xref: /linux/kernel/cgroup/cgroup.c (revision df02351331671abb26788bc13f6d276e26ae068f)
1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/bpf-cgroup.h>
34 #include <linux/cred.h>
35 #include <linux/errno.h>
36 #include <linux/init_task.h>
37 #include <linux/kernel.h>
38 #include <linux/magic.h>
39 #include <linux/mutex.h>
40 #include <linux/mount.h>
41 #include <linux/pagemap.h>
42 #include <linux/proc_fs.h>
43 #include <linux/rcupdate.h>
44 #include <linux/sched.h>
45 #include <linux/sched/task.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/hashtable.h>
51 #include <linux/idr.h>
52 #include <linux/kthread.h>
53 #include <linux/atomic.h>
54 #include <linux/cpuset.h>
55 #include <linux/proc_ns.h>
56 #include <linux/nsproxy.h>
57 #include <linux/file.h>
58 #include <linux/fs_parser.h>
59 #include <linux/sched/cputime.h>
60 #include <linux/sched/deadline.h>
61 #include <linux/psi.h>
62 #include <net/sock.h>
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/cgroup.h>
66 
67 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
68 					 MAX_CFTYPE_NAME + 2)
69 /* let's not notify more than 100 times per second */
70 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
71 
72 /*
73  * To avoid confusing the compiler (and generating warnings) with code
74  * that attempts to access what would be a 0-element array (i.e. sized
75  * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this
76  * constant expression can be added.
77  */
78 #define CGROUP_HAS_SUBSYS_CONFIG	(CGROUP_SUBSYS_COUNT > 0)
79 
80 /*
81  * cgroup_mutex is the master lock.  Any modification to cgroup or its
82  * hierarchy must be performed while holding it.
83  *
84  * css_set_lock protects task->cgroups pointer, the list of css_set
85  * objects, and the chain of tasks off each css_set.
86  *
87  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
88  * cgroup.h can use them for lockdep annotations.
89  */
90 DEFINE_MUTEX(cgroup_mutex);
91 DEFINE_SPINLOCK(css_set_lock);
92 
93 #ifdef CONFIG_PROVE_RCU
94 EXPORT_SYMBOL_GPL(cgroup_mutex);
95 EXPORT_SYMBOL_GPL(css_set_lock);
96 #endif
97 
98 DEFINE_SPINLOCK(trace_cgroup_path_lock);
99 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
100 static bool cgroup_debug __read_mostly;
101 
102 /*
103  * Protects cgroup_idr and css_idr so that IDs can be released without
104  * grabbing cgroup_mutex.
105  */
106 static DEFINE_SPINLOCK(cgroup_idr_lock);
107 
108 /*
109  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
110  * against file removal/re-creation across css hiding.
111  */
112 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
113 
114 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
115 
116 #define cgroup_assert_mutex_or_rcu_locked()				\
117 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
118 			   !lockdep_is_held(&cgroup_mutex),		\
119 			   "cgroup_mutex or RCU read lock required");
120 
121 /*
122  * cgroup destruction makes heavy use of work items and there can be a lot
123  * of concurrent destructions.  Use a separate workqueue so that cgroup
124  * destruction work items don't end up filling up max_active of system_wq
125  * which may lead to deadlock.
126  */
127 static struct workqueue_struct *cgroup_destroy_wq;
128 
129 /* generate an array of cgroup subsystem pointers */
130 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
131 struct cgroup_subsys *cgroup_subsys[] = {
132 #include <linux/cgroup_subsys.h>
133 };
134 #undef SUBSYS
135 
136 /* array of cgroup subsystem names */
137 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
138 static const char *cgroup_subsys_name[] = {
139 #include <linux/cgroup_subsys.h>
140 };
141 #undef SUBSYS
142 
143 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
144 #define SUBSYS(_x)								\
145 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
146 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
147 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
148 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
149 #include <linux/cgroup_subsys.h>
150 #undef SUBSYS
151 
152 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
153 static struct static_key_true *cgroup_subsys_enabled_key[] = {
154 #include <linux/cgroup_subsys.h>
155 };
156 #undef SUBSYS
157 
158 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
159 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
160 #include <linux/cgroup_subsys.h>
161 };
162 #undef SUBSYS
163 
164 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
165 
166 /* the default hierarchy */
167 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
168 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
169 
170 /*
171  * The default hierarchy always exists but is hidden until mounted for the
172  * first time.  This is for backward compatibility.
173  */
174 bool cgrp_dfl_visible;
175 
176 /* some controllers are not supported in the default hierarchy */
177 static u16 cgrp_dfl_inhibit_ss_mask;
178 
179 /* some controllers are implicitly enabled on the default hierarchy */
180 static u16 cgrp_dfl_implicit_ss_mask;
181 
182 /* some controllers can be threaded on the default hierarchy */
183 static u16 cgrp_dfl_threaded_ss_mask;
184 
185 /* The list of hierarchy roots */
186 LIST_HEAD(cgroup_roots);
187 static int cgroup_root_count;
188 
189 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
190 static DEFINE_IDR(cgroup_hierarchy_idr);
191 
192 /*
193  * Assign a monotonically increasing serial number to csses.  It guarantees
194  * cgroups with bigger numbers are newer than those with smaller numbers.
195  * Also, as csses are always appended to the parent's ->children list, it
196  * guarantees that sibling csses are always sorted in the ascending serial
197  * number order on the list.  Protected by cgroup_mutex.
198  */
199 static u64 css_serial_nr_next = 1;
200 
201 /*
202  * These bitmasks identify subsystems with specific features to avoid
203  * having to do iterative checks repeatedly.
204  */
205 static u16 have_fork_callback __read_mostly;
206 static u16 have_exit_callback __read_mostly;
207 static u16 have_release_callback __read_mostly;
208 static u16 have_canfork_callback __read_mostly;
209 
210 static bool have_favordynmods __ro_after_init = IS_ENABLED(CONFIG_CGROUP_FAVOR_DYNMODS);
211 
212 /* cgroup namespace for init task */
213 struct cgroup_namespace init_cgroup_ns = {
214 	.ns.count	= REFCOUNT_INIT(2),
215 	.user_ns	= &init_user_ns,
216 	.ns.ops		= &cgroupns_operations,
217 	.ns.inum	= PROC_CGROUP_INIT_INO,
218 	.root_cset	= &init_css_set,
219 };
220 
221 static struct file_system_type cgroup2_fs_type;
222 static struct cftype cgroup_base_files[];
223 static struct cftype cgroup_psi_files[];
224 
225 /* cgroup optional features */
226 enum cgroup_opt_features {
227 #ifdef CONFIG_PSI
228 	OPT_FEATURE_PRESSURE,
229 #endif
230 	OPT_FEATURE_COUNT
231 };
232 
233 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
234 #ifdef CONFIG_PSI
235 	"pressure",
236 #endif
237 };
238 
239 static u16 cgroup_feature_disable_mask __read_mostly;
240 
241 static int cgroup_apply_control(struct cgroup *cgrp);
242 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
243 static void css_task_iter_skip(struct css_task_iter *it,
244 			       struct task_struct *task);
245 static int cgroup_destroy_locked(struct cgroup *cgrp);
246 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
247 					      struct cgroup_subsys *ss);
248 static void css_release(struct percpu_ref *ref);
249 static void kill_css(struct cgroup_subsys_state *css);
250 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
251 			      struct cgroup *cgrp, struct cftype cfts[],
252 			      bool is_add);
253 
254 #ifdef CONFIG_DEBUG_CGROUP_REF
255 #define CGROUP_REF_FN_ATTRS	noinline
256 #define CGROUP_REF_EXPORT(fn)	EXPORT_SYMBOL_GPL(fn);
257 #include <linux/cgroup_refcnt.h>
258 #endif
259 
260 /**
261  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
262  * @ssid: subsys ID of interest
263  *
264  * cgroup_subsys_enabled() can only be used with literal subsys names which
265  * is fine for individual subsystems but unsuitable for cgroup core.  This
266  * is slower static_key_enabled() based test indexed by @ssid.
267  */
cgroup_ssid_enabled(int ssid)268 bool cgroup_ssid_enabled(int ssid)
269 {
270 	if (!CGROUP_HAS_SUBSYS_CONFIG)
271 		return false;
272 
273 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
274 }
275 
276 /**
277  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
278  * @cgrp: the cgroup of interest
279  *
280  * The default hierarchy is the v2 interface of cgroup and this function
281  * can be used to test whether a cgroup is on the default hierarchy for
282  * cases where a subsystem should behave differently depending on the
283  * interface version.
284  *
285  * List of changed behaviors:
286  *
287  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
288  *   and "name" are disallowed.
289  *
290  * - When mounting an existing superblock, mount options should match.
291  *
292  * - rename(2) is disallowed.
293  *
294  * - "tasks" is removed.  Everything should be at process granularity.  Use
295  *   "cgroup.procs" instead.
296  *
297  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
298  *   recycled in-between reads.
299  *
300  * - "release_agent" and "notify_on_release" are removed.  Replacement
301  *   notification mechanism will be implemented.
302  *
303  * - "cgroup.clone_children" is removed.
304  *
305  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
306  *   and its descendants contain no task; otherwise, 1.  The file also
307  *   generates kernfs notification which can be monitored through poll and
308  *   [di]notify when the value of the file changes.
309  *
310  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
311  *   take masks of ancestors with non-empty cpus/mems, instead of being
312  *   moved to an ancestor.
313  *
314  * - cpuset: a task can be moved into an empty cpuset, and again it takes
315  *   masks of ancestors.
316  *
317  * - blkcg: blk-throttle becomes properly hierarchical.
318  */
cgroup_on_dfl(const struct cgroup * cgrp)319 bool cgroup_on_dfl(const struct cgroup *cgrp)
320 {
321 	return cgrp->root == &cgrp_dfl_root;
322 }
323 
324 /* IDR wrappers which synchronize using cgroup_idr_lock */
cgroup_idr_alloc(struct idr * idr,void * ptr,int start,int end,gfp_t gfp_mask)325 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
326 			    gfp_t gfp_mask)
327 {
328 	int ret;
329 
330 	idr_preload(gfp_mask);
331 	spin_lock_bh(&cgroup_idr_lock);
332 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
333 	spin_unlock_bh(&cgroup_idr_lock);
334 	idr_preload_end();
335 	return ret;
336 }
337 
cgroup_idr_replace(struct idr * idr,void * ptr,int id)338 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
339 {
340 	void *ret;
341 
342 	spin_lock_bh(&cgroup_idr_lock);
343 	ret = idr_replace(idr, ptr, id);
344 	spin_unlock_bh(&cgroup_idr_lock);
345 	return ret;
346 }
347 
cgroup_idr_remove(struct idr * idr,int id)348 static void cgroup_idr_remove(struct idr *idr, int id)
349 {
350 	spin_lock_bh(&cgroup_idr_lock);
351 	idr_remove(idr, id);
352 	spin_unlock_bh(&cgroup_idr_lock);
353 }
354 
cgroup_has_tasks(struct cgroup * cgrp)355 static bool cgroup_has_tasks(struct cgroup *cgrp)
356 {
357 	return cgrp->nr_populated_csets;
358 }
359 
cgroup_is_threaded(struct cgroup * cgrp)360 static bool cgroup_is_threaded(struct cgroup *cgrp)
361 {
362 	return cgrp->dom_cgrp != cgrp;
363 }
364 
365 /* can @cgrp host both domain and threaded children? */
cgroup_is_mixable(struct cgroup * cgrp)366 static bool cgroup_is_mixable(struct cgroup *cgrp)
367 {
368 	/*
369 	 * Root isn't under domain level resource control exempting it from
370 	 * the no-internal-process constraint, so it can serve as a thread
371 	 * root and a parent of resource domains at the same time.
372 	 */
373 	return !cgroup_parent(cgrp);
374 }
375 
376 /* can @cgrp become a thread root? Should always be true for a thread root */
cgroup_can_be_thread_root(struct cgroup * cgrp)377 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
378 {
379 	/* mixables don't care */
380 	if (cgroup_is_mixable(cgrp))
381 		return true;
382 
383 	/* domain roots can't be nested under threaded */
384 	if (cgroup_is_threaded(cgrp))
385 		return false;
386 
387 	/* can only have either domain or threaded children */
388 	if (cgrp->nr_populated_domain_children)
389 		return false;
390 
391 	/* and no domain controllers can be enabled */
392 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
393 		return false;
394 
395 	return true;
396 }
397 
398 /* is @cgrp root of a threaded subtree? */
cgroup_is_thread_root(struct cgroup * cgrp)399 static bool cgroup_is_thread_root(struct cgroup *cgrp)
400 {
401 	/* thread root should be a domain */
402 	if (cgroup_is_threaded(cgrp))
403 		return false;
404 
405 	/* a domain w/ threaded children is a thread root */
406 	if (cgrp->nr_threaded_children)
407 		return true;
408 
409 	/*
410 	 * A domain which has tasks and explicit threaded controllers
411 	 * enabled is a thread root.
412 	 */
413 	if (cgroup_has_tasks(cgrp) &&
414 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
415 		return true;
416 
417 	return false;
418 }
419 
420 /* a domain which isn't connected to the root w/o brekage can't be used */
cgroup_is_valid_domain(struct cgroup * cgrp)421 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
422 {
423 	/* the cgroup itself can be a thread root */
424 	if (cgroup_is_threaded(cgrp))
425 		return false;
426 
427 	/* but the ancestors can't be unless mixable */
428 	while ((cgrp = cgroup_parent(cgrp))) {
429 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
430 			return false;
431 		if (cgroup_is_threaded(cgrp))
432 			return false;
433 	}
434 
435 	return true;
436 }
437 
438 /* subsystems visibly enabled on a cgroup */
cgroup_control(struct cgroup * cgrp)439 static u16 cgroup_control(struct cgroup *cgrp)
440 {
441 	struct cgroup *parent = cgroup_parent(cgrp);
442 	u16 root_ss_mask = cgrp->root->subsys_mask;
443 
444 	if (parent) {
445 		u16 ss_mask = parent->subtree_control;
446 
447 		/* threaded cgroups can only have threaded controllers */
448 		if (cgroup_is_threaded(cgrp))
449 			ss_mask &= cgrp_dfl_threaded_ss_mask;
450 		return ss_mask;
451 	}
452 
453 	if (cgroup_on_dfl(cgrp))
454 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
455 				  cgrp_dfl_implicit_ss_mask);
456 	return root_ss_mask;
457 }
458 
459 /* subsystems enabled on a cgroup */
cgroup_ss_mask(struct cgroup * cgrp)460 static u16 cgroup_ss_mask(struct cgroup *cgrp)
461 {
462 	struct cgroup *parent = cgroup_parent(cgrp);
463 
464 	if (parent) {
465 		u16 ss_mask = parent->subtree_ss_mask;
466 
467 		/* threaded cgroups can only have threaded controllers */
468 		if (cgroup_is_threaded(cgrp))
469 			ss_mask &= cgrp_dfl_threaded_ss_mask;
470 		return ss_mask;
471 	}
472 
473 	return cgrp->root->subsys_mask;
474 }
475 
476 /**
477  * cgroup_css - obtain a cgroup's css for the specified subsystem
478  * @cgrp: the cgroup of interest
479  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
480  *
481  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
482  * function must be called either under cgroup_mutex or rcu_read_lock() and
483  * the caller is responsible for pinning the returned css if it wants to
484  * keep accessing it outside the said locks.  This function may return
485  * %NULL if @cgrp doesn't have @subsys_id enabled.
486  */
cgroup_css(struct cgroup * cgrp,struct cgroup_subsys * ss)487 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
488 					      struct cgroup_subsys *ss)
489 {
490 	if (CGROUP_HAS_SUBSYS_CONFIG && ss)
491 		return rcu_dereference_check(cgrp->subsys[ss->id],
492 					lockdep_is_held(&cgroup_mutex));
493 	else
494 		return &cgrp->self;
495 }
496 
497 /**
498  * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
499  * @cgrp: the cgroup of interest
500  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
501  *
502  * Similar to cgroup_css() but returns the effective css, which is defined
503  * as the matching css of the nearest ancestor including self which has @ss
504  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
505  * function is guaranteed to return non-NULL css.
506  */
cgroup_e_css_by_mask(struct cgroup * cgrp,struct cgroup_subsys * ss)507 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
508 							struct cgroup_subsys *ss)
509 {
510 	lockdep_assert_held(&cgroup_mutex);
511 
512 	if (!ss)
513 		return &cgrp->self;
514 
515 	/*
516 	 * This function is used while updating css associations and thus
517 	 * can't test the csses directly.  Test ss_mask.
518 	 */
519 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
520 		cgrp = cgroup_parent(cgrp);
521 		if (!cgrp)
522 			return NULL;
523 	}
524 
525 	return cgroup_css(cgrp, ss);
526 }
527 
528 /**
529  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
530  * @cgrp: the cgroup of interest
531  * @ss: the subsystem of interest
532  *
533  * Find and get the effective css of @cgrp for @ss.  The effective css is
534  * defined as the matching css of the nearest ancestor including self which
535  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
536  * the root css is returned, so this function always returns a valid css.
537  *
538  * The returned css is not guaranteed to be online, and therefore it is the
539  * callers responsibility to try get a reference for it.
540  */
cgroup_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)541 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
542 					 struct cgroup_subsys *ss)
543 {
544 	struct cgroup_subsys_state *css;
545 
546 	if (!CGROUP_HAS_SUBSYS_CONFIG)
547 		return NULL;
548 
549 	do {
550 		css = cgroup_css(cgrp, ss);
551 
552 		if (css)
553 			return css;
554 		cgrp = cgroup_parent(cgrp);
555 	} while (cgrp);
556 
557 	return init_css_set.subsys[ss->id];
558 }
559 
560 /**
561  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
562  * @cgrp: the cgroup of interest
563  * @ss: the subsystem of interest
564  *
565  * Find and get the effective css of @cgrp for @ss.  The effective css is
566  * defined as the matching css of the nearest ancestor including self which
567  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
568  * the root css is returned, so this function always returns a valid css.
569  * The returned css must be put using css_put().
570  */
cgroup_get_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)571 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
572 					     struct cgroup_subsys *ss)
573 {
574 	struct cgroup_subsys_state *css;
575 
576 	if (!CGROUP_HAS_SUBSYS_CONFIG)
577 		return NULL;
578 
579 	rcu_read_lock();
580 
581 	do {
582 		css = cgroup_css(cgrp, ss);
583 
584 		if (css && css_tryget_online(css))
585 			goto out_unlock;
586 		cgrp = cgroup_parent(cgrp);
587 	} while (cgrp);
588 
589 	css = init_css_set.subsys[ss->id];
590 	css_get(css);
591 out_unlock:
592 	rcu_read_unlock();
593 	return css;
594 }
595 EXPORT_SYMBOL_GPL(cgroup_get_e_css);
596 
cgroup_get_live(struct cgroup * cgrp)597 static void cgroup_get_live(struct cgroup *cgrp)
598 {
599 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
600 	cgroup_get(cgrp);
601 }
602 
603 /**
604  * __cgroup_task_count - count the number of tasks in a cgroup. The caller
605  * is responsible for taking the css_set_lock.
606  * @cgrp: the cgroup in question
607  */
__cgroup_task_count(const struct cgroup * cgrp)608 int __cgroup_task_count(const struct cgroup *cgrp)
609 {
610 	int count = 0;
611 	struct cgrp_cset_link *link;
612 
613 	lockdep_assert_held(&css_set_lock);
614 
615 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
616 		count += link->cset->nr_tasks;
617 
618 	return count;
619 }
620 
621 /**
622  * cgroup_task_count - count the number of tasks in a cgroup.
623  * @cgrp: the cgroup in question
624  */
cgroup_task_count(const struct cgroup * cgrp)625 int cgroup_task_count(const struct cgroup *cgrp)
626 {
627 	int count;
628 
629 	spin_lock_irq(&css_set_lock);
630 	count = __cgroup_task_count(cgrp);
631 	spin_unlock_irq(&css_set_lock);
632 
633 	return count;
634 }
635 
kn_priv(struct kernfs_node * kn)636 static struct cgroup *kn_priv(struct kernfs_node *kn)
637 {
638 	struct kernfs_node *parent;
639 	/*
640 	 * The parent can not be replaced due to KERNFS_ROOT_INVARIANT_PARENT.
641 	 * Therefore it is always safe to dereference this pointer outside of a
642 	 * RCU section.
643 	 */
644 	parent = rcu_dereference_check(kn->__parent,
645 				       kernfs_root_flags(kn) & KERNFS_ROOT_INVARIANT_PARENT);
646 	return parent->priv;
647 }
648 
of_css(struct kernfs_open_file * of)649 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
650 {
651 	struct cgroup *cgrp = kn_priv(of->kn);
652 	struct cftype *cft = of_cft(of);
653 
654 	/*
655 	 * This is open and unprotected implementation of cgroup_css().
656 	 * seq_css() is only called from a kernfs file operation which has
657 	 * an active reference on the file.  Because all the subsystem
658 	 * files are drained before a css is disassociated with a cgroup,
659 	 * the matching css from the cgroup's subsys table is guaranteed to
660 	 * be and stay valid until the enclosing operation is complete.
661 	 */
662 	if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss)
663 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
664 	else
665 		return &cgrp->self;
666 }
667 EXPORT_SYMBOL_GPL(of_css);
668 
669 /**
670  * for_each_css - iterate all css's of a cgroup
671  * @css: the iteration cursor
672  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
673  * @cgrp: the target cgroup to iterate css's of
674  *
675  * Should be called under cgroup_mutex.
676  */
677 #define for_each_css(css, ssid, cgrp)					\
678 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
679 		if (!((css) = rcu_dereference_check(			\
680 				(cgrp)->subsys[(ssid)],			\
681 				lockdep_is_held(&cgroup_mutex)))) { }	\
682 		else
683 
684 /**
685  * do_each_subsys_mask - filter for_each_subsys with a bitmask
686  * @ss: the iteration cursor
687  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
688  * @ss_mask: the bitmask
689  *
690  * The block will only run for cases where the ssid-th bit (1 << ssid) of
691  * @ss_mask is set.
692  */
693 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
694 	unsigned long __ss_mask = (ss_mask);				\
695 	if (!CGROUP_HAS_SUBSYS_CONFIG) {				\
696 		(ssid) = 0;						\
697 		break;							\
698 	}								\
699 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
700 		(ss) = cgroup_subsys[ssid];				\
701 		{
702 
703 #define while_each_subsys_mask()					\
704 		}							\
705 	}								\
706 } while (false)
707 
708 /* iterate over child cgrps, lock should be held throughout iteration */
709 #define cgroup_for_each_live_child(child, cgrp)				\
710 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
711 		if (({ lockdep_assert_held(&cgroup_mutex);		\
712 		       cgroup_is_dead(child); }))			\
713 			;						\
714 		else
715 
716 /* walk live descendants in pre order */
717 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
718 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
719 		if (({ lockdep_assert_held(&cgroup_mutex);		\
720 		       (dsct) = (d_css)->cgroup;			\
721 		       cgroup_is_dead(dsct); }))			\
722 			;						\
723 		else
724 
725 /* walk live descendants in postorder */
726 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
727 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
728 		if (({ lockdep_assert_held(&cgroup_mutex);		\
729 		       (dsct) = (d_css)->cgroup;			\
730 		       cgroup_is_dead(dsct); }))			\
731 			;						\
732 		else
733 
734 /*
735  * The default css_set - used by init and its children prior to any
736  * hierarchies being mounted. It contains a pointer to the root state
737  * for each subsystem. Also used to anchor the list of css_sets. Not
738  * reference-counted, to improve performance when child cgroups
739  * haven't been created.
740  */
741 struct css_set init_css_set = {
742 	.refcount		= REFCOUNT_INIT(1),
743 	.dom_cset		= &init_css_set,
744 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
745 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
746 	.dying_tasks		= LIST_HEAD_INIT(init_css_set.dying_tasks),
747 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
748 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
749 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
750 	.mg_src_preload_node	= LIST_HEAD_INIT(init_css_set.mg_src_preload_node),
751 	.mg_dst_preload_node	= LIST_HEAD_INIT(init_css_set.mg_dst_preload_node),
752 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
753 
754 	/*
755 	 * The following field is re-initialized when this cset gets linked
756 	 * in cgroup_init().  However, let's initialize the field
757 	 * statically too so that the default cgroup can be accessed safely
758 	 * early during boot.
759 	 */
760 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
761 };
762 
763 static int css_set_count	= 1;	/* 1 for init_css_set */
764 
css_set_threaded(struct css_set * cset)765 static bool css_set_threaded(struct css_set *cset)
766 {
767 	return cset->dom_cset != cset;
768 }
769 
770 /**
771  * css_set_populated - does a css_set contain any tasks?
772  * @cset: target css_set
773  *
774  * css_set_populated() should be the same as !!cset->nr_tasks at steady
775  * state. However, css_set_populated() can be called while a task is being
776  * added to or removed from the linked list before the nr_tasks is
777  * properly updated. Hence, we can't just look at ->nr_tasks here.
778  */
css_set_populated(struct css_set * cset)779 static bool css_set_populated(struct css_set *cset)
780 {
781 	lockdep_assert_held(&css_set_lock);
782 
783 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
784 }
785 
786 /**
787  * cgroup_update_populated - update the populated count of a cgroup
788  * @cgrp: the target cgroup
789  * @populated: inc or dec populated count
790  *
791  * One of the css_sets associated with @cgrp is either getting its first
792  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
793  * count is propagated towards root so that a given cgroup's
794  * nr_populated_children is zero iff none of its descendants contain any
795  * tasks.
796  *
797  * @cgrp's interface file "cgroup.populated" is zero if both
798  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
799  * 1 otherwise.  When the sum changes from or to zero, userland is notified
800  * that the content of the interface file has changed.  This can be used to
801  * detect when @cgrp and its descendants become populated or empty.
802  */
cgroup_update_populated(struct cgroup * cgrp,bool populated)803 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
804 {
805 	struct cgroup *child = NULL;
806 	int adj = populated ? 1 : -1;
807 
808 	lockdep_assert_held(&css_set_lock);
809 
810 	do {
811 		bool was_populated = cgroup_is_populated(cgrp);
812 
813 		if (!child) {
814 			cgrp->nr_populated_csets += adj;
815 		} else {
816 			if (cgroup_is_threaded(child))
817 				cgrp->nr_populated_threaded_children += adj;
818 			else
819 				cgrp->nr_populated_domain_children += adj;
820 		}
821 
822 		if (was_populated == cgroup_is_populated(cgrp))
823 			break;
824 
825 		cgroup1_check_for_release(cgrp);
826 		TRACE_CGROUP_PATH(notify_populated, cgrp,
827 				  cgroup_is_populated(cgrp));
828 		cgroup_file_notify(&cgrp->events_file);
829 
830 		child = cgrp;
831 		cgrp = cgroup_parent(cgrp);
832 	} while (cgrp);
833 }
834 
835 /**
836  * css_set_update_populated - update populated state of a css_set
837  * @cset: target css_set
838  * @populated: whether @cset is populated or depopulated
839  *
840  * @cset is either getting the first task or losing the last.  Update the
841  * populated counters of all associated cgroups accordingly.
842  */
css_set_update_populated(struct css_set * cset,bool populated)843 static void css_set_update_populated(struct css_set *cset, bool populated)
844 {
845 	struct cgrp_cset_link *link;
846 
847 	lockdep_assert_held(&css_set_lock);
848 
849 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
850 		cgroup_update_populated(link->cgrp, populated);
851 }
852 
853 /*
854  * @task is leaving, advance task iterators which are pointing to it so
855  * that they can resume at the next position.  Advancing an iterator might
856  * remove it from the list, use safe walk.  See css_task_iter_skip() for
857  * details.
858  */
css_set_skip_task_iters(struct css_set * cset,struct task_struct * task)859 static void css_set_skip_task_iters(struct css_set *cset,
860 				    struct task_struct *task)
861 {
862 	struct css_task_iter *it, *pos;
863 
864 	list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
865 		css_task_iter_skip(it, task);
866 }
867 
868 /**
869  * css_set_move_task - move a task from one css_set to another
870  * @task: task being moved
871  * @from_cset: css_set @task currently belongs to (may be NULL)
872  * @to_cset: new css_set @task is being moved to (may be NULL)
873  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
874  *
875  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
876  * css_set, @from_cset can be NULL.  If @task is being disassociated
877  * instead of moved, @to_cset can be NULL.
878  *
879  * This function automatically handles populated counter updates and
880  * css_task_iter adjustments but the caller is responsible for managing
881  * @from_cset and @to_cset's reference counts.
882  */
css_set_move_task(struct task_struct * task,struct css_set * from_cset,struct css_set * to_cset,bool use_mg_tasks)883 static void css_set_move_task(struct task_struct *task,
884 			      struct css_set *from_cset, struct css_set *to_cset,
885 			      bool use_mg_tasks)
886 {
887 	lockdep_assert_held(&css_set_lock);
888 
889 	if (to_cset && !css_set_populated(to_cset))
890 		css_set_update_populated(to_cset, true);
891 
892 	if (from_cset) {
893 		WARN_ON_ONCE(list_empty(&task->cg_list));
894 
895 		css_set_skip_task_iters(from_cset, task);
896 		list_del_init(&task->cg_list);
897 		if (!css_set_populated(from_cset))
898 			css_set_update_populated(from_cset, false);
899 	} else {
900 		WARN_ON_ONCE(!list_empty(&task->cg_list));
901 	}
902 
903 	if (to_cset) {
904 		/*
905 		 * We are synchronized through cgroup_threadgroup_rwsem
906 		 * against PF_EXITING setting such that we can't race
907 		 * against cgroup_exit()/cgroup_free() dropping the css_set.
908 		 */
909 		WARN_ON_ONCE(task->flags & PF_EXITING);
910 
911 		cgroup_move_task(task, to_cset);
912 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
913 							     &to_cset->tasks);
914 	}
915 }
916 
917 /*
918  * hash table for cgroup groups. This improves the performance to find
919  * an existing css_set. This hash doesn't (currently) take into
920  * account cgroups in empty hierarchies.
