xref: /linux/kernel/cgroup/cgroup.c (revision 5d6ba5ab8582aa35c1ee98e47af28e6f6772596c)
1  /*
2   *  Generic process-grouping system.
3   *
4   *  Based originally on the cpuset system, extracted by Paul Menage
5   *  Copyright (C) 2006 Google, Inc
6   *
7   *  Notifications support
8   *  Copyright (C) 2009 Nokia Corporation
9   *  Author: Kirill A. Shutemov
10   *
11   *  Copyright notices from the original cpuset code:
12   *  --------------------------------------------------
13   *  Copyright (C) 2003 BULL SA.
14   *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15   *
16   *  Portions derived from Patrick Mochel's sysfs code.
17   *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18   *
19   *  2003-10-10 Written by Simon Derr.
20   *  2003-10-22 Updates by Stephen Hemminger.
21   *  2004 May-July Rework by Paul Jackson.
22   *  ---------------------------------------------------
23   *
24   *  This file is subject to the terms and conditions of the GNU General Public
25   *  License.  See the file COPYING in the main directory of the Linux
26   *  distribution for more details.
27   */
28  
29  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30  
31  #include "cgroup-internal.h"
32  
33  #include <linux/bpf-cgroup.h>
34  #include <linux/cred.h>
35  #include <linux/errno.h>
36  #include <linux/init_task.h>
37  #include <linux/kernel.h>
38  #include <linux/magic.h>
39  #include <linux/mutex.h>
40  #include <linux/mount.h>
41  #include <linux/pagemap.h>
42  #include <linux/proc_fs.h>
43  #include <linux/rcupdate.h>
44  #include <linux/sched.h>
45  #include <linux/sched/task.h>
46  #include <linux/slab.h>
47  #include <linux/spinlock.h>
48  #include <linux/percpu-rwsem.h>
49  #include <linux/string.h>
50  #include <linux/hashtable.h>
51  #include <linux/idr.h>
52  #include <linux/kthread.h>
53  #include <linux/atomic.h>
54  #include <linux/cpuset.h>
55  #include <linux/proc_ns.h>
56  #include <linux/nsproxy.h>
57  #include <linux/file.h>
58  #include <linux/fs_parser.h>
59  #include <linux/sched/cputime.h>
60  #include <linux/sched/deadline.h>
61  #include <linux/psi.h>
62  #include <net/sock.h>
63  
64  #define CREATE_TRACE_POINTS
65  #include <trace/events/cgroup.h>
66  
67  #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
68  					 MAX_CFTYPE_NAME + 2)
69  /* let's not notify more than 100 times per second */
70  #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
71  
72  /*
73   * To avoid confusing the compiler (and generating warnings) with code
74   * that attempts to access what would be a 0-element array (i.e. sized
75   * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this
76   * constant expression can be added.
77   */
78  #define CGROUP_HAS_SUBSYS_CONFIG	(CGROUP_SUBSYS_COUNT > 0)
79  
80  /*
81   * cgroup_mutex is the master lock.  Any modification to cgroup or its
82   * hierarchy must be performed while holding it.
83   *
84   * css_set_lock protects task->cgroups pointer, the list of css_set
85   * objects, and the chain of tasks off each css_set.
86   *
87   * These locks are exported if CONFIG_PROVE_RCU so that accessors in
88   * cgroup.h can use them for lockdep annotations.
89   */
90  DEFINE_MUTEX(cgroup_mutex);
91  DEFINE_SPINLOCK(css_set_lock);
92  
93  #ifdef CONFIG_PROVE_RCU
94  EXPORT_SYMBOL_GPL(cgroup_mutex);
95  EXPORT_SYMBOL_GPL(css_set_lock);
96  #endif
97  
98  DEFINE_SPINLOCK(trace_cgroup_path_lock);
99  char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
100  static bool cgroup_debug __read_mostly;
101  
102  /*
103   * Protects cgroup_idr and css_idr so that IDs can be released without
104   * grabbing cgroup_mutex.
105   */
106  static DEFINE_SPINLOCK(cgroup_idr_lock);
107  
108  /*
109   * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
110   * against file removal/re-creation across css hiding.
111   */
112  static DEFINE_SPINLOCK(cgroup_file_kn_lock);
113  
114  DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
115  
116  #define cgroup_assert_mutex_or_rcu_locked()				\
117  	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
118  			   !lockdep_is_held(&cgroup_mutex),		\
119  			   "cgroup_mutex or RCU read lock required");
120  
121  /*
122   * cgroup destruction makes heavy use of work items and there can be a lot
123   * of concurrent destructions.  Use a separate workqueue so that cgroup
124   * destruction work items don't end up filling up max_active of system_wq
125   * which may lead to deadlock.
126   */
127  static struct workqueue_struct *cgroup_destroy_wq;
128  
129  /* generate an array of cgroup subsystem pointers */
130  #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
131  struct cgroup_subsys *cgroup_subsys[] = {
132  #include <linux/cgroup_subsys.h>
133  };
134  #undef SUBSYS
135  
136  /* array of cgroup subsystem names */
137  #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
138  static const char *cgroup_subsys_name[] = {
139  #include <linux/cgroup_subsys.h>
140  };
141  #undef SUBSYS
142  
143  /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
144  #define SUBSYS(_x)								\
145  	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
146  	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
147  	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
148  	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
149  #include <linux/cgroup_subsys.h>
150  #undef SUBSYS
151  
152  #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
153  static struct static_key_true *cgroup_subsys_enabled_key[] = {
154  #include <linux/cgroup_subsys.h>
155  };
156  #undef SUBSYS
157  
158  #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
159  static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
160  #include <linux/cgroup_subsys.h>
161  };
162  #undef SUBSYS
163  
164  static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
165  
166  /* the default hierarchy */
167  struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
168  EXPORT_SYMBOL_GPL(cgrp_dfl_root);
169  
170  /*
171   * The default hierarchy always exists but is hidden until mounted for the
172   * first time.  This is for backward compatibility.
173   */
174  bool cgrp_dfl_visible;
175  
176  /* some controllers are not supported in the default hierarchy */
177  static u16 cgrp_dfl_inhibit_ss_mask;
178  
179  /* some controllers are implicitly enabled on the default hierarchy */
180  static u16 cgrp_dfl_implicit_ss_mask;
181  
182  /* some controllers can be threaded on the default hierarchy */
183  static u16 cgrp_dfl_threaded_ss_mask;
184  
185  /* The list of hierarchy roots */
186  LIST_HEAD(cgroup_roots);
187  static int cgroup_root_count;
188  
189  /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
190  static DEFINE_IDR(cgroup_hierarchy_idr);
191  
192  /*
193   * Assign a monotonically increasing serial number to csses.  It guarantees
194   * cgroups with bigger numbers are newer than those with smaller numbers.
195   * Also, as csses are always appended to the parent's ->children list, it
196   * guarantees that sibling csses are always sorted in the ascending serial
197   * number order on the list.  Protected by cgroup_mutex.
198   */
199  static u64 css_serial_nr_next = 1;
200  
201  /*
202   * These bitmasks identify subsystems with specific features to avoid
203   * having to do iterative checks repeatedly.
204   */
205  static u16 have_fork_callback __read_mostly;
206  static u16 have_exit_callback __read_mostly;
207  static u16 have_release_callback __read_mostly;
208  static u16 have_canfork_callback __read_mostly;
209  
210  static bool have_favordynmods __ro_after_init = IS_ENABLED(CONFIG_CGROUP_FAVOR_DYNMODS);
211  
212  /* cgroup namespace for init task */
213  struct cgroup_namespace init_cgroup_ns = {
214  	.ns.count	= REFCOUNT_INIT(2),
215  	.user_ns	= &init_user_ns,
216  	.ns.ops		= &cgroupns_operations,
217  	.ns.inum	= PROC_CGROUP_INIT_INO,
218  	.root_cset	= &init_css_set,
219  };
220  
221  static struct file_system_type cgroup2_fs_type;
222  static struct cftype cgroup_base_files[];
223  static struct cftype cgroup_psi_files[];
224  
225  /* cgroup optional features */
226  enum cgroup_opt_features {
227  #ifdef CONFIG_PSI
228  	OPT_FEATURE_PRESSURE,
229  #endif
230  	OPT_FEATURE_COUNT
231  };
232  
233  static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
234  #ifdef CONFIG_PSI
235  	"pressure",
236  #endif
237  };
238  
239  static u16 cgroup_feature_disable_mask __read_mostly;
240  
241  static int cgroup_apply_control(struct cgroup *cgrp);
242  static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
243  static void css_task_iter_skip(struct css_task_iter *it,
244  			       struct task_struct *task);
245  static int cgroup_destroy_locked(struct cgroup *cgrp);
246  static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
247  					      struct cgroup_subsys *ss);
248  static void css_release(struct percpu_ref *ref);
249  static void kill_css(struct cgroup_subsys_state *css);
250  static int cgroup_addrm_files(struct cgroup_subsys_state *css,
251  			      struct cgroup *cgrp, struct cftype cfts[],
252  			      bool is_add);
253  
254  #ifdef CONFIG_DEBUG_CGROUP_REF
255  #define CGROUP_REF_FN_ATTRS	noinline
256  #define CGROUP_REF_EXPORT(fn)	EXPORT_SYMBOL_GPL(fn);
257  #include <linux/cgroup_refcnt.h>
258  #endif
259  
260  /**
261   * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
262   * @ssid: subsys ID of interest
263   *
264   * cgroup_subsys_enabled() can only be used with literal subsys names which
265   * is fine for individual subsystems but unsuitable for cgroup core.  This
266   * is slower static_key_enabled() based test indexed by @ssid.
267   */
cgroup_ssid_enabled(int ssid)268  bool cgroup_ssid_enabled(int ssid)
269  {
270  	if (!CGROUP_HAS_SUBSYS_CONFIG)
271  		return false;
272  
273  	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
274  }
275  
276  /**
277   * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
278   * @cgrp: the cgroup of interest
279   *
280   * The default hierarchy is the v2 interface of cgroup and this function
281   * can be used to test whether a cgroup is on the default hierarchy for
282   * cases where a subsystem should behave differently depending on the
283   * interface version.
284   *
285   * List of changed behaviors:
286   *
287   * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
288   *   and "name" are disallowed.
289   *
290   * - When mounting an existing superblock, mount options should match.
291   *
292   * - rename(2) is disallowed.
293   *
294   * - "tasks" is removed.  Everything should be at process granularity.  Use
295   *   "cgroup.procs" instead.
296   *
297   * - "cgroup.procs" is not sorted.  pids will be unique unless they got
298   *   recycled in-between reads.
299   *
300   * - "release_agent" and "notify_on_release" are removed.  Replacement
301   *   notification mechanism will be implemented.
302   *
303   * - "cgroup.clone_children" is removed.
304   *
305   * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
306   *   and its descendants contain no task; otherwise, 1.  The file also
307   *   generates kernfs notification which can be monitored through poll and
308   *   [di]notify when the value of the file changes.
309   *
310   * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
311   *   take masks of ancestors with non-empty cpus/mems, instead of being
312   *   moved to an ancestor.
313   *
314   * - cpuset: a task can be moved into an empty cpuset, and again it takes
315   *   masks of ancestors.
316   *
317   * - blkcg: blk-throttle becomes properly hierarchical.
318   */
cgroup_on_dfl(const struct cgroup * cgrp)319  bool cgroup_on_dfl(const struct cgroup *cgrp)
320  {
321  	return cgrp->root == &cgrp_dfl_root;
322  }
323  
324  /* IDR wrappers which synchronize using cgroup_idr_lock */
cgroup_idr_alloc(struct idr * idr,void * ptr,int start,int end,gfp_t gfp_mask)325  static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
326  			    gfp_t gfp_mask)
327  {
328  	int ret;
329  
330  	idr_preload(gfp_mask);
331  	spin_lock_bh(&cgroup_idr_lock);
332  	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
333  	spin_unlock_bh(&cgroup_idr_lock);
334  	idr_preload_end();
335  	return ret;
336  }
337  
cgroup_idr_replace(struct idr * idr,void * ptr,int id)338  static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
339  {
340  	void *ret;
341  
342  	spin_lock_bh(&cgroup_idr_lock);
343  	ret = idr_replace(idr, ptr, id);
344  	spin_unlock_bh(&cgroup_idr_lock);
345  	return ret;
346  }
347  
cgroup_idr_remove(struct idr * idr,int id)348  static void cgroup_idr_remove(struct idr *idr, int id)
349  {
350  	spin_lock_bh(&cgroup_idr_lock);
351  	idr_remove(idr, id);
352  	spin_unlock_bh(&cgroup_idr_lock);
353  }
354  
cgroup_has_tasks(struct cgroup * cgrp)355  static bool cgroup_has_tasks(struct cgroup *cgrp)
356  {
357  	return cgrp->nr_populated_csets;
358  }
359  
cgroup_is_threaded(struct cgroup * cgrp)360  static bool cgroup_is_threaded(struct cgroup *cgrp)
361  {
362  	return cgrp->dom_cgrp != cgrp;
363  }
364  
365  /* can @cgrp host both domain and threaded children? */
cgroup_is_mixable(struct cgroup * cgrp)366  static bool cgroup_is_mixable(struct cgroup *cgrp)
367  {
368  	/*
369  	 * Root isn't under domain level resource control exempting it from
370  	 * the no-internal-process constraint, so it can serve as a thread
371  	 * root and a parent of resource domains at the same time.
372  	 */
373  	return !cgroup_parent(cgrp);
374  }
375  
376  /* can @cgrp become a thread root? Should always be true for a thread root */
cgroup_can_be_thread_root(struct cgroup * cgrp)377  static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
378  {
379  	/* mixables don't care */
380  	if (cgroup_is_mixable(cgrp))
381  		return true;
382  
383  	/* domain roots can't be nested under threaded */
384  	if (cgroup_is_threaded(cgrp))
385  		return false;
386  
387  	/* can only have either domain or threaded children */
388  	if (cgrp->nr_populated_domain_children)
389  		return false;
390  
391  	/* and no domain controllers can be enabled */
392  	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
393  		return false;
394  
395  	return true;
396  }
397  
398  /* is @cgrp root of a threaded subtree? */
cgroup_is_thread_root(struct cgroup * cgrp)399  static bool cgroup_is_thread_root(struct cgroup *cgrp)
400  {
401  	/* thread root should be a domain */
402  	if (cgroup_is_threaded(cgrp))
403  		return false;
404  
405  	/* a domain w/ threaded children is a thread root */
406  	if (cgrp->nr_threaded_children)
407  		return true;
408  
409  	/*
410  	 * A domain which has tasks and explicit threaded controllers
411  	 * enabled is a thread root.
412  	 */
413  	if (cgroup_has_tasks(cgrp) &&
414  	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
415  		return true;
416  
417  	return false;
418  }
419  
420  /* a domain which isn't connected to the root w/o brekage can't be used */
cgroup_is_valid_domain(struct cgroup * cgrp)421  static bool cgroup_is_valid_domain(struct cgroup *cgrp)
422  {
423  	/* the cgroup itself can be a thread root */
424  	if (cgroup_is_threaded(cgrp))
425  		return false;
426  
427  	/* but the ancestors can't be unless mixable */
428  	while ((cgrp = cgroup_parent(cgrp))) {
429  		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
430  			return false;
431  		if (cgroup_is_threaded(cgrp))
432  			return false;
433  	}
434  
435  	return true;
436  }
437  
438  /* subsystems visibly enabled on a cgroup */
cgroup_control(struct cgroup * cgrp)439  static u16 cgroup_control(struct cgroup *cgrp)
440  {
441  	struct cgroup *parent = cgroup_parent(cgrp);
442  	u16 root_ss_mask = cgrp->root->subsys_mask;
443  
444  	if (parent) {
445  		u16 ss_mask = parent->subtree_control;
446  
447  		/* threaded cgroups can only have threaded controllers */
448  		if (cgroup_is_threaded(cgrp))
449  			ss_mask &= cgrp_dfl_threaded_ss_mask;
450  		return ss_mask;
451  	}
452  
453  	if (cgroup_on_dfl(cgrp))
454  		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
455  				  cgrp_dfl_implicit_ss_mask);
456  	return root_ss_mask;
457  }
458  
459  /* subsystems enabled on a cgroup */
cgroup_ss_mask(struct cgroup * cgrp)460  static u16 cgroup_ss_mask(struct cgroup *cgrp)
461  {
462  	struct cgroup *parent = cgroup_parent(cgrp);
463  
464  	if (parent) {
465  		u16 ss_mask = parent->subtree_ss_mask;
466  
467  		/* threaded cgroups can only have threaded controllers */
468  		if (cgroup_is_threaded(cgrp))
469  			ss_mask &= cgrp_dfl_threaded_ss_mask;
470  		return ss_mask;
471  	}
472  
473  	return cgrp->root->subsys_mask;
474  }
475  
476  /**
477   * cgroup_css - obtain a cgroup's css for the specified subsystem
478   * @cgrp: the cgroup of interest
479   * @ss: the subsystem of interest (%NULL returns @cgrp->self)
480   *
481   * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
482   * function must be called either under cgroup_mutex or rcu_read_lock() and
483   * the caller is responsible for pinning the returned css if it wants to
484   * keep accessing it outside the said locks.  This function may return
485   * %NULL if @cgrp doesn't have @subsys_id enabled.
486   */
cgroup_css(struct cgroup * cgrp,struct cgroup_subsys * ss)487  static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
488  					      struct cgroup_subsys *ss)
489  {
490  	if (CGROUP_HAS_SUBSYS_CONFIG && ss)
491  		return rcu_dereference_check(cgrp->subsys[ss->id],
492  					lockdep_is_held(&cgroup_mutex));
493  	else
494  		return &cgrp->self;
495  }
496  
497  /**
498   * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
499   * @cgrp: the cgroup of interest
500   * @ss: the subsystem of interest (%NULL returns @cgrp->self)
501   *
502   * Similar to cgroup_css() but returns the effective css, which is defined
503   * as the matching css of the nearest ancestor including self which has @ss
504   * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
505   * function is guaranteed to return non-NULL css.
506   */
cgroup_e_css_by_mask(struct cgroup * cgrp,struct cgroup_subsys * ss)507  static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
508  							struct cgroup_subsys *ss)
509  {
510  	lockdep_assert_held(&cgroup_mutex);
511  
512  	if (!ss)
513  		return &cgrp->self;
514  
515  	/*
516  	 * This function is used while updating css associations and thus
517  	 * can't test the csses directly.  Test ss_mask.
518  	 */
519  	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
520  		cgrp = cgroup_parent(cgrp);
521  		if (!cgrp)
522  			return NULL;
523  	}
524  
525  	return cgroup_css(cgrp, ss);
526  }
527  
528  /**
529   * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
530   * @cgrp: the cgroup of interest
531   * @ss: the subsystem of interest
532   *
533   * Find and get the effective css of @cgrp for @ss.  The effective css is
534   * defined as the matching css of the nearest ancestor including self which
535   * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
536   * the root css is returned, so this function always returns a valid css.
537   *
538   * The returned css is not guaranteed to be online, and therefore it is the
539   * callers responsibility to try get a reference for it.
540   */
cgroup_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)541  struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
542  					 struct cgroup_subsys *ss)
543  {
544  	struct cgroup_subsys_state *css;
545  
546  	if (!CGROUP_HAS_SUBSYS_CONFIG)
547  		return NULL;
548  
549  	do {
550  		css = cgroup_css(cgrp, ss);
551  
552  		if (css)
553  			return css;
554  		cgrp = cgroup_parent(cgrp);
555  	} while (cgrp);
556  
557  	return init_css_set.subsys[ss->id];
558  }
559  
560  /**
561   * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
562   * @cgrp: the cgroup of interest
563   * @ss: the subsystem of interest
564   *
565   * Find and get the effective css of @cgrp for @ss.  The effective css is
566   * defined as the matching css of the nearest ancestor including self which
567   * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
568   * the root css is returned, so this function always returns a valid css.
569   * The returned css must be put using css_put().
570   */
cgroup_get_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)571  struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
572  					     struct cgroup_subsys *ss)
573  {
574  	struct cgroup_subsys_state *css;
575  
576  	if (!CGROUP_HAS_SUBSYS_CONFIG)
577  		return NULL;
578  
579  	rcu_read_lock();
580  
581  	do {
582  		css = cgroup_css(cgrp, ss);
583  
584  		if (css && css_tryget_online(css))
585  			goto out_unlock;
586  		cgrp = cgroup_parent(cgrp);
587  	} while (cgrp);
588  
589  	css = init_css_set.subsys[ss->id];
590  	css_get(css);
591  out_unlock:
592  	rcu_read_unlock();
593  	return css;
594  }
595  EXPORT_SYMBOL_GPL(cgroup_get_e_css);
596  
cgroup_get_live(struct cgroup * cgrp)597  static void cgroup_get_live(struct cgroup *cgrp)
598  {
599  	WARN_ON_ONCE(cgroup_is_dead(cgrp));
600  	cgroup_get(cgrp);
601  }
602  
603  /**
604   * __cgroup_task_count - count the number of tasks in a cgroup. The caller
605   * is responsible for taking the css_set_lock.
606   * @cgrp: the cgroup in question
607   */
__cgroup_task_count(const struct cgroup * cgrp)608  int __cgroup_task_count(const struct cgroup *cgrp)
609  {
610  	int count = 0;
611  	struct cgrp_cset_link *link;
612  
613  	lockdep_assert_held(&css_set_lock);
614  
615  	list_for_each_entry(link, &cgrp->cset_links, cset_link)
616  		count += link->cset->nr_tasks;
617  
618  	return count;
619  }
620  
621  /**
622   * cgroup_task_count - count the number of tasks in a cgroup.
623   * @cgrp: the cgroup in question
624   */
cgroup_task_count(const struct cgroup * cgrp)625  int cgroup_task_count(const struct cgroup *cgrp)
626  {
627  	int count;
628  
629  	spin_lock_irq(&css_set_lock);
630  	count = __cgroup_task_count(cgrp);
631  	spin_unlock_irq(&css_set_lock);
632  
633  	return count;
634  }
635  
of_css(struct kernfs_open_file * of)636  struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
637  {
638  	struct cgroup *cgrp = of->kn->parent->priv;
639  	struct cftype *cft = of_cft(of);
640  
641  	/*
642  	 * This is open and unprotected implementation of cgroup_css().
643  	 * seq_css() is only called from a kernfs file operation which has
644  	 * an active reference on the file.  Because all the subsystem
645  	 * files are drained before a css is disassociated with a cgroup,
646  	 * the matching css from the cgroup's subsys table is guaranteed to
647  	 * be and stay valid until the enclosing operation is complete.
648  	 */
649  	if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss)
650  		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
651  	else
652  		return &cgrp->self;
653  }
654  EXPORT_SYMBOL_GPL(of_css);
655  
656  /**
657   * for_each_css - iterate all css's of a cgroup
658   * @css: the iteration cursor
659   * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
660   * @cgrp: the target cgroup to iterate css's of
661   *
662   * Should be called under cgroup_mutex.
663   */
664  #define for_each_css(css, ssid, cgrp)					\
665  	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
666  		if (!((css) = rcu_dereference_check(			\
667  				(cgrp)->subsys[(ssid)],			\
668  				lockdep_is_held(&cgroup_mutex)))) { }	\
669  		else
670  
671  /**
672   * do_each_subsys_mask - filter for_each_subsys with a bitmask
673   * @ss: the iteration cursor
674   * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
675   * @ss_mask: the bitmask
676   *
677   * The block will only run for cases where the ssid-th bit (1 << ssid) of
678   * @ss_mask is set.
679   */
680  #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
681  	unsigned long __ss_mask = (ss_mask);				\
682  	if (!CGROUP_HAS_SUBSYS_CONFIG) {				\
683  		(ssid) = 0;						\
684  		break;							\
685  	}								\
686  	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
687  		(ss) = cgroup_subsys[ssid];				\
688  		{
689  
690  #define while_each_subsys_mask()					\
691  		}							\
692  	}								\
693  } while (false)
694  
695  /* iterate over child cgrps, lock should be held throughout iteration */
696  #define cgroup_for_each_live_child(child, cgrp)				\
697  	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
698  		if (({ lockdep_assert_held(&cgroup_mutex);		\
699  		       cgroup_is_dead(child); }))			\
700  			;						\
701  		else
702  
703  /* walk live descendants in pre order */
704  #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
705  	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
706  		if (({ lockdep_assert_held(&cgroup_mutex);		\
707  		       (dsct) = (d_css)->cgroup;			\
708  		       cgroup_is_dead(dsct); }))			\
709  			;						\
710  		else
711  
712  /* walk live descendants in postorder */
713  #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
714  	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
715  		if (({ lockdep_assert_held(&cgroup_mutex);		\
716  		       (dsct) = (d_css)->cgroup;			\
717  		       cgroup_is_dead(dsct); }))			\
718  			;						\
719  		else
720  
721  /*
722   * The default css_set - used by init and its children prior to any
723   * hierarchies being mounted. It contains a pointer to the root state
724   * for each subsystem. Also used to anchor the list of css_sets. Not
725   * reference-counted, to improve performance when child cgroups
726   * haven't been created.
727   */
728  struct css_set init_css_set = {
729  	.refcount		= REFCOUNT_INIT(1),
730  	.dom_cset		= &init_css_set,
731  	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
732  	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
733  	.dying_tasks		= LIST_HEAD_INIT(init_css_set.dying_tasks),
734  	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
735  	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
736  	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
737  	.mg_src_preload_node	= LIST_HEAD_INIT(init_css_set.mg_src_preload_node),
738  	.mg_dst_preload_node	= LIST_HEAD_INIT(init_css_set.mg_dst_preload_node),
739  	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
740  
741  	/*
742  	 * The following field is re-initialized when this cset gets linked
743  	 * in cgroup_init().  However, let's initialize the field
744  	 * statically too so that the default cgroup can be accessed safely
745  	 * early during boot.
746  	 */
747  	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
748  };
749  
750  static int css_set_count	= 1;	/* 1 for init_css_set */
751  
css_set_threaded(struct css_set * cset)752  static bool css_set_threaded(struct css_set *cset)
753  {
754  	return cset->dom_cset != cset;
755  }
756  
757  /**
758   * css_set_populated - does a css_set contain any tasks?
759   * @cset: target css_set
760   *
761   * css_set_populated() should be the same as !!cset->nr_tasks at steady
762   * state. However, css_set_populated() can be called while a task is being
763   * added to or removed from the linked list before the nr_tasks is
764   * properly updated. Hence, we can't just look at ->nr_tasks here.
765   */
css_set_populated(struct css_set * cset)766  static bool css_set_populated(struct css_set *cset)
767  {
768  	lockdep_assert_held(&css_set_lock);
769  
770  	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
771  }
772  
773  /**
774   * cgroup_update_populated - update the populated count of a cgroup
775   * @cgrp: the target cgroup
776   * @populated: inc or dec populated count
777   *
778   * One of the css_sets associated with @cgrp is either getting its first
779   * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
780   * count is propagated towards root so that a given cgroup's
781   * nr_populated_children is zero iff none of its descendants contain any
782   * tasks.
783   *
784   * @cgrp's interface file "cgroup.populated" is zero if both
785   * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
786   * 1 otherwise.  When the sum changes from or to zero, userland is notified
787   * that the content of the interface file has changed.  This can be used to
788   * detect when @cgrp and its descendants become populated or empty.
789   */
cgroup_update_populated(struct cgroup * cgrp,bool populated)790  static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
791  {
792  	struct cgroup *child = NULL;
793  	int adj = populated ? 1 : -1;
794  
795  	lockdep_assert_held(&css_set_lock);
796  
797  	do {
798  		bool was_populated = cgroup_is_populated(cgrp);
799  
800  		if (!child) {
801  			cgrp->nr_populated_csets += adj;
802  		} else {
803  			if (cgroup_is_threaded(child))
804  				cgrp->nr_populated_threaded_children += adj;
805  			else
806  				cgrp->nr_populated_domain_children += adj;
807  		}
808  
809  		if (was_populated == cgroup_is_populated(cgrp))
810  			break;
811  
812  		cgroup1_check_for_release(cgrp);
813  		TRACE_CGROUP_PATH(notify_populated, cgrp,
814  				  cgroup_is_populated(cgrp));
815  		cgroup_file_notify(&cgrp->events_file);
816  
817  		child = cgrp;
818  		cgrp = cgroup_parent(cgrp);
819  	} while (cgrp);
820  }
821  
822  /**
823   * css_set_update_populated - update populated state of a css_set
824   * @cset: target css_set
825   * @populated: whether @cset is populated or depopulated
826   *
827   * @cset is either getting the first task or losing the last.  Update the
828   * populated counters of all associated cgroups accordingly.
829   */
css_set_update_populated(struct css_set * cset,bool populated)830  static void css_set_update_populated(struct css_set *cset, bool populated)
831  {
832  	struct cgrp_cset_link *link;
833  
834  	lockdep_assert_held(&css_set_lock);
835  
836  	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
837  		cgroup_update_populated(link->cgrp, populated);
838  }
839  
840  /*
841   * @task is leaving, advance task iterators which are pointing to it so
842   * that they can resume at the next position.  Advancing an iterator might
843   * remove it from the list, use safe walk.  See css_task_iter_skip() for
844   * details.
845   */
css_set_skip_task_iters(struct css_set * cset,struct task_struct * task)846  static void css_set_skip_task_iters(struct css_set *cset,
847  				    struct task_struct *task)
848  {
849  	struct css_task_iter *it, *pos;
850  
851  	list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
852  		css_task_iter_skip(it, task);
853  }
854  
855  /**
856   * css_set_move_task - move a task from one css_set to another
857   * @task: task being moved
858   * @from_cset: css_set @task currently belongs to (may be NULL)
859   * @to_cset: new css_set @task is being moved to (may be NULL)
860   * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
861   *
862   * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
863   * css_set, @from_cset can be NULL.  If @task is being disassociated
864   * instead of moved, @to_cset can be NULL.
865   *
866   * This function automatically handles populated counter updates and
867   * css_task_iter adjustments but the caller is responsible for managing
868   * @from_cset and @to_cset's reference counts.
869   */
css_set_move_task(struct task_struct * task,struct css_set * from_cset,struct css_set * to_cset,bool use_mg_tasks)870  static void css_set_move_task(struct task_struct *task,
871  			      struct css_set *from_cset, struct css_set *to_cset,
872  			      bool use_mg_tasks)
873  {
874  	lockdep_assert_held(&css_set_lock);
875  
876  	if (to_cset && !css_set_populated(to_cset))
877  		css_set_update_populated(to_cset, true);
878  
879  	if (from_cset) {
880  		WARN_ON_ONCE(list_empty(&task->cg_list));
881  
882  		css_set_skip_task_iters(from_cset, task);
883  		list_del_init(&task->cg_list);
884  		if (!css_set_populated(from_cset))
885  			css_set_update_populated(from_cset, false);
886  	} else {
887  		WARN_ON_ONCE(!list_empty(&task->cg_list));
888  	}
889  
890  	if (to_cset) {
891  		/*
892  		 * We are synchronized through cgroup_threadgroup_rwsem
893  		 * against PF_EXITING setting such that we can't race
894  		 * against cgroup_exit()/cgroup_free() dropping the css_set.
895  		 */
896  		WARN_ON_ONCE(task->flags & PF_EXITING);
897  
898  		cgroup_move_task(task, to_cset);
899  		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
900  							     &to_cset->tasks);
901  	}
902  }
903  
904  /*
905   * hash table for cgroup groups. This improves the performance to find
906   * an existing css_set. This hash doesn't (currently) take into
907   * account cgroups in empty hierarchies.
