1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/bpf-cgroup.h> 34 #include <linux/cred.h> 35 #include <linux/errno.h> 36 #include <linux/init_task.h> 37 #include <linux/kernel.h> 38 #include <linux/magic.h> 39 #include <linux/mutex.h> 40 #include <linux/mount.h> 41 #include <linux/pagemap.h> 42 #include <linux/proc_fs.h> 43 #include <linux/rcupdate.h> 44 #include <linux/sched.h> 45 #include <linux/sched/task.h> 46 #include <linux/slab.h> 47 #include <linux/spinlock.h> 48 #include <linux/percpu-rwsem.h> 49 #include <linux/string.h> 50 #include <linux/hashtable.h> 51 #include <linux/idr.h> 52 #include <linux/kthread.h> 53 #include <linux/atomic.h> 54 #include <linux/cpuset.h> 55 #include <linux/proc_ns.h> 56 #include <linux/nsproxy.h> 57 #include <linux/file.h> 58 #include <linux/fs_parser.h> 59 #include <linux/sched/cputime.h> 60 #include <linux/sched/deadline.h> 61 #include <linux/psi.h> 62 #include <net/sock.h> 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/cgroup.h> 66 67 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 68 MAX_CFTYPE_NAME + 2) 69 /* let's not notify more than 100 times per second */ 70 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) 71 72 /* 73 * To avoid confusing the compiler (and generating warnings) with code 74 * that attempts to access what would be a 0-element array (i.e. sized 75 * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this 76 * constant expression can be added. 77 */ 78 #define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0) 79 80 /* 81 * cgroup_mutex is the master lock. Any modification to cgroup or its 82 * hierarchy must be performed while holding it. 83 * 84 * css_set_lock protects task->cgroups pointer, the list of css_set 85 * objects, and the chain of tasks off each css_set. 86 * 87 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 88 * cgroup.h can use them for lockdep annotations. 89 */ 90 DEFINE_MUTEX(cgroup_mutex); 91 DEFINE_SPINLOCK(css_set_lock); 92 93 #ifdef CONFIG_PROVE_RCU 94 EXPORT_SYMBOL_GPL(cgroup_mutex); 95 EXPORT_SYMBOL_GPL(css_set_lock); 96 #endif 97 98 DEFINE_SPINLOCK(trace_cgroup_path_lock); 99 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; 100 static bool cgroup_debug __read_mostly; 101 102 /* 103 * Protects cgroup_idr and css_idr so that IDs can be released without 104 * grabbing cgroup_mutex. 105 */ 106 static DEFINE_SPINLOCK(cgroup_idr_lock); 107 108 /* 109 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 110 * against file removal/re-creation across css hiding. 111 */ 112 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 113 114 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem); 115 116 #define cgroup_assert_mutex_or_rcu_locked() \ 117 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 118 !lockdep_is_held(&cgroup_mutex), \ 119 "cgroup_mutex or RCU read lock required"); 120 121 /* 122 * cgroup destruction makes heavy use of work items and there can be a lot 123 * of concurrent destructions. Use a separate workqueue so that cgroup 124 * destruction work items don't end up filling up max_active of system_wq 125 * which may lead to deadlock. 126 */ 127 static struct workqueue_struct *cgroup_destroy_wq; 128 129 /* generate an array of cgroup subsystem pointers */ 130 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 131 struct cgroup_subsys *cgroup_subsys[] = { 132 #include <linux/cgroup_subsys.h> 133 }; 134 #undef SUBSYS 135 136 /* array of cgroup subsystem names */ 137 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 138 static const char *cgroup_subsys_name[] = { 139 #include <linux/cgroup_subsys.h> 140 }; 141 #undef SUBSYS 142 143 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 144 #define SUBSYS(_x) \ 145 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 146 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 147 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 148 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 149 #include <linux/cgroup_subsys.h> 150 #undef SUBSYS 151 152 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 153 static struct static_key_true *cgroup_subsys_enabled_key[] = { 154 #include <linux/cgroup_subsys.h> 155 }; 156 #undef SUBSYS 157 158 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 159 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 160 #include <linux/cgroup_subsys.h> 161 }; 162 #undef SUBSYS 163 164 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu); 165 166 /* the default hierarchy */ 167 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu }; 168 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 169 170 /* 171 * The default hierarchy always exists but is hidden until mounted for the 172 * first time. This is for backward compatibility. 173 */ 174 bool cgrp_dfl_visible; 175 176 /* some controllers are not supported in the default hierarchy */ 177 static u16 cgrp_dfl_inhibit_ss_mask; 178 179 /* some controllers are implicitly enabled on the default hierarchy */ 180 static u16 cgrp_dfl_implicit_ss_mask; 181 182 /* some controllers can be threaded on the default hierarchy */ 183 static u16 cgrp_dfl_threaded_ss_mask; 184 185 /* The list of hierarchy roots */ 186 LIST_HEAD(cgroup_roots); 187 static int cgroup_root_count; 188 189 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 190 static DEFINE_IDR(cgroup_hierarchy_idr); 191 192 /* 193 * Assign a monotonically increasing serial number to csses. It guarantees 194 * cgroups with bigger numbers are newer than those with smaller numbers. 195 * Also, as csses are always appended to the parent's ->children list, it 196 * guarantees that sibling csses are always sorted in the ascending serial 197 * number order on the list. Protected by cgroup_mutex. 198 */ 199 static u64 css_serial_nr_next = 1; 200 201 /* 202 * These bitmasks identify subsystems with specific features to avoid 203 * having to do iterative checks repeatedly. 204 */ 205 static u16 have_fork_callback __read_mostly; 206 static u16 have_exit_callback __read_mostly; 207 static u16 have_release_callback __read_mostly; 208 static u16 have_canfork_callback __read_mostly; 209 210 static bool have_favordynmods __ro_after_init = IS_ENABLED(CONFIG_CGROUP_FAVOR_DYNMODS); 211 212 /* cgroup namespace for init task */ 213 struct cgroup_namespace init_cgroup_ns = { 214 .ns.count = REFCOUNT_INIT(2), 215 .user_ns = &init_user_ns, 216 .ns.ops = &cgroupns_operations, 217 .ns.inum = PROC_CGROUP_INIT_INO, 218 .root_cset = &init_css_set, 219 }; 220 221 static struct file_system_type cgroup2_fs_type; 222 static struct cftype cgroup_base_files[]; 223 static struct cftype cgroup_psi_files[]; 224 225 /* cgroup optional features */ 226 enum cgroup_opt_features { 227 #ifdef CONFIG_PSI 228 OPT_FEATURE_PRESSURE, 229 #endif 230 OPT_FEATURE_COUNT 231 }; 232 233 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = { 234 #ifdef CONFIG_PSI 235 "pressure", 236 #endif 237 }; 238 239 static u16 cgroup_feature_disable_mask __read_mostly; 240 241 static int cgroup_apply_control(struct cgroup *cgrp); 242 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 243 static void css_task_iter_skip(struct css_task_iter *it, 244 struct task_struct *task); 245 static int cgroup_destroy_locked(struct cgroup *cgrp); 246 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 247 struct cgroup_subsys *ss); 248 static void css_release(struct percpu_ref *ref); 249 static void kill_css(struct cgroup_subsys_state *css); 250 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 251 struct cgroup *cgrp, struct cftype cfts[], 252 bool is_add); 253 254 #ifdef CONFIG_DEBUG_CGROUP_REF 255 #define CGROUP_REF_FN_ATTRS noinline 256 #define CGROUP_REF_EXPORT(fn) EXPORT_SYMBOL_GPL(fn); 257 #include <linux/cgroup_refcnt.h> 258 #endif 259 260 /** 261 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 262 * @ssid: subsys ID of interest 263 * 264 * cgroup_subsys_enabled() can only be used with literal subsys names which 265 * is fine for individual subsystems but unsuitable for cgroup core. This 266 * is slower static_key_enabled() based test indexed by @ssid. 267 */ cgroup_ssid_enabled(int ssid)268 bool cgroup_ssid_enabled(int ssid) 269 { 270 if (!CGROUP_HAS_SUBSYS_CONFIG) 271 return false; 272 273 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 274 } 275 276 /** 277 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 278 * @cgrp: the cgroup of interest 279 * 280 * The default hierarchy is the v2 interface of cgroup and this function 281 * can be used to test whether a cgroup is on the default hierarchy for 282 * cases where a subsystem should behave differently depending on the 283 * interface version. 284 * 285 * List of changed behaviors: 286 * 287 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 288 * and "name" are disallowed. 289 * 290 * - When mounting an existing superblock, mount options should match. 291 * 292 * - rename(2) is disallowed. 293 * 294 * - "tasks" is removed. Everything should be at process granularity. Use 295 * "cgroup.procs" instead. 296 * 297 * - "cgroup.procs" is not sorted. pids will be unique unless they got 298 * recycled in-between reads. 299 * 300 * - "release_agent" and "notify_on_release" are removed. Replacement 301 * notification mechanism will be implemented. 302 * 303 * - "cgroup.clone_children" is removed. 304 * 305 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 306 * and its descendants contain no task; otherwise, 1. The file also 307 * generates kernfs notification which can be monitored through poll and 308 * [di]notify when the value of the file changes. 309 * 310 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 311 * take masks of ancestors with non-empty cpus/mems, instead of being 312 * moved to an ancestor. 313 * 314 * - cpuset: a task can be moved into an empty cpuset, and again it takes 315 * masks of ancestors. 316 * 317 * - blkcg: blk-throttle becomes properly hierarchical. 318 */ cgroup_on_dfl(const struct cgroup * cgrp)319 bool cgroup_on_dfl(const struct cgroup *cgrp) 320 { 321 return cgrp->root == &cgrp_dfl_root; 322 } 323 324 /* IDR wrappers which synchronize using cgroup_idr_lock */ cgroup_idr_alloc(struct idr * idr,void * ptr,int start,int end,gfp_t gfp_mask)325 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 326 gfp_t gfp_mask) 327 { 328 int ret; 329 330 idr_preload(gfp_mask); 331 spin_lock_bh(&cgroup_idr_lock); 332 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 333 spin_unlock_bh(&cgroup_idr_lock); 334 idr_preload_end(); 335 return ret; 336 } 337 cgroup_idr_replace(struct idr * idr,void * ptr,int id)338 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 339 { 340 void *ret; 341 342 spin_lock_bh(&cgroup_idr_lock); 343 ret = idr_replace(idr, ptr, id); 344 spin_unlock_bh(&cgroup_idr_lock); 345 return ret; 346 } 347 cgroup_idr_remove(struct idr * idr,int id)348 static void cgroup_idr_remove(struct idr *idr, int id) 349 { 350 spin_lock_bh(&cgroup_idr_lock); 351 idr_remove(idr, id); 352 spin_unlock_bh(&cgroup_idr_lock); 353 } 354 cgroup_has_tasks(struct cgroup * cgrp)355 static bool cgroup_has_tasks(struct cgroup *cgrp) 356 { 357 return cgrp->nr_populated_csets; 358 } 359 cgroup_is_threaded(struct cgroup * cgrp)360 static bool cgroup_is_threaded(struct cgroup *cgrp) 361 { 362 return cgrp->dom_cgrp != cgrp; 363 } 364 365 /* can @cgrp host both domain and threaded children? */ cgroup_is_mixable(struct cgroup * cgrp)366 static bool cgroup_is_mixable(struct cgroup *cgrp) 367 { 368 /* 369 * Root isn't under domain level resource control exempting it from 370 * the no-internal-process constraint, so it can serve as a thread 371 * root and a parent of resource domains at the same time. 372 */ 373 return !cgroup_parent(cgrp); 374 } 375 376 /* can @cgrp become a thread root? Should always be true for a thread root */ cgroup_can_be_thread_root(struct cgroup * cgrp)377 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 378 { 379 /* mixables don't care */ 380 if (cgroup_is_mixable(cgrp)) 381 return true; 382 383 /* domain roots can't be nested under threaded */ 384 if (cgroup_is_threaded(cgrp)) 385 return false; 386 387 /* can only have either domain or threaded children */ 388 if (cgrp->nr_populated_domain_children) 389 return false; 390 391 /* and no domain controllers can be enabled */ 392 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 393 return false; 394 395 return true; 396 } 397 398 /* is @cgrp root of a threaded subtree? */ cgroup_is_thread_root(struct cgroup * cgrp)399 static bool cgroup_is_thread_root(struct cgroup *cgrp) 400 { 401 /* thread root should be a domain */ 402 if (cgroup_is_threaded(cgrp)) 403 return false; 404 405 /* a domain w/ threaded children is a thread root */ 406 if (cgrp->nr_threaded_children) 407 return true; 408 409 /* 410 * A domain which has tasks and explicit threaded controllers 411 * enabled is a thread root. 412 */ 413 if (cgroup_has_tasks(cgrp) && 414 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 415 return true; 416 417 return false; 418 } 419 420 /* a domain which isn't connected to the root w/o brekage can't be used */ cgroup_is_valid_domain(struct cgroup * cgrp)421 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 422 { 423 /* the cgroup itself can be a thread root */ 424 if (cgroup_is_threaded(cgrp)) 425 return false; 426 427 /* but the ancestors can't be unless mixable */ 428 while ((cgrp = cgroup_parent(cgrp))) { 429 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 430 return false; 431 if (cgroup_is_threaded(cgrp)) 432 return false; 433 } 434 435 return true; 436 } 437 438 /* subsystems visibly enabled on a cgroup */ cgroup_control(struct cgroup * cgrp)439 static u16 cgroup_control(struct cgroup *cgrp) 440 { 441 struct cgroup *parent = cgroup_parent(cgrp); 442 u16 root_ss_mask = cgrp->root->subsys_mask; 443 444 if (parent) { 445 u16 ss_mask = parent->subtree_control; 446 447 /* threaded cgroups can only have threaded controllers */ 448 if (cgroup_is_threaded(cgrp)) 449 ss_mask &= cgrp_dfl_threaded_ss_mask; 450 return ss_mask; 451 } 452 453 if (cgroup_on_dfl(cgrp)) 454 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 455 cgrp_dfl_implicit_ss_mask); 456 return root_ss_mask; 457 } 458 459 /* subsystems enabled on a cgroup */ cgroup_ss_mask(struct cgroup * cgrp)460 static u16 cgroup_ss_mask(struct cgroup *cgrp) 461 { 462 struct cgroup *parent = cgroup_parent(cgrp); 463 464 if (parent) { 465 u16 ss_mask = parent->subtree_ss_mask; 466 467 /* threaded cgroups can only have threaded controllers */ 468 if (cgroup_is_threaded(cgrp)) 469 ss_mask &= cgrp_dfl_threaded_ss_mask; 470 return ss_mask; 471 } 472 473 return cgrp->root->subsys_mask; 474 } 475 476 /** 477 * cgroup_css - obtain a cgroup's css for the specified subsystem 478 * @cgrp: the cgroup of interest 479 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 480 * 481 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 482 * function must be called either under cgroup_mutex or rcu_read_lock() and 483 * the caller is responsible for pinning the returned css if it wants to 484 * keep accessing it outside the said locks. This function may return 485 * %NULL if @cgrp doesn't have @subsys_id enabled. 486 */ cgroup_css(struct cgroup * cgrp,struct cgroup_subsys * ss)487 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 488 struct cgroup_subsys *ss) 489 { 490 if (CGROUP_HAS_SUBSYS_CONFIG && ss) 491 return rcu_dereference_check(cgrp->subsys[ss->id], 492 lockdep_is_held(&cgroup_mutex)); 493 else 494 return &cgrp->self; 495 } 496 497 /** 498 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss 499 * @cgrp: the cgroup of interest 500 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 501 * 502 * Similar to cgroup_css() but returns the effective css, which is defined 503 * as the matching css of the nearest ancestor including self which has @ss 504 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 505 * function is guaranteed to return non-NULL css. 506 */ cgroup_e_css_by_mask(struct cgroup * cgrp,struct cgroup_subsys * ss)507 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp, 508 struct cgroup_subsys *ss) 509 { 510 lockdep_assert_held(&cgroup_mutex); 511 512 if (!ss) 513 return &cgrp->self; 514 515 /* 516 * This function is used while updating css associations and thus 517 * can't test the csses directly. Test ss_mask. 518 */ 519 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 520 cgrp = cgroup_parent(cgrp); 521 if (!cgrp) 522 return NULL; 523 } 524 525 return cgroup_css(cgrp, ss); 526 } 527 528 /** 529 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 530 * @cgrp: the cgroup of interest 531 * @ss: the subsystem of interest 532 * 533 * Find and get the effective css of @cgrp for @ss. The effective css is 534 * defined as the matching css of the nearest ancestor including self which 535 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 536 * the root css is returned, so this function always returns a valid css. 537 * 538 * The returned css is not guaranteed to be online, and therefore it is the 539 * callers responsibility to try get a reference for it. 540 */ cgroup_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)541 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 542 struct cgroup_subsys *ss) 543 { 544 struct cgroup_subsys_state *css; 545 546 if (!CGROUP_HAS_SUBSYS_CONFIG) 547 return NULL; 548 549 do { 550 css = cgroup_css(cgrp, ss); 551 552 if (css) 553 return css; 554 cgrp = cgroup_parent(cgrp); 555 } while (cgrp); 556 557 return init_css_set.subsys[ss->id]; 558 } 559 560 /** 561 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 562 * @cgrp: the cgroup of interest 563 * @ss: the subsystem of interest 564 * 565 * Find and get the effective css of @cgrp for @ss. The effective css is 566 * defined as the matching css of the nearest ancestor including self which 567 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 568 * the root css is returned, so this function always returns a valid css. 569 * The returned css must be put using css_put(). 570 */ cgroup_get_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)571 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 572 struct cgroup_subsys *ss) 573 { 574 struct cgroup_subsys_state *css; 575 576 if (!CGROUP_HAS_SUBSYS_CONFIG) 577 return NULL; 578 579 rcu_read_lock(); 580 581 do { 582 css = cgroup_css(cgrp, ss); 583 584 if (css && css_tryget_online(css)) 585 goto out_unlock; 586 cgrp = cgroup_parent(cgrp); 587 } while (cgrp); 588 589 css = init_css_set.subsys[ss->id]; 590 css_get(css); 591 out_unlock: 592 rcu_read_unlock(); 593 return css; 594 } 595 EXPORT_SYMBOL_GPL(cgroup_get_e_css); 596 cgroup_get_live(struct cgroup * cgrp)597 static void cgroup_get_live(struct cgroup *cgrp) 598 { 599 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 600 cgroup_get(cgrp); 601 } 602 603 /** 604 * __cgroup_task_count - count the number of tasks in a cgroup. The caller 605 * is responsible for taking the css_set_lock. 606 * @cgrp: the cgroup in question 607 */ __cgroup_task_count(const struct cgroup * cgrp)608 int __cgroup_task_count(const struct cgroup *cgrp) 609 { 610 int count = 0; 611 struct cgrp_cset_link *link; 612 613 lockdep_assert_held(&css_set_lock); 614 615 list_for_each_entry(link, &cgrp->cset_links, cset_link) 616 count += link->cset->nr_tasks; 617 618 return count; 619 } 620 621 /** 622 * cgroup_task_count - count the number of tasks in a cgroup. 623 * @cgrp: the cgroup in question 624 */ cgroup_task_count(const struct cgroup * cgrp)625 int cgroup_task_count(const struct cgroup *cgrp) 626 { 627 int count; 628 629 spin_lock_irq(&css_set_lock); 630 count = __cgroup_task_count(cgrp); 631 spin_unlock_irq(&css_set_lock); 632 633 return count; 634 } 635 of_css(struct kernfs_open_file * of)636 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 637 { 638 struct cgroup *cgrp = of->kn->parent->priv; 639 struct cftype *cft = of_cft(of); 640 641 /* 642 * This is open and unprotected implementation of cgroup_css(). 643 * seq_css() is only called from a kernfs file operation which has 644 * an active reference on the file. Because all the subsystem 645 * files are drained before a css is disassociated with a cgroup, 646 * the matching css from the cgroup's subsys table is guaranteed to 647 * be and stay valid until the enclosing operation is complete. 648 */ 649 if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss) 650 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 651 else 652 return &cgrp->self; 653 } 654 EXPORT_SYMBOL_GPL(of_css); 655 656 /** 657 * for_each_css - iterate all css's of a cgroup 658 * @css: the iteration cursor 659 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 660 * @cgrp: the target cgroup to iterate css's of 661 * 662 * Should be called under cgroup_mutex. 663 */ 664 #define for_each_css(css, ssid, cgrp) \ 665 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 666 if (!((css) = rcu_dereference_check( \ 667 (cgrp)->subsys[(ssid)], \ 668 lockdep_is_held(&cgroup_mutex)))) { } \ 669 else 670 671 /** 672 * do_each_subsys_mask - filter for_each_subsys with a bitmask 673 * @ss: the iteration cursor 674 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 675 * @ss_mask: the bitmask 676 * 677 * The block will only run for cases where the ssid-th bit (1 << ssid) of 678 * @ss_mask is set. 679 */ 680 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 681 unsigned long __ss_mask = (ss_mask); \ 682 if (!CGROUP_HAS_SUBSYS_CONFIG) { \ 683 (ssid) = 0; \ 684 break; \ 685 } \ 686 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 687 (ss) = cgroup_subsys[ssid]; \ 688 { 689 690 #define while_each_subsys_mask() \ 691 } \ 692 } \ 693 } while (false) 694 695 /* iterate over child cgrps, lock should be held throughout iteration */ 696 #define cgroup_for_each_live_child(child, cgrp) \ 697 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 698 if (({ lockdep_assert_held(&cgroup_mutex); \ 699 cgroup_is_dead(child); })) \ 700 ; \ 701 else 702 703 /* walk live descendants in pre order */ 704 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 705 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 706 if (({ lockdep_assert_held(&cgroup_mutex); \ 707 (dsct) = (d_css)->cgroup; \ 708 cgroup_is_dead(dsct); })) \ 709 ; \ 710 else 711 712 /* walk live descendants in postorder */ 713 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 714 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 715 if (({ lockdep_assert_held(&cgroup_mutex); \ 716 (dsct) = (d_css)->cgroup; \ 717 cgroup_is_dead(dsct); })) \ 718 ; \ 719 else 720 721 /* 722 * The default css_set - used by init and its children prior to any 723 * hierarchies being mounted. It contains a pointer to the root state 724 * for each subsystem. Also used to anchor the list of css_sets. Not 725 * reference-counted, to improve performance when child cgroups 726 * haven't been created. 727 */ 728 struct css_set init_css_set = { 729 .refcount = REFCOUNT_INIT(1), 730 .dom_cset = &init_css_set, 731 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 732 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 733 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks), 734 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 735 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 736 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 737 .mg_src_preload_node = LIST_HEAD_INIT(init_css_set.mg_src_preload_node), 738 .mg_dst_preload_node = LIST_HEAD_INIT(init_css_set.mg_dst_preload_node), 739 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 740 741 /* 742 * The following field is re-initialized when this cset gets linked 743 * in cgroup_init(). However, let's initialize the field 744 * statically too so that the default cgroup can be accessed safely 745 * early during boot. 746 */ 747 .dfl_cgrp = &cgrp_dfl_root.cgrp, 748 }; 749 750 static int css_set_count = 1; /* 1 for init_css_set */ 751 css_set_threaded(struct css_set * cset)752 static bool css_set_threaded(struct css_set *cset) 753 { 754 return cset->dom_cset != cset; 755 } 756 757 /** 758 * css_set_populated - does a css_set contain any tasks? 759 * @cset: target css_set 760 * 761 * css_set_populated() should be the same as !!cset->nr_tasks at steady 762 * state. However, css_set_populated() can be called while a task is being 763 * added to or removed from the linked list before the nr_tasks is 764 * properly updated. Hence, we can't just look at ->nr_tasks here. 765 */ css_set_populated(struct css_set * cset)766 static bool css_set_populated(struct css_set *cset) 767 { 768 lockdep_assert_held(&css_set_lock); 769 770 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 771 } 772 773 /** 774 * cgroup_update_populated - update the populated count of a cgroup 775 * @cgrp: the target cgroup 776 * @populated: inc or dec populated count 777 * 778 * One of the css_sets associated with @cgrp is either getting its first 779 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 780 * count is propagated towards root so that a given cgroup's 781 * nr_populated_children is zero iff none of its descendants contain any 782 * tasks. 783 * 784 * @cgrp's interface file "cgroup.populated" is zero if both 785 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 786 * 1 otherwise. When the sum changes from or to zero, userland is notified 787 * that the content of the interface file has changed. This can be used to 788 * detect when @cgrp and its descendants become populated or empty. 789 */ cgroup_update_populated(struct cgroup * cgrp,bool populated)790 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 791 { 792 struct cgroup *child = NULL; 793 int adj = populated ? 1 : -1; 794 795 lockdep_assert_held(&css_set_lock); 796 797 do { 798 bool was_populated = cgroup_is_populated(cgrp); 799 800 if (!child) { 801 cgrp->nr_populated_csets += adj; 802 } else { 803 if (cgroup_is_threaded(child)) 804 cgrp->nr_populated_threaded_children += adj; 805 else 806 cgrp->nr_populated_domain_children += adj; 807 } 808 809 if (was_populated == cgroup_is_populated(cgrp)) 810 break; 811 812 cgroup1_check_for_release(cgrp); 813 TRACE_CGROUP_PATH(notify_populated, cgrp, 814 cgroup_is_populated(cgrp)); 815 cgroup_file_notify(&cgrp->events_file); 816 817 child = cgrp; 818 cgrp = cgroup_parent(cgrp); 819 } while (cgrp); 820 } 821 822 /** 823 * css_set_update_populated - update populated state of a css_set 824 * @cset: target css_set 825 * @populated: whether @cset is populated or depopulated 826 * 827 * @cset is either getting the first task or losing the last. Update the 828 * populated counters of all associated cgroups accordingly. 829 */ css_set_update_populated(struct css_set * cset,bool populated)830 static void css_set_update_populated(struct css_set *cset, bool populated) 831 { 832 struct cgrp_cset_link *link; 833 834 lockdep_assert_held(&css_set_lock); 835 836 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 837 cgroup_update_populated(link->cgrp, populated); 838 } 839 840 /* 841 * @task is leaving, advance task iterators which are pointing to it so 842 * that they can resume at the next position. Advancing an iterator might 843 * remove it from the list, use safe walk. See css_task_iter_skip() for 844 * details. 845 */ css_set_skip_task_iters(struct css_set * cset,struct task_struct * task)846 static void css_set_skip_task_iters(struct css_set *cset, 847 struct task_struct *task) 848 { 849 struct css_task_iter *it, *pos; 850 851 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node) 852 css_task_iter_skip(it, task); 853 } 854 855 /** 856 * css_set_move_task - move a task from one css_set to another 857 * @task: task being moved 858 * @from_cset: css_set @task currently belongs to (may be NULL) 859 * @to_cset: new css_set @task is being moved to (may be NULL) 860 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 861 * 862 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 863 * css_set, @from_cset can be NULL. If @task is being disassociated 864 * instead of moved, @to_cset can be NULL. 865 * 866 * This function automatically handles populated counter updates and 867 * css_task_iter adjustments but the caller is responsible for managing 868 * @from_cset and @to_cset's reference counts. 