921  */
922 #define CSS_SET_HASH_BITS	7
923 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
924 
css_set_hash(struct cgroup_subsys_state ** css)925 static unsigned long css_set_hash(struct cgroup_subsys_state **css)
926 {
927 	unsigned long key = 0UL;
928 	struct cgroup_subsys *ss;
929 	int i;
930 
931 	for_each_subsys(ss, i)
932 		key += (unsigned long)css[i];
933 	key = (key >> 16) ^ key;
934 
935 	return key;
936 }
937 
put_css_set_locked(struct css_set * cset)938 void put_css_set_locked(struct css_set *cset)
939 {
940 	struct cgrp_cset_link *link, *tmp_link;
941 	struct cgroup_subsys *ss;
942 	int ssid;
943 
944 	lockdep_assert_held(&css_set_lock);
945 
946 	if (!refcount_dec_and_test(&cset->refcount))
947 		return;
948 
949 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
950 
951 	/* This css_set is dead. Unlink it and release cgroup and css refs */
952 	for_each_subsys(ss, ssid) {
953 		list_del(&cset->e_cset_node[ssid]);
954 		css_put(cset->subsys[ssid]);
955 	}
956 	hash_del(&cset->hlist);
957 	css_set_count--;
958 
959 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
960 		list_del(&link->cset_link);
961 		list_del(&link->cgrp_link);
962 		if (cgroup_parent(link->cgrp))
963 			cgroup_put(link->cgrp);
964 		kfree(link);
965 	}
966 
967 	if (css_set_threaded(cset)) {
968 		list_del(&cset->threaded_csets_node);
969 		put_css_set_locked(cset->dom_cset);
970 	}
971 
972 	kfree_rcu(cset, rcu_head);
973 }
974 
975 /**
976  * compare_css_sets - helper function for find_existing_css_set().
977  * @cset: candidate css_set being tested
978  * @old_cset: existing css_set for a task
979  * @new_cgrp: cgroup that's being entered by the task
980  * @template: desired set of css pointers in css_set (pre-calculated)
981  *
982  * Returns true if "cset" matches "old_cset" except for the hierarchy
983  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
984  */
compare_css_sets(struct css_set * cset,struct css_set * old_cset,struct cgroup * new_cgrp,struct cgroup_subsys_state * template[])985 static bool compare_css_sets(struct css_set *cset,
986 			     struct css_set *old_cset,
987 			     struct cgroup *new_cgrp,
988 			     struct cgroup_subsys_state *template[])
989 {
990 	struct cgroup *new_dfl_cgrp;
991 	struct list_head *l1, *l2;
992 
993 	/*
994 	 * On the default hierarchy, there can be csets which are
995 	 * associated with the same set of cgroups but different csses.
996 	 * Let's first ensure that csses match.
997 	 */
998 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
999 		return false;
1000 
1001 
1002 	/* @cset's domain should match the default cgroup's */
1003 	if (cgroup_on_dfl(new_cgrp))
1004 		new_dfl_cgrp = new_cgrp;
1005 	else
1006 		new_dfl_cgrp = old_cset->dfl_cgrp;
1007 
1008 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1009 		return false;
1010 
1011 	/*
1012 	 * Compare cgroup pointers in order to distinguish between
1013 	 * different cgroups in hierarchies.  As different cgroups may
1014 	 * share the same effective css, this comparison is always
1015 	 * necessary.
1016 	 */
1017 	l1 = &cset->cgrp_links;
1018 	l2 = &old_cset->cgrp_links;
1019 	while (1) {
1020 		struct cgrp_cset_link *link1, *link2;
1021 		struct cgroup *cgrp1, *cgrp2;
1022 
1023 		l1 = l1->next;
1024 		l2 = l2->next;
1025 		/* See if we reached the end - both lists are equal length. */
1026 		if (l1 == &cset->cgrp_links) {
1027 			BUG_ON(l2 != &old_cset->cgrp_links);
1028 			break;
1029 		} else {
1030 			BUG_ON(l2 == &old_cset->cgrp_links);
1031 		}
1032 		/* Locate the cgroups associated with these links. */
1033 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1034 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1035 		cgrp1 = link1->cgrp;
1036 		cgrp2 = link2->cgrp;
1037 		/* Hierarchies should be linked in the same order. */
1038 		BUG_ON(cgrp1->root != cgrp2->root);
1039 
1040 		/*
1041 		 * If this hierarchy is the hierarchy of the cgroup
1042 		 * that's changing, then we need to check that this
1043 		 * css_set points to the new cgroup; if it's any other
1044 		 * hierarchy, then this css_set should point to the
1045 		 * same cgroup as the old css_set.
1046 		 */
1047 		if (cgrp1->root == new_cgrp->root) {
1048 			if (cgrp1 != new_cgrp)
1049 				return false;
1050 		} else {
1051 			if (cgrp1 != cgrp2)
1052 				return false;
1053 		}
1054 	}
1055 	return true;
1056 }
1057 
1058 /**
1059  * find_existing_css_set - init css array and find the matching css_set
1060  * @old_cset: the css_set that we're using before the cgroup transition
1061  * @cgrp: the cgroup that we're moving into
1062  * @template: out param for the new set of csses, should be clear on entry
1063  */
find_existing_css_set(struct css_set * old_cset,struct cgroup * cgrp,struct cgroup_subsys_state ** template)1064 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1065 					struct cgroup *cgrp,
1066 					struct cgroup_subsys_state **template)
1067 {
1068 	struct cgroup_root *root = cgrp->root;
1069 	struct cgroup_subsys *ss;
1070 	struct css_set *cset;
1071 	unsigned long key;
1072 	int i;
1073 
1074 	/*
1075 	 * Build the set of subsystem state objects that we want to see in the
1076 	 * new css_set. While subsystems can change globally, the entries here
1077 	 * won't change, so no need for locking.
1078 	 */
1079 	for_each_subsys(ss, i) {
1080 		if (root->subsys_mask & (1UL << i)) {
1081 			/*
1082 			 * @ss is in this hierarchy, so we want the
1083 			 * effective css from @cgrp.
1084 			 */
1085 			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1086 		} else {
1087 			/*
1088 			 * @ss is not in this hierarchy, so we don't want
1089 			 * to change the css.
1090 			 */
1091 			template[i] = old_cset->subsys[i];
1092 		}
1093 	}
1094 
1095 	key = css_set_hash(template);
1096 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1097 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1098 			continue;
1099 
1100 		/* This css_set matches what we need */
1101 		return cset;
1102 	}
1103 
1104 	/* No existing cgroup group matched */
1105 	return NULL;
1106 }
1107 
free_cgrp_cset_links(struct list_head * links_to_free)1108 static void free_cgrp_cset_links(struct list_head *links_to_free)
1109 {
1110 	struct cgrp_cset_link *link, *tmp_link;
1111 
1112 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1113 		list_del(&link->cset_link);
1114 		kfree(link);
1115 	}
1116 }
1117 
1118 /**
1119  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1120  * @count: the number of links to allocate
1121  * @tmp_links: list_head the allocated links are put on
1122  *
1123  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1124  * through ->cset_link.  Returns 0 on success or -errno.
1125  */
allocate_cgrp_cset_links(int count,struct list_head * tmp_links)1126 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1127 {
1128 	struct cgrp_cset_link *link;
1129 	int i;
1130 
1131 	INIT_LIST_HEAD(tmp_links);
1132 
1133 	for (i = 0; i < count; i++) {
1134 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1135 		if (!link) {
1136 			free_cgrp_cset_links(tmp_links);
1137 			return -ENOMEM;
1138 		}
1139 		list_add(&link->cset_link, tmp_links);
1140 	}
1141 	return 0;
1142 }
1143 
1144 /**
1145  * link_css_set - a helper function to link a css_set to a cgroup
1146  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1147  * @cset: the css_set to be linked
1148  * @cgrp: the destination cgroup
1149  */
link_css_set(struct list_head * tmp_links,struct css_set * cset,struct cgroup * cgrp)1150 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1151 			 struct cgroup *cgrp)
1152 {
1153 	struct cgrp_cset_link *link;
1154 
1155 	BUG_ON(list_empty(tmp_links));
1156 
1157 	if (cgroup_on_dfl(cgrp))
1158 		cset->dfl_cgrp = cgrp;
1159 
1160 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1161 	link->cset = cset;
1162 	link->cgrp = cgrp;
1163 
1164 	/*
1165 	 * Always add links to the tail of the lists so that the lists are
1166 	 * in chronological order.
1167 	 */
1168 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1169 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1170 
1171 	if (cgroup_parent(cgrp))
1172 		cgroup_get_live(cgrp);
1173 }
1174 
1175 /**
1176  * find_css_set - return a new css_set with one cgroup updated
1177  * @old_cset: the baseline css_set
1178  * @cgrp: the cgroup to be updated
1179  *
1180  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1181  * substituted into the appropriate hierarchy.
1182  */
find_css_set(struct css_set * old_cset,struct cgroup * cgrp)1183 static struct css_set *find_css_set(struct css_set *old_cset,
1184 				    struct cgroup *cgrp)
1185 {
1186 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1187 	struct css_set *cset;
1188 	struct list_head tmp_links;
1189 	struct cgrp_cset_link *link;
1190 	struct cgroup_subsys *ss;
1191 	unsigned long key;
1192 	int ssid;
1193 
1194 	lockdep_assert_held(&cgroup_mutex);
1195 
1196 	/* First see if we already have a cgroup group that matches
1197 	 * the desired set */
1198 	spin_lock_irq(&css_set_lock);
1199 	cset = find_existing_css_set(old_cset, cgrp, template);
1200 	if (cset)
1201 		get_css_set(cset);
1202 	spin_unlock_irq(&css_set_lock);
1203 
1204 	if (cset)
1205 		return cset;
1206 
1207 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1208 	if (!cset)
1209 		return NULL;
1210 
1211 	/* Allocate all the cgrp_cset_link objects that we'll need */
1212 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1213 		kfree(cset);
1214 		return NULL;
1215 	}
1216 
1217 	refcount_set(&cset->refcount, 1);
1218 	cset->dom_cset = cset;
1219 	INIT_LIST_HEAD(&cset->tasks);
1220 	INIT_LIST_HEAD(&cset->mg_tasks);
1221 	INIT_LIST_HEAD(&cset->dying_tasks);
1222 	INIT_LIST_HEAD(&cset->task_iters);
1223 	INIT_LIST_HEAD(&cset->threaded_csets);
1224 	INIT_HLIST_NODE(&cset->hlist);
1225 	INIT_LIST_HEAD(&cset->cgrp_links);
1226 	INIT_LIST_HEAD(&cset->mg_src_preload_node);
1227 	INIT_LIST_HEAD(&cset->mg_dst_preload_node);
1228 	INIT_LIST_HEAD(&cset->mg_node);
1229 
1230 	/* Copy the set of subsystem state objects generated in
1231 	 * find_existing_css_set() */
1232 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1233 
1234 	spin_lock_irq(&css_set_lock);
1235 	/* Add reference counts and links from the new css_set. */
1236 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1237 		struct cgroup *c = link->cgrp;
1238 
1239 		if (c->root == cgrp->root)
1240 			c = cgrp;
1241 		link_css_set(&tmp_links, cset, c);
1242 	}
1243 
1244 	BUG_ON(!list_empty(&tmp_links));
1245 
1246 	css_set_count++;
1247 
1248 	/* Add @cset to the hash table */
1249 	key = css_set_hash(cset->subsys);
1250 	hash_add(css_set_table, &cset->hlist, key);
1251 
1252 	for_each_subsys(ss, ssid) {
1253 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1254 
1255 		list_add_tail(&cset->e_cset_node[ssid],
1256 			      &css->cgroup->e_csets[ssid]);
1257 		css_get(css);
1258 	}
1259 
1260 	spin_unlock_irq(&css_set_lock);
1261 
1262 	/*
1263 	 * If @cset should be threaded, look up the matching dom_cset and
1264 	 * link them up.  We first fully initialize @cset then look for the
1265 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1266 	 * to stay empty until we return.
1267 	 */
1268 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1269 		struct css_set *dcset;
1270 
1271 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1272 		if (!dcset) {
1273 			put_css_set(cset);
1274 			return NULL;
1275 		}
1276 
1277 		spin_lock_irq(&css_set_lock);
1278 		cset->dom_cset = dcset;
1279 		list_add_tail(&cset->threaded_csets_node,
1280 			      &dcset->threaded_csets);
1281 		spin_unlock_irq(&css_set_lock);
1282 	}
1283 
1284 	return cset;
1285 }
1286 
cgroup_root_from_kf(struct kernfs_root * kf_root)1287 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1288 {
1289 	struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv;
1290 
1291 	return root_cgrp->root;
1292 }
1293 
cgroup_favor_dynmods(struct cgroup_root * root,bool favor)1294 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor)
1295 {
1296 	bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS;
1297 
1298 	/* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */
1299 	if (favor && !favoring) {
1300 		rcu_sync_enter(&cgroup_threadgroup_rwsem.rss);
1301 		root->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1302 	} else if (!favor && favoring) {
1303 		rcu_sync_exit(&cgroup_threadgroup_rwsem.rss);
1304 		root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS;
1305 	}
1306 }
1307 
cgroup_init_root_id(struct cgroup_root * root)1308 static int cgroup_init_root_id(struct cgroup_root *root)
1309 {
1310 	int id;
1311 
1312 	lockdep_assert_held(&cgroup_mutex);
1313 
1314 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1315 	if (id < 0)
1316 		return id;
1317 
1318 	root->hierarchy_id = id;
1319 	return 0;
1320 }
1321 
cgroup_exit_root_id(struct cgroup_root * root)1322 static void cgroup_exit_root_id(struct cgroup_root *root)
1323 {
1324 	lockdep_assert_held(&cgroup_mutex);
1325 
1326 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1327 }
1328 
cgroup_free_root(struct cgroup_root * root)1329 void cgroup_free_root(struct cgroup_root *root)
1330 {
1331 	kfree_rcu(root, rcu);
1332 }
1333 
cgroup_destroy_root(struct cgroup_root * root)1334 static void cgroup_destroy_root(struct cgroup_root *root)
1335 {
1336 	struct cgroup *cgrp = &root->cgrp;
1337 	struct cgrp_cset_link *link, *tmp_link;
1338 
1339 	trace_cgroup_destroy_root(root);
1340 
1341 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1342 
1343 	BUG_ON(atomic_read(&root->nr_cgrps));
1344 	BUG_ON(!list_empty(&cgrp->self.children));
1345 
1346 	/* Rebind all subsystems back to the default hierarchy */
1347 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1348 
1349 	/*
1350 	 * Release all the links from cset_links to this hierarchy's
1351 	 * root cgroup
1352 	 */
1353 	spin_lock_irq(&css_set_lock);
1354 
1355 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1356 		list_del(&link->cset_link);
1357 		list_del(&link->cgrp_link);
1358 		kfree(link);
1359 	}
1360 
1361 	spin_unlock_irq(&css_set_lock);
1362 
1363 	WARN_ON_ONCE(list_empty(&root->root_list));
1364 	list_del_rcu(&root->root_list);
1365 	cgroup_root_count--;
1366 
1367 	if (!have_favordynmods)
1368 		cgroup_favor_dynmods(root, false);
1369 
1370 	cgroup_exit_root_id(root);
1371 
1372 	cgroup_unlock();
1373 
1374 	cgroup_rstat_exit(cgrp);
1375 	kernfs_destroy_root(root->kf_root);
1376 	cgroup_free_root(root);
1377 }
1378 
1379 /*
1380  * Returned cgroup is without refcount but it's valid as long as cset pins it.
1381  */
__cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1382 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset,
1383 					    struct cgroup_root *root)
1384 {
1385 	struct cgroup *res_cgroup = NULL;
1386 
1387 	if (cset == &init_css_set) {
1388 		res_cgroup = &root->cgrp;
1389 	} else if (root == &cgrp_dfl_root) {
1390 		res_cgroup = cset->dfl_cgrp;
1391 	} else {
1392 		struct cgrp_cset_link *link;
1393 		lockdep_assert_held(&css_set_lock);
1394 
1395 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1396 			struct cgroup *c = link->cgrp;
1397 
1398 			if (c->root == root) {
1399 				res_cgroup = c;
1400 				break;
1401 			}
1402 		}
1403 	}
1404 
1405 	/*
1406 	 * If cgroup_mutex is not held, the cgrp_cset_link will be freed
1407 	 * before we remove the cgroup root from the root_list. Consequently,
1408 	 * when accessing a cgroup root, the cset_link may have already been
1409 	 * freed, resulting in a NULL res_cgroup. However, by holding the
1410 	 * cgroup_mutex, we ensure that res_cgroup can't be NULL.
1411 	 * If we don't hold cgroup_mutex in the caller, we must do the NULL
1412 	 * check.
1413 	 */
1414 	return res_cgroup;
1415 }
1416 
1417 /*
1418  * look up cgroup associated with current task's cgroup namespace on the
1419  * specified hierarchy
1420  */
1421 static struct cgroup *
current_cgns_cgroup_from_root(struct cgroup_root * root)1422 current_cgns_cgroup_from_root(struct cgroup_root *root)
1423 {
1424 	struct cgroup *res = NULL;
1425 	struct css_set *cset;
1426 
1427 	lockdep_assert_held(&css_set_lock);
1428 
1429 	rcu_read_lock();
1430 
1431 	cset = current->nsproxy->cgroup_ns->root_cset;
1432 	res = __cset_cgroup_from_root(cset, root);
1433 
1434 	rcu_read_unlock();
1435 
1436 	/*
1437 	 * The namespace_sem is held by current, so the root cgroup can't
1438 	 * be umounted. Therefore, we can ensure that the res is non-NULL.
1439 	 */
1440 	WARN_ON_ONCE(!res);
1441 	return res;
1442 }
1443 
1444 /*
1445  * Look up cgroup associated with current task's cgroup namespace on the default
1446  * hierarchy.
1447  *
1448  * Unlike current_cgns_cgroup_from_root(), this doesn't need locks:
1449  * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu
1450  *   pointers.
1451  * - css_set_lock is not needed because we just read cset->dfl_cgrp.
1452  * - As a bonus returned cgrp is pinned with the current because it cannot
1453  *   switch cgroup_ns asynchronously.
1454  */
current_cgns_cgroup_dfl(void)1455 static struct cgroup *current_cgns_cgroup_dfl(void)
1456 {
1457 	struct css_set *cset;
1458 
1459 	if (current->nsproxy) {
1460 		cset = current->nsproxy->cgroup_ns->root_cset;
1461 		return __cset_cgroup_from_root(cset, &cgrp_dfl_root);
1462 	} else {
1463 		/*
1464 		 * NOTE: This function may be called from bpf_cgroup_from_id()
1465 		 * on a task which has already passed exit_task_namespaces() and
1466 		 * nsproxy == NULL. Fall back to cgrp_dfl_root which will make all
1467 		 * cgroups visible for lookups.
1468 		 */
1469 		return &cgrp_dfl_root.cgrp;
1470 	}
1471 }
1472 
1473 /* look up cgroup associated with given css_set on the specified hierarchy */
cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1474 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1475 					    struct cgroup_root *root)
1476 {
1477 	lockdep_assert_held(&css_set_lock);
1478 
1479 	return __cset_cgroup_from_root(cset, root);
1480 }
1481 
1482 /*
1483  * Return the cgroup for "task" from the given hierarchy. Must be
1484  * called with css_set_lock held to prevent task's groups from being modified.
1485  * Must be called with either cgroup_mutex or rcu read lock to prevent the
1486  * cgroup root from being destroyed.
1487  */
task_cgroup_from_root(struct task_struct * task,struct cgroup_root * root)1488 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1489 				     struct cgroup_root *root)
1490 {
1491 	/*
1492 	 * No need to lock the task - since we hold css_set_lock the
1493 	 * task can't change groups.
1494 	 */
1495 	return cset_cgroup_from_root(task_css_set(task), root);
1496 }
1497 
1498 /*
1499  * A task must hold cgroup_mutex to modify cgroups.
1500  *
1501  * Any task can increment and decrement the count field without lock.
1502  * So in general, code holding cgroup_mutex can't rely on the count
1503  * field not changing.  However, if the count goes to zero, then only
1504  * cgroup_attach_task() can increment it again.  Because a count of zero
1505  * means that no tasks are currently attached, therefore there is no
1506  * way a task attached to that cgroup can fork (the other way to
1507  * increment the count).  So code holding cgroup_mutex can safely
1508  * assume that if the count is zero, it will stay zero. Similarly, if
1509  * a task holds cgroup_mutex on a cgroup with zero count, it
1510  * knows that the cgroup won't be removed, as cgroup_rmdir()
1511  * needs that mutex.
1512  *
1513  * A cgroup can only be deleted if both its 'count' of using tasks
1514  * is zero, and its list of 'children' cgroups is empty.  Since all
1515  * tasks in the system use _some_ cgroup, and since there is always at
1516  * least one task in the system (init, pid == 1), therefore, root cgroup
1517  * always has either children cgroups and/or using tasks.  So we don't
1518  * need a special hack to ensure that root cgroup cannot be deleted.
1519  *
1520  * P.S.  One more locking exception.  RCU is used to guard the
1521  * update of a tasks cgroup pointer by cgroup_attach_task()
1522  */
1523 
1524 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1525 
cgroup_file_name(struct cgroup * cgrp,const struct cftype * cft,char * buf)1526 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1527 			      char *buf)
1528 {
1529 	struct cgroup_subsys *ss = cft->ss;
1530 
1531 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1532 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1533 		const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1534 
1535 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1536 			 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1537 			 cft->name);
1538 	} else {
1539 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1540 	}
1541 	return buf;
1542 }
1543 
1544 /**
1545  * cgroup_file_mode - deduce file mode of a control file
1546  * @cft: the control file in question
1547  *
1548  * S_IRUGO for read, S_IWUSR for write.
1549  */
cgroup_file_mode(const struct cftype * cft)1550 static umode_t cgroup_file_mode(const struct cftype *cft)
1551 {
1552 	umode_t mode = 0;
1553 
1554 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1555 		mode |= S_IRUGO;
1556 
1557 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1558 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1559 			mode |= S_IWUGO;
1560 		else
1561 			mode |= S_IWUSR;
1562 	}
1563 
1564 	return mode;
1565 }
1566 
1567 /**
1568  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1569  * @subtree_control: the new subtree_control mask to consider
1570  * @this_ss_mask: available subsystems
1571  *
1572  * On the default hierarchy, a subsystem may request other subsystems to be
1573  * enabled together through its ->depends_on mask.  In such cases, more
1574  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1575  *
1576  * This function calculates which subsystems need to be enabled if
1577  * @subtree_control is to be applied while restricted to @this_ss_mask.
1578  */
cgroup_calc_subtree_ss_mask(u16 subtree_control,u16 this_ss_mask)1579 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1580 {
1581 	u16 cur_ss_mask = subtree_control;
1582 	struct cgroup_subsys *ss;
1583 	int ssid;
1584 
1585 	lockdep_assert_held(&cgroup_mutex);
1586 
1587 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1588 
1589 	while (true) {
1590 		u16 new_ss_mask = cur_ss_mask;
1591 
1592 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1593 			new_ss_mask |= ss->depends_on;
1594 		} while_each_subsys_mask();
1595 
1596 		/*
1597 		 * Mask out subsystems which aren't available.  This can
1598 		 * happen only if some depended-upon subsystems were bound
1599 		 * to non-default hierarchies.
1600 		 */
1601 		new_ss_mask &= this_ss_mask;
1602 
1603 		if (new_ss_mask == cur_ss_mask)
1604 			break;
1605 		cur_ss_mask = new_ss_mask;
1606 	}
1607 
1608 	return cur_ss_mask;
1609 }
1610 
1611 /**
1612  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1613  * @kn: the kernfs_node being serviced
1614  *
1615  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1616  * the method finishes if locking succeeded.  Note that once this function
1617  * returns the cgroup returned by cgroup_kn_lock_live() may become
1618  * inaccessible any time.  If the caller intends to continue to access the
1619  * cgroup, it should pin it before invoking this function.
1620  */
cgroup_kn_unlock(struct kernfs_node * kn)1621 void cgroup_kn_unlock(struct kernfs_node *kn)
1622 {
1623 	struct cgroup *cgrp;
1624 
1625 	if (kernfs_type(kn) == KERNFS_DIR)
1626 		cgrp = kn->priv;
1627 	else
1628 		cgrp = kn_priv(kn);
1629 
1630 	cgroup_unlock();
1631 
1632 	kernfs_unbreak_active_protection(kn);
1633 	cgroup_put(cgrp);
1634 }
1635 
1636 /**
1637  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1638  * @kn: the kernfs_node being serviced
1639  * @drain_offline: perform offline draining on the cgroup
1640  *
1641  * This helper is to be used by a cgroup kernfs method currently servicing
1642  * @kn.  It breaks the active protection, performs cgroup locking and
1643  * verifies that the associated cgroup is alive.  Returns the cgroup if
1644  * alive; otherwise, %NULL.  A successful return should be undone by a
1645  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1646  * cgroup is drained of offlining csses before return.
1647  *
1648  * Any cgroup kernfs method implementation which requires locking the
1649  * associated cgroup should use this helper.  It avoids nesting cgroup
1650  * locking under kernfs active protection and allows all kernfs operations
1651  * including self-removal.
1652  */
cgroup_kn_lock_live(struct kernfs_node * kn,bool drain_offline)1653 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1654 {
1655 	struct cgroup *cgrp;
1656 
1657 	if (kernfs_type(kn) == KERNFS_DIR)
1658 		cgrp = kn->priv;
1659 	else
1660 		cgrp = kn_priv(kn);
1661 
1662 	/*
1663 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1664 	 * active_ref.  cgroup liveliness check alone provides enough
1665 	 * protection against removal.  Ensure @cgrp stays accessible and
1666 	 * break the active_ref protection.
1667 	 */
1668 	if (!cgroup_tryget(cgrp))
1669 		return NULL;
1670 	kernfs_break_active_protection(kn);
1671 
1672 	if (drain_offline)
1673 		cgroup_lock_and_drain_offline(cgrp);
1674 	else
1675 		cgroup_lock();
1676 
1677 	if (!cgroup_is_dead(cgrp))
1678 		return cgrp;
1679 
1680 	cgroup_kn_unlock(kn);
1681 	return NULL;
1682 }
1683 
cgroup_rm_file(struct cgroup * cgrp,const struct cftype * cft)1684 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1685 {
1686 	char name[CGROUP_FILE_NAME_MAX];
1687 
1688 	lockdep_assert_held(&cgroup_mutex);
1689 
1690 	if (cft->file_offset) {
1691 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1692 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1693 
1694 		spin_lock_irq(&cgroup_file_kn_lock);
1695 		cfile->kn = NULL;
1696 		spin_unlock_irq(&cgroup_file_kn_lock);
1697 
1698 		del_timer_sync(&cfile->notify_timer);
1699 	}
1700 
1701 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1702 }
1703 
1704 /**
1705  * css_clear_dir - remove subsys files in a cgroup directory
1706  * @css: target css
1707  */
css_clear_dir(struct cgroup_subsys_state * css)1708 static void css_clear_dir(struct cgroup_subsys_state *css)
1709 {
1710 	struct cgroup *cgrp = css->cgroup;
1711 	struct cftype *cfts;
1712 
1713 	if (!(css->flags & CSS_VISIBLE))
1714 		return;
1715 
1716 	css->flags &= ~CSS_VISIBLE;
1717 
1718 	if (!css->ss) {
1719 		if (cgroup_on_dfl(cgrp)) {
1720 			cgroup_addrm_files(css, cgrp,
1721 					   cgroup_base_files, false);
1722 			if (cgroup_psi_enabled())
1723 				cgroup_addrm_files(css, cgrp,
1724 						   cgroup_psi_files, false);
1725 		} else {
1726 			cgroup_addrm_files(css, cgrp,
1727 					   cgroup1_base_files, false);
1728 		}
1729 	} else {
1730 		list_for_each_entry(cfts, &css->ss->cfts, node)
1731 			cgroup_addrm_files(css, cgrp, cfts, false);
1732 	}
1733 }
1734 
1735 /**
1736  * css_populate_dir - create subsys files in a cgroup directory
1737  * @css: target css
1738  *
1739  * On failure, no file is added.
1740  */
css_populate_dir(struct cgroup_subsys_state * css)1741 static int css_populate_dir(struct cgroup_subsys_state *css)
1742 {
1743 	struct cgroup *cgrp = css->cgroup;
1744 	struct cftype *cfts, *failed_cfts;
1745 	int ret;
1746 
1747 	if (css->flags & CSS_VISIBLE)
1748 		return 0;
1749 
1750 	if (!css->ss) {
1751 		if (cgroup_on_dfl(cgrp)) {
1752 			ret = cgroup_addrm_files(css, cgrp,
1753 						 cgroup_base_files, true);
1754 			if (ret < 0)
1755 				return ret;
1756 
1757 			if (cgroup_psi_enabled()) {
1758 				ret = cgroup_addrm_files(css, cgrp,
1759 							 cgroup_psi_files, true);
1760 				if (ret < 0) {
1761 					cgroup_addrm_files(css, cgrp,
1762 							   cgroup_base_files, false);
1763 					return ret;
1764 				}
1765 			}
1766 		} else {
1767 			ret = cgroup_addrm_files(css, cgrp,
1768 						 cgroup1_base_files, true);
1769 			if (ret < 0)
1770 				return ret;
1771 		}
1772 	} else {
1773 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1774 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1775 			if (ret < 0) {
1776 				failed_cfts = cfts;
1777 				goto err;
1778 			}
1779 		}
1780 	}
1781 
1782 	css->flags |= CSS_VISIBLE;
1783 
1784 	return 0;
1785 err:
1786 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1787 		if (cfts == failed_cfts)
1788 			break;
1789 		cgroup_addrm_files(css, cgrp, cfts, false);
1790 	}
1791 	return ret;
1792 }
1793 
rebind_subsystems(struct cgroup_root * dst_root,u16 ss_mask)1794 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1795 {
1796 	struct cgroup *dcgrp = &dst_root->cgrp;
1797 	struct cgroup_subsys *ss;
1798 	int ssid, ret;
1799 	u16 dfl_disable_ss_mask = 0;
1800 
1801 	lockdep_assert_held(&cgroup_mutex);
1802 
1803 	do_each_subsys_mask(ss, ssid, ss_mask) {
1804 		/*
1805 		 * If @ss has non-root csses attached to it, can't move.
1806 		 * If @ss is an implicit controller, it is exempt from this
1807 		 * rule and can be stolen.
1808 		 */
1809 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1810 		    !ss->implicit_on_dfl)
1811 			return -EBUSY;
1812 
1813 		/* can't move between two non-dummy roots either */
1814 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1815 			return -EBUSY;
1816 
1817 		/*
1818 		 * Collect ssid's that need to be disabled from default
1819 		 * hierarchy.
1820 		 */
1821 		if (ss->root == &cgrp_dfl_root)
1822 			dfl_disable_ss_mask |= 1 << ssid;
1823 
1824 	} while_each_subsys_mask();
1825 
1826 	if (dfl_disable_ss_mask) {
1827 		struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1828 
1829 		/*
1830 		 * Controllers from default hierarchy that need to be rebound
1831 		 * are all disabled together in one go.