908   */
909  #define CSS_SET_HASH_BITS	7
910  static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
911  
css_set_hash(struct cgroup_subsys_state ** css)912  static unsigned long css_set_hash(struct cgroup_subsys_state **css)
913  {
914  	unsigned long key = 0UL;
915  	struct cgroup_subsys *ss;
916  	int i;
917  
918  	for_each_subsys(ss, i)
919  		key += (unsigned long)css[i];
920  	key = (key >> 16) ^ key;
921  
922  	return key;
923  }
924  
put_css_set_locked(struct css_set * cset)925  void put_css_set_locked(struct css_set *cset)
926  {
927  	struct cgrp_cset_link *link, *tmp_link;
928  	struct cgroup_subsys *ss;
929  	int ssid;
930  
931  	lockdep_assert_held(&css_set_lock);
932  
933  	if (!refcount_dec_and_test(&cset->refcount))
934  		return;
935  
936  	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
937  
938  	/* This css_set is dead. Unlink it and release cgroup and css refs */
939  	for_each_subsys(ss, ssid) {
940  		list_del(&cset->e_cset_node[ssid]);
941  		css_put(cset->subsys[ssid]);
942  	}
943  	hash_del(&cset->hlist);
944  	css_set_count--;
945  
946  	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
947  		list_del(&link->cset_link);
948  		list_del(&link->cgrp_link);
949  		if (cgroup_parent(link->cgrp))
950  			cgroup_put(link->cgrp);
951  		kfree(link);
952  	}
953  
954  	if (css_set_threaded(cset)) {
955  		list_del(&cset->threaded_csets_node);
956  		put_css_set_locked(cset->dom_cset);
957  	}
958  
959  	kfree_rcu(cset, rcu_head);
960  }
961  
962  /**
963   * compare_css_sets - helper function for find_existing_css_set().
964   * @cset: candidate css_set being tested
965   * @old_cset: existing css_set for a task
966   * @new_cgrp: cgroup that's being entered by the task
967   * @template: desired set of css pointers in css_set (pre-calculated)
968   *
969   * Returns true if "cset" matches "old_cset" except for the hierarchy
970   * which "new_cgrp" belongs to, for which it should match "new_cgrp".
971   */
compare_css_sets(struct css_set * cset,struct css_set * old_cset,struct cgroup * new_cgrp,struct cgroup_subsys_state * template[])972  static bool compare_css_sets(struct css_set *cset,
973  			     struct css_set *old_cset,
974  			     struct cgroup *new_cgrp,
975  			     struct cgroup_subsys_state *template[])
976  {
977  	struct cgroup *new_dfl_cgrp;
978  	struct list_head *l1, *l2;
979  
980  	/*
981  	 * On the default hierarchy, there can be csets which are
982  	 * associated with the same set of cgroups but different csses.
983  	 * Let's first ensure that csses match.
984  	 */
985  	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
986  		return false;
987  
988  
989  	/* @cset's domain should match the default cgroup's */
990  	if (cgroup_on_dfl(new_cgrp))
991  		new_dfl_cgrp = new_cgrp;
992  	else
993  		new_dfl_cgrp = old_cset->dfl_cgrp;
994  
995  	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
996  		return false;
997  
998  	/*
999  	 * Compare cgroup pointers in order to distinguish between
1000  	 * different cgroups in hierarchies.  As different cgroups may
1001  	 * share the same effective css, this comparison is always
1002  	 * necessary.
1003  	 */
1004  	l1 = &cset->cgrp_links;
1005  	l2 = &old_cset->cgrp_links;
1006  	while (1) {
1007  		struct cgrp_cset_link *link1, *link2;
1008  		struct cgroup *cgrp1, *cgrp2;
1009  
1010  		l1 = l1->next;
1011  		l2 = l2->next;
1012  		/* See if we reached the end - both lists are equal length. */
1013  		if (l1 == &cset->cgrp_links) {
1014  			BUG_ON(l2 != &old_cset->cgrp_links);
1015  			break;
1016  		} else {
1017  			BUG_ON(l2 == &old_cset->cgrp_links);
1018  		}
1019  		/* Locate the cgroups associated with these links. */
1020  		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1021  		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1022  		cgrp1 = link1->cgrp;
1023  		cgrp2 = link2->cgrp;
1024  		/* Hierarchies should be linked in the same order. */
1025  		BUG_ON(cgrp1->root != cgrp2->root);
1026  
1027  		/*
1028  		 * If this hierarchy is the hierarchy of the cgroup
1029  		 * that's changing, then we need to check that this
1030  		 * css_set points to the new cgroup; if it's any other
1031  		 * hierarchy, then this css_set should point to the
1032  		 * same cgroup as the old css_set.
1033  		 */
1034  		if (cgrp1->root == new_cgrp->root) {
1035  			if (cgrp1 != new_cgrp)
1036  				return false;
1037  		} else {
1038  			if (cgrp1 != cgrp2)
1039  				return false;
1040  		}
1041  	}
1042  	return true;
1043  }
1044  
1045  /**
1046   * find_existing_css_set - init css array and find the matching css_set
1047   * @old_cset: the css_set that we're using before the cgroup transition
1048   * @cgrp: the cgroup that we're moving into
1049   * @template: out param for the new set of csses, should be clear on entry
1050   */
find_existing_css_set(struct css_set * old_cset,struct cgroup * cgrp,struct cgroup_subsys_state ** template)1051  static struct css_set *find_existing_css_set(struct css_set *old_cset,
1052  					struct cgroup *cgrp,
1053  					struct cgroup_subsys_state **template)
1054  {
1055  	struct cgroup_root *root = cgrp->root;
1056  	struct cgroup_subsys *ss;
1057  	struct css_set *cset;
1058  	unsigned long key;
1059  	int i;
1060  
1061  	/*
1062  	 * Build the set of subsystem state objects that we want to see in the
1063  	 * new css_set. While subsystems can change globally, the entries here
1064  	 * won't change, so no need for locking.
1065  	 */
1066  	for_each_subsys(ss, i) {
1067  		if (root->subsys_mask & (1UL << i)) {
1068  			/*
1069  			 * @ss is in this hierarchy, so we want the
1070  			 * effective css from @cgrp.
1071  			 */
1072  			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1073  		} else {
1074  			/*
1075  			 * @ss is not in this hierarchy, so we don't want
1076  			 * to change the css.
1077  			 */
1078  			template[i] = old_cset->subsys[i];
1079  		}
1080  	}
1081  
1082  	key = css_set_hash(template);
1083  	hash_for_each_possible(css_set_table, cset, hlist, key) {
1084  		if (!compare_css_sets(cset, old_cset, cgrp, template))
1085  			continue;
1086  
1087  		/* This css_set matches what we need */
1088  		return cset;
1089  	}
1090  
1091  	/* No existing cgroup group matched */
1092  	return NULL;
1093  }
1094  
free_cgrp_cset_links(struct list_head * links_to_free)1095  static void free_cgrp_cset_links(struct list_head *links_to_free)
1096  {
1097  	struct cgrp_cset_link *link, *tmp_link;
1098  
1099  	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1100  		list_del(&link->cset_link);
1101  		kfree(link);
1102  	}
1103  }
1104  
1105  /**
1106   * allocate_cgrp_cset_links - allocate cgrp_cset_links
1107   * @count: the number of links to allocate
1108   * @tmp_links: list_head the allocated links are put on
1109   *
1110   * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1111   * through ->cset_link.  Returns 0 on success or -errno.
1112   */
allocate_cgrp_cset_links(int count,struct list_head * tmp_links)1113  static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1114  {
1115  	struct cgrp_cset_link *link;
1116  	int i;
1117  
1118  	INIT_LIST_HEAD(tmp_links);
1119  
1120  	for (i = 0; i < count; i++) {
1121  		link = kzalloc(sizeof(*link), GFP_KERNEL);
1122  		if (!link) {
1123  			free_cgrp_cset_links(tmp_links);
1124  			return -ENOMEM;
1125  		}
1126  		list_add(&link->cset_link, tmp_links);
1127  	}
1128  	return 0;
1129  }
1130  
1131  /**
1132   * link_css_set - a helper function to link a css_set to a cgroup
1133   * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1134   * @cset: the css_set to be linked
1135   * @cgrp: the destination cgroup
1136   */
link_css_set(struct list_head * tmp_links,struct css_set * cset,struct cgroup * cgrp)1137  static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1138  			 struct cgroup *cgrp)
1139  {
1140  	struct cgrp_cset_link *link;
1141  
1142  	BUG_ON(list_empty(tmp_links));
1143  
1144  	if (cgroup_on_dfl(cgrp))
1145  		cset->dfl_cgrp = cgrp;
1146  
1147  	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1148  	link->cset = cset;
1149  	link->cgrp = cgrp;
1150  
1151  	/*
1152  	 * Always add links to the tail of the lists so that the lists are
1153  	 * in chronological order.
1154  	 */
1155  	list_move_tail(&link->cset_link, &cgrp->cset_links);
1156  	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1157  
1158  	if (cgroup_parent(cgrp))
1159  		cgroup_get_live(cgrp);
1160  }
1161  
1162  /**
1163   * find_css_set - return a new css_set with one cgroup updated
1164   * @old_cset: the baseline css_set
1165   * @cgrp: the cgroup to be updated
1166   *
1167   * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1168   * substituted into the appropriate hierarchy.
1169   */
find_css_set(struct css_set * old_cset,struct cgroup * cgrp)1170  static struct css_set *find_css_set(struct css_set *old_cset,
1171  				    struct cgroup *cgrp)
1172  {
1173  	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1174  	struct css_set *cset;
1175  	struct list_head tmp_links;
1176  	struct cgrp_cset_link *link;
1177  	struct cgroup_subsys *ss;
1178  	unsigned long key;
1179  	int ssid;
1180  
1181  	lockdep_assert_held(&cgroup_mutex);
1182  
1183  	/* First see if we already have a cgroup group that matches
1184  	 * the desired set */
1185  	spin_lock_irq(&css_set_lock);
1186  	cset = find_existing_css_set(old_cset, cgrp, template);
1187  	if (cset)
1188  		get_css_set(cset);
1189  	spin_unlock_irq(&css_set_lock);
1190  
1191  	if (cset)
1192  		return cset;
1193  
1194  	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1195  	if (!cset)
1196  		return NULL;
1197  
1198  	/* Allocate all the cgrp_cset_link objects that we'll need */
1199  	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1200  		kfree(cset);
1201  		return NULL;
1202  	}
1203  
1204  	refcount_set(&cset->refcount, 1);
1205  	cset->dom_cset = cset;
1206  	INIT_LIST_HEAD(&cset->tasks);
1207  	INIT_LIST_HEAD(&cset->mg_tasks);
1208  	INIT_LIST_HEAD(&cset->dying_tasks);
1209  	INIT_LIST_HEAD(&cset->task_iters);
1210  	INIT_LIST_HEAD(&cset->threaded_csets);
1211  	INIT_HLIST_NODE(&cset->hlist);
1212  	INIT_LIST_HEAD(&cset->cgrp_links);
1213  	INIT_LIST_HEAD(&cset->mg_src_preload_node);
1214  	INIT_LIST_HEAD(&cset->mg_dst_preload_node);
1215  	INIT_LIST_HEAD(&cset->mg_node);
1216  
1217  	/* Copy the set of subsystem state objects generated in
1218  	 * find_existing_css_set() */
1219  	memcpy(cset->subsys, template, sizeof(cset->subsys));
1220  
1221  	spin_lock_irq(&css_set_lock);
1222  	/* Add reference counts and links from the new css_set. */
1223  	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1224  		struct cgroup *c = link->cgrp;
1225  
1226  		if (c->root == cgrp->root)
1227  			c = cgrp;
1228  		link_css_set(&tmp_links, cset, c);
1229  	}
1230  
1231  	BUG_ON(!list_empty(&tmp_links));
1232  
1233  	css_set_count++;
1234  
1235  	/* Add @cset to the hash table */
1236  	key = css_set_hash(cset->subsys);
1237  	hash_add(css_set_table, &cset->hlist, key);
1238  
1239  	for_each_subsys(ss, ssid) {
1240  		struct cgroup_subsys_state *css = cset->subsys[ssid];
1241  
1242  		list_add_tail(&cset->e_cset_node[ssid],
1243  			      &css->cgroup->e_csets[ssid]);
1244  		css_get(css);
1245  	}
1246  
1247  	spin_unlock_irq(&css_set_lock);
1248  
1249  	/*
1250  	 * If @cset should be threaded, look up the matching dom_cset and
1251  	 * link them up.  We first fully initialize @cset then look for the
1252  	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1253  	 * to stay empty until we return.
1254  	 */
1255  	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1256  		struct css_set *dcset;
1257  
1258  		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1259  		if (!dcset) {
1260  			put_css_set(cset);
1261  			return NULL;
1262  		}
1263  
1264  		spin_lock_irq(&css_set_lock);
1265  		cset->dom_cset = dcset;
1266  		list_add_tail(&cset->threaded_csets_node,
1267  			      &dcset->threaded_csets);
1268  		spin_unlock_irq(&css_set_lock);
1269  	}
1270  
1271  	return cset;
1272  }
1273  
cgroup_root_from_kf(struct kernfs_root * kf_root)1274  struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1275  {
1276  	struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv;
1277  
1278  	return root_cgrp->root;
1279  }
1280  
cgroup_favor_dynmods(struct cgroup_root * root,bool favor)1281  void cgroup_favor_dynmods(struct cgroup_root *root, bool favor)
1282  {
1283  	bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS;
1284  
1285  	/* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */
1286  	if (favor && !favoring) {
1287  		rcu_sync_enter(&cgroup_threadgroup_rwsem.rss);
1288  		root->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1289  	} else if (!favor && favoring) {
1290  		rcu_sync_exit(&cgroup_threadgroup_rwsem.rss);
1291  		root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS;
1292  	}
1293  }
1294  
cgroup_init_root_id(struct cgroup_root * root)1295  static int cgroup_init_root_id(struct cgroup_root *root)
1296  {
1297  	int id;
1298  
1299  	lockdep_assert_held(&cgroup_mutex);
1300  
1301  	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1302  	if (id < 0)
1303  		return id;
1304  
1305  	root->hierarchy_id = id;
1306  	return 0;
1307  }
1308  
cgroup_exit_root_id(struct cgroup_root * root)1309  static void cgroup_exit_root_id(struct cgroup_root *root)
1310  {
1311  	lockdep_assert_held(&cgroup_mutex);
1312  
1313  	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1314  }
1315  
cgroup_free_root(struct cgroup_root * root)1316  void cgroup_free_root(struct cgroup_root *root)
1317  {
1318  	kfree_rcu(root, rcu);
1319  }
1320  
cgroup_destroy_root(struct cgroup_root * root)1321  static void cgroup_destroy_root(struct cgroup_root *root)
1322  {
1323  	struct cgroup *cgrp = &root->cgrp;
1324  	struct cgrp_cset_link *link, *tmp_link;
1325  
1326  	trace_cgroup_destroy_root(root);
1327  
1328  	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1329  
1330  	BUG_ON(atomic_read(&root->nr_cgrps));
1331  	BUG_ON(!list_empty(&cgrp->self.children));
1332  
1333  	/* Rebind all subsystems back to the default hierarchy */
1334  	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1335  
1336  	/*
1337  	 * Release all the links from cset_links to this hierarchy's
1338  	 * root cgroup
1339  	 */
1340  	spin_lock_irq(&css_set_lock);
1341  
1342  	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1343  		list_del(&link->cset_link);
1344  		list_del(&link->cgrp_link);
1345  		kfree(link);
1346  	}
1347  
1348  	spin_unlock_irq(&css_set_lock);
1349  
1350  	WARN_ON_ONCE(list_empty(&root->root_list));
1351  	list_del_rcu(&root->root_list);
1352  	cgroup_root_count--;
1353  
1354  	if (!have_favordynmods)
1355  		cgroup_favor_dynmods(root, false);
1356  
1357  	cgroup_exit_root_id(root);
1358  
1359  	cgroup_unlock();
1360  
1361  	cgroup_rstat_exit(cgrp);
1362  	kernfs_destroy_root(root->kf_root);
1363  	cgroup_free_root(root);
1364  }
1365  
1366  /*
1367   * Returned cgroup is without refcount but it's valid as long as cset pins it.
1368   */
__cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1369  static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset,
1370  					    struct cgroup_root *root)
1371  {
1372  	struct cgroup *res_cgroup = NULL;
1373  
1374  	if (cset == &init_css_set) {
1375  		res_cgroup = &root->cgrp;
1376  	} else if (root == &cgrp_dfl_root) {
1377  		res_cgroup = cset->dfl_cgrp;
1378  	} else {
1379  		struct cgrp_cset_link *link;
1380  		lockdep_assert_held(&css_set_lock);
1381  
1382  		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1383  			struct cgroup *c = link->cgrp;
1384  
1385  			if (c->root == root) {
1386  				res_cgroup = c;
1387  				break;
1388  			}
1389  		}
1390  	}
1391  
1392  	/*
1393  	 * If cgroup_mutex is not held, the cgrp_cset_link will be freed
1394  	 * before we remove the cgroup root from the root_list. Consequently,
1395  	 * when accessing a cgroup root, the cset_link may have already been
1396  	 * freed, resulting in a NULL res_cgroup. However, by holding the
1397  	 * cgroup_mutex, we ensure that res_cgroup can't be NULL.
1398  	 * If we don't hold cgroup_mutex in the caller, we must do the NULL
1399  	 * check.
1400  	 */
1401  	return res_cgroup;
1402  }
1403  
1404  /*
1405   * look up cgroup associated with current task's cgroup namespace on the
1406   * specified hierarchy
1407   */
1408  static struct cgroup *
current_cgns_cgroup_from_root(struct cgroup_root * root)1409  current_cgns_cgroup_from_root(struct cgroup_root *root)
1410  {
1411  	struct cgroup *res = NULL;
1412  	struct css_set *cset;
1413  
1414  	lockdep_assert_held(&css_set_lock);
1415  
1416  	rcu_read_lock();
1417  
1418  	cset = current->nsproxy->cgroup_ns->root_cset;
1419  	res = __cset_cgroup_from_root(cset, root);
1420  
1421  	rcu_read_unlock();
1422  
1423  	/*
1424  	 * The namespace_sem is held by current, so the root cgroup can't
1425  	 * be umounted. Therefore, we can ensure that the res is non-NULL.
1426  	 */
1427  	WARN_ON_ONCE(!res);
1428  	return res;
1429  }
1430  
1431  /*
1432   * Look up cgroup associated with current task's cgroup namespace on the default
1433   * hierarchy.
1434   *
1435   * Unlike current_cgns_cgroup_from_root(), this doesn't need locks:
1436   * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu
1437   *   pointers.
1438   * - css_set_lock is not needed because we just read cset->dfl_cgrp.
1439   * - As a bonus returned cgrp is pinned with the current because it cannot
1440   *   switch cgroup_ns asynchronously.
1441   */
current_cgns_cgroup_dfl(void)1442  static struct cgroup *current_cgns_cgroup_dfl(void)
1443  {
1444  	struct css_set *cset;
1445  
1446  	if (current->nsproxy) {
1447  		cset = current->nsproxy->cgroup_ns->root_cset;
1448  		return __cset_cgroup_from_root(cset, &cgrp_dfl_root);
1449  	} else {
1450  		/*
1451  		 * NOTE: This function may be called from bpf_cgroup_from_id()
1452  		 * on a task which has already passed exit_task_namespaces() and
1453  		 * nsproxy == NULL. Fall back to cgrp_dfl_root which will make all
1454  		 * cgroups visible for lookups.
1455  		 */
1456  		return &cgrp_dfl_root.cgrp;
1457  	}
1458  }
1459  
1460  /* look up cgroup associated with given css_set on the specified hierarchy */
cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1461  static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1462  					    struct cgroup_root *root)
1463  {
1464  	lockdep_assert_held(&css_set_lock);
1465  
1466  	return __cset_cgroup_from_root(cset, root);
1467  }
1468  
1469  /*
1470   * Return the cgroup for "task" from the given hierarchy. Must be
1471   * called with css_set_lock held to prevent task's groups from being modified.
1472   * Must be called with either cgroup_mutex or rcu read lock to prevent the
1473   * cgroup root from being destroyed.
1474   */
task_cgroup_from_root(struct task_struct * task,struct cgroup_root * root)1475  struct cgroup *task_cgroup_from_root(struct task_struct *task,
1476  				     struct cgroup_root *root)
1477  {
1478  	/*
1479  	 * No need to lock the task - since we hold css_set_lock the
1480  	 * task can't change groups.
1481  	 */
1482  	return cset_cgroup_from_root(task_css_set(task), root);
1483  }
1484  
1485  /*
1486   * A task must hold cgroup_mutex to modify cgroups.
1487   *
1488   * Any task can increment and decrement the count field without lock.
1489   * So in general, code holding cgroup_mutex can't rely on the count
1490   * field not changing.  However, if the count goes to zero, then only
1491   * cgroup_attach_task() can increment it again.  Because a count of zero
1492   * means that no tasks are currently attached, therefore there is no
1493   * way a task attached to that cgroup can fork (the other way to
1494   * increment the count).  So code holding cgroup_mutex can safely
1495   * assume that if the count is zero, it will stay zero. Similarly, if
1496   * a task holds cgroup_mutex on a cgroup with zero count, it
1497   * knows that the cgroup won't be removed, as cgroup_rmdir()
1498   * needs that mutex.
1499   *
1500   * A cgroup can only be deleted if both its 'count' of using tasks
1501   * is zero, and its list of 'children' cgroups is empty.  Since all
1502   * tasks in the system use _some_ cgroup, and since there is always at
1503   * least one task in the system (init, pid == 1), therefore, root cgroup
1504   * always has either children cgroups and/or using tasks.  So we don't
1505   * need a special hack to ensure that root cgroup cannot be deleted.
1506   *
1507   * P.S.  One more locking exception.  RCU is used to guard the
1508   * update of a tasks cgroup pointer by cgroup_attach_task()
1509   */
1510  
1511  static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1512  
cgroup_file_name(struct cgroup * cgrp,const struct cftype * cft,char * buf)1513  static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1514  			      char *buf)
1515  {
1516  	struct cgroup_subsys *ss = cft->ss;
1517  
1518  	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1519  	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1520  		const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1521  
1522  		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1523  			 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1524  			 cft->name);
1525  	} else {
1526  		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1527  	}
1528  	return buf;
1529  }
1530  
1531  /**
1532   * cgroup_file_mode - deduce file mode of a control file
1533   * @cft: the control file in question
1534   *
1535   * S_IRUGO for read, S_IWUSR for write.
1536   */
cgroup_file_mode(const struct cftype * cft)1537  static umode_t cgroup_file_mode(const struct cftype *cft)
1538  {
1539  	umode_t mode = 0;
1540  
1541  	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1542  		mode |= S_IRUGO;
1543  
1544  	if (cft->write_u64 || cft->write_s64 || cft->write) {
1545  		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1546  			mode |= S_IWUGO;
1547  		else
1548  			mode |= S_IWUSR;
1549  	}
1550  
1551  	return mode;
1552  }
1553  
1554  /**
1555   * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1556   * @subtree_control: the new subtree_control mask to consider
1557   * @this_ss_mask: available subsystems
1558   *
1559   * On the default hierarchy, a subsystem may request other subsystems to be
1560   * enabled together through its ->depends_on mask.  In such cases, more
1561   * subsystems than specified in "cgroup.subtree_control" may be enabled.
1562   *
1563   * This function calculates which subsystems need to be enabled if
1564   * @subtree_control is to be applied while restricted to @this_ss_mask.
1565   */
cgroup_calc_subtree_ss_mask(u16 subtree_control,u16 this_ss_mask)1566  static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1567  {
1568  	u16 cur_ss_mask = subtree_control;
1569  	struct cgroup_subsys *ss;
1570  	int ssid;
1571  
1572  	lockdep_assert_held(&cgroup_mutex);
1573  
1574  	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1575  
1576  	while (true) {
1577  		u16 new_ss_mask = cur_ss_mask;
1578  
1579  		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1580  			new_ss_mask |= ss->depends_on;
1581  		} while_each_subsys_mask();
1582  
1583  		/*
1584  		 * Mask out subsystems which aren't available.  This can
1585  		 * happen only if some depended-upon subsystems were bound
1586  		 * to non-default hierarchies.
1587  		 */
1588  		new_ss_mask &= this_ss_mask;
1589  
1590  		if (new_ss_mask == cur_ss_mask)
1591  			break;
1592  		cur_ss_mask = new_ss_mask;
1593  	}
1594  
1595  	return cur_ss_mask;
1596  }
1597  
1598  /**
1599   * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1600   * @kn: the kernfs_node being serviced
1601   *
1602   * This helper undoes cgroup_kn_lock_live() and should be invoked before
1603   * the method finishes if locking succeeded.  Note that once this function
1604   * returns the cgroup returned by cgroup_kn_lock_live() may become
1605   * inaccessible any time.  If the caller intends to continue to access the
1606   * cgroup, it should pin it before invoking this function.
1607   */
cgroup_kn_unlock(struct kernfs_node * kn)1608  void cgroup_kn_unlock(struct kernfs_node *kn)
1609  {
1610  	struct cgroup *cgrp;
1611  
1612  	if (kernfs_type(kn) == KERNFS_DIR)
1613  		cgrp = kn->priv;
1614  	else
1615  		cgrp = kn->parent->priv;
1616  
1617  	cgroup_unlock();
1618  
1619  	kernfs_unbreak_active_protection(kn);
1620  	cgroup_put(cgrp);
1621  }
1622  
1623  /**
1624   * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1625   * @kn: the kernfs_node being serviced
1626   * @drain_offline: perform offline draining on the cgroup
1627   *
1628   * This helper is to be used by a cgroup kernfs method currently servicing
1629   * @kn.  It breaks the active protection, performs cgroup locking and
1630   * verifies that the associated cgroup is alive.  Returns the cgroup if
1631   * alive; otherwise, %NULL.  A successful return should be undone by a
1632   * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1633   * cgroup is drained of offlining csses before return.
1634   *
1635   * Any cgroup kernfs method implementation which requires locking the
1636   * associated cgroup should use this helper.  It avoids nesting cgroup
1637   * locking under kernfs active protection and allows all kernfs operations
1638   * including self-removal.
1639   */
cgroup_kn_lock_live(struct kernfs_node * kn,bool drain_offline)1640  struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1641  {
1642  	struct cgroup *cgrp;
1643  
1644  	if (kernfs_type(kn) == KERNFS_DIR)
1645  		cgrp = kn->priv;
1646  	else
1647  		cgrp = kn->parent->priv;
1648  
1649  	/*
1650  	 * We're gonna grab cgroup_mutex which nests outside kernfs
1651  	 * active_ref.  cgroup liveliness check alone provides enough
1652  	 * protection against removal.  Ensure @cgrp stays accessible and
1653  	 * break the active_ref protection.
1654  	 */
1655  	if (!cgroup_tryget(cgrp))
1656  		return NULL;
1657  	kernfs_break_active_protection(kn);
1658  
1659  	if (drain_offline)
1660  		cgroup_lock_and_drain_offline(cgrp);
1661  	else
1662  		cgroup_lock();
1663  
1664  	if (!cgroup_is_dead(cgrp))
1665  		return cgrp;
1666  
1667  	cgroup_kn_unlock(kn);
1668  	return NULL;
1669  }
1670  
cgroup_rm_file(struct cgroup * cgrp,const struct cftype * cft)1671  static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1672  {
1673  	char name[CGROUP_FILE_NAME_MAX];
1674  
1675  	lockdep_assert_held(&cgroup_mutex);
1676  
1677  	if (cft->file_offset) {
1678  		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1679  		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1680  
1681  		spin_lock_irq(&cgroup_file_kn_lock);
1682  		cfile->kn = NULL;
1683  		spin_unlock_irq(&cgroup_file_kn_lock);
1684  
1685  		del_timer_sync(&cfile->notify_timer);
1686  	}
1687  
1688  	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1689  }
1690  
1691  /**
1692   * css_clear_dir - remove subsys files in a cgroup directory
1693   * @css: target css
1694   */
css_clear_dir(struct cgroup_subsys_state * css)1695  static void css_clear_dir(struct cgroup_subsys_state *css)
1696  {
1697  	struct cgroup *cgrp = css->cgroup;
1698  	struct cftype *cfts;
1699  
1700  	if (!(css->flags & CSS_VISIBLE))
1701  		return;
1702  
1703  	css->flags &= ~CSS_VISIBLE;
1704  
1705  	if (!css->ss) {
1706  		if (cgroup_on_dfl(cgrp)) {
1707  			cgroup_addrm_files(css, cgrp,
1708  					   cgroup_base_files, false);
1709  			if (cgroup_psi_enabled())
1710  				cgroup_addrm_files(css, cgrp,
1711  						   cgroup_psi_files, false);
1712  		} else {
1713  			cgroup_addrm_files(css, cgrp,
1714  					   cgroup1_base_files, false);
1715  		}
1716  	} else {
1717  		list_for_each_entry(cfts, &css->ss->cfts, node)
1718  			cgroup_addrm_files(css, cgrp, cfts, false);
1719  	}
1720  }
1721  
1722  /**
1723   * css_populate_dir - create subsys files in a cgroup directory
1724   * @css: target css
1725   *
1726   * On failure, no file is added.
1727   */
css_populate_dir(struct cgroup_subsys_state * css)1728  static int css_populate_dir(struct cgroup_subsys_state *css)
1729  {
1730  	struct cgroup *cgrp = css->cgroup;
1731  	struct cftype *cfts, *failed_cfts;
1732  	int ret;
1733  
1734  	if (css->flags & CSS_VISIBLE)
1735  		return 0;
1736  
1737  	if (!css->ss) {
1738  		if (cgroup_on_dfl(cgrp)) {
1739  			ret = cgroup_addrm_files(css, cgrp,
1740  						 cgroup_base_files, true);
1741  			if (ret < 0)
1742  				return ret;
1743  
1744  			if (cgroup_psi_enabled()) {
1745  				ret = cgroup_addrm_files(css, cgrp,
1746  							 cgroup_psi_files, true);
1747  				if (ret < 0) {
1748  					cgroup_addrm_files(css, cgrp,
1749  							   cgroup_base_files, false);
1750  					return ret;
1751  				}
1752  			}
1753  		} else {
1754  			ret = cgroup_addrm_files(css, cgrp,
1755  						 cgroup1_base_files, true);
1756  			if (ret < 0)
1757  				return ret;
1758  		}
1759  	} else {
1760  		list_for_each_entry(cfts, &css->ss->cfts, node) {
1761  			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1762  			if (ret < 0) {
1763  				failed_cfts = cfts;
1764  				goto err;
1765  			}
1766  		}
1767  	}
1768  
1769  	css->flags |= CSS_VISIBLE;
1770  
1771  	return 0;
1772  err:
1773  	list_for_each_entry(cfts, &css->ss->cfts, node) {
1774  		if (cfts == failed_cfts)
1775  			break;
1776  		cgroup_addrm_files(css, cgrp, cfts, false);
1777  	}
1778  	return ret;
1779  }
1780  
rebind_subsystems(struct cgroup_root * dst_root,u16 ss_mask)1781  int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1782  {
1783  	struct cgroup *dcgrp = &dst_root->cgrp;
1784  	struct cgroup_subsys *ss;
1785  	int ssid, ret;
1786  	u16 dfl_disable_ss_mask = 0;
1787  
1788  	lockdep_assert_held(&cgroup_mutex);
1789  
1790  	do_each_subsys_mask(ss, ssid, ss_mask) {
1791  		/*
1792  		 * If @ss has non-root csses attached to it, can't move.
1793  		 * If @ss is an implicit controller, it is exempt from this
1794  		 * rule and can be stolen.
1795  		 */
1796  		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1797  		    !ss->implicit_on_dfl)
1798  			return -EBUSY;
1799  
1800  		/* can't move between two non-dummy roots either */
1801  		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1802  			return -EBUSY;
1803  
1804  		/*
1805  		 * Collect ssid's that need to be disabled from default
1806  		 * hierarchy.
