_data[*].fastcall_spills_num for call instruction;
17587  * - update env->subprog_info[*]->fastcall_stack_off to find an offset
17588  *   at which bpf_fastcall spill/fill stack slots start;
17589  * - update env->subprog_info[*]->keep_fastcall_stack.
17590  *
17591  * The .fastcall_pattern and .fastcall_stack_off are used by
17592  * check_fastcall_stack_contract() to check if every stack access to
17593  * fastcall spill/fill stack slot originates from spill/fill
17594  * instructions, members of fastcall patterns.
17595  *
17596  * If such condition holds true for a subprogram, fastcall patterns could
17597  * be rewritten by remove_fastcall_spills_fills().
17598  * Otherwise bpf_fastcall patterns are not changed in the subprogram
17599  * (code, presumably, generated by an older clang version).
17600  *
17601  * For example, it is *not* safe to remove spill/fill below:
17602  *
17603  *   r1 = 1;
17604  *   *(u64 *)(r10 - 8)  = r1;            r1 = 1;
17605  *   call %[to_be_inlined]         -->   call %[to_be_inlined]
17606  *   r1 = *(u64 *)(r10 - 8);             r0 = *(u64 *)(r10 - 8);  <---- wrong !!!
17607  *   r0 = *(u64 *)(r10 - 8);             r0 += r1;
17608  *   r0 += r1;                           exit;
17609  *   exit;
17610  */
17611 static void mark_fastcall_pattern_for_call(struct bpf_verifier_env *env,
17612 					   struct bpf_subprog_info *subprog,
17613 					   int insn_idx, s16 lowest_off)
17614 {
17615 	struct bpf_insn *insns = env->prog->insnsi, *stx, *ldx;
17616 	struct bpf_insn *call = &env->prog->insnsi[insn_idx];
17617 	u32 clobbered_regs_mask;
17618 	struct call_summary cs;
17619 	u32 expected_regs_mask;
17620 	s16 off;
17621 	int i;
17622 
17623 	if (!get_call_summary(env, call, &cs))
17624 		return;
17625 
17626 	/* A bitmask specifying which caller saved registers are clobbered
17627 	 * by a call to a helper/kfunc *as if* this helper/kfunc follows
17628 	 * bpf_fastcall contract:
17629 	 * - includes R0 if function is non-void;
17630 	 * - includes R1-R5 if corresponding parameter has is described
17631 	 *   in the function prototype.
17632 	 */
17633 	clobbered_regs_mask = GENMASK(cs.num_params, cs.is_void ? 1 : 0);
17634 	/* e.g. if helper call clobbers r{0,1}, expect r{2,3,4,5} in the pattern */
17635 	expected_regs_mask = ~clobbered_regs_mask & ALL_CALLER_SAVED_REGS;
17636 
17637 	/* match pairs of form:
17638 	 *
17639 	 * *(u64 *)(r10 - Y) = rX   (where Y % 8 == 0)
17640 	 * ...
17641 	 * call %[to_be_inlined]
17642 	 * ...
17643 	 * rX = *(u64 *)(r10 - Y)
17644 	 */
17645 	for (i = 1, off = lowest_off; i <= ARRAY_SIZE(caller_saved); ++i, off += BPF_REG_SIZE) {
17646 		if (insn_idx - i < 0 || insn_idx + i >= env->prog->len)
17647 			break;
17648 		stx = &insns[insn_idx - i];
17649 		ldx = &insns[insn_idx + i];
17650 		/* must be a stack spill/fill pair */
17651 		if (stx->code != (BPF_STX | BPF_MEM | BPF_DW) ||
17652 		    ldx->code != (BPF_LDX | BPF_MEM | BPF_DW) ||
17653 		    stx->dst_reg != BPF_REG_10 ||
17654 		    ldx->src_reg != BPF_REG_10)
17655 			break;
17656 		/* must be a spill/fill for the same reg */
17657 		if (stx->src_reg != ldx->dst_reg)
17658 			break;
17659 		/* must be one of the previously unseen registers */
17660 		if ((BIT(stx->src_reg) & expected_regs_mask) == 0)
17661 			break;
17662 		/* must be a spill/fill for the same expected offset,
17663 		 * no need to check offset alignment, BPF_DW stack access
17664 		 * is always 8-byte aligned.
17665 		 */
17666 		if (stx->off != off || ldx->off != off)
17667 			break;
17668 		expected_regs_mask &= ~BIT(stx->src_reg);
17669 		env->insn_aux_data[insn_idx - i].fastcall_pattern = 1;
17670 		env->insn_aux_data[insn_idx + i].fastcall_pattern = 1;
17671 	}
17672 	if (i == 1)
17673 		return;
17674 
17675 	/* Conditionally set 'fastcall_spills_num' to allow forward
17676 	 * compatibility when more helper functions are marked as
17677 	 * bpf_fastcall at compile time than current kernel supports, e.g:
17678 	 *
17679 	 *   1: *(u64 *)(r10 - 8) = r1
17680 	 *   2: call A                  ;; assume A is bpf_fastcall for current kernel
17681 	 *   3: r1 = *(u64 *)(r10 - 8)
17682 	 *   4: *(u64 *)(r10 - 8) = r1
17683 	 *   5: call B                  ;; assume B is not bpf_fastcall for current kernel
17684 	 *   6: r1 = *(u64 *)(r10 - 8)
17685 	 *
17686 	 * There is no need to block bpf_fastcall rewrite for such program.
17687 	 * Set 'fastcall_pattern' for both calls to keep check_fastcall_stack_contract() happy,
17688 	 * don't set 'fastcall_spills_num' for call B so that remove_fastcall_spills_fills()
17689 	 * does not remove spill/fill pair {4,6}.
17690 	 */
17691 	if (cs.fastcall)
17692 		env->insn_aux_data[insn_idx].fastcall_spills_num = i - 1;
17693 	else
17694 		subprog->keep_fastcall_stack = 1;
17695 	subprog->fastcall_stack_off = min(subprog->fastcall_stack_off, off);
17696 }
17697 
17698 static int mark_fastcall_patterns(struct bpf_verifier_env *env)
17699 {
17700 	struct bpf_subprog_info *subprog = env->subprog_info;
17701 	struct bpf_insn *insn;
17702 	s16 lowest_off;
17703 	int s, i;
17704 
17705 	for (s = 0; s < env->subprog_cnt; ++s, ++subprog) {
17706 		/* find lowest stack spill offset used in this subprog */
17707 		lowest_off = 0;
17708 		for (i = subprog->start; i < (subprog + 1)->start; ++i) {
17709 			insn = env->prog->insnsi + i;
17710 			if (insn->code != (BPF_STX | BPF_MEM | BPF_DW) ||
17711 			    insn->dst_reg != BPF_REG_10)
17712 				continue;
17713 			lowest_off = min(lowest_off, insn->off);
17714 		}
17715 		/* use this offset to find fastcall patterns */
17716 		for (i = subprog->start; i < (subprog + 1)->start; ++i) {
17717 			insn = env->prog->insnsi + i;
17718 			if (insn->code != (BPF_JMP | BPF_CALL))
17719 				continue;
17720 			mark_fastcall_pattern_for_call(env, subprog, i, lowest_off);
17721 		}
17722 	}
17723 	return 0;
17724 }
17725 
17726 /* Visits the instruction at index t and returns one of the following:
17727  *  < 0 - an error occurred
17728  *  DONE_EXPLORING - the instruction was fully explored
17729  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
17730  */
17731 static int visit_insn(int t, struct bpf_verifier_env *env)
17732 {
17733 	struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
17734 	int ret, off, insn_sz;
17735 
17736 	if (bpf_pseudo_func(insn))
17737 		return visit_func_call_insn(t, insns, env, true);
17738 
17739 	/* All non-branch instructions have a single fall-through edge. */
17740 	if (BPF_CLASS(insn->code) != BPF_JMP &&
17741 	    BPF_CLASS(insn->code) != BPF_JMP32) {
17742 		insn_sz = bpf_is_ldimm64(insn) ? 2 : 1;
17743 		return push_insn(t, t + insn_sz, FALLTHROUGH, env);
17744 	}
17745 
17746 	switch (BPF_OP(insn->code)) {
17747 	case BPF_EXIT:
17748 		return DONE_EXPLORING;
17749 
17750 	case BPF_CALL:
17751 		if (is_async_callback_calling_insn(insn))
17752 			/* Mark this call insn as a prune point to trigger
17753 			 * is_state_visited() check before call itself is
17754 			 * processed by __check_func_call(). Otherwise new
17755 			 * async state will be pushed for further exploration.
17756 			 */
17757 			mark_prune_point(env, t);
17758 		/* For functions that invoke callbacks it is not known how many times
17759 		 * callback would be called. Verifier models callback calling functions
17760 		 * by repeatedly visiting callback bodies and returning to origin call
17761 		 * instruction.
17762 		 * In order to stop such iteration verifier needs to identify when a
17763 		 * state identical some state from a previous iteration is reached.
17764 		 * Check below forces creation of checkpoint before callback calling
17765 		 * instruction to allow search for such identical states.
17766 		 */
17767 		if (is_sync_callback_calling_insn(insn)) {
17768 			mark_calls_callback(env, t);
17769 			mark_force_checkpoint(env, t);
17770 			mark_prune_point(env, t);
17771 			mark_jmp_point(env, t);
17772 		}
17773 		if (bpf_helper_call(insn)) {
17774 			const struct bpf_func_proto *fp;
17775 
17776 			ret = get_helper_proto(env, insn->imm, &fp);
17777 			/* If called in a non-sleepable context program will be
17778 			 * rejected anyway, so we should end up with precise
17779 			 * sleepable marks on subprogs, except for dead code
17780 			 * elimination.
17781 			 */
17782 			if (ret == 0 && fp->might_sleep)
17783 				mark_subprog_might_sleep(env, t);
17784 			if (bpf_helper_changes_pkt_data(insn->imm))
17785 				mark_subprog_changes_pkt_data(env, t);
17786 		} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
17787 			struct bpf_kfunc_call_arg_meta meta;
17788 
17789 			ret = fetch_kfunc_meta(env, insn, &meta, NULL);
17790 			if (ret == 0 && is_iter_next_kfunc(&meta)) {
17791 				mark_prune_point(env, t);
17792 				/* Checking and saving state checkpoints at iter_next() call
17793 				 * is crucial for fast convergence of open-coded iterator loop
17794 				 * logic, so we need to force it. If we don't do that,
17795 				 * is_state_visited() might skip saving a checkpoint, causing
17796 				 * unnecessarily long sequence of not checkpointed
17797 				 * instructions and jumps, leading to exhaustion of jump
17798 				 * history buffer, and potentially other undesired outcomes.
17799 				 * It is expected that with correct open-coded iterators
17800 				 * convergence will happen quickly, so we don't run a risk of
17801 				 * exhausting memory.
17802 				 */
17803 				mark_force_checkpoint(env, t);
17804 			}
17805 			/* Same as helpers, if called in a non-sleepable context
17806 			 * program will be rejected anyway, so we should end up
17807 			 * with precise sleepable marks on subprogs, except for
17808 			 * dead code elimination.
17809 			 */
17810 			if (ret == 0 && is_kfunc_sleepable(&meta))
17811 				mark_subprog_might_sleep(env, t);
17812 			if (ret == 0 && is_kfunc_pkt_changing(&meta))
17813 				mark_subprog_changes_pkt_data(env, t);
17814 		}
17815 		return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
17816 
17817 	case BPF_JA:
17818 		if (BPF_SRC(insn->code) != BPF_K)
17819 			return -EINVAL;
17820 
17821 		if (BPF_CLASS(insn->code) == BPF_JMP)
17822 			off = insn->off;
17823 		else
17824 			off = insn->imm;
17825 
17826 		/* unconditional jump with single edge */
17827 		ret = push_insn(t, t + off + 1, FALLTHROUGH, env);
17828 		if (ret)
17829 			return ret;
17830 
17831 		mark_prune_point(env, t + off + 1);
17832 		mark_jmp_point(env, t + off + 1);
17833 
17834 		return ret;
17835 
17836 	default:
17837 		/* conditional jump with two edges */
17838 		mark_prune_point(env, t);
17839 		if (is_may_goto_insn(insn))
17840 			mark_force_checkpoint(env, t);
17841 
17842 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
17843 		if (ret)
17844 			return ret;
17845 
17846 		return push_insn(t, t + insn->off + 1, BRANCH, env);
17847 	}
17848 }
17849 
17850 /* non-recursive depth-first-search to detect loops in BPF program
17851  * loop == back-edge in directed graph
17852  */
17853 static int check_cfg(struct bpf_verifier_env *env)
17854 {
17855 	int insn_cnt = env->prog->len;
17856 	int *insn_stack, *insn_state, *insn_postorder;
17857 	int ex_insn_beg, i, ret = 0;
17858 
17859 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT);
17860 	if (!insn_state)
17861 		return -ENOMEM;
17862 
17863 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT);
17864 	if (!insn_stack) {
17865 		kvfree(insn_state);
17866 		return -ENOMEM;
17867 	}
17868 
17869 	insn_postorder = env->cfg.insn_postorder =
17870 		kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT);
17871 	if (!insn_postorder) {
17872 		kvfree(insn_state);
17873 		kvfree(insn_stack);
17874 		return -ENOMEM;
17875 	}
17876 
17877 	ex_insn_beg = env->exception_callback_subprog
17878 		      ? env->subprog_info[env->exception_callback_subprog].start
17879 		      : 0;
17880 
17881 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
17882 	insn_stack[0] = 0; /* 0 is the first instruction */
17883 	env->cfg.cur_stack = 1;
17884 
17885 walk_cfg:
17886 	while (env->cfg.cur_stack > 0) {
17887 		int t = insn_stack[env->cfg.cur_stack - 1];
17888 
17889 		ret = visit_insn(t, env);
17890 		switch (ret) {
17891 		case DONE_EXPLORING:
17892 			insn_state[t] = EXPLORED;
17893 			env->cfg.cur_stack--;
17894 			insn_postorder[env->cfg.cur_postorder++] = t;
17895 			break;
17896 		case KEEP_EXPLORING:
17897 			break;
17898 		default:
17899 			if (ret > 0) {
17900 				verifier_bug(env, "visit_insn internal bug");
17901 				ret = -EFAULT;
17902 			}
17903 			goto err_free;
17904 		}
17905 	}
17906 
17907 	if (env->cfg.cur_stack < 0) {
17908 		verifier_bug(env, "pop stack internal bug");
17909 		ret = -EFAULT;
17910 		goto err_free;
17911 	}
17912 
17913 	if (ex_insn_beg && insn_state[ex_insn_beg] != EXPLORED) {
17914 		insn_state[ex_insn_beg] = DISCOVERED;
17915 		insn_stack[0] = ex_insn_beg;
17916 		env->cfg.cur_stack = 1;
17917 		goto walk_cfg;
17918 	}
17919 
17920 	for (i = 0; i < insn_cnt; i++) {
17921 		struct bpf_insn *insn = &env->prog->insnsi[i];
17922 
17923 		if (insn_state[i] != EXPLORED) {
17924 			verbose(env, "unreachable insn %d\n", i);
17925 			ret = -EINVAL;
17926 			goto err_free;
17927 		}
17928 		if (bpf_is_ldimm64(insn)) {
17929 			if (insn_state[i + 1] != 0) {
17930 				verbose(env, "jump into the middle of ldimm64 insn %d\n", i);
17931 				ret = -EINVAL;
17932 				goto err_free;
17933 			}
17934 			i++; /* skip second half of ldimm64 */
17935 		}
17936 	}
17937 	ret = 0; /* cfg looks good */
17938 	env->prog->aux->changes_pkt_data = env->subprog_info[0].changes_pkt_data;
17939 	env->prog->aux->might_sleep = env->subprog_info[0].might_sleep;
17940 
17941 err_free:
17942 	kvfree(insn_state);
17943 	kvfree(insn_stack);
17944 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
17945 	return ret;
17946 }
17947 
17948 static int check_abnormal_return(struct bpf_verifier_env *env)
17949 {
17950 	int i;
17951 
17952 	for (i = 1; i < env->subprog_cnt; i++) {
17953 		if (env->subprog_info[i].has_ld_abs) {
17954 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
17955 			return -EINVAL;
17956 		}
17957 		if (env->subprog_info[i].has_tail_call) {
17958 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
17959 			return -EINVAL;
17960 		}
17961 	}
17962 	return 0;
17963 }
17964 
17965 /* The minimum supported BTF func info size */
17966 #define MIN_BPF_FUNCINFO_SIZE	8
17967 #define MAX_FUNCINFO_REC_SIZE	252
17968 
17969 static int check_btf_func_early(struct bpf_verifier_env *env,
17970 				const union bpf_attr *attr,
17971 				bpfptr_t uattr)
17972 {
17973 	u32 krec_size = sizeof(struct bpf_func_info);
17974 	const struct btf_type *type, *func_proto;
17975 	u32 i, nfuncs, urec_size, min_size;
17976 	struct bpf_func_info *krecord;
17977 	struct bpf_prog *prog;
17978 	const struct btf *btf;
17979 	u32 prev_offset = 0;
17980 	bpfptr_t urecord;
17981 	int ret = -ENOMEM;
17982 
17983 	nfuncs = attr->func_info_cnt;
17984 	if (!nfuncs) {
17985 		if (check_abnormal_return(env))
17986 			return -EINVAL;
17987 		return 0;
17988 	}
17989 
17990 	urec_size = attr->func_info_rec_size;
17991 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
17992 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
17993 	    urec_size % sizeof(u32)) {
17994 		verbose(env, "invalid func info rec size %u\n", urec_size);
17995 		return -EINVAL;
17996 	}
17997 
17998 	prog = env->prog;
17999 	btf = prog->aux->btf;
18000 
18001 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
18002 	min_size = min_t(u32, krec_size, urec_size);
18003 
18004 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
18005 	if (!krecord)
18006 		return -ENOMEM;
18007 
18008 	for (i = 0; i < nfuncs; i++) {
18009 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
18010 		if (ret) {
18011 			if (ret == -E2BIG) {
18012 				verbose(env, "nonzero tailing record in func info");
18013 				/* set the size kernel expects so loader can zero
18014 				 * out the rest of the record.
18015 				 */
18016 				if (copy_to_bpfptr_offset(uattr,
18017 							  offsetof(union bpf_attr, func_info_rec_size),
18018 							  &min_size, sizeof(min_size)))
18019 					ret = -EFAULT;
18020 			}
18021 			goto err_free;
18022 		}
18023 
18024 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
18025 			ret = -EFAULT;
18026 			goto err_free;
18027 		}
18028 
18029 		/* check insn_off */
18030 		ret = -EINVAL;
18031 		if (i == 0) {
18032 			if (krecord[i].insn_off) {
18033 				verbose(env,
18034 					"nonzero insn_off %u for the first func info record",
18035 					krecord[i].insn_off);
18036 				goto err_free;
18037 			}
18038 		} else if (krecord[i].insn_off <= prev_offset) {
18039 			verbose(env,
18040 				"same or smaller insn offset (%u) than previous func info record (%u)",
18041 				krecord[i].insn_off, prev_offset);
18042 			goto err_free;
18043 		}
18044 
18045 		/* check type_id */
18046 		type = btf_type_by_id(btf, krecord[i].type_id);
18047 		if (!type || !btf_type_is_func(type)) {
18048 			verbose(env, "invalid type id %d in func info",
18049 				krecord[i].type_id);
18050 			goto err_free;
18051 		}
18052 
18053 		func_proto = btf_type_by_id(btf, type->type);
18054 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
18055 			/* btf_func_check() already verified it during BTF load */
18056 			goto err_free;
18057 
18058 		prev_offset = krecord[i].insn_off;
18059 		bpfptr_add(&urecord, urec_size);
18060 	}
18061 
18062 	prog->aux->func_info = krecord;
18063 	prog->aux->func_info_cnt = nfuncs;
18064 	return 0;
18065 
18066 err_free:
18067 	kvfree(krecord);
18068 	return ret;
18069 }
18070 
18071 static int check_btf_func(struct bpf_verifier_env *env,
18072 			  const union bpf_attr *attr,
18073 			  bpfptr_t uattr)
18074 {
18075 	const struct btf_type *type, *func_proto, *ret_type;
18076 	u32 i, nfuncs, urec_size;
18077 	struct bpf_func_info *krecord;
18078 	struct bpf_func_info_aux *info_aux = NULL;
18079 	struct bpf_prog *prog;
18080 	const struct btf *btf;
18081 	bpfptr_t urecord;
18082 	bool scalar_return;
18083 	int ret = -ENOMEM;
18084 
18085 	nfuncs = attr->func_info_cnt;
18086 	if (!nfuncs) {
18087 		if (check_abnormal_return(env))
18088 			return -EINVAL;
18089 		return 0;
18090 	}
18091 	if (nfuncs != env->subprog_cnt) {
18092 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
18093 		return -EINVAL;
18094 	}
18095 
18096 	urec_size = attr->func_info_rec_size;
18097 
18098 	prog = env->prog;
18099 	btf = prog->aux->btf;
18100 
18101 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
18102 
18103 	krecord = prog->aux->func_info;
18104 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
18105 	if (!info_aux)
18106 		return -ENOMEM;
18107 
18108 	for (i = 0; i < nfuncs; i++) {
18109 		/* check insn_off */
18110 		ret = -EINVAL;
18111 
18112 		if (env->subprog_info[i].start != krecord[i].insn_off) {
18113 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
18114 			goto err_free;
18115 		}
18116 
18117 		/* Already checked type_id */
18118 		type = btf_type_by_id(btf, krecord[i].type_id);
18119 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
18120 		/* Already checked func_proto */
18121 		func_proto = btf_type_by_id(btf, type->type);
18122 
18123 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
18124 		scalar_return =
18125 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
18126 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
18127 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
18128 			goto err_free;
18129 		}
18130 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
18131 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
18132 			goto err_free;
18133 		}
18134 
18135 		bpfptr_add(&urecord, urec_size);
18136 	}
18137 
18138 	prog->aux->func_info_aux = info_aux;
18139 	return 0;
18140 
18141 err_free:
18142 	kfree(info_aux);
18143 	return ret;
18144 }
18145 
18146 static void adjust_btf_func(struct bpf_verifier_env *env)
18147 {
18148 	struct bpf_prog_aux *aux = env->prog->aux;
18149 	int i;
18150 
18151 	if (!aux->func_info)
18152 		return;
18153 
18154 	/* func_info is not available for hidden subprogs */
18155 	for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++)
18156 		aux->func_info[i].insn_off = env->subprog_info[i].start;
18157 }
18158 
18159 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
18160 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
18161 
18162 static int check_btf_line(struct bpf_verifier_env *env,
18163 			  const union bpf_attr *attr,
18164 			  bpfptr_t uattr)
18165 {
18166 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
18167 	struct bpf_subprog_info *sub;
18168 	struct bpf_line_info *linfo;
18169 	struct bpf_prog *prog;
18170 	const struct btf *btf;
18171 	bpfptr_t ulinfo;
18172 	int err;
18173 
18174 	nr_linfo = attr->line_info_cnt;
18175 	if (!nr_linfo)
18176 		return 0;
18177 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
18178 		return -EINVAL;
18179 
18180 	rec_size = attr->line_info_rec_size;
18181 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
18182 	    rec_size > MAX_LINEINFO_REC_SIZE ||
18183 	    rec_size & (sizeof(u32) - 1))
18184 		return -EINVAL;
18185 
18186 	/* Need to zero it in case the userspace may
18187 	 * pass in a smaller bpf_line_info object.
18188 	 */
18189 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
18190 			 GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
18191 	if (!linfo)
18192 		return -ENOMEM;
18193 
18194 	prog = env->prog;
18195 	btf = prog->aux->btf;
18196 
18197 	s = 0;
18198 	sub = env->subprog_info;
18199 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
18200 	expected_size = sizeof(struct bpf_line_info);
18201 	ncopy = min_t(u32, expected_size, rec_size);
18202 	for (i = 0; i < nr_linfo; i++) {
18203 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
18204 		if (err) {
18205 			if (err == -E2BIG) {
18206 				verbose(env, "nonzero tailing record in line_info");
18207 				if (copy_to_bpfptr_offset(uattr,
18208 							  offsetof(union bpf_attr, line_info_rec_size),
18209 							  &expected_size, sizeof(expected_size)))
18210 					err = -EFAULT;
18211 			}
18212 			goto err_free;
18213 		}
18214 
18215 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
18216 			err = -EFAULT;
18217 			goto err_free;
18218 		}
18219 
18220 		/*
18221 		 * Check insn_off to ensure
18222 		 * 1) strictly increasing AND
18223 		 * 2) bounded by prog->len
18224 		 *
18225 		 * The linfo[0].insn_off == 0 check logically falls into
18226 		 * the later "missing bpf_line_info for func..." case
18227 		 * because the first linfo[0].insn_off must be the
18228 		 * first sub also and the first sub must have
18229 		 * subprog_info[0].start == 0.
18230 		 */
18231 		if ((i && linfo[i].insn_off <= prev_offset) ||
18232 		    linfo[i].insn_off >= prog->len) {
18233 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
18234 				i, linfo[i].insn_off, prev_offset,
18235 				prog->len);
18236 			err = -EINVAL;
18237 			goto err_free;
18238 		}
18239 
18240 		if (!prog->insnsi[linfo[i].insn_off].code) {
18241 			verbose(env,
18242 				"Invalid insn code at line_info[%u].insn_off\n",
18243 				i);
18244 			err = -EINVAL;
18245 			goto err_free;
18246 		}
18247 
18248 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
18249 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
18250 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
18251 			err = -EINVAL;
18252 			goto err_free;
18253 		}
18254 
18255 		if (s != env->subprog_cnt) {
18256 			if (linfo[i].insn_off == sub[s].start) {
18257 				sub[s].linfo_idx = i;
18258 				s++;
18259 			} else if (sub[s].start < linfo[i].insn_off) {
18260 				verbose(env, "missing bpf_line_info for func#%u\n", s);
18261 				err = -EINVAL;
18262 				goto err_free;
18263 			}
18264 		}
18265 
18266 		prev_offset = linfo[i].insn_off;
18267 		bpfptr_add(&ulinfo, rec_size);
18268 	}
18269 
18270 	if (s != env->subprog_cnt) {
18271 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
18272 			env->subprog_cnt - s, s);
18273 		err = -EINVAL;
18274 		goto err_free;
18275 	}
18276 
18277 	prog->aux->linfo = linfo;
18278 	prog->aux->nr_linfo = nr_linfo;
18279 
18280 	return 0;
18281 
18282 err_free:
18283 	kvfree(linfo);
18284 	return err;
18285 }
18286 
18287 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
18288 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
18289 
18290 static int check_core_relo(struct bpf_verifier_env *env,
18291 			   const union bpf_attr *attr,
18292 			   bpfptr_t uattr)
18293 {
18294 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
18295 	struct bpf_core_relo core_relo = {};
18296 	struct bpf_prog *prog = env->prog;
18297 	const struct btf *btf = prog->aux->btf;
18298 	struct bpf_core_ctx ctx = {
18299 		.log = &env->log,
18300 		.btf = btf,
18301 	};
18302 	bpfptr_t u_core_relo;
18303 	int err;
18304 
18305 	nr_core_relo = attr->core_relo_cnt;
18306 	if (!nr_core_relo)
18307 		return 0;
18308 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
18309 		return -EINVAL;
18310 
18311 	rec_size = attr->core_relo_rec_size;
18312 	if (rec_size < MIN_CORE_RELO_SIZE ||
18313 	    rec_size > MAX_CORE_RELO_SIZE ||
18314 	    rec_size % sizeof(u32))
18315 		return -EINVAL;
18316 
18317 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
18318 	expected_size = sizeof(struct bpf_core_relo);
18319 	ncopy = min_t(u32, expected_size, rec_size);
18320 
18321 	/* Unlike func_info and line_info, copy and apply each CO-RE
18322 	 * relocation record one at a time.
18323 	 */
18324 	for (i = 0; i < nr_core_relo; i++) {
18325 		/* future proofing when sizeof(bpf_core_relo) changes */
18326 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
18327 		if (err) {
18328 			if (err == -E2BIG) {
18329 				verbose(env, "nonzero tailing record in core_relo");
18330 				if (copy_to_bpfptr_offset(uattr,
18331 							  offsetof(union bpf_attr, core_relo_rec_size),
18332 							  &expected_size, sizeof(expected_size)))
18333 					err = -EFAULT;
18334 			}
18335 			break;
18336 		}
18337 
18338 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
18339 			err = -EFAULT;
18340 			break;
18341 		}
18342 
18343 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
18344 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
18345 				i, core_relo.insn_off, prog->len);
18346 			err = -EINVAL;
18347 			break;
18348 		}
18349 
18350 		err = bpf_core_apply(&ctx, &core_relo, i,
18351 				     &prog->insnsi[core_relo.insn_off / 8]);
18352 		if (err)
18353 			break;
18354 		bpfptr_add(&u_core_relo, rec_size);
18355 	}
18356 	return err;
18357 }
18358 
18359 static int check_btf_info_early(struct bpf_verifier_env *env,
18360 				const union bpf_attr *attr,
18361 				bpfptr_t uattr)
18362 {
18363 	struct btf *btf;
18364 	int err;
18365 
18366 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
18367 		if (check_abnormal_return(env))
18368 			return -EINVAL;
18369 		return 0;
18370 	}
18371 
18372 	btf = btf_get_by_fd(attr->prog_btf_fd);
18373 	if (IS_ERR(btf))
18374 		return PTR_ERR(btf);
18375 	if (btf_is_kernel(btf)) {
18376 		btf_put(btf);
18377 		return -EACCES;
18378 	}
18379 	env->prog->aux->btf = btf;
18380 
18381 	err = check_btf_func_early(env, attr, uattr);
18382 	if (err)
18383 		return err;
18384 	return 0;
18385 }
18386 
18387 static int check_btf_info(struct bpf_verifier_env *env,
18388 			  const union bpf_attr *attr,
18389 			  bpfptr_t uattr)
18390 {
18391 	int err;
18392 
18393 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
18394 		if (check_abnormal_return(env))
18395 			return -EINVAL;
18396 		return 0;
18397 	}
18398 
18399 	err = check_btf_func(env, attr, uattr);
18400 	if (err)
18401 		return err;
18402 
18403 	err = check_btf_line(env, attr, uattr);
18404 	if (err)
18405 		return err;
18406 
18407 	err = check_core_relo(env, attr, uattr);
18408 	if (err)
18409 		return err;
18410 
18411 	return 0;
18412 }
18413 
18414 /* check %cur's range satisfies %old's */
18415 static bool range_within(const struct bpf_reg_state *old,
18416 			 const struct bpf_reg_state *cur)
18417 {
18418 	return old->umin_value <= cur->umin_value &&
18419 	       old->umax_value >= cur->umax_value &&
18420 	       old->smin_value <= cur->smin_value &&
18421 	       old->smax_value >= cur->smax_value &&
18422 	       old->u32_min_value <= cur->u32_min_value &&
18423 	       old->u32_max_value >= cur->u32_max_value &&
18424 	       old->s32_min_value <= cur->s32_min_value &&
18425 	       old->s32_max_value >= cur->s32_max_value;
18426 }
18427 
18428 /* If in the old state two registers had the same id, then they need to have
18429  * the same id in the new state as well.  But that id could be different from
18430  * the old state, so we need to track the mapping from old to new ids.
18431  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
18432  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
18433  * regs with a different old id could still have new id 9, we don't care about
18434  * that.
18435  * So we look through our idmap to see if this old id has been seen before.  If
18436  * so, we require the new id to match; otherwise, we add the id pair to the map.
18437  */
18438 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
18439 {
18440 	struct bpf_id_pair *map = idmap->map;
18441 	unsigned int i;
18442 
18443 	/* either both IDs should be set or both should be zero */
18444 	if (!!old_id != !!cur_id)
18445 		return false;
18446 
18447 	if (old_id == 0) /* cur_id == 0 as well */
18448 		return true;
18449 
18450 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
18451 		if (!map[i].old) {
18452 			/* Reached an empty slot; haven't seen this id before */
18453 			map[i].old = old_id;
18454 			map[i].cur = cur_id;
18455 			return true;
18456 		}
18457 		if (map[i].old == old_id)
18458 			return map[i].cur == cur_id;
18459 		if (map[i].cur == cur_id)
18460 			return false;
18461 	}
18462 	/* We ran out of idmap slots, which should be impossible */
18463 	WARN_ON_ONCE(1);
18464 	return false;
18465 }
18466 
18467 /* Similar to check_ids(), but allocate a unique temporary ID
18468  * for 'old_id' or 'cur_id' of zero.
18469  * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid.
18470  */
18471 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
18472 {
18473 	old_id = old_id ? old_id : ++idmap->tmp_id_gen;
18474 	cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
18475 
18476 	return check_ids(old_id, cur_id, idmap);
18477 }
18478 
18479 static void clean_func_state(struct bpf_verifier_env *env,
18480 			     struct bpf_func_state *st)
18481 {
18482 	enum bpf_reg_liveness live;
18483 	int i, j;
18484 
18485 	for (i = 0; i < BPF_REG_FP; i++) {
18486 		live = st->regs[i].live;
18487 		/* liveness must not touch this register anymore */
18488 		st->regs[i].live |= REG_LIVE_DONE;
18489 		if (!(live & REG_LIVE_READ))
18490 			/* since the register is unused, clear its state
18491 			 * to make further comparison simpler
18492 			 */
18493 			__mark_reg_not_init(env, &st->regs[i]);
18494 	}
18495 
18496 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
18497 		live = st->stack[i].spilled_ptr.live;
18498 		/* liveness must not touch this stack slot anymore */
18499 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
18500 		if (!(live & REG_LIVE_READ)) {
18501 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
18502 			for (j = 0; j < BPF_REG_SIZE; j++)
18503 				st->stack[i].slot_type[j] = STACK_INVALID;
18504 		}
18505 	}
18506 }
18507 
18508 static void clean_verifier_state(struct bpf_verifier_env *env,
18509 				 struct bpf_verifier_state *st)
18510 {
18511 	int i;
18512 
18513 	for (i = 0; i <= st->curframe; i++)
18514 		clean_func_state(env, st->frame[i]);
18515 }
18516 
18517 /* the parentage chains form a tree.