1832 		 */
1833 		cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1834 		WARN_ON(cgroup_apply_control(scgrp));
1835 		cgroup_finalize_control(scgrp, 0);
1836 	}
1837 
1838 	do_each_subsys_mask(ss, ssid, ss_mask) {
1839 		struct cgroup_root *src_root = ss->root;
1840 		struct cgroup *scgrp = &src_root->cgrp;
1841 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1842 		struct css_set *cset, *cset_pos;
1843 		struct css_task_iter *it;
1844 
1845 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1846 
1847 		if (src_root != &cgrp_dfl_root) {
1848 			/* disable from the source */
1849 			src_root->subsys_mask &= ~(1 << ssid);
1850 			WARN_ON(cgroup_apply_control(scgrp));
1851 			cgroup_finalize_control(scgrp, 0);
1852 		}
1853 
1854 		/* rebind */
1855 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1856 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1857 		ss->root = dst_root;
1858 
1859 		spin_lock_irq(&css_set_lock);
1860 		css->cgroup = dcgrp;
1861 		WARN_ON(!list_empty(&dcgrp->e_csets[ss->id]));
1862 		list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id],
1863 					 e_cset_node[ss->id]) {
1864 			list_move_tail(&cset->e_cset_node[ss->id],
1865 				       &dcgrp->e_csets[ss->id]);
1866 			/*
1867 			 * all css_sets of scgrp together in same order to dcgrp,
1868 			 * patch in-flight iterators to preserve correct iteration.
1869 			 * since the iterator is always advanced right away and
1870 			 * finished when it->cset_pos meets it->cset_head, so only
1871 			 * update it->cset_head is enough here.
1872 			 */
1873 			list_for_each_entry(it, &cset->task_iters, iters_node)
1874 				if (it->cset_head == &scgrp->e_csets[ss->id])
1875 					it->cset_head = &dcgrp->e_csets[ss->id];
1876 		}
1877 		spin_unlock_irq(&css_set_lock);
1878 
1879 		if (ss->css_rstat_flush) {
1880 			list_del_rcu(&css->rstat_css_node);
1881 			synchronize_rcu();
1882 			list_add_rcu(&css->rstat_css_node,
1883 				     &dcgrp->rstat_css_list);
1884 		}
1885 
1886 		/* default hierarchy doesn't enable controllers by default */
1887 		dst_root->subsys_mask |= 1 << ssid;
1888 		if (dst_root == &cgrp_dfl_root) {
1889 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1890 		} else {
1891 			dcgrp->subtree_control |= 1 << ssid;
1892 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1893 		}
1894 
1895 		ret = cgroup_apply_control(dcgrp);
1896 		if (ret)
1897 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1898 				ss->name, ret);
1899 
1900 		if (ss->bind)
1901 			ss->bind(css);
1902 	} while_each_subsys_mask();
1903 
1904 	kernfs_activate(dcgrp->kn);
1905 	return 0;
1906 }
1907 
cgroup_show_path(struct seq_file * sf,struct kernfs_node * kf_node,struct kernfs_root * kf_root)1908 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1909 		     struct kernfs_root *kf_root)
1910 {
1911 	int len = 0;
1912 	char *buf = NULL;
1913 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1914 	struct cgroup *ns_cgroup;
1915 
1916 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1917 	if (!buf)
1918 		return -ENOMEM;
1919 
1920 	spin_lock_irq(&css_set_lock);
1921 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1922 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1923 	spin_unlock_irq(&css_set_lock);
1924 
1925 	if (len == -E2BIG)
1926 		len = -ERANGE;
1927 	else if (len > 0) {
1928 		seq_escape(sf, buf, " \t\n\\");
1929 		len = 0;
1930 	}
1931 	kfree(buf);
1932 	return len;
1933 }
1934 
1935 enum cgroup2_param {
1936 	Opt_nsdelegate,
1937 	Opt_favordynmods,
1938 	Opt_memory_localevents,
1939 	Opt_memory_recursiveprot,
1940 	Opt_memory_hugetlb_accounting,
1941 	Opt_pids_localevents,
1942 	nr__cgroup2_params
1943 };
1944 
1945 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1946 	fsparam_flag("nsdelegate",		Opt_nsdelegate),
1947 	fsparam_flag("favordynmods",		Opt_favordynmods),
1948 	fsparam_flag("memory_localevents",	Opt_memory_localevents),
1949 	fsparam_flag("memory_recursiveprot",	Opt_memory_recursiveprot),
1950 	fsparam_flag("memory_hugetlb_accounting", Opt_memory_hugetlb_accounting),
1951 	fsparam_flag("pids_localevents",	Opt_pids_localevents),
1952 	{}
1953 };
1954 
cgroup2_parse_param(struct fs_context * fc,struct fs_parameter * param)1955 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1956 {
1957 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1958 	struct fs_parse_result result;
1959 	int opt;
1960 
1961 	opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1962 	if (opt < 0)
1963 		return opt;
1964 
1965 	switch (opt) {
1966 	case Opt_nsdelegate:
1967 		ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1968 		return 0;
1969 	case Opt_favordynmods:
1970 		ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1971 		return 0;
1972 	case Opt_memory_localevents:
1973 		ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1974 		return 0;
1975 	case Opt_memory_recursiveprot:
1976 		ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1977 		return 0;
1978 	case Opt_memory_hugetlb_accounting:
1979 		ctx->flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
1980 		return 0;
1981 	case Opt_pids_localevents:
1982 		ctx->flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS;
1983 		return 0;
1984 	}
1985 	return -EINVAL;
1986 }
1987 
of_peak(struct kernfs_open_file * of)1988 struct cgroup_of_peak *of_peak(struct kernfs_open_file *of)
1989 {
1990 	struct cgroup_file_ctx *ctx = of->priv;
1991 
1992 	return &ctx->peak;
1993 }
1994 
apply_cgroup_root_flags(unsigned int root_flags)1995 static void apply_cgroup_root_flags(unsigned int root_flags)
1996 {
1997 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1998 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1999 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
2000 		else
2001 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
2002 
2003 		cgroup_favor_dynmods(&cgrp_dfl_root,
2004 				     root_flags & CGRP_ROOT_FAVOR_DYNMODS);
2005 
2006 		if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
2007 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
2008 		else
2009 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
2010 
2011 		if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
2012 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
2013 		else
2014 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
2015 
2016 		if (root_flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)
2017 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
2018 		else
2019 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
2020 
2021 		if (root_flags & CGRP_ROOT_PIDS_LOCAL_EVENTS)
2022 			cgrp_dfl_root.flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS;
2023 		else
2024 			cgrp_dfl_root.flags &= ~CGRP_ROOT_PIDS_LOCAL_EVENTS;
2025 	}
2026 }
2027 
cgroup_show_options(struct seq_file * seq,struct kernfs_root * kf_root)2028 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
2029 {
2030 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
2031 		seq_puts(seq, ",nsdelegate");
2032 	if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS)
2033 		seq_puts(seq, ",favordynmods");
2034 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
2035 		seq_puts(seq, ",memory_localevents");
2036 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
2037 		seq_puts(seq, ",memory_recursiveprot");
2038 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)
2039 		seq_puts(seq, ",memory_hugetlb_accounting");
2040 	if (cgrp_dfl_root.flags & CGRP_ROOT_PIDS_LOCAL_EVENTS)
2041 		seq_puts(seq, ",pids_localevents");
2042 	return 0;
2043 }
2044 
cgroup_reconfigure(struct fs_context * fc)2045 static int cgroup_reconfigure(struct fs_context *fc)
2046 {
2047 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2048 
2049 	apply_cgroup_root_flags(ctx->flags);
2050 	return 0;
2051 }
2052 
init_cgroup_housekeeping(struct cgroup * cgrp)2053 static void init_cgroup_housekeeping(struct cgroup *cgrp)
2054 {
2055 	struct cgroup_subsys *ss;
2056 	int ssid;
2057 
2058 	INIT_LIST_HEAD(&cgrp->self.sibling);
2059 	INIT_LIST_HEAD(&cgrp->self.children);
2060 	INIT_LIST_HEAD(&cgrp->cset_links);
2061 	INIT_LIST_HEAD(&cgrp->pidlists);
2062 	mutex_init(&cgrp->pidlist_mutex);
2063 	cgrp->self.cgroup = cgrp;
2064 	cgrp->self.flags |= CSS_ONLINE;
2065 	cgrp->dom_cgrp = cgrp;
2066 	cgrp->max_descendants = INT_MAX;
2067 	cgrp->max_depth = INT_MAX;
2068 	INIT_LIST_HEAD(&cgrp->rstat_css_list);
2069 	prev_cputime_init(&cgrp->prev_cputime);
2070 
2071 	for_each_subsys(ss, ssid)
2072 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
2073 
2074 	init_waitqueue_head(&cgrp->offline_waitq);
2075 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
2076 }
2077 
init_cgroup_root(struct cgroup_fs_context * ctx)2078 void init_cgroup_root(struct cgroup_fs_context *ctx)
2079 {
2080 	struct cgroup_root *root = ctx->root;
2081 	struct cgroup *cgrp = &root->cgrp;
2082 
2083 	INIT_LIST_HEAD_RCU(&root->root_list);
2084 	atomic_set(&root->nr_cgrps, 1);
2085 	cgrp->root = root;
2086 	init_cgroup_housekeeping(cgrp);
2087 
2088 	/* DYNMODS must be modified through cgroup_favor_dynmods() */
2089 	root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS;
2090 	if (ctx->release_agent)
2091 		strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
2092 	if (ctx->name)
2093 		strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
2094 	if (ctx->cpuset_clone_children)
2095 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
2096 }
2097 
cgroup_setup_root(struct cgroup_root * root,u16 ss_mask)2098 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2099 {
2100 	LIST_HEAD(tmp_links);
2101 	struct cgroup *root_cgrp = &root->cgrp;
2102 	struct kernfs_syscall_ops *kf_sops;
2103 	struct css_set *cset;
2104 	int i, ret;
2105 
2106 	lockdep_assert_held(&cgroup_mutex);
2107 
2108 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
2109 			      0, GFP_KERNEL);
2110 	if (ret)
2111 		goto out;
2112 
2113 	/*
2114 	 * We're accessing css_set_count without locking css_set_lock here,
2115 	 * but that's OK - it can only be increased by someone holding
2116 	 * cgroup_lock, and that's us.  Later rebinding may disable
2117 	 * controllers on the default hierarchy and thus create new csets,
2118 	 * which can't be more than the existing ones.  Allocate 2x.
2119 	 */
2120 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2121 	if (ret)
2122 		goto cancel_ref;
2123 
2124 	ret = cgroup_init_root_id(root);
2125 	if (ret)
2126 		goto cancel_ref;
2127 
2128 	kf_sops = root == &cgrp_dfl_root ?
2129 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2130 
2131 	root->kf_root = kernfs_create_root(kf_sops,
2132 					   KERNFS_ROOT_CREATE_DEACTIVATED |
2133 					   KERNFS_ROOT_SUPPORT_EXPORTOP |
2134 					   KERNFS_ROOT_SUPPORT_USER_XATTR |
2135 					   KERNFS_ROOT_INVARIANT_PARENT,
2136 					   root_cgrp);
2137 	if (IS_ERR(root->kf_root)) {
2138 		ret = PTR_ERR(root->kf_root);
2139 		goto exit_root_id;
2140 	}
2141 	root_cgrp->kn = kernfs_root_to_node(root->kf_root);
2142 	WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
2143 	root_cgrp->ancestors[0] = root_cgrp;
2144 
2145 	ret = css_populate_dir(&root_cgrp->self);
2146 	if (ret)
2147 		goto destroy_root;
2148 
2149 	ret = cgroup_rstat_init(root_cgrp);
2150 	if (ret)
2151 		goto destroy_root;
2152 
2153 	ret = rebind_subsystems(root, ss_mask);
2154 	if (ret)
2155 		goto exit_stats;
2156 
2157 	if (root == &cgrp_dfl_root) {
2158 		ret = cgroup_bpf_inherit(root_cgrp);
2159 		WARN_ON_ONCE(ret);
2160 	}
2161 
2162 	trace_cgroup_setup_root(root);
2163 
2164 	/*
2165 	 * There must be no failure case after here, since rebinding takes
2166 	 * care of subsystems' refcounts, which are explicitly dropped in
2167 	 * the failure exit path.
2168 	 */
2169 	list_add_rcu(&root->root_list, &cgroup_roots);
2170 	cgroup_root_count++;
2171 
2172 	/*
2173 	 * Link the root cgroup in this hierarchy into all the css_set
2174 	 * objects.
2175 	 */
2176 	spin_lock_irq(&css_set_lock);
2177 	hash_for_each(css_set_table, i, cset, hlist) {
2178 		link_css_set(&tmp_links, cset, root_cgrp);
2179 		if (css_set_populated(cset))
2180 			cgroup_update_populated(root_cgrp, true);
2181 	}
2182 	spin_unlock_irq(&css_set_lock);
2183 
2184 	BUG_ON(!list_empty(&root_cgrp->self.children));
2185 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2186 
2187 	ret = 0;
2188 	goto out;
2189 
2190 exit_stats:
2191 	cgroup_rstat_exit(root_cgrp);
2192 destroy_root:
2193 	kernfs_destroy_root(root->kf_root);
2194 	root->kf_root = NULL;
2195 exit_root_id:
2196 	cgroup_exit_root_id(root);
2197 cancel_ref:
2198 	percpu_ref_exit(&root_cgrp->self.refcnt);
2199 out:
2200 	free_cgrp_cset_links(&tmp_links);
2201 	return ret;
2202 }
2203 
cgroup_do_get_tree(struct fs_context * fc)2204 int cgroup_do_get_tree(struct fs_context *fc)
2205 {
2206 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2207 	int ret;
2208 
2209 	ctx->kfc.root = ctx->root->kf_root;
2210 	if (fc->fs_type == &cgroup2_fs_type)
2211 		ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2212 	else
2213 		ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2214 	ret = kernfs_get_tree(fc);
2215 
2216 	/*
2217 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2218 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2219 	 */
2220 	if (!ret && ctx->ns != &init_cgroup_ns) {
2221 		struct dentry *nsdentry;
2222 		struct super_block *sb = fc->root->d_sb;
2223 		struct cgroup *cgrp;
2224 
2225 		cgroup_lock();
2226 		spin_lock_irq(&css_set_lock);
2227 
2228 		cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2229 
2230 		spin_unlock_irq(&css_set_lock);
2231 		cgroup_unlock();
2232 
2233 		nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2234 		dput(fc->root);
2235 		if (IS_ERR(nsdentry)) {
2236 			deactivate_locked_super(sb);
2237 			ret = PTR_ERR(nsdentry);
2238 			nsdentry = NULL;
2239 		}
2240 		fc->root = nsdentry;
2241 	}
2242 
2243 	if (!ctx->kfc.new_sb_created)
2244 		cgroup_put(&ctx->root->cgrp);
2245 
2246 	return ret;
2247 }
2248 
2249 /*
2250  * Destroy a cgroup filesystem context.
2251  */
cgroup_fs_context_free(struct fs_context * fc)2252 static void cgroup_fs_context_free(struct fs_context *fc)
2253 {
2254 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2255 
2256 	kfree(ctx->name);
2257 	kfree(ctx->release_agent);
2258 	put_cgroup_ns(ctx->ns);
2259 	kernfs_free_fs_context(fc);
2260 	kfree(ctx);
2261 }
2262 
cgroup_get_tree(struct fs_context * fc)2263 static int cgroup_get_tree(struct fs_context *fc)
2264 {
2265 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2266 	int ret;
2267 
2268 	WRITE_ONCE(cgrp_dfl_visible, true);
2269 	cgroup_get_live(&cgrp_dfl_root.cgrp);
2270 	ctx->root = &cgrp_dfl_root;
2271 
2272 	ret = cgroup_do_get_tree(fc);
2273 	if (!ret)
2274 		apply_cgroup_root_flags(ctx->flags);
2275 	return ret;
2276 }
2277 
2278 static const struct fs_context_operations cgroup_fs_context_ops = {
2279 	.free		= cgroup_fs_context_free,
2280 	.parse_param	= cgroup2_parse_param,
2281 	.get_tree	= cgroup_get_tree,
2282 	.reconfigure	= cgroup_reconfigure,
2283 };
2284 
2285 static const struct fs_context_operations cgroup1_fs_context_ops = {
2286 	.free		= cgroup_fs_context_free,
2287 	.parse_param	= cgroup1_parse_param,
2288 	.get_tree	= cgroup1_get_tree,
2289 	.reconfigure	= cgroup1_reconfigure,
2290 };
2291 
2292 /*
2293  * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2294  * we select the namespace we're going to use.
2295  */
cgroup_init_fs_context(struct fs_context * fc)2296 static int cgroup_init_fs_context(struct fs_context *fc)
2297 {
2298 	struct cgroup_fs_context *ctx;
2299 
2300 	ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2301 	if (!ctx)
2302 		return -ENOMEM;
2303 
2304 	ctx->ns = current->nsproxy->cgroup_ns;
2305 	get_cgroup_ns(ctx->ns);
2306 	fc->fs_private = &ctx->kfc;
2307 	if (fc->fs_type == &cgroup2_fs_type)
2308 		fc->ops = &cgroup_fs_context_ops;
2309 	else
2310 		fc->ops = &cgroup1_fs_context_ops;
2311 	put_user_ns(fc->user_ns);
2312 	fc->user_ns = get_user_ns(ctx->ns->user_ns);
2313 	fc->global = true;
2314 
2315 	if (have_favordynmods)
2316 		ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
2317 
2318 	return 0;
2319 }
2320 
cgroup_kill_sb(struct super_block * sb)2321 static void cgroup_kill_sb(struct super_block *sb)
2322 {
2323 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2324 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2325 
2326 	/*
2327 	 * If @root doesn't have any children, start killing it.
2328 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2329 	 *
2330 	 * And don't kill the default root.
2331 	 */
2332 	if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2333 	    !percpu_ref_is_dying(&root->cgrp.self.refcnt))
2334 		percpu_ref_kill(&root->cgrp.self.refcnt);
2335 	cgroup_put(&root->cgrp);
2336 	kernfs_kill_sb(sb);
2337 }
2338 
2339 struct file_system_type cgroup_fs_type = {
2340 	.name			= "cgroup",
2341 	.init_fs_context	= cgroup_init_fs_context,
2342 	.parameters		= cgroup1_fs_parameters,
2343 	.kill_sb		= cgroup_kill_sb,
2344 	.fs_flags		= FS_USERNS_MOUNT,
2345 };
2346 
2347 static struct file_system_type cgroup2_fs_type = {
2348 	.name			= "cgroup2",
2349 	.init_fs_context	= cgroup_init_fs_context,
2350 	.parameters		= cgroup2_fs_parameters,
2351 	.kill_sb		= cgroup_kill_sb,
2352 	.fs_flags		= FS_USERNS_MOUNT,
2353 };
2354 
2355 #ifdef CONFIG_CPUSETS_V1
2356 static const struct fs_context_operations cpuset_fs_context_ops = {
2357 	.get_tree	= cgroup1_get_tree,
2358 	.free		= cgroup_fs_context_free,
2359 };
2360 
2361 /*
2362  * This is ugly, but preserves the userspace API for existing cpuset
2363  * users. If someone tries to mount the "cpuset" filesystem, we
2364  * silently switch it to mount "cgroup" instead
2365  */
cpuset_init_fs_context(struct fs_context * fc)2366 static int cpuset_init_fs_context(struct fs_context *fc)
2367 {
2368 	char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2369 	struct cgroup_fs_context *ctx;
2370 	int err;
2371 
2372 	err = cgroup_init_fs_context(fc);
2373 	if (err) {
2374 		kfree(agent);
2375 		return err;
2376 	}
2377 
2378 	fc->ops = &cpuset_fs_context_ops;
2379 
2380 	ctx = cgroup_fc2context(fc);
2381 	ctx->subsys_mask = 1 << cpuset_cgrp_id;
2382 	ctx->flags |= CGRP_ROOT_NOPREFIX;
2383 	ctx->release_agent = agent;
2384 
2385 	get_filesystem(&cgroup_fs_type);
2386 	put_filesystem(fc->fs_type);
2387 	fc->fs_type = &cgroup_fs_type;
2388 
2389 	return 0;
2390 }
2391 
2392 static struct file_system_type cpuset_fs_type = {
2393 	.name			= "cpuset",
2394 	.init_fs_context	= cpuset_init_fs_context,
2395 	.fs_flags		= FS_USERNS_MOUNT,
2396 };
2397 #endif
2398 
cgroup_path_ns_locked(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2399 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2400 			  struct cgroup_namespace *ns)
2401 {
2402 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2403 
2404 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2405 }
2406 
cgroup_path_ns(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2407 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2408 		   struct cgroup_namespace *ns)
2409 {
2410 	int ret;
2411 
2412 	cgroup_lock();
2413 	spin_lock_irq(&css_set_lock);
2414 
2415 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2416 
2417 	spin_unlock_irq(&css_set_lock);
2418 	cgroup_unlock();
2419 
2420 	return ret;
2421 }
2422 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2423 
2424 /**
2425  * cgroup_attach_lock - Lock for ->attach()
2426  * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem
2427  *
2428  * cgroup migration sometimes needs to stabilize threadgroups against forks and
2429  * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach()
2430  * implementations (e.g. cpuset), also need to disable CPU hotplug.
2431  * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can
2432  * lead to deadlocks.
2433  *
2434  * Bringing up a CPU may involve creating and destroying tasks which requires
2435  * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
2436  * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while
2437  * write-locking threadgroup_rwsem, the locking order is reversed and we end up
2438  * waiting for an on-going CPU hotplug operation which in turn is waiting for
2439  * the threadgroup_rwsem to be released to create new tasks. For more details:
2440  *
2441  *   http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu
2442  *
2443  * Resolve the situation by always acquiring cpus_read_lock() before optionally
2444  * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that
2445  * CPU hotplug is disabled on entry.
2446  */
cgroup_attach_lock(bool lock_threadgroup)2447 void cgroup_attach_lock(bool lock_threadgroup)
2448 {
2449 	cpus_read_lock();
2450 	if (lock_threadgroup)
2451 		percpu_down_write(&cgroup_threadgroup_rwsem);
2452 }
2453 
2454 /**
2455  * cgroup_attach_unlock - Undo cgroup_attach_lock()
2456  * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem
2457  */
cgroup_attach_unlock(bool lock_threadgroup)2458 void cgroup_attach_unlock(bool lock_threadgroup)
2459 {
2460 	if (lock_threadgroup)
2461 		percpu_up_write(&cgroup_threadgroup_rwsem);
2462 	cpus_read_unlock();
2463 }
2464 
2465 /**
2466  * cgroup_migrate_add_task - add a migration target task to a migration context
2467  * @task: target task
2468  * @mgctx: target migration context
2469  *
2470  * Add @task, which is a migration target, to @mgctx->tset.  This function
2471  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2472  * should have been added as a migration source and @task->cg_list will be
2473  * moved from the css_set's tasks list to mg_tasks one.
2474  */
cgroup_migrate_add_task(struct task_struct * task,struct cgroup_mgctx * mgctx)2475 static void cgroup_migrate_add_task(struct task_struct *task,
2476 				    struct cgroup_mgctx *mgctx)
2477 {
2478 	struct css_set *cset;
2479 
2480 	lockdep_assert_held(&css_set_lock);
2481 
2482 	/* @task either already exited or can't exit until the end */
2483 	if (task->flags & PF_EXITING)
2484 		return;
2485 
2486 	/* cgroup_threadgroup_rwsem protects racing against forks */
2487 	WARN_ON_ONCE(list_empty(&task->cg_list));
2488 
2489 	cset = task_css_set(task);
2490 	if (!cset->mg_src_cgrp)
2491 		return;
2492 
2493 	mgctx->tset.nr_tasks++;
2494 
2495 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2496 	if (list_empty(&cset->mg_node))
2497 		list_add_tail(&cset->mg_node,
2498 			      &mgctx->tset.src_csets);
2499 	if (list_empty(&cset->mg_dst_cset->mg_node))
2500 		list_add_tail(&cset->mg_dst_cset->mg_node,
2501 			      &mgctx->tset.dst_csets);
2502 }
2503 
2504 /**
2505  * cgroup_taskset_first - reset taskset and return the first task
2506  * @tset: taskset of interest
2507  * @dst_cssp: output variable for the destination css
2508  *
2509  * @tset iteration is initialized and the first task is returned.
2510  */
cgroup_taskset_first(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2511 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2512 					 struct cgroup_subsys_state **dst_cssp)
2513 {
2514 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2515 	tset->cur_task = NULL;
2516 
2517 	return cgroup_taskset_next(tset, dst_cssp);
2518 }
2519 
2520 /**
2521  * cgroup_taskset_next - iterate to the next task in taskset
2522  * @tset: taskset of interest
2523  * @dst_cssp: output variable for the destination css
2524  *
2525  * Return the next task in @tset.  Iteration must have been initialized
2526  * with cgroup_taskset_first().
2527  */
cgroup_taskset_next(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2528 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2529 					struct cgroup_subsys_state **dst_cssp)
2530 {
2531 	struct css_set *cset = tset->cur_cset;
2532 	struct task_struct *task = tset->cur_task;
2533 
2534 	while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) {
2535 		if (!task)
2536 			task = list_first_entry(&cset->mg_tasks,
2537 						struct task_struct, cg_list);
2538 		else
2539 			task = list_next_entry(task, cg_list);
2540 
2541 		if (&task->cg_list != &cset->mg_tasks) {
2542 			tset->cur_cset = cset;
2543 			tset->cur_task = task;
2544 
2545 			/*
2546 			 * This function may be called both before and
2547 			 * after cgroup_migrate_execute().  The two cases
2548 			 * can be distinguished by looking at whether @cset
2549 			 * has its ->mg_dst_cset set.
2550 			 */
2551 			if (cset->mg_dst_cset)
2552 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2553 			else
2554 				*dst_cssp = cset->subsys[tset->ssid];
2555 
2556 			return task;
2557 		}
2558 
2559 		cset = list_next_entry(cset, mg_node);
2560 		task = NULL;
2561 	}
2562 
2563 	return NULL;
2564 }
2565 
2566 /**
2567  * cgroup_migrate_execute - migrate a taskset
2568  * @mgctx: migration context
2569  *
2570  * Migrate tasks in @mgctx as setup by migration preparation functions.
2571  * This function fails iff one of the ->can_attach callbacks fails and
2572  * guarantees that either all or none of the tasks in @mgctx are migrated.
2573  * @mgctx is consumed regardless of success.
2574  */
cgroup_migrate_execute(struct cgroup_mgctx * mgctx)2575 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2576 {
2577 	struct cgroup_taskset *tset = &mgctx->tset;
2578 	struct cgroup_subsys *ss;
2579 	struct task_struct *task, *tmp_task;
2580 	struct css_set *cset, *tmp_cset;
2581 	int ssid, failed_ssid, ret;
2582 
2583 	/* check that we can legitimately attach to the cgroup */
2584 	if (tset->nr_tasks) {
2585 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2586 			if (ss->can_attach) {
2587 				tset->ssid = ssid;
2588 				ret = ss->can_attach(tset);
2589 				if (ret) {
2590 					failed_ssid = ssid;
2591 					goto out_cancel_attach;
2592 				}
2593 			}
2594 		} while_each_subsys_mask();
2595 	}
2596 
2597 	/*
2598 	 * Now that we're guaranteed success, proceed to move all tasks to
2599 	 * the new cgroup.  There are no failure cases after here, so this
2600 	 * is the commit point.
2601 	 */
2602 	spin_lock_irq(&css_set_lock);
2603 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2604 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2605 			struct css_set *from_cset = task_css_set(task);
2606 			struct css_set *to_cset = cset->mg_dst_cset;
2607 
2608 			get_css_set(to_cset);
2609 			to_cset->nr_tasks++;
2610 			css_set_move_task(task, from_cset, to_cset, true);
2611 			from_cset->nr_tasks--;
2612 			/*
2613 			 * If the source or destination cgroup is frozen,
2614 			 * the task might require to change its state.
2615 			 */
2616 			cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2617 						    to_cset->dfl_cgrp);
2618 			put_css_set_locked(from_cset);
2619 
2620 		}
2621 	}
2622 	spin_unlock_irq(&css_set_lock);
2623 
2624 	/*
2625 	 * Migration is committed, all target tasks are now on dst_csets.
2626 	 * Nothing is sensitive to fork() after this point.  Notify
2627 	 * controllers that migration is complete.
2628 	 */
2629 	tset->csets = &tset->dst_csets;
2630 
2631 	if (tset->nr_tasks) {
2632 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2633 			if (ss->attach) {
2634 				tset->ssid = ssid;
2635 				ss->attach(tset);
2636 			}
2637 		} while_each_subsys_mask();
2638 	}
2639 
2640 	ret = 0;
2641 	goto out_release_tset;
2642 
2643 out_cancel_attach:
2644 	if (tset->nr_tasks) {
2645 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2646 			if (ssid == failed_ssid)
2647 				break;
2648 			if (ss->cancel_attach) {
2649 				tset->ssid = ssid;
2650 				ss->cancel_attach(tset);
2651 			}
2652 		} while_each_subsys_mask();
2653 	}
2654 out_release_tset:
2655 	spin_lock_irq(&css_set_lock);
2656 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2657 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2658 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2659 		list_del_init(&cset->mg_node);
2660 	}
2661 	spin_unlock_irq(&css_set_lock);
2662 
2663 	/*
2664 	 * Re-initialize the cgroup_taskset structure in case it is reused
2665 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2666 	 * iteration.
2667 	 */
2668 	tset->nr_tasks = 0;
2669 	tset->csets    = &tset->src_csets;
2670 	return ret;
2671 }
2672 
2673 /**
2674  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2675  * @dst_cgrp: destination cgroup to test
2676  *
2677  * On the default hierarchy, except for the mixable, (possible) thread root
2678  * and threaded cgroups, subtree_control must be zero for migration
2679  * destination cgroups with tasks so that child cgroups don't compete
2680  * against tasks.
2681  */
cgroup_migrate_vet_dst(struct cgroup * dst_cgrp)2682 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2683 {
2684 	/* v1 doesn't have any restriction */
2685 	if (!cgroup_on_dfl(dst_cgrp))
2686 		return 0;
2687 
2688 	/* verify @dst_cgrp can host resources */
2689 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2690 		return -EOPNOTSUPP;
2691 
2692 	/*
2693 	 * If @dst_cgrp is already or can become a thread root or is
2694 	 * threaded, it doesn't matter.
2695 	 */
2696 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2697 		return 0;
2698 
2699 	/* apply no-internal-process constraint */
2700 	if (dst_cgrp->subtree_control)
2701 		return -EBUSY;
2702 
2703 	return 0;
2704 }
2705 
2706 /**
2707  * cgroup_migrate_finish - cleanup after attach
2708  * @mgctx: migration context
2709  *
2710  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2711  * those functions for details.