1807  		 */
1808  		if (ss->root == &cgrp_dfl_root)
1809  			dfl_disable_ss_mask |= 1 << ssid;
1810  
1811  	} while_each_subsys_mask();
1812  
1813  	if (dfl_disable_ss_mask) {
1814  		struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1815  
1816  		/*
1817  		 * Controllers from default hierarchy that need to be rebound
1818  		 * are all disabled together in one go.
1819  		 */
1820  		cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1821  		WARN_ON(cgroup_apply_control(scgrp));
1822  		cgroup_finalize_control(scgrp, 0);
1823  	}
1824  
1825  	do_each_subsys_mask(ss, ssid, ss_mask) {
1826  		struct cgroup_root *src_root = ss->root;
1827  		struct cgroup *scgrp = &src_root->cgrp;
1828  		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1829  		struct css_set *cset, *cset_pos;
1830  		struct css_task_iter *it;
1831  
1832  		WARN_ON(!css || cgroup_css(dcgrp, ss));
1833  
1834  		if (src_root != &cgrp_dfl_root) {
1835  			/* disable from the source */
1836  			src_root->subsys_mask &= ~(1 << ssid);
1837  			WARN_ON(cgroup_apply_control(scgrp));
1838  			cgroup_finalize_control(scgrp, 0);
1839  		}
1840  
1841  		/* rebind */
1842  		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1843  		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1844  		ss->root = dst_root;
1845  
1846  		spin_lock_irq(&css_set_lock);
1847  		css->cgroup = dcgrp;
1848  		WARN_ON(!list_empty(&dcgrp->e_csets[ss->id]));
1849  		list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id],
1850  					 e_cset_node[ss->id]) {
1851  			list_move_tail(&cset->e_cset_node[ss->id],
1852  				       &dcgrp->e_csets[ss->id]);
1853  			/*
1854  			 * all css_sets of scgrp together in same order to dcgrp,
1855  			 * patch in-flight iterators to preserve correct iteration.
1856  			 * since the iterator is always advanced right away and
1857  			 * finished when it->cset_pos meets it->cset_head, so only
1858  			 * update it->cset_head is enough here.
1859  			 */
1860  			list_for_each_entry(it, &cset->task_iters, iters_node)
1861  				if (it->cset_head == &scgrp->e_csets[ss->id])
1862  					it->cset_head = &dcgrp->e_csets[ss->id];
1863  		}
1864  		spin_unlock_irq(&css_set_lock);
1865  
1866  		if (ss->css_rstat_flush) {
1867  			list_del_rcu(&css->rstat_css_node);
1868  			synchronize_rcu();
1869  			list_add_rcu(&css->rstat_css_node,
1870  				     &dcgrp->rstat_css_list);
1871  		}
1872  
1873  		/* default hierarchy doesn't enable controllers by default */
1874  		dst_root->subsys_mask |= 1 << ssid;
1875  		if (dst_root == &cgrp_dfl_root) {
1876  			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1877  		} else {
1878  			dcgrp->subtree_control |= 1 << ssid;
1879  			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1880  		}
1881  
1882  		ret = cgroup_apply_control(dcgrp);
1883  		if (ret)
1884  			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1885  				ss->name, ret);
1886  
1887  		if (ss->bind)
1888  			ss->bind(css);
1889  	} while_each_subsys_mask();
1890  
1891  	kernfs_activate(dcgrp->kn);
1892  	return 0;
1893  }
1894  
cgroup_show_path(struct seq_file * sf,struct kernfs_node * kf_node,struct kernfs_root * kf_root)1895  int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1896  		     struct kernfs_root *kf_root)
1897  {
1898  	int len = 0;
1899  	char *buf = NULL;
1900  	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1901  	struct cgroup *ns_cgroup;
1902  
1903  	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1904  	if (!buf)
1905  		return -ENOMEM;
1906  
1907  	spin_lock_irq(&css_set_lock);
1908  	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1909  	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1910  	spin_unlock_irq(&css_set_lock);
1911  
1912  	if (len == -E2BIG)
1913  		len = -ERANGE;
1914  	else if (len > 0) {
1915  		seq_escape(sf, buf, " \t\n\\");
1916  		len = 0;
1917  	}
1918  	kfree(buf);
1919  	return len;
1920  }
1921  
1922  enum cgroup2_param {
1923  	Opt_nsdelegate,
1924  	Opt_favordynmods,
1925  	Opt_memory_localevents,
1926  	Opt_memory_recursiveprot,
1927  	Opt_memory_hugetlb_accounting,
1928  	Opt_pids_localevents,
1929  	nr__cgroup2_params
1930  };
1931  
1932  static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1933  	fsparam_flag("nsdelegate",		Opt_nsdelegate),
1934  	fsparam_flag("favordynmods",		Opt_favordynmods),
1935  	fsparam_flag("memory_localevents",	Opt_memory_localevents),
1936  	fsparam_flag("memory_recursiveprot",	Opt_memory_recursiveprot),
1937  	fsparam_flag("memory_hugetlb_accounting", Opt_memory_hugetlb_accounting),
1938  	fsparam_flag("pids_localevents",	Opt_pids_localevents),
1939  	{}
1940  };
1941  
cgroup2_parse_param(struct fs_context * fc,struct fs_parameter * param)1942  static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1943  {
1944  	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1945  	struct fs_parse_result result;
1946  	int opt;
1947  
1948  	opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1949  	if (opt < 0)
1950  		return opt;
1951  
1952  	switch (opt) {
1953  	case Opt_nsdelegate:
1954  		ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1955  		return 0;
1956  	case Opt_favordynmods:
1957  		ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1958  		return 0;
1959  	case Opt_memory_localevents:
1960  		ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1961  		return 0;
1962  	case Opt_memory_recursiveprot:
1963  		ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1964  		return 0;
1965  	case Opt_memory_hugetlb_accounting:
1966  		ctx->flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
1967  		return 0;
1968  	case Opt_pids_localevents:
1969  		ctx->flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS;
1970  		return 0;
1971  	}
1972  	return -EINVAL;
1973  }
1974  
of_peak(struct kernfs_open_file * of)1975  struct cgroup_of_peak *of_peak(struct kernfs_open_file *of)
1976  {
1977  	struct cgroup_file_ctx *ctx = of->priv;
1978  
1979  	return &ctx->peak;
1980  }
1981  
apply_cgroup_root_flags(unsigned int root_flags)1982  static void apply_cgroup_root_flags(unsigned int root_flags)
1983  {
1984  	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1985  		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1986  			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1987  		else
1988  			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1989  
1990  		cgroup_favor_dynmods(&cgrp_dfl_root,
1991  				     root_flags & CGRP_ROOT_FAVOR_DYNMODS);
1992  
1993  		if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1994  			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1995  		else
1996  			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1997  
1998  		if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1999  			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
2000  		else
2001  			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
2002  
2003  		if (root_flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)
2004  			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
2005  		else
2006  			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
2007  
2008  		if (root_flags & CGRP_ROOT_PIDS_LOCAL_EVENTS)
2009  			cgrp_dfl_root.flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS;
2010  		else
2011  			cgrp_dfl_root.flags &= ~CGRP_ROOT_PIDS_LOCAL_EVENTS;
2012  	}
2013  }
2014  
cgroup_show_options(struct seq_file * seq,struct kernfs_root * kf_root)2015  static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
2016  {
2017  	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
2018  		seq_puts(seq, ",nsdelegate");
2019  	if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS)
2020  		seq_puts(seq, ",favordynmods");
2021  	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
2022  		seq_puts(seq, ",memory_localevents");
2023  	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
2024  		seq_puts(seq, ",memory_recursiveprot");
2025  	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)
2026  		seq_puts(seq, ",memory_hugetlb_accounting");
2027  	if (cgrp_dfl_root.flags & CGRP_ROOT_PIDS_LOCAL_EVENTS)
2028  		seq_puts(seq, ",pids_localevents");
2029  	return 0;
2030  }
2031  
cgroup_reconfigure(struct fs_context * fc)2032  static int cgroup_reconfigure(struct fs_context *fc)
2033  {
2034  	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2035  
2036  	apply_cgroup_root_flags(ctx->flags);
2037  	return 0;
2038  }
2039  
init_cgroup_housekeeping(struct cgroup * cgrp)2040  static void init_cgroup_housekeeping(struct cgroup *cgrp)
2041  {
2042  	struct cgroup_subsys *ss;
2043  	int ssid;
2044  
2045  	INIT_LIST_HEAD(&cgrp->self.sibling);
2046  	INIT_LIST_HEAD(&cgrp->self.children);
2047  	INIT_LIST_HEAD(&cgrp->cset_links);
2048  	INIT_LIST_HEAD(&cgrp->pidlists);
2049  	mutex_init(&cgrp->pidlist_mutex);
2050  	cgrp->self.cgroup = cgrp;
2051  	cgrp->self.flags |= CSS_ONLINE;
2052  	cgrp->dom_cgrp = cgrp;
2053  	cgrp->max_descendants = INT_MAX;
2054  	cgrp->max_depth = INT_MAX;
2055  	INIT_LIST_HEAD(&cgrp->rstat_css_list);
2056  	prev_cputime_init(&cgrp->prev_cputime);
2057  
2058  	for_each_subsys(ss, ssid)
2059  		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
2060  
2061  	init_waitqueue_head(&cgrp->offline_waitq);
2062  	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
2063  }
2064  
init_cgroup_root(struct cgroup_fs_context * ctx)2065  void init_cgroup_root(struct cgroup_fs_context *ctx)
2066  {
2067  	struct cgroup_root *root = ctx->root;
2068  	struct cgroup *cgrp = &root->cgrp;
2069  
2070  	INIT_LIST_HEAD_RCU(&root->root_list);
2071  	atomic_set(&root->nr_cgrps, 1);
2072  	cgrp->root = root;
2073  	init_cgroup_housekeeping(cgrp);
2074  
2075  	/* DYNMODS must be modified through cgroup_favor_dynmods() */
2076  	root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS;
2077  	if (ctx->release_agent)
2078  		strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
2079  	if (ctx->name)
2080  		strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
2081  	if (ctx->cpuset_clone_children)
2082  		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
2083  }
2084  
cgroup_setup_root(struct cgroup_root * root,u16 ss_mask)2085  int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2086  {
2087  	LIST_HEAD(tmp_links);
2088  	struct cgroup *root_cgrp = &root->cgrp;
2089  	struct kernfs_syscall_ops *kf_sops;
2090  	struct css_set *cset;
2091  	int i, ret;
2092  
2093  	lockdep_assert_held(&cgroup_mutex);
2094  
2095  	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
2096  			      0, GFP_KERNEL);
2097  	if (ret)
2098  		goto out;
2099  
2100  	/*
2101  	 * We're accessing css_set_count without locking css_set_lock here,
2102  	 * but that's OK - it can only be increased by someone holding
2103  	 * cgroup_lock, and that's us.  Later rebinding may disable
2104  	 * controllers on the default hierarchy and thus create new csets,
2105  	 * which can't be more than the existing ones.  Allocate 2x.
2106  	 */
2107  	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2108  	if (ret)
2109  		goto cancel_ref;
2110  
2111  	ret = cgroup_init_root_id(root);
2112  	if (ret)
2113  		goto cancel_ref;
2114  
2115  	kf_sops = root == &cgrp_dfl_root ?
2116  		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2117  
2118  	root->kf_root = kernfs_create_root(kf_sops,
2119  					   KERNFS_ROOT_CREATE_DEACTIVATED |
2120  					   KERNFS_ROOT_SUPPORT_EXPORTOP |
2121  					   KERNFS_ROOT_SUPPORT_USER_XATTR,
2122  					   root_cgrp);
2123  	if (IS_ERR(root->kf_root)) {
2124  		ret = PTR_ERR(root->kf_root);
2125  		goto exit_root_id;
2126  	}
2127  	root_cgrp->kn = kernfs_root_to_node(root->kf_root);
2128  	WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
2129  	root_cgrp->ancestors[0] = root_cgrp;
2130  
2131  	ret = css_populate_dir(&root_cgrp->self);
2132  	if (ret)
2133  		goto destroy_root;
2134  
2135  	ret = cgroup_rstat_init(root_cgrp);
2136  	if (ret)
2137  		goto destroy_root;
2138  
2139  	ret = rebind_subsystems(root, ss_mask);
2140  	if (ret)
2141  		goto exit_stats;
2142  
2143  	if (root == &cgrp_dfl_root) {
2144  		ret = cgroup_bpf_inherit(root_cgrp);
2145  		WARN_ON_ONCE(ret);
2146  	}
2147  
2148  	trace_cgroup_setup_root(root);
2149  
2150  	/*
2151  	 * There must be no failure case after here, since rebinding takes
2152  	 * care of subsystems' refcounts, which are explicitly dropped in
2153  	 * the failure exit path.
2154  	 */
2155  	list_add_rcu(&root->root_list, &cgroup_roots);
2156  	cgroup_root_count++;
2157  
2158  	/*
2159  	 * Link the root cgroup in this hierarchy into all the css_set
2160  	 * objects.
2161  	 */
2162  	spin_lock_irq(&css_set_lock);
2163  	hash_for_each(css_set_table, i, cset, hlist) {
2164  		link_css_set(&tmp_links, cset, root_cgrp);
2165  		if (css_set_populated(cset))
2166  			cgroup_update_populated(root_cgrp, true);
2167  	}
2168  	spin_unlock_irq(&css_set_lock);
2169  
2170  	BUG_ON(!list_empty(&root_cgrp->self.children));
2171  	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2172  
2173  	ret = 0;
2174  	goto out;
2175  
2176  exit_stats:
2177  	cgroup_rstat_exit(root_cgrp);
2178  destroy_root:
2179  	kernfs_destroy_root(root->kf_root);
2180  	root->kf_root = NULL;
2181  exit_root_id:
2182  	cgroup_exit_root_id(root);
2183  cancel_ref:
2184  	percpu_ref_exit(&root_cgrp->self.refcnt);
2185  out:
2186  	free_cgrp_cset_links(&tmp_links);
2187  	return ret;
2188  }
2189  
cgroup_do_get_tree(struct fs_context * fc)2190  int cgroup_do_get_tree(struct fs_context *fc)
2191  {
2192  	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2193  	int ret;
2194  
2195  	ctx->kfc.root = ctx->root->kf_root;
2196  	if (fc->fs_type == &cgroup2_fs_type)
2197  		ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2198  	else
2199  		ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2200  	ret = kernfs_get_tree(fc);
2201  
2202  	/*
2203  	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2204  	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2205  	 */
2206  	if (!ret && ctx->ns != &init_cgroup_ns) {
2207  		struct dentry *nsdentry;
2208  		struct super_block *sb = fc->root->d_sb;
2209  		struct cgroup *cgrp;
2210  
2211  		cgroup_lock();
2212  		spin_lock_irq(&css_set_lock);
2213  
2214  		cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2215  
2216  		spin_unlock_irq(&css_set_lock);
2217  		cgroup_unlock();
2218  
2219  		nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2220  		dput(fc->root);
2221  		if (IS_ERR(nsdentry)) {
2222  			deactivate_locked_super(sb);
2223  			ret = PTR_ERR(nsdentry);
2224  			nsdentry = NULL;
2225  		}
2226  		fc->root = nsdentry;
2227  	}
2228  
2229  	if (!ctx->kfc.new_sb_created)
2230  		cgroup_put(&ctx->root->cgrp);
2231  
2232  	return ret;
2233  }
2234  
2235  /*
2236   * Destroy a cgroup filesystem context.
2237   */
cgroup_fs_context_free(struct fs_context * fc)2238  static void cgroup_fs_context_free(struct fs_context *fc)
2239  {
2240  	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2241  
2242  	kfree(ctx->name);
2243  	kfree(ctx->release_agent);
2244  	put_cgroup_ns(ctx->ns);
2245  	kernfs_free_fs_context(fc);
2246  	kfree(ctx);
2247  }
2248  
cgroup_get_tree(struct fs_context * fc)2249  static int cgroup_get_tree(struct fs_context *fc)
2250  {
2251  	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2252  	int ret;
2253  
2254  	WRITE_ONCE(cgrp_dfl_visible, true);
2255  	cgroup_get_live(&cgrp_dfl_root.cgrp);
2256  	ctx->root = &cgrp_dfl_root;
2257  
2258  	ret = cgroup_do_get_tree(fc);
2259  	if (!ret)
2260  		apply_cgroup_root_flags(ctx->flags);
2261  	return ret;
2262  }
2263  
2264  static const struct fs_context_operations cgroup_fs_context_ops = {
2265  	.free		= cgroup_fs_context_free,
2266  	.parse_param	= cgroup2_parse_param,
2267  	.get_tree	= cgroup_get_tree,
2268  	.reconfigure	= cgroup_reconfigure,
2269  };
2270  
2271  static const struct fs_context_operations cgroup1_fs_context_ops = {
2272  	.free		= cgroup_fs_context_free,
2273  	.parse_param	= cgroup1_parse_param,
2274  	.get_tree	= cgroup1_get_tree,
2275  	.reconfigure	= cgroup1_reconfigure,
2276  };
2277  
2278  /*
2279   * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2280   * we select the namespace we're going to use.
2281   */
cgroup_init_fs_context(struct fs_context * fc)2282  static int cgroup_init_fs_context(struct fs_context *fc)
2283  {
2284  	struct cgroup_fs_context *ctx;
2285  
2286  	ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2287  	if (!ctx)
2288  		return -ENOMEM;
2289  
2290  	ctx->ns = current->nsproxy->cgroup_ns;
2291  	get_cgroup_ns(ctx->ns);
2292  	fc->fs_private = &ctx->kfc;
2293  	if (fc->fs_type == &cgroup2_fs_type)
2294  		fc->ops = &cgroup_fs_context_ops;
2295  	else
2296  		fc->ops = &cgroup1_fs_context_ops;
2297  	put_user_ns(fc->user_ns);
2298  	fc->user_ns = get_user_ns(ctx->ns->user_ns);
2299  	fc->global = true;
2300  
2301  	if (have_favordynmods)
2302  		ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
2303  
2304  	return 0;
2305  }
2306  
cgroup_kill_sb(struct super_block * sb)2307  static void cgroup_kill_sb(struct super_block *sb)
2308  {
2309  	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2310  	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2311  
2312  	/*
2313  	 * If @root doesn't have any children, start killing it.
2314  	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2315  	 *
2316  	 * And don't kill the default root.
2317  	 */
2318  	if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2319  	    !percpu_ref_is_dying(&root->cgrp.self.refcnt))
2320  		percpu_ref_kill(&root->cgrp.self.refcnt);
2321  	cgroup_put(&root->cgrp);
2322  	kernfs_kill_sb(sb);
2323  }
2324  
2325  struct file_system_type cgroup_fs_type = {
2326  	.name			= "cgroup",
2327  	.init_fs_context	= cgroup_init_fs_context,
2328  	.parameters		= cgroup1_fs_parameters,
2329  	.kill_sb		= cgroup_kill_sb,
2330  	.fs_flags		= FS_USERNS_MOUNT,
2331  };
2332  
2333  static struct file_system_type cgroup2_fs_type = {
2334  	.name			= "cgroup2",
2335  	.init_fs_context	= cgroup_init_fs_context,
2336  	.parameters		= cgroup2_fs_parameters,
2337  	.kill_sb		= cgroup_kill_sb,
2338  	.fs_flags		= FS_USERNS_MOUNT,
2339  };
2340  
2341  #ifdef CONFIG_CPUSETS_V1
2342  static const struct fs_context_operations cpuset_fs_context_ops = {
2343  	.get_tree	= cgroup1_get_tree,
2344  	.free		= cgroup_fs_context_free,
2345  };
2346  
2347  /*
2348   * This is ugly, but preserves the userspace API for existing cpuset
2349   * users. If someone tries to mount the "cpuset" filesystem, we
2350   * silently switch it to mount "cgroup" instead
2351   */
cpuset_init_fs_context(struct fs_context * fc)2352  static int cpuset_init_fs_context(struct fs_context *fc)
2353  {
2354  	char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2355  	struct cgroup_fs_context *ctx;
2356  	int err;
2357  
2358  	err = cgroup_init_fs_context(fc);
2359  	if (err) {
2360  		kfree(agent);
2361  		return err;
2362  	}
2363  
2364  	fc->ops = &cpuset_fs_context_ops;
2365  
2366  	ctx = cgroup_fc2context(fc);
2367  	ctx->subsys_mask = 1 << cpuset_cgrp_id;
2368  	ctx->flags |= CGRP_ROOT_NOPREFIX;
2369  	ctx->release_agent = agent;
2370  
2371  	get_filesystem(&cgroup_fs_type);
2372  	put_filesystem(fc->fs_type);
2373  	fc->fs_type = &cgroup_fs_type;
2374  
2375  	return 0;
2376  }
2377  
2378  static struct file_system_type cpuset_fs_type = {
2379  	.name			= "cpuset",
2380  	.init_fs_context	= cpuset_init_fs_context,
2381  	.fs_flags		= FS_USERNS_MOUNT,
2382  };
2383  #endif
2384  
cgroup_path_ns_locked(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2385  int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2386  			  struct cgroup_namespace *ns)
2387  {
2388  	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2389  
2390  	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2391  }
2392  
cgroup_path_ns(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2393  int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2394  		   struct cgroup_namespace *ns)
2395  {
2396  	int ret;
2397  
2398  	cgroup_lock();
2399  	spin_lock_irq(&css_set_lock);
2400  
2401  	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2402  
2403  	spin_unlock_irq(&css_set_lock);
2404  	cgroup_unlock();
2405  
2406  	return ret;
2407  }
2408  EXPORT_SYMBOL_GPL(cgroup_path_ns);
2409  
2410  /**
2411   * cgroup_attach_lock - Lock for ->attach()
2412   * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem
2413   *
2414   * cgroup migration sometimes needs to stabilize threadgroups against forks and
2415   * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach()
2416   * implementations (e.g. cpuset), also need to disable CPU hotplug.
2417   * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can
2418   * lead to deadlocks.
2419   *
2420   * Bringing up a CPU may involve creating and destroying tasks which requires
2421   * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
2422   * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while
2423   * write-locking threadgroup_rwsem, the locking order is reversed and we end up
2424   * waiting for an on-going CPU hotplug operation which in turn is waiting for
2425   * the threadgroup_rwsem to be released to create new tasks. For more details:
2426   *
2427   *   http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu
2428   *
2429   * Resolve the situation by always acquiring cpus_read_lock() before optionally
2430   * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that
2431   * CPU hotplug is disabled on entry.
2432   */
cgroup_attach_lock(bool lock_threadgroup)2433  void cgroup_attach_lock(bool lock_threadgroup)
2434  {
2435  	cpus_read_lock();
2436  	if (lock_threadgroup)
2437  		percpu_down_write(&cgroup_threadgroup_rwsem);
2438  }
2439  
2440  /**
2441   * cgroup_attach_unlock - Undo cgroup_attach_lock()
2442   * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem
2443   */
cgroup_attach_unlock(bool lock_threadgroup)2444  void cgroup_attach_unlock(bool lock_threadgroup)
2445  {
2446  	if (lock_threadgroup)
2447  		percpu_up_write(&cgroup_threadgroup_rwsem);
2448  	cpus_read_unlock();
2449  }
2450  
2451  /**
2452   * cgroup_migrate_add_task - add a migration target task to a migration context
2453   * @task: target task
2454   * @mgctx: target migration context
2455   *
2456   * Add @task, which is a migration target, to @mgctx->tset.  This function
2457   * becomes noop if @task doesn't need to be migrated.  @task's css_set
2458   * should have been added as a migration source and @task->cg_list will be
2459   * moved from the css_set's tasks list to mg_tasks one.
2460   */
cgroup_migrate_add_task(struct task_struct * task,struct cgroup_mgctx * mgctx)2461  static void cgroup_migrate_add_task(struct task_struct *task,
2462  				    struct cgroup_mgctx *mgctx)
2463  {
2464  	struct css_set *cset;
2465  
2466  	lockdep_assert_held(&css_set_lock);
2467  
2468  	/* @task either already exited or can't exit until the end */
2469  	if (task->flags & PF_EXITING)
2470  		return;
2471  
2472  	/* cgroup_threadgroup_rwsem protects racing against forks */
2473  	WARN_ON_ONCE(list_empty(&task->cg_list));
2474  
2475  	cset = task_css_set(task);
2476  	if (!cset->mg_src_cgrp)
2477  		return;
2478  
2479  	mgctx->tset.nr_tasks++;
2480  
2481  	list_move_tail(&task->cg_list, &cset->mg_tasks);
2482  	if (list_empty(&cset->mg_node))
2483  		list_add_tail(&cset->mg_node,
2484  			      &mgctx->tset.src_csets);
2485  	if (list_empty(&cset->mg_dst_cset->mg_node))
2486  		list_add_tail(&cset->mg_dst_cset->mg_node,
2487  			      &mgctx->tset.dst_csets);
2488  }
2489  
2490  /**
2491   * cgroup_taskset_first - reset taskset and return the first task
2492   * @tset: taskset of interest
2493   * @dst_cssp: output variable for the destination css
2494   *
2495   * @tset iteration is initialized and the first task is returned.
2496   */
cgroup_taskset_first(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2497  struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2498  					 struct cgroup_subsys_state **dst_cssp)
2499  {
2500  	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2501  	tset->cur_task = NULL;
2502  
2503  	return cgroup_taskset_next(tset, dst_cssp);
2504  }
2505  
2506  /**
2507   * cgroup_taskset_next - iterate to the next task in taskset
2508   * @tset: taskset of interest
2509   * @dst_cssp: output variable for the destination css
2510   *
2511   * Return the next task in @tset.  Iteration must have been initialized
2512   * with cgroup_taskset_first().
2513   */
cgroup_taskset_next(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2514  struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2515  					struct cgroup_subsys_state **dst_cssp)
2516  {
2517  	struct css_set *cset = tset->cur_cset;
2518  	struct task_struct *task = tset->cur_task;
2519  
2520  	while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) {
2521  		if (!task)
2522  			task = list_first_entry(&cset->mg_tasks,
2523  						struct task_struct, cg_list);
2524  		else
2525  			task = list_next_entry(task, cg_list);
2526  
2527  		if (&task->cg_list != &cset->mg_tasks) {
2528  			tset->cur_cset = cset;
2529  			tset->cur_task = task;
2530  
2531  			/*
2532  			 * This function may be called both before and
2533  			 * after cgroup_migrate_execute().  The two cases
2534  			 * can be distinguished by looking at whether @cset
2535  			 * has its ->mg_dst_cset set.
2536  			 */
2537  			if (cset->mg_dst_cset)
2538  				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2539  			else
2540  				*dst_cssp = cset->subsys[tset->ssid];
2541  
2542  			return task;
2543  		}
2544  
2545  		cset = list_next_entry(cset, mg_node);
2546  		task = NULL;
2547  	}
2548  
2549  	return NULL;
2550  }
2551  
2552  /**
2553   * cgroup_migrate_execute - migrate a taskset
2554   * @mgctx: migration context
2555   *
2556   * Migrate tasks in @mgctx as setup by migration preparation functions.
2557   * This function fails iff one of the ->can_attach callbacks fails and
2558   * guarantees that either all or none of the tasks in @mgctx are migrated.
2559   * @mgctx is consumed regardless of success.
2560   */
cgroup_migrate_execute(struct cgroup_mgctx * mgctx)2561  static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2562  {
2563  	struct cgroup_taskset *tset = &mgctx->tset;
2564  	struct cgroup_subsys *ss;
2565  	struct task_struct *task, *tmp_task;
2566  	struct css_set *cset, *tmp_cset;
2567  	int ssid, failed_ssid, ret;
2568  
2569  	/* check that we can legitimately attach to the cgroup */
2570  	if (tset->nr_tasks) {
2571  		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2572  			if (ss->can_attach) {
2573  				tset->ssid = ssid;
2574  				ret = ss->can_attach(tset);
2575  				if (ret) {
2576  					failed_ssid = ssid;
2577  					goto out_cancel_attach;
2578  				}
2579  			}
2580  		} while_each_subsys_mask();
2581  	}
2582  
2583  	/*
2584  	 * Now that we're guaranteed success, proceed to move all tasks to
2585  	 * the new cgroup.  There are no failure cases after here, so this
2586  	 * is the commit point.
2587  	 */
2588  	spin_lock_irq(&css_set_lock);
2589  	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2590  		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2591  			struct css_set *from_cset = task_css_set(task);
2592  			struct css_set *to_cset = cset->mg_dst_cset;
2593  
2594  			get_css_set(to_cset);
2595  			to_cset->nr_tasks++;
2596  			css_set_move_task(task, from_cset, to_cset, true);
2597  			from_cset->nr_tasks--;
2598  			/*
2599  			 * If the source or destination cgroup is frozen,
2600  			 * the task might require to change its state.
2601  			 */
2602  			cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2603  						    to_cset->dfl_cgrp);
2604  			put_css_set_locked(from_cset);
2605  
2606  		}
2607  	}
2608  	spin_unlock_irq(&css_set_lock);
2609  
2610  	/*
2611  	 * Migration is committed, all target tasks are now on dst_csets.
2612  	 * Nothing is sensitive to fork() after this point.  Notify
2613  	 * controllers that migration is complete.
2614  	 */
2615  	tset->csets = &tset->dst_csets;
2616  
2617  	if (tset->nr_tasks) {
2618  		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2619  			if (ss->attach) {
2620  				tset->ssid = ssid;
2621  				ss->attach(tset);
2622  			}
2623  		} while_each_subsys_mask();
2624  	}
2625  
2626  	ret = 0;
2627  	goto out_release_tset;
2628  
2629  out_cancel_attach:
2630  	if (tset->nr_tasks) {
2631  		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2632  			if (ssid == failed_ssid)
2633  				break;
2634  			if (ss->cancel_attach) {
2635  				tset->ssid = ssid;
2636  				ss->cancel_attach(tset);
2637  			}
2638  		} while_each_subsys_mask();
2639  	}
2640  out_release_tset:
2641  	spin_lock_irq(&css_set_lock);
2642  	list_splice_init(&tset->dst_csets, &tset->src_csets);
2643  	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2644  		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2645  		list_del_init(&cset->mg_node);
2646  	}
2647  	spin_unlock_irq(&css_set_lock);
2648  
2649  	/*
2650  	 * Re-initialize the cgroup_taskset structure in case it is reused
2651  	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2652  	 * iteration.
2653  	 */
2654  	tset->nr_tasks = 0;
2655  	tset->csets    = &tset->src_csets;
2656  	return ret;
2657  }
2658  
2659  /**
2660   * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2661   * @dst_cgrp: destination cgroup to test
2662   *
2663   * On the default hierarchy, except for the mixable, (possible) thread root
2664   * and threaded cgroups, subtree_control must be zero for migration
2665   * destination cgroups with tasks so that child cgroups don't compete
2666   * against tasks.
2667   */
cgroup_migrate_vet_dst(struct cgroup * dst_cgrp)2668  int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2669  {
2670  	/* v1 doesn't have any restriction */
2671  	if (!cgroup_on_dfl(dst_cgrp))
2672  		return 0;
2673  
2674  	/* verify @dst_cgrp can host resources */
2675  	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2676  		return -EOPNOTSUPP;
2677  
2678  	/*
2679  	 * If @dst_cgrp is already or can become a thread root or is
2680  	 * threaded, it doesn't matter.
2681  	 */
2682  	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2683  		return 0;
2684  
2685  	/* apply no-internal-process constraint */
2686  	if (dst_cgrp->subtree_control)
2687  		return -EBUSY;
2688  
2689  	return 0;
2690  }
2691  
2692  /**
2693   * cgroup_migrate_finish - cleanup after attach
2694   * @mgctx: migration context
2695   *
2696   * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2697   * those functions for details.