869 */ css_set_move_task(struct task_struct * task,struct css_set * from_cset,struct css_set * to_cset,bool use_mg_tasks)870 static void css_set_move_task(struct task_struct *task, 871 struct css_set *from_cset, struct css_set *to_cset, 872 bool use_mg_tasks) 873 { 874 lockdep_assert_held(&css_set_lock); 875 876 if (to_cset && !css_set_populated(to_cset)) 877 css_set_update_populated(to_cset, true); 878 879 if (from_cset) { 880 WARN_ON_ONCE(list_empty(&task->cg_list)); 881 882 css_set_skip_task_iters(from_cset, task); 883 list_del_init(&task->cg_list); 884 if (!css_set_populated(from_cset)) 885 css_set_update_populated(from_cset, false); 886 } else { 887 WARN_ON_ONCE(!list_empty(&task->cg_list)); 888 } 889 890 if (to_cset) { 891 /* 892 * We are synchronized through cgroup_threadgroup_rwsem 893 * against PF_EXITING setting such that we can't race 894 * against cgroup_exit()/cgroup_free() dropping the css_set. 895 */ 896 WARN_ON_ONCE(task->flags & PF_EXITING); 897 898 cgroup_move_task(task, to_cset); 899 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 900 &to_cset->tasks); 901 } 902 } 903 904 /* 905 * hash table for cgroup groups. This improves the performance to find 906 * an existing css_set. This hash doesn't (currently) take into 907 * account cgroups in empty hierarchies. 908 */ 909 #define CSS_SET_HASH_BITS 7 910 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 911 css_set_hash(struct cgroup_subsys_state ** css)912 static unsigned long css_set_hash(struct cgroup_subsys_state **css) 913 { 914 unsigned long key = 0UL; 915 struct cgroup_subsys *ss; 916 int i; 917 918 for_each_subsys(ss, i) 919 key += (unsigned long)css[i]; 920 key = (key >> 16) ^ key; 921 922 return key; 923 } 924 put_css_set_locked(struct css_set * cset)925 void put_css_set_locked(struct css_set *cset) 926 { 927 struct cgrp_cset_link *link, *tmp_link; 928 struct cgroup_subsys *ss; 929 int ssid; 930 931 lockdep_assert_held(&css_set_lock); 932 933 if (!refcount_dec_and_test(&cset->refcount)) 934 return; 935 936 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 937 938 /* This css_set is dead. Unlink it and release cgroup and css refs */ 939 for_each_subsys(ss, ssid) { 940 list_del(&cset->e_cset_node[ssid]); 941 css_put(cset->subsys[ssid]); 942 } 943 hash_del(&cset->hlist); 944 css_set_count--; 945 946 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 947 list_del(&link->cset_link); 948 list_del(&link->cgrp_link); 949 if (cgroup_parent(link->cgrp)) 950 cgroup_put(link->cgrp); 951 kfree(link); 952 } 953 954 if (css_set_threaded(cset)) { 955 list_del(&cset->threaded_csets_node); 956 put_css_set_locked(cset->dom_cset); 957 } 958 959 kfree_rcu(cset, rcu_head); 960 } 961 962 /** 963 * compare_css_sets - helper function for find_existing_css_set(). 964 * @cset: candidate css_set being tested 965 * @old_cset: existing css_set for a task 966 * @new_cgrp: cgroup that's being entered by the task 967 * @template: desired set of css pointers in css_set (pre-calculated) 968 * 969 * Returns true if "cset" matches "old_cset" except for the hierarchy 970 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 971 */ compare_css_sets(struct css_set * cset,struct css_set * old_cset,struct cgroup * new_cgrp,struct cgroup_subsys_state * template[])972 static bool compare_css_sets(struct css_set *cset, 973 struct css_set *old_cset, 974 struct cgroup *new_cgrp, 975 struct cgroup_subsys_state *template[]) 976 { 977 struct cgroup *new_dfl_cgrp; 978 struct list_head *l1, *l2; 979 980 /* 981 * On the default hierarchy, there can be csets which are 982 * associated with the same set of cgroups but different csses. 983 * Let's first ensure that csses match. 984 */ 985 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 986 return false; 987 988 989 /* @cset's domain should match the default cgroup's */ 990 if (cgroup_on_dfl(new_cgrp)) 991 new_dfl_cgrp = new_cgrp; 992 else 993 new_dfl_cgrp = old_cset->dfl_cgrp; 994 995 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 996 return false; 997 998 /* 999 * Compare cgroup pointers in order to distinguish between 1000 * different cgroups in hierarchies. As different cgroups may 1001 * share the same effective css, this comparison is always 1002 * necessary. 1003 */ 1004 l1 = &cset->cgrp_links; 1005 l2 = &old_cset->cgrp_links; 1006 while (1) { 1007 struct cgrp_cset_link *link1, *link2; 1008 struct cgroup *cgrp1, *cgrp2; 1009 1010 l1 = l1->next; 1011 l2 = l2->next; 1012 /* See if we reached the end - both lists are equal length. */ 1013 if (l1 == &cset->cgrp_links) { 1014 BUG_ON(l2 != &old_cset->cgrp_links); 1015 break; 1016 } else { 1017 BUG_ON(l2 == &old_cset->cgrp_links); 1018 } 1019 /* Locate the cgroups associated with these links. */ 1020 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 1021 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 1022 cgrp1 = link1->cgrp; 1023 cgrp2 = link2->cgrp; 1024 /* Hierarchies should be linked in the same order. */ 1025 BUG_ON(cgrp1->root != cgrp2->root); 1026 1027 /* 1028 * If this hierarchy is the hierarchy of the cgroup 1029 * that's changing, then we need to check that this 1030 * css_set points to the new cgroup; if it's any other 1031 * hierarchy, then this css_set should point to the 1032 * same cgroup as the old css_set. 1033 */ 1034 if (cgrp1->root == new_cgrp->root) { 1035 if (cgrp1 != new_cgrp) 1036 return false; 1037 } else { 1038 if (cgrp1 != cgrp2) 1039 return false; 1040 } 1041 } 1042 return true; 1043 } 1044 1045 /** 1046 * find_existing_css_set - init css array and find the matching css_set 1047 * @old_cset: the css_set that we're using before the cgroup transition 1048 * @cgrp: the cgroup that we're moving into 1049 * @template: out param for the new set of csses, should be clear on entry 1050 */ find_existing_css_set(struct css_set * old_cset,struct cgroup * cgrp,struct cgroup_subsys_state ** template)1051 static struct css_set *find_existing_css_set(struct css_set *old_cset, 1052 struct cgroup *cgrp, 1053 struct cgroup_subsys_state **template) 1054 { 1055 struct cgroup_root *root = cgrp->root; 1056 struct cgroup_subsys *ss; 1057 struct css_set *cset; 1058 unsigned long key; 1059 int i; 1060 1061 /* 1062 * Build the set of subsystem state objects that we want to see in the 1063 * new css_set. While subsystems can change globally, the entries here 1064 * won't change, so no need for locking. 1065 */ 1066 for_each_subsys(ss, i) { 1067 if (root->subsys_mask & (1UL << i)) { 1068 /* 1069 * @ss is in this hierarchy, so we want the 1070 * effective css from @cgrp. 1071 */ 1072 template[i] = cgroup_e_css_by_mask(cgrp, ss); 1073 } else { 1074 /* 1075 * @ss is not in this hierarchy, so we don't want 1076 * to change the css. 1077 */ 1078 template[i] = old_cset->subsys[i]; 1079 } 1080 } 1081 1082 key = css_set_hash(template); 1083 hash_for_each_possible(css_set_table, cset, hlist, key) { 1084 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1085 continue; 1086 1087 /* This css_set matches what we need */ 1088 return cset; 1089 } 1090 1091 /* No existing cgroup group matched */ 1092 return NULL; 1093 } 1094 free_cgrp_cset_links(struct list_head * links_to_free)1095 static void free_cgrp_cset_links(struct list_head *links_to_free) 1096 { 1097 struct cgrp_cset_link *link, *tmp_link; 1098 1099 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1100 list_del(&link->cset_link); 1101 kfree(link); 1102 } 1103 } 1104 1105 /** 1106 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1107 * @count: the number of links to allocate 1108 * @tmp_links: list_head the allocated links are put on 1109 * 1110 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1111 * through ->cset_link. Returns 0 on success or -errno. 1112 */ allocate_cgrp_cset_links(int count,struct list_head * tmp_links)1113 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1114 { 1115 struct cgrp_cset_link *link; 1116 int i; 1117 1118 INIT_LIST_HEAD(tmp_links); 1119 1120 for (i = 0; i < count; i++) { 1121 link = kzalloc(sizeof(*link), GFP_KERNEL); 1122 if (!link) { 1123 free_cgrp_cset_links(tmp_links); 1124 return -ENOMEM; 1125 } 1126 list_add(&link->cset_link, tmp_links); 1127 } 1128 return 0; 1129 } 1130 1131 /** 1132 * link_css_set - a helper function to link a css_set to a cgroup 1133 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1134 * @cset: the css_set to be linked 1135 * @cgrp: the destination cgroup 1136 */ link_css_set(struct list_head * tmp_links,struct css_set * cset,struct cgroup * cgrp)1137 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1138 struct cgroup *cgrp) 1139 { 1140 struct cgrp_cset_link *link; 1141 1142 BUG_ON(list_empty(tmp_links)); 1143 1144 if (cgroup_on_dfl(cgrp)) 1145 cset->dfl_cgrp = cgrp; 1146 1147 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1148 link->cset = cset; 1149 link->cgrp = cgrp; 1150 1151 /* 1152 * Always add links to the tail of the lists so that the lists are 1153 * in chronological order. 1154 */ 1155 list_move_tail(&link->cset_link, &cgrp->cset_links); 1156 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1157 1158 if (cgroup_parent(cgrp)) 1159 cgroup_get_live(cgrp); 1160 } 1161 1162 /** 1163 * find_css_set - return a new css_set with one cgroup updated 1164 * @old_cset: the baseline css_set 1165 * @cgrp: the cgroup to be updated 1166 * 1167 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1168 * substituted into the appropriate hierarchy. 1169 */ find_css_set(struct css_set * old_cset,struct cgroup * cgrp)1170 static struct css_set *find_css_set(struct css_set *old_cset, 1171 struct cgroup *cgrp) 1172 { 1173 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1174 struct css_set *cset; 1175 struct list_head tmp_links; 1176 struct cgrp_cset_link *link; 1177 struct cgroup_subsys *ss; 1178 unsigned long key; 1179 int ssid; 1180 1181 lockdep_assert_held(&cgroup_mutex); 1182 1183 /* First see if we already have a cgroup group that matches 1184 * the desired set */ 1185 spin_lock_irq(&css_set_lock); 1186 cset = find_existing_css_set(old_cset, cgrp, template); 1187 if (cset) 1188 get_css_set(cset); 1189 spin_unlock_irq(&css_set_lock); 1190 1191 if (cset) 1192 return cset; 1193 1194 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1195 if (!cset) 1196 return NULL; 1197 1198 /* Allocate all the cgrp_cset_link objects that we'll need */ 1199 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1200 kfree(cset); 1201 return NULL; 1202 } 1203 1204 refcount_set(&cset->refcount, 1); 1205 cset->dom_cset = cset; 1206 INIT_LIST_HEAD(&cset->tasks); 1207 INIT_LIST_HEAD(&cset->mg_tasks); 1208 INIT_LIST_HEAD(&cset->dying_tasks); 1209 INIT_LIST_HEAD(&cset->task_iters); 1210 INIT_LIST_HEAD(&cset->threaded_csets); 1211 INIT_HLIST_NODE(&cset->hlist); 1212 INIT_LIST_HEAD(&cset->cgrp_links); 1213 INIT_LIST_HEAD(&cset->mg_src_preload_node); 1214 INIT_LIST_HEAD(&cset->mg_dst_preload_node); 1215 INIT_LIST_HEAD(&cset->mg_node); 1216 1217 /* Copy the set of subsystem state objects generated in 1218 * find_existing_css_set() */ 1219 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1220 1221 spin_lock_irq(&css_set_lock); 1222 /* Add reference counts and links from the new css_set. */ 1223 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1224 struct cgroup *c = link->cgrp; 1225 1226 if (c->root == cgrp->root) 1227 c = cgrp; 1228 link_css_set(&tmp_links, cset, c); 1229 } 1230 1231 BUG_ON(!list_empty(&tmp_links)); 1232 1233 css_set_count++; 1234 1235 /* Add @cset to the hash table */ 1236 key = css_set_hash(cset->subsys); 1237 hash_add(css_set_table, &cset->hlist, key); 1238 1239 for_each_subsys(ss, ssid) { 1240 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1241 1242 list_add_tail(&cset->e_cset_node[ssid], 1243 &css->cgroup->e_csets[ssid]); 1244 css_get(css); 1245 } 1246 1247 spin_unlock_irq(&css_set_lock); 1248 1249 /* 1250 * If @cset should be threaded, look up the matching dom_cset and 1251 * link them up. We first fully initialize @cset then look for the 1252 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1253 * to stay empty until we return. 1254 */ 1255 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1256 struct css_set *dcset; 1257 1258 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1259 if (!dcset) { 1260 put_css_set(cset); 1261 return NULL; 1262 } 1263 1264 spin_lock_irq(&css_set_lock); 1265 cset->dom_cset = dcset; 1266 list_add_tail(&cset->threaded_csets_node, 1267 &dcset->threaded_csets); 1268 spin_unlock_irq(&css_set_lock); 1269 } 1270 1271 return cset; 1272 } 1273 cgroup_root_from_kf(struct kernfs_root * kf_root)1274 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1275 { 1276 struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv; 1277 1278 return root_cgrp->root; 1279 } 1280 cgroup_favor_dynmods(struct cgroup_root * root,bool favor)1281 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor) 1282 { 1283 bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS; 1284 1285 /* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */ 1286 if (favor && !favoring) { 1287 rcu_sync_enter(&cgroup_threadgroup_rwsem.rss); 1288 root->flags |= CGRP_ROOT_FAVOR_DYNMODS; 1289 } else if (!favor && favoring) { 1290 rcu_sync_exit(&cgroup_threadgroup_rwsem.rss); 1291 root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS; 1292 } 1293 } 1294 cgroup_init_root_id(struct cgroup_root * root)1295 static int cgroup_init_root_id(struct cgroup_root *root) 1296 { 1297 int id; 1298 1299 lockdep_assert_held(&cgroup_mutex); 1300 1301 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1302 if (id < 0) 1303 return id; 1304 1305 root->hierarchy_id = id; 1306 return 0; 1307 } 1308 cgroup_exit_root_id(struct cgroup_root * root)1309 static void cgroup_exit_root_id(struct cgroup_root *root) 1310 { 1311 lockdep_assert_held(&cgroup_mutex); 1312 1313 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1314 } 1315 cgroup_free_root(struct cgroup_root * root)1316 void cgroup_free_root(struct cgroup_root *root) 1317 { 1318 kfree_rcu(root, rcu); 1319 } 1320 cgroup_destroy_root(struct cgroup_root * root)1321 static void cgroup_destroy_root(struct cgroup_root *root) 1322 { 1323 struct cgroup *cgrp = &root->cgrp; 1324 struct cgrp_cset_link *link, *tmp_link; 1325 1326 trace_cgroup_destroy_root(root); 1327 1328 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1329 1330 BUG_ON(atomic_read(&root->nr_cgrps)); 1331 BUG_ON(!list_empty(&cgrp->self.children)); 1332 1333 /* Rebind all subsystems back to the default hierarchy */ 1334 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1335 1336 /* 1337 * Release all the links from cset_links to this hierarchy's 1338 * root cgroup 1339 */ 1340 spin_lock_irq(&css_set_lock); 1341 1342 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1343 list_del(&link->cset_link); 1344 list_del(&link->cgrp_link); 1345 kfree(link); 1346 } 1347 1348 spin_unlock_irq(&css_set_lock); 1349 1350 WARN_ON_ONCE(list_empty(&root->root_list)); 1351 list_del_rcu(&root->root_list); 1352 cgroup_root_count--; 1353 1354 if (!have_favordynmods) 1355 cgroup_favor_dynmods(root, false); 1356 1357 cgroup_exit_root_id(root); 1358 1359 cgroup_unlock(); 1360 1361 cgroup_rstat_exit(cgrp); 1362 kernfs_destroy_root(root->kf_root); 1363 cgroup_free_root(root); 1364 } 1365 1366 /* 1367 * Returned cgroup is without refcount but it's valid as long as cset pins it. 1368 */ __cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1369 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset, 1370 struct cgroup_root *root) 1371 { 1372 struct cgroup *res_cgroup = NULL; 1373 1374 if (cset == &init_css_set) { 1375 res_cgroup = &root->cgrp; 1376 } else if (root == &cgrp_dfl_root) { 1377 res_cgroup = cset->dfl_cgrp; 1378 } else { 1379 struct cgrp_cset_link *link; 1380 lockdep_assert_held(&css_set_lock); 1381 1382 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1383 struct cgroup *c = link->cgrp; 1384 1385 if (c->root == root) { 1386 res_cgroup = c; 1387 break; 1388 } 1389 } 1390 } 1391 1392 /* 1393 * If cgroup_mutex is not held, the cgrp_cset_link will be freed 1394 * before we remove the cgroup root from the root_list. Consequently, 1395 * when accessing a cgroup root, the cset_link may have already been 1396 * freed, resulting in a NULL res_cgroup. However, by holding the 1397 * cgroup_mutex, we ensure that res_cgroup can't be NULL. 1398 * If we don't hold cgroup_mutex in the caller, we must do the NULL 1399 * check. 1400 */ 1401 return res_cgroup; 1402 } 1403 1404 /* 1405 * look up cgroup associated with current task's cgroup namespace on the 1406 * specified hierarchy 1407 */ 1408 static struct cgroup * current_cgns_cgroup_from_root(struct cgroup_root * root)1409 current_cgns_cgroup_from_root(struct cgroup_root *root) 1410 { 1411 struct cgroup *res = NULL; 1412 struct css_set *cset; 1413 1414 lockdep_assert_held(&css_set_lock); 1415 1416 rcu_read_lock(); 1417 1418 cset = current->nsproxy->cgroup_ns->root_cset; 1419 res = __cset_cgroup_from_root(cset, root); 1420 1421 rcu_read_unlock(); 1422 1423 /* 1424 * The namespace_sem is held by current, so the root cgroup can't 1425 * be umounted. Therefore, we can ensure that the res is non-NULL. 1426 */ 1427 WARN_ON_ONCE(!res); 1428 return res; 1429 } 1430 1431 /* 1432 * Look up cgroup associated with current task's cgroup namespace on the default 1433 * hierarchy. 1434 * 1435 * Unlike current_cgns_cgroup_from_root(), this doesn't need locks: 1436 * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu 1437 * pointers. 1438 * - css_set_lock is not needed because we just read cset->dfl_cgrp. 1439 * - As a bonus returned cgrp is pinned with the current because it cannot 1440 * switch cgroup_ns asynchronously. 1441 */ current_cgns_cgroup_dfl(void)1442 static struct cgroup *current_cgns_cgroup_dfl(void) 1443 { 1444 struct css_set *cset; 1445 1446 if (current->nsproxy) { 1447 cset = current->nsproxy->cgroup_ns->root_cset; 1448 return __cset_cgroup_from_root(cset, &cgrp_dfl_root); 1449 } else { 1450 /* 1451 * NOTE: This function may be called from bpf_cgroup_from_id() 1452 * on a task which has already passed exit_task_namespaces() and 1453 * nsproxy == NULL. Fall back to cgrp_dfl_root which will make all 1454 * cgroups visible for lookups. 1455 */ 1456 return &cgrp_dfl_root.cgrp; 1457 } 1458 } 1459 1460 /* look up cgroup associated with given css_set on the specified hierarchy */ cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1461 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1462 struct cgroup_root *root) 1463 { 1464 lockdep_assert_held(&css_set_lock); 1465 1466 return __cset_cgroup_from_root(cset, root); 1467 } 1468 1469 /* 1470 * Return the cgroup for "task" from the given hierarchy. Must be 1471 * called with css_set_lock held to prevent task's groups from being modified. 1472 * Must be called with either cgroup_mutex or rcu read lock to prevent the 1473 * cgroup root from being destroyed. 1474 */ task_cgroup_from_root(struct task_struct * task,struct cgroup_root * root)1475 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1476 struct cgroup_root *root) 1477 { 1478 /* 1479 * No need to lock the task - since we hold css_set_lock the 1480 * task can't change groups. 1481 */ 1482 return cset_cgroup_from_root(task_css_set(task), root); 1483 } 1484 1485 /* 1486 * A task must hold cgroup_mutex to modify cgroups. 1487 * 1488 * Any task can increment and decrement the count field without lock. 1489 * So in general, code holding cgroup_mutex can't rely on the count 1490 * field not changing. However, if the count goes to zero, then only 1491 * cgroup_attach_task() can increment it again. Because a count of zero 1492 * means that no tasks are currently attached, therefore there is no 1493 * way a task attached to that cgroup can fork (the other way to 1494 * increment the count). So code holding cgroup_mutex can safely 1495 * assume that if the count is zero, it will stay zero. Similarly, if 1496 * a task holds cgroup_mutex on a cgroup with zero count, it 1497 * knows that the cgroup won't be removed, as cgroup_rmdir() 1498 * needs that mutex. 1499 * 1500 * A cgroup can only be deleted if both its 'count' of using tasks 1501 * is zero, and its list of 'children' cgroups is empty. Since all 1502 * tasks in the system use _some_ cgroup, and since there is always at 1503 * least one task in the system (init, pid == 1), therefore, root cgroup 1504 * always has either children cgroups and/or using tasks. So we don't 1505 * need a special hack to ensure that root cgroup cannot be deleted. 1506 * 1507 * P.S. One more locking exception. RCU is used to guard the 1508 * update of a tasks cgroup pointer by cgroup_attach_task() 1509 */ 1510 1511 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1512 cgroup_file_name(struct cgroup * cgrp,const struct cftype * cft,char * buf)1513 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1514 char *buf) 1515 { 1516 struct cgroup_subsys *ss = cft->ss; 1517 1518 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1519 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { 1520 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : ""; 1521 1522 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s", 1523 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1524 cft->name); 1525 } else { 1526 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1527 } 1528 return buf; 1529 } 1530 1531 /** 1532 * cgroup_file_mode - deduce file mode of a control file 1533 * @cft: the control file in question 1534 * 1535 * S_IRUGO for read, S_IWUSR for write. 1536 */ cgroup_file_mode(const struct cftype * cft)1537 static umode_t cgroup_file_mode(const struct cftype *cft) 1538 { 1539 umode_t mode = 0; 1540 1541 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1542 mode |= S_IRUGO; 1543 1544 if (cft->write_u64 || cft->write_s64 || cft->write) { 1545 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1546 mode |= S_IWUGO; 1547 else 1548 mode |= S_IWUSR; 1549 } 1550 1551 return mode; 1552 } 1553 1554 /** 1555 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1556 * @subtree_control: the new subtree_control mask to consider 1557 * @this_ss_mask: available subsystems 1558 * 1559 * On the default hierarchy, a subsystem may request other subsystems to be 1560 * enabled together through its ->depends_on mask. In such cases, more 1561 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1562 * 1563 * This function calculates which subsystems need to be enabled if 1564 * @subtree_control is to be applied while restricted to @this_ss_mask. 1565 */ cgroup_calc_subtree_ss_mask(u16 subtree_control,u16 this_ss_mask)1566 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1567 { 1568 u16 cur_ss_mask = subtree_control; 1569 struct cgroup_subsys *ss; 1570 int ssid; 1571 1572 lockdep_assert_held(&cgroup_mutex); 1573 1574 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1575 1576 while (true) { 1577 u16 new_ss_mask = cur_ss_mask; 1578 1579 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1580 new_ss_mask |= ss->depends_on; 1581 } while_each_subsys_mask(); 1582 1583 /* 1584 * Mask out subsystems which aren't available. This can 1585 * happen only if some depended-upon subsystems were bound 1586 * to non-default hierarchies. 1587 */ 1588 new_ss_mask &= this_ss_mask; 1589 1590 if (new_ss_mask == cur_ss_mask) 1591 break; 1592 cur_ss_mask = new_ss_mask; 1593 } 1594 1595 return cur_ss_mask; 1596 } 1597 1598 /** 1599 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1600 * @kn: the kernfs_node being serviced 1601 * 1602 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1603 * the method finishes if locking succeeded. Note that once this function 1604 * returns the cgroup returned by cgroup_kn_lock_live() may become 1605 * inaccessible any time. If the caller intends to continue to access the 1606 * cgroup, it should pin it before invoking this function. 1607 */ cgroup_kn_unlock(struct kernfs_node * kn)1608 void cgroup_kn_unlock(struct kernfs_node *kn) 1609 { 1610 struct cgroup *cgrp; 1611 1612 if (kernfs_type(kn) == KERNFS_DIR) 1613 cgrp = kn->priv; 1614 else 1615 cgrp = kn->parent->priv; 1616 1617 cgroup_unlock(); 1618 1619 kernfs_unbreak_active_protection(kn); 1620 cgroup_put(cgrp); 1621 } 1622 1623 /** 1624 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1625 * @kn: the kernfs_node being serviced 1626 * @drain_offline: perform offline draining on the cgroup 1627 * 1628 * This helper is to be used by a cgroup kernfs method currently servicing 1629 * @kn. It breaks the active protection, performs cgroup locking and 1630 * verifies that the associated cgroup is alive. Returns the cgroup if 1631 * alive; otherwise, %NULL. A successful return should be undone by a 1632 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1633 * cgroup is drained of offlining csses before return. 1634 * 1635 * Any cgroup kernfs method implementation which requires locking the 1636 * associated cgroup should use this helper. It avoids nesting cgroup 1637 * locking under kernfs active protection and allows all kernfs operations 1638 * including self-removal. 1639 */ cgroup_kn_lock_live(struct kernfs_node * kn,bool drain_offline)1640 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1641 { 1642 struct cgroup *cgrp; 1643 1644 if (kernfs_type(kn) == KERNFS_DIR) 1645 cgrp = kn->priv; 1646 else 1647 cgrp = kn->parent->priv; 1648 1649 /* 1650 * We're gonna grab cgroup_mutex which nests outside kernfs 1651 * active_ref. cgroup liveliness check alone provides enough 1652 * protection against removal. Ensure @cgrp stays accessible and 1653 * break the active_ref protection. 1654 */ 1655 if (!cgroup_tryget(cgrp)) 1656 return NULL; 1657 kernfs_break_active_protection(kn); 1658 1659 if (drain_offline) 1660 cgroup_lock_and_drain_offline(cgrp); 1661 else 1662 cgroup_lock(); 1663 1664 if (!cgroup_is_dead(cgrp)) 1665 return cgrp; 1666 1667 cgroup_kn_unlock(kn); 1668 return NULL; 1669 } 1670 cgroup_rm_file(struct cgroup * cgrp,const struct cftype * cft)1671 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1672 { 1673 char name[CGROUP_FILE_NAME_MAX]; 1674 1675 lockdep_assert_held(&cgroup_mutex); 1676 1677 if (cft->file_offset) { 1678 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1679 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1680 1681 spin_lock_irq(&cgroup_file_kn_lock); 1682 cfile->kn = NULL; 1683 spin_unlock_irq(&cgroup_file_kn_lock); 1684 1685 del_timer_sync(&cfile->notify_timer); 1686 } 1687 1688 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1689 } 1690 1691 /** 1692 * css_clear_dir - remove subsys files in a cgroup directory 1693 * @css: target css 1694 */ css_clear_dir(struct cgroup_subsys_state * css)1695 static void css_clear_dir(struct cgroup_subsys_state *css) 1696 { 1697 struct cgroup *cgrp = css->cgroup; 1698 struct cftype *cfts; 1699 1700 if (!(css->flags & CSS_VISIBLE)) 1701 return; 1702 1703 css->flags &= ~CSS_VISIBLE; 1704 1705 if (!css->ss) { 1706 if (cgroup_on_dfl(cgrp)) { 1707 cgroup_addrm_files(css, cgrp, 1708 cgroup_base_files, false); 1709 if (cgroup_psi_enabled()) 1710 cgroup_addrm_files(css, cgrp, 1711 cgroup_psi_files, false); 1712 } else { 1713 cgroup_addrm_files(css, cgrp, 1714 cgroup1_base_files, false); 1715 } 1716 } else { 1717 list_for_each_entry(cfts, &css->ss->cfts, node) 1718 cgroup_addrm_files(css, cgrp, cfts, false); 1719 } 1720 } 1721 1722 /** 1723 * css_populate_dir - create subsys files in a cgroup directory 1724 * @css: target css 1725 * 1726 * On failure, no file is added. 