2712  */
cgroup_migrate_finish(struct cgroup_mgctx * mgctx)2713 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2714 {
2715 	struct css_set *cset, *tmp_cset;
2716 
2717 	lockdep_assert_held(&cgroup_mutex);
2718 
2719 	spin_lock_irq(&css_set_lock);
2720 
2721 	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets,
2722 				 mg_src_preload_node) {
2723 		cset->mg_src_cgrp = NULL;
2724 		cset->mg_dst_cgrp = NULL;
2725 		cset->mg_dst_cset = NULL;
2726 		list_del_init(&cset->mg_src_preload_node);
2727 		put_css_set_locked(cset);
2728 	}
2729 
2730 	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets,
2731 				 mg_dst_preload_node) {
2732 		cset->mg_src_cgrp = NULL;
2733 		cset->mg_dst_cgrp = NULL;
2734 		cset->mg_dst_cset = NULL;
2735 		list_del_init(&cset->mg_dst_preload_node);
2736 		put_css_set_locked(cset);
2737 	}
2738 
2739 	spin_unlock_irq(&css_set_lock);
2740 }
2741 
2742 /**
2743  * cgroup_migrate_add_src - add a migration source css_set
2744  * @src_cset: the source css_set to add
2745  * @dst_cgrp: the destination cgroup
2746  * @mgctx: migration context
2747  *
2748  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2749  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2750  * up by cgroup_migrate_finish().
2751  *
2752  * This function may be called without holding cgroup_threadgroup_rwsem
2753  * even if the target is a process.  Threads may be created and destroyed
2754  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2755  * into play and the preloaded css_sets are guaranteed to cover all
2756  * migrations.
2757  */
cgroup_migrate_add_src(struct css_set * src_cset,struct cgroup * dst_cgrp,struct cgroup_mgctx * mgctx)2758 void cgroup_migrate_add_src(struct css_set *src_cset,
2759 			    struct cgroup *dst_cgrp,
2760 			    struct cgroup_mgctx *mgctx)
2761 {
2762 	struct cgroup *src_cgrp;
2763 
2764 	lockdep_assert_held(&cgroup_mutex);
2765 	lockdep_assert_held(&css_set_lock);
2766 
2767 	/*
2768 	 * If ->dead, @src_set is associated with one or more dead cgroups
2769 	 * and doesn't contain any migratable tasks.  Ignore it early so
2770 	 * that the rest of migration path doesn't get confused by it.
2771 	 */
2772 	if (src_cset->dead)
2773 		return;
2774 
2775 	if (!list_empty(&src_cset->mg_src_preload_node))
2776 		return;
2777 
2778 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2779 
2780 	WARN_ON(src_cset->mg_src_cgrp);
2781 	WARN_ON(src_cset->mg_dst_cgrp);
2782 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2783 	WARN_ON(!list_empty(&src_cset->mg_node));
2784 
2785 	src_cset->mg_src_cgrp = src_cgrp;
2786 	src_cset->mg_dst_cgrp = dst_cgrp;
2787 	get_css_set(src_cset);
2788 	list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets);
2789 }
2790 
2791 /**
2792  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2793  * @mgctx: migration context
2794  *
2795  * Tasks are about to be moved and all the source css_sets have been
2796  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2797  * pins all destination css_sets, links each to its source, and append them
2798  * to @mgctx->preloaded_dst_csets.
2799  *
2800  * This function must be called after cgroup_migrate_add_src() has been
2801  * called on each migration source css_set.  After migration is performed
2802  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2803  * @mgctx.
2804  */
cgroup_migrate_prepare_dst(struct cgroup_mgctx * mgctx)2805 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2806 {
2807 	struct css_set *src_cset, *tmp_cset;
2808 
2809 	lockdep_assert_held(&cgroup_mutex);
2810 
2811 	/* look up the dst cset for each src cset and link it to src */
2812 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2813 				 mg_src_preload_node) {
2814 		struct css_set *dst_cset;
2815 		struct cgroup_subsys *ss;
2816 		int ssid;
2817 
2818 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2819 		if (!dst_cset)
2820 			return -ENOMEM;
2821 
2822 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2823 
2824 		/*
2825 		 * If src cset equals dst, it's noop.  Drop the src.
2826 		 * cgroup_migrate() will skip the cset too.  Note that we
2827 		 * can't handle src == dst as some nodes are used by both.
2828 		 */
2829 		if (src_cset == dst_cset) {
2830 			src_cset->mg_src_cgrp = NULL;
2831 			src_cset->mg_dst_cgrp = NULL;
2832 			list_del_init(&src_cset->mg_src_preload_node);
2833 			put_css_set(src_cset);
2834 			put_css_set(dst_cset);
2835 			continue;
2836 		}
2837 
2838 		src_cset->mg_dst_cset = dst_cset;
2839 
2840 		if (list_empty(&dst_cset->mg_dst_preload_node))
2841 			list_add_tail(&dst_cset->mg_dst_preload_node,
2842 				      &mgctx->preloaded_dst_csets);
2843 		else
2844 			put_css_set(dst_cset);
2845 
2846 		for_each_subsys(ss, ssid)
2847 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2848 				mgctx->ss_mask |= 1 << ssid;
2849 	}
2850 
2851 	return 0;
2852 }
2853 
2854 /**
2855  * cgroup_migrate - migrate a process or task to a cgroup
2856  * @leader: the leader of the process or the task to migrate
2857  * @threadgroup: whether @leader points to the whole process or a single task
2858  * @mgctx: migration context
2859  *
2860  * Migrate a process or task denoted by @leader.  If migrating a process,
2861  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2862  * responsible for invoking cgroup_migrate_add_src() and
2863  * cgroup_migrate_prepare_dst() on the targets before invoking this
2864  * function and following up with cgroup_migrate_finish().
2865  *
2866  * As long as a controller's ->can_attach() doesn't fail, this function is
2867  * guaranteed to succeed.  This means that, excluding ->can_attach()
2868  * failure, when migrating multiple targets, the success or failure can be
2869  * decided for all targets by invoking group_migrate_prepare_dst() before
2870  * actually starting migrating.
2871  */
cgroup_migrate(struct task_struct * leader,bool threadgroup,struct cgroup_mgctx * mgctx)2872 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2873 		   struct cgroup_mgctx *mgctx)
2874 {
2875 	struct task_struct *task;
2876 
2877 	/*
2878 	 * The following thread iteration should be inside an RCU critical
2879 	 * section to prevent tasks from being freed while taking the snapshot.
2880 	 * spin_lock_irq() implies RCU critical section here.
2881 	 */
2882 	spin_lock_irq(&css_set_lock);
2883 	task = leader;
2884 	do {
2885 		cgroup_migrate_add_task(task, mgctx);
2886 		if (!threadgroup)
2887 			break;
2888 	} while_each_thread(leader, task);
2889 	spin_unlock_irq(&css_set_lock);
2890 
2891 	return cgroup_migrate_execute(mgctx);
2892 }
2893 
2894 /**
2895  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2896  * @dst_cgrp: the cgroup to attach to
2897  * @leader: the task or the leader of the threadgroup to be attached
2898  * @threadgroup: attach the whole threadgroup?
2899  *
2900  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2901  */
cgroup_attach_task(struct cgroup * dst_cgrp,struct task_struct * leader,bool threadgroup)2902 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2903 		       bool threadgroup)
2904 {
2905 	DEFINE_CGROUP_MGCTX(mgctx);
2906 	struct task_struct *task;
2907 	int ret = 0;
2908 
2909 	/* look up all src csets */
2910 	spin_lock_irq(&css_set_lock);
2911 	rcu_read_lock();
2912 	task = leader;
2913 	do {
2914 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2915 		if (!threadgroup)
2916 			break;
2917 	} while_each_thread(leader, task);
2918 	rcu_read_unlock();
2919 	spin_unlock_irq(&css_set_lock);
2920 
2921 	/* prepare dst csets and commit */
2922 	ret = cgroup_migrate_prepare_dst(&mgctx);
2923 	if (!ret)
2924 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2925 
2926 	cgroup_migrate_finish(&mgctx);
2927 
2928 	if (!ret)
2929 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2930 
2931 	return ret;
2932 }
2933 
cgroup_procs_write_start(char * buf,bool threadgroup,bool * threadgroup_locked)2934 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2935 					     bool *threadgroup_locked)
2936 {
2937 	struct task_struct *tsk;
2938 	pid_t pid;
2939 
2940 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2941 		return ERR_PTR(-EINVAL);
2942 
2943 	/*
2944 	 * If we migrate a single thread, we don't care about threadgroup
2945 	 * stability. If the thread is `current`, it won't exit(2) under our
2946 	 * hands or change PID through exec(2). We exclude
2947 	 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2948 	 * callers by cgroup_mutex.
2949 	 * Therefore, we can skip the global lock.
2950 	 */
2951 	lockdep_assert_held(&cgroup_mutex);
2952 	*threadgroup_locked = pid || threadgroup;
2953 	cgroup_attach_lock(*threadgroup_locked);
2954 
2955 	rcu_read_lock();
2956 	if (pid) {
2957 		tsk = find_task_by_vpid(pid);
2958 		if (!tsk) {
2959 			tsk = ERR_PTR(-ESRCH);
2960 			goto out_unlock_threadgroup;
2961 		}
2962 	} else {
2963 		tsk = current;
2964 	}
2965 
2966 	if (threadgroup)
2967 		tsk = tsk->group_leader;
2968 
2969 	/*
2970 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2971 	 * If userland migrates such a kthread to a non-root cgroup, it can
2972 	 * become trapped in a cpuset, or RT kthread may be born in a
2973 	 * cgroup with no rt_runtime allocated.  Just say no.
2974 	 */
2975 	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2976 		tsk = ERR_PTR(-EINVAL);
2977 		goto out_unlock_threadgroup;
2978 	}
2979 
2980 	get_task_struct(tsk);
2981 	goto out_unlock_rcu;
2982 
2983 out_unlock_threadgroup:
2984 	cgroup_attach_unlock(*threadgroup_locked);
2985 	*threadgroup_locked = false;
2986 out_unlock_rcu:
2987 	rcu_read_unlock();
2988 	return tsk;
2989 }
2990 
cgroup_procs_write_finish(struct task_struct * task,bool threadgroup_locked)2991 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked)
2992 {
2993 	struct cgroup_subsys *ss;
2994 	int ssid;
2995 
2996 	/* release reference from cgroup_procs_write_start() */
2997 	put_task_struct(task);
2998 
2999 	cgroup_attach_unlock(threadgroup_locked);
3000 
3001 	for_each_subsys(ss, ssid)
3002 		if (ss->post_attach)
3003 			ss->post_attach();
3004 }
3005 
cgroup_print_ss_mask(struct seq_file * seq,u16 ss_mask)3006 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
3007 {
3008 	struct cgroup_subsys *ss;
3009 	bool printed = false;
3010 	int ssid;
3011 
3012 	do_each_subsys_mask(ss, ssid, ss_mask) {
3013 		if (printed)
3014 			seq_putc(seq, ' ');
3015 		seq_puts(seq, ss->name);
3016 		printed = true;
3017 	} while_each_subsys_mask();
3018 	if (printed)
3019 		seq_putc(seq, '\n');
3020 }
3021 
3022 /* show controllers which are enabled from the parent */
cgroup_controllers_show(struct seq_file * seq,void * v)3023 static int cgroup_controllers_show(struct seq_file *seq, void *v)
3024 {
3025 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3026 
3027 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
3028 	return 0;
3029 }
3030 
3031 /* show controllers which are enabled for a given cgroup's children */
cgroup_subtree_control_show(struct seq_file * seq,void * v)3032 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
3033 {
3034 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3035 
3036 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
3037 	return 0;
3038 }
3039 
3040 /**
3041  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3042  * @cgrp: root of the subtree to update csses for
3043  *
3044  * @cgrp's control masks have changed and its subtree's css associations
3045  * need to be updated accordingly.  This function looks up all css_sets
3046  * which are attached to the subtree, creates the matching updated css_sets
3047  * and migrates the tasks to the new ones.
3048  */
cgroup_update_dfl_csses(struct cgroup * cgrp)3049 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3050 {
3051 	DEFINE_CGROUP_MGCTX(mgctx);
3052 	struct cgroup_subsys_state *d_css;
3053 	struct cgroup *dsct;
3054 	struct css_set *src_cset;
3055 	bool has_tasks;
3056 	int ret;
3057 
3058 	lockdep_assert_held(&cgroup_mutex);
3059 
3060 	/* look up all csses currently attached to @cgrp's subtree */
3061 	spin_lock_irq(&css_set_lock);
3062 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3063 		struct cgrp_cset_link *link;
3064 
3065 		/*
3066 		 * As cgroup_update_dfl_csses() is only called by
3067 		 * cgroup_apply_control(). The csses associated with the
3068 		 * given cgrp will not be affected by changes made to
3069 		 * its subtree_control file. We can skip them.
3070 		 */
3071 		if (dsct == cgrp)
3072 			continue;
3073 
3074 		list_for_each_entry(link, &dsct->cset_links, cset_link)
3075 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
3076 	}
3077 	spin_unlock_irq(&css_set_lock);
3078 
3079 	/*
3080 	 * We need to write-lock threadgroup_rwsem while migrating tasks.
3081 	 * However, if there are no source csets for @cgrp, changing its
3082 	 * controllers isn't gonna produce any task migrations and the
3083 	 * write-locking can be skipped safely.
3084 	 */
3085 	has_tasks = !list_empty(&mgctx.preloaded_src_csets);
3086 	cgroup_attach_lock(has_tasks);
3087 
3088 	/* NULL dst indicates self on default hierarchy */
3089 	ret = cgroup_migrate_prepare_dst(&mgctx);
3090 	if (ret)
3091 		goto out_finish;
3092 
3093 	spin_lock_irq(&css_set_lock);
3094 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets,
3095 			    mg_src_preload_node) {
3096 		struct task_struct *task, *ntask;
3097 
3098 		/* all tasks in src_csets need to be migrated */
3099 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3100 			cgroup_migrate_add_task(task, &mgctx);
3101 	}
3102 	spin_unlock_irq(&css_set_lock);
3103 
3104 	ret = cgroup_migrate_execute(&mgctx);
3105 out_finish:
3106 	cgroup_migrate_finish(&mgctx);
3107 	cgroup_attach_unlock(has_tasks);
3108 	return ret;
3109 }
3110 
3111 /**
3112  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3113  * @cgrp: root of the target subtree
3114  *
3115  * Because css offlining is asynchronous, userland may try to re-enable a
3116  * controller while the previous css is still around.  This function grabs
3117  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3118  */
cgroup_lock_and_drain_offline(struct cgroup * cgrp)3119 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3120 	__acquires(&cgroup_mutex)
3121 {
3122 	struct cgroup *dsct;
3123 	struct cgroup_subsys_state *d_css;
3124 	struct cgroup_subsys *ss;
3125 	int ssid;
3126 
3127 restart:
3128 	cgroup_lock();
3129 
3130 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3131 		for_each_subsys(ss, ssid) {
3132 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3133 			DEFINE_WAIT(wait);
3134 
3135 			if (!css || !percpu_ref_is_dying(&css->refcnt))
3136 				continue;
3137 
3138 			cgroup_get_live(dsct);
3139 			prepare_to_wait(&dsct->offline_waitq, &wait,
3140 					TASK_UNINTERRUPTIBLE);
3141 
3142 			cgroup_unlock();
3143 			schedule();
3144 			finish_wait(&dsct->offline_waitq, &wait);
3145 
3146 			cgroup_put(dsct);
3147 			goto restart;
3148 		}
3149 	}
3150 }
3151 
3152 /**
3153  * cgroup_save_control - save control masks and dom_cgrp of a subtree
3154  * @cgrp: root of the target subtree
3155  *
3156  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3157  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3158  * itself.
3159  */
cgroup_save_control(struct cgroup * cgrp)3160 static void cgroup_save_control(struct cgroup *cgrp)
3161 {
3162 	struct cgroup *dsct;
3163 	struct cgroup_subsys_state *d_css;
3164 
3165 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3166 		dsct->old_subtree_control = dsct->subtree_control;
3167 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3168 		dsct->old_dom_cgrp = dsct->dom_cgrp;
3169 	}
3170 }
3171 
3172 /**
3173  * cgroup_propagate_control - refresh control masks of a subtree
3174  * @cgrp: root of the target subtree
3175  *
3176  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3177  * ->subtree_control and propagate controller availability through the
3178  * subtree so that descendants don't have unavailable controllers enabled.
3179  */
cgroup_propagate_control(struct cgroup * cgrp)3180 static void cgroup_propagate_control(struct cgroup *cgrp)
3181 {
3182 	struct cgroup *dsct;
3183 	struct cgroup_subsys_state *d_css;
3184 
3185 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3186 		dsct->subtree_control &= cgroup_control(dsct);
3187 		dsct->subtree_ss_mask =
3188 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3189 						    cgroup_ss_mask(dsct));
3190 	}
3191 }
3192 
3193 /**
3194  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3195  * @cgrp: root of the target subtree
3196  *
3197  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3198  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3199  * itself.
3200  */
cgroup_restore_control(struct cgroup * cgrp)3201 static void cgroup_restore_control(struct cgroup *cgrp)
3202 {
3203 	struct cgroup *dsct;
3204 	struct cgroup_subsys_state *d_css;
3205 
3206 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3207 		dsct->subtree_control = dsct->old_subtree_control;
3208 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3209 		dsct->dom_cgrp = dsct->old_dom_cgrp;
3210 	}
3211 }
3212 
css_visible(struct cgroup_subsys_state * css)3213 static bool css_visible(struct cgroup_subsys_state *css)
3214 {
3215 	struct cgroup_subsys *ss = css->ss;
3216 	struct cgroup *cgrp = css->cgroup;
3217 
3218 	if (cgroup_control(cgrp) & (1 << ss->id))
3219 		return true;
3220 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3221 		return false;
3222 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3223 }
3224 
3225 /**
3226  * cgroup_apply_control_enable - enable or show csses according to control
3227  * @cgrp: root of the target subtree
3228  *
3229  * Walk @cgrp's subtree and create new csses or make the existing ones
3230  * visible.  A css is created invisible if it's being implicitly enabled
3231  * through dependency.  An invisible css is made visible when the userland
3232  * explicitly enables it.
3233  *
3234  * Returns 0 on success, -errno on failure.  On failure, csses which have
3235  * been processed already aren't cleaned up.  The caller is responsible for
3236  * cleaning up with cgroup_apply_control_disable().
3237  */
cgroup_apply_control_enable(struct cgroup * cgrp)3238 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3239 {
3240 	struct cgroup *dsct;
3241 	struct cgroup_subsys_state *d_css;
3242 	struct cgroup_subsys *ss;
3243 	int ssid, ret;
3244 
3245 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3246 		for_each_subsys(ss, ssid) {
3247 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3248 
3249 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3250 				continue;
3251 
3252 			if (!css) {
3253 				css = css_create(dsct, ss);
3254 				if (IS_ERR(css))
3255 					return PTR_ERR(css);
3256 			}
3257 
3258 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3259 
3260 			if (css_visible(css)) {
3261 				ret = css_populate_dir(css);
3262 				if (ret)
3263 					return ret;
3264 			}
3265 		}
3266 	}
3267 
3268 	return 0;
3269 }
3270 
3271 /**
3272  * cgroup_apply_control_disable - kill or hide csses according to control
3273  * @cgrp: root of the target subtree
3274  *
3275  * Walk @cgrp's subtree and kill and hide csses so that they match
3276  * cgroup_ss_mask() and cgroup_visible_mask().
3277  *
3278  * A css is hidden when the userland requests it to be disabled while other
3279  * subsystems are still depending on it.  The css must not actively control
3280  * resources and be in the vanilla state if it's made visible again later.
3281  * Controllers which may be depended upon should provide ->css_reset() for
3282  * this purpose.
3283  */
cgroup_apply_control_disable(struct cgroup * cgrp)3284 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3285 {
3286 	struct cgroup *dsct;
3287 	struct cgroup_subsys_state *d_css;
3288 	struct cgroup_subsys *ss;
3289 	int ssid;
3290 
3291 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3292 		for_each_subsys(ss, ssid) {
3293 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3294 
3295 			if (!css)
3296 				continue;
3297 
3298 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3299 
3300 			if (css->parent &&
3301 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3302 				kill_css(css);
3303 			} else if (!css_visible(css)) {
3304 				css_clear_dir(css);
3305 				if (ss->css_reset)
3306 					ss->css_reset(css);
3307 			}
3308 		}
3309 	}
3310 }
3311 
3312 /**
3313  * cgroup_apply_control - apply control mask updates to the subtree
3314  * @cgrp: root of the target subtree
3315  *
3316  * subsystems can be enabled and disabled in a subtree using the following
3317  * steps.
3318  *
3319  * 1. Call cgroup_save_control() to stash the current state.
3320  * 2. Update ->subtree_control masks in the subtree as desired.
3321  * 3. Call cgroup_apply_control() to apply the changes.
3322  * 4. Optionally perform other related operations.
3323  * 5. Call cgroup_finalize_control() to finish up.
3324  *
3325  * This function implements step 3 and propagates the mask changes
3326  * throughout @cgrp's subtree, updates csses accordingly and perform
3327  * process migrations.
3328  */
cgroup_apply_control(struct cgroup * cgrp)3329 static int cgroup_apply_control(struct cgroup *cgrp)
3330 {
3331 	int ret;
3332 
3333 	cgroup_propagate_control(cgrp);
3334 
3335 	ret = cgroup_apply_control_enable(cgrp);
3336 	if (ret)
3337 		return ret;
3338 
3339 	/*
3340 	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3341 	 * making the following cgroup_update_dfl_csses() properly update
3342 	 * css associations of all tasks in the subtree.
3343 	 */
3344 	return cgroup_update_dfl_csses(cgrp);
3345 }
3346 
3347 /**
3348  * cgroup_finalize_control - finalize control mask update
3349  * @cgrp: root of the target subtree
3350  * @ret: the result of the update
3351  *
3352  * Finalize control mask update.  See cgroup_apply_control() for more info.
3353  */
cgroup_finalize_control(struct cgroup * cgrp,int ret)3354 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3355 {
3356 	if (ret) {
3357 		cgroup_restore_control(cgrp);
3358 		cgroup_propagate_control(cgrp);
3359 	}
3360 
3361 	cgroup_apply_control_disable(cgrp);
3362 }
3363 
cgroup_vet_subtree_control_enable(struct cgroup * cgrp,u16 enable)3364 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3365 {
3366 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3367 
3368 	/* if nothing is getting enabled, nothing to worry about */
3369 	if (!enable)
3370 		return 0;
3371 
3372 	/* can @cgrp host any resources? */
3373 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3374 		return -EOPNOTSUPP;
3375 
3376 	/* mixables don't care */
3377 	if (cgroup_is_mixable(cgrp))
3378 		return 0;
3379 
3380 	if (domain_enable) {
3381 		/* can't enable domain controllers inside a thread subtree */
3382 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3383 			return -EOPNOTSUPP;
3384 	} else {
3385 		/*
3386 		 * Threaded controllers can handle internal competitions
3387 		 * and are always allowed inside a (prospective) thread
3388 		 * subtree.
3389 		 */
3390 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3391 			return 0;
3392 	}
3393 
3394 	/*
3395 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3396 	 * child cgroups competing against tasks.
3397 	 */
3398 	if (cgroup_has_tasks(cgrp))
3399 		return -EBUSY;
3400 
3401 	return 0;
3402 }
3403 
3404 /* change the enabled child controllers for a cgroup in the default hierarchy */
cgroup_subtree_control_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3405 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3406 					    char *buf, size_t nbytes,
3407 					    loff_t off)
3408 {
3409 	u16 enable = 0, disable = 0;
3410 	struct cgroup *cgrp, *child;
3411 	struct cgroup_subsys *ss;
3412 	char *tok;
3413 	int ssid, ret;
3414 
3415 	/*
3416 	 * Parse input - space separated list of subsystem names prefixed
3417 	 * with either + or -.
3418 	 */
3419 	buf = strstrip(buf);
3420 	while ((tok = strsep(&buf, " "))) {
3421 		if (tok[0] == '\0')
3422 			continue;
3423 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3424 			if (!cgroup_ssid_enabled(ssid) ||
3425 			    strcmp(tok + 1, ss->name))
3426 				continue;
3427 
3428 			if (*tok == '+') {
3429 				enable |= 1 << ssid;
3430 				disable &= ~(1 << ssid);
3431 			} else if (*tok == '-') {
3432 				disable |= 1 << ssid;
3433 				enable &= ~(1 << ssid);
3434 			} else {
3435 				return -EINVAL;
3436 			}
3437 			break;
3438 		} while_each_subsys_mask();
3439 		if (ssid == CGROUP_SUBSYS_COUNT)
3440 			return -EINVAL;
3441 	}
3442 
3443 	cgrp = cgroup_kn_lock_live(of->kn, true);
3444 	if (!cgrp)
3445 		return -ENODEV;
3446 
3447 	for_each_subsys(ss, ssid) {
3448 		if (enable & (1 << ssid)) {
3449 			if (cgrp->subtree_control & (1 << ssid)) {
3450 				enable &= ~(1 << ssid);
3451 				continue;
3452 			}
3453 
3454 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3455 				ret = -ENOENT;
3456 				goto out_unlock;
3457 			}
3458 		} else if (disable & (1 << ssid)) {
3459 			if (!(cgrp->subtree_control & (1 << ssid))) {
3460 				disable &= ~(1 << ssid);
3461 				continue;
3462 			}
3463 
3464 			/* a child has it enabled? */
3465 			cgroup_for_each_live_child(child, cgrp) {
3466 				if (child->subtree_control & (1 << ssid)) {
3467 					ret = -EBUSY;
3468 					goto out_unlock;
3469 				}
3470 			}
3471 		}
3472 	}
3473 
3474 	if (!enable && !disable) {
3475 		ret = 0;
3476 		goto out_unlock;
3477 	}
3478 
3479 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3480 	if (ret)
3481 		goto out_unlock;
3482 
3483 	/* save and update control masks and prepare csses */
3484 	cgroup_save_control(cgrp);
3485 
3486 	cgrp->subtree_control |= enable;
3487 	cgrp->subtree_control &= ~disable;
3488 
3489 	ret = cgroup_apply_control(cgrp);
3490 	cgroup_finalize_control(cgrp, ret);
3491 	if (ret)
3492 		goto out_unlock;
3493 
3494 	kernfs_activate(cgrp->kn);
3495 out_unlock:
3496 	cgroup_kn_unlock(of->kn);
3497 	return ret ?: nbytes;
3498 }
3499 
3500 /**
3501  * cgroup_enable_threaded - make @cgrp threaded
3502  * @cgrp: the target cgroup
3503  *
3504  * Called when "threaded" is written to the cgroup.type interface file and
3505  * tries to make @cgrp threaded and join the parent's resource domain.
3506  * This function is never called on the root cgroup as cgroup.type doesn't
3507  * exist on it.
3508  */
cgroup_enable_threaded(struct cgroup * cgrp)3509 static int cgroup_enable_threaded(struct cgroup *cgrp)
3510 {
3511 	struct cgroup *parent = cgroup_parent(cgrp);
3512 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3513 	struct cgroup *dsct;
3514 	struct cgroup_subsys_state *d_css;
3515 	int ret;
3516 
3517 	lockdep_assert_held(&cgroup_mutex);
3518 
3519 	/* noop if already threaded */
3520 	if (cgroup_is_threaded(cgrp))
3521 		return 0;
3522 
3523 	/*
3524 	 * If @cgroup is populated or has domain controllers enabled, it
3525 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3526 	 * test can catch the same conditions, that's only when @parent is
3527 	 * not mixable, so let's check it explicitly.
3528 	 */
3529 	if (cgroup_is_populated(cgrp) ||
3530 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3531 		return -EOPNOTSUPP;
3532 
3533 	/* we're joining the parent's domain, ensure its validity */
3534 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3535 	    !cgroup_can_be_thread_root(dom_cgrp))
3536 		return -EOPNOTSUPP;
3537 
3538 	/*
3539 	 * The following shouldn't cause actual migrations and should
3540 	 * always succeed.
3541 	 */
3542 	cgroup_save_control(cgrp);
3543 
3544 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3545 		if (dsct == cgrp || cgroup_is_threaded(dsct))
3546 			dsct->dom_cgrp = dom_cgrp;
3547 
3548 	ret = cgroup_apply_control(cgrp);
3549 	if (!ret)
3550 		parent->nr_threaded_children++;
3551 
3552 	cgroup_finalize_control(cgrp, ret);
3553 	return ret;
3554 }
3555 
cgroup_type_show(struct seq_file * seq,void * v)3556 static int cgroup_type_show(struct seq_file *seq, void *v)
3557 {
3558 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3559 
3560 	if (cgroup_is_threaded(cgrp))
3561 		seq_puts(seq, "threaded\n");
3562 	else if (!cgroup_is_valid_domain(cgrp))
3563 		seq_puts(seq, "domain invalid\n");
3564 	else if (cgroup_is_thread_root(cgrp))
3565 		seq_puts(seq, "domain threaded\n");
3566 	else
3567 		seq_puts(seq, "domain\n");
3568 
3569 	return 0;
3570 }
3571 
cgroup_type_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3572 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3573 				 size_t nbytes, loff_t off)
3574 {
3575 	struct cgroup *cgrp;
3576 	int ret;
3577 
3578 	/* only switching to threaded mode is supported */
3579 	if (strcmp(strstrip(buf), "threaded"))
3580 		return -EINVAL;
3581 
3582 	/* drain dying csses before we re-apply (threaded) subtree control */
3583 	cgrp = cgroup_kn_lock_live(of->kn, true);
3584 	if (!cgrp)
3585 		return -ENOENT;
3586 
3587 	/* threaded can only be enabled */
3588 	ret = cgroup_enable_threaded(cgrp);
3589 
3590 	cgroup_kn_unlock(of->kn);
3591 	return ret ?: nbytes;
3592 }
3593 
cgroup_max_descendants_show(struct seq_file * seq,void * v)3594 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3595 {
3596 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3597 	int descendants = READ_ONCE(cgrp->max_descendants);
3598 
3599 	if (descendants == INT_MAX)
3600 		seq_puts(seq, "max\n");
3601 	else
3602 		seq_printf(seq, "%d\n", descendants);
3603 
3604 	return 0;
3605 }
3606 
cgroup_max_descendants_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3607 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3608 					   char *buf, size_t nbytes, loff_t off)
3609 {
3610 	struct cgroup *cgrp;
3611 	int descendants;
3612 	ssize_t ret;
3613 
3614 	buf = strstrip(buf);
3615 	if (!strcmp(buf, "max")) {
3616 		descendants = INT_MAX;
3617 	} else {
3618 		ret = kstrtoint(buf, 0, &descendants);
3619 		if (ret)
3620 			return ret;
3621 	}
3622 
3623 	if (descendants < 0)
3624 		return -ERANGE;
3625 
3626 	cgrp = cgroup_kn_lock_live(of->kn, false);
3627 	if (!cgrp)
3628 		return -ENOENT;
3629 
3630 	cgrp->max_descendants = descendants;
3631 
3632 	cgroup_kn_unlock(of->kn);
3633 
3634 	return nbytes;
3635 }
3636 
cgroup_max_depth_show(struct seq_file * seq,void * v)3637 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3638 {
3639 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3640 	int depth = READ_ONCE(cgrp->max_depth);
3641 
3642 	if (depth == INT_MAX)
3643 		seq_puts(seq, "max\n");
3644 	else
3645 		seq_printf(seq, "%d\n", depth);
3646 
3647 	return 0;
3648 }
3649 
cgroup_max_depth_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3650 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3651 				      char *buf, size_t nbytes, loff_t off)
3652 {
3653 	struct cgroup *cgrp;
3654 	ssize_t ret;
3655 	int depth;
3656 
3657 	buf = strstrip(buf);
3658 	if (!strcmp(buf, "max")) {
3659 		depth = INT_MAX;
3660 	} else {
3661 		ret = kstrtoint(buf, 0, &depth);
3662 		if (ret)
3663 			return ret;
3664 	}
3665 
3666 	if (depth < 0)
3667 		return -ERANGE;
3668 
3669 	cgrp = cgroup_kn_lock_live(of->kn, false);
3670 	if (!cgrp)
3671 		return -ENOENT;
3672 
3673 	cgrp->max_depth = depth;
3674 
3675 	cgroup_kn_unlock(of->kn);
3676 
3677 	return nbytes;
3678 }
3679 
cgroup_events_show(struct seq_file * seq,void * v)3680 static int cgroup_events_show(struct seq_file *seq, void *v)
3681 {
3682 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3683 
3684 	seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3685 	seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3686 
3687 	return 0;
3688 }
3689 
cgroup_stat_show(struct seq_file * seq,void * v)3690 static int cgroup_stat_show(struct seq_file *seq, void *v)
3691 {
3692 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3693 	struct cgroup_subsys_state *css;
3694 	int dying_cnt[CGROUP_SUBSYS_COUNT];
3695 	int ssid;
3696 
3697 	seq_printf(seq, "nr_descendants %d\n",
3698 		   cgroup->nr_descendants);
3699 
3700 	/*
3701 	 * Show the number of live and dying csses associated with each of
3702 	 * non-inhibited cgroup subsystems that is bound to cgroup v2.