18518  * the verifier states are added to state lists at given insn and
18519  * pushed into state stack for future exploration.
18520  * when the verifier reaches bpf_exit insn some of the verifier states
18521  * stored in the state lists have their final liveness state already,
18522  * but a lot of states will get revised from liveness point of view when
18523  * the verifier explores other branches.
18524  * Example:
18525  * 1: r0 = 1
18526  * 2: if r1 == 100 goto pc+1
18527  * 3: r0 = 2
18528  * 4: exit
18529  * when the verifier reaches exit insn the register r0 in the state list of
18530  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
18531  * of insn 2 and goes exploring further. At the insn 4 it will walk the
18532  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
18533  *
18534  * Since the verifier pushes the branch states as it sees them while exploring
18535  * the program the condition of walking the branch instruction for the second
18536  * time means that all states below this branch were already explored and
18537  * their final liveness marks are already propagated.
18538  * Hence when the verifier completes the search of state list in is_state_visited()
18539  * we can call this clean_live_states() function to mark all liveness states
18540  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
18541  * will not be used.
18542  * This function also clears the registers and stack for states that !READ
18543  * to simplify state merging.
18544  *
18545  * Important note here that walking the same branch instruction in the callee
18546  * doesn't meant that the states are DONE. The verifier has to compare
18547  * the callsites
18548  */
18549 static void clean_live_states(struct bpf_verifier_env *env, int insn,
18550 			      struct bpf_verifier_state *cur)
18551 {
18552 	struct bpf_verifier_state_list *sl;
18553 	struct list_head *pos, *head;
18554 
18555 	head = explored_state(env, insn);
18556 	list_for_each(pos, head) {
18557 		sl = container_of(pos, struct bpf_verifier_state_list, node);
18558 		if (sl->state.branches)
18559 			continue;
18560 		if (sl->state.insn_idx != insn ||
18561 		    !same_callsites(&sl->state, cur))
18562 			continue;
18563 		if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE)
18564 			/* all regs in this state in all frames were already marked */
18565 			continue;
18566 		if (incomplete_read_marks(env, &sl->state))
18567 			continue;
18568 		clean_verifier_state(env, &sl->state);
18569 	}
18570 }
18571 
18572 static bool regs_exact(const struct bpf_reg_state *rold,
18573 		       const struct bpf_reg_state *rcur,
18574 		       struct bpf_idmap *idmap)
18575 {
18576 	return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
18577 	       check_ids(rold->id, rcur->id, idmap) &&
18578 	       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
18579 }
18580 
18581 enum exact_level {
18582 	NOT_EXACT,
18583 	EXACT,
18584 	RANGE_WITHIN
18585 };
18586 
18587 /* Returns true if (rold safe implies rcur safe) */
18588 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
18589 		    struct bpf_reg_state *rcur, struct bpf_idmap *idmap,
18590 		    enum exact_level exact)
18591 {
18592 	if (exact == EXACT)
18593 		return regs_exact(rold, rcur, idmap);
18594 
18595 	if (!(rold->live & REG_LIVE_READ) && exact == NOT_EXACT)
18596 		/* explored state didn't use this */
18597 		return true;
18598 	if (rold->type == NOT_INIT) {
18599 		if (exact == NOT_EXACT || rcur->type == NOT_INIT)
18600 			/* explored state can't have used this */
18601 			return true;
18602 	}
18603 
18604 	/* Enforce that register types have to match exactly, including their
18605 	 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
18606 	 * rule.
18607 	 *
18608 	 * One can make a point that using a pointer register as unbounded
18609 	 * SCALAR would be technically acceptable, but this could lead to
18610 	 * pointer leaks because scalars are allowed to leak while pointers
18611 	 * are not. We could make this safe in special cases if root is
18612 	 * calling us, but it's probably not worth the hassle.
18613 	 *
18614 	 * Also, register types that are *not* MAYBE_NULL could technically be
18615 	 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
18616 	 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
18617 	 * to the same map).
18618 	 * However, if the old MAYBE_NULL register then got NULL checked,
18619 	 * doing so could have affected others with the same id, and we can't
18620 	 * check for that because we lost the id when we converted to
18621 	 * a non-MAYBE_NULL variant.
18622 	 * So, as a general rule we don't allow mixing MAYBE_NULL and
18623 	 * non-MAYBE_NULL registers as well.
18624 	 */
18625 	if (rold->type != rcur->type)
18626 		return false;
18627 
18628 	switch (base_type(rold->type)) {
18629 	case SCALAR_VALUE:
18630 		if (env->explore_alu_limits) {
18631 			/* explore_alu_limits disables tnum_in() and range_within()
18632 			 * logic and requires everything to be strict
18633 			 */
18634 			return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
18635 			       check_scalar_ids(rold->id, rcur->id, idmap);
18636 		}
18637 		if (!rold->precise && exact == NOT_EXACT)
18638 			return true;
18639 		if ((rold->id & BPF_ADD_CONST) != (rcur->id & BPF_ADD_CONST))
18640 			return false;
18641 		if ((rold->id & BPF_ADD_CONST) && (rold->off != rcur->off))
18642 			return false;
18643 		/* Why check_ids() for scalar registers?
18644 		 *
18645 		 * Consider the following BPF code:
18646 		 *   1: r6 = ... unbound scalar, ID=a ...
18647 		 *   2: r7 = ... unbound scalar, ID=b ...
18648 		 *   3: if (r6 > r7) goto +1
18649 		 *   4: r6 = r7
18650 		 *   5: if (r6 > X) goto ...
18651 		 *   6: ... memory operation using r7 ...
18652 		 *
18653 		 * First verification path is [1-6]:
18654 		 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
18655 		 * - at (5) r6 would be marked <= X, sync_linked_regs() would also mark
18656 		 *   r7 <= X, because r6 and r7 share same id.
18657 		 * Next verification path is [1-4, 6].
18658 		 *
18659 		 * Instruction (6) would be reached in two states:
18660 		 *   I.  r6{.id=b}, r7{.id=b} via path 1-6;
18661 		 *   II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
18662 		 *
18663 		 * Use check_ids() to distinguish these states.
18664 		 * ---
18665 		 * Also verify that new value satisfies old value range knowledge.
18666 		 */
18667 		return range_within(rold, rcur) &&
18668 		       tnum_in(rold->var_off, rcur->var_off) &&
18669 		       check_scalar_ids(rold->id, rcur->id, idmap);
18670 	case PTR_TO_MAP_KEY:
18671 	case PTR_TO_MAP_VALUE:
18672 	case PTR_TO_MEM:
18673 	case PTR_TO_BUF:
18674 	case PTR_TO_TP_BUFFER:
18675 		/* If the new min/max/var_off satisfy the old ones and
18676 		 * everything else matches, we are OK.
18677 		 */
18678 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
18679 		       range_within(rold, rcur) &&
18680 		       tnum_in(rold->var_off, rcur->var_off) &&
18681 		       check_ids(rold->id, rcur->id, idmap) &&
18682 		       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
18683 	case PTR_TO_PACKET_META:
18684 	case PTR_TO_PACKET:
18685 		/* We must have at least as much range as the old ptr
18686 		 * did, so that any accesses which were safe before are
18687 		 * still safe.  This is true even if old range < old off,
18688 		 * since someone could have accessed through (ptr - k), or
18689 		 * even done ptr -= k in a register, to get a safe access.
18690 		 */
18691 		if (rold->range > rcur->range)
18692 			return false;
18693 		/* If the offsets don't match, we can't trust our alignment;
18694 		 * nor can we be sure that we won't fall out of range.
18695 		 */
18696 		if (rold->off != rcur->off)
18697 			return false;
18698 		/* id relations must be preserved */
18699 		if (!check_ids(rold->id, rcur->id, idmap))
18700 			return false;
18701 		/* new val must satisfy old val knowledge */
18702 		return range_within(rold, rcur) &&
18703 		       tnum_in(rold->var_off, rcur->var_off);
18704 	case PTR_TO_STACK:
18705 		/* two stack pointers are equal only if they're pointing to
18706 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
18707 		 */
18708 		return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
18709 	case PTR_TO_ARENA:
18710 		return true;
18711 	default:
18712 		return regs_exact(rold, rcur, idmap);
18713 	}
18714 }
18715 
18716 static struct bpf_reg_state unbound_reg;
18717 
18718 static __init int unbound_reg_init(void)
18719 {
18720 	__mark_reg_unknown_imprecise(&unbound_reg);
18721 	unbound_reg.live |= REG_LIVE_READ;
18722 	return 0;
18723 }
18724 late_initcall(unbound_reg_init);
18725 
18726 static bool is_stack_all_misc(struct bpf_verifier_env *env,
18727 			      struct bpf_stack_state *stack)
18728 {
18729 	u32 i;
18730 
18731 	for (i = 0; i < ARRAY_SIZE(stack->slot_type); ++i) {
18732 		if ((stack->slot_type[i] == STACK_MISC) ||
18733 		    (stack->slot_type[i] == STACK_INVALID && env->allow_uninit_stack))
18734 			continue;
18735 		return false;
18736 	}
18737 
18738 	return true;
18739 }
18740 
18741 static struct bpf_reg_state *scalar_reg_for_stack(struct bpf_verifier_env *env,
18742 						  struct bpf_stack_state *stack)
18743 {
18744 	if (is_spilled_scalar_reg64(stack))
18745 		return &stack->spilled_ptr;
18746 
18747 	if (is_stack_all_misc(env, stack))
18748 		return &unbound_reg;
18749 
18750 	return NULL;
18751 }
18752 
18753 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
18754 		      struct bpf_func_state *cur, struct bpf_idmap *idmap,
18755 		      enum exact_level exact)
18756 {
18757 	int i, spi;
18758 
18759 	/* walk slots of the explored stack and ignore any additional
18760 	 * slots in the current stack, since explored(safe) state
18761 	 * didn't use them
18762 	 */
18763 	for (i = 0; i < old->allocated_stack; i++) {
18764 		struct bpf_reg_state *old_reg, *cur_reg;
18765 
18766 		spi = i / BPF_REG_SIZE;
18767 
18768 		if (exact != NOT_EXACT &&
18769 		    (i >= cur->allocated_stack ||
18770 		     old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
18771 		     cur->stack[spi].slot_type[i % BPF_REG_SIZE]))
18772 			return false;
18773 
18774 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)
18775 		    && exact == NOT_EXACT) {
18776 			i += BPF_REG_SIZE - 1;
18777 			/* explored state didn't use this */
18778 			continue;
18779 		}
18780 
18781 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
18782 			continue;
18783 
18784 		if (env->allow_uninit_stack &&
18785 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
18786 			continue;
18787 
18788 		/* explored stack has more populated slots than current stack
18789 		 * and these slots were used
18790 		 */
18791 		if (i >= cur->allocated_stack)
18792 			return false;
18793 
18794 		/* 64-bit scalar spill vs all slots MISC and vice versa.
18795 		 * Load from all slots MISC produces unbound scalar.
18796 		 * Construct a fake register for such stack and call
18797 		 * regsafe() to ensure scalar ids are compared.
18798 		 */
18799 		old_reg = scalar_reg_for_stack(env, &old->stack[spi]);
18800 		cur_reg = scalar_reg_for_stack(env, &cur->stack[spi]);
18801 		if (old_reg && cur_reg) {
18802 			if (!regsafe(env, old_reg, cur_reg, idmap, exact))
18803 				return false;
18804 			i += BPF_REG_SIZE - 1;
18805 			continue;
18806 		}
18807 
18808 		/* if old state was safe with misc data in the stack
18809 		 * it will be safe with zero-initialized stack.
18810 		 * The opposite is not true
18811 		 */
18812 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
18813 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
18814 			continue;
18815 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
18816 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
18817 			/* Ex: old explored (safe) state has STACK_SPILL in
18818 			 * this stack slot, but current has STACK_MISC ->
18819 			 * this verifier states are not equivalent,
18820 			 * return false to continue verification of this path
18821 			 */
18822 			return false;
18823 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
18824 			continue;
18825 		/* Both old and cur are having same slot_type */
18826 		switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
18827 		case STACK_SPILL:
18828 			/* when explored and current stack slot are both storing
18829 			 * spilled registers, check that stored pointers types
18830 			 * are the same as well.
18831 			 * Ex: explored safe path could have stored
18832 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
18833 			 * but current path has stored:
18834 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
18835 			 * such verifier states are not equivalent.
18836 			 * return false to continue verification of this path
18837 			 */
18838 			if (!regsafe(env, &old->stack[spi].spilled_ptr,
18839 				     &cur->stack[spi].spilled_ptr, idmap, exact))
18840 				return false;
18841 			break;
18842 		case STACK_DYNPTR:
18843 			old_reg = &old->stack[spi].spilled_ptr;
18844 			cur_reg = &cur->stack[spi].spilled_ptr;
18845 			if (old_reg->dynptr.type != cur_reg->dynptr.type ||
18846 			    old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
18847 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
18848 				return false;
18849 			break;
18850 		case STACK_ITER:
18851 			old_reg = &old->stack[spi].spilled_ptr;
18852 			cur_reg = &cur->stack[spi].spilled_ptr;
18853 			/* iter.depth is not compared between states as it
18854 			 * doesn't matter for correctness and would otherwise
18855 			 * prevent convergence; we maintain it only to prevent
18856 			 * infinite loop check triggering, see
18857 			 * iter_active_depths_differ()
18858 			 */
18859 			if (old_reg->iter.btf != cur_reg->iter.btf ||
18860 			    old_reg->iter.btf_id != cur_reg->iter.btf_id ||
18861 			    old_reg->iter.state != cur_reg->iter.state ||
18862 			    /* ignore {old_reg,cur_reg}->iter.depth, see above */
18863 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
18864 				return false;
18865 			break;
18866 		case STACK_IRQ_FLAG:
18867 			old_reg = &old->stack[spi].spilled_ptr;
18868 			cur_reg = &cur->stack[spi].spilled_ptr;
18869 			if (!check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap) ||
18870 			    old_reg->irq.kfunc_class != cur_reg->irq.kfunc_class)
18871 				return false;
18872 			break;
18873 		case STACK_MISC:
18874 		case STACK_ZERO:
18875 		case STACK_INVALID:
18876 			continue;
18877 		/* Ensure that new unhandled slot types return false by default */
18878 		default:
18879 			return false;
18880 		}
18881 	}
18882 	return true;
18883 }
18884 
18885 static bool refsafe(struct bpf_verifier_state *old, struct bpf_verifier_state *cur,
18886 		    struct bpf_idmap *idmap)
18887 {
18888 	int i;
18889 
18890 	if (old->acquired_refs != cur->acquired_refs)
18891 		return false;
18892 
18893 	if (old->active_locks != cur->active_locks)
18894 		return false;
18895 
18896 	if (old->active_preempt_locks != cur->active_preempt_locks)
18897 		return false;
18898 
18899 	if (old->active_rcu_lock != cur->active_rcu_lock)
18900 		return false;
18901 
18902 	if (!check_ids(old->active_irq_id, cur->active_irq_id, idmap))
18903 		return false;
18904 
18905 	if (!check_ids(old->active_lock_id, cur->active_lock_id, idmap) ||
18906 	    old->active_lock_ptr != cur->active_lock_ptr)
18907 		return false;
18908 
18909 	for (i = 0; i < old->acquired_refs; i++) {
18910 		if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap) ||
18911 		    old->refs[i].type != cur->refs[i].type)
18912 			return false;
18913 		switch (old->refs[i].type) {
18914 		case REF_TYPE_PTR:
18915 		case REF_TYPE_IRQ:
18916 			break;
18917 		case REF_TYPE_LOCK:
18918 		case REF_TYPE_RES_LOCK:
18919 		case REF_TYPE_RES_LOCK_IRQ:
18920 			if (old->refs[i].ptr != cur->refs[i].ptr)
18921 				return false;
18922 			break;
18923 		default:
18924 			WARN_ONCE(1, "Unhandled enum type for reference state: %d\n", old->refs[i].type);
18925 			return false;
18926 		}
18927 	}
18928 
18929 	return true;
18930 }
18931 
18932 /* compare two verifier states
18933  *
18934  * all states stored in state_list are known to be valid, since
18935  * verifier reached 'bpf_exit' instruction through them
18936  *
18937  * this function is called when verifier exploring different branches of
18938  * execution popped from the state stack. If it sees an old state that has
18939  * more strict register state and more strict stack state then this execution
18940  * branch doesn't need to be explored further, since verifier already
18941  * concluded that more strict state leads to valid finish.
18942  *
18943  * Therefore two states are equivalent if register state is more conservative
18944  * and explored stack state is more conservative than the current one.
18945  * Example:
18946  *       explored                   current
18947  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
18948  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
18949  *
18950  * In other words if current stack state (one being explored) has more
18951  * valid slots than old one that already passed validation, it means
18952  * the verifier can stop exploring and conclude that current state is valid too
18953  *
18954  * Similarly with registers. If explored state has register type as invalid
18955  * whereas register type in current state is meaningful, it means that
18956  * the current state will reach 'bpf_exit' instruction safely
18957  */
18958 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
18959 			      struct bpf_func_state *cur, u32 insn_idx, enum exact_level exact)
18960 {
18961 	u16 live_regs = env->insn_aux_data[insn_idx].live_regs_before;
18962 	u16 i;
18963 
18964 	if (old->callback_depth > cur->callback_depth)
18965 		return false;
18966 
18967 	for (i = 0; i < MAX_BPF_REG; i++)
18968 		if (((1 << i) & live_regs) &&
18969 		    !regsafe(env, &old->regs[i], &cur->regs[i],
18970 			     &env->idmap_scratch, exact))
18971 			return false;
18972 
18973 	if (!stacksafe(env, old, cur, &env->idmap_scratch, exact))
18974 		return false;
18975 
18976 	return true;
18977 }
18978 
18979 static void reset_idmap_scratch(struct bpf_verifier_env *env)
18980 {
18981 	env->idmap_scratch.tmp_id_gen = env->id_gen;
18982 	memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
18983 }
18984 
18985 static bool states_equal(struct bpf_verifier_env *env,
18986 			 struct bpf_verifier_state *old,
18987 			 struct bpf_verifier_state *cur,
18988 			 enum exact_level exact)
18989 {
18990 	u32 insn_idx;
18991 	int i;
18992 
18993 	if (old->curframe != cur->curframe)
18994 		return false;
18995 
18996 	reset_idmap_scratch(env);
18997 
18998 	/* Verification state from speculative execution simulation
18999 	 * must never prune a non-speculative execution one.
19000 	 */
19001 	if (old->speculative && !cur->speculative)
19002 		return false;
19003 
19004 	if (old->in_sleepable != cur->in_sleepable)
19005 		return false;
19006 
19007 	if (!refsafe(old, cur, &env->idmap_scratch))
19008 		return false;
19009 
19010 	/* for states to be equal callsites have to be the same
19011 	 * and all frame states need to be equivalent
19012 	 */
19013 	for (i = 0; i <= old->curframe; i++) {
19014 		insn_idx = frame_insn_idx(old, i);
19015 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
19016 			return false;
19017 		if (!func_states_equal(env, old->frame[i], cur->frame[i], insn_idx, exact))
19018 			return false;
19019 	}
19020 	return true;
19021 }
19022 
19023 /* Return 0 if no propagation happened. Return negative error code if error
19024  * happened. Otherwise, return the propagated bit.
19025  */
19026 static int propagate_liveness_reg(struct bpf_verifier_env *env,
19027 				  struct bpf_reg_state *reg,
19028 				  struct bpf_reg_state *parent_reg)
19029 {
19030 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
19031 	u8 flag = reg->live & REG_LIVE_READ;
19032 	int err;
19033 
19034 	/* When comes here, read flags of PARENT_REG or REG could be any of
19035 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
19036 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
19037 	 */
19038 	if (parent_flag == REG_LIVE_READ64 ||
19039 	    /* Or if there is no read flag from REG. */
19040 	    !flag ||
19041 	    /* Or if the read flag from REG is the same as PARENT_REG. */
19042 	    parent_flag == flag)
19043 		return 0;
19044 
19045 	err = mark_reg_read(env, reg, parent_reg, flag);
19046 	if (err)
19047 		return err;
19048 
19049 	return flag;
19050 }
19051 
19052 /* A write screens off any subsequent reads; but write marks come from the
19053  * straight-line code between a state and its parent.  When we arrive at an
19054  * equivalent state (jump target or such) we didn't arrive by the straight-line
19055  * code, so read marks in the state must propagate to the parent regardless
19056  * of the state's write marks. That's what 'parent == state->parent' comparison
19057  * in mark_reg_read() is for.
19058  */
19059 static int propagate_liveness(struct bpf_verifier_env *env,
19060 			      const struct bpf_verifier_state *vstate,
19061 			      struct bpf_verifier_state *vparent,
19062 			      bool *changed)
19063 {
19064 	struct bpf_reg_state *state_reg, *parent_reg;
19065 	struct bpf_func_state *state, *parent;
19066 	int i, frame, err = 0;
19067 	bool tmp = false;
19068 
19069 	changed = changed ?: &tmp;
19070 	if (vparent->curframe != vstate->curframe) {
19071 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
19072 		     vparent->curframe, vstate->curframe);
19073 		return -EFAULT;
19074 	}
19075 	/* Propagate read liveness of registers... */
19076 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
19077 	for (frame = 0; frame <= vstate->curframe; frame++) {
19078 		parent = vparent->frame[frame];
19079 		state = vstate->frame[frame];
19080 		parent_reg = parent->regs;
19081 		state_reg = state->regs;
19082 		/* We don't need to worry about FP liveness, it's read-only */
19083 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
19084 			err = propagate_liveness_reg(env, &state_reg[i],
19085 						     &parent_reg[i]);
19086 			if (err < 0)
19087 				return err;
19088 			*changed |= err > 0;
19089 			if (err == REG_LIVE_READ64)
19090 				mark_insn_zext(env, &parent_reg[i]);
19091 		}
19092 
19093 		/* Propagate stack slots. */
19094 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
19095 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
19096 			parent_reg = &parent->stack[i].spilled_ptr;
19097 			state_reg = &state->stack[i].spilled_ptr;
19098 			err = propagate_liveness_reg(env, state_reg,
19099 						     parent_reg);
19100 			*changed |= err > 0;
19101 			if (err < 0)
19102 				return err;
19103 		}
19104 	}
19105 	return 0;
19106 }
19107 
19108 /* find precise scalars in the previous equivalent state and
19109  * propagate them into the current state
19110  */
19111 static int propagate_precision(struct bpf_verifier_env *env,
19112 			       const struct bpf_verifier_state *old,
19113 			       struct bpf_verifier_state *cur,
19114 			       bool *changed)
19115 {
19116 	struct bpf_reg_state *state_reg;
19117 	struct bpf_func_state *state;
19118 	int i, err = 0, fr;
19119 	bool first;
19120 
19121 	for (fr = old->curframe; fr >= 0; fr--) {
19122 		state = old->frame[fr];
19123 		state_reg = state->regs;
19124 		first = true;
19125 		for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
19126 			if (state_reg->type != SCALAR_VALUE ||
19127 			    !state_reg->precise ||
19128 			    !(state_reg->live & REG_LIVE_READ))
19129 				continue;
19130 			if (env->log.level & BPF_LOG_LEVEL2) {
19131 				if (first)
19132 					verbose(env, "frame %d: propagating r%d", fr, i);
19133 				else
19134 					verbose(env, ",r%d", i);
19135 			}
19136 			bt_set_frame_reg(&env->bt, fr, i);
19137 			first = false;
19138 		}
19139 
19140 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
19141 			if (!is_spilled_reg(&state->stack[i]))
19142 				continue;
19143 			state_reg = &state->stack[i].spilled_ptr;
19144 			if (state_reg->type != SCALAR_VALUE ||
19145 			    !state_reg->precise ||
19146 			    !(state_reg->live & REG_LIVE_READ))
19147 				continue;
19148 			if (env->log.level & BPF_LOG_LEVEL2) {
19149 				if (first)
19150 					verbose(env, "frame %d: propagating fp%d",
19151 						fr, (-i - 1) * BPF_REG_SIZE);
19152 				else
19153 					verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
19154 			}
19155 			bt_set_frame_slot(&env->bt, fr, i);
19156 			first = false;
19157 		}
19158 		if (!first)
19159 			verbose(env, "\n");
19160 	}
19161 
19162 	err = __mark_chain_precision(env, cur, -1, changed);
19163 	if (err < 0)
19164 		return err;
19165 
19166 	return 0;
19167 }
19168 
19169 #define MAX_BACKEDGE_ITERS 64
19170 
19171 /* Propagate read and precision marks from visit->backedges[*].state->equal_state
19172  * to corresponding parent states of visit->backedges[*].state until fixed point is reached,
19173  * then free visit->backedges.
19174  * After execution of this function incomplete_read_marks() will return false
19175  * for all states corresponding to @visit->callchain.
19176  */
19177 static int propagate_backedges(struct bpf_verifier_env *env, struct bpf_scc_visit *visit)
19178 {
19179 	struct bpf_scc_backedge *backedge;
19180 	struct bpf_verifier_state *st;
19181 	bool changed;
19182 	int i, err;
19183 
19184 	i = 0;
19185 	do {
19186 		if (i++ > MAX_BACKEDGE_ITERS) {
19187 			if (env->log.level & BPF_LOG_LEVEL2)
19188 				verbose(env, "%s: too many iterations\n", __func__);
19189 			for (backedge = visit->backedges; backedge; backedge = backedge->next)
19190 				mark_all_scalars_precise(env, &backedge->state);
19191 			break;
19192 		}
19193 		changed = false;
19194 		for (backedge = visit->backedges; backedge; backedge = backedge->next) {
19195 			st = &backedge->state;
19196 			err = propagate_liveness(env, st->equal_state, st, &changed);
19197 			if (err)
19198 				return err;
19199 			err = propagate_precision(env, st->equal_state, st, &changed);
19200 			if (err)
19201 				return err;
19202 		}
19203 	} while (changed);
19204 
19205 	free_backedges(visit);
19206 	return 0;
19207 }
19208 
19209 static bool states_maybe_looping(struct bpf_verifier_state *old,
19210 				 struct bpf_verifier_state *cur)
19211 {
19212 	struct bpf_func_state *fold, *fcur;
19213 	int i, fr = cur->curframe;
19214 
19215 	if (old->curframe != fr)
19216 		return false;
19217 
19218 	fold = old->frame[fr];
19219 	fcur = cur->frame[fr];
19220 	for (i = 0; i < MAX_BPF_REG; i++)
19221 		if (memcmp(&fold->regs[i], &fcur->regs[i],
19222 			   offsetof(struct bpf_reg_state, parent)))
19223 			return false;
19224 	return true;
19225 }
19226 
19227 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
19228 {
19229 	return env->insn_aux_data[insn_idx].is_iter_next;
19230 }
19231 
19232 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
19233  * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
19234  * states to match, which otherwise would look like an infinite loop. So while
19235  * iter_next() calls are taken care of, we still need to be careful and
19236  * prevent erroneous and too eager declaration of "infinite loop", when
19237  * iterators are involved.
19238  *
19239  * Here's a situation in pseudo-BPF assembly form:
19240  *
19241  *   0: again:                          ; set up iter_next() call args
19242  *   1:   r1 = &it                      ; <CHECKPOINT HERE>
19243  *   2:   call bpf_iter_num_next        ; this is iter_next() call
19244  *   3:   if r0 == 0 goto done
19245  *   4:   ... something useful here ...
19246  *   5:   goto again                    ; another iteration
19247  *   6: done:
19248  *   7:   r1 = &it
19249  *   8:   call bpf_iter_num_destroy     ; clean up iter state
19250  *   9:   exit
19251  *
19252  * This is a typical loop. Let's assume that we have a prune point at 1:,
19253  * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
19254  * again`, assuming other heuristics don't get in a way).
19255  *
19256  * When we first time come to 1:, let's say we have some state X. We proceed
19257  * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
19258  * Now we come back to validate that forked ACTIVE state. We proceed through
19259  * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
19260  * are converging. But the problem is that we don't know that yet, as this
19261  * convergence has to happen at iter_next() call site only. So if nothing is
19262  * done, at 1: verifier will use bounded loop logic and declare infinite
19263  * looping (and would be *technically* correct, if not for iterator's
19264  * "eventual sticky NULL" contract, see process_iter_next_call()). But we
19265  * don't want that. So what we do in process_iter_next_call() when we go on
19266  * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
19267  * a different iteration. So when we suspect an infinite loop, we additionally
19268  * check if any of the *ACTIVE* iterator states depths differ. If yes, we
19269  * pretend we are not looping and wait for next iter_next() call.
19270  *
19271  * This only applies to ACTIVE state. In DRAINED state we don't expect to
19272  * loop, because that would actually mean infinite loop, as DRAINED state is
19273  * "sticky", and so we'll keep returning into the same instruction with the
19274  * same state (at least in one of possible code paths).
19275  *
19276  * This approach allows to keep infinite loop heuristic even in the face of
19277  * active iterator. E.g., C snippet below is and will be detected as
19278  * infinitely looping:
19279  *
19280  *   struct bpf_iter_num it;
19281  *   int *p, x;
19282  *
19283  *   bpf_iter_num_new(&it, 0, 10);
19284  *   while ((p = bpf_iter_num_next(&t))) {
19285  *       x = p;
19286  *       while (x--) {} // <<-- infinite loop here
19287  *   }
19288  *
19289  */
19290 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
19291 {
19292 	struct bpf_reg_state *slot, *cur_slot;
19293 	struct bpf_func_state *state;
19294 	int i, fr;
19295 
19296 	for (fr = old->curframe; fr >= 0; fr--) {
19297 		state = old->frame[fr];
19298 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
19299 			if (state->stack[i].slot_type[0] != STACK_ITER)
19300 				continue;
19301 
19302 			slot = &state->stack[i].spilled_ptr;
19303 			if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
19304 				continue;
19305 
19306 			cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
19307 			if (cur_slot->iter.depth != slot->iter.depth)
19308 				return true;
19309 		}
19310 	}
19311 	return false;
19312 }
19313 
19314 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
19315 {
19316 	struct bpf_verifier_state_list *new_sl;
19317 	struct bpf_verifier_state_list *sl;
19318 	struct bpf_verifier_state *cur = env->cur_state, *new;
19319 	bool force_new_state, add_new_state, loop;
19320 	int i, j, n, err, states_cnt = 0;
19321 	struct list_head *pos, *tmp, *head;
19322 
19323 	force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx) ||
19324 			  /* Avoid accumulating infinitely long jmp history */
19325 			  cur->jmp_history_cnt > 40;
19326 
19327 	/* bpf progs typically have pruning point every 4 instructions
19328 	 * http://vger.kernel.org/bpfconf2019.html#session-1
19329 	 * Do not add new state for future pruning if the verifier hasn't seen
19330 	 * at least 2 jumps and at least 8 instructions.
19331 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
19332 	 * In tests that amounts to up to 50% reduction into total verifier
19333 	 * memory consumption and 20% verifier time speedup.
19334 	 */
19335 	add_new_state = force_new_state;
19336 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
19337 	    env->insn_processed - env->prev_insn_processed >= 8)
19338 		add_new_state = true;
19339 
19340 	clean_live_states(env, insn_idx, cur);
19341 
19342 	loop = false;
19343 	head = explored_state(env, insn_idx);
19344 	list_for_each_safe(pos, tmp, head) {
19345 		sl = container_of(pos, struct bpf_verifier_state_list, node);
19346 		states_cnt++;
19347 		if (sl->state.insn_idx != insn_idx)
19348 			continue;
19349 
19350 		if (sl->state.branches) {
19351 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
19352 
19353 			if (frame->in_async_callback_fn &&
19354 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
19355 				/* Different async_entry_cnt means that the verifier is
19356 				 * processing another entry into async callback.
19357 				 * Seeing the same state is not an indication of infinite
19358 				 * loop or infinite recursion.
19359 				 * But finding the same state doesn't mean that it's safe
19360 				 * to stop processing the current state. The previous state
19361 				 * hasn't yet reached bpf_exit, since state.branches > 0.
19362 				 * Checking in_async_callback_fn alone is not enough either.
19363 				 * Since the verifier still needs to catch infinite loops
19364 				 * inside async callbacks.
19365 				 */
19366 				goto skip_inf_loop_check;
19367 			}
19368 			/* BPF open-coded iterators loop detection is special.
19369 			 * states_maybe_looping() logic is too simplistic in detecting
19370 			 * states that *might* be equivalent, because it doesn't know
19371 			 * about ID remapping, so don't even perform it.
19372 			 * See process_iter_next_call() and iter_active_depths_differ()
19373 			 * for overview of the logic. When current and one of parent
19374 			 * states are detected as equivalent, it's a good thing: we prove
19375 			 * convergence and can stop simulating further iterations.
19376 			 * It's safe to assume that iterator loop will finish, taking into
19377 			 * account iter_next() contract of eventually returning
19378 			 * sticky NULL result.
19379 			 *
19380 			 * Note, that states have to be compared exactly in this case because
19381 			 * read and precision marks might not be finalized inside the loop.
19382 			 * E.g. as in the program below:
19383 			 *
19384 			 *     1. r7 = -16
19385 			 *     2. r6 = bpf_get_prandom_u32()
19386 			 *     3. while (bpf_iter_num_next(&fp[-8])) {
19387 			 *     4.   if (r6 != 42) {
19388 			 *     5.     r7 = -32
19389 			 *     6.     r6 = bpf_get_prandom_u32()
19390 			 *     7.     continue
19391 			 *     8.   }
19392 			 *     9.   r0 = r10
19393 			 *    10.   r0 += r7
19394 			 *    11.   r8 = *(u64 *)(r0 + 0)
19395 			 *    12.   r6 = bpf_get_prandom_u32()
19396 			 *    13. }
19397 			 *
19398 			 * Here verifier would first visit path 1-3, create a checkpoint at 3
19399 			 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does
19400 			 * not have read or precision mark for r7 yet, thus inexact states
19401 			 * comparison would discard current state with r7=-32
19402 			 * => unsafe memory access at 11 would not be caught.
