xref: /linux/kernel/cgroup/cgroup.c (revision 05950213a9717dc8d83ba90538a87b7a9e140ff8)
1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/bpf-cgroup.h>
34 #include <linux/cred.h>
35 #include <linux/errno.h>
36 #include <linux/init_task.h>
37 #include <linux/kernel.h>
38 #include <linux/magic.h>
39 #include <linux/mutex.h>
40 #include <linux/mount.h>
41 #include <linux/pagemap.h>
42 #include <linux/proc_fs.h>
43 #include <linux/rcupdate.h>
44 #include <linux/sched.h>
45 #include <linux/sched/task.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/hashtable.h>
51 #include <linux/idr.h>
52 #include <linux/kthread.h>
53 #include <linux/atomic.h>
54 #include <linux/cpuset.h>
55 #include <linux/proc_ns.h>
56 #include <linux/nsproxy.h>
57 #include <linux/file.h>
58 #include <linux/fs_parser.h>
59 #include <linux/sched/cputime.h>
60 #include <linux/sched/deadline.h>
61 #include <linux/psi.h>
62 #include <net/sock.h>
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/cgroup.h>
66 
67 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
68 					 MAX_CFTYPE_NAME + 2)
69 /* let's not notify more than 100 times per second */
70 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
71 
72 /*
73  * To avoid confusing the compiler (and generating warnings) with code
74  * that attempts to access what would be a 0-element array (i.e. sized
75  * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this
76  * constant expression can be added.
77  */
78 #define CGROUP_HAS_SUBSYS_CONFIG	(CGROUP_SUBSYS_COUNT > 0)
79 
80 /*
81  * cgroup_mutex is the master lock.  Any modification to cgroup or its
82  * hierarchy must be performed while holding it.
83  *
84  * css_set_lock protects task->cgroups pointer, the list of css_set
85  * objects, and the chain of tasks off each css_set.
86  *
87  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
88  * cgroup.h can use them for lockdep annotations.
89  */
90 DEFINE_MUTEX(cgroup_mutex);
91 DEFINE_SPINLOCK(css_set_lock);
92 
93 #if (defined CONFIG_PROVE_RCU || defined CONFIG_LOCKDEP)
94 EXPORT_SYMBOL_GPL(cgroup_mutex);
95 EXPORT_SYMBOL_GPL(css_set_lock);
96 #endif
97 
98 struct blocking_notifier_head cgroup_lifetime_notifier =
99 	BLOCKING_NOTIFIER_INIT(cgroup_lifetime_notifier);
100 
101 DEFINE_SPINLOCK(trace_cgroup_path_lock);
102 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
103 static bool cgroup_debug __read_mostly;
104 
105 /*
106  * Protects cgroup_idr and css_idr so that IDs can be released without
107  * grabbing cgroup_mutex.
108  */
109 static DEFINE_SPINLOCK(cgroup_idr_lock);
110 
111 /*
112  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
113  * against file removal/re-creation across css hiding.
114  */
115 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
116 
117 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
118 
119 #define cgroup_assert_mutex_or_rcu_locked()				\
120 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
121 			   !lockdep_is_held(&cgroup_mutex),		\
122 			   "cgroup_mutex or RCU read lock required");
123 
124 /*
125  * cgroup destruction makes heavy use of work items and there can be a lot
126  * of concurrent destructions.  Use a separate workqueue so that cgroup
127  * destruction work items don't end up filling up max_active of system_wq
128  * which may lead to deadlock.
129  *
130  * A cgroup destruction should enqueue work sequentially to:
131  * cgroup_offline_wq: use for css offline work
132  * cgroup_release_wq: use for css release work
133  * cgroup_free_wq: use for free work
134  *
135  * Rationale for using separate workqueues:
136  * The cgroup root free work may depend on completion of other css offline
137  * operations. If all tasks were enqueued to a single workqueue, this could
138  * create a deadlock scenario where:
139  * - Free work waits for other css offline work to complete.
140  * - But other css offline work is queued after free work in the same queue.
141  *
142  * Example deadlock scenario with single workqueue (cgroup_destroy_wq):
143  * 1. umount net_prio
144  * 2. net_prio root destruction enqueues work to cgroup_destroy_wq (CPUx)
145  * 3. perf_event CSS A offline enqueues work to same cgroup_destroy_wq (CPUx)
146  * 4. net_prio cgroup_destroy_root->cgroup_lock_and_drain_offline.
147  * 5. net_prio root destruction blocks waiting for perf_event CSS A offline,
148  *    which can never complete as it's behind in the same queue and
149  *    workqueue's max_active is 1.
150  */
151 static struct workqueue_struct *cgroup_offline_wq;
152 static struct workqueue_struct *cgroup_release_wq;
153 static struct workqueue_struct *cgroup_free_wq;
154 
155 /* generate an array of cgroup subsystem pointers */
156 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
157 struct cgroup_subsys *cgroup_subsys[] = {
158 #include <linux/cgroup_subsys.h>
159 };
160 #undef SUBSYS
161 
162 /* array of cgroup subsystem names */
163 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
164 static const char *cgroup_subsys_name[] = {
165 #include <linux/cgroup_subsys.h>
166 };
167 #undef SUBSYS
168 
169 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
170 #define SUBSYS(_x)								\
171 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
172 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
173 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
174 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
175 #include <linux/cgroup_subsys.h>
176 #undef SUBSYS
177 
178 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
179 static struct static_key_true *cgroup_subsys_enabled_key[] = {
180 #include <linux/cgroup_subsys.h>
181 };
182 #undef SUBSYS
183 
184 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
185 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
186 #include <linux/cgroup_subsys.h>
187 };
188 #undef SUBSYS
189 
190 static DEFINE_PER_CPU(struct css_rstat_cpu, root_rstat_cpu);
191 static DEFINE_PER_CPU(struct cgroup_rstat_base_cpu, root_rstat_base_cpu);
192 
193 /* the default hierarchy */
194 struct cgroup_root cgrp_dfl_root = {
195 	.cgrp.self.rstat_cpu = &root_rstat_cpu,
196 	.cgrp.rstat_base_cpu = &root_rstat_base_cpu,
197 };
198 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
199 
200 /*
201  * The default hierarchy always exists but is hidden until mounted for the
202  * first time.  This is for backward compatibility.
203  */
204 bool cgrp_dfl_visible;
205 
206 /* some controllers are not supported in the default hierarchy */
207 static u16 cgrp_dfl_inhibit_ss_mask;
208 
209 /* some controllers are implicitly enabled on the default hierarchy */
210 static u16 cgrp_dfl_implicit_ss_mask;
211 
212 /* some controllers can be threaded on the default hierarchy */
213 static u16 cgrp_dfl_threaded_ss_mask;
214 
215 /* The list of hierarchy roots */
216 LIST_HEAD(cgroup_roots);
217 static int cgroup_root_count;
218 
219 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
220 static DEFINE_IDR(cgroup_hierarchy_idr);
221 
222 /*
223  * Assign a monotonically increasing serial number to csses.  It guarantees
224  * cgroups with bigger numbers are newer than those with smaller numbers.
225  * Also, as csses are always appended to the parent's ->children list, it
226  * guarantees that sibling csses are always sorted in the ascending serial
227  * number order on the list.  Protected by cgroup_mutex.
228  */
229 static u64 css_serial_nr_next = 1;
230 
231 /*
232  * These bitmasks identify subsystems with specific features to avoid
233  * having to do iterative checks repeatedly.
234  */
235 static u16 have_fork_callback __read_mostly;
236 static u16 have_exit_callback __read_mostly;
237 static u16 have_release_callback __read_mostly;
238 static u16 have_canfork_callback __read_mostly;
239 
240 static bool have_favordynmods __ro_after_init = IS_ENABLED(CONFIG_CGROUP_FAVOR_DYNMODS);
241 
242 /* cgroup namespace for init task */
243 struct cgroup_namespace init_cgroup_ns = {
244 	.ns.count	= REFCOUNT_INIT(2),
245 	.user_ns	= &init_user_ns,
246 	.ns.ops		= &cgroupns_operations,
247 	.ns.inum	= PROC_CGROUP_INIT_INO,
248 	.root_cset	= &init_css_set,
249 };
250 
251 static struct file_system_type cgroup2_fs_type;
252 static struct cftype cgroup_base_files[];
253 static struct cftype cgroup_psi_files[];
254 
255 /* cgroup optional features */
256 enum cgroup_opt_features {
257 #ifdef CONFIG_PSI
258 	OPT_FEATURE_PRESSURE,
259 #endif
260 	OPT_FEATURE_COUNT
261 };
262 
263 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
264 #ifdef CONFIG_PSI
265 	"pressure",
266 #endif
267 };
268 
269 static u16 cgroup_feature_disable_mask __read_mostly;
270 
271 static int cgroup_apply_control(struct cgroup *cgrp);
272 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
273 static void css_task_iter_skip(struct css_task_iter *it,
274 			       struct task_struct *task);
275 static int cgroup_destroy_locked(struct cgroup *cgrp);
276 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
277 					      struct cgroup_subsys *ss);
278 static void css_release(struct percpu_ref *ref);
279 static void kill_css(struct cgroup_subsys_state *css);
280 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
281 			      struct cgroup *cgrp, struct cftype cfts[],
282 			      bool is_add);
283 
284 #ifdef CONFIG_DEBUG_CGROUP_REF
285 #define CGROUP_REF_FN_ATTRS	noinline
286 #define CGROUP_REF_EXPORT(fn)	EXPORT_SYMBOL_GPL(fn);
287 #include <linux/cgroup_refcnt.h>
288 #endif
289 
290 /**
291  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
292  * @ssid: subsys ID of interest
293  *
294  * cgroup_subsys_enabled() can only be used with literal subsys names which
295  * is fine for individual subsystems but unsuitable for cgroup core.  This
296  * is slower static_key_enabled() based test indexed by @ssid.
297  */
cgroup_ssid_enabled(int ssid)298 bool cgroup_ssid_enabled(int ssid)
299 {
300 	if (!CGROUP_HAS_SUBSYS_CONFIG)
301 		return false;
302 
303 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
304 }
305 
306 /**
307  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
308  * @cgrp: the cgroup of interest
309  *
310  * The default hierarchy is the v2 interface of cgroup and this function
311  * can be used to test whether a cgroup is on the default hierarchy for
312  * cases where a subsystem should behave differently depending on the
313  * interface version.
314  *
315  * List of changed behaviors:
316  *
317  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
318  *   and "name" are disallowed.
319  *
320  * - When mounting an existing superblock, mount options should match.
321  *
322  * - rename(2) is disallowed.
323  *
324  * - "tasks" is removed.  Everything should be at process granularity.  Use
325  *   "cgroup.procs" instead.
326  *
327  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
328  *   recycled in-between reads.
329  *
330  * - "release_agent" and "notify_on_release" are removed.  Replacement
331  *   notification mechanism will be implemented.
332  *
333  * - "cgroup.clone_children" is removed.
334  *
335  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
336  *   and its descendants contain no task; otherwise, 1.  The file also
337  *   generates kernfs notification which can be monitored through poll and
338  *   [di]notify when the value of the file changes.
339  *
340  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
341  *   take masks of ancestors with non-empty cpus/mems, instead of being
342  *   moved to an ancestor.
343  *
344  * - cpuset: a task can be moved into an empty cpuset, and again it takes
345  *   masks of ancestors.
346  *
347  * - blkcg: blk-throttle becomes properly hierarchical.
348  */
cgroup_on_dfl(const struct cgroup * cgrp)349 bool cgroup_on_dfl(const struct cgroup *cgrp)
350 {
351 	return cgrp->root == &cgrp_dfl_root;
352 }
353 
354 /* IDR wrappers which synchronize using cgroup_idr_lock */
cgroup_idr_alloc(struct idr * idr,void * ptr,int start,int end,gfp_t gfp_mask)355 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
356 			    gfp_t gfp_mask)
357 {
358 	int ret;
359 
360 	idr_preload(gfp_mask);
361 	spin_lock_bh(&cgroup_idr_lock);
362 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
363 	spin_unlock_bh(&cgroup_idr_lock);
364 	idr_preload_end();
365 	return ret;
366 }
367 
cgroup_idr_replace(struct idr * idr,void * ptr,int id)368 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
369 {
370 	void *ret;
371 
372 	spin_lock_bh(&cgroup_idr_lock);
373 	ret = idr_replace(idr, ptr, id);
374 	spin_unlock_bh(&cgroup_idr_lock);
375 	return ret;
376 }
377 
cgroup_idr_remove(struct idr * idr,int id)378 static void cgroup_idr_remove(struct idr *idr, int id)
379 {
380 	spin_lock_bh(&cgroup_idr_lock);
381 	idr_remove(idr, id);
382 	spin_unlock_bh(&cgroup_idr_lock);
383 }
384 
cgroup_has_tasks(struct cgroup * cgrp)385 static bool cgroup_has_tasks(struct cgroup *cgrp)
386 {
387 	return cgrp->nr_populated_csets;
388 }
389 
cgroup_is_threaded(struct cgroup * cgrp)390 static bool cgroup_is_threaded(struct cgroup *cgrp)
391 {
392 	return cgrp->dom_cgrp != cgrp;
393 }
394 
395 /* can @cgrp host both domain and threaded children? */
cgroup_is_mixable(struct cgroup * cgrp)396 static bool cgroup_is_mixable(struct cgroup *cgrp)
397 {
398 	/*
399 	 * Root isn't under domain level resource control exempting it from
400 	 * the no-internal-process constraint, so it can serve as a thread
401 	 * root and a parent of resource domains at the same time.
402 	 */
403 	return !cgroup_parent(cgrp);
404 }
405 
406 /* can @cgrp become a thread root? Should always be true for a thread root */
cgroup_can_be_thread_root(struct cgroup * cgrp)407 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
408 {
409 	/* mixables don't care */
410 	if (cgroup_is_mixable(cgrp))
411 		return true;
412 
413 	/* domain roots can't be nested under threaded */
414 	if (cgroup_is_threaded(cgrp))
415 		return false;
416 
417 	/* can only have either domain or threaded children */
418 	if (cgrp->nr_populated_domain_children)
419 		return false;
420 
421 	/* and no domain controllers can be enabled */
422 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
423 		return false;
424 
425 	return true;
426 }
427 
428 /* is @cgrp root of a threaded subtree? */
cgroup_is_thread_root(struct cgroup * cgrp)429 static bool cgroup_is_thread_root(struct cgroup *cgrp)
430 {
431 	/* thread root should be a domain */
432 	if (cgroup_is_threaded(cgrp))
433 		return false;
434 
435 	/* a domain w/ threaded children is a thread root */
436 	if (cgrp->nr_threaded_children)
437 		return true;
438 
439 	/*
440 	 * A domain which has tasks and explicit threaded controllers
441 	 * enabled is a thread root.
442 	 */
443 	if (cgroup_has_tasks(cgrp) &&
444 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
445 		return true;
446 
447 	return false;
448 }
449 
450 /* a domain which isn't connected to the root w/o brekage can't be used */
cgroup_is_valid_domain(struct cgroup * cgrp)451 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
452 {
453 	/* the cgroup itself can be a thread root */
454 	if (cgroup_is_threaded(cgrp))
455 		return false;
456 
457 	/* but the ancestors can't be unless mixable */
458 	while ((cgrp = cgroup_parent(cgrp))) {
459 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
460 			return false;
461 		if (cgroup_is_threaded(cgrp))
462 			return false;
463 	}
464 
465 	return true;
466 }
467 
468 /* subsystems visibly enabled on a cgroup */
cgroup_control(struct cgroup * cgrp)469 static u16 cgroup_control(struct cgroup *cgrp)
470 {
471 	struct cgroup *parent = cgroup_parent(cgrp);
472 	u16 root_ss_mask = cgrp->root->subsys_mask;
473 
474 	if (parent) {
475 		u16 ss_mask = parent->subtree_control;
476 
477 		/* threaded cgroups can only have threaded controllers */
478 		if (cgroup_is_threaded(cgrp))
479 			ss_mask &= cgrp_dfl_threaded_ss_mask;
480 		return ss_mask;
481 	}
482 
483 	if (cgroup_on_dfl(cgrp))
484 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
485 				  cgrp_dfl_implicit_ss_mask);
486 	return root_ss_mask;
487 }
488 
489 /* subsystems enabled on a cgroup */
cgroup_ss_mask(struct cgroup * cgrp)490 static u16 cgroup_ss_mask(struct cgroup *cgrp)
491 {
492 	struct cgroup *parent = cgroup_parent(cgrp);
493 
494 	if (parent) {
495 		u16 ss_mask = parent->subtree_ss_mask;
496 
497 		/* threaded cgroups can only have threaded controllers */
498 		if (cgroup_is_threaded(cgrp))
499 			ss_mask &= cgrp_dfl_threaded_ss_mask;
500 		return ss_mask;
501 	}
502 
503 	return cgrp->root->subsys_mask;
504 }
505 
506 /**
507  * cgroup_css - obtain a cgroup's css for the specified subsystem
508  * @cgrp: the cgroup of interest
509  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
510  *
511  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
512  * function must be called either under cgroup_mutex or rcu_read_lock() and
513  * the caller is responsible for pinning the returned css if it wants to
514  * keep accessing it outside the said locks.  This function may return
515  * %NULL if @cgrp doesn't have @subsys_id enabled.
516  */
cgroup_css(struct cgroup * cgrp,struct cgroup_subsys * ss)517 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
518 					      struct cgroup_subsys *ss)
519 {
520 	if (CGROUP_HAS_SUBSYS_CONFIG && ss)
521 		return rcu_dereference_check(cgrp->subsys[ss->id],
522 					lockdep_is_held(&cgroup_mutex));
523 	else
524 		return &cgrp->self;
525 }
526 
527 /**
528  * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
529  * @cgrp: the cgroup of interest
530  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
531  *
532  * Similar to cgroup_css() but returns the effective css, which is defined
533  * as the matching css of the nearest ancestor including self which has @ss
534  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
535  * function is guaranteed to return non-NULL css.
536  */
cgroup_e_css_by_mask(struct cgroup * cgrp,struct cgroup_subsys * ss)537 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
538 							struct cgroup_subsys *ss)
539 {
540 	lockdep_assert_held(&cgroup_mutex);
541 
542 	if (!ss)
543 		return &cgrp->self;
544 
545 	/*
546 	 * This function is used while updating css associations and thus
547 	 * can't test the csses directly.  Test ss_mask.
548 	 */
549 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
550 		cgrp = cgroup_parent(cgrp);
551 		if (!cgrp)
552 			return NULL;
553 	}
554 
555 	return cgroup_css(cgrp, ss);
556 }
557 
558 /**
559  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
560  * @cgrp: the cgroup of interest
561  * @ss: the subsystem of interest
562  *
563  * Find and get the effective css of @cgrp for @ss.  The effective css is
564  * defined as the matching css of the nearest ancestor including self which
565  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
566  * the root css is returned, so this function always returns a valid css.
567  *
568  * The returned css is not guaranteed to be online, and therefore it is the
569  * callers responsibility to try get a reference for it.
570  */
cgroup_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)571 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
572 					 struct cgroup_subsys *ss)
573 {
574 	struct cgroup_subsys_state *css;
575 
576 	if (!CGROUP_HAS_SUBSYS_CONFIG)
577 		return NULL;
578 
579 	do {
580 		css = cgroup_css(cgrp, ss);
581 
582 		if (css)
583 			return css;
584 		cgrp = cgroup_parent(cgrp);
585 	} while (cgrp);
586 
587 	return init_css_set.subsys[ss->id];
588 }
589 
590 /**
591  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
592  * @cgrp: the cgroup of interest
593  * @ss: the subsystem of interest
594  *
595  * Find and get the effective css of @cgrp for @ss.  The effective css is
596  * defined as the matching css of the nearest ancestor including self which
597  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
598  * the root css is returned, so this function always returns a valid css.
599  * The returned css must be put using css_put().
600  */
cgroup_get_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)601 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
602 					     struct cgroup_subsys *ss)
603 {
604 	struct cgroup_subsys_state *css;
605 
606 	if (!CGROUP_HAS_SUBSYS_CONFIG)
607 		return NULL;
608 
609 	rcu_read_lock();
610 
611 	do {
612 		css = cgroup_css(cgrp, ss);
613 
614 		if (css && css_tryget_online(css))
615 			goto out_unlock;
616 		cgrp = cgroup_parent(cgrp);
617 	} while (cgrp);
618 
619 	css = init_css_set.subsys[ss->id];
620 	css_get(css);
621 out_unlock:
622 	rcu_read_unlock();
623 	return css;
624 }
625 EXPORT_SYMBOL_GPL(cgroup_get_e_css);
626 
cgroup_get_live(struct cgroup * cgrp)627 static void cgroup_get_live(struct cgroup *cgrp)
628 {
629 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
630 	cgroup_get(cgrp);
631 }
632 
633 /**
634  * __cgroup_task_count - count the number of tasks in a cgroup. The caller
635  * is responsible for taking the css_set_lock.
636  * @cgrp: the cgroup in question
637  */
__cgroup_task_count(const struct cgroup * cgrp)638 int __cgroup_task_count(const struct cgroup *cgrp)
639 {
640 	int count = 0;
641 	struct cgrp_cset_link *link;
642 
643 	lockdep_assert_held(&css_set_lock);
644 
645 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
646 		count += link->cset->nr_tasks;
647 
648 	return count;
649 }
650 
651 /**
652  * cgroup_task_count - count the number of tasks in a cgroup.
653  * @cgrp: the cgroup in question
654  */
cgroup_task_count(const struct cgroup * cgrp)655 int cgroup_task_count(const struct cgroup *cgrp)
656 {
657 	int count;
658 
659 	spin_lock_irq(&css_set_lock);
660 	count = __cgroup_task_count(cgrp);
661 	spin_unlock_irq(&css_set_lock);
662 
663 	return count;
664 }
665 
kn_priv(struct kernfs_node * kn)666 static struct cgroup *kn_priv(struct kernfs_node *kn)
667 {
668 	struct kernfs_node *parent;
669 	/*
670 	 * The parent can not be replaced due to KERNFS_ROOT_INVARIANT_PARENT.
671 	 * Therefore it is always safe to dereference this pointer outside of a
672 	 * RCU section.
673 	 */
674 	parent = rcu_dereference_check(kn->__parent,
675 				       kernfs_root_flags(kn) & KERNFS_ROOT_INVARIANT_PARENT);
676 	return parent->priv;
677 }
678 
of_css(struct kernfs_open_file * of)679 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
680 {
681 	struct cgroup *cgrp = kn_priv(of->kn);
682 	struct cftype *cft = of_cft(of);
683 
684 	/*
685 	 * This is open and unprotected implementation of cgroup_css().
686 	 * seq_css() is only called from a kernfs file operation which has
687 	 * an active reference on the file.  Because all the subsystem
688 	 * files are drained before a css is disassociated with a cgroup,
689 	 * the matching css from the cgroup's subsys table is guaranteed to
690 	 * be and stay valid until the enclosing operation is complete.
691 	 */
692 	if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss)
693 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
694 	else
695 		return &cgrp->self;
696 }
697 EXPORT_SYMBOL_GPL(of_css);
698 
699 /**
700  * for_each_css - iterate all css's of a cgroup
701  * @css: the iteration cursor
702  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
703  * @cgrp: the target cgroup to iterate css's of
704  *
705  * Should be called under cgroup_mutex.
706  */
707 #define for_each_css(css, ssid, cgrp)					\
708 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
709 		if (!((css) = rcu_dereference_check(			\
710 				(cgrp)->subsys[(ssid)],			\
711 				lockdep_is_held(&cgroup_mutex)))) { }	\
712 		else
713 
714 /**
715  * do_each_subsys_mask - filter for_each_subsys with a bitmask
716  * @ss: the iteration cursor
717  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
718  * @ss_mask: the bitmask
719  *
720  * The block will only run for cases where the ssid-th bit (1 << ssid) of
721  * @ss_mask is set.
722  */
723 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
724 	unsigned long __ss_mask = (ss_mask);				\
725 	if (!CGROUP_HAS_SUBSYS_CONFIG) {				\
726 		(ssid) = 0;						\
727 		break;							\
728 	}								\
729 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
730 		(ss) = cgroup_subsys[ssid];				\
731 		{
732 
733 #define while_each_subsys_mask()					\
734 		}							\
735 	}								\
736 } while (false)
737 
738 /* iterate over child cgrps, lock should be held throughout iteration */
739 #define cgroup_for_each_live_child(child, cgrp)				\
740 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
741 		if (({ lockdep_assert_held(&cgroup_mutex);		\
742 		       cgroup_is_dead(child); }))			\
743 			;						\
744 		else
745 
746 /* walk live descendants in pre order */
747 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
748 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
749 		if (({ lockdep_assert_held(&cgroup_mutex);		\
750 		       (dsct) = (d_css)->cgroup;			\
751 		       cgroup_is_dead(dsct); }))			\
752 			;						\
753 		else
754 
755 /* walk live descendants in postorder */
756 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
757 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
758 		if (({ lockdep_assert_held(&cgroup_mutex);		\
759 		       (dsct) = (d_css)->cgroup;			\
760 		       cgroup_is_dead(dsct); }))			\
761 			;						\
762 		else
763 
764 /*
765  * The default css_set - used by init and its children prior to any
766  * hierarchies being mounted. It contains a pointer to the root state
767  * for each subsystem. Also used to anchor the list of css_sets. Not
768  * reference-counted, to improve performance when child cgroups
769  * haven't been created.
770  */
771 struct css_set init_css_set = {
772 	.refcount		= REFCOUNT_INIT(1),
773 	.dom_cset		= &init_css_set,
774 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
775 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
776 	.dying_tasks		= LIST_HEAD_INIT(init_css_set.dying_tasks),
777 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
778 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
779 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
780 	.mg_src_preload_node	= LIST_HEAD_INIT(init_css_set.mg_src_preload_node),
781 	.mg_dst_preload_node	= LIST_HEAD_INIT(init_css_set.mg_dst_preload_node),
782 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
783 
784 	/*
785 	 * The following field is re-initialized when this cset gets linked
786 	 * in cgroup_init().  However, let's initialize the field
787 	 * statically too so that the default cgroup can be accessed safely
788 	 * early during boot.
789 	 */
790 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
791 };
792 
793 static int css_set_count	= 1;	/* 1 for init_css_set */
794 
css_set_threaded(struct css_set * cset)795 static bool css_set_threaded(struct css_set *cset)
796 {
797 	return cset->dom_cset != cset;
798 }
799 
800 /**
801  * css_set_populated - does a css_set contain any tasks?
802  * @cset: target css_set
803  *
804  * css_set_populated() should be the same as !!cset->nr_tasks at steady
805  * state. However, css_set_populated() can be called while a task is being
806  * added to or removed from the linked list before the nr_tasks is
807  * properly updated. Hence, we can't just look at ->nr_tasks here.
808  */
css_set_populated(struct css_set * cset)809 static bool css_set_populated(struct css_set *cset)
810 {
811 	lockdep_assert_held(&css_set_lock);
812 
813 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
814 }
815 
816 /**
817  * cgroup_update_populated - update the populated count of a cgroup
818  * @cgrp: the target cgroup
819  * @populated: inc or dec populated count
820  *
821  * One of the css_sets associated with @cgrp is either getting its first
822  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
823  * count is propagated towards root so that a given cgroup's
824  * nr_populated_children is zero iff none of its descendants contain any
825  * tasks.
826  *
827  * @cgrp's interface file "cgroup.populated" is zero if both
828  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
829  * 1 otherwise.  When the sum changes from or to zero, userland is notified
830  * that the content of the interface file has changed.  This can be used to
831  * detect when @cgrp and its descendants become populated or empty.
832  */
cgroup_update_populated(struct cgroup * cgrp,bool populated)833 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
834 {
835 	struct cgroup *child = NULL;
836 	int adj = populated ? 1 : -1;
837 
838 	lockdep_assert_held(&css_set_lock);
839 
840 	do {
841 		bool was_populated = cgroup_is_populated(cgrp);
842 
843 		if (!child) {
844 			cgrp->nr_populated_csets += adj;
845 		} else {
846 			if (cgroup_is_threaded(child))
847 				cgrp->nr_populated_threaded_children += adj;
848 			else
849 				cgrp->nr_populated_domain_children += adj;
850 		}
851 
852 		if (was_populated == cgroup_is_populated(cgrp))
853 			break;
854 
855 		cgroup1_check_for_release(cgrp);
856 		TRACE_CGROUP_PATH(notify_populated, cgrp,
857 				  cgroup_is_populated(cgrp));
858 		cgroup_file_notify(&cgrp->events_file);
859 
860 		child = cgrp;
861 		cgrp = cgroup_parent(cgrp);
862 	} while (cgrp);
863 }
864 
865 /**
866  * css_set_update_populated - update populated state of a css_set
867  * @cset: target css_set
868  * @populated: whether @cset is populated or depopulated
869  *
870  * @cset is either getting the first task or losing the last.  Update the
871  * populated counters of all associated cgroups accordingly.
872  */
css_set_update_populated(struct css_set * cset,bool populated)873 static void css_set_update_populated(struct css_set *cset, bool populated)
874 {
875 	struct cgrp_cset_link *link;
876 
877 	lockdep_assert_held(&css_set_lock);
878 
879 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
880 		cgroup_update_populated(link->cgrp, populated);
881 }
882 
883 /*
884  * @task is leaving, advance task iterators which are pointing to it so
885  * that they can resume at the next position.  Advancing an iterator might
886  * remove it from the list, use safe walk.  See css_task_iter_skip() for
887  * details.
888  */
css_set_skip_task_iters(struct css_set * cset,struct task_struct * task)889 static void css_set_skip_task_iters(struct css_set *cset,
890 				    struct task_struct *task)
891 {
892 	struct css_task_iter *it, *pos;
893 
894 	list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
895 		css_task_iter_skip(it, task);
896 }
897 
898 /**
899  * css_set_move_task - move a task from one css_set to another
900  * @task: task being moved
901  * @from_cset: css_set @task currently belongs to (may be NULL)
902  * @to_cset: new css_set @task is being moved to (may be NULL)
903  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
904  *
905  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
906  * css_set, @from_cset can be NULL.  If @task is being disassociated
907  * instead of moved, @to_cset can be NULL.
908  *
909  * This function automatically handles populated counter updates and
910  * css_task_iter adjustments but the caller is responsible for managing
911  * @from_cset and @to_cset's reference counts.
912  */
css_set_move_task(struct task_struct * task,struct css_set * from_cset,struct css_set * to_cset,bool use_mg_tasks)913 static void css_set_move_task(struct task_struct *task,
914 			      struct css_set *from_cset, struct css_set *to_cset,
915 			      bool use_mg_tasks)
916 {
917 	lockdep_assert_held(&css_set_lock);
918 
919 	if (to_cset && !css_set_populated(to_cset))
920 		css_set_update_populated(to_cset, true);
921 
922 	if (from_cset) {
923 		WARN_ON_ONCE(list_empty(&task->cg_list));
924 
925 		css_set_skip_task_iters(from_cset, task);
926 		list_del_init(&task->cg_list);
927 		if (!css_set_populated(from_cset))
928 			css_set_update_populated(from_cset, false);
929 	} else {
930 		WARN_ON_ONCE(!list_empty(&task->cg_list));
931 	}
932 
933 	if (to_cset) {
934 		/*
935 		 * We are synchronized through cgroup_threadgroup_rwsem
936 		 * against PF_EXITING setting such that we can't race
937 		 * against cgroup_exit()/cgroup_free() dropping the css_set.