3703 	 *
3704 	 * Without proper lock protection, racing is possible. So the
3705 	 * numbers may not be consistent when that happens.
3706 	 */
3707 	rcu_read_lock();
3708 	for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) {
3709 		dying_cnt[ssid] = -1;
3710 		if ((BIT(ssid) & cgrp_dfl_inhibit_ss_mask) ||
3711 		    (cgroup_subsys[ssid]->root !=  &cgrp_dfl_root))
3712 			continue;
3713 		css = rcu_dereference_raw(cgroup->subsys[ssid]);
3714 		dying_cnt[ssid] = cgroup->nr_dying_subsys[ssid];
3715 		seq_printf(seq, "nr_subsys_%s %d\n", cgroup_subsys[ssid]->name,
3716 			   css ? (css->nr_descendants + 1) : 0);
3717 	}
3718 
3719 	seq_printf(seq, "nr_dying_descendants %d\n",
3720 		   cgroup->nr_dying_descendants);
3721 	for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) {
3722 		if (dying_cnt[ssid] >= 0)
3723 			seq_printf(seq, "nr_dying_subsys_%s %d\n",
3724 				   cgroup_subsys[ssid]->name, dying_cnt[ssid]);
3725 	}
3726 	rcu_read_unlock();
3727 	return 0;
3728 }
3729 
3730 #ifdef CONFIG_CGROUP_SCHED
3731 /**
3732  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
3733  * @cgrp: the cgroup of interest
3734  * @ss: the subsystem of interest
3735  *
3736  * Find and get @cgrp's css associated with @ss.  If the css doesn't exist
3737  * or is offline, %NULL is returned.
3738  */
cgroup_tryget_css(struct cgroup * cgrp,struct cgroup_subsys * ss)3739 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
3740 						     struct cgroup_subsys *ss)
3741 {
3742 	struct cgroup_subsys_state *css;
3743 
3744 	rcu_read_lock();
3745 	css = cgroup_css(cgrp, ss);
3746 	if (css && !css_tryget_online(css))
3747 		css = NULL;
3748 	rcu_read_unlock();
3749 
3750 	return css;
3751 }
3752 
cgroup_extra_stat_show(struct seq_file * seq,int ssid)3753 static int cgroup_extra_stat_show(struct seq_file *seq, int ssid)
3754 {
3755 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3756 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3757 	struct cgroup_subsys_state *css;
3758 	int ret;
3759 
3760 	if (!ss->css_extra_stat_show)
3761 		return 0;
3762 
3763 	css = cgroup_tryget_css(cgrp, ss);
3764 	if (!css)
3765 		return 0;
3766 
3767 	ret = ss->css_extra_stat_show(seq, css);
3768 	css_put(css);
3769 	return ret;
3770 }
3771 
cgroup_local_stat_show(struct seq_file * seq,struct cgroup * cgrp,int ssid)3772 static int cgroup_local_stat_show(struct seq_file *seq,
3773 				  struct cgroup *cgrp, int ssid)
3774 {
3775 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3776 	struct cgroup_subsys_state *css;
3777 	int ret;
3778 
3779 	if (!ss->css_local_stat_show)
3780 		return 0;
3781 
3782 	css = cgroup_tryget_css(cgrp, ss);
3783 	if (!css)
3784 		return 0;
3785 
3786 	ret = ss->css_local_stat_show(seq, css);
3787 	css_put(css);
3788 	return ret;
3789 }
3790 #endif
3791 
cpu_stat_show(struct seq_file * seq,void * v)3792 static int cpu_stat_show(struct seq_file *seq, void *v)
3793 {
3794 	int ret = 0;
3795 
3796 	cgroup_base_stat_cputime_show(seq);
3797 #ifdef CONFIG_CGROUP_SCHED
3798 	ret = cgroup_extra_stat_show(seq, cpu_cgrp_id);
3799 #endif
3800 	return ret;
3801 }
3802 
cpu_local_stat_show(struct seq_file * seq,void * v)3803 static int cpu_local_stat_show(struct seq_file *seq, void *v)
3804 {
3805 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3806 	int ret = 0;
3807 
3808 #ifdef CONFIG_CGROUP_SCHED
3809 	ret = cgroup_local_stat_show(seq, cgrp, cpu_cgrp_id);
3810 #endif
3811 	return ret;
3812 }
3813 
3814 #ifdef CONFIG_PSI
cgroup_io_pressure_show(struct seq_file * seq,void * v)3815 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3816 {
3817 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3818 	struct psi_group *psi = cgroup_psi(cgrp);
3819 
3820 	return psi_show(seq, psi, PSI_IO);
3821 }
cgroup_memory_pressure_show(struct seq_file * seq,void * v)3822 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3823 {
3824 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3825 	struct psi_group *psi = cgroup_psi(cgrp);
3826 
3827 	return psi_show(seq, psi, PSI_MEM);
3828 }
cgroup_cpu_pressure_show(struct seq_file * seq,void * v)3829 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3830 {
3831 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3832 	struct psi_group *psi = cgroup_psi(cgrp);
3833 
3834 	return psi_show(seq, psi, PSI_CPU);
3835 }
3836 
pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,enum psi_res res)3837 static ssize_t pressure_write(struct kernfs_open_file *of, char *buf,
3838 			      size_t nbytes, enum psi_res res)
3839 {
3840 	struct cgroup_file_ctx *ctx = of->priv;
3841 	struct psi_trigger *new;
3842 	struct cgroup *cgrp;
3843 	struct psi_group *psi;
3844 
3845 	cgrp = cgroup_kn_lock_live(of->kn, false);
3846 	if (!cgrp)
3847 		return -ENODEV;
3848 
3849 	cgroup_get(cgrp);
3850 	cgroup_kn_unlock(of->kn);
3851 
3852 	/* Allow only one trigger per file descriptor */
3853 	if (ctx->psi.trigger) {
3854 		cgroup_put(cgrp);
3855 		return -EBUSY;
3856 	}
3857 
3858 	psi = cgroup_psi(cgrp);
3859 	new = psi_trigger_create(psi, buf, res, of->file, of);
3860 	if (IS_ERR(new)) {
3861 		cgroup_put(cgrp);
3862 		return PTR_ERR(new);
3863 	}
3864 
3865 	smp_store_release(&ctx->psi.trigger, new);
3866 	cgroup_put(cgrp);
3867 
3868 	return nbytes;
3869 }
3870 
cgroup_io_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3871 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3872 					  char *buf, size_t nbytes,
3873 					  loff_t off)
3874 {
3875 	return pressure_write(of, buf, nbytes, PSI_IO);
3876 }
3877 
cgroup_memory_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3878 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3879 					  char *buf, size_t nbytes,
3880 					  loff_t off)
3881 {
3882 	return pressure_write(of, buf, nbytes, PSI_MEM);
3883 }
3884 
cgroup_cpu_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3885 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3886 					  char *buf, size_t nbytes,
3887 					  loff_t off)
3888 {
3889 	return pressure_write(of, buf, nbytes, PSI_CPU);
3890 }
3891 
3892 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
cgroup_irq_pressure_show(struct seq_file * seq,void * v)3893 static int cgroup_irq_pressure_show(struct seq_file *seq, void *v)
3894 {
3895 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3896 	struct psi_group *psi = cgroup_psi(cgrp);
3897 
3898 	return psi_show(seq, psi, PSI_IRQ);
3899 }
3900 
cgroup_irq_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3901 static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of,
3902 					 char *buf, size_t nbytes,
3903 					 loff_t off)
3904 {
3905 	return pressure_write(of, buf, nbytes, PSI_IRQ);
3906 }
3907 #endif
3908 
cgroup_pressure_show(struct seq_file * seq,void * v)3909 static int cgroup_pressure_show(struct seq_file *seq, void *v)
3910 {
3911 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3912 	struct psi_group *psi = cgroup_psi(cgrp);
3913 
3914 	seq_printf(seq, "%d\n", psi->enabled);
3915 
3916 	return 0;
3917 }
3918 
cgroup_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3919 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of,
3920 				     char *buf, size_t nbytes,
3921 				     loff_t off)
3922 {
3923 	ssize_t ret;
3924 	int enable;
3925 	struct cgroup *cgrp;
3926 	struct psi_group *psi;
3927 
3928 	ret = kstrtoint(strstrip(buf), 0, &enable);
3929 	if (ret)
3930 		return ret;
3931 
3932 	if (enable < 0 || enable > 1)
3933 		return -ERANGE;
3934 
3935 	cgrp = cgroup_kn_lock_live(of->kn, false);
3936 	if (!cgrp)
3937 		return -ENOENT;
3938 
3939 	psi = cgroup_psi(cgrp);
3940 	if (psi->enabled != enable) {
3941 		int i;
3942 
3943 		/* show or hide {cpu,memory,io,irq}.pressure files */
3944 		for (i = 0; i < NR_PSI_RESOURCES; i++)
3945 			cgroup_file_show(&cgrp->psi_files[i], enable);
3946 
3947 		psi->enabled = enable;
3948 		if (enable)
3949 			psi_cgroup_restart(psi);
3950 	}
3951 
3952 	cgroup_kn_unlock(of->kn);
3953 
3954 	return nbytes;
3955 }
3956 
cgroup_pressure_poll(struct kernfs_open_file * of,poll_table * pt)3957 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3958 					  poll_table *pt)
3959 {
3960 	struct cgroup_file_ctx *ctx = of->priv;
3961 
3962 	return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
3963 }
3964 
cgroup_pressure_release(struct kernfs_open_file * of)3965 static void cgroup_pressure_release(struct kernfs_open_file *of)
3966 {
3967 	struct cgroup_file_ctx *ctx = of->priv;
3968 
3969 	psi_trigger_destroy(ctx->psi.trigger);
3970 }
3971 
cgroup_psi_enabled(void)3972 bool cgroup_psi_enabled(void)
3973 {
3974 	if (static_branch_likely(&psi_disabled))
3975 		return false;
3976 
3977 	return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
3978 }
3979 
3980 #else /* CONFIG_PSI */
cgroup_psi_enabled(void)3981 bool cgroup_psi_enabled(void)
3982 {
3983 	return false;
3984 }
3985 
3986 #endif /* CONFIG_PSI */
3987 
cgroup_freeze_show(struct seq_file * seq,void * v)3988 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3989 {
3990 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3991 
3992 	seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3993 
3994 	return 0;
3995 }
3996 
cgroup_freeze_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3997 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3998 				   char *buf, size_t nbytes, loff_t off)
3999 {
4000 	struct cgroup *cgrp;
4001 	ssize_t ret;
4002 	int freeze;
4003 
4004 	ret = kstrtoint(strstrip(buf), 0, &freeze);
4005 	if (ret)
4006 		return ret;
4007 
4008 	if (freeze < 0 || freeze > 1)
4009 		return -ERANGE;
4010 
4011 	cgrp = cgroup_kn_lock_live(of->kn, false);
4012 	if (!cgrp)
4013 		return -ENOENT;
4014 
4015 	cgroup_freeze(cgrp, freeze);
4016 
4017 	cgroup_kn_unlock(of->kn);
4018 
4019 	return nbytes;
4020 }
4021 
__cgroup_kill(struct cgroup * cgrp)4022 static void __cgroup_kill(struct cgroup *cgrp)
4023 {
4024 	struct css_task_iter it;
4025 	struct task_struct *task;
4026 
4027 	lockdep_assert_held(&cgroup_mutex);
4028 
4029 	spin_lock_irq(&css_set_lock);
4030 	cgrp->kill_seq++;
4031 	spin_unlock_irq(&css_set_lock);
4032 
4033 	css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it);
4034 	while ((task = css_task_iter_next(&it))) {
4035 		/* Ignore kernel threads here. */
4036 		if (task->flags & PF_KTHREAD)
4037 			continue;
4038 
4039 		/* Skip tasks that are already dying. */
4040 		if (__fatal_signal_pending(task))
4041 			continue;
4042 
4043 		send_sig(SIGKILL, task, 0);
4044 	}
4045 	css_task_iter_end(&it);
4046 }
4047 
cgroup_kill(struct cgroup * cgrp)4048 static void cgroup_kill(struct cgroup *cgrp)
4049 {
4050 	struct cgroup_subsys_state *css;
4051 	struct cgroup *dsct;
4052 
4053 	lockdep_assert_held(&cgroup_mutex);
4054 
4055 	cgroup_for_each_live_descendant_pre(dsct, css, cgrp)
4056 		__cgroup_kill(dsct);
4057 }
4058 
cgroup_kill_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4059 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf,
4060 				 size_t nbytes, loff_t off)
4061 {
4062 	ssize_t ret = 0;
4063 	int kill;
4064 	struct cgroup *cgrp;
4065 
4066 	ret = kstrtoint(strstrip(buf), 0, &kill);
4067 	if (ret)
4068 		return ret;
4069 
4070 	if (kill != 1)
4071 		return -ERANGE;
4072 
4073 	cgrp = cgroup_kn_lock_live(of->kn, false);
4074 	if (!cgrp)
4075 		return -ENOENT;
4076 
4077 	/*
4078 	 * Killing is a process directed operation, i.e. the whole thread-group
4079 	 * is taken down so act like we do for cgroup.procs and only make this
4080 	 * writable in non-threaded cgroups.
4081 	 */
4082 	if (cgroup_is_threaded(cgrp))
4083 		ret = -EOPNOTSUPP;
4084 	else
4085 		cgroup_kill(cgrp);
4086 
4087 	cgroup_kn_unlock(of->kn);
4088 
4089 	return ret ?: nbytes;
4090 }
4091 
cgroup_file_open(struct kernfs_open_file * of)4092 static int cgroup_file_open(struct kernfs_open_file *of)
4093 {
4094 	struct cftype *cft = of_cft(of);
4095 	struct cgroup_file_ctx *ctx;
4096 	int ret;
4097 
4098 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
4099 	if (!ctx)
4100 		return -ENOMEM;
4101 
4102 	ctx->ns = current->nsproxy->cgroup_ns;
4103 	get_cgroup_ns(ctx->ns);
4104 	of->priv = ctx;
4105 
4106 	if (!cft->open)
4107 		return 0;
4108 
4109 	ret = cft->open(of);
4110 	if (ret) {
4111 		put_cgroup_ns(ctx->ns);
4112 		kfree(ctx);
4113 	}
4114 	return ret;
4115 }
4116 
cgroup_file_release(struct kernfs_open_file * of)4117 static void cgroup_file_release(struct kernfs_open_file *of)
4118 {
4119 	struct cftype *cft = of_cft(of);
4120 	struct cgroup_file_ctx *ctx = of->priv;
4121 
4122 	if (cft->release)
4123 		cft->release(of);
4124 	put_cgroup_ns(ctx->ns);
4125 	kfree(ctx);
4126 }
4127 
cgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4128 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
4129 				 size_t nbytes, loff_t off)
4130 {
4131 	struct cgroup_file_ctx *ctx = of->priv;
4132 	struct cgroup *cgrp = kn_priv(of->kn);
4133 	struct cftype *cft = of_cft(of);
4134 	struct cgroup_subsys_state *css;
4135 	int ret;
4136 
4137 	if (!nbytes)
4138 		return 0;
4139 
4140 	/*
4141 	 * If namespaces are delegation boundaries, disallow writes to
4142 	 * files in an non-init namespace root from inside the namespace
4143 	 * except for the files explicitly marked delegatable -
4144 	 * eg. cgroup.procs, cgroup.threads and cgroup.subtree_control.
4145 	 */
4146 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
4147 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
4148 	    ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
4149 		return -EPERM;
4150 
4151 	if (cft->write)
4152 		return cft->write(of, buf, nbytes, off);
4153 
4154 	/*
4155 	 * kernfs guarantees that a file isn't deleted with operations in
4156 	 * flight, which means that the matching css is and stays alive and
4157 	 * doesn't need to be pinned.  The RCU locking is not necessary
4158 	 * either.  It's just for the convenience of using cgroup_css().
4159 	 */
4160 	rcu_read_lock();
4161 	css = cgroup_css(cgrp, cft->ss);
4162 	rcu_read_unlock();
4163 
4164 	if (cft->write_u64) {
4165 		unsigned long long v;
4166 		ret = kstrtoull(buf, 0, &v);
4167 		if (!ret)
4168 			ret = cft->write_u64(css, cft, v);
4169 	} else if (cft->write_s64) {
4170 		long long v;
4171 		ret = kstrtoll(buf, 0, &v);
4172 		if (!ret)
4173 			ret = cft->write_s64(css, cft, v);
4174 	} else {
4175 		ret = -EINVAL;
4176 	}
4177 
4178 	return ret ?: nbytes;
4179 }
4180 
cgroup_file_poll(struct kernfs_open_file * of,poll_table * pt)4181 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
4182 {
4183 	struct cftype *cft = of_cft(of);
4184 
4185 	if (cft->poll)
4186 		return cft->poll(of, pt);
4187 
4188 	return kernfs_generic_poll(of, pt);
4189 }
4190 
cgroup_seqfile_start(struct seq_file * seq,loff_t * ppos)4191 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
4192 {
4193 	return seq_cft(seq)->seq_start(seq, ppos);
4194 }
4195 
cgroup_seqfile_next(struct seq_file * seq,void * v,loff_t * ppos)4196 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
4197 {
4198 	return seq_cft(seq)->seq_next(seq, v, ppos);
4199 }
4200 
cgroup_seqfile_stop(struct seq_file * seq,void * v)4201 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
4202 {
4203 	if (seq_cft(seq)->seq_stop)
4204 		seq_cft(seq)->seq_stop(seq, v);
4205 }
4206 
cgroup_seqfile_show(struct seq_file * m,void * arg)4207 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
4208 {
4209 	struct cftype *cft = seq_cft(m);
4210 	struct cgroup_subsys_state *css = seq_css(m);
4211 
4212 	if (cft->seq_show)
4213 		return cft->seq_show(m, arg);
4214 
4215 	if (cft->read_u64)
4216 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
4217 	else if (cft->read_s64)
4218 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
4219 	else
4220 		return -EINVAL;
4221 	return 0;
4222 }
4223 
4224 static struct kernfs_ops cgroup_kf_single_ops = {
4225 	.atomic_write_len	= PAGE_SIZE,
4226 	.open			= cgroup_file_open,
4227 	.release		= cgroup_file_release,
4228 	.write			= cgroup_file_write,
4229 	.poll			= cgroup_file_poll,
4230 	.seq_show		= cgroup_seqfile_show,
4231 };
4232 
4233 static struct kernfs_ops cgroup_kf_ops = {
4234 	.atomic_write_len	= PAGE_SIZE,
4235 	.open			= cgroup_file_open,
4236 	.release		= cgroup_file_release,
4237 	.write			= cgroup_file_write,
4238 	.poll			= cgroup_file_poll,
4239 	.seq_start		= cgroup_seqfile_start,
4240 	.seq_next		= cgroup_seqfile_next,
4241 	.seq_stop		= cgroup_seqfile_stop,
4242 	.seq_show		= cgroup_seqfile_show,
4243 };
4244 
cgroup_file_notify_timer(struct timer_list * timer)4245 static void cgroup_file_notify_timer(struct timer_list *timer)
4246 {
4247 	cgroup_file_notify(container_of(timer, struct cgroup_file,
4248 					notify_timer));
4249 }
4250 
cgroup_add_file(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype * cft)4251 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
4252 			   struct cftype *cft)
4253 {
4254 	char name[CGROUP_FILE_NAME_MAX];
4255 	struct kernfs_node *kn;
4256 	struct lock_class_key *key = NULL;
4257 
4258 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4259 	key = &cft->lockdep_key;
4260 #endif
4261 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
4262 				  cgroup_file_mode(cft),
4263 				  current_fsuid(), current_fsgid(),
4264 				  0, cft->kf_ops, cft,
4265 				  NULL, key);
4266 	if (IS_ERR(kn))
4267 		return PTR_ERR(kn);
4268 
4269 	if (cft->file_offset) {
4270 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
4271 
4272 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
4273 
4274 		spin_lock_irq(&cgroup_file_kn_lock);
4275 		cfile->kn = kn;
4276 		spin_unlock_irq(&cgroup_file_kn_lock);
4277 	}
4278 
4279 	return 0;
4280 }
4281 
4282 /**
4283  * cgroup_addrm_files - add or remove files to a cgroup directory
4284  * @css: the target css
4285  * @cgrp: the target cgroup (usually css->cgroup)
4286  * @cfts: array of cftypes to be added
4287  * @is_add: whether to add or remove
4288  *
4289  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
4290  * For removals, this function never fails.
4291  */
cgroup_addrm_files(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype cfts[],bool is_add)4292 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
4293 			      struct cgroup *cgrp, struct cftype cfts[],
4294 			      bool is_add)
4295 {
4296 	struct cftype *cft, *cft_end = NULL;
4297 	int ret = 0;
4298 
4299 	lockdep_assert_held(&cgroup_mutex);
4300 
4301 restart:
4302 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
4303 		/* does cft->flags tell us to skip this file on @cgrp? */
4304 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
4305 			continue;
4306 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
4307 			continue;
4308 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
4309 			continue;
4310 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
4311 			continue;
4312 		if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4313 			continue;
4314 		if (is_add) {
4315 			ret = cgroup_add_file(css, cgrp, cft);
4316 			if (ret) {
4317 				pr_warn("%s: failed to add %s, err=%d\n",
4318 					__func__, cft->name, ret);
4319 				cft_end = cft;
4320 				is_add = false;
4321 				goto restart;
4322 			}
4323 		} else {
4324 			cgroup_rm_file(cgrp, cft);
4325 		}
4326 	}
4327 	return ret;
4328 }
4329 
cgroup_apply_cftypes(struct cftype * cfts,bool is_add)4330 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4331 {
4332 	struct cgroup_subsys *ss = cfts[0].ss;
4333 	struct cgroup *root = &ss->root->cgrp;
4334 	struct cgroup_subsys_state *css;
4335 	int ret = 0;
4336 
4337 	lockdep_assert_held(&cgroup_mutex);
4338 
4339 	/* add/rm files for all cgroups created before */
4340 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4341 		struct cgroup *cgrp = css->cgroup;
4342 
4343 		if (!(css->flags & CSS_VISIBLE))
4344 			continue;
4345 
4346 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4347 		if (ret)
4348 			break;
4349 	}
4350 
4351 	if (is_add && !ret)
4352 		kernfs_activate(root->kn);
4353 	return ret;
4354 }
4355 
cgroup_exit_cftypes(struct cftype * cfts)4356 static void cgroup_exit_cftypes(struct cftype *cfts)
4357 {
4358 	struct cftype *cft;
4359 
4360 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4361 		/* free copy for custom atomic_write_len, see init_cftypes() */
4362 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4363 			kfree(cft->kf_ops);
4364 		cft->kf_ops = NULL;
4365 		cft->ss = NULL;
4366 
4367 		/* revert flags set by cgroup core while adding @cfts */
4368 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL |
4369 				__CFTYPE_ADDED);
4370 	}
4371 }
4372 
cgroup_init_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4373 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4374 {
4375 	struct cftype *cft;
4376 	int ret = 0;
4377 
4378 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4379 		struct kernfs_ops *kf_ops;
4380 
4381 		WARN_ON(cft->ss || cft->kf_ops);
4382 
4383 		if (cft->flags & __CFTYPE_ADDED) {
4384 			ret = -EBUSY;
4385 			break;
4386 		}
4387 
4388 		if (cft->seq_start)
4389 			kf_ops = &cgroup_kf_ops;
4390 		else
4391 			kf_ops = &cgroup_kf_single_ops;
4392 
4393 		/*
4394 		 * Ugh... if @cft wants a custom max_write_len, we need to
4395 		 * make a copy of kf_ops to set its atomic_write_len.
4396 		 */
4397 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4398 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4399 			if (!kf_ops) {
4400 				ret = -ENOMEM;
4401 				break;
4402 			}
4403 			kf_ops->atomic_write_len = cft->max_write_len;
4404 		}
4405 
4406 		cft->kf_ops = kf_ops;
4407 		cft->ss = ss;
4408 		cft->flags |= __CFTYPE_ADDED;
4409 	}
4410 
4411 	if (ret)
4412 		cgroup_exit_cftypes(cfts);
4413 	return ret;
4414 }
4415 
cgroup_rm_cftypes_locked(struct cftype * cfts)4416 static void cgroup_rm_cftypes_locked(struct cftype *cfts)
4417 {
4418 	lockdep_assert_held(&cgroup_mutex);
4419 
4420 	list_del(&cfts->node);
4421 	cgroup_apply_cftypes(cfts, false);
4422 	cgroup_exit_cftypes(cfts);
4423 }
4424 
4425 /**
4426  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4427  * @cfts: zero-length name terminated array of cftypes
4428  *
4429  * Unregister @cfts.  Files described by @cfts are removed from all
4430  * existing cgroups and all future cgroups won't have them either.  This
4431  * function can be called anytime whether @cfts' subsys is attached or not.
4432  *
4433  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4434  * registered.
4435  */
cgroup_rm_cftypes(struct cftype * cfts)4436 int cgroup_rm_cftypes(struct cftype *cfts)
4437 {
4438 	if (!cfts || cfts[0].name[0] == '\0')
4439 		return 0;
4440 
4441 	if (!(cfts[0].flags & __CFTYPE_ADDED))
4442 		return -ENOENT;
4443 
4444 	cgroup_lock();
4445 	cgroup_rm_cftypes_locked(cfts);
4446 	cgroup_unlock();
4447 	return 0;
4448 }
4449 
4450 /**
4451  * cgroup_add_cftypes - add an array of cftypes to a subsystem
4452  * @ss: target cgroup subsystem
4453  * @cfts: zero-length name terminated array of cftypes
4454  *
4455  * Register @cfts to @ss.  Files described by @cfts are created for all
4456  * existing cgroups to which @ss is attached and all future cgroups will
4457  * have them too.  This function can be called anytime whether @ss is
4458  * attached or not.
4459  *
4460  * Returns 0 on successful registration, -errno on failure.  Note that this
4461  * function currently returns 0 as long as @cfts registration is successful
4462  * even if some file creation attempts on existing cgroups fail.
4463  */
cgroup_add_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4464 int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4465 {
4466 	int ret;
4467 
4468 	if (!cgroup_ssid_enabled(ss->id))
4469 		return 0;
4470 
4471 	if (!cfts || cfts[0].name[0] == '\0')
4472 		return 0;
4473 
4474 	ret = cgroup_init_cftypes(ss, cfts);
4475 	if (ret)
4476 		return ret;
4477 
4478 	cgroup_lock();
4479 
4480 	list_add_tail(&cfts->node, &ss->cfts);
4481 	ret = cgroup_apply_cftypes(cfts, true);
4482 	if (ret)
4483 		cgroup_rm_cftypes_locked(cfts);
4484 
4485 	cgroup_unlock();
4486 	return ret;
4487 }
4488 
4489 /**
4490  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4491  * @ss: target cgroup subsystem
4492  * @cfts: zero-length name terminated array of cftypes
4493  *
4494  * Similar to cgroup_add_cftypes() but the added files are only used for
4495  * the default hierarchy.
4496  */
cgroup_add_dfl_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4497 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4498 {
4499 	struct cftype *cft;
4500 
4501 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4502 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
4503 	return cgroup_add_cftypes(ss, cfts);
4504 }
4505 
4506 /**
4507  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4508  * @ss: target cgroup subsystem
4509  * @cfts: zero-length name terminated array of cftypes
4510  *
4511  * Similar to cgroup_add_cftypes() but the added files are only used for
4512  * the legacy hierarchies.
4513  */
cgroup_add_legacy_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4514 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4515 {
4516 	struct cftype *cft;
4517 
4518 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4519 		cft->flags |= __CFTYPE_NOT_ON_DFL;
4520 	return cgroup_add_cftypes(ss, cfts);
4521 }
4522 
4523 /**
4524  * cgroup_file_notify - generate a file modified event for a cgroup_file
4525  * @cfile: target cgroup_file
4526  *
4527  * @cfile must have been obtained by setting cftype->file_offset.