1727 */ css_populate_dir(struct cgroup_subsys_state * css)1728 static int css_populate_dir(struct cgroup_subsys_state *css) 1729 { 1730 struct cgroup *cgrp = css->cgroup; 1731 struct cftype *cfts, *failed_cfts; 1732 int ret; 1733 1734 if (css->flags & CSS_VISIBLE) 1735 return 0; 1736 1737 if (!css->ss) { 1738 if (cgroup_on_dfl(cgrp)) { 1739 ret = cgroup_addrm_files(css, cgrp, 1740 cgroup_base_files, true); 1741 if (ret < 0) 1742 return ret; 1743 1744 if (cgroup_psi_enabled()) { 1745 ret = cgroup_addrm_files(css, cgrp, 1746 cgroup_psi_files, true); 1747 if (ret < 0) { 1748 cgroup_addrm_files(css, cgrp, 1749 cgroup_base_files, false); 1750 return ret; 1751 } 1752 } 1753 } else { 1754 ret = cgroup_addrm_files(css, cgrp, 1755 cgroup1_base_files, true); 1756 if (ret < 0) 1757 return ret; 1758 } 1759 } else { 1760 list_for_each_entry(cfts, &css->ss->cfts, node) { 1761 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1762 if (ret < 0) { 1763 failed_cfts = cfts; 1764 goto err; 1765 } 1766 } 1767 } 1768 1769 css->flags |= CSS_VISIBLE; 1770 1771 return 0; 1772 err: 1773 list_for_each_entry(cfts, &css->ss->cfts, node) { 1774 if (cfts == failed_cfts) 1775 break; 1776 cgroup_addrm_files(css, cgrp, cfts, false); 1777 } 1778 return ret; 1779 } 1780 rebind_subsystems(struct cgroup_root * dst_root,u16 ss_mask)1781 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1782 { 1783 struct cgroup *dcgrp = &dst_root->cgrp; 1784 struct cgroup_subsys *ss; 1785 int ssid, ret; 1786 u16 dfl_disable_ss_mask = 0; 1787 1788 lockdep_assert_held(&cgroup_mutex); 1789 1790 do_each_subsys_mask(ss, ssid, ss_mask) { 1791 /* 1792 * If @ss has non-root csses attached to it, can't move. 1793 * If @ss is an implicit controller, it is exempt from this 1794 * rule and can be stolen. 1795 */ 1796 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1797 !ss->implicit_on_dfl) 1798 return -EBUSY; 1799 1800 /* can't move between two non-dummy roots either */ 1801 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1802 return -EBUSY; 1803 1804 /* 1805 * Collect ssid's that need to be disabled from default 1806 * hierarchy. 1807 */ 1808 if (ss->root == &cgrp_dfl_root) 1809 dfl_disable_ss_mask |= 1 << ssid; 1810 1811 } while_each_subsys_mask(); 1812 1813 if (dfl_disable_ss_mask) { 1814 struct cgroup *scgrp = &cgrp_dfl_root.cgrp; 1815 1816 /* 1817 * Controllers from default hierarchy that need to be rebound 1818 * are all disabled together in one go. 1819 */ 1820 cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask; 1821 WARN_ON(cgroup_apply_control(scgrp)); 1822 cgroup_finalize_control(scgrp, 0); 1823 } 1824 1825 do_each_subsys_mask(ss, ssid, ss_mask) { 1826 struct cgroup_root *src_root = ss->root; 1827 struct cgroup *scgrp = &src_root->cgrp; 1828 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1829 struct css_set *cset, *cset_pos; 1830 struct css_task_iter *it; 1831 1832 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1833 1834 if (src_root != &cgrp_dfl_root) { 1835 /* disable from the source */ 1836 src_root->subsys_mask &= ~(1 << ssid); 1837 WARN_ON(cgroup_apply_control(scgrp)); 1838 cgroup_finalize_control(scgrp, 0); 1839 } 1840 1841 /* rebind */ 1842 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1843 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1844 ss->root = dst_root; 1845 1846 spin_lock_irq(&css_set_lock); 1847 css->cgroup = dcgrp; 1848 WARN_ON(!list_empty(&dcgrp->e_csets[ss->id])); 1849 list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id], 1850 e_cset_node[ss->id]) { 1851 list_move_tail(&cset->e_cset_node[ss->id], 1852 &dcgrp->e_csets[ss->id]); 1853 /* 1854 * all css_sets of scgrp together in same order to dcgrp, 1855 * patch in-flight iterators to preserve correct iteration. 1856 * since the iterator is always advanced right away and 1857 * finished when it->cset_pos meets it->cset_head, so only 1858 * update it->cset_head is enough here. 1859 */ 1860 list_for_each_entry(it, &cset->task_iters, iters_node) 1861 if (it->cset_head == &scgrp->e_csets[ss->id]) 1862 it->cset_head = &dcgrp->e_csets[ss->id]; 1863 } 1864 spin_unlock_irq(&css_set_lock); 1865 1866 if (ss->css_rstat_flush) { 1867 list_del_rcu(&css->rstat_css_node); 1868 synchronize_rcu(); 1869 list_add_rcu(&css->rstat_css_node, 1870 &dcgrp->rstat_css_list); 1871 } 1872 1873 /* default hierarchy doesn't enable controllers by default */ 1874 dst_root->subsys_mask |= 1 << ssid; 1875 if (dst_root == &cgrp_dfl_root) { 1876 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1877 } else { 1878 dcgrp->subtree_control |= 1 << ssid; 1879 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1880 } 1881 1882 ret = cgroup_apply_control(dcgrp); 1883 if (ret) 1884 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1885 ss->name, ret); 1886 1887 if (ss->bind) 1888 ss->bind(css); 1889 } while_each_subsys_mask(); 1890 1891 kernfs_activate(dcgrp->kn); 1892 return 0; 1893 } 1894 cgroup_show_path(struct seq_file * sf,struct kernfs_node * kf_node,struct kernfs_root * kf_root)1895 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1896 struct kernfs_root *kf_root) 1897 { 1898 int len = 0; 1899 char *buf = NULL; 1900 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1901 struct cgroup *ns_cgroup; 1902 1903 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1904 if (!buf) 1905 return -ENOMEM; 1906 1907 spin_lock_irq(&css_set_lock); 1908 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1909 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1910 spin_unlock_irq(&css_set_lock); 1911 1912 if (len == -E2BIG) 1913 len = -ERANGE; 1914 else if (len > 0) { 1915 seq_escape(sf, buf, " \t\n\\"); 1916 len = 0; 1917 } 1918 kfree(buf); 1919 return len; 1920 } 1921 1922 enum cgroup2_param { 1923 Opt_nsdelegate, 1924 Opt_favordynmods, 1925 Opt_memory_localevents, 1926 Opt_memory_recursiveprot, 1927 Opt_memory_hugetlb_accounting, 1928 Opt_pids_localevents, 1929 nr__cgroup2_params 1930 }; 1931 1932 static const struct fs_parameter_spec cgroup2_fs_parameters[] = { 1933 fsparam_flag("nsdelegate", Opt_nsdelegate), 1934 fsparam_flag("favordynmods", Opt_favordynmods), 1935 fsparam_flag("memory_localevents", Opt_memory_localevents), 1936 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot), 1937 fsparam_flag("memory_hugetlb_accounting", Opt_memory_hugetlb_accounting), 1938 fsparam_flag("pids_localevents", Opt_pids_localevents), 1939 {} 1940 }; 1941 cgroup2_parse_param(struct fs_context * fc,struct fs_parameter * param)1942 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param) 1943 { 1944 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1945 struct fs_parse_result result; 1946 int opt; 1947 1948 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result); 1949 if (opt < 0) 1950 return opt; 1951 1952 switch (opt) { 1953 case Opt_nsdelegate: 1954 ctx->flags |= CGRP_ROOT_NS_DELEGATE; 1955 return 0; 1956 case Opt_favordynmods: 1957 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 1958 return 0; 1959 case Opt_memory_localevents: 1960 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1961 return 0; 1962 case Opt_memory_recursiveprot: 1963 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1964 return 0; 1965 case Opt_memory_hugetlb_accounting: 1966 ctx->flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; 1967 return 0; 1968 case Opt_pids_localevents: 1969 ctx->flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS; 1970 return 0; 1971 } 1972 return -EINVAL; 1973 } 1974 of_peak(struct kernfs_open_file * of)1975 struct cgroup_of_peak *of_peak(struct kernfs_open_file *of) 1976 { 1977 struct cgroup_file_ctx *ctx = of->priv; 1978 1979 return &ctx->peak; 1980 } 1981 apply_cgroup_root_flags(unsigned int root_flags)1982 static void apply_cgroup_root_flags(unsigned int root_flags) 1983 { 1984 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1985 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1986 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1987 else 1988 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1989 1990 cgroup_favor_dynmods(&cgrp_dfl_root, 1991 root_flags & CGRP_ROOT_FAVOR_DYNMODS); 1992 1993 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1994 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1995 else 1996 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1997 1998 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1999 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 2000 else 2001 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT; 2002 2003 if (root_flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING) 2004 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; 2005 else 2006 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; 2007 2008 if (root_flags & CGRP_ROOT_PIDS_LOCAL_EVENTS) 2009 cgrp_dfl_root.flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS; 2010 else 2011 cgrp_dfl_root.flags &= ~CGRP_ROOT_PIDS_LOCAL_EVENTS; 2012 } 2013 } 2014 cgroup_show_options(struct seq_file * seq,struct kernfs_root * kf_root)2015 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 2016 { 2017 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 2018 seq_puts(seq, ",nsdelegate"); 2019 if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS) 2020 seq_puts(seq, ",favordynmods"); 2021 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 2022 seq_puts(seq, ",memory_localevents"); 2023 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 2024 seq_puts(seq, ",memory_recursiveprot"); 2025 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING) 2026 seq_puts(seq, ",memory_hugetlb_accounting"); 2027 if (cgrp_dfl_root.flags & CGRP_ROOT_PIDS_LOCAL_EVENTS) 2028 seq_puts(seq, ",pids_localevents"); 2029 return 0; 2030 } 2031 cgroup_reconfigure(struct fs_context * fc)2032 static int cgroup_reconfigure(struct fs_context *fc) 2033 { 2034 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2035 2036 apply_cgroup_root_flags(ctx->flags); 2037 return 0; 2038 } 2039 init_cgroup_housekeeping(struct cgroup * cgrp)2040 static void init_cgroup_housekeeping(struct cgroup *cgrp) 2041 { 2042 struct cgroup_subsys *ss; 2043 int ssid; 2044 2045 INIT_LIST_HEAD(&cgrp->self.sibling); 2046 INIT_LIST_HEAD(&cgrp->self.children); 2047 INIT_LIST_HEAD(&cgrp->cset_links); 2048 INIT_LIST_HEAD(&cgrp->pidlists); 2049 mutex_init(&cgrp->pidlist_mutex); 2050 cgrp->self.cgroup = cgrp; 2051 cgrp->self.flags |= CSS_ONLINE; 2052 cgrp->dom_cgrp = cgrp; 2053 cgrp->max_descendants = INT_MAX; 2054 cgrp->max_depth = INT_MAX; 2055 INIT_LIST_HEAD(&cgrp->rstat_css_list); 2056 prev_cputime_init(&cgrp->prev_cputime); 2057 2058 for_each_subsys(ss, ssid) 2059 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 2060 2061 init_waitqueue_head(&cgrp->offline_waitq); 2062 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 2063 } 2064 init_cgroup_root(struct cgroup_fs_context * ctx)2065 void init_cgroup_root(struct cgroup_fs_context *ctx) 2066 { 2067 struct cgroup_root *root = ctx->root; 2068 struct cgroup *cgrp = &root->cgrp; 2069 2070 INIT_LIST_HEAD_RCU(&root->root_list); 2071 atomic_set(&root->nr_cgrps, 1); 2072 cgrp->root = root; 2073 init_cgroup_housekeeping(cgrp); 2074 2075 /* DYNMODS must be modified through cgroup_favor_dynmods() */ 2076 root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS; 2077 if (ctx->release_agent) 2078 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX); 2079 if (ctx->name) 2080 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN); 2081 if (ctx->cpuset_clone_children) 2082 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 2083 } 2084 cgroup_setup_root(struct cgroup_root * root,u16 ss_mask)2085 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) 2086 { 2087 LIST_HEAD(tmp_links); 2088 struct cgroup *root_cgrp = &root->cgrp; 2089 struct kernfs_syscall_ops *kf_sops; 2090 struct css_set *cset; 2091 int i, ret; 2092 2093 lockdep_assert_held(&cgroup_mutex); 2094 2095 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 2096 0, GFP_KERNEL); 2097 if (ret) 2098 goto out; 2099 2100 /* 2101 * We're accessing css_set_count without locking css_set_lock here, 2102 * but that's OK - it can only be increased by someone holding 2103 * cgroup_lock, and that's us. Later rebinding may disable 2104 * controllers on the default hierarchy and thus create new csets, 2105 * which can't be more than the existing ones. Allocate 2x. 2106 */ 2107 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 2108 if (ret) 2109 goto cancel_ref; 2110 2111 ret = cgroup_init_root_id(root); 2112 if (ret) 2113 goto cancel_ref; 2114 2115 kf_sops = root == &cgrp_dfl_root ? 2116 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 2117 2118 root->kf_root = kernfs_create_root(kf_sops, 2119 KERNFS_ROOT_CREATE_DEACTIVATED | 2120 KERNFS_ROOT_SUPPORT_EXPORTOP | 2121 KERNFS_ROOT_SUPPORT_USER_XATTR, 2122 root_cgrp); 2123 if (IS_ERR(root->kf_root)) { 2124 ret = PTR_ERR(root->kf_root); 2125 goto exit_root_id; 2126 } 2127 root_cgrp->kn = kernfs_root_to_node(root->kf_root); 2128 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1); 2129 root_cgrp->ancestors[0] = root_cgrp; 2130 2131 ret = css_populate_dir(&root_cgrp->self); 2132 if (ret) 2133 goto destroy_root; 2134 2135 ret = cgroup_rstat_init(root_cgrp); 2136 if (ret) 2137 goto destroy_root; 2138 2139 ret = rebind_subsystems(root, ss_mask); 2140 if (ret) 2141 goto exit_stats; 2142 2143 if (root == &cgrp_dfl_root) { 2144 ret = cgroup_bpf_inherit(root_cgrp); 2145 WARN_ON_ONCE(ret); 2146 } 2147 2148 trace_cgroup_setup_root(root); 2149 2150 /* 2151 * There must be no failure case after here, since rebinding takes 2152 * care of subsystems' refcounts, which are explicitly dropped in 2153 * the failure exit path. 2154 */ 2155 list_add_rcu(&root->root_list, &cgroup_roots); 2156 cgroup_root_count++; 2157 2158 /* 2159 * Link the root cgroup in this hierarchy into all the css_set 2160 * objects. 2161 */ 2162 spin_lock_irq(&css_set_lock); 2163 hash_for_each(css_set_table, i, cset, hlist) { 2164 link_css_set(&tmp_links, cset, root_cgrp); 2165 if (css_set_populated(cset)) 2166 cgroup_update_populated(root_cgrp, true); 2167 } 2168 spin_unlock_irq(&css_set_lock); 2169 2170 BUG_ON(!list_empty(&root_cgrp->self.children)); 2171 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 2172 2173 ret = 0; 2174 goto out; 2175 2176 exit_stats: 2177 cgroup_rstat_exit(root_cgrp); 2178 destroy_root: 2179 kernfs_destroy_root(root->kf_root); 2180 root->kf_root = NULL; 2181 exit_root_id: 2182 cgroup_exit_root_id(root); 2183 cancel_ref: 2184 percpu_ref_exit(&root_cgrp->self.refcnt); 2185 out: 2186 free_cgrp_cset_links(&tmp_links); 2187 return ret; 2188 } 2189 cgroup_do_get_tree(struct fs_context * fc)2190 int cgroup_do_get_tree(struct fs_context *fc) 2191 { 2192 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2193 int ret; 2194 2195 ctx->kfc.root = ctx->root->kf_root; 2196 if (fc->fs_type == &cgroup2_fs_type) 2197 ctx->kfc.magic = CGROUP2_SUPER_MAGIC; 2198 else 2199 ctx->kfc.magic = CGROUP_SUPER_MAGIC; 2200 ret = kernfs_get_tree(fc); 2201 2202 /* 2203 * In non-init cgroup namespace, instead of root cgroup's dentry, 2204 * we return the dentry corresponding to the cgroupns->root_cgrp. 2205 */ 2206 if (!ret && ctx->ns != &init_cgroup_ns) { 2207 struct dentry *nsdentry; 2208 struct super_block *sb = fc->root->d_sb; 2209 struct cgroup *cgrp; 2210 2211 cgroup_lock(); 2212 spin_lock_irq(&css_set_lock); 2213 2214 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root); 2215 2216 spin_unlock_irq(&css_set_lock); 2217 cgroup_unlock(); 2218 2219 nsdentry = kernfs_node_dentry(cgrp->kn, sb); 2220 dput(fc->root); 2221 if (IS_ERR(nsdentry)) { 2222 deactivate_locked_super(sb); 2223 ret = PTR_ERR(nsdentry); 2224 nsdentry = NULL; 2225 } 2226 fc->root = nsdentry; 2227 } 2228 2229 if (!ctx->kfc.new_sb_created) 2230 cgroup_put(&ctx->root->cgrp); 2231 2232 return ret; 2233 } 2234 2235 /* 2236 * Destroy a cgroup filesystem context. 2237 */ cgroup_fs_context_free(struct fs_context * fc)2238 static void cgroup_fs_context_free(struct fs_context *fc) 2239 { 2240 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2241 2242 kfree(ctx->name); 2243 kfree(ctx->release_agent); 2244 put_cgroup_ns(ctx->ns); 2245 kernfs_free_fs_context(fc); 2246 kfree(ctx); 2247 } 2248 cgroup_get_tree(struct fs_context * fc)2249 static int cgroup_get_tree(struct fs_context *fc) 2250 { 2251 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2252 int ret; 2253 2254 WRITE_ONCE(cgrp_dfl_visible, true); 2255 cgroup_get_live(&cgrp_dfl_root.cgrp); 2256 ctx->root = &cgrp_dfl_root; 2257 2258 ret = cgroup_do_get_tree(fc); 2259 if (!ret) 2260 apply_cgroup_root_flags(ctx->flags); 2261 return ret; 2262 } 2263 2264 static const struct fs_context_operations cgroup_fs_context_ops = { 2265 .free = cgroup_fs_context_free, 2266 .parse_param = cgroup2_parse_param, 2267 .get_tree = cgroup_get_tree, 2268 .reconfigure = cgroup_reconfigure, 2269 }; 2270 2271 static const struct fs_context_operations cgroup1_fs_context_ops = { 2272 .free = cgroup_fs_context_free, 2273 .parse_param = cgroup1_parse_param, 2274 .get_tree = cgroup1_get_tree, 2275 .reconfigure = cgroup1_reconfigure, 2276 }; 2277 2278 /* 2279 * Initialise the cgroup filesystem creation/reconfiguration context. Notably, 2280 * we select the namespace we're going to use. 2281 */ cgroup_init_fs_context(struct fs_context * fc)2282 static int cgroup_init_fs_context(struct fs_context *fc) 2283 { 2284 struct cgroup_fs_context *ctx; 2285 2286 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL); 2287 if (!ctx) 2288 return -ENOMEM; 2289 2290 ctx->ns = current->nsproxy->cgroup_ns; 2291 get_cgroup_ns(ctx->ns); 2292 fc->fs_private = &ctx->kfc; 2293 if (fc->fs_type == &cgroup2_fs_type) 2294 fc->ops = &cgroup_fs_context_ops; 2295 else 2296 fc->ops = &cgroup1_fs_context_ops; 2297 put_user_ns(fc->user_ns); 2298 fc->user_ns = get_user_ns(ctx->ns->user_ns); 2299 fc->global = true; 2300 2301 if (have_favordynmods) 2302 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 2303 2304 return 0; 2305 } 2306 cgroup_kill_sb(struct super_block * sb)2307 static void cgroup_kill_sb(struct super_block *sb) 2308 { 2309 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2310 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2311 2312 /* 2313 * If @root doesn't have any children, start killing it. 2314 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2315 * 2316 * And don't kill the default root. 2317 */ 2318 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root && 2319 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) 2320 percpu_ref_kill(&root->cgrp.self.refcnt); 2321 cgroup_put(&root->cgrp); 2322 kernfs_kill_sb(sb); 2323 } 2324 2325 struct file_system_type cgroup_fs_type = { 2326 .name = "cgroup", 2327 .init_fs_context = cgroup_init_fs_context, 2328 .parameters = cgroup1_fs_parameters, 2329 .kill_sb = cgroup_kill_sb, 2330 .fs_flags = FS_USERNS_MOUNT, 2331 }; 2332 2333 static struct file_system_type cgroup2_fs_type = { 2334 .name = "cgroup2", 2335 .init_fs_context = cgroup_init_fs_context, 2336 .parameters = cgroup2_fs_parameters, 2337 .kill_sb = cgroup_kill_sb, 2338 .fs_flags = FS_USERNS_MOUNT, 2339 }; 2340 2341 #ifdef CONFIG_CPUSETS_V1 2342 static const struct fs_context_operations cpuset_fs_context_ops = { 2343 .get_tree = cgroup1_get_tree, 2344 .free = cgroup_fs_context_free, 2345 }; 2346 2347 /* 2348 * This is ugly, but preserves the userspace API for existing cpuset 2349 * users. If someone tries to mount the "cpuset" filesystem, we 2350 * silently switch it to mount "cgroup" instead 2351 */ cpuset_init_fs_context(struct fs_context * fc)2352 static int cpuset_init_fs_context(struct fs_context *fc) 2353 { 2354 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER); 2355 struct cgroup_fs_context *ctx; 2356 int err; 2357 2358 err = cgroup_init_fs_context(fc); 2359 if (err) { 2360 kfree(agent); 2361 return err; 2362 } 2363 2364 fc->ops = &cpuset_fs_context_ops; 2365 2366 ctx = cgroup_fc2context(fc); 2367 ctx->subsys_mask = 1 << cpuset_cgrp_id; 2368 ctx->flags |= CGRP_ROOT_NOPREFIX; 2369 ctx->release_agent = agent; 2370 2371 get_filesystem(&cgroup_fs_type); 2372 put_filesystem(fc->fs_type); 2373 fc->fs_type = &cgroup_fs_type; 2374 2375 return 0; 2376 } 2377 2378 static struct file_system_type cpuset_fs_type = { 2379 .name = "cpuset", 2380 .init_fs_context = cpuset_init_fs_context, 2381 .fs_flags = FS_USERNS_MOUNT, 2382 }; 2383 #endif 2384 cgroup_path_ns_locked(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2385 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2386 struct cgroup_namespace *ns) 2387 { 2388 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2389 2390 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2391 } 2392 cgroup_path_ns(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2393 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2394 struct cgroup_namespace *ns) 2395 { 2396 int ret; 2397 2398 cgroup_lock(); 2399 spin_lock_irq(&css_set_lock); 2400 2401 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2402 2403 spin_unlock_irq(&css_set_lock); 2404 cgroup_unlock(); 2405 2406 return ret; 2407 } 2408 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2409 2410 /** 2411 * cgroup_attach_lock - Lock for ->attach() 2412 * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem 2413 * 2414 * cgroup migration sometimes needs to stabilize threadgroups against forks and 2415 * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach() 2416 * implementations (e.g. cpuset), also need to disable CPU hotplug. 2417 * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can 2418 * lead to deadlocks. 2419 * 2420 * Bringing up a CPU may involve creating and destroying tasks which requires 2421 * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside 2422 * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while 2423 * write-locking threadgroup_rwsem, the locking order is reversed and we end up 2424 * waiting for an on-going CPU hotplug operation which in turn is waiting for 2425 * the threadgroup_rwsem to be released to create new tasks. For more details: 2426 * 2427 * http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu 2428 * 2429 * Resolve the situation by always acquiring cpus_read_lock() before optionally 2430 * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that 2431 * CPU hotplug is disabled on entry. 2432 */ cgroup_attach_lock(bool lock_threadgroup)2433 void cgroup_attach_lock(bool lock_threadgroup) 2434 { 2435 cpus_read_lock(); 2436 if (lock_threadgroup) 2437 percpu_down_write(&cgroup_threadgroup_rwsem); 2438 } 2439 2440 /** 2441 * cgroup_attach_unlock - Undo cgroup_attach_lock() 2442 * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem 2443 */ cgroup_attach_unlock(bool lock_threadgroup)2444 void cgroup_attach_unlock(bool lock_threadgroup) 2445 { 2446 if (lock_threadgroup) 2447 percpu_up_write(&cgroup_threadgroup_rwsem); 2448 cpus_read_unlock(); 2449 } 2450 2451 /** 2452 * cgroup_migrate_add_task - add a migration target task to a migration context 2453 * @task: target task 2454 * @mgctx: target migration context 2455 * 2456 * Add @task, which is a migration target, to @mgctx->tset. This function 2457 * becomes noop if @task doesn't need to be migrated. @task's css_set 2458 * should have been added as a migration source and @task->cg_list will be 2459 * moved from the css_set's tasks list to mg_tasks one. 2460 */ cgroup_migrate_add_task(struct task_struct * task,struct cgroup_mgctx * mgctx)2461 static void cgroup_migrate_add_task(struct task_struct *task, 2462 struct cgroup_mgctx *mgctx) 2463 { 2464 struct css_set *cset; 2465 2466 lockdep_assert_held(&css_set_lock); 2467 2468 /* @task either already exited or can't exit until the end */ 2469 if (task->flags & PF_EXITING) 2470 return; 2471 2472 /* cgroup_threadgroup_rwsem protects racing against forks */ 2473 WARN_ON_ONCE(list_empty(&task->cg_list)); 2474 2475 cset = task_css_set(task); 2476 if (!cset->mg_src_cgrp) 2477 return; 2478 2479 mgctx->tset.nr_tasks++; 2480 2481 list_move_tail(&task->cg_list, &cset->mg_tasks); 2482 if (list_empty(&cset->mg_node)) 2483 list_add_tail(&cset->mg_node, 2484 &mgctx->tset.src_csets); 2485 if (list_empty(&cset->mg_dst_cset->mg_node)) 2486 list_add_tail(&cset->mg_dst_cset->mg_node, 2487 &mgctx->tset.dst_csets); 2488 } 2489 2490 /** 2491 * cgroup_taskset_first - reset taskset and return the first task 2492 * @tset: taskset of interest 2493 * @dst_cssp: output variable for the destination css 2494 * 2495 * @tset iteration is initialized and the first task is returned. 2496 */ cgroup_taskset_first(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2497 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2498 struct cgroup_subsys_state **dst_cssp) 2499 { 2500 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2501 tset->cur_task = NULL; 2502 2503 return cgroup_taskset_next(tset, dst_cssp); 2504 } 2505 2506 /** 2507 * cgroup_taskset_next - iterate to the next task in taskset 2508 * @tset: taskset of interest 2509 * @dst_cssp: output variable for the destination css 2510 * 2511 * Return the next task in @tset. Iteration must have been initialized 2512 * with cgroup_taskset_first(). 2513 */ cgroup_taskset_next(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2514 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2515 struct cgroup_subsys_state **dst_cssp) 2516 { 2517 struct css_set *cset = tset->cur_cset; 2518 struct task_struct *task = tset->cur_task; 2519 2520 while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) { 2521 if (!task) 2522 task = list_first_entry(&cset->mg_tasks, 2523 struct task_struct, cg_list); 2524 else 2525 task = list_next_entry(task, cg_list); 2526 2527 if (&task->cg_list != &cset->mg_tasks) { 2528 tset->cur_cset = cset; 2529 tset->cur_task = task; 2530 2531 /* 2532 * This function may be called both before and 2533 * after cgroup_migrate_execute(). The two cases 2534 * can be distinguished by looking at whether @cset 2535 * has its ->mg_dst_cset set. 2536 */ 2537 if (cset->mg_dst_cset) 2538 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2539 else 2540 *dst_cssp = cset->subsys[tset->ssid]; 2541 2542 return task; 2543 } 2544 2545 cset = list_next_entry(cset, mg_node); 2546 task = NULL; 2547 } 2548 2549 return NULL; 2550 } 2551 2552 /** 2553 * cgroup_migrate_execute - migrate a taskset 2554 * @mgctx: migration context 2555 * 2556 * Migrate tasks in @mgctx as setup by migration preparation functions. 2557 * This function fails iff one of the ->can_attach callbacks fails and 2558 * guarantees that either all or none of the tasks in @mgctx are migrated. 2559 * @mgctx is consumed regardless of success. 2560 */ cgroup_migrate_execute(struct cgroup_mgctx * mgctx)2561 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2562 { 2563 struct cgroup_taskset *tset = &mgctx->tset; 2564 struct cgroup_subsys *ss; 2565 struct task_struct *task, *tmp_task; 2566 struct css_set *cset, *tmp_cset; 2567 int ssid, failed_ssid, ret; 2568 2569 /* check that we can legitimately attach to the cgroup */ 2570 if (tset->nr_tasks) { 2571 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2572 if (ss->can_attach) { 2573 tset->ssid = ssid; 2574 ret = ss->can_attach(tset); 2575 if (ret) { 2576 failed_ssid = ssid; 2577 goto out_cancel_attach; 2578 } 2579 } 2580 } while_each_subsys_mask(); 2581 } 2582 2583 /* 2584 * Now that we're guaranteed success, proceed to move all tasks to 2585 * the new cgroup. There are no failure cases after here, so this 2586 * is the commit point. 2587 */ 2588 spin_lock_irq(&css_set_lock); 2589 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2590 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2591 struct css_set *from_cset = task_css_set(task); 2592 struct css_set *to_cset = cset->mg_dst_cset; 2593 2594 get_css_set(to_cset); 2595 to_cset->nr_tasks++; 2596 css_set_move_task(task, from_cset, to_cset, true); 2597 from_cset->nr_tasks--; 2598 /* 2599 * If the source or destination cgroup is frozen, 2600 * the task might require to change its state. 2601 */ 2602 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp, 2603 to_cset->dfl_cgrp); 2604 put_css_set_locked(from_cset); 2605 2606 } 2607 } 2608 spin_unlock_irq(&css_set_lock); 2609 2610 /* 2611 * Migration is committed, all target tasks are now on dst_csets. 2612 * Nothing is sensitive to fork() after this point. Notify 2613 * controllers that migration is complete. 