938 		 */
939 		WARN_ON_ONCE(task->flags & PF_EXITING);
940 
941 		cgroup_move_task(task, to_cset);
942 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
943 							     &to_cset->tasks);
944 	}
945 }
946 
947 /*
948  * hash table for cgroup groups. This improves the performance to find
949  * an existing css_set. This hash doesn't (currently) take into
950  * account cgroups in empty hierarchies.
951  */
952 #define CSS_SET_HASH_BITS	7
953 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
954 
css_set_hash(struct cgroup_subsys_state ** css)955 static unsigned long css_set_hash(struct cgroup_subsys_state **css)
956 {
957 	unsigned long key = 0UL;
958 	struct cgroup_subsys *ss;
959 	int i;
960 
961 	for_each_subsys(ss, i)
962 		key += (unsigned long)css[i];
963 	key = (key >> 16) ^ key;
964 
965 	return key;
966 }
967 
put_css_set_locked(struct css_set * cset)968 void put_css_set_locked(struct css_set *cset)
969 {
970 	struct cgrp_cset_link *link, *tmp_link;
971 	struct cgroup_subsys *ss;
972 	int ssid;
973 
974 	lockdep_assert_held(&css_set_lock);
975 
976 	if (!refcount_dec_and_test(&cset->refcount))
977 		return;
978 
979 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
980 
981 	/* This css_set is dead. Unlink it and release cgroup and css refs */
982 	for_each_subsys(ss, ssid) {
983 		list_del(&cset->e_cset_node[ssid]);
984 		css_put(cset->subsys[ssid]);
985 	}
986 	hash_del(&cset->hlist);
987 	css_set_count--;
988 
989 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
990 		list_del(&link->cset_link);
991 		list_del(&link->cgrp_link);
992 		if (cgroup_parent(link->cgrp))
993 			cgroup_put(link->cgrp);
994 		kfree(link);
995 	}
996 
997 	if (css_set_threaded(cset)) {
998 		list_del(&cset->threaded_csets_node);
999 		put_css_set_locked(cset->dom_cset);
1000 	}
1001 
1002 	kfree_rcu(cset, rcu_head);
1003 }
1004 
1005 /**
1006  * compare_css_sets - helper function for find_existing_css_set().
1007  * @cset: candidate css_set being tested
1008  * @old_cset: existing css_set for a task
1009  * @new_cgrp: cgroup that's being entered by the task
1010  * @template: desired set of css pointers in css_set (pre-calculated)
1011  *
1012  * Returns true if "cset" matches "old_cset" except for the hierarchy
1013  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
1014  */
compare_css_sets(struct css_set * cset,struct css_set * old_cset,struct cgroup * new_cgrp,struct cgroup_subsys_state * template[])1015 static bool compare_css_sets(struct css_set *cset,
1016 			     struct css_set *old_cset,
1017 			     struct cgroup *new_cgrp,
1018 			     struct cgroup_subsys_state *template[])
1019 {
1020 	struct cgroup *new_dfl_cgrp;
1021 	struct list_head *l1, *l2;
1022 
1023 	/*
1024 	 * On the default hierarchy, there can be csets which are
1025 	 * associated with the same set of cgroups but different csses.
1026 	 * Let's first ensure that csses match.
1027 	 */
1028 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
1029 		return false;
1030 
1031 
1032 	/* @cset's domain should match the default cgroup's */
1033 	if (cgroup_on_dfl(new_cgrp))
1034 		new_dfl_cgrp = new_cgrp;
1035 	else
1036 		new_dfl_cgrp = old_cset->dfl_cgrp;
1037 
1038 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1039 		return false;
1040 
1041 	/*
1042 	 * Compare cgroup pointers in order to distinguish between
1043 	 * different cgroups in hierarchies.  As different cgroups may
1044 	 * share the same effective css, this comparison is always
1045 	 * necessary.
1046 	 */
1047 	l1 = &cset->cgrp_links;
1048 	l2 = &old_cset->cgrp_links;
1049 	while (1) {
1050 		struct cgrp_cset_link *link1, *link2;
1051 		struct cgroup *cgrp1, *cgrp2;
1052 
1053 		l1 = l1->next;
1054 		l2 = l2->next;
1055 		/* See if we reached the end - both lists are equal length. */
1056 		if (l1 == &cset->cgrp_links) {
1057 			BUG_ON(l2 != &old_cset->cgrp_links);
1058 			break;
1059 		} else {
1060 			BUG_ON(l2 == &old_cset->cgrp_links);
1061 		}
1062 		/* Locate the cgroups associated with these links. */
1063 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1064 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1065 		cgrp1 = link1->cgrp;
1066 		cgrp2 = link2->cgrp;
1067 		/* Hierarchies should be linked in the same order. */
1068 		BUG_ON(cgrp1->root != cgrp2->root);
1069 
1070 		/*
1071 		 * If this hierarchy is the hierarchy of the cgroup
1072 		 * that's changing, then we need to check that this
1073 		 * css_set points to the new cgroup; if it's any other
1074 		 * hierarchy, then this css_set should point to the
1075 		 * same cgroup as the old css_set.
1076 		 */
1077 		if (cgrp1->root == new_cgrp->root) {
1078 			if (cgrp1 != new_cgrp)
1079 				return false;
1080 		} else {
1081 			if (cgrp1 != cgrp2)
1082 				return false;
1083 		}
1084 	}
1085 	return true;
1086 }
1087 
1088 /**
1089  * find_existing_css_set - init css array and find the matching css_set
1090  * @old_cset: the css_set that we're using before the cgroup transition
1091  * @cgrp: the cgroup that we're moving into
1092  * @template: out param for the new set of csses, should be clear on entry
1093  */
find_existing_css_set(struct css_set * old_cset,struct cgroup * cgrp,struct cgroup_subsys_state ** template)1094 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1095 					struct cgroup *cgrp,
1096 					struct cgroup_subsys_state **template)
1097 {
1098 	struct cgroup_root *root = cgrp->root;
1099 	struct cgroup_subsys *ss;
1100 	struct css_set *cset;
1101 	unsigned long key;
1102 	int i;
1103 
1104 	/*
1105 	 * Build the set of subsystem state objects that we want to see in the
1106 	 * new css_set. While subsystems can change globally, the entries here
1107 	 * won't change, so no need for locking.
1108 	 */
1109 	for_each_subsys(ss, i) {
1110 		if (root->subsys_mask & (1UL << i)) {
1111 			/*
1112 			 * @ss is in this hierarchy, so we want the
1113 			 * effective css from @cgrp.
1114 			 */
1115 			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1116 		} else {
1117 			/*
1118 			 * @ss is not in this hierarchy, so we don't want
1119 			 * to change the css.
1120 			 */
1121 			template[i] = old_cset->subsys[i];
1122 		}
1123 	}
1124 
1125 	key = css_set_hash(template);
1126 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1127 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1128 			continue;
1129 
1130 		/* This css_set matches what we need */
1131 		return cset;
1132 	}
1133 
1134 	/* No existing cgroup group matched */
1135 	return NULL;
1136 }
1137 
free_cgrp_cset_links(struct list_head * links_to_free)1138 static void free_cgrp_cset_links(struct list_head *links_to_free)
1139 {
1140 	struct cgrp_cset_link *link, *tmp_link;
1141 
1142 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1143 		list_del(&link->cset_link);
1144 		kfree(link);
1145 	}
1146 }
1147 
1148 /**
1149  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1150  * @count: the number of links to allocate
1151  * @tmp_links: list_head the allocated links are put on
1152  *
1153  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1154  * through ->cset_link.  Returns 0 on success or -errno.
1155  */
allocate_cgrp_cset_links(int count,struct list_head * tmp_links)1156 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1157 {
1158 	struct cgrp_cset_link *link;
1159 	int i;
1160 
1161 	INIT_LIST_HEAD(tmp_links);
1162 
1163 	for (i = 0; i < count; i++) {
1164 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1165 		if (!link) {
1166 			free_cgrp_cset_links(tmp_links);
1167 			return -ENOMEM;
1168 		}
1169 		list_add(&link->cset_link, tmp_links);
1170 	}
1171 	return 0;
1172 }
1173 
1174 /**
1175  * link_css_set - a helper function to link a css_set to a cgroup
1176  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1177  * @cset: the css_set to be linked
1178  * @cgrp: the destination cgroup
1179  */
link_css_set(struct list_head * tmp_links,struct css_set * cset,struct cgroup * cgrp)1180 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1181 			 struct cgroup *cgrp)
1182 {
1183 	struct cgrp_cset_link *link;
1184 
1185 	BUG_ON(list_empty(tmp_links));
1186 
1187 	if (cgroup_on_dfl(cgrp))
1188 		cset->dfl_cgrp = cgrp;
1189 
1190 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1191 	link->cset = cset;
1192 	link->cgrp = cgrp;
1193 
1194 	/*
1195 	 * Always add links to the tail of the lists so that the lists are
1196 	 * in chronological order.
1197 	 */
1198 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1199 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1200 
1201 	if (cgroup_parent(cgrp))
1202 		cgroup_get_live(cgrp);
1203 }
1204 
1205 /**
1206  * find_css_set - return a new css_set with one cgroup updated
1207  * @old_cset: the baseline css_set
1208  * @cgrp: the cgroup to be updated
1209  *
1210  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1211  * substituted into the appropriate hierarchy.
1212  */
find_css_set(struct css_set * old_cset,struct cgroup * cgrp)1213 static struct css_set *find_css_set(struct css_set *old_cset,
1214 				    struct cgroup *cgrp)
1215 {
1216 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1217 	struct css_set *cset;
1218 	struct list_head tmp_links;
1219 	struct cgrp_cset_link *link;
1220 	struct cgroup_subsys *ss;
1221 	unsigned long key;
1222 	int ssid;
1223 
1224 	lockdep_assert_held(&cgroup_mutex);
1225 
1226 	/* First see if we already have a cgroup group that matches
1227 	 * the desired set */
1228 	spin_lock_irq(&css_set_lock);
1229 	cset = find_existing_css_set(old_cset, cgrp, template);
1230 	if (cset)
1231 		get_css_set(cset);
1232 	spin_unlock_irq(&css_set_lock);
1233 
1234 	if (cset)
1235 		return cset;
1236 
1237 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1238 	if (!cset)
1239 		return NULL;
1240 
1241 	/* Allocate all the cgrp_cset_link objects that we'll need */
1242 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1243 		kfree(cset);
1244 		return NULL;
1245 	}
1246 
1247 	refcount_set(&cset->refcount, 1);
1248 	cset->dom_cset = cset;
1249 	INIT_LIST_HEAD(&cset->tasks);
1250 	INIT_LIST_HEAD(&cset->mg_tasks);
1251 	INIT_LIST_HEAD(&cset->dying_tasks);
1252 	INIT_LIST_HEAD(&cset->task_iters);
1253 	INIT_LIST_HEAD(&cset->threaded_csets);
1254 	INIT_HLIST_NODE(&cset->hlist);
1255 	INIT_LIST_HEAD(&cset->cgrp_links);
1256 	INIT_LIST_HEAD(&cset->mg_src_preload_node);
1257 	INIT_LIST_HEAD(&cset->mg_dst_preload_node);
1258 	INIT_LIST_HEAD(&cset->mg_node);
1259 
1260 	/* Copy the set of subsystem state objects generated in
1261 	 * find_existing_css_set() */
1262 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1263 
1264 	spin_lock_irq(&css_set_lock);
1265 	/* Add reference counts and links from the new css_set. */
1266 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1267 		struct cgroup *c = link->cgrp;
1268 
1269 		if (c->root == cgrp->root)
1270 			c = cgrp;
1271 		link_css_set(&tmp_links, cset, c);
1272 	}
1273 
1274 	BUG_ON(!list_empty(&tmp_links));
1275 
1276 	css_set_count++;
1277 
1278 	/* Add @cset to the hash table */
1279 	key = css_set_hash(cset->subsys);
1280 	hash_add(css_set_table, &cset->hlist, key);
1281 
1282 	for_each_subsys(ss, ssid) {
1283 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1284 
1285 		list_add_tail(&cset->e_cset_node[ssid],
1286 			      &css->cgroup->e_csets[ssid]);
1287 		css_get(css);
1288 	}
1289 
1290 	spin_unlock_irq(&css_set_lock);
1291 
1292 	/*
1293 	 * If @cset should be threaded, look up the matching dom_cset and
1294 	 * link them up.  We first fully initialize @cset then look for the
1295 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1296 	 * to stay empty until we return.
1297 	 */
1298 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1299 		struct css_set *dcset;
1300 
1301 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1302 		if (!dcset) {
1303 			put_css_set(cset);
1304 			return NULL;
1305 		}
1306 
1307 		spin_lock_irq(&css_set_lock);
1308 		cset->dom_cset = dcset;
1309 		list_add_tail(&cset->threaded_csets_node,
1310 			      &dcset->threaded_csets);
1311 		spin_unlock_irq(&css_set_lock);
1312 	}
1313 
1314 	return cset;
1315 }
1316 
cgroup_root_from_kf(struct kernfs_root * kf_root)1317 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1318 {
1319 	struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv;
1320 
1321 	return root_cgrp->root;
1322 }
1323 
cgroup_favor_dynmods(struct cgroup_root * root,bool favor)1324 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor)
1325 {
1326 	bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS;
1327 
1328 	/* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */
1329 	if (favor && !favoring) {
1330 		rcu_sync_enter(&cgroup_threadgroup_rwsem.rss);
1331 		root->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1332 	} else if (!favor && favoring) {
1333 		rcu_sync_exit(&cgroup_threadgroup_rwsem.rss);
1334 		root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS;
1335 	}
1336 }
1337 
cgroup_init_root_id(struct cgroup_root * root)1338 static int cgroup_init_root_id(struct cgroup_root *root)
1339 {
1340 	int id;
1341 
1342 	lockdep_assert_held(&cgroup_mutex);
1343 
1344 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1345 	if (id < 0)
1346 		return id;
1347 
1348 	root->hierarchy_id = id;
1349 	return 0;
1350 }
1351 
cgroup_exit_root_id(struct cgroup_root * root)1352 static void cgroup_exit_root_id(struct cgroup_root *root)
1353 {
1354 	lockdep_assert_held(&cgroup_mutex);
1355 
1356 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1357 }
1358 
cgroup_free_root(struct cgroup_root * root)1359 void cgroup_free_root(struct cgroup_root *root)
1360 {
1361 	kfree_rcu(root, rcu);
1362 }
1363 
cgroup_destroy_root(struct cgroup_root * root)1364 static void cgroup_destroy_root(struct cgroup_root *root)
1365 {
1366 	struct cgroup *cgrp = &root->cgrp;
1367 	struct cgrp_cset_link *link, *tmp_link;
1368 	int ret;
1369 
1370 	trace_cgroup_destroy_root(root);
1371 
1372 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1373 
1374 	BUG_ON(atomic_read(&root->nr_cgrps));
1375 	BUG_ON(!list_empty(&cgrp->self.children));
1376 
1377 	ret = blocking_notifier_call_chain(&cgroup_lifetime_notifier,
1378 					   CGROUP_LIFETIME_OFFLINE, cgrp);
1379 	WARN_ON_ONCE(notifier_to_errno(ret));
1380 
1381 	/* Rebind all subsystems back to the default hierarchy */
1382 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1383 
1384 	/*
1385 	 * Release all the links from cset_links to this hierarchy's
1386 	 * root cgroup
1387 	 */
1388 	spin_lock_irq(&css_set_lock);
1389 
1390 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1391 		list_del(&link->cset_link);
1392 		list_del(&link->cgrp_link);
1393 		kfree(link);
1394 	}
1395 
1396 	spin_unlock_irq(&css_set_lock);
1397 
1398 	WARN_ON_ONCE(list_empty(&root->root_list));
1399 	list_del_rcu(&root->root_list);
1400 	cgroup_root_count--;
1401 
1402 	if (!have_favordynmods)
1403 		cgroup_favor_dynmods(root, false);
1404 
1405 	cgroup_exit_root_id(root);
1406 
1407 	cgroup_unlock();
1408 
1409 	kernfs_destroy_root(root->kf_root);
1410 	cgroup_free_root(root);
1411 }
1412 
1413 /*
1414  * Returned cgroup is without refcount but it's valid as long as cset pins it.
1415  */
__cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1416 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset,
1417 					    struct cgroup_root *root)
1418 {
1419 	struct cgroup *res_cgroup = NULL;
1420 
1421 	if (cset == &init_css_set) {
1422 		res_cgroup = &root->cgrp;
1423 	} else if (root == &cgrp_dfl_root) {
1424 		res_cgroup = cset->dfl_cgrp;
1425 	} else {
1426 		struct cgrp_cset_link *link;
1427 		lockdep_assert_held(&css_set_lock);
1428 
1429 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1430 			struct cgroup *c = link->cgrp;
1431 
1432 			if (c->root == root) {
1433 				res_cgroup = c;
1434 				break;
1435 			}
1436 		}
1437 	}
1438 
1439 	/*
1440 	 * If cgroup_mutex is not held, the cgrp_cset_link will be freed
1441 	 * before we remove the cgroup root from the root_list. Consequently,
1442 	 * when accessing a cgroup root, the cset_link may have already been
1443 	 * freed, resulting in a NULL res_cgroup. However, by holding the
1444 	 * cgroup_mutex, we ensure that res_cgroup can't be NULL.
1445 	 * If we don't hold cgroup_mutex in the caller, we must do the NULL
1446 	 * check.
1447 	 */
1448 	return res_cgroup;
1449 }
1450 
1451 /*
1452  * look up cgroup associated with current task's cgroup namespace on the
1453  * specified hierarchy
1454  */
1455 static struct cgroup *
current_cgns_cgroup_from_root(struct cgroup_root * root)1456 current_cgns_cgroup_from_root(struct cgroup_root *root)
1457 {
1458 	struct cgroup *res = NULL;
1459 	struct css_set *cset;
1460 
1461 	lockdep_assert_held(&css_set_lock);
1462 
1463 	rcu_read_lock();
1464 
1465 	cset = current->nsproxy->cgroup_ns->root_cset;
1466 	res = __cset_cgroup_from_root(cset, root);
1467 
1468 	rcu_read_unlock();
1469 
1470 	/*
1471 	 * The namespace_sem is held by current, so the root cgroup can't
1472 	 * be umounted. Therefore, we can ensure that the res is non-NULL.
1473 	 */
1474 	WARN_ON_ONCE(!res);
1475 	return res;
1476 }
1477 
1478 /*
1479  * Look up cgroup associated with current task's cgroup namespace on the default
1480  * hierarchy.
1481  *
1482  * Unlike current_cgns_cgroup_from_root(), this doesn't need locks:
1483  * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu
1484  *   pointers.
1485  * - css_set_lock is not needed because we just read cset->dfl_cgrp.
1486  * - As a bonus returned cgrp is pinned with the current because it cannot
1487  *   switch cgroup_ns asynchronously.
1488  */
current_cgns_cgroup_dfl(void)1489 static struct cgroup *current_cgns_cgroup_dfl(void)
1490 {
1491 	struct css_set *cset;
1492 
1493 	if (current->nsproxy) {
1494 		cset = current->nsproxy->cgroup_ns->root_cset;
1495 		return __cset_cgroup_from_root(cset, &cgrp_dfl_root);
1496 	} else {
1497 		/*
1498 		 * NOTE: This function may be called from bpf_cgroup_from_id()
1499 		 * on a task which has already passed exit_task_namespaces() and
1500 		 * nsproxy == NULL. Fall back to cgrp_dfl_root which will make all
1501 		 * cgroups visible for lookups.
1502 		 */
1503 		return &cgrp_dfl_root.cgrp;
1504 	}
1505 }
1506 
1507 /* look up cgroup associated with given css_set on the specified hierarchy */
cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1508 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1509 					    struct cgroup_root *root)
1510 {
1511 	lockdep_assert_held(&css_set_lock);
1512 
1513 	return __cset_cgroup_from_root(cset, root);
1514 }
1515 
1516 /*
1517  * Return the cgroup for "task" from the given hierarchy. Must be
1518  * called with css_set_lock held to prevent task's groups from being modified.
1519  * Must be called with either cgroup_mutex or rcu read lock to prevent the
1520  * cgroup root from being destroyed.
1521  */
task_cgroup_from_root(struct task_struct * task,struct cgroup_root * root)1522 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1523 				     struct cgroup_root *root)
1524 {
1525 	/*
1526 	 * No need to lock the task - since we hold css_set_lock the
1527 	 * task can't change groups.
1528 	 */
1529 	return cset_cgroup_from_root(task_css_set(task), root);
1530 }
1531 
1532 /*
1533  * A task must hold cgroup_mutex to modify cgroups.
1534  *
1535  * Any task can increment and decrement the count field without lock.
1536  * So in general, code holding cgroup_mutex can't rely on the count
1537  * field not changing.  However, if the count goes to zero, then only
1538  * cgroup_attach_task() can increment it again.  Because a count of zero
1539  * means that no tasks are currently attached, therefore there is no
1540  * way a task attached to that cgroup can fork (the other way to
1541  * increment the count).  So code holding cgroup_mutex can safely
1542  * assume that if the count is zero, it will stay zero. Similarly, if
1543  * a task holds cgroup_mutex on a cgroup with zero count, it
1544  * knows that the cgroup won't be removed, as cgroup_rmdir()
1545  * needs that mutex.
1546  *
1547  * A cgroup can only be deleted if both its 'count' of using tasks
1548  * is zero, and its list of 'children' cgroups is empty.  Since all
1549  * tasks in the system use _some_ cgroup, and since there is always at
1550  * least one task in the system (init, pid == 1), therefore, root cgroup
1551  * always has either children cgroups and/or using tasks.  So we don't
1552  * need a special hack to ensure that root cgroup cannot be deleted.
1553  *
1554  * P.S.  One more locking exception.  RCU is used to guard the
1555  * update of a tasks cgroup pointer by cgroup_attach_task()
1556  */
1557 
1558 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1559 
cgroup_file_name(struct cgroup * cgrp,const struct cftype * cft,char * buf)1560 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1561 			      char *buf)
1562 {
1563 	struct cgroup_subsys *ss = cft->ss;
1564 
1565 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1566 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1567 		const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1568 
1569 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1570 			 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1571 			 cft->name);
1572 	} else {
1573 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1574 	}
1575 	return buf;
1576 }
1577 
1578 /**
1579  * cgroup_file_mode - deduce file mode of a control file
1580  * @cft: the control file in question
1581  *
1582  * S_IRUGO for read, S_IWUSR for write.
1583  */
cgroup_file_mode(const struct cftype * cft)1584 static umode_t cgroup_file_mode(const struct cftype *cft)
1585 {
1586 	umode_t mode = 0;
1587 
1588 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1589 		mode |= S_IRUGO;
1590 
1591 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1592 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1593 			mode |= S_IWUGO;
1594 		else
1595 			mode |= S_IWUSR;
1596 	}
1597 
1598 	return mode;
1599 }
1600 
1601 /**
1602  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1603  * @subtree_control: the new subtree_control mask to consider
1604  * @this_ss_mask: available subsystems
1605  *
1606  * On the default hierarchy, a subsystem may request other subsystems to be
1607  * enabled together through its ->depends_on mask.  In such cases, more
1608  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1609  *
1610  * This function calculates which subsystems need to be enabled if
1611  * @subtree_control is to be applied while restricted to @this_ss_mask.
1612  */
cgroup_calc_subtree_ss_mask(u16 subtree_control,u16 this_ss_mask)1613 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1614 {
1615 	u16 cur_ss_mask = subtree_control;
1616 	struct cgroup_subsys *ss;
1617 	int ssid;
1618 
1619 	lockdep_assert_held(&cgroup_mutex);
1620 
1621 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1622 
1623 	while (true) {
1624 		u16 new_ss_mask = cur_ss_mask;
1625 
1626 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1627 			new_ss_mask |= ss->depends_on;
1628 		} while_each_subsys_mask();
1629 
1630 		/*
1631 		 * Mask out subsystems which aren't available.  This can
1632 		 * happen only if some depended-upon subsystems were bound
1633 		 * to non-default hierarchies.
1634 		 */
1635 		new_ss_mask &= this_ss_mask;
1636 
1637 		if (new_ss_mask == cur_ss_mask)
1638 			break;
1639 		cur_ss_mask = new_ss_mask;
1640 	}
1641 
1642 	return cur_ss_mask;
1643 }
1644 
1645 /**
1646  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1647  * @kn: the kernfs_node being serviced
1648  *
1649  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1650  * the method finishes if locking succeeded.  Note that once this function
1651  * returns the cgroup returned by cgroup_kn_lock_live() may become
1652  * inaccessible any time.  If the caller intends to continue to access the
1653  * cgroup, it should pin it before invoking this function.
1654  */
cgroup_kn_unlock(struct kernfs_node * kn)1655 void cgroup_kn_unlock(struct kernfs_node *kn)
1656 {
1657 	struct cgroup *cgrp;
1658 
1659 	if (kernfs_type(kn) == KERNFS_DIR)
1660 		cgrp = kn->priv;
1661 	else
1662 		cgrp = kn_priv(kn);
1663 
1664 	cgroup_unlock();
1665 
1666 	kernfs_unbreak_active_protection(kn);
1667 	cgroup_put(cgrp);
1668 }
1669 
1670 /**
1671  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1672  * @kn: the kernfs_node being serviced
1673  * @drain_offline: perform offline draining on the cgroup
1674  *
1675  * This helper is to be used by a cgroup kernfs method currently servicing
1676  * @kn.  It breaks the active protection, performs cgroup locking and
1677  * verifies that the associated cgroup is alive.  Returns the cgroup if
1678  * alive; otherwise, %NULL.  A successful return should be undone by a
1679  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1680  * cgroup is drained of offlining csses before return.
1681  *
1682  * Any cgroup kernfs method implementation which requires locking the
1683  * associated cgroup should use this helper.  It avoids nesting cgroup
1684  * locking under kernfs active protection and allows all kernfs operations
1685  * including self-removal.
1686  */
cgroup_kn_lock_live(struct kernfs_node * kn,bool drain_offline)1687 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1688 {
1689 	struct cgroup *cgrp;
1690 
1691 	if (kernfs_type(kn) == KERNFS_DIR)
1692 		cgrp = kn->priv;
1693 	else
1694 		cgrp = kn_priv(kn);
1695 
1696 	/*
1697 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1698 	 * active_ref.  cgroup liveliness check alone provides enough
1699 	 * protection against removal.  Ensure @cgrp stays accessible and
1700 	 * break the active_ref protection.
1701 	 */
1702 	if (!cgroup_tryget(cgrp))
1703 		return NULL;
1704 	kernfs_break_active_protection(kn);
1705 
1706 	if (drain_offline)
1707 		cgroup_lock_and_drain_offline(cgrp);
1708 	else
1709 		cgroup_lock();
1710 
1711 	if (!cgroup_is_dead(cgrp))
1712 		return cgrp;
1713 
1714 	cgroup_kn_unlock(kn);
1715 	return NULL;
1716 }
1717 
cgroup_rm_file(struct cgroup * cgrp,const struct cftype * cft)1718 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1719 {
1720 	char name[CGROUP_FILE_NAME_MAX];
1721 
1722 	lockdep_assert_held(&cgroup_mutex);
1723 
1724 	if (cft->file_offset) {
1725 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1726 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1727 
1728 		spin_lock_irq(&cgroup_file_kn_lock);
1729 		cfile->kn = NULL;
1730 		spin_unlock_irq(&cgroup_file_kn_lock);
1731 
1732 		timer_delete_sync(&cfile->notify_timer);
1733 	}
1734 
1735 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1736 }
1737 
1738 /**
1739  * css_clear_dir - remove subsys files in a cgroup directory
1740  * @css: target css
1741  */
css_clear_dir(struct cgroup_subsys_state * css)1742 static void css_clear_dir(struct cgroup_subsys_state *css)
1743 {
1744 	struct cgroup *cgrp = css->cgroup;
1745 	struct cftype *cfts;
1746 
1747 	if (!(css->flags & CSS_VISIBLE))
1748 		return;
1749 
1750 	css->flags &= ~CSS_VISIBLE;
1751 
1752 	if (css_is_self(css)) {
1753 		if (cgroup_on_dfl(cgrp)) {
1754 			cgroup_addrm_files(css, cgrp,
1755 					   cgroup_base_files, false);
1756 			if (cgroup_psi_enabled())
1757 				cgroup_addrm_files(css, cgrp,
1758 						   cgroup_psi_files, false);
1759 		} else {
1760 			cgroup_addrm_files(css, cgrp,
1761 					   cgroup1_base_files, false);
1762 		}
1763 	} else {
1764 		list_for_each_entry(cfts, &css->ss->cfts, node)
1765 			cgroup_addrm_files(css, cgrp, cfts, false);
1766 	}
1767 }
1768 
1769 /**
1770  * css_populate_dir - create subsys files in a cgroup directory
1771  * @css: target css
1772  *
1773  * On failure, no file is added.
1774  */
css_populate_dir(struct cgroup_subsys_state * css)1775 static int css_populate_dir(struct cgroup_subsys_state *css)
1776 {
1777 	struct cgroup *cgrp = css->cgroup;
1778 	struct cftype *cfts, *failed_cfts;
1779 	int ret;
1780 
1781 	if (css->flags & CSS_VISIBLE)
1782 		return 0;
1783 
1784 	if (css_is_self(css)) {
1785 		if (cgroup_on_dfl(cgrp)) {
1786 			ret = cgroup_addrm_files(css, cgrp,
1787 						 cgroup_base_files, true);
1788 			if (ret < 0)
1789 				return ret;
1790 
1791 			if (cgroup_psi_enabled()) {
1792 				ret = cgroup_addrm_files(css, cgrp,
1793 							 cgroup_psi_files, true);
1794 				if (ret < 0) {
1795 					cgroup_addrm_files(css, cgrp,
1796 							   cgroup_base_files, false);
1797 					return ret;
1798 				}
1799 			}
1800 		} else {
1801 			ret = cgroup_addrm_files(css, cgrp,
1802 						 cgroup1_base_files, true);
1803 			if (ret < 0)
1804 				return ret;
1805 		}
1806 	} else {
1807 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1808 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1809 			if (ret < 0) {
1810 				failed_cfts = cfts;
1811 				goto err;
1812 			}
1813 		}
1814 	}
1815 
1816 	css->flags |= CSS_VISIBLE;
1817 
1818 	return 0;
1819 err:
1820 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1821 		if (cfts == failed_cfts)
1822 			break;
1823 		cgroup_addrm_files(css, cgrp, cfts, false);
1824 	}
1825 	return ret;
1826 }
1827 
rebind_subsystems(struct cgroup_root * dst_root,u16 ss_mask)1828 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1829 {
1830 	struct cgroup *dcgrp = &dst_root->cgrp;
1831 	struct cgroup_subsys *ss;
1832 	int ssid, ret;
1833 	u16 dfl_disable_ss_mask = 0;
1834 
1835 	lockdep_assert_held(&cgroup_mutex);
1836 
1837 	do_each_subsys_mask(ss, ssid, ss_mask) {
1838 		/*
1839 		 * If @ss has non-root csses attached to it, can't move.
1840 		 * If @ss is an implicit controller, it is exempt from this
1841 		 * rule and can be stolen.
1842 		 */
1843 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1844 		    !ss->implicit_on_dfl)
1845 			return -EBUSY;
1846 
1847 		/* can't move between two non-dummy roots either */
1848 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1849 			return -EBUSY;
1850 
1851 		/*
1852 		 * Collect ssid's that need to be disabled from default
1853 		 * hierarchy.