2698   */
cgroup_migrate_finish(struct cgroup_mgctx * mgctx)2699  void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2700  {
2701  	struct css_set *cset, *tmp_cset;
2702  
2703  	lockdep_assert_held(&cgroup_mutex);
2704  
2705  	spin_lock_irq(&css_set_lock);
2706  
2707  	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets,
2708  				 mg_src_preload_node) {
2709  		cset->mg_src_cgrp = NULL;
2710  		cset->mg_dst_cgrp = NULL;
2711  		cset->mg_dst_cset = NULL;
2712  		list_del_init(&cset->mg_src_preload_node);
2713  		put_css_set_locked(cset);
2714  	}
2715  
2716  	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets,
2717  				 mg_dst_preload_node) {
2718  		cset->mg_src_cgrp = NULL;
2719  		cset->mg_dst_cgrp = NULL;
2720  		cset->mg_dst_cset = NULL;
2721  		list_del_init(&cset->mg_dst_preload_node);
2722  		put_css_set_locked(cset);
2723  	}
2724  
2725  	spin_unlock_irq(&css_set_lock);
2726  }
2727  
2728  /**
2729   * cgroup_migrate_add_src - add a migration source css_set
2730   * @src_cset: the source css_set to add
2731   * @dst_cgrp: the destination cgroup
2732   * @mgctx: migration context
2733   *
2734   * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2735   * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2736   * up by cgroup_migrate_finish().
2737   *
2738   * This function may be called without holding cgroup_threadgroup_rwsem
2739   * even if the target is a process.  Threads may be created and destroyed
2740   * but as long as cgroup_mutex is not dropped, no new css_set can be put
2741   * into play and the preloaded css_sets are guaranteed to cover all
2742   * migrations.
2743   */
cgroup_migrate_add_src(struct css_set * src_cset,struct cgroup * dst_cgrp,struct cgroup_mgctx * mgctx)2744  void cgroup_migrate_add_src(struct css_set *src_cset,
2745  			    struct cgroup *dst_cgrp,
2746  			    struct cgroup_mgctx *mgctx)
2747  {
2748  	struct cgroup *src_cgrp;
2749  
2750  	lockdep_assert_held(&cgroup_mutex);
2751  	lockdep_assert_held(&css_set_lock);
2752  
2753  	/*
2754  	 * If ->dead, @src_set is associated with one or more dead cgroups
2755  	 * and doesn't contain any migratable tasks.  Ignore it early so
2756  	 * that the rest of migration path doesn't get confused by it.
2757  	 */
2758  	if (src_cset->dead)
2759  		return;
2760  
2761  	if (!list_empty(&src_cset->mg_src_preload_node))
2762  		return;
2763  
2764  	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2765  
2766  	WARN_ON(src_cset->mg_src_cgrp);
2767  	WARN_ON(src_cset->mg_dst_cgrp);
2768  	WARN_ON(!list_empty(&src_cset->mg_tasks));
2769  	WARN_ON(!list_empty(&src_cset->mg_node));
2770  
2771  	src_cset->mg_src_cgrp = src_cgrp;
2772  	src_cset->mg_dst_cgrp = dst_cgrp;
2773  	get_css_set(src_cset);
2774  	list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets);
2775  }
2776  
2777  /**
2778   * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2779   * @mgctx: migration context
2780   *
2781   * Tasks are about to be moved and all the source css_sets have been
2782   * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2783   * pins all destination css_sets, links each to its source, and append them
2784   * to @mgctx->preloaded_dst_csets.
2785   *
2786   * This function must be called after cgroup_migrate_add_src() has been
2787   * called on each migration source css_set.  After migration is performed
2788   * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2789   * @mgctx.
2790   */
cgroup_migrate_prepare_dst(struct cgroup_mgctx * mgctx)2791  int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2792  {
2793  	struct css_set *src_cset, *tmp_cset;
2794  
2795  	lockdep_assert_held(&cgroup_mutex);
2796  
2797  	/* look up the dst cset for each src cset and link it to src */
2798  	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2799  				 mg_src_preload_node) {
2800  		struct css_set *dst_cset;
2801  		struct cgroup_subsys *ss;
2802  		int ssid;
2803  
2804  		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2805  		if (!dst_cset)
2806  			return -ENOMEM;
2807  
2808  		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2809  
2810  		/*
2811  		 * If src cset equals dst, it's noop.  Drop the src.
2812  		 * cgroup_migrate() will skip the cset too.  Note that we
2813  		 * can't handle src == dst as some nodes are used by both.
2814  		 */
2815  		if (src_cset == dst_cset) {
2816  			src_cset->mg_src_cgrp = NULL;
2817  			src_cset->mg_dst_cgrp = NULL;
2818  			list_del_init(&src_cset->mg_src_preload_node);
2819  			put_css_set(src_cset);
2820  			put_css_set(dst_cset);
2821  			continue;
2822  		}
2823  
2824  		src_cset->mg_dst_cset = dst_cset;
2825  
2826  		if (list_empty(&dst_cset->mg_dst_preload_node))
2827  			list_add_tail(&dst_cset->mg_dst_preload_node,
2828  				      &mgctx->preloaded_dst_csets);
2829  		else
2830  			put_css_set(dst_cset);
2831  
2832  		for_each_subsys(ss, ssid)
2833  			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2834  				mgctx->ss_mask |= 1 << ssid;
2835  	}
2836  
2837  	return 0;
2838  }
2839  
2840  /**
2841   * cgroup_migrate - migrate a process or task to a cgroup
2842   * @leader: the leader of the process or the task to migrate
2843   * @threadgroup: whether @leader points to the whole process or a single task
2844   * @mgctx: migration context
2845   *
2846   * Migrate a process or task denoted by @leader.  If migrating a process,
2847   * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2848   * responsible for invoking cgroup_migrate_add_src() and
2849   * cgroup_migrate_prepare_dst() on the targets before invoking this
2850   * function and following up with cgroup_migrate_finish().
2851   *
2852   * As long as a controller's ->can_attach() doesn't fail, this function is
2853   * guaranteed to succeed.  This means that, excluding ->can_attach()
2854   * failure, when migrating multiple targets, the success or failure can be
2855   * decided for all targets by invoking group_migrate_prepare_dst() before
2856   * actually starting migrating.
2857   */
cgroup_migrate(struct task_struct * leader,bool threadgroup,struct cgroup_mgctx * mgctx)2858  int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2859  		   struct cgroup_mgctx *mgctx)
2860  {
2861  	struct task_struct *task;
2862  
2863  	/*
2864  	 * The following thread iteration should be inside an RCU critical
2865  	 * section to prevent tasks from being freed while taking the snapshot.
2866  	 * spin_lock_irq() implies RCU critical section here.
2867  	 */
2868  	spin_lock_irq(&css_set_lock);
2869  	task = leader;
2870  	do {
2871  		cgroup_migrate_add_task(task, mgctx);
2872  		if (!threadgroup)
2873  			break;
2874  	} while_each_thread(leader, task);
2875  	spin_unlock_irq(&css_set_lock);
2876  
2877  	return cgroup_migrate_execute(mgctx);
2878  }
2879  
2880  /**
2881   * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2882   * @dst_cgrp: the cgroup to attach to
2883   * @leader: the task or the leader of the threadgroup to be attached
2884   * @threadgroup: attach the whole threadgroup?
2885   *
2886   * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2887   */
cgroup_attach_task(struct cgroup * dst_cgrp,struct task_struct * leader,bool threadgroup)2888  int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2889  		       bool threadgroup)
2890  {
2891  	DEFINE_CGROUP_MGCTX(mgctx);
2892  	struct task_struct *task;
2893  	int ret = 0;
2894  
2895  	/* look up all src csets */
2896  	spin_lock_irq(&css_set_lock);
2897  	rcu_read_lock();
2898  	task = leader;
2899  	do {
2900  		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2901  		if (!threadgroup)
2902  			break;
2903  	} while_each_thread(leader, task);
2904  	rcu_read_unlock();
2905  	spin_unlock_irq(&css_set_lock);
2906  
2907  	/* prepare dst csets and commit */
2908  	ret = cgroup_migrate_prepare_dst(&mgctx);
2909  	if (!ret)
2910  		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2911  
2912  	cgroup_migrate_finish(&mgctx);
2913  
2914  	if (!ret)
2915  		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2916  
2917  	return ret;
2918  }
2919  
cgroup_procs_write_start(char * buf,bool threadgroup,bool * threadgroup_locked)2920  struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2921  					     bool *threadgroup_locked)
2922  {
2923  	struct task_struct *tsk;
2924  	pid_t pid;
2925  
2926  	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2927  		return ERR_PTR(-EINVAL);
2928  
2929  	/*
2930  	 * If we migrate a single thread, we don't care about threadgroup
2931  	 * stability. If the thread is `current`, it won't exit(2) under our
2932  	 * hands or change PID through exec(2). We exclude
2933  	 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2934  	 * callers by cgroup_mutex.
2935  	 * Therefore, we can skip the global lock.
2936  	 */
2937  	lockdep_assert_held(&cgroup_mutex);
2938  	*threadgroup_locked = pid || threadgroup;
2939  	cgroup_attach_lock(*threadgroup_locked);
2940  
2941  	rcu_read_lock();
2942  	if (pid) {
2943  		tsk = find_task_by_vpid(pid);
2944  		if (!tsk) {
2945  			tsk = ERR_PTR(-ESRCH);
2946  			goto out_unlock_threadgroup;
2947  		}
2948  	} else {
2949  		tsk = current;
2950  	}
2951  
2952  	if (threadgroup)
2953  		tsk = tsk->group_leader;
2954  
2955  	/*
2956  	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2957  	 * If userland migrates such a kthread to a non-root cgroup, it can
2958  	 * become trapped in a cpuset, or RT kthread may be born in a
2959  	 * cgroup with no rt_runtime allocated.  Just say no.
2960  	 */
2961  	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2962  		tsk = ERR_PTR(-EINVAL);
2963  		goto out_unlock_threadgroup;
2964  	}
2965  
2966  	get_task_struct(tsk);
2967  	goto out_unlock_rcu;
2968  
2969  out_unlock_threadgroup:
2970  	cgroup_attach_unlock(*threadgroup_locked);
2971  	*threadgroup_locked = false;
2972  out_unlock_rcu:
2973  	rcu_read_unlock();
2974  	return tsk;
2975  }
2976  
cgroup_procs_write_finish(struct task_struct * task,bool threadgroup_locked)2977  void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked)
2978  {
2979  	struct cgroup_subsys *ss;
2980  	int ssid;
2981  
2982  	/* release reference from cgroup_procs_write_start() */
2983  	put_task_struct(task);
2984  
2985  	cgroup_attach_unlock(threadgroup_locked);
2986  
2987  	for_each_subsys(ss, ssid)
2988  		if (ss->post_attach)
2989  			ss->post_attach();
2990  }
2991  
cgroup_print_ss_mask(struct seq_file * seq,u16 ss_mask)2992  static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2993  {
2994  	struct cgroup_subsys *ss;
2995  	bool printed = false;
2996  	int ssid;
2997  
2998  	do_each_subsys_mask(ss, ssid, ss_mask) {
2999  		if (printed)
3000  			seq_putc(seq, ' ');
3001  		seq_puts(seq, ss->name);
3002  		printed = true;
3003  	} while_each_subsys_mask();
3004  	if (printed)
3005  		seq_putc(seq, '\n');
3006  }
3007  
3008  /* show controllers which are enabled from the parent */
cgroup_controllers_show(struct seq_file * seq,void * v)3009  static int cgroup_controllers_show(struct seq_file *seq, void *v)
3010  {
3011  	struct cgroup *cgrp = seq_css(seq)->cgroup;
3012  
3013  	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
3014  	return 0;
3015  }
3016  
3017  /* show controllers which are enabled for a given cgroup's children */
cgroup_subtree_control_show(struct seq_file * seq,void * v)3018  static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
3019  {
3020  	struct cgroup *cgrp = seq_css(seq)->cgroup;
3021  
3022  	cgroup_print_ss_mask(seq, cgrp->subtree_control);
3023  	return 0;
3024  }
3025  
3026  /**
3027   * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3028   * @cgrp: root of the subtree to update csses for
3029   *
3030   * @cgrp's control masks have changed and its subtree's css associations
3031   * need to be updated accordingly.  This function looks up all css_sets
3032   * which are attached to the subtree, creates the matching updated css_sets
3033   * and migrates the tasks to the new ones.
3034   */
cgroup_update_dfl_csses(struct cgroup * cgrp)3035  static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3036  {
3037  	DEFINE_CGROUP_MGCTX(mgctx);
3038  	struct cgroup_subsys_state *d_css;
3039  	struct cgroup *dsct;
3040  	struct css_set *src_cset;
3041  	bool has_tasks;
3042  	int ret;
3043  
3044  	lockdep_assert_held(&cgroup_mutex);
3045  
3046  	/* look up all csses currently attached to @cgrp's subtree */
3047  	spin_lock_irq(&css_set_lock);
3048  	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3049  		struct cgrp_cset_link *link;
3050  
3051  		/*
3052  		 * As cgroup_update_dfl_csses() is only called by
3053  		 * cgroup_apply_control(). The csses associated with the
3054  		 * given cgrp will not be affected by changes made to
3055  		 * its subtree_control file. We can skip them.
3056  		 */
3057  		if (dsct == cgrp)
3058  			continue;
3059  
3060  		list_for_each_entry(link, &dsct->cset_links, cset_link)
3061  			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
3062  	}
3063  	spin_unlock_irq(&css_set_lock);
3064  
3065  	/*
3066  	 * We need to write-lock threadgroup_rwsem while migrating tasks.
3067  	 * However, if there are no source csets for @cgrp, changing its
3068  	 * controllers isn't gonna produce any task migrations and the
3069  	 * write-locking can be skipped safely.
3070  	 */
3071  	has_tasks = !list_empty(&mgctx.preloaded_src_csets);
3072  	cgroup_attach_lock(has_tasks);
3073  
3074  	/* NULL dst indicates self on default hierarchy */
3075  	ret = cgroup_migrate_prepare_dst(&mgctx);
3076  	if (ret)
3077  		goto out_finish;
3078  
3079  	spin_lock_irq(&css_set_lock);
3080  	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets,
3081  			    mg_src_preload_node) {
3082  		struct task_struct *task, *ntask;
3083  
3084  		/* all tasks in src_csets need to be migrated */
3085  		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3086  			cgroup_migrate_add_task(task, &mgctx);
3087  	}
3088  	spin_unlock_irq(&css_set_lock);
3089  
3090  	ret = cgroup_migrate_execute(&mgctx);
3091  out_finish:
3092  	cgroup_migrate_finish(&mgctx);
3093  	cgroup_attach_unlock(has_tasks);
3094  	return ret;
3095  }
3096  
3097  /**
3098   * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3099   * @cgrp: root of the target subtree
3100   *
3101   * Because css offlining is asynchronous, userland may try to re-enable a
3102   * controller while the previous css is still around.  This function grabs
3103   * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3104   */
cgroup_lock_and_drain_offline(struct cgroup * cgrp)3105  void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3106  	__acquires(&cgroup_mutex)
3107  {
3108  	struct cgroup *dsct;
3109  	struct cgroup_subsys_state *d_css;
3110  	struct cgroup_subsys *ss;
3111  	int ssid;
3112  
3113  restart:
3114  	cgroup_lock();
3115  
3116  	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3117  		for_each_subsys(ss, ssid) {
3118  			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3119  			DEFINE_WAIT(wait);
3120  
3121  			if (!css || !percpu_ref_is_dying(&css->refcnt))
3122  				continue;
3123  
3124  			cgroup_get_live(dsct);
3125  			prepare_to_wait(&dsct->offline_waitq, &wait,
3126  					TASK_UNINTERRUPTIBLE);
3127  
3128  			cgroup_unlock();
3129  			schedule();
3130  			finish_wait(&dsct->offline_waitq, &wait);
3131  
3132  			cgroup_put(dsct);
3133  			goto restart;
3134  		}
3135  	}
3136  }
3137  
3138  /**
3139   * cgroup_save_control - save control masks and dom_cgrp of a subtree
3140   * @cgrp: root of the target subtree
3141   *
3142   * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3143   * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3144   * itself.
3145   */
cgroup_save_control(struct cgroup * cgrp)3146  static void cgroup_save_control(struct cgroup *cgrp)
3147  {
3148  	struct cgroup *dsct;
3149  	struct cgroup_subsys_state *d_css;
3150  
3151  	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3152  		dsct->old_subtree_control = dsct->subtree_control;
3153  		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3154  		dsct->old_dom_cgrp = dsct->dom_cgrp;
3155  	}
3156  }
3157  
3158  /**
3159   * cgroup_propagate_control - refresh control masks of a subtree
3160   * @cgrp: root of the target subtree
3161   *
3162   * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3163   * ->subtree_control and propagate controller availability through the
3164   * subtree so that descendants don't have unavailable controllers enabled.
3165   */
cgroup_propagate_control(struct cgroup * cgrp)3166  static void cgroup_propagate_control(struct cgroup *cgrp)
3167  {
3168  	struct cgroup *dsct;
3169  	struct cgroup_subsys_state *d_css;
3170  
3171  	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3172  		dsct->subtree_control &= cgroup_control(dsct);
3173  		dsct->subtree_ss_mask =
3174  			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3175  						    cgroup_ss_mask(dsct));
3176  	}
3177  }
3178  
3179  /**
3180   * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3181   * @cgrp: root of the target subtree
3182   *
3183   * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3184   * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3185   * itself.
3186   */
cgroup_restore_control(struct cgroup * cgrp)3187  static void cgroup_restore_control(struct cgroup *cgrp)
3188  {
3189  	struct cgroup *dsct;
3190  	struct cgroup_subsys_state *d_css;
3191  
3192  	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3193  		dsct->subtree_control = dsct->old_subtree_control;
3194  		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3195  		dsct->dom_cgrp = dsct->old_dom_cgrp;
3196  	}
3197  }
3198  
css_visible(struct cgroup_subsys_state * css)3199  static bool css_visible(struct cgroup_subsys_state *css)
3200  {
3201  	struct cgroup_subsys *ss = css->ss;
3202  	struct cgroup *cgrp = css->cgroup;
3203  
3204  	if (cgroup_control(cgrp) & (1 << ss->id))
3205  		return true;
3206  	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3207  		return false;
3208  	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3209  }
3210  
3211  /**
3212   * cgroup_apply_control_enable - enable or show csses according to control
3213   * @cgrp: root of the target subtree
3214   *
3215   * Walk @cgrp's subtree and create new csses or make the existing ones
3216   * visible.  A css is created invisible if it's being implicitly enabled
3217   * through dependency.  An invisible css is made visible when the userland
3218   * explicitly enables it.
3219   *
3220   * Returns 0 on success, -errno on failure.  On failure, csses which have
3221   * been processed already aren't cleaned up.  The caller is responsible for
3222   * cleaning up with cgroup_apply_control_disable().
3223   */
cgroup_apply_control_enable(struct cgroup * cgrp)3224  static int cgroup_apply_control_enable(struct cgroup *cgrp)
3225  {
3226  	struct cgroup *dsct;
3227  	struct cgroup_subsys_state *d_css;
3228  	struct cgroup_subsys *ss;
3229  	int ssid, ret;
3230  
3231  	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3232  		for_each_subsys(ss, ssid) {
3233  			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3234  
3235  			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3236  				continue;
3237  
3238  			if (!css) {
3239  				css = css_create(dsct, ss);
3240  				if (IS_ERR(css))
3241  					return PTR_ERR(css);
3242  			}
3243  
3244  			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3245  
3246  			if (css_visible(css)) {
3247  				ret = css_populate_dir(css);
3248  				if (ret)
3249  					return ret;
3250  			}
3251  		}
3252  	}
3253  
3254  	return 0;
3255  }
3256  
3257  /**
3258   * cgroup_apply_control_disable - kill or hide csses according to control
3259   * @cgrp: root of the target subtree
3260   *
3261   * Walk @cgrp's subtree and kill and hide csses so that they match
3262   * cgroup_ss_mask() and cgroup_visible_mask().
3263   *
3264   * A css is hidden when the userland requests it to be disabled while other
3265   * subsystems are still depending on it.  The css must not actively control
3266   * resources and be in the vanilla state if it's made visible again later.
3267   * Controllers which may be depended upon should provide ->css_reset() for
3268   * this purpose.
3269   */
cgroup_apply_control_disable(struct cgroup * cgrp)3270  static void cgroup_apply_control_disable(struct cgroup *cgrp)
3271  {
3272  	struct cgroup *dsct;
3273  	struct cgroup_subsys_state *d_css;
3274  	struct cgroup_subsys *ss;
3275  	int ssid;
3276  
3277  	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3278  		for_each_subsys(ss, ssid) {
3279  			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3280  
3281  			if (!css)
3282  				continue;
3283  
3284  			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3285  
3286  			if (css->parent &&
3287  			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3288  				kill_css(css);
3289  			} else if (!css_visible(css)) {
3290  				css_clear_dir(css);
3291  				if (ss->css_reset)
3292  					ss->css_reset(css);
3293  			}
3294  		}
3295  	}
3296  }
3297  
3298  /**
3299   * cgroup_apply_control - apply control mask updates to the subtree
3300   * @cgrp: root of the target subtree
3301   *
3302   * subsystems can be enabled and disabled in a subtree using the following
3303   * steps.
3304   *
3305   * 1. Call cgroup_save_control() to stash the current state.
3306   * 2. Update ->subtree_control masks in the subtree as desired.
3307   * 3. Call cgroup_apply_control() to apply the changes.
3308   * 4. Optionally perform other related operations.
3309   * 5. Call cgroup_finalize_control() to finish up.
3310   *
3311   * This function implements step 3 and propagates the mask changes
3312   * throughout @cgrp's subtree, updates csses accordingly and perform
3313   * process migrations.
3314   */
cgroup_apply_control(struct cgroup * cgrp)3315  static int cgroup_apply_control(struct cgroup *cgrp)
3316  {
3317  	int ret;
3318  
3319  	cgroup_propagate_control(cgrp);
3320  
3321  	ret = cgroup_apply_control_enable(cgrp);
3322  	if (ret)
3323  		return ret;
3324  
3325  	/*
3326  	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3327  	 * making the following cgroup_update_dfl_csses() properly update
3328  	 * css associations of all tasks in the subtree.
3329  	 */
3330  	return cgroup_update_dfl_csses(cgrp);
3331  }
3332  
3333  /**
3334   * cgroup_finalize_control - finalize control mask update
3335   * @cgrp: root of the target subtree
3336   * @ret: the result of the update
3337   *
3338   * Finalize control mask update.  See cgroup_apply_control() for more info.
3339   */
cgroup_finalize_control(struct cgroup * cgrp,int ret)3340  static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3341  {
3342  	if (ret) {
3343  		cgroup_restore_control(cgrp);
3344  		cgroup_propagate_control(cgrp);
3345  	}
3346  
3347  	cgroup_apply_control_disable(cgrp);
3348  }
3349  
cgroup_vet_subtree_control_enable(struct cgroup * cgrp,u16 enable)3350  static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3351  {
3352  	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3353  
3354  	/* if nothing is getting enabled, nothing to worry about */
3355  	if (!enable)
3356  		return 0;
3357  
3358  	/* can @cgrp host any resources? */
3359  	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3360  		return -EOPNOTSUPP;
3361  
3362  	/* mixables don't care */
3363  	if (cgroup_is_mixable(cgrp))
3364  		return 0;
3365  
3366  	if (domain_enable) {
3367  		/* can't enable domain controllers inside a thread subtree */
3368  		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3369  			return -EOPNOTSUPP;
3370  	} else {
3371  		/*
3372  		 * Threaded controllers can handle internal competitions
3373  		 * and are always allowed inside a (prospective) thread
3374  		 * subtree.
3375  		 */
3376  		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3377  			return 0;
3378  	}
3379  
3380  	/*
3381  	 * Controllers can't be enabled for a cgroup with tasks to avoid
3382  	 * child cgroups competing against tasks.
3383  	 */
3384  	if (cgroup_has_tasks(cgrp))
3385  		return -EBUSY;
3386  
3387  	return 0;
3388  }
3389  
3390  /* change the enabled child controllers for a cgroup in the default hierarchy */
cgroup_subtree_control_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3391  static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3392  					    char *buf, size_t nbytes,
3393  					    loff_t off)
3394  {
3395  	u16 enable = 0, disable = 0;
3396  	struct cgroup *cgrp, *child;
3397  	struct cgroup_subsys *ss;
3398  	char *tok;
3399  	int ssid, ret;
3400  
3401  	/*
3402  	 * Parse input - space separated list of subsystem names prefixed
3403  	 * with either + or -.
3404  	 */
3405  	buf = strstrip(buf);
3406  	while ((tok = strsep(&buf, " "))) {
3407  		if (tok[0] == '\0')
3408  			continue;
3409  		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3410  			if (!cgroup_ssid_enabled(ssid) ||
3411  			    strcmp(tok + 1, ss->name))
3412  				continue;
3413  
3414  			if (*tok == '+') {
3415  				enable |= 1 << ssid;
3416  				disable &= ~(1 << ssid);
3417  			} else if (*tok == '-') {
3418  				disable |= 1 << ssid;
3419  				enable &= ~(1 << ssid);
3420  			} else {
3421  				return -EINVAL;
3422  			}
3423  			break;
3424  		} while_each_subsys_mask();
3425  		if (ssid == CGROUP_SUBSYS_COUNT)
3426  			return -EINVAL;
3427  	}
3428  
3429  	cgrp = cgroup_kn_lock_live(of->kn, true);
3430  	if (!cgrp)
3431  		return -ENODEV;
3432  
3433  	for_each_subsys(ss, ssid) {
3434  		if (enable & (1 << ssid)) {
3435  			if (cgrp->subtree_control & (1 << ssid)) {
3436  				enable &= ~(1 << ssid);
3437  				continue;
3438  			}
3439  
3440  			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3441  				ret = -ENOENT;
3442  				goto out_unlock;
3443  			}
3444  		} else if (disable & (1 << ssid)) {
3445  			if (!(cgrp->subtree_control & (1 << ssid))) {
3446  				disable &= ~(1 << ssid);
3447  				continue;
3448  			}
3449  
3450  			/* a child has it enabled? */
3451  			cgroup_for_each_live_child(child, cgrp) {
3452  				if (child->subtree_control & (1 << ssid)) {
3453  					ret = -EBUSY;
3454  					goto out_unlock;
3455  				}
3456  			}
3457  		}
3458  	}
3459  
3460  	if (!enable && !disable) {
3461  		ret = 0;
3462  		goto out_unlock;
3463  	}
3464  
3465  	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3466  	if (ret)
3467  		goto out_unlock;
3468  
3469  	/* save and update control masks and prepare csses */
3470  	cgroup_save_control(cgrp);
3471  
3472  	cgrp->subtree_control |= enable;
3473  	cgrp->subtree_control &= ~disable;
3474  
3475  	ret = cgroup_apply_control(cgrp);
3476  	cgroup_finalize_control(cgrp, ret);
3477  	if (ret)
3478  		goto out_unlock;
3479  
3480  	kernfs_activate(cgrp->kn);
3481  out_unlock:
3482  	cgroup_kn_unlock(of->kn);
3483  	return ret ?: nbytes;
3484  }
3485  
3486  /**
3487   * cgroup_enable_threaded - make @cgrp threaded
3488   * @cgrp: the target cgroup
3489   *
3490   * Called when "threaded" is written to the cgroup.type interface file and
3491   * tries to make @cgrp threaded and join the parent's resource domain.
3492   * This function is never called on the root cgroup as cgroup.type doesn't
3493   * exist on it.
3494   */
cgroup_enable_threaded(struct cgroup * cgrp)3495  static int cgroup_enable_threaded(struct cgroup *cgrp)
3496  {
3497  	struct cgroup *parent = cgroup_parent(cgrp);
3498  	struct cgroup *dom_cgrp = parent->dom_cgrp;
3499  	struct cgroup *dsct;
3500  	struct cgroup_subsys_state *d_css;
3501  	int ret;
3502  
3503  	lockdep_assert_held(&cgroup_mutex);
3504  
3505  	/* noop if already threaded */
3506  	if (cgroup_is_threaded(cgrp))
3507  		return 0;
3508  
3509  	/*
3510  	 * If @cgroup is populated or has domain controllers enabled, it
3511  	 * can't be switched.  While the below cgroup_can_be_thread_root()
3512  	 * test can catch the same conditions, that's only when @parent is
3513  	 * not mixable, so let's check it explicitly.
3514  	 */
3515  	if (cgroup_is_populated(cgrp) ||
3516  	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3517  		return -EOPNOTSUPP;
3518  
3519  	/* we're joining the parent's domain, ensure its validity */
3520  	if (!cgroup_is_valid_domain(dom_cgrp) ||
3521  	    !cgroup_can_be_thread_root(dom_cgrp))
3522  		return -EOPNOTSUPP;
3523  
3524  	/*
3525  	 * The following shouldn't cause actual migrations and should
3526  	 * always succeed.