2614 */ 2615 tset->csets = &tset->dst_csets; 2616 2617 if (tset->nr_tasks) { 2618 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2619 if (ss->attach) { 2620 tset->ssid = ssid; 2621 ss->attach(tset); 2622 } 2623 } while_each_subsys_mask(); 2624 } 2625 2626 ret = 0; 2627 goto out_release_tset; 2628 2629 out_cancel_attach: 2630 if (tset->nr_tasks) { 2631 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2632 if (ssid == failed_ssid) 2633 break; 2634 if (ss->cancel_attach) { 2635 tset->ssid = ssid; 2636 ss->cancel_attach(tset); 2637 } 2638 } while_each_subsys_mask(); 2639 } 2640 out_release_tset: 2641 spin_lock_irq(&css_set_lock); 2642 list_splice_init(&tset->dst_csets, &tset->src_csets); 2643 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2644 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2645 list_del_init(&cset->mg_node); 2646 } 2647 spin_unlock_irq(&css_set_lock); 2648 2649 /* 2650 * Re-initialize the cgroup_taskset structure in case it is reused 2651 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2652 * iteration. 2653 */ 2654 tset->nr_tasks = 0; 2655 tset->csets = &tset->src_csets; 2656 return ret; 2657 } 2658 2659 /** 2660 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2661 * @dst_cgrp: destination cgroup to test 2662 * 2663 * On the default hierarchy, except for the mixable, (possible) thread root 2664 * and threaded cgroups, subtree_control must be zero for migration 2665 * destination cgroups with tasks so that child cgroups don't compete 2666 * against tasks. 2667 */ cgroup_migrate_vet_dst(struct cgroup * dst_cgrp)2668 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2669 { 2670 /* v1 doesn't have any restriction */ 2671 if (!cgroup_on_dfl(dst_cgrp)) 2672 return 0; 2673 2674 /* verify @dst_cgrp can host resources */ 2675 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2676 return -EOPNOTSUPP; 2677 2678 /* 2679 * If @dst_cgrp is already or can become a thread root or is 2680 * threaded, it doesn't matter. 2681 */ 2682 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2683 return 0; 2684 2685 /* apply no-internal-process constraint */ 2686 if (dst_cgrp->subtree_control) 2687 return -EBUSY; 2688 2689 return 0; 2690 } 2691 2692 /** 2693 * cgroup_migrate_finish - cleanup after attach 2694 * @mgctx: migration context 2695 * 2696 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2697 * those functions for details. 2698 */ cgroup_migrate_finish(struct cgroup_mgctx * mgctx)2699 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2700 { 2701 struct css_set *cset, *tmp_cset; 2702 2703 lockdep_assert_held(&cgroup_mutex); 2704 2705 spin_lock_irq(&css_set_lock); 2706 2707 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets, 2708 mg_src_preload_node) { 2709 cset->mg_src_cgrp = NULL; 2710 cset->mg_dst_cgrp = NULL; 2711 cset->mg_dst_cset = NULL; 2712 list_del_init(&cset->mg_src_preload_node); 2713 put_css_set_locked(cset); 2714 } 2715 2716 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets, 2717 mg_dst_preload_node) { 2718 cset->mg_src_cgrp = NULL; 2719 cset->mg_dst_cgrp = NULL; 2720 cset->mg_dst_cset = NULL; 2721 list_del_init(&cset->mg_dst_preload_node); 2722 put_css_set_locked(cset); 2723 } 2724 2725 spin_unlock_irq(&css_set_lock); 2726 } 2727 2728 /** 2729 * cgroup_migrate_add_src - add a migration source css_set 2730 * @src_cset: the source css_set to add 2731 * @dst_cgrp: the destination cgroup 2732 * @mgctx: migration context 2733 * 2734 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2735 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2736 * up by cgroup_migrate_finish(). 2737 * 2738 * This function may be called without holding cgroup_threadgroup_rwsem 2739 * even if the target is a process. Threads may be created and destroyed 2740 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2741 * into play and the preloaded css_sets are guaranteed to cover all 2742 * migrations. 2743 */ cgroup_migrate_add_src(struct css_set * src_cset,struct cgroup * dst_cgrp,struct cgroup_mgctx * mgctx)2744 void cgroup_migrate_add_src(struct css_set *src_cset, 2745 struct cgroup *dst_cgrp, 2746 struct cgroup_mgctx *mgctx) 2747 { 2748 struct cgroup *src_cgrp; 2749 2750 lockdep_assert_held(&cgroup_mutex); 2751 lockdep_assert_held(&css_set_lock); 2752 2753 /* 2754 * If ->dead, @src_set is associated with one or more dead cgroups 2755 * and doesn't contain any migratable tasks. Ignore it early so 2756 * that the rest of migration path doesn't get confused by it. 2757 */ 2758 if (src_cset->dead) 2759 return; 2760 2761 if (!list_empty(&src_cset->mg_src_preload_node)) 2762 return; 2763 2764 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2765 2766 WARN_ON(src_cset->mg_src_cgrp); 2767 WARN_ON(src_cset->mg_dst_cgrp); 2768 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2769 WARN_ON(!list_empty(&src_cset->mg_node)); 2770 2771 src_cset->mg_src_cgrp = src_cgrp; 2772 src_cset->mg_dst_cgrp = dst_cgrp; 2773 get_css_set(src_cset); 2774 list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets); 2775 } 2776 2777 /** 2778 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2779 * @mgctx: migration context 2780 * 2781 * Tasks are about to be moved and all the source css_sets have been 2782 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2783 * pins all destination css_sets, links each to its source, and append them 2784 * to @mgctx->preloaded_dst_csets. 2785 * 2786 * This function must be called after cgroup_migrate_add_src() has been 2787 * called on each migration source css_set. After migration is performed 2788 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2789 * @mgctx. 2790 */ cgroup_migrate_prepare_dst(struct cgroup_mgctx * mgctx)2791 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2792 { 2793 struct css_set *src_cset, *tmp_cset; 2794 2795 lockdep_assert_held(&cgroup_mutex); 2796 2797 /* look up the dst cset for each src cset and link it to src */ 2798 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2799 mg_src_preload_node) { 2800 struct css_set *dst_cset; 2801 struct cgroup_subsys *ss; 2802 int ssid; 2803 2804 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2805 if (!dst_cset) 2806 return -ENOMEM; 2807 2808 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2809 2810 /* 2811 * If src cset equals dst, it's noop. Drop the src. 2812 * cgroup_migrate() will skip the cset too. Note that we 2813 * can't handle src == dst as some nodes are used by both. 2814 */ 2815 if (src_cset == dst_cset) { 2816 src_cset->mg_src_cgrp = NULL; 2817 src_cset->mg_dst_cgrp = NULL; 2818 list_del_init(&src_cset->mg_src_preload_node); 2819 put_css_set(src_cset); 2820 put_css_set(dst_cset); 2821 continue; 2822 } 2823 2824 src_cset->mg_dst_cset = dst_cset; 2825 2826 if (list_empty(&dst_cset->mg_dst_preload_node)) 2827 list_add_tail(&dst_cset->mg_dst_preload_node, 2828 &mgctx->preloaded_dst_csets); 2829 else 2830 put_css_set(dst_cset); 2831 2832 for_each_subsys(ss, ssid) 2833 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2834 mgctx->ss_mask |= 1 << ssid; 2835 } 2836 2837 return 0; 2838 } 2839 2840 /** 2841 * cgroup_migrate - migrate a process or task to a cgroup 2842 * @leader: the leader of the process or the task to migrate 2843 * @threadgroup: whether @leader points to the whole process or a single task 2844 * @mgctx: migration context 2845 * 2846 * Migrate a process or task denoted by @leader. If migrating a process, 2847 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2848 * responsible for invoking cgroup_migrate_add_src() and 2849 * cgroup_migrate_prepare_dst() on the targets before invoking this 2850 * function and following up with cgroup_migrate_finish(). 2851 * 2852 * As long as a controller's ->can_attach() doesn't fail, this function is 2853 * guaranteed to succeed. This means that, excluding ->can_attach() 2854 * failure, when migrating multiple targets, the success or failure can be 2855 * decided for all targets by invoking group_migrate_prepare_dst() before 2856 * actually starting migrating. 2857 */ cgroup_migrate(struct task_struct * leader,bool threadgroup,struct cgroup_mgctx * mgctx)2858 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2859 struct cgroup_mgctx *mgctx) 2860 { 2861 struct task_struct *task; 2862 2863 /* 2864 * The following thread iteration should be inside an RCU critical 2865 * section to prevent tasks from being freed while taking the snapshot. 2866 * spin_lock_irq() implies RCU critical section here. 2867 */ 2868 spin_lock_irq(&css_set_lock); 2869 task = leader; 2870 do { 2871 cgroup_migrate_add_task(task, mgctx); 2872 if (!threadgroup) 2873 break; 2874 } while_each_thread(leader, task); 2875 spin_unlock_irq(&css_set_lock); 2876 2877 return cgroup_migrate_execute(mgctx); 2878 } 2879 2880 /** 2881 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2882 * @dst_cgrp: the cgroup to attach to 2883 * @leader: the task or the leader of the threadgroup to be attached 2884 * @threadgroup: attach the whole threadgroup? 2885 * 2886 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2887 */ cgroup_attach_task(struct cgroup * dst_cgrp,struct task_struct * leader,bool threadgroup)2888 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2889 bool threadgroup) 2890 { 2891 DEFINE_CGROUP_MGCTX(mgctx); 2892 struct task_struct *task; 2893 int ret = 0; 2894 2895 /* look up all src csets */ 2896 spin_lock_irq(&css_set_lock); 2897 rcu_read_lock(); 2898 task = leader; 2899 do { 2900 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2901 if (!threadgroup) 2902 break; 2903 } while_each_thread(leader, task); 2904 rcu_read_unlock(); 2905 spin_unlock_irq(&css_set_lock); 2906 2907 /* prepare dst csets and commit */ 2908 ret = cgroup_migrate_prepare_dst(&mgctx); 2909 if (!ret) 2910 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2911 2912 cgroup_migrate_finish(&mgctx); 2913 2914 if (!ret) 2915 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); 2916 2917 return ret; 2918 } 2919 cgroup_procs_write_start(char * buf,bool threadgroup,bool * threadgroup_locked)2920 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup, 2921 bool *threadgroup_locked) 2922 { 2923 struct task_struct *tsk; 2924 pid_t pid; 2925 2926 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2927 return ERR_PTR(-EINVAL); 2928 2929 /* 2930 * If we migrate a single thread, we don't care about threadgroup 2931 * stability. If the thread is `current`, it won't exit(2) under our 2932 * hands or change PID through exec(2). We exclude 2933 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write 2934 * callers by cgroup_mutex. 2935 * Therefore, we can skip the global lock. 2936 */ 2937 lockdep_assert_held(&cgroup_mutex); 2938 *threadgroup_locked = pid || threadgroup; 2939 cgroup_attach_lock(*threadgroup_locked); 2940 2941 rcu_read_lock(); 2942 if (pid) { 2943 tsk = find_task_by_vpid(pid); 2944 if (!tsk) { 2945 tsk = ERR_PTR(-ESRCH); 2946 goto out_unlock_threadgroup; 2947 } 2948 } else { 2949 tsk = current; 2950 } 2951 2952 if (threadgroup) 2953 tsk = tsk->group_leader; 2954 2955 /* 2956 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2957 * If userland migrates such a kthread to a non-root cgroup, it can 2958 * become trapped in a cpuset, or RT kthread may be born in a 2959 * cgroup with no rt_runtime allocated. Just say no. 2960 */ 2961 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2962 tsk = ERR_PTR(-EINVAL); 2963 goto out_unlock_threadgroup; 2964 } 2965 2966 get_task_struct(tsk); 2967 goto out_unlock_rcu; 2968 2969 out_unlock_threadgroup: 2970 cgroup_attach_unlock(*threadgroup_locked); 2971 *threadgroup_locked = false; 2972 out_unlock_rcu: 2973 rcu_read_unlock(); 2974 return tsk; 2975 } 2976 cgroup_procs_write_finish(struct task_struct * task,bool threadgroup_locked)2977 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked) 2978 { 2979 struct cgroup_subsys *ss; 2980 int ssid; 2981 2982 /* release reference from cgroup_procs_write_start() */ 2983 put_task_struct(task); 2984 2985 cgroup_attach_unlock(threadgroup_locked); 2986 2987 for_each_subsys(ss, ssid) 2988 if (ss->post_attach) 2989 ss->post_attach(); 2990 } 2991 cgroup_print_ss_mask(struct seq_file * seq,u16 ss_mask)2992 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2993 { 2994 struct cgroup_subsys *ss; 2995 bool printed = false; 2996 int ssid; 2997 2998 do_each_subsys_mask(ss, ssid, ss_mask) { 2999 if (printed) 3000 seq_putc(seq, ' '); 3001 seq_puts(seq, ss->name); 3002 printed = true; 3003 } while_each_subsys_mask(); 3004 if (printed) 3005 seq_putc(seq, '\n'); 3006 } 3007 3008 /* show controllers which are enabled from the parent */ cgroup_controllers_show(struct seq_file * seq,void * v)3009 static int cgroup_controllers_show(struct seq_file *seq, void *v) 3010 { 3011 struct cgroup *cgrp = seq_css(seq)->cgroup; 3012 3013 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 3014 return 0; 3015 } 3016 3017 /* show controllers which are enabled for a given cgroup's children */ cgroup_subtree_control_show(struct seq_file * seq,void * v)3018 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 3019 { 3020 struct cgroup *cgrp = seq_css(seq)->cgroup; 3021 3022 cgroup_print_ss_mask(seq, cgrp->subtree_control); 3023 return 0; 3024 } 3025 3026 /** 3027 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 3028 * @cgrp: root of the subtree to update csses for 3029 * 3030 * @cgrp's control masks have changed and its subtree's css associations 3031 * need to be updated accordingly. This function looks up all css_sets 3032 * which are attached to the subtree, creates the matching updated css_sets 3033 * and migrates the tasks to the new ones. 3034 */ cgroup_update_dfl_csses(struct cgroup * cgrp)3035 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 3036 { 3037 DEFINE_CGROUP_MGCTX(mgctx); 3038 struct cgroup_subsys_state *d_css; 3039 struct cgroup *dsct; 3040 struct css_set *src_cset; 3041 bool has_tasks; 3042 int ret; 3043 3044 lockdep_assert_held(&cgroup_mutex); 3045 3046 /* look up all csses currently attached to @cgrp's subtree */ 3047 spin_lock_irq(&css_set_lock); 3048 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3049 struct cgrp_cset_link *link; 3050 3051 /* 3052 * As cgroup_update_dfl_csses() is only called by 3053 * cgroup_apply_control(). The csses associated with the 3054 * given cgrp will not be affected by changes made to 3055 * its subtree_control file. We can skip them. 3056 */ 3057 if (dsct == cgrp) 3058 continue; 3059 3060 list_for_each_entry(link, &dsct->cset_links, cset_link) 3061 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 3062 } 3063 spin_unlock_irq(&css_set_lock); 3064 3065 /* 3066 * We need to write-lock threadgroup_rwsem while migrating tasks. 3067 * However, if there are no source csets for @cgrp, changing its 3068 * controllers isn't gonna produce any task migrations and the 3069 * write-locking can be skipped safely. 3070 */ 3071 has_tasks = !list_empty(&mgctx.preloaded_src_csets); 3072 cgroup_attach_lock(has_tasks); 3073 3074 /* NULL dst indicates self on default hierarchy */ 3075 ret = cgroup_migrate_prepare_dst(&mgctx); 3076 if (ret) 3077 goto out_finish; 3078 3079 spin_lock_irq(&css_set_lock); 3080 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, 3081 mg_src_preload_node) { 3082 struct task_struct *task, *ntask; 3083 3084 /* all tasks in src_csets need to be migrated */ 3085 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 3086 cgroup_migrate_add_task(task, &mgctx); 3087 } 3088 spin_unlock_irq(&css_set_lock); 3089 3090 ret = cgroup_migrate_execute(&mgctx); 3091 out_finish: 3092 cgroup_migrate_finish(&mgctx); 3093 cgroup_attach_unlock(has_tasks); 3094 return ret; 3095 } 3096 3097 /** 3098 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 3099 * @cgrp: root of the target subtree 3100 * 3101 * Because css offlining is asynchronous, userland may try to re-enable a 3102 * controller while the previous css is still around. This function grabs 3103 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 3104 */ cgroup_lock_and_drain_offline(struct cgroup * cgrp)3105 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 3106 __acquires(&cgroup_mutex) 3107 { 3108 struct cgroup *dsct; 3109 struct cgroup_subsys_state *d_css; 3110 struct cgroup_subsys *ss; 3111 int ssid; 3112 3113 restart: 3114 cgroup_lock(); 3115 3116 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3117 for_each_subsys(ss, ssid) { 3118 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3119 DEFINE_WAIT(wait); 3120 3121 if (!css || !percpu_ref_is_dying(&css->refcnt)) 3122 continue; 3123 3124 cgroup_get_live(dsct); 3125 prepare_to_wait(&dsct->offline_waitq, &wait, 3126 TASK_UNINTERRUPTIBLE); 3127 3128 cgroup_unlock(); 3129 schedule(); 3130 finish_wait(&dsct->offline_waitq, &wait); 3131 3132 cgroup_put(dsct); 3133 goto restart; 3134 } 3135 } 3136 } 3137 3138 /** 3139 * cgroup_save_control - save control masks and dom_cgrp of a subtree 3140 * @cgrp: root of the target subtree 3141 * 3142 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the 3143 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3144 * itself. 3145 */ cgroup_save_control(struct cgroup * cgrp)3146 static void cgroup_save_control(struct cgroup *cgrp) 3147 { 3148 struct cgroup *dsct; 3149 struct cgroup_subsys_state *d_css; 3150 3151 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3152 dsct->old_subtree_control = dsct->subtree_control; 3153 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 3154 dsct->old_dom_cgrp = dsct->dom_cgrp; 3155 } 3156 } 3157 3158 /** 3159 * cgroup_propagate_control - refresh control masks of a subtree 3160 * @cgrp: root of the target subtree 3161 * 3162 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 3163 * ->subtree_control and propagate controller availability through the 3164 * subtree so that descendants don't have unavailable controllers enabled. 3165 */ cgroup_propagate_control(struct cgroup * cgrp)3166 static void cgroup_propagate_control(struct cgroup *cgrp) 3167 { 3168 struct cgroup *dsct; 3169 struct cgroup_subsys_state *d_css; 3170 3171 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3172 dsct->subtree_control &= cgroup_control(dsct); 3173 dsct->subtree_ss_mask = 3174 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 3175 cgroup_ss_mask(dsct)); 3176 } 3177 } 3178 3179 /** 3180 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree 3181 * @cgrp: root of the target subtree 3182 * 3183 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the 3184 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3185 * itself. 3186 */ cgroup_restore_control(struct cgroup * cgrp)3187 static void cgroup_restore_control(struct cgroup *cgrp) 3188 { 3189 struct cgroup *dsct; 3190 struct cgroup_subsys_state *d_css; 3191 3192 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3193 dsct->subtree_control = dsct->old_subtree_control; 3194 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 3195 dsct->dom_cgrp = dsct->old_dom_cgrp; 3196 } 3197 } 3198 css_visible(struct cgroup_subsys_state * css)3199 static bool css_visible(struct cgroup_subsys_state *css) 3200 { 3201 struct cgroup_subsys *ss = css->ss; 3202 struct cgroup *cgrp = css->cgroup; 3203 3204 if (cgroup_control(cgrp) & (1 << ss->id)) 3205 return true; 3206 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 3207 return false; 3208 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 3209 } 3210 3211 /** 3212 * cgroup_apply_control_enable - enable or show csses according to control 3213 * @cgrp: root of the target subtree 3214 * 3215 * Walk @cgrp's subtree and create new csses or make the existing ones 3216 * visible. A css is created invisible if it's being implicitly enabled 3217 * through dependency. An invisible css is made visible when the userland 3218 * explicitly enables it. 3219 * 3220 * Returns 0 on success, -errno on failure. On failure, csses which have 3221 * been processed already aren't cleaned up. The caller is responsible for 3222 * cleaning up with cgroup_apply_control_disable(). 3223 */ cgroup_apply_control_enable(struct cgroup * cgrp)3224 static int cgroup_apply_control_enable(struct cgroup *cgrp) 3225 { 3226 struct cgroup *dsct; 3227 struct cgroup_subsys_state *d_css; 3228 struct cgroup_subsys *ss; 3229 int ssid, ret; 3230 3231 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3232 for_each_subsys(ss, ssid) { 3233 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3234 3235 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 3236 continue; 3237 3238 if (!css) { 3239 css = css_create(dsct, ss); 3240 if (IS_ERR(css)) 3241 return PTR_ERR(css); 3242 } 3243 3244 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3245 3246 if (css_visible(css)) { 3247 ret = css_populate_dir(css); 3248 if (ret) 3249 return ret; 3250 } 3251 } 3252 } 3253 3254 return 0; 3255 } 3256 3257 /** 3258 * cgroup_apply_control_disable - kill or hide csses according to control 3259 * @cgrp: root of the target subtree 3260 * 3261 * Walk @cgrp's subtree and kill and hide csses so that they match 3262 * cgroup_ss_mask() and cgroup_visible_mask(). 3263 * 3264 * A css is hidden when the userland requests it to be disabled while other 3265 * subsystems are still depending on it. The css must not actively control 3266 * resources and be in the vanilla state if it's made visible again later. 3267 * Controllers which may be depended upon should provide ->css_reset() for 3268 * this purpose. 3269 */ cgroup_apply_control_disable(struct cgroup * cgrp)3270 static void cgroup_apply_control_disable(struct cgroup *cgrp) 3271 { 3272 struct cgroup *dsct; 3273 struct cgroup_subsys_state *d_css; 3274 struct cgroup_subsys *ss; 3275 int ssid; 3276 3277 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3278 for_each_subsys(ss, ssid) { 3279 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3280 3281 if (!css) 3282 continue; 3283 3284 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3285 3286 if (css->parent && 3287 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 3288 kill_css(css); 3289 } else if (!css_visible(css)) { 3290 css_clear_dir(css); 3291 if (ss->css_reset) 3292 ss->css_reset(css); 3293 } 3294 } 3295 } 3296 } 3297 3298 /** 3299 * cgroup_apply_control - apply control mask updates to the subtree 3300 * @cgrp: root of the target subtree 3301 * 3302 * subsystems can be enabled and disabled in a subtree using the following 3303 * steps. 3304 * 3305 * 1. Call cgroup_save_control() to stash the current state. 3306 * 2. Update ->subtree_control masks in the subtree as desired. 3307 * 3. Call cgroup_apply_control() to apply the changes. 3308 * 4. Optionally perform other related operations. 3309 * 5. Call cgroup_finalize_control() to finish up. 3310 * 3311 * This function implements step 3 and propagates the mask changes 3312 * throughout @cgrp's subtree, updates csses accordingly and perform 3313 * process migrations. 3314 */ cgroup_apply_control(struct cgroup * cgrp)3315 static int cgroup_apply_control(struct cgroup *cgrp) 3316 { 3317 int ret; 3318 3319 cgroup_propagate_control(cgrp); 3320 3321 ret = cgroup_apply_control_enable(cgrp); 3322 if (ret) 3323 return ret; 3324 3325 /* 3326 * At this point, cgroup_e_css_by_mask() results reflect the new csses 3327 * making the following cgroup_update_dfl_csses() properly update 3328 * css associations of all tasks in the subtree. 3329 */ 3330 return cgroup_update_dfl_csses(cgrp); 3331 } 3332 3333 /** 3334 * cgroup_finalize_control - finalize control mask update 3335 * @cgrp: root of the target subtree 3336 * @ret: the result of the update 3337 * 3338 * Finalize control mask update. See cgroup_apply_control() for more info. 3339 */ cgroup_finalize_control(struct cgroup * cgrp,int ret)3340 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3341 { 3342 if (ret) { 3343 cgroup_restore_control(cgrp); 3344 cgroup_propagate_control(cgrp); 3345 } 3346 3347 cgroup_apply_control_disable(cgrp); 3348 } 3349 cgroup_vet_subtree_control_enable(struct cgroup * cgrp,u16 enable)3350 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3351 { 3352 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3353 3354 /* if nothing is getting enabled, nothing to worry about */ 3355 if (!enable) 3356 return 0; 3357 3358 /* can @cgrp host any resources? */ 3359 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3360 return -EOPNOTSUPP; 3361 3362 /* mixables don't care */ 3363 if (cgroup_is_mixable(cgrp)) 3364 return 0; 3365 3366 if (domain_enable) { 3367 /* can't enable domain controllers inside a thread subtree */ 3368 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3369 return -EOPNOTSUPP; 3370 } else { 3371 /* 3372 * Threaded controllers can handle internal competitions 3373 * and are always allowed inside a (prospective) thread 3374 * subtree. 3375 */ 3376 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3377 return 0; 3378 } 3379 3380 /* 3381 * Controllers can't be enabled for a cgroup with tasks to avoid 3382 * child cgroups competing against tasks. 3383 */ 3384 if (cgroup_has_tasks(cgrp)) 3385 return -EBUSY; 3386 3387 return 0; 3388 } 3389 3390 /* change the enabled child controllers for a cgroup in the default hierarchy */ cgroup_subtree_control_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3391 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3392 char *buf, size_t nbytes, 3393 loff_t off) 3394 { 3395 u16 enable = 0, disable = 0; 3396 struct cgroup *cgrp, *child; 3397 struct cgroup_subsys *ss; 3398 char *tok; 3399 int ssid, ret; 3400 3401 /* 3402 * Parse input - space separated list of subsystem names prefixed 3403 * with either + or -. 3404 */ 3405 buf = strstrip(buf); 3406 while ((tok = strsep(&buf, " "))) { 3407 if (tok[0] == '\0') 3408 continue; 3409 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3410 if (!cgroup_ssid_enabled(ssid) || 3411 strcmp(tok + 1, ss->name)) 3412 continue; 3413 3414 if (*tok == '+') { 3415 enable |= 1 << ssid; 3416 disable &= ~(1 << ssid); 3417 } else if (*tok == '-') { 3418 disable |= 1 << ssid; 3419 enable &= ~(1 << ssid); 3420 } else { 3421 return -EINVAL; 3422 } 3423 break; 3424 } while_each_subsys_mask(); 3425 if (ssid == CGROUP_SUBSYS_COUNT) 3426 return -EINVAL; 3427 } 3428 3429 cgrp = cgroup_kn_lock_live(of->kn, true); 3430 if (!cgrp) 3431 return -ENODEV; 3432 3433 for_each_subsys(ss, ssid) { 3434 if (enable & (1 << ssid)) { 3435 if (cgrp->subtree_control & (1 << ssid)) { 3436 enable &= ~(1 << ssid); 3437 continue; 3438 } 3439 3440 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3441 ret = -ENOENT; 3442 goto out_unlock; 3443 } 3444 } else if (disable & (1 << ssid)) { 3445 if (!(cgrp->subtree_control & (1 << ssid))) { 3446 disable &= ~(1 << ssid); 3447 continue; 3448 } 3449 3450 /* a child has it enabled? */ 3451 cgroup_for_each_live_child(child, cgrp) { 3452 if (child->subtree_control & (1 << ssid)) { 3453 ret = -EBUSY; 3454 goto out_unlock; 3455 } 3456 } 3457 } 3458 } 3459 3460 if (!enable && !disable) { 3461 ret = 0; 3462 goto out_unlock; 3463 } 3464 3465 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3466 if (ret) 3467 goto out_unlock; 3468 3469 /* save and update control masks and prepare csses */ 3470 cgroup_save_control(cgrp); 3471 3472 cgrp->subtree_control |= enable; 3473 cgrp->subtree_control &= ~disable; 3474 3475 ret = cgroup_apply_control(cgrp); 3476 cgroup_finalize_control(cgrp, ret); 3477 if (ret) 3478 goto out_unlock; 3479 3480 kernfs_activate(cgrp->kn); 3481 out_unlock: 3482 cgroup_kn_unlock(of->kn); 3483 return ret ?: nbytes; 3484 } 3485 3486 /** 3487 * cgroup_enable_threaded - make @cgrp threaded 3488 * @cgrp: the target cgroup 3489 * 3490 * Called when "threaded" is written to the cgroup.type interface file and 3491 * tries to make @cgrp threaded and join the parent's resource domain. 3492 * This function is never called on the root cgroup as cgroup.type doesn't 3493 * exist on it. 3494 */ cgroup_enable_threaded(struct cgroup * cgrp)3495 static int cgroup_enable_threaded(struct cgroup *cgrp) 3496 { 3497 struct cgroup *parent = cgroup_parent(cgrp); 3498 struct cgroup *dom_cgrp = parent->dom_cgrp; 3499 struct cgroup *dsct; 3500 struct cgroup_subsys_state *d_css; 3501 int ret; 3502 3503 lockdep_assert_held(&cgroup_mutex); 3504 3505 /* noop if already threaded */ 3506 if (cgroup_is_threaded(cgrp)) 3507 return 0; 3508 3509 /* 3510 * If @cgroup is populated or has domain controllers enabled, it 3511 * can't be switched. While the below cgroup_can_be_thread_root() 3512 * test can catch the same conditions, that's only when @parent is 3513 * not mixable, so let's check it explicitly. 