19403 			 */
19404 			if (is_iter_next_insn(env, insn_idx)) {
19405 				if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) {
19406 					struct bpf_func_state *cur_frame;
19407 					struct bpf_reg_state *iter_state, *iter_reg;
19408 					int spi;
19409 
19410 					cur_frame = cur->frame[cur->curframe];
19411 					/* btf_check_iter_kfuncs() enforces that
19412 					 * iter state pointer is always the first arg
19413 					 */
19414 					iter_reg = &cur_frame->regs[BPF_REG_1];
19415 					/* current state is valid due to states_equal(),
19416 					 * so we can assume valid iter and reg state,
19417 					 * no need for extra (re-)validations
19418 					 */
19419 					spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
19420 					iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
19421 					if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) {
19422 						loop = true;
19423 						goto hit;
19424 					}
19425 				}
19426 				goto skip_inf_loop_check;
19427 			}
19428 			if (is_may_goto_insn_at(env, insn_idx)) {
19429 				if (sl->state.may_goto_depth != cur->may_goto_depth &&
19430 				    states_equal(env, &sl->state, cur, RANGE_WITHIN)) {
19431 					loop = true;
19432 					goto hit;
19433 				}
19434 			}
19435 			if (calls_callback(env, insn_idx)) {
19436 				if (states_equal(env, &sl->state, cur, RANGE_WITHIN))
19437 					goto hit;
19438 				goto skip_inf_loop_check;
19439 			}
19440 			/* attempt to detect infinite loop to avoid unnecessary doomed work */
19441 			if (states_maybe_looping(&sl->state, cur) &&
19442 			    states_equal(env, &sl->state, cur, EXACT) &&
19443 			    !iter_active_depths_differ(&sl->state, cur) &&
19444 			    sl->state.may_goto_depth == cur->may_goto_depth &&
19445 			    sl->state.callback_unroll_depth == cur->callback_unroll_depth) {
19446 				verbose_linfo(env, insn_idx, "; ");
19447 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
19448 				verbose(env, "cur state:");
19449 				print_verifier_state(env, cur, cur->curframe, true);
19450 				verbose(env, "old state:");
19451 				print_verifier_state(env, &sl->state, cur->curframe, true);
19452 				return -EINVAL;
19453 			}
19454 			/* if the verifier is processing a loop, avoid adding new state
19455 			 * too often, since different loop iterations have distinct
19456 			 * states and may not help future pruning.
19457 			 * This threshold shouldn't be too low to make sure that
19458 			 * a loop with large bound will be rejected quickly.
19459 			 * The most abusive loop will be:
19460 			 * r1 += 1
19461 			 * if r1 < 1000000 goto pc-2
19462 			 * 1M insn_procssed limit / 100 == 10k peak states.
19463 			 * This threshold shouldn't be too high either, since states
19464 			 * at the end of the loop are likely to be useful in pruning.
19465 			 */
19466 skip_inf_loop_check:
19467 			if (!force_new_state &&
19468 			    env->jmps_processed - env->prev_jmps_processed < 20 &&
19469 			    env->insn_processed - env->prev_insn_processed < 100)
19470 				add_new_state = false;
19471 			goto miss;
19472 		}
19473 		/* See comments for mark_all_regs_read_and_precise() */
19474 		loop = incomplete_read_marks(env, &sl->state);
19475 		if (states_equal(env, &sl->state, cur, loop ? RANGE_WITHIN : NOT_EXACT)) {
19476 hit:
19477 			sl->hit_cnt++;
19478 			/* reached equivalent register/stack state,
19479 			 * prune the search.
19480 			 * Registers read by the continuation are read by us.
19481 			 * If we have any write marks in env->cur_state, they
19482 			 * will prevent corresponding reads in the continuation
19483 			 * from reaching our parent (an explored_state).  Our
19484 			 * own state will get the read marks recorded, but
19485 			 * they'll be immediately forgotten as we're pruning
19486 			 * this state and will pop a new one.
19487 			 */
19488 			err = propagate_liveness(env, &sl->state, cur, NULL);
19489 
19490 			/* if previous state reached the exit with precision and
19491 			 * current state is equivalent to it (except precision marks)
19492 			 * the precision needs to be propagated back in
19493 			 * the current state.
19494 			 */
19495 			if (is_jmp_point(env, env->insn_idx))
19496 				err = err ? : push_jmp_history(env, cur, 0, 0);
19497 			err = err ? : propagate_precision(env, &sl->state, cur, NULL);
19498 			if (err)
19499 				return err;
19500 			/* When processing iterator based loops above propagate_liveness and
19501 			 * propagate_precision calls are not sufficient to transfer all relevant
19502 			 * read and precision marks. E.g. consider the following case:
19503 			 *
19504 			 *  .-> A --.  Assume the states are visited in the order A, B, C.
19505 			 *  |   |   |  Assume that state B reaches a state equivalent to state A.
19506 			 *  |   v   v  At this point, state C is not processed yet, so state A
19507 			 *  '-- B   C  has not received any read or precision marks from C.
19508 			 *             Thus, marks propagated from A to B are incomplete.
19509 			 *
19510 			 * The verifier mitigates this by performing the following steps:
19511 			 *
19512 			 * - Prior to the main verification pass, strongly connected components
19513 			 *   (SCCs) are computed over the program's control flow graph,
19514 			 *   intraprocedurally.
19515 			 *
19516 			 * - During the main verification pass, `maybe_enter_scc()` checks
19517 			 *   whether the current verifier state is entering an SCC. If so, an
19518 			 *   instance of a `bpf_scc_visit` object is created, and the state
19519 			 *   entering the SCC is recorded as the entry state.
19520 			 *
19521 			 * - This instance is associated not with the SCC itself, but with a
19522 			 *   `bpf_scc_callchain`: a tuple consisting of the call sites leading to
19523 			 *   the SCC and the SCC id. See `compute_scc_callchain()`.
19524 			 *
19525 			 * - When a verification path encounters a `states_equal(...,
19526 			 *   RANGE_WITHIN)` condition, there exists a call chain describing the
19527 			 *   current state and a corresponding `bpf_scc_visit` instance. A copy
19528 			 *   of the current state is created and added to
19529 			 *   `bpf_scc_visit->backedges`.
19530 			 *
19531 			 * - When a verification path terminates, `maybe_exit_scc()` is called
19532 			 *   from `update_branch_counts()`. For states with `branches == 0`, it
19533 			 *   checks whether the state is the entry state of any `bpf_scc_visit`
19534 			 *   instance. If it is, this indicates that all paths originating from
19535 			 *   this SCC visit have been explored. `propagate_backedges()` is then
19536 			 *   called, which propagates read and precision marks through the
19537 			 *   backedges until a fixed point is reached.
19538 			 *   (In the earlier example, this would propagate marks from A to B,
19539 			 *    from C to A, and then again from A to B.)
19540 			 *
19541 			 * A note on callchains
19542 			 * --------------------
19543 			 *
19544 			 * Consider the following example:
19545 			 *
19546 			 *     void foo() { loop { ... SCC#1 ... } }
19547 			 *     void main() {
19548 			 *       A: foo();
19549 			 *       B: ...
19550 			 *       C: foo();
19551 			 *     }
19552 			 *
19553 			 * Here, there are two distinct callchains leading to SCC#1:
19554 			 * - (A, SCC#1)
19555 			 * - (C, SCC#1)
19556 			 *
19557 			 * Each callchain identifies a separate `bpf_scc_visit` instance that
19558 			 * accumulates backedge states. The `propagate_{liveness,precision}()`
19559 			 * functions traverse the parent state of each backedge state, which
19560 			 * means these parent states must remain valid (i.e., not freed) while
19561 			 * the corresponding `bpf_scc_visit` instance exists.
19562 			 *
19563 			 * Associating `bpf_scc_visit` instances directly with SCCs instead of
19564 			 * callchains would break this invariant:
19565 			 * - States explored during `C: foo()` would contribute backedges to
19566 			 *   SCC#1, but SCC#1 would only be exited once the exploration of
19567 			 *   `A: foo()` completes.
19568 			 * - By that time, the states explored between `A: foo()` and `C: foo()`
19569 			 *   (i.e., `B: ...`) may have already been freed, causing the parent
19570 			 *   links for states from `C: foo()` to become invalid.
19571 			 */
19572 			if (loop) {
19573 				struct bpf_scc_backedge *backedge;
19574 
19575 				backedge = kzalloc(sizeof(*backedge), GFP_KERNEL_ACCOUNT);
19576 				if (!backedge)
19577 					return -ENOMEM;
19578 				err = copy_verifier_state(&backedge->state, cur);
19579 				backedge->state.equal_state = &sl->state;
19580 				backedge->state.insn_idx = insn_idx;
19581 				err = err ?: add_scc_backedge(env, &sl->state, backedge);
19582 				if (err) {
19583 					free_verifier_state(&backedge->state, false);
19584 					kvfree(backedge);
19585 					return err;
19586 				}
19587 			}
19588 			return 1;
19589 		}
19590 miss:
19591 		/* when new state is not going to be added do not increase miss count.
19592 		 * Otherwise several loop iterations will remove the state
19593 		 * recorded earlier. The goal of these heuristics is to have
19594 		 * states from some iterations of the loop (some in the beginning
19595 		 * and some at the end) to help pruning.
19596 		 */
19597 		if (add_new_state)
19598 			sl->miss_cnt++;
19599 		/* heuristic to determine whether this state is beneficial
19600 		 * to keep checking from state equivalence point of view.
19601 		 * Higher numbers increase max_states_per_insn and verification time,
19602 		 * but do not meaningfully decrease insn_processed.
19603 		 * 'n' controls how many times state could miss before eviction.
19604 		 * Use bigger 'n' for checkpoints because evicting checkpoint states
19605 		 * too early would hinder iterator convergence.
19606 		 */
19607 		n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3;
19608 		if (sl->miss_cnt > sl->hit_cnt * n + n) {
19609 			/* the state is unlikely to be useful. Remove it to
19610 			 * speed up verification
19611 			 */
19612 			sl->in_free_list = true;
19613 			list_del(&sl->node);
19614 			list_add(&sl->node, &env->free_list);
19615 			env->free_list_size++;
19616 			env->explored_states_size--;
19617 			maybe_free_verifier_state(env, sl);
19618 		}
19619 	}
19620 
19621 	if (env->max_states_per_insn < states_cnt)
19622 		env->max_states_per_insn = states_cnt;
19623 
19624 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
19625 		return 0;
19626 
19627 	if (!add_new_state)
19628 		return 0;
19629 
19630 	/* There were no equivalent states, remember the current one.
19631 	 * Technically the current state is not proven to be safe yet,
19632 	 * but it will either reach outer most bpf_exit (which means it's safe)
19633 	 * or it will be rejected. When there are no loops the verifier won't be
19634 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
19635 	 * again on the way to bpf_exit.
19636 	 * When looping the sl->state.branches will be > 0 and this state
19637 	 * will not be considered for equivalence until branches == 0.
19638 	 */
19639 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL_ACCOUNT);
19640 	if (!new_sl)
19641 		return -ENOMEM;
19642 	env->total_states++;
19643 	env->explored_states_size++;
19644 	update_peak_states(env);
19645 	env->prev_jmps_processed = env->jmps_processed;
19646 	env->prev_insn_processed = env->insn_processed;
19647 
19648 	/* forget precise markings we inherited, see __mark_chain_precision */
19649 	if (env->bpf_capable)
19650 		mark_all_scalars_imprecise(env, cur);
19651 
19652 	/* add new state to the head of linked list */
19653 	new = &new_sl->state;
19654 	err = copy_verifier_state(new, cur);
19655 	if (err) {
19656 		free_verifier_state(new, false);
19657 		kfree(new_sl);
19658 		return err;
19659 	}
19660 	new->insn_idx = insn_idx;
19661 	verifier_bug_if(new->branches != 1, env,
19662 			"%s:branches_to_explore=%d insn %d",
19663 			__func__, new->branches, insn_idx);
19664 	err = maybe_enter_scc(env, new);
19665 	if (err) {
19666 		free_verifier_state(new, false);
19667 		kvfree(new_sl);
19668 		return err;
19669 	}
19670 
19671 	cur->parent = new;
19672 	cur->first_insn_idx = insn_idx;
19673 	cur->dfs_depth = new->dfs_depth + 1;
19674 	clear_jmp_history(cur);
19675 	list_add(&new_sl->node, head);
19676 
19677 	/* connect new state to parentage chain. Current frame needs all
19678 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
19679 	 * to the stack implicitly by JITs) so in callers' frames connect just
19680 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
19681 	 * the state of the call instruction (with WRITTEN set), and r0 comes
19682 	 * from callee with its full parentage chain, anyway.
19683 	 */
19684 	/* clear write marks in current state: the writes we did are not writes
19685 	 * our child did, so they don't screen off its reads from us.
19686 	 * (There are no read marks in current state, because reads always mark
19687 	 * their parent and current state never has children yet.  Only
19688 	 * explored_states can get read marks.)
19689 	 */
19690 	for (j = 0; j <= cur->curframe; j++) {
19691 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
19692 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
19693 		for (i = 0; i < BPF_REG_FP; i++)
19694 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
19695 	}
19696 
19697 	/* all stack frames are accessible from callee, clear them all */
19698 	for (j = 0; j <= cur->curframe; j++) {
19699 		struct bpf_func_state *frame = cur->frame[j];
19700 		struct bpf_func_state *newframe = new->frame[j];
19701 
19702 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
19703 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
19704 			frame->stack[i].spilled_ptr.parent =
19705 						&newframe->stack[i].spilled_ptr;
19706 		}
19707 	}
19708 	return 0;
19709 }
19710 
19711 /* Return true if it's OK to have the same insn return a different type. */
19712 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
19713 {
19714 	switch (base_type(type)) {
19715 	case PTR_TO_CTX:
19716 	case PTR_TO_SOCKET:
19717 	case PTR_TO_SOCK_COMMON:
19718 	case PTR_TO_TCP_SOCK:
19719 	case PTR_TO_XDP_SOCK:
19720 	case PTR_TO_BTF_ID:
19721 	case PTR_TO_ARENA:
19722 		return false;
19723 	default:
19724 		return true;
19725 	}
19726 }
19727 
19728 /* If an instruction was previously used with particular pointer types, then we
19729  * need to be careful to avoid cases such as the below, where it may be ok
19730  * for one branch accessing the pointer, but not ok for the other branch:
19731  *
19732  * R1 = sock_ptr
19733  * goto X;
19734  * ...
19735  * R1 = some_other_valid_ptr;
19736  * goto X;
19737  * ...
19738  * R2 = *(u32 *)(R1 + 0);
19739  */
19740 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
19741 {
19742 	return src != prev && (!reg_type_mismatch_ok(src) ||
19743 			       !reg_type_mismatch_ok(prev));
19744 }
19745 
19746 static bool is_ptr_to_mem_or_btf_id(enum bpf_reg_type type)
19747 {
19748 	switch (base_type(type)) {
19749 	case PTR_TO_MEM:
19750 	case PTR_TO_BTF_ID:
19751 		return true;
19752 	default:
19753 		return false;
19754 	}
19755 }
19756 
19757 static bool is_ptr_to_mem(enum bpf_reg_type type)
19758 {
19759 	return base_type(type) == PTR_TO_MEM;
19760 }
19761 
19762 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
19763 			     bool allow_trust_mismatch)
19764 {
19765 	enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
19766 	enum bpf_reg_type merged_type;
19767 
19768 	if (*prev_type == NOT_INIT) {
19769 		/* Saw a valid insn
19770 		 * dst_reg = *(u32 *)(src_reg + off)
19771 		 * save type to validate intersecting paths
19772 		 */
19773 		*prev_type = type;
19774 	} else if (reg_type_mismatch(type, *prev_type)) {
19775 		/* Abuser program is trying to use the same insn
19776 		 * dst_reg = *(u32*) (src_reg + off)
19777 		 * with different pointer types:
19778 		 * src_reg == ctx in one branch and
19779 		 * src_reg == stack|map in some other branch.
19780 		 * Reject it.
19781 		 */
19782 		if (allow_trust_mismatch &&
19783 		    is_ptr_to_mem_or_btf_id(type) &&
19784 		    is_ptr_to_mem_or_btf_id(*prev_type)) {
19785 			/*
19786 			 * Have to support a use case when one path through
19787 			 * the program yields TRUSTED pointer while another
19788 			 * is UNTRUSTED. Fallback to UNTRUSTED to generate
19789 			 * BPF_PROBE_MEM/BPF_PROBE_MEMSX.
19790 			 * Same behavior of MEM_RDONLY flag.
19791 			 */
19792 			if (is_ptr_to_mem(type) || is_ptr_to_mem(*prev_type))
19793 				merged_type = PTR_TO_MEM;
19794 			else
19795 				merged_type = PTR_TO_BTF_ID;
19796 			if ((type & PTR_UNTRUSTED) || (*prev_type & PTR_UNTRUSTED))
19797 				merged_type |= PTR_UNTRUSTED;
19798 			if ((type & MEM_RDONLY) || (*prev_type & MEM_RDONLY))
19799 				merged_type |= MEM_RDONLY;
19800 			*prev_type = merged_type;
19801 		} else {
19802 			verbose(env, "same insn cannot be used with different pointers\n");
19803 			return -EINVAL;
19804 		}
19805 	}
19806 
19807 	return 0;
19808 }
19809 
19810 enum {
19811 	PROCESS_BPF_EXIT = 1
19812 };
19813 
19814 static int process_bpf_exit_full(struct bpf_verifier_env *env,
19815 				 bool *do_print_state,
19816 				 bool exception_exit)
19817 {
19818 	/* We must do check_reference_leak here before
19819 	 * prepare_func_exit to handle the case when
19820 	 * state->curframe > 0, it may be a callback function,
19821 	 * for which reference_state must match caller reference
19822 	 * state when it exits.
19823 	 */
19824 	int err = check_resource_leak(env, exception_exit,
19825 				      !env->cur_state->curframe,
19826 				      "BPF_EXIT instruction in main prog");
19827 	if (err)
19828 		return err;
19829 
19830 	/* The side effect of the prepare_func_exit which is
19831 	 * being skipped is that it frees bpf_func_state.
19832 	 * Typically, process_bpf_exit will only be hit with
19833 	 * outermost exit. copy_verifier_state in pop_stack will
19834 	 * handle freeing of any extra bpf_func_state left over
19835 	 * from not processing all nested function exits. We
19836 	 * also skip return code checks as they are not needed
19837 	 * for exceptional exits.
19838 	 */
19839 	if (exception_exit)
19840 		return PROCESS_BPF_EXIT;
19841 
19842 	if (env->cur_state->curframe) {
19843 		/* exit from nested function */
19844 		err = prepare_func_exit(env, &env->insn_idx);
19845 		if (err)
19846 			return err;
19847 		*do_print_state = true;
19848 		return 0;
19849 	}
19850 
19851 	err = check_return_code(env, BPF_REG_0, "R0");
19852 	if (err)
19853 		return err;
19854 	return PROCESS_BPF_EXIT;
19855 }
19856 
19857 static int do_check_insn(struct bpf_verifier_env *env, bool *do_print_state)
19858 {
19859 	int err;
19860 	struct bpf_insn *insn = &env->prog->insnsi[env->insn_idx];
19861 	u8 class = BPF_CLASS(insn->code);
19862 
19863 	if (class == BPF_ALU || class == BPF_ALU64) {
19864 		err = check_alu_op(env, insn);
19865 		if (err)
19866 			return err;
19867 
19868 	} else if (class == BPF_LDX) {
19869 		bool is_ldsx = BPF_MODE(insn->code) == BPF_MEMSX;
19870 
19871 		/* Check for reserved fields is already done in
19872 		 * resolve_pseudo_ldimm64().
19873 		 */
19874 		err = check_load_mem(env, insn, false, is_ldsx, true, "ldx");
19875 		if (err)
19876 			return err;
19877 	} else if (class == BPF_STX) {
19878 		if (BPF_MODE(insn->code) == BPF_ATOMIC) {
19879 			err = check_atomic(env, insn);
19880 			if (err)
19881 				return err;
19882 			env->insn_idx++;
19883 			return 0;
19884 		}
19885 
19886 		if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
19887 			verbose(env, "BPF_STX uses reserved fields\n");
19888 			return -EINVAL;
19889 		}
19890 
19891 		err = check_store_reg(env, insn, false);
19892 		if (err)
19893 			return err;
19894 	} else if (class == BPF_ST) {
19895 		enum bpf_reg_type dst_reg_type;
19896 
19897 		if (BPF_MODE(insn->code) != BPF_MEM ||
19898 		    insn->src_reg != BPF_REG_0) {
19899 			verbose(env, "BPF_ST uses reserved fields\n");
19900 			return -EINVAL;
19901 		}
19902 		/* check src operand */
19903 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
19904 		if (err)
19905 			return err;
19906 
19907 		dst_reg_type = cur_regs(env)[insn->dst_reg].type;
19908 
19909 		/* check that memory (dst_reg + off) is writeable */
19910 		err = check_mem_access(env, env->insn_idx, insn->dst_reg,
19911 				       insn->off, BPF_SIZE(insn->code),
19912 				       BPF_WRITE, -1, false, false);
19913 		if (err)
19914 			return err;
19915 
19916 		err = save_aux_ptr_type(env, dst_reg_type, false);
19917 		if (err)
19918 			return err;
19919 	} else if (class == BPF_JMP || class == BPF_JMP32) {
19920 		u8 opcode = BPF_OP(insn->code);
19921 
19922 		env->jmps_processed++;
19923 		if (opcode == BPF_CALL) {
19924 			if (BPF_SRC(insn->code) != BPF_K ||
19925 			    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL &&
19926 			     insn->off != 0) ||
19927 			    (insn->src_reg != BPF_REG_0 &&
19928 			     insn->src_reg != BPF_PSEUDO_CALL &&
19929 			     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
19930 			    insn->dst_reg != BPF_REG_0 || class == BPF_JMP32) {
19931 				verbose(env, "BPF_CALL uses reserved fields\n");
19932 				return -EINVAL;
19933 			}
19934 
19935 			if (env->cur_state->active_locks) {
19936 				if ((insn->src_reg == BPF_REG_0 &&
19937 				     insn->imm != BPF_FUNC_spin_unlock) ||
19938 				    (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
19939 				     (insn->off != 0 || !kfunc_spin_allowed(insn->imm)))) {
19940 					verbose(env,
19941 						"function calls are not allowed while holding a lock\n");
19942 					return -EINVAL;
19943 				}
19944 			}
19945 			if (insn->src_reg == BPF_PSEUDO_CALL) {
19946 				err = check_func_call(env, insn, &env->insn_idx);
19947 			} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
19948 				err = check_kfunc_call(env, insn, &env->insn_idx);
19949 				if (!err && is_bpf_throw_kfunc(insn))
19950 					return process_bpf_exit_full(env, do_print_state, true);
19951 			} else {
19952 				err = check_helper_call(env, insn, &env->insn_idx);
19953 			}
19954 			if (err)
19955 				return err;
19956 
19957 			mark_reg_scratched(env, BPF_REG_0);
19958 		} else if (opcode == BPF_JA) {
19959 			if (BPF_SRC(insn->code) != BPF_K ||
19960 			    insn->src_reg != BPF_REG_0 ||
19961 			    insn->dst_reg != BPF_REG_0 ||
19962 			    (class == BPF_JMP && insn->imm != 0) ||
19963 			    (class == BPF_JMP32 && insn->off != 0)) {
19964 				verbose(env, "BPF_JA uses reserved fields\n");
19965 				return -EINVAL;
19966 			}
19967 
19968 			if (class == BPF_JMP)
19969 				env->insn_idx += insn->off + 1;
19970 			else
19971 				env->insn_idx += insn->imm + 1;
19972 			return 0;
19973 		} else if (opcode == BPF_EXIT) {
19974 			if (BPF_SRC(insn->code) != BPF_K ||
19975 			    insn->imm != 0 ||
19976 			    insn->src_reg != BPF_REG_0 ||
19977 			    insn->dst_reg != BPF_REG_0 ||
19978 			    class == BPF_JMP32) {
19979 				verbose(env, "BPF_EXIT uses reserved fields\n");
19980 				return -EINVAL;
19981 			}
19982 			return process_bpf_exit_full(env, do_print_state, false);
19983 		} else {
19984 			err = check_cond_jmp_op(env, insn, &env->insn_idx);
19985 			if (err)
19986 				return err;
19987 		}
19988 	} else if (class == BPF_LD) {
19989 		u8 mode = BPF_MODE(insn->code);
19990 
19991 		if (mode == BPF_ABS || mode == BPF_IND) {
19992 			err = check_ld_abs(env, insn);
19993 			if (err)
19994 				return err;
19995 
19996 		} else if (mode == BPF_IMM) {
19997 			err = check_ld_imm(env, insn);
19998 			if (err)
19999 				return err;
20000 
20001 			env->insn_idx++;
20002 			sanitize_mark_insn_seen(env);
20003 		} else {
20004 			verbose(env, "invalid BPF_LD mode\n");
20005 			return -EINVAL;
20006 		}
20007 	} else {
20008 		verbose(env, "unknown insn class %d\n", class);
20009 		return -EINVAL;
20010 	}
20011 
20012 	env->insn_idx++;
20013 	return 0;
20014 }
20015 
20016 static int do_check(struct bpf_verifier_env *env)
20017 {
20018 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
20019 	struct bpf_verifier_state *state = env->cur_state;
20020 	struct bpf_insn *insns = env->prog->insnsi;
20021 	int insn_cnt = env->prog->len;
20022 	bool do_print_state = false;
20023 	int prev_insn_idx = -1;
20024 
20025 	for (;;) {
20026 		struct bpf_insn *insn;
20027 		struct bpf_insn_aux_data *insn_aux;
20028 		int err;
20029 
20030 		/* reset current history entry on each new instruction */
20031 		env->cur_hist_ent = NULL;
20032 
20033 		env->prev_insn_idx = prev_insn_idx;
20034 		if (env->insn_idx >= insn_cnt) {
20035 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
20036 				env->insn_idx, insn_cnt);
20037 			return -EFAULT;
20038 		}
20039 
20040 		insn = &insns[env->insn_idx];
20041 		insn_aux = &env->insn_aux_data[env->insn_idx];
20042 
20043 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
20044 			verbose(env,
20045 				"BPF program is too large. Processed %d insn\n",
20046 				env->insn_processed);
20047 			return -E2BIG;
20048 		}
20049 
20050 		state->last_insn_idx = env->prev_insn_idx;
20051 		state->insn_idx = env->insn_idx;
20052 
20053 		if (is_prune_point(env, env->insn_idx)) {
20054 			err = is_state_visited(env, env->insn_idx);
20055 			if (err < 0)
20056 				return err;
20057 			if (err == 1) {
20058 				/* found equivalent state, can prune the search */
20059 				if (env->log.level & BPF_LOG_LEVEL) {
20060 					if (do_print_state)
20061 						verbose(env, "\nfrom %d to %d%s: safe\n",
20062 							env->prev_insn_idx, env->insn_idx,
20063 							env->cur_state->speculative ?
20064 							" (speculative execution)" : "");
20065 					else
20066 						verbose(env, "%d: safe\n", env->insn_idx);
20067 				}
20068 				goto process_bpf_exit;
20069 			}
20070 		}
20071 
20072 		if (is_jmp_point(env, env->insn_idx)) {
20073 			err = push_jmp_history(env, state, 0, 0);
20074 			if (err)
20075 				return err;
20076 		}
20077 
20078 		if (signal_pending(current))
20079 			return -EAGAIN;
20080 
20081 		if (need_resched())
20082 			cond_resched();
20083 
20084 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
20085 			verbose(env, "\nfrom %d to %d%s:",
20086 				env->prev_insn_idx, env->insn_idx,
20087 				env->cur_state->speculative ?
20088 				" (speculative execution)" : "");
20089 			print_verifier_state(env, state, state->curframe, true);
20090 			do_print_state = false;
20091 		}
20092 
20093 		if (env->log.level & BPF_LOG_LEVEL) {
20094 			if (verifier_state_scratched(env))
20095 				print_insn_state(env, state, state->curframe);
20096 
20097 			verbose_linfo(env, env->insn_idx, "; ");
20098 			env->prev_log_pos = env->log.end_pos;
20099 			verbose(env, "%d: ", env->insn_idx);
20100 			verbose_insn(env, insn);
20101 			env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
20102 			env->prev_log_pos = env->log.end_pos;
20103 		}
20104 
20105 		if (bpf_prog_is_offloaded(env->prog->aux)) {
20106 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
20107 							   env->prev_insn_idx);
20108 			if (err)
20109 				return err;
20110 		}
20111 
20112 		sanitize_mark_insn_seen(env);
20113 		prev_insn_idx = env->insn_idx;
20114 
20115 		/* Reduce verification complexity by stopping speculative path
20116 		 * verification when a nospec is encountered.
20117 		 */
20118 		if (state->speculative && insn_aux->nospec)
20119 			goto process_bpf_exit;
20120 
20121 		err = do_check_insn(env, &do_print_state);
20122 		if (error_recoverable_with_nospec(err) && state->speculative) {
20123 			/* Prevent this speculative path from ever reaching the
20124 			 * insn that would have been unsafe to execute.
20125 			 */
20126 			insn_aux->nospec = true;
20127 			/* If it was an ADD/SUB insn, potentially remove any
20128 			 * markings for alu sanitization.
20129 			 */
20130 			insn_aux->alu_state = 0;
20131 			goto process_bpf_exit;
20132 		} else if (err < 0) {
20133 			return err;
20134 		} else if (err == PROCESS_BPF_EXIT) {
20135 			goto process_bpf_exit;
20136 		}
20137 		WARN_ON_ONCE(err);
20138 
20139 		if (state->speculative && insn_aux->nospec_result) {
20140 			/* If we are on a path that performed a jump-op, this
20141 			 * may skip a nospec patched-in after the jump. This can
20142 			 * currently never happen because nospec_result is only
20143 			 * used for the write-ops
20144 			 * `*(size*)(dst_reg+off)=src_reg|imm32` which must
20145 			 * never skip the following insn. Still, add a warning
20146 			 * to document this in case nospec_result is used
20147 			 * elsewhere in the future.
20148 			 *
20149 			 * All non-branch instructions have a single
20150 			 * fall-through edge. For these, nospec_result should
20151 			 * already work.
20152 			 */
20153 			if (verifier_bug_if(BPF_CLASS(insn->code) == BPF_JMP ||
20154 					    BPF_CLASS(insn->code) == BPF_JMP32, env,
20155 					    "speculation barrier after jump instruction may not have the desired effect"))
20156 				return -EFAULT;
20157 process_bpf_exit:
20158 			mark_verifier_state_scratched(env);
20159 			err = update_branch_counts(env, env->cur_state);
20160 			if (err)
20161 				return err;
20162 			err = pop_stack(env, &prev_insn_idx, &env->insn_idx,
20163 					pop_log);
20164 			if (err < 0) {
20165 				if (err != -ENOENT)
20166 					return err;
20167 				break;
20168 			} else {
20169 				do_print_state = true;
20170 				continue;
20171 			}
20172 		}
20173 	}
20174 
20175 	return 0;
20176 }
20177 
20178 static int find_btf_percpu_datasec(struct btf *btf)
20179 {
20180 	const struct btf_type *t;
20181 	const char *tname;
20182 	int i, n;
20183 
20184 	/*
20185 	 * Both vmlinux and module each have their own ".data..percpu"
20186 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
20187 	 * types to look at only module's own BTF types.
20188 	 */
20189 	n = btf_nr_types(btf);
20190 	if (btf_is_module(btf))
20191 		i = btf_nr_types(btf_vmlinux);
20192 	else
20193 		i = 1;
20194 
20195 	for(; i < n; i++) {
20196 		t = btf_type_by_id(btf, i);
20197 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
20198 			continue;
20199 
20200 		tname = btf_name_by_offset(btf, t->name_off);
20201 		if (!strcmp(tname, ".data..percpu"))
20202 			return i;
20203 	}
20204 
20205 	return -ENOENT;
20206 }
20207 
20208 /*
20209  * Add btf to the used_btfs array and return the index. (If the btf was
20210  * already added, then just return the index.) Upon successful insertion
20211  * increase btf refcnt, and, if present, also refcount the corresponding
20212  * kernel module.