3527  	 */
3528  	cgroup_save_control(cgrp);
3529  
3530  	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3531  		if (dsct == cgrp || cgroup_is_threaded(dsct))
3532  			dsct->dom_cgrp = dom_cgrp;
3533  
3534  	ret = cgroup_apply_control(cgrp);
3535  	if (!ret)
3536  		parent->nr_threaded_children++;
3537  
3538  	cgroup_finalize_control(cgrp, ret);
3539  	return ret;
3540  }
3541  
cgroup_type_show(struct seq_file * seq,void * v)3542  static int cgroup_type_show(struct seq_file *seq, void *v)
3543  {
3544  	struct cgroup *cgrp = seq_css(seq)->cgroup;
3545  
3546  	if (cgroup_is_threaded(cgrp))
3547  		seq_puts(seq, "threaded\n");
3548  	else if (!cgroup_is_valid_domain(cgrp))
3549  		seq_puts(seq, "domain invalid\n");
3550  	else if (cgroup_is_thread_root(cgrp))
3551  		seq_puts(seq, "domain threaded\n");
3552  	else
3553  		seq_puts(seq, "domain\n");
3554  
3555  	return 0;
3556  }
3557  
cgroup_type_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3558  static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3559  				 size_t nbytes, loff_t off)
3560  {
3561  	struct cgroup *cgrp;
3562  	int ret;
3563  
3564  	/* only switching to threaded mode is supported */
3565  	if (strcmp(strstrip(buf), "threaded"))
3566  		return -EINVAL;
3567  
3568  	/* drain dying csses before we re-apply (threaded) subtree control */
3569  	cgrp = cgroup_kn_lock_live(of->kn, true);
3570  	if (!cgrp)
3571  		return -ENOENT;
3572  
3573  	/* threaded can only be enabled */
3574  	ret = cgroup_enable_threaded(cgrp);
3575  
3576  	cgroup_kn_unlock(of->kn);
3577  	return ret ?: nbytes;
3578  }
3579  
cgroup_max_descendants_show(struct seq_file * seq,void * v)3580  static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3581  {
3582  	struct cgroup *cgrp = seq_css(seq)->cgroup;
3583  	int descendants = READ_ONCE(cgrp->max_descendants);
3584  
3585  	if (descendants == INT_MAX)
3586  		seq_puts(seq, "max\n");
3587  	else
3588  		seq_printf(seq, "%d\n", descendants);
3589  
3590  	return 0;
3591  }
3592  
cgroup_max_descendants_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3593  static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3594  					   char *buf, size_t nbytes, loff_t off)
3595  {
3596  	struct cgroup *cgrp;
3597  	int descendants;
3598  	ssize_t ret;
3599  
3600  	buf = strstrip(buf);
3601  	if (!strcmp(buf, "max")) {
3602  		descendants = INT_MAX;
3603  	} else {
3604  		ret = kstrtoint(buf, 0, &descendants);
3605  		if (ret)
3606  			return ret;
3607  	}
3608  
3609  	if (descendants < 0)
3610  		return -ERANGE;
3611  
3612  	cgrp = cgroup_kn_lock_live(of->kn, false);
3613  	if (!cgrp)
3614  		return -ENOENT;
3615  
3616  	cgrp->max_descendants = descendants;
3617  
3618  	cgroup_kn_unlock(of->kn);
3619  
3620  	return nbytes;
3621  }
3622  
cgroup_max_depth_show(struct seq_file * seq,void * v)3623  static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3624  {
3625  	struct cgroup *cgrp = seq_css(seq)->cgroup;
3626  	int depth = READ_ONCE(cgrp->max_depth);
3627  
3628  	if (depth == INT_MAX)
3629  		seq_puts(seq, "max\n");
3630  	else
3631  		seq_printf(seq, "%d\n", depth);
3632  
3633  	return 0;
3634  }
3635  
cgroup_max_depth_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3636  static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3637  				      char *buf, size_t nbytes, loff_t off)
3638  {
3639  	struct cgroup *cgrp;
3640  	ssize_t ret;
3641  	int depth;
3642  
3643  	buf = strstrip(buf);
3644  	if (!strcmp(buf, "max")) {
3645  		depth = INT_MAX;
3646  	} else {
3647  		ret = kstrtoint(buf, 0, &depth);
3648  		if (ret)
3649  			return ret;
3650  	}
3651  
3652  	if (depth < 0)
3653  		return -ERANGE;
3654  
3655  	cgrp = cgroup_kn_lock_live(of->kn, false);
3656  	if (!cgrp)
3657  		return -ENOENT;
3658  
3659  	cgrp->max_depth = depth;
3660  
3661  	cgroup_kn_unlock(of->kn);
3662  
3663  	return nbytes;
3664  }
3665  
cgroup_events_show(struct seq_file * seq,void * v)3666  static int cgroup_events_show(struct seq_file *seq, void *v)
3667  {
3668  	struct cgroup *cgrp = seq_css(seq)->cgroup;
3669  
3670  	seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3671  	seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3672  
3673  	return 0;
3674  }
3675  
cgroup_stat_show(struct seq_file * seq,void * v)3676  static int cgroup_stat_show(struct seq_file *seq, void *v)
3677  {
3678  	struct cgroup *cgroup = seq_css(seq)->cgroup;
3679  	struct cgroup_subsys_state *css;
3680  	int dying_cnt[CGROUP_SUBSYS_COUNT];
3681  	int ssid;
3682  
3683  	seq_printf(seq, "nr_descendants %d\n",
3684  		   cgroup->nr_descendants);
3685  
3686  	/*
3687  	 * Show the number of live and dying csses associated with each of
3688  	 * non-inhibited cgroup subsystems that is bound to cgroup v2.
3689  	 *
3690  	 * Without proper lock protection, racing is possible. So the
3691  	 * numbers may not be consistent when that happens.
3692  	 */
3693  	rcu_read_lock();
3694  	for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) {
3695  		dying_cnt[ssid] = -1;
3696  		if ((BIT(ssid) & cgrp_dfl_inhibit_ss_mask) ||
3697  		    (cgroup_subsys[ssid]->root !=  &cgrp_dfl_root))
3698  			continue;
3699  		css = rcu_dereference_raw(cgroup->subsys[ssid]);
3700  		dying_cnt[ssid] = cgroup->nr_dying_subsys[ssid];
3701  		seq_printf(seq, "nr_subsys_%s %d\n", cgroup_subsys[ssid]->name,
3702  			   css ? (css->nr_descendants + 1) : 0);
3703  	}
3704  
3705  	seq_printf(seq, "nr_dying_descendants %d\n",
3706  		   cgroup->nr_dying_descendants);
3707  	for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) {
3708  		if (dying_cnt[ssid] >= 0)
3709  			seq_printf(seq, "nr_dying_subsys_%s %d\n",
3710  				   cgroup_subsys[ssid]->name, dying_cnt[ssid]);
3711  	}
3712  	rcu_read_unlock();
3713  	return 0;
3714  }
3715  
3716  #ifdef CONFIG_CGROUP_SCHED
3717  /**
3718   * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
3719   * @cgrp: the cgroup of interest
3720   * @ss: the subsystem of interest
3721   *
3722   * Find and get @cgrp's css associated with @ss.  If the css doesn't exist
3723   * or is offline, %NULL is returned.
3724   */
cgroup_tryget_css(struct cgroup * cgrp,struct cgroup_subsys * ss)3725  static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
3726  						     struct cgroup_subsys *ss)
3727  {
3728  	struct cgroup_subsys_state *css;
3729  
3730  	rcu_read_lock();
3731  	css = cgroup_css(cgrp, ss);
3732  	if (css && !css_tryget_online(css))
3733  		css = NULL;
3734  	rcu_read_unlock();
3735  
3736  	return css;
3737  }
3738  
cgroup_extra_stat_show(struct seq_file * seq,int ssid)3739  static int cgroup_extra_stat_show(struct seq_file *seq, int ssid)
3740  {
3741  	struct cgroup *cgrp = seq_css(seq)->cgroup;
3742  	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3743  	struct cgroup_subsys_state *css;
3744  	int ret;
3745  
3746  	if (!ss->css_extra_stat_show)
3747  		return 0;
3748  
3749  	css = cgroup_tryget_css(cgrp, ss);
3750  	if (!css)
3751  		return 0;
3752  
3753  	ret = ss->css_extra_stat_show(seq, css);
3754  	css_put(css);
3755  	return ret;
3756  }
3757  
cgroup_local_stat_show(struct seq_file * seq,struct cgroup * cgrp,int ssid)3758  static int cgroup_local_stat_show(struct seq_file *seq,
3759  				  struct cgroup *cgrp, int ssid)
3760  {
3761  	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3762  	struct cgroup_subsys_state *css;
3763  	int ret;
3764  
3765  	if (!ss->css_local_stat_show)
3766  		return 0;
3767  
3768  	css = cgroup_tryget_css(cgrp, ss);
3769  	if (!css)
3770  		return 0;
3771  
3772  	ret = ss->css_local_stat_show(seq, css);
3773  	css_put(css);
3774  	return ret;
3775  }
3776  #endif
3777  
cpu_stat_show(struct seq_file * seq,void * v)3778  static int cpu_stat_show(struct seq_file *seq, void *v)
3779  {
3780  	int ret = 0;
3781  
3782  	cgroup_base_stat_cputime_show(seq);
3783  #ifdef CONFIG_CGROUP_SCHED
3784  	ret = cgroup_extra_stat_show(seq, cpu_cgrp_id);
3785  #endif
3786  	return ret;
3787  }
3788  
cpu_local_stat_show(struct seq_file * seq,void * v)3789  static int cpu_local_stat_show(struct seq_file *seq, void *v)
3790  {
3791  	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3792  	int ret = 0;
3793  
3794  #ifdef CONFIG_CGROUP_SCHED
3795  	ret = cgroup_local_stat_show(seq, cgrp, cpu_cgrp_id);
3796  #endif
3797  	return ret;
3798  }
3799  
3800  #ifdef CONFIG_PSI
cgroup_io_pressure_show(struct seq_file * seq,void * v)3801  static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3802  {
3803  	struct cgroup *cgrp = seq_css(seq)->cgroup;
3804  	struct psi_group *psi = cgroup_psi(cgrp);
3805  
3806  	return psi_show(seq, psi, PSI_IO);
3807  }
cgroup_memory_pressure_show(struct seq_file * seq,void * v)3808  static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3809  {
3810  	struct cgroup *cgrp = seq_css(seq)->cgroup;
3811  	struct psi_group *psi = cgroup_psi(cgrp);
3812  
3813  	return psi_show(seq, psi, PSI_MEM);
3814  }
cgroup_cpu_pressure_show(struct seq_file * seq,void * v)3815  static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3816  {
3817  	struct cgroup *cgrp = seq_css(seq)->cgroup;
3818  	struct psi_group *psi = cgroup_psi(cgrp);
3819  
3820  	return psi_show(seq, psi, PSI_CPU);
3821  }
3822  
pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,enum psi_res res)3823  static ssize_t pressure_write(struct kernfs_open_file *of, char *buf,
3824  			      size_t nbytes, enum psi_res res)
3825  {
3826  	struct cgroup_file_ctx *ctx = of->priv;
3827  	struct psi_trigger *new;
3828  	struct cgroup *cgrp;
3829  	struct psi_group *psi;
3830  
3831  	cgrp = cgroup_kn_lock_live(of->kn, false);
3832  	if (!cgrp)
3833  		return -ENODEV;
3834  
3835  	cgroup_get(cgrp);
3836  	cgroup_kn_unlock(of->kn);
3837  
3838  	/* Allow only one trigger per file descriptor */
3839  	if (ctx->psi.trigger) {
3840  		cgroup_put(cgrp);
3841  		return -EBUSY;
3842  	}
3843  
3844  	psi = cgroup_psi(cgrp);
3845  	new = psi_trigger_create(psi, buf, res, of->file, of);
3846  	if (IS_ERR(new)) {
3847  		cgroup_put(cgrp);
3848  		return PTR_ERR(new);
3849  	}
3850  
3851  	smp_store_release(&ctx->psi.trigger, new);
3852  	cgroup_put(cgrp);
3853  
3854  	return nbytes;
3855  }
3856  
cgroup_io_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3857  static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3858  					  char *buf, size_t nbytes,
3859  					  loff_t off)
3860  {
3861  	return pressure_write(of, buf, nbytes, PSI_IO);
3862  }
3863  
cgroup_memory_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3864  static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3865  					  char *buf, size_t nbytes,
3866  					  loff_t off)
3867  {
3868  	return pressure_write(of, buf, nbytes, PSI_MEM);
3869  }
3870  
cgroup_cpu_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3871  static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3872  					  char *buf, size_t nbytes,
3873  					  loff_t off)
3874  {
3875  	return pressure_write(of, buf, nbytes, PSI_CPU);
3876  }
3877  
3878  #ifdef CONFIG_IRQ_TIME_ACCOUNTING
cgroup_irq_pressure_show(struct seq_file * seq,void * v)3879  static int cgroup_irq_pressure_show(struct seq_file *seq, void *v)
3880  {
3881  	struct cgroup *cgrp = seq_css(seq)->cgroup;
3882  	struct psi_group *psi = cgroup_psi(cgrp);
3883  
3884  	return psi_show(seq, psi, PSI_IRQ);
3885  }
3886  
cgroup_irq_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3887  static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of,
3888  					 char *buf, size_t nbytes,
3889  					 loff_t off)
3890  {
3891  	return pressure_write(of, buf, nbytes, PSI_IRQ);
3892  }
3893  #endif
3894  
cgroup_pressure_show(struct seq_file * seq,void * v)3895  static int cgroup_pressure_show(struct seq_file *seq, void *v)
3896  {
3897  	struct cgroup *cgrp = seq_css(seq)->cgroup;
3898  	struct psi_group *psi = cgroup_psi(cgrp);
3899  
3900  	seq_printf(seq, "%d\n", psi->enabled);
3901  
3902  	return 0;
3903  }
3904  
cgroup_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3905  static ssize_t cgroup_pressure_write(struct kernfs_open_file *of,
3906  				     char *buf, size_t nbytes,
3907  				     loff_t off)
3908  {
3909  	ssize_t ret;
3910  	int enable;
3911  	struct cgroup *cgrp;
3912  	struct psi_group *psi;
3913  
3914  	ret = kstrtoint(strstrip(buf), 0, &enable);
3915  	if (ret)
3916  		return ret;
3917  
3918  	if (enable < 0 || enable > 1)
3919  		return -ERANGE;
3920  
3921  	cgrp = cgroup_kn_lock_live(of->kn, false);
3922  	if (!cgrp)
3923  		return -ENOENT;
3924  
3925  	psi = cgroup_psi(cgrp);
3926  	if (psi->enabled != enable) {
3927  		int i;
3928  
3929  		/* show or hide {cpu,memory,io,irq}.pressure files */
3930  		for (i = 0; i < NR_PSI_RESOURCES; i++)
3931  			cgroup_file_show(&cgrp->psi_files[i], enable);
3932  
3933  		psi->enabled = enable;
3934  		if (enable)
3935  			psi_cgroup_restart(psi);
3936  	}
3937  
3938  	cgroup_kn_unlock(of->kn);
3939  
3940  	return nbytes;
3941  }
3942  
cgroup_pressure_poll(struct kernfs_open_file * of,poll_table * pt)3943  static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3944  					  poll_table *pt)
3945  {
3946  	struct cgroup_file_ctx *ctx = of->priv;
3947  
3948  	return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
3949  }
3950  
cgroup_pressure_release(struct kernfs_open_file * of)3951  static void cgroup_pressure_release(struct kernfs_open_file *of)
3952  {
3953  	struct cgroup_file_ctx *ctx = of->priv;
3954  
3955  	psi_trigger_destroy(ctx->psi.trigger);
3956  }
3957  
cgroup_psi_enabled(void)3958  bool cgroup_psi_enabled(void)
3959  {
3960  	if (static_branch_likely(&psi_disabled))
3961  		return false;
3962  
3963  	return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
3964  }
3965  
3966  #else /* CONFIG_PSI */
cgroup_psi_enabled(void)3967  bool cgroup_psi_enabled(void)
3968  {
3969  	return false;
3970  }
3971  
3972  #endif /* CONFIG_PSI */
3973  
cgroup_freeze_show(struct seq_file * seq,void * v)3974  static int cgroup_freeze_show(struct seq_file *seq, void *v)
3975  {
3976  	struct cgroup *cgrp = seq_css(seq)->cgroup;
3977  
3978  	seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3979  
3980  	return 0;
3981  }
3982  
cgroup_freeze_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3983  static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3984  				   char *buf, size_t nbytes, loff_t off)
3985  {
3986  	struct cgroup *cgrp;
3987  	ssize_t ret;
3988  	int freeze;
3989  
3990  	ret = kstrtoint(strstrip(buf), 0, &freeze);
3991  	if (ret)
3992  		return ret;
3993  
3994  	if (freeze < 0 || freeze > 1)
3995  		return -ERANGE;
3996  
3997  	cgrp = cgroup_kn_lock_live(of->kn, false);
3998  	if (!cgrp)
3999  		return -ENOENT;
4000  
4001  	cgroup_freeze(cgrp, freeze);
4002  
4003  	cgroup_kn_unlock(of->kn);
4004  
4005  	return nbytes;
4006  }
4007  
__cgroup_kill(struct cgroup * cgrp)4008  static void __cgroup_kill(struct cgroup *cgrp)
4009  {
4010  	struct css_task_iter it;
4011  	struct task_struct *task;
4012  
4013  	lockdep_assert_held(&cgroup_mutex);
4014  
4015  	spin_lock_irq(&css_set_lock);
4016  	cgrp->kill_seq++;
4017  	spin_unlock_irq(&css_set_lock);
4018  
4019  	css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it);
4020  	while ((task = css_task_iter_next(&it))) {
4021  		/* Ignore kernel threads here. */
4022  		if (task->flags & PF_KTHREAD)
4023  			continue;
4024  
4025  		/* Skip tasks that are already dying. */
4026  		if (__fatal_signal_pending(task))
4027  			continue;
4028  
4029  		send_sig(SIGKILL, task, 0);
4030  	}
4031  	css_task_iter_end(&it);
4032  }
4033  
cgroup_kill(struct cgroup * cgrp)4034  static void cgroup_kill(struct cgroup *cgrp)
4035  {
4036  	struct cgroup_subsys_state *css;
4037  	struct cgroup *dsct;
4038  
4039  	lockdep_assert_held(&cgroup_mutex);
4040  
4041  	cgroup_for_each_live_descendant_pre(dsct, css, cgrp)
4042  		__cgroup_kill(dsct);
4043  }
4044  
cgroup_kill_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4045  static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf,
4046  				 size_t nbytes, loff_t off)
4047  {
4048  	ssize_t ret = 0;
4049  	int kill;
4050  	struct cgroup *cgrp;
4051  
4052  	ret = kstrtoint(strstrip(buf), 0, &kill);
4053  	if (ret)
4054  		return ret;
4055  
4056  	if (kill != 1)
4057  		return -ERANGE;
4058  
4059  	cgrp = cgroup_kn_lock_live(of->kn, false);
4060  	if (!cgrp)
4061  		return -ENOENT;
4062  
4063  	/*
4064  	 * Killing is a process directed operation, i.e. the whole thread-group
4065  	 * is taken down so act like we do for cgroup.procs and only make this
4066  	 * writable in non-threaded cgroups.
4067  	 */
4068  	if (cgroup_is_threaded(cgrp))
4069  		ret = -EOPNOTSUPP;
4070  	else
4071  		cgroup_kill(cgrp);
4072  
4073  	cgroup_kn_unlock(of->kn);
4074  
4075  	return ret ?: nbytes;
4076  }
4077  
cgroup_file_open(struct kernfs_open_file * of)4078  static int cgroup_file_open(struct kernfs_open_file *of)
4079  {
4080  	struct cftype *cft = of_cft(of);
4081  	struct cgroup_file_ctx *ctx;
4082  	int ret;
4083  
4084  	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
4085  	if (!ctx)
4086  		return -ENOMEM;
4087  
4088  	ctx->ns = current->nsproxy->cgroup_ns;
4089  	get_cgroup_ns(ctx->ns);
4090  	of->priv = ctx;
4091  
4092  	if (!cft->open)
4093  		return 0;
4094  
4095  	ret = cft->open(of);
4096  	if (ret) {
4097  		put_cgroup_ns(ctx->ns);
4098  		kfree(ctx);
4099  	}
4100  	return ret;
4101  }
4102  
cgroup_file_release(struct kernfs_open_file * of)4103  static void cgroup_file_release(struct kernfs_open_file *of)
4104  {
4105  	struct cftype *cft = of_cft(of);
4106  	struct cgroup_file_ctx *ctx = of->priv;
4107  
4108  	if (cft->release)
4109  		cft->release(of);
4110  	put_cgroup_ns(ctx->ns);
4111  	kfree(ctx);
4112  }
4113  
cgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4114  static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
4115  				 size_t nbytes, loff_t off)
4116  {
4117  	struct cgroup_file_ctx *ctx = of->priv;
4118  	struct cgroup *cgrp = of->kn->parent->priv;
4119  	struct cftype *cft = of_cft(of);
4120  	struct cgroup_subsys_state *css;
4121  	int ret;
4122  
4123  	if (!nbytes)
4124  		return 0;
4125  
4126  	/*
4127  	 * If namespaces are delegation boundaries, disallow writes to
4128  	 * files in an non-init namespace root from inside the namespace
4129  	 * except for the files explicitly marked delegatable -
4130  	 * eg. cgroup.procs, cgroup.threads and cgroup.subtree_control.
4131  	 */
4132  	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
4133  	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
4134  	    ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
4135  		return -EPERM;
4136  
4137  	if (cft->write)
4138  		return cft->write(of, buf, nbytes, off);
4139  
4140  	/*
4141  	 * kernfs guarantees that a file isn't deleted with operations in
4142  	 * flight, which means that the matching css is and stays alive and
4143  	 * doesn't need to be pinned.  The RCU locking is not necessary
4144  	 * either.  It's just for the convenience of using cgroup_css().
4145  	 */
4146  	rcu_read_lock();
4147  	css = cgroup_css(cgrp, cft->ss);
4148  	rcu_read_unlock();
4149  
4150  	if (cft->write_u64) {
4151  		unsigned long long v;
4152  		ret = kstrtoull(buf, 0, &v);
4153  		if (!ret)
4154  			ret = cft->write_u64(css, cft, v);
4155  	} else if (cft->write_s64) {
4156  		long long v;
4157  		ret = kstrtoll(buf, 0, &v);
4158  		if (!ret)
4159  			ret = cft->write_s64(css, cft, v);
4160  	} else {
4161  		ret = -EINVAL;
4162  	}
4163  
4164  	return ret ?: nbytes;
4165  }
4166  
cgroup_file_poll(struct kernfs_open_file * of,poll_table * pt)4167  static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
4168  {
4169  	struct cftype *cft = of_cft(of);
4170  
4171  	if (cft->poll)
4172  		return cft->poll(of, pt);
4173  
4174  	return kernfs_generic_poll(of, pt);
4175  }
4176  
cgroup_seqfile_start(struct seq_file * seq,loff_t * ppos)4177  static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
4178  {
4179  	return seq_cft(seq)->seq_start(seq, ppos);
4180  }
4181  
cgroup_seqfile_next(struct seq_file * seq,void * v,loff_t * ppos)4182  static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
4183  {
4184  	return seq_cft(seq)->seq_next(seq, v, ppos);
4185  }
4186  
cgroup_seqfile_stop(struct seq_file * seq,void * v)4187  static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
4188  {
4189  	if (seq_cft(seq)->seq_stop)
4190  		seq_cft(seq)->seq_stop(seq, v);
4191  }
4192  
cgroup_seqfile_show(struct seq_file * m,void * arg)4193  static int cgroup_seqfile_show(struct seq_file *m, void *arg)
4194  {
4195  	struct cftype *cft = seq_cft(m);
4196  	struct cgroup_subsys_state *css = seq_css(m);
4197  
4198  	if (cft->seq_show)
4199  		return cft->seq_show(m, arg);
4200  
4201  	if (cft->read_u64)
4202  		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
4203  	else if (cft->read_s64)
4204  		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
4205  	else
4206  		return -EINVAL;
4207  	return 0;
4208  }
4209  
4210  static struct kernfs_ops cgroup_kf_single_ops = {
4211  	.atomic_write_len	= PAGE_SIZE,
4212  	.open			= cgroup_file_open,
4213  	.release		= cgroup_file_release,
4214  	.write			= cgroup_file_write,
4215  	.poll			= cgroup_file_poll,
4216  	.seq_show		= cgroup_seqfile_show,
4217  };
4218  
4219  static struct kernfs_ops cgroup_kf_ops = {
4220  	.atomic_write_len	= PAGE_SIZE,
4221  	.open			= cgroup_file_open,
4222  	.release		= cgroup_file_release,
4223  	.write			= cgroup_file_write,
4224  	.poll			= cgroup_file_poll,
4225  	.seq_start		= cgroup_seqfile_start,
4226  	.seq_next		= cgroup_seqfile_next,
4227  	.seq_stop		= cgroup_seqfile_stop,
4228  	.seq_show		= cgroup_seqfile_show,
4229  };
4230  
cgroup_file_notify_timer(struct timer_list * timer)4231  static void cgroup_file_notify_timer(struct timer_list *timer)
4232  {
4233  	cgroup_file_notify(container_of(timer, struct cgroup_file,
4234  					notify_timer));
4235  }
4236  
cgroup_add_file(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype * cft)4237  static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
4238  			   struct cftype *cft)
4239  {
4240  	char name[CGROUP_FILE_NAME_MAX];
4241  	struct kernfs_node *kn;
4242  	struct lock_class_key *key = NULL;
4243  
4244  #ifdef CONFIG_DEBUG_LOCK_ALLOC
4245  	key = &cft->lockdep_key;
4246  #endif
4247  	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
4248  				  cgroup_file_mode(cft),
4249  				  current_fsuid(), current_fsgid(),
4250  				  0, cft->kf_ops, cft,
4251  				  NULL, key);
4252  	if (IS_ERR(kn))
4253  		return PTR_ERR(kn);
4254  
4255  	if (cft->file_offset) {
4256  		struct cgroup_file *cfile = (void *)css + cft->file_offset;
4257  
4258  		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
4259  
4260  		spin_lock_irq(&cgroup_file_kn_lock);
4261  		cfile->kn = kn;
4262  		spin_unlock_irq(&cgroup_file_kn_lock);
4263  	}
4264  
4265  	return 0;
4266  }
4267  
4268  /**
4269   * cgroup_addrm_files - add or remove files to a cgroup directory
4270   * @css: the target css
4271   * @cgrp: the target cgroup (usually css->cgroup)
4272   * @cfts: array of cftypes to be added
4273   * @is_add: whether to add or remove
4274   *
4275   * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
4276   * For removals, this function never fails.
4277   */
cgroup_addrm_files(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype cfts[],bool is_add)4278  static int cgroup_addrm_files(struct cgroup_subsys_state *css,
4279  			      struct cgroup *cgrp, struct cftype cfts[],
4280  			      bool is_add)
4281  {
4282  	struct cftype *cft, *cft_end = NULL;
4283  	int ret = 0;
4284  
4285  	lockdep_assert_held(&cgroup_mutex);
4286  
4287  restart:
4288  	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
4289  		/* does cft->flags tell us to skip this file on @cgrp? */
4290  		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
4291  			continue;
4292  		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
4293  			continue;
4294  		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
4295  			continue;
4296  		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
4297  			continue;
4298  		if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4299  			continue;
4300  		if (is_add) {
4301  			ret = cgroup_add_file(css, cgrp, cft);
4302  			if (ret) {
4303  				pr_warn("%s: failed to add %s, err=%d\n",
4304  					__func__, cft->name, ret);
4305  				cft_end = cft;
4306  				is_add = false;
4307  				goto restart;
4308  			}
4309  		} else {
4310  			cgroup_rm_file(cgrp, cft);
4311  		}
4312  	}
4313  	return ret;
4314  }
4315  
cgroup_apply_cftypes(struct cftype * cfts,bool is_add)4316  static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4317  {
4318  	struct cgroup_subsys *ss = cfts[0].ss;
4319  	struct cgroup *root = &ss->root->cgrp;
4320  	struct cgroup_subsys_state *css;
4321  	int ret = 0;
4322  
4323  	lockdep_assert_held(&cgroup_mutex);
4324  
4325  	/* add/rm files for all cgroups created before */
4326  	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4327  		struct cgroup *cgrp = css->cgroup;
4328  
4329  		if (!(css->flags & CSS_VISIBLE))
4330  			continue;
4331  
4332  		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4333  		if (ret)
4334  			break;
4335  	}
4336  
4337  	if (is_add && !ret)
4338  		kernfs_activate(root->kn);
4339  	return ret;
4340  }
4341  
cgroup_exit_cftypes(struct cftype * cfts)4342  static void cgroup_exit_cftypes(struct cftype *cfts)
4343  {
4344  	struct cftype *cft;
4345  
4346  	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4347  		/* free copy for custom atomic_write_len, see init_cftypes() */
4348  		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4349  			kfree(cft->kf_ops);
4350  		cft->kf_ops = NULL;
4351  		cft->ss = NULL;
4352  
4353  		/* revert flags set by cgroup core while adding @cfts */
4354  		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL |
4355  				__CFTYPE_ADDED);
4356  	}
4357  }
4358  
cgroup_init_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4359  static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4360  {
4361  	struct cftype *cft;
4362  	int ret = 0;
4363  
4364  	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4365  		struct kernfs_ops *kf_ops;
4366  
4367  		WARN_ON(cft->ss || cft->kf_ops);
4368  
4369  		if (cft->flags & __CFTYPE_ADDED) {
4370  			ret = -EBUSY;
4371  			break;
4372  		}
4373  
4374  		if (cft->seq_start)
4375  			kf_ops = &cgroup_kf_ops;
4376  		else
4377  			kf_ops = &cgroup_kf_single_ops;
4378  
4379  		/*
4380  		 * Ugh... if @cft wants a custom max_write_len, we need to
4381  		 * make a copy of kf_ops to set its atomic_write_len.
4382  		 */
4383  		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4384  			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4385  			if (!kf_ops) {
4386  				ret = -ENOMEM;
4387  				break;
4388  			}
4389  			kf_ops->atomic_write_len = cft->max_write_len;
4390  		}
4391  
4392  		cft->kf_ops = kf_ops;
4393  		cft->ss = ss;
4394  		cft->flags |= __CFTYPE_ADDED;
4395  	}
4396  
4397  	if (ret)
4398  		cgroup_exit_cftypes(cfts);
4399  	return ret;
4400  }
4401  
cgroup_rm_cftypes_locked(struct cftype * cfts)4402  static void cgroup_rm_cftypes_locked(struct cftype *cfts)
4403  {
4404  	lockdep_assert_held(&cgroup_mutex);
4405  
4406  	list_del(&cfts->node);
4407  	cgroup_apply_cftypes(cfts, false);
4408  	cgroup_exit_cftypes(cfts);
4409  }
4410  
4411  /**
4412   * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4413   * @cfts: zero-length name terminated array of cftypes
4414   *
4415   * Unregister @cfts.  Files described by @cfts are removed from all
4416   * existing cgroups and all future cgroups won't have them either.  This
4417   * function can be called anytime whether @cfts' subsys is attached or not.
4418   *
4419   * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4420   * registered.
4421   */
cgroup_rm_cftypes(struct cftype * cfts)4422  int cgroup_rm_cftypes(struct cftype *cfts)
4423  {
4424  	if (!cfts || cfts[0].name[0] == '\0')
4425  		return 0;
4426  
4427  	if (!(cfts[0].flags & __CFTYPE_ADDED))
4428  		return -ENOENT;
4429  
4430  	cgroup_lock();
4431  	cgroup_rm_cftypes_locked(cfts);
4432  	cgroup_unlock();
4433  	return 0;
4434  }
4435  
4436  /**
4437   * cgroup_add_cftypes - add an array of cftypes to a subsystem
4438   * @ss: target cgroup subsystem
4439   * @cfts: zero-length name terminated array of cftypes
4440   *
4441   * Register @cfts to @ss.  Files described by @cfts are created for all
4442   * existing cgroups to which @ss is attached and all future cgroups will
4443   * have them too.  This function can be called anytime whether @ss is
4444   * attached or not.
4445   *
4446   * Returns 0 on successful registration, -errno on failure.  Note that this
4447   * function currently returns 0 as long as @cfts registration is successful
4448   * even if some file creation attempts on existing cgroups fail.
4449   */
cgroup_add_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4450  int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4451  {
4452  	int ret;
4453  
4454  	if (!cgroup_ssid_enabled(ss->id))
4455  		return 0;
4456  
4457  	if (!cfts || cfts[0].name[0] == '\0')
4458  		return 0;
4459  
4460  	ret = cgroup_init_cftypes(ss, cfts);
4461  	if (ret)
4462  		return ret;
4463  
4464  	cgroup_lock();
4465  
4466  	list_add_tail(&cfts->node, &ss->cfts);
4467  	ret = cgroup_apply_cftypes(cfts, true);
4468  	if (ret)
4469  		cgroup_rm_cftypes_locked(cfts);
4470  
4471  	cgroup_unlock();
4472  	return ret;
4473  }
4474  
4475  /**
4476   * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4477   * @ss: target cgroup subsystem
4478   * @cfts: zero-length name terminated array of cftypes
4479   *
4480   * Similar to cgroup_add_cftypes() but the added files are only used for
4481   * the default hierarchy.
4482   */
cgroup_add_dfl_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4483  int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4484  {
4485  	struct cftype *cft;
4486  
4487  	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4488  		cft->flags |= __CFTYPE_ONLY_ON_DFL;
4489  	return cgroup_add_cftypes(ss, cfts);
4490  }
4491  
4492  /**
4493   * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4494   * @ss: target cgroup subsystem
4495   * @cfts: zero-length name terminated array of cftypes
4496   *
4497   * Similar to cgroup_add_cftypes() but the added files are only used for
4498   * the legacy hierarchies.
4499   */
cgroup_add_legacy_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4500  int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4501  {
4502  	struct cftype *cft;
4503  
4504  	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4505  		cft->flags |= __CFTYPE_NOT_ON_DFL;
4506  	return cgroup_add_cftypes(ss, cfts);
4507  }
4508  
4509  /**
4510   * cgroup_file_notify - generate a file modified event for a cgroup_file
4511   * @cfile: target cgroup_file
4512   *
4513   * @cfile must have been obtained by setting cftype->file_offset.