3514 */ 3515 if (cgroup_is_populated(cgrp) || 3516 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 3517 return -EOPNOTSUPP; 3518 3519 /* we're joining the parent's domain, ensure its validity */ 3520 if (!cgroup_is_valid_domain(dom_cgrp) || 3521 !cgroup_can_be_thread_root(dom_cgrp)) 3522 return -EOPNOTSUPP; 3523 3524 /* 3525 * The following shouldn't cause actual migrations and should 3526 * always succeed. 3527 */ 3528 cgroup_save_control(cgrp); 3529 3530 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) 3531 if (dsct == cgrp || cgroup_is_threaded(dsct)) 3532 dsct->dom_cgrp = dom_cgrp; 3533 3534 ret = cgroup_apply_control(cgrp); 3535 if (!ret) 3536 parent->nr_threaded_children++; 3537 3538 cgroup_finalize_control(cgrp, ret); 3539 return ret; 3540 } 3541 cgroup_type_show(struct seq_file * seq,void * v)3542 static int cgroup_type_show(struct seq_file *seq, void *v) 3543 { 3544 struct cgroup *cgrp = seq_css(seq)->cgroup; 3545 3546 if (cgroup_is_threaded(cgrp)) 3547 seq_puts(seq, "threaded\n"); 3548 else if (!cgroup_is_valid_domain(cgrp)) 3549 seq_puts(seq, "domain invalid\n"); 3550 else if (cgroup_is_thread_root(cgrp)) 3551 seq_puts(seq, "domain threaded\n"); 3552 else 3553 seq_puts(seq, "domain\n"); 3554 3555 return 0; 3556 } 3557 cgroup_type_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3558 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3559 size_t nbytes, loff_t off) 3560 { 3561 struct cgroup *cgrp; 3562 int ret; 3563 3564 /* only switching to threaded mode is supported */ 3565 if (strcmp(strstrip(buf), "threaded")) 3566 return -EINVAL; 3567 3568 /* drain dying csses before we re-apply (threaded) subtree control */ 3569 cgrp = cgroup_kn_lock_live(of->kn, true); 3570 if (!cgrp) 3571 return -ENOENT; 3572 3573 /* threaded can only be enabled */ 3574 ret = cgroup_enable_threaded(cgrp); 3575 3576 cgroup_kn_unlock(of->kn); 3577 return ret ?: nbytes; 3578 } 3579 cgroup_max_descendants_show(struct seq_file * seq,void * v)3580 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3581 { 3582 struct cgroup *cgrp = seq_css(seq)->cgroup; 3583 int descendants = READ_ONCE(cgrp->max_descendants); 3584 3585 if (descendants == INT_MAX) 3586 seq_puts(seq, "max\n"); 3587 else 3588 seq_printf(seq, "%d\n", descendants); 3589 3590 return 0; 3591 } 3592 cgroup_max_descendants_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3593 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3594 char *buf, size_t nbytes, loff_t off) 3595 { 3596 struct cgroup *cgrp; 3597 int descendants; 3598 ssize_t ret; 3599 3600 buf = strstrip(buf); 3601 if (!strcmp(buf, "max")) { 3602 descendants = INT_MAX; 3603 } else { 3604 ret = kstrtoint(buf, 0, &descendants); 3605 if (ret) 3606 return ret; 3607 } 3608 3609 if (descendants < 0) 3610 return -ERANGE; 3611 3612 cgrp = cgroup_kn_lock_live(of->kn, false); 3613 if (!cgrp) 3614 return -ENOENT; 3615 3616 cgrp->max_descendants = descendants; 3617 3618 cgroup_kn_unlock(of->kn); 3619 3620 return nbytes; 3621 } 3622 cgroup_max_depth_show(struct seq_file * seq,void * v)3623 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3624 { 3625 struct cgroup *cgrp = seq_css(seq)->cgroup; 3626 int depth = READ_ONCE(cgrp->max_depth); 3627 3628 if (depth == INT_MAX) 3629 seq_puts(seq, "max\n"); 3630 else 3631 seq_printf(seq, "%d\n", depth); 3632 3633 return 0; 3634 } 3635 cgroup_max_depth_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3636 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3637 char *buf, size_t nbytes, loff_t off) 3638 { 3639 struct cgroup *cgrp; 3640 ssize_t ret; 3641 int depth; 3642 3643 buf = strstrip(buf); 3644 if (!strcmp(buf, "max")) { 3645 depth = INT_MAX; 3646 } else { 3647 ret = kstrtoint(buf, 0, &depth); 3648 if (ret) 3649 return ret; 3650 } 3651 3652 if (depth < 0) 3653 return -ERANGE; 3654 3655 cgrp = cgroup_kn_lock_live(of->kn, false); 3656 if (!cgrp) 3657 return -ENOENT; 3658 3659 cgrp->max_depth = depth; 3660 3661 cgroup_kn_unlock(of->kn); 3662 3663 return nbytes; 3664 } 3665 cgroup_events_show(struct seq_file * seq,void * v)3666 static int cgroup_events_show(struct seq_file *seq, void *v) 3667 { 3668 struct cgroup *cgrp = seq_css(seq)->cgroup; 3669 3670 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp)); 3671 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags)); 3672 3673 return 0; 3674 } 3675 cgroup_stat_show(struct seq_file * seq,void * v)3676 static int cgroup_stat_show(struct seq_file *seq, void *v) 3677 { 3678 struct cgroup *cgroup = seq_css(seq)->cgroup; 3679 struct cgroup_subsys_state *css; 3680 int dying_cnt[CGROUP_SUBSYS_COUNT]; 3681 int ssid; 3682 3683 seq_printf(seq, "nr_descendants %d\n", 3684 cgroup->nr_descendants); 3685 3686 /* 3687 * Show the number of live and dying csses associated with each of 3688 * non-inhibited cgroup subsystems that is bound to cgroup v2. 3689 * 3690 * Without proper lock protection, racing is possible. So the 3691 * numbers may not be consistent when that happens. 3692 */ 3693 rcu_read_lock(); 3694 for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) { 3695 dying_cnt[ssid] = -1; 3696 if ((BIT(ssid) & cgrp_dfl_inhibit_ss_mask) || 3697 (cgroup_subsys[ssid]->root != &cgrp_dfl_root)) 3698 continue; 3699 css = rcu_dereference_raw(cgroup->subsys[ssid]); 3700 dying_cnt[ssid] = cgroup->nr_dying_subsys[ssid]; 3701 seq_printf(seq, "nr_subsys_%s %d\n", cgroup_subsys[ssid]->name, 3702 css ? (css->nr_descendants + 1) : 0); 3703 } 3704 3705 seq_printf(seq, "nr_dying_descendants %d\n", 3706 cgroup->nr_dying_descendants); 3707 for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) { 3708 if (dying_cnt[ssid] >= 0) 3709 seq_printf(seq, "nr_dying_subsys_%s %d\n", 3710 cgroup_subsys[ssid]->name, dying_cnt[ssid]); 3711 } 3712 rcu_read_unlock(); 3713 return 0; 3714 } 3715 3716 #ifdef CONFIG_CGROUP_SCHED 3717 /** 3718 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 3719 * @cgrp: the cgroup of interest 3720 * @ss: the subsystem of interest 3721 * 3722 * Find and get @cgrp's css associated with @ss. If the css doesn't exist 3723 * or is offline, %NULL is returned. 3724 */ cgroup_tryget_css(struct cgroup * cgrp,struct cgroup_subsys * ss)3725 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 3726 struct cgroup_subsys *ss) 3727 { 3728 struct cgroup_subsys_state *css; 3729 3730 rcu_read_lock(); 3731 css = cgroup_css(cgrp, ss); 3732 if (css && !css_tryget_online(css)) 3733 css = NULL; 3734 rcu_read_unlock(); 3735 3736 return css; 3737 } 3738 cgroup_extra_stat_show(struct seq_file * seq,int ssid)3739 static int cgroup_extra_stat_show(struct seq_file *seq, int ssid) 3740 { 3741 struct cgroup *cgrp = seq_css(seq)->cgroup; 3742 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3743 struct cgroup_subsys_state *css; 3744 int ret; 3745 3746 if (!ss->css_extra_stat_show) 3747 return 0; 3748 3749 css = cgroup_tryget_css(cgrp, ss); 3750 if (!css) 3751 return 0; 3752 3753 ret = ss->css_extra_stat_show(seq, css); 3754 css_put(css); 3755 return ret; 3756 } 3757 cgroup_local_stat_show(struct seq_file * seq,struct cgroup * cgrp,int ssid)3758 static int cgroup_local_stat_show(struct seq_file *seq, 3759 struct cgroup *cgrp, int ssid) 3760 { 3761 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3762 struct cgroup_subsys_state *css; 3763 int ret; 3764 3765 if (!ss->css_local_stat_show) 3766 return 0; 3767 3768 css = cgroup_tryget_css(cgrp, ss); 3769 if (!css) 3770 return 0; 3771 3772 ret = ss->css_local_stat_show(seq, css); 3773 css_put(css); 3774 return ret; 3775 } 3776 #endif 3777 cpu_stat_show(struct seq_file * seq,void * v)3778 static int cpu_stat_show(struct seq_file *seq, void *v) 3779 { 3780 int ret = 0; 3781 3782 cgroup_base_stat_cputime_show(seq); 3783 #ifdef CONFIG_CGROUP_SCHED 3784 ret = cgroup_extra_stat_show(seq, cpu_cgrp_id); 3785 #endif 3786 return ret; 3787 } 3788 cpu_local_stat_show(struct seq_file * seq,void * v)3789 static int cpu_local_stat_show(struct seq_file *seq, void *v) 3790 { 3791 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3792 int ret = 0; 3793 3794 #ifdef CONFIG_CGROUP_SCHED 3795 ret = cgroup_local_stat_show(seq, cgrp, cpu_cgrp_id); 3796 #endif 3797 return ret; 3798 } 3799 3800 #ifdef CONFIG_PSI cgroup_io_pressure_show(struct seq_file * seq,void * v)3801 static int cgroup_io_pressure_show(struct seq_file *seq, void *v) 3802 { 3803 struct cgroup *cgrp = seq_css(seq)->cgroup; 3804 struct psi_group *psi = cgroup_psi(cgrp); 3805 3806 return psi_show(seq, psi, PSI_IO); 3807 } cgroup_memory_pressure_show(struct seq_file * seq,void * v)3808 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v) 3809 { 3810 struct cgroup *cgrp = seq_css(seq)->cgroup; 3811 struct psi_group *psi = cgroup_psi(cgrp); 3812 3813 return psi_show(seq, psi, PSI_MEM); 3814 } cgroup_cpu_pressure_show(struct seq_file * seq,void * v)3815 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v) 3816 { 3817 struct cgroup *cgrp = seq_css(seq)->cgroup; 3818 struct psi_group *psi = cgroup_psi(cgrp); 3819 3820 return psi_show(seq, psi, PSI_CPU); 3821 } 3822 pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,enum psi_res res)3823 static ssize_t pressure_write(struct kernfs_open_file *of, char *buf, 3824 size_t nbytes, enum psi_res res) 3825 { 3826 struct cgroup_file_ctx *ctx = of->priv; 3827 struct psi_trigger *new; 3828 struct cgroup *cgrp; 3829 struct psi_group *psi; 3830 3831 cgrp = cgroup_kn_lock_live(of->kn, false); 3832 if (!cgrp) 3833 return -ENODEV; 3834 3835 cgroup_get(cgrp); 3836 cgroup_kn_unlock(of->kn); 3837 3838 /* Allow only one trigger per file descriptor */ 3839 if (ctx->psi.trigger) { 3840 cgroup_put(cgrp); 3841 return -EBUSY; 3842 } 3843 3844 psi = cgroup_psi(cgrp); 3845 new = psi_trigger_create(psi, buf, res, of->file, of); 3846 if (IS_ERR(new)) { 3847 cgroup_put(cgrp); 3848 return PTR_ERR(new); 3849 } 3850 3851 smp_store_release(&ctx->psi.trigger, new); 3852 cgroup_put(cgrp); 3853 3854 return nbytes; 3855 } 3856 cgroup_io_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3857 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of, 3858 char *buf, size_t nbytes, 3859 loff_t off) 3860 { 3861 return pressure_write(of, buf, nbytes, PSI_IO); 3862 } 3863 cgroup_memory_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3864 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of, 3865 char *buf, size_t nbytes, 3866 loff_t off) 3867 { 3868 return pressure_write(of, buf, nbytes, PSI_MEM); 3869 } 3870 cgroup_cpu_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3871 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of, 3872 char *buf, size_t nbytes, 3873 loff_t off) 3874 { 3875 return pressure_write(of, buf, nbytes, PSI_CPU); 3876 } 3877 3878 #ifdef CONFIG_IRQ_TIME_ACCOUNTING cgroup_irq_pressure_show(struct seq_file * seq,void * v)3879 static int cgroup_irq_pressure_show(struct seq_file *seq, void *v) 3880 { 3881 struct cgroup *cgrp = seq_css(seq)->cgroup; 3882 struct psi_group *psi = cgroup_psi(cgrp); 3883 3884 return psi_show(seq, psi, PSI_IRQ); 3885 } 3886 cgroup_irq_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3887 static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of, 3888 char *buf, size_t nbytes, 3889 loff_t off) 3890 { 3891 return pressure_write(of, buf, nbytes, PSI_IRQ); 3892 } 3893 #endif 3894 cgroup_pressure_show(struct seq_file * seq,void * v)3895 static int cgroup_pressure_show(struct seq_file *seq, void *v) 3896 { 3897 struct cgroup *cgrp = seq_css(seq)->cgroup; 3898 struct psi_group *psi = cgroup_psi(cgrp); 3899 3900 seq_printf(seq, "%d\n", psi->enabled); 3901 3902 return 0; 3903 } 3904 cgroup_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3905 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, 3906 char *buf, size_t nbytes, 3907 loff_t off) 3908 { 3909 ssize_t ret; 3910 int enable; 3911 struct cgroup *cgrp; 3912 struct psi_group *psi; 3913 3914 ret = kstrtoint(strstrip(buf), 0, &enable); 3915 if (ret) 3916 return ret; 3917 3918 if (enable < 0 || enable > 1) 3919 return -ERANGE; 3920 3921 cgrp = cgroup_kn_lock_live(of->kn, false); 3922 if (!cgrp) 3923 return -ENOENT; 3924 3925 psi = cgroup_psi(cgrp); 3926 if (psi->enabled != enable) { 3927 int i; 3928 3929 /* show or hide {cpu,memory,io,irq}.pressure files */ 3930 for (i = 0; i < NR_PSI_RESOURCES; i++) 3931 cgroup_file_show(&cgrp->psi_files[i], enable); 3932 3933 psi->enabled = enable; 3934 if (enable) 3935 psi_cgroup_restart(psi); 3936 } 3937 3938 cgroup_kn_unlock(of->kn); 3939 3940 return nbytes; 3941 } 3942 cgroup_pressure_poll(struct kernfs_open_file * of,poll_table * pt)3943 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of, 3944 poll_table *pt) 3945 { 3946 struct cgroup_file_ctx *ctx = of->priv; 3947 3948 return psi_trigger_poll(&ctx->psi.trigger, of->file, pt); 3949 } 3950 cgroup_pressure_release(struct kernfs_open_file * of)3951 static void cgroup_pressure_release(struct kernfs_open_file *of) 3952 { 3953 struct cgroup_file_ctx *ctx = of->priv; 3954 3955 psi_trigger_destroy(ctx->psi.trigger); 3956 } 3957 cgroup_psi_enabled(void)3958 bool cgroup_psi_enabled(void) 3959 { 3960 if (static_branch_likely(&psi_disabled)) 3961 return false; 3962 3963 return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0; 3964 } 3965 3966 #else /* CONFIG_PSI */ cgroup_psi_enabled(void)3967 bool cgroup_psi_enabled(void) 3968 { 3969 return false; 3970 } 3971 3972 #endif /* CONFIG_PSI */ 3973 cgroup_freeze_show(struct seq_file * seq,void * v)3974 static int cgroup_freeze_show(struct seq_file *seq, void *v) 3975 { 3976 struct cgroup *cgrp = seq_css(seq)->cgroup; 3977 3978 seq_printf(seq, "%d\n", cgrp->freezer.freeze); 3979 3980 return 0; 3981 } 3982 cgroup_freeze_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3983 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of, 3984 char *buf, size_t nbytes, loff_t off) 3985 { 3986 struct cgroup *cgrp; 3987 ssize_t ret; 3988 int freeze; 3989 3990 ret = kstrtoint(strstrip(buf), 0, &freeze); 3991 if (ret) 3992 return ret; 3993 3994 if (freeze < 0 || freeze > 1) 3995 return -ERANGE; 3996 3997 cgrp = cgroup_kn_lock_live(of->kn, false); 3998 if (!cgrp) 3999 return -ENOENT; 4000 4001 cgroup_freeze(cgrp, freeze); 4002 4003 cgroup_kn_unlock(of->kn); 4004 4005 return nbytes; 4006 } 4007 __cgroup_kill(struct cgroup * cgrp)4008 static void __cgroup_kill(struct cgroup *cgrp) 4009 { 4010 struct css_task_iter it; 4011 struct task_struct *task; 4012 4013 lockdep_assert_held(&cgroup_mutex); 4014 4015 spin_lock_irq(&css_set_lock); 4016 cgrp->kill_seq++; 4017 spin_unlock_irq(&css_set_lock); 4018 4019 css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it); 4020 while ((task = css_task_iter_next(&it))) { 4021 /* Ignore kernel threads here. */ 4022 if (task->flags & PF_KTHREAD) 4023 continue; 4024 4025 /* Skip tasks that are already dying. */ 4026 if (__fatal_signal_pending(task)) 4027 continue; 4028 4029 send_sig(SIGKILL, task, 0); 4030 } 4031 css_task_iter_end(&it); 4032 } 4033 cgroup_kill(struct cgroup * cgrp)4034 static void cgroup_kill(struct cgroup *cgrp) 4035 { 4036 struct cgroup_subsys_state *css; 4037 struct cgroup *dsct; 4038 4039 lockdep_assert_held(&cgroup_mutex); 4040 4041 cgroup_for_each_live_descendant_pre(dsct, css, cgrp) 4042 __cgroup_kill(dsct); 4043 } 4044 cgroup_kill_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4045 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf, 4046 size_t nbytes, loff_t off) 4047 { 4048 ssize_t ret = 0; 4049 int kill; 4050 struct cgroup *cgrp; 4051 4052 ret = kstrtoint(strstrip(buf), 0, &kill); 4053 if (ret) 4054 return ret; 4055 4056 if (kill != 1) 4057 return -ERANGE; 4058 4059 cgrp = cgroup_kn_lock_live(of->kn, false); 4060 if (!cgrp) 4061 return -ENOENT; 4062 4063 /* 4064 * Killing is a process directed operation, i.e. the whole thread-group 4065 * is taken down so act like we do for cgroup.procs and only make this 4066 * writable in non-threaded cgroups. 4067 */ 4068 if (cgroup_is_threaded(cgrp)) 4069 ret = -EOPNOTSUPP; 4070 else 4071 cgroup_kill(cgrp); 4072 4073 cgroup_kn_unlock(of->kn); 4074 4075 return ret ?: nbytes; 4076 } 4077 cgroup_file_open(struct kernfs_open_file * of)4078 static int cgroup_file_open(struct kernfs_open_file *of) 4079 { 4080 struct cftype *cft = of_cft(of); 4081 struct cgroup_file_ctx *ctx; 4082 int ret; 4083 4084 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 4085 if (!ctx) 4086 return -ENOMEM; 4087 4088 ctx->ns = current->nsproxy->cgroup_ns; 4089 get_cgroup_ns(ctx->ns); 4090 of->priv = ctx; 4091 4092 if (!cft->open) 4093 return 0; 4094 4095 ret = cft->open(of); 4096 if (ret) { 4097 put_cgroup_ns(ctx->ns); 4098 kfree(ctx); 4099 } 4100 return ret; 4101 } 4102 cgroup_file_release(struct kernfs_open_file * of)4103 static void cgroup_file_release(struct kernfs_open_file *of) 4104 { 4105 struct cftype *cft = of_cft(of); 4106 struct cgroup_file_ctx *ctx = of->priv; 4107 4108 if (cft->release) 4109 cft->release(of); 4110 put_cgroup_ns(ctx->ns); 4111 kfree(ctx); 4112 } 4113 cgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4114 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 4115 size_t nbytes, loff_t off) 4116 { 4117 struct cgroup_file_ctx *ctx = of->priv; 4118 struct cgroup *cgrp = of->kn->parent->priv; 4119 struct cftype *cft = of_cft(of); 4120 struct cgroup_subsys_state *css; 4121 int ret; 4122 4123 if (!nbytes) 4124 return 0; 4125 4126 /* 4127 * If namespaces are delegation boundaries, disallow writes to 4128 * files in an non-init namespace root from inside the namespace 4129 * except for the files explicitly marked delegatable - 4130 * eg. cgroup.procs, cgroup.threads and cgroup.subtree_control. 4131 */ 4132 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 4133 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 4134 ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp) 4135 return -EPERM; 4136 4137 if (cft->write) 4138 return cft->write(of, buf, nbytes, off); 4139 4140 /* 4141 * kernfs guarantees that a file isn't deleted with operations in 4142 * flight, which means that the matching css is and stays alive and 4143 * doesn't need to be pinned. The RCU locking is not necessary 4144 * either. It's just for the convenience of using cgroup_css(). 4145 */ 4146 rcu_read_lock(); 4147 css = cgroup_css(cgrp, cft->ss); 4148 rcu_read_unlock(); 4149 4150 if (cft->write_u64) { 4151 unsigned long long v; 4152 ret = kstrtoull(buf, 0, &v); 4153 if (!ret) 4154 ret = cft->write_u64(css, cft, v); 4155 } else if (cft->write_s64) { 4156 long long v; 4157 ret = kstrtoll(buf, 0, &v); 4158 if (!ret) 4159 ret = cft->write_s64(css, cft, v); 4160 } else { 4161 ret = -EINVAL; 4162 } 4163 4164 return ret ?: nbytes; 4165 } 4166 cgroup_file_poll(struct kernfs_open_file * of,poll_table * pt)4167 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt) 4168 { 4169 struct cftype *cft = of_cft(of); 4170 4171 if (cft->poll) 4172 return cft->poll(of, pt); 4173 4174 return kernfs_generic_poll(of, pt); 4175 } 4176 cgroup_seqfile_start(struct seq_file * seq,loff_t * ppos)4177 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 4178 { 4179 return seq_cft(seq)->seq_start(seq, ppos); 4180 } 4181 cgroup_seqfile_next(struct seq_file * seq,void * v,loff_t * ppos)4182 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 4183 { 4184 return seq_cft(seq)->seq_next(seq, v, ppos); 4185 } 4186 cgroup_seqfile_stop(struct seq_file * seq,void * v)4187 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 4188 { 4189 if (seq_cft(seq)->seq_stop) 4190 seq_cft(seq)->seq_stop(seq, v); 4191 } 4192 cgroup_seqfile_show(struct seq_file * m,void * arg)4193 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 4194 { 4195 struct cftype *cft = seq_cft(m); 4196 struct cgroup_subsys_state *css = seq_css(m); 4197 4198 if (cft->seq_show) 4199 return cft->seq_show(m, arg); 4200 4201 if (cft->read_u64) 4202 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 4203 else if (cft->read_s64) 4204 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 4205 else 4206 return -EINVAL; 4207 return 0; 4208 } 4209 4210 static struct kernfs_ops cgroup_kf_single_ops = { 4211 .atomic_write_len = PAGE_SIZE, 4212 .open = cgroup_file_open, 4213 .release = cgroup_file_release, 4214 .write = cgroup_file_write, 4215 .poll = cgroup_file_poll, 4216 .seq_show = cgroup_seqfile_show, 4217 }; 4218 4219 static struct kernfs_ops cgroup_kf_ops = { 4220 .atomic_write_len = PAGE_SIZE, 4221 .open = cgroup_file_open, 4222 .release = cgroup_file_release, 4223 .write = cgroup_file_write, 4224 .poll = cgroup_file_poll, 4225 .seq_start = cgroup_seqfile_start, 4226 .seq_next = cgroup_seqfile_next, 4227 .seq_stop = cgroup_seqfile_stop, 4228 .seq_show = cgroup_seqfile_show, 4229 }; 4230 cgroup_file_notify_timer(struct timer_list * timer)4231 static void cgroup_file_notify_timer(struct timer_list *timer) 4232 { 4233 cgroup_file_notify(container_of(timer, struct cgroup_file, 4234 notify_timer)); 4235 } 4236 cgroup_add_file(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype * cft)4237 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 4238 struct cftype *cft) 4239 { 4240 char name[CGROUP_FILE_NAME_MAX]; 4241 struct kernfs_node *kn; 4242 struct lock_class_key *key = NULL; 4243 4244 #ifdef CONFIG_DEBUG_LOCK_ALLOC 4245 key = &cft->lockdep_key; 4246 #endif 4247 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 4248 cgroup_file_mode(cft), 4249 current_fsuid(), current_fsgid(), 4250 0, cft->kf_ops, cft, 4251 NULL, key); 4252 if (IS_ERR(kn)) 4253 return PTR_ERR(kn); 4254 4255 if (cft->file_offset) { 4256 struct cgroup_file *cfile = (void *)css + cft->file_offset; 4257 4258 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); 4259 4260 spin_lock_irq(&cgroup_file_kn_lock); 4261 cfile->kn = kn; 4262 spin_unlock_irq(&cgroup_file_kn_lock); 4263 } 4264 4265 return 0; 4266 } 4267 4268 /** 4269 * cgroup_addrm_files - add or remove files to a cgroup directory 4270 * @css: the target css 4271 * @cgrp: the target cgroup (usually css->cgroup) 4272 * @cfts: array of cftypes to be added 4273 * @is_add: whether to add or remove 4274 * 4275 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 4276 * For removals, this function never fails. 4277 */ cgroup_addrm_files(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype cfts[],bool is_add)4278 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 4279 struct cgroup *cgrp, struct cftype cfts[], 4280 bool is_add) 4281 { 4282 struct cftype *cft, *cft_end = NULL; 4283 int ret = 0; 4284 4285 lockdep_assert_held(&cgroup_mutex); 4286 4287 restart: 4288 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 4289 /* does cft->flags tell us to skip this file on @cgrp? */ 4290 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 4291 continue; 4292 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 4293 continue; 4294 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 4295 continue; 4296 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 4297 continue; 4298 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug) 4299 continue; 4300 if (is_add) { 4301 ret = cgroup_add_file(css, cgrp, cft); 4302 if (ret) { 4303 pr_warn("%s: failed to add %s, err=%d\n", 4304 __func__, cft->name, ret); 4305 cft_end = cft; 4306 is_add = false; 4307 goto restart; 4308 } 4309 } else { 4310 cgroup_rm_file(cgrp, cft); 4311 } 4312 } 4313 return ret; 4314 } 4315 cgroup_apply_cftypes(struct cftype * cfts,bool is_add)4316 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 4317 { 4318 struct cgroup_subsys *ss = cfts[0].ss; 4319 struct cgroup *root = &ss->root->cgrp; 4320 struct cgroup_subsys_state *css; 4321 int ret = 0; 4322 4323 lockdep_assert_held(&cgroup_mutex); 4324 4325 /* add/rm files for all cgroups created before */ 4326 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 4327 struct cgroup *cgrp = css->cgroup; 4328 4329 if (!(css->flags & CSS_VISIBLE)) 4330 continue; 4331 4332 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 4333 if (ret) 4334 break; 4335 } 4336 4337 if (is_add && !ret) 4338 kernfs_activate(root->kn); 4339 return ret; 4340 } 4341 cgroup_exit_cftypes(struct cftype * cfts)4342 static void cgroup_exit_cftypes(struct cftype *cfts) 4343 { 4344 struct cftype *cft; 4345 4346 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4347 /* free copy for custom atomic_write_len, see init_cftypes() */ 4348 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 4349 kfree(cft->kf_ops); 4350 cft->kf_ops = NULL; 4351 cft->ss = NULL; 4352 4353 /* revert flags set by cgroup core while adding @cfts */ 4354 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL | 4355 __CFTYPE_ADDED); 4356 } 4357 } 4358 cgroup_init_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4359 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4360 { 4361 struct cftype *cft; 4362 int ret = 0; 4363 4364 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4365 struct kernfs_ops *kf_ops; 4366 4367 WARN_ON(cft->ss || cft->kf_ops); 4368 4369 if (cft->flags & __CFTYPE_ADDED) { 4370 ret = -EBUSY; 4371 break; 4372 } 4373 4374 if (cft->seq_start) 4375 kf_ops = &cgroup_kf_ops; 4376 else 4377 kf_ops = &cgroup_kf_single_ops; 4378 4379 /* 4380 * Ugh... if @cft wants a custom max_write_len, we need to 4381 * make a copy of kf_ops to set its atomic_write_len. 4382 */ 4383 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 4384 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 4385 if (!kf_ops) { 4386 ret = -ENOMEM; 4387 break; 4388 } 4389 kf_ops->atomic_write_len = cft->max_write_len; 4390 } 4391 4392 cft->kf_ops = kf_ops; 4393 cft->ss = ss; 4394 cft->flags |= __CFTYPE_ADDED; 4395 } 4396 4397 if (ret) 4398 cgroup_exit_cftypes(cfts); 4399 return ret; 4400 } 4401 cgroup_rm_cftypes_locked(struct cftype * cfts)4402 static void cgroup_rm_cftypes_locked(struct cftype *cfts) 4403 { 4404 lockdep_assert_held(&cgroup_mutex); 4405 4406 list_del(&cfts->node); 4407 cgroup_apply_cftypes(cfts, false); 4408 cgroup_exit_cftypes(cfts); 4409 } 4410 4411 /** 4412 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 4413 * @cfts: zero-length name terminated array of cftypes 4414 * 4415 * Unregister @cfts. Files described by @cfts are removed from all 4416 * existing cgroups and all future cgroups won't have them either. This 4417 * function can be called anytime whether @cfts' subsys is attached or not. 4418 * 4419 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 4420 * registered. 4421 */ cgroup_rm_cftypes(struct cftype * cfts)4422 int cgroup_rm_cftypes(struct cftype *cfts) 4423 { 4424 if (!cfts || cfts[0].name[0] == '\0') 4425 return 0; 4426 4427 if (!(cfts[0].flags & __CFTYPE_ADDED)) 4428 return -ENOENT; 4429 4430 cgroup_lock(); 4431 cgroup_rm_cftypes_locked(cfts); 4432 cgroup_unlock(); 4433 return 0; 4434 } 4435 4436 /** 4437 * cgroup_add_cftypes - add an array of cftypes to a subsystem 4438 * @ss: target cgroup subsystem 4439 * @cfts: zero-length name terminated array of cftypes 4440 * 4441 * Register @cfts to @ss. Files described by @cfts are created for all 4442 * existing cgroups to which @ss is attached and all future cgroups will 4443 * have them too. This function can be called anytime whether @ss is 4444 * attached or not. 4445 * 4446 * Returns 0 on successful registration, -errno on failure. Note that this 4447 * function currently returns 0 as long as @cfts registration is successful 4448 * even if some file creation attempts on existing cgroups fail. 4449 */ cgroup_add_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4450 int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4451 { 4452 int ret; 4453 4454 if (!cgroup_ssid_enabled(ss->id)) 4455 return 0; 4456 4457 if (!cfts || cfts[0].name[0] == '\0') 4458 return 0; 4459 4460 ret = cgroup_init_cftypes(ss, cfts); 4461 if (ret) 4462 return ret; 4463 4464 cgroup_lock(); 4465 4466 list_add_tail(&cfts->node, &ss->cfts); 4467 ret = cgroup_apply_cftypes(cfts, true); 4468 if (ret) 4469 cgroup_rm_cftypes_locked(cfts); 4470 4471 cgroup_unlock(); 4472 return ret; 4473 } 4474 4475 /** 4476 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 4477 * @ss: target cgroup subsystem 4478 * @cfts: zero-length name terminated array of cftypes 4479 * 4480 * Similar to cgroup_add_cftypes() but the added files are only used for 4481 * the default hierarchy. 