1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include "cgroup-internal.h"
32
33 #include <linux/bpf-cgroup.h>
34 #include <linux/cred.h>
35 #include <linux/errno.h>
36 #include <linux/init_task.h>
37 #include <linux/kernel.h>
38 #include <linux/magic.h>
39 #include <linux/mutex.h>
40 #include <linux/mount.h>
41 #include <linux/pagemap.h>
42 #include <linux/proc_fs.h>
43 #include <linux/rcupdate.h>
44 #include <linux/sched.h>
45 #include <linux/sched/task.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/hashtable.h>
51 #include <linux/idr.h>
52 #include <linux/kthread.h>
53 #include <linux/atomic.h>
54 #include <linux/cpuset.h>
55 #include <linux/proc_ns.h>
56 #include <linux/nsproxy.h>
57 #include <linux/file.h>
58 #include <linux/fs_parser.h>
59 #include <linux/sched/cputime.h>
60 #include <linux/sched/deadline.h>
61 #include <linux/psi.h>
62 #include <net/sock.h>
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/cgroup.h>
66
67 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
68 MAX_CFTYPE_NAME + 2)
69 /* let's not notify more than 100 times per second */
70 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100)
71
72 /*
73 * To avoid confusing the compiler (and generating warnings) with code
74 * that attempts to access what would be a 0-element array (i.e. sized
75 * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this
76 * constant expression can be added.
77 */
78 #define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0)
79
80 /*
81 * cgroup_mutex is the master lock. Any modification to cgroup or its
82 * hierarchy must be performed while holding it.
83 *
84 * css_set_lock protects task->cgroups pointer, the list of css_set
85 * objects, and the chain of tasks off each css_set.
86 *
87 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
88 * cgroup.h can use them for lockdep annotations.
89 */
90 DEFINE_MUTEX(cgroup_mutex);
91 DEFINE_SPINLOCK(css_set_lock);
92
93 #ifdef CONFIG_PROVE_RCU
94 EXPORT_SYMBOL_GPL(cgroup_mutex);
95 EXPORT_SYMBOL_GPL(css_set_lock);
96 #endif
97
98 DEFINE_SPINLOCK(trace_cgroup_path_lock);
99 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
100 static bool cgroup_debug __read_mostly;
101
102 /*
103 * Protects cgroup_idr and css_idr so that IDs can be released without
104 * grabbing cgroup_mutex.
105 */
106 static DEFINE_SPINLOCK(cgroup_idr_lock);
107
108 /*
109 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
110 * against file removal/re-creation across css hiding.
111 */
112 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
113
114 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
115
116 #define cgroup_assert_mutex_or_rcu_locked() \
117 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
118 !lockdep_is_held(&cgroup_mutex), \
119 "cgroup_mutex or RCU read lock required");
120
121 /*
122 * cgroup destruction makes heavy use of work items and there can be a lot
123 * of concurrent destructions. Use a separate workqueue so that cgroup
124 * destruction work items don't end up filling up max_active of system_wq
125 * which may lead to deadlock.
126 */
127 static struct workqueue_struct *cgroup_destroy_wq;
128
129 /* generate an array of cgroup subsystem pointers */
130 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
131 struct cgroup_subsys *cgroup_subsys[] = {
132 #include <linux/cgroup_subsys.h>
133 };
134 #undef SUBSYS
135
136 /* array of cgroup subsystem names */
137 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
138 static const char *cgroup_subsys_name[] = {
139 #include <linux/cgroup_subsys.h>
140 };
141 #undef SUBSYS
142
143 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
144 #define SUBSYS(_x) \
145 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
146 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
147 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
148 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
149 #include <linux/cgroup_subsys.h>
150 #undef SUBSYS
151
152 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
153 static struct static_key_true *cgroup_subsys_enabled_key[] = {
154 #include <linux/cgroup_subsys.h>
155 };
156 #undef SUBSYS
157
158 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
159 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
160 #include <linux/cgroup_subsys.h>
161 };
162 #undef SUBSYS
163
164 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
165
166 /* the default hierarchy */
167 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
168 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
169
170 /*
171 * The default hierarchy always exists but is hidden until mounted for the
172 * first time. This is for backward compatibility.