20213  */
20214 static int __add_used_btf(struct bpf_verifier_env *env, struct btf *btf)
20215 {
20216 	struct btf_mod_pair *btf_mod;
20217 	int i;
20218 
20219 	/* check whether we recorded this BTF (and maybe module) already */
20220 	for (i = 0; i < env->used_btf_cnt; i++)
20221 		if (env->used_btfs[i].btf == btf)
20222 			return i;
20223 
20224 	if (env->used_btf_cnt >= MAX_USED_BTFS)
20225 		return -E2BIG;
20226 
20227 	btf_get(btf);
20228 
20229 	btf_mod = &env->used_btfs[env->used_btf_cnt];
20230 	btf_mod->btf = btf;
20231 	btf_mod->module = NULL;
20232 
20233 	/* if we reference variables from kernel module, bump its refcount */
20234 	if (btf_is_module(btf)) {
20235 		btf_mod->module = btf_try_get_module(btf);
20236 		if (!btf_mod->module) {
20237 			btf_put(btf);
20238 			return -ENXIO;
20239 		}
20240 	}
20241 
20242 	return env->used_btf_cnt++;
20243 }
20244 
20245 /* replace pseudo btf_id with kernel symbol address */
20246 static int __check_pseudo_btf_id(struct bpf_verifier_env *env,
20247 				 struct bpf_insn *insn,
20248 				 struct bpf_insn_aux_data *aux,
20249 				 struct btf *btf)
20250 {
20251 	const struct btf_var_secinfo *vsi;
20252 	const struct btf_type *datasec;
20253 	const struct btf_type *t;
20254 	const char *sym_name;
20255 	bool percpu = false;
20256 	u32 type, id = insn->imm;
20257 	s32 datasec_id;
20258 	u64 addr;
20259 	int i;
20260 
20261 	t = btf_type_by_id(btf, id);
20262 	if (!t) {
20263 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
20264 		return -ENOENT;
20265 	}
20266 
20267 	if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
20268 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
20269 		return -EINVAL;
20270 	}
20271 
20272 	sym_name = btf_name_by_offset(btf, t->name_off);
20273 	addr = kallsyms_lookup_name(sym_name);
20274 	if (!addr) {
20275 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
20276 			sym_name);
20277 		return -ENOENT;
20278 	}
20279 	insn[0].imm = (u32)addr;
20280 	insn[1].imm = addr >> 32;
20281 
20282 	if (btf_type_is_func(t)) {
20283 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
20284 		aux->btf_var.mem_size = 0;
20285 		return 0;
20286 	}
20287 
20288 	datasec_id = find_btf_percpu_datasec(btf);
20289 	if (datasec_id > 0) {
20290 		datasec = btf_type_by_id(btf, datasec_id);
20291 		for_each_vsi(i, datasec, vsi) {
20292 			if (vsi->type == id) {
20293 				percpu = true;
20294 				break;
20295 			}
20296 		}
20297 	}
20298 
20299 	type = t->type;
20300 	t = btf_type_skip_modifiers(btf, type, NULL);
20301 	if (percpu) {
20302 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
20303 		aux->btf_var.btf = btf;
20304 		aux->btf_var.btf_id = type;
20305 	} else if (!btf_type_is_struct(t)) {
20306 		const struct btf_type *ret;
20307 		const char *tname;
20308 		u32 tsize;
20309 
20310 		/* resolve the type size of ksym. */
20311 		ret = btf_resolve_size(btf, t, &tsize);
20312 		if (IS_ERR(ret)) {
20313 			tname = btf_name_by_offset(btf, t->name_off);
20314 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
20315 				tname, PTR_ERR(ret));
20316 			return -EINVAL;
20317 		}
20318 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
20319 		aux->btf_var.mem_size = tsize;
20320 	} else {
20321 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
20322 		aux->btf_var.btf = btf;
20323 		aux->btf_var.btf_id = type;
20324 	}
20325 
20326 	return 0;
20327 }
20328 
20329 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
20330 			       struct bpf_insn *insn,
20331 			       struct bpf_insn_aux_data *aux)
20332 {
20333 	struct btf *btf;
20334 	int btf_fd;
20335 	int err;
20336 
20337 	btf_fd = insn[1].imm;
20338 	if (btf_fd) {
20339 		CLASS(fd, f)(btf_fd);
20340 
20341 		btf = __btf_get_by_fd(f);
20342 		if (IS_ERR(btf)) {
20343 			verbose(env, "invalid module BTF object FD specified.\n");
20344 			return -EINVAL;
20345 		}
20346 	} else {
20347 		if (!btf_vmlinux) {
20348 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
20349 			return -EINVAL;
20350 		}
20351 		btf = btf_vmlinux;
20352 	}
20353 
20354 	err = __check_pseudo_btf_id(env, insn, aux, btf);
20355 	if (err)
20356 		return err;
20357 
20358 	err = __add_used_btf(env, btf);
20359 	if (err < 0)
20360 		return err;
20361 	return 0;
20362 }
20363 
20364 static bool is_tracing_prog_type(enum bpf_prog_type type)
20365 {
20366 	switch (type) {
20367 	case BPF_PROG_TYPE_KPROBE:
20368 	case BPF_PROG_TYPE_TRACEPOINT:
20369 	case BPF_PROG_TYPE_PERF_EVENT:
20370 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
20371 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
20372 		return true;
20373 	default:
20374 		return false;
20375 	}
20376 }
20377 
20378 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
20379 {
20380 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
20381 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
20382 }
20383 
20384 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
20385 					struct bpf_map *map,
20386 					struct bpf_prog *prog)
20387 
20388 {
20389 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
20390 
20391 	if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
20392 	    btf_record_has_field(map->record, BPF_RB_ROOT)) {
20393 		if (is_tracing_prog_type(prog_type)) {
20394 			verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
20395 			return -EINVAL;
20396 		}
20397 	}
20398 
20399 	if (btf_record_has_field(map->record, BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK)) {
20400 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
20401 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
20402 			return -EINVAL;
20403 		}
20404 
20405 		if (is_tracing_prog_type(prog_type)) {
20406 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
20407 			return -EINVAL;
20408 		}
20409 	}
20410 
20411 	if (btf_record_has_field(map->record, BPF_TIMER)) {
20412 		if (is_tracing_prog_type(prog_type)) {
20413 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
20414 			return -EINVAL;
20415 		}
20416 	}
20417 
20418 	if (btf_record_has_field(map->record, BPF_WORKQUEUE)) {
20419 		if (is_tracing_prog_type(prog_type)) {
20420 			verbose(env, "tracing progs cannot use bpf_wq yet\n");
20421 			return -EINVAL;
20422 		}
20423 	}
20424 
20425 	if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
20426 	    !bpf_offload_prog_map_match(prog, map)) {
20427 		verbose(env, "offload device mismatch between prog and map\n");
20428 		return -EINVAL;
20429 	}
20430 
20431 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
20432 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
20433 		return -EINVAL;
20434 	}
20435 
20436 	if (prog->sleepable)
20437 		switch (map->map_type) {
20438 		case BPF_MAP_TYPE_HASH:
20439 		case BPF_MAP_TYPE_LRU_HASH:
20440 		case BPF_MAP_TYPE_ARRAY:
20441 		case BPF_MAP_TYPE_PERCPU_HASH:
20442 		case BPF_MAP_TYPE_PERCPU_ARRAY:
20443 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
20444 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
20445 		case BPF_MAP_TYPE_HASH_OF_MAPS:
20446 		case BPF_MAP_TYPE_RINGBUF:
20447 		case BPF_MAP_TYPE_USER_RINGBUF:
20448 		case BPF_MAP_TYPE_INODE_STORAGE:
20449 		case BPF_MAP_TYPE_SK_STORAGE:
20450 		case BPF_MAP_TYPE_TASK_STORAGE:
20451 		case BPF_MAP_TYPE_CGRP_STORAGE:
20452 		case BPF_MAP_TYPE_QUEUE:
20453 		case BPF_MAP_TYPE_STACK:
20454 		case BPF_MAP_TYPE_ARENA:
20455 			break;
20456 		default:
20457 			verbose(env,
20458 				"Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
20459 			return -EINVAL;
20460 		}
20461 
20462 	if (bpf_map_is_cgroup_storage(map) &&
20463 	    bpf_cgroup_storage_assign(env->prog->aux, map)) {
20464 		verbose(env, "only one cgroup storage of each type is allowed\n");
20465 		return -EBUSY;
20466 	}
20467 
20468 	if (map->map_type == BPF_MAP_TYPE_ARENA) {
20469 		if (env->prog->aux->arena) {
20470 			verbose(env, "Only one arena per program\n");
20471 			return -EBUSY;
20472 		}
20473 		if (!env->allow_ptr_leaks || !env->bpf_capable) {
20474 			verbose(env, "CAP_BPF and CAP_PERFMON are required to use arena\n");
20475 			return -EPERM;
20476 		}
20477 		if (!env->prog->jit_requested) {
20478 			verbose(env, "JIT is required to use arena\n");
20479 			return -EOPNOTSUPP;
20480 		}
20481 		if (!bpf_jit_supports_arena()) {
20482 			verbose(env, "JIT doesn't support arena\n");
20483 			return -EOPNOTSUPP;
20484 		}
20485 		env->prog->aux->arena = (void *)map;
20486 		if (!bpf_arena_get_user_vm_start(env->prog->aux->arena)) {
20487 			verbose(env, "arena's user address must be set via map_extra or mmap()\n");
20488 			return -EINVAL;
20489 		}
20490 	}
20491 
20492 	return 0;
20493 }
20494 
20495 static int __add_used_map(struct bpf_verifier_env *env, struct bpf_map *map)
20496 {
20497 	int i, err;
20498 
20499 	/* check whether we recorded this map already */
20500 	for (i = 0; i < env->used_map_cnt; i++)
20501 		if (env->used_maps[i] == map)
20502 			return i;
20503 
20504 	if (env->used_map_cnt >= MAX_USED_MAPS) {
20505 		verbose(env, "The total number of maps per program has reached the limit of %u\n",
20506 			MAX_USED_MAPS);
20507 		return -E2BIG;
20508 	}
20509 
20510 	err = check_map_prog_compatibility(env, map, env->prog);
20511 	if (err)
20512 		return err;
20513 
20514 	if (env->prog->sleepable)
20515 		atomic64_inc(&map->sleepable_refcnt);
20516 
20517 	/* hold the map. If the program is rejected by verifier,
20518 	 * the map will be released by release_maps() or it
20519 	 * will be used by the valid program until it's unloaded
20520 	 * and all maps are released in bpf_free_used_maps()
20521 	 */
20522 	bpf_map_inc(map);
20523 
20524 	env->used_maps[env->used_map_cnt++] = map;
20525 
20526 	return env->used_map_cnt - 1;
20527 }
20528 
20529 /* Add map behind fd to used maps list, if it's not already there, and return
20530  * its index.
20531  * Returns <0 on error, or >= 0 index, on success.
20532  */
20533 static int add_used_map(struct bpf_verifier_env *env, int fd)
20534 {
20535 	struct bpf_map *map;
20536 	CLASS(fd, f)(fd);
20537 
20538 	map = __bpf_map_get(f);
20539 	if (IS_ERR(map)) {
20540 		verbose(env, "fd %d is not pointing to valid bpf_map\n", fd);
20541 		return PTR_ERR(map);
20542 	}
20543 
20544 	return __add_used_map(env, map);
20545 }
20546 
20547 /* find and rewrite pseudo imm in ld_imm64 instructions:
20548  *
20549  * 1. if it accesses map FD, replace it with actual map pointer.
20550  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
20551  *
20552  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
20553  */
20554 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
20555 {
20556 	struct bpf_insn *insn = env->prog->insnsi;
20557 	int insn_cnt = env->prog->len;
20558 	int i, err;
20559 
20560 	err = bpf_prog_calc_tag(env->prog);
20561 	if (err)
20562 		return err;
20563 
20564 	for (i = 0; i < insn_cnt; i++, insn++) {
20565 		if (BPF_CLASS(insn->code) == BPF_LDX &&
20566 		    ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
20567 		    insn->imm != 0)) {
20568 			verbose(env, "BPF_LDX uses reserved fields\n");
20569 			return -EINVAL;
20570 		}
20571 
20572 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
20573 			struct bpf_insn_aux_data *aux;
20574 			struct bpf_map *map;
20575 			int map_idx;
20576 			u64 addr;
20577 			u32 fd;
20578 
20579 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
20580 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
20581 			    insn[1].off != 0) {
20582 				verbose(env, "invalid bpf_ld_imm64 insn\n");
20583 				return -EINVAL;
20584 			}
20585 
20586 			if (insn[0].src_reg == 0)
20587 				/* valid generic load 64-bit imm */
20588 				goto next_insn;
20589 
20590 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
20591 				aux = &env->insn_aux_data[i];
20592 				err = check_pseudo_btf_id(env, insn, aux);
20593 				if (err)
20594 					return err;
20595 				goto next_insn;
20596 			}
20597 
20598 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
20599 				aux = &env->insn_aux_data[i];
20600 				aux->ptr_type = PTR_TO_FUNC;
20601 				goto next_insn;
20602 			}
20603 
20604 			/* In final convert_pseudo_ld_imm64() step, this is
20605 			 * converted into regular 64-bit imm load insn.
20606 			 */
20607 			switch (insn[0].src_reg) {
20608 			case BPF_PSEUDO_MAP_VALUE:
20609 			case BPF_PSEUDO_MAP_IDX_VALUE:
20610 				break;
20611 			case BPF_PSEUDO_MAP_FD:
20612 			case BPF_PSEUDO_MAP_IDX:
20613 				if (insn[1].imm == 0)
20614 					break;
20615 				fallthrough;
20616 			default:
20617 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
20618 				return -EINVAL;
20619 			}
20620 
20621 			switch (insn[0].src_reg) {
20622 			case BPF_PSEUDO_MAP_IDX_VALUE:
20623 			case BPF_PSEUDO_MAP_IDX:
20624 				if (bpfptr_is_null(env->fd_array)) {
20625 					verbose(env, "fd_idx without fd_array is invalid\n");
20626 					return -EPROTO;
20627 				}
20628 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
20629 							    insn[0].imm * sizeof(fd),
20630 							    sizeof(fd)))
20631 					return -EFAULT;
20632 				break;
20633 			default:
20634 				fd = insn[0].imm;
20635 				break;
20636 			}
20637 
20638 			map_idx = add_used_map(env, fd);
20639 			if (map_idx < 0)
20640 				return map_idx;
20641 			map = env->used_maps[map_idx];
20642 
20643 			aux = &env->insn_aux_data[i];
20644 			aux->map_index = map_idx;
20645 
20646 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
20647 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
20648 				addr = (unsigned long)map;
20649 			} else {
20650 				u32 off = insn[1].imm;
20651 
20652 				if (off >= BPF_MAX_VAR_OFF) {
20653 					verbose(env, "direct value offset of %u is not allowed\n", off);
20654 					return -EINVAL;
20655 				}
20656 
20657 				if (!map->ops->map_direct_value_addr) {
20658 					verbose(env, "no direct value access support for this map type\n");
20659 					return -EINVAL;
20660 				}
20661 
20662 				err = map->ops->map_direct_value_addr(map, &addr, off);
20663 				if (err) {
20664 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
20665 						map->value_size, off);
20666 					return err;
20667 				}
20668 
20669 				aux->map_off = off;
20670 				addr += off;
20671 			}
20672 
20673 			insn[0].imm = (u32)addr;
20674 			insn[1].imm = addr >> 32;
20675 
20676 next_insn:
20677 			insn++;
20678 			i++;
20679 			continue;
20680 		}
20681 
20682 		/* Basic sanity check before we invest more work here. */
20683 		if (!bpf_opcode_in_insntable(insn->code)) {
20684 			verbose(env, "unknown opcode %02x\n", insn->code);
20685 			return -EINVAL;
20686 		}
20687 	}
20688 
20689 	/* now all pseudo BPF_LD_IMM64 instructions load valid
20690 	 * 'struct bpf_map *' into a register instead of user map_fd.
20691 	 * These pointers will be used later by verifier to validate map access.
20692 	 */
20693 	return 0;
20694 }
20695 
20696 /* drop refcnt of maps used by the rejected program */
20697 static void release_maps(struct bpf_verifier_env *env)
20698 {
20699 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
20700 			     env->used_map_cnt);
20701 }
20702 
20703 /* drop refcnt of maps used by the rejected program */
20704 static void release_btfs(struct bpf_verifier_env *env)
20705 {
20706 	__bpf_free_used_btfs(env->used_btfs, env->used_btf_cnt);
20707 }
20708 
20709 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
20710 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
20711 {
20712 	struct bpf_insn *insn = env->prog->insnsi;
20713 	int insn_cnt = env->prog->len;
20714 	int i;
20715 
20716 	for (i = 0; i < insn_cnt; i++, insn++) {
20717 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
20718 			continue;
20719 		if (insn->src_reg == BPF_PSEUDO_FUNC)
20720 			continue;
20721 		insn->src_reg = 0;
20722 	}
20723 }
20724 
20725 /* single env->prog->insni[off] instruction was replaced with the range
20726  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
20727  * [0, off) and [off, end) to new locations, so the patched range stays zero
20728  */
20729 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
20730 				 struct bpf_insn_aux_data *new_data,
20731 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
20732 {
20733 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
20734 	struct bpf_insn *insn = new_prog->insnsi;
20735 	u32 old_seen = old_data[off].seen;
20736 	u32 prog_len;
20737 	int i;
20738 
20739 	/* aux info at OFF always needs adjustment, no matter fast path
20740 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
20741 	 * original insn at old prog.
20742 	 */
20743 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
20744 
20745 	if (cnt == 1)
20746 		return;
20747 	prog_len = new_prog->len;
20748 
20749 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
20750 	memcpy(new_data + off + cnt - 1, old_data + off,
20751 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
20752 	for (i = off; i < off + cnt - 1; i++) {
20753 		/* Expand insni[off]'s seen count to the patched range. */
20754 		new_data[i].seen = old_seen;
20755 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
20756 	}
20757 	env->insn_aux_data = new_data;
20758 	vfree(old_data);
20759 }
20760 
20761 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
20762 {
20763 	int i;
20764 
20765 	if (len == 1)
20766 		return;
20767 	/* NOTE: fake 'exit' subprog should be updated as well. */
20768 	for (i = 0; i <= env->subprog_cnt; i++) {
20769 		if (env->subprog_info[i].start <= off)
20770 			continue;
20771 		env->subprog_info[i].start += len - 1;
20772 	}
20773 }
20774 
20775 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
20776 {
20777 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
20778 	int i, sz = prog->aux->size_poke_tab;
20779 	struct bpf_jit_poke_descriptor *desc;
20780 
20781 	for (i = 0; i < sz; i++) {
20782 		desc = &tab[i];
20783 		if (desc->insn_idx <= off)
20784 			continue;
20785 		desc->insn_idx += len - 1;
20786 	}
20787 }
20788 
20789 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
20790 					    const struct bpf_insn *patch, u32 len)
20791 {
20792 	struct bpf_prog *new_prog;
20793 	struct bpf_insn_aux_data *new_data = NULL;
20794 
20795 	if (len > 1) {
20796 		new_data = vzalloc(array_size(env->prog->len + len - 1,
20797 					      sizeof(struct bpf_insn_aux_data)));
20798 		if (!new_data)
20799 			return NULL;
20800 	}
20801 
20802 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
20803 	if (IS_ERR(new_prog)) {
20804 		if (PTR_ERR(new_prog) == -ERANGE)
20805 			verbose(env,
20806 				"insn %d cannot be patched due to 16-bit range\n",
20807 				env->insn_aux_data[off].orig_idx);
20808 		vfree(new_data);
20809 		return NULL;
20810 	}
20811 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
20812 	adjust_subprog_starts(env, off, len);
20813 	adjust_poke_descs(new_prog, off, len);
20814 	return new_prog;
20815 }
20816 
20817 /*
20818  * For all jmp insns in a given 'prog' that point to 'tgt_idx' insn adjust the
20819  * jump offset by 'delta'.
20820  */
20821 static int adjust_jmp_off(struct bpf_prog *prog, u32 tgt_idx, u32 delta)
20822 {
20823 	struct bpf_insn *insn = prog->insnsi;
20824 	u32 insn_cnt = prog->len, i;
20825 	s32 imm;
20826 	s16 off;
20827 
20828 	for (i = 0; i < insn_cnt; i++, insn++) {
20829 		u8 code = insn->code;
20830 
20831 		if (tgt_idx <= i && i < tgt_idx + delta)
20832 			continue;
20833 
20834 		if ((BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) ||
20835 		    BPF_OP(code) == BPF_CALL || BPF_OP(code) == BPF_EXIT)
20836 			continue;
20837 
20838 		if (insn->code == (BPF_JMP32 | BPF_JA)) {
20839 			if (i + 1 + insn->imm != tgt_idx)
20840 				continue;
20841 			if (check_add_overflow(insn->imm, delta, &imm))
20842 				return -ERANGE;
20843 			insn->imm = imm;
20844 		} else {
20845 			if (i + 1 + insn->off != tgt_idx)
20846 				continue;
20847 			if (check_add_overflow(insn->off, delta, &off))
20848 				return -ERANGE;
20849 			insn->off = off;
20850 		}
20851 	}
20852 	return 0;
20853 }
20854 
20855 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
20856 					      u32 off, u32 cnt)
20857 {
20858 	int i, j;
20859 
20860 	/* find first prog starting at or after off (first to remove) */
20861 	for (i = 0; i < env->subprog_cnt; i++)
20862 		if (env->subprog_info[i].start >= off)
20863 			break;
20864 	/* find first prog starting at or after off + cnt (first to stay) */
20865 	for (j = i; j < env->subprog_cnt; j++)
20866 		if (env->subprog_info[j].start >= off + cnt)
20867 			break;
20868 	/* if j doesn't start exactly at off + cnt, we are just removing
20869 	 * the front of previous prog
20870 	 */
20871 	if (env->subprog_info[j].start != off + cnt)
20872 		j--;
20873 
20874 	if (j > i) {
20875 		struct bpf_prog_aux *aux = env->prog->aux;
20876 		int move;
20877 
20878 		/* move fake 'exit' subprog as well */
20879 		move = env->subprog_cnt + 1 - j;
20880 
20881 		memmove(env->subprog_info + i,
20882 			env->subprog_info + j,
20883 			sizeof(*env->subprog_info) * move);
20884 		env->subprog_cnt -= j - i;
20885 
20886 		/* remove func_info */
20887 		if (aux->func_info) {
20888 			move = aux->func_info_cnt - j;
20889 
20890 			memmove(aux->func_info + i,
20891 				aux->func_info + j,
20892 				sizeof(*aux->func_info) * move);
20893 			aux->func_info_cnt -= j - i;
20894 			/* func_info->insn_off is set after all code rewrites,
20895 			 * in adjust_btf_func() - no need to adjust
20896 			 */
20897 		}
20898 	} else {
20899 		/* convert i from "first prog to remove" to "first to adjust" */
20900 		if (env->subprog_info[i].start == off)
20901 			i++;
20902 	}
20903 
20904 	/* update fake 'exit' subprog as well */
20905 	for (; i <= env->subprog_cnt; i++)
20906 		env->subprog_info[i].start -= cnt;
20907 
20908 	return 0;
20909 }
20910 
20911 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
20912 				      u32 cnt)
20913 {
20914 	struct bpf_prog *prog = env->prog;
20915 	u32 i, l_off, l_cnt, nr_linfo;
20916 	struct bpf_line_info *linfo;
20917 
20918 	nr_linfo = prog->aux->nr_linfo;
20919 	if (!nr_linfo)
20920 		return 0;
20921 
20922 	linfo = prog->aux->linfo;
20923 
20924 	/* find first line info to remove, count lines to be removed */
20925 	for (i = 0; i < nr_linfo; i++)
20926 		if (linfo[i].insn_off >= off)
20927 			break;
20928 
20929 	l_off = i;
20930 	l_cnt = 0;
20931 	for (; i < nr_linfo; i++)
20932 		if (linfo[i].insn_off < off + cnt)
20933 			l_cnt++;
20934 		else
20935 			break;
20936 
20937 	/* First live insn doesn't match first live linfo, it needs to "inherit"
20938 	 * last removed linfo.  prog is already modified, so prog->len == off
20939 	 * means no live instructions after (tail of the program was removed).
20940 	 */
20941 	if (prog->len != off && l_cnt &&
20942 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
20943 		l_cnt--;
20944 		linfo[--i].insn_off = off + cnt;
20945 	}
20946 
20947 	/* remove the line info which refer to the removed instructions */
20948 	if (l_cnt) {
20949 		memmove(linfo + l_off, linfo + i,
20950 			sizeof(*linfo) * (nr_linfo - i));
20951 
20952 		prog->aux->nr_linfo -= l_cnt;
20953 		nr_linfo = prog->aux->nr_linfo;
20954 	}
20955 
20956 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
20957 	for (i = l_off; i < nr_linfo; i++)
20958 		linfo[i].insn_off -= cnt;
20959 
20960 	/* fix up all subprogs (incl. 'exit') which start >= off */
20961 	for (i = 0; i <= env->subprog_cnt; i++)
20962 		if (env->subprog_info[i].linfo_idx > l_off) {
20963 			/* program may have started in the removed region but
20964 			 * may not be fully removed
20965 			 */
20966 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
20967 				env->subprog_info[i].linfo_idx -= l_cnt;
20968 			else
20969 				env->subprog_info[i].linfo_idx = l_off;
20970 		}
20971 
20972 	return 0;
20973 }
20974 
20975 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
20976 {
20977 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
20978 	unsigned int orig_prog_len = env->prog->len;
20979 	int err;
20980 
20981 	if (bpf_prog_is_offloaded(env->prog->aux))
20982 		bpf_prog_offload_remove_insns(env, off, cnt);
20983 
20984 	err = bpf_remove_insns(env->prog, off, cnt);
20985 	if (err)
20986 		return err;
20987 
20988 	err = adjust_subprog_starts_after_remove(env, off, cnt);
20989 	if (err)
20990 		return err;
20991 
20992 	err = bpf_adj_linfo_after_remove(env, off, cnt);
20993 	if (err)
20994 		return err;
20995 
20996 	memmove(aux_data + off,	aux_data + off + cnt,
20997 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
20998 
20999 	return 0;
21000 }
21001 
21002 /* The verifier does more data flow analysis than llvm and will not
21003  * explore branches that are dead at run time. Malicious programs can
21004  * have dead code too. Therefore replace all dead at-run-time code
21005  * with 'ja -1'.
21006  *
21007  * Just nops are not optimal, e.g. if they would sit at the end of the
21008  * program and through another bug we would manage to jump there, then
21009  * we'd execute beyond program memory otherwise. Returning exception
21010  * code also wouldn't work since we can have subprogs where the dead
21011  * code could be located.
21012  */
21013 static void sanitize_dead_code(struct bpf_verifier_env *env)
21014 {
21015 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
21016 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
21017 	struct bpf_insn *insn = env->prog->insnsi;
21018 	const int insn_cnt = env->prog->len;
21019 	int i;
21020 
21021 	for (i = 0; i < insn_cnt; i++) {
21022 		if (aux_data[i].seen)
21023 			continue;
21024 		memcpy(insn + i, &trap, sizeof(trap));
21025 		aux_data[i].zext_dst = false;
21026 	}
21027 }
21028 
21029 static bool insn_is_cond_jump(u8 code)
21030 {
21031 	u8 op;
21032 
21033 	op = BPF_OP(code);
21034 	if (BPF_CLASS(code) == BPF_JMP32)
21035 		return op != BPF_JA;
21036 
21037 	if (BPF_CLASS(code) != BPF_JMP)
21038 		return false;
21039 
21040 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
21041 }
21042 
21043 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
21044 {
21045 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
21046 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
21047 	struct bpf_insn *insn = env->prog->insnsi;
21048 	const int insn_cnt = env->prog->len;
21049 	int i;
21050 
21051 	for (i = 0; i < insn_cnt; i++, insn++) {
21052 		if (!insn_is_cond_jump(insn->code))
21053 			continue;
21054 
21055 		if (!aux_data[i + 1].seen)
21056 			ja.off = insn->off;
21057 		else if (!aux_data[i + 1 + insn->off].seen)
21058 			ja.off = 0;
21059 		else
21060 			continue;
21061 
21062 		if (bpf_prog_is_offloaded(env->prog->aux))
21063 			bpf_prog_offload_replace_insn(env, i, &ja);
21064 
21065 		memcpy(insn, &ja, sizeof(ja));
21066 	}
21067 }
21068 
21069 static int opt_remove_dead_code(struct bpf_verifier_env *env)
21070 {
21071 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
21072 	int insn_cnt = env->prog->len;
21073 	int i, err;
21074 
21075 	for (i = 0; i < insn_cnt; i++) {
21076 		int j;
21077 
21078 		j = 0;
21079 		while (i + j < insn_cnt && !aux_data[i + j].seen)
21080 			j++;
21081 		if (!j)
21082 			continue;
21083 
21084 		err = verifier_remove_insns(env, i, j);
21085 		if (err)
21086 			return err;
21087 		insn_cnt = env->prog->len;
21088 	}
21089 
21090 	return 0;
21091 }
21092 
21093 static const struct bpf_insn NOP = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
21094 static const struct bpf_insn MAY_GOTO_0 = BPF_RAW_INSN(BPF_JMP | BPF_JCOND, 0, 0, 0, 0);
21095 
21096 static int opt_remove_nops(struct bpf_verifier_env *env)
21097 {
21098 	struct bpf_insn *insn = env->prog->insnsi;
21099 	int insn_cnt = env->prog->len;
21100 	bool is_may_goto_0, is_ja;
21101 	int i, err;
21102 
21103 	for (i = 0; i < insn_cnt; i++) {
21104 		is_may_goto_0 = !memcmp(&insn[i], &MAY_GOTO_0, sizeof(MAY_GOTO_0));
21105 		is_ja = !memcmp(&insn[i], &NOP, sizeof(NOP));
21106 
21107 		if (!is_may_goto_0 && !is_ja)
21108 			continue;
21109 
21110 		err = verifier_remove_insns(env, i, 1);
21111 		if (err)
21112 			return err;
21113 		insn_cnt--;
21114 		/* Go back one insn to catch may_goto +1; may_goto +0 sequence */
21115 		i -= (is_may_goto_0 && i > 0) ? 2 : 1;
21116 	}
21117 
21118 	return 0;
21119 }
21120 
21121 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
21122 					 const union bpf_attr *attr)
21123 {
21124 	struct bpf_insn *patch;
21125 	/* use env->insn_buf as two independent buffers */
21126 	struct bpf_insn *zext_patch = env->insn_buf;
21127 	struct bpf_insn *rnd_hi32_patch = &env->insn_buf[2];
21128 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
21129 	int i, patch_len, delta = 0, len = env->prog->len;
21130 	struct bpf_insn *insns = env->prog->insnsi;
21131 	struct bpf_prog *new_prog;
21132 	bool rnd_hi32;
21133 
21134 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
21135 	zext_patch[1] = BPF_ZEXT_REG(0);
21136 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
21137 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
21138 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
21139 	for (i = 0; i < len; i++) {
21140 		int adj_idx = i + delta;
21141 		struct bpf_insn insn;
21142 		int load_reg;
21143 
21144 		insn = insns[adj_idx];
21145 		load_reg = insn_def_regno(&insn);
21146 		if (!aux[adj_idx].zext_dst) {
21147 			u8 code, class;
21148 			u32 imm_rnd;
21149 
21150 			if (!rnd_hi32)
21151 				continue;
21152 
21153 			code = insn.code;
21154 			class = BPF_CLASS(code);
21155 			if (load_reg == -1)
21156 				continue;
21157 
21158 			/* NOTE: arg "reg" (the fourth one) is only used for
21159 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
21160 			 *       here.
21161 			 */
21162 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
21163 				if (class == BPF_LD &&
21164 				    BPF_MODE(code) == BPF_IMM)
21165 					i++;
21166 				continue;
21167 			}
21168 
21169 			/* ctx load could be transformed into wider load. */
21170 			if (class == BPF_LDX &&
21171 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
21172 				continue;
21173 
21174 			imm_rnd = get_random_u32();
21175 			rnd_hi32_patch[0] = insn;
21176 			rnd_hi32_patch[1].imm = imm_rnd;
21177 			rnd_hi32_patch[3].dst_reg = load_reg;
21178 			patch = rnd_hi32_patch;
21179 			patch_len = 4;
21180 			goto apply_patch_buffer;
21181 		}
21182 
21183 		/* Add in an zero-extend instruction if a) the JIT has requested
21184 		 * it or b) it's a CMPXCHG.