4528  */
cgroup_file_notify(struct cgroup_file * cfile)4529 void cgroup_file_notify(struct cgroup_file *cfile)
4530 {
4531 	unsigned long flags;
4532 
4533 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4534 	if (cfile->kn) {
4535 		unsigned long last = cfile->notified_at;
4536 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4537 
4538 		if (time_in_range(jiffies, last, next)) {
4539 			timer_reduce(&cfile->notify_timer, next);
4540 		} else {
4541 			kernfs_notify(cfile->kn);
4542 			cfile->notified_at = jiffies;
4543 		}
4544 	}
4545 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4546 }
4547 
4548 /**
4549  * cgroup_file_show - show or hide a hidden cgroup file
4550  * @cfile: target cgroup_file obtained by setting cftype->file_offset
4551  * @show: whether to show or hide
4552  */
cgroup_file_show(struct cgroup_file * cfile,bool show)4553 void cgroup_file_show(struct cgroup_file *cfile, bool show)
4554 {
4555 	struct kernfs_node *kn;
4556 
4557 	spin_lock_irq(&cgroup_file_kn_lock);
4558 	kn = cfile->kn;
4559 	kernfs_get(kn);
4560 	spin_unlock_irq(&cgroup_file_kn_lock);
4561 
4562 	if (kn)
4563 		kernfs_show(kn, show);
4564 
4565 	kernfs_put(kn);
4566 }
4567 
4568 /**
4569  * css_next_child - find the next child of a given css
4570  * @pos: the current position (%NULL to initiate traversal)
4571  * @parent: css whose children to walk
4572  *
4573  * This function returns the next child of @parent and should be called
4574  * under either cgroup_mutex or RCU read lock.  The only requirement is
4575  * that @parent and @pos are accessible.  The next sibling is guaranteed to
4576  * be returned regardless of their states.
4577  *
4578  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4579  * css which finished ->css_online() is guaranteed to be visible in the
4580  * future iterations and will stay visible until the last reference is put.
4581  * A css which hasn't finished ->css_online() or already finished
4582  * ->css_offline() may show up during traversal.  It's each subsystem's
4583  * responsibility to synchronize against on/offlining.
4584  */
css_next_child(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * parent)4585 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4586 					   struct cgroup_subsys_state *parent)
4587 {
4588 	struct cgroup_subsys_state *next;
4589 
4590 	cgroup_assert_mutex_or_rcu_locked();
4591 
4592 	/*
4593 	 * @pos could already have been unlinked from the sibling list.
4594 	 * Once a cgroup is removed, its ->sibling.next is no longer
4595 	 * updated when its next sibling changes.  CSS_RELEASED is set when
4596 	 * @pos is taken off list, at which time its next pointer is valid,
4597 	 * and, as releases are serialized, the one pointed to by the next
4598 	 * pointer is guaranteed to not have started release yet.  This
4599 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4600 	 * critical section, the one pointed to by its next pointer is
4601 	 * guaranteed to not have finished its RCU grace period even if we
4602 	 * have dropped rcu_read_lock() in-between iterations.
4603 	 *
4604 	 * If @pos has CSS_RELEASED set, its next pointer can't be
4605 	 * dereferenced; however, as each css is given a monotonically
4606 	 * increasing unique serial number and always appended to the
4607 	 * sibling list, the next one can be found by walking the parent's
4608 	 * children until the first css with higher serial number than
4609 	 * @pos's.  While this path can be slower, it happens iff iteration
4610 	 * races against release and the race window is very small.
4611 	 */
4612 	if (!pos) {
4613 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4614 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
4615 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4616 	} else {
4617 		list_for_each_entry_rcu(next, &parent->children, sibling,
4618 					lockdep_is_held(&cgroup_mutex))
4619 			if (next->serial_nr > pos->serial_nr)
4620 				break;
4621 	}
4622 
4623 	/*
4624 	 * @next, if not pointing to the head, can be dereferenced and is
4625 	 * the next sibling.
4626 	 */
4627 	if (&next->sibling != &parent->children)
4628 		return next;
4629 	return NULL;
4630 }
4631 
4632 /**
4633  * css_next_descendant_pre - find the next descendant for pre-order walk
4634  * @pos: the current position (%NULL to initiate traversal)
4635  * @root: css whose descendants to walk
4636  *
4637  * To be used by css_for_each_descendant_pre().  Find the next descendant
4638  * to visit for pre-order traversal of @root's descendants.  @root is
4639  * included in the iteration and the first node to be visited.
4640  *
4641  * While this function requires cgroup_mutex or RCU read locking, it
4642  * doesn't require the whole traversal to be contained in a single critical
4643  * section. Additionally, it isn't necessary to hold onto a reference to @pos.
4644  * This function will return the correct next descendant as long as both @pos
4645  * and @root are accessible and @pos is a descendant of @root.
4646  *
4647  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4648  * css which finished ->css_online() is guaranteed to be visible in the
4649  * future iterations and will stay visible until the last reference is put.
4650  * A css which hasn't finished ->css_online() or already finished
4651  * ->css_offline() may show up during traversal.  It's each subsystem's
4652  * responsibility to synchronize against on/offlining.
4653  */
4654 struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4655 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4656 			struct cgroup_subsys_state *root)
4657 {
4658 	struct cgroup_subsys_state *next;
4659 
4660 	cgroup_assert_mutex_or_rcu_locked();
4661 
4662 	/* if first iteration, visit @root */
4663 	if (!pos)
4664 		return root;
4665 
4666 	/* visit the first child if exists */
4667 	next = css_next_child(NULL, pos);
4668 	if (next)
4669 		return next;
4670 
4671 	/* no child, visit my or the closest ancestor's next sibling */
4672 	while (pos != root) {
4673 		next = css_next_child(pos, pos->parent);
4674 		if (next)
4675 			return next;
4676 		pos = pos->parent;
4677 	}
4678 
4679 	return NULL;
4680 }
4681 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4682 
4683 /**
4684  * css_rightmost_descendant - return the rightmost descendant of a css
4685  * @pos: css of interest
4686  *
4687  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4688  * is returned.  This can be used during pre-order traversal to skip
4689  * subtree of @pos.
4690  *
4691  * While this function requires cgroup_mutex or RCU read locking, it
4692  * doesn't require the whole traversal to be contained in a single critical
4693  * section. Additionally, it isn't necessary to hold onto a reference to @pos.
4694  * This function will return the correct rightmost descendant as long as @pos
4695  * is accessible.
4696  */
4697 struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state * pos)4698 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4699 {
4700 	struct cgroup_subsys_state *last, *tmp;
4701 
4702 	cgroup_assert_mutex_or_rcu_locked();
4703 
4704 	do {
4705 		last = pos;
4706 		/* ->prev isn't RCU safe, walk ->next till the end */
4707 		pos = NULL;
4708 		css_for_each_child(tmp, last)
4709 			pos = tmp;
4710 	} while (pos);
4711 
4712 	return last;
4713 }
4714 
4715 static struct cgroup_subsys_state *
css_leftmost_descendant(struct cgroup_subsys_state * pos)4716 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4717 {
4718 	struct cgroup_subsys_state *last;
4719 
4720 	do {
4721 		last = pos;
4722 		pos = css_next_child(NULL, pos);
4723 	} while (pos);
4724 
4725 	return last;
4726 }
4727 
4728 /**
4729  * css_next_descendant_post - find the next descendant for post-order walk
4730  * @pos: the current position (%NULL to initiate traversal)
4731  * @root: css whose descendants to walk
4732  *
4733  * To be used by css_for_each_descendant_post().  Find the next descendant
4734  * to visit for post-order traversal of @root's descendants.  @root is
4735  * included in the iteration and the last node to be visited.
4736  *
4737  * While this function requires cgroup_mutex or RCU read locking, it
4738  * doesn't require the whole traversal to be contained in a single critical
4739  * section. Additionally, it isn't necessary to hold onto a reference to @pos.
4740  * This function will return the correct next descendant as long as both @pos
4741  * and @cgroup are accessible and @pos is a descendant of @cgroup.
4742  *
4743  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4744  * css which finished ->css_online() is guaranteed to be visible in the
4745  * future iterations and will stay visible until the last reference is put.
4746  * A css which hasn't finished ->css_online() or already finished
4747  * ->css_offline() may show up during traversal.  It's each subsystem's
4748  * responsibility to synchronize against on/offlining.
4749  */
4750 struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4751 css_next_descendant_post(struct cgroup_subsys_state *pos,
4752 			 struct cgroup_subsys_state *root)
4753 {
4754 	struct cgroup_subsys_state *next;
4755 
4756 	cgroup_assert_mutex_or_rcu_locked();
4757 
4758 	/* if first iteration, visit leftmost descendant which may be @root */
4759 	if (!pos)
4760 		return css_leftmost_descendant(root);
4761 
4762 	/* if we visited @root, we're done */
4763 	if (pos == root)
4764 		return NULL;
4765 
4766 	/* if there's an unvisited sibling, visit its leftmost descendant */
4767 	next = css_next_child(pos, pos->parent);
4768 	if (next)
4769 		return css_leftmost_descendant(next);
4770 
4771 	/* no sibling left, visit parent */
4772 	return pos->parent;
4773 }
4774 
4775 /**
4776  * css_has_online_children - does a css have online children
4777  * @css: the target css
4778  *
4779  * Returns %true if @css has any online children; otherwise, %false.  This
4780  * function can be called from any context but the caller is responsible
4781  * for synchronizing against on/offlining as necessary.
4782  */
css_has_online_children(struct cgroup_subsys_state * css)4783 bool css_has_online_children(struct cgroup_subsys_state *css)
4784 {
4785 	struct cgroup_subsys_state *child;
4786 	bool ret = false;
4787 
4788 	rcu_read_lock();
4789 	css_for_each_child(child, css) {
4790 		if (child->flags & CSS_ONLINE) {
4791 			ret = true;
4792 			break;
4793 		}
4794 	}
4795 	rcu_read_unlock();
4796 	return ret;
4797 }
4798 
css_task_iter_next_css_set(struct css_task_iter * it)4799 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4800 {
4801 	struct list_head *l;
4802 	struct cgrp_cset_link *link;
4803 	struct css_set *cset;
4804 
4805 	lockdep_assert_held(&css_set_lock);
4806 
4807 	/* find the next threaded cset */
4808 	if (it->tcset_pos) {
4809 		l = it->tcset_pos->next;
4810 
4811 		if (l != it->tcset_head) {
4812 			it->tcset_pos = l;
4813 			return container_of(l, struct css_set,
4814 					    threaded_csets_node);
4815 		}
4816 
4817 		it->tcset_pos = NULL;
4818 	}
4819 
4820 	/* find the next cset */
4821 	l = it->cset_pos;
4822 	l = l->next;
4823 	if (l == it->cset_head) {
4824 		it->cset_pos = NULL;
4825 		return NULL;
4826 	}
4827 
4828 	if (it->ss) {
4829 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4830 	} else {
4831 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4832 		cset = link->cset;
4833 	}
4834 
4835 	it->cset_pos = l;
4836 
4837 	/* initialize threaded css_set walking */
4838 	if (it->flags & CSS_TASK_ITER_THREADED) {
4839 		if (it->cur_dcset)
4840 			put_css_set_locked(it->cur_dcset);
4841 		it->cur_dcset = cset;
4842 		get_css_set(cset);
4843 
4844 		it->tcset_head = &cset->threaded_csets;
4845 		it->tcset_pos = &cset->threaded_csets;
4846 	}
4847 
4848 	return cset;
4849 }
4850 
4851 /**
4852  * css_task_iter_advance_css_set - advance a task iterator to the next css_set
4853  * @it: the iterator to advance
4854  *
4855  * Advance @it to the next css_set to walk.
4856  */
css_task_iter_advance_css_set(struct css_task_iter * it)4857 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4858 {
4859 	struct css_set *cset;
4860 
4861 	lockdep_assert_held(&css_set_lock);
4862 
4863 	/* Advance to the next non-empty css_set and find first non-empty tasks list*/
4864 	while ((cset = css_task_iter_next_css_set(it))) {
4865 		if (!list_empty(&cset->tasks)) {
4866 			it->cur_tasks_head = &cset->tasks;
4867 			break;
4868 		} else if (!list_empty(&cset->mg_tasks)) {
4869 			it->cur_tasks_head = &cset->mg_tasks;
4870 			break;
4871 		} else if (!list_empty(&cset->dying_tasks)) {
4872 			it->cur_tasks_head = &cset->dying_tasks;
4873 			break;
4874 		}
4875 	}
4876 	if (!cset) {
4877 		it->task_pos = NULL;
4878 		return;
4879 	}
4880 	it->task_pos = it->cur_tasks_head->next;
4881 
4882 	/*
4883 	 * We don't keep css_sets locked across iteration steps and thus
4884 	 * need to take steps to ensure that iteration can be resumed after
4885 	 * the lock is re-acquired.  Iteration is performed at two levels -
4886 	 * css_sets and tasks in them.
4887 	 *
4888 	 * Once created, a css_set never leaves its cgroup lists, so a
4889 	 * pinned css_set is guaranteed to stay put and we can resume
4890 	 * iteration afterwards.
4891 	 *
4892 	 * Tasks may leave @cset across iteration steps.  This is resolved
4893 	 * by registering each iterator with the css_set currently being
4894 	 * walked and making css_set_move_task() advance iterators whose
4895 	 * next task is leaving.
4896 	 */
4897 	if (it->cur_cset) {
4898 		list_del(&it->iters_node);
4899 		put_css_set_locked(it->cur_cset);
4900 	}
4901 	get_css_set(cset);
4902 	it->cur_cset = cset;
4903 	list_add(&it->iters_node, &cset->task_iters);
4904 }
4905 
css_task_iter_skip(struct css_task_iter * it,struct task_struct * task)4906 static void css_task_iter_skip(struct css_task_iter *it,
4907 			       struct task_struct *task)
4908 {
4909 	lockdep_assert_held(&css_set_lock);
4910 
4911 	if (it->task_pos == &task->cg_list) {
4912 		it->task_pos = it->task_pos->next;
4913 		it->flags |= CSS_TASK_ITER_SKIPPED;
4914 	}
4915 }
4916 
css_task_iter_advance(struct css_task_iter * it)4917 static void css_task_iter_advance(struct css_task_iter *it)
4918 {
4919 	struct task_struct *task;
4920 
4921 	lockdep_assert_held(&css_set_lock);
4922 repeat:
4923 	if (it->task_pos) {
4924 		/*
4925 		 * Advance iterator to find next entry. We go through cset
4926 		 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4927 		 * the next cset.
4928 		 */
4929 		if (it->flags & CSS_TASK_ITER_SKIPPED)
4930 			it->flags &= ~CSS_TASK_ITER_SKIPPED;
4931 		else
4932 			it->task_pos = it->task_pos->next;
4933 
4934 		if (it->task_pos == &it->cur_cset->tasks) {
4935 			it->cur_tasks_head = &it->cur_cset->mg_tasks;
4936 			it->task_pos = it->cur_tasks_head->next;
4937 		}
4938 		if (it->task_pos == &it->cur_cset->mg_tasks) {
4939 			it->cur_tasks_head = &it->cur_cset->dying_tasks;
4940 			it->task_pos = it->cur_tasks_head->next;
4941 		}
4942 		if (it->task_pos == &it->cur_cset->dying_tasks)
4943 			css_task_iter_advance_css_set(it);
4944 	} else {
4945 		/* called from start, proceed to the first cset */
4946 		css_task_iter_advance_css_set(it);
4947 	}
4948 
4949 	if (!it->task_pos)
4950 		return;
4951 
4952 	task = list_entry(it->task_pos, struct task_struct, cg_list);
4953 
4954 	if (it->flags & CSS_TASK_ITER_PROCS) {
4955 		/* if PROCS, skip over tasks which aren't group leaders */
4956 		if (!thread_group_leader(task))
4957 			goto repeat;
4958 
4959 		/* and dying leaders w/o live member threads */
4960 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4961 		    !atomic_read(&task->signal->live))
4962 			goto repeat;
4963 	} else {
4964 		/* skip all dying ones */
4965 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4966 			goto repeat;
4967 	}
4968 }
4969 
4970 /**
4971  * css_task_iter_start - initiate task iteration
4972  * @css: the css to walk tasks of
4973  * @flags: CSS_TASK_ITER_* flags
4974  * @it: the task iterator to use
4975  *
4976  * Initiate iteration through the tasks of @css.  The caller can call
4977  * css_task_iter_next() to walk through the tasks until the function
4978  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4979  * called.
4980  */
css_task_iter_start(struct cgroup_subsys_state * css,unsigned int flags,struct css_task_iter * it)4981 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4982 			 struct css_task_iter *it)
4983 {
4984 	unsigned long irqflags;
4985 
4986 	memset(it, 0, sizeof(*it));
4987 
4988 	spin_lock_irqsave(&css_set_lock, irqflags);
4989 
4990 	it->ss = css->ss;
4991 	it->flags = flags;
4992 
4993 	if (CGROUP_HAS_SUBSYS_CONFIG && it->ss)
4994 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4995 	else
4996 		it->cset_pos = &css->cgroup->cset_links;
4997 
4998 	it->cset_head = it->cset_pos;
4999 
5000 	css_task_iter_advance(it);
5001 
5002 	spin_unlock_irqrestore(&css_set_lock, irqflags);
5003 }
5004 
5005 /**
5006  * css_task_iter_next - return the next task for the iterator
5007  * @it: the task iterator being iterated
5008  *
5009  * The "next" function for task iteration.  @it should have been
5010  * initialized via css_task_iter_start().  Returns NULL when the iteration
5011  * reaches the end.
5012  */
css_task_iter_next(struct css_task_iter * it)5013 struct task_struct *css_task_iter_next(struct css_task_iter *it)
5014 {
5015 	unsigned long irqflags;
5016 
5017 	if (it->cur_task) {
5018 		put_task_struct(it->cur_task);
5019 		it->cur_task = NULL;
5020 	}
5021 
5022 	spin_lock_irqsave(&css_set_lock, irqflags);
5023 
5024 	/* @it may be half-advanced by skips, finish advancing */
5025 	if (it->flags & CSS_TASK_ITER_SKIPPED)
5026 		css_task_iter_advance(it);
5027 
5028 	if (it->task_pos) {
5029 		it->cur_task = list_entry(it->task_pos, struct task_struct,
5030 					  cg_list);
5031 		get_task_struct(it->cur_task);
5032 		css_task_iter_advance(it);
5033 	}
5034 
5035 	spin_unlock_irqrestore(&css_set_lock, irqflags);
5036 
5037 	return it->cur_task;
5038 }
5039 
5040 /**
5041  * css_task_iter_end - finish task iteration
5042  * @it: the task iterator to finish
5043  *
5044  * Finish task iteration started by css_task_iter_start().
5045  */
css_task_iter_end(struct css_task_iter * it)5046 void css_task_iter_end(struct css_task_iter *it)
5047 {
5048 	unsigned long irqflags;
5049 
5050 	if (it->cur_cset) {
5051 		spin_lock_irqsave(&css_set_lock, irqflags);
5052 		list_del(&it->iters_node);
5053 		put_css_set_locked(it->cur_cset);
5054 		spin_unlock_irqrestore(&css_set_lock, irqflags);
5055 	}
5056 
5057 	if (it->cur_dcset)
5058 		put_css_set(it->cur_dcset);
5059 
5060 	if (it->cur_task)
5061 		put_task_struct(it->cur_task);
5062 }
5063 
cgroup_procs_release(struct kernfs_open_file * of)5064 static void cgroup_procs_release(struct kernfs_open_file *of)
5065 {
5066 	struct cgroup_file_ctx *ctx = of->priv;
5067 
5068 	if (ctx->procs.started)
5069 		css_task_iter_end(&ctx->procs.iter);
5070 }
5071 
cgroup_procs_next(struct seq_file * s,void * v,loff_t * pos)5072 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
5073 {
5074 	struct kernfs_open_file *of = s->private;
5075 	struct cgroup_file_ctx *ctx = of->priv;
5076 
5077 	if (pos)
5078 		(*pos)++;
5079 
5080 	return css_task_iter_next(&ctx->procs.iter);
5081 }
5082 
__cgroup_procs_start(struct seq_file * s,loff_t * pos,unsigned int iter_flags)5083 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
5084 				  unsigned int iter_flags)
5085 {
5086 	struct kernfs_open_file *of = s->private;
5087 	struct cgroup *cgrp = seq_css(s)->cgroup;
5088 	struct cgroup_file_ctx *ctx = of->priv;
5089 	struct css_task_iter *it = &ctx->procs.iter;
5090 
5091 	/*
5092 	 * When a seq_file is seeked, it's always traversed sequentially
5093 	 * from position 0, so we can simply keep iterating on !0 *pos.
5094 	 */
5095 	if (!ctx->procs.started) {
5096 		if (WARN_ON_ONCE((*pos)))
5097 			return ERR_PTR(-EINVAL);
5098 		css_task_iter_start(&cgrp->self, iter_flags, it);
5099 		ctx->procs.started = true;
5100 	} else if (!(*pos)) {
5101 		css_task_iter_end(it);
5102 		css_task_iter_start(&cgrp->self, iter_flags, it);
5103 	} else
5104 		return it->cur_task;
5105 
5106 	return cgroup_procs_next(s, NULL, NULL);
5107 }
5108 
cgroup_procs_start(struct seq_file * s,loff_t * pos)5109 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
5110 {
5111 	struct cgroup *cgrp = seq_css(s)->cgroup;
5112 
5113 	/*
5114 	 * All processes of a threaded subtree belong to the domain cgroup
5115 	 * of the subtree.  Only threads can be distributed across the
5116 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
5117 	 * They're always empty anyway.
5118 	 */
5119 	if (cgroup_is_threaded(cgrp))
5120 		return ERR_PTR(-EOPNOTSUPP);
5121 
5122 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
5123 					    CSS_TASK_ITER_THREADED);
5124 }
5125 
cgroup_procs_show(struct seq_file * s,void * v)5126 static int cgroup_procs_show(struct seq_file *s, void *v)
5127 {
5128 	seq_printf(s, "%d\n", task_pid_vnr(v));
5129 	return 0;
5130 }
5131 
cgroup_may_write(const struct cgroup * cgrp,struct super_block * sb)5132 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
5133 {
5134 	int ret;
5135 	struct inode *inode;
5136 
5137 	lockdep_assert_held(&cgroup_mutex);
5138 
5139 	inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
5140 	if (!inode)
5141 		return -ENOMEM;
5142 
5143 	ret = inode_permission(&nop_mnt_idmap, inode, MAY_WRITE);
5144 	iput(inode);
5145 	return ret;
5146 }
5147 
cgroup_procs_write_permission(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,struct cgroup_namespace * ns)5148 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
5149 					 struct cgroup *dst_cgrp,
5150 					 struct super_block *sb,
5151 					 struct cgroup_namespace *ns)
5152 {
5153 	struct cgroup *com_cgrp = src_cgrp;
5154 	int ret;
5155 
5156 	lockdep_assert_held(&cgroup_mutex);
5157 
5158 	/* find the common ancestor */
5159 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
5160 		com_cgrp = cgroup_parent(com_cgrp);
5161 
5162 	/* %current should be authorized to migrate to the common ancestor */
5163 	ret = cgroup_may_write(com_cgrp, sb);
5164 	if (ret)
5165 		return ret;
5166 
5167 	/*
5168 	 * If namespaces are delegation boundaries, %current must be able
5169 	 * to see both source and destination cgroups from its namespace.
5170 	 */
5171 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
5172 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
5173 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
5174 		return -ENOENT;
5175 
5176 	return 0;
5177 }
5178 
cgroup_attach_permissions(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,bool threadgroup,struct cgroup_namespace * ns)5179 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
5180 				     struct cgroup *dst_cgrp,
5181 				     struct super_block *sb, bool threadgroup,
5182 				     struct cgroup_namespace *ns)
5183 {
5184 	int ret = 0;
5185 
5186 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
5187 	if (ret)
5188 		return ret;
5189 
5190 	ret = cgroup_migrate_vet_dst(dst_cgrp);
5191 	if (ret)
5192 		return ret;
5193 
5194 	if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
5195 		ret = -EOPNOTSUPP;
5196 
5197 	return ret;
5198 }
5199 
__cgroup_procs_write(struct kernfs_open_file * of,char * buf,bool threadgroup)5200 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
5201 				    bool threadgroup)
5202 {
5203 	struct cgroup_file_ctx *ctx = of->priv;
5204 	struct cgroup *src_cgrp, *dst_cgrp;
5205 	struct task_struct *task;
5206 	const struct cred *saved_cred;
5207 	ssize_t ret;
5208 	bool threadgroup_locked;
5209 
5210 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
5211 	if (!dst_cgrp)
5212 		return -ENODEV;
5213 
5214 	task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked);
5215 	ret = PTR_ERR_OR_ZERO(task);
5216 	if (ret)
5217 		goto out_unlock;
5218 
5219 	/* find the source cgroup */
5220 	spin_lock_irq(&css_set_lock);
5221 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
5222 	spin_unlock_irq(&css_set_lock);
5223 
5224 	/*
5225 	 * Process and thread migrations follow same delegation rule. Check
5226 	 * permissions using the credentials from file open to protect against
5227 	 * inherited fd attacks.
5228 	 */
5229 	saved_cred = override_creds(of->file->f_cred);
5230 	ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
5231 					of->file->f_path.dentry->d_sb,
5232 					threadgroup, ctx->ns);
5233 	revert_creds(saved_cred);
5234 	if (ret)
5235 		goto out_finish;
5236 
5237 	ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
5238 
5239 out_finish:
5240 	cgroup_procs_write_finish(task, threadgroup_locked);
5241 out_unlock:
5242 	cgroup_kn_unlock(of->kn);
5243 
5244 	return ret;
5245 }
5246 
cgroup_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5247 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
5248 				  char *buf, size_t nbytes, loff_t off)
5249 {
5250 	return __cgroup_procs_write(of, buf, true) ?: nbytes;
5251 }
5252 
cgroup_threads_start(struct seq_file * s,loff_t * pos)5253 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
5254 {
5255 	return __cgroup_procs_start(s, pos, 0);
5256 }
5257 
cgroup_threads_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5258 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
5259 				    char *buf, size_t nbytes, loff_t off)
5260 {
5261 	return __cgroup_procs_write(of, buf, false) ?: nbytes;
5262 }
5263 
5264 /* cgroup core interface files for the default hierarchy */
5265 static struct cftype cgroup_base_files[] = {
5266 	{
5267 		.name = "cgroup.type",
5268 		.flags = CFTYPE_NOT_ON_ROOT,
5269 		.seq_show = cgroup_type_show,
5270 		.write = cgroup_type_write,
5271 	},
5272 	{
5273 		.name = "cgroup.procs",
5274 		.flags = CFTYPE_NS_DELEGATABLE,
5275 		.file_offset = offsetof(struct cgroup, procs_file),
5276 		.release = cgroup_procs_release,
5277 		.seq_start = cgroup_procs_start,
5278 		.seq_next = cgroup_procs_next,
5279 		.seq_show = cgroup_procs_show,
5280 		.write = cgroup_procs_write,
5281 	},
5282 	{
5283 		.name = "cgroup.threads",
5284 		.flags = CFTYPE_NS_DELEGATABLE,
5285 		.release = cgroup_procs_release,
5286 		.seq_start = cgroup_threads_start,
5287 		.seq_next = cgroup_procs_next,
5288 		.seq_show = cgroup_procs_show,
5289 		.write = cgroup_threads_write,
5290 	},
5291 	{
5292 		.name = "cgroup.controllers",
5293 		.seq_show = cgroup_controllers_show,
5294 	},
5295 	{
5296 		.name = "cgroup.subtree_control",
5297 		.flags = CFTYPE_NS_DELEGATABLE,
5298 		.seq_show = cgroup_subtree_control_show,
5299 		.write = cgroup_subtree_control_write,
5300 	},
5301 	{
5302 		.name = "cgroup.events",
5303 		.flags = CFTYPE_NOT_ON_ROOT,
5304 		.file_offset = offsetof(struct cgroup, events_file),
5305 		.seq_show = cgroup_events_show,
5306 	},
5307 	{
5308 		.name = "cgroup.max.descendants",
5309 		.seq_show = cgroup_max_descendants_show,
5310 		.write = cgroup_max_descendants_write,
5311 	},
5312 	{
5313 		.name = "cgroup.max.depth",
5314 		.seq_show = cgroup_max_depth_show,
5315 		.write = cgroup_max_depth_write,
5316 	},
5317 	{
5318 		.name = "cgroup.stat",
5319 		.seq_show = cgroup_stat_show,
5320 	},
5321 	{
5322 		.name = "cgroup.freeze",
5323 		.flags = CFTYPE_NOT_ON_ROOT,
5324 		.seq_show = cgroup_freeze_show,
5325 		.write = cgroup_freeze_write,
5326 	},
5327 	{
5328 		.name = "cgroup.kill",
5329 		.flags = CFTYPE_NOT_ON_ROOT,
5330 		.write = cgroup_kill_write,
5331 	},
5332 	{
5333 		.name = "cpu.stat",
5334 		.seq_show = cpu_stat_show,
5335 	},
5336 	{
5337 		.name = "cpu.stat.local",
5338 		.seq_show = cpu_local_stat_show,
5339 	},
5340 	{ }	/* terminate */
5341 };
5342 
5343 static struct cftype cgroup_psi_files[] = {
5344 #ifdef CONFIG_PSI
5345 	{
5346 		.name = "io.pressure",
5347 		.file_offset = offsetof(struct cgroup, psi_files[PSI_IO]),
5348 		.seq_show = cgroup_io_pressure_show,
5349 		.write = cgroup_io_pressure_write,
5350 		.poll = cgroup_pressure_poll,
5351 		.release = cgroup_pressure_release,
5352 	},
5353 	{
5354 		.name = "memory.pressure",
5355 		.file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]),
5356 		.seq_show = cgroup_memory_pressure_show,
5357 		.write = cgroup_memory_pressure_write,
5358 		.poll = cgroup_pressure_poll,
5359 		.release = cgroup_pressure_release,
5360 	},
5361 	{
5362 		.name = "cpu.pressure",
5363 		.file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]),
5364 		.seq_show = cgroup_cpu_pressure_show,
5365 		.write = cgroup_cpu_pressure_write,
5366 		.poll = cgroup_pressure_poll,
5367 		.release = cgroup_pressure_release,
5368 	},
5369 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
5370 	{
5371 		.name = "irq.pressure",
5372 		.file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]),
5373 		.seq_show = cgroup_irq_pressure_show,
5374 		.write = cgroup_irq_pressure_write,
5375 		.poll = cgroup_pressure_poll,
5376 		.release = cgroup_pressure_release,
5377 	},
5378 #endif
5379 	{
5380 		.name = "cgroup.pressure",
5381 		.seq_show = cgroup_pressure_show,
5382 		.write = cgroup_pressure_write,
5383 	},
5384 #endif /* CONFIG_PSI */
5385 	{ }	/* terminate */
5386 };
5387 
5388 /*
5389  * css destruction is four-stage process.
5390  *
5391  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
5392  *    Implemented in kill_css().
5393  *
5394  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5395  *    and thus css_tryget_online() is guaranteed to fail, the css can be
5396  *    offlined by invoking offline_css().  After offlining, the base ref is
5397  *    put.  Implemented in css_killed_work_fn().
5398  *
5399  * 3. When the percpu_ref reaches zero, the only possible remaining
5400  *    accessors are inside RCU read sections.  css_release() schedules the
5401  *    RCU callback.
5402  *
5403  * 4. After the grace period, the css can be freed.  Implemented in
5404  *    css_free_rwork_fn().