4482 */ cgroup_add_dfl_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4483 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4484 { 4485 struct cftype *cft; 4486 4487 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4488 cft->flags |= __CFTYPE_ONLY_ON_DFL; 4489 return cgroup_add_cftypes(ss, cfts); 4490 } 4491 4492 /** 4493 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 4494 * @ss: target cgroup subsystem 4495 * @cfts: zero-length name terminated array of cftypes 4496 * 4497 * Similar to cgroup_add_cftypes() but the added files are only used for 4498 * the legacy hierarchies. 4499 */ cgroup_add_legacy_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4500 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4501 { 4502 struct cftype *cft; 4503 4504 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4505 cft->flags |= __CFTYPE_NOT_ON_DFL; 4506 return cgroup_add_cftypes(ss, cfts); 4507 } 4508 4509 /** 4510 * cgroup_file_notify - generate a file modified event for a cgroup_file 4511 * @cfile: target cgroup_file 4512 * 4513 * @cfile must have been obtained by setting cftype->file_offset. 4514 */ cgroup_file_notify(struct cgroup_file * cfile)4515 void cgroup_file_notify(struct cgroup_file *cfile) 4516 { 4517 unsigned long flags; 4518 4519 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 4520 if (cfile->kn) { 4521 unsigned long last = cfile->notified_at; 4522 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; 4523 4524 if (time_in_range(jiffies, last, next)) { 4525 timer_reduce(&cfile->notify_timer, next); 4526 } else { 4527 kernfs_notify(cfile->kn); 4528 cfile->notified_at = jiffies; 4529 } 4530 } 4531 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 4532 } 4533 4534 /** 4535 * cgroup_file_show - show or hide a hidden cgroup file 4536 * @cfile: target cgroup_file obtained by setting cftype->file_offset 4537 * @show: whether to show or hide 4538 */ cgroup_file_show(struct cgroup_file * cfile,bool show)4539 void cgroup_file_show(struct cgroup_file *cfile, bool show) 4540 { 4541 struct kernfs_node *kn; 4542 4543 spin_lock_irq(&cgroup_file_kn_lock); 4544 kn = cfile->kn; 4545 kernfs_get(kn); 4546 spin_unlock_irq(&cgroup_file_kn_lock); 4547 4548 if (kn) 4549 kernfs_show(kn, show); 4550 4551 kernfs_put(kn); 4552 } 4553 4554 /** 4555 * css_next_child - find the next child of a given css 4556 * @pos: the current position (%NULL to initiate traversal) 4557 * @parent: css whose children to walk 4558 * 4559 * This function returns the next child of @parent and should be called 4560 * under either cgroup_mutex or RCU read lock. The only requirement is 4561 * that @parent and @pos are accessible. The next sibling is guaranteed to 4562 * be returned regardless of their states. 4563 * 4564 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4565 * css which finished ->css_online() is guaranteed to be visible in the 4566 * future iterations and will stay visible until the last reference is put. 4567 * A css which hasn't finished ->css_online() or already finished 4568 * ->css_offline() may show up during traversal. It's each subsystem's 4569 * responsibility to synchronize against on/offlining. 4570 */ css_next_child(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * parent)4571 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 4572 struct cgroup_subsys_state *parent) 4573 { 4574 struct cgroup_subsys_state *next; 4575 4576 cgroup_assert_mutex_or_rcu_locked(); 4577 4578 /* 4579 * @pos could already have been unlinked from the sibling list. 4580 * Once a cgroup is removed, its ->sibling.next is no longer 4581 * updated when its next sibling changes. CSS_RELEASED is set when 4582 * @pos is taken off list, at which time its next pointer is valid, 4583 * and, as releases are serialized, the one pointed to by the next 4584 * pointer is guaranteed to not have started release yet. This 4585 * implies that if we observe !CSS_RELEASED on @pos in this RCU 4586 * critical section, the one pointed to by its next pointer is 4587 * guaranteed to not have finished its RCU grace period even if we 4588 * have dropped rcu_read_lock() in-between iterations. 4589 * 4590 * If @pos has CSS_RELEASED set, its next pointer can't be 4591 * dereferenced; however, as each css is given a monotonically 4592 * increasing unique serial number and always appended to the 4593 * sibling list, the next one can be found by walking the parent's 4594 * children until the first css with higher serial number than 4595 * @pos's. While this path can be slower, it happens iff iteration 4596 * races against release and the race window is very small. 4597 */ 4598 if (!pos) { 4599 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 4600 } else if (likely(!(pos->flags & CSS_RELEASED))) { 4601 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 4602 } else { 4603 list_for_each_entry_rcu(next, &parent->children, sibling, 4604 lockdep_is_held(&cgroup_mutex)) 4605 if (next->serial_nr > pos->serial_nr) 4606 break; 4607 } 4608 4609 /* 4610 * @next, if not pointing to the head, can be dereferenced and is 4611 * the next sibling. 4612 */ 4613 if (&next->sibling != &parent->children) 4614 return next; 4615 return NULL; 4616 } 4617 4618 /** 4619 * css_next_descendant_pre - find the next descendant for pre-order walk 4620 * @pos: the current position (%NULL to initiate traversal) 4621 * @root: css whose descendants to walk 4622 * 4623 * To be used by css_for_each_descendant_pre(). Find the next descendant 4624 * to visit for pre-order traversal of @root's descendants. @root is 4625 * included in the iteration and the first node to be visited. 4626 * 4627 * While this function requires cgroup_mutex or RCU read locking, it 4628 * doesn't require the whole traversal to be contained in a single critical 4629 * section. Additionally, it isn't necessary to hold onto a reference to @pos. 4630 * This function will return the correct next descendant as long as both @pos 4631 * and @root are accessible and @pos is a descendant of @root. 4632 * 4633 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4634 * css which finished ->css_online() is guaranteed to be visible in the 4635 * future iterations and will stay visible until the last reference is put. 4636 * A css which hasn't finished ->css_online() or already finished 4637 * ->css_offline() may show up during traversal. It's each subsystem's 4638 * responsibility to synchronize against on/offlining. 4639 */ 4640 struct cgroup_subsys_state * css_next_descendant_pre(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4641 css_next_descendant_pre(struct cgroup_subsys_state *pos, 4642 struct cgroup_subsys_state *root) 4643 { 4644 struct cgroup_subsys_state *next; 4645 4646 cgroup_assert_mutex_or_rcu_locked(); 4647 4648 /* if first iteration, visit @root */ 4649 if (!pos) 4650 return root; 4651 4652 /* visit the first child if exists */ 4653 next = css_next_child(NULL, pos); 4654 if (next) 4655 return next; 4656 4657 /* no child, visit my or the closest ancestor's next sibling */ 4658 while (pos != root) { 4659 next = css_next_child(pos, pos->parent); 4660 if (next) 4661 return next; 4662 pos = pos->parent; 4663 } 4664 4665 return NULL; 4666 } 4667 EXPORT_SYMBOL_GPL(css_next_descendant_pre); 4668 4669 /** 4670 * css_rightmost_descendant - return the rightmost descendant of a css 4671 * @pos: css of interest 4672 * 4673 * Return the rightmost descendant of @pos. If there's no descendant, @pos 4674 * is returned. This can be used during pre-order traversal to skip 4675 * subtree of @pos. 4676 * 4677 * While this function requires cgroup_mutex or RCU read locking, it 4678 * doesn't require the whole traversal to be contained in a single critical 4679 * section. Additionally, it isn't necessary to hold onto a reference to @pos. 4680 * This function will return the correct rightmost descendant as long as @pos 4681 * is accessible. 4682 */ 4683 struct cgroup_subsys_state * css_rightmost_descendant(struct cgroup_subsys_state * pos)4684 css_rightmost_descendant(struct cgroup_subsys_state *pos) 4685 { 4686 struct cgroup_subsys_state *last, *tmp; 4687 4688 cgroup_assert_mutex_or_rcu_locked(); 4689 4690 do { 4691 last = pos; 4692 /* ->prev isn't RCU safe, walk ->next till the end */ 4693 pos = NULL; 4694 css_for_each_child(tmp, last) 4695 pos = tmp; 4696 } while (pos); 4697 4698 return last; 4699 } 4700 4701 static struct cgroup_subsys_state * css_leftmost_descendant(struct cgroup_subsys_state * pos)4702 css_leftmost_descendant(struct cgroup_subsys_state *pos) 4703 { 4704 struct cgroup_subsys_state *last; 4705 4706 do { 4707 last = pos; 4708 pos = css_next_child(NULL, pos); 4709 } while (pos); 4710 4711 return last; 4712 } 4713 4714 /** 4715 * css_next_descendant_post - find the next descendant for post-order walk 4716 * @pos: the current position (%NULL to initiate traversal) 4717 * @root: css whose descendants to walk 4718 * 4719 * To be used by css_for_each_descendant_post(). Find the next descendant 4720 * to visit for post-order traversal of @root's descendants. @root is 4721 * included in the iteration and the last node to be visited. 4722 * 4723 * While this function requires cgroup_mutex or RCU read locking, it 4724 * doesn't require the whole traversal to be contained in a single critical 4725 * section. Additionally, it isn't necessary to hold onto a reference to @pos. 4726 * This function will return the correct next descendant as long as both @pos 4727 * and @cgroup are accessible and @pos is a descendant of @cgroup. 4728 * 4729 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4730 * css which finished ->css_online() is guaranteed to be visible in the 4731 * future iterations and will stay visible until the last reference is put. 4732 * A css which hasn't finished ->css_online() or already finished 4733 * ->css_offline() may show up during traversal. It's each subsystem's 4734 * responsibility to synchronize against on/offlining. 4735 */ 4736 struct cgroup_subsys_state * css_next_descendant_post(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4737 css_next_descendant_post(struct cgroup_subsys_state *pos, 4738 struct cgroup_subsys_state *root) 4739 { 4740 struct cgroup_subsys_state *next; 4741 4742 cgroup_assert_mutex_or_rcu_locked(); 4743 4744 /* if first iteration, visit leftmost descendant which may be @root */ 4745 if (!pos) 4746 return css_leftmost_descendant(root); 4747 4748 /* if we visited @root, we're done */ 4749 if (pos == root) 4750 return NULL; 4751 4752 /* if there's an unvisited sibling, visit its leftmost descendant */ 4753 next = css_next_child(pos, pos->parent); 4754 if (next) 4755 return css_leftmost_descendant(next); 4756 4757 /* no sibling left, visit parent */ 4758 return pos->parent; 4759 } 4760 4761 /** 4762 * css_has_online_children - does a css have online children 4763 * @css: the target css 4764 * 4765 * Returns %true if @css has any online children; otherwise, %false. This 4766 * function can be called from any context but the caller is responsible 4767 * for synchronizing against on/offlining as necessary. 4768 */ css_has_online_children(struct cgroup_subsys_state * css)4769 bool css_has_online_children(struct cgroup_subsys_state *css) 4770 { 4771 struct cgroup_subsys_state *child; 4772 bool ret = false; 4773 4774 rcu_read_lock(); 4775 css_for_each_child(child, css) { 4776 if (child->flags & CSS_ONLINE) { 4777 ret = true; 4778 break; 4779 } 4780 } 4781 rcu_read_unlock(); 4782 return ret; 4783 } 4784 css_task_iter_next_css_set(struct css_task_iter * it)4785 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4786 { 4787 struct list_head *l; 4788 struct cgrp_cset_link *link; 4789 struct css_set *cset; 4790 4791 lockdep_assert_held(&css_set_lock); 4792 4793 /* find the next threaded cset */ 4794 if (it->tcset_pos) { 4795 l = it->tcset_pos->next; 4796 4797 if (l != it->tcset_head) { 4798 it->tcset_pos = l; 4799 return container_of(l, struct css_set, 4800 threaded_csets_node); 4801 } 4802 4803 it->tcset_pos = NULL; 4804 } 4805 4806 /* find the next cset */ 4807 l = it->cset_pos; 4808 l = l->next; 4809 if (l == it->cset_head) { 4810 it->cset_pos = NULL; 4811 return NULL; 4812 } 4813 4814 if (it->ss) { 4815 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4816 } else { 4817 link = list_entry(l, struct cgrp_cset_link, cset_link); 4818 cset = link->cset; 4819 } 4820 4821 it->cset_pos = l; 4822 4823 /* initialize threaded css_set walking */ 4824 if (it->flags & CSS_TASK_ITER_THREADED) { 4825 if (it->cur_dcset) 4826 put_css_set_locked(it->cur_dcset); 4827 it->cur_dcset = cset; 4828 get_css_set(cset); 4829 4830 it->tcset_head = &cset->threaded_csets; 4831 it->tcset_pos = &cset->threaded_csets; 4832 } 4833 4834 return cset; 4835 } 4836 4837 /** 4838 * css_task_iter_advance_css_set - advance a task iterator to the next css_set 4839 * @it: the iterator to advance 4840 * 4841 * Advance @it to the next css_set to walk. 4842 */ css_task_iter_advance_css_set(struct css_task_iter * it)4843 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4844 { 4845 struct css_set *cset; 4846 4847 lockdep_assert_held(&css_set_lock); 4848 4849 /* Advance to the next non-empty css_set and find first non-empty tasks list*/ 4850 while ((cset = css_task_iter_next_css_set(it))) { 4851 if (!list_empty(&cset->tasks)) { 4852 it->cur_tasks_head = &cset->tasks; 4853 break; 4854 } else if (!list_empty(&cset->mg_tasks)) { 4855 it->cur_tasks_head = &cset->mg_tasks; 4856 break; 4857 } else if (!list_empty(&cset->dying_tasks)) { 4858 it->cur_tasks_head = &cset->dying_tasks; 4859 break; 4860 } 4861 } 4862 if (!cset) { 4863 it->task_pos = NULL; 4864 return; 4865 } 4866 it->task_pos = it->cur_tasks_head->next; 4867 4868 /* 4869 * We don't keep css_sets locked across iteration steps and thus 4870 * need to take steps to ensure that iteration can be resumed after 4871 * the lock is re-acquired. Iteration is performed at two levels - 4872 * css_sets and tasks in them. 4873 * 4874 * Once created, a css_set never leaves its cgroup lists, so a 4875 * pinned css_set is guaranteed to stay put and we can resume 4876 * iteration afterwards. 4877 * 4878 * Tasks may leave @cset across iteration steps. This is resolved 4879 * by registering each iterator with the css_set currently being 4880 * walked and making css_set_move_task() advance iterators whose 4881 * next task is leaving. 4882 */ 4883 if (it->cur_cset) { 4884 list_del(&it->iters_node); 4885 put_css_set_locked(it->cur_cset); 4886 } 4887 get_css_set(cset); 4888 it->cur_cset = cset; 4889 list_add(&it->iters_node, &cset->task_iters); 4890 } 4891 css_task_iter_skip(struct css_task_iter * it,struct task_struct * task)4892 static void css_task_iter_skip(struct css_task_iter *it, 4893 struct task_struct *task) 4894 { 4895 lockdep_assert_held(&css_set_lock); 4896 4897 if (it->task_pos == &task->cg_list) { 4898 it->task_pos = it->task_pos->next; 4899 it->flags |= CSS_TASK_ITER_SKIPPED; 4900 } 4901 } 4902 css_task_iter_advance(struct css_task_iter * it)4903 static void css_task_iter_advance(struct css_task_iter *it) 4904 { 4905 struct task_struct *task; 4906 4907 lockdep_assert_held(&css_set_lock); 4908 repeat: 4909 if (it->task_pos) { 4910 /* 4911 * Advance iterator to find next entry. We go through cset 4912 * tasks, mg_tasks and dying_tasks, when consumed we move onto 4913 * the next cset. 4914 */ 4915 if (it->flags & CSS_TASK_ITER_SKIPPED) 4916 it->flags &= ~CSS_TASK_ITER_SKIPPED; 4917 else 4918 it->task_pos = it->task_pos->next; 4919 4920 if (it->task_pos == &it->cur_cset->tasks) { 4921 it->cur_tasks_head = &it->cur_cset->mg_tasks; 4922 it->task_pos = it->cur_tasks_head->next; 4923 } 4924 if (it->task_pos == &it->cur_cset->mg_tasks) { 4925 it->cur_tasks_head = &it->cur_cset->dying_tasks; 4926 it->task_pos = it->cur_tasks_head->next; 4927 } 4928 if (it->task_pos == &it->cur_cset->dying_tasks) 4929 css_task_iter_advance_css_set(it); 4930 } else { 4931 /* called from start, proceed to the first cset */ 4932 css_task_iter_advance_css_set(it); 4933 } 4934 4935 if (!it->task_pos) 4936 return; 4937 4938 task = list_entry(it->task_pos, struct task_struct, cg_list); 4939 4940 if (it->flags & CSS_TASK_ITER_PROCS) { 4941 /* if PROCS, skip over tasks which aren't group leaders */ 4942 if (!thread_group_leader(task)) 4943 goto repeat; 4944 4945 /* and dying leaders w/o live member threads */ 4946 if (it->cur_tasks_head == &it->cur_cset->dying_tasks && 4947 !atomic_read(&task->signal->live)) 4948 goto repeat; 4949 } else { 4950 /* skip all dying ones */ 4951 if (it->cur_tasks_head == &it->cur_cset->dying_tasks) 4952 goto repeat; 4953 } 4954 } 4955 4956 /** 4957 * css_task_iter_start - initiate task iteration 4958 * @css: the css to walk tasks of 4959 * @flags: CSS_TASK_ITER_* flags 4960 * @it: the task iterator to use 4961 * 4962 * Initiate iteration through the tasks of @css. The caller can call 4963 * css_task_iter_next() to walk through the tasks until the function 4964 * returns NULL. On completion of iteration, css_task_iter_end() must be 4965 * called. 4966 */ css_task_iter_start(struct cgroup_subsys_state * css,unsigned int flags,struct css_task_iter * it)4967 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 4968 struct css_task_iter *it) 4969 { 4970 unsigned long irqflags; 4971 4972 memset(it, 0, sizeof(*it)); 4973 4974 spin_lock_irqsave(&css_set_lock, irqflags); 4975 4976 it->ss = css->ss; 4977 it->flags = flags; 4978 4979 if (CGROUP_HAS_SUBSYS_CONFIG && it->ss) 4980 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 4981 else 4982 it->cset_pos = &css->cgroup->cset_links; 4983 4984 it->cset_head = it->cset_pos; 4985 4986 css_task_iter_advance(it); 4987 4988 spin_unlock_irqrestore(&css_set_lock, irqflags); 4989 } 4990 4991 /** 4992 * css_task_iter_next - return the next task for the iterator 4993 * @it: the task iterator being iterated 4994 * 4995 * The "next" function for task iteration. @it should have been 4996 * initialized via css_task_iter_start(). Returns NULL when the iteration 4997 * reaches the end. 4998 */ css_task_iter_next(struct css_task_iter * it)4999 struct task_struct *css_task_iter_next(struct css_task_iter *it) 5000 { 5001 unsigned long irqflags; 5002 5003 if (it->cur_task) { 5004 put_task_struct(it->cur_task); 5005 it->cur_task = NULL; 5006 } 5007 5008 spin_lock_irqsave(&css_set_lock, irqflags); 5009 5010 /* @it may be half-advanced by skips, finish advancing */ 5011 if (it->flags & CSS_TASK_ITER_SKIPPED) 5012 css_task_iter_advance(it); 5013 5014 if (it->task_pos) { 5015 it->cur_task = list_entry(it->task_pos, struct task_struct, 5016 cg_list); 5017 get_task_struct(it->cur_task); 5018 css_task_iter_advance(it); 5019 } 5020 5021 spin_unlock_irqrestore(&css_set_lock, irqflags); 5022 5023 return it->cur_task; 5024 } 5025 5026 /** 5027 * css_task_iter_end - finish task iteration 5028 * @it: the task iterator to finish 5029 * 5030 * Finish task iteration started by css_task_iter_start(). 5031 */ css_task_iter_end(struct css_task_iter * it)5032 void css_task_iter_end(struct css_task_iter *it) 5033 { 5034 unsigned long irqflags; 5035 5036 if (it->cur_cset) { 5037 spin_lock_irqsave(&css_set_lock, irqflags); 5038 list_del(&it->iters_node); 5039 put_css_set_locked(it->cur_cset); 5040 spin_unlock_irqrestore(&css_set_lock, irqflags); 5041 } 5042 5043 if (it->cur_dcset) 5044 put_css_set(it->cur_dcset); 5045 5046 if (it->cur_task) 5047 put_task_struct(it->cur_task); 5048 } 5049 cgroup_procs_release(struct kernfs_open_file * of)5050 static void cgroup_procs_release(struct kernfs_open_file *of) 5051 { 5052 struct cgroup_file_ctx *ctx = of->priv; 5053 5054 if (ctx->procs.started) 5055 css_task_iter_end(&ctx->procs.iter); 5056 } 5057 cgroup_procs_next(struct seq_file * s,void * v,loff_t * pos)5058 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 5059 { 5060 struct kernfs_open_file *of = s->private; 5061 struct cgroup_file_ctx *ctx = of->priv; 5062 5063 if (pos) 5064 (*pos)++; 5065 5066 return css_task_iter_next(&ctx->procs.iter); 5067 } 5068 __cgroup_procs_start(struct seq_file * s,loff_t * pos,unsigned int iter_flags)5069 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 5070 unsigned int iter_flags) 5071 { 5072 struct kernfs_open_file *of = s->private; 5073 struct cgroup *cgrp = seq_css(s)->cgroup; 5074 struct cgroup_file_ctx *ctx = of->priv; 5075 struct css_task_iter *it = &ctx->procs.iter; 5076 5077 /* 5078 * When a seq_file is seeked, it's always traversed sequentially 5079 * from position 0, so we can simply keep iterating on !0 *pos. 5080 */ 5081 if (!ctx->procs.started) { 5082 if (WARN_ON_ONCE((*pos))) 5083 return ERR_PTR(-EINVAL); 5084 css_task_iter_start(&cgrp->self, iter_flags, it); 5085 ctx->procs.started = true; 5086 } else if (!(*pos)) { 5087 css_task_iter_end(it); 5088 css_task_iter_start(&cgrp->self, iter_flags, it); 5089 } else 5090 return it->cur_task; 5091 5092 return cgroup_procs_next(s, NULL, NULL); 5093 } 5094 cgroup_procs_start(struct seq_file * s,loff_t * pos)5095 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 5096 { 5097 struct cgroup *cgrp = seq_css(s)->cgroup; 5098 5099 /* 5100 * All processes of a threaded subtree belong to the domain cgroup 5101 * of the subtree. Only threads can be distributed across the 5102 * subtree. Reject reads on cgroup.procs in the subtree proper. 5103 * They're always empty anyway. 5104 */ 5105 if (cgroup_is_threaded(cgrp)) 5106 return ERR_PTR(-EOPNOTSUPP); 5107 5108 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 5109 CSS_TASK_ITER_THREADED); 5110 } 5111 cgroup_procs_show(struct seq_file * s,void * v)5112 static int cgroup_procs_show(struct seq_file *s, void *v) 5113 { 5114 seq_printf(s, "%d\n", task_pid_vnr(v)); 5115 return 0; 5116 } 5117 cgroup_may_write(const struct cgroup * cgrp,struct super_block * sb)5118 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb) 5119 { 5120 int ret; 5121 struct inode *inode; 5122 5123 lockdep_assert_held(&cgroup_mutex); 5124 5125 inode = kernfs_get_inode(sb, cgrp->procs_file.kn); 5126 if (!inode) 5127 return -ENOMEM; 5128 5129 ret = inode_permission(&nop_mnt_idmap, inode, MAY_WRITE); 5130 iput(inode); 5131 return ret; 5132 } 5133 cgroup_procs_write_permission(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,struct cgroup_namespace * ns)5134 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 5135 struct cgroup *dst_cgrp, 5136 struct super_block *sb, 5137 struct cgroup_namespace *ns) 5138 { 5139 struct cgroup *com_cgrp = src_cgrp; 5140 int ret; 5141 5142 lockdep_assert_held(&cgroup_mutex); 5143 5144 /* find the common ancestor */ 5145 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 5146 com_cgrp = cgroup_parent(com_cgrp); 5147 5148 /* %current should be authorized to migrate to the common ancestor */ 5149 ret = cgroup_may_write(com_cgrp, sb); 5150 if (ret) 5151 return ret; 5152 5153 /* 5154 * If namespaces are delegation boundaries, %current must be able 5155 * to see both source and destination cgroups from its namespace. 5156 */ 5157 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 5158 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 5159 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 5160 return -ENOENT; 5161 5162 return 0; 5163 } 5164 cgroup_attach_permissions(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,bool threadgroup,struct cgroup_namespace * ns)5165 static int cgroup_attach_permissions(struct cgroup *src_cgrp, 5166 struct cgroup *dst_cgrp, 5167 struct super_block *sb, bool threadgroup, 5168 struct cgroup_namespace *ns) 5169 { 5170 int ret = 0; 5171 5172 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns); 5173 if (ret) 5174 return ret; 5175 5176 ret = cgroup_migrate_vet_dst(dst_cgrp); 5177 if (ret) 5178 return ret; 5179 5180 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)) 5181 ret = -EOPNOTSUPP; 5182 5183 return ret; 5184 } 5185 __cgroup_procs_write(struct kernfs_open_file * of,char * buf,bool threadgroup)5186 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, 5187 bool threadgroup) 5188 { 5189 struct cgroup_file_ctx *ctx = of->priv; 5190 struct cgroup *src_cgrp, *dst_cgrp; 5191 struct task_struct *task; 5192 const struct cred *saved_cred; 5193 ssize_t ret; 5194 bool threadgroup_locked; 5195 5196 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 5197 if (!dst_cgrp) 5198 return -ENODEV; 5199 5200 task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked); 5201 ret = PTR_ERR_OR_ZERO(task); 5202 if (ret) 5203 goto out_unlock; 5204 5205 /* find the source cgroup */ 5206 spin_lock_irq(&css_set_lock); 5207 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 5208 spin_unlock_irq(&css_set_lock); 5209 5210 /* 5211 * Process and thread migrations follow same delegation rule. Check 5212 * permissions using the credentials from file open to protect against 5213 * inherited fd attacks. 5214 */ 5215 saved_cred = override_creds(of->file->f_cred); 5216 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp, 5217 of->file->f_path.dentry->d_sb, 5218 threadgroup, ctx->ns); 5219 revert_creds(saved_cred); 5220 if (ret) 5221 goto out_finish; 5222 5223 ret = cgroup_attach_task(dst_cgrp, task, threadgroup); 5224 5225 out_finish: 5226 cgroup_procs_write_finish(task, threadgroup_locked); 5227 out_unlock: 5228 cgroup_kn_unlock(of->kn); 5229 5230 return ret; 5231 } 5232 cgroup_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5233 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 5234 char *buf, size_t nbytes, loff_t off) 5235 { 5236 return __cgroup_procs_write(of, buf, true) ?: nbytes; 5237 } 5238 cgroup_threads_start(struct seq_file * s,loff_t * pos)5239 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 5240 { 5241 return __cgroup_procs_start(s, pos, 0); 5242 } 5243 cgroup_threads_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5244 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 5245 char *buf, size_t nbytes, loff_t off) 5246 { 5247 return __cgroup_procs_write(of, buf, false) ?: nbytes; 5248 } 5249 5250 /* cgroup core interface files for the default hierarchy */ 5251 static struct cftype cgroup_base_files[] = { 5252 { 5253 .name = "cgroup.type", 5254 .flags = CFTYPE_NOT_ON_ROOT, 5255 .seq_show = cgroup_type_show, 5256 .write = cgroup_type_write, 5257 }, 5258 { 5259 .name = "cgroup.procs", 5260 .flags = CFTYPE_NS_DELEGATABLE, 5261 .file_offset = offsetof(struct cgroup, procs_file), 5262 .release = cgroup_procs_release, 5263 .seq_start = cgroup_procs_start, 5264 .seq_next = cgroup_procs_next, 5265 .seq_show = cgroup_procs_show, 5266 .write = cgroup_procs_write, 5267 }, 5268 { 5269 .name = "cgroup.threads", 5270 .flags = CFTYPE_NS_DELEGATABLE, 5271 .release = cgroup_procs_release, 5272 .seq_start = cgroup_threads_start, 5273 .seq_next = cgroup_procs_next, 5274 .seq_show = cgroup_procs_show, 5275 .write = cgroup_threads_write, 5276 }, 5277 { 5278 .name = "cgroup.controllers", 5279 .seq_show = cgroup_controllers_show, 5280 }, 5281 { 5282 .name = "cgroup.subtree_control", 5283 .flags = CFTYPE_NS_DELEGATABLE, 5284 .seq_show = cgroup_subtree_control_show, 5285 .write = cgroup_subtree_control_write, 5286 }, 5287 { 5288 .name = "cgroup.events", 5289 .flags = CFTYPE_NOT_ON_ROOT, 5290 .file_offset = offsetof(struct cgroup, events_file), 5291 .seq_show = cgroup_events_show, 5292 }, 5293 { 5294 .name = "cgroup.max.descendants", 5295 .seq_show = cgroup_max_descendants_show, 5296 .write = cgroup_max_descendants_write, 5297 }, 5298 { 5299 .name = "cgroup.max.depth", 5300 .seq_show = cgroup_max_depth_show, 5301 .write = cgroup_max_depth_write, 5302 }, 5303 { 5304 .name = "cgroup.stat", 5305 .seq_show = cgroup_stat_show, 5306 }, 5307 { 5308 .name = "cgroup.freeze", 5309 .flags = CFTYPE_NOT_ON_ROOT, 5310 .seq_show = cgroup_freeze_show, 5311 .write = cgroup_freeze_write, 5312 }, 5313 { 5314 .name = "cgroup.kill", 5315 .flags = CFTYPE_NOT_ON_ROOT, 5316 .write = cgroup_kill_write, 5317 }, 5318 { 5319 .name = "cpu.stat", 5320 .seq_show = cpu_stat_show, 5321 }, 5322 { 5323 .name = "cpu.stat.local", 5324 .seq_show = cpu_local_stat_show, 5325 }, 5326 { } /* terminate */ 5327 }; 5328 5329 static struct cftype cgroup_psi_files[] = { 5330 #ifdef CONFIG_PSI 5331 { 5332 .name = "io.pressure", 5333 .file_offset = offsetof(struct cgroup, psi_files[PSI_IO]), 5334 .seq_show = cgroup_io_pressure_show, 5335 .write = cgroup_io_pressure_write, 5336 .poll = cgroup_pressure_poll, 5337 .release = cgroup_pressure_release, 5338 }, 5339 { 5340 .name = "memory.pressure", 5341 .file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]), 5342 .seq_show = cgroup_memory_pressure_show, 5343 .write = cgroup_memory_pressure_write, 5344 .poll = cgroup_pressure_poll, 5345 .release = cgroup_pressure_release, 5346 }, 5347 { 5348 .name = "cpu.pressure", 5349 .file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]), 5350 .seq_show = cgroup_cpu_pressure_show, 5351 .write = cgroup_cpu_pressure_write, 5352 .poll = cgroup_pressure_poll, 5353 .release = cgroup_pressure_release, 5354 }, 5355 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 5356 { 5357 .name = "irq.pressure", 5358 .file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]), 5359 .seq_show = cgroup_irq_pressure_show, 5360 .write = cgroup_irq_pressure_write, 5361 .poll = cgroup_pressure_poll, 5362 .release = cgroup_pressure_release, 5363 }, 5364 #endif 5365 { 5366 .name = "cgroup.pressure", 5367 .seq_show = cgroup_pressure_show, 5368 .write = cgroup_pressure_write, 5369 }, 5370 #endif /* CONFIG_PSI */ 5371 { } /* terminate */ 5372 }; 5373 5374 /* 5375 * css destruction is four-stage process. 