1854 		 */
1855 		if (ss->root == &cgrp_dfl_root)
1856 			dfl_disable_ss_mask |= 1 << ssid;
1857 
1858 	} while_each_subsys_mask();
1859 
1860 	if (dfl_disable_ss_mask) {
1861 		struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1862 
1863 		/*
1864 		 * Controllers from default hierarchy that need to be rebound
1865 		 * are all disabled together in one go.
1866 		 */
1867 		cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1868 		WARN_ON(cgroup_apply_control(scgrp));
1869 		cgroup_finalize_control(scgrp, 0);
1870 	}
1871 
1872 	do_each_subsys_mask(ss, ssid, ss_mask) {
1873 		struct cgroup_root *src_root = ss->root;
1874 		struct cgroup *scgrp = &src_root->cgrp;
1875 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1876 		struct css_set *cset, *cset_pos;
1877 		struct css_task_iter *it;
1878 
1879 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1880 
1881 		if (src_root != &cgrp_dfl_root) {
1882 			/* disable from the source */
1883 			src_root->subsys_mask &= ~(1 << ssid);
1884 			WARN_ON(cgroup_apply_control(scgrp));
1885 			cgroup_finalize_control(scgrp, 0);
1886 		}
1887 
1888 		/* rebind */
1889 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1890 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1891 		ss->root = dst_root;
1892 
1893 		spin_lock_irq(&css_set_lock);
1894 		css->cgroup = dcgrp;
1895 		WARN_ON(!list_empty(&dcgrp->e_csets[ss->id]));
1896 		list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id],
1897 					 e_cset_node[ss->id]) {
1898 			list_move_tail(&cset->e_cset_node[ss->id],
1899 				       &dcgrp->e_csets[ss->id]);
1900 			/*
1901 			 * all css_sets of scgrp together in same order to dcgrp,
1902 			 * patch in-flight iterators to preserve correct iteration.
1903 			 * since the iterator is always advanced right away and
1904 			 * finished when it->cset_pos meets it->cset_head, so only
1905 			 * update it->cset_head is enough here.
1906 			 */
1907 			list_for_each_entry(it, &cset->task_iters, iters_node)
1908 				if (it->cset_head == &scgrp->e_csets[ss->id])
1909 					it->cset_head = &dcgrp->e_csets[ss->id];
1910 		}
1911 		spin_unlock_irq(&css_set_lock);
1912 
1913 		/* default hierarchy doesn't enable controllers by default */
1914 		dst_root->subsys_mask |= 1 << ssid;
1915 		if (dst_root == &cgrp_dfl_root) {
1916 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1917 		} else {
1918 			dcgrp->subtree_control |= 1 << ssid;
1919 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1920 		}
1921 
1922 		ret = cgroup_apply_control(dcgrp);
1923 		if (ret)
1924 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1925 				ss->name, ret);
1926 
1927 		if (ss->bind)
1928 			ss->bind(css);
1929 	} while_each_subsys_mask();
1930 
1931 	kernfs_activate(dcgrp->kn);
1932 	return 0;
1933 }
1934 
cgroup_show_path(struct seq_file * sf,struct kernfs_node * kf_node,struct kernfs_root * kf_root)1935 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1936 		     struct kernfs_root *kf_root)
1937 {
1938 	int len = 0;
1939 	char *buf = NULL;
1940 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1941 	struct cgroup *ns_cgroup;
1942 
1943 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1944 	if (!buf)
1945 		return -ENOMEM;
1946 
1947 	spin_lock_irq(&css_set_lock);
1948 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1949 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1950 	spin_unlock_irq(&css_set_lock);
1951 
1952 	if (len == -E2BIG)
1953 		len = -ERANGE;
1954 	else if (len > 0) {
1955 		seq_escape(sf, buf, " \t\n\\");
1956 		len = 0;
1957 	}
1958 	kfree(buf);
1959 	return len;
1960 }
1961 
1962 enum cgroup2_param {
1963 	Opt_nsdelegate,
1964 	Opt_favordynmods,
1965 	Opt_memory_localevents,
1966 	Opt_memory_recursiveprot,
1967 	Opt_memory_hugetlb_accounting,
1968 	Opt_pids_localevents,
1969 	nr__cgroup2_params
1970 };
1971 
1972 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1973 	fsparam_flag("nsdelegate",		Opt_nsdelegate),
1974 	fsparam_flag("favordynmods",		Opt_favordynmods),
1975 	fsparam_flag("memory_localevents",	Opt_memory_localevents),
1976 	fsparam_flag("memory_recursiveprot",	Opt_memory_recursiveprot),
1977 	fsparam_flag("memory_hugetlb_accounting", Opt_memory_hugetlb_accounting),
1978 	fsparam_flag("pids_localevents",	Opt_pids_localevents),
1979 	{}
1980 };
1981 
cgroup2_parse_param(struct fs_context * fc,struct fs_parameter * param)1982 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1983 {
1984 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1985 	struct fs_parse_result result;
1986 	int opt;
1987 
1988 	opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1989 	if (opt < 0)
1990 		return opt;
1991 
1992 	switch (opt) {
1993 	case Opt_nsdelegate:
1994 		ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1995 		return 0;
1996 	case Opt_favordynmods:
1997 		ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1998 		return 0;
1999 	case Opt_memory_localevents:
2000 		ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
2001 		return 0;
2002 	case Opt_memory_recursiveprot:
2003 		ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
2004 		return 0;
2005 	case Opt_memory_hugetlb_accounting:
2006 		ctx->flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
2007 		return 0;
2008 	case Opt_pids_localevents:
2009 		ctx->flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS;
2010 		return 0;
2011 	}
2012 	return -EINVAL;
2013 }
2014 
of_peak(struct kernfs_open_file * of)2015 struct cgroup_of_peak *of_peak(struct kernfs_open_file *of)
2016 {
2017 	struct cgroup_file_ctx *ctx = of->priv;
2018 
2019 	return &ctx->peak;
2020 }
2021 
apply_cgroup_root_flags(unsigned int root_flags)2022 static void apply_cgroup_root_flags(unsigned int root_flags)
2023 {
2024 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
2025 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
2026 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
2027 		else
2028 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
2029 
2030 		cgroup_favor_dynmods(&cgrp_dfl_root,
2031 				     root_flags & CGRP_ROOT_FAVOR_DYNMODS);
2032 
2033 		if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
2034 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
2035 		else
2036 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
2037 
2038 		if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
2039 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
2040 		else
2041 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
2042 
2043 		if (root_flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)
2044 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
2045 		else
2046 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
2047 
2048 		if (root_flags & CGRP_ROOT_PIDS_LOCAL_EVENTS)
2049 			cgrp_dfl_root.flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS;
2050 		else
2051 			cgrp_dfl_root.flags &= ~CGRP_ROOT_PIDS_LOCAL_EVENTS;
2052 	}
2053 }
2054 
cgroup_show_options(struct seq_file * seq,struct kernfs_root * kf_root)2055 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
2056 {
2057 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
2058 		seq_puts(seq, ",nsdelegate");
2059 	if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS)
2060 		seq_puts(seq, ",favordynmods");
2061 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
2062 		seq_puts(seq, ",memory_localevents");
2063 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
2064 		seq_puts(seq, ",memory_recursiveprot");
2065 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)
2066 		seq_puts(seq, ",memory_hugetlb_accounting");
2067 	if (cgrp_dfl_root.flags & CGRP_ROOT_PIDS_LOCAL_EVENTS)
2068 		seq_puts(seq, ",pids_localevents");
2069 	return 0;
2070 }
2071 
cgroup_reconfigure(struct fs_context * fc)2072 static int cgroup_reconfigure(struct fs_context *fc)
2073 {
2074 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2075 
2076 	apply_cgroup_root_flags(ctx->flags);
2077 	return 0;
2078 }
2079 
init_cgroup_housekeeping(struct cgroup * cgrp)2080 static void init_cgroup_housekeeping(struct cgroup *cgrp)
2081 {
2082 	struct cgroup_subsys *ss;
2083 	int ssid;
2084 
2085 	INIT_LIST_HEAD(&cgrp->self.sibling);
2086 	INIT_LIST_HEAD(&cgrp->self.children);
2087 	INIT_LIST_HEAD(&cgrp->cset_links);
2088 	INIT_LIST_HEAD(&cgrp->pidlists);
2089 	mutex_init(&cgrp->pidlist_mutex);
2090 	cgrp->self.cgroup = cgrp;
2091 	cgrp->self.flags |= CSS_ONLINE;
2092 	cgrp->dom_cgrp = cgrp;
2093 	cgrp->max_descendants = INT_MAX;
2094 	cgrp->max_depth = INT_MAX;
2095 	prev_cputime_init(&cgrp->prev_cputime);
2096 
2097 	for_each_subsys(ss, ssid)
2098 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
2099 
2100 #ifdef CONFIG_CGROUP_BPF
2101 	for (int i = 0; i < ARRAY_SIZE(cgrp->bpf.revisions); i++)
2102 		cgrp->bpf.revisions[i] = 1;
2103 #endif
2104 
2105 	init_waitqueue_head(&cgrp->offline_waitq);
2106 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
2107 }
2108 
init_cgroup_root(struct cgroup_fs_context * ctx)2109 void init_cgroup_root(struct cgroup_fs_context *ctx)
2110 {
2111 	struct cgroup_root *root = ctx->root;
2112 	struct cgroup *cgrp = &root->cgrp;
2113 
2114 	INIT_LIST_HEAD_RCU(&root->root_list);
2115 	atomic_set(&root->nr_cgrps, 1);
2116 	cgrp->root = root;
2117 	init_cgroup_housekeeping(cgrp);
2118 
2119 	/* DYNMODS must be modified through cgroup_favor_dynmods() */
2120 	root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS;
2121 	if (ctx->release_agent)
2122 		strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
2123 	if (ctx->name)
2124 		strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
2125 	if (ctx->cpuset_clone_children)
2126 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
2127 }
2128 
cgroup_setup_root(struct cgroup_root * root,u16 ss_mask)2129 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2130 {
2131 	LIST_HEAD(tmp_links);
2132 	struct cgroup *root_cgrp = &root->cgrp;
2133 	struct kernfs_syscall_ops *kf_sops;
2134 	struct css_set *cset;
2135 	int i, ret;
2136 
2137 	lockdep_assert_held(&cgroup_mutex);
2138 
2139 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
2140 			      0, GFP_KERNEL);
2141 	if (ret)
2142 		goto out;
2143 
2144 	/*
2145 	 * We're accessing css_set_count without locking css_set_lock here,
2146 	 * but that's OK - it can only be increased by someone holding
2147 	 * cgroup_lock, and that's us.  Later rebinding may disable
2148 	 * controllers on the default hierarchy and thus create new csets,
2149 	 * which can't be more than the existing ones.  Allocate 2x.
2150 	 */
2151 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2152 	if (ret)
2153 		goto cancel_ref;
2154 
2155 	ret = cgroup_init_root_id(root);
2156 	if (ret)
2157 		goto cancel_ref;
2158 
2159 	kf_sops = root == &cgrp_dfl_root ?
2160 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2161 
2162 	root->kf_root = kernfs_create_root(kf_sops,
2163 					   KERNFS_ROOT_CREATE_DEACTIVATED |
2164 					   KERNFS_ROOT_SUPPORT_EXPORTOP |
2165 					   KERNFS_ROOT_SUPPORT_USER_XATTR |
2166 					   KERNFS_ROOT_INVARIANT_PARENT,
2167 					   root_cgrp);
2168 	if (IS_ERR(root->kf_root)) {
2169 		ret = PTR_ERR(root->kf_root);
2170 		goto exit_root_id;
2171 	}
2172 	root_cgrp->kn = kernfs_root_to_node(root->kf_root);
2173 	WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
2174 	root_cgrp->ancestors[0] = root_cgrp;
2175 
2176 	ret = css_populate_dir(&root_cgrp->self);
2177 	if (ret)
2178 		goto destroy_root;
2179 
2180 	ret = css_rstat_init(&root_cgrp->self);
2181 	if (ret)
2182 		goto destroy_root;
2183 
2184 	ret = rebind_subsystems(root, ss_mask);
2185 	if (ret)
2186 		goto exit_stats;
2187 
2188 	ret = blocking_notifier_call_chain(&cgroup_lifetime_notifier,
2189 					   CGROUP_LIFETIME_ONLINE, root_cgrp);
2190 	WARN_ON_ONCE(notifier_to_errno(ret));
2191 
2192 	trace_cgroup_setup_root(root);
2193 
2194 	/*
2195 	 * There must be no failure case after here, since rebinding takes
2196 	 * care of subsystems' refcounts, which are explicitly dropped in
2197 	 * the failure exit path.
2198 	 */
2199 	list_add_rcu(&root->root_list, &cgroup_roots);
2200 	cgroup_root_count++;
2201 
2202 	/*
2203 	 * Link the root cgroup in this hierarchy into all the css_set
2204 	 * objects.
2205 	 */
2206 	spin_lock_irq(&css_set_lock);
2207 	hash_for_each(css_set_table, i, cset, hlist) {
2208 		link_css_set(&tmp_links, cset, root_cgrp);
2209 		if (css_set_populated(cset))
2210 			cgroup_update_populated(root_cgrp, true);
2211 	}
2212 	spin_unlock_irq(&css_set_lock);
2213 
2214 	BUG_ON(!list_empty(&root_cgrp->self.children));
2215 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2216 
2217 	ret = 0;
2218 	goto out;
2219 
2220 exit_stats:
2221 	css_rstat_exit(&root_cgrp->self);
2222 destroy_root:
2223 	kernfs_destroy_root(root->kf_root);
2224 	root->kf_root = NULL;
2225 exit_root_id:
2226 	cgroup_exit_root_id(root);
2227 cancel_ref:
2228 	percpu_ref_exit(&root_cgrp->self.refcnt);
2229 out:
2230 	free_cgrp_cset_links(&tmp_links);
2231 	return ret;
2232 }
2233 
cgroup_do_get_tree(struct fs_context * fc)2234 int cgroup_do_get_tree(struct fs_context *fc)
2235 {
2236 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2237 	int ret;
2238 
2239 	ctx->kfc.root = ctx->root->kf_root;
2240 	if (fc->fs_type == &cgroup2_fs_type)
2241 		ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2242 	else
2243 		ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2244 	ret = kernfs_get_tree(fc);
2245 
2246 	/*
2247 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2248 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2249 	 */
2250 	if (!ret && ctx->ns != &init_cgroup_ns) {
2251 		struct dentry *nsdentry;
2252 		struct super_block *sb = fc->root->d_sb;
2253 		struct cgroup *cgrp;
2254 
2255 		cgroup_lock();
2256 		spin_lock_irq(&css_set_lock);
2257 
2258 		cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2259 
2260 		spin_unlock_irq(&css_set_lock);
2261 		cgroup_unlock();
2262 
2263 		nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2264 		dput(fc->root);
2265 		if (IS_ERR(nsdentry)) {
2266 			deactivate_locked_super(sb);
2267 			ret = PTR_ERR(nsdentry);
2268 			nsdentry = NULL;
2269 		}
2270 		fc->root = nsdentry;
2271 	}
2272 
2273 	if (!ctx->kfc.new_sb_created)
2274 		cgroup_put(&ctx->root->cgrp);
2275 
2276 	return ret;
2277 }
2278 
2279 /*
2280  * Destroy a cgroup filesystem context.
2281  */
cgroup_fs_context_free(struct fs_context * fc)2282 static void cgroup_fs_context_free(struct fs_context *fc)
2283 {
2284 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2285 
2286 	kfree(ctx->name);
2287 	kfree(ctx->release_agent);
2288 	put_cgroup_ns(ctx->ns);
2289 	kernfs_free_fs_context(fc);
2290 	kfree(ctx);
2291 }
2292 
cgroup_get_tree(struct fs_context * fc)2293 static int cgroup_get_tree(struct fs_context *fc)
2294 {
2295 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2296 	int ret;
2297 
2298 	WRITE_ONCE(cgrp_dfl_visible, true);
2299 	cgroup_get_live(&cgrp_dfl_root.cgrp);
2300 	ctx->root = &cgrp_dfl_root;
2301 
2302 	ret = cgroup_do_get_tree(fc);
2303 	if (!ret)
2304 		apply_cgroup_root_flags(ctx->flags);
2305 	return ret;
2306 }
2307 
2308 static const struct fs_context_operations cgroup_fs_context_ops = {
2309 	.free		= cgroup_fs_context_free,
2310 	.parse_param	= cgroup2_parse_param,
2311 	.get_tree	= cgroup_get_tree,
2312 	.reconfigure	= cgroup_reconfigure,
2313 };
2314 
2315 static const struct fs_context_operations cgroup1_fs_context_ops = {
2316 	.free		= cgroup_fs_context_free,
2317 	.parse_param	= cgroup1_parse_param,
2318 	.get_tree	= cgroup1_get_tree,
2319 	.reconfigure	= cgroup1_reconfigure,
2320 };
2321 
2322 /*
2323  * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2324  * we select the namespace we're going to use.
2325  */
cgroup_init_fs_context(struct fs_context * fc)2326 static int cgroup_init_fs_context(struct fs_context *fc)
2327 {
2328 	struct cgroup_fs_context *ctx;
2329 
2330 	ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2331 	if (!ctx)
2332 		return -ENOMEM;
2333 
2334 	ctx->ns = current->nsproxy->cgroup_ns;
2335 	get_cgroup_ns(ctx->ns);
2336 	fc->fs_private = &ctx->kfc;
2337 	if (fc->fs_type == &cgroup2_fs_type)
2338 		fc->ops = &cgroup_fs_context_ops;
2339 	else
2340 		fc->ops = &cgroup1_fs_context_ops;
2341 	put_user_ns(fc->user_ns);
2342 	fc->user_ns = get_user_ns(ctx->ns->user_ns);
2343 	fc->global = true;
2344 
2345 	if (have_favordynmods)
2346 		ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
2347 
2348 	return 0;
2349 }
2350 
cgroup_kill_sb(struct super_block * sb)2351 static void cgroup_kill_sb(struct super_block *sb)
2352 {
2353 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2354 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2355 
2356 	/*
2357 	 * If @root doesn't have any children, start killing it.
2358 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2359 	 *
2360 	 * And don't kill the default root.
2361 	 */
2362 	if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2363 	    !percpu_ref_is_dying(&root->cgrp.self.refcnt))
2364 		percpu_ref_kill(&root->cgrp.self.refcnt);
2365 	cgroup_put(&root->cgrp);
2366 	kernfs_kill_sb(sb);
2367 }
2368 
2369 struct file_system_type cgroup_fs_type = {
2370 	.name			= "cgroup",
2371 	.init_fs_context	= cgroup_init_fs_context,
2372 	.parameters		= cgroup1_fs_parameters,
2373 	.kill_sb		= cgroup_kill_sb,
2374 	.fs_flags		= FS_USERNS_MOUNT,
2375 };
2376 
2377 static struct file_system_type cgroup2_fs_type = {
2378 	.name			= "cgroup2",
2379 	.init_fs_context	= cgroup_init_fs_context,
2380 	.parameters		= cgroup2_fs_parameters,
2381 	.kill_sb		= cgroup_kill_sb,
2382 	.fs_flags		= FS_USERNS_MOUNT,
2383 };
2384 
2385 #ifdef CONFIG_CPUSETS_V1
2386 enum cpuset_param {
2387 	Opt_cpuset_v2_mode,
2388 };
2389 
2390 static const struct fs_parameter_spec cpuset_fs_parameters[] = {
2391 	fsparam_flag  ("cpuset_v2_mode", Opt_cpuset_v2_mode),
2392 	{}
2393 };
2394 
cpuset_parse_param(struct fs_context * fc,struct fs_parameter * param)2395 static int cpuset_parse_param(struct fs_context *fc, struct fs_parameter *param)
2396 {
2397 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2398 	struct fs_parse_result result;
2399 	int opt;
2400 
2401 	opt = fs_parse(fc, cpuset_fs_parameters, param, &result);
2402 	if (opt < 0)
2403 		return opt;
2404 
2405 	switch (opt) {
2406 	case Opt_cpuset_v2_mode:
2407 		ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
2408 		return 0;
2409 	}
2410 	return -EINVAL;
2411 }
2412 
2413 static const struct fs_context_operations cpuset_fs_context_ops = {
2414 	.get_tree	= cgroup1_get_tree,
2415 	.free		= cgroup_fs_context_free,
2416 	.parse_param	= cpuset_parse_param,
2417 };
2418 
2419 /*
2420  * This is ugly, but preserves the userspace API for existing cpuset
2421  * users. If someone tries to mount the "cpuset" filesystem, we
2422  * silently switch it to mount "cgroup" instead
2423  */
cpuset_init_fs_context(struct fs_context * fc)2424 static int cpuset_init_fs_context(struct fs_context *fc)
2425 {
2426 	char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2427 	struct cgroup_fs_context *ctx;
2428 	int err;
2429 
2430 	err = cgroup_init_fs_context(fc);
2431 	if (err) {
2432 		kfree(agent);
2433 		return err;
2434 	}
2435 
2436 	fc->ops = &cpuset_fs_context_ops;
2437 
2438 	ctx = cgroup_fc2context(fc);
2439 	ctx->subsys_mask = 1 << cpuset_cgrp_id;
2440 	ctx->flags |= CGRP_ROOT_NOPREFIX;
2441 	ctx->release_agent = agent;
2442 
2443 	get_filesystem(&cgroup_fs_type);
2444 	put_filesystem(fc->fs_type);
2445 	fc->fs_type = &cgroup_fs_type;
2446 
2447 	return 0;
2448 }
2449 
2450 static struct file_system_type cpuset_fs_type = {
2451 	.name			= "cpuset",
2452 	.init_fs_context	= cpuset_init_fs_context,
2453 	.parameters		= cpuset_fs_parameters,
2454 	.fs_flags		= FS_USERNS_MOUNT,
2455 };
2456 #endif
2457 
cgroup_path_ns_locked(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2458 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2459 			  struct cgroup_namespace *ns)
2460 {
2461 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2462 
2463 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2464 }
2465 
cgroup_path_ns(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2466 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2467 		   struct cgroup_namespace *ns)
2468 {
2469 	int ret;
2470 
2471 	cgroup_lock();
2472 	spin_lock_irq(&css_set_lock);
2473 
2474 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2475 
2476 	spin_unlock_irq(&css_set_lock);
2477 	cgroup_unlock();
2478 
2479 	return ret;
2480 }
2481 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2482 
2483 /**
2484  * cgroup_attach_lock - Lock for ->attach()
2485  * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem
2486  *
2487  * cgroup migration sometimes needs to stabilize threadgroups against forks and
2488  * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach()
2489  * implementations (e.g. cpuset), also need to disable CPU hotplug.
2490  * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can
2491  * lead to deadlocks.
2492  *
2493  * Bringing up a CPU may involve creating and destroying tasks which requires
2494  * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
2495  * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while
2496  * write-locking threadgroup_rwsem, the locking order is reversed and we end up
2497  * waiting for an on-going CPU hotplug operation which in turn is waiting for
2498  * the threadgroup_rwsem to be released to create new tasks. For more details:
2499  *
2500  *   http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu
2501  *
2502  * Resolve the situation by always acquiring cpus_read_lock() before optionally
2503  * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that
2504  * CPU hotplug is disabled on entry.
2505  */
cgroup_attach_lock(bool lock_threadgroup)2506 void cgroup_attach_lock(bool lock_threadgroup)
2507 {
2508 	cpus_read_lock();
2509 	if (lock_threadgroup)
2510 		percpu_down_write(&cgroup_threadgroup_rwsem);
2511 }
2512 
2513 /**
2514  * cgroup_attach_unlock - Undo cgroup_attach_lock()
2515  * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem
2516  */
cgroup_attach_unlock(bool lock_threadgroup)2517 void cgroup_attach_unlock(bool lock_threadgroup)
2518 {
2519 	if (lock_threadgroup)
2520 		percpu_up_write(&cgroup_threadgroup_rwsem);
2521 	cpus_read_unlock();
2522 }
2523 
2524 /**
2525  * cgroup_migrate_add_task - add a migration target task to a migration context
2526  * @task: target task
2527  * @mgctx: target migration context
2528  *
2529  * Add @task, which is a migration target, to @mgctx->tset.  This function
2530  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2531  * should have been added as a migration source and @task->cg_list will be
2532  * moved from the css_set's tasks list to mg_tasks one.
2533  */
cgroup_migrate_add_task(struct task_struct * task,struct cgroup_mgctx * mgctx)2534 static void cgroup_migrate_add_task(struct task_struct *task,
2535 				    struct cgroup_mgctx *mgctx)
2536 {
2537 	struct css_set *cset;
2538 
2539 	lockdep_assert_held(&css_set_lock);
2540 
2541 	/* @task either already exited or can't exit until the end */
2542 	if (task->flags & PF_EXITING)
2543 		return;
2544 
2545 	/* cgroup_threadgroup_rwsem protects racing against forks */
2546 	WARN_ON_ONCE(list_empty(&task->cg_list));
2547 
2548 	cset = task_css_set(task);
2549 	if (!cset->mg_src_cgrp)
2550 		return;
2551 
2552 	mgctx->tset.nr_tasks++;
2553 
2554 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2555 	if (list_empty(&cset->mg_node))
2556 		list_add_tail(&cset->mg_node,
2557 			      &mgctx->tset.src_csets);
2558 	if (list_empty(&cset->mg_dst_cset->mg_node))
2559 		list_add_tail(&cset->mg_dst_cset->mg_node,
2560 			      &mgctx->tset.dst_csets);
2561 }
2562 
2563 /**
2564  * cgroup_taskset_first - reset taskset and return the first task
2565  * @tset: taskset of interest
2566  * @dst_cssp: output variable for the destination css
2567  *
2568  * @tset iteration is initialized and the first task is returned.
2569  */
cgroup_taskset_first(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2570 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2571 					 struct cgroup_subsys_state **dst_cssp)
2572 {
2573 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2574 	tset->cur_task = NULL;
2575 
2576 	return cgroup_taskset_next(tset, dst_cssp);
2577 }
2578 
2579 /**
2580  * cgroup_taskset_next - iterate to the next task in taskset
2581  * @tset: taskset of interest
2582  * @dst_cssp: output variable for the destination css
2583  *
2584  * Return the next task in @tset.  Iteration must have been initialized
2585  * with cgroup_taskset_first().
2586  */
cgroup_taskset_next(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2587 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2588 					struct cgroup_subsys_state **dst_cssp)
2589 {
2590 	struct css_set *cset = tset->cur_cset;
2591 	struct task_struct *task = tset->cur_task;
2592 
2593 	while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) {
2594 		if (!task)
2595 			task = list_first_entry(&cset->mg_tasks,
2596 						struct task_struct, cg_list);
2597 		else
2598 			task = list_next_entry(task, cg_list);
2599 
2600 		if (&task->cg_list != &cset->mg_tasks) {
2601 			tset->cur_cset = cset;
2602 			tset->cur_task = task;
2603 
2604 			/*
2605 			 * This function may be called both before and
2606 			 * after cgroup_migrate_execute().  The two cases
2607 			 * can be distinguished by looking at whether @cset
2608 			 * has its ->mg_dst_cset set.
2609 			 */
2610 			if (cset->mg_dst_cset)
2611 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2612 			else
2613 				*dst_cssp = cset->subsys[tset->ssid];
2614 
2615 			return task;
2616 		}
2617 
2618 		cset = list_next_entry(cset, mg_node);
2619 		task = NULL;
2620 	}
2621 
2622 	return NULL;
2623 }
2624 
2625 /**
2626  * cgroup_migrate_execute - migrate a taskset
2627  * @mgctx: migration context
2628  *
2629  * Migrate tasks in @mgctx as setup by migration preparation functions.
2630  * This function fails iff one of the ->can_attach callbacks fails and
2631  * guarantees that either all or none of the tasks in @mgctx are migrated.
2632  * @mgctx is consumed regardless of success.
2633  */
cgroup_migrate_execute(struct cgroup_mgctx * mgctx)2634 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2635 {
2636 	struct cgroup_taskset *tset = &mgctx->tset;
2637 	struct cgroup_subsys *ss;
2638 	struct task_struct *task, *tmp_task;
2639 	struct css_set *cset, *tmp_cset;
2640 	int ssid, failed_ssid, ret;
2641 
2642 	/* check that we can legitimately attach to the cgroup */
2643 	if (tset->nr_tasks) {
2644 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2645 			if (ss->can_attach) {
2646 				tset->ssid = ssid;
2647 				ret = ss->can_attach(tset);
2648 				if (ret) {
2649 					failed_ssid = ssid;
2650 					goto out_cancel_attach;
2651 				}
2652 			}
2653 		} while_each_subsys_mask();
2654 	}
2655 
2656 	/*
2657 	 * Now that we're guaranteed success, proceed to move all tasks to
2658 	 * the new cgroup.  There are no failure cases after here, so this
2659 	 * is the commit point.
2660 	 */
2661 	spin_lock_irq(&css_set_lock);
2662 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2663 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2664 			struct css_set *from_cset = task_css_set(task);
2665 			struct css_set *to_cset = cset->mg_dst_cset;
2666 
2667 			get_css_set(to_cset);
2668 			to_cset->nr_tasks++;
2669 			css_set_move_task(task, from_cset, to_cset, true);
2670 			from_cset->nr_tasks--;
2671 			/*
2672 			 * If the source or destination cgroup is frozen,
2673 			 * the task might require to change its state.
2674 			 */
2675 			cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2676 						    to_cset->dfl_cgrp);
2677 			put_css_set_locked(from_cset);
2678 
2679 		}
2680 	}
2681 	spin_unlock_irq(&css_set_lock);
2682 
2683 	/*
2684 	 * Migration is committed, all target tasks are now on dst_csets.
2685 	 * Nothing is sensitive to fork() after this point.  Notify
2686 	 * controllers that migration is complete.
2687 	 */
2688 	tset->csets = &tset->dst_csets;
2689 
2690 	if (tset->nr_tasks) {
2691 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2692 			if (ss->attach) {
2693 				tset->ssid = ssid;
2694 				ss->attach(tset);
2695 			}
2696 		} while_each_subsys_mask();
2697 	}
2698 
2699 	ret = 0;
2700 	goto out_release_tset;
2701 
2702 out_cancel_attach:
2703 	if (tset->nr_tasks) {
2704 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2705 			if (ssid == failed_ssid)
2706 				break;
2707 			if (ss->cancel_attach) {
2708 				tset->ssid = ssid;
2709 				ss->cancel_attach(tset);
2710 			}
2711 		} while_each_subsys_mask();
2712 	}
2713 out_release_tset:
2714 	spin_lock_irq(&css_set_lock);
2715 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2716 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2717 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2718 		list_del_init(&cset->mg_node);
2719 	}
2720 	spin_unlock_irq(&css_set_lock);
2721 
2722 	/*
2723 	 * Re-initialize the cgroup_taskset structure in case it is reused
2724 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2725 	 * iteration.
2726 	 */
2727 	tset->nr_tasks = 0;
2728 	tset->csets    = &tset->src_csets;
2729 	return ret;
2730 }
2731 
2732 /**
2733  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2734  * @dst_cgrp: destination cgroup to test
2735  *
2736  * On the default hierarchy, except for the mixable, (possible) thread root
2737  * and threaded cgroups, subtree_control must be zero for migration
2738  * destination cgroups with tasks so that child cgroups don't compete
2739  * against tasks.