4514   */
cgroup_file_notify(struct cgroup_file * cfile)4515  void cgroup_file_notify(struct cgroup_file *cfile)
4516  {
4517  	unsigned long flags;
4518  
4519  	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4520  	if (cfile->kn) {
4521  		unsigned long last = cfile->notified_at;
4522  		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4523  
4524  		if (time_in_range(jiffies, last, next)) {
4525  			timer_reduce(&cfile->notify_timer, next);
4526  		} else {
4527  			kernfs_notify(cfile->kn);
4528  			cfile->notified_at = jiffies;
4529  		}
4530  	}
4531  	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4532  }
4533  
4534  /**
4535   * cgroup_file_show - show or hide a hidden cgroup file
4536   * @cfile: target cgroup_file obtained by setting cftype->file_offset
4537   * @show: whether to show or hide
4538   */
cgroup_file_show(struct cgroup_file * cfile,bool show)4539  void cgroup_file_show(struct cgroup_file *cfile, bool show)
4540  {
4541  	struct kernfs_node *kn;
4542  
4543  	spin_lock_irq(&cgroup_file_kn_lock);
4544  	kn = cfile->kn;
4545  	kernfs_get(kn);
4546  	spin_unlock_irq(&cgroup_file_kn_lock);
4547  
4548  	if (kn)
4549  		kernfs_show(kn, show);
4550  
4551  	kernfs_put(kn);
4552  }
4553  
4554  /**
4555   * css_next_child - find the next child of a given css
4556   * @pos: the current position (%NULL to initiate traversal)
4557   * @parent: css whose children to walk
4558   *
4559   * This function returns the next child of @parent and should be called
4560   * under either cgroup_mutex or RCU read lock.  The only requirement is
4561   * that @parent and @pos are accessible.  The next sibling is guaranteed to
4562   * be returned regardless of their states.
4563   *
4564   * If a subsystem synchronizes ->css_online() and the start of iteration, a
4565   * css which finished ->css_online() is guaranteed to be visible in the
4566   * future iterations and will stay visible until the last reference is put.
4567   * A css which hasn't finished ->css_online() or already finished
4568   * ->css_offline() may show up during traversal.  It's each subsystem's
4569   * responsibility to synchronize against on/offlining.
4570   */
css_next_child(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * parent)4571  struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4572  					   struct cgroup_subsys_state *parent)
4573  {
4574  	struct cgroup_subsys_state *next;
4575  
4576  	cgroup_assert_mutex_or_rcu_locked();
4577  
4578  	/*
4579  	 * @pos could already have been unlinked from the sibling list.
4580  	 * Once a cgroup is removed, its ->sibling.next is no longer
4581  	 * updated when its next sibling changes.  CSS_RELEASED is set when
4582  	 * @pos is taken off list, at which time its next pointer is valid,
4583  	 * and, as releases are serialized, the one pointed to by the next
4584  	 * pointer is guaranteed to not have started release yet.  This
4585  	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4586  	 * critical section, the one pointed to by its next pointer is
4587  	 * guaranteed to not have finished its RCU grace period even if we
4588  	 * have dropped rcu_read_lock() in-between iterations.
4589  	 *
4590  	 * If @pos has CSS_RELEASED set, its next pointer can't be
4591  	 * dereferenced; however, as each css is given a monotonically
4592  	 * increasing unique serial number and always appended to the
4593  	 * sibling list, the next one can be found by walking the parent's
4594  	 * children until the first css with higher serial number than
4595  	 * @pos's.  While this path can be slower, it happens iff iteration
4596  	 * races against release and the race window is very small.
4597  	 */
4598  	if (!pos) {
4599  		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4600  	} else if (likely(!(pos->flags & CSS_RELEASED))) {
4601  		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4602  	} else {
4603  		list_for_each_entry_rcu(next, &parent->children, sibling,
4604  					lockdep_is_held(&cgroup_mutex))
4605  			if (next->serial_nr > pos->serial_nr)
4606  				break;
4607  	}
4608  
4609  	/*
4610  	 * @next, if not pointing to the head, can be dereferenced and is
4611  	 * the next sibling.
4612  	 */
4613  	if (&next->sibling != &parent->children)
4614  		return next;
4615  	return NULL;
4616  }
4617  
4618  /**
4619   * css_next_descendant_pre - find the next descendant for pre-order walk
4620   * @pos: the current position (%NULL to initiate traversal)
4621   * @root: css whose descendants to walk
4622   *
4623   * To be used by css_for_each_descendant_pre().  Find the next descendant
4624   * to visit for pre-order traversal of @root's descendants.  @root is
4625   * included in the iteration and the first node to be visited.
4626   *
4627   * While this function requires cgroup_mutex or RCU read locking, it
4628   * doesn't require the whole traversal to be contained in a single critical
4629   * section. Additionally, it isn't necessary to hold onto a reference to @pos.
4630   * This function will return the correct next descendant as long as both @pos
4631   * and @root are accessible and @pos is a descendant of @root.
4632   *
4633   * If a subsystem synchronizes ->css_online() and the start of iteration, a
4634   * css which finished ->css_online() is guaranteed to be visible in the
4635   * future iterations and will stay visible until the last reference is put.
4636   * A css which hasn't finished ->css_online() or already finished
4637   * ->css_offline() may show up during traversal.  It's each subsystem's
4638   * responsibility to synchronize against on/offlining.
4639   */
4640  struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4641  css_next_descendant_pre(struct cgroup_subsys_state *pos,
4642  			struct cgroup_subsys_state *root)
4643  {
4644  	struct cgroup_subsys_state *next;
4645  
4646  	cgroup_assert_mutex_or_rcu_locked();
4647  
4648  	/* if first iteration, visit @root */
4649  	if (!pos)
4650  		return root;
4651  
4652  	/* visit the first child if exists */
4653  	next = css_next_child(NULL, pos);
4654  	if (next)
4655  		return next;
4656  
4657  	/* no child, visit my or the closest ancestor's next sibling */
4658  	while (pos != root) {
4659  		next = css_next_child(pos, pos->parent);
4660  		if (next)
4661  			return next;
4662  		pos = pos->parent;
4663  	}
4664  
4665  	return NULL;
4666  }
4667  EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4668  
4669  /**
4670   * css_rightmost_descendant - return the rightmost descendant of a css
4671   * @pos: css of interest
4672   *
4673   * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4674   * is returned.  This can be used during pre-order traversal to skip
4675   * subtree of @pos.
4676   *
4677   * While this function requires cgroup_mutex or RCU read locking, it
4678   * doesn't require the whole traversal to be contained in a single critical
4679   * section. Additionally, it isn't necessary to hold onto a reference to @pos.
4680   * This function will return the correct rightmost descendant as long as @pos
4681   * is accessible.
4682   */
4683  struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state * pos)4684  css_rightmost_descendant(struct cgroup_subsys_state *pos)
4685  {
4686  	struct cgroup_subsys_state *last, *tmp;
4687  
4688  	cgroup_assert_mutex_or_rcu_locked();
4689  
4690  	do {
4691  		last = pos;
4692  		/* ->prev isn't RCU safe, walk ->next till the end */
4693  		pos = NULL;
4694  		css_for_each_child(tmp, last)
4695  			pos = tmp;
4696  	} while (pos);
4697  
4698  	return last;
4699  }
4700  
4701  static struct cgroup_subsys_state *
css_leftmost_descendant(struct cgroup_subsys_state * pos)4702  css_leftmost_descendant(struct cgroup_subsys_state *pos)
4703  {
4704  	struct cgroup_subsys_state *last;
4705  
4706  	do {
4707  		last = pos;
4708  		pos = css_next_child(NULL, pos);
4709  	} while (pos);
4710  
4711  	return last;
4712  }
4713  
4714  /**
4715   * css_next_descendant_post - find the next descendant for post-order walk
4716   * @pos: the current position (%NULL to initiate traversal)
4717   * @root: css whose descendants to walk
4718   *
4719   * To be used by css_for_each_descendant_post().  Find the next descendant
4720   * to visit for post-order traversal of @root's descendants.  @root is
4721   * included in the iteration and the last node to be visited.
4722   *
4723   * While this function requires cgroup_mutex or RCU read locking, it
4724   * doesn't require the whole traversal to be contained in a single critical
4725   * section. Additionally, it isn't necessary to hold onto a reference to @pos.
4726   * This function will return the correct next descendant as long as both @pos
4727   * and @cgroup are accessible and @pos is a descendant of @cgroup.
4728   *
4729   * If a subsystem synchronizes ->css_online() and the start of iteration, a
4730   * css which finished ->css_online() is guaranteed to be visible in the
4731   * future iterations and will stay visible until the last reference is put.
4732   * A css which hasn't finished ->css_online() or already finished
4733   * ->css_offline() may show up during traversal.  It's each subsystem's
4734   * responsibility to synchronize against on/offlining.
4735   */
4736  struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4737  css_next_descendant_post(struct cgroup_subsys_state *pos,
4738  			 struct cgroup_subsys_state *root)
4739  {
4740  	struct cgroup_subsys_state *next;
4741  
4742  	cgroup_assert_mutex_or_rcu_locked();
4743  
4744  	/* if first iteration, visit leftmost descendant which may be @root */
4745  	if (!pos)
4746  		return css_leftmost_descendant(root);
4747  
4748  	/* if we visited @root, we're done */
4749  	if (pos == root)
4750  		return NULL;
4751  
4752  	/* if there's an unvisited sibling, visit its leftmost descendant */
4753  	next = css_next_child(pos, pos->parent);
4754  	if (next)
4755  		return css_leftmost_descendant(next);
4756  
4757  	/* no sibling left, visit parent */
4758  	return pos->parent;
4759  }
4760  
4761  /**
4762   * css_has_online_children - does a css have online children
4763   * @css: the target css
4764   *
4765   * Returns %true if @css has any online children; otherwise, %false.  This
4766   * function can be called from any context but the caller is responsible
4767   * for synchronizing against on/offlining as necessary.
4768   */
css_has_online_children(struct cgroup_subsys_state * css)4769  bool css_has_online_children(struct cgroup_subsys_state *css)
4770  {
4771  	struct cgroup_subsys_state *child;
4772  	bool ret = false;
4773  
4774  	rcu_read_lock();
4775  	css_for_each_child(child, css) {
4776  		if (child->flags & CSS_ONLINE) {
4777  			ret = true;
4778  			break;
4779  		}
4780  	}
4781  	rcu_read_unlock();
4782  	return ret;
4783  }
4784  
css_task_iter_next_css_set(struct css_task_iter * it)4785  static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4786  {
4787  	struct list_head *l;
4788  	struct cgrp_cset_link *link;
4789  	struct css_set *cset;
4790  
4791  	lockdep_assert_held(&css_set_lock);
4792  
4793  	/* find the next threaded cset */
4794  	if (it->tcset_pos) {
4795  		l = it->tcset_pos->next;
4796  
4797  		if (l != it->tcset_head) {
4798  			it->tcset_pos = l;
4799  			return container_of(l, struct css_set,
4800  					    threaded_csets_node);
4801  		}
4802  
4803  		it->tcset_pos = NULL;
4804  	}
4805  
4806  	/* find the next cset */
4807  	l = it->cset_pos;
4808  	l = l->next;
4809  	if (l == it->cset_head) {
4810  		it->cset_pos = NULL;
4811  		return NULL;
4812  	}
4813  
4814  	if (it->ss) {
4815  		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4816  	} else {
4817  		link = list_entry(l, struct cgrp_cset_link, cset_link);
4818  		cset = link->cset;
4819  	}
4820  
4821  	it->cset_pos = l;
4822  
4823  	/* initialize threaded css_set walking */
4824  	if (it->flags & CSS_TASK_ITER_THREADED) {
4825  		if (it->cur_dcset)
4826  			put_css_set_locked(it->cur_dcset);
4827  		it->cur_dcset = cset;
4828  		get_css_set(cset);
4829  
4830  		it->tcset_head = &cset->threaded_csets;
4831  		it->tcset_pos = &cset->threaded_csets;
4832  	}
4833  
4834  	return cset;
4835  }
4836  
4837  /**
4838   * css_task_iter_advance_css_set - advance a task iterator to the next css_set
4839   * @it: the iterator to advance
4840   *
4841   * Advance @it to the next css_set to walk.
4842   */
css_task_iter_advance_css_set(struct css_task_iter * it)4843  static void css_task_iter_advance_css_set(struct css_task_iter *it)
4844  {
4845  	struct css_set *cset;
4846  
4847  	lockdep_assert_held(&css_set_lock);
4848  
4849  	/* Advance to the next non-empty css_set and find first non-empty tasks list*/
4850  	while ((cset = css_task_iter_next_css_set(it))) {
4851  		if (!list_empty(&cset->tasks)) {
4852  			it->cur_tasks_head = &cset->tasks;
4853  			break;
4854  		} else if (!list_empty(&cset->mg_tasks)) {
4855  			it->cur_tasks_head = &cset->mg_tasks;
4856  			break;
4857  		} else if (!list_empty(&cset->dying_tasks)) {
4858  			it->cur_tasks_head = &cset->dying_tasks;
4859  			break;
4860  		}
4861  	}
4862  	if (!cset) {
4863  		it->task_pos = NULL;
4864  		return;
4865  	}
4866  	it->task_pos = it->cur_tasks_head->next;
4867  
4868  	/*
4869  	 * We don't keep css_sets locked across iteration steps and thus
4870  	 * need to take steps to ensure that iteration can be resumed after
4871  	 * the lock is re-acquired.  Iteration is performed at two levels -
4872  	 * css_sets and tasks in them.
4873  	 *
4874  	 * Once created, a css_set never leaves its cgroup lists, so a
4875  	 * pinned css_set is guaranteed to stay put and we can resume
4876  	 * iteration afterwards.
4877  	 *
4878  	 * Tasks may leave @cset across iteration steps.  This is resolved
4879  	 * by registering each iterator with the css_set currently being
4880  	 * walked and making css_set_move_task() advance iterators whose
4881  	 * next task is leaving.
4882  	 */
4883  	if (it->cur_cset) {
4884  		list_del(&it->iters_node);
4885  		put_css_set_locked(it->cur_cset);
4886  	}
4887  	get_css_set(cset);
4888  	it->cur_cset = cset;
4889  	list_add(&it->iters_node, &cset->task_iters);
4890  }
4891  
css_task_iter_skip(struct css_task_iter * it,struct task_struct * task)4892  static void css_task_iter_skip(struct css_task_iter *it,
4893  			       struct task_struct *task)
4894  {
4895  	lockdep_assert_held(&css_set_lock);
4896  
4897  	if (it->task_pos == &task->cg_list) {
4898  		it->task_pos = it->task_pos->next;
4899  		it->flags |= CSS_TASK_ITER_SKIPPED;
4900  	}
4901  }
4902  
css_task_iter_advance(struct css_task_iter * it)4903  static void css_task_iter_advance(struct css_task_iter *it)
4904  {
4905  	struct task_struct *task;
4906  
4907  	lockdep_assert_held(&css_set_lock);
4908  repeat:
4909  	if (it->task_pos) {
4910  		/*
4911  		 * Advance iterator to find next entry. We go through cset
4912  		 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4913  		 * the next cset.
4914  		 */
4915  		if (it->flags & CSS_TASK_ITER_SKIPPED)
4916  			it->flags &= ~CSS_TASK_ITER_SKIPPED;
4917  		else
4918  			it->task_pos = it->task_pos->next;
4919  
4920  		if (it->task_pos == &it->cur_cset->tasks) {
4921  			it->cur_tasks_head = &it->cur_cset->mg_tasks;
4922  			it->task_pos = it->cur_tasks_head->next;
4923  		}
4924  		if (it->task_pos == &it->cur_cset->mg_tasks) {
4925  			it->cur_tasks_head = &it->cur_cset->dying_tasks;
4926  			it->task_pos = it->cur_tasks_head->next;
4927  		}
4928  		if (it->task_pos == &it->cur_cset->dying_tasks)
4929  			css_task_iter_advance_css_set(it);
4930  	} else {
4931  		/* called from start, proceed to the first cset */
4932  		css_task_iter_advance_css_set(it);
4933  	}
4934  
4935  	if (!it->task_pos)
4936  		return;
4937  
4938  	task = list_entry(it->task_pos, struct task_struct, cg_list);
4939  
4940  	if (it->flags & CSS_TASK_ITER_PROCS) {
4941  		/* if PROCS, skip over tasks which aren't group leaders */
4942  		if (!thread_group_leader(task))
4943  			goto repeat;
4944  
4945  		/* and dying leaders w/o live member threads */
4946  		if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4947  		    !atomic_read(&task->signal->live))
4948  			goto repeat;
4949  	} else {
4950  		/* skip all dying ones */
4951  		if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4952  			goto repeat;
4953  	}
4954  }
4955  
4956  /**
4957   * css_task_iter_start - initiate task iteration
4958   * @css: the css to walk tasks of
4959   * @flags: CSS_TASK_ITER_* flags
4960   * @it: the task iterator to use
4961   *
4962   * Initiate iteration through the tasks of @css.  The caller can call
4963   * css_task_iter_next() to walk through the tasks until the function
4964   * returns NULL.  On completion of iteration, css_task_iter_end() must be
4965   * called.
4966   */
css_task_iter_start(struct cgroup_subsys_state * css,unsigned int flags,struct css_task_iter * it)4967  void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4968  			 struct css_task_iter *it)
4969  {
4970  	unsigned long irqflags;
4971  
4972  	memset(it, 0, sizeof(*it));
4973  
4974  	spin_lock_irqsave(&css_set_lock, irqflags);
4975  
4976  	it->ss = css->ss;
4977  	it->flags = flags;
4978  
4979  	if (CGROUP_HAS_SUBSYS_CONFIG && it->ss)
4980  		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4981  	else
4982  		it->cset_pos = &css->cgroup->cset_links;
4983  
4984  	it->cset_head = it->cset_pos;
4985  
4986  	css_task_iter_advance(it);
4987  
4988  	spin_unlock_irqrestore(&css_set_lock, irqflags);
4989  }
4990  
4991  /**
4992   * css_task_iter_next - return the next task for the iterator
4993   * @it: the task iterator being iterated
4994   *
4995   * The "next" function for task iteration.  @it should have been
4996   * initialized via css_task_iter_start().  Returns NULL when the iteration
4997   * reaches the end.
4998   */
css_task_iter_next(struct css_task_iter * it)4999  struct task_struct *css_task_iter_next(struct css_task_iter *it)
5000  {
5001  	unsigned long irqflags;
5002  
5003  	if (it->cur_task) {
5004  		put_task_struct(it->cur_task);
5005  		it->cur_task = NULL;
5006  	}
5007  
5008  	spin_lock_irqsave(&css_set_lock, irqflags);
5009  
5010  	/* @it may be half-advanced by skips, finish advancing */
5011  	if (it->flags & CSS_TASK_ITER_SKIPPED)
5012  		css_task_iter_advance(it);
5013  
5014  	if (it->task_pos) {
5015  		it->cur_task = list_entry(it->task_pos, struct task_struct,
5016  					  cg_list);
5017  		get_task_struct(it->cur_task);
5018  		css_task_iter_advance(it);
5019  	}
5020  
5021  	spin_unlock_irqrestore(&css_set_lock, irqflags);
5022  
5023  	return it->cur_task;
5024  }
5025  
5026  /**
5027   * css_task_iter_end - finish task iteration
5028   * @it: the task iterator to finish
5029   *
5030   * Finish task iteration started by css_task_iter_start().
5031   */
css_task_iter_end(struct css_task_iter * it)5032  void css_task_iter_end(struct css_task_iter *it)
5033  {
5034  	unsigned long irqflags;
5035  
5036  	if (it->cur_cset) {
5037  		spin_lock_irqsave(&css_set_lock, irqflags);
5038  		list_del(&it->iters_node);
5039  		put_css_set_locked(it->cur_cset);
5040  		spin_unlock_irqrestore(&css_set_lock, irqflags);
5041  	}
5042  
5043  	if (it->cur_dcset)
5044  		put_css_set(it->cur_dcset);
5045  
5046  	if (it->cur_task)
5047  		put_task_struct(it->cur_task);
5048  }
5049  
cgroup_procs_release(struct kernfs_open_file * of)5050  static void cgroup_procs_release(struct kernfs_open_file *of)
5051  {
5052  	struct cgroup_file_ctx *ctx = of->priv;
5053  
5054  	if (ctx->procs.started)
5055  		css_task_iter_end(&ctx->procs.iter);
5056  }
5057  
cgroup_procs_next(struct seq_file * s,void * v,loff_t * pos)5058  static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
5059  {
5060  	struct kernfs_open_file *of = s->private;
5061  	struct cgroup_file_ctx *ctx = of->priv;
5062  
5063  	if (pos)
5064  		(*pos)++;
5065  
5066  	return css_task_iter_next(&ctx->procs.iter);
5067  }
5068  
__cgroup_procs_start(struct seq_file * s,loff_t * pos,unsigned int iter_flags)5069  static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
5070  				  unsigned int iter_flags)
5071  {
5072  	struct kernfs_open_file *of = s->private;
5073  	struct cgroup *cgrp = seq_css(s)->cgroup;
5074  	struct cgroup_file_ctx *ctx = of->priv;
5075  	struct css_task_iter *it = &ctx->procs.iter;
5076  
5077  	/*
5078  	 * When a seq_file is seeked, it's always traversed sequentially
5079  	 * from position 0, so we can simply keep iterating on !0 *pos.
5080  	 */
5081  	if (!ctx->procs.started) {
5082  		if (WARN_ON_ONCE((*pos)))
5083  			return ERR_PTR(-EINVAL);
5084  		css_task_iter_start(&cgrp->self, iter_flags, it);
5085  		ctx->procs.started = true;
5086  	} else if (!(*pos)) {
5087  		css_task_iter_end(it);
5088  		css_task_iter_start(&cgrp->self, iter_flags, it);
5089  	} else
5090  		return it->cur_task;
5091  
5092  	return cgroup_procs_next(s, NULL, NULL);
5093  }
5094  
cgroup_procs_start(struct seq_file * s,loff_t * pos)5095  static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
5096  {
5097  	struct cgroup *cgrp = seq_css(s)->cgroup;
5098  
5099  	/*
5100  	 * All processes of a threaded subtree belong to the domain cgroup
5101  	 * of the subtree.  Only threads can be distributed across the
5102  	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
5103  	 * They're always empty anyway.
5104  	 */
5105  	if (cgroup_is_threaded(cgrp))
5106  		return ERR_PTR(-EOPNOTSUPP);
5107  
5108  	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
5109  					    CSS_TASK_ITER_THREADED);
5110  }
5111  
cgroup_procs_show(struct seq_file * s,void * v)5112  static int cgroup_procs_show(struct seq_file *s, void *v)
5113  {
5114  	seq_printf(s, "%d\n", task_pid_vnr(v));
5115  	return 0;
5116  }
5117  
cgroup_may_write(const struct cgroup * cgrp,struct super_block * sb)5118  static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
5119  {
5120  	int ret;
5121  	struct inode *inode;
5122  
5123  	lockdep_assert_held(&cgroup_mutex);
5124  
5125  	inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
5126  	if (!inode)
5127  		return -ENOMEM;
5128  
5129  	ret = inode_permission(&nop_mnt_idmap, inode, MAY_WRITE);
5130  	iput(inode);
5131  	return ret;
5132  }
5133  
cgroup_procs_write_permission(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,struct cgroup_namespace * ns)5134  static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
5135  					 struct cgroup *dst_cgrp,
5136  					 struct super_block *sb,
5137  					 struct cgroup_namespace *ns)
5138  {
5139  	struct cgroup *com_cgrp = src_cgrp;
5140  	int ret;
5141  
5142  	lockdep_assert_held(&cgroup_mutex);
5143  
5144  	/* find the common ancestor */
5145  	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
5146  		com_cgrp = cgroup_parent(com_cgrp);
5147  
5148  	/* %current should be authorized to migrate to the common ancestor */
5149  	ret = cgroup_may_write(com_cgrp, sb);
5150  	if (ret)
5151  		return ret;
5152  
5153  	/*
5154  	 * If namespaces are delegation boundaries, %current must be able
5155  	 * to see both source and destination cgroups from its namespace.
5156  	 */
5157  	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
5158  	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
5159  	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
5160  		return -ENOENT;
5161  
5162  	return 0;
5163  }
5164  
cgroup_attach_permissions(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,bool threadgroup,struct cgroup_namespace * ns)5165  static int cgroup_attach_permissions(struct cgroup *src_cgrp,
5166  				     struct cgroup *dst_cgrp,
5167  				     struct super_block *sb, bool threadgroup,
5168  				     struct cgroup_namespace *ns)
5169  {
5170  	int ret = 0;
5171  
5172  	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
5173  	if (ret)
5174  		return ret;
5175  
5176  	ret = cgroup_migrate_vet_dst(dst_cgrp);
5177  	if (ret)
5178  		return ret;
5179  
5180  	if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
5181  		ret = -EOPNOTSUPP;
5182  
5183  	return ret;
5184  }
5185  
__cgroup_procs_write(struct kernfs_open_file * of,char * buf,bool threadgroup)5186  static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
5187  				    bool threadgroup)
5188  {
5189  	struct cgroup_file_ctx *ctx = of->priv;
5190  	struct cgroup *src_cgrp, *dst_cgrp;
5191  	struct task_struct *task;
5192  	const struct cred *saved_cred;
5193  	ssize_t ret;
5194  	bool threadgroup_locked;
5195  
5196  	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
5197  	if (!dst_cgrp)
5198  		return -ENODEV;
5199  
5200  	task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked);
5201  	ret = PTR_ERR_OR_ZERO(task);
5202  	if (ret)
5203  		goto out_unlock;
5204  
5205  	/* find the source cgroup */
5206  	spin_lock_irq(&css_set_lock);
5207  	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
5208  	spin_unlock_irq(&css_set_lock);
5209  
5210  	/*
5211  	 * Process and thread migrations follow same delegation rule. Check
5212  	 * permissions using the credentials from file open to protect against
5213  	 * inherited fd attacks.
5214  	 */
5215  	saved_cred = override_creds(of->file->f_cred);
5216  	ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
5217  					of->file->f_path.dentry->d_sb,
5218  					threadgroup, ctx->ns);
5219  	revert_creds(saved_cred);
5220  	if (ret)
5221  		goto out_finish;
5222  
5223  	ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
5224  
5225  out_finish:
5226  	cgroup_procs_write_finish(task, threadgroup_locked);
5227  out_unlock:
5228  	cgroup_kn_unlock(of->kn);
5229  
5230  	return ret;
5231  }
5232  
cgroup_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5233  static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
5234  				  char *buf, size_t nbytes, loff_t off)
5235  {
5236  	return __cgroup_procs_write(of, buf, true) ?: nbytes;
5237  }
5238  
cgroup_threads_start(struct seq_file * s,loff_t * pos)5239  static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
5240  {
5241  	return __cgroup_procs_start(s, pos, 0);
5242  }
5243  
cgroup_threads_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5244  static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
5245  				    char *buf, size_t nbytes, loff_t off)
5246  {
5247  	return __cgroup_procs_write(of, buf, false) ?: nbytes;
5248  }
5249  
5250  /* cgroup core interface files for the default hierarchy */
5251  static struct cftype cgroup_base_files[] = {
5252  	{
5253  		.name = "cgroup.type",
5254  		.flags = CFTYPE_NOT_ON_ROOT,
5255  		.seq_show = cgroup_type_show,
5256  		.write = cgroup_type_write,
5257  	},
5258  	{
5259  		.name = "cgroup.procs",
5260  		.flags = CFTYPE_NS_DELEGATABLE,
5261  		.file_offset = offsetof(struct cgroup, procs_file),
5262  		.release = cgroup_procs_release,
5263  		.seq_start = cgroup_procs_start,
5264  		.seq_next = cgroup_procs_next,
5265  		.seq_show = cgroup_procs_show,
5266  		.write = cgroup_procs_write,
5267  	},
5268  	{
5269  		.name = "cgroup.threads",
5270  		.flags = CFTYPE_NS_DELEGATABLE,
5271  		.release = cgroup_procs_release,
5272  		.seq_start = cgroup_threads_start,
5273  		.seq_next = cgroup_procs_next,
5274  		.seq_show = cgroup_procs_show,
5275  		.write = cgroup_threads_write,
5276  	},
5277  	{
5278  		.name = "cgroup.controllers",
5279  		.seq_show = cgroup_controllers_show,
5280  	},
5281  	{
5282  		.name = "cgroup.subtree_control",
5283  		.flags = CFTYPE_NS_DELEGATABLE,
5284  		.seq_show = cgroup_subtree_control_show,
5285  		.write = cgroup_subtree_control_write,
5286  	},
5287  	{
5288  		.name = "cgroup.events",
5289  		.flags = CFTYPE_NOT_ON_ROOT,
5290  		.file_offset = offsetof(struct cgroup, events_file),
5291  		.seq_show = cgroup_events_show,
5292  	},
5293  	{
5294  		.name = "cgroup.max.descendants",
5295  		.seq_show = cgroup_max_descendants_show,
5296  		.write = cgroup_max_descendants_write,
5297  	},
5298  	{
5299  		.name = "cgroup.max.depth",
5300  		.seq_show = cgroup_max_depth_show,
5301  		.write = cgroup_max_depth_write,
5302  	},
5303  	{
5304  		.name = "cgroup.stat",
5305  		.seq_show = cgroup_stat_show,
5306  	},
5307  	{
5308  		.name = "cgroup.freeze",
5309  		.flags = CFTYPE_NOT_ON_ROOT,
5310  		.seq_show = cgroup_freeze_show,
5311  		.write = cgroup_freeze_write,
5312  	},
5313  	{
5314  		.name = "cgroup.kill",
5315  		.flags = CFTYPE_NOT_ON_ROOT,
5316  		.write = cgroup_kill_write,
5317  	},
5318  	{
5319  		.name = "cpu.stat",
5320  		.seq_show = cpu_stat_show,
5321  	},
5322  	{
5323  		.name = "cpu.stat.local",
5324  		.seq_show = cpu_local_stat_show,
5325  	},
5326  	{ }	/* terminate */
5327  };
5328  
5329  static struct cftype cgroup_psi_files[] = {
5330  #ifdef CONFIG_PSI
5331  	{
5332  		.name = "io.pressure",
5333  		.file_offset = offsetof(struct cgroup, psi_files[PSI_IO]),
5334  		.seq_show = cgroup_io_pressure_show,
5335  		.write = cgroup_io_pressure_write,
5336  		.poll = cgroup_pressure_poll,
5337  		.release = cgroup_pressure_release,
5338  	},
5339  	{
5340  		.name = "memory.pressure",
5341  		.file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]),
5342  		.seq_show = cgroup_memory_pressure_show,
5343  		.write = cgroup_memory_pressure_write,
5344  		.poll = cgroup_pressure_poll,
5345  		.release = cgroup_pressure_release,
5346  	},
5347  	{
5348  		.name = "cpu.pressure",
5349  		.file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]),
5350  		.seq_show = cgroup_cpu_pressure_show,
5351  		.write = cgroup_cpu_pressure_write,
5352  		.poll = cgroup_pressure_poll,
5353  		.release = cgroup_pressure_release,
5354  	},
5355  #ifdef CONFIG_IRQ_TIME_ACCOUNTING
5356  	{
5357  		.name = "irq.pressure",
5358  		.file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]),
5359  		.seq_show = cgroup_irq_pressure_show,
5360  		.write = cgroup_irq_pressure_write,
5361  		.poll = cgroup_pressure_poll,
5362  		.release = cgroup_pressure_release,
5363  	},
5364  #endif
5365  	{
5366  		.name = "cgroup.pressure",
5367  		.seq_show = cgroup_pressure_show,
5368  		.write = cgroup_pressure_write,
5369  	},
5370  #endif /* CONFIG_PSI */
5371  	{ }	/* terminate */
5372  };
5373  
5374  /*
5375   * css destruction is four-stage process.