5376 * 5377 * 1. Destruction starts. Killing of the percpu_ref is initiated. 5378 * Implemented in kill_css(). 5379 * 5380 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 5381 * and thus css_tryget_online() is guaranteed to fail, the css can be 5382 * offlined by invoking offline_css(). After offlining, the base ref is 5383 * put. Implemented in css_killed_work_fn(). 5384 * 5385 * 3. When the percpu_ref reaches zero, the only possible remaining 5386 * accessors are inside RCU read sections. css_release() schedules the 5387 * RCU callback. 5388 * 5389 * 4. After the grace period, the css can be freed. Implemented in 5390 * css_free_rwork_fn(). 5391 * 5392 * It is actually hairier because both step 2 and 4 require process context 5393 * and thus involve punting to css->destroy_work adding two additional 5394 * steps to the already complex sequence. 5395 */ css_free_rwork_fn(struct work_struct * work)5396 static void css_free_rwork_fn(struct work_struct *work) 5397 { 5398 struct cgroup_subsys_state *css = container_of(to_rcu_work(work), 5399 struct cgroup_subsys_state, destroy_rwork); 5400 struct cgroup_subsys *ss = css->ss; 5401 struct cgroup *cgrp = css->cgroup; 5402 5403 percpu_ref_exit(&css->refcnt); 5404 5405 if (ss) { 5406 /* css free path */ 5407 struct cgroup_subsys_state *parent = css->parent; 5408 int id = css->id; 5409 5410 ss->css_free(css); 5411 cgroup_idr_remove(&ss->css_idr, id); 5412 cgroup_put(cgrp); 5413 5414 if (parent) 5415 css_put(parent); 5416 } else { 5417 /* cgroup free path */ 5418 atomic_dec(&cgrp->root->nr_cgrps); 5419 if (!cgroup_on_dfl(cgrp)) 5420 cgroup1_pidlist_destroy_all(cgrp); 5421 cancel_work_sync(&cgrp->release_agent_work); 5422 bpf_cgrp_storage_free(cgrp); 5423 5424 if (cgroup_parent(cgrp)) { 5425 /* 5426 * We get a ref to the parent, and put the ref when 5427 * this cgroup is being freed, so it's guaranteed 5428 * that the parent won't be destroyed before its 5429 * children. 5430 */ 5431 cgroup_put(cgroup_parent(cgrp)); 5432 kernfs_put(cgrp->kn); 5433 psi_cgroup_free(cgrp); 5434 cgroup_rstat_exit(cgrp); 5435 kfree(cgrp); 5436 } else { 5437 /* 5438 * This is root cgroup's refcnt reaching zero, 5439 * which indicates that the root should be 5440 * released. 5441 */ 5442 cgroup_destroy_root(cgrp->root); 5443 } 5444 } 5445 } 5446 css_release_work_fn(struct work_struct * work)5447 static void css_release_work_fn(struct work_struct *work) 5448 { 5449 struct cgroup_subsys_state *css = 5450 container_of(work, struct cgroup_subsys_state, destroy_work); 5451 struct cgroup_subsys *ss = css->ss; 5452 struct cgroup *cgrp = css->cgroup; 5453 5454 cgroup_lock(); 5455 5456 css->flags |= CSS_RELEASED; 5457 list_del_rcu(&css->sibling); 5458 5459 if (ss) { 5460 struct cgroup *parent_cgrp; 5461 5462 /* css release path */ 5463 if (!list_empty(&css->rstat_css_node)) { 5464 cgroup_rstat_flush(cgrp); 5465 list_del_rcu(&css->rstat_css_node); 5466 } 5467 5468 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 5469 if (ss->css_released) 5470 ss->css_released(css); 5471 5472 cgrp->nr_dying_subsys[ss->id]--; 5473 /* 5474 * When a css is released and ready to be freed, its 5475 * nr_descendants must be zero. However, the corresponding 5476 * cgrp->nr_dying_subsys[ss->id] may not be 0 if a subsystem 5477 * is activated and deactivated multiple times with one or 5478 * more of its previous activation leaving behind dying csses. 5479 */ 5480 WARN_ON_ONCE(css->nr_descendants); 5481 parent_cgrp = cgroup_parent(cgrp); 5482 while (parent_cgrp) { 5483 parent_cgrp->nr_dying_subsys[ss->id]--; 5484 parent_cgrp = cgroup_parent(parent_cgrp); 5485 } 5486 } else { 5487 struct cgroup *tcgrp; 5488 5489 /* cgroup release path */ 5490 TRACE_CGROUP_PATH(release, cgrp); 5491 5492 cgroup_rstat_flush(cgrp); 5493 5494 spin_lock_irq(&css_set_lock); 5495 for (tcgrp = cgroup_parent(cgrp); tcgrp; 5496 tcgrp = cgroup_parent(tcgrp)) 5497 tcgrp->nr_dying_descendants--; 5498 spin_unlock_irq(&css_set_lock); 5499 5500 /* 5501 * There are two control paths which try to determine 5502 * cgroup from dentry without going through kernfs - 5503 * cgroupstats_build() and css_tryget_online_from_dir(). 5504 * Those are supported by RCU protecting clearing of 5505 * cgrp->kn->priv backpointer. 5506 */ 5507 if (cgrp->kn) 5508 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 5509 NULL); 5510 } 5511 5512 cgroup_unlock(); 5513 5514 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5515 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5516 } 5517 css_release(struct percpu_ref * ref)5518 static void css_release(struct percpu_ref *ref) 5519 { 5520 struct cgroup_subsys_state *css = 5521 container_of(ref, struct cgroup_subsys_state, refcnt); 5522 5523 INIT_WORK(&css->destroy_work, css_release_work_fn); 5524 queue_work(cgroup_destroy_wq, &css->destroy_work); 5525 } 5526 init_and_link_css(struct cgroup_subsys_state * css,struct cgroup_subsys * ss,struct cgroup * cgrp)5527 static void init_and_link_css(struct cgroup_subsys_state *css, 5528 struct cgroup_subsys *ss, struct cgroup *cgrp) 5529 { 5530 lockdep_assert_held(&cgroup_mutex); 5531 5532 cgroup_get_live(cgrp); 5533 5534 memset(css, 0, sizeof(*css)); 5535 css->cgroup = cgrp; 5536 css->ss = ss; 5537 css->id = -1; 5538 INIT_LIST_HEAD(&css->sibling); 5539 INIT_LIST_HEAD(&css->children); 5540 INIT_LIST_HEAD(&css->rstat_css_node); 5541 css->serial_nr = css_serial_nr_next++; 5542 atomic_set(&css->online_cnt, 0); 5543 5544 if (cgroup_parent(cgrp)) { 5545 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 5546 css_get(css->parent); 5547 } 5548 5549 if (ss->css_rstat_flush) 5550 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list); 5551 5552 BUG_ON(cgroup_css(cgrp, ss)); 5553 } 5554 5555 /* invoke ->css_online() on a new CSS and mark it online if successful */ online_css(struct cgroup_subsys_state * css)5556 static int online_css(struct cgroup_subsys_state *css) 5557 { 5558 struct cgroup_subsys *ss = css->ss; 5559 int ret = 0; 5560 5561 lockdep_assert_held(&cgroup_mutex); 5562 5563 if (ss->css_online) 5564 ret = ss->css_online(css); 5565 if (!ret) { 5566 css->flags |= CSS_ONLINE; 5567 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 5568 5569 atomic_inc(&css->online_cnt); 5570 if (css->parent) { 5571 atomic_inc(&css->parent->online_cnt); 5572 while ((css = css->parent)) 5573 css->nr_descendants++; 5574 } 5575 } 5576 return ret; 5577 } 5578 5579 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ offline_css(struct cgroup_subsys_state * css)5580 static void offline_css(struct cgroup_subsys_state *css) 5581 { 5582 struct cgroup_subsys *ss = css->ss; 5583 5584 lockdep_assert_held(&cgroup_mutex); 5585 5586 if (!(css->flags & CSS_ONLINE)) 5587 return; 5588 5589 if (ss->css_offline) 5590 ss->css_offline(css); 5591 5592 css->flags &= ~CSS_ONLINE; 5593 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 5594 5595 wake_up_all(&css->cgroup->offline_waitq); 5596 5597 css->cgroup->nr_dying_subsys[ss->id]++; 5598 /* 5599 * Parent css and cgroup cannot be freed until after the freeing 5600 * of child css, see css_free_rwork_fn(). 5601 */ 5602 while ((css = css->parent)) { 5603 css->nr_descendants--; 5604 css->cgroup->nr_dying_subsys[ss->id]++; 5605 } 5606 } 5607 5608 /** 5609 * css_create - create a cgroup_subsys_state 5610 * @cgrp: the cgroup new css will be associated with 5611 * @ss: the subsys of new css 5612 * 5613 * Create a new css associated with @cgrp - @ss pair. On success, the new 5614 * css is online and installed in @cgrp. This function doesn't create the 5615 * interface files. Returns 0 on success, -errno on failure. 5616 */ css_create(struct cgroup * cgrp,struct cgroup_subsys * ss)5617 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 5618 struct cgroup_subsys *ss) 5619 { 5620 struct cgroup *parent = cgroup_parent(cgrp); 5621 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 5622 struct cgroup_subsys_state *css; 5623 int err; 5624 5625 lockdep_assert_held(&cgroup_mutex); 5626 5627 css = ss->css_alloc(parent_css); 5628 if (!css) 5629 css = ERR_PTR(-ENOMEM); 5630 if (IS_ERR(css)) 5631 return css; 5632 5633 init_and_link_css(css, ss, cgrp); 5634 5635 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 5636 if (err) 5637 goto err_free_css; 5638 5639 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 5640 if (err < 0) 5641 goto err_free_css; 5642 css->id = err; 5643 5644 /* @css is ready to be brought online now, make it visible */ 5645 list_add_tail_rcu(&css->sibling, &parent_css->children); 5646 cgroup_idr_replace(&ss->css_idr, css, css->id); 5647 5648 err = online_css(css); 5649 if (err) 5650 goto err_list_del; 5651 5652 return css; 5653 5654 err_list_del: 5655 list_del_rcu(&css->sibling); 5656 err_free_css: 5657 list_del_rcu(&css->rstat_css_node); 5658 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5659 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5660 return ERR_PTR(err); 5661 } 5662 5663 /* 5664 * The returned cgroup is fully initialized including its control mask, but 5665 * it doesn't have the control mask applied. 5666 */ cgroup_create(struct cgroup * parent,const char * name,umode_t mode)5667 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name, 5668 umode_t mode) 5669 { 5670 struct cgroup_root *root = parent->root; 5671 struct cgroup *cgrp, *tcgrp; 5672 struct kernfs_node *kn; 5673 int level = parent->level + 1; 5674 int ret; 5675 5676 /* allocate the cgroup and its ID, 0 is reserved for the root */ 5677 cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL); 5678 if (!cgrp) 5679 return ERR_PTR(-ENOMEM); 5680 5681 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 5682 if (ret) 5683 goto out_free_cgrp; 5684 5685 ret = cgroup_rstat_init(cgrp); 5686 if (ret) 5687 goto out_cancel_ref; 5688 5689 /* create the directory */ 5690 kn = kernfs_create_dir_ns(parent->kn, name, mode, 5691 current_fsuid(), current_fsgid(), 5692 cgrp, NULL); 5693 if (IS_ERR(kn)) { 5694 ret = PTR_ERR(kn); 5695 goto out_stat_exit; 5696 } 5697 cgrp->kn = kn; 5698 5699 init_cgroup_housekeeping(cgrp); 5700 5701 cgrp->self.parent = &parent->self; 5702 cgrp->root = root; 5703 cgrp->level = level; 5704 5705 ret = psi_cgroup_alloc(cgrp); 5706 if (ret) 5707 goto out_kernfs_remove; 5708 5709 if (cgrp->root == &cgrp_dfl_root) { 5710 ret = cgroup_bpf_inherit(cgrp); 5711 if (ret) 5712 goto out_psi_free; 5713 } 5714 5715 /* 5716 * New cgroup inherits effective freeze counter, and 5717 * if the parent has to be frozen, the child has too. 5718 */ 5719 cgrp->freezer.e_freeze = parent->freezer.e_freeze; 5720 if (cgrp->freezer.e_freeze) { 5721 /* 5722 * Set the CGRP_FREEZE flag, so when a process will be 5723 * attached to the child cgroup, it will become frozen. 5724 * At this point the new cgroup is unpopulated, so we can 5725 * consider it frozen immediately. 5726 */ 5727 set_bit(CGRP_FREEZE, &cgrp->flags); 5728 set_bit(CGRP_FROZEN, &cgrp->flags); 5729 } 5730 5731 spin_lock_irq(&css_set_lock); 5732 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5733 cgrp->ancestors[tcgrp->level] = tcgrp; 5734 5735 if (tcgrp != cgrp) { 5736 tcgrp->nr_descendants++; 5737 5738 /* 5739 * If the new cgroup is frozen, all ancestor cgroups 5740 * get a new frozen descendant, but their state can't 5741 * change because of this. 5742 */ 5743 if (cgrp->freezer.e_freeze) 5744 tcgrp->freezer.nr_frozen_descendants++; 5745 } 5746 } 5747 spin_unlock_irq(&css_set_lock); 5748 5749 if (notify_on_release(parent)) 5750 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 5751 5752 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 5753 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 5754 5755 cgrp->self.serial_nr = css_serial_nr_next++; 5756 5757 /* allocation complete, commit to creation */ 5758 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 5759 atomic_inc(&root->nr_cgrps); 5760 cgroup_get_live(parent); 5761 5762 /* 5763 * On the default hierarchy, a child doesn't automatically inherit 5764 * subtree_control from the parent. Each is configured manually. 5765 */ 5766 if (!cgroup_on_dfl(cgrp)) 5767 cgrp->subtree_control = cgroup_control(cgrp); 5768 5769 cgroup_propagate_control(cgrp); 5770 5771 return cgrp; 5772 5773 out_psi_free: 5774 psi_cgroup_free(cgrp); 5775 out_kernfs_remove: 5776 kernfs_remove(cgrp->kn); 5777 out_stat_exit: 5778 cgroup_rstat_exit(cgrp); 5779 out_cancel_ref: 5780 percpu_ref_exit(&cgrp->self.refcnt); 5781 out_free_cgrp: 5782 kfree(cgrp); 5783 return ERR_PTR(ret); 5784 } 5785 cgroup_check_hierarchy_limits(struct cgroup * parent)5786 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 5787 { 5788 struct cgroup *cgroup; 5789 int ret = false; 5790 int level = 0; 5791 5792 lockdep_assert_held(&cgroup_mutex); 5793 5794 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 5795 if (cgroup->nr_descendants >= cgroup->max_descendants) 5796 goto fail; 5797 5798 if (level >= cgroup->max_depth) 5799 goto fail; 5800 5801 level++; 5802 } 5803 5804 ret = true; 5805 fail: 5806 return ret; 5807 } 5808 cgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)5809 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 5810 { 5811 struct cgroup *parent, *cgrp; 5812 int ret; 5813 5814 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 5815 if (strchr(name, '\n')) 5816 return -EINVAL; 5817 5818 parent = cgroup_kn_lock_live(parent_kn, false); 5819 if (!parent) 5820 return -ENODEV; 5821 5822 if (!cgroup_check_hierarchy_limits(parent)) { 5823 ret = -EAGAIN; 5824 goto out_unlock; 5825 } 5826 5827 cgrp = cgroup_create(parent, name, mode); 5828 if (IS_ERR(cgrp)) { 5829 ret = PTR_ERR(cgrp); 5830 goto out_unlock; 5831 } 5832 5833 /* 5834 * This extra ref will be put in css_free_rwork_fn() and guarantees 5835 * that @cgrp->kn is always accessible. 5836 */ 5837 kernfs_get(cgrp->kn); 5838 5839 ret = css_populate_dir(&cgrp->self); 5840 if (ret) 5841 goto out_destroy; 5842 5843 ret = cgroup_apply_control_enable(cgrp); 5844 if (ret) 5845 goto out_destroy; 5846 5847 TRACE_CGROUP_PATH(mkdir, cgrp); 5848 5849 /* let's create and online css's */ 5850 kernfs_activate(cgrp->kn); 5851 5852 ret = 0; 5853 goto out_unlock; 5854 5855 out_destroy: 5856 cgroup_destroy_locked(cgrp); 5857 out_unlock: 5858 cgroup_kn_unlock(parent_kn); 5859 return ret; 5860 } 5861 5862 /* 5863 * This is called when the refcnt of a css is confirmed to be killed. 5864 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 5865 * initiate destruction and put the css ref from kill_css(). 5866 */ css_killed_work_fn(struct work_struct * work)5867 static void css_killed_work_fn(struct work_struct *work) 5868 { 5869 struct cgroup_subsys_state *css = 5870 container_of(work, struct cgroup_subsys_state, destroy_work); 5871 5872 cgroup_lock(); 5873 5874 do { 5875 offline_css(css); 5876 css_put(css); 5877 /* @css can't go away while we're holding cgroup_mutex */ 5878 css = css->parent; 5879 } while (css && atomic_dec_and_test(&css->online_cnt)); 5880 5881 cgroup_unlock(); 5882 } 5883 5884 /* css kill confirmation processing requires process context, bounce */ css_killed_ref_fn(struct percpu_ref * ref)5885 static void css_killed_ref_fn(struct percpu_ref *ref) 5886 { 5887 struct cgroup_subsys_state *css = 5888 container_of(ref, struct cgroup_subsys_state, refcnt); 5889 5890 if (atomic_dec_and_test(&css->online_cnt)) { 5891 INIT_WORK(&css->destroy_work, css_killed_work_fn); 5892 queue_work(cgroup_destroy_wq, &css->destroy_work); 5893 } 5894 } 5895 5896 /** 5897 * kill_css - destroy a css 5898 * @css: css to destroy 5899 * 5900 * This function initiates destruction of @css by removing cgroup interface 5901 * files and putting its base reference. ->css_offline() will be invoked 5902 * asynchronously once css_tryget_online() is guaranteed to fail and when 5903 * the reference count reaches zero, @css will be released. 5904 */ kill_css(struct cgroup_subsys_state * css)5905 static void kill_css(struct cgroup_subsys_state *css) 5906 { 5907 lockdep_assert_held(&cgroup_mutex); 5908 5909 if (css->flags & CSS_DYING) 5910 return; 5911 5912 css->flags |= CSS_DYING; 5913 5914 /* 5915 * This must happen before css is disassociated with its cgroup. 5916 * See seq_css() for details. 5917 */ 5918 css_clear_dir(css); 5919 5920 /* 5921 * Killing would put the base ref, but we need to keep it alive 5922 * until after ->css_offline(). 5923 */ 5924 css_get(css); 5925 5926 /* 5927 * cgroup core guarantees that, by the time ->css_offline() is 5928 * invoked, no new css reference will be given out via 5929 * css_tryget_online(). We can't simply call percpu_ref_kill() and 5930 * proceed to offlining css's because percpu_ref_kill() doesn't 5931 * guarantee that the ref is seen as killed on all CPUs on return. 5932 * 5933 * Use percpu_ref_kill_and_confirm() to get notifications as each 5934 * css is confirmed to be seen as killed on all CPUs. 5935 */ 5936 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 5937 } 5938 5939 /** 5940 * cgroup_destroy_locked - the first stage of cgroup destruction 5941 * @cgrp: cgroup to be destroyed 5942 * 5943 * css's make use of percpu refcnts whose killing latency shouldn't be 5944 * exposed to userland and are RCU protected. Also, cgroup core needs to 5945 * guarantee that css_tryget_online() won't succeed by the time 5946 * ->css_offline() is invoked. To satisfy all the requirements, 5947 * destruction is implemented in the following two steps. 5948 * 5949 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 5950 * userland visible parts and start killing the percpu refcnts of 5951 * css's. Set up so that the next stage will be kicked off once all 5952 * the percpu refcnts are confirmed to be killed. 5953 * 5954 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 5955 * rest of destruction. Once all cgroup references are gone, the 5956 * cgroup is RCU-freed. 5957 * 5958 * This function implements s1. After this step, @cgrp is gone as far as 5959 * the userland is concerned and a new cgroup with the same name may be 5960 * created. As cgroup doesn't care about the names internally, this 5961 * doesn't cause any problem. 5962 */ cgroup_destroy_locked(struct cgroup * cgrp)5963 static int cgroup_destroy_locked(struct cgroup *cgrp) 5964 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 5965 { 5966 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 5967 struct cgroup_subsys_state *css; 5968 struct cgrp_cset_link *link; 5969 int ssid; 5970 5971 lockdep_assert_held(&cgroup_mutex); 5972 5973 /* 5974 * Only migration can raise populated from zero and we're already 5975 * holding cgroup_mutex. 5976 */ 5977 if (cgroup_is_populated(cgrp)) 5978 return -EBUSY; 5979 5980 /* 5981 * Make sure there's no live children. We can't test emptiness of 5982 * ->self.children as dead children linger on it while being 5983 * drained; otherwise, "rmdir parent/child parent" may fail. 5984 */ 5985 if (css_has_online_children(&cgrp->self)) 5986 return -EBUSY; 5987 5988 /* 5989 * Mark @cgrp and the associated csets dead. The former prevents 5990 * further task migration and child creation by disabling 5991 * cgroup_kn_lock_live(). The latter makes the csets ignored by 5992 * the migration path. 5993 */ 5994 cgrp->self.flags &= ~CSS_ONLINE; 5995 5996 spin_lock_irq(&css_set_lock); 5997 list_for_each_entry(link, &cgrp->cset_links, cset_link) 5998 link->cset->dead = true; 5999 spin_unlock_irq(&css_set_lock); 6000 6001 /* initiate massacre of all css's */ 6002 for_each_css(css, ssid, cgrp) 6003 kill_css(css); 6004 6005 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ 6006 css_clear_dir(&cgrp->self); 6007 kernfs_remove(cgrp->kn); 6008 6009 if (cgroup_is_threaded(cgrp)) 6010 parent->nr_threaded_children--; 6011 6012 spin_lock_irq(&css_set_lock); 6013 for (tcgrp = parent; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 6014 tcgrp->nr_descendants--; 6015 tcgrp->nr_dying_descendants++; 6016 /* 6017 * If the dying cgroup is frozen, decrease frozen descendants 6018 * counters of ancestor cgroups. 6019 */ 6020 if (test_bit(CGRP_FROZEN, &cgrp->flags)) 6021 tcgrp->freezer.nr_frozen_descendants--; 6022 } 6023 spin_unlock_irq(&css_set_lock); 6024 6025 cgroup1_check_for_release(parent); 6026 6027 if (cgrp->root == &cgrp_dfl_root) 6028 cgroup_bpf_offline(cgrp); 6029 6030 /* put the base reference */ 6031 percpu_ref_kill(&cgrp->self.refcnt); 6032 6033 return 0; 6034 }; 6035 cgroup_rmdir(struct kernfs_node * kn)6036 int cgroup_rmdir(struct kernfs_node *kn) 6037 { 6038 struct cgroup *cgrp; 6039 int ret = 0; 6040 6041 cgrp = cgroup_kn_lock_live(kn, false); 6042 if (!cgrp) 6043 return 0; 6044 6045 ret = cgroup_destroy_locked(cgrp); 6046 if (!ret) 6047 TRACE_CGROUP_PATH(rmdir, cgrp); 6048 6049 cgroup_kn_unlock(kn); 6050 return ret; 6051 } 6052 6053 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 6054 .show_options = cgroup_show_options, 6055 .mkdir = cgroup_mkdir, 6056 .rmdir = cgroup_rmdir, 6057 .show_path = cgroup_show_path, 6058 }; 6059 cgroup_init_subsys(struct cgroup_subsys * ss,bool early)6060 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 6061 { 6062 struct cgroup_subsys_state *css; 6063 6064 pr_debug("Initializing cgroup subsys %s\n", ss->name); 6065 6066 cgroup_lock(); 6067 6068 idr_init(&ss->css_idr); 6069 INIT_LIST_HEAD(&ss->cfts); 6070 6071 /* Create the root cgroup state for this subsystem */ 6072 ss->root = &cgrp_dfl_root; 6073 css = ss->css_alloc(NULL); 6074 /* We don't handle early failures gracefully */ 6075 BUG_ON(IS_ERR(css)); 6076 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 6077 6078 /* 6079 * Root csses are never destroyed and we can't initialize 6080 * percpu_ref during early init. Disable refcnting. 6081 */ 6082 css->flags |= CSS_NO_REF; 6083 6084 if (early) { 6085 /* allocation can't be done safely during early init */ 6086 css->id = 1; 6087 } else { 6088 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 6089 BUG_ON(css->id < 0); 6090 } 6091 6092 /* Update the init_css_set to contain a subsys 6093 * pointer to this state - since the subsystem is 6094 * newly registered, all tasks and hence the 6095 * init_css_set is in the subsystem's root cgroup. */ 6096 init_css_set.subsys[ss->id] = css; 6097 6098 have_fork_callback |= (bool)ss->fork << ss->id; 6099 have_exit_callback |= (bool)ss->exit << ss->id; 6100 have_release_callback |= (bool)ss->release << ss->id; 6101 have_canfork_callback |= (bool)ss->can_fork << ss->id; 6102 6103 /* At system boot, before all subsystems have been 6104 * registered, no tasks have been forked, so we don't 6105 * need to invoke fork callbacks here. */ 6106 BUG_ON(!list_empty(&init_task.tasks)); 6107 6108 BUG_ON(online_css(css)); 6109 6110 cgroup_unlock(); 6111 } 6112 6113 /** 6114 * cgroup_init_early - cgroup initialization at system boot 6115 * 6116 * Initialize cgroups at system boot, and initialize any 6117 * subsystems that request early init. 6118 */ cgroup_init_early(void)6119 int __init cgroup_init_early(void) 6120 { 6121 static struct cgroup_fs_context __initdata ctx; 6122 struct cgroup_subsys *ss; 6123 int i; 6124 6125 ctx.root = &cgrp_dfl_root; 6126 init_cgroup_root(&ctx); 6127 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 6128 6129 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 6130 6131 for_each_subsys(ss, i) { 6132 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 6133 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 6134 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 6135 ss->id, ss->name); 6136 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 6137 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 6138 6139 ss->id = i; 6140 ss->name = cgroup_subsys_name[i]; 6141 if (!ss->legacy_name) 6142 ss->legacy_name = cgroup_subsys_name[i]; 6143 6144 if (ss->early_init) 6145 cgroup_init_subsys(ss, true); 6146 } 6147 return 0; 6148 } 6149 6150 /** 6151 * cgroup_init - cgroup initialization 6152 * 6153 * Register cgroup filesystem and /proc file, and initialize 6154 * any subsystems that didn't request early init. 6155 */ cgroup_init(void)6156 int __init cgroup_init(void) 6157 { 6158 struct cgroup_subsys *ss; 6159 int ssid; 6160 6161 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 6162 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 6163 BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files)); 6164 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 6165 6166 cgroup_rstat_boot(); 6167 6168 get_user_ns(init_cgroup_ns.user_ns); 6169 6170 cgroup_lock(); 6171 6172 /* 6173 * Add init_css_set to the hash table so that dfl_root can link to 6174 * it during init. 6175 */ 6176 hash_add(css_set_table, &init_css_set.hlist, 6177 css_set_hash(init_css_set.subsys)); 6178 6179 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); 6180 6181 cgroup_unlock(); 6182 6183 for_each_subsys(ss, ssid) { 6184 if (ss->early_init) { 6185 struct cgroup_subsys_state *css = 6186 init_css_set.subsys[ss->id]; 6187 6188 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 6189 GFP_KERNEL); 6190 BUG_ON(css->id < 0); 6191 } else { 6192 cgroup_init_subsys(ss, false); 6193 } 6194 6195 list_add_tail(&init_css_set.e_cset_node[ssid], 6196 &cgrp_dfl_root.cgrp.e_csets[ssid]); 6197 6198 /* 6199 * Setting dfl_root subsys_mask needs to consider the 6200 * disabled flag and cftype registration needs kmalloc, 6201 * both of which aren't available during early_init. 6202 */ 6203 if (!cgroup_ssid_enabled(ssid)) 6204 continue; 6205 6206 if (cgroup1_ssid_disabled(ssid)) 6207 pr_info("Disabling %s control group subsystem in v1 mounts\n", 6208 ss->legacy_name); 6209 6210 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 6211 6212 /* implicit controllers must be threaded too */ 6213 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 6214 6215 if (ss->implicit_on_dfl) 6216 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 6217 else if (!ss->dfl_cftypes) 6218 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 6219 6220 if (ss->threaded) 6221 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 6222 6223 if (ss->dfl_cftypes == ss->legacy_cftypes) { 6224 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 6225 } else { 6226 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 6227 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 6228 } 6229 6230 if (ss->bind) 6231 ss->bind(init_css_set.subsys[ssid]); 6232 6233 cgroup_lock(); 6234 css_populate_dir(init_css_set.subsys[ssid]); 6235 cgroup_unlock(); 6236 } 6237 6238 /* init_css_set.subsys[] has been updated, re-hash */ 6239 hash_del(&init_css_set.hlist); 6240 hash_add(css_set_table, &init_css_set.hlist, 6241 css_set_hash(init_css_set.subsys)); 6242 6243 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 6244 WARN_ON(register_filesystem(&cgroup_fs_type)); 6245 WARN_ON(register_filesystem(&cgroup2_fs_type)); 6246 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); 6247 #ifdef CONFIG_CPUSETS_V1 6248 WARN_ON(register_filesystem(&cpuset_fs_type)); 6249 #endif 6250 6251 return 0; 6252 } 6253 cgroup_wq_init(void)6254 static int __init cgroup_wq_init(void) 6255 { 6256 /* 6257 * There isn't much point in executing destruction path in 6258 * parallel. Good chunk is serialized with cgroup_mutex anyway. 