21185 		 *
21186 		 * The latter is because: BPF_CMPXCHG always loads a value into
21187 		 * R0, therefore always zero-extends. However some archs'
21188 		 * equivalent instruction only does this load when the
21189 		 * comparison is successful. This detail of CMPXCHG is
21190 		 * orthogonal to the general zero-extension behaviour of the
21191 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
21192 		 */
21193 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
21194 			continue;
21195 
21196 		/* Zero-extension is done by the caller. */
21197 		if (bpf_pseudo_kfunc_call(&insn))
21198 			continue;
21199 
21200 		if (verifier_bug_if(load_reg == -1, env,
21201 				    "zext_dst is set, but no reg is defined"))
21202 			return -EFAULT;
21203 
21204 		zext_patch[0] = insn;
21205 		zext_patch[1].dst_reg = load_reg;
21206 		zext_patch[1].src_reg = load_reg;
21207 		patch = zext_patch;
21208 		patch_len = 2;
21209 apply_patch_buffer:
21210 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
21211 		if (!new_prog)
21212 			return -ENOMEM;
21213 		env->prog = new_prog;
21214 		insns = new_prog->insnsi;
21215 		aux = env->insn_aux_data;
21216 		delta += patch_len - 1;
21217 	}
21218 
21219 	return 0;
21220 }
21221 
21222 /* convert load instructions that access fields of a context type into a
21223  * sequence of instructions that access fields of the underlying structure:
21224  *     struct __sk_buff    -> struct sk_buff
21225  *     struct bpf_sock_ops -> struct sock
21226  */
21227 static int convert_ctx_accesses(struct bpf_verifier_env *env)
21228 {
21229 	struct bpf_subprog_info *subprogs = env->subprog_info;
21230 	const struct bpf_verifier_ops *ops = env->ops;
21231 	int i, cnt, size, ctx_field_size, ret, delta = 0, epilogue_cnt = 0;
21232 	const int insn_cnt = env->prog->len;
21233 	struct bpf_insn *epilogue_buf = env->epilogue_buf;
21234 	struct bpf_insn *insn_buf = env->insn_buf;
21235 	struct bpf_insn *insn;
21236 	u32 target_size, size_default, off;
21237 	struct bpf_prog *new_prog;
21238 	enum bpf_access_type type;
21239 	bool is_narrower_load;
21240 	int epilogue_idx = 0;
21241 
21242 	if (ops->gen_epilogue) {
21243 		epilogue_cnt = ops->gen_epilogue(epilogue_buf, env->prog,
21244 						 -(subprogs[0].stack_depth + 8));
21245 		if (epilogue_cnt >= INSN_BUF_SIZE) {
21246 			verifier_bug(env, "epilogue is too long");
21247 			return -EFAULT;
21248 		} else if (epilogue_cnt) {
21249 			/* Save the ARG_PTR_TO_CTX for the epilogue to use */
21250 			cnt = 0;
21251 			subprogs[0].stack_depth += 8;
21252 			insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_1,
21253 						      -subprogs[0].stack_depth);
21254 			insn_buf[cnt++] = env->prog->insnsi[0];
21255 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
21256 			if (!new_prog)
21257 				return -ENOMEM;
21258 			env->prog = new_prog;
21259 			delta += cnt - 1;
21260 
21261 			ret = add_kfunc_in_insns(env, epilogue_buf, epilogue_cnt - 1);
21262 			if (ret < 0)
21263 				return ret;
21264 		}
21265 	}
21266 
21267 	if (ops->gen_prologue || env->seen_direct_write) {
21268 		if (!ops->gen_prologue) {
21269 			verifier_bug(env, "gen_prologue is null");
21270 			return -EFAULT;
21271 		}
21272 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
21273 					env->prog);
21274 		if (cnt >= INSN_BUF_SIZE) {
21275 			verifier_bug(env, "prologue is too long");
21276 			return -EFAULT;
21277 		} else if (cnt) {
21278 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
21279 			if (!new_prog)
21280 				return -ENOMEM;
21281 
21282 			env->prog = new_prog;
21283 			delta += cnt - 1;
21284 
21285 			ret = add_kfunc_in_insns(env, insn_buf, cnt - 1);
21286 			if (ret < 0)
21287 				return ret;
21288 		}
21289 	}
21290 
21291 	if (delta)
21292 		WARN_ON(adjust_jmp_off(env->prog, 0, delta));
21293 
21294 	if (bpf_prog_is_offloaded(env->prog->aux))
21295 		return 0;
21296 
21297 	insn = env->prog->insnsi + delta;
21298 
21299 	for (i = 0; i < insn_cnt; i++, insn++) {
21300 		bpf_convert_ctx_access_t convert_ctx_access;
21301 		u8 mode;
21302 
21303 		if (env->insn_aux_data[i + delta].nospec) {
21304 			WARN_ON_ONCE(env->insn_aux_data[i + delta].alu_state);
21305 			struct bpf_insn *patch = insn_buf;
21306 
21307 			*patch++ = BPF_ST_NOSPEC();
21308 			*patch++ = *insn;
21309 			cnt = patch - insn_buf;
21310 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21311 			if (!new_prog)
21312 				return -ENOMEM;
21313 
21314 			delta    += cnt - 1;
21315 			env->prog = new_prog;
21316 			insn      = new_prog->insnsi + i + delta;
21317 			/* This can not be easily merged with the
21318 			 * nospec_result-case, because an insn may require a
21319 			 * nospec before and after itself. Therefore also do not
21320 			 * 'continue' here but potentially apply further
21321 			 * patching to insn. *insn should equal patch[1] now.
21322 			 */
21323 		}
21324 
21325 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
21326 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
21327 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
21328 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
21329 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
21330 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
21331 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
21332 			type = BPF_READ;
21333 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
21334 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
21335 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
21336 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
21337 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
21338 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
21339 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
21340 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
21341 			type = BPF_WRITE;
21342 		} else if ((insn->code == (BPF_STX | BPF_ATOMIC | BPF_B) ||
21343 			    insn->code == (BPF_STX | BPF_ATOMIC | BPF_H) ||
21344 			    insn->code == (BPF_STX | BPF_ATOMIC | BPF_W) ||
21345 			    insn->code == (BPF_STX | BPF_ATOMIC | BPF_DW)) &&
21346 			   env->insn_aux_data[i + delta].ptr_type == PTR_TO_ARENA) {
21347 			insn->code = BPF_STX | BPF_PROBE_ATOMIC | BPF_SIZE(insn->code);
21348 			env->prog->aux->num_exentries++;
21349 			continue;
21350 		} else if (insn->code == (BPF_JMP | BPF_EXIT) &&
21351 			   epilogue_cnt &&
21352 			   i + delta < subprogs[1].start) {
21353 			/* Generate epilogue for the main prog */
21354 			if (epilogue_idx) {
21355 				/* jump back to the earlier generated epilogue */
21356 				insn_buf[0] = BPF_JMP32_A(epilogue_idx - i - delta - 1);
21357 				cnt = 1;
21358 			} else {
21359 				memcpy(insn_buf, epilogue_buf,
21360 				       epilogue_cnt * sizeof(*epilogue_buf));
21361 				cnt = epilogue_cnt;
21362 				/* epilogue_idx cannot be 0. It must have at
21363 				 * least one ctx ptr saving insn before the
21364 				 * epilogue.
21365 				 */
21366 				epilogue_idx = i + delta;
21367 			}
21368 			goto patch_insn_buf;
21369 		} else {
21370 			continue;
21371 		}
21372 
21373 		if (type == BPF_WRITE &&
21374 		    env->insn_aux_data[i + delta].nospec_result) {
21375 			/* nospec_result is only used to mitigate Spectre v4 and
21376 			 * to limit verification-time for Spectre v1.
21377 			 */
21378 			struct bpf_insn *patch = insn_buf;
21379 
21380 			*patch++ = *insn;
21381 			*patch++ = BPF_ST_NOSPEC();
21382 			cnt = patch - insn_buf;
21383 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21384 			if (!new_prog)
21385 				return -ENOMEM;
21386 
21387 			delta    += cnt - 1;
21388 			env->prog = new_prog;
21389 			insn      = new_prog->insnsi + i + delta;
21390 			continue;
21391 		}
21392 
21393 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
21394 		case PTR_TO_CTX:
21395 			if (!ops->convert_ctx_access)
21396 				continue;
21397 			convert_ctx_access = ops->convert_ctx_access;
21398 			break;
21399 		case PTR_TO_SOCKET:
21400 		case PTR_TO_SOCK_COMMON:
21401 			convert_ctx_access = bpf_sock_convert_ctx_access;
21402 			break;
21403 		case PTR_TO_TCP_SOCK:
21404 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
21405 			break;
21406 		case PTR_TO_XDP_SOCK:
21407 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
21408 			break;
21409 		case PTR_TO_BTF_ID:
21410 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
21411 		/* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
21412 		 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
21413 		 * be said once it is marked PTR_UNTRUSTED, hence we must handle
21414 		 * any faults for loads into such types. BPF_WRITE is disallowed
21415 		 * for this case.
21416 		 */
21417 		case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
21418 		case PTR_TO_MEM | MEM_RDONLY | PTR_UNTRUSTED:
21419 			if (type == BPF_READ) {
21420 				if (BPF_MODE(insn->code) == BPF_MEM)
21421 					insn->code = BPF_LDX | BPF_PROBE_MEM |
21422 						     BPF_SIZE((insn)->code);
21423 				else
21424 					insn->code = BPF_LDX | BPF_PROBE_MEMSX |
21425 						     BPF_SIZE((insn)->code);
21426 				env->prog->aux->num_exentries++;
21427 			}
21428 			continue;
21429 		case PTR_TO_ARENA:
21430 			if (BPF_MODE(insn->code) == BPF_MEMSX) {
21431 				verbose(env, "sign extending loads from arena are not supported yet\n");
21432 				return -EOPNOTSUPP;
21433 			}
21434 			insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32 | BPF_SIZE(insn->code);
21435 			env->prog->aux->num_exentries++;
21436 			continue;
21437 		default:
21438 			continue;
21439 		}
21440 
21441 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
21442 		size = BPF_LDST_BYTES(insn);
21443 		mode = BPF_MODE(insn->code);
21444 
21445 		/* If the read access is a narrower load of the field,
21446 		 * convert to a 4/8-byte load, to minimum program type specific
21447 		 * convert_ctx_access changes. If conversion is successful,
21448 		 * we will apply proper mask to the result.
21449 		 */
21450 		is_narrower_load = size < ctx_field_size;
21451 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
21452 		off = insn->off;
21453 		if (is_narrower_load) {
21454 			u8 size_code;
21455 
21456 			if (type == BPF_WRITE) {
21457 				verifier_bug(env, "narrow ctx access misconfigured");
21458 				return -EFAULT;
21459 			}
21460 
21461 			size_code = BPF_H;
21462 			if (ctx_field_size == 4)
21463 				size_code = BPF_W;
21464 			else if (ctx_field_size == 8)
21465 				size_code = BPF_DW;
21466 
21467 			insn->off = off & ~(size_default - 1);
21468 			insn->code = BPF_LDX | BPF_MEM | size_code;
21469 		}
21470 
21471 		target_size = 0;
21472 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
21473 					 &target_size);
21474 		if (cnt == 0 || cnt >= INSN_BUF_SIZE ||
21475 		    (ctx_field_size && !target_size)) {
21476 			verifier_bug(env, "error during ctx access conversion (%d)", cnt);
21477 			return -EFAULT;
21478 		}
21479 
21480 		if (is_narrower_load && size < target_size) {
21481 			u8 shift = bpf_ctx_narrow_access_offset(
21482 				off, size, size_default) * 8;
21483 			if (shift && cnt + 1 >= INSN_BUF_SIZE) {
21484 				verifier_bug(env, "narrow ctx load misconfigured");
21485 				return -EFAULT;
21486 			}
21487 			if (ctx_field_size <= 4) {
21488 				if (shift)
21489 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
21490 									insn->dst_reg,
21491 									shift);
21492 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
21493 								(1 << size * 8) - 1);
21494 			} else {
21495 				if (shift)
21496 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
21497 									insn->dst_reg,
21498 									shift);
21499 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
21500 								(1ULL << size * 8) - 1);
21501 			}
21502 		}
21503 		if (mode == BPF_MEMSX)
21504 			insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
21505 						       insn->dst_reg, insn->dst_reg,
21506 						       size * 8, 0);
21507 
21508 patch_insn_buf:
21509 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21510 		if (!new_prog)
21511 			return -ENOMEM;
21512 
21513 		delta += cnt - 1;
21514 
21515 		/* keep walking new program and skip insns we just inserted */
21516 		env->prog = new_prog;
21517 		insn      = new_prog->insnsi + i + delta;
21518 	}
21519 
21520 	return 0;
21521 }
21522 
21523 static int jit_subprogs(struct bpf_verifier_env *env)
21524 {
21525 	struct bpf_prog *prog = env->prog, **func, *tmp;
21526 	int i, j, subprog_start, subprog_end = 0, len, subprog;
21527 	struct bpf_map *map_ptr;
21528 	struct bpf_insn *insn;
21529 	void *old_bpf_func;
21530 	int err, num_exentries;
21531 
21532 	if (env->subprog_cnt <= 1)
21533 		return 0;
21534 
21535 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
21536 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
21537 			continue;
21538 
21539 		/* Upon error here we cannot fall back to interpreter but
21540 		 * need a hard reject of the program. Thus -EFAULT is
21541 		 * propagated in any case.
21542 		 */
21543 		subprog = find_subprog(env, i + insn->imm + 1);
21544 		if (verifier_bug_if(subprog < 0, env, "No program to jit at insn %d",
21545 				    i + insn->imm + 1))
21546 			return -EFAULT;
21547 		/* temporarily remember subprog id inside insn instead of
21548 		 * aux_data, since next loop will split up all insns into funcs
21549 		 */
21550 		insn->off = subprog;
21551 		/* remember original imm in case JIT fails and fallback
21552 		 * to interpreter will be needed
21553 		 */
21554 		env->insn_aux_data[i].call_imm = insn->imm;
21555 		/* point imm to __bpf_call_base+1 from JITs point of view */
21556 		insn->imm = 1;
21557 		if (bpf_pseudo_func(insn)) {
21558 #if defined(MODULES_VADDR)
21559 			u64 addr = MODULES_VADDR;
21560 #else
21561 			u64 addr = VMALLOC_START;
21562 #endif
21563 			/* jit (e.g. x86_64) may emit fewer instructions
21564 			 * if it learns a u32 imm is the same as a u64 imm.
21565 			 * Set close enough to possible prog address.
21566 			 */
21567 			insn[0].imm = (u32)addr;
21568 			insn[1].imm = addr >> 32;
21569 		}
21570 	}
21571 
21572 	err = bpf_prog_alloc_jited_linfo(prog);
21573 	if (err)
21574 		goto out_undo_insn;
21575 
21576 	err = -ENOMEM;
21577 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
21578 	if (!func)
21579 		goto out_undo_insn;
21580 
21581 	for (i = 0; i < env->subprog_cnt; i++) {
21582 		subprog_start = subprog_end;
21583 		subprog_end = env->subprog_info[i + 1].start;
21584 
21585 		len = subprog_end - subprog_start;
21586 		/* bpf_prog_run() doesn't call subprogs directly,
21587 		 * hence main prog stats include the runtime of subprogs.
21588 		 * subprogs don't have IDs and not reachable via prog_get_next_id
21589 		 * func[i]->stats will never be accessed and stays NULL
21590 		 */
21591 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
21592 		if (!func[i])
21593 			goto out_free;
21594 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
21595 		       len * sizeof(struct bpf_insn));
21596 		func[i]->type = prog->type;
21597 		func[i]->len = len;
21598 		if (bpf_prog_calc_tag(func[i]))
21599 			goto out_free;
21600 		func[i]->is_func = 1;
21601 		func[i]->sleepable = prog->sleepable;
21602 		func[i]->aux->func_idx = i;
21603 		/* Below members will be freed only at prog->aux */
21604 		func[i]->aux->btf = prog->aux->btf;
21605 		func[i]->aux->func_info = prog->aux->func_info;
21606 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
21607 		func[i]->aux->poke_tab = prog->aux->poke_tab;
21608 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
21609 
21610 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
21611 			struct bpf_jit_poke_descriptor *poke;
21612 
21613 			poke = &prog->aux->poke_tab[j];
21614 			if (poke->insn_idx < subprog_end &&
21615 			    poke->insn_idx >= subprog_start)
21616 				poke->aux = func[i]->aux;
21617 		}
21618 
21619 		func[i]->aux->name[0] = 'F';
21620 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
21621 		if (env->subprog_info[i].priv_stack_mode == PRIV_STACK_ADAPTIVE)
21622 			func[i]->aux->jits_use_priv_stack = true;
21623 
21624 		func[i]->jit_requested = 1;
21625 		func[i]->blinding_requested = prog->blinding_requested;
21626 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
21627 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
21628 		func[i]->aux->linfo = prog->aux->linfo;
21629 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
21630 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
21631 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
21632 		func[i]->aux->arena = prog->aux->arena;
21633 		num_exentries = 0;
21634 		insn = func[i]->insnsi;
21635 		for (j = 0; j < func[i]->len; j++, insn++) {
21636 			if (BPF_CLASS(insn->code) == BPF_LDX &&
21637 			    (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
21638 			     BPF_MODE(insn->code) == BPF_PROBE_MEM32 ||
21639 			     BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
21640 				num_exentries++;
21641 			if ((BPF_CLASS(insn->code) == BPF_STX ||
21642 			     BPF_CLASS(insn->code) == BPF_ST) &&
21643 			     BPF_MODE(insn->code) == BPF_PROBE_MEM32)
21644 				num_exentries++;
21645 			if (BPF_CLASS(insn->code) == BPF_STX &&
21646 			     BPF_MODE(insn->code) == BPF_PROBE_ATOMIC)
21647 				num_exentries++;
21648 		}
21649 		func[i]->aux->num_exentries = num_exentries;
21650 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
21651 		func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb;
21652 		func[i]->aux->changes_pkt_data = env->subprog_info[i].changes_pkt_data;
21653 		func[i]->aux->might_sleep = env->subprog_info[i].might_sleep;
21654 		if (!i)
21655 			func[i]->aux->exception_boundary = env->seen_exception;
21656 		func[i] = bpf_int_jit_compile(func[i]);
21657 		if (!func[i]->jited) {
21658 			err = -ENOTSUPP;
21659 			goto out_free;
21660 		}
21661 		cond_resched();
21662 	}
21663 
21664 	/* at this point all bpf functions were successfully JITed
21665 	 * now populate all bpf_calls with correct addresses and
21666 	 * run last pass of JIT
21667 	 */
21668 	for (i = 0; i < env->subprog_cnt; i++) {
21669 		insn = func[i]->insnsi;
21670 		for (j = 0; j < func[i]->len; j++, insn++) {
21671 			if (bpf_pseudo_func(insn)) {
21672 				subprog = insn->off;
21673 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
21674 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
21675 				continue;
21676 			}
21677 			if (!bpf_pseudo_call(insn))
21678 				continue;
21679 			subprog = insn->off;
21680 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
21681 		}
21682 
21683 		/* we use the aux data to keep a list of the start addresses
21684 		 * of the JITed images for each function in the program
21685 		 *
21686 		 * for some architectures, such as powerpc64, the imm field
21687 		 * might not be large enough to hold the offset of the start
21688 		 * address of the callee's JITed image from __bpf_call_base
21689 		 *
21690 		 * in such cases, we can lookup the start address of a callee
21691 		 * by using its subprog id, available from the off field of
21692 		 * the call instruction, as an index for this list
21693 		 */
21694 		func[i]->aux->func = func;
21695 		func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
21696 		func[i]->aux->real_func_cnt = env->subprog_cnt;
21697 	}
21698 	for (i = 0; i < env->subprog_cnt; i++) {
21699 		old_bpf_func = func[i]->bpf_func;
21700 		tmp = bpf_int_jit_compile(func[i]);
21701 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
21702 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
21703 			err = -ENOTSUPP;
21704 			goto out_free;
21705 		}
21706 		cond_resched();
21707 	}
21708 
21709 	/* finally lock prog and jit images for all functions and
21710 	 * populate kallsysm. Begin at the first subprogram, since
21711 	 * bpf_prog_load will add the kallsyms for the main program.
21712 	 */
21713 	for (i = 1; i < env->subprog_cnt; i++) {
21714 		err = bpf_prog_lock_ro(func[i]);
21715 		if (err)
21716 			goto out_free;
21717 	}
21718 
21719 	for (i = 1; i < env->subprog_cnt; i++)
21720 		bpf_prog_kallsyms_add(func[i]);
21721 
21722 	/* Last step: make now unused interpreter insns from main
21723 	 * prog consistent for later dump requests, so they can
21724 	 * later look the same as if they were interpreted only.
21725 	 */
21726 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
21727 		if (bpf_pseudo_func(insn)) {
21728 			insn[0].imm = env->insn_aux_data[i].call_imm;
21729 			insn[1].imm = insn->off;
21730 			insn->off = 0;
21731 			continue;
21732 		}
21733 		if (!bpf_pseudo_call(insn))
21734 			continue;
21735 		insn->off = env->insn_aux_data[i].call_imm;
21736 		subprog = find_subprog(env, i + insn->off + 1);
21737 		insn->imm = subprog;
21738 	}
21739 
21740 	prog->jited = 1;
21741 	prog->bpf_func = func[0]->bpf_func;
21742 	prog->jited_len = func[0]->jited_len;
21743 	prog->aux->extable = func[0]->aux->extable;
21744 	prog->aux->num_exentries = func[0]->aux->num_exentries;
21745 	prog->aux->func = func;
21746 	prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
21747 	prog->aux->real_func_cnt = env->subprog_cnt;
21748 	prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func;
21749 	prog->aux->exception_boundary = func[0]->aux->exception_boundary;
21750 	bpf_prog_jit_attempt_done(prog);
21751 	return 0;
21752 out_free:
21753 	/* We failed JIT'ing, so at this point we need to unregister poke
21754 	 * descriptors from subprogs, so that kernel is not attempting to
21755 	 * patch it anymore as we're freeing the subprog JIT memory.
21756 	 */
21757 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
21758 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
21759 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
21760 	}
21761 	/* At this point we're guaranteed that poke descriptors are not
21762 	 * live anymore. We can just unlink its descriptor table as it's
21763 	 * released with the main prog.
21764 	 */
21765 	for (i = 0; i < env->subprog_cnt; i++) {
21766 		if (!func[i])
21767 			continue;
21768 		func[i]->aux->poke_tab = NULL;
21769 		bpf_jit_free(func[i]);
21770 	}
21771 	kfree(func);
21772 out_undo_insn:
21773 	/* cleanup main prog to be interpreted */
21774 	prog->jit_requested = 0;
21775 	prog->blinding_requested = 0;
21776 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
21777 		if (!bpf_pseudo_call(insn))
21778 			continue;
21779 		insn->off = 0;
21780 		insn->imm = env->insn_aux_data[i].call_imm;
21781 	}
21782 	bpf_prog_jit_attempt_done(prog);
21783 	return err;
21784 }
21785 
21786 static int fixup_call_args(struct bpf_verifier_env *env)
21787 {
21788 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
21789 	struct bpf_prog *prog = env->prog;
21790 	struct bpf_insn *insn = prog->insnsi;
21791 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
21792 	int i, depth;
21793 #endif
21794 	int err = 0;
21795 
21796 	if (env->prog->jit_requested &&
21797 	    !bpf_prog_is_offloaded(env->prog->aux)) {
21798 		err = jit_subprogs(env);
21799 		if (err == 0)
21800 			return 0;
21801 		if (err == -EFAULT)
21802 			return err;
21803 	}
21804 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
21805 	if (has_kfunc_call) {
21806 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
21807 		return -EINVAL;
21808 	}
21809 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
21810 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
21811 		 * have to be rejected, since interpreter doesn't support them yet.
21812 		 */
21813 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
21814 		return -EINVAL;
21815 	}
21816 	for (i = 0; i < prog->len; i++, insn++) {
21817 		if (bpf_pseudo_func(insn)) {
21818 			/* When JIT fails the progs with callback calls
21819 			 * have to be rejected, since interpreter doesn't support them yet.
21820 			 */
21821 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
21822 			return -EINVAL;
21823 		}
21824 
21825 		if (!bpf_pseudo_call(insn))
21826 			continue;
21827 		depth = get_callee_stack_depth(env, insn, i);
21828 		if (depth < 0)
21829 			return depth;
21830 		bpf_patch_call_args(insn, depth);
21831 	}
21832 	err = 0;
21833 #endif
21834 	return err;
21835 }
21836 
21837 /* replace a generic kfunc with a specialized version if necessary */
21838 static void specialize_kfunc(struct bpf_verifier_env *env,
21839 			     u32 func_id, u16 offset, unsigned long *addr)
21840 {
21841 	struct bpf_prog *prog = env->prog;
21842 	bool seen_direct_write;
21843 	void *xdp_kfunc;
21844 	bool is_rdonly;
21845 
21846 	if (bpf_dev_bound_kfunc_id(func_id)) {
21847 		xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
21848 		if (xdp_kfunc) {
21849 			*addr = (unsigned long)xdp_kfunc;
21850 			return;
21851 		}
21852 		/* fallback to default kfunc when not supported by netdev */
21853 	}
21854 
21855 	if (offset)
21856 		return;
21857 
21858 	if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
21859 		seen_direct_write = env->seen_direct_write;
21860 		is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
21861 
21862 		if (is_rdonly)
21863 			*addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
21864 
21865 		/* restore env->seen_direct_write to its original value, since
21866 		 * may_access_direct_pkt_data mutates it
21867 		 */
21868 		env->seen_direct_write = seen_direct_write;
21869 	}
21870 
21871 	if (func_id == special_kfunc_list[KF_bpf_set_dentry_xattr] &&
21872 	    bpf_lsm_has_d_inode_locked(prog))
21873 		*addr = (unsigned long)bpf_set_dentry_xattr_locked;
21874 
21875 	if (func_id == special_kfunc_list[KF_bpf_remove_dentry_xattr] &&
21876 	    bpf_lsm_has_d_inode_locked(prog))
21877 		*addr = (unsigned long)bpf_remove_dentry_xattr_locked;
21878 }
21879 
21880 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
21881 					    u16 struct_meta_reg,
21882 					    u16 node_offset_reg,
21883 					    struct bpf_insn *insn,
21884 					    struct bpf_insn *insn_buf,
21885 					    int *cnt)
21886 {
21887 	struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
21888 	struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
21889 
21890 	insn_buf[0] = addr[0];
21891 	insn_buf[1] = addr[1];
21892 	insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
21893 	insn_buf[3] = *insn;
21894 	*cnt = 4;
21895 }
21896 
21897 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
21898 			    struct bpf_insn *insn_buf, int insn_idx, int *cnt)
21899 {
21900 	const struct bpf_kfunc_desc *desc;
21901 
21902 	if (!insn->imm) {
21903 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
21904 		return -EINVAL;
21905 	}
21906 
21907 	*cnt = 0;
21908 
21909 	/* insn->imm has the btf func_id. Replace it with an offset relative to
21910 	 * __bpf_call_base, unless the JIT needs to call functions that are
21911 	 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
21912 	 */
21913 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
21914 	if (!desc) {
21915 		verifier_bug(env, "kernel function descriptor not found for func_id %u",
21916 			     insn->imm);
21917 		return -EFAULT;
21918 	}
21919 
21920 	if (!bpf_jit_supports_far_kfunc_call())
21921 		insn->imm = BPF_CALL_IMM(desc->addr);
21922 	if (insn->off)
21923 		return 0;
21924 	if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
21925 	    desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
21926 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
21927 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
21928 		u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
21929 
21930 		if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) {
21931 			verifier_bug(env, "NULL kptr_struct_meta expected at insn_idx %d",
21932 				     insn_idx);
21933 			return -EFAULT;
21934 		}
21935 
21936 		insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
21937 		insn_buf[1] = addr[0];
21938 		insn_buf[2] = addr[1];
21939 		insn_buf[3] = *insn;
21940 		*cnt = 4;
21941 	} else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
21942 		   desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] ||
21943 		   desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
21944 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
21945 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
21946 
21947 		if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) {
21948 			verifier_bug(env, "NULL kptr_struct_meta expected at insn_idx %d",
21949 				     insn_idx);
21950 			return -EFAULT;
21951 		}
21952 
21953 		if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
21954 		    !kptr_struct_meta) {
21955 			verifier_bug(env, "kptr_struct_meta expected at insn_idx %d",
21956 				     insn_idx);
21957 			return -EFAULT;
21958 		}
21959 
21960 		insn_buf[0] = addr[0];
21961 		insn_buf[1] = addr[1];
21962 		insn_buf[2] = *insn;
21963 		*cnt = 3;
21964 	} else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
21965 		   desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
21966 		   desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
21967 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
21968 		int struct_meta_reg = BPF_REG_3;
21969 		int node_offset_reg = BPF_REG_4;
21970 
21971 		/* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
21972 		if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
21973 			struct_meta_reg = BPF_REG_4;
21974 			node_offset_reg = BPF_REG_5;
21975 		}
21976 
21977 		if (!kptr_struct_meta) {
21978 			verifier_bug(env, "kptr_struct_meta expected at insn_idx %d",
21979 				     insn_idx);
21980 			return -EFAULT;
21981 		}
21982 
21983 		__fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
21984 						node_offset_reg, insn, insn_buf, cnt);
21985 	} else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
21986 		   desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
21987 		insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
21988 		*cnt = 1;
21989 	}
21990 
21991 	if (env->insn_aux_data[insn_idx].arg_prog) {
21992 		u32 regno = env->insn_aux_data[insn_idx].arg_prog;
21993 		struct bpf_insn ld_addrs[2] = { BPF_LD_IMM64(regno, (long)env->prog->aux) };
21994 		int idx = *cnt;
21995 
21996 		insn_buf[idx++] = ld_addrs[0];
21997 		insn_buf[idx++] = ld_addrs[1];
21998 		insn_buf[idx++] = *insn;
21999 		*cnt = idx;
22000 	}
22001 	return 0;
22002 }
22003 
22004 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */
22005 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len)
22006 {
22007 	struct bpf_subprog_info *info = env->subprog_info;
22008 	int cnt = env->subprog_cnt;
22009 	struct bpf_prog *prog;
22010 
22011 	/* We only reserve one slot for hidden subprogs in subprog_info. */
22012 	if (env->hidden_subprog_cnt) {
22013 		verifier_bug(env, "only one hidden subprog supported");
22014 		return -EFAULT;
22015 	}
22016 	/* We're not patching any existing instruction, just appending the new
22017 	 * ones for the hidden subprog. Hence all of the adjustment operations
22018 	 * in bpf_patch_insn_data are no-ops.
22019 	 */
22020 	prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len);
22021 	if (!prog)
22022 		return -ENOMEM;
22023 	env->prog = prog;
22024 	info[cnt + 1].start = info[cnt].start;
22025 	info[cnt].start = prog->len - len + 1;
22026 	env->subprog_cnt++;
22027 	env->hidden_subprog_cnt++;
22028 	return 0;
22029 }
22030 
22031 /* Do various post-verification rewrites in a single program pass.
22032  * These rewrites simplify JIT and interpreter implementations.
22033  */
22034 static int do_misc_fixups(struct bpf_verifier_env *env)
22035 {
22036 	struct bpf_prog *prog = env->prog;
22037 	enum bpf_attach_type eatype = prog->expected_attach_type;
22038 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
22039 	struct bpf_insn *insn = prog->insnsi;
22040 	const struct bpf_func_proto *fn;
22041 	const int insn_cnt = prog->len;
22042 	const struct bpf_map_ops *ops;
22043 	struct bpf_insn_aux_data *aux;
22044 	struct bpf_insn *insn_buf = env->insn_buf;
22045 	struct bpf_prog *new_prog;
22046 	struct bpf_map *map_ptr;
22047 	int i, ret, cnt, delta = 0, cur_subprog = 0;
22048 	struct bpf_subprog_info *subprogs = env->subprog_info;
22049 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
22050 	u16 stack_depth_extra = 0;
22051 
22052 	if (env->seen_exception && !env->exception_callback_subprog) {
22053 		struct bpf_insn *patch = insn_buf;
22054 
22055 		*patch++ = env->prog->insnsi[insn_cnt - 1];
22056 		*patch++ = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
22057 		*patch++ = BPF_EXIT_INSN();
22058 		ret = add_hidden_subprog(env, insn_buf, patch - insn_buf);
22059 		if (ret < 0)
22060 			return ret;
22061 		prog = env->prog;
22062 		insn = prog->insnsi;
22063 
22064 		env->exception_callback_subprog = env->subprog_cnt - 1;
22065 		/* Don't update insn_cnt, as add_hidden_subprog always appends insns */
22066 		mark_subprog_exc_cb(env, env->exception_callback_subprog);
22067 	}
22068 
22069 	for (i = 0; i < insn_cnt;) {
22070 		if (insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->imm) {
22071 			if ((insn->off == BPF_ADDR_SPACE_CAST && insn->imm == 1) ||
22072 			    (((struct bpf_map *)env->prog->aux->arena)->map_flags & BPF_F_NO_USER_CONV)) {
22073 				/* convert to 32-bit mov that clears upper 32-bit */
22074 				insn->code = BPF_ALU | BPF_MOV | BPF_X;
22075 				/* clear off and imm, so it's a normal 'wX = wY' from JIT pov */
22076 				insn->off = 0;
22077 				insn->imm = 0;
22078 			} /* cast from as(0) to as(1) should be handled by JIT */
22079 			goto next_insn;
22080 		}
22081 
22082 		if (env->insn_aux_data[i + delta].needs_zext)
22083 			/* Convert BPF_CLASS(insn->code) == BPF_ALU64 to 32-bit ALU */
22084 			insn->code = BPF_ALU | BPF_OP(insn->code) | BPF_SRC(insn->code);
22085 
22086 		/* Make sdiv/smod divide-by-minus-one exceptions impossible. */
22087 		if ((insn->code == (BPF_ALU64 | BPF_MOD | BPF_K) ||
22088 		     insn->code == (BPF_ALU64 | BPF_DIV | BPF_K) ||
22089 		     insn->code == (BPF_ALU | BPF_MOD | BPF_K) ||
22090 		     insn->code == (BPF_ALU | BPF_DIV | BPF_K)) &&
22091 		    insn->off == 1 && insn->imm == -1) {
22092 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
22093 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
22094 			struct bpf_insn *patch = insn_buf;
22095 
22096 			if (isdiv)
22097 				*patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
22098 							BPF_NEG | BPF_K, insn->dst_reg,
22099 							0, 0, 0);
22100 			else
22101 				*patch++ = BPF_MOV32_IMM(insn->dst_reg, 0);
22102 
22103 			cnt = patch - insn_buf;
22104 
22105 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22106 			if (!new_prog)
22107 				return -ENOMEM;
22108 
22109 			delta    += cnt - 1;
22110 			env->prog = prog = new_prog;
22111 			insn      = new_prog->insnsi + i + delta;
22112 			goto next_insn;
22113 		}
22114 
22115 		/* Make divide-by-zero and divide-by-minus-one exceptions impossible. */
22116 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
22117 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
22118 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
22119 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
22120 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
22121 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
22122 			bool is_sdiv = isdiv && insn->off == 1;
22123 			bool is_smod = !isdiv && insn->off == 1;
22124 			struct bpf_insn *patch = insn_buf;
22125 
22126 			if (is_sdiv) {
22127 				/* [R,W]x sdiv 0 -> 0
22128 				 * LLONG_MIN sdiv -1 -> LLONG_MIN
22129 				 * INT_MIN sdiv -1 -> INT_MIN
22130 				 */
22131 				*patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg);
22132 				*patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
22133 							BPF_ADD | BPF_K, BPF_REG_AX,
22134 							0, 0, 1);
22135 				*patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
22136 							BPF_JGT | BPF_K, BPF_REG_AX,
22137 							0, 4, 1);
22138 				*patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
22139 							BPF_JEQ | BPF_K, BPF_REG_AX,
22140 							0, 1, 0);
22141 				*patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
22142 							BPF_MOV | BPF_K, insn->dst_reg,
22143 							0, 0, 0);
22144 				/* BPF_NEG(LLONG_MIN) == -LLONG_MIN == LLONG_MIN */
22145 				*patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
22146 							BPF_NEG | BPF_K, insn->dst_reg,
22147 							0, 0, 0);
22148 				*patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
22149 				*patch++ = *insn;
22150 				cnt = patch - insn_buf;
22151 			} else if (is_smod) {
22152 				/* [R,W]x mod 0 -> [R,W]x */
22153 				/* [R,W]x mod -1 -> 0 */
22154 				*patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg);
22155 				*patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
22156 							BPF_ADD | BPF_K, BPF_REG_AX,
22157 							0, 0, 1);
22158 				*patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
22159 							BPF_JGT | BPF_K, BPF_REG_AX,
22160 							0, 3, 1);
22161 				*patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
22162 							BPF_JEQ | BPF_K, BPF_REG_AX,
22163 							0, 3 + (is64 ? 0 : 1), 1);
22164 				*patch++ = BPF_MOV32_IMM(insn->dst_reg, 0);
22165 				*patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
22166 				*patch++ = *insn;
22167 
22168 				if (!is64) {
22169 					*patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
22170 					*patch++ = BPF_MOV32_REG(insn->dst_reg, insn->dst_reg);
22171 				}
22172 				cnt = patch - insn_buf;
22173 			} else if (isdiv) {
22174 				/* [R,W]x div 0 -> 0 */
22175 				*patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
22176 							BPF_JNE | BPF_K, insn->src_reg,
22177 							0, 2, 0);
22178 				*patch++ = BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg);
22179 				*patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
22180 				*patch++ = *insn;
22181 				cnt = patch - insn_buf;
22182 			} else {
22183 				/* [R,W]x mod 0 -> [R,W]x */
22184 				*patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
22185 							BPF_JEQ | BPF_K, insn->src_reg,
22186 							0, 1 + (is64 ? 0 : 1), 0);
22187 				*patch++ = *insn;
22188 
22189 				if (!is64) {
22190 					*patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
22191 					*patch++ = BPF_MOV32_REG(insn->dst_reg, insn->dst_reg);
22192 				}
22193 				cnt = patch - insn_buf;
22194 			}
22195 
22196 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22197 			if (!new_prog)
22198 				return -ENOMEM;
22199 
22200 			delta    += cnt - 1;
22201 			env->prog = prog = new_prog;
22202 			insn      = new_prog->insnsi + i + delta;
22203 			goto next_insn;
22204 		}
22205 
22206 		/* Make it impossible to de-reference a userspace address */
22207 		if (BPF_CLASS(insn->code) == BPF_LDX &&
22208 		    (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
22209 		     BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) {
22210 			struct bpf_insn *patch = insn_buf;
22211 			u64 uaddress_limit = bpf_arch_uaddress_limit();
22212 
22213 			if (!uaddress_limit)
22214 				goto next_insn;
22215 
22216 			*patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg);
22217 			if (insn->off)
22218 				*patch++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_AX, insn->off);
22219 			*patch++ = BPF_ALU64_IMM(BPF_RSH, BPF_REG_AX, 32);
22220 			*patch++ = BPF_JMP_IMM(BPF_JLE, BPF_REG_AX, uaddress_limit >> 32, 2);
22221 			*patch++ = *insn;
22222 			*patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
22223 			*patch++ = BPF_MOV64_IMM(insn->dst_reg, 0);
22224 
22225 			cnt = patch - insn_buf;
22226 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22227 			if (!new_prog)
22228 				return -ENOMEM;
22229 
22230 			delta    += cnt - 1;
22231 			env->prog = prog = new_prog;
22232 			insn      = new_prog->insnsi + i + delta;
22233 			goto next_insn;
22234 		}
22235 
22236 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
22237 		if (BPF_CLASS(insn->code) == BPF_LD &&
22238 		    (BPF_MODE(insn->code) == BPF_ABS ||
22239 		     BPF_MODE(insn->code) == BPF_IND)) {
22240 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
22241 			if (cnt == 0 || cnt >= INSN_BUF_SIZE) {
22242 				verifier_bug(env, "%d insns generated for ld_abs", cnt);
22243 				return -EFAULT;
22244 			}
22245 
22246 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22247 			if (!new_prog)
22248 				return -ENOMEM;
22249 
22250 			delta    += cnt - 1;
22251 			env->prog = prog = new_prog;
22252 			insn      = new_prog->insnsi + i + delta;
22253 			goto next_insn;
22254 		}
22255 
22256 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
22257 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
22258 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
22259 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
22260 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
22261 			struct bpf_insn *patch = insn_buf;
22262 			bool issrc, isneg, isimm;
22263 			u32 off_reg;
22264 
22265 			aux = &env->insn_aux_data[i + delta];
22266 			if (!aux->alu_state ||
22267 			    aux->alu_state == BPF_ALU_NON_POINTER)
22268 				goto next_insn;
22269 
22270 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
22271 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
22272 				BPF_ALU_SANITIZE_SRC;
22273 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
22274 
22275 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
22276 			if (isimm) {
22277 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
22278 			} else {
22279 				if (isneg)
22280 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
22281 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
22282 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
22283 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
22284 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
22285 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
22286 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
22287 			}
22288 			if (!issrc)
22289 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
22290 			insn->src_reg = BPF_REG_AX;
22291 			if (isneg)
22292 				insn->code = insn->code == code_add ?