5376   *
5377   * 1. Destruction starts.  Killing of the percpu_ref is initiated.
5378   *    Implemented in kill_css().
5379   *
5380   * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5381   *    and thus css_tryget_online() is guaranteed to fail, the css can be
5382   *    offlined by invoking offline_css().  After offlining, the base ref is
5383   *    put.  Implemented in css_killed_work_fn().
5384   *
5385   * 3. When the percpu_ref reaches zero, the only possible remaining
5386   *    accessors are inside RCU read sections.  css_release() schedules the
5387   *    RCU callback.
5388   *
5389   * 4. After the grace period, the css can be freed.  Implemented in
5390   *    css_free_rwork_fn().
5391   *
5392   * It is actually hairier because both step 2 and 4 require process context
5393   * and thus involve punting to css->destroy_work adding two additional
5394   * steps to the already complex sequence.
5395   */
css_free_rwork_fn(struct work_struct * work)5396  static void css_free_rwork_fn(struct work_struct *work)
5397  {
5398  	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5399  				struct cgroup_subsys_state, destroy_rwork);
5400  	struct cgroup_subsys *ss = css->ss;
5401  	struct cgroup *cgrp = css->cgroup;
5402  
5403  	percpu_ref_exit(&css->refcnt);
5404  
5405  	if (ss) {
5406  		/* css free path */
5407  		struct cgroup_subsys_state *parent = css->parent;
5408  		int id = css->id;
5409  
5410  		ss->css_free(css);
5411  		cgroup_idr_remove(&ss->css_idr, id);
5412  		cgroup_put(cgrp);
5413  
5414  		if (parent)
5415  			css_put(parent);
5416  	} else {
5417  		/* cgroup free path */
5418  		atomic_dec(&cgrp->root->nr_cgrps);
5419  		if (!cgroup_on_dfl(cgrp))
5420  			cgroup1_pidlist_destroy_all(cgrp);
5421  		cancel_work_sync(&cgrp->release_agent_work);
5422  		bpf_cgrp_storage_free(cgrp);
5423  
5424  		if (cgroup_parent(cgrp)) {
5425  			/*
5426  			 * We get a ref to the parent, and put the ref when
5427  			 * this cgroup is being freed, so it's guaranteed
5428  			 * that the parent won't be destroyed before its
5429  			 * children.
5430  			 */
5431  			cgroup_put(cgroup_parent(cgrp));
5432  			kernfs_put(cgrp->kn);
5433  			psi_cgroup_free(cgrp);
5434  			cgroup_rstat_exit(cgrp);
5435  			kfree(cgrp);
5436  		} else {
5437  			/*
5438  			 * This is root cgroup's refcnt reaching zero,
5439  			 * which indicates that the root should be
5440  			 * released.
5441  			 */
5442  			cgroup_destroy_root(cgrp->root);
5443  		}
5444  	}
5445  }
5446  
css_release_work_fn(struct work_struct * work)5447  static void css_release_work_fn(struct work_struct *work)
5448  {
5449  	struct cgroup_subsys_state *css =
5450  		container_of(work, struct cgroup_subsys_state, destroy_work);
5451  	struct cgroup_subsys *ss = css->ss;
5452  	struct cgroup *cgrp = css->cgroup;
5453  
5454  	cgroup_lock();
5455  
5456  	css->flags |= CSS_RELEASED;
5457  	list_del_rcu(&css->sibling);
5458  
5459  	if (ss) {
5460  		struct cgroup *parent_cgrp;
5461  
5462  		/* css release path */
5463  		if (!list_empty(&css->rstat_css_node)) {
5464  			cgroup_rstat_flush(cgrp);
5465  			list_del_rcu(&css->rstat_css_node);
5466  		}
5467  
5468  		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5469  		if (ss->css_released)
5470  			ss->css_released(css);
5471  
5472  		cgrp->nr_dying_subsys[ss->id]--;
5473  		/*
5474  		 * When a css is released and ready to be freed, its
5475  		 * nr_descendants must be zero. However, the corresponding
5476  		 * cgrp->nr_dying_subsys[ss->id] may not be 0 if a subsystem
5477  		 * is activated and deactivated multiple times with one or
5478  		 * more of its previous activation leaving behind dying csses.
5479  		 */
5480  		WARN_ON_ONCE(css->nr_descendants);
5481  		parent_cgrp = cgroup_parent(cgrp);
5482  		while (parent_cgrp) {
5483  			parent_cgrp->nr_dying_subsys[ss->id]--;
5484  			parent_cgrp = cgroup_parent(parent_cgrp);
5485  		}
5486  	} else {
5487  		struct cgroup *tcgrp;
5488  
5489  		/* cgroup release path */
5490  		TRACE_CGROUP_PATH(release, cgrp);
5491  
5492  		cgroup_rstat_flush(cgrp);
5493  
5494  		spin_lock_irq(&css_set_lock);
5495  		for (tcgrp = cgroup_parent(cgrp); tcgrp;
5496  		     tcgrp = cgroup_parent(tcgrp))
5497  			tcgrp->nr_dying_descendants--;
5498  		spin_unlock_irq(&css_set_lock);
5499  
5500  		/*
5501  		 * There are two control paths which try to determine
5502  		 * cgroup from dentry without going through kernfs -
5503  		 * cgroupstats_build() and css_tryget_online_from_dir().
5504  		 * Those are supported by RCU protecting clearing of
5505  		 * cgrp->kn->priv backpointer.
5506  		 */
5507  		if (cgrp->kn)
5508  			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5509  					 NULL);
5510  	}
5511  
5512  	cgroup_unlock();
5513  
5514  	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5515  	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5516  }
5517  
css_release(struct percpu_ref * ref)5518  static void css_release(struct percpu_ref *ref)
5519  {
5520  	struct cgroup_subsys_state *css =
5521  		container_of(ref, struct cgroup_subsys_state, refcnt);
5522  
5523  	INIT_WORK(&css->destroy_work, css_release_work_fn);
5524  	queue_work(cgroup_destroy_wq, &css->destroy_work);
5525  }
5526  
init_and_link_css(struct cgroup_subsys_state * css,struct cgroup_subsys * ss,struct cgroup * cgrp)5527  static void init_and_link_css(struct cgroup_subsys_state *css,
5528  			      struct cgroup_subsys *ss, struct cgroup *cgrp)
5529  {
5530  	lockdep_assert_held(&cgroup_mutex);
5531  
5532  	cgroup_get_live(cgrp);
5533  
5534  	memset(css, 0, sizeof(*css));
5535  	css->cgroup = cgrp;
5536  	css->ss = ss;
5537  	css->id = -1;
5538  	INIT_LIST_HEAD(&css->sibling);
5539  	INIT_LIST_HEAD(&css->children);
5540  	INIT_LIST_HEAD(&css->rstat_css_node);
5541  	css->serial_nr = css_serial_nr_next++;
5542  	atomic_set(&css->online_cnt, 0);
5543  
5544  	if (cgroup_parent(cgrp)) {
5545  		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5546  		css_get(css->parent);
5547  	}
5548  
5549  	if (ss->css_rstat_flush)
5550  		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5551  
5552  	BUG_ON(cgroup_css(cgrp, ss));
5553  }
5554  
5555  /* invoke ->css_online() on a new CSS and mark it online if successful */
online_css(struct cgroup_subsys_state * css)5556  static int online_css(struct cgroup_subsys_state *css)
5557  {
5558  	struct cgroup_subsys *ss = css->ss;
5559  	int ret = 0;
5560  
5561  	lockdep_assert_held(&cgroup_mutex);
5562  
5563  	if (ss->css_online)
5564  		ret = ss->css_online(css);
5565  	if (!ret) {
5566  		css->flags |= CSS_ONLINE;
5567  		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5568  
5569  		atomic_inc(&css->online_cnt);
5570  		if (css->parent) {
5571  			atomic_inc(&css->parent->online_cnt);
5572  			while ((css = css->parent))
5573  				css->nr_descendants++;
5574  		}
5575  	}
5576  	return ret;
5577  }
5578  
5579  /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
offline_css(struct cgroup_subsys_state * css)5580  static void offline_css(struct cgroup_subsys_state *css)
5581  {
5582  	struct cgroup_subsys *ss = css->ss;
5583  
5584  	lockdep_assert_held(&cgroup_mutex);
5585  
5586  	if (!(css->flags & CSS_ONLINE))
5587  		return;
5588  
5589  	if (ss->css_offline)
5590  		ss->css_offline(css);
5591  
5592  	css->flags &= ~CSS_ONLINE;
5593  	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5594  
5595  	wake_up_all(&css->cgroup->offline_waitq);
5596  
5597  	css->cgroup->nr_dying_subsys[ss->id]++;
5598  	/*
5599  	 * Parent css and cgroup cannot be freed until after the freeing
5600  	 * of child css, see css_free_rwork_fn().
5601  	 */
5602  	while ((css = css->parent)) {
5603  		css->nr_descendants--;
5604  		css->cgroup->nr_dying_subsys[ss->id]++;
5605  	}
5606  }
5607  
5608  /**
5609   * css_create - create a cgroup_subsys_state
5610   * @cgrp: the cgroup new css will be associated with
5611   * @ss: the subsys of new css
5612   *
5613   * Create a new css associated with @cgrp - @ss pair.  On success, the new
5614   * css is online and installed in @cgrp.  This function doesn't create the
5615   * interface files.  Returns 0 on success, -errno on failure.
5616   */
css_create(struct cgroup * cgrp,struct cgroup_subsys * ss)5617  static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5618  					      struct cgroup_subsys *ss)
5619  {
5620  	struct cgroup *parent = cgroup_parent(cgrp);
5621  	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5622  	struct cgroup_subsys_state *css;
5623  	int err;
5624  
5625  	lockdep_assert_held(&cgroup_mutex);
5626  
5627  	css = ss->css_alloc(parent_css);
5628  	if (!css)
5629  		css = ERR_PTR(-ENOMEM);
5630  	if (IS_ERR(css))
5631  		return css;
5632  
5633  	init_and_link_css(css, ss, cgrp);
5634  
5635  	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5636  	if (err)
5637  		goto err_free_css;
5638  
5639  	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5640  	if (err < 0)
5641  		goto err_free_css;
5642  	css->id = err;
5643  
5644  	/* @css is ready to be brought online now, make it visible */
5645  	list_add_tail_rcu(&css->sibling, &parent_css->children);
5646  	cgroup_idr_replace(&ss->css_idr, css, css->id);
5647  
5648  	err = online_css(css);
5649  	if (err)
5650  		goto err_list_del;
5651  
5652  	return css;
5653  
5654  err_list_del:
5655  	list_del_rcu(&css->sibling);
5656  err_free_css:
5657  	list_del_rcu(&css->rstat_css_node);
5658  	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5659  	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5660  	return ERR_PTR(err);
5661  }
5662  
5663  /*
5664   * The returned cgroup is fully initialized including its control mask, but
5665   * it doesn't have the control mask applied.
5666   */
cgroup_create(struct cgroup * parent,const char * name,umode_t mode)5667  static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5668  				    umode_t mode)
5669  {
5670  	struct cgroup_root *root = parent->root;
5671  	struct cgroup *cgrp, *tcgrp;
5672  	struct kernfs_node *kn;
5673  	int level = parent->level + 1;
5674  	int ret;
5675  
5676  	/* allocate the cgroup and its ID, 0 is reserved for the root */
5677  	cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL);
5678  	if (!cgrp)
5679  		return ERR_PTR(-ENOMEM);
5680  
5681  	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5682  	if (ret)
5683  		goto out_free_cgrp;
5684  
5685  	ret = cgroup_rstat_init(cgrp);
5686  	if (ret)
5687  		goto out_cancel_ref;
5688  
5689  	/* create the directory */
5690  	kn = kernfs_create_dir_ns(parent->kn, name, mode,
5691  				  current_fsuid(), current_fsgid(),
5692  				  cgrp, NULL);
5693  	if (IS_ERR(kn)) {
5694  		ret = PTR_ERR(kn);
5695  		goto out_stat_exit;
5696  	}
5697  	cgrp->kn = kn;
5698  
5699  	init_cgroup_housekeeping(cgrp);
5700  
5701  	cgrp->self.parent = &parent->self;
5702  	cgrp->root = root;
5703  	cgrp->level = level;
5704  
5705  	ret = psi_cgroup_alloc(cgrp);
5706  	if (ret)
5707  		goto out_kernfs_remove;
5708  
5709  	if (cgrp->root == &cgrp_dfl_root) {
5710  		ret = cgroup_bpf_inherit(cgrp);
5711  		if (ret)
5712  			goto out_psi_free;
5713  	}
5714  
5715  	/*
5716  	 * New cgroup inherits effective freeze counter, and
5717  	 * if the parent has to be frozen, the child has too.
5718  	 */
5719  	cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5720  	if (cgrp->freezer.e_freeze) {
5721  		/*
5722  		 * Set the CGRP_FREEZE flag, so when a process will be
5723  		 * attached to the child cgroup, it will become frozen.
5724  		 * At this point the new cgroup is unpopulated, so we can
5725  		 * consider it frozen immediately.
5726  		 */
5727  		set_bit(CGRP_FREEZE, &cgrp->flags);
5728  		set_bit(CGRP_FROZEN, &cgrp->flags);
5729  	}
5730  
5731  	spin_lock_irq(&css_set_lock);
5732  	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5733  		cgrp->ancestors[tcgrp->level] = tcgrp;
5734  
5735  		if (tcgrp != cgrp) {
5736  			tcgrp->nr_descendants++;
5737  
5738  			/*
5739  			 * If the new cgroup is frozen, all ancestor cgroups
5740  			 * get a new frozen descendant, but their state can't
5741  			 * change because of this.
5742  			 */
5743  			if (cgrp->freezer.e_freeze)
5744  				tcgrp->freezer.nr_frozen_descendants++;
5745  		}
5746  	}
5747  	spin_unlock_irq(&css_set_lock);
5748  
5749  	if (notify_on_release(parent))
5750  		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5751  
5752  	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5753  		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5754  
5755  	cgrp->self.serial_nr = css_serial_nr_next++;
5756  
5757  	/* allocation complete, commit to creation */
5758  	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5759  	atomic_inc(&root->nr_cgrps);
5760  	cgroup_get_live(parent);
5761  
5762  	/*
5763  	 * On the default hierarchy, a child doesn't automatically inherit
5764  	 * subtree_control from the parent.  Each is configured manually.
5765  	 */
5766  	if (!cgroup_on_dfl(cgrp))
5767  		cgrp->subtree_control = cgroup_control(cgrp);
5768  
5769  	cgroup_propagate_control(cgrp);
5770  
5771  	return cgrp;
5772  
5773  out_psi_free:
5774  	psi_cgroup_free(cgrp);
5775  out_kernfs_remove:
5776  	kernfs_remove(cgrp->kn);
5777  out_stat_exit:
5778  	cgroup_rstat_exit(cgrp);
5779  out_cancel_ref:
5780  	percpu_ref_exit(&cgrp->self.refcnt);
5781  out_free_cgrp:
5782  	kfree(cgrp);
5783  	return ERR_PTR(ret);
5784  }
5785  
cgroup_check_hierarchy_limits(struct cgroup * parent)5786  static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5787  {
5788  	struct cgroup *cgroup;
5789  	int ret = false;
5790  	int level = 0;
5791  
5792  	lockdep_assert_held(&cgroup_mutex);
5793  
5794  	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5795  		if (cgroup->nr_descendants >= cgroup->max_descendants)
5796  			goto fail;
5797  
5798  		if (level >= cgroup->max_depth)
5799  			goto fail;
5800  
5801  		level++;
5802  	}
5803  
5804  	ret = true;
5805  fail:
5806  	return ret;
5807  }
5808  
cgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)5809  int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5810  {
5811  	struct cgroup *parent, *cgrp;
5812  	int ret;
5813  
5814  	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5815  	if (strchr(name, '\n'))
5816  		return -EINVAL;
5817  
5818  	parent = cgroup_kn_lock_live(parent_kn, false);
5819  	if (!parent)
5820  		return -ENODEV;
5821  
5822  	if (!cgroup_check_hierarchy_limits(parent)) {
5823  		ret = -EAGAIN;
5824  		goto out_unlock;
5825  	}
5826  
5827  	cgrp = cgroup_create(parent, name, mode);
5828  	if (IS_ERR(cgrp)) {
5829  		ret = PTR_ERR(cgrp);
5830  		goto out_unlock;
5831  	}
5832  
5833  	/*
5834  	 * This extra ref will be put in css_free_rwork_fn() and guarantees
5835  	 * that @cgrp->kn is always accessible.
5836  	 */
5837  	kernfs_get(cgrp->kn);
5838  
5839  	ret = css_populate_dir(&cgrp->self);
5840  	if (ret)
5841  		goto out_destroy;
5842  
5843  	ret = cgroup_apply_control_enable(cgrp);
5844  	if (ret)
5845  		goto out_destroy;
5846  
5847  	TRACE_CGROUP_PATH(mkdir, cgrp);
5848  
5849  	/* let's create and online css's */
5850  	kernfs_activate(cgrp->kn);
5851  
5852  	ret = 0;
5853  	goto out_unlock;
5854  
5855  out_destroy:
5856  	cgroup_destroy_locked(cgrp);
5857  out_unlock:
5858  	cgroup_kn_unlock(parent_kn);
5859  	return ret;
5860  }
5861  
5862  /*
5863   * This is called when the refcnt of a css is confirmed to be killed.
5864   * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5865   * initiate destruction and put the css ref from kill_css().
5866   */
css_killed_work_fn(struct work_struct * work)5867  static void css_killed_work_fn(struct work_struct *work)
5868  {
5869  	struct cgroup_subsys_state *css =
5870  		container_of(work, struct cgroup_subsys_state, destroy_work);
5871  
5872  	cgroup_lock();
5873  
5874  	do {
5875  		offline_css(css);
5876  		css_put(css);
5877  		/* @css can't go away while we're holding cgroup_mutex */
5878  		css = css->parent;
5879  	} while (css && atomic_dec_and_test(&css->online_cnt));
5880  
5881  	cgroup_unlock();
5882  }
5883  
5884  /* css kill confirmation processing requires process context, bounce */
css_killed_ref_fn(struct percpu_ref * ref)5885  static void css_killed_ref_fn(struct percpu_ref *ref)
5886  {
5887  	struct cgroup_subsys_state *css =
5888  		container_of(ref, struct cgroup_subsys_state, refcnt);
5889  
5890  	if (atomic_dec_and_test(&css->online_cnt)) {
5891  		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5892  		queue_work(cgroup_destroy_wq, &css->destroy_work);
5893  	}
5894  }
5895  
5896  /**
5897   * kill_css - destroy a css
5898   * @css: css to destroy
5899   *
5900   * This function initiates destruction of @css by removing cgroup interface
5901   * files and putting its base reference.  ->css_offline() will be invoked
5902   * asynchronously once css_tryget_online() is guaranteed to fail and when
5903   * the reference count reaches zero, @css will be released.
5904   */
kill_css(struct cgroup_subsys_state * css)5905  static void kill_css(struct cgroup_subsys_state *css)
5906  {
5907  	lockdep_assert_held(&cgroup_mutex);
5908  
5909  	if (css->flags & CSS_DYING)
5910  		return;
5911  
5912  	css->flags |= CSS_DYING;
5913  
5914  	/*
5915  	 * This must happen before css is disassociated with its cgroup.
5916  	 * See seq_css() for details.
5917  	 */
5918  	css_clear_dir(css);
5919  
5920  	/*
5921  	 * Killing would put the base ref, but we need to keep it alive
5922  	 * until after ->css_offline().
5923  	 */
5924  	css_get(css);
5925  
5926  	/*
5927  	 * cgroup core guarantees that, by the time ->css_offline() is
5928  	 * invoked, no new css reference will be given out via
5929  	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5930  	 * proceed to offlining css's because percpu_ref_kill() doesn't
5931  	 * guarantee that the ref is seen as killed on all CPUs on return.
5932  	 *
5933  	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5934  	 * css is confirmed to be seen as killed on all CPUs.
5935  	 */
5936  	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5937  }
5938  
5939  /**
5940   * cgroup_destroy_locked - the first stage of cgroup destruction
5941   * @cgrp: cgroup to be destroyed
5942   *
5943   * css's make use of percpu refcnts whose killing latency shouldn't be
5944   * exposed to userland and are RCU protected.  Also, cgroup core needs to
5945   * guarantee that css_tryget_online() won't succeed by the time
5946   * ->css_offline() is invoked.  To satisfy all the requirements,
5947   * destruction is implemented in the following two steps.
5948   *
5949   * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5950   *     userland visible parts and start killing the percpu refcnts of
5951   *     css's.  Set up so that the next stage will be kicked off once all
5952   *     the percpu refcnts are confirmed to be killed.
5953   *
5954   * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5955   *     rest of destruction.  Once all cgroup references are gone, the
5956   *     cgroup is RCU-freed.
5957   *
5958   * This function implements s1.  After this step, @cgrp is gone as far as
5959   * the userland is concerned and a new cgroup with the same name may be
5960   * created.  As cgroup doesn't care about the names internally, this
5961   * doesn't cause any problem.
5962   */
cgroup_destroy_locked(struct cgroup * cgrp)5963  static int cgroup_destroy_locked(struct cgroup *cgrp)
5964  	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5965  {
5966  	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5967  	struct cgroup_subsys_state *css;
5968  	struct cgrp_cset_link *link;
5969  	int ssid;
5970  
5971  	lockdep_assert_held(&cgroup_mutex);
5972  
5973  	/*
5974  	 * Only migration can raise populated from zero and we're already
5975  	 * holding cgroup_mutex.
5976  	 */
5977  	if (cgroup_is_populated(cgrp))
5978  		return -EBUSY;
5979  
5980  	/*
5981  	 * Make sure there's no live children.  We can't test emptiness of
5982  	 * ->self.children as dead children linger on it while being
5983  	 * drained; otherwise, "rmdir parent/child parent" may fail.
5984  	 */
5985  	if (css_has_online_children(&cgrp->self))
5986  		return -EBUSY;
5987  
5988  	/*
5989  	 * Mark @cgrp and the associated csets dead.  The former prevents
5990  	 * further task migration and child creation by disabling
5991  	 * cgroup_kn_lock_live().  The latter makes the csets ignored by
5992  	 * the migration path.
5993  	 */
5994  	cgrp->self.flags &= ~CSS_ONLINE;
5995  
5996  	spin_lock_irq(&css_set_lock);
5997  	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5998  		link->cset->dead = true;
5999  	spin_unlock_irq(&css_set_lock);
6000  
6001  	/* initiate massacre of all css's */
6002  	for_each_css(css, ssid, cgrp)
6003  		kill_css(css);
6004  
6005  	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
6006  	css_clear_dir(&cgrp->self);
6007  	kernfs_remove(cgrp->kn);
6008  
6009  	if (cgroup_is_threaded(cgrp))
6010  		parent->nr_threaded_children--;
6011  
6012  	spin_lock_irq(&css_set_lock);
6013  	for (tcgrp = parent; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
6014  		tcgrp->nr_descendants--;
6015  		tcgrp->nr_dying_descendants++;
6016  		/*
6017  		 * If the dying cgroup is frozen, decrease frozen descendants
6018  		 * counters of ancestor cgroups.
6019  		 */
6020  		if (test_bit(CGRP_FROZEN, &cgrp->flags))
6021  			tcgrp->freezer.nr_frozen_descendants--;
6022  	}
6023  	spin_unlock_irq(&css_set_lock);
6024  
6025  	cgroup1_check_for_release(parent);
6026  
6027  	if (cgrp->root == &cgrp_dfl_root)
6028  		cgroup_bpf_offline(cgrp);
6029  
6030  	/* put the base reference */
6031  	percpu_ref_kill(&cgrp->self.refcnt);
6032  
6033  	return 0;
6034  };
6035  
cgroup_rmdir(struct kernfs_node * kn)6036  int cgroup_rmdir(struct kernfs_node *kn)
6037  {
6038  	struct cgroup *cgrp;
6039  	int ret = 0;
6040  
6041  	cgrp = cgroup_kn_lock_live(kn, false);
6042  	if (!cgrp)
6043  		return 0;
6044  
6045  	ret = cgroup_destroy_locked(cgrp);
6046  	if (!ret)
6047  		TRACE_CGROUP_PATH(rmdir, cgrp);
6048  
6049  	cgroup_kn_unlock(kn);
6050  	return ret;
6051  }
6052  
6053  static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
6054  	.show_options		= cgroup_show_options,
6055  	.mkdir			= cgroup_mkdir,
6056  	.rmdir			= cgroup_rmdir,
6057  	.show_path		= cgroup_show_path,
6058  };
6059  
cgroup_init_subsys(struct cgroup_subsys * ss,bool early)6060  static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
6061  {
6062  	struct cgroup_subsys_state *css;
6063  
6064  	pr_debug("Initializing cgroup subsys %s\n", ss->name);
6065  
6066  	cgroup_lock();
6067  
6068  	idr_init(&ss->css_idr);
6069  	INIT_LIST_HEAD(&ss->cfts);
6070  
6071  	/* Create the root cgroup state for this subsystem */
6072  	ss->root = &cgrp_dfl_root;
6073  	css = ss->css_alloc(NULL);
6074  	/* We don't handle early failures gracefully */
6075  	BUG_ON(IS_ERR(css));
6076  	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
6077  
6078  	/*
6079  	 * Root csses are never destroyed and we can't initialize
6080  	 * percpu_ref during early init.  Disable refcnting.
6081  	 */
6082  	css->flags |= CSS_NO_REF;
6083  
6084  	if (early) {
6085  		/* allocation can't be done safely during early init */
6086  		css->id = 1;
6087  	} else {
6088  		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
6089  		BUG_ON(css->id < 0);
6090  	}
6091  
6092  	/* Update the init_css_set to contain a subsys
6093  	 * pointer to this state - since the subsystem is
6094  	 * newly registered, all tasks and hence the
6095  	 * init_css_set is in the subsystem's root cgroup. */
6096  	init_css_set.subsys[ss->id] = css;
6097  
6098  	have_fork_callback |= (bool)ss->fork << ss->id;
6099  	have_exit_callback |= (bool)ss->exit << ss->id;
6100  	have_release_callback |= (bool)ss->release << ss->id;
6101  	have_canfork_callback |= (bool)ss->can_fork << ss->id;
6102  
6103  	/* At system boot, before all subsystems have been
6104  	 * registered, no tasks have been forked, so we don't
6105  	 * need to invoke fork callbacks here. */
6106  	BUG_ON(!list_empty(&init_task.tasks));
6107  
6108  	BUG_ON(online_css(css));
6109  
6110  	cgroup_unlock();
6111  }
6112  
6113  /**
6114   * cgroup_init_early - cgroup initialization at system boot
6115   *
6116   * Initialize cgroups at system boot, and initialize any
6117   * subsystems that request early init.
6118   */
cgroup_init_early(void)6119  int __init cgroup_init_early(void)
6120  {
6121  	static struct cgroup_fs_context __initdata ctx;
6122  	struct cgroup_subsys *ss;
6123  	int i;
6124  
6125  	ctx.root = &cgrp_dfl_root;
6126  	init_cgroup_root(&ctx);
6127  	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
6128  
6129  	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
6130  
6131  	for_each_subsys(ss, i) {
6132  		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
6133  		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
6134  		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
6135  		     ss->id, ss->name);
6136  		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
6137  		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
6138  
6139  		ss->id = i;
6140  		ss->name = cgroup_subsys_name[i];
6141  		if (!ss->legacy_name)
6142  			ss->legacy_name = cgroup_subsys_name[i];
6143  
6144  		if (ss->early_init)
6145  			cgroup_init_subsys(ss, true);
6146  	}
6147  	return 0;
6148  }
6149  
6150  /**
6151   * cgroup_init - cgroup initialization
6152   *
6153   * Register cgroup filesystem and /proc file, and initialize
6154   * any subsystems that didn't request early init.
6155   */
cgroup_init(void)6156  int __init cgroup_init(void)
6157  {
6158  	struct cgroup_subsys *ss;
6159  	int ssid;
6160  
6161  	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
6162  	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
6163  	BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files));
6164  	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
6165  
6166  	cgroup_rstat_boot();
6167  
6168  	get_user_ns(init_cgroup_ns.user_ns);
6169  
6170  	cgroup_lock();
6171  
6172  	/*
6173  	 * Add init_css_set to the hash table so that dfl_root can link to
6174  	 * it during init.
6175  	 */
6176  	hash_add(css_set_table, &init_css_set.hlist,
6177  		 css_set_hash(init_css_set.subsys));
6178  
6179  	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
6180  
6181  	cgroup_unlock();
6182  
6183  	for_each_subsys(ss, ssid) {
6184  		if (ss->early_init) {
6185  			struct cgroup_subsys_state *css =
6186  				init_css_set.subsys[ss->id];
6187  
6188  			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
6189  						   GFP_KERNEL);
6190  			BUG_ON(css->id < 0);
6191  		} else {
6192  			cgroup_init_subsys(ss, false);
6193  		}
6194  
6195  		list_add_tail(&init_css_set.e_cset_node[ssid],
6196  			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
6197  
6198  		/*
6199  		 * Setting dfl_root subsys_mask needs to consider the
6200  		 * disabled flag and cftype registration needs kmalloc,
6201  		 * both of which aren't available during early_init.
6202  		 */
6203  		if (!cgroup_ssid_enabled(ssid))
6204  			continue;
6205  
6206  		if (cgroup1_ssid_disabled(ssid))
6207  			pr_info("Disabling %s control group subsystem in v1 mounts\n",
6208  				ss->legacy_name);
6209  
6210  		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
6211  
6212  		/* implicit controllers must be threaded too */
6213  		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
6214  
6215  		if (ss->implicit_on_dfl)
6216  			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
6217  		else if (!ss->dfl_cftypes)
6218  			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
6219  
6220  		if (ss->threaded)
6221  			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
6222  
6223  		if (ss->dfl_cftypes == ss->legacy_cftypes) {
6224  			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
6225  		} else {
6226  			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
6227  			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
6228  		}
6229  
6230  		if (ss->bind)
6231  			ss->bind(init_css_set.subsys[ssid]);
6232  
6233  		cgroup_lock();
6234  		css_populate_dir(init_css_set.subsys[ssid]);
6235  		cgroup_unlock();
6236  	}
6237  
6238  	/* init_css_set.subsys[] has been updated, re-hash */
6239  	hash_del(&init_css_set.hlist);
6240  	hash_add(css_set_table, &init_css_set.hlist,
6241  		 css_set_hash(init_css_set.subsys));
6242  
6243  	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
6244  	WARN_ON(register_filesystem(&cgroup_fs_type));
6245  	WARN_ON(register_filesystem(&cgroup2_fs_type));
6246  	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
6247  #ifdef CONFIG_CPUSETS_V1
6248  	WARN_ON(register_filesystem(&cpuset_fs_type));
6249  #endif
6250  
6251  	return 0;
6252  }
6253  
cgroup_wq_init(void)6254  static int __init cgroup_wq_init(void)
6255  {
6256  	/*
6257  	 * There isn't much point in executing destruction path in
6258  	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
6259  	 * Use 1 for @max_active.
6260  	 *
6261  	 * We would prefer to do this in cgroup_init() above, but that
6262  	 * is called before init_workqueues(): so leave this until after.