5405  *
5406  * It is actually hairier because both step 2 and 4 require process context
5407  * and thus involve punting to css->destroy_work adding two additional
5408  * steps to the already complex sequence.
5409  */
css_free_rwork_fn(struct work_struct * work)5410 static void css_free_rwork_fn(struct work_struct *work)
5411 {
5412 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5413 				struct cgroup_subsys_state, destroy_rwork);
5414 	struct cgroup_subsys *ss = css->ss;
5415 	struct cgroup *cgrp = css->cgroup;
5416 
5417 	percpu_ref_exit(&css->refcnt);
5418 
5419 	if (ss) {
5420 		/* css free path */
5421 		struct cgroup_subsys_state *parent = css->parent;
5422 		int id = css->id;
5423 
5424 		ss->css_free(css);
5425 		cgroup_idr_remove(&ss->css_idr, id);
5426 		cgroup_put(cgrp);
5427 
5428 		if (parent)
5429 			css_put(parent);
5430 	} else {
5431 		/* cgroup free path */
5432 		atomic_dec(&cgrp->root->nr_cgrps);
5433 		if (!cgroup_on_dfl(cgrp))
5434 			cgroup1_pidlist_destroy_all(cgrp);
5435 		cancel_work_sync(&cgrp->release_agent_work);
5436 		bpf_cgrp_storage_free(cgrp);
5437 
5438 		if (cgroup_parent(cgrp)) {
5439 			/*
5440 			 * We get a ref to the parent, and put the ref when
5441 			 * this cgroup is being freed, so it's guaranteed
5442 			 * that the parent won't be destroyed before its
5443 			 * children.
5444 			 */
5445 			cgroup_put(cgroup_parent(cgrp));
5446 			kernfs_put(cgrp->kn);
5447 			psi_cgroup_free(cgrp);
5448 			cgroup_rstat_exit(cgrp);
5449 			kfree(cgrp);
5450 		} else {
5451 			/*
5452 			 * This is root cgroup's refcnt reaching zero,
5453 			 * which indicates that the root should be
5454 			 * released.
5455 			 */
5456 			cgroup_destroy_root(cgrp->root);
5457 		}
5458 	}
5459 }
5460 
css_release_work_fn(struct work_struct * work)5461 static void css_release_work_fn(struct work_struct *work)
5462 {
5463 	struct cgroup_subsys_state *css =
5464 		container_of(work, struct cgroup_subsys_state, destroy_work);
5465 	struct cgroup_subsys *ss = css->ss;
5466 	struct cgroup *cgrp = css->cgroup;
5467 
5468 	cgroup_lock();
5469 
5470 	css->flags |= CSS_RELEASED;
5471 	list_del_rcu(&css->sibling);
5472 
5473 	if (ss) {
5474 		struct cgroup *parent_cgrp;
5475 
5476 		/* css release path */
5477 		if (!list_empty(&css->rstat_css_node)) {
5478 			cgroup_rstat_flush(cgrp);
5479 			list_del_rcu(&css->rstat_css_node);
5480 		}
5481 
5482 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5483 		if (ss->css_released)
5484 			ss->css_released(css);
5485 
5486 		cgrp->nr_dying_subsys[ss->id]--;
5487 		/*
5488 		 * When a css is released and ready to be freed, its
5489 		 * nr_descendants must be zero. However, the corresponding
5490 		 * cgrp->nr_dying_subsys[ss->id] may not be 0 if a subsystem
5491 		 * is activated and deactivated multiple times with one or
5492 		 * more of its previous activation leaving behind dying csses.
5493 		 */
5494 		WARN_ON_ONCE(css->nr_descendants);
5495 		parent_cgrp = cgroup_parent(cgrp);
5496 		while (parent_cgrp) {
5497 			parent_cgrp->nr_dying_subsys[ss->id]--;
5498 			parent_cgrp = cgroup_parent(parent_cgrp);
5499 		}
5500 	} else {
5501 		struct cgroup *tcgrp;
5502 
5503 		/* cgroup release path */
5504 		TRACE_CGROUP_PATH(release, cgrp);
5505 
5506 		cgroup_rstat_flush(cgrp);
5507 
5508 		spin_lock_irq(&css_set_lock);
5509 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
5510 		     tcgrp = cgroup_parent(tcgrp))
5511 			tcgrp->nr_dying_descendants--;
5512 		spin_unlock_irq(&css_set_lock);
5513 
5514 		/*
5515 		 * There are two control paths which try to determine
5516 		 * cgroup from dentry without going through kernfs -
5517 		 * cgroupstats_build() and css_tryget_online_from_dir().
5518 		 * Those are supported by RCU protecting clearing of
5519 		 * cgrp->kn->priv backpointer.
5520 		 */
5521 		if (cgrp->kn)
5522 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5523 					 NULL);
5524 	}
5525 
5526 	cgroup_unlock();
5527 
5528 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5529 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5530 }
5531 
css_release(struct percpu_ref * ref)5532 static void css_release(struct percpu_ref *ref)
5533 {
5534 	struct cgroup_subsys_state *css =
5535 		container_of(ref, struct cgroup_subsys_state, refcnt);
5536 
5537 	INIT_WORK(&css->destroy_work, css_release_work_fn);
5538 	queue_work(cgroup_destroy_wq, &css->destroy_work);
5539 }
5540 
init_and_link_css(struct cgroup_subsys_state * css,struct cgroup_subsys * ss,struct cgroup * cgrp)5541 static void init_and_link_css(struct cgroup_subsys_state *css,
5542 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
5543 {
5544 	lockdep_assert_held(&cgroup_mutex);
5545 
5546 	cgroup_get_live(cgrp);
5547 
5548 	memset(css, 0, sizeof(*css));
5549 	css->cgroup = cgrp;
5550 	css->ss = ss;
5551 	css->id = -1;
5552 	INIT_LIST_HEAD(&css->sibling);
5553 	INIT_LIST_HEAD(&css->children);
5554 	INIT_LIST_HEAD(&css->rstat_css_node);
5555 	css->serial_nr = css_serial_nr_next++;
5556 	atomic_set(&css->online_cnt, 0);
5557 
5558 	if (cgroup_parent(cgrp)) {
5559 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5560 		css_get(css->parent);
5561 	}
5562 
5563 	if (ss->css_rstat_flush)
5564 		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5565 
5566 	BUG_ON(cgroup_css(cgrp, ss));
5567 }
5568 
5569 /* invoke ->css_online() on a new CSS and mark it online if successful */
online_css(struct cgroup_subsys_state * css)5570 static int online_css(struct cgroup_subsys_state *css)
5571 {
5572 	struct cgroup_subsys *ss = css->ss;
5573 	int ret = 0;
5574 
5575 	lockdep_assert_held(&cgroup_mutex);
5576 
5577 	if (ss->css_online)
5578 		ret = ss->css_online(css);
5579 	if (!ret) {
5580 		css->flags |= CSS_ONLINE;
5581 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5582 
5583 		atomic_inc(&css->online_cnt);
5584 		if (css->parent) {
5585 			atomic_inc(&css->parent->online_cnt);
5586 			while ((css = css->parent))
5587 				css->nr_descendants++;
5588 		}
5589 	}
5590 	return ret;
5591 }
5592 
5593 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
offline_css(struct cgroup_subsys_state * css)5594 static void offline_css(struct cgroup_subsys_state *css)
5595 {
5596 	struct cgroup_subsys *ss = css->ss;
5597 
5598 	lockdep_assert_held(&cgroup_mutex);
5599 
5600 	if (!(css->flags & CSS_ONLINE))
5601 		return;
5602 
5603 	if (ss->css_offline)
5604 		ss->css_offline(css);
5605 
5606 	css->flags &= ~CSS_ONLINE;
5607 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5608 
5609 	wake_up_all(&css->cgroup->offline_waitq);
5610 
5611 	css->cgroup->nr_dying_subsys[ss->id]++;
5612 	/*
5613 	 * Parent css and cgroup cannot be freed until after the freeing
5614 	 * of child css, see css_free_rwork_fn().
5615 	 */
5616 	while ((css = css->parent)) {
5617 		css->nr_descendants--;
5618 		css->cgroup->nr_dying_subsys[ss->id]++;
5619 	}
5620 }
5621 
5622 /**
5623  * css_create - create a cgroup_subsys_state
5624  * @cgrp: the cgroup new css will be associated with
5625  * @ss: the subsys of new css
5626  *
5627  * Create a new css associated with @cgrp - @ss pair.  On success, the new
5628  * css is online and installed in @cgrp.  This function doesn't create the
5629  * interface files.  Returns 0 on success, -errno on failure.
5630  */
css_create(struct cgroup * cgrp,struct cgroup_subsys * ss)5631 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5632 					      struct cgroup_subsys *ss)
5633 {
5634 	struct cgroup *parent = cgroup_parent(cgrp);
5635 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5636 	struct cgroup_subsys_state *css;
5637 	int err;
5638 
5639 	lockdep_assert_held(&cgroup_mutex);
5640 
5641 	css = ss->css_alloc(parent_css);
5642 	if (!css)
5643 		css = ERR_PTR(-ENOMEM);
5644 	if (IS_ERR(css))
5645 		return css;
5646 
5647 	init_and_link_css(css, ss, cgrp);
5648 
5649 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5650 	if (err)
5651 		goto err_free_css;
5652 
5653 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5654 	if (err < 0)
5655 		goto err_free_css;
5656 	css->id = err;
5657 
5658 	/* @css is ready to be brought online now, make it visible */
5659 	list_add_tail_rcu(&css->sibling, &parent_css->children);
5660 	cgroup_idr_replace(&ss->css_idr, css, css->id);
5661 
5662 	err = online_css(css);
5663 	if (err)
5664 		goto err_list_del;
5665 
5666 	return css;
5667 
5668 err_list_del:
5669 	list_del_rcu(&css->sibling);
5670 err_free_css:
5671 	list_del_rcu(&css->rstat_css_node);
5672 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5673 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5674 	return ERR_PTR(err);
5675 }
5676 
5677 /*
5678  * The returned cgroup is fully initialized including its control mask, but
5679  * it doesn't have the control mask applied.
5680  */
cgroup_create(struct cgroup * parent,const char * name,umode_t mode)5681 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5682 				    umode_t mode)
5683 {
5684 	struct cgroup_root *root = parent->root;
5685 	struct cgroup *cgrp, *tcgrp;
5686 	struct kernfs_node *kn;
5687 	int level = parent->level + 1;
5688 	int ret;
5689 
5690 	/* allocate the cgroup and its ID, 0 is reserved for the root */
5691 	cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL);
5692 	if (!cgrp)
5693 		return ERR_PTR(-ENOMEM);
5694 
5695 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5696 	if (ret)
5697 		goto out_free_cgrp;
5698 
5699 	ret = cgroup_rstat_init(cgrp);
5700 	if (ret)
5701 		goto out_cancel_ref;
5702 
5703 	/* create the directory */
5704 	kn = kernfs_create_dir_ns(parent->kn, name, mode,
5705 				  current_fsuid(), current_fsgid(),
5706 				  cgrp, NULL);
5707 	if (IS_ERR(kn)) {
5708 		ret = PTR_ERR(kn);
5709 		goto out_stat_exit;
5710 	}
5711 	cgrp->kn = kn;
5712 
5713 	init_cgroup_housekeeping(cgrp);
5714 
5715 	cgrp->self.parent = &parent->self;
5716 	cgrp->root = root;
5717 	cgrp->level = level;
5718 
5719 	ret = psi_cgroup_alloc(cgrp);
5720 	if (ret)
5721 		goto out_kernfs_remove;
5722 
5723 	if (cgrp->root == &cgrp_dfl_root) {
5724 		ret = cgroup_bpf_inherit(cgrp);
5725 		if (ret)
5726 			goto out_psi_free;
5727 	}
5728 
5729 	/*
5730 	 * New cgroup inherits effective freeze counter, and
5731 	 * if the parent has to be frozen, the child has too.
5732 	 */
5733 	cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5734 	if (cgrp->freezer.e_freeze) {
5735 		/*
5736 		 * Set the CGRP_FREEZE flag, so when a process will be
5737 		 * attached to the child cgroup, it will become frozen.
5738 		 * At this point the new cgroup is unpopulated, so we can
5739 		 * consider it frozen immediately.
5740 		 */
5741 		set_bit(CGRP_FREEZE, &cgrp->flags);
5742 		set_bit(CGRP_FROZEN, &cgrp->flags);
5743 	}
5744 
5745 	spin_lock_irq(&css_set_lock);
5746 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5747 		cgrp->ancestors[tcgrp->level] = tcgrp;
5748 
5749 		if (tcgrp != cgrp) {
5750 			tcgrp->nr_descendants++;
5751 
5752 			/*
5753 			 * If the new cgroup is frozen, all ancestor cgroups
5754 			 * get a new frozen descendant, but their state can't
5755 			 * change because of this.
5756 			 */
5757 			if (cgrp->freezer.e_freeze)
5758 				tcgrp->freezer.nr_frozen_descendants++;
5759 		}
5760 	}
5761 	spin_unlock_irq(&css_set_lock);
5762 
5763 	if (notify_on_release(parent))
5764 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5765 
5766 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5767 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5768 
5769 	cgrp->self.serial_nr = css_serial_nr_next++;
5770 
5771 	/* allocation complete, commit to creation */
5772 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5773 	atomic_inc(&root->nr_cgrps);
5774 	cgroup_get_live(parent);
5775 
5776 	/*
5777 	 * On the default hierarchy, a child doesn't automatically inherit
5778 	 * subtree_control from the parent.  Each is configured manually.
5779 	 */
5780 	if (!cgroup_on_dfl(cgrp))
5781 		cgrp->subtree_control = cgroup_control(cgrp);
5782 
5783 	cgroup_propagate_control(cgrp);
5784 
5785 	return cgrp;
5786 
5787 out_psi_free:
5788 	psi_cgroup_free(cgrp);
5789 out_kernfs_remove:
5790 	kernfs_remove(cgrp->kn);
5791 out_stat_exit:
5792 	cgroup_rstat_exit(cgrp);
5793 out_cancel_ref:
5794 	percpu_ref_exit(&cgrp->self.refcnt);
5795 out_free_cgrp:
5796 	kfree(cgrp);
5797 	return ERR_PTR(ret);
5798 }
5799 
cgroup_check_hierarchy_limits(struct cgroup * parent)5800 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5801 {
5802 	struct cgroup *cgroup;
5803 	int ret = false;
5804 	int level = 0;
5805 
5806 	lockdep_assert_held(&cgroup_mutex);
5807 
5808 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5809 		if (cgroup->nr_descendants >= cgroup->max_descendants)
5810 			goto fail;
5811 
5812 		if (level >= cgroup->max_depth)
5813 			goto fail;
5814 
5815 		level++;
5816 	}
5817 
5818 	ret = true;
5819 fail:
5820 	return ret;
5821 }
5822 
cgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)5823 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5824 {
5825 	struct cgroup *parent, *cgrp;
5826 	int ret;
5827 
5828 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5829 	if (strchr(name, '\n'))
5830 		return -EINVAL;
5831 
5832 	parent = cgroup_kn_lock_live(parent_kn, false);
5833 	if (!parent)
5834 		return -ENODEV;
5835 
5836 	if (!cgroup_check_hierarchy_limits(parent)) {
5837 		ret = -EAGAIN;
5838 		goto out_unlock;
5839 	}
5840 
5841 	cgrp = cgroup_create(parent, name, mode);
5842 	if (IS_ERR(cgrp)) {
5843 		ret = PTR_ERR(cgrp);
5844 		goto out_unlock;
5845 	}
5846 
5847 	/*
5848 	 * This extra ref will be put in css_free_rwork_fn() and guarantees
5849 	 * that @cgrp->kn is always accessible.
5850 	 */
5851 	kernfs_get(cgrp->kn);
5852 
5853 	ret = css_populate_dir(&cgrp->self);
5854 	if (ret)
5855 		goto out_destroy;
5856 
5857 	ret = cgroup_apply_control_enable(cgrp);
5858 	if (ret)
5859 		goto out_destroy;
5860 
5861 	TRACE_CGROUP_PATH(mkdir, cgrp);
5862 
5863 	/* let's create and online css's */
5864 	kernfs_activate(cgrp->kn);
5865 
5866 	ret = 0;
5867 	goto out_unlock;
5868 
5869 out_destroy:
5870 	cgroup_destroy_locked(cgrp);
5871 out_unlock:
5872 	cgroup_kn_unlock(parent_kn);
5873 	return ret;
5874 }
5875 
5876 /*
5877  * This is called when the refcnt of a css is confirmed to be killed.
5878  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5879  * initiate destruction and put the css ref from kill_css().
5880  */
css_killed_work_fn(struct work_struct * work)5881 static void css_killed_work_fn(struct work_struct *work)
5882 {
5883 	struct cgroup_subsys_state *css =
5884 		container_of(work, struct cgroup_subsys_state, destroy_work);
5885 
5886 	cgroup_lock();
5887 
5888 	do {
5889 		offline_css(css);
5890 		css_put(css);
5891 		/* @css can't go away while we're holding cgroup_mutex */
5892 		css = css->parent;
5893 	} while (css && atomic_dec_and_test(&css->online_cnt));
5894 
5895 	cgroup_unlock();
5896 }
5897 
5898 /* css kill confirmation processing requires process context, bounce */
css_killed_ref_fn(struct percpu_ref * ref)5899 static void css_killed_ref_fn(struct percpu_ref *ref)
5900 {
5901 	struct cgroup_subsys_state *css =
5902 		container_of(ref, struct cgroup_subsys_state, refcnt);
5903 
5904 	if (atomic_dec_and_test(&css->online_cnt)) {
5905 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5906 		queue_work(cgroup_destroy_wq, &css->destroy_work);
5907 	}
5908 }
5909 
5910 /**
5911  * kill_css - destroy a css
5912  * @css: css to destroy
5913  *
5914  * This function initiates destruction of @css by removing cgroup interface
5915  * files and putting its base reference.  ->css_offline() will be invoked
5916  * asynchronously once css_tryget_online() is guaranteed to fail and when
5917  * the reference count reaches zero, @css will be released.
5918  */
kill_css(struct cgroup_subsys_state * css)5919 static void kill_css(struct cgroup_subsys_state *css)
5920 {
5921 	lockdep_assert_held(&cgroup_mutex);
5922 
5923 	if (css->flags & CSS_DYING)
5924 		return;
5925 
5926 	css->flags |= CSS_DYING;
5927 
5928 	/*
5929 	 * This must happen before css is disassociated with its cgroup.
5930 	 * See seq_css() for details.
5931 	 */
5932 	css_clear_dir(css);
5933 
5934 	/*
5935 	 * Killing would put the base ref, but we need to keep it alive
5936 	 * until after ->css_offline().
5937 	 */
5938 	css_get(css);
5939 
5940 	/*
5941 	 * cgroup core guarantees that, by the time ->css_offline() is
5942 	 * invoked, no new css reference will be given out via
5943 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5944 	 * proceed to offlining css's because percpu_ref_kill() doesn't
5945 	 * guarantee that the ref is seen as killed on all CPUs on return.
5946 	 *
5947 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5948 	 * css is confirmed to be seen as killed on all CPUs.
5949 	 */
5950 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5951 }
5952 
5953 /**
5954  * cgroup_destroy_locked - the first stage of cgroup destruction
5955  * @cgrp: cgroup to be destroyed
5956  *
5957  * css's make use of percpu refcnts whose killing latency shouldn't be
5958  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5959  * guarantee that css_tryget_online() won't succeed by the time
5960  * ->css_offline() is invoked.  To satisfy all the requirements,
5961  * destruction is implemented in the following two steps.
5962  *
5963  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5964  *     userland visible parts and start killing the percpu refcnts of
5965  *     css's.  Set up so that the next stage will be kicked off once all
5966  *     the percpu refcnts are confirmed to be killed.
5967  *
5968  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5969  *     rest of destruction.  Once all cgroup references are gone, the
5970  *     cgroup is RCU-freed.
5971  *
5972  * This function implements s1.  After this step, @cgrp is gone as far as
5973  * the userland is concerned and a new cgroup with the same name may be
5974  * created.  As cgroup doesn't care about the names internally, this
5975  * doesn't cause any problem.
5976  */
cgroup_destroy_locked(struct cgroup * cgrp)5977 static int cgroup_destroy_locked(struct cgroup *cgrp)
5978 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5979 {
5980 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5981 	struct cgroup_subsys_state *css;
5982 	struct cgrp_cset_link *link;
5983 	int ssid;
5984 
5985 	lockdep_assert_held(&cgroup_mutex);
5986 
5987 	/*
5988 	 * Only migration can raise populated from zero and we're already
5989 	 * holding cgroup_mutex.
5990 	 */
5991 	if (cgroup_is_populated(cgrp))
5992 		return -EBUSY;
5993 
5994 	/*
5995 	 * Make sure there's no live children.  We can't test emptiness of
5996 	 * ->self.children as dead children linger on it while being
5997 	 * drained; otherwise, "rmdir parent/child parent" may fail.
5998 	 */
5999 	if (css_has_online_children(&cgrp->self))
6000 		return -EBUSY;
6001 
6002 	/*
6003 	 * Mark @cgrp and the associated csets dead.  The former prevents
6004 	 * further task migration and child creation by disabling
6005 	 * cgroup_kn_lock_live().  The latter makes the csets ignored by
6006 	 * the migration path.
6007 	 */
6008 	cgrp->self.flags &= ~CSS_ONLINE;
6009 
6010 	spin_lock_irq(&css_set_lock);
6011 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
6012 		link->cset->dead = true;
6013 	spin_unlock_irq(&css_set_lock);
6014 
6015 	/* initiate massacre of all css's */
6016 	for_each_css(css, ssid, cgrp)
6017 		kill_css(css);
6018 
6019 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
6020 	css_clear_dir(&cgrp->self);
6021 	kernfs_remove(cgrp->kn);
6022 
6023 	if (cgroup_is_threaded(cgrp))
6024 		parent->nr_threaded_children--;
6025 
6026 	spin_lock_irq(&css_set_lock);
6027 	for (tcgrp = parent; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
6028 		tcgrp->nr_descendants--;
6029 		tcgrp->nr_dying_descendants++;
6030 		/*
6031 		 * If the dying cgroup is frozen, decrease frozen descendants
6032 		 * counters of ancestor cgroups.
6033 		 */
6034 		if (test_bit(CGRP_FROZEN, &cgrp->flags))
6035 			tcgrp->freezer.nr_frozen_descendants--;
6036 	}
6037 	spin_unlock_irq(&css_set_lock);
6038 
6039 	cgroup1_check_for_release(parent);
6040 
6041 	if (cgrp->root == &cgrp_dfl_root)
6042 		cgroup_bpf_offline(cgrp);
6043 
6044 	/* put the base reference */
6045 	percpu_ref_kill(&cgrp->self.refcnt);
6046 
6047 	return 0;
6048 };
6049 
cgroup_rmdir(struct kernfs_node * kn)6050 int cgroup_rmdir(struct kernfs_node *kn)
6051 {
6052 	struct cgroup *cgrp;
6053 	int ret = 0;
6054 
6055 	cgrp = cgroup_kn_lock_live(kn, false);
6056 	if (!cgrp)
6057 		return 0;
6058 
6059 	ret = cgroup_destroy_locked(cgrp);
6060 	if (!ret)
6061 		TRACE_CGROUP_PATH(rmdir, cgrp);
6062 
6063 	cgroup_kn_unlock(kn);
6064 	return ret;
6065 }
6066 
6067 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
6068 	.show_options		= cgroup_show_options,
6069 	.mkdir			= cgroup_mkdir,
6070 	.rmdir			= cgroup_rmdir,
6071 	.show_path		= cgroup_show_path,
6072 };
6073 
cgroup_init_subsys(struct cgroup_subsys * ss,bool early)6074 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
6075 {
6076 	struct cgroup_subsys_state *css;
6077 
6078 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
6079 
6080 	cgroup_lock();
6081 
6082 	idr_init(&ss->css_idr);
6083 	INIT_LIST_HEAD(&ss->cfts);
6084 
6085 	/* Create the root cgroup state for this subsystem */
6086 	ss->root = &cgrp_dfl_root;
6087 	css = ss->css_alloc(NULL);
6088 	/* We don't handle early failures gracefully */
6089 	BUG_ON(IS_ERR(css));
6090 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
6091 
6092 	/*
6093 	 * Root csses are never destroyed and we can't initialize
6094 	 * percpu_ref during early init.  Disable refcnting.
6095 	 */
6096 	css->flags |= CSS_NO_REF;
6097 
6098 	if (early) {
6099 		/* allocation can't be done safely during early init */
6100 		css->id = 1;
6101 	} else {
6102 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
6103 		BUG_ON(css->id < 0);
6104 	}
6105 
6106 	/* Update the init_css_set to contain a subsys
6107 	 * pointer to this state - since the subsystem is
6108 	 * newly registered, all tasks and hence the
6109 	 * init_css_set is in the subsystem's root cgroup. */
6110 	init_css_set.subsys[ss->id] = css;
6111 
6112 	have_fork_callback |= (bool)ss->fork << ss->id;
6113 	have_exit_callback |= (bool)ss->exit << ss->id;
6114 	have_release_callback |= (bool)ss->release << ss->id;
6115 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
6116 
6117 	/* At system boot, before all subsystems have been
6118 	 * registered, no tasks have been forked, so we don't
6119 	 * need to invoke fork callbacks here. */
6120 	BUG_ON(!list_empty(&init_task.tasks));
6121 
6122 	BUG_ON(online_css(css));
6123 
6124 	cgroup_unlock();
6125 }
6126 
6127 /**
6128  * cgroup_init_early - cgroup initialization at system boot
6129  *
6130  * Initialize cgroups at system boot, and initialize any
6131  * subsystems that request early init.
6132  */
cgroup_init_early(void)6133 int __init cgroup_init_early(void)
6134 {
6135 	static struct cgroup_fs_context __initdata ctx;
6136 	struct cgroup_subsys *ss;
6137 	int i;
6138 
6139 	ctx.root = &cgrp_dfl_root;
6140 	init_cgroup_root(&ctx);
6141 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
6142 
6143 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
6144 
6145 	for_each_subsys(ss, i) {
6146 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
6147 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
6148 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
6149 		     ss->id, ss->name);
6150 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
6151 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
6152 
6153 		ss->id = i;
6154 		ss->name = cgroup_subsys_name[i];
6155 		if (!ss->legacy_name)
6156 			ss->legacy_name = cgroup_subsys_name[i];
6157 
6158 		if (ss->early_init)
6159 			cgroup_init_subsys(ss, true);
6160 	}
6161 	return 0;
6162 }
6163 
6164 /**
6165  * cgroup_init - cgroup initialization
6166  *
6167  * Register cgroup filesystem and /proc file, and initialize
6168  * any subsystems that didn't request early init.
6169  */
cgroup_init(void)6170 int __init cgroup_init(void)
6171 {
6172 	struct cgroup_subsys *ss;
6173 	int ssid;
6174 
6175 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
6176 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
6177 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files));
6178 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
6179 
6180 	cgroup_rstat_boot();
6181 
6182 	get_user_ns(init_cgroup_ns.user_ns);
6183 
6184 	cgroup_lock();
6185 
6186 	/*
6187 	 * Add init_css_set to the hash table so that dfl_root can link to
6188 	 * it during init.
6189 	 */
6190 	hash_add(css_set_table, &init_css_set.hlist,
6191 		 css_set_hash(init_css_set.subsys));
6192 
6193 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
6194 
6195 	cgroup_unlock();
6196 
6197 	for_each_subsys(ss, ssid) {
6198 		if (ss->early_init) {
6199 			struct cgroup_subsys_state *css =
6200 				init_css_set.subsys[ss->id];
6201 
6202 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
6203 						   GFP_KERNEL);
6204 			BUG_ON(css->id < 0);
6205 		} else {
6206 			cgroup_init_subsys(ss, false);
6207 		}
6208 
6209 		list_add_tail(&init_css_set.e_cset_node[ssid],
6210 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
6211 
6212 		/*
6213 		 * Setting dfl_root subsys_mask needs to consider the
6214 		 * disabled flag and cftype registration needs kmalloc,
6215 		 * both of which aren't available during early_init.
6216 		 */
6217 		if (!cgroup_ssid_enabled(ssid))
6218 			continue;
6219 
6220 		if (cgroup1_ssid_disabled(ssid))
6221 			pr_info("Disabling %s control group subsystem in v1 mounts\n",
6222 				ss->legacy_name);
6223 
6224 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
6225 
6226 		/* implicit controllers must be threaded too */
6227 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
6228 
6229 		if (ss->implicit_on_dfl)
6230 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
6231 		else if (!ss->dfl_cftypes)
6232 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
6233 
6234 		if (ss->threaded)
6235 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
6236 
6237 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
6238 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
6239 		} else {
6240 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
6241 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
6242 		}
6243 
6244 		if (ss->bind)
6245 			ss->bind(init_css_set.subsys[ssid]);
6246 
6247 		cgroup_lock();
6248 		css_populate_dir(init_css_set.subsys[ssid]);
6249 		cgroup_unlock();
6250 	}
6251 
6252 	/* init_css_set.subsys[] has been updated, re-hash */
6253 	hash_del(&init_css_set.hlist);
6254 	hash_add(css_set_table, &init_css_set.hlist,
6255 		 css_set_hash(init_css_set.subsys));
6256 
6257 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
6258 	WARN_ON(register_filesystem(&cgroup_fs_type));
6259 	WARN_ON(register_filesystem(&cgroup2_fs_type));
6260 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
6261 #ifdef CONFIG_CPUSETS_V1
6262 	WARN_ON(register_filesystem(&cpuset_fs_type));
6263 #endif
6264 
6265 	return 0;
6266 }
6267 
cgroup_wq_init(void)6268 static int __init cgroup_wq_init(void)
6269 {
6270 	/*
6271 	 * There isn't much point in executing destruction path in
6272 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
6273 	 * Use 1 for @max_active.
6274 	 *
6275 	 * We would prefer to do this in cgroup_init() above, but that
6276 	 * is called before init_workqueues(): so leave this until after.
6277 	 */
6278 	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
6279 	BUG_ON(!cgroup_destroy_wq);
6280 	return 0;
6281 }
6282 core_initcall(cgroup_wq_init);
6283 
cgroup_path_from_kernfs_id(u64 id,char * buf,size_t buflen)6284 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
6285 {
6286 	struct kernfs_node *kn;
6287 
6288 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6289 	if (!kn)
6290 		return;
6291 	kernfs_path(kn, buf, buflen);
6292 	kernfs_put(kn);
6293 }
6294 
6295 /*
6296  * cgroup_get_from_id : get the cgroup associated with cgroup id
6297  * @id: cgroup id
6298  * On success return the cgrp or ERR_PTR on failure
6299  * Only cgroups within current task's cgroup NS are valid.