22293 					     code_sub : code_add;
22294 			*patch++ = *insn;
22295 			if (issrc && isneg && !isimm)
22296 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
22297 			cnt = patch - insn_buf;
22298 
22299 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22300 			if (!new_prog)
22301 				return -ENOMEM;
22302 
22303 			delta    += cnt - 1;
22304 			env->prog = prog = new_prog;
22305 			insn      = new_prog->insnsi + i + delta;
22306 			goto next_insn;
22307 		}
22308 
22309 		if (is_may_goto_insn(insn) && bpf_jit_supports_timed_may_goto()) {
22310 			int stack_off_cnt = -stack_depth - 16;
22311 
22312 			/*
22313 			 * Two 8 byte slots, depth-16 stores the count, and
22314 			 * depth-8 stores the start timestamp of the loop.
22315 			 *
22316 			 * The starting value of count is BPF_MAX_TIMED_LOOPS
22317 			 * (0xffff).  Every iteration loads it and subs it by 1,
22318 			 * until the value becomes 0 in AX (thus, 1 in stack),
22319 			 * after which we call arch_bpf_timed_may_goto, which
22320 			 * either sets AX to 0xffff to keep looping, or to 0
22321 			 * upon timeout. AX is then stored into the stack. In
22322 			 * the next iteration, we either see 0 and break out, or
22323 			 * continue iterating until the next time value is 0
22324 			 * after subtraction, rinse and repeat.
22325 			 */
22326 			stack_depth_extra = 16;
22327 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off_cnt);
22328 			if (insn->off >= 0)
22329 				insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 5);
22330 			else
22331 				insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1);
22332 			insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1);
22333 			insn_buf[3] = BPF_JMP_IMM(BPF_JNE, BPF_REG_AX, 0, 2);
22334 			/*
22335 			 * AX is used as an argument to pass in stack_off_cnt
22336 			 * (to add to r10/fp), and also as the return value of
22337 			 * the call to arch_bpf_timed_may_goto.
22338 			 */
22339 			insn_buf[4] = BPF_MOV64_IMM(BPF_REG_AX, stack_off_cnt);
22340 			insn_buf[5] = BPF_EMIT_CALL(arch_bpf_timed_may_goto);
22341 			insn_buf[6] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off_cnt);
22342 			cnt = 7;
22343 
22344 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22345 			if (!new_prog)
22346 				return -ENOMEM;
22347 
22348 			delta += cnt - 1;
22349 			env->prog = prog = new_prog;
22350 			insn = new_prog->insnsi + i + delta;
22351 			goto next_insn;
22352 		} else if (is_may_goto_insn(insn)) {
22353 			int stack_off = -stack_depth - 8;
22354 
22355 			stack_depth_extra = 8;
22356 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off);
22357 			if (insn->off >= 0)
22358 				insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 2);
22359 			else
22360 				insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1);
22361 			insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1);
22362 			insn_buf[3] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off);
22363 			cnt = 4;
22364 
22365 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22366 			if (!new_prog)
22367 				return -ENOMEM;
22368 
22369 			delta += cnt - 1;
22370 			env->prog = prog = new_prog;
22371 			insn = new_prog->insnsi + i + delta;
22372 			goto next_insn;
22373 		}
22374 
22375 		if (insn->code != (BPF_JMP | BPF_CALL))
22376 			goto next_insn;
22377 		if (insn->src_reg == BPF_PSEUDO_CALL)
22378 			goto next_insn;
22379 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
22380 			ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
22381 			if (ret)
22382 				return ret;
22383 			if (cnt == 0)
22384 				goto next_insn;
22385 
22386 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22387 			if (!new_prog)
22388 				return -ENOMEM;
22389 
22390 			delta	 += cnt - 1;
22391 			env->prog = prog = new_prog;
22392 			insn	  = new_prog->insnsi + i + delta;
22393 			goto next_insn;
22394 		}
22395 
22396 		/* Skip inlining the helper call if the JIT does it. */
22397 		if (bpf_jit_inlines_helper_call(insn->imm))
22398 			goto next_insn;
22399 
22400 		if (insn->imm == BPF_FUNC_get_route_realm)
22401 			prog->dst_needed = 1;
22402 		if (insn->imm == BPF_FUNC_get_prandom_u32)
22403 			bpf_user_rnd_init_once();
22404 		if (insn->imm == BPF_FUNC_override_return)
22405 			prog->kprobe_override = 1;
22406 		if (insn->imm == BPF_FUNC_tail_call) {
22407 			/* If we tail call into other programs, we
22408 			 * cannot make any assumptions since they can
22409 			 * be replaced dynamically during runtime in
22410 			 * the program array.
22411 			 */
22412 			prog->cb_access = 1;
22413 			if (!allow_tail_call_in_subprogs(env))
22414 				prog->aux->stack_depth = MAX_BPF_STACK;
22415 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
22416 
22417 			/* mark bpf_tail_call as different opcode to avoid
22418 			 * conditional branch in the interpreter for every normal
22419 			 * call and to prevent accidental JITing by JIT compiler
22420 			 * that doesn't support bpf_tail_call yet
22421 			 */
22422 			insn->imm = 0;
22423 			insn->code = BPF_JMP | BPF_TAIL_CALL;
22424 
22425 			aux = &env->insn_aux_data[i + delta];
22426 			if (env->bpf_capable && !prog->blinding_requested &&
22427 			    prog->jit_requested &&
22428 			    !bpf_map_key_poisoned(aux) &&
22429 			    !bpf_map_ptr_poisoned(aux) &&
22430 			    !bpf_map_ptr_unpriv(aux)) {
22431 				struct bpf_jit_poke_descriptor desc = {
22432 					.reason = BPF_POKE_REASON_TAIL_CALL,
22433 					.tail_call.map = aux->map_ptr_state.map_ptr,
22434 					.tail_call.key = bpf_map_key_immediate(aux),
22435 					.insn_idx = i + delta,
22436 				};
22437 
22438 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
22439 				if (ret < 0) {
22440 					verbose(env, "adding tail call poke descriptor failed\n");
22441 					return ret;
22442 				}
22443 
22444 				insn->imm = ret + 1;
22445 				goto next_insn;
22446 			}
22447 
22448 			if (!bpf_map_ptr_unpriv(aux))
22449 				goto next_insn;
22450 
22451 			/* instead of changing every JIT dealing with tail_call
22452 			 * emit two extra insns:
22453 			 * if (index >= max_entries) goto out;
22454 			 * index &= array->index_mask;
22455 			 * to avoid out-of-bounds cpu speculation
22456 			 */
22457 			if (bpf_map_ptr_poisoned(aux)) {
22458 				verbose(env, "tail_call abusing map_ptr\n");
22459 				return -EINVAL;
22460 			}
22461 
22462 			map_ptr = aux->map_ptr_state.map_ptr;
22463 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
22464 						  map_ptr->max_entries, 2);
22465 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
22466 						    container_of(map_ptr,
22467 								 struct bpf_array,
22468 								 map)->index_mask);
22469 			insn_buf[2] = *insn;
22470 			cnt = 3;
22471 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22472 			if (!new_prog)
22473 				return -ENOMEM;
22474 
22475 			delta    += cnt - 1;
22476 			env->prog = prog = new_prog;
22477 			insn      = new_prog->insnsi + i + delta;
22478 			goto next_insn;
22479 		}
22480 
22481 		if (insn->imm == BPF_FUNC_timer_set_callback) {
22482 			/* The verifier will process callback_fn as many times as necessary
22483 			 * with different maps and the register states prepared by
22484 			 * set_timer_callback_state will be accurate.
22485 			 *
22486 			 * The following use case is valid:
22487 			 *   map1 is shared by prog1, prog2, prog3.
22488 			 *   prog1 calls bpf_timer_init for some map1 elements
22489 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
22490 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
22491 			 *   prog3 calls bpf_timer_start for some map1 elements.
22492 			 *     Those that were not both bpf_timer_init-ed and
22493 			 *     bpf_timer_set_callback-ed will return -EINVAL.
22494 			 */
22495 			struct bpf_insn ld_addrs[2] = {
22496 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
22497 			};
22498 
22499 			insn_buf[0] = ld_addrs[0];
22500 			insn_buf[1] = ld_addrs[1];
22501 			insn_buf[2] = *insn;
22502 			cnt = 3;
22503 
22504 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22505 			if (!new_prog)
22506 				return -ENOMEM;
22507 
22508 			delta    += cnt - 1;
22509 			env->prog = prog = new_prog;
22510 			insn      = new_prog->insnsi + i + delta;
22511 			goto patch_call_imm;
22512 		}
22513 
22514 		if (is_storage_get_function(insn->imm)) {
22515 			if (!in_sleepable(env) ||
22516 			    env->insn_aux_data[i + delta].storage_get_func_atomic)
22517 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
22518 			else
22519 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
22520 			insn_buf[1] = *insn;
22521 			cnt = 2;
22522 
22523 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22524 			if (!new_prog)
22525 				return -ENOMEM;
22526 
22527 			delta += cnt - 1;
22528 			env->prog = prog = new_prog;
22529 			insn = new_prog->insnsi + i + delta;
22530 			goto patch_call_imm;
22531 		}
22532 
22533 		/* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */
22534 		if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) {
22535 			/* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data,
22536 			 * bpf_mem_alloc() returns a ptr to the percpu data ptr.
22537 			 */
22538 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0);
22539 			insn_buf[1] = *insn;
22540 			cnt = 2;
22541 
22542 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22543 			if (!new_prog)
22544 				return -ENOMEM;
22545 
22546 			delta += cnt - 1;
22547 			env->prog = prog = new_prog;
22548 			insn = new_prog->insnsi + i + delta;
22549 			goto patch_call_imm;
22550 		}
22551 
22552 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
22553 		 * and other inlining handlers are currently limited to 64 bit
22554 		 * only.
22555 		 */
22556 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
22557 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
22558 		     insn->imm == BPF_FUNC_map_update_elem ||
22559 		     insn->imm == BPF_FUNC_map_delete_elem ||
22560 		     insn->imm == BPF_FUNC_map_push_elem   ||
22561 		     insn->imm == BPF_FUNC_map_pop_elem    ||
22562 		     insn->imm == BPF_FUNC_map_peek_elem   ||
22563 		     insn->imm == BPF_FUNC_redirect_map    ||
22564 		     insn->imm == BPF_FUNC_for_each_map_elem ||
22565 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
22566 			aux = &env->insn_aux_data[i + delta];
22567 			if (bpf_map_ptr_poisoned(aux))
22568 				goto patch_call_imm;
22569 
22570 			map_ptr = aux->map_ptr_state.map_ptr;
22571 			ops = map_ptr->ops;
22572 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
22573 			    ops->map_gen_lookup) {
22574 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
22575 				if (cnt == -EOPNOTSUPP)
22576 					goto patch_map_ops_generic;
22577 				if (cnt <= 0 || cnt >= INSN_BUF_SIZE) {
22578 					verifier_bug(env, "%d insns generated for map lookup", cnt);
22579 					return -EFAULT;
22580 				}
22581 
22582 				new_prog = bpf_patch_insn_data(env, i + delta,
22583 							       insn_buf, cnt);
22584 				if (!new_prog)
22585 					return -ENOMEM;
22586 
22587 				delta    += cnt - 1;
22588 				env->prog = prog = new_prog;
22589 				insn      = new_prog->insnsi + i + delta;
22590 				goto next_insn;
22591 			}
22592 
22593 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
22594 				     (void *(*)(struct bpf_map *map, void *key))NULL));
22595 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
22596 				     (long (*)(struct bpf_map *map, void *key))NULL));
22597 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
22598 				     (long (*)(struct bpf_map *map, void *key, void *value,
22599 					      u64 flags))NULL));
22600 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
22601 				     (long (*)(struct bpf_map *map, void *value,
22602 					      u64 flags))NULL));
22603 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
22604 				     (long (*)(struct bpf_map *map, void *value))NULL));
22605 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
22606 				     (long (*)(struct bpf_map *map, void *value))NULL));
22607 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
22608 				     (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
22609 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
22610 				     (long (*)(struct bpf_map *map,
22611 					      bpf_callback_t callback_fn,
22612 					      void *callback_ctx,
22613 					      u64 flags))NULL));
22614 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
22615 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
22616 
22617 patch_map_ops_generic:
22618 			switch (insn->imm) {
22619 			case BPF_FUNC_map_lookup_elem:
22620 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
22621 				goto next_insn;
22622 			case BPF_FUNC_map_update_elem:
22623 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
22624 				goto next_insn;
22625 			case BPF_FUNC_map_delete_elem:
22626 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
22627 				goto next_insn;
22628 			case BPF_FUNC_map_push_elem:
22629 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
22630 				goto next_insn;
22631 			case BPF_FUNC_map_pop_elem:
22632 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
22633 				goto next_insn;
22634 			case BPF_FUNC_map_peek_elem:
22635 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
22636 				goto next_insn;
22637 			case BPF_FUNC_redirect_map:
22638 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
22639 				goto next_insn;
22640 			case BPF_FUNC_for_each_map_elem:
22641 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
22642 				goto next_insn;
22643 			case BPF_FUNC_map_lookup_percpu_elem:
22644 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
22645 				goto next_insn;
22646 			}
22647 
22648 			goto patch_call_imm;
22649 		}
22650 
22651 		/* Implement bpf_jiffies64 inline. */
22652 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
22653 		    insn->imm == BPF_FUNC_jiffies64) {
22654 			struct bpf_insn ld_jiffies_addr[2] = {
22655 				BPF_LD_IMM64(BPF_REG_0,
22656 					     (unsigned long)&jiffies),
22657 			};
22658 
22659 			insn_buf[0] = ld_jiffies_addr[0];
22660 			insn_buf[1] = ld_jiffies_addr[1];
22661 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
22662 						  BPF_REG_0, 0);
22663 			cnt = 3;
22664 
22665 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
22666 						       cnt);
22667 			if (!new_prog)
22668 				return -ENOMEM;
22669 
22670 			delta    += cnt - 1;
22671 			env->prog = prog = new_prog;
22672 			insn      = new_prog->insnsi + i + delta;
22673 			goto next_insn;
22674 		}
22675 
22676 #if defined(CONFIG_X86_64) && !defined(CONFIG_UML)
22677 		/* Implement bpf_get_smp_processor_id() inline. */
22678 		if (insn->imm == BPF_FUNC_get_smp_processor_id &&
22679 		    verifier_inlines_helper_call(env, insn->imm)) {
22680 			/* BPF_FUNC_get_smp_processor_id inlining is an
22681 			 * optimization, so if cpu_number is ever
22682 			 * changed in some incompatible and hard to support
22683 			 * way, it's fine to back out this inlining logic
22684 			 */
22685 #ifdef CONFIG_SMP
22686 			insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, (u32)(unsigned long)&cpu_number);
22687 			insn_buf[1] = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0);
22688 			insn_buf[2] = BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, 0);
22689 			cnt = 3;
22690 #else
22691 			insn_buf[0] = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
22692 			cnt = 1;
22693 #endif
22694 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22695 			if (!new_prog)
22696 				return -ENOMEM;
22697 
22698 			delta    += cnt - 1;
22699 			env->prog = prog = new_prog;
22700 			insn      = new_prog->insnsi + i + delta;
22701 			goto next_insn;
22702 		}
22703 #endif
22704 		/* Implement bpf_get_func_arg inline. */
22705 		if (prog_type == BPF_PROG_TYPE_TRACING &&
22706 		    insn->imm == BPF_FUNC_get_func_arg) {
22707 			/* Load nr_args from ctx - 8 */
22708 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
22709 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
22710 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
22711 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
22712 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
22713 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
22714 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
22715 			insn_buf[7] = BPF_JMP_A(1);
22716 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
22717 			cnt = 9;
22718 
22719 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22720 			if (!new_prog)
22721 				return -ENOMEM;
22722 
22723 			delta    += cnt - 1;
22724 			env->prog = prog = new_prog;
22725 			insn      = new_prog->insnsi + i + delta;
22726 			goto next_insn;
22727 		}
22728 
22729 		/* Implement bpf_get_func_ret inline. */
22730 		if (prog_type == BPF_PROG_TYPE_TRACING &&
22731 		    insn->imm == BPF_FUNC_get_func_ret) {
22732 			if (eatype == BPF_TRACE_FEXIT ||
22733 			    eatype == BPF_MODIFY_RETURN) {
22734 				/* Load nr_args from ctx - 8 */
22735 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
22736 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
22737 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
22738 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
22739 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
22740 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
22741 				cnt = 6;
22742 			} else {
22743 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
22744 				cnt = 1;
22745 			}
22746 
22747 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22748 			if (!new_prog)
22749 				return -ENOMEM;
22750 
22751 			delta    += cnt - 1;
22752 			env->prog = prog = new_prog;
22753 			insn      = new_prog->insnsi + i + delta;
22754 			goto next_insn;
22755 		}
22756 
22757 		/* Implement get_func_arg_cnt inline. */
22758 		if (prog_type == BPF_PROG_TYPE_TRACING &&
22759 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
22760 			/* Load nr_args from ctx - 8 */
22761 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
22762 
22763 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
22764 			if (!new_prog)
22765 				return -ENOMEM;
22766 
22767 			env->prog = prog = new_prog;
22768 			insn      = new_prog->insnsi + i + delta;
22769 			goto next_insn;
22770 		}
22771 
22772 		/* Implement bpf_get_func_ip inline. */
22773 		if (prog_type == BPF_PROG_TYPE_TRACING &&
22774 		    insn->imm == BPF_FUNC_get_func_ip) {
22775 			/* Load IP address from ctx - 16 */
22776 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
22777 
22778 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
22779 			if (!new_prog)
22780 				return -ENOMEM;
22781 
22782 			env->prog = prog = new_prog;
22783 			insn      = new_prog->insnsi + i + delta;
22784 			goto next_insn;
22785 		}
22786 
22787 		/* Implement bpf_get_branch_snapshot inline. */
22788 		if (IS_ENABLED(CONFIG_PERF_EVENTS) &&
22789 		    prog->jit_requested && BITS_PER_LONG == 64 &&
22790 		    insn->imm == BPF_FUNC_get_branch_snapshot) {
22791 			/* We are dealing with the following func protos:
22792 			 * u64 bpf_get_branch_snapshot(void *buf, u32 size, u64 flags);
22793 			 * int perf_snapshot_branch_stack(struct perf_branch_entry *entries, u32 cnt);
22794 			 */
22795 			const u32 br_entry_size = sizeof(struct perf_branch_entry);
22796 
22797 			/* struct perf_branch_entry is part of UAPI and is
22798 			 * used as an array element, so extremely unlikely to
22799 			 * ever grow or shrink
22800 			 */
22801 			BUILD_BUG_ON(br_entry_size != 24);
22802 
22803 			/* if (unlikely(flags)) return -EINVAL */
22804 			insn_buf[0] = BPF_JMP_IMM(BPF_JNE, BPF_REG_3, 0, 7);
22805 
22806 			/* Transform size (bytes) into number of entries (cnt = size / 24).
22807 			 * But to avoid expensive division instruction, we implement
22808 			 * divide-by-3 through multiplication, followed by further
22809 			 * division by 8 through 3-bit right shift.
22810 			 * Refer to book "Hacker's Delight, 2nd ed." by Henry S. Warren, Jr.,
22811 			 * p. 227, chapter "Unsigned Division by 3" for details and proofs.
22812 			 *
22813 			 * N / 3 <=> M * N / 2^33, where M = (2^33 + 1) / 3 = 0xaaaaaaab.
22814 			 */
22815 			insn_buf[1] = BPF_MOV32_IMM(BPF_REG_0, 0xaaaaaaab);
22816 			insn_buf[2] = BPF_ALU64_REG(BPF_MUL, BPF_REG_2, BPF_REG_0);
22817 			insn_buf[3] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 36);
22818 
22819 			/* call perf_snapshot_branch_stack implementation */
22820 			insn_buf[4] = BPF_EMIT_CALL(static_call_query(perf_snapshot_branch_stack));
22821 			/* if (entry_cnt == 0) return -ENOENT */
22822 			insn_buf[5] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4);
22823 			/* return entry_cnt * sizeof(struct perf_branch_entry) */
22824 			insn_buf[6] = BPF_ALU32_IMM(BPF_MUL, BPF_REG_0, br_entry_size);
22825 			insn_buf[7] = BPF_JMP_A(3);
22826 			/* return -EINVAL; */
22827 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
22828 			insn_buf[9] = BPF_JMP_A(1);
22829 			/* return -ENOENT; */
22830 			insn_buf[10] = BPF_MOV64_IMM(BPF_REG_0, -ENOENT);
22831 			cnt = 11;
22832 
22833 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22834 			if (!new_prog)
22835 				return -ENOMEM;
22836 
22837 			delta    += cnt - 1;
22838 			env->prog = prog = new_prog;
22839 			insn      = new_prog->insnsi + i + delta;
22840 			goto next_insn;
22841 		}
22842 
22843 		/* Implement bpf_kptr_xchg inline */
22844 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
22845 		    insn->imm == BPF_FUNC_kptr_xchg &&
22846 		    bpf_jit_supports_ptr_xchg()) {
22847 			insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_2);
22848 			insn_buf[1] = BPF_ATOMIC_OP(BPF_DW, BPF_XCHG, BPF_REG_1, BPF_REG_0, 0);
22849 			cnt = 2;
22850 
22851 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22852 			if (!new_prog)
22853 				return -ENOMEM;
22854 
22855 			delta    += cnt - 1;
22856 			env->prog = prog = new_prog;
22857 			insn      = new_prog->insnsi + i + delta;
22858 			goto next_insn;
22859 		}
22860 patch_call_imm:
22861 		fn = env->ops->get_func_proto(insn->imm, env->prog);
22862 		/* all functions that have prototype and verifier allowed
22863 		 * programs to call them, must be real in-kernel functions
22864 		 */
22865 		if (!fn->func) {
22866 			verifier_bug(env,
22867 				     "not inlined functions %s#%d is missing func",
22868 				     func_id_name(insn->imm), insn->imm);
22869 			return -EFAULT;
22870 		}
22871 		insn->imm = fn->func - __bpf_call_base;
22872 next_insn:
22873 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
22874 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
22875 			subprogs[cur_subprog].stack_extra = stack_depth_extra;
22876 
22877 			stack_depth = subprogs[cur_subprog].stack_depth;
22878 			if (stack_depth > MAX_BPF_STACK && !prog->jit_requested) {
22879 				verbose(env, "stack size %d(extra %d) is too large\n",
22880 					stack_depth, stack_depth_extra);
22881 				return -EINVAL;
22882 			}
22883 			cur_subprog++;
22884 			stack_depth = subprogs[cur_subprog].stack_depth;
22885 			stack_depth_extra = 0;
22886 		}
22887 		i++;
22888 		insn++;
22889 	}
22890 
22891 	env->prog->aux->stack_depth = subprogs[0].stack_depth;
22892 	for (i = 0; i < env->subprog_cnt; i++) {
22893 		int delta = bpf_jit_supports_timed_may_goto() ? 2 : 1;
22894 		int subprog_start = subprogs[i].start;
22895 		int stack_slots = subprogs[i].stack_extra / 8;
22896 		int slots = delta, cnt = 0;
22897 
22898 		if (!stack_slots)
22899 			continue;
22900 		/* We need two slots in case timed may_goto is supported. */
22901 		if (stack_slots > slots) {
22902 			verifier_bug(env, "stack_slots supports may_goto only");
22903 			return -EFAULT;
22904 		}
22905 
22906 		stack_depth = subprogs[i].stack_depth;
22907 		if (bpf_jit_supports_timed_may_goto()) {
22908 			insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth,
22909 						     BPF_MAX_TIMED_LOOPS);
22910 			insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth + 8, 0);
22911 		} else {
22912 			/* Add ST insn to subprog prologue to init extra stack */
22913 			insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth,
22914 						     BPF_MAX_LOOPS);
22915 		}
22916 		/* Copy first actual insn to preserve it */
22917 		insn_buf[cnt++] = env->prog->insnsi[subprog_start];
22918 
22919 		new_prog = bpf_patch_insn_data(env, subprog_start, insn_buf, cnt);
22920 		if (!new_prog)
22921 			return -ENOMEM;
22922 		env->prog = prog = new_prog;
22923 		/*
22924 		 * If may_goto is a first insn of a prog there could be a jmp
22925 		 * insn that points to it, hence adjust all such jmps to point
22926 		 * to insn after BPF_ST that inits may_goto count.
22927 		 * Adjustment will succeed because bpf_patch_insn_data() didn't fail.
22928 		 */
22929 		WARN_ON(adjust_jmp_off(env->prog, subprog_start, delta));
22930 	}
22931 
22932 	/* Since poke tab is now finalized, publish aux to tracker. */
22933 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
22934 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
22935 		if (!map_ptr->ops->map_poke_track ||
22936 		    !map_ptr->ops->map_poke_untrack ||
22937 		    !map_ptr->ops->map_poke_run) {
22938 			verifier_bug(env, "poke tab is misconfigured");
22939 			return -EFAULT;
22940 		}
22941 
22942 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
22943 		if (ret < 0) {
22944 			verbose(env, "tracking tail call prog failed\n");
22945 			return ret;
22946 		}
22947 	}
22948 
22949 	sort_kfunc_descs_by_imm_off(env->prog);
22950 
22951 	return 0;
22952 }
22953 
22954 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
22955 					int position,
22956 					s32 stack_base,
22957 					u32 callback_subprogno,
22958 					u32 *total_cnt)
22959 {
22960 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
22961 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
22962 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
22963 	int reg_loop_max = BPF_REG_6;
22964 	int reg_loop_cnt = BPF_REG_7;
22965 	int reg_loop_ctx = BPF_REG_8;
22966 
22967 	struct bpf_insn *insn_buf = env->insn_buf;
22968 	struct bpf_prog *new_prog;
22969 	u32 callback_start;
22970 	u32 call_insn_offset;
22971 	s32 callback_offset;
22972 	u32 cnt = 0;
22973 
22974 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
22975 	 * be careful to modify this code in sync.
22976 	 */
22977 
22978 	/* Return error and jump to the end of the patch if
22979 	 * expected number of iterations is too big.
22980 	 */
22981 	insn_buf[cnt++] = BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2);
22982 	insn_buf[cnt++] = BPF_MOV32_IMM(BPF_REG_0, -E2BIG);
22983 	insn_buf[cnt++] = BPF_JMP_IMM(BPF_JA, 0, 0, 16);
22984 	/* spill R6, R7, R8 to use these as loop vars */
22985 	insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset);
22986 	insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset);
22987 	insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset);
22988 	/* initialize loop vars */
22989 	insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_max, BPF_REG_1);
22990 	insn_buf[cnt++] = BPF_MOV32_IMM(reg_loop_cnt, 0);
22991 	insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3);
22992 	/* loop header,
22993 	 * if reg_loop_cnt >= reg_loop_max skip the loop body
22994 	 */
22995 	insn_buf[cnt++] = BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5);
22996 	/* callback call,
22997 	 * correct callback offset would be set after patching
22998 	 */
22999 	insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt);
23000 	insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx);
23001 	insn_buf[cnt++] = BPF_CALL_REL(0);
23002 	/* increment loop counter */
23003 	insn_buf[cnt++] = BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1);
23004 	/* jump to loop header if callback returned 0 */
23005 	insn_buf[cnt++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6);
23006 	/* return value of bpf_loop,
23007 	 * set R0 to the number of iterations
23008 	 */
23009 	insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt);
23010 	/* restore original values of R6, R7, R8 */
23011 	insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset);
23012 	insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset);
23013 	insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset);
23014 
23015 	*total_cnt = cnt;
23016 	new_prog = bpf_patch_insn_data(env, position, insn_buf, cnt);
23017 	if (!new_prog)
23018 		return new_prog;
23019 
23020 	/* callback start is known only after patching */
23021 	callback_start = env->subprog_info[callback_subprogno].start;
23022 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
23023 	call_insn_offset = position + 12;
23024 	callback_offset = callback_start - call_insn_offset - 1;
23025 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
23026 
23027 	return new_prog;
23028 }
23029 
23030 static bool is_bpf_loop_call(struct bpf_insn *insn)
23031 {
23032 	return insn->code == (BPF_JMP | BPF_CALL) &&
23033 		insn->src_reg == 0 &&
23034 		insn->imm == BPF_FUNC_loop;
23035 }
23036 
23037 /* For all sub-programs in the program (including main) check
23038  * insn_aux_data to see if there are bpf_loop calls that require
23039  * inlining. If such calls are found the calls are replaced with a
23040  * sequence of instructions produced by `inline_bpf_loop` function and
23041  * subprog stack_depth is increased by the size of 3 registers.
23042  * This stack space is used to spill values of the R6, R7, R8.  These
23043  * registers are used to store the loop bound, counter and context
23044  * variables.