6259 * Use 1 for @max_active. 6260 * 6261 * We would prefer to do this in cgroup_init() above, but that 6262 * is called before init_workqueues(): so leave this until after. 6263 */ 6264 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 6265 BUG_ON(!cgroup_destroy_wq); 6266 return 0; 6267 } 6268 core_initcall(cgroup_wq_init); 6269 cgroup_path_from_kernfs_id(u64 id,char * buf,size_t buflen)6270 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen) 6271 { 6272 struct kernfs_node *kn; 6273 6274 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 6275 if (!kn) 6276 return; 6277 kernfs_path(kn, buf, buflen); 6278 kernfs_put(kn); 6279 } 6280 6281 /* 6282 * cgroup_get_from_id : get the cgroup associated with cgroup id 6283 * @id: cgroup id 6284 * On success return the cgrp or ERR_PTR on failure 6285 * Only cgroups within current task's cgroup NS are valid. 6286 */ cgroup_get_from_id(u64 id)6287 struct cgroup *cgroup_get_from_id(u64 id) 6288 { 6289 struct kernfs_node *kn; 6290 struct cgroup *cgrp, *root_cgrp; 6291 6292 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 6293 if (!kn) 6294 return ERR_PTR(-ENOENT); 6295 6296 if (kernfs_type(kn) != KERNFS_DIR) { 6297 kernfs_put(kn); 6298 return ERR_PTR(-ENOENT); 6299 } 6300 6301 rcu_read_lock(); 6302 6303 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6304 if (cgrp && !cgroup_tryget(cgrp)) 6305 cgrp = NULL; 6306 6307 rcu_read_unlock(); 6308 kernfs_put(kn); 6309 6310 if (!cgrp) 6311 return ERR_PTR(-ENOENT); 6312 6313 root_cgrp = current_cgns_cgroup_dfl(); 6314 if (!cgroup_is_descendant(cgrp, root_cgrp)) { 6315 cgroup_put(cgrp); 6316 return ERR_PTR(-ENOENT); 6317 } 6318 6319 return cgrp; 6320 } 6321 EXPORT_SYMBOL_GPL(cgroup_get_from_id); 6322 6323 /* 6324 * proc_cgroup_show() 6325 * - Print task's cgroup paths into seq_file, one line for each hierarchy 6326 * - Used for /proc/<pid>/cgroup. 6327 */ proc_cgroup_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)6328 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 6329 struct pid *pid, struct task_struct *tsk) 6330 { 6331 char *buf; 6332 int retval; 6333 struct cgroup_root *root; 6334 6335 retval = -ENOMEM; 6336 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6337 if (!buf) 6338 goto out; 6339 6340 rcu_read_lock(); 6341 spin_lock_irq(&css_set_lock); 6342 6343 for_each_root(root) { 6344 struct cgroup_subsys *ss; 6345 struct cgroup *cgrp; 6346 int ssid, count = 0; 6347 6348 if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible)) 6349 continue; 6350 6351 cgrp = task_cgroup_from_root(tsk, root); 6352 /* The root has already been unmounted. */ 6353 if (!cgrp) 6354 continue; 6355 6356 seq_printf(m, "%d:", root->hierarchy_id); 6357 if (root != &cgrp_dfl_root) 6358 for_each_subsys(ss, ssid) 6359 if (root->subsys_mask & (1 << ssid)) 6360 seq_printf(m, "%s%s", count++ ? "," : "", 6361 ss->legacy_name); 6362 if (strlen(root->name)) 6363 seq_printf(m, "%sname=%s", count ? "," : "", 6364 root->name); 6365 seq_putc(m, ':'); 6366 /* 6367 * On traditional hierarchies, all zombie tasks show up as 6368 * belonging to the root cgroup. On the default hierarchy, 6369 * while a zombie doesn't show up in "cgroup.procs" and 6370 * thus can't be migrated, its /proc/PID/cgroup keeps 6371 * reporting the cgroup it belonged to before exiting. If 6372 * the cgroup is removed before the zombie is reaped, 6373 * " (deleted)" is appended to the cgroup path. 6374 */ 6375 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 6376 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 6377 current->nsproxy->cgroup_ns); 6378 if (retval == -E2BIG) 6379 retval = -ENAMETOOLONG; 6380 if (retval < 0) 6381 goto out_unlock; 6382 6383 seq_puts(m, buf); 6384 } else { 6385 seq_puts(m, "/"); 6386 } 6387 6388 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 6389 seq_puts(m, " (deleted)\n"); 6390 else 6391 seq_putc(m, '\n'); 6392 } 6393 6394 retval = 0; 6395 out_unlock: 6396 spin_unlock_irq(&css_set_lock); 6397 rcu_read_unlock(); 6398 kfree(buf); 6399 out: 6400 return retval; 6401 } 6402 6403 /** 6404 * cgroup_fork - initialize cgroup related fields during copy_process() 6405 * @child: pointer to task_struct of forking parent process. 6406 * 6407 * A task is associated with the init_css_set until cgroup_post_fork() 6408 * attaches it to the target css_set. 6409 */ cgroup_fork(struct task_struct * child)6410 void cgroup_fork(struct task_struct *child) 6411 { 6412 RCU_INIT_POINTER(child->cgroups, &init_css_set); 6413 INIT_LIST_HEAD(&child->cg_list); 6414 } 6415 6416 /** 6417 * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer 6418 * @f: file corresponding to cgroup_dir 6419 * 6420 * Find the cgroup from a file pointer associated with a cgroup directory. 6421 * Returns a pointer to the cgroup on success. ERR_PTR is returned if the 6422 * cgroup cannot be found. 6423 */ cgroup_v1v2_get_from_file(struct file * f)6424 static struct cgroup *cgroup_v1v2_get_from_file(struct file *f) 6425 { 6426 struct cgroup_subsys_state *css; 6427 6428 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 6429 if (IS_ERR(css)) 6430 return ERR_CAST(css); 6431 6432 return css->cgroup; 6433 } 6434 6435 /** 6436 * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports 6437 * cgroup2. 6438 * @f: file corresponding to cgroup2_dir 6439 */ cgroup_get_from_file(struct file * f)6440 static struct cgroup *cgroup_get_from_file(struct file *f) 6441 { 6442 struct cgroup *cgrp = cgroup_v1v2_get_from_file(f); 6443 6444 if (IS_ERR(cgrp)) 6445 return ERR_CAST(cgrp); 6446 6447 if (!cgroup_on_dfl(cgrp)) { 6448 cgroup_put(cgrp); 6449 return ERR_PTR(-EBADF); 6450 } 6451 6452 return cgrp; 6453 } 6454 6455 /** 6456 * cgroup_css_set_fork - find or create a css_set for a child process 6457 * @kargs: the arguments passed to create the child process 6458 * 6459 * This functions finds or creates a new css_set which the child 6460 * process will be attached to in cgroup_post_fork(). By default, 6461 * the child process will be given the same css_set as its parent. 6462 * 6463 * If CLONE_INTO_CGROUP is specified this function will try to find an 6464 * existing css_set which includes the requested cgroup and if not create 6465 * a new css_set that the child will be attached to later. If this function 6466 * succeeds it will hold cgroup_threadgroup_rwsem on return. If 6467 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex 6468 * before grabbing cgroup_threadgroup_rwsem and will hold a reference 6469 * to the target cgroup. 6470 */ cgroup_css_set_fork(struct kernel_clone_args * kargs)6471 static int cgroup_css_set_fork(struct kernel_clone_args *kargs) 6472 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem) 6473 { 6474 int ret; 6475 struct cgroup *dst_cgrp = NULL; 6476 struct css_set *cset; 6477 struct super_block *sb; 6478 6479 if (kargs->flags & CLONE_INTO_CGROUP) 6480 cgroup_lock(); 6481 6482 cgroup_threadgroup_change_begin(current); 6483 6484 spin_lock_irq(&css_set_lock); 6485 cset = task_css_set(current); 6486 get_css_set(cset); 6487 if (kargs->cgrp) 6488 kargs->kill_seq = kargs->cgrp->kill_seq; 6489 else 6490 kargs->kill_seq = cset->dfl_cgrp->kill_seq; 6491 spin_unlock_irq(&css_set_lock); 6492 6493 if (!(kargs->flags & CLONE_INTO_CGROUP)) { 6494 kargs->cset = cset; 6495 return 0; 6496 } 6497 6498 CLASS(fd_raw, f)(kargs->cgroup); 6499 if (fd_empty(f)) { 6500 ret = -EBADF; 6501 goto err; 6502 } 6503 sb = fd_file(f)->f_path.dentry->d_sb; 6504 6505 dst_cgrp = cgroup_get_from_file(fd_file(f)); 6506 if (IS_ERR(dst_cgrp)) { 6507 ret = PTR_ERR(dst_cgrp); 6508 dst_cgrp = NULL; 6509 goto err; 6510 } 6511 6512 if (cgroup_is_dead(dst_cgrp)) { 6513 ret = -ENODEV; 6514 goto err; 6515 } 6516 6517 /* 6518 * Verify that we the target cgroup is writable for us. This is 6519 * usually done by the vfs layer but since we're not going through 6520 * the vfs layer here we need to do it "manually". 6521 */ 6522 ret = cgroup_may_write(dst_cgrp, sb); 6523 if (ret) 6524 goto err; 6525 6526 /* 6527 * Spawning a task directly into a cgroup works by passing a file 6528 * descriptor to the target cgroup directory. This can even be an O_PATH 6529 * file descriptor. But it can never be a cgroup.procs file descriptor. 6530 * This was done on purpose so spawning into a cgroup could be 6531 * conceptualized as an atomic 6532 * 6533 * fd = openat(dfd_cgroup, "cgroup.procs", ...); 6534 * write(fd, <child-pid>, ...); 6535 * 6536 * sequence, i.e. it's a shorthand for the caller opening and writing 6537 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us 6538 * to always use the caller's credentials. 6539 */ 6540 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb, 6541 !(kargs->flags & CLONE_THREAD), 6542 current->nsproxy->cgroup_ns); 6543 if (ret) 6544 goto err; 6545 6546 kargs->cset = find_css_set(cset, dst_cgrp); 6547 if (!kargs->cset) { 6548 ret = -ENOMEM; 6549 goto err; 6550 } 6551 6552 put_css_set(cset); 6553 kargs->cgrp = dst_cgrp; 6554 return ret; 6555 6556 err: 6557 cgroup_threadgroup_change_end(current); 6558 cgroup_unlock(); 6559 if (dst_cgrp) 6560 cgroup_put(dst_cgrp); 6561 put_css_set(cset); 6562 if (kargs->cset) 6563 put_css_set(kargs->cset); 6564 return ret; 6565 } 6566 6567 /** 6568 * cgroup_css_set_put_fork - drop references we took during fork 6569 * @kargs: the arguments passed to create the child process 6570 * 6571 * Drop references to the prepared css_set and target cgroup if 6572 * CLONE_INTO_CGROUP was requested. 6573 */ cgroup_css_set_put_fork(struct kernel_clone_args * kargs)6574 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs) 6575 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6576 { 6577 struct cgroup *cgrp = kargs->cgrp; 6578 struct css_set *cset = kargs->cset; 6579 6580 cgroup_threadgroup_change_end(current); 6581 6582 if (cset) { 6583 put_css_set(cset); 6584 kargs->cset = NULL; 6585 } 6586 6587 if (kargs->flags & CLONE_INTO_CGROUP) { 6588 cgroup_unlock(); 6589 if (cgrp) { 6590 cgroup_put(cgrp); 6591 kargs->cgrp = NULL; 6592 } 6593 } 6594 } 6595 6596 /** 6597 * cgroup_can_fork - called on a new task before the process is exposed 6598 * @child: the child process 6599 * @kargs: the arguments passed to create the child process 6600 * 6601 * This prepares a new css_set for the child process which the child will 6602 * be attached to in cgroup_post_fork(). 6603 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork() 6604 * callback returns an error, the fork aborts with that error code. This 6605 * allows for a cgroup subsystem to conditionally allow or deny new forks. 6606 */ cgroup_can_fork(struct task_struct * child,struct kernel_clone_args * kargs)6607 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs) 6608 { 6609 struct cgroup_subsys *ss; 6610 int i, j, ret; 6611 6612 ret = cgroup_css_set_fork(kargs); 6613 if (ret) 6614 return ret; 6615 6616 do_each_subsys_mask(ss, i, have_canfork_callback) { 6617 ret = ss->can_fork(child, kargs->cset); 6618 if (ret) 6619 goto out_revert; 6620 } while_each_subsys_mask(); 6621 6622 return 0; 6623 6624 out_revert: 6625 for_each_subsys(ss, j) { 6626 if (j >= i) 6627 break; 6628 if (ss->cancel_fork) 6629 ss->cancel_fork(child, kargs->cset); 6630 } 6631 6632 cgroup_css_set_put_fork(kargs); 6633 6634 return ret; 6635 } 6636 6637 /** 6638 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 6639 * @child: the child process 6640 * @kargs: the arguments passed to create the child process 6641 * 6642 * This calls the cancel_fork() callbacks if a fork failed *after* 6643 * cgroup_can_fork() succeeded and cleans up references we took to 6644 * prepare a new css_set for the child process in cgroup_can_fork(). 6645 */ cgroup_cancel_fork(struct task_struct * child,struct kernel_clone_args * kargs)6646 void cgroup_cancel_fork(struct task_struct *child, 6647 struct kernel_clone_args *kargs) 6648 { 6649 struct cgroup_subsys *ss; 6650 int i; 6651 6652 for_each_subsys(ss, i) 6653 if (ss->cancel_fork) 6654 ss->cancel_fork(child, kargs->cset); 6655 6656 cgroup_css_set_put_fork(kargs); 6657 } 6658 6659 /** 6660 * cgroup_post_fork - finalize cgroup setup for the child process 6661 * @child: the child process 6662 * @kargs: the arguments passed to create the child process 6663 * 6664 * Attach the child process to its css_set calling the subsystem fork() 6665 * callbacks. 6666 */ cgroup_post_fork(struct task_struct * child,struct kernel_clone_args * kargs)6667 void cgroup_post_fork(struct task_struct *child, 6668 struct kernel_clone_args *kargs) 6669 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6670 { 6671 unsigned int cgrp_kill_seq = 0; 6672 unsigned long cgrp_flags = 0; 6673 bool kill = false; 6674 struct cgroup_subsys *ss; 6675 struct css_set *cset; 6676 int i; 6677 6678 cset = kargs->cset; 6679 kargs->cset = NULL; 6680 6681 spin_lock_irq(&css_set_lock); 6682 6683 /* init tasks are special, only link regular threads */ 6684 if (likely(child->pid)) { 6685 if (kargs->cgrp) { 6686 cgrp_flags = kargs->cgrp->flags; 6687 cgrp_kill_seq = kargs->cgrp->kill_seq; 6688 } else { 6689 cgrp_flags = cset->dfl_cgrp->flags; 6690 cgrp_kill_seq = cset->dfl_cgrp->kill_seq; 6691 } 6692 6693 WARN_ON_ONCE(!list_empty(&child->cg_list)); 6694 cset->nr_tasks++; 6695 css_set_move_task(child, NULL, cset, false); 6696 } else { 6697 put_css_set(cset); 6698 cset = NULL; 6699 } 6700 6701 if (!(child->flags & PF_KTHREAD)) { 6702 if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) { 6703 /* 6704 * If the cgroup has to be frozen, the new task has 6705 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to 6706 * get the task into the frozen state. 6707 */ 6708 spin_lock(&child->sighand->siglock); 6709 WARN_ON_ONCE(child->frozen); 6710 child->jobctl |= JOBCTL_TRAP_FREEZE; 6711 spin_unlock(&child->sighand->siglock); 6712 6713 /* 6714 * Calling cgroup_update_frozen() isn't required here, 6715 * because it will be called anyway a bit later from 6716 * do_freezer_trap(). So we avoid cgroup's transient 6717 * switch from the frozen state and back. 6718 */ 6719 } 6720 6721 /* 6722 * If the cgroup is to be killed notice it now and take the 6723 * child down right after we finished preparing it for 6724 * userspace. 6725 */ 6726 kill = kargs->kill_seq != cgrp_kill_seq; 6727 } 6728 6729 spin_unlock_irq(&css_set_lock); 6730 6731 /* 6732 * Call ss->fork(). This must happen after @child is linked on 6733 * css_set; otherwise, @child might change state between ->fork() 6734 * and addition to css_set. 6735 */ 6736 do_each_subsys_mask(ss, i, have_fork_callback) { 6737 ss->fork(child); 6738 } while_each_subsys_mask(); 6739 6740 /* Make the new cset the root_cset of the new cgroup namespace. */ 6741 if (kargs->flags & CLONE_NEWCGROUP) { 6742 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset; 6743 6744 get_css_set(cset); 6745 child->nsproxy->cgroup_ns->root_cset = cset; 6746 put_css_set(rcset); 6747 } 6748 6749 /* Cgroup has to be killed so take down child immediately. */ 6750 if (unlikely(kill)) 6751 do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID); 6752 6753 cgroup_css_set_put_fork(kargs); 6754 } 6755 6756 /** 6757 * cgroup_exit - detach cgroup from exiting task 6758 * @tsk: pointer to task_struct of exiting process 6759 * 6760 * Description: Detach cgroup from @tsk. 6761 * 6762 */ cgroup_exit(struct task_struct * tsk)6763 void cgroup_exit(struct task_struct *tsk) 6764 { 6765 struct cgroup_subsys *ss; 6766 struct css_set *cset; 6767 int i; 6768 6769 spin_lock_irq(&css_set_lock); 6770 6771 WARN_ON_ONCE(list_empty(&tsk->cg_list)); 6772 cset = task_css_set(tsk); 6773 css_set_move_task(tsk, cset, NULL, false); 6774 cset->nr_tasks--; 6775 /* matches the signal->live check in css_task_iter_advance() */ 6776 if (thread_group_leader(tsk) && atomic_read(&tsk->signal->live)) 6777 list_add_tail(&tsk->cg_list, &cset->dying_tasks); 6778 6779 if (dl_task(tsk)) 6780 dec_dl_tasks_cs(tsk); 6781 6782 WARN_ON_ONCE(cgroup_task_frozen(tsk)); 6783 if (unlikely(!(tsk->flags & PF_KTHREAD) && 6784 test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags))) 6785 cgroup_update_frozen(task_dfl_cgroup(tsk)); 6786 6787 spin_unlock_irq(&css_set_lock); 6788 6789 /* see cgroup_post_fork() for details */ 6790 do_each_subsys_mask(ss, i, have_exit_callback) { 6791 ss->exit(tsk); 6792 } while_each_subsys_mask(); 6793 } 6794 cgroup_release(struct task_struct * task)6795 void cgroup_release(struct task_struct *task) 6796 { 6797 struct cgroup_subsys *ss; 6798 int ssid; 6799 6800 do_each_subsys_mask(ss, ssid, have_release_callback) { 6801 ss->release(task); 6802 } while_each_subsys_mask(); 6803 6804 if (!list_empty(&task->cg_list)) { 6805 spin_lock_irq(&css_set_lock); 6806 css_set_skip_task_iters(task_css_set(task), task); 6807 list_del_init(&task->cg_list); 6808 spin_unlock_irq(&css_set_lock); 6809 } 6810 } 6811 cgroup_free(struct task_struct * task)6812 void cgroup_free(struct task_struct *task) 6813 { 6814 struct css_set *cset = task_css_set(task); 6815 put_css_set(cset); 6816 } 6817 cgroup_disable(char * str)6818 static int __init cgroup_disable(char *str) 6819 { 6820 struct cgroup_subsys *ss; 6821 char *token; 6822 int i; 6823 6824 while ((token = strsep(&str, ",")) != NULL) { 6825 if (!*token) 6826 continue; 6827 6828 for_each_subsys(ss, i) { 6829 if (strcmp(token, ss->name) && 6830 strcmp(token, ss->legacy_name)) 6831 continue; 6832 6833 static_branch_disable(cgroup_subsys_enabled_key[i]); 6834 pr_info("Disabling %s control group subsystem\n", 6835 ss->name); 6836 } 6837 6838 for (i = 0; i < OPT_FEATURE_COUNT; i++) { 6839 if (strcmp(token, cgroup_opt_feature_names[i])) 6840 continue; 6841 cgroup_feature_disable_mask |= 1 << i; 6842 pr_info("Disabling %s control group feature\n", 6843 cgroup_opt_feature_names[i]); 6844 break; 6845 } 6846 } 6847 return 1; 6848 } 6849 __setup("cgroup_disable=", cgroup_disable); 6850 enable_debug_cgroup(void)6851 void __init __weak enable_debug_cgroup(void) { } 6852 enable_cgroup_debug(char * str)6853 static int __init enable_cgroup_debug(char *str) 6854 { 6855 cgroup_debug = true; 6856 enable_debug_cgroup(); 6857 return 1; 6858 } 6859 __setup("cgroup_debug", enable_cgroup_debug); 6860 cgroup_favordynmods_setup(char * str)6861 static int __init cgroup_favordynmods_setup(char *str) 6862 { 6863 return (kstrtobool(str, &have_favordynmods) == 0); 6864 } 6865 __setup("cgroup_favordynmods=", cgroup_favordynmods_setup); 6866 6867 /** 6868 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 6869 * @dentry: directory dentry of interest 6870 * @ss: subsystem of interest 6871 * 6872 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 6873 * to get the corresponding css and return it. If such css doesn't exist 6874 * or can't be pinned, an ERR_PTR value is returned. 6875 */ css_tryget_online_from_dir(struct dentry * dentry,struct cgroup_subsys * ss)6876 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 6877 struct cgroup_subsys *ss) 6878 { 6879 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 6880 struct file_system_type *s_type = dentry->d_sb->s_type; 6881 struct cgroup_subsys_state *css = NULL; 6882 struct cgroup *cgrp; 6883 6884 /* is @dentry a cgroup dir? */ 6885 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 6886 !kn || kernfs_type(kn) != KERNFS_DIR) 6887 return ERR_PTR(-EBADF); 6888 6889 rcu_read_lock(); 6890 6891 /* 6892 * This path doesn't originate from kernfs and @kn could already 6893 * have been or be removed at any point. @kn->priv is RCU 6894 * protected for this access. See css_release_work_fn() for details. 6895 */ 6896 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6897 if (cgrp) 6898 css = cgroup_css(cgrp, ss); 6899 6900 if (!css || !css_tryget_online(css)) 6901 css = ERR_PTR(-ENOENT); 6902 6903 rcu_read_unlock(); 6904 return css; 6905 } 6906 6907 /** 6908 * css_from_id - lookup css by id 6909 * @id: the cgroup id 6910 * @ss: cgroup subsys to be looked into 6911 * 6912 * Returns the css if there's valid one with @id, otherwise returns NULL. 6913 * Should be called under rcu_read_lock(). 6914 */ css_from_id(int id,struct cgroup_subsys * ss)6915 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 6916 { 6917 WARN_ON_ONCE(!rcu_read_lock_held()); 6918 return idr_find(&ss->css_idr, id); 6919 } 6920 6921 /** 6922 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 6923 * @path: path on the default hierarchy 6924 * 6925 * Find the cgroup at @path on the default hierarchy, increment its 6926 * reference count and return it. Returns pointer to the found cgroup on 6927 * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already 6928 * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory. 6929 */ cgroup_get_from_path(const char * path)6930 struct cgroup *cgroup_get_from_path(const char *path) 6931 { 6932 struct kernfs_node *kn; 6933 struct cgroup *cgrp = ERR_PTR(-ENOENT); 6934 struct cgroup *root_cgrp; 6935 6936 root_cgrp = current_cgns_cgroup_dfl(); 6937 kn = kernfs_walk_and_get(root_cgrp->kn, path); 6938 if (!kn) 6939 goto out; 6940 6941 if (kernfs_type(kn) != KERNFS_DIR) { 6942 cgrp = ERR_PTR(-ENOTDIR); 6943 goto out_kernfs; 6944 } 6945 6946 rcu_read_lock(); 6947 6948 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6949 if (!cgrp || !cgroup_tryget(cgrp)) 6950 cgrp = ERR_PTR(-ENOENT); 6951 6952 rcu_read_unlock(); 6953 6954 out_kernfs: 6955 kernfs_put(kn); 6956 out: 6957 return cgrp; 6958 } 6959 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 6960 6961 /** 6962 * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd 6963 * @fd: fd obtained by open(cgroup_dir) 6964 * 6965 * Find the cgroup from a fd which should be obtained 6966 * by opening a cgroup directory. Returns a pointer to the 6967 * cgroup on success. ERR_PTR is returned if the cgroup 6968 * cannot be found. 6969 */ cgroup_v1v2_get_from_fd(int fd)6970 struct cgroup *cgroup_v1v2_get_from_fd(int fd) 6971 { 6972 CLASS(fd_raw, f)(fd); 6973 if (fd_empty(f)) 6974 return ERR_PTR(-EBADF); 6975 6976 return cgroup_v1v2_get_from_file(fd_file(f)); 6977 } 6978 6979 /** 6980 * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports 6981 * cgroup2. 6982 * @fd: fd obtained by open(cgroup2_dir) 6983 */ cgroup_get_from_fd(int fd)6984 struct cgroup *cgroup_get_from_fd(int fd) 6985 { 6986 struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd); 6987 6988 if (IS_ERR(cgrp)) 6989 return ERR_CAST(cgrp); 6990 6991 if (!cgroup_on_dfl(cgrp)) { 6992 cgroup_put(cgrp); 6993 return ERR_PTR(-EBADF); 6994 } 6995 return cgrp; 6996 } 6997 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 6998 power_of_ten(int power)6999 static u64 power_of_ten(int power) 7000 { 7001 u64 v = 1; 7002 while (power--) 7003 v *= 10; 7004 return v; 7005 } 7006 7007 /** 7008 * cgroup_parse_float - parse a floating number 7009 * @input: input string 7010 * @dec_shift: number of decimal digits to shift 7011 * @v: output 7012 * 7013 * Parse a decimal floating point number in @input and store the result in 7014 * @v with decimal point right shifted @dec_shift times. For example, if 7015 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345. 7016 * Returns 0 on success, -errno otherwise. 7017 * 7018 * There's nothing cgroup specific about this function except that it's 7019 * currently the only user. 7020 */ cgroup_parse_float(const char * input,unsigned dec_shift,s64 * v)7021 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v) 7022 { 7023 s64 whole, frac = 0; 7024 int fstart = 0, fend = 0, flen; 7025 7026 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend)) 7027 return -EINVAL; 7028 if (frac < 0) 7029 return -EINVAL; 7030 7031 flen = fend > fstart ? fend - fstart : 0; 7032 if (flen < dec_shift) 7033 frac *= power_of_ten(dec_shift - flen); 7034 else 7035 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift)); 7036 7037 *v = whole * power_of_ten(dec_shift) + frac; 7038 return 0; 7039 } 7040 7041 /* 7042 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 7043 * definition in cgroup-defs.h. 7044 */ 7045 #ifdef CONFIG_SOCK_CGROUP_DATA 7046 cgroup_sk_alloc(struct sock_cgroup_data * skcd)7047 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 7048 { 7049 struct cgroup *cgroup; 7050 7051 rcu_read_lock(); 7052 /* Don't associate the sock with unrelated interrupted task's cgroup. */ 7053 if (in_interrupt()) { 7054 cgroup = &cgrp_dfl_root.cgrp; 7055 cgroup_get(cgroup); 7056 goto out; 7057 } 7058 7059 while (true) { 7060 struct css_set *cset; 7061 7062 cset = task_css_set(current); 7063 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 7064 cgroup = cset->dfl_cgrp; 7065 break; 7066 } 7067 cpu_relax(); 7068 } 7069 out: 7070 skcd->cgroup = cgroup; 7071 cgroup_bpf_get(cgroup); 7072 rcu_read_unlock(); 7073 } 7074 cgroup_sk_clone(struct sock_cgroup_data * skcd)7075 void cgroup_sk_clone(struct sock_cgroup_data *skcd) 7076 { 7077 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 7078 7079 /* 7080 * We might be cloning a socket which is left in an empty 7081 * cgroup and the cgroup might have already been rmdir'd. 7082 * Don't use cgroup_get_live(). 7083 */ 7084 cgroup_get(cgrp); 7085 cgroup_bpf_get(cgrp); 7086 } 7087 cgroup_sk_free(struct sock_cgroup_data * skcd)7088 void cgroup_sk_free(struct sock_cgroup_data *skcd) 7089 { 7090 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 7091 7092 cgroup_bpf_put(cgrp); 7093 cgroup_put(cgrp); 7094 } 7095 7096 #endif /* CONFIG_SOCK_CGROUP_DATA */ 7097 7098 #ifdef CONFIG_SYSFS show_delegatable_files(struct cftype * files,char * buf,ssize_t size,const char * prefix)7099 static ssize_t show_delegatable_files(struct cftype *files, char *buf, 7100 ssize_t size, const char *prefix) 7101 { 7102 struct cftype *cft; 7103 ssize_t ret = 0; 7104 7105 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 7106 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 7107 continue; 7108 7109 if (prefix) 7110 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 7111 7112 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 7113 7114 if (WARN_ON(ret >= size)) 7115 break; 7116 } 7117 7118 return ret; 7119 } 7120 delegate_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)7121 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 7122 char *buf) 7123 { 7124 struct cgroup_subsys *ss; 7125 int ssid; 7126 ssize_t ret = 0; 7127 7128 ret = show_delegatable_files(cgroup_base_files, buf + ret, 7129 PAGE_SIZE - ret, NULL); 7130 if (cgroup_psi_enabled()) 7131 ret += show_delegatable_files(cgroup_psi_files, buf + ret, 7132 PAGE_SIZE - ret, NULL); 7133 7134 for_each_subsys(ss, ssid) 7135 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 7136 PAGE_SIZE - ret, 7137 cgroup_subsys_name[ssid]); 7138 7139 return ret; 7140 } 7141 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 7142 features_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)7143 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 7144 char *buf) 7145 { 7146 return snprintf(buf, PAGE_SIZE, 7147 "nsdelegate\n" 7148 "favordynmods\n" 7149 "memory_localevents\n" 7150 "memory_recursiveprot\n" 7151 "memory_hugetlb_accounting\n" 7152 "pids_localevents\n"); 7153 } 7154 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 7155 7156 static struct attribute *cgroup_sysfs_attrs[] = { 7157 &cgroup_delegate_attr.attr, 7158 &cgroup_features_attr.attr, 7159 NULL, 7160 }; 7161 7162 static const struct attribute_group cgroup_sysfs_attr_group = { 7163 .attrs = cgroup_sysfs_attrs, 7164 .name = "cgroup", 7165 }; 7166 cgroup_sysfs_init(void)7167 static int __init cgroup_sysfs_init(void) 7168 { 7169 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 7170 } 7171 subsys_initcall(cgroup_sysfs_init); 7172 7173 #endif /* CONFIG_SYSFS */ 7174