2740  */
cgroup_migrate_vet_dst(struct cgroup * dst_cgrp)2741 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2742 {
2743 	/* v1 doesn't have any restriction */
2744 	if (!cgroup_on_dfl(dst_cgrp))
2745 		return 0;
2746 
2747 	/* verify @dst_cgrp can host resources */
2748 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2749 		return -EOPNOTSUPP;
2750 
2751 	/*
2752 	 * If @dst_cgrp is already or can become a thread root or is
2753 	 * threaded, it doesn't matter.
2754 	 */
2755 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2756 		return 0;
2757 
2758 	/* apply no-internal-process constraint */
2759 	if (dst_cgrp->subtree_control)
2760 		return -EBUSY;
2761 
2762 	return 0;
2763 }
2764 
2765 /**
2766  * cgroup_migrate_finish - cleanup after attach
2767  * @mgctx: migration context
2768  *
2769  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2770  * those functions for details.
2771  */
cgroup_migrate_finish(struct cgroup_mgctx * mgctx)2772 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2773 {
2774 	struct css_set *cset, *tmp_cset;
2775 
2776 	lockdep_assert_held(&cgroup_mutex);
2777 
2778 	spin_lock_irq(&css_set_lock);
2779 
2780 	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets,
2781 				 mg_src_preload_node) {
2782 		cset->mg_src_cgrp = NULL;
2783 		cset->mg_dst_cgrp = NULL;
2784 		cset->mg_dst_cset = NULL;
2785 		list_del_init(&cset->mg_src_preload_node);
2786 		put_css_set_locked(cset);
2787 	}
2788 
2789 	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets,
2790 				 mg_dst_preload_node) {
2791 		cset->mg_src_cgrp = NULL;
2792 		cset->mg_dst_cgrp = NULL;
2793 		cset->mg_dst_cset = NULL;
2794 		list_del_init(&cset->mg_dst_preload_node);
2795 		put_css_set_locked(cset);
2796 	}
2797 
2798 	spin_unlock_irq(&css_set_lock);
2799 }
2800 
2801 /**
2802  * cgroup_migrate_add_src - add a migration source css_set
2803  * @src_cset: the source css_set to add
2804  * @dst_cgrp: the destination cgroup
2805  * @mgctx: migration context
2806  *
2807  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2808  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2809  * up by cgroup_migrate_finish().
2810  *
2811  * This function may be called without holding cgroup_threadgroup_rwsem
2812  * even if the target is a process.  Threads may be created and destroyed
2813  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2814  * into play and the preloaded css_sets are guaranteed to cover all
2815  * migrations.
2816  */
cgroup_migrate_add_src(struct css_set * src_cset,struct cgroup * dst_cgrp,struct cgroup_mgctx * mgctx)2817 void cgroup_migrate_add_src(struct css_set *src_cset,
2818 			    struct cgroup *dst_cgrp,
2819 			    struct cgroup_mgctx *mgctx)
2820 {
2821 	struct cgroup *src_cgrp;
2822 
2823 	lockdep_assert_held(&cgroup_mutex);
2824 	lockdep_assert_held(&css_set_lock);
2825 
2826 	/*
2827 	 * If ->dead, @src_set is associated with one or more dead cgroups
2828 	 * and doesn't contain any migratable tasks.  Ignore it early so
2829 	 * that the rest of migration path doesn't get confused by it.
2830 	 */
2831 	if (src_cset->dead)
2832 		return;
2833 
2834 	if (!list_empty(&src_cset->mg_src_preload_node))
2835 		return;
2836 
2837 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2838 
2839 	WARN_ON(src_cset->mg_src_cgrp);
2840 	WARN_ON(src_cset->mg_dst_cgrp);
2841 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2842 	WARN_ON(!list_empty(&src_cset->mg_node));
2843 
2844 	src_cset->mg_src_cgrp = src_cgrp;
2845 	src_cset->mg_dst_cgrp = dst_cgrp;
2846 	get_css_set(src_cset);
2847 	list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets);
2848 }
2849 
2850 /**
2851  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2852  * @mgctx: migration context
2853  *
2854  * Tasks are about to be moved and all the source css_sets have been
2855  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2856  * pins all destination css_sets, links each to its source, and append them
2857  * to @mgctx->preloaded_dst_csets.
2858  *
2859  * This function must be called after cgroup_migrate_add_src() has been
2860  * called on each migration source css_set.  After migration is performed
2861  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2862  * @mgctx.
2863  */
cgroup_migrate_prepare_dst(struct cgroup_mgctx * mgctx)2864 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2865 {
2866 	struct css_set *src_cset, *tmp_cset;
2867 
2868 	lockdep_assert_held(&cgroup_mutex);
2869 
2870 	/* look up the dst cset for each src cset and link it to src */
2871 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2872 				 mg_src_preload_node) {
2873 		struct css_set *dst_cset;
2874 		struct cgroup_subsys *ss;
2875 		int ssid;
2876 
2877 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2878 		if (!dst_cset)
2879 			return -ENOMEM;
2880 
2881 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2882 
2883 		/*
2884 		 * If src cset equals dst, it's noop.  Drop the src.
2885 		 * cgroup_migrate() will skip the cset too.  Note that we
2886 		 * can't handle src == dst as some nodes are used by both.
2887 		 */
2888 		if (src_cset == dst_cset) {
2889 			src_cset->mg_src_cgrp = NULL;
2890 			src_cset->mg_dst_cgrp = NULL;
2891 			list_del_init(&src_cset->mg_src_preload_node);
2892 			put_css_set(src_cset);
2893 			put_css_set(dst_cset);
2894 			continue;
2895 		}
2896 
2897 		src_cset->mg_dst_cset = dst_cset;
2898 
2899 		if (list_empty(&dst_cset->mg_dst_preload_node))
2900 			list_add_tail(&dst_cset->mg_dst_preload_node,
2901 				      &mgctx->preloaded_dst_csets);
2902 		else
2903 			put_css_set(dst_cset);
2904 
2905 		for_each_subsys(ss, ssid)
2906 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2907 				mgctx->ss_mask |= 1 << ssid;
2908 	}
2909 
2910 	return 0;
2911 }
2912 
2913 /**
2914  * cgroup_migrate - migrate a process or task to a cgroup
2915  * @leader: the leader of the process or the task to migrate
2916  * @threadgroup: whether @leader points to the whole process or a single task
2917  * @mgctx: migration context
2918  *
2919  * Migrate a process or task denoted by @leader.  If migrating a process,
2920  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2921  * responsible for invoking cgroup_migrate_add_src() and
2922  * cgroup_migrate_prepare_dst() on the targets before invoking this
2923  * function and following up with cgroup_migrate_finish().
2924  *
2925  * As long as a controller's ->can_attach() doesn't fail, this function is
2926  * guaranteed to succeed.  This means that, excluding ->can_attach()
2927  * failure, when migrating multiple targets, the success or failure can be
2928  * decided for all targets by invoking group_migrate_prepare_dst() before
2929  * actually starting migrating.
2930  */
cgroup_migrate(struct task_struct * leader,bool threadgroup,struct cgroup_mgctx * mgctx)2931 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2932 		   struct cgroup_mgctx *mgctx)
2933 {
2934 	struct task_struct *task;
2935 
2936 	/*
2937 	 * The following thread iteration should be inside an RCU critical
2938 	 * section to prevent tasks from being freed while taking the snapshot.
2939 	 * spin_lock_irq() implies RCU critical section here.
2940 	 */
2941 	spin_lock_irq(&css_set_lock);
2942 	task = leader;
2943 	do {
2944 		cgroup_migrate_add_task(task, mgctx);
2945 		if (!threadgroup)
2946 			break;
2947 	} while_each_thread(leader, task);
2948 	spin_unlock_irq(&css_set_lock);
2949 
2950 	return cgroup_migrate_execute(mgctx);
2951 }
2952 
2953 /**
2954  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2955  * @dst_cgrp: the cgroup to attach to
2956  * @leader: the task or the leader of the threadgroup to be attached
2957  * @threadgroup: attach the whole threadgroup?
2958  *
2959  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2960  */
cgroup_attach_task(struct cgroup * dst_cgrp,struct task_struct * leader,bool threadgroup)2961 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2962 		       bool threadgroup)
2963 {
2964 	DEFINE_CGROUP_MGCTX(mgctx);
2965 	struct task_struct *task;
2966 	int ret = 0;
2967 
2968 	/* look up all src csets */
2969 	spin_lock_irq(&css_set_lock);
2970 	rcu_read_lock();
2971 	task = leader;
2972 	do {
2973 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2974 		if (!threadgroup)
2975 			break;
2976 	} while_each_thread(leader, task);
2977 	rcu_read_unlock();
2978 	spin_unlock_irq(&css_set_lock);
2979 
2980 	/* prepare dst csets and commit */
2981 	ret = cgroup_migrate_prepare_dst(&mgctx);
2982 	if (!ret)
2983 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2984 
2985 	cgroup_migrate_finish(&mgctx);
2986 
2987 	if (!ret)
2988 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2989 
2990 	return ret;
2991 }
2992 
cgroup_procs_write_start(char * buf,bool threadgroup,bool * threadgroup_locked)2993 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2994 					     bool *threadgroup_locked)
2995 {
2996 	struct task_struct *tsk;
2997 	pid_t pid;
2998 
2999 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
3000 		return ERR_PTR(-EINVAL);
3001 
3002 	/*
3003 	 * If we migrate a single thread, we don't care about threadgroup
3004 	 * stability. If the thread is `current`, it won't exit(2) under our
3005 	 * hands or change PID through exec(2). We exclude
3006 	 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
3007 	 * callers by cgroup_mutex.
3008 	 * Therefore, we can skip the global lock.
3009 	 */
3010 	lockdep_assert_held(&cgroup_mutex);
3011 	*threadgroup_locked = pid || threadgroup;
3012 	cgroup_attach_lock(*threadgroup_locked);
3013 
3014 	rcu_read_lock();
3015 	if (pid) {
3016 		tsk = find_task_by_vpid(pid);
3017 		if (!tsk) {
3018 			tsk = ERR_PTR(-ESRCH);
3019 			goto out_unlock_threadgroup;
3020 		}
3021 	} else {
3022 		tsk = current;
3023 	}
3024 
3025 	if (threadgroup)
3026 		tsk = tsk->group_leader;
3027 
3028 	/*
3029 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
3030 	 * If userland migrates such a kthread to a non-root cgroup, it can
3031 	 * become trapped in a cpuset, or RT kthread may be born in a
3032 	 * cgroup with no rt_runtime allocated.  Just say no.
3033 	 */
3034 	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
3035 		tsk = ERR_PTR(-EINVAL);
3036 		goto out_unlock_threadgroup;
3037 	}
3038 
3039 	get_task_struct(tsk);
3040 	goto out_unlock_rcu;
3041 
3042 out_unlock_threadgroup:
3043 	cgroup_attach_unlock(*threadgroup_locked);
3044 	*threadgroup_locked = false;
3045 out_unlock_rcu:
3046 	rcu_read_unlock();
3047 	return tsk;
3048 }
3049 
cgroup_procs_write_finish(struct task_struct * task,bool threadgroup_locked)3050 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked)
3051 {
3052 	struct cgroup_subsys *ss;
3053 	int ssid;
3054 
3055 	/* release reference from cgroup_procs_write_start() */
3056 	put_task_struct(task);
3057 
3058 	cgroup_attach_unlock(threadgroup_locked);
3059 
3060 	for_each_subsys(ss, ssid)
3061 		if (ss->post_attach)
3062 			ss->post_attach();
3063 }
3064 
cgroup_print_ss_mask(struct seq_file * seq,u16 ss_mask)3065 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
3066 {
3067 	struct cgroup_subsys *ss;
3068 	bool printed = false;
3069 	int ssid;
3070 
3071 	do_each_subsys_mask(ss, ssid, ss_mask) {
3072 		if (printed)
3073 			seq_putc(seq, ' ');
3074 		seq_puts(seq, ss->name);
3075 		printed = true;
3076 	} while_each_subsys_mask();
3077 	if (printed)
3078 		seq_putc(seq, '\n');
3079 }
3080 
3081 /* show controllers which are enabled from the parent */
cgroup_controllers_show(struct seq_file * seq,void * v)3082 static int cgroup_controllers_show(struct seq_file *seq, void *v)
3083 {
3084 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3085 
3086 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
3087 	return 0;
3088 }
3089 
3090 /* show controllers which are enabled for a given cgroup's children */
cgroup_subtree_control_show(struct seq_file * seq,void * v)3091 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
3092 {
3093 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3094 
3095 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
3096 	return 0;
3097 }
3098 
3099 /**
3100  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3101  * @cgrp: root of the subtree to update csses for
3102  *
3103  * @cgrp's control masks have changed and its subtree's css associations
3104  * need to be updated accordingly.  This function looks up all css_sets
3105  * which are attached to the subtree, creates the matching updated css_sets
3106  * and migrates the tasks to the new ones.
3107  */
cgroup_update_dfl_csses(struct cgroup * cgrp)3108 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3109 {
3110 	DEFINE_CGROUP_MGCTX(mgctx);
3111 	struct cgroup_subsys_state *d_css;
3112 	struct cgroup *dsct;
3113 	struct css_set *src_cset;
3114 	bool has_tasks;
3115 	int ret;
3116 
3117 	lockdep_assert_held(&cgroup_mutex);
3118 
3119 	/* look up all csses currently attached to @cgrp's subtree */
3120 	spin_lock_irq(&css_set_lock);
3121 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3122 		struct cgrp_cset_link *link;
3123 
3124 		/*
3125 		 * As cgroup_update_dfl_csses() is only called by
3126 		 * cgroup_apply_control(). The csses associated with the
3127 		 * given cgrp will not be affected by changes made to
3128 		 * its subtree_control file. We can skip them.
3129 		 */
3130 		if (dsct == cgrp)
3131 			continue;
3132 
3133 		list_for_each_entry(link, &dsct->cset_links, cset_link)
3134 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
3135 	}
3136 	spin_unlock_irq(&css_set_lock);
3137 
3138 	/*
3139 	 * We need to write-lock threadgroup_rwsem while migrating tasks.
3140 	 * However, if there are no source csets for @cgrp, changing its
3141 	 * controllers isn't gonna produce any task migrations and the
3142 	 * write-locking can be skipped safely.
3143 	 */
3144 	has_tasks = !list_empty(&mgctx.preloaded_src_csets);
3145 	cgroup_attach_lock(has_tasks);
3146 
3147 	/* NULL dst indicates self on default hierarchy */
3148 	ret = cgroup_migrate_prepare_dst(&mgctx);
3149 	if (ret)
3150 		goto out_finish;
3151 
3152 	spin_lock_irq(&css_set_lock);
3153 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets,
3154 			    mg_src_preload_node) {
3155 		struct task_struct *task, *ntask;
3156 
3157 		/* all tasks in src_csets need to be migrated */
3158 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3159 			cgroup_migrate_add_task(task, &mgctx);
3160 	}
3161 	spin_unlock_irq(&css_set_lock);
3162 
3163 	ret = cgroup_migrate_execute(&mgctx);
3164 out_finish:
3165 	cgroup_migrate_finish(&mgctx);
3166 	cgroup_attach_unlock(has_tasks);
3167 	return ret;
3168 }
3169 
3170 /**
3171  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3172  * @cgrp: root of the target subtree
3173  *
3174  * Because css offlining is asynchronous, userland may try to re-enable a
3175  * controller while the previous css is still around.  This function grabs
3176  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3177  */
cgroup_lock_and_drain_offline(struct cgroup * cgrp)3178 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3179 	__acquires(&cgroup_mutex)
3180 {
3181 	struct cgroup *dsct;
3182 	struct cgroup_subsys_state *d_css;
3183 	struct cgroup_subsys *ss;
3184 	int ssid;
3185 
3186 restart:
3187 	cgroup_lock();
3188 
3189 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3190 		for_each_subsys(ss, ssid) {
3191 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3192 			DEFINE_WAIT(wait);
3193 
3194 			if (!css || !percpu_ref_is_dying(&css->refcnt))
3195 				continue;
3196 
3197 			cgroup_get_live(dsct);
3198 			prepare_to_wait(&dsct->offline_waitq, &wait,
3199 					TASK_UNINTERRUPTIBLE);
3200 
3201 			cgroup_unlock();
3202 			schedule();
3203 			finish_wait(&dsct->offline_waitq, &wait);
3204 
3205 			cgroup_put(dsct);
3206 			goto restart;
3207 		}
3208 	}
3209 }
3210 
3211 /**
3212  * cgroup_save_control - save control masks and dom_cgrp of a subtree
3213  * @cgrp: root of the target subtree
3214  *
3215  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3216  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3217  * itself.
3218  */
cgroup_save_control(struct cgroup * cgrp)3219 static void cgroup_save_control(struct cgroup *cgrp)
3220 {
3221 	struct cgroup *dsct;
3222 	struct cgroup_subsys_state *d_css;
3223 
3224 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3225 		dsct->old_subtree_control = dsct->subtree_control;
3226 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3227 		dsct->old_dom_cgrp = dsct->dom_cgrp;
3228 	}
3229 }
3230 
3231 /**
3232  * cgroup_propagate_control - refresh control masks of a subtree
3233  * @cgrp: root of the target subtree
3234  *
3235  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3236  * ->subtree_control and propagate controller availability through the
3237  * subtree so that descendants don't have unavailable controllers enabled.
3238  */
cgroup_propagate_control(struct cgroup * cgrp)3239 static void cgroup_propagate_control(struct cgroup *cgrp)
3240 {
3241 	struct cgroup *dsct;
3242 	struct cgroup_subsys_state *d_css;
3243 
3244 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3245 		dsct->subtree_control &= cgroup_control(dsct);
3246 		dsct->subtree_ss_mask =
3247 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3248 						    cgroup_ss_mask(dsct));
3249 	}
3250 }
3251 
3252 /**
3253  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3254  * @cgrp: root of the target subtree
3255  *
3256  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3257  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3258  * itself.
3259  */
cgroup_restore_control(struct cgroup * cgrp)3260 static void cgroup_restore_control(struct cgroup *cgrp)
3261 {
3262 	struct cgroup *dsct;
3263 	struct cgroup_subsys_state *d_css;
3264 
3265 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3266 		dsct->subtree_control = dsct->old_subtree_control;
3267 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3268 		dsct->dom_cgrp = dsct->old_dom_cgrp;
3269 	}
3270 }
3271 
css_visible(struct cgroup_subsys_state * css)3272 static bool css_visible(struct cgroup_subsys_state *css)
3273 {
3274 	struct cgroup_subsys *ss = css->ss;
3275 	struct cgroup *cgrp = css->cgroup;
3276 
3277 	if (cgroup_control(cgrp) & (1 << ss->id))
3278 		return true;
3279 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3280 		return false;
3281 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3282 }
3283 
3284 /**
3285  * cgroup_apply_control_enable - enable or show csses according to control
3286  * @cgrp: root of the target subtree
3287  *
3288  * Walk @cgrp's subtree and create new csses or make the existing ones
3289  * visible.  A css is created invisible if it's being implicitly enabled
3290  * through dependency.  An invisible css is made visible when the userland
3291  * explicitly enables it.
3292  *
3293  * Returns 0 on success, -errno on failure.  On failure, csses which have
3294  * been processed already aren't cleaned up.  The caller is responsible for
3295  * cleaning up with cgroup_apply_control_disable().
3296  */
cgroup_apply_control_enable(struct cgroup * cgrp)3297 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3298 {
3299 	struct cgroup *dsct;
3300 	struct cgroup_subsys_state *d_css;
3301 	struct cgroup_subsys *ss;
3302 	int ssid, ret;
3303 
3304 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3305 		for_each_subsys(ss, ssid) {
3306 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3307 
3308 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3309 				continue;
3310 
3311 			if (!css) {
3312 				css = css_create(dsct, ss);
3313 				if (IS_ERR(css))
3314 					return PTR_ERR(css);
3315 			}
3316 
3317 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3318 
3319 			if (css_visible(css)) {
3320 				ret = css_populate_dir(css);
3321 				if (ret)
3322 					return ret;
3323 			}
3324 		}
3325 	}
3326 
3327 	return 0;
3328 }
3329 
3330 /**
3331  * cgroup_apply_control_disable - kill or hide csses according to control
3332  * @cgrp: root of the target subtree
3333  *
3334  * Walk @cgrp's subtree and kill and hide csses so that they match
3335  * cgroup_ss_mask() and cgroup_visible_mask().
3336  *
3337  * A css is hidden when the userland requests it to be disabled while other
3338  * subsystems are still depending on it.  The css must not actively control
3339  * resources and be in the vanilla state if it's made visible again later.
3340  * Controllers which may be depended upon should provide ->css_reset() for
3341  * this purpose.
3342  */
cgroup_apply_control_disable(struct cgroup * cgrp)3343 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3344 {
3345 	struct cgroup *dsct;
3346 	struct cgroup_subsys_state *d_css;
3347 	struct cgroup_subsys *ss;
3348 	int ssid;
3349 
3350 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3351 		for_each_subsys(ss, ssid) {
3352 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3353 
3354 			if (!css)
3355 				continue;
3356 
3357 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3358 
3359 			if (css->parent &&
3360 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3361 				kill_css(css);
3362 			} else if (!css_visible(css)) {
3363 				css_clear_dir(css);
3364 				if (ss->css_reset)
3365 					ss->css_reset(css);
3366 			}
3367 		}
3368 	}
3369 }
3370 
3371 /**
3372  * cgroup_apply_control - apply control mask updates to the subtree
3373  * @cgrp: root of the target subtree
3374  *
3375  * subsystems can be enabled and disabled in a subtree using the following
3376  * steps.
3377  *
3378  * 1. Call cgroup_save_control() to stash the current state.
3379  * 2. Update ->subtree_control masks in the subtree as desired.
3380  * 3. Call cgroup_apply_control() to apply the changes.
3381  * 4. Optionally perform other related operations.
3382  * 5. Call cgroup_finalize_control() to finish up.
3383  *
3384  * This function implements step 3 and propagates the mask changes
3385  * throughout @cgrp's subtree, updates csses accordingly and perform
3386  * process migrations.
3387  */
cgroup_apply_control(struct cgroup * cgrp)3388 static int cgroup_apply_control(struct cgroup *cgrp)
3389 {
3390 	int ret;
3391 
3392 	cgroup_propagate_control(cgrp);
3393 
3394 	ret = cgroup_apply_control_enable(cgrp);
3395 	if (ret)
3396 		return ret;
3397 
3398 	/*
3399 	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3400 	 * making the following cgroup_update_dfl_csses() properly update
3401 	 * css associations of all tasks in the subtree.
3402 	 */
3403 	return cgroup_update_dfl_csses(cgrp);
3404 }
3405 
3406 /**
3407  * cgroup_finalize_control - finalize control mask update
3408  * @cgrp: root of the target subtree
3409  * @ret: the result of the update
3410  *
3411  * Finalize control mask update.  See cgroup_apply_control() for more info.
3412  */
cgroup_finalize_control(struct cgroup * cgrp,int ret)3413 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3414 {
3415 	if (ret) {
3416 		cgroup_restore_control(cgrp);
3417 		cgroup_propagate_control(cgrp);
3418 	}
3419 
3420 	cgroup_apply_control_disable(cgrp);
3421 }
3422 
cgroup_vet_subtree_control_enable(struct cgroup * cgrp,u16 enable)3423 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3424 {
3425 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3426 
3427 	/* if nothing is getting enabled, nothing to worry about */
3428 	if (!enable)
3429 		return 0;
3430 
3431 	/* can @cgrp host any resources? */
3432 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3433 		return -EOPNOTSUPP;
3434 
3435 	/* mixables don't care */
3436 	if (cgroup_is_mixable(cgrp))
3437 		return 0;
3438 
3439 	if (domain_enable) {
3440 		/* can't enable domain controllers inside a thread subtree */
3441 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3442 			return -EOPNOTSUPP;
3443 	} else {
3444 		/*
3445 		 * Threaded controllers can handle internal competitions
3446 		 * and are always allowed inside a (prospective) thread
3447 		 * subtree.
3448 		 */
3449 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3450 			return 0;
3451 	}
3452 
3453 	/*
3454 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3455 	 * child cgroups competing against tasks.
3456 	 */
3457 	if (cgroup_has_tasks(cgrp))
3458 		return -EBUSY;
3459 
3460 	return 0;
3461 }
3462 
3463 /* change the enabled child controllers for a cgroup in the default hierarchy */
cgroup_subtree_control_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3464 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3465 					    char *buf, size_t nbytes,
3466 					    loff_t off)
3467 {
3468 	u16 enable = 0, disable = 0;
3469 	struct cgroup *cgrp, *child;
3470 	struct cgroup_subsys *ss;
3471 	char *tok;
3472 	int ssid, ret;
3473 
3474 	/*
3475 	 * Parse input - space separated list of subsystem names prefixed
3476 	 * with either + or -.
3477 	 */
3478 	buf = strstrip(buf);
3479 	while ((tok = strsep(&buf, " "))) {
3480 		if (tok[0] == '\0')
3481 			continue;
3482 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3483 			if (!cgroup_ssid_enabled(ssid) ||
3484 			    strcmp(tok + 1, ss->name))
3485 				continue;
3486 
3487 			if (*tok == '+') {
3488 				enable |= 1 << ssid;
3489 				disable &= ~(1 << ssid);
3490 			} else if (*tok == '-') {
3491 				disable |= 1 << ssid;
3492 				enable &= ~(1 << ssid);
3493 			} else {
3494 				return -EINVAL;
3495 			}
3496 			break;
3497 		} while_each_subsys_mask();
3498 		if (ssid == CGROUP_SUBSYS_COUNT)
3499 			return -EINVAL;
3500 	}
3501 
3502 	cgrp = cgroup_kn_lock_live(of->kn, true);
3503 	if (!cgrp)
3504 		return -ENODEV;
3505 
3506 	for_each_subsys(ss, ssid) {
3507 		if (enable & (1 << ssid)) {
3508 			if (cgrp->subtree_control & (1 << ssid)) {
3509 				enable &= ~(1 << ssid);
3510 				continue;
3511 			}
3512 
3513 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3514 				ret = -ENOENT;
3515 				goto out_unlock;
3516 			}
3517 		} else if (disable & (1 << ssid)) {
3518 			if (!(cgrp->subtree_control & (1 << ssid))) {
3519 				disable &= ~(1 << ssid);
3520 				continue;
3521 			}
3522 
3523 			/* a child has it enabled? */
3524 			cgroup_for_each_live_child(child, cgrp) {
3525 				if (child->subtree_control & (1 << ssid)) {
3526 					ret = -EBUSY;
3527 					goto out_unlock;
3528 				}
3529 			}
3530 		}
3531 	}
3532 
3533 	if (!enable && !disable) {
3534 		ret = 0;
3535 		goto out_unlock;
3536 	}
3537 
3538 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3539 	if (ret)
3540 		goto out_unlock;
3541 
3542 	/* save and update control masks and prepare csses */
3543 	cgroup_save_control(cgrp);
3544 
3545 	cgrp->subtree_control |= enable;
3546 	cgrp->subtree_control &= ~disable;
3547 
3548 	ret = cgroup_apply_control(cgrp);
3549 	cgroup_finalize_control(cgrp, ret);
3550 	if (ret)
3551 		goto out_unlock;
3552 
3553 	kernfs_activate(cgrp->kn);
3554 out_unlock:
3555 	cgroup_kn_unlock(of->kn);
3556 	return ret ?: nbytes;
3557 }
3558 
3559 /**
3560  * cgroup_enable_threaded - make @cgrp threaded
3561  * @cgrp: the target cgroup
3562  *
3563  * Called when "threaded" is written to the cgroup.type interface file and
3564  * tries to make @cgrp threaded and join the parent's resource domain.
3565  * This function is never called on the root cgroup as cgroup.type doesn't
3566  * exist on it.
3567  */
cgroup_enable_threaded(struct cgroup * cgrp)3568 static int cgroup_enable_threaded(struct cgroup *cgrp)
3569 {
3570 	struct cgroup *parent = cgroup_parent(cgrp);
3571 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3572 	struct cgroup *dsct;
3573 	struct cgroup_subsys_state *d_css;
3574 	int ret;
3575 
3576 	lockdep_assert_held(&cgroup_mutex);
3577 
3578 	/* noop if already threaded */
3579 	if (cgroup_is_threaded(cgrp))
3580 		return 0;
3581 
3582 	/*
3583 	 * If @cgroup is populated or has domain controllers enabled, it
3584 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3585 	 * test can catch the same conditions, that's only when @parent is
3586 	 * not mixable, so let's check it explicitly.
3587 	 */
3588 	if (cgroup_is_populated(cgrp) ||
3589 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3590 		return -EOPNOTSUPP;
3591 
3592 	/* we're joining the parent's domain, ensure its validity */
3593 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3594 	    !cgroup_can_be_thread_root(dom_cgrp))
3595 		return -EOPNOTSUPP;
3596 
3597 	/*
3598 	 * The following shouldn't cause actual migrations and should
3599 	 * always succeed.