23045  */
23046 static int optimize_bpf_loop(struct bpf_verifier_env *env)
23047 {
23048 	struct bpf_subprog_info *subprogs = env->subprog_info;
23049 	int i, cur_subprog = 0, cnt, delta = 0;
23050 	struct bpf_insn *insn = env->prog->insnsi;
23051 	int insn_cnt = env->prog->len;
23052 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
23053 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
23054 	u16 stack_depth_extra = 0;
23055 
23056 	for (i = 0; i < insn_cnt; i++, insn++) {
23057 		struct bpf_loop_inline_state *inline_state =
23058 			&env->insn_aux_data[i + delta].loop_inline_state;
23059 
23060 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
23061 			struct bpf_prog *new_prog;
23062 
23063 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
23064 			new_prog = inline_bpf_loop(env,
23065 						   i + delta,
23066 						   -(stack_depth + stack_depth_extra),
23067 						   inline_state->callback_subprogno,
23068 						   &cnt);
23069 			if (!new_prog)
23070 				return -ENOMEM;
23071 
23072 			delta     += cnt - 1;
23073 			env->prog  = new_prog;
23074 			insn       = new_prog->insnsi + i + delta;
23075 		}
23076 
23077 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
23078 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
23079 			cur_subprog++;
23080 			stack_depth = subprogs[cur_subprog].stack_depth;
23081 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
23082 			stack_depth_extra = 0;
23083 		}
23084 	}
23085 
23086 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
23087 
23088 	return 0;
23089 }
23090 
23091 /* Remove unnecessary spill/fill pairs, members of fastcall pattern,
23092  * adjust subprograms stack depth when possible.
23093  */
23094 static int remove_fastcall_spills_fills(struct bpf_verifier_env *env)
23095 {
23096 	struct bpf_subprog_info *subprog = env->subprog_info;
23097 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
23098 	struct bpf_insn *insn = env->prog->insnsi;
23099 	int insn_cnt = env->prog->len;
23100 	u32 spills_num;
23101 	bool modified = false;
23102 	int i, j;
23103 
23104 	for (i = 0; i < insn_cnt; i++, insn++) {
23105 		if (aux[i].fastcall_spills_num > 0) {
23106 			spills_num = aux[i].fastcall_spills_num;
23107 			/* NOPs would be removed by opt_remove_nops() */
23108 			for (j = 1; j <= spills_num; ++j) {
23109 				*(insn - j) = NOP;
23110 				*(insn + j) = NOP;
23111 			}
23112 			modified = true;
23113 		}
23114 		if ((subprog + 1)->start == i + 1) {
23115 			if (modified && !subprog->keep_fastcall_stack)
23116 				subprog->stack_depth = -subprog->fastcall_stack_off;
23117 			subprog++;
23118 			modified = false;
23119 		}
23120 	}
23121 
23122 	return 0;
23123 }
23124 
23125 static void free_states(struct bpf_verifier_env *env)
23126 {
23127 	struct bpf_verifier_state_list *sl;
23128 	struct list_head *head, *pos, *tmp;
23129 	struct bpf_scc_info *info;
23130 	int i, j;
23131 
23132 	free_verifier_state(env->cur_state, true);
23133 	env->cur_state = NULL;
23134 	while (!pop_stack(env, NULL, NULL, false));
23135 
23136 	list_for_each_safe(pos, tmp, &env->free_list) {
23137 		sl = container_of(pos, struct bpf_verifier_state_list, node);
23138 		free_verifier_state(&sl->state, false);
23139 		kfree(sl);
23140 	}
23141 	INIT_LIST_HEAD(&env->free_list);
23142 
23143 	for (i = 0; i < env->scc_cnt; ++i) {
23144 		info = env->scc_info[i];
23145 		if (!info)
23146 			continue;
23147 		for (j = 0; j < info->num_visits; j++)
23148 			free_backedges(&info->visits[j]);
23149 		kvfree(info);
23150 		env->scc_info[i] = NULL;
23151 	}
23152 
23153 	if (!env->explored_states)
23154 		return;
23155 
23156 	for (i = 0; i < state_htab_size(env); i++) {
23157 		head = &env->explored_states[i];
23158 
23159 		list_for_each_safe(pos, tmp, head) {
23160 			sl = container_of(pos, struct bpf_verifier_state_list, node);
23161 			free_verifier_state(&sl->state, false);
23162 			kfree(sl);
23163 		}
23164 		INIT_LIST_HEAD(&env->explored_states[i]);
23165 	}
23166 }
23167 
23168 static int do_check_common(struct bpf_verifier_env *env, int subprog)
23169 {
23170 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
23171 	struct bpf_subprog_info *sub = subprog_info(env, subprog);
23172 	struct bpf_prog_aux *aux = env->prog->aux;
23173 	struct bpf_verifier_state *state;
23174 	struct bpf_reg_state *regs;
23175 	int ret, i;
23176 
23177 	env->prev_linfo = NULL;
23178 	env->pass_cnt++;
23179 
23180 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL_ACCOUNT);
23181 	if (!state)
23182 		return -ENOMEM;
23183 	state->curframe = 0;
23184 	state->speculative = false;
23185 	state->branches = 1;
23186 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL_ACCOUNT);
23187 	if (!state->frame[0]) {
23188 		kfree(state);
23189 		return -ENOMEM;
23190 	}
23191 	env->cur_state = state;
23192 	init_func_state(env, state->frame[0],
23193 			BPF_MAIN_FUNC /* callsite */,
23194 			0 /* frameno */,
23195 			subprog);
23196 	state->first_insn_idx = env->subprog_info[subprog].start;
23197 	state->last_insn_idx = -1;
23198 
23199 	regs = state->frame[state->curframe]->regs;
23200 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
23201 		const char *sub_name = subprog_name(env, subprog);
23202 		struct bpf_subprog_arg_info *arg;
23203 		struct bpf_reg_state *reg;
23204 
23205 		verbose(env, "Validating %s() func#%d...\n", sub_name, subprog);
23206 		ret = btf_prepare_func_args(env, subprog);
23207 		if (ret)
23208 			goto out;
23209 
23210 		if (subprog_is_exc_cb(env, subprog)) {
23211 			state->frame[0]->in_exception_callback_fn = true;
23212 			/* We have already ensured that the callback returns an integer, just
23213 			 * like all global subprogs. We need to determine it only has a single
23214 			 * scalar argument.
23215 			 */
23216 			if (sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_ANYTHING) {
23217 				verbose(env, "exception cb only supports single integer argument\n");
23218 				ret = -EINVAL;
23219 				goto out;
23220 			}
23221 		}
23222 		for (i = BPF_REG_1; i <= sub->arg_cnt; i++) {
23223 			arg = &sub->args[i - BPF_REG_1];
23224 			reg = &regs[i];
23225 
23226 			if (arg->arg_type == ARG_PTR_TO_CTX) {
23227 				reg->type = PTR_TO_CTX;
23228 				mark_reg_known_zero(env, regs, i);
23229 			} else if (arg->arg_type == ARG_ANYTHING) {
23230 				reg->type = SCALAR_VALUE;
23231 				mark_reg_unknown(env, regs, i);
23232 			} else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) {
23233 				/* assume unspecial LOCAL dynptr type */
23234 				__mark_dynptr_reg(reg, BPF_DYNPTR_TYPE_LOCAL, true, ++env->id_gen);
23235 			} else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) {
23236 				reg->type = PTR_TO_MEM;
23237 				reg->type |= arg->arg_type &
23238 					     (PTR_MAYBE_NULL | PTR_UNTRUSTED | MEM_RDONLY);
23239 				mark_reg_known_zero(env, regs, i);
23240 				reg->mem_size = arg->mem_size;
23241 				if (arg->arg_type & PTR_MAYBE_NULL)
23242 					reg->id = ++env->id_gen;
23243 			} else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) {
23244 				reg->type = PTR_TO_BTF_ID;
23245 				if (arg->arg_type & PTR_MAYBE_NULL)
23246 					reg->type |= PTR_MAYBE_NULL;
23247 				if (arg->arg_type & PTR_UNTRUSTED)
23248 					reg->type |= PTR_UNTRUSTED;
23249 				if (arg->arg_type & PTR_TRUSTED)
23250 					reg->type |= PTR_TRUSTED;
23251 				mark_reg_known_zero(env, regs, i);
23252 				reg->btf = bpf_get_btf_vmlinux(); /* can't fail at this point */
23253 				reg->btf_id = arg->btf_id;
23254 				reg->id = ++env->id_gen;
23255 			} else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) {
23256 				/* caller can pass either PTR_TO_ARENA or SCALAR */
23257 				mark_reg_unknown(env, regs, i);
23258 			} else {
23259 				verifier_bug(env, "unhandled arg#%d type %d",
23260 					     i - BPF_REG_1, arg->arg_type);
23261 				ret = -EFAULT;
23262 				goto out;
23263 			}
23264 		}
23265 	} else {
23266 		/* if main BPF program has associated BTF info, validate that
23267 		 * it's matching expected signature, and otherwise mark BTF
23268 		 * info for main program as unreliable
23269 		 */
23270 		if (env->prog->aux->func_info_aux) {
23271 			ret = btf_prepare_func_args(env, 0);
23272 			if (ret || sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_PTR_TO_CTX)
23273 				env->prog->aux->func_info_aux[0].unreliable = true;
23274 		}
23275 
23276 		/* 1st arg to a function */
23277 		regs[BPF_REG_1].type = PTR_TO_CTX;
23278 		mark_reg_known_zero(env, regs, BPF_REG_1);
23279 	}
23280 
23281 	/* Acquire references for struct_ops program arguments tagged with "__ref" */
23282 	if (!subprog && env->prog->type == BPF_PROG_TYPE_STRUCT_OPS) {
23283 		for (i = 0; i < aux->ctx_arg_info_size; i++)
23284 			aux->ctx_arg_info[i].ref_obj_id = aux->ctx_arg_info[i].refcounted ?
23285 							  acquire_reference(env, 0) : 0;
23286 	}
23287 
23288 	ret = do_check(env);
23289 out:
23290 	if (!ret && pop_log)
23291 		bpf_vlog_reset(&env->log, 0);
23292 	free_states(env);
23293 	return ret;
23294 }
23295 
23296 /* Lazily verify all global functions based on their BTF, if they are called
23297  * from main BPF program or any of subprograms transitively.
23298  * BPF global subprogs called from dead code are not validated.
23299  * All callable global functions must pass verification.
23300  * Otherwise the whole program is rejected.
23301  * Consider:
23302  * int bar(int);
23303  * int foo(int f)
23304  * {
23305  *    return bar(f);
23306  * }
23307  * int bar(int b)
23308  * {
23309  *    ...
23310  * }
23311  * foo() will be verified first for R1=any_scalar_value. During verification it
23312  * will be assumed that bar() already verified successfully and call to bar()
23313  * from foo() will be checked for type match only. Later bar() will be verified
23314  * independently to check that it's safe for R1=any_scalar_value.
23315  */
23316 static int do_check_subprogs(struct bpf_verifier_env *env)
23317 {
23318 	struct bpf_prog_aux *aux = env->prog->aux;
23319 	struct bpf_func_info_aux *sub_aux;
23320 	int i, ret, new_cnt;
23321 
23322 	if (!aux->func_info)
23323 		return 0;
23324 
23325 	/* exception callback is presumed to be always called */
23326 	if (env->exception_callback_subprog)
23327 		subprog_aux(env, env->exception_callback_subprog)->called = true;
23328 
23329 again:
23330 	new_cnt = 0;
23331 	for (i = 1; i < env->subprog_cnt; i++) {
23332 		if (!subprog_is_global(env, i))
23333 			continue;
23334 
23335 		sub_aux = subprog_aux(env, i);
23336 		if (!sub_aux->called || sub_aux->verified)
23337 			continue;
23338 
23339 		env->insn_idx = env->subprog_info[i].start;
23340 		WARN_ON_ONCE(env->insn_idx == 0);
23341 		ret = do_check_common(env, i);
23342 		if (ret) {
23343 			return ret;
23344 		} else if (env->log.level & BPF_LOG_LEVEL) {
23345 			verbose(env, "Func#%d ('%s') is safe for any args that match its prototype\n",
23346 				i, subprog_name(env, i));
23347 		}
23348 
23349 		/* We verified new global subprog, it might have called some
23350 		 * more global subprogs that we haven't verified yet, so we
23351 		 * need to do another pass over subprogs to verify those.
23352 		 */
23353 		sub_aux->verified = true;
23354 		new_cnt++;
23355 	}
23356 
23357 	/* We can't loop forever as we verify at least one global subprog on
23358 	 * each pass.
23359 	 */
23360 	if (new_cnt)
23361 		goto again;
23362 
23363 	return 0;
23364 }
23365 
23366 static int do_check_main(struct bpf_verifier_env *env)
23367 {
23368 	int ret;
23369 
23370 	env->insn_idx = 0;
23371 	ret = do_check_common(env, 0);
23372 	if (!ret)
23373 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
23374 	return ret;
23375 }
23376 
23377 
23378 static void print_verification_stats(struct bpf_verifier_env *env)
23379 {
23380 	int i;
23381 
23382 	if (env->log.level & BPF_LOG_STATS) {
23383 		verbose(env, "verification time %lld usec\n",
23384 			div_u64(env->verification_time, 1000));
23385 		verbose(env, "stack depth ");
23386 		for (i = 0; i < env->subprog_cnt; i++) {
23387 			u32 depth = env->subprog_info[i].stack_depth;
23388 
23389 			verbose(env, "%d", depth);
23390 			if (i + 1 < env->subprog_cnt)
23391 				verbose(env, "+");
23392 		}
23393 		verbose(env, "\n");
23394 	}
23395 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
23396 		"total_states %d peak_states %d mark_read %d\n",
23397 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
23398 		env->max_states_per_insn, env->total_states,
23399 		env->peak_states, env->longest_mark_read_walk);
23400 }
23401 
23402 int bpf_prog_ctx_arg_info_init(struct bpf_prog *prog,
23403 			       const struct bpf_ctx_arg_aux *info, u32 cnt)
23404 {
23405 	prog->aux->ctx_arg_info = kmemdup_array(info, cnt, sizeof(*info), GFP_KERNEL_ACCOUNT);
23406 	prog->aux->ctx_arg_info_size = cnt;
23407 
23408 	return prog->aux->ctx_arg_info ? 0 : -ENOMEM;
23409 }
23410 
23411 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
23412 {
23413 	const struct btf_type *t, *func_proto;
23414 	const struct bpf_struct_ops_desc *st_ops_desc;
23415 	const struct bpf_struct_ops *st_ops;
23416 	const struct btf_member *member;
23417 	struct bpf_prog *prog = env->prog;
23418 	bool has_refcounted_arg = false;
23419 	u32 btf_id, member_idx, member_off;
23420 	struct btf *btf;
23421 	const char *mname;
23422 	int i, err;
23423 
23424 	if (!prog->gpl_compatible) {
23425 		verbose(env, "struct ops programs must have a GPL compatible license\n");
23426 		return -EINVAL;
23427 	}
23428 
23429 	if (!prog->aux->attach_btf_id)
23430 		return -ENOTSUPP;
23431 
23432 	btf = prog->aux->attach_btf;
23433 	if (btf_is_module(btf)) {
23434 		/* Make sure st_ops is valid through the lifetime of env */
23435 		env->attach_btf_mod = btf_try_get_module(btf);
23436 		if (!env->attach_btf_mod) {
23437 			verbose(env, "struct_ops module %s is not found\n",
23438 				btf_get_name(btf));
23439 			return -ENOTSUPP;
23440 		}
23441 	}
23442 
23443 	btf_id = prog->aux->attach_btf_id;
23444 	st_ops_desc = bpf_struct_ops_find(btf, btf_id);
23445 	if (!st_ops_desc) {
23446 		verbose(env, "attach_btf_id %u is not a supported struct\n",
23447 			btf_id);
23448 		return -ENOTSUPP;
23449 	}
23450 	st_ops = st_ops_desc->st_ops;
23451 
23452 	t = st_ops_desc->type;
23453 	member_idx = prog->expected_attach_type;
23454 	if (member_idx >= btf_type_vlen(t)) {
23455 		verbose(env, "attach to invalid member idx %u of struct %s\n",
23456 			member_idx, st_ops->name);
23457 		return -EINVAL;
23458 	}
23459 
23460 	member = &btf_type_member(t)[member_idx];
23461 	mname = btf_name_by_offset(btf, member->name_off);
23462 	func_proto = btf_type_resolve_func_ptr(btf, member->type,
23463 					       NULL);
23464 	if (!func_proto) {
23465 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
23466 			mname, member_idx, st_ops->name);
23467 		return -EINVAL;
23468 	}
23469 
23470 	member_off = __btf_member_bit_offset(t, member) / 8;
23471 	err = bpf_struct_ops_supported(st_ops, member_off);
23472 	if (err) {
23473 		verbose(env, "attach to unsupported member %s of struct %s\n",
23474 			mname, st_ops->name);
23475 		return err;
23476 	}
23477 
23478 	if (st_ops->check_member) {
23479 		err = st_ops->check_member(t, member, prog);
23480 
23481 		if (err) {
23482 			verbose(env, "attach to unsupported member %s of struct %s\n",
23483 				mname, st_ops->name);
23484 			return err;
23485 		}
23486 	}
23487 
23488 	if (prog->aux->priv_stack_requested && !bpf_jit_supports_private_stack()) {
23489 		verbose(env, "Private stack not supported by jit\n");
23490 		return -EACCES;
23491 	}
23492 
23493 	for (i = 0; i < st_ops_desc->arg_info[member_idx].cnt; i++) {
23494 		if (st_ops_desc->arg_info[member_idx].info->refcounted) {
23495 			has_refcounted_arg = true;
23496 			break;
23497 		}
23498 	}
23499 
23500 	/* Tail call is not allowed for programs with refcounted arguments since we
23501 	 * cannot guarantee that valid refcounted kptrs will be passed to the callee.
23502 	 */
23503 	for (i = 0; i < env->subprog_cnt; i++) {
23504 		if (has_refcounted_arg && env->subprog_info[i].has_tail_call) {
23505 			verbose(env, "program with __ref argument cannot tail call\n");
23506 			return -EINVAL;
23507 		}
23508 	}
23509 
23510 	prog->aux->st_ops = st_ops;
23511 	prog->aux->attach_st_ops_member_off = member_off;
23512 
23513 	prog->aux->attach_func_proto = func_proto;
23514 	prog->aux->attach_func_name = mname;
23515 	env->ops = st_ops->verifier_ops;
23516 
23517 	return bpf_prog_ctx_arg_info_init(prog, st_ops_desc->arg_info[member_idx].info,
23518 					  st_ops_desc->arg_info[member_idx].cnt);
23519 }
23520 #define SECURITY_PREFIX "security_"
23521 
23522 static int check_attach_modify_return(unsigned long addr, const char *func_name)
23523 {
23524 	if (within_error_injection_list(addr) ||
23525 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
23526 		return 0;
23527 
23528 	return -EINVAL;
23529 }
23530 
23531 /* list of non-sleepable functions that are otherwise on
23532  * ALLOW_ERROR_INJECTION list
23533  */
23534 BTF_SET_START(btf_non_sleepable_error_inject)
23535 /* Three functions below can be called from sleepable and non-sleepable context.
23536  * Assume non-sleepable from bpf safety point of view.
23537  */
23538 BTF_ID(func, __filemap_add_folio)
23539 #ifdef CONFIG_FAIL_PAGE_ALLOC
23540 BTF_ID(func, should_fail_alloc_page)
23541 #endif
23542 #ifdef CONFIG_FAILSLAB
23543 BTF_ID(func, should_failslab)
23544 #endif
23545 BTF_SET_END(btf_non_sleepable_error_inject)
23546 
23547 static int check_non_sleepable_error_inject(u32 btf_id)
23548 {
23549 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
23550 }
23551 
23552 int bpf_check_attach_target(struct bpf_verifier_log *log,
23553 			    const struct bpf_prog *prog,
23554 			    const struct bpf_prog *tgt_prog,
23555 			    u32 btf_id,
23556 			    struct bpf_attach_target_info *tgt_info)
23557 {
23558 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
23559 	bool prog_tracing = prog->type == BPF_PROG_TYPE_TRACING;
23560 	char trace_symbol[KSYM_SYMBOL_LEN];
23561 	const char prefix[] = "btf_trace_";
23562 	struct bpf_raw_event_map *btp;
23563 	int ret = 0, subprog = -1, i;
23564 	const struct btf_type *t;
23565 	bool conservative = true;
23566 	const char *tname, *fname;
23567 	struct btf *btf;
23568 	long addr = 0;
23569 	struct module *mod = NULL;
23570 
23571 	if (!btf_id) {
23572 		bpf_log(log, "Tracing programs must provide btf_id\n");
23573 		return -EINVAL;
23574 	}
23575 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
23576 	if (!btf) {
23577 		bpf_log(log,
23578 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
23579 		return -EINVAL;
23580 	}
23581 	t = btf_type_by_id(btf, btf_id);
23582 	if (!t) {
23583 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
23584 		return -EINVAL;
23585 	}
23586 	tname = btf_name_by_offset(btf, t->name_off);
23587 	if (!tname) {
23588 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
23589 		return -EINVAL;
23590 	}
23591 	if (tgt_prog) {
23592 		struct bpf_prog_aux *aux = tgt_prog->aux;
23593 		bool tgt_changes_pkt_data;
23594 		bool tgt_might_sleep;
23595 
23596 		if (bpf_prog_is_dev_bound(prog->aux) &&
23597 		    !bpf_prog_dev_bound_match(prog, tgt_prog)) {
23598 			bpf_log(log, "Target program bound device mismatch");
23599 			return -EINVAL;
23600 		}
23601 
23602 		for (i = 0; i < aux->func_info_cnt; i++)
23603 			if (aux->func_info[i].type_id == btf_id) {
23604 				subprog = i;
23605 				break;
23606 			}
23607 		if (subprog == -1) {
23608 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
23609 			return -EINVAL;
23610 		}
23611 		if (aux->func && aux->func[subprog]->aux->exception_cb) {
23612 			bpf_log(log,
23613 				"%s programs cannot attach to exception callback\n",
23614 				prog_extension ? "Extension" : "FENTRY/FEXIT");
23615 			return -EINVAL;
23616 		}
23617 		conservative = aux->func_info_aux[subprog].unreliable;
23618 		if (prog_extension) {
23619 			if (conservative) {
23620 				bpf_log(log,
23621 					"Cannot replace static functions\n");
23622 				return -EINVAL;
23623 			}
23624 			if (!prog->jit_requested) {
23625 				bpf_log(log,
23626 					"Extension programs should be JITed\n");
23627 				return -EINVAL;
23628 			}
23629 			tgt_changes_pkt_data = aux->func
23630 					       ? aux->func[subprog]->aux->changes_pkt_data
23631 					       : aux->changes_pkt_data;
23632 			if (prog->aux->changes_pkt_data && !tgt_changes_pkt_data) {
23633 				bpf_log(log,
23634 					"Extension program changes packet data, while original does not\n");
23635 				return -EINVAL;
23636 			}
23637 
23638 			tgt_might_sleep = aux->func
23639 					  ? aux->func[subprog]->aux->might_sleep
23640 					  : aux->might_sleep;
23641 			if (prog->aux->might_sleep && !tgt_might_sleep) {
23642 				bpf_log(log,
23643 					"Extension program may sleep, while original does not\n");
23644 				return -EINVAL;
23645 			}
23646 		}
23647 		if (!tgt_prog->jited) {
23648 			bpf_log(log, "Can attach to only JITed progs\n");
23649 			return -EINVAL;
23650 		}
23651 		if (prog_tracing) {
23652 			if (aux->attach_tracing_prog) {
23653 				/*
23654 				 * Target program is an fentry/fexit which is already attached
23655 				 * to another tracing program. More levels of nesting
23656 				 * attachment are not allowed.
23657 				 */
23658 				bpf_log(log, "Cannot nest tracing program attach more than once\n");
23659 				return -EINVAL;
23660 			}
23661 		} else if (tgt_prog->type == prog->type) {
23662 			/*
23663 			 * To avoid potential call chain cycles, prevent attaching of a
23664 			 * program extension to another extension. It's ok to attach
23665 			 * fentry/fexit to extension program.
23666 			 */
23667 			bpf_log(log, "Cannot recursively attach\n");
23668 			return -EINVAL;
23669 		}
23670 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
23671 		    prog_extension &&
23672 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
23673 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
23674 			/* Program extensions can extend all program types
23675 			 * except fentry/fexit. The reason is the following.
23676 			 * The fentry/fexit programs are used for performance
23677 			 * analysis, stats and can be attached to any program
23678 			 * type. When extension program is replacing XDP function
23679 			 * it is necessary to allow performance analysis of all
23680 			 * functions. Both original XDP program and its program
23681 			 * extension. Hence attaching fentry/fexit to
23682 			 * BPF_PROG_TYPE_EXT is allowed. If extending of
23683 			 * fentry/fexit was allowed it would be possible to create
23684 			 * long call chain fentry->extension->fentry->extension
23685 			 * beyond reasonable stack size. Hence extending fentry
23686 			 * is not allowed.
23687 			 */
23688 			bpf_log(log, "Cannot extend fentry/fexit\n");
23689 			return -EINVAL;
23690 		}
23691 	} else {
23692 		if (prog_extension) {
23693 			bpf_log(log, "Cannot replace kernel functions\n");
23694 			return -EINVAL;
23695 		}
23696 	}
23697 
23698 	switch (prog->expected_attach_type) {
23699 	case BPF_TRACE_RAW_TP:
23700 		if (tgt_prog) {
23701 			bpf_log(log,
23702 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
23703 			return -EINVAL;
23704 		}
23705 		if (!btf_type_is_typedef(t)) {
23706 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
23707 				btf_id);
23708 			return -EINVAL;
23709 		}
23710 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
23711 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
23712 				btf_id, tname);
23713 			return -EINVAL;
23714 		}
23715 		tname += sizeof(prefix) - 1;
23716 
23717 		/* The func_proto of "btf_trace_##tname" is generated from typedef without argument
23718 		 * names. Thus using bpf_raw_event_map to get argument names.
23719 		 */
23720 		btp = bpf_get_raw_tracepoint(tname);
23721 		if (!btp)
23722 			return -EINVAL;
23723 		fname = kallsyms_lookup((unsigned long)btp->bpf_func, NULL, NULL, NULL,
23724 					trace_symbol);
23725 		bpf_put_raw_tracepoint(btp);
23726 
23727 		if (fname)
23728 			ret = btf_find_by_name_kind(btf, fname, BTF_KIND_FUNC);
23729 
23730 		if (!fname || ret < 0) {
23731 			bpf_log(log, "Cannot find btf of tracepoint template, fall back to %s%s.\n",
23732 				prefix, tname);
23733 			t = btf_type_by_id(btf, t->type);
23734 			if (!btf_type_is_ptr(t))
23735 				/* should never happen in valid vmlinux build */
23736 				return -EINVAL;
23737 		} else {
23738 			t = btf_type_by_id(btf, ret);
23739 			if (!btf_type_is_func(t))
23740 				/* should never happen in valid vmlinux build */
23741 				return -EINVAL;
23742 		}
23743 
23744 		t = btf_type_by_id(btf, t->type);
23745 		if (!btf_type_is_func_proto(t))
23746 			/* should never happen in valid vmlinux build */
23747 			return -EINVAL;
23748 
23749 		break;
23750 	case BPF_TRACE_ITER:
23751 		if (!btf_type_is_func(t)) {
23752 			bpf_log(log, "attach_btf_id %u is not a function\n",
23753 				btf_id);
23754 			return -EINVAL;
23755 		}
23756 		t = btf_type_by_id(btf, t->type);
23757 		if (!btf_type_is_func_proto(t))
23758 			return -EINVAL;
23759 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
23760 		if (ret)
23761 			return ret;
23762 		break;
23763 	default:
23764 		if (!prog_extension)
23765 			return -EINVAL;
23766 		fallthrough;
23767 	case BPF_MODIFY_RETURN:
23768 	case BPF_LSM_MAC:
23769 	case BPF_LSM_CGROUP:
23770 	case BPF_TRACE_FENTRY:
23771 	case BPF_TRACE_FEXIT:
23772 		if (!btf_type_is_func(t)) {
23773 			bpf_log(log, "attach_btf_id %u is not a function\n",
23774 				btf_id);
23775 			return -EINVAL;
23776 		}
23777 		if (prog_extension &&
23778 		    btf_check_type_match(log, prog, btf, t))
23779 			return -EINVAL;
23780 		t = btf_type_by_id(btf, t->type);
23781 		if (!btf_type_is_func_proto(t))
23782 			return -EINVAL;
23783 
23784 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
23785 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
23786 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
23787 			return -EINVAL;
23788 
23789 		if (tgt_prog && conservative)
23790 			t = NULL;
23791 
23792 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
23793 		if (ret < 0)
23794 			return ret;
23795 
23796 		if (tgt_prog) {
23797 			if (subprog == 0)
23798 				addr = (long) tgt_prog->bpf_func;
23799 			else
23800 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
23801 		} else {
23802 			if (btf_is_module(btf)) {
23803 				mod = btf_try_get_module(btf);
23804 				if (mod)
23805 					addr = find_kallsyms_symbol_value(mod, tname);
23806 				else
23807 					addr = 0;
23808 			} else {
23809 				addr = kallsyms_lookup_name(tname);
23810 			}
23811 			if (!addr) {
23812 				module_put(mod);
23813 				bpf_log(log,
23814 					"The address of function %s cannot be found\n",
23815 					tname);
23816 				return -ENOENT;
23817 			}
23818 		}
23819 
23820 		if (prog->sleepable) {
23821 			ret = -EINVAL;
23822 			switch (prog->type) {
23823 			case BPF_PROG_TYPE_TRACING:
23824 
23825 				/* fentry/fexit/fmod_ret progs can be sleepable if they are
23826 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
23827 				 */
23828 				if (!check_non_sleepable_error_inject(btf_id) &&
23829 				    within_error_injection_list(addr))
23830 					ret = 0;
23831 				/* fentry/fexit/fmod_ret progs can also be sleepable if they are
23832 				 * in the fmodret id set with the KF_SLEEPABLE flag.
23833 				 */
23834 				else {
23835 					u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
23836 										prog);
23837 
23838 					if (flags && (*flags & KF_SLEEPABLE))
23839 						ret = 0;
23840 				}
23841 				break;
23842 			case BPF_PROG_TYPE_LSM:
23843 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
23844 				 * Only some of them are sleepable.
23845 				 */
23846 				if (bpf_lsm_is_sleepable_hook(btf_id))
23847 					ret = 0;
23848 				break;
23849 			default:
23850 				break;
23851 			}
23852 			if (ret) {
23853 				module_put(mod);
23854 				bpf_log(log, "%s is not sleepable\n", tname);
23855 				return ret;
23856 			}
23857 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
23858 			if (tgt_prog) {
23859 				module_put(mod);
23860 				bpf_log(log, "can't modify return codes of BPF programs\n");
23861 				return -EINVAL;
23862 			}
23863 			ret = -EINVAL;
23864 			if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
23865 			    !check_attach_modify_return(addr, tname))
23866 				ret = 0;
23867 			if (ret) {
23868 				module_put(mod);
23869 				bpf_log(log, "%s() is not modifiable\n", tname);
23870 				return ret;
23871 			}
23872 		}
23873 
23874 		break;
23875 	}
23876 	tgt_info->tgt_addr = addr;
23877 	tgt_info->tgt_name = tname;
23878 	tgt_info->tgt_type = t;
23879 	tgt_info->tgt_mod = mod;
23880 	return 0;
23881 }
23882 
23883 BTF_SET_START(btf_id_deny)
23884 BTF_ID_UNUSED
23885 #ifdef CONFIG_SMP
23886 BTF_ID(func, migrate_disable)
23887 BTF_ID(func, migrate_enable)
23888 #endif
23889 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
23890 BTF_ID(func, rcu_read_unlock_strict)
23891 #endif
23892 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
23893 BTF_ID(func, preempt_count_add)
23894 BTF_ID(func, preempt_count_sub)
23895 #endif
23896 #ifdef CONFIG_PREEMPT_RCU
23897 BTF_ID(func, __rcu_read_lock)
23898 BTF_ID(func, __rcu_read_unlock)
23899 #endif
23900 BTF_SET_END(btf_id_deny)
23901 
23902 /* fexit and fmod_ret can't be used to attach to __noreturn functions.
23903  * Currently, we must manually list all __noreturn functions here. Once a more
23904  * robust solution is implemented, this workaround can be removed.