173 */
174 bool cgrp_dfl_visible;
175
176 /* some controllers are not supported in the default hierarchy */
177 static u16 cgrp_dfl_inhibit_ss_mask;
178
179 /* some controllers are implicitly enabled on the default hierarchy */
180 static u16 cgrp_dfl_implicit_ss_mask;
181
182 /* some controllers can be threaded on the default hierarchy */
183 static u16 cgrp_dfl_threaded_ss_mask;
184
185 /* The list of hierarchy roots */
186 LIST_HEAD(cgroup_roots);
187 static int cgroup_root_count;
188
189 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
190 static DEFINE_IDR(cgroup_hierarchy_idr);
191
192 /*
193 * Assign a monotonically increasing serial number to csses. It guarantees
194 * cgroups with bigger numbers are newer than those with smaller numbers.
195 * Also, as csses are always appended to the parent's ->children list, it
196 * guarantees that sibling csses are always sorted in the ascending serial
197 * number order on the list. Protected by cgroup_mutex.
198 */
199 static u64 css_serial_nr_next = 1;
200
201 /*
202 * These bitmasks identify subsystems with specific features to avoid
203 * having to do iterative checks repeatedly.
204 */
205 static u16 have_fork_callback __read_mostly;
206 static u16 have_exit_callback __read_mostly;
207 static u16 have_release_callback __read_mostly;
208 static u16 have_canfork_callback __read_mostly;
209
210 static bool have_favordynmods __ro_after_init = IS_ENABLED(CONFIG_CGROUP_FAVOR_DYNMODS);
211
212 /* cgroup namespace for init task */
213 struct cgroup_namespace init_cgroup_ns = {
214 .ns.count = REFCOUNT_INIT(2),
215 .user_ns = &init_user_ns,
216 .ns.ops = &cgroupns_operations,
217 .ns.inum = PROC_CGROUP_INIT_INO,
218 .root_cset = &init_css_set,
219 };
220
221 static struct file_system_type cgroup2_fs_type;
222 static struct cftype cgroup_base_files[];
223 static struct cftype cgroup_psi_files[];
224
225 /* cgroup optional features */
226 enum cgroup_opt_features {
227 #ifdef CONFIG_PSI
228 OPT_FEATURE_PRESSURE,
229 #endif
230 OPT_FEATURE_COUNT
231 };
232
233 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
234 #ifdef CONFIG_PSI
235 "pressure",
236 #endif
237 };
238
239 static u16 cgroup_feature_disable_mask __read_mostly;
240
241 static int cgroup_apply_control(struct cgroup *cgrp);
242 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
243 static void css_task_iter_skip(struct css_task_iter *it,
244 struct task_struct *task);
245 static int cgroup_destroy_locked(struct cgroup *cgrp);
246 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
247 struct cgroup_subsys *ss);
248 static void css_release(struct percpu_ref *ref);
249 static void kill_css(struct cgroup_subsys_state *css);
250 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
251 struct cgroup *cgrp, struct cftype cfts[],
252 bool is_add);
253
254 #ifdef CONFIG_DEBUG_CGROUP_REF
255 #define CGROUP_REF_FN_ATTRS noinline
256 #define CGROUP_REF_EXPORT(fn) EXPORT_SYMBOL_GPL(fn);
257 #include <linux/cgroup_refcnt.h>
258 #endif
259
260 /**
261 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
262 * @ssid: subsys ID of interest
263 *
264 * cgroup_subsys_enabled() can only be used with literal subsys names which
265 * is fine for individual subsystems but unsuitable for cgroup core. This
266 * is slower static_key_enabled() based test indexed by @ssid.
267 */
cgroup_ssid_enabled(int ssid)268 bool cgroup_ssid_enabled(int ssid)
269 {
270 if (!CGROUP_HAS_SUBSYS_CONFIG)