3600 	 */
3601 	cgroup_save_control(cgrp);
3602 
3603 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3604 		if (dsct == cgrp || cgroup_is_threaded(dsct))
3605 			dsct->dom_cgrp = dom_cgrp;
3606 
3607 	ret = cgroup_apply_control(cgrp);
3608 	if (!ret)
3609 		parent->nr_threaded_children++;
3610 
3611 	cgroup_finalize_control(cgrp, ret);
3612 	return ret;
3613 }
3614 
cgroup_type_show(struct seq_file * seq,void * v)3615 static int cgroup_type_show(struct seq_file *seq, void *v)
3616 {
3617 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3618 
3619 	if (cgroup_is_threaded(cgrp))
3620 		seq_puts(seq, "threaded\n");
3621 	else if (!cgroup_is_valid_domain(cgrp))
3622 		seq_puts(seq, "domain invalid\n");
3623 	else if (cgroup_is_thread_root(cgrp))
3624 		seq_puts(seq, "domain threaded\n");
3625 	else
3626 		seq_puts(seq, "domain\n");
3627 
3628 	return 0;
3629 }
3630 
cgroup_type_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3631 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3632 				 size_t nbytes, loff_t off)
3633 {
3634 	struct cgroup *cgrp;
3635 	int ret;
3636 
3637 	/* only switching to threaded mode is supported */
3638 	if (strcmp(strstrip(buf), "threaded"))
3639 		return -EINVAL;
3640 
3641 	/* drain dying csses before we re-apply (threaded) subtree control */
3642 	cgrp = cgroup_kn_lock_live(of->kn, true);
3643 	if (!cgrp)
3644 		return -ENOENT;
3645 
3646 	/* threaded can only be enabled */
3647 	ret = cgroup_enable_threaded(cgrp);
3648 
3649 	cgroup_kn_unlock(of->kn);
3650 	return ret ?: nbytes;
3651 }
3652 
cgroup_max_descendants_show(struct seq_file * seq,void * v)3653 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3654 {
3655 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3656 	int descendants = READ_ONCE(cgrp->max_descendants);
3657 
3658 	if (descendants == INT_MAX)
3659 		seq_puts(seq, "max\n");
3660 	else
3661 		seq_printf(seq, "%d\n", descendants);
3662 
3663 	return 0;
3664 }
3665 
cgroup_max_descendants_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3666 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3667 					   char *buf, size_t nbytes, loff_t off)
3668 {
3669 	struct cgroup *cgrp;
3670 	int descendants;
3671 	ssize_t ret;
3672 
3673 	buf = strstrip(buf);
3674 	if (!strcmp(buf, "max")) {
3675 		descendants = INT_MAX;
3676 	} else {
3677 		ret = kstrtoint(buf, 0, &descendants);
3678 		if (ret)
3679 			return ret;
3680 	}
3681 
3682 	if (descendants < 0)
3683 		return -ERANGE;
3684 
3685 	cgrp = cgroup_kn_lock_live(of->kn, false);
3686 	if (!cgrp)
3687 		return -ENOENT;
3688 
3689 	cgrp->max_descendants = descendants;
3690 
3691 	cgroup_kn_unlock(of->kn);
3692 
3693 	return nbytes;
3694 }
3695 
cgroup_max_depth_show(struct seq_file * seq,void * v)3696 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3697 {
3698 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3699 	int depth = READ_ONCE(cgrp->max_depth);
3700 
3701 	if (depth == INT_MAX)
3702 		seq_puts(seq, "max\n");
3703 	else
3704 		seq_printf(seq, "%d\n", depth);
3705 
3706 	return 0;
3707 }
3708 
cgroup_max_depth_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3709 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3710 				      char *buf, size_t nbytes, loff_t off)
3711 {
3712 	struct cgroup *cgrp;
3713 	ssize_t ret;
3714 	int depth;
3715 
3716 	buf = strstrip(buf);
3717 	if (!strcmp(buf, "max")) {
3718 		depth = INT_MAX;
3719 	} else {
3720 		ret = kstrtoint(buf, 0, &depth);
3721 		if (ret)
3722 			return ret;
3723 	}
3724 
3725 	if (depth < 0)
3726 		return -ERANGE;
3727 
3728 	cgrp = cgroup_kn_lock_live(of->kn, false);
3729 	if (!cgrp)
3730 		return -ENOENT;
3731 
3732 	cgrp->max_depth = depth;
3733 
3734 	cgroup_kn_unlock(of->kn);
3735 
3736 	return nbytes;
3737 }
3738 
cgroup_events_show(struct seq_file * seq,void * v)3739 static int cgroup_events_show(struct seq_file *seq, void *v)
3740 {
3741 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3742 
3743 	seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3744 	seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3745 
3746 	return 0;
3747 }
3748 
cgroup_stat_show(struct seq_file * seq,void * v)3749 static int cgroup_stat_show(struct seq_file *seq, void *v)
3750 {
3751 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3752 	struct cgroup_subsys_state *css;
3753 	int dying_cnt[CGROUP_SUBSYS_COUNT];
3754 	int ssid;
3755 
3756 	seq_printf(seq, "nr_descendants %d\n",
3757 		   cgroup->nr_descendants);
3758 
3759 	/*
3760 	 * Show the number of live and dying csses associated with each of
3761 	 * non-inhibited cgroup subsystems that is bound to cgroup v2.
3762 	 *
3763 	 * Without proper lock protection, racing is possible. So the
3764 	 * numbers may not be consistent when that happens.
3765 	 */
3766 	rcu_read_lock();
3767 	for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) {
3768 		dying_cnt[ssid] = -1;
3769 		if ((BIT(ssid) & cgrp_dfl_inhibit_ss_mask) ||
3770 		    (cgroup_subsys[ssid]->root !=  &cgrp_dfl_root))
3771 			continue;
3772 		css = rcu_dereference_raw(cgroup->subsys[ssid]);
3773 		dying_cnt[ssid] = cgroup->nr_dying_subsys[ssid];
3774 		seq_printf(seq, "nr_subsys_%s %d\n", cgroup_subsys[ssid]->name,
3775 			   css ? (css->nr_descendants + 1) : 0);
3776 	}
3777 
3778 	seq_printf(seq, "nr_dying_descendants %d\n",
3779 		   cgroup->nr_dying_descendants);
3780 	for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) {
3781 		if (dying_cnt[ssid] >= 0)
3782 			seq_printf(seq, "nr_dying_subsys_%s %d\n",
3783 				   cgroup_subsys[ssid]->name, dying_cnt[ssid]);
3784 	}
3785 	rcu_read_unlock();
3786 	return 0;
3787 }
3788 
3789 #ifdef CONFIG_CGROUP_SCHED
3790 /**
3791  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
3792  * @cgrp: the cgroup of interest
3793  * @ss: the subsystem of interest
3794  *
3795  * Find and get @cgrp's css associated with @ss.  If the css doesn't exist
3796  * or is offline, %NULL is returned.
3797  */
cgroup_tryget_css(struct cgroup * cgrp,struct cgroup_subsys * ss)3798 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
3799 						     struct cgroup_subsys *ss)
3800 {
3801 	struct cgroup_subsys_state *css;
3802 
3803 	rcu_read_lock();
3804 	css = cgroup_css(cgrp, ss);
3805 	if (css && !css_tryget_online(css))
3806 		css = NULL;
3807 	rcu_read_unlock();
3808 
3809 	return css;
3810 }
3811 
cgroup_extra_stat_show(struct seq_file * seq,int ssid)3812 static int cgroup_extra_stat_show(struct seq_file *seq, int ssid)
3813 {
3814 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3815 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3816 	struct cgroup_subsys_state *css;
3817 	int ret;
3818 
3819 	if (!ss->css_extra_stat_show)
3820 		return 0;
3821 
3822 	css = cgroup_tryget_css(cgrp, ss);
3823 	if (!css)
3824 		return 0;
3825 
3826 	ret = ss->css_extra_stat_show(seq, css);
3827 	css_put(css);
3828 	return ret;
3829 }
3830 
cgroup_local_stat_show(struct seq_file * seq,struct cgroup * cgrp,int ssid)3831 static int cgroup_local_stat_show(struct seq_file *seq,
3832 				  struct cgroup *cgrp, int ssid)
3833 {
3834 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3835 	struct cgroup_subsys_state *css;
3836 	int ret;
3837 
3838 	if (!ss->css_local_stat_show)
3839 		return 0;
3840 
3841 	css = cgroup_tryget_css(cgrp, ss);
3842 	if (!css)
3843 		return 0;
3844 
3845 	ret = ss->css_local_stat_show(seq, css);
3846 	css_put(css);
3847 	return ret;
3848 }
3849 #endif
3850 
cpu_stat_show(struct seq_file * seq,void * v)3851 static int cpu_stat_show(struct seq_file *seq, void *v)
3852 {
3853 	int ret = 0;
3854 
3855 	cgroup_base_stat_cputime_show(seq);
3856 #ifdef CONFIG_CGROUP_SCHED
3857 	ret = cgroup_extra_stat_show(seq, cpu_cgrp_id);
3858 #endif
3859 	return ret;
3860 }
3861 
cpu_local_stat_show(struct seq_file * seq,void * v)3862 static int cpu_local_stat_show(struct seq_file *seq, void *v)
3863 {
3864 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3865 	int ret = 0;
3866 
3867 #ifdef CONFIG_CGROUP_SCHED
3868 	ret = cgroup_local_stat_show(seq, cgrp, cpu_cgrp_id);
3869 #endif
3870 	return ret;
3871 }
3872 
3873 #ifdef CONFIG_PSI
cgroup_io_pressure_show(struct seq_file * seq,void * v)3874 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3875 {
3876 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3877 	struct psi_group *psi = cgroup_psi(cgrp);
3878 
3879 	return psi_show(seq, psi, PSI_IO);
3880 }
cgroup_memory_pressure_show(struct seq_file * seq,void * v)3881 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3882 {
3883 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3884 	struct psi_group *psi = cgroup_psi(cgrp);
3885 
3886 	return psi_show(seq, psi, PSI_MEM);
3887 }
cgroup_cpu_pressure_show(struct seq_file * seq,void * v)3888 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3889 {
3890 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3891 	struct psi_group *psi = cgroup_psi(cgrp);
3892 
3893 	return psi_show(seq, psi, PSI_CPU);
3894 }
3895 
pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,enum psi_res res)3896 static ssize_t pressure_write(struct kernfs_open_file *of, char *buf,
3897 			      size_t nbytes, enum psi_res res)
3898 {
3899 	struct cgroup_file_ctx *ctx = of->priv;
3900 	struct psi_trigger *new;
3901 	struct cgroup *cgrp;
3902 	struct psi_group *psi;
3903 
3904 	cgrp = cgroup_kn_lock_live(of->kn, false);
3905 	if (!cgrp)
3906 		return -ENODEV;
3907 
3908 	cgroup_get(cgrp);
3909 	cgroup_kn_unlock(of->kn);
3910 
3911 	/* Allow only one trigger per file descriptor */
3912 	if (ctx->psi.trigger) {
3913 		cgroup_put(cgrp);
3914 		return -EBUSY;
3915 	}
3916 
3917 	psi = cgroup_psi(cgrp);
3918 	new = psi_trigger_create(psi, buf, res, of->file, of);
3919 	if (IS_ERR(new)) {
3920 		cgroup_put(cgrp);
3921 		return PTR_ERR(new);
3922 	}
3923 
3924 	smp_store_release(&ctx->psi.trigger, new);
3925 	cgroup_put(cgrp);
3926 
3927 	return nbytes;
3928 }
3929 
cgroup_io_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3930 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3931 					  char *buf, size_t nbytes,
3932 					  loff_t off)
3933 {
3934 	return pressure_write(of, buf, nbytes, PSI_IO);
3935 }
3936 
cgroup_memory_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3937 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3938 					  char *buf, size_t nbytes,
3939 					  loff_t off)
3940 {
3941 	return pressure_write(of, buf, nbytes, PSI_MEM);
3942 }
3943 
cgroup_cpu_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3944 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3945 					  char *buf, size_t nbytes,
3946 					  loff_t off)
3947 {
3948 	return pressure_write(of, buf, nbytes, PSI_CPU);
3949 }
3950 
3951 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
cgroup_irq_pressure_show(struct seq_file * seq,void * v)3952 static int cgroup_irq_pressure_show(struct seq_file *seq, void *v)
3953 {
3954 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3955 	struct psi_group *psi = cgroup_psi(cgrp);
3956 
3957 	return psi_show(seq, psi, PSI_IRQ);
3958 }
3959 
cgroup_irq_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3960 static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of,
3961 					 char *buf, size_t nbytes,
3962 					 loff_t off)
3963 {
3964 	return pressure_write(of, buf, nbytes, PSI_IRQ);
3965 }
3966 #endif
3967 
cgroup_pressure_show(struct seq_file * seq,void * v)3968 static int cgroup_pressure_show(struct seq_file *seq, void *v)
3969 {
3970 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3971 	struct psi_group *psi = cgroup_psi(cgrp);
3972 
3973 	seq_printf(seq, "%d\n", psi->enabled);
3974 
3975 	return 0;
3976 }
3977 
cgroup_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3978 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of,
3979 				     char *buf, size_t nbytes,
3980 				     loff_t off)
3981 {
3982 	ssize_t ret;
3983 	int enable;
3984 	struct cgroup *cgrp;
3985 	struct psi_group *psi;
3986 
3987 	ret = kstrtoint(strstrip(buf), 0, &enable);
3988 	if (ret)
3989 		return ret;
3990 
3991 	if (enable < 0 || enable > 1)
3992 		return -ERANGE;
3993 
3994 	cgrp = cgroup_kn_lock_live(of->kn, false);
3995 	if (!cgrp)
3996 		return -ENOENT;
3997 
3998 	psi = cgroup_psi(cgrp);
3999 	if (psi->enabled != enable) {
4000 		int i;
4001 
4002 		/* show or hide {cpu,memory,io,irq}.pressure files */
4003 		for (i = 0; i < NR_PSI_RESOURCES; i++)
4004 			cgroup_file_show(&cgrp->psi_files[i], enable);
4005 
4006 		psi->enabled = enable;
4007 		if (enable)
4008 			psi_cgroup_restart(psi);
4009 	}
4010 
4011 	cgroup_kn_unlock(of->kn);
4012 
4013 	return nbytes;
4014 }
4015 
cgroup_pressure_poll(struct kernfs_open_file * of,poll_table * pt)4016 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
4017 					  poll_table *pt)
4018 {
4019 	struct cgroup_file_ctx *ctx = of->priv;
4020 
4021 	return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
4022 }
4023 
cgroup_pressure_release(struct kernfs_open_file * of)4024 static void cgroup_pressure_release(struct kernfs_open_file *of)
4025 {
4026 	struct cgroup_file_ctx *ctx = of->priv;
4027 
4028 	psi_trigger_destroy(ctx->psi.trigger);
4029 }
4030 
cgroup_psi_enabled(void)4031 bool cgroup_psi_enabled(void)
4032 {
4033 	if (static_branch_likely(&psi_disabled))
4034 		return false;
4035 
4036 	return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
4037 }
4038 
4039 #else /* CONFIG_PSI */
cgroup_psi_enabled(void)4040 bool cgroup_psi_enabled(void)
4041 {
4042 	return false;
4043 }
4044 
4045 #endif /* CONFIG_PSI */
4046 
cgroup_freeze_show(struct seq_file * seq,void * v)4047 static int cgroup_freeze_show(struct seq_file *seq, void *v)
4048 {
4049 	struct cgroup *cgrp = seq_css(seq)->cgroup;
4050 
4051 	seq_printf(seq, "%d\n", cgrp->freezer.freeze);
4052 
4053 	return 0;
4054 }
4055 
cgroup_freeze_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4056 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
4057 				   char *buf, size_t nbytes, loff_t off)
4058 {
4059 	struct cgroup *cgrp;
4060 	ssize_t ret;
4061 	int freeze;
4062 
4063 	ret = kstrtoint(strstrip(buf), 0, &freeze);
4064 	if (ret)
4065 		return ret;
4066 
4067 	if (freeze < 0 || freeze > 1)
4068 		return -ERANGE;
4069 
4070 	cgrp = cgroup_kn_lock_live(of->kn, false);
4071 	if (!cgrp)
4072 		return -ENOENT;
4073 
4074 	cgroup_freeze(cgrp, freeze);
4075 
4076 	cgroup_kn_unlock(of->kn);
4077 
4078 	return nbytes;
4079 }
4080 
__cgroup_kill(struct cgroup * cgrp)4081 static void __cgroup_kill(struct cgroup *cgrp)
4082 {
4083 	struct css_task_iter it;
4084 	struct task_struct *task;
4085 
4086 	lockdep_assert_held(&cgroup_mutex);
4087 
4088 	spin_lock_irq(&css_set_lock);
4089 	cgrp->kill_seq++;
4090 	spin_unlock_irq(&css_set_lock);
4091 
4092 	css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it);
4093 	while ((task = css_task_iter_next(&it))) {
4094 		/* Ignore kernel threads here. */
4095 		if (task->flags & PF_KTHREAD)
4096 			continue;
4097 
4098 		/* Skip tasks that are already dying. */
4099 		if (__fatal_signal_pending(task))
4100 			continue;
4101 
4102 		send_sig(SIGKILL, task, 0);
4103 	}
4104 	css_task_iter_end(&it);
4105 }
4106 
cgroup_kill(struct cgroup * cgrp)4107 static void cgroup_kill(struct cgroup *cgrp)
4108 {
4109 	struct cgroup_subsys_state *css;
4110 	struct cgroup *dsct;
4111 
4112 	lockdep_assert_held(&cgroup_mutex);
4113 
4114 	cgroup_for_each_live_descendant_pre(dsct, css, cgrp)
4115 		__cgroup_kill(dsct);
4116 }
4117 
cgroup_kill_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4118 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf,
4119 				 size_t nbytes, loff_t off)
4120 {
4121 	ssize_t ret = 0;
4122 	int kill;
4123 	struct cgroup *cgrp;
4124 
4125 	ret = kstrtoint(strstrip(buf), 0, &kill);
4126 	if (ret)
4127 		return ret;
4128 
4129 	if (kill != 1)
4130 		return -ERANGE;
4131 
4132 	cgrp = cgroup_kn_lock_live(of->kn, false);
4133 	if (!cgrp)
4134 		return -ENOENT;
4135 
4136 	/*
4137 	 * Killing is a process directed operation, i.e. the whole thread-group
4138 	 * is taken down so act like we do for cgroup.procs and only make this
4139 	 * writable in non-threaded cgroups.
4140 	 */
4141 	if (cgroup_is_threaded(cgrp))
4142 		ret = -EOPNOTSUPP;
4143 	else
4144 		cgroup_kill(cgrp);
4145 
4146 	cgroup_kn_unlock(of->kn);
4147 
4148 	return ret ?: nbytes;
4149 }
4150 
cgroup_file_open(struct kernfs_open_file * of)4151 static int cgroup_file_open(struct kernfs_open_file *of)
4152 {
4153 	struct cftype *cft = of_cft(of);
4154 	struct cgroup_file_ctx *ctx;
4155 	int ret;
4156 
4157 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
4158 	if (!ctx)
4159 		return -ENOMEM;
4160 
4161 	ctx->ns = current->nsproxy->cgroup_ns;
4162 	get_cgroup_ns(ctx->ns);
4163 	of->priv = ctx;
4164 
4165 	if (!cft->open)
4166 		return 0;
4167 
4168 	ret = cft->open(of);
4169 	if (ret) {
4170 		put_cgroup_ns(ctx->ns);
4171 		kfree(ctx);
4172 	}
4173 	return ret;
4174 }
4175 
cgroup_file_release(struct kernfs_open_file * of)4176 static void cgroup_file_release(struct kernfs_open_file *of)
4177 {
4178 	struct cftype *cft = of_cft(of);
4179 	struct cgroup_file_ctx *ctx = of->priv;
4180 
4181 	if (cft->release)
4182 		cft->release(of);
4183 	put_cgroup_ns(ctx->ns);
4184 	kfree(ctx);
4185 	of->priv = NULL;
4186 }
4187 
cgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4188 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
4189 				 size_t nbytes, loff_t off)
4190 {
4191 	struct cgroup_file_ctx *ctx = of->priv;
4192 	struct cgroup *cgrp = kn_priv(of->kn);
4193 	struct cftype *cft = of_cft(of);
4194 	struct cgroup_subsys_state *css;
4195 	int ret;
4196 
4197 	if (!nbytes)
4198 		return 0;
4199 
4200 	/*
4201 	 * If namespaces are delegation boundaries, disallow writes to
4202 	 * files in an non-init namespace root from inside the namespace
4203 	 * except for the files explicitly marked delegatable -
4204 	 * eg. cgroup.procs, cgroup.threads and cgroup.subtree_control.
4205 	 */
4206 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
4207 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
4208 	    ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
4209 		return -EPERM;
4210 
4211 	if (cft->write)
4212 		return cft->write(of, buf, nbytes, off);
4213 
4214 	/*
4215 	 * kernfs guarantees that a file isn't deleted with operations in
4216 	 * flight, which means that the matching css is and stays alive and
4217 	 * doesn't need to be pinned.  The RCU locking is not necessary
4218 	 * either.  It's just for the convenience of using cgroup_css().
4219 	 */
4220 	rcu_read_lock();
4221 	css = cgroup_css(cgrp, cft->ss);
4222 	rcu_read_unlock();
4223 
4224 	if (cft->write_u64) {
4225 		unsigned long long v;
4226 		ret = kstrtoull(buf, 0, &v);
4227 		if (!ret)
4228 			ret = cft->write_u64(css, cft, v);
4229 	} else if (cft->write_s64) {
4230 		long long v;
4231 		ret = kstrtoll(buf, 0, &v);
4232 		if (!ret)
4233 			ret = cft->write_s64(css, cft, v);
4234 	} else {
4235 		ret = -EINVAL;
4236 	}
4237 
4238 	return ret ?: nbytes;
4239 }
4240 
cgroup_file_poll(struct kernfs_open_file * of,poll_table * pt)4241 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
4242 {
4243 	struct cftype *cft = of_cft(of);
4244 
4245 	if (cft->poll)
4246 		return cft->poll(of, pt);
4247 
4248 	return kernfs_generic_poll(of, pt);
4249 }
4250 
cgroup_seqfile_start(struct seq_file * seq,loff_t * ppos)4251 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
4252 {
4253 	return seq_cft(seq)->seq_start(seq, ppos);
4254 }
4255 
cgroup_seqfile_next(struct seq_file * seq,void * v,loff_t * ppos)4256 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
4257 {
4258 	return seq_cft(seq)->seq_next(seq, v, ppos);
4259 }
4260 
cgroup_seqfile_stop(struct seq_file * seq,void * v)4261 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
4262 {
4263 	if (seq_cft(seq)->seq_stop)
4264 		seq_cft(seq)->seq_stop(seq, v);
4265 }
4266 
cgroup_seqfile_show(struct seq_file * m,void * arg)4267 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
4268 {
4269 	struct cftype *cft = seq_cft(m);
4270 	struct cgroup_subsys_state *css = seq_css(m);
4271 
4272 	if (cft->seq_show)
4273 		return cft->seq_show(m, arg);
4274 
4275 	if (cft->read_u64)
4276 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
4277 	else if (cft->read_s64)
4278 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
4279 	else
4280 		return -EINVAL;
4281 	return 0;
4282 }
4283 
4284 static struct kernfs_ops cgroup_kf_single_ops = {
4285 	.atomic_write_len	= PAGE_SIZE,
4286 	.open			= cgroup_file_open,
4287 	.release		= cgroup_file_release,
4288 	.write			= cgroup_file_write,
4289 	.poll			= cgroup_file_poll,
4290 	.seq_show		= cgroup_seqfile_show,
4291 };
4292 
4293 static struct kernfs_ops cgroup_kf_ops = {
4294 	.atomic_write_len	= PAGE_SIZE,
4295 	.open			= cgroup_file_open,
4296 	.release		= cgroup_file_release,
4297 	.write			= cgroup_file_write,
4298 	.poll			= cgroup_file_poll,
4299 	.seq_start		= cgroup_seqfile_start,
4300 	.seq_next		= cgroup_seqfile_next,
4301 	.seq_stop		= cgroup_seqfile_stop,
4302 	.seq_show		= cgroup_seqfile_show,
4303 };
4304 
cgroup_file_notify_timer(struct timer_list * timer)4305 static void cgroup_file_notify_timer(struct timer_list *timer)
4306 {
4307 	cgroup_file_notify(container_of(timer, struct cgroup_file,
4308 					notify_timer));
4309 }
4310 
cgroup_add_file(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype * cft)4311 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
4312 			   struct cftype *cft)
4313 {
4314 	char name[CGROUP_FILE_NAME_MAX];
4315 	struct kernfs_node *kn;
4316 	struct lock_class_key *key = NULL;
4317 
4318 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4319 	key = &cft->lockdep_key;
4320 #endif
4321 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
4322 				  cgroup_file_mode(cft),
4323 				  current_fsuid(), current_fsgid(),
4324 				  0, cft->kf_ops, cft,
4325 				  NULL, key);
4326 	if (IS_ERR(kn))
4327 		return PTR_ERR(kn);
4328 
4329 	if (cft->file_offset) {
4330 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
4331 
4332 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
4333 
4334 		spin_lock_irq(&cgroup_file_kn_lock);
4335 		cfile->kn = kn;
4336 		spin_unlock_irq(&cgroup_file_kn_lock);
4337 	}
4338 
4339 	return 0;
4340 }
4341 
4342 /**
4343  * cgroup_addrm_files - add or remove files to a cgroup directory
4344  * @css: the target css
4345  * @cgrp: the target cgroup (usually css->cgroup)
4346  * @cfts: array of cftypes to be added
4347  * @is_add: whether to add or remove
4348  *
4349  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
4350  * For removals, this function never fails.
4351  */
cgroup_addrm_files(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype cfts[],bool is_add)4352 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
4353 			      struct cgroup *cgrp, struct cftype cfts[],
4354 			      bool is_add)
4355 {
4356 	struct cftype *cft, *cft_end = NULL;
4357 	int ret = 0;
4358 
4359 	lockdep_assert_held(&cgroup_mutex);
4360 
4361 restart:
4362 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
4363 		/* does cft->flags tell us to skip this file on @cgrp? */
4364 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
4365 			continue;
4366 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
4367 			continue;
4368 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
4369 			continue;
4370 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
4371 			continue;
4372 		if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4373 			continue;
4374 		if (is_add) {
4375 			ret = cgroup_add_file(css, cgrp, cft);
4376 			if (ret) {
4377 				pr_warn("%s: failed to add %s, err=%d\n",
4378 					__func__, cft->name, ret);
4379 				cft_end = cft;
4380 				is_add = false;
4381 				goto restart;
4382 			}
4383 		} else {
4384 			cgroup_rm_file(cgrp, cft);
4385 		}
4386 	}
4387 	return ret;
4388 }
4389 
cgroup_apply_cftypes(struct cftype * cfts,bool is_add)4390 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4391 {
4392 	struct cgroup_subsys *ss = cfts[0].ss;
4393 	struct cgroup *root = &ss->root->cgrp;
4394 	struct cgroup_subsys_state *css;
4395 	int ret = 0;
4396 
4397 	lockdep_assert_held(&cgroup_mutex);
4398 
4399 	/* add/rm files for all cgroups created before */
4400 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4401 		struct cgroup *cgrp = css->cgroup;
4402 
4403 		if (!(css->flags & CSS_VISIBLE))
4404 			continue;
4405 
4406 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4407 		if (ret)
4408 			break;
4409 	}
4410 
4411 	if (is_add && !ret)
4412 		kernfs_activate(root->kn);
4413 	return ret;
4414 }
4415 
cgroup_exit_cftypes(struct cftype * cfts)4416 static void cgroup_exit_cftypes(struct cftype *cfts)
4417 {
4418 	struct cftype *cft;
4419 
4420 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4421 		/* free copy for custom atomic_write_len, see init_cftypes() */
4422 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4423 			kfree(cft->kf_ops);
4424 		cft->kf_ops = NULL;
4425 		cft->ss = NULL;
4426 
4427 		/* revert flags set by cgroup core while adding @cfts */
4428 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL |
4429 				__CFTYPE_ADDED);
4430 	}
4431 }
4432 
cgroup_init_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4433 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4434 {
4435 	struct cftype *cft;
4436 	int ret = 0;
4437 
4438 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4439 		struct kernfs_ops *kf_ops;
4440 
4441 		WARN_ON(cft->ss || cft->kf_ops);
4442 
4443 		if (cft->flags & __CFTYPE_ADDED) {
4444 			ret = -EBUSY;
4445 			break;
4446 		}
4447 
4448 		if (cft->seq_start)
4449 			kf_ops = &cgroup_kf_ops;
4450 		else
4451 			kf_ops = &cgroup_kf_single_ops;
4452 
4453 		/*
4454 		 * Ugh... if @cft wants a custom max_write_len, we need to
4455 		 * make a copy of kf_ops to set its atomic_write_len.
4456 		 */
4457 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4458 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4459 			if (!kf_ops) {
4460 				ret = -ENOMEM;
4461 				break;
4462 			}
4463 			kf_ops->atomic_write_len = cft->max_write_len;
4464 		}
4465 
4466 		cft->kf_ops = kf_ops;
4467 		cft->ss = ss;
4468 		cft->flags |= __CFTYPE_ADDED;
4469 	}
4470 
4471 	if (ret)
4472 		cgroup_exit_cftypes(cfts);
4473 	return ret;
4474 }
4475 
cgroup_rm_cftypes_locked(struct cftype * cfts)4476 static void cgroup_rm_cftypes_locked(struct cftype *cfts)
4477 {
4478 	lockdep_assert_held(&cgroup_mutex);
4479 
4480 	list_del(&cfts->node);
4481 	cgroup_apply_cftypes(cfts, false);
4482 	cgroup_exit_cftypes(cfts);
4483 }
4484 
4485 /**
4486  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4487  * @cfts: zero-length name terminated array of cftypes
4488  *
4489  * Unregister @cfts.  Files described by @cfts are removed from all
4490  * existing cgroups and all future cgroups won't have them either.  This
4491  * function can be called anytime whether @cfts' subsys is attached or not.
4492  *
4493  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4494  * registered.
4495  */
cgroup_rm_cftypes(struct cftype * cfts)4496 int cgroup_rm_cftypes(struct cftype *cfts)
4497 {
4498 	if (!cfts || cfts[0].name[0] == '\0')
4499 		return 0;
4500 
4501 	if (!(cfts[0].flags & __CFTYPE_ADDED))
4502 		return -ENOENT;
4503 
4504 	cgroup_lock();
4505 	cgroup_rm_cftypes_locked(cfts);
4506 	cgroup_unlock();
4507 	return 0;
4508 }
4509 
4510 /**
4511  * cgroup_add_cftypes - add an array of cftypes to a subsystem
4512  * @ss: target cgroup subsystem
4513  * @cfts: zero-length name terminated array of cftypes
4514  *
4515  * Register @cfts to @ss.  Files described by @cfts are created for all
4516  * existing cgroups to which @ss is attached and all future cgroups will
4517  * have them too.  This function can be called anytime whether @ss is
4518  * attached or not.
4519  *
4520  * Returns 0 on successful registration, -errno on failure.  Note that this
4521  * function currently returns 0 as long as @cfts registration is successful
4522  * even if some file creation attempts on existing cgroups fail.
4523  */
cgroup_add_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4524 int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4525 {
4526 	int ret;
4527 
4528 	if (!cgroup_ssid_enabled(ss->id))
4529 		return 0;
4530 
4531 	if (!cfts || cfts[0].name[0] == '\0')
4532 		return 0;
4533 
4534 	ret = cgroup_init_cftypes(ss, cfts);
4535 	if (ret)
4536 		return ret;
4537 
4538 	cgroup_lock();
4539 
4540 	list_add_tail(&cfts->node, &ss->cfts);
4541 	ret = cgroup_apply_cftypes(cfts, true);
4542 	if (ret)
4543 		cgroup_rm_cftypes_locked(cfts);
4544 
4545 	cgroup_unlock();
4546 	return ret;
4547 }
4548 
4549 /**
4550  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4551  * @ss: target cgroup subsystem
4552  * @cfts: zero-length name terminated array of cftypes
4553  *
4554  * Similar to cgroup_add_cftypes() but the added files are only used for
4555  * the default hierarchy.
4556  */
cgroup_add_dfl_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4557 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4558 {
4559 	struct cftype *cft;
4560 
4561 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4562 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
4563 	return cgroup_add_cftypes(ss, cfts);
4564 }
4565 
4566 /**
4567  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4568  * @ss: target cgroup subsystem
4569  * @cfts: zero-length name terminated array of cftypes
4570  *
4571  * Similar to cgroup_add_cftypes() but the added files are only used for
4572  * the legacy hierarchies.
4573  */
cgroup_add_legacy_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4574 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4575 {
4576 	struct cftype *cft;
4577 
4578 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4579 		cft->flags |= __CFTYPE_NOT_ON_DFL;
4580 	return cgroup_add_cftypes(ss, cfts);
4581 }
4582 
4583 /**
4584  * cgroup_file_notify - generate a file modified event for a cgroup_file
4585  * @cfile: target cgroup_file
4586  *
4587  * @cfile must have been obtained by setting cftype->file_offset.