23905  */
23906 BTF_SET_START(noreturn_deny)
23907 #ifdef CONFIG_IA32_EMULATION
23908 BTF_ID(func, __ia32_sys_exit)
23909 BTF_ID(func, __ia32_sys_exit_group)
23910 #endif
23911 #ifdef CONFIG_KUNIT
23912 BTF_ID(func, __kunit_abort)
23913 BTF_ID(func, kunit_try_catch_throw)
23914 #endif
23915 #ifdef CONFIG_MODULES
23916 BTF_ID(func, __module_put_and_kthread_exit)
23917 #endif
23918 #ifdef CONFIG_X86_64
23919 BTF_ID(func, __x64_sys_exit)
23920 BTF_ID(func, __x64_sys_exit_group)
23921 #endif
23922 BTF_ID(func, do_exit)
23923 BTF_ID(func, do_group_exit)
23924 BTF_ID(func, kthread_complete_and_exit)
23925 BTF_ID(func, kthread_exit)
23926 BTF_ID(func, make_task_dead)
23927 BTF_SET_END(noreturn_deny)
23928 
23929 static bool can_be_sleepable(struct bpf_prog *prog)
23930 {
23931 	if (prog->type == BPF_PROG_TYPE_TRACING) {
23932 		switch (prog->expected_attach_type) {
23933 		case BPF_TRACE_FENTRY:
23934 		case BPF_TRACE_FEXIT:
23935 		case BPF_MODIFY_RETURN:
23936 		case BPF_TRACE_ITER:
23937 			return true;
23938 		default:
23939 			return false;
23940 		}
23941 	}
23942 	return prog->type == BPF_PROG_TYPE_LSM ||
23943 	       prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
23944 	       prog->type == BPF_PROG_TYPE_STRUCT_OPS;
23945 }
23946 
23947 static int check_attach_btf_id(struct bpf_verifier_env *env)
23948 {
23949 	struct bpf_prog *prog = env->prog;
23950 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
23951 	struct bpf_attach_target_info tgt_info = {};
23952 	u32 btf_id = prog->aux->attach_btf_id;
23953 	struct bpf_trampoline *tr;
23954 	int ret;
23955 	u64 key;
23956 
23957 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
23958 		if (prog->sleepable)
23959 			/* attach_btf_id checked to be zero already */
23960 			return 0;
23961 		verbose(env, "Syscall programs can only be sleepable\n");
23962 		return -EINVAL;
23963 	}
23964 
23965 	if (prog->sleepable && !can_be_sleepable(prog)) {
23966 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
23967 		return -EINVAL;
23968 	}
23969 
23970 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
23971 		return check_struct_ops_btf_id(env);
23972 
23973 	if (prog->type != BPF_PROG_TYPE_TRACING &&
23974 	    prog->type != BPF_PROG_TYPE_LSM &&
23975 	    prog->type != BPF_PROG_TYPE_EXT)
23976 		return 0;
23977 
23978 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
23979 	if (ret)
23980 		return ret;
23981 
23982 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
23983 		/* to make freplace equivalent to their targets, they need to
23984 		 * inherit env->ops and expected_attach_type for the rest of the
23985 		 * verification
23986 		 */
23987 		env->ops = bpf_verifier_ops[tgt_prog->type];
23988 		prog->expected_attach_type = tgt_prog->expected_attach_type;
23989 	}
23990 
23991 	/* store info about the attachment target that will be used later */
23992 	prog->aux->attach_func_proto = tgt_info.tgt_type;
23993 	prog->aux->attach_func_name = tgt_info.tgt_name;
23994 	prog->aux->mod = tgt_info.tgt_mod;
23995 
23996 	if (tgt_prog) {
23997 		prog->aux->saved_dst_prog_type = tgt_prog->type;
23998 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
23999 	}
24000 
24001 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
24002 		prog->aux->attach_btf_trace = true;
24003 		return 0;
24004 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
24005 		return bpf_iter_prog_supported(prog);
24006 	}
24007 
24008 	if (prog->type == BPF_PROG_TYPE_LSM) {
24009 		ret = bpf_lsm_verify_prog(&env->log, prog);
24010 		if (ret < 0)
24011 			return ret;
24012 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
24013 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
24014 		verbose(env, "Attaching tracing programs to function '%s' is rejected.\n",
24015 			tgt_info.tgt_name);
24016 		return -EINVAL;
24017 	} else if ((prog->expected_attach_type == BPF_TRACE_FEXIT ||
24018 		   prog->expected_attach_type == BPF_MODIFY_RETURN) &&
24019 		   btf_id_set_contains(&noreturn_deny, btf_id)) {
24020 		verbose(env, "Attaching fexit/fmod_ret to __noreturn function '%s' is rejected.\n",
24021 			tgt_info.tgt_name);
24022 		return -EINVAL;
24023 	}
24024 
24025 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
24026 	tr = bpf_trampoline_get(key, &tgt_info);
24027 	if (!tr)
24028 		return -ENOMEM;
24029 
24030 	if (tgt_prog && tgt_prog->aux->tail_call_reachable)
24031 		tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX;
24032 
24033 	prog->aux->dst_trampoline = tr;
24034 	return 0;
24035 }
24036 
24037 struct btf *bpf_get_btf_vmlinux(void)
24038 {
24039 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
24040 		mutex_lock(&bpf_verifier_lock);
24041 		if (!btf_vmlinux)
24042 			btf_vmlinux = btf_parse_vmlinux();
24043 		mutex_unlock(&bpf_verifier_lock);
24044 	}
24045 	return btf_vmlinux;
24046 }
24047 
24048 /*
24049  * The add_fd_from_fd_array() is executed only if fd_array_cnt is non-zero. In
24050  * this case expect that every file descriptor in the array is either a map or
24051  * a BTF. Everything else is considered to be trash.
24052  */
24053 static int add_fd_from_fd_array(struct bpf_verifier_env *env, int fd)
24054 {
24055 	struct bpf_map *map;
24056 	struct btf *btf;
24057 	CLASS(fd, f)(fd);
24058 	int err;
24059 
24060 	map = __bpf_map_get(f);
24061 	if (!IS_ERR(map)) {
24062 		err = __add_used_map(env, map);
24063 		if (err < 0)
24064 			return err;
24065 		return 0;
24066 	}
24067 
24068 	btf = __btf_get_by_fd(f);
24069 	if (!IS_ERR(btf)) {
24070 		err = __add_used_btf(env, btf);
24071 		if (err < 0)
24072 			return err;
24073 		return 0;
24074 	}
24075 
24076 	verbose(env, "fd %d is not pointing to valid bpf_map or btf\n", fd);
24077 	return PTR_ERR(map);
24078 }
24079 
24080 static int process_fd_array(struct bpf_verifier_env *env, union bpf_attr *attr, bpfptr_t uattr)
24081 {
24082 	size_t size = sizeof(int);
24083 	int ret;
24084 	int fd;
24085 	u32 i;
24086 
24087 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
24088 
24089 	/*
24090 	 * The only difference between old (no fd_array_cnt is given) and new
24091 	 * APIs is that in the latter case the fd_array is expected to be
24092 	 * continuous and is scanned for map fds right away
24093 	 */
24094 	if (!attr->fd_array_cnt)
24095 		return 0;
24096 
24097 	/* Check for integer overflow */
24098 	if (attr->fd_array_cnt >= (U32_MAX / size)) {
24099 		verbose(env, "fd_array_cnt is too big (%u)\n", attr->fd_array_cnt);
24100 		return -EINVAL;
24101 	}
24102 
24103 	for (i = 0; i < attr->fd_array_cnt; i++) {
24104 		if (copy_from_bpfptr_offset(&fd, env->fd_array, i * size, size))
24105 			return -EFAULT;
24106 
24107 		ret = add_fd_from_fd_array(env, fd);
24108 		if (ret)
24109 			return ret;
24110 	}
24111 
24112 	return 0;
24113 }
24114 
24115 static bool can_fallthrough(struct bpf_insn *insn)
24116 {
24117 	u8 class = BPF_CLASS(insn->code);
24118 	u8 opcode = BPF_OP(insn->code);
24119 
24120 	if (class != BPF_JMP && class != BPF_JMP32)
24121 		return true;
24122 
24123 	if (opcode == BPF_EXIT || opcode == BPF_JA)
24124 		return false;
24125 
24126 	return true;
24127 }
24128 
24129 static bool can_jump(struct bpf_insn *insn)
24130 {
24131 	u8 class = BPF_CLASS(insn->code);
24132 	u8 opcode = BPF_OP(insn->code);
24133 
24134 	if (class != BPF_JMP && class != BPF_JMP32)
24135 		return false;
24136 
24137 	switch (opcode) {
24138 	case BPF_JA:
24139 	case BPF_JEQ:
24140 	case BPF_JNE:
24141 	case BPF_JLT:
24142 	case BPF_JLE:
24143 	case BPF_JGT:
24144 	case BPF_JGE:
24145 	case BPF_JSGT:
24146 	case BPF_JSGE:
24147 	case BPF_JSLT:
24148 	case BPF_JSLE:
24149 	case BPF_JCOND:
24150 	case BPF_JSET:
24151 		return true;
24152 	}
24153 
24154 	return false;
24155 }
24156 
24157 static int insn_successors(struct bpf_prog *prog, u32 idx, u32 succ[2])
24158 {
24159 	struct bpf_insn *insn = &prog->insnsi[idx];
24160 	int i = 0, insn_sz;
24161 	u32 dst;
24162 
24163 	insn_sz = bpf_is_ldimm64(insn) ? 2 : 1;
24164 	if (can_fallthrough(insn) && idx + 1 < prog->len)
24165 		succ[i++] = idx + insn_sz;
24166 
24167 	if (can_jump(insn)) {
24168 		dst = idx + jmp_offset(insn) + 1;
24169 		if (i == 0 || succ[0] != dst)
24170 			succ[i++] = dst;
24171 	}
24172 
24173 	return i;
24174 }
24175 
24176 /* Each field is a register bitmask */
24177 struct insn_live_regs {
24178 	u16 use;	/* registers read by instruction */
24179 	u16 def;	/* registers written by instruction */
24180 	u16 in;		/* registers that may be alive before instruction */
24181 	u16 out;	/* registers that may be alive after instruction */
24182 };
24183 
24184 /* Bitmask with 1s for all caller saved registers */
24185 #define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1)
24186 
24187 /* Compute info->{use,def} fields for the instruction */
24188 static void compute_insn_live_regs(struct bpf_verifier_env *env,
24189 				   struct bpf_insn *insn,
24190 				   struct insn_live_regs *info)
24191 {
24192 	struct call_summary cs;
24193 	u8 class = BPF_CLASS(insn->code);
24194 	u8 code = BPF_OP(insn->code);
24195 	u8 mode = BPF_MODE(insn->code);
24196 	u16 src = BIT(insn->src_reg);
24197 	u16 dst = BIT(insn->dst_reg);
24198 	u16 r0  = BIT(0);
24199 	u16 def = 0;
24200 	u16 use = 0xffff;
24201 
24202 	switch (class) {
24203 	case BPF_LD:
24204 		switch (mode) {
24205 		case BPF_IMM:
24206 			if (BPF_SIZE(insn->code) == BPF_DW) {
24207 				def = dst;
24208 				use = 0;
24209 			}
24210 			break;
24211 		case BPF_LD | BPF_ABS:
24212 		case BPF_LD | BPF_IND:
24213 			/* stick with defaults */
24214 			break;
24215 		}
24216 		break;
24217 	case BPF_LDX:
24218 		switch (mode) {
24219 		case BPF_MEM:
24220 		case BPF_MEMSX:
24221 			def = dst;
24222 			use = src;
24223 			break;
24224 		}
24225 		break;
24226 	case BPF_ST:
24227 		switch (mode) {
24228 		case BPF_MEM:
24229 			def = 0;
24230 			use = dst;
24231 			break;
24232 		}
24233 		break;
24234 	case BPF_STX:
24235 		switch (mode) {
24236 		case BPF_MEM:
24237 			def = 0;
24238 			use = dst | src;
24239 			break;
24240 		case BPF_ATOMIC:
24241 			switch (insn->imm) {
24242 			case BPF_CMPXCHG:
24243 				use = r0 | dst | src;
24244 				def = r0;
24245 				break;
24246 			case BPF_LOAD_ACQ:
24247 				def = dst;
24248 				use = src;
24249 				break;
24250 			case BPF_STORE_REL:
24251 				def = 0;
24252 				use = dst | src;
24253 				break;
24254 			default:
24255 				use = dst | src;
24256 				if (insn->imm & BPF_FETCH)
24257 					def = src;
24258 				else
24259 					def = 0;
24260 			}
24261 			break;
24262 		}
24263 		break;
24264 	case BPF_ALU:
24265 	case BPF_ALU64:
24266 		switch (code) {
24267 		case BPF_END:
24268 			use = dst;
24269 			def = dst;
24270 			break;
24271 		case BPF_MOV:
24272 			def = dst;
24273 			if (BPF_SRC(insn->code) == BPF_K)
24274 				use = 0;
24275 			else
24276 				use = src;
24277 			break;
24278 		default:
24279 			def = dst;
24280 			if (BPF_SRC(insn->code) == BPF_K)
24281 				use = dst;
24282 			else
24283 				use = dst | src;
24284 		}
24285 		break;
24286 	case BPF_JMP:
24287 	case BPF_JMP32:
24288 		switch (code) {
24289 		case BPF_JA:
24290 		case BPF_JCOND:
24291 			def = 0;
24292 			use = 0;
24293 			break;
24294 		case BPF_EXIT:
24295 			def = 0;
24296 			use = r0;
24297 			break;
24298 		case BPF_CALL:
24299 			def = ALL_CALLER_SAVED_REGS;
24300 			use = def & ~BIT(BPF_REG_0);
24301 			if (get_call_summary(env, insn, &cs))
24302 				use = GENMASK(cs.num_params, 1);
24303 			break;
24304 		default:
24305 			def = 0;
24306 			if (BPF_SRC(insn->code) == BPF_K)
24307 				use = dst;
24308 			else
24309 				use = dst | src;
24310 		}
24311 		break;
24312 	}
24313 
24314 	info->def = def;
24315 	info->use = use;
24316 }
24317 
24318 /* Compute may-live registers after each instruction in the program.
24319  * The register is live after the instruction I if it is read by some
24320  * instruction S following I during program execution and is not
24321  * overwritten between I and S.
24322  *
24323  * Store result in env->insn_aux_data[i].live_regs.
24324  */
24325 static int compute_live_registers(struct bpf_verifier_env *env)
24326 {
24327 	struct bpf_insn_aux_data *insn_aux = env->insn_aux_data;
24328 	struct bpf_insn *insns = env->prog->insnsi;
24329 	struct insn_live_regs *state;
24330 	int insn_cnt = env->prog->len;
24331 	int err = 0, i, j;
24332 	bool changed;
24333 
24334 	/* Use the following algorithm:
24335 	 * - define the following:
24336 	 *   - I.use : a set of all registers read by instruction I;
24337 	 *   - I.def : a set of all registers written by instruction I;
24338 	 *   - I.in  : a set of all registers that may be alive before I execution;
24339 	 *   - I.out : a set of all registers that may be alive after I execution;
24340 	 *   - insn_successors(I): a set of instructions S that might immediately
24341 	 *                         follow I for some program execution;
24342 	 * - associate separate empty sets 'I.in' and 'I.out' with each instruction;
24343 	 * - visit each instruction in a postorder and update
24344 	 *   state[i].in, state[i].out as follows:
24345 	 *
24346 	 *       state[i].out = U [state[s].in for S in insn_successors(i)]
24347 	 *       state[i].in  = (state[i].out / state[i].def) U state[i].use
24348 	 *
24349 	 *   (where U stands for set union, / stands for set difference)
24350 	 * - repeat the computation while {in,out} fields changes for
24351 	 *   any instruction.
24352 	 */
24353 	state = kvcalloc(insn_cnt, sizeof(*state), GFP_KERNEL_ACCOUNT);
24354 	if (!state) {
24355 		err = -ENOMEM;
24356 		goto out;
24357 	}
24358 
24359 	for (i = 0; i < insn_cnt; ++i)
24360 		compute_insn_live_regs(env, &insns[i], &state[i]);
24361 
24362 	changed = true;
24363 	while (changed) {
24364 		changed = false;
24365 		for (i = 0; i < env->cfg.cur_postorder; ++i) {
24366 			int insn_idx = env->cfg.insn_postorder[i];
24367 			struct insn_live_regs *live = &state[insn_idx];
24368 			int succ_num;
24369 			u32 succ[2];
24370 			u16 new_out = 0;
24371 			u16 new_in = 0;
24372 
24373 			succ_num = insn_successors(env->prog, insn_idx, succ);
24374 			for (int s = 0; s < succ_num; ++s)
24375 				new_out |= state[succ[s]].in;
24376 			new_in = (new_out & ~live->def) | live->use;
24377 			if (new_out != live->out || new_in != live->in) {
24378 				live->in = new_in;
24379 				live->out = new_out;
24380 				changed = true;
24381 			}
24382 		}
24383 	}
24384 
24385 	for (i = 0; i < insn_cnt; ++i)
24386 		insn_aux[i].live_regs_before = state[i].in;
24387 
24388 	if (env->log.level & BPF_LOG_LEVEL2) {
24389 		verbose(env, "Live regs before insn:\n");
24390 		for (i = 0; i < insn_cnt; ++i) {
24391 			if (env->insn_aux_data[i].scc)
24392 				verbose(env, "%3d ", env->insn_aux_data[i].scc);
24393 			else
24394 				verbose(env, "    ");
24395 			verbose(env, "%3d: ", i);
24396 			for (j = BPF_REG_0; j < BPF_REG_10; ++j)
24397 				if (insn_aux[i].live_regs_before & BIT(j))
24398 					verbose(env, "%d", j);
24399 				else
24400 					verbose(env, ".");
24401 			verbose(env, " ");
24402 			verbose_insn(env, &insns[i]);
24403 			if (bpf_is_ldimm64(&insns[i]))
24404 				i++;
24405 		}
24406 	}
24407 
24408 out:
24409 	kvfree(state);
24410 	kvfree(env->cfg.insn_postorder);
24411 	env->cfg.insn_postorder = NULL;
24412 	env->cfg.cur_postorder = 0;
24413 	return err;
24414 }
24415 
24416 /*
24417  * Compute strongly connected components (SCCs) on the CFG.
24418  * Assign an SCC number to each instruction, recorded in env->insn_aux[*].scc.
24419  * If instruction is a sole member of its SCC and there are no self edges,
24420  * assign it SCC number of zero.
24421  * Uses a non-recursive adaptation of Tarjan's algorithm for SCC computation.
24422  */
24423 static int compute_scc(struct bpf_verifier_env *env)
24424 {
24425 	const u32 NOT_ON_STACK = U32_MAX;
24426 
24427 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
24428 	const u32 insn_cnt = env->prog->len;
24429 	int stack_sz, dfs_sz, err = 0;
24430 	u32 *stack, *pre, *low, *dfs;
24431 	u32 succ_cnt, i, j, t, w;
24432 	u32 next_preorder_num;
24433 	u32 next_scc_id;
24434 	bool assign_scc;
24435 	u32 succ[2];
24436 
24437 	next_preorder_num = 1;
24438 	next_scc_id = 1;
24439 	/*
24440 	 * - 'stack' accumulates vertices in DFS order, see invariant comment below;
24441 	 * - 'pre[t] == p' => preorder number of vertex 't' is 'p';
24442 	 * - 'low[t] == n' => smallest preorder number of the vertex reachable from 't' is 'n';
24443 	 * - 'dfs' DFS traversal stack, used to emulate explicit recursion.
24444 	 */
24445 	stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT);
24446 	pre = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT);
24447 	low = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT);
24448 	dfs = kvcalloc(insn_cnt, sizeof(*dfs), GFP_KERNEL_ACCOUNT);
24449 	if (!stack || !pre || !low || !dfs) {
24450 		err = -ENOMEM;
24451 		goto exit;
24452 	}
24453 	/*
24454 	 * References:
24455 	 * [1] R. Tarjan "Depth-First Search and Linear Graph Algorithms"
24456 	 * [2] D. J. Pearce "A Space-Efficient Algorithm for Finding Strongly Connected Components"
24457 	 *
24458 	 * The algorithm maintains the following invariant:
24459 	 * - suppose there is a path 'u' ~> 'v', such that 'pre[v] < pre[u]';
24460 	 * - then, vertex 'u' remains on stack while vertex 'v' is on stack.
24461 	 *
24462 	 * Consequently:
24463 	 * - If 'low[v] < pre[v]', there is a path from 'v' to some vertex 'u',
24464 	 *   such that 'pre[u] == low[v]'; vertex 'u' is currently on the stack,
24465 	 *   and thus there is an SCC (loop) containing both 'u' and 'v'.
24466 	 * - If 'low[v] == pre[v]', loops containing 'v' have been explored,
24467 	 *   and 'v' can be considered the root of some SCC.
24468 	 *
24469 	 * Here is a pseudo-code for an explicitly recursive version of the algorithm:
24470 	 *
24471 	 *    NOT_ON_STACK = insn_cnt + 1
24472 	 *    pre = [0] * insn_cnt
24473 	 *    low = [0] * insn_cnt
24474 	 *    scc = [0] * insn_cnt
24475 	 *    stack = []
24476 	 *
24477 	 *    next_preorder_num = 1
24478 	 *    next_scc_id = 1
24479 	 *
24480 	 *    def recur(w):
24481 	 *        nonlocal next_preorder_num
24482 	 *        nonlocal next_scc_id
24483 	 *
24484 	 *        pre[w] = next_preorder_num
24485 	 *        low[w] = next_preorder_num
24486 	 *        next_preorder_num += 1
24487 	 *        stack.append(w)
24488 	 *        for s in successors(w):
24489 	 *            # Note: for classic algorithm the block below should look as:
24490 	 *            #
24491 	 *            # if pre[s] == 0:
24492 	 *            #     recur(s)
24493 	 *            #	    low[w] = min(low[w], low[s])
24494 	 *            # elif low[s] != NOT_ON_STACK:
24495 	 *            #     low[w] = min(low[w], pre[s])
24496 	 *            #
24497 	 *            # But replacing both 'min' instructions with 'low[w] = min(low[w], low[s])'
24498 	 *            # does not break the invariant and makes itartive version of the algorithm
24499 	 *            # simpler. See 'Algorithm #3' from [2].
24500 	 *
24501 	 *            # 's' not yet visited
24502 	 *            if pre[s] == 0:
24503 	 *                recur(s)
24504 	 *            # if 's' is on stack, pick lowest reachable preorder number from it;
24505 	 *            # if 's' is not on stack 'low[s] == NOT_ON_STACK > low[w]',
24506 	 *            # so 'min' would be a noop.
24507 	 *            low[w] = min(low[w], low[s])
24508 	 *
24509 	 *        if low[w] == pre[w]:
24510 	 *            # 'w' is the root of an SCC, pop all vertices
24511 	 *            # below 'w' on stack and assign same SCC to them.
24512 	 *            while True:
24513 	 *                t = stack.pop()
24514 	 *                low[t] = NOT_ON_STACK
24515 	 *                scc[t] = next_scc_id
24516 	 *                if t == w:
24517 	 *                    break
24518 	 *            next_scc_id += 1
24519 	 *
24520 	 *    for i in range(0, insn_cnt):
24521 	 *        if pre[i] == 0:
24522 	 *            recur(i)
24523 	 *
24524 	 * Below implementation replaces explicit recursion with array 'dfs'.
24525 	 */
24526 	for (i = 0; i < insn_cnt; i++) {
24527 		if (pre[i])
24528 			continue;
24529 		stack_sz = 0;
24530 		dfs_sz = 1;
24531 		dfs[0] = i;
24532 dfs_continue:
24533 		while (dfs_sz) {
24534 			w = dfs[dfs_sz - 1];
24535 			if (pre[w] == 0) {
24536 				low[w] = next_preorder_num;
24537 				pre[w] = next_preorder_num;
24538 				next_preorder_num++;
24539 				stack[stack_sz++] = w;
24540 			}
24541 			/* Visit 'w' successors */
24542 			succ_cnt = insn_successors(env->prog, w, succ);
24543 			for (j = 0; j < succ_cnt; ++j) {
24544 				if (pre[succ[j]]) {
24545 					low[w] = min(low[w], low[succ[j]]);
24546 				} else {
24547 					dfs[dfs_sz++] = succ[j];
24548 					goto dfs_continue;
24549 				}
24550 			}
24551 			/*
24552 			 * Preserve the invariant: if some vertex above in the stack
24553 			 * is reachable from 'w', keep 'w' on the stack.
24554 			 */
24555 			if (low[w] < pre[w]) {
24556 				dfs_sz--;
24557 				goto dfs_continue;
24558 			}
24559 			/*
24560 			 * Assign SCC number only if component has two or more elements,
24561 			 * or if component has a self reference.
24562 			 */
24563 			assign_scc = stack[stack_sz - 1] != w;
24564 			for (j = 0; j < succ_cnt; ++j) {
24565 				if (succ[j] == w) {
24566 					assign_scc = true;
24567 					break;
24568 				}
24569 			}
24570 			/* Pop component elements from stack */
24571 			do {
24572 				t = stack[--stack_sz];
24573 				low[t] = NOT_ON_STACK;
24574 				if (assign_scc)
24575 					aux[t].scc = next_scc_id;
24576 			} while (t != w);
24577 			if (assign_scc)
24578 				next_scc_id++;
24579 			dfs_sz--;
24580 		}
24581 	}
24582 	env->scc_info = kvcalloc(next_scc_id, sizeof(*env->scc_info), GFP_KERNEL_ACCOUNT);
24583 	if (!env->scc_info) {
24584 		err = -ENOMEM;
24585 		goto exit;
24586 	}
24587 	env->scc_cnt = next_scc_id;
24588 exit:
24589 	kvfree(stack);
24590 	kvfree(pre);
24591 	kvfree(low);
24592 	kvfree(dfs);
24593 	return err;
24594 }
24595 
24596 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
24597 {
24598 	u64 start_time = ktime_get_ns();
24599 	struct bpf_verifier_env *env;
24600 	int i, len, ret = -EINVAL, err;
24601 	u32 log_true_size;
24602 	bool is_priv;
24603 
24604 	BTF_TYPE_EMIT(enum bpf_features);
24605 
24606 	/* no program is valid */
24607 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
24608 		return -EINVAL;
24609 
24610 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
24611 	 * allocate/free it every time bpf_check() is called
24612 	 */
24613 	env = kvzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL_ACCOUNT);
24614 	if (!env)
24615 		return -ENOMEM;
24616 
24617 	env->bt.env = env;
24618 
24619 	len = (*prog)->len;
24620 	env->insn_aux_data =
24621 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
24622 	ret = -ENOMEM;
24623 	if (!env->insn_aux_data)
24624 		goto err_free_env;
24625 	for (i = 0; i < len; i++)
24626 		env->insn_aux_data[i].orig_idx = i;
24627 	env->prog = *prog;
24628 	env->ops = bpf_verifier_ops[env->prog->type];
24629 
24630 	env->allow_ptr_leaks = bpf_allow_ptr_leaks(env->prog->aux->token);
24631 	env->allow_uninit_stack = bpf_allow_uninit_stack(env->prog->aux->token);
24632 	env->bypass_spec_v1 = bpf_bypass_spec_v1(env->prog->aux->token);
24633 	env->bypass_spec_v4 = bpf_bypass_spec_v4(env->prog->aux->token);
24634 	env->bpf_capable = is_priv = bpf_token_capable(env->prog->aux->token, CAP_BPF);
24635 
24636 	bpf_get_btf_vmlinux();
24637 
24638 	/* grab the mutex to protect few globals used by verifier */
24639 	if (!is_priv)
24640 		mutex_lock(&bpf_verifier_lock);
24641 
24642 	/* user could have requested verbose verifier output
24643 	 * and supplied buffer to store the verification trace
24644 	 */
24645 	ret = bpf_vlog_init(&env->log, attr->log_level,
24646 			    (char __user *) (unsigned long) attr->log_buf,
24647 			    attr->log_size);
24648 	if (ret)
24649 		goto err_unlock;
24650 
24651 	ret = process_fd_array(env, attr, uattr);
24652 	if (ret)
24653 		goto skip_full_check;
24654 
24655 	mark_verifier_state_clean(env);
24656 
24657 	if (IS_ERR(btf_vmlinux)) {
24658 		/* Either gcc or pahole or kernel are broken. */
24659 		verbose(env, "in-kernel BTF is malformed\n");
24660 		ret = PTR_ERR(btf_vmlinux);
24661 		goto skip_full_check;
24662 	}
24663 
24664 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
24665 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
24666 		env->strict_alignment = true;
24667 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
24668 		env->strict_alignment = false;
24669 
24670 	if (is_priv)
24671 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
24672 	env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS;
24673 
24674 	env->explored_states = kvcalloc(state_htab_size(env),
24675 				       sizeof(struct list_head),
24676 				       GFP_KERNEL_ACCOUNT);
24677 	ret = -ENOMEM;
24678 	if (!env->explored_states)
24679 		goto skip_full_check;
24680 
24681 	for (i = 0; i < state_htab_size(env); i++)
24682 		INIT_LIST_HEAD(&env->explored_states[i]);
24683 	INIT_LIST_HEAD(&env->free_list);
24684 
24685 	ret = check_btf_info_early(env, attr, uattr);
24686 	if (ret < 0)
24687 		goto skip_full_check;
24688 
24689 	ret = add_subprog_and_kfunc(env);
24690 	if (ret < 0)
24691 		goto skip_full_check;
24692 
24693 	ret = check_subprogs(env);
24694 	if (ret < 0)
24695 		goto skip_full_check;
24696 
24697 	ret = check_btf_info(env, attr, uattr);
24698 	if (ret < 0)
24699 		goto skip_full_check;
24700 
24701 	ret = resolve_pseudo_ldimm64(env);
24702 	if (ret < 0)
24703 		goto skip_full_check;
24704 
24705 	if (bpf_prog_is_offloaded(env->prog->aux)) {
24706 		ret = bpf_prog_offload_verifier_prep(env->prog);
24707 		if (ret)
24708 			goto skip_full_check;
24709 	}
24710 
24711 	ret = check_cfg(env);
24712 	if (ret < 0)
24713 		goto skip_full_check;
24714 
24715 	ret = check_attach_btf_id(env);
24716 	if (ret)
24717 		goto skip_full_check;
24718 
24719 	ret = compute_scc(env);
24720 	if (ret < 0)
24721 		goto skip_full_check;
24722 
24723 	ret = compute_live_registers(env);
24724 	if (ret < 0)
24725 		goto skip_full_check;
24726 
24727 	ret = mark_fastcall_patterns(env);
24728 	if (ret < 0)
24729 		goto skip_full_check;
24730 
24731 	ret = do_check_main(env);
24732 	ret = ret ?: do_check_subprogs(env);
24733 
24734 	if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
24735 		ret = bpf_prog_offload_finalize(env);
24736 
24737 skip_full_check:
24738 	kvfree(env->explored_states);
24739 
24740 	/* might decrease stack depth, keep it before passes that
24741 	 * allocate additional slots.
24742 	 */
24743 	if (ret == 0)
24744 		ret = remove_fastcall_spills_fills(env);
24745 
24746 	if (ret == 0)
24747 		ret = check_max_stack_depth(env);
24748 
24749 	/* instruction rewrites happen after this point */
24750 	if (ret == 0)
24751 		ret = optimize_bpf_loop(env);
24752 
24753 	if (is_priv) {
24754 		if (ret == 0)
24755 			opt_hard_wire_dead_code_branches(env);
24756 		if (ret == 0)
24757 			ret = opt_remove_dead_code(env);
24758 		if (ret == 0)
24759 			ret = opt_remove_nops(env);
24760 	} else {
24761 		if (ret == 0)
24762 			sanitize_dead_code(env);
24763 	}
24764 
24765 	if (ret == 0)
24766 		/* program is valid, convert *(u32*)(ctx + off) accesses */
24767 		ret = convert_ctx_accesses(env);
24768 
24769 	if (ret == 0)
24770 		ret = do_misc_fixups(env);
24771 
24772 	/* do 32-bit optimization after insn patching has done so those patched
24773 	 * insns could be handled correctly.
24774 	 */
24775 	if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
24776 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
24777 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
24778 								     : false;
24779 	}
24780 
24781 	if (ret == 0)
24782 		ret = fixup_call_args(env);
24783 
24784 	env->verification_time = ktime_get_ns() - start_time;
24785 	print_verification_stats(env);
24786 	env->prog->aux->verified_insns = env->insn_processed;
24787 
24788 	/* preserve original error even if log finalization is successful */
24789 	err = bpf_vlog_finalize(&env->log, &log_true_size);
24790 	if (err)
24791 		ret = err;
24792 
24793 	if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
24794 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
24795 				  &log_true_size, sizeof(log_true_size))) {
24796 		ret = -EFAULT;
24797 		goto err_release_maps;
24798 	}
24799 
24800 	if (ret)
24801 		goto err_release_maps;
24802 
24803 	if (env->used_map_cnt) {
24804 		/* if program passed verifier, update used_maps in bpf_prog_info */
24805 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
24806 							  sizeof(env->used_maps[0]),
24807 							  GFP_KERNEL_ACCOUNT);
24808 
24809 		if (!env->prog->aux->used_maps) {
24810 			ret = -ENOMEM;
24811 			goto err_release_maps;
24812 		}
24813 
24814 		memcpy(env->prog->aux->used_maps, env->used_maps,
24815 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
24816 		env->prog->aux->used_map_cnt = env->used_map_cnt;
24817 	}
24818 	if (env->used_btf_cnt) {
24819 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
24820 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
24821 							  sizeof(env->used_btfs[0]),
24822 							  GFP_KERNEL_ACCOUNT);
24823 		if (!env->prog->aux->used_btfs) {
24824 			ret = -ENOMEM;
24825 			goto err_release_maps;
24826 		}
24827 
24828 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
24829 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
24830 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
24831 	}
24832 	if (env->used_map_cnt || env->used_btf_cnt) {
24833 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
24834 		 * bpf_ld_imm64 instructions
24835 		 */
24836 		convert_pseudo_ld_imm64(env);
24837 	}
24838 
24839 	adjust_btf_func(env);
24840 
24841 err_release_maps:
24842 	if (!env->prog->aux->used_maps)
24843 		/* if we didn't copy map pointers into bpf_prog_info, release
24844 		 * them now. Otherwise free_used_maps() will release them.
24845 		 */
24846 		release_maps(env);
24847 	if (!env->prog->aux->used_btfs)
24848 		release_btfs(env);
24849 
24850 	/* extension progs temporarily inherit the attach_type of their targets
24851 	   for verification purposes, so set it back to zero before returning
24852 	 */
24853 	if (env->prog->type == BPF_PROG_TYPE_EXT)
24854 		env->prog->expected_attach_type = 0;
24855 
24856 	*prog = env->prog;
24857 
24858 	module_put(env->attach_btf_mod);
24859 err_unlock:
24860 	if (!is_priv)
24861 		mutex_unlock(&bpf_verifier_lock);
24862 	vfree(env->insn_aux_data);
24863 err_free_env:
24864 	kvfree(env->cfg.insn_postorder);
24865 	kvfree(env->scc_info);
24866 	kvfree(env);
24867 	return ret;
24868 }
24869