6263  	 */
6264  	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
6265  	BUG_ON(!cgroup_destroy_wq);
6266  	return 0;
6267  }
6268  core_initcall(cgroup_wq_init);
6269  
cgroup_path_from_kernfs_id(u64 id,char * buf,size_t buflen)6270  void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
6271  {
6272  	struct kernfs_node *kn;
6273  
6274  	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6275  	if (!kn)
6276  		return;
6277  	kernfs_path(kn, buf, buflen);
6278  	kernfs_put(kn);
6279  }
6280  
6281  /*
6282   * cgroup_get_from_id : get the cgroup associated with cgroup id
6283   * @id: cgroup id
6284   * On success return the cgrp or ERR_PTR on failure
6285   * Only cgroups within current task's cgroup NS are valid.
6286   */
cgroup_get_from_id(u64 id)6287  struct cgroup *cgroup_get_from_id(u64 id)
6288  {
6289  	struct kernfs_node *kn;
6290  	struct cgroup *cgrp, *root_cgrp;
6291  
6292  	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6293  	if (!kn)
6294  		return ERR_PTR(-ENOENT);
6295  
6296  	if (kernfs_type(kn) != KERNFS_DIR) {
6297  		kernfs_put(kn);
6298  		return ERR_PTR(-ENOENT);
6299  	}
6300  
6301  	rcu_read_lock();
6302  
6303  	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6304  	if (cgrp && !cgroup_tryget(cgrp))
6305  		cgrp = NULL;
6306  
6307  	rcu_read_unlock();
6308  	kernfs_put(kn);
6309  
6310  	if (!cgrp)
6311  		return ERR_PTR(-ENOENT);
6312  
6313  	root_cgrp = current_cgns_cgroup_dfl();
6314  	if (!cgroup_is_descendant(cgrp, root_cgrp)) {
6315  		cgroup_put(cgrp);
6316  		return ERR_PTR(-ENOENT);
6317  	}
6318  
6319  	return cgrp;
6320  }
6321  EXPORT_SYMBOL_GPL(cgroup_get_from_id);
6322  
6323  /*
6324   * proc_cgroup_show()
6325   *  - Print task's cgroup paths into seq_file, one line for each hierarchy
6326   *  - Used for /proc/<pid>/cgroup.
6327   */
proc_cgroup_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)6328  int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
6329  		     struct pid *pid, struct task_struct *tsk)
6330  {
6331  	char *buf;
6332  	int retval;
6333  	struct cgroup_root *root;
6334  
6335  	retval = -ENOMEM;
6336  	buf = kmalloc(PATH_MAX, GFP_KERNEL);
6337  	if (!buf)
6338  		goto out;
6339  
6340  	rcu_read_lock();
6341  	spin_lock_irq(&css_set_lock);
6342  
6343  	for_each_root(root) {
6344  		struct cgroup_subsys *ss;
6345  		struct cgroup *cgrp;
6346  		int ssid, count = 0;
6347  
6348  		if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible))
6349  			continue;
6350  
6351  		cgrp = task_cgroup_from_root(tsk, root);
6352  		/* The root has already been unmounted. */
6353  		if (!cgrp)
6354  			continue;
6355  
6356  		seq_printf(m, "%d:", root->hierarchy_id);
6357  		if (root != &cgrp_dfl_root)
6358  			for_each_subsys(ss, ssid)
6359  				if (root->subsys_mask & (1 << ssid))
6360  					seq_printf(m, "%s%s", count++ ? "," : "",
6361  						   ss->legacy_name);
6362  		if (strlen(root->name))
6363  			seq_printf(m, "%sname=%s", count ? "," : "",
6364  				   root->name);
6365  		seq_putc(m, ':');
6366  		/*
6367  		 * On traditional hierarchies, all zombie tasks show up as
6368  		 * belonging to the root cgroup.  On the default hierarchy,
6369  		 * while a zombie doesn't show up in "cgroup.procs" and
6370  		 * thus can't be migrated, its /proc/PID/cgroup keeps
6371  		 * reporting the cgroup it belonged to before exiting.  If
6372  		 * the cgroup is removed before the zombie is reaped,
6373  		 * " (deleted)" is appended to the cgroup path.
6374  		 */
6375  		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
6376  			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
6377  						current->nsproxy->cgroup_ns);
6378  			if (retval == -E2BIG)
6379  				retval = -ENAMETOOLONG;
6380  			if (retval < 0)
6381  				goto out_unlock;
6382  
6383  			seq_puts(m, buf);
6384  		} else {
6385  			seq_puts(m, "/");
6386  		}
6387  
6388  		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
6389  			seq_puts(m, " (deleted)\n");
6390  		else
6391  			seq_putc(m, '\n');
6392  	}
6393  
6394  	retval = 0;
6395  out_unlock:
6396  	spin_unlock_irq(&css_set_lock);
6397  	rcu_read_unlock();
6398  	kfree(buf);
6399  out:
6400  	return retval;
6401  }
6402  
6403  /**
6404   * cgroup_fork - initialize cgroup related fields during copy_process()
6405   * @child: pointer to task_struct of forking parent process.
6406   *
6407   * A task is associated with the init_css_set until cgroup_post_fork()
6408   * attaches it to the target css_set.
6409   */
cgroup_fork(struct task_struct * child)6410  void cgroup_fork(struct task_struct *child)
6411  {
6412  	RCU_INIT_POINTER(child->cgroups, &init_css_set);
6413  	INIT_LIST_HEAD(&child->cg_list);
6414  }
6415  
6416  /**
6417   * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer
6418   * @f: file corresponding to cgroup_dir
6419   *
6420   * Find the cgroup from a file pointer associated with a cgroup directory.
6421   * Returns a pointer to the cgroup on success. ERR_PTR is returned if the
6422   * cgroup cannot be found.
6423   */
cgroup_v1v2_get_from_file(struct file * f)6424  static struct cgroup *cgroup_v1v2_get_from_file(struct file *f)
6425  {
6426  	struct cgroup_subsys_state *css;
6427  
6428  	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6429  	if (IS_ERR(css))
6430  		return ERR_CAST(css);
6431  
6432  	return css->cgroup;
6433  }
6434  
6435  /**
6436   * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports
6437   * cgroup2.
6438   * @f: file corresponding to cgroup2_dir
6439   */
cgroup_get_from_file(struct file * f)6440  static struct cgroup *cgroup_get_from_file(struct file *f)
6441  {
6442  	struct cgroup *cgrp = cgroup_v1v2_get_from_file(f);
6443  
6444  	if (IS_ERR(cgrp))
6445  		return ERR_CAST(cgrp);
6446  
6447  	if (!cgroup_on_dfl(cgrp)) {
6448  		cgroup_put(cgrp);
6449  		return ERR_PTR(-EBADF);
6450  	}
6451  
6452  	return cgrp;
6453  }
6454  
6455  /**
6456   * cgroup_css_set_fork - find or create a css_set for a child process
6457   * @kargs: the arguments passed to create the child process
6458   *
6459   * This functions finds or creates a new css_set which the child
6460   * process will be attached to in cgroup_post_fork(). By default,
6461   * the child process will be given the same css_set as its parent.
6462   *
6463   * If CLONE_INTO_CGROUP is specified this function will try to find an
6464   * existing css_set which includes the requested cgroup and if not create
6465   * a new css_set that the child will be attached to later. If this function
6466   * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6467   * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6468   * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6469   * to the target cgroup.
6470   */
cgroup_css_set_fork(struct kernel_clone_args * kargs)6471  static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6472  	__acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6473  {
6474  	int ret;
6475  	struct cgroup *dst_cgrp = NULL;
6476  	struct css_set *cset;
6477  	struct super_block *sb;
6478  
6479  	if (kargs->flags & CLONE_INTO_CGROUP)
6480  		cgroup_lock();
6481  
6482  	cgroup_threadgroup_change_begin(current);
6483  
6484  	spin_lock_irq(&css_set_lock);
6485  	cset = task_css_set(current);
6486  	get_css_set(cset);
6487  	if (kargs->cgrp)
6488  		kargs->kill_seq = kargs->cgrp->kill_seq;
6489  	else
6490  		kargs->kill_seq = cset->dfl_cgrp->kill_seq;
6491  	spin_unlock_irq(&css_set_lock);
6492  
6493  	if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6494  		kargs->cset = cset;
6495  		return 0;
6496  	}
6497  
6498  	CLASS(fd_raw, f)(kargs->cgroup);
6499  	if (fd_empty(f)) {
6500  		ret = -EBADF;
6501  		goto err;
6502  	}
6503  	sb = fd_file(f)->f_path.dentry->d_sb;
6504  
6505  	dst_cgrp = cgroup_get_from_file(fd_file(f));
6506  	if (IS_ERR(dst_cgrp)) {
6507  		ret = PTR_ERR(dst_cgrp);
6508  		dst_cgrp = NULL;
6509  		goto err;
6510  	}
6511  
6512  	if (cgroup_is_dead(dst_cgrp)) {
6513  		ret = -ENODEV;
6514  		goto err;
6515  	}
6516  
6517  	/*
6518  	 * Verify that we the target cgroup is writable for us. This is
6519  	 * usually done by the vfs layer but since we're not going through
6520  	 * the vfs layer here we need to do it "manually".
6521  	 */
6522  	ret = cgroup_may_write(dst_cgrp, sb);
6523  	if (ret)
6524  		goto err;
6525  
6526  	/*
6527  	 * Spawning a task directly into a cgroup works by passing a file
6528  	 * descriptor to the target cgroup directory. This can even be an O_PATH
6529  	 * file descriptor. But it can never be a cgroup.procs file descriptor.
6530  	 * This was done on purpose so spawning into a cgroup could be
6531  	 * conceptualized as an atomic
6532  	 *
6533  	 *   fd = openat(dfd_cgroup, "cgroup.procs", ...);
6534  	 *   write(fd, <child-pid>, ...);
6535  	 *
6536  	 * sequence, i.e. it's a shorthand for the caller opening and writing
6537  	 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us
6538  	 * to always use the caller's credentials.
6539  	 */
6540  	ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6541  					!(kargs->flags & CLONE_THREAD),
6542  					current->nsproxy->cgroup_ns);
6543  	if (ret)
6544  		goto err;
6545  
6546  	kargs->cset = find_css_set(cset, dst_cgrp);
6547  	if (!kargs->cset) {
6548  		ret = -ENOMEM;
6549  		goto err;
6550  	}
6551  
6552  	put_css_set(cset);
6553  	kargs->cgrp = dst_cgrp;
6554  	return ret;
6555  
6556  err:
6557  	cgroup_threadgroup_change_end(current);
6558  	cgroup_unlock();
6559  	if (dst_cgrp)
6560  		cgroup_put(dst_cgrp);
6561  	put_css_set(cset);
6562  	if (kargs->cset)
6563  		put_css_set(kargs->cset);
6564  	return ret;
6565  }
6566  
6567  /**
6568   * cgroup_css_set_put_fork - drop references we took during fork
6569   * @kargs: the arguments passed to create the child process
6570   *
6571   * Drop references to the prepared css_set and target cgroup if
6572   * CLONE_INTO_CGROUP was requested.
6573   */
cgroup_css_set_put_fork(struct kernel_clone_args * kargs)6574  static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6575  	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6576  {
6577  	struct cgroup *cgrp = kargs->cgrp;
6578  	struct css_set *cset = kargs->cset;
6579  
6580  	cgroup_threadgroup_change_end(current);
6581  
6582  	if (cset) {
6583  		put_css_set(cset);
6584  		kargs->cset = NULL;
6585  	}
6586  
6587  	if (kargs->flags & CLONE_INTO_CGROUP) {
6588  		cgroup_unlock();
6589  		if (cgrp) {
6590  			cgroup_put(cgrp);
6591  			kargs->cgrp = NULL;
6592  		}
6593  	}
6594  }
6595  
6596  /**
6597   * cgroup_can_fork - called on a new task before the process is exposed
6598   * @child: the child process
6599   * @kargs: the arguments passed to create the child process
6600   *
6601   * This prepares a new css_set for the child process which the child will
6602   * be attached to in cgroup_post_fork().
6603   * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6604   * callback returns an error, the fork aborts with that error code. This
6605   * allows for a cgroup subsystem to conditionally allow or deny new forks.
6606   */
cgroup_can_fork(struct task_struct * child,struct kernel_clone_args * kargs)6607  int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6608  {
6609  	struct cgroup_subsys *ss;
6610  	int i, j, ret;
6611  
6612  	ret = cgroup_css_set_fork(kargs);
6613  	if (ret)
6614  		return ret;
6615  
6616  	do_each_subsys_mask(ss, i, have_canfork_callback) {
6617  		ret = ss->can_fork(child, kargs->cset);
6618  		if (ret)
6619  			goto out_revert;
6620  	} while_each_subsys_mask();
6621  
6622  	return 0;
6623  
6624  out_revert:
6625  	for_each_subsys(ss, j) {
6626  		if (j >= i)
6627  			break;
6628  		if (ss->cancel_fork)
6629  			ss->cancel_fork(child, kargs->cset);
6630  	}
6631  
6632  	cgroup_css_set_put_fork(kargs);
6633  
6634  	return ret;
6635  }
6636  
6637  /**
6638   * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6639   * @child: the child process
6640   * @kargs: the arguments passed to create the child process
6641   *
6642   * This calls the cancel_fork() callbacks if a fork failed *after*
6643   * cgroup_can_fork() succeeded and cleans up references we took to
6644   * prepare a new css_set for the child process in cgroup_can_fork().
6645   */
cgroup_cancel_fork(struct task_struct * child,struct kernel_clone_args * kargs)6646  void cgroup_cancel_fork(struct task_struct *child,
6647  			struct kernel_clone_args *kargs)
6648  {
6649  	struct cgroup_subsys *ss;
6650  	int i;
6651  
6652  	for_each_subsys(ss, i)
6653  		if (ss->cancel_fork)
6654  			ss->cancel_fork(child, kargs->cset);
6655  
6656  	cgroup_css_set_put_fork(kargs);
6657  }
6658  
6659  /**
6660   * cgroup_post_fork - finalize cgroup setup for the child process
6661   * @child: the child process
6662   * @kargs: the arguments passed to create the child process
6663   *
6664   * Attach the child process to its css_set calling the subsystem fork()
6665   * callbacks.
6666   */
cgroup_post_fork(struct task_struct * child,struct kernel_clone_args * kargs)6667  void cgroup_post_fork(struct task_struct *child,
6668  		      struct kernel_clone_args *kargs)
6669  	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6670  {
6671  	unsigned int cgrp_kill_seq = 0;
6672  	unsigned long cgrp_flags = 0;
6673  	bool kill = false;
6674  	struct cgroup_subsys *ss;
6675  	struct css_set *cset;
6676  	int i;
6677  
6678  	cset = kargs->cset;
6679  	kargs->cset = NULL;
6680  
6681  	spin_lock_irq(&css_set_lock);
6682  
6683  	/* init tasks are special, only link regular threads */
6684  	if (likely(child->pid)) {
6685  		if (kargs->cgrp) {
6686  			cgrp_flags = kargs->cgrp->flags;
6687  			cgrp_kill_seq = kargs->cgrp->kill_seq;
6688  		} else {
6689  			cgrp_flags = cset->dfl_cgrp->flags;
6690  			cgrp_kill_seq = cset->dfl_cgrp->kill_seq;
6691  		}
6692  
6693  		WARN_ON_ONCE(!list_empty(&child->cg_list));
6694  		cset->nr_tasks++;
6695  		css_set_move_task(child, NULL, cset, false);
6696  	} else {
6697  		put_css_set(cset);
6698  		cset = NULL;
6699  	}
6700  
6701  	if (!(child->flags & PF_KTHREAD)) {
6702  		if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) {
6703  			/*
6704  			 * If the cgroup has to be frozen, the new task has
6705  			 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to
6706  			 * get the task into the frozen state.
6707  			 */
6708  			spin_lock(&child->sighand->siglock);
6709  			WARN_ON_ONCE(child->frozen);
6710  			child->jobctl |= JOBCTL_TRAP_FREEZE;
6711  			spin_unlock(&child->sighand->siglock);
6712  
6713  			/*
6714  			 * Calling cgroup_update_frozen() isn't required here,
6715  			 * because it will be called anyway a bit later from
6716  			 * do_freezer_trap(). So we avoid cgroup's transient
6717  			 * switch from the frozen state and back.
6718  			 */
6719  		}
6720  
6721  		/*
6722  		 * If the cgroup is to be killed notice it now and take the
6723  		 * child down right after we finished preparing it for
6724  		 * userspace.
6725  		 */
6726  		kill = kargs->kill_seq != cgrp_kill_seq;
6727  	}
6728  
6729  	spin_unlock_irq(&css_set_lock);
6730  
6731  	/*
6732  	 * Call ss->fork().  This must happen after @child is linked on
6733  	 * css_set; otherwise, @child might change state between ->fork()
6734  	 * and addition to css_set.
6735  	 */
6736  	do_each_subsys_mask(ss, i, have_fork_callback) {
6737  		ss->fork(child);
6738  	} while_each_subsys_mask();
6739  
6740  	/* Make the new cset the root_cset of the new cgroup namespace. */
6741  	if (kargs->flags & CLONE_NEWCGROUP) {
6742  		struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6743  
6744  		get_css_set(cset);
6745  		child->nsproxy->cgroup_ns->root_cset = cset;
6746  		put_css_set(rcset);
6747  	}
6748  
6749  	/* Cgroup has to be killed so take down child immediately. */
6750  	if (unlikely(kill))
6751  		do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID);
6752  
6753  	cgroup_css_set_put_fork(kargs);
6754  }
6755  
6756  /**
6757   * cgroup_exit - detach cgroup from exiting task
6758   * @tsk: pointer to task_struct of exiting process
6759   *
6760   * Description: Detach cgroup from @tsk.
6761   *
6762   */
cgroup_exit(struct task_struct * tsk)6763  void cgroup_exit(struct task_struct *tsk)
6764  {
6765  	struct cgroup_subsys *ss;
6766  	struct css_set *cset;
6767  	int i;
6768  
6769  	spin_lock_irq(&css_set_lock);
6770  
6771  	WARN_ON_ONCE(list_empty(&tsk->cg_list));
6772  	cset = task_css_set(tsk);
6773  	css_set_move_task(tsk, cset, NULL, false);
6774  	cset->nr_tasks--;
6775  	/* matches the signal->live check in css_task_iter_advance() */
6776  	if (thread_group_leader(tsk) && atomic_read(&tsk->signal->live))
6777  		list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6778  
6779  	if (dl_task(tsk))
6780  		dec_dl_tasks_cs(tsk);
6781  
6782  	WARN_ON_ONCE(cgroup_task_frozen(tsk));
6783  	if (unlikely(!(tsk->flags & PF_KTHREAD) &&
6784  		     test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags)))
6785  		cgroup_update_frozen(task_dfl_cgroup(tsk));
6786  
6787  	spin_unlock_irq(&css_set_lock);
6788  
6789  	/* see cgroup_post_fork() for details */
6790  	do_each_subsys_mask(ss, i, have_exit_callback) {
6791  		ss->exit(tsk);
6792  	} while_each_subsys_mask();
6793  }
6794  
cgroup_release(struct task_struct * task)6795  void cgroup_release(struct task_struct *task)
6796  {
6797  	struct cgroup_subsys *ss;
6798  	int ssid;
6799  
6800  	do_each_subsys_mask(ss, ssid, have_release_callback) {
6801  		ss->release(task);
6802  	} while_each_subsys_mask();
6803  
6804  	if (!list_empty(&task->cg_list)) {
6805  		spin_lock_irq(&css_set_lock);
6806  		css_set_skip_task_iters(task_css_set(task), task);
6807  		list_del_init(&task->cg_list);
6808  		spin_unlock_irq(&css_set_lock);
6809  	}
6810  }
6811  
cgroup_free(struct task_struct * task)6812  void cgroup_free(struct task_struct *task)
6813  {
6814  	struct css_set *cset = task_css_set(task);
6815  	put_css_set(cset);
6816  }
6817  
cgroup_disable(char * str)6818  static int __init cgroup_disable(char *str)
6819  {
6820  	struct cgroup_subsys *ss;
6821  	char *token;
6822  	int i;
6823  
6824  	while ((token = strsep(&str, ",")) != NULL) {
6825  		if (!*token)
6826  			continue;
6827  
6828  		for_each_subsys(ss, i) {
6829  			if (strcmp(token, ss->name) &&
6830  			    strcmp(token, ss->legacy_name))
6831  				continue;
6832  
6833  			static_branch_disable(cgroup_subsys_enabled_key[i]);
6834  			pr_info("Disabling %s control group subsystem\n",
6835  				ss->name);
6836  		}
6837  
6838  		for (i = 0; i < OPT_FEATURE_COUNT; i++) {
6839  			if (strcmp(token, cgroup_opt_feature_names[i]))
6840  				continue;
6841  			cgroup_feature_disable_mask |= 1 << i;
6842  			pr_info("Disabling %s control group feature\n",
6843  				cgroup_opt_feature_names[i]);
6844  			break;
6845  		}
6846  	}
6847  	return 1;
6848  }
6849  __setup("cgroup_disable=", cgroup_disable);
6850  
enable_debug_cgroup(void)6851  void __init __weak enable_debug_cgroup(void) { }
6852  
enable_cgroup_debug(char * str)6853  static int __init enable_cgroup_debug(char *str)
6854  {
6855  	cgroup_debug = true;
6856  	enable_debug_cgroup();
6857  	return 1;
6858  }
6859  __setup("cgroup_debug", enable_cgroup_debug);
6860  
cgroup_favordynmods_setup(char * str)6861  static int __init cgroup_favordynmods_setup(char *str)
6862  {
6863  	return (kstrtobool(str, &have_favordynmods) == 0);
6864  }
6865  __setup("cgroup_favordynmods=", cgroup_favordynmods_setup);
6866  
6867  /**
6868   * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6869   * @dentry: directory dentry of interest
6870   * @ss: subsystem of interest
6871   *
6872   * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6873   * to get the corresponding css and return it.  If such css doesn't exist
6874   * or can't be pinned, an ERR_PTR value is returned.
6875   */
css_tryget_online_from_dir(struct dentry * dentry,struct cgroup_subsys * ss)6876  struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6877  						       struct cgroup_subsys *ss)
6878  {
6879  	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6880  	struct file_system_type *s_type = dentry->d_sb->s_type;
6881  	struct cgroup_subsys_state *css = NULL;
6882  	struct cgroup *cgrp;
6883  
6884  	/* is @dentry a cgroup dir? */
6885  	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6886  	    !kn || kernfs_type(kn) != KERNFS_DIR)
6887  		return ERR_PTR(-EBADF);
6888  
6889  	rcu_read_lock();
6890  
6891  	/*
6892  	 * This path doesn't originate from kernfs and @kn could already
6893  	 * have been or be removed at any point.  @kn->priv is RCU
6894  	 * protected for this access.  See css_release_work_fn() for details.
6895  	 */
6896  	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6897  	if (cgrp)
6898  		css = cgroup_css(cgrp, ss);
6899  
6900  	if (!css || !css_tryget_online(css))
6901  		css = ERR_PTR(-ENOENT);
6902  
6903  	rcu_read_unlock();
6904  	return css;
6905  }
6906  
6907  /**
6908   * css_from_id - lookup css by id
6909   * @id: the cgroup id
6910   * @ss: cgroup subsys to be looked into
6911   *
6912   * Returns the css if there's valid one with @id, otherwise returns NULL.
6913   * Should be called under rcu_read_lock().
6914   */
css_from_id(int id,struct cgroup_subsys * ss)6915  struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6916  {
6917  	WARN_ON_ONCE(!rcu_read_lock_held());
6918  	return idr_find(&ss->css_idr, id);
6919  }
6920  
6921  /**
6922   * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6923   * @path: path on the default hierarchy
6924   *
6925   * Find the cgroup at @path on the default hierarchy, increment its
6926   * reference count and return it.  Returns pointer to the found cgroup on
6927   * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already
6928   * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory.
6929   */
cgroup_get_from_path(const char * path)6930  struct cgroup *cgroup_get_from_path(const char *path)
6931  {
6932  	struct kernfs_node *kn;
6933  	struct cgroup *cgrp = ERR_PTR(-ENOENT);
6934  	struct cgroup *root_cgrp;
6935  
6936  	root_cgrp = current_cgns_cgroup_dfl();
6937  	kn = kernfs_walk_and_get(root_cgrp->kn, path);
6938  	if (!kn)
6939  		goto out;
6940  
6941  	if (kernfs_type(kn) != KERNFS_DIR) {
6942  		cgrp = ERR_PTR(-ENOTDIR);
6943  		goto out_kernfs;
6944  	}
6945  
6946  	rcu_read_lock();
6947  
6948  	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6949  	if (!cgrp || !cgroup_tryget(cgrp))
6950  		cgrp = ERR_PTR(-ENOENT);
6951  
6952  	rcu_read_unlock();
6953  
6954  out_kernfs:
6955  	kernfs_put(kn);
6956  out:
6957  	return cgrp;
6958  }
6959  EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6960  
6961  /**
6962   * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd
6963   * @fd: fd obtained by open(cgroup_dir)
6964   *
6965   * Find the cgroup from a fd which should be obtained
6966   * by opening a cgroup directory.  Returns a pointer to the
6967   * cgroup on success. ERR_PTR is returned if the cgroup
6968   * cannot be found.
6969   */
cgroup_v1v2_get_from_fd(int fd)6970  struct cgroup *cgroup_v1v2_get_from_fd(int fd)
6971  {
6972  	CLASS(fd_raw, f)(fd);
6973  	if (fd_empty(f))
6974  		return ERR_PTR(-EBADF);
6975  
6976  	return cgroup_v1v2_get_from_file(fd_file(f));
6977  }
6978  
6979  /**
6980   * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports
6981   * cgroup2.
6982   * @fd: fd obtained by open(cgroup2_dir)
6983   */
cgroup_get_from_fd(int fd)6984  struct cgroup *cgroup_get_from_fd(int fd)
6985  {
6986  	struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd);
6987  
6988  	if (IS_ERR(cgrp))
6989  		return ERR_CAST(cgrp);
6990  
6991  	if (!cgroup_on_dfl(cgrp)) {
6992  		cgroup_put(cgrp);
6993  		return ERR_PTR(-EBADF);
6994  	}
6995  	return cgrp;
6996  }
6997  EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6998  
power_of_ten(int power)6999  static u64 power_of_ten(int power)
7000  {
7001  	u64 v = 1;
7002  	while (power--)
7003  		v *= 10;
7004  	return v;
7005  }
7006  
7007  /**
7008   * cgroup_parse_float - parse a floating number
7009   * @input: input string
7010   * @dec_shift: number of decimal digits to shift
7011   * @v: output
7012   *
7013   * Parse a decimal floating point number in @input and store the result in
7014   * @v with decimal point right shifted @dec_shift times.  For example, if
7015   * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
7016   * Returns 0 on success, -errno otherwise.
7017   *
7018   * There's nothing cgroup specific about this function except that it's
7019   * currently the only user.
7020   */
cgroup_parse_float(const char * input,unsigned dec_shift,s64 * v)7021  int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
7022  {
7023  	s64 whole, frac = 0;
7024  	int fstart = 0, fend = 0, flen;
7025  
7026  	if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
7027  		return -EINVAL;
7028  	if (frac < 0)
7029  		return -EINVAL;
7030  
7031  	flen = fend > fstart ? fend - fstart : 0;
7032  	if (flen < dec_shift)
7033  		frac *= power_of_ten(dec_shift - flen);
7034  	else
7035  		frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
7036  
7037  	*v = whole * power_of_ten(dec_shift) + frac;
7038  	return 0;
7039  }
7040  
7041  /*
7042   * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
7043   * definition in cgroup-defs.h.
7044   */
7045  #ifdef CONFIG_SOCK_CGROUP_DATA
7046  
cgroup_sk_alloc(struct sock_cgroup_data * skcd)7047  void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
7048  {
7049  	struct cgroup *cgroup;
7050  
7051  	rcu_read_lock();
7052  	/* Don't associate the sock with unrelated interrupted task's cgroup. */
7053  	if (in_interrupt()) {
7054  		cgroup = &cgrp_dfl_root.cgrp;
7055  		cgroup_get(cgroup);
7056  		goto out;
7057  	}
7058  
7059  	while (true) {
7060  		struct css_set *cset;
7061  
7062  		cset = task_css_set(current);
7063  		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
7064  			cgroup = cset->dfl_cgrp;
7065  			break;
7066  		}
7067  		cpu_relax();
7068  	}
7069  out:
7070  	skcd->cgroup = cgroup;
7071  	cgroup_bpf_get(cgroup);
7072  	rcu_read_unlock();
7073  }
7074  
cgroup_sk_clone(struct sock_cgroup_data * skcd)7075  void cgroup_sk_clone(struct sock_cgroup_data *skcd)
7076  {
7077  	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
7078  
7079  	/*
7080  	 * We might be cloning a socket which is left in an empty
7081  	 * cgroup and the cgroup might have already been rmdir'd.
7082  	 * Don't use cgroup_get_live().
7083  	 */
7084  	cgroup_get(cgrp);
7085  	cgroup_bpf_get(cgrp);
7086  }
7087  
cgroup_sk_free(struct sock_cgroup_data * skcd)7088  void cgroup_sk_free(struct sock_cgroup_data *skcd)
7089  {
7090  	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
7091  
7092  	cgroup_bpf_put(cgrp);
7093  	cgroup_put(cgrp);
7094  }
7095  
7096  #endif	/* CONFIG_SOCK_CGROUP_DATA */
7097  
7098  #ifdef CONFIG_SYSFS
show_delegatable_files(struct cftype * files,char * buf,ssize_t size,const char * prefix)7099  static ssize_t show_delegatable_files(struct cftype *files, char *buf,
7100  				      ssize_t size, const char *prefix)
7101  {
7102  	struct cftype *cft;
7103  	ssize_t ret = 0;
7104  
7105  	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
7106  		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
7107  			continue;
7108  
7109  		if (prefix)
7110  			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
7111  
7112  		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
7113  
7114  		if (WARN_ON(ret >= size))
7115  			break;
7116  	}
7117  
7118  	return ret;
7119  }
7120  
delegate_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)7121  static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
7122  			      char *buf)
7123  {
7124  	struct cgroup_subsys *ss;
7125  	int ssid;
7126  	ssize_t ret = 0;
7127  
7128  	ret = show_delegatable_files(cgroup_base_files, buf + ret,
7129  				     PAGE_SIZE - ret, NULL);
7130  	if (cgroup_psi_enabled())
7131  		ret += show_delegatable_files(cgroup_psi_files, buf + ret,
7132  					      PAGE_SIZE - ret, NULL);
7133  
7134  	for_each_subsys(ss, ssid)
7135  		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
7136  					      PAGE_SIZE - ret,
7137  					      cgroup_subsys_name[ssid]);
7138  
7139  	return ret;
7140  }
7141  static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
7142  
features_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)7143  static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
7144  			     char *buf)
7145  {
7146  	return snprintf(buf, PAGE_SIZE,
7147  			"nsdelegate\n"
7148  			"favordynmods\n"
7149  			"memory_localevents\n"
7150  			"memory_recursiveprot\n"
7151  			"memory_hugetlb_accounting\n"
7152  			"pids_localevents\n");
7153  }
7154  static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
7155  
7156  static struct attribute *cgroup_sysfs_attrs[] = {
7157  	&cgroup_delegate_attr.attr,
7158  	&cgroup_features_attr.attr,
7159  	NULL,
7160  };
7161  
7162  static const struct attribute_group cgroup_sysfs_attr_group = {
7163  	.attrs = cgroup_sysfs_attrs,
7164  	.name = "cgroup",
7165  };
7166  
cgroup_sysfs_init(void)7167  static int __init cgroup_sysfs_init(void)
7168  {
7169  	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
7170  }
7171  subsys_initcall(cgroup_sysfs_init);
7172  
7173  #endif /* CONFIG_SYSFS */
7174