4588  */
cgroup_file_notify(struct cgroup_file * cfile)4589 void cgroup_file_notify(struct cgroup_file *cfile)
4590 {
4591 	unsigned long flags;
4592 
4593 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4594 	if (cfile->kn) {
4595 		unsigned long last = cfile->notified_at;
4596 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4597 
4598 		if (time_in_range(jiffies, last, next)) {
4599 			timer_reduce(&cfile->notify_timer, next);
4600 		} else {
4601 			kernfs_notify(cfile->kn);
4602 			cfile->notified_at = jiffies;
4603 		}
4604 	}
4605 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4606 }
4607 
4608 /**
4609  * cgroup_file_show - show or hide a hidden cgroup file
4610  * @cfile: target cgroup_file obtained by setting cftype->file_offset
4611  * @show: whether to show or hide
4612  */
cgroup_file_show(struct cgroup_file * cfile,bool show)4613 void cgroup_file_show(struct cgroup_file *cfile, bool show)
4614 {
4615 	struct kernfs_node *kn;
4616 
4617 	spin_lock_irq(&cgroup_file_kn_lock);
4618 	kn = cfile->kn;
4619 	kernfs_get(kn);
4620 	spin_unlock_irq(&cgroup_file_kn_lock);
4621 
4622 	if (kn)
4623 		kernfs_show(kn, show);
4624 
4625 	kernfs_put(kn);
4626 }
4627 
4628 /**
4629  * css_next_child - find the next child of a given css
4630  * @pos: the current position (%NULL to initiate traversal)
4631  * @parent: css whose children to walk
4632  *
4633  * This function returns the next child of @parent and should be called
4634  * under either cgroup_mutex or RCU read lock.  The only requirement is
4635  * that @parent and @pos are accessible.  The next sibling is guaranteed to
4636  * be returned regardless of their states.
4637  *
4638  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4639  * css which finished ->css_online() is guaranteed to be visible in the
4640  * future iterations and will stay visible until the last reference is put.
4641  * A css which hasn't finished ->css_online() or already finished
4642  * ->css_offline() may show up during traversal.  It's each subsystem's
4643  * responsibility to synchronize against on/offlining.
4644  */
css_next_child(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * parent)4645 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4646 					   struct cgroup_subsys_state *parent)
4647 {
4648 	struct cgroup_subsys_state *next;
4649 
4650 	cgroup_assert_mutex_or_rcu_locked();
4651 
4652 	/*
4653 	 * @pos could already have been unlinked from the sibling list.
4654 	 * Once a cgroup is removed, its ->sibling.next is no longer
4655 	 * updated when its next sibling changes.  CSS_RELEASED is set when
4656 	 * @pos is taken off list, at which time its next pointer is valid,
4657 	 * and, as releases are serialized, the one pointed to by the next
4658 	 * pointer is guaranteed to not have started release yet.  This
4659 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4660 	 * critical section, the one pointed to by its next pointer is
4661 	 * guaranteed to not have finished its RCU grace period even if we
4662 	 * have dropped rcu_read_lock() in-between iterations.
4663 	 *
4664 	 * If @pos has CSS_RELEASED set, its next pointer can't be
4665 	 * dereferenced; however, as each css is given a monotonically
4666 	 * increasing unique serial number and always appended to the
4667 	 * sibling list, the next one can be found by walking the parent's
4668 	 * children until the first css with higher serial number than
4669 	 * @pos's.  While this path can be slower, it happens iff iteration
4670 	 * races against release and the race window is very small.
4671 	 */
4672 	if (!pos) {
4673 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4674 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
4675 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4676 	} else {
4677 		list_for_each_entry_rcu(next, &parent->children, sibling,
4678 					lockdep_is_held(&cgroup_mutex))
4679 			if (next->serial_nr > pos->serial_nr)
4680 				break;
4681 	}
4682 
4683 	/*
4684 	 * @next, if not pointing to the head, can be dereferenced and is
4685 	 * the next sibling.
4686 	 */
4687 	if (&next->sibling != &parent->children)
4688 		return next;
4689 	return NULL;
4690 }
4691 
4692 /**
4693  * css_next_descendant_pre - find the next descendant for pre-order walk
4694  * @pos: the current position (%NULL to initiate traversal)
4695  * @root: css whose descendants to walk
4696  *
4697  * To be used by css_for_each_descendant_pre().  Find the next descendant
4698  * to visit for pre-order traversal of @root's descendants.  @root is
4699  * included in the iteration and the first node to be visited.
4700  *
4701  * While this function requires cgroup_mutex or RCU read locking, it
4702  * doesn't require the whole traversal to be contained in a single critical
4703  * section. Additionally, it isn't necessary to hold onto a reference to @pos.
4704  * This function will return the correct next descendant as long as both @pos
4705  * and @root are accessible and @pos is a descendant of @root.
4706  *
4707  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4708  * css which finished ->css_online() is guaranteed to be visible in the
4709  * future iterations and will stay visible until the last reference is put.
4710  * A css which hasn't finished ->css_online() or already finished
4711  * ->css_offline() may show up during traversal.  It's each subsystem's
4712  * responsibility to synchronize against on/offlining.
4713  */
4714 struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4715 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4716 			struct cgroup_subsys_state *root)
4717 {
4718 	struct cgroup_subsys_state *next;
4719 
4720 	cgroup_assert_mutex_or_rcu_locked();
4721 
4722 	/* if first iteration, visit @root */
4723 	if (!pos)
4724 		return root;
4725 
4726 	/* visit the first child if exists */
4727 	next = css_next_child(NULL, pos);
4728 	if (next)
4729 		return next;
4730 
4731 	/* no child, visit my or the closest ancestor's next sibling */
4732 	while (pos != root) {
4733 		next = css_next_child(pos, pos->parent);
4734 		if (next)
4735 			return next;
4736 		pos = pos->parent;
4737 	}
4738 
4739 	return NULL;
4740 }
4741 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4742 
4743 /**
4744  * css_rightmost_descendant - return the rightmost descendant of a css
4745  * @pos: css of interest
4746  *
4747  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4748  * is returned.  This can be used during pre-order traversal to skip
4749  * subtree of @pos.
4750  *
4751  * While this function requires cgroup_mutex or RCU read locking, it
4752  * doesn't require the whole traversal to be contained in a single critical
4753  * section. Additionally, it isn't necessary to hold onto a reference to @pos.
4754  * This function will return the correct rightmost descendant as long as @pos
4755  * is accessible.
4756  */
4757 struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state * pos)4758 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4759 {
4760 	struct cgroup_subsys_state *last, *tmp;
4761 
4762 	cgroup_assert_mutex_or_rcu_locked();
4763 
4764 	do {
4765 		last = pos;
4766 		/* ->prev isn't RCU safe, walk ->next till the end */
4767 		pos = NULL;
4768 		css_for_each_child(tmp, last)
4769 			pos = tmp;
4770 	} while (pos);
4771 
4772 	return last;
4773 }
4774 
4775 static struct cgroup_subsys_state *
css_leftmost_descendant(struct cgroup_subsys_state * pos)4776 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4777 {
4778 	struct cgroup_subsys_state *last;
4779 
4780 	do {
4781 		last = pos;
4782 		pos = css_next_child(NULL, pos);
4783 	} while (pos);
4784 
4785 	return last;
4786 }
4787 
4788 /**
4789  * css_next_descendant_post - find the next descendant for post-order walk
4790  * @pos: the current position (%NULL to initiate traversal)
4791  * @root: css whose descendants to walk
4792  *
4793  * To be used by css_for_each_descendant_post().  Find the next descendant
4794  * to visit for post-order traversal of @root's descendants.  @root is
4795  * included in the iteration and the last node to be visited.
4796  *
4797  * While this function requires cgroup_mutex or RCU read locking, it
4798  * doesn't require the whole traversal to be contained in a single critical
4799  * section. Additionally, it isn't necessary to hold onto a reference to @pos.
4800  * This function will return the correct next descendant as long as both @pos
4801  * and @cgroup are accessible and @pos is a descendant of @cgroup.
4802  *
4803  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4804  * css which finished ->css_online() is guaranteed to be visible in the
4805  * future iterations and will stay visible until the last reference is put.
4806  * A css which hasn't finished ->css_online() or already finished
4807  * ->css_offline() may show up during traversal.  It's each subsystem's
4808  * responsibility to synchronize against on/offlining.
4809  */
4810 struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4811 css_next_descendant_post(struct cgroup_subsys_state *pos,
4812 			 struct cgroup_subsys_state *root)
4813 {
4814 	struct cgroup_subsys_state *next;
4815 
4816 	cgroup_assert_mutex_or_rcu_locked();
4817 
4818 	/* if first iteration, visit leftmost descendant which may be @root */
4819 	if (!pos)
4820 		return css_leftmost_descendant(root);
4821 
4822 	/* if we visited @root, we're done */
4823 	if (pos == root)
4824 		return NULL;
4825 
4826 	/* if there's an unvisited sibling, visit its leftmost descendant */
4827 	next = css_next_child(pos, pos->parent);
4828 	if (next)
4829 		return css_leftmost_descendant(next);
4830 
4831 	/* no sibling left, visit parent */
4832 	return pos->parent;
4833 }
4834 
4835 /**
4836  * css_has_online_children - does a css have online children
4837  * @css: the target css
4838  *
4839  * Returns %true if @css has any online children; otherwise, %false.  This
4840  * function can be called from any context but the caller is responsible
4841  * for synchronizing against on/offlining as necessary.
4842  */
css_has_online_children(struct cgroup_subsys_state * css)4843 bool css_has_online_children(struct cgroup_subsys_state *css)
4844 {
4845 	struct cgroup_subsys_state *child;
4846 	bool ret = false;
4847 
4848 	rcu_read_lock();
4849 	css_for_each_child(child, css) {
4850 		if (child->flags & CSS_ONLINE) {
4851 			ret = true;
4852 			break;
4853 		}
4854 	}
4855 	rcu_read_unlock();
4856 	return ret;
4857 }
4858 
css_task_iter_next_css_set(struct css_task_iter * it)4859 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4860 {
4861 	struct list_head *l;
4862 	struct cgrp_cset_link *link;
4863 	struct css_set *cset;
4864 
4865 	lockdep_assert_held(&css_set_lock);
4866 
4867 	/* find the next threaded cset */
4868 	if (it->tcset_pos) {
4869 		l = it->tcset_pos->next;
4870 
4871 		if (l != it->tcset_head) {
4872 			it->tcset_pos = l;
4873 			return container_of(l, struct css_set,
4874 					    threaded_csets_node);
4875 		}
4876 
4877 		it->tcset_pos = NULL;
4878 	}
4879 
4880 	/* find the next cset */
4881 	l = it->cset_pos;
4882 	l = l->next;
4883 	if (l == it->cset_head) {
4884 		it->cset_pos = NULL;
4885 		return NULL;
4886 	}
4887 
4888 	if (it->ss) {
4889 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4890 	} else {
4891 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4892 		cset = link->cset;
4893 	}
4894 
4895 	it->cset_pos = l;
4896 
4897 	/* initialize threaded css_set walking */
4898 	if (it->flags & CSS_TASK_ITER_THREADED) {
4899 		if (it->cur_dcset)
4900 			put_css_set_locked(it->cur_dcset);
4901 		it->cur_dcset = cset;
4902 		get_css_set(cset);
4903 
4904 		it->tcset_head = &cset->threaded_csets;
4905 		it->tcset_pos = &cset->threaded_csets;
4906 	}
4907 
4908 	return cset;
4909 }
4910 
4911 /**
4912  * css_task_iter_advance_css_set - advance a task iterator to the next css_set
4913  * @it: the iterator to advance
4914  *
4915  * Advance @it to the next css_set to walk.
4916  */
css_task_iter_advance_css_set(struct css_task_iter * it)4917 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4918 {
4919 	struct css_set *cset;
4920 
4921 	lockdep_assert_held(&css_set_lock);
4922 
4923 	/* Advance to the next non-empty css_set and find first non-empty tasks list*/
4924 	while ((cset = css_task_iter_next_css_set(it))) {
4925 		if (!list_empty(&cset->tasks)) {
4926 			it->cur_tasks_head = &cset->tasks;
4927 			break;
4928 		} else if (!list_empty(&cset->mg_tasks)) {
4929 			it->cur_tasks_head = &cset->mg_tasks;
4930 			break;
4931 		} else if (!list_empty(&cset->dying_tasks)) {
4932 			it->cur_tasks_head = &cset->dying_tasks;
4933 			break;
4934 		}
4935 	}
4936 	if (!cset) {
4937 		it->task_pos = NULL;
4938 		return;
4939 	}
4940 	it->task_pos = it->cur_tasks_head->next;
4941 
4942 	/*
4943 	 * We don't keep css_sets locked across iteration steps and thus
4944 	 * need to take steps to ensure that iteration can be resumed after
4945 	 * the lock is re-acquired.  Iteration is performed at two levels -
4946 	 * css_sets and tasks in them.
4947 	 *
4948 	 * Once created, a css_set never leaves its cgroup lists, so a
4949 	 * pinned css_set is guaranteed to stay put and we can resume
4950 	 * iteration afterwards.
4951 	 *
4952 	 * Tasks may leave @cset across iteration steps.  This is resolved
4953 	 * by registering each iterator with the css_set currently being
4954 	 * walked and making css_set_move_task() advance iterators whose
4955 	 * next task is leaving.
4956 	 */
4957 	if (it->cur_cset) {
4958 		list_del(&it->iters_node);
4959 		put_css_set_locked(it->cur_cset);
4960 	}
4961 	get_css_set(cset);
4962 	it->cur_cset = cset;
4963 	list_add(&it->iters_node, &cset->task_iters);
4964 }
4965 
css_task_iter_skip(struct css_task_iter * it,struct task_struct * task)4966 static void css_task_iter_skip(struct css_task_iter *it,
4967 			       struct task_struct *task)
4968 {
4969 	lockdep_assert_held(&css_set_lock);
4970 
4971 	if (it->task_pos == &task->cg_list) {
4972 		it->task_pos = it->task_pos->next;
4973 		it->flags |= CSS_TASK_ITER_SKIPPED;
4974 	}
4975 }
4976 
css_task_iter_advance(struct css_task_iter * it)4977 static void css_task_iter_advance(struct css_task_iter *it)
4978 {
4979 	struct task_struct *task;
4980 
4981 	lockdep_assert_held(&css_set_lock);
4982 repeat:
4983 	if (it->task_pos) {
4984 		/*
4985 		 * Advance iterator to find next entry. We go through cset
4986 		 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4987 		 * the next cset.
4988 		 */
4989 		if (it->flags & CSS_TASK_ITER_SKIPPED)
4990 			it->flags &= ~CSS_TASK_ITER_SKIPPED;
4991 		else
4992 			it->task_pos = it->task_pos->next;
4993 
4994 		if (it->task_pos == &it->cur_cset->tasks) {
4995 			it->cur_tasks_head = &it->cur_cset->mg_tasks;
4996 			it->task_pos = it->cur_tasks_head->next;
4997 		}
4998 		if (it->task_pos == &it->cur_cset->mg_tasks) {
4999 			it->cur_tasks_head = &it->cur_cset->dying_tasks;
5000 			it->task_pos = it->cur_tasks_head->next;
5001 		}
5002 		if (it->task_pos == &it->cur_cset->dying_tasks)
5003 			css_task_iter_advance_css_set(it);
5004 	} else {
5005 		/* called from start, proceed to the first cset */
5006 		css_task_iter_advance_css_set(it);
5007 	}
5008 
5009 	if (!it->task_pos)
5010 		return;
5011 
5012 	task = list_entry(it->task_pos, struct task_struct, cg_list);
5013 
5014 	if (it->flags & CSS_TASK_ITER_PROCS) {
5015 		/* if PROCS, skip over tasks which aren't group leaders */
5016 		if (!thread_group_leader(task))
5017 			goto repeat;
5018 
5019 		/* and dying leaders w/o live member threads */
5020 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
5021 		    !atomic_read(&task->signal->live))
5022 			goto repeat;
5023 	} else {
5024 		/* skip all dying ones */
5025 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
5026 			goto repeat;
5027 	}
5028 }
5029 
5030 /**
5031  * css_task_iter_start - initiate task iteration
5032  * @css: the css to walk tasks of
5033  * @flags: CSS_TASK_ITER_* flags
5034  * @it: the task iterator to use
5035  *
5036  * Initiate iteration through the tasks of @css.  The caller can call
5037  * css_task_iter_next() to walk through the tasks until the function
5038  * returns NULL.  On completion of iteration, css_task_iter_end() must be
5039  * called.
5040  */
css_task_iter_start(struct cgroup_subsys_state * css,unsigned int flags,struct css_task_iter * it)5041 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
5042 			 struct css_task_iter *it)
5043 {
5044 	unsigned long irqflags;
5045 
5046 	memset(it, 0, sizeof(*it));
5047 
5048 	spin_lock_irqsave(&css_set_lock, irqflags);
5049 
5050 	it->ss = css->ss;
5051 	it->flags = flags;
5052 
5053 	if (CGROUP_HAS_SUBSYS_CONFIG && it->ss)
5054 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
5055 	else
5056 		it->cset_pos = &css->cgroup->cset_links;
5057 
5058 	it->cset_head = it->cset_pos;
5059 
5060 	css_task_iter_advance(it);
5061 
5062 	spin_unlock_irqrestore(&css_set_lock, irqflags);
5063 }
5064 
5065 /**
5066  * css_task_iter_next - return the next task for the iterator
5067  * @it: the task iterator being iterated
5068  *
5069  * The "next" function for task iteration.  @it should have been
5070  * initialized via css_task_iter_start().  Returns NULL when the iteration
5071  * reaches the end.
5072  */
css_task_iter_next(struct css_task_iter * it)5073 struct task_struct *css_task_iter_next(struct css_task_iter *it)
5074 {
5075 	unsigned long irqflags;
5076 
5077 	if (it->cur_task) {
5078 		put_task_struct(it->cur_task);
5079 		it->cur_task = NULL;
5080 	}
5081 
5082 	spin_lock_irqsave(&css_set_lock, irqflags);
5083 
5084 	/* @it may be half-advanced by skips, finish advancing */
5085 	if (it->flags & CSS_TASK_ITER_SKIPPED)
5086 		css_task_iter_advance(it);
5087 
5088 	if (it->task_pos) {
5089 		it->cur_task = list_entry(it->task_pos, struct task_struct,
5090 					  cg_list);
5091 		get_task_struct(it->cur_task);
5092 		css_task_iter_advance(it);
5093 	}
5094 
5095 	spin_unlock_irqrestore(&css_set_lock, irqflags);
5096 
5097 	return it->cur_task;
5098 }
5099 
5100 /**
5101  * css_task_iter_end - finish task iteration
5102  * @it: the task iterator to finish
5103  *
5104  * Finish task iteration started by css_task_iter_start().
5105  */
css_task_iter_end(struct css_task_iter * it)5106 void css_task_iter_end(struct css_task_iter *it)
5107 {
5108 	unsigned long irqflags;
5109 
5110 	if (it->cur_cset) {
5111 		spin_lock_irqsave(&css_set_lock, irqflags);
5112 		list_del(&it->iters_node);
5113 		put_css_set_locked(it->cur_cset);
5114 		spin_unlock_irqrestore(&css_set_lock, irqflags);
5115 	}
5116 
5117 	if (it->cur_dcset)
5118 		put_css_set(it->cur_dcset);
5119 
5120 	if (it->cur_task)
5121 		put_task_struct(it->cur_task);
5122 }
5123 
cgroup_procs_release(struct kernfs_open_file * of)5124 static void cgroup_procs_release(struct kernfs_open_file *of)
5125 {
5126 	struct cgroup_file_ctx *ctx = of->priv;
5127 
5128 	if (ctx->procs.started)
5129 		css_task_iter_end(&ctx->procs.iter);
5130 }
5131 
cgroup_procs_next(struct seq_file * s,void * v,loff_t * pos)5132 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
5133 {
5134 	struct kernfs_open_file *of = s->private;
5135 	struct cgroup_file_ctx *ctx = of->priv;
5136 
5137 	if (pos)
5138 		(*pos)++;
5139 
5140 	return css_task_iter_next(&ctx->procs.iter);
5141 }
5142 
__cgroup_procs_start(struct seq_file * s,loff_t * pos,unsigned int iter_flags)5143 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
5144 				  unsigned int iter_flags)
5145 {
5146 	struct kernfs_open_file *of = s->private;
5147 	struct cgroup *cgrp = seq_css(s)->cgroup;
5148 	struct cgroup_file_ctx *ctx = of->priv;
5149 	struct css_task_iter *it = &ctx->procs.iter;
5150 
5151 	/*
5152 	 * When a seq_file is seeked, it's always traversed sequentially
5153 	 * from position 0, so we can simply keep iterating on !0 *pos.
5154 	 */
5155 	if (!ctx->procs.started) {
5156 		if (WARN_ON_ONCE((*pos)))
5157 			return ERR_PTR(-EINVAL);
5158 		css_task_iter_start(&cgrp->self, iter_flags, it);
5159 		ctx->procs.started = true;
5160 	} else if (!(*pos)) {
5161 		css_task_iter_end(it);
5162 		css_task_iter_start(&cgrp->self, iter_flags, it);
5163 	} else
5164 		return it->cur_task;
5165 
5166 	return cgroup_procs_next(s, NULL, NULL);
5167 }
5168 
cgroup_procs_start(struct seq_file * s,loff_t * pos)5169 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
5170 {
5171 	struct cgroup *cgrp = seq_css(s)->cgroup;
5172 
5173 	/*
5174 	 * All processes of a threaded subtree belong to the domain cgroup
5175 	 * of the subtree.  Only threads can be distributed across the
5176 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
5177 	 * They're always empty anyway.
5178 	 */
5179 	if (cgroup_is_threaded(cgrp))
5180 		return ERR_PTR(-EOPNOTSUPP);
5181 
5182 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
5183 					    CSS_TASK_ITER_THREADED);
5184 }
5185 
cgroup_procs_show(struct seq_file * s,void * v)5186 static int cgroup_procs_show(struct seq_file *s, void *v)
5187 {
5188 	seq_printf(s, "%d\n", task_pid_vnr(v));
5189 	return 0;
5190 }
5191 
cgroup_may_write(const struct cgroup * cgrp,struct super_block * sb)5192 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
5193 {
5194 	int ret;
5195 	struct inode *inode;
5196 
5197 	lockdep_assert_held(&cgroup_mutex);
5198 
5199 	inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
5200 	if (!inode)
5201 		return -ENOMEM;
5202 
5203 	ret = inode_permission(&nop_mnt_idmap, inode, MAY_WRITE);
5204 	iput(inode);
5205 	return ret;
5206 }
5207 
cgroup_procs_write_permission(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,struct cgroup_namespace * ns)5208 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
5209 					 struct cgroup *dst_cgrp,
5210 					 struct super_block *sb,
5211 					 struct cgroup_namespace *ns)
5212 {
5213 	struct cgroup *com_cgrp = src_cgrp;
5214 	int ret;
5215 
5216 	lockdep_assert_held(&cgroup_mutex);
5217 
5218 	/* find the common ancestor */
5219 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
5220 		com_cgrp = cgroup_parent(com_cgrp);
5221 
5222 	/* %current should be authorized to migrate to the common ancestor */
5223 	ret = cgroup_may_write(com_cgrp, sb);
5224 	if (ret)
5225 		return ret;
5226 
5227 	/*
5228 	 * If namespaces are delegation boundaries, %current must be able
5229 	 * to see both source and destination cgroups from its namespace.
5230 	 */
5231 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
5232 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
5233 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
5234 		return -ENOENT;
5235 
5236 	return 0;
5237 }
5238 
cgroup_attach_permissions(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,bool threadgroup,struct cgroup_namespace * ns)5239 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
5240 				     struct cgroup *dst_cgrp,
5241 				     struct super_block *sb, bool threadgroup,
5242 				     struct cgroup_namespace *ns)
5243 {
5244 	int ret = 0;
5245 
5246 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
5247 	if (ret)
5248 		return ret;
5249 
5250 	ret = cgroup_migrate_vet_dst(dst_cgrp);
5251 	if (ret)
5252 		return ret;
5253 
5254 	if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
5255 		ret = -EOPNOTSUPP;
5256 
5257 	return ret;
5258 }
5259 
__cgroup_procs_write(struct kernfs_open_file * of,char * buf,bool threadgroup)5260 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
5261 				    bool threadgroup)
5262 {
5263 	struct cgroup_file_ctx *ctx = of->priv;
5264 	struct cgroup *src_cgrp, *dst_cgrp;
5265 	struct task_struct *task;
5266 	const struct cred *saved_cred;
5267 	ssize_t ret;
5268 	bool threadgroup_locked;
5269 
5270 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
5271 	if (!dst_cgrp)
5272 		return -ENODEV;
5273 
5274 	task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked);
5275 	ret = PTR_ERR_OR_ZERO(task);
5276 	if (ret)
5277 		goto out_unlock;
5278 
5279 	/* find the source cgroup */
5280 	spin_lock_irq(&css_set_lock);
5281 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
5282 	spin_unlock_irq(&css_set_lock);
5283 
5284 	/*
5285 	 * Process and thread migrations follow same delegation rule. Check
5286 	 * permissions using the credentials from file open to protect against
5287 	 * inherited fd attacks.
5288 	 */
5289 	saved_cred = override_creds(of->file->f_cred);
5290 	ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
5291 					of->file->f_path.dentry->d_sb,
5292 					threadgroup, ctx->ns);
5293 	revert_creds(saved_cred);
5294 	if (ret)
5295 		goto out_finish;
5296 
5297 	ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
5298 
5299 out_finish:
5300 	cgroup_procs_write_finish(task, threadgroup_locked);
5301 out_unlock:
5302 	cgroup_kn_unlock(of->kn);
5303 
5304 	return ret;
5305 }
5306 
cgroup_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5307 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
5308 				  char *buf, size_t nbytes, loff_t off)
5309 {
5310 	return __cgroup_procs_write(of, buf, true) ?: nbytes;
5311 }
5312 
cgroup_threads_start(struct seq_file * s,loff_t * pos)5313 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
5314 {
5315 	return __cgroup_procs_start(s, pos, 0);
5316 }
5317 
cgroup_threads_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5318 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
5319 				    char *buf, size_t nbytes, loff_t off)
5320 {
5321 	return __cgroup_procs_write(of, buf, false) ?: nbytes;
5322 }
5323 
5324 /* cgroup core interface files for the default hierarchy */
5325 static struct cftype cgroup_base_files[] = {
5326 	{
5327 		.name = "cgroup.type",
5328 		.flags = CFTYPE_NOT_ON_ROOT,
5329 		.seq_show = cgroup_type_show,
5330 		.write = cgroup_type_write,
5331 	},
5332 	{
5333 		.name = "cgroup.procs",
5334 		.flags = CFTYPE_NS_DELEGATABLE,
5335 		.file_offset = offsetof(struct cgroup, procs_file),
5336 		.release = cgroup_procs_release,
5337 		.seq_start = cgroup_procs_start,
5338 		.seq_next = cgroup_procs_next,
5339 		.seq_show = cgroup_procs_show,
5340 		.write = cgroup_procs_write,
5341 	},
5342 	{
5343 		.name = "cgroup.threads",
5344 		.flags = CFTYPE_NS_DELEGATABLE,
5345 		.release = cgroup_procs_release,
5346 		.seq_start = cgroup_threads_start,
5347 		.seq_next = cgroup_procs_next,
5348 		.seq_show = cgroup_procs_show,
5349 		.write = cgroup_threads_write,
5350 	},
5351 	{
5352 		.name = "cgroup.controllers",
5353 		.seq_show = cgroup_controllers_show,
5354 	},
5355 	{
5356 		.name = "cgroup.subtree_control",
5357 		.flags = CFTYPE_NS_DELEGATABLE,
5358 		.seq_show = cgroup_subtree_control_show,
5359 		.write = cgroup_subtree_control_write,
5360 	},
5361 	{
5362 		.name = "cgroup.events",
5363 		.flags = CFTYPE_NOT_ON_ROOT,
5364 		.file_offset = offsetof(struct cgroup, events_file),
5365 		.seq_show = cgroup_events_show,
5366 	},
5367 	{
5368 		.name = "cgroup.max.descendants",
5369 		.seq_show = cgroup_max_descendants_show,
5370 		.write = cgroup_max_descendants_write,
5371 	},
5372 	{
5373 		.name = "cgroup.max.depth",
5374 		.seq_show = cgroup_max_depth_show,
5375 		.write = cgroup_max_depth_write,
5376 	},
5377 	{
5378 		.name = "cgroup.stat",
5379 		.seq_show = cgroup_stat_show,
5380 	},
5381 	{
5382 		.name = "cgroup.freeze",
5383 		.flags = CFTYPE_NOT_ON_ROOT,
5384 		.seq_show = cgroup_freeze_show,
5385 		.write = cgroup_freeze_write,
5386 	},
5387 	{
5388 		.name = "cgroup.kill",
5389 		.flags = CFTYPE_NOT_ON_ROOT,
5390 		.write = cgroup_kill_write,
5391 	},
5392 	{
5393 		.name = "cpu.stat",
5394 		.seq_show = cpu_stat_show,
5395 	},
5396 	{
5397 		.name = "cpu.stat.local",
5398 		.seq_show = cpu_local_stat_show,
5399 	},
5400 	{ }	/* terminate */
5401 };
5402 
5403 static struct cftype cgroup_psi_files[] = {
5404 #ifdef CONFIG_PSI
5405 	{
5406 		.name = "io.pressure",
5407 		.file_offset = offsetof(struct cgroup, psi_files[PSI_IO]),
5408 		.seq_show = cgroup_io_pressure_show,
5409 		.write = cgroup_io_pressure_write,
5410 		.poll = cgroup_pressure_poll,
5411 		.release = cgroup_pressure_release,
5412 	},
5413 	{
5414 		.name = "memory.pressure",
5415 		.file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]),
5416 		.seq_show = cgroup_memory_pressure_show,
5417 		.write = cgroup_memory_pressure_write,
5418 		.poll = cgroup_pressure_poll,
5419 		.release = cgroup_pressure_release,
5420 	},
5421 	{
5422 		.name = "cpu.pressure",
5423 		.file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]),
5424 		.seq_show = cgroup_cpu_pressure_show,
5425 		.write = cgroup_cpu_pressure_write,
5426 		.poll = cgroup_pressure_poll,
5427 		.release = cgroup_pressure_release,
5428 	},
5429 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
5430 	{
5431 		.name = "irq.pressure",
5432 		.file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]),
5433 		.seq_show = cgroup_irq_pressure_show,
5434 		.write = cgroup_irq_pressure_write,
5435 		.poll = cgroup_pressure_poll,
5436 		.release = cgroup_pressure_release,
5437 	},
5438 #endif
5439 	{
5440 		.name = "cgroup.pressure",
5441 		.seq_show = cgroup_pressure_show,
5442 		.write = cgroup_pressure_write,
5443 	},
5444 #endif /* CONFIG_PSI */
5445 	{ }	/* terminate */
5446 };
5447 
5448 /*
5449  * css destruction is four-stage process.
5450  *
5451  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
5452  *    Implemented in kill_css().
5453  *
5454  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5455  *    and thus css_tryget_online() is guaranteed to fail, the css can be
5456  *    offlined by invoking offline_css().  After offlining, the base ref is
5457  *    put.  Implemented in css_killed_work_fn().
5458  *
5459  * 3. When the percpu_ref reaches zero, the only possible remaining
5460  *    accessors are inside RCU read sections.  css_release() schedules the
5461  *    RCU callback.
5462  *
5463  * 4. After the grace period, the css can be freed.  Implemented in
5464  *    css_free_rwork_fn().
5465  *
5466  * It is actually hairier because both step 2 and 4 require process context
5467  * and thus involve punting to css->destroy_work adding two additional
5468  * steps to the already complex sequence.