6300  */
cgroup_get_from_id(u64 id)6301 struct cgroup *cgroup_get_from_id(u64 id)
6302 {
6303 	struct kernfs_node *kn;
6304 	struct cgroup *cgrp, *root_cgrp;
6305 
6306 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6307 	if (!kn)
6308 		return ERR_PTR(-ENOENT);
6309 
6310 	if (kernfs_type(kn) != KERNFS_DIR) {
6311 		kernfs_put(kn);
6312 		return ERR_PTR(-ENOENT);
6313 	}
6314 
6315 	rcu_read_lock();
6316 
6317 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6318 	if (cgrp && !cgroup_tryget(cgrp))
6319 		cgrp = NULL;
6320 
6321 	rcu_read_unlock();
6322 	kernfs_put(kn);
6323 
6324 	if (!cgrp)
6325 		return ERR_PTR(-ENOENT);
6326 
6327 	root_cgrp = current_cgns_cgroup_dfl();
6328 	if (!cgroup_is_descendant(cgrp, root_cgrp)) {
6329 		cgroup_put(cgrp);
6330 		return ERR_PTR(-ENOENT);
6331 	}
6332 
6333 	return cgrp;
6334 }
6335 EXPORT_SYMBOL_GPL(cgroup_get_from_id);
6336 
6337 /*
6338  * proc_cgroup_show()
6339  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
6340  *  - Used for /proc/<pid>/cgroup.
6341  */
proc_cgroup_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)6342 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
6343 		     struct pid *pid, struct task_struct *tsk)
6344 {
6345 	char *buf;
6346 	int retval;
6347 	struct cgroup_root *root;
6348 
6349 	retval = -ENOMEM;
6350 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
6351 	if (!buf)
6352 		goto out;
6353 
6354 	rcu_read_lock();
6355 	spin_lock_irq(&css_set_lock);
6356 
6357 	for_each_root(root) {
6358 		struct cgroup_subsys *ss;
6359 		struct cgroup *cgrp;
6360 		int ssid, count = 0;
6361 
6362 		if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible))
6363 			continue;
6364 
6365 		cgrp = task_cgroup_from_root(tsk, root);
6366 		/* The root has already been unmounted. */
6367 		if (!cgrp)
6368 			continue;
6369 
6370 		seq_printf(m, "%d:", root->hierarchy_id);
6371 		if (root != &cgrp_dfl_root)
6372 			for_each_subsys(ss, ssid)
6373 				if (root->subsys_mask & (1 << ssid))
6374 					seq_printf(m, "%s%s", count++ ? "," : "",
6375 						   ss->legacy_name);
6376 		if (strlen(root->name))
6377 			seq_printf(m, "%sname=%s", count ? "," : "",
6378 				   root->name);
6379 		seq_putc(m, ':');
6380 		/*
6381 		 * On traditional hierarchies, all zombie tasks show up as
6382 		 * belonging to the root cgroup.  On the default hierarchy,
6383 		 * while a zombie doesn't show up in "cgroup.procs" and
6384 		 * thus can't be migrated, its /proc/PID/cgroup keeps
6385 		 * reporting the cgroup it belonged to before exiting.  If
6386 		 * the cgroup is removed before the zombie is reaped,
6387 		 * " (deleted)" is appended to the cgroup path.
6388 		 */
6389 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
6390 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
6391 						current->nsproxy->cgroup_ns);
6392 			if (retval == -E2BIG)
6393 				retval = -ENAMETOOLONG;
6394 			if (retval < 0)
6395 				goto out_unlock;
6396 
6397 			seq_puts(m, buf);
6398 		} else {
6399 			seq_puts(m, "/");
6400 		}
6401 
6402 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
6403 			seq_puts(m, " (deleted)\n");
6404 		else
6405 			seq_putc(m, '\n');
6406 	}
6407 
6408 	retval = 0;
6409 out_unlock:
6410 	spin_unlock_irq(&css_set_lock);
6411 	rcu_read_unlock();
6412 	kfree(buf);
6413 out:
6414 	return retval;
6415 }
6416 
6417 /**
6418  * cgroup_fork - initialize cgroup related fields during copy_process()
6419  * @child: pointer to task_struct of forking parent process.
6420  *
6421  * A task is associated with the init_css_set until cgroup_post_fork()
6422  * attaches it to the target css_set.
6423  */
cgroup_fork(struct task_struct * child)6424 void cgroup_fork(struct task_struct *child)
6425 {
6426 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
6427 	INIT_LIST_HEAD(&child->cg_list);
6428 }
6429 
6430 /**
6431  * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer
6432  * @f: file corresponding to cgroup_dir
6433  *
6434  * Find the cgroup from a file pointer associated with a cgroup directory.
6435  * Returns a pointer to the cgroup on success. ERR_PTR is returned if the
6436  * cgroup cannot be found.
6437  */
cgroup_v1v2_get_from_file(struct file * f)6438 static struct cgroup *cgroup_v1v2_get_from_file(struct file *f)
6439 {
6440 	struct cgroup_subsys_state *css;
6441 
6442 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6443 	if (IS_ERR(css))
6444 		return ERR_CAST(css);
6445 
6446 	return css->cgroup;
6447 }
6448 
6449 /**
6450  * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports
6451  * cgroup2.
6452  * @f: file corresponding to cgroup2_dir
6453  */
cgroup_get_from_file(struct file * f)6454 static struct cgroup *cgroup_get_from_file(struct file *f)
6455 {
6456 	struct cgroup *cgrp = cgroup_v1v2_get_from_file(f);
6457 
6458 	if (IS_ERR(cgrp))
6459 		return ERR_CAST(cgrp);
6460 
6461 	if (!cgroup_on_dfl(cgrp)) {
6462 		cgroup_put(cgrp);
6463 		return ERR_PTR(-EBADF);
6464 	}
6465 
6466 	return cgrp;
6467 }
6468 
6469 /**
6470  * cgroup_css_set_fork - find or create a css_set for a child process
6471  * @kargs: the arguments passed to create the child process
6472  *
6473  * This functions finds or creates a new css_set which the child
6474  * process will be attached to in cgroup_post_fork(). By default,
6475  * the child process will be given the same css_set as its parent.
6476  *
6477  * If CLONE_INTO_CGROUP is specified this function will try to find an
6478  * existing css_set which includes the requested cgroup and if not create
6479  * a new css_set that the child will be attached to later. If this function
6480  * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6481  * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6482  * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6483  * to the target cgroup.
6484  */
cgroup_css_set_fork(struct kernel_clone_args * kargs)6485 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6486 	__acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6487 {
6488 	int ret;
6489 	struct cgroup *dst_cgrp = NULL;
6490 	struct css_set *cset;
6491 	struct super_block *sb;
6492 
6493 	if (kargs->flags & CLONE_INTO_CGROUP)
6494 		cgroup_lock();
6495 
6496 	cgroup_threadgroup_change_begin(current);
6497 
6498 	spin_lock_irq(&css_set_lock);
6499 	cset = task_css_set(current);
6500 	get_css_set(cset);
6501 	if (kargs->cgrp)
6502 		kargs->kill_seq = kargs->cgrp->kill_seq;
6503 	else
6504 		kargs->kill_seq = cset->dfl_cgrp->kill_seq;
6505 	spin_unlock_irq(&css_set_lock);
6506 
6507 	if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6508 		kargs->cset = cset;
6509 		return 0;
6510 	}
6511 
6512 	CLASS(fd_raw, f)(kargs->cgroup);
6513 	if (fd_empty(f)) {
6514 		ret = -EBADF;
6515 		goto err;
6516 	}
6517 	sb = fd_file(f)->f_path.dentry->d_sb;
6518 
6519 	dst_cgrp = cgroup_get_from_file(fd_file(f));
6520 	if (IS_ERR(dst_cgrp)) {
6521 		ret = PTR_ERR(dst_cgrp);
6522 		dst_cgrp = NULL;
6523 		goto err;
6524 	}
6525 
6526 	if (cgroup_is_dead(dst_cgrp)) {
6527 		ret = -ENODEV;
6528 		goto err;
6529 	}
6530 
6531 	/*
6532 	 * Verify that we the target cgroup is writable for us. This is
6533 	 * usually done by the vfs layer but since we're not going through
6534 	 * the vfs layer here we need to do it "manually".
6535 	 */
6536 	ret = cgroup_may_write(dst_cgrp, sb);
6537 	if (ret)
6538 		goto err;
6539 
6540 	/*
6541 	 * Spawning a task directly into a cgroup works by passing a file
6542 	 * descriptor to the target cgroup directory. This can even be an O_PATH
6543 	 * file descriptor. But it can never be a cgroup.procs file descriptor.
6544 	 * This was done on purpose so spawning into a cgroup could be
6545 	 * conceptualized as an atomic
6546 	 *
6547 	 *   fd = openat(dfd_cgroup, "cgroup.procs", ...);
6548 	 *   write(fd, <child-pid>, ...);
6549 	 *
6550 	 * sequence, i.e. it's a shorthand for the caller opening and writing
6551 	 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us
6552 	 * to always use the caller's credentials.
6553 	 */
6554 	ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6555 					!(kargs->flags & CLONE_THREAD),
6556 					current->nsproxy->cgroup_ns);
6557 	if (ret)
6558 		goto err;
6559 
6560 	kargs->cset = find_css_set(cset, dst_cgrp);
6561 	if (!kargs->cset) {
6562 		ret = -ENOMEM;
6563 		goto err;
6564 	}
6565 
6566 	put_css_set(cset);
6567 	kargs->cgrp = dst_cgrp;
6568 	return ret;
6569 
6570 err:
6571 	cgroup_threadgroup_change_end(current);
6572 	cgroup_unlock();
6573 	if (dst_cgrp)
6574 		cgroup_put(dst_cgrp);
6575 	put_css_set(cset);
6576 	if (kargs->cset)
6577 		put_css_set(kargs->cset);
6578 	return ret;
6579 }
6580 
6581 /**
6582  * cgroup_css_set_put_fork - drop references we took during fork
6583  * @kargs: the arguments passed to create the child process
6584  *
6585  * Drop references to the prepared css_set and target cgroup if
6586  * CLONE_INTO_CGROUP was requested.
6587  */
cgroup_css_set_put_fork(struct kernel_clone_args * kargs)6588 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6589 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6590 {
6591 	struct cgroup *cgrp = kargs->cgrp;
6592 	struct css_set *cset = kargs->cset;
6593 
6594 	cgroup_threadgroup_change_end(current);
6595 
6596 	if (cset) {
6597 		put_css_set(cset);
6598 		kargs->cset = NULL;
6599 	}
6600 
6601 	if (kargs->flags & CLONE_INTO_CGROUP) {
6602 		cgroup_unlock();
6603 		if (cgrp) {
6604 			cgroup_put(cgrp);
6605 			kargs->cgrp = NULL;
6606 		}
6607 	}
6608 }
6609 
6610 /**
6611  * cgroup_can_fork - called on a new task before the process is exposed
6612  * @child: the child process
6613  * @kargs: the arguments passed to create the child process
6614  *
6615  * This prepares a new css_set for the child process which the child will
6616  * be attached to in cgroup_post_fork().
6617  * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6618  * callback returns an error, the fork aborts with that error code. This
6619  * allows for a cgroup subsystem to conditionally allow or deny new forks.
6620  */
cgroup_can_fork(struct task_struct * child,struct kernel_clone_args * kargs)6621 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6622 {
6623 	struct cgroup_subsys *ss;
6624 	int i, j, ret;
6625 
6626 	ret = cgroup_css_set_fork(kargs);
6627 	if (ret)
6628 		return ret;
6629 
6630 	do_each_subsys_mask(ss, i, have_canfork_callback) {
6631 		ret = ss->can_fork(child, kargs->cset);
6632 		if (ret)
6633 			goto out_revert;
6634 	} while_each_subsys_mask();
6635 
6636 	return 0;
6637 
6638 out_revert:
6639 	for_each_subsys(ss, j) {
6640 		if (j >= i)
6641 			break;
6642 		if (ss->cancel_fork)
6643 			ss->cancel_fork(child, kargs->cset);
6644 	}
6645 
6646 	cgroup_css_set_put_fork(kargs);
6647 
6648 	return ret;
6649 }
6650 
6651 /**
6652  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6653  * @child: the child process
6654  * @kargs: the arguments passed to create the child process
6655  *
6656  * This calls the cancel_fork() callbacks if a fork failed *after*
6657  * cgroup_can_fork() succeeded and cleans up references we took to
6658  * prepare a new css_set for the child process in cgroup_can_fork().
6659  */
cgroup_cancel_fork(struct task_struct * child,struct kernel_clone_args * kargs)6660 void cgroup_cancel_fork(struct task_struct *child,
6661 			struct kernel_clone_args *kargs)
6662 {
6663 	struct cgroup_subsys *ss;
6664 	int i;
6665 
6666 	for_each_subsys(ss, i)
6667 		if (ss->cancel_fork)
6668 			ss->cancel_fork(child, kargs->cset);
6669 
6670 	cgroup_css_set_put_fork(kargs);
6671 }
6672 
6673 /**
6674  * cgroup_post_fork - finalize cgroup setup for the child process
6675  * @child: the child process
6676  * @kargs: the arguments passed to create the child process
6677  *
6678  * Attach the child process to its css_set calling the subsystem fork()
6679  * callbacks.
6680  */
cgroup_post_fork(struct task_struct * child,struct kernel_clone_args * kargs)6681 void cgroup_post_fork(struct task_struct *child,
6682 		      struct kernel_clone_args *kargs)
6683 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6684 {
6685 	unsigned int cgrp_kill_seq = 0;
6686 	unsigned long cgrp_flags = 0;
6687 	bool kill = false;
6688 	struct cgroup_subsys *ss;
6689 	struct css_set *cset;
6690 	int i;
6691 
6692 	cset = kargs->cset;
6693 	kargs->cset = NULL;
6694 
6695 	spin_lock_irq(&css_set_lock);
6696 
6697 	/* init tasks are special, only link regular threads */
6698 	if (likely(child->pid)) {
6699 		if (kargs->cgrp) {
6700 			cgrp_flags = kargs->cgrp->flags;
6701 			cgrp_kill_seq = kargs->cgrp->kill_seq;
6702 		} else {
6703 			cgrp_flags = cset->dfl_cgrp->flags;
6704 			cgrp_kill_seq = cset->dfl_cgrp->kill_seq;
6705 		}
6706 
6707 		WARN_ON_ONCE(!list_empty(&child->cg_list));
6708 		cset->nr_tasks++;
6709 		css_set_move_task(child, NULL, cset, false);
6710 	} else {
6711 		put_css_set(cset);
6712 		cset = NULL;
6713 	}
6714 
6715 	if (!(child->flags & PF_KTHREAD)) {
6716 		if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) {
6717 			/*
6718 			 * If the cgroup has to be frozen, the new task has
6719 			 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to
6720 			 * get the task into the frozen state.
6721 			 */
6722 			spin_lock(&child->sighand->siglock);
6723 			WARN_ON_ONCE(child->frozen);
6724 			child->jobctl |= JOBCTL_TRAP_FREEZE;
6725 			spin_unlock(&child->sighand->siglock);
6726 
6727 			/*
6728 			 * Calling cgroup_update_frozen() isn't required here,
6729 			 * because it will be called anyway a bit later from
6730 			 * do_freezer_trap(). So we avoid cgroup's transient
6731 			 * switch from the frozen state and back.
6732 			 */
6733 		}
6734 
6735 		/*
6736 		 * If the cgroup is to be killed notice it now and take the
6737 		 * child down right after we finished preparing it for
6738 		 * userspace.
6739 		 */
6740 		kill = kargs->kill_seq != cgrp_kill_seq;
6741 	}
6742 
6743 	spin_unlock_irq(&css_set_lock);
6744 
6745 	/*
6746 	 * Call ss->fork().  This must happen after @child is linked on
6747 	 * css_set; otherwise, @child might change state between ->fork()
6748 	 * and addition to css_set.
6749 	 */
6750 	do_each_subsys_mask(ss, i, have_fork_callback) {
6751 		ss->fork(child);
6752 	} while_each_subsys_mask();
6753 
6754 	/* Make the new cset the root_cset of the new cgroup namespace. */
6755 	if (kargs->flags & CLONE_NEWCGROUP) {
6756 		struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6757 
6758 		get_css_set(cset);
6759 		child->nsproxy->cgroup_ns->root_cset = cset;
6760 		put_css_set(rcset);
6761 	}
6762 
6763 	/* Cgroup has to be killed so take down child immediately. */
6764 	if (unlikely(kill))
6765 		do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID);
6766 
6767 	cgroup_css_set_put_fork(kargs);
6768 }
6769 
6770 /**
6771  * cgroup_exit - detach cgroup from exiting task
6772  * @tsk: pointer to task_struct of exiting process
6773  *
6774  * Description: Detach cgroup from @tsk.
6775  *
6776  */
cgroup_exit(struct task_struct * tsk)6777 void cgroup_exit(struct task_struct *tsk)
6778 {
6779 	struct cgroup_subsys *ss;
6780 	struct css_set *cset;
6781 	int i;
6782 
6783 	spin_lock_irq(&css_set_lock);
6784 
6785 	WARN_ON_ONCE(list_empty(&tsk->cg_list));
6786 	cset = task_css_set(tsk);
6787 	css_set_move_task(tsk, cset, NULL, false);
6788 	cset->nr_tasks--;
6789 	/* matches the signal->live check in css_task_iter_advance() */
6790 	if (thread_group_leader(tsk) && atomic_read(&tsk->signal->live))
6791 		list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6792 
6793 	if (dl_task(tsk))
6794 		dec_dl_tasks_cs(tsk);
6795 
6796 	WARN_ON_ONCE(cgroup_task_frozen(tsk));
6797 	if (unlikely(!(tsk->flags & PF_KTHREAD) &&
6798 		     test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags)))
6799 		cgroup_update_frozen(task_dfl_cgroup(tsk));
6800 
6801 	spin_unlock_irq(&css_set_lock);
6802 
6803 	/* see cgroup_post_fork() for details */
6804 	do_each_subsys_mask(ss, i, have_exit_callback) {
6805 		ss->exit(tsk);
6806 	} while_each_subsys_mask();
6807 }
6808 
cgroup_release(struct task_struct * task)6809 void cgroup_release(struct task_struct *task)
6810 {
6811 	struct cgroup_subsys *ss;
6812 	int ssid;
6813 
6814 	do_each_subsys_mask(ss, ssid, have_release_callback) {
6815 		ss->release(task);
6816 	} while_each_subsys_mask();
6817 
6818 	if (!list_empty(&task->cg_list)) {
6819 		spin_lock_irq(&css_set_lock);
6820 		css_set_skip_task_iters(task_css_set(task), task);
6821 		list_del_init(&task->cg_list);
6822 		spin_unlock_irq(&css_set_lock);
6823 	}
6824 }
6825 
cgroup_free(struct task_struct * task)6826 void cgroup_free(struct task_struct *task)
6827 {
6828 	struct css_set *cset = task_css_set(task);
6829 	put_css_set(cset);
6830 }
6831 
cgroup_disable(char * str)6832 static int __init cgroup_disable(char *str)
6833 {
6834 	struct cgroup_subsys *ss;
6835 	char *token;
6836 	int i;
6837 
6838 	while ((token = strsep(&str, ",")) != NULL) {
6839 		if (!*token)
6840 			continue;
6841 
6842 		for_each_subsys(ss, i) {
6843 			if (strcmp(token, ss->name) &&
6844 			    strcmp(token, ss->legacy_name))
6845 				continue;
6846 
6847 			static_branch_disable(cgroup_subsys_enabled_key[i]);
6848 			pr_info("Disabling %s control group subsystem\n",
6849 				ss->name);
6850 		}
6851 
6852 		for (i = 0; i < OPT_FEATURE_COUNT; i++) {
6853 			if (strcmp(token, cgroup_opt_feature_names[i]))
6854 				continue;
6855 			cgroup_feature_disable_mask |= 1 << i;
6856 			pr_info("Disabling %s control group feature\n",
6857 				cgroup_opt_feature_names[i]);
6858 			break;
6859 		}
6860 	}
6861 	return 1;
6862 }
6863 __setup("cgroup_disable=", cgroup_disable);
6864 
enable_debug_cgroup(void)6865 void __init __weak enable_debug_cgroup(void) { }
6866 
enable_cgroup_debug(char * str)6867 static int __init enable_cgroup_debug(char *str)
6868 {
6869 	cgroup_debug = true;
6870 	enable_debug_cgroup();
6871 	return 1;
6872 }
6873 __setup("cgroup_debug", enable_cgroup_debug);
6874 
cgroup_favordynmods_setup(char * str)6875 static int __init cgroup_favordynmods_setup(char *str)
6876 {
6877 	return (kstrtobool(str, &have_favordynmods) == 0);
6878 }
6879 __setup("cgroup_favordynmods=", cgroup_favordynmods_setup);
6880 
6881 /**
6882  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6883  * @dentry: directory dentry of interest
6884  * @ss: subsystem of interest
6885  *
6886  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6887  * to get the corresponding css and return it.  If such css doesn't exist
6888  * or can't be pinned, an ERR_PTR value is returned.
6889  */
css_tryget_online_from_dir(struct dentry * dentry,struct cgroup_subsys * ss)6890 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6891 						       struct cgroup_subsys *ss)
6892 {
6893 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6894 	struct file_system_type *s_type = dentry->d_sb->s_type;
6895 	struct cgroup_subsys_state *css = NULL;
6896 	struct cgroup *cgrp;
6897 
6898 	/* is @dentry a cgroup dir? */
6899 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6900 	    !kn || kernfs_type(kn) != KERNFS_DIR)
6901 		return ERR_PTR(-EBADF);
6902 
6903 	rcu_read_lock();
6904 
6905 	/*
6906 	 * This path doesn't originate from kernfs and @kn could already
6907 	 * have been or be removed at any point.  @kn->priv is RCU
6908 	 * protected for this access.  See css_release_work_fn() for details.
6909 	 */
6910 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6911 	if (cgrp)
6912 		css = cgroup_css(cgrp, ss);
6913 
6914 	if (!css || !css_tryget_online(css))
6915 		css = ERR_PTR(-ENOENT);
6916 
6917 	rcu_read_unlock();
6918 	return css;
6919 }
6920 
6921 /**
6922  * css_from_id - lookup css by id
6923  * @id: the cgroup id
6924  * @ss: cgroup subsys to be looked into
6925  *
6926  * Returns the css if there's valid one with @id, otherwise returns NULL.
6927  * Should be called under rcu_read_lock().
6928  */
css_from_id(int id,struct cgroup_subsys * ss)6929 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6930 {
6931 	WARN_ON_ONCE(!rcu_read_lock_held());
6932 	return idr_find(&ss->css_idr, id);
6933 }
6934 
6935 /**
6936  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6937  * @path: path on the default hierarchy
6938  *
6939  * Find the cgroup at @path on the default hierarchy, increment its
6940  * reference count and return it.  Returns pointer to the found cgroup on
6941  * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already
6942  * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory.
6943  */
cgroup_get_from_path(const char * path)6944 struct cgroup *cgroup_get_from_path(const char *path)
6945 {
6946 	struct kernfs_node *kn;
6947 	struct cgroup *cgrp = ERR_PTR(-ENOENT);
6948 	struct cgroup *root_cgrp;
6949 
6950 	root_cgrp = current_cgns_cgroup_dfl();
6951 	kn = kernfs_walk_and_get(root_cgrp->kn, path);
6952 	if (!kn)
6953 		goto out;
6954 
6955 	if (kernfs_type(kn) != KERNFS_DIR) {
6956 		cgrp = ERR_PTR(-ENOTDIR);
6957 		goto out_kernfs;
6958 	}
6959 
6960 	rcu_read_lock();
6961 
6962 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6963 	if (!cgrp || !cgroup_tryget(cgrp))
6964 		cgrp = ERR_PTR(-ENOENT);
6965 
6966 	rcu_read_unlock();
6967 
6968 out_kernfs:
6969 	kernfs_put(kn);
6970 out:
6971 	return cgrp;
6972 }
6973 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6974 
6975 /**
6976  * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd
6977  * @fd: fd obtained by open(cgroup_dir)
6978  *
6979  * Find the cgroup from a fd which should be obtained
6980  * by opening a cgroup directory.  Returns a pointer to the
6981  * cgroup on success. ERR_PTR is returned if the cgroup
6982  * cannot be found.
6983  */
cgroup_v1v2_get_from_fd(int fd)6984 struct cgroup *cgroup_v1v2_get_from_fd(int fd)
6985 {
6986 	CLASS(fd_raw, f)(fd);
6987 	if (fd_empty(f))
6988 		return ERR_PTR(-EBADF);
6989 
6990 	return cgroup_v1v2_get_from_file(fd_file(f));
6991 }
6992 
6993 /**
6994  * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports
6995  * cgroup2.
6996  * @fd: fd obtained by open(cgroup2_dir)
6997  */
cgroup_get_from_fd(int fd)6998 struct cgroup *cgroup_get_from_fd(int fd)
6999 {
7000 	struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd);
7001 
7002 	if (IS_ERR(cgrp))
7003 		return ERR_CAST(cgrp);
7004 
7005 	if (!cgroup_on_dfl(cgrp)) {
7006 		cgroup_put(cgrp);
7007 		return ERR_PTR(-EBADF);
7008 	}
7009 	return cgrp;
7010 }
7011 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
7012 
power_of_ten(int power)7013 static u64 power_of_ten(int power)
7014 {
7015 	u64 v = 1;
7016 	while (power--)
7017 		v *= 10;
7018 	return v;
7019 }
7020 
7021 /**
7022  * cgroup_parse_float - parse a floating number
7023  * @input: input string
7024  * @dec_shift: number of decimal digits to shift
7025  * @v: output
7026  *
7027  * Parse a decimal floating point number in @input and store the result in
7028  * @v with decimal point right shifted @dec_shift times.  For example, if
7029  * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
7030  * Returns 0 on success, -errno otherwise.
7031  *
7032  * There's nothing cgroup specific about this function except that it's
7033  * currently the only user.
7034  */
cgroup_parse_float(const char * input,unsigned dec_shift,s64 * v)7035 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
7036 {
7037 	s64 whole, frac = 0;
7038 	int fstart = 0, fend = 0, flen;
7039 
7040 	if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
7041 		return -EINVAL;
7042 	if (frac < 0)
7043 		return -EINVAL;
7044 
7045 	flen = fend > fstart ? fend - fstart : 0;
7046 	if (flen < dec_shift)
7047 		frac *= power_of_ten(dec_shift - flen);
7048 	else
7049 		frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
7050 
7051 	*v = whole * power_of_ten(dec_shift) + frac;
7052 	return 0;
7053 }
7054 
7055 /*
7056  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
7057  * definition in cgroup-defs.h.
7058  */
7059 #ifdef CONFIG_SOCK_CGROUP_DATA
7060 
cgroup_sk_alloc(struct sock_cgroup_data * skcd)7061 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
7062 {
7063 	struct cgroup *cgroup;
7064 
7065 	rcu_read_lock();
7066 	/* Don't associate the sock with unrelated interrupted task's cgroup. */
7067 	if (in_interrupt()) {
7068 		cgroup = &cgrp_dfl_root.cgrp;
7069 		cgroup_get(cgroup);
7070 		goto out;
7071 	}
7072 
7073 	while (true) {
7074 		struct css_set *cset;
7075 
7076 		cset = task_css_set(current);
7077 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
7078 			cgroup = cset->dfl_cgrp;
7079 			break;
7080 		}
7081 		cpu_relax();
7082 	}
7083 out:
7084 	skcd->cgroup = cgroup;
7085 	cgroup_bpf_get(cgroup);
7086 	rcu_read_unlock();
7087 }
7088 
cgroup_sk_clone(struct sock_cgroup_data * skcd)7089 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
7090 {
7091 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
7092 
7093 	/*
7094 	 * We might be cloning a socket which is left in an empty
7095 	 * cgroup and the cgroup might have already been rmdir'd.
7096 	 * Don't use cgroup_get_live().
7097 	 */
7098 	cgroup_get(cgrp);
7099 	cgroup_bpf_get(cgrp);
7100 }
7101 
cgroup_sk_free(struct sock_cgroup_data * skcd)7102 void cgroup_sk_free(struct sock_cgroup_data *skcd)
7103 {
7104 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
7105 
7106 	cgroup_bpf_put(cgrp);
7107 	cgroup_put(cgrp);
7108 }
7109 
7110 #endif	/* CONFIG_SOCK_CGROUP_DATA */
7111 
7112 #ifdef CONFIG_SYSFS
show_delegatable_files(struct cftype * files,char * buf,ssize_t size,const char * prefix)7113 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
7114 				      ssize_t size, const char *prefix)
7115 {
7116 	struct cftype *cft;
7117 	ssize_t ret = 0;
7118 
7119 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
7120 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
7121 			continue;
7122 
7123 		if (prefix)
7124 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
7125 
7126 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
7127 
7128 		if (WARN_ON(ret >= size))
7129 			break;
7130 	}
7131 
7132 	return ret;
7133 }
7134 
delegate_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)7135 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
7136 			      char *buf)
7137 {
7138 	struct cgroup_subsys *ss;
7139 	int ssid;
7140 	ssize_t ret = 0;
7141 
7142 	ret = show_delegatable_files(cgroup_base_files, buf + ret,
7143 				     PAGE_SIZE - ret, NULL);
7144 	if (cgroup_psi_enabled())
7145 		ret += show_delegatable_files(cgroup_psi_files, buf + ret,
7146 					      PAGE_SIZE - ret, NULL);
7147 
7148 	for_each_subsys(ss, ssid)
7149 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
7150 					      PAGE_SIZE - ret,
7151 					      cgroup_subsys_name[ssid]);
7152 
7153 	return ret;
7154 }
7155 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
7156 
features_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)7157 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
7158 			     char *buf)
7159 {
7160 	return snprintf(buf, PAGE_SIZE,
7161 			"nsdelegate\n"
7162 			"favordynmods\n"
7163 			"memory_localevents\n"
7164 			"memory_recursiveprot\n"
7165 			"memory_hugetlb_accounting\n"
7166 			"pids_localevents\n");
7167 }
7168 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
7169 
7170 static struct attribute *cgroup_sysfs_attrs[] = {
7171 	&cgroup_delegate_attr.attr,
7172 	&cgroup_features_attr.attr,
7173 	NULL,
7174 };
7175 
7176 static const struct attribute_group cgroup_sysfs_attr_group = {
7177 	.attrs = cgroup_sysfs_attrs,
7178 	.name = "cgroup",
7179 };
7180 
cgroup_sysfs_init(void)7181 static int __init cgroup_sysfs_init(void)
7182 {
7183 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
7184 }
7185 subsys_initcall(cgroup_sysfs_init);
7186 
7187 #endif /* CONFIG_SYSFS */
7188