5469  */
css_free_rwork_fn(struct work_struct * work)5470 static void css_free_rwork_fn(struct work_struct *work)
5471 {
5472 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5473 				struct cgroup_subsys_state, destroy_rwork);
5474 	struct cgroup_subsys *ss = css->ss;
5475 	struct cgroup *cgrp = css->cgroup;
5476 
5477 	percpu_ref_exit(&css->refcnt);
5478 	css_rstat_exit(css);
5479 
5480 	if (!css_is_self(css)) {
5481 		/* css free path */
5482 		struct cgroup_subsys_state *parent = css->parent;
5483 		int id = css->id;
5484 
5485 		ss->css_free(css);
5486 		cgroup_idr_remove(&ss->css_idr, id);
5487 		cgroup_put(cgrp);
5488 
5489 		if (parent)
5490 			css_put(parent);
5491 	} else {
5492 		/* cgroup free path */
5493 		atomic_dec(&cgrp->root->nr_cgrps);
5494 		if (!cgroup_on_dfl(cgrp))
5495 			cgroup1_pidlist_destroy_all(cgrp);
5496 		cancel_work_sync(&cgrp->release_agent_work);
5497 		bpf_cgrp_storage_free(cgrp);
5498 
5499 		if (cgroup_parent(cgrp)) {
5500 			/*
5501 			 * We get a ref to the parent, and put the ref when
5502 			 * this cgroup is being freed, so it's guaranteed
5503 			 * that the parent won't be destroyed before its
5504 			 * children.
5505 			 */
5506 			cgroup_put(cgroup_parent(cgrp));
5507 			kernfs_put(cgrp->kn);
5508 			psi_cgroup_free(cgrp);
5509 			kfree(cgrp);
5510 		} else {
5511 			/*
5512 			 * This is root cgroup's refcnt reaching zero,
5513 			 * which indicates that the root should be
5514 			 * released.
5515 			 */
5516 			cgroup_destroy_root(cgrp->root);
5517 		}
5518 	}
5519 }
5520 
css_release_work_fn(struct work_struct * work)5521 static void css_release_work_fn(struct work_struct *work)
5522 {
5523 	struct cgroup_subsys_state *css =
5524 		container_of(work, struct cgroup_subsys_state, destroy_work);
5525 	struct cgroup_subsys *ss = css->ss;
5526 	struct cgroup *cgrp = css->cgroup;
5527 
5528 	cgroup_lock();
5529 
5530 	css->flags |= CSS_RELEASED;
5531 	list_del_rcu(&css->sibling);
5532 
5533 	if (!css_is_self(css)) {
5534 		struct cgroup *parent_cgrp;
5535 
5536 		css_rstat_flush(css);
5537 
5538 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5539 		if (ss->css_released)
5540 			ss->css_released(css);
5541 
5542 		cgrp->nr_dying_subsys[ss->id]--;
5543 		/*
5544 		 * When a css is released and ready to be freed, its
5545 		 * nr_descendants must be zero. However, the corresponding
5546 		 * cgrp->nr_dying_subsys[ss->id] may not be 0 if a subsystem
5547 		 * is activated and deactivated multiple times with one or
5548 		 * more of its previous activation leaving behind dying csses.
5549 		 */
5550 		WARN_ON_ONCE(css->nr_descendants);
5551 		parent_cgrp = cgroup_parent(cgrp);
5552 		while (parent_cgrp) {
5553 			parent_cgrp->nr_dying_subsys[ss->id]--;
5554 			parent_cgrp = cgroup_parent(parent_cgrp);
5555 		}
5556 	} else {
5557 		struct cgroup *tcgrp;
5558 
5559 		/* cgroup release path */
5560 		TRACE_CGROUP_PATH(release, cgrp);
5561 
5562 		css_rstat_flush(&cgrp->self);
5563 
5564 		spin_lock_irq(&css_set_lock);
5565 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
5566 		     tcgrp = cgroup_parent(tcgrp))
5567 			tcgrp->nr_dying_descendants--;
5568 		spin_unlock_irq(&css_set_lock);
5569 
5570 		/*
5571 		 * There are two control paths which try to determine
5572 		 * cgroup from dentry without going through kernfs -
5573 		 * cgroupstats_build() and css_tryget_online_from_dir().
5574 		 * Those are supported by RCU protecting clearing of
5575 		 * cgrp->kn->priv backpointer.
5576 		 */
5577 		if (cgrp->kn)
5578 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5579 					 NULL);
5580 	}
5581 
5582 	cgroup_unlock();
5583 
5584 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5585 	queue_rcu_work(cgroup_free_wq, &css->destroy_rwork);
5586 }
5587 
css_release(struct percpu_ref * ref)5588 static void css_release(struct percpu_ref *ref)
5589 {
5590 	struct cgroup_subsys_state *css =
5591 		container_of(ref, struct cgroup_subsys_state, refcnt);
5592 
5593 	INIT_WORK(&css->destroy_work, css_release_work_fn);
5594 	queue_work(cgroup_release_wq, &css->destroy_work);
5595 }
5596 
init_and_link_css(struct cgroup_subsys_state * css,struct cgroup_subsys * ss,struct cgroup * cgrp)5597 static void init_and_link_css(struct cgroup_subsys_state *css,
5598 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
5599 {
5600 	lockdep_assert_held(&cgroup_mutex);
5601 
5602 	cgroup_get_live(cgrp);
5603 
5604 	memset(css, 0, sizeof(*css));
5605 	css->cgroup = cgrp;
5606 	css->ss = ss;
5607 	css->id = -1;
5608 	INIT_LIST_HEAD(&css->sibling);
5609 	INIT_LIST_HEAD(&css->children);
5610 	css->serial_nr = css_serial_nr_next++;
5611 	atomic_set(&css->online_cnt, 0);
5612 
5613 	if (cgroup_parent(cgrp)) {
5614 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5615 		css_get(css->parent);
5616 	}
5617 
5618 	BUG_ON(cgroup_css(cgrp, ss));
5619 }
5620 
5621 /* invoke ->css_online() on a new CSS and mark it online if successful */
online_css(struct cgroup_subsys_state * css)5622 static int online_css(struct cgroup_subsys_state *css)
5623 {
5624 	struct cgroup_subsys *ss = css->ss;
5625 	int ret = 0;
5626 
5627 	lockdep_assert_held(&cgroup_mutex);
5628 
5629 	if (ss->css_online)
5630 		ret = ss->css_online(css);
5631 	if (!ret) {
5632 		css->flags |= CSS_ONLINE;
5633 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5634 
5635 		atomic_inc(&css->online_cnt);
5636 		if (css->parent) {
5637 			atomic_inc(&css->parent->online_cnt);
5638 			while ((css = css->parent))
5639 				css->nr_descendants++;
5640 		}
5641 	}
5642 	return ret;
5643 }
5644 
5645 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
offline_css(struct cgroup_subsys_state * css)5646 static void offline_css(struct cgroup_subsys_state *css)
5647 {
5648 	struct cgroup_subsys *ss = css->ss;
5649 
5650 	lockdep_assert_held(&cgroup_mutex);
5651 
5652 	if (!(css->flags & CSS_ONLINE))
5653 		return;
5654 
5655 	if (ss->css_offline)
5656 		ss->css_offline(css);
5657 
5658 	css->flags &= ~CSS_ONLINE;
5659 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5660 
5661 	wake_up_all(&css->cgroup->offline_waitq);
5662 
5663 	css->cgroup->nr_dying_subsys[ss->id]++;
5664 	/*
5665 	 * Parent css and cgroup cannot be freed until after the freeing
5666 	 * of child css, see css_free_rwork_fn().
5667 	 */
5668 	while ((css = css->parent)) {
5669 		css->nr_descendants--;
5670 		css->cgroup->nr_dying_subsys[ss->id]++;
5671 	}
5672 }
5673 
5674 /**
5675  * css_create - create a cgroup_subsys_state
5676  * @cgrp: the cgroup new css will be associated with
5677  * @ss: the subsys of new css
5678  *
5679  * Create a new css associated with @cgrp - @ss pair.  On success, the new
5680  * css is online and installed in @cgrp.  This function doesn't create the
5681  * interface files.  Returns 0 on success, -errno on failure.
5682  */
css_create(struct cgroup * cgrp,struct cgroup_subsys * ss)5683 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5684 					      struct cgroup_subsys *ss)
5685 {
5686 	struct cgroup *parent = cgroup_parent(cgrp);
5687 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5688 	struct cgroup_subsys_state *css;
5689 	int err;
5690 
5691 	lockdep_assert_held(&cgroup_mutex);
5692 
5693 	css = ss->css_alloc(parent_css);
5694 	if (!css)
5695 		css = ERR_PTR(-ENOMEM);
5696 	if (IS_ERR(css))
5697 		return css;
5698 
5699 	init_and_link_css(css, ss, cgrp);
5700 
5701 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5702 	if (err)
5703 		goto err_free_css;
5704 
5705 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5706 	if (err < 0)
5707 		goto err_free_css;
5708 	css->id = err;
5709 
5710 	err = css_rstat_init(css);
5711 	if (err)
5712 		goto err_free_css;
5713 
5714 	/* @css is ready to be brought online now, make it visible */
5715 	list_add_tail_rcu(&css->sibling, &parent_css->children);
5716 	cgroup_idr_replace(&ss->css_idr, css, css->id);
5717 
5718 	err = online_css(css);
5719 	if (err)
5720 		goto err_list_del;
5721 
5722 	return css;
5723 
5724 err_list_del:
5725 	list_del_rcu(&css->sibling);
5726 err_free_css:
5727 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5728 	queue_rcu_work(cgroup_free_wq, &css->destroy_rwork);
5729 	return ERR_PTR(err);
5730 }
5731 
5732 /*
5733  * The returned cgroup is fully initialized including its control mask, but
5734  * it doesn't have the control mask applied.
5735  */
cgroup_create(struct cgroup * parent,const char * name,umode_t mode)5736 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5737 				    umode_t mode)
5738 {
5739 	struct cgroup_root *root = parent->root;
5740 	struct cgroup *cgrp, *tcgrp;
5741 	struct kernfs_node *kn;
5742 	int i, level = parent->level + 1;
5743 	int ret;
5744 
5745 	/* allocate the cgroup and its ID, 0 is reserved for the root */
5746 	cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL);
5747 	if (!cgrp)
5748 		return ERR_PTR(-ENOMEM);
5749 
5750 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5751 	if (ret)
5752 		goto out_free_cgrp;
5753 
5754 	/* create the directory */
5755 	kn = kernfs_create_dir_ns(parent->kn, name, mode,
5756 				  current_fsuid(), current_fsgid(),
5757 				  cgrp, NULL);
5758 	if (IS_ERR(kn)) {
5759 		ret = PTR_ERR(kn);
5760 		goto out_cancel_ref;
5761 	}
5762 	cgrp->kn = kn;
5763 
5764 	init_cgroup_housekeeping(cgrp);
5765 
5766 	cgrp->self.parent = &parent->self;
5767 	cgrp->root = root;
5768 	cgrp->level = level;
5769 
5770 	/*
5771 	 * Now that init_cgroup_housekeeping() has been called and cgrp->self
5772 	 * is setup, it is safe to perform rstat initialization on it.
5773 	 */
5774 	ret = css_rstat_init(&cgrp->self);
5775 	if (ret)
5776 		goto out_kernfs_remove;
5777 
5778 	ret = psi_cgroup_alloc(cgrp);
5779 	if (ret)
5780 		goto out_stat_exit;
5781 
5782 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
5783 		cgrp->ancestors[tcgrp->level] = tcgrp;
5784 
5785 	/*
5786 	 * New cgroup inherits effective freeze counter, and
5787 	 * if the parent has to be frozen, the child has too.
5788 	 */
5789 	cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5790 	if (cgrp->freezer.e_freeze) {
5791 		/*
5792 		 * Set the CGRP_FREEZE flag, so when a process will be
5793 		 * attached to the child cgroup, it will become frozen.
5794 		 * At this point the new cgroup is unpopulated, so we can
5795 		 * consider it frozen immediately.
5796 		 */
5797 		set_bit(CGRP_FREEZE, &cgrp->flags);
5798 		set_bit(CGRP_FROZEN, &cgrp->flags);
5799 	}
5800 
5801 	if (notify_on_release(parent))
5802 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5803 
5804 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5805 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5806 
5807 	cgrp->self.serial_nr = css_serial_nr_next++;
5808 
5809 	ret = blocking_notifier_call_chain_robust(&cgroup_lifetime_notifier,
5810 						  CGROUP_LIFETIME_ONLINE,
5811 						  CGROUP_LIFETIME_OFFLINE, cgrp);
5812 	ret = notifier_to_errno(ret);
5813 	if (ret)
5814 		goto out_psi_free;
5815 
5816 	/* allocation complete, commit to creation */
5817 	spin_lock_irq(&css_set_lock);
5818 	for (i = 0; i < level; i++) {
5819 		tcgrp = cgrp->ancestors[i];
5820 		tcgrp->nr_descendants++;
5821 
5822 		/*
5823 		 * If the new cgroup is frozen, all ancestor cgroups get a new
5824 		 * frozen descendant, but their state can't change because of
5825 		 * this.
5826 		 */
5827 		if (cgrp->freezer.e_freeze)
5828 			tcgrp->freezer.nr_frozen_descendants++;
5829 	}
5830 	spin_unlock_irq(&css_set_lock);
5831 
5832 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5833 	atomic_inc(&root->nr_cgrps);
5834 	cgroup_get_live(parent);
5835 
5836 	/*
5837 	 * On the default hierarchy, a child doesn't automatically inherit
5838 	 * subtree_control from the parent.  Each is configured manually.
5839 	 */
5840 	if (!cgroup_on_dfl(cgrp))
5841 		cgrp->subtree_control = cgroup_control(cgrp);
5842 
5843 	cgroup_propagate_control(cgrp);
5844 
5845 	return cgrp;
5846 
5847 out_psi_free:
5848 	psi_cgroup_free(cgrp);
5849 out_stat_exit:
5850 	css_rstat_exit(&cgrp->self);
5851 out_kernfs_remove:
5852 	kernfs_remove(cgrp->kn);
5853 out_cancel_ref:
5854 	percpu_ref_exit(&cgrp->self.refcnt);
5855 out_free_cgrp:
5856 	kfree(cgrp);
5857 	return ERR_PTR(ret);
5858 }
5859 
cgroup_check_hierarchy_limits(struct cgroup * parent)5860 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5861 {
5862 	struct cgroup *cgroup;
5863 	int ret = false;
5864 	int level = 0;
5865 
5866 	lockdep_assert_held(&cgroup_mutex);
5867 
5868 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5869 		if (cgroup->nr_descendants >= cgroup->max_descendants)
5870 			goto fail;
5871 
5872 		if (level >= cgroup->max_depth)
5873 			goto fail;
5874 
5875 		level++;
5876 	}
5877 
5878 	ret = true;
5879 fail:
5880 	return ret;
5881 }
5882 
cgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)5883 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5884 {
5885 	struct cgroup *parent, *cgrp;
5886 	int ret;
5887 
5888 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5889 	if (strchr(name, '\n'))
5890 		return -EINVAL;
5891 
5892 	parent = cgroup_kn_lock_live(parent_kn, false);
5893 	if (!parent)
5894 		return -ENODEV;
5895 
5896 	if (!cgroup_check_hierarchy_limits(parent)) {
5897 		ret = -EAGAIN;
5898 		goto out_unlock;
5899 	}
5900 
5901 	cgrp = cgroup_create(parent, name, mode);
5902 	if (IS_ERR(cgrp)) {
5903 		ret = PTR_ERR(cgrp);
5904 		goto out_unlock;
5905 	}
5906 
5907 	/*
5908 	 * This extra ref will be put in css_free_rwork_fn() and guarantees
5909 	 * that @cgrp->kn is always accessible.
5910 	 */
5911 	kernfs_get(cgrp->kn);
5912 
5913 	ret = css_populate_dir(&cgrp->self);
5914 	if (ret)
5915 		goto out_destroy;
5916 
5917 	ret = cgroup_apply_control_enable(cgrp);
5918 	if (ret)
5919 		goto out_destroy;
5920 
5921 	TRACE_CGROUP_PATH(mkdir, cgrp);
5922 
5923 	/* let's create and online css's */
5924 	kernfs_activate(cgrp->kn);
5925 
5926 	ret = 0;
5927 	goto out_unlock;
5928 
5929 out_destroy:
5930 	cgroup_destroy_locked(cgrp);
5931 out_unlock:
5932 	cgroup_kn_unlock(parent_kn);
5933 	return ret;
5934 }
5935 
5936 /*
5937  * This is called when the refcnt of a css is confirmed to be killed.
5938  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5939  * initiate destruction and put the css ref from kill_css().
5940  */
css_killed_work_fn(struct work_struct * work)5941 static void css_killed_work_fn(struct work_struct *work)
5942 {
5943 	struct cgroup_subsys_state *css =
5944 		container_of(work, struct cgroup_subsys_state, destroy_work);
5945 
5946 	cgroup_lock();
5947 
5948 	do {
5949 		offline_css(css);
5950 		css_put(css);
5951 		/* @css can't go away while we're holding cgroup_mutex */
5952 		css = css->parent;
5953 	} while (css && atomic_dec_and_test(&css->online_cnt));
5954 
5955 	cgroup_unlock();
5956 }
5957 
5958 /* css kill confirmation processing requires process context, bounce */
css_killed_ref_fn(struct percpu_ref * ref)5959 static void css_killed_ref_fn(struct percpu_ref *ref)
5960 {
5961 	struct cgroup_subsys_state *css =
5962 		container_of(ref, struct cgroup_subsys_state, refcnt);
5963 
5964 	if (atomic_dec_and_test(&css->online_cnt)) {
5965 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5966 		queue_work(cgroup_offline_wq, &css->destroy_work);
5967 	}
5968 }
5969 
5970 /**
5971  * kill_css - destroy a css
5972  * @css: css to destroy
5973  *
5974  * This function initiates destruction of @css by removing cgroup interface
5975  * files and putting its base reference.  ->css_offline() will be invoked
5976  * asynchronously once css_tryget_online() is guaranteed to fail and when
5977  * the reference count reaches zero, @css will be released.
5978  */
kill_css(struct cgroup_subsys_state * css)5979 static void kill_css(struct cgroup_subsys_state *css)
5980 {
5981 	lockdep_assert_held(&cgroup_mutex);
5982 
5983 	if (css->flags & CSS_DYING)
5984 		return;
5985 
5986 	/*
5987 	 * Call css_killed(), if defined, before setting the CSS_DYING flag
5988 	 */
5989 	if (css->ss->css_killed)
5990 		css->ss->css_killed(css);
5991 
5992 	css->flags |= CSS_DYING;
5993 
5994 	/*
5995 	 * This must happen before css is disassociated with its cgroup.
5996 	 * See seq_css() for details.
5997 	 */
5998 	css_clear_dir(css);
5999 
6000 	/*
6001 	 * Killing would put the base ref, but we need to keep it alive
6002 	 * until after ->css_offline().
6003 	 */
6004 	css_get(css);
6005 
6006 	/*
6007 	 * cgroup core guarantees that, by the time ->css_offline() is
6008 	 * invoked, no new css reference will be given out via
6009 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
6010 	 * proceed to offlining css's because percpu_ref_kill() doesn't
6011 	 * guarantee that the ref is seen as killed on all CPUs on return.
6012 	 *
6013 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
6014 	 * css is confirmed to be seen as killed on all CPUs.
6015 	 */
6016 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
6017 }
6018 
6019 /**
6020  * cgroup_destroy_locked - the first stage of cgroup destruction
6021  * @cgrp: cgroup to be destroyed
6022  *
6023  * css's make use of percpu refcnts whose killing latency shouldn't be
6024  * exposed to userland and are RCU protected.  Also, cgroup core needs to
6025  * guarantee that css_tryget_online() won't succeed by the time
6026  * ->css_offline() is invoked.  To satisfy all the requirements,
6027  * destruction is implemented in the following two steps.
6028  *
6029  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
6030  *     userland visible parts and start killing the percpu refcnts of
6031  *     css's.  Set up so that the next stage will be kicked off once all
6032  *     the percpu refcnts are confirmed to be killed.
6033  *
6034  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
6035  *     rest of destruction.  Once all cgroup references are gone, the
6036  *     cgroup is RCU-freed.
6037  *
6038  * This function implements s1.  After this step, @cgrp is gone as far as
6039  * the userland is concerned and a new cgroup with the same name may be
6040  * created.  As cgroup doesn't care about the names internally, this
6041  * doesn't cause any problem.
6042  */
cgroup_destroy_locked(struct cgroup * cgrp)6043 static int cgroup_destroy_locked(struct cgroup *cgrp)
6044 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
6045 {
6046 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
6047 	struct cgroup_subsys_state *css;
6048 	struct cgrp_cset_link *link;
6049 	int ssid, ret;
6050 
6051 	lockdep_assert_held(&cgroup_mutex);
6052 
6053 	/*
6054 	 * Only migration can raise populated from zero and we're already
6055 	 * holding cgroup_mutex.
6056 	 */
6057 	if (cgroup_is_populated(cgrp))
6058 		return -EBUSY;
6059 
6060 	/*
6061 	 * Make sure there's no live children.  We can't test emptiness of
6062 	 * ->self.children as dead children linger on it while being
6063 	 * drained; otherwise, "rmdir parent/child parent" may fail.
6064 	 */
6065 	if (css_has_online_children(&cgrp->self))
6066 		return -EBUSY;
6067 
6068 	/*
6069 	 * Mark @cgrp and the associated csets dead.  The former prevents
6070 	 * further task migration and child creation by disabling
6071 	 * cgroup_kn_lock_live().  The latter makes the csets ignored by
6072 	 * the migration path.
6073 	 */
6074 	cgrp->self.flags &= ~CSS_ONLINE;
6075 
6076 	spin_lock_irq(&css_set_lock);
6077 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
6078 		link->cset->dead = true;
6079 	spin_unlock_irq(&css_set_lock);
6080 
6081 	/* initiate massacre of all css's */
6082 	for_each_css(css, ssid, cgrp)
6083 		kill_css(css);
6084 
6085 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
6086 	css_clear_dir(&cgrp->self);
6087 	kernfs_remove(cgrp->kn);
6088 
6089 	if (cgroup_is_threaded(cgrp))
6090 		parent->nr_threaded_children--;
6091 
6092 	spin_lock_irq(&css_set_lock);
6093 	for (tcgrp = parent; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
6094 		tcgrp->nr_descendants--;
6095 		tcgrp->nr_dying_descendants++;
6096 		/*
6097 		 * If the dying cgroup is frozen, decrease frozen descendants
6098 		 * counters of ancestor cgroups.
6099 		 */
6100 		if (test_bit(CGRP_FROZEN, &cgrp->flags))
6101 			tcgrp->freezer.nr_frozen_descendants--;
6102 	}
6103 	spin_unlock_irq(&css_set_lock);
6104 
6105 	cgroup1_check_for_release(parent);
6106 
6107 	ret = blocking_notifier_call_chain(&cgroup_lifetime_notifier,
6108 					   CGROUP_LIFETIME_OFFLINE, cgrp);
6109 	WARN_ON_ONCE(notifier_to_errno(ret));
6110 
6111 	/* put the base reference */
6112 	percpu_ref_kill(&cgrp->self.refcnt);
6113 
6114 	return 0;
6115 };
6116 
cgroup_rmdir(struct kernfs_node * kn)6117 int cgroup_rmdir(struct kernfs_node *kn)
6118 {
6119 	struct cgroup *cgrp;
6120 	int ret = 0;
6121 
6122 	cgrp = cgroup_kn_lock_live(kn, false);
6123 	if (!cgrp)
6124 		return 0;
6125 
6126 	ret = cgroup_destroy_locked(cgrp);
6127 	if (!ret)
6128 		TRACE_CGROUP_PATH(rmdir, cgrp);
6129 
6130 	cgroup_kn_unlock(kn);
6131 	return ret;
6132 }
6133 
6134 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
6135 	.show_options		= cgroup_show_options,
6136 	.mkdir			= cgroup_mkdir,
6137 	.rmdir			= cgroup_rmdir,
6138 	.show_path		= cgroup_show_path,
6139 };
6140 
cgroup_init_subsys(struct cgroup_subsys * ss,bool early)6141 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
6142 {
6143 	struct cgroup_subsys_state *css;
6144 
6145 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
6146 
6147 	cgroup_lock();
6148 
6149 	idr_init(&ss->css_idr);
6150 	INIT_LIST_HEAD(&ss->cfts);
6151 
6152 	/* Create the root cgroup state for this subsystem */
6153 	ss->root = &cgrp_dfl_root;
6154 	css = ss->css_alloc(NULL);
6155 	/* We don't handle early failures gracefully */
6156 	BUG_ON(IS_ERR(css));
6157 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
6158 
6159 	/*
6160 	 * Root csses are never destroyed and we can't initialize
6161 	 * percpu_ref during early init.  Disable refcnting.
6162 	 */
6163 	css->flags |= CSS_NO_REF;
6164 
6165 	if (early) {
6166 		/* allocation can't be done safely during early init */
6167 		css->id = 1;
6168 	} else {
6169 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
6170 		BUG_ON(css->id < 0);
6171 
6172 		BUG_ON(ss_rstat_init(ss));
6173 		BUG_ON(css_rstat_init(css));
6174 	}
6175 
6176 	/* Update the init_css_set to contain a subsys
6177 	 * pointer to this state - since the subsystem is
6178 	 * newly registered, all tasks and hence the
6179 	 * init_css_set is in the subsystem's root cgroup. */
6180 	init_css_set.subsys[ss->id] = css;
6181 
6182 	have_fork_callback |= (bool)ss->fork << ss->id;
6183 	have_exit_callback |= (bool)ss->exit << ss->id;
6184 	have_release_callback |= (bool)ss->release << ss->id;
6185 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
6186 
6187 	/* At system boot, before all subsystems have been
6188 	 * registered, no tasks have been forked, so we don't
6189 	 * need to invoke fork callbacks here. */
6190 	BUG_ON(!list_empty(&init_task.tasks));
6191 
6192 	BUG_ON(online_css(css));
6193 
6194 	cgroup_unlock();
6195 }
6196 
6197 /**
6198  * cgroup_init_early - cgroup initialization at system boot
6199  *
6200  * Initialize cgroups at system boot, and initialize any
6201  * subsystems that request early init.
6202  */
cgroup_init_early(void)6203 int __init cgroup_init_early(void)
6204 {
6205 	static struct cgroup_fs_context __initdata ctx;
6206 	struct cgroup_subsys *ss;
6207 	int i;
6208 
6209 	ctx.root = &cgrp_dfl_root;
6210 	init_cgroup_root(&ctx);
6211 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
6212 
6213 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
6214 
6215 	for_each_subsys(ss, i) {
6216 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
6217 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
6218 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
6219 		     ss->id, ss->name);
6220 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
6221 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
6222 		WARN(ss->early_init && ss->css_rstat_flush,
6223 		     "cgroup rstat cannot be used with early init subsystem\n");
6224 
6225 		ss->id = i;
6226 		ss->name = cgroup_subsys_name[i];
6227 		if (!ss->legacy_name)
6228 			ss->legacy_name = cgroup_subsys_name[i];
6229 
6230 		if (ss->early_init)
6231 			cgroup_init_subsys(ss, true);
6232 	}
6233 	return 0;
6234 }
6235 
6236 /**
6237  * cgroup_init - cgroup initialization
6238  *
6239  * Register cgroup filesystem and /proc file, and initialize
6240  * any subsystems that didn't request early init.
6241  */
cgroup_init(void)6242 int __init cgroup_init(void)
6243 {
6244 	struct cgroup_subsys *ss;
6245 	int ssid;
6246 
6247 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
6248 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
6249 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files));
6250 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
6251 
6252 	BUG_ON(ss_rstat_init(NULL));
6253 
6254 	get_user_ns(init_cgroup_ns.user_ns);
6255 
6256 	cgroup_lock();
6257 
6258 	/*
6259 	 * Add init_css_set to the hash table so that dfl_root can link to
6260 	 * it during init.
6261 	 */
6262 	hash_add(css_set_table, &init_css_set.hlist,
6263 		 css_set_hash(init_css_set.subsys));
6264 
6265 	cgroup_bpf_lifetime_notifier_init();
6266 
6267 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
6268 
6269 	cgroup_unlock();
6270 
6271 	for_each_subsys(ss, ssid) {
6272 		if (ss->early_init) {
6273 			struct cgroup_subsys_state *css =
6274 				init_css_set.subsys[ss->id];
6275 
6276 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
6277 						   GFP_KERNEL);
6278 			BUG_ON(css->id < 0);
6279 		} else {
6280 			cgroup_init_subsys(ss, false);
6281 		}
6282 
6283 		list_add_tail(&init_css_set.e_cset_node[ssid],
6284 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
6285 
6286 		/*
6287 		 * Setting dfl_root subsys_mask needs to consider the
6288 		 * disabled flag and cftype registration needs kmalloc,
6289 		 * both of which aren't available during early_init.
6290 		 */
6291 		if (!cgroup_ssid_enabled(ssid))
6292 			continue;
6293 
6294 		if (cgroup1_ssid_disabled(ssid))
6295 			pr_info("Disabling %s control group subsystem in v1 mounts\n",
6296 				ss->legacy_name);
6297 
6298 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
6299 
6300 		/* implicit controllers must be threaded too */
6301 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
6302 
6303 		if (ss->implicit_on_dfl)
6304 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
6305 		else if (!ss->dfl_cftypes)
6306 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
6307 
6308 		if (ss->threaded)
6309 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
6310 
6311 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
6312 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
6313 		} else {
6314 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
6315 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
6316 		}
6317 
6318 		if (ss->bind)
6319 			ss->bind(init_css_set.subsys[ssid]);
6320 
6321 		cgroup_lock();
6322 		css_populate_dir(init_css_set.subsys[ssid]);
6323 		cgroup_unlock();
6324 	}
6325 
6326 	/* init_css_set.subsys[] has been updated, re-hash */
6327 	hash_del(&init_css_set.hlist);
6328 	hash_add(css_set_table, &init_css_set.hlist,
6329 		 css_set_hash(init_css_set.subsys));
6330 
6331 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
6332 	WARN_ON(register_filesystem(&cgroup_fs_type));
6333 	WARN_ON(register_filesystem(&cgroup2_fs_type));
6334 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
6335 #ifdef CONFIG_CPUSETS_V1
6336 	WARN_ON(register_filesystem(&cpuset_fs_type));
6337 #endif
6338 
6339 	return 0;
6340 }
6341 
cgroup_wq_init(void)6342 static int __init cgroup_wq_init(void)
6343 {
6344 	/*
6345 	 * There isn't much point in executing destruction path in
6346 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
6347 	 * Use 1 for @max_active.
6348 	 *
6349 	 * We would prefer to do this in cgroup_init() above, but that
6350 	 * is called before init_workqueues(): so leave this until after.
6351 	 */
6352 	cgroup_offline_wq = alloc_workqueue("cgroup_offline", 0, 1);
6353 	BUG_ON(!cgroup_offline_wq);
6354 
6355 	cgroup_release_wq = alloc_workqueue("cgroup_release", 0, 1);
6356 	BUG_ON(!cgroup_release_wq);
6357 
6358 	cgroup_free_wq = alloc_workqueue("cgroup_free", 0, 1);
6359 	BUG_ON(!cgroup_free_wq);
6360 	return 0;
6361 }
6362 core_initcall(cgroup_wq_init);
6363 
cgroup_path_from_kernfs_id(u64 id,char * buf,size_t buflen)6364 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
6365 {
6366 	struct kernfs_node *kn;
6367 
6368 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6369 	if (!kn)
6370 		return;
6371 	kernfs_path(kn, buf, buflen);
6372 	kernfs_put(kn);
6373 }
6374 
6375 /*
6376  * cgroup_get_from_id : get the cgroup associated with cgroup id
6377  * @id: cgroup id
6378  * On success return the cgrp or ERR_PTR on failure
6379  * Only cgroups within current task's cgroup NS are valid.
6380  */
cgroup_get_from_id(u64 id)6381 struct cgroup *cgroup_get_from_id(u64 id)
6382 {
6383 	struct kernfs_node *kn;
6384 	struct cgroup *cgrp, *root_cgrp;
6385 
6386 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6387 	if (!kn)
6388 		return ERR_PTR(-ENOENT);
6389 
6390 	if (kernfs_type(kn) != KERNFS_DIR) {
6391 		kernfs_put(kn);
6392 		return ERR_PTR(-ENOENT);
6393 	}
6394 
6395 	rcu_read_lock();
6396 
6397 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6398 	if (cgrp && !cgroup_tryget(cgrp))
6399 		cgrp = NULL;
6400 
6401 	rcu_read_unlock();
6402 	kernfs_put(kn);
6403 
6404 	if (!cgrp)
6405 		return ERR_PTR(-ENOENT);
6406 
6407 	root_cgrp = current_cgns_cgroup_dfl();
6408 	if (!cgroup_is_descendant(cgrp, root_cgrp)) {
6409 		cgroup_put(cgrp);
6410 		return ERR_PTR(-ENOENT);
6411 	}
6412 
6413 	return cgrp;
6414 }
6415 EXPORT_SYMBOL_GPL(cgroup_get_from_id);
6416 
6417 /*
6418  * proc_cgroup_show()
6419  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
6420  *  - Used for /proc/<pid>/cgroup.
6421  */
proc_cgroup_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)6422 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
6423 		     struct pid *pid, struct task_struct *tsk)
6424 {
6425 	char *buf;
6426 	int retval;
6427 	struct cgroup_root *root;
6428 
6429 	retval = -ENOMEM;
6430 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
6431 	if (!buf)
6432 		goto out;
6433 
6434 	rcu_read_lock();
6435 	spin_lock_irq(&css_set_lock);
6436 
6437 	for_each_root(root) {
6438 		struct cgroup_subsys *ss;
6439 		struct cgroup *cgrp;
6440 		int ssid, count = 0;
6441 
6442 		if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible))
6443 			continue;
6444 
6445 		cgrp = task_cgroup_from_root(tsk, root);
6446 		/* The root has already been unmounted. */
6447 		if (!cgrp)
6448 			continue;
6449 
6450 		seq_printf(m, "%d:", root->hierarchy_id);
6451 		if (root != &cgrp_dfl_root)
6452 			for_each_subsys(ss, ssid)
6453 				if (root->subsys_mask & (1 << ssid))
6454 					seq_printf(m, "%s%s", count++ ? "," : "",
6455 						   ss->legacy_name);
6456 		if (strlen(root->name))
6457 			seq_printf(m, "%sname=%s", count ? "," : "",
6458 				   root->name);
6459 		seq_putc(m, ':');
6460 		/*
6461 		 * On traditional hierarchies, all zombie tasks show up as
6462 		 * belonging to the root cgroup.  On the default hierarchy,
6463 		 * while a zombie doesn't show up in "cgroup.procs" and
6464 		 * thus can't be migrated, its /proc/PID/cgroup keeps
6465 		 * reporting the cgroup it belonged to before exiting.  If
6466 		 * the cgroup is removed before the zombie is reaped,
6467 		 * " (deleted)" is appended to the cgroup path.
6468 		 */
6469 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
6470 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
6471 						current->nsproxy->cgroup_ns);
6472 			if (retval == -E2BIG)
6473 				retval = -ENAMETOOLONG;
6474 			if (retval < 0)
6475 				goto out_unlock;
6476 
6477 			seq_puts(m, buf);
6478 		} else {
6479 			seq_puts(m, "/");
6480 		}
6481 
6482 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
6483 			seq_puts(m, " (deleted)\n");
6484 		else
6485 			seq_putc(m, '\n');
6486 	}
6487 
6488 	retval = 0;
6489 out_unlock:
6490 	spin_unlock_irq(&css_set_lock);
6491 	rcu_read_unlock();
6492 	kfree(buf);
6493 out:
6494 	return retval;
6495 }
6496 
6497 /**
6498  * cgroup_fork - initialize cgroup related fields during copy_process()
6499  * @child: pointer to task_struct of forking parent process.
6500  *
6501  * A task is associated with the init_css_set until cgroup_post_fork()
6502  * attaches it to the target css_set.
6503  */
cgroup_fork(struct task_struct * child)6504 void cgroup_fork(struct task_struct *child)
6505 {
6506 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
6507 	INIT_LIST_HEAD(&child->cg_list);
6508 }
6509 
6510 /**
6511  * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer
6512  * @f: file corresponding to cgroup_dir
6513  *
6514  * Find the cgroup from a file pointer associated with a cgroup directory.
6515  * Returns a pointer to the cgroup on success. ERR_PTR is returned if the
6516  * cgroup cannot be found.
6517  */
cgroup_v1v2_get_from_file(struct file * f)6518 static struct cgroup *cgroup_v1v2_get_from_file(struct file *f)
6519 {
6520 	struct cgroup_subsys_state *css;
6521 
6522 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6523 	if (IS_ERR(css))
6524 		return ERR_CAST(css);
6525 
6526 	return css->cgroup;
6527 }
6528 
6529 /**
6530  * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports
6531  * cgroup2.
6532  * @f: file corresponding to cgroup2_dir
6533  */
cgroup_get_from_file(struct file * f)6534 static struct cgroup *cgroup_get_from_file(struct file *f)
6535 {
6536 	struct cgroup *cgrp = cgroup_v1v2_get_from_file(f);
6537 
6538 	if (IS_ERR(cgrp))
6539 		return ERR_CAST(cgrp);
6540 
6541 	if (!cgroup_on_dfl(cgrp)) {
6542 		cgroup_put(cgrp);
6543 		return ERR_PTR(-EBADF);
6544 	}
6545 
6546 	return cgrp;
6547 }
6548 
6549 /**
6550  * cgroup_css_set_fork - find or create a css_set for a child process
6551  * @kargs: the arguments passed to create the child process
6552  *
6553  * This functions finds or creates a new css_set which the child
6554  * process will be attached to in cgroup_post_fork(). By default,
6555  * the child process will be given the same css_set as its parent.
6556  *
6557  * If CLONE_INTO_CGROUP is specified this function will try to find an
6558  * existing css_set which includes the requested cgroup and if not create
6559  * a new css_set that the child will be attached to later. If this function
6560  * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6561  * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6562  * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6563  * to the target cgroup.
6564  */
cgroup_css_set_fork(struct kernel_clone_args * kargs)6565 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6566 	__acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6567 {
6568 	int ret;
6569 	struct cgroup *dst_cgrp = NULL;
6570 	struct css_set *cset;
6571 	struct super_block *sb;
6572 
6573 	if (kargs->flags & CLONE_INTO_CGROUP)
6574 		cgroup_lock();
6575 
6576 	cgroup_threadgroup_change_begin(current);
6577 
6578 	spin_lock_irq(&css_set_lock);
6579 	cset = task_css_set(current);
6580 	get_css_set(cset);
6581 	if (kargs->cgrp)
6582 		kargs->kill_seq = kargs->cgrp->kill_seq;
6583 	else
6584 		kargs->kill_seq = cset->dfl_cgrp->kill_seq;
6585 	spin_unlock_irq(&css_set_lock);
6586 
6587 	if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6588 		kargs->cset = cset;
6589 		return 0;
6590 	}
6591 
6592 	CLASS(fd_raw, f)(kargs->cgroup);
6593 	if (fd_empty(f)) {
6594 		ret = -EBADF;
6595 		goto err;
6596 	}
6597 	sb = fd_file(f)->f_path.dentry->d_sb;
6598 
6599 	dst_cgrp = cgroup_get_from_file(fd_file(f));
6600 	if (IS_ERR(dst_cgrp)) {
6601 		ret = PTR_ERR(dst_cgrp);
6602 		dst_cgrp = NULL;
6603 		goto err;
6604 	}
6605 
6606 	if (cgroup_is_dead(dst_cgrp)) {
6607 		ret = -ENODEV;
6608 		goto err;
6609 	}
6610 
6611 	/*
6612 	 * Verify that we the target cgroup is writable for us. This is
6613 	 * usually done by the vfs layer but since we're not going through
6614 	 * the vfs layer here we need to do it "manually".
6615 	 */
6616 	ret = cgroup_may_write(dst_cgrp, sb);
6617 	if (ret)
6618 		goto err;
6619 
6620 	/*
6621 	 * Spawning a task directly into a cgroup works by passing a file
6622 	 * descriptor to the target cgroup directory. This can even be an O_PATH
6623 	 * file descriptor. But it can never be a cgroup.procs file descriptor.
6624 	 * This was done on purpose so spawning into a cgroup could be
6625 	 * conceptualized as an atomic
6626 	 *
6627 	 *   fd = openat(dfd_cgroup, "cgroup.procs", ...);
6628 	 *   write(fd, <child-pid>, ...);
6629 	 *
6630 	 * sequence, i.e. it's a shorthand for the caller opening and writing
6631 	 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us
6632 	 * to always use the caller's credentials.
6633 	 */
6634 	ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6635 					!(kargs->flags & CLONE_THREAD),
6636 					current->nsproxy->cgroup_ns);
6637 	if (ret)
6638 		goto err;
6639 
6640 	kargs->cset = find_css_set(cset, dst_cgrp);
6641 	if (!kargs->cset) {
6642 		ret = -ENOMEM;
6643 		goto err;
6644 	}
6645 
6646 	put_css_set(cset);
6647 	kargs->cgrp = dst_cgrp;
6648 	return ret;
6649 
6650 err:
6651 	cgroup_threadgroup_change_end(current);
6652 	cgroup_unlock();
6653 	if (dst_cgrp)
6654 		cgroup_put(dst_cgrp);
6655 	put_css_set(cset);
6656 	if (kargs->cset)
6657 		put_css_set(kargs->cset);
6658 	return ret;
6659 }
6660 
6661 /**
6662  * cgroup_css_set_put_fork - drop references we took during fork
6663  * @kargs: the arguments passed to create the child process
6664  *
6665  * Drop references to the prepared css_set and target cgroup if
6666  * CLONE_INTO_CGROUP was requested.
6667  */
cgroup_css_set_put_fork(struct kernel_clone_args * kargs)6668 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6669 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6670 {
6671 	struct cgroup *cgrp = kargs->cgrp;
6672 	struct css_set *cset = kargs->cset;
6673 
6674 	cgroup_threadgroup_change_end(current);
6675 
6676 	if (cset) {
6677 		put_css_set(cset);
6678 		kargs->cset = NULL;
6679 	}
6680 
6681 	if (kargs->flags & CLONE_INTO_CGROUP) {
6682 		cgroup_unlock();
6683 		if (cgrp) {
6684 			cgroup_put(cgrp);
6685 			kargs->cgrp = NULL;
6686 		}
6687 	}
6688 }
6689 
6690 /**
6691  * cgroup_can_fork - called on a new task before the process is exposed
6692  * @child: the child process
6693  * @kargs: the arguments passed to create the child process
6694  *
6695  * This prepares a new css_set for the child process which the child will
6696  * be attached to in cgroup_post_fork().
6697  * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6698  * callback returns an error, the fork aborts with that error code. This
6699  * allows for a cgroup subsystem to conditionally allow or deny new forks.
6700  */
cgroup_can_fork(struct task_struct * child,struct kernel_clone_args * kargs)6701 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6702 {
6703 	struct cgroup_subsys *ss;
6704 	int i, j, ret;
6705 
6706 	ret = cgroup_css_set_fork(kargs);
6707 	if (ret)
6708 		return ret;
6709 
6710 	do_each_subsys_mask(ss, i, have_canfork_callback) {
6711 		ret = ss->can_fork(child, kargs->cset);
6712 		if (ret)
6713 			goto out_revert;
6714 	} while_each_subsys_mask();
6715 
6716 	return 0;
6717 
6718 out_revert:
6719 	for_each_subsys(ss, j) {
6720 		if (j >= i)
6721 			break;
6722 		if (ss->cancel_fork)
6723 			ss->cancel_fork(child, kargs->cset);
6724 	}
6725 
6726 	cgroup_css_set_put_fork(kargs);
6727 
6728 	return ret;
6729 }
6730 
6731 /**
6732  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6733  * @child: the child process
6734  * @kargs: the arguments passed to create the child process
6735  *
6736  * This calls the cancel_fork() callbacks if a fork failed *after*
6737  * cgroup_can_fork() succeeded and cleans up references we took to
6738  * prepare a new css_set for the child process in cgroup_can_fork().
6739  */
cgroup_cancel_fork(struct task_struct * child,struct kernel_clone_args * kargs)6740 void cgroup_cancel_fork(struct task_struct *child,
6741 			struct kernel_clone_args *kargs)
6742 {
6743 	struct cgroup_subsys *ss;
6744 	int i;
6745 
6746 	for_each_subsys(ss, i)
6747 		if (ss->cancel_fork)
6748 			ss->cancel_fork(child, kargs->cset);
6749 
6750 	cgroup_css_set_put_fork(kargs);
6751 }
6752 
6753 /**
6754  * cgroup_post_fork - finalize cgroup setup for the child process
6755  * @child: the child process
6756  * @kargs: the arguments passed to create the child process
6757  *
6758  * Attach the child process to its css_set calling the subsystem fork()
6759  * callbacks.
6760  */
cgroup_post_fork(struct task_struct * child,struct kernel_clone_args * kargs)6761 void cgroup_post_fork(struct task_struct *child,
6762 		      struct kernel_clone_args *kargs)
6763 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6764 {
6765 	unsigned int cgrp_kill_seq = 0;
6766 	unsigned long cgrp_flags = 0;
6767 	bool kill = false;
6768 	struct cgroup_subsys *ss;
6769 	struct css_set *cset;
6770 	int i;
6771 
6772 	cset = kargs->cset;
6773 	kargs->cset = NULL;
6774 
6775 	spin_lock_irq(&css_set_lock);
6776 
6777 	/* init tasks are special, only link regular threads */
6778 	if (likely(child->pid)) {
6779 		if (kargs->cgrp) {
6780 			cgrp_flags = kargs->cgrp->flags;
6781 			cgrp_kill_seq = kargs->cgrp->kill_seq;
6782 		} else {
6783 			cgrp_flags = cset->dfl_cgrp->flags;
6784 			cgrp_kill_seq = cset->dfl_cgrp->kill_seq;
6785 		}
6786 
6787 		WARN_ON_ONCE(!list_empty(&child->cg_list));
6788 		cset->nr_tasks++;
6789 		css_set_move_task(child, NULL, cset, false);
6790 	} else {
6791 		put_css_set(cset);
6792 		cset = NULL;
6793 	}
6794 
6795 	if (!(child->flags & PF_KTHREAD)) {
6796 		if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) {
6797 			/*
6798 			 * If the cgroup has to be frozen, the new task has
6799 			 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to
6800 			 * get the task into the frozen state.
6801 			 */
6802 			spin_lock(&child->sighand->siglock);
6803 			WARN_ON_ONCE(child->frozen);
6804 			child->jobctl |= JOBCTL_TRAP_FREEZE;
6805 			spin_unlock(&child->sighand->siglock);
6806 
6807 			/*
6808 			 * Calling cgroup_update_frozen() isn't required here,
6809 			 * because it will be called anyway a bit later from
6810 			 * do_freezer_trap(). So we avoid cgroup's transient
6811 			 * switch from the frozen state and back.
6812 			 */
6813 		}
6814 
6815 		/*
6816 		 * If the cgroup is to be killed notice it now and take the
6817 		 * child down right after we finished preparing it for
6818 		 * userspace.
6819 		 */
6820 		kill = kargs->kill_seq != cgrp_kill_seq;
6821 	}
6822 
6823 	spin_unlock_irq(&css_set_lock);
6824 
6825 	/*
6826 	 * Call ss->fork().  This must happen after @child is linked on
6827 	 * css_set; otherwise, @child might change state between ->fork()
6828 	 * and addition to css_set.
6829 	 */
6830 	do_each_subsys_mask(ss, i, have_fork_callback) {
6831 		ss->fork(child);
6832 	} while_each_subsys_mask();
6833 
6834 	/* Make the new cset the root_cset of the new cgroup namespace. */
6835 	if (kargs->flags & CLONE_NEWCGROUP) {
6836 		struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6837 
6838 		get_css_set(cset);
6839 		child->nsproxy->cgroup_ns->root_cset = cset;
6840 		put_css_set(rcset);
6841 	}
6842 
6843 	/* Cgroup has to be killed so take down child immediately. */
6844 	if (unlikely(kill))
6845 		do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID);
6846 
6847 	cgroup_css_set_put_fork(kargs);
6848 }
6849 
6850 /**
6851  * cgroup_exit - detach cgroup from exiting task
6852  * @tsk: pointer to task_struct of exiting process
6853  *
6854  * Description: Detach cgroup from @tsk.
6855  *
6856  */
cgroup_exit(struct task_struct * tsk)6857 void cgroup_exit(struct task_struct *tsk)
6858 {
6859 	struct cgroup_subsys *ss;
6860 	struct css_set *cset;
6861 	int i;
6862 
6863 	spin_lock_irq(&css_set_lock);
6864 
6865 	WARN_ON_ONCE(list_empty(&tsk->cg_list));
6866 	cset = task_css_set(tsk);
6867 	css_set_move_task(tsk, cset, NULL, false);
6868 	cset->nr_tasks--;
6869 	/* matches the signal->live check in css_task_iter_advance() */
6870 	if (thread_group_leader(tsk) && atomic_read(&tsk->signal->live))
6871 		list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6872 
6873 	if (dl_task(tsk))
6874 		dec_dl_tasks_cs(tsk);
6875 
6876 	WARN_ON_ONCE(cgroup_task_frozen(tsk));
6877 	if (unlikely(!(tsk->flags & PF_KTHREAD) &&
6878 		     test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags)))
6879 		cgroup_update_frozen(task_dfl_cgroup(tsk));
6880 
6881 	spin_unlock_irq(&css_set_lock);
6882 
6883 	/* see cgroup_post_fork() for details */
6884 	do_each_subsys_mask(ss, i, have_exit_callback) {
6885 		ss->exit(tsk);
6886 	} while_each_subsys_mask();
6887 }
6888 
cgroup_release(struct task_struct * task)6889 void cgroup_release(struct task_struct *task)
6890 {
6891 	struct cgroup_subsys *ss;
6892 	int ssid;
6893 
6894 	do_each_subsys_mask(ss, ssid, have_release_callback) {
6895 		ss->release(task);
6896 	} while_each_subsys_mask();
6897 
6898 	if (!list_empty(&task->cg_list)) {
6899 		spin_lock_irq(&css_set_lock);
6900 		css_set_skip_task_iters(task_css_set(task), task);
6901 		list_del_init(&task->cg_list);
6902 		spin_unlock_irq(&css_set_lock);
6903 	}
6904 }
6905 
cgroup_free(struct task_struct * task)6906 void cgroup_free(struct task_struct *task)
6907 {
6908 	struct css_set *cset = task_css_set(task);
6909 	put_css_set(cset);
6910 }
6911 
cgroup_disable(char * str)6912 static int __init cgroup_disable(char *str)
6913 {
6914 	struct cgroup_subsys *ss;
6915 	char *token;
6916 	int i;
6917 
6918 	while ((token = strsep(&str, ",")) != NULL) {
6919 		if (!*token)
6920 			continue;
6921 
6922 		for_each_subsys(ss, i) {
6923 			if (strcmp(token, ss->name) &&
6924 			    strcmp(token, ss->legacy_name))
6925 				continue;
6926 
6927 			static_branch_disable(cgroup_subsys_enabled_key[i]);
6928 			pr_info("Disabling %s control group subsystem\n",
6929 				ss->name);
6930 		}
6931 
6932 		for (i = 0; i < OPT_FEATURE_COUNT; i++) {
6933 			if (strcmp(token, cgroup_opt_feature_names[i]))
6934 				continue;
6935 			cgroup_feature_disable_mask |= 1 << i;
6936 			pr_info("Disabling %s control group feature\n",
6937 				cgroup_opt_feature_names[i]);
6938 			break;
6939 		}
6940 	}
6941 	return 1;
6942 }
6943 __setup("cgroup_disable=", cgroup_disable);
6944 
enable_debug_cgroup(void)6945 void __init __weak enable_debug_cgroup(void) { }
6946 
enable_cgroup_debug(char * str)6947 static int __init enable_cgroup_debug(char *str)
6948 {
6949 	cgroup_debug = true;
6950 	enable_debug_cgroup();
6951 	return 1;
6952 }
6953 __setup("cgroup_debug", enable_cgroup_debug);
6954 
cgroup_favordynmods_setup(char * str)6955 static int __init cgroup_favordynmods_setup(char *str)
6956 {
6957 	return (kstrtobool(str, &have_favordynmods) == 0);
6958 }
6959 __setup("cgroup_favordynmods=", cgroup_favordynmods_setup);
6960 
6961 /**
6962  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6963  * @dentry: directory dentry of interest
6964  * @ss: subsystem of interest
6965  *
6966  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6967  * to get the corresponding css and return it.  If such css doesn't exist
6968  * or can't be pinned, an ERR_PTR value is returned.
6969  */
css_tryget_online_from_dir(struct dentry * dentry,struct cgroup_subsys * ss)6970 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6971 						       struct cgroup_subsys *ss)
6972 {
6973 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6974 	struct file_system_type *s_type = dentry->d_sb->s_type;
6975 	struct cgroup_subsys_state *css = NULL;
6976 	struct cgroup *cgrp;
6977 
6978 	/* is @dentry a cgroup dir? */
6979 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6980 	    !kn || kernfs_type(kn) != KERNFS_DIR)
6981 		return ERR_PTR(-EBADF);
6982 
6983 	rcu_read_lock();
6984 
6985 	/*
6986 	 * This path doesn't originate from kernfs and @kn could already
6987 	 * have been or be removed at any point.  @kn->priv is RCU
6988 	 * protected for this access.  See css_release_work_fn() for details.
6989 	 */
6990 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6991 	if (cgrp)
6992 		css = cgroup_css(cgrp, ss);
6993 
6994 	if (!css || !css_tryget_online(css))
6995 		css = ERR_PTR(-ENOENT);
6996 
6997 	rcu_read_unlock();
6998 	return css;
6999 }
7000 
7001 /**
7002  * css_from_id - lookup css by id
7003  * @id: the cgroup id
7004  * @ss: cgroup subsys to be looked into
7005  *
7006  * Returns the css if there's valid one with @id, otherwise returns NULL.
7007  * Should be called under rcu_read_lock().
7008  */
css_from_id(int id,struct cgroup_subsys * ss)7009 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
7010 {
7011 	WARN_ON_ONCE(!rcu_read_lock_held());
7012 	return idr_find(&ss->css_idr, id);
7013 }
7014 
7015 /**
7016  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
7017  * @path: path on the default hierarchy
7018  *
7019  * Find the cgroup at @path on the default hierarchy, increment its
7020  * reference count and return it.  Returns pointer to the found cgroup on
7021  * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already
7022  * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory.
7023  */
cgroup_get_from_path(const char * path)7024 struct cgroup *cgroup_get_from_path(const char *path)
7025 {
7026 	struct kernfs_node *kn;
7027 	struct cgroup *cgrp = ERR_PTR(-ENOENT);
7028 	struct cgroup *root_cgrp;
7029 
7030 	root_cgrp = current_cgns_cgroup_dfl();
7031 	kn = kernfs_walk_and_get(root_cgrp->kn, path);
7032 	if (!kn)
7033 		goto out;
7034 
7035 	if (kernfs_type(kn) != KERNFS_DIR) {
7036 		cgrp = ERR_PTR(-ENOTDIR);
7037 		goto out_kernfs;
7038 	}
7039 
7040 	rcu_read_lock();
7041 
7042 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
7043 	if (!cgrp || !cgroup_tryget(cgrp))
7044 		cgrp = ERR_PTR(-ENOENT);
7045 
7046 	rcu_read_unlock();
7047 
7048 out_kernfs:
7049 	kernfs_put(kn);
7050 out:
7051 	return cgrp;
7052 }
7053 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
7054 
7055 /**
7056  * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd
7057  * @fd: fd obtained by open(cgroup_dir)
7058  *
7059  * Find the cgroup from a fd which should be obtained
7060  * by opening a cgroup directory.  Returns a pointer to the
7061  * cgroup on success. ERR_PTR is returned if the cgroup
7062  * cannot be found.
7063  */
cgroup_v1v2_get_from_fd(int fd)7064 struct cgroup *cgroup_v1v2_get_from_fd(int fd)
7065 {
7066 	CLASS(fd_raw, f)(fd);
7067 	if (fd_empty(f))
7068 		return ERR_PTR(-EBADF);
7069 
7070 	return cgroup_v1v2_get_from_file(fd_file(f));
7071 }
7072 
7073 /**
7074  * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports
7075  * cgroup2.
7076  * @fd: fd obtained by open(cgroup2_dir)
7077  */
cgroup_get_from_fd(int fd)7078 struct cgroup *cgroup_get_from_fd(int fd)
7079 {
7080 	struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd);
7081 
7082 	if (IS_ERR(cgrp))
7083 		return ERR_CAST(cgrp);
7084 
7085 	if (!cgroup_on_dfl(cgrp)) {
7086 		cgroup_put(cgrp);
7087 		return ERR_PTR(-EBADF);
7088 	}
7089 	return cgrp;
7090 }
7091 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
7092 
power_of_ten(int power)7093 static u64 power_of_ten(int power)
7094 {
7095 	u64 v = 1;
7096 	while (power--)
7097 		v *= 10;
7098 	return v;
7099 }
7100 
7101 /**
7102  * cgroup_parse_float - parse a floating number
7103  * @input: input string
7104  * @dec_shift: number of decimal digits to shift
7105  * @v: output
7106  *
7107  * Parse a decimal floating point number in @input and store the result in
7108  * @v with decimal point right shifted @dec_shift times.  For example, if
7109  * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
7110  * Returns 0 on success, -errno otherwise.
7111  *
7112  * There's nothing cgroup specific about this function except that it's
7113  * currently the only user.
7114  */
cgroup_parse_float(const char * input,unsigned dec_shift,s64 * v)7115 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
7116 {
7117 	s64 whole, frac = 0;
7118 	int fstart = 0, fend = 0, flen;
7119 
7120 	if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
7121 		return -EINVAL;
7122 	if (frac < 0)
7123 		return -EINVAL;
7124 
7125 	flen = fend > fstart ? fend - fstart : 0;
7126 	if (flen < dec_shift)
7127 		frac *= power_of_ten(dec_shift - flen);
7128 	else
7129 		frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
7130 
7131 	*v = whole * power_of_ten(dec_shift) + frac;
7132 	return 0;
7133 }
7134 
7135 /*
7136  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
7137  * definition in cgroup-defs.h.
7138  */
7139 #ifdef CONFIG_SOCK_CGROUP_DATA
7140 
cgroup_sk_alloc(struct sock_cgroup_data * skcd)7141 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
7142 {
7143 	struct cgroup *cgroup;
7144 
7145 	rcu_read_lock();
7146 	/* Don't associate the sock with unrelated interrupted task's cgroup. */
7147 	if (in_interrupt()) {
7148 		cgroup = &cgrp_dfl_root.cgrp;
7149 		cgroup_get(cgroup);
7150 		goto out;
7151 	}
7152 
7153 	while (true) {
7154 		struct css_set *cset;
7155 
7156 		cset = task_css_set(current);
7157 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
7158 			cgroup = cset->dfl_cgrp;
7159 			break;
7160 		}
7161 		cpu_relax();
7162 	}
7163 out:
7164 	skcd->cgroup = cgroup;
7165 	cgroup_bpf_get(cgroup);
7166 	rcu_read_unlock();
7167 }
7168 
cgroup_sk_clone(struct sock_cgroup_data * skcd)7169 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
7170 {
7171 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
7172 
7173 	/*
7174 	 * We might be cloning a socket which is left in an empty
7175 	 * cgroup and the cgroup might have already been rmdir'd.
7176 	 * Don't use cgroup_get_live().
7177 	 */
7178 	cgroup_get(cgrp);
7179 	cgroup_bpf_get(cgrp);
7180 }
7181 
cgroup_sk_free(struct sock_cgroup_data * skcd)7182 void cgroup_sk_free(struct sock_cgroup_data *skcd)
7183 {
7184 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
7185 
7186 	cgroup_bpf_put(cgrp);
7187 	cgroup_put(cgrp);
7188 }
7189 
7190 #endif	/* CONFIG_SOCK_CGROUP_DATA */
7191 
7192 #ifdef CONFIG_SYSFS
show_delegatable_files(struct cftype * files,char * buf,ssize_t size,const char * prefix)7193 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
7194 				      ssize_t size, const char *prefix)
7195 {
7196 	struct cftype *cft;
7197 	ssize_t ret = 0;
7198 
7199 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
7200 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
7201 			continue;
7202 
7203 		if (prefix)
7204 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
7205 
7206 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
7207 
7208 		if (WARN_ON(ret >= size))
7209 			break;
7210 	}
7211 
7212 	return ret;
7213 }
7214 
delegate_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)7215 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
7216 			      char *buf)
7217 {
7218 	struct cgroup_subsys *ss;
7219 	int ssid;
7220 	ssize_t ret = 0;
7221 
7222 	ret = show_delegatable_files(cgroup_base_files, buf + ret,
7223 				     PAGE_SIZE - ret, NULL);
7224 	if (cgroup_psi_enabled())
7225 		ret += show_delegatable_files(cgroup_psi_files, buf + ret,
7226 					      PAGE_SIZE - ret, NULL);
7227 
7228 	for_each_subsys(ss, ssid)
7229 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
7230 					      PAGE_SIZE - ret,
7231 					      cgroup_subsys_name[ssid]);
7232 
7233 	return ret;
7234 }
7235 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
7236 
features_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)7237 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
7238 			     char *buf)
7239 {
7240 	return snprintf(buf, PAGE_SIZE,
7241 			"nsdelegate\n"
7242 			"favordynmods\n"
7243 			"memory_localevents\n"
7244 			"memory_recursiveprot\n"
7245 			"memory_hugetlb_accounting\n"
7246 			"pids_localevents\n");
7247 }
7248 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
7249 
7250 static struct attribute *cgroup_sysfs_attrs[] = {
7251 	&cgroup_delegate_attr.attr,
7252 	&cgroup_features_attr.attr,
7253 	NULL,
7254 };
7255 
7256 static const struct attribute_group cgroup_sysfs_attr_group = {
7257 	.attrs = cgroup_sysfs_attrs,
7258 	.name = "cgroup",
7259 };
7260 
cgroup_sysfs_init(void)7261 static int __init cgroup_sysfs_init(void)
7262 {
7263 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
7264 }
7265 subsys_initcall(cgroup_sysfs_init);
7266 
7267 #endif /* CONFIG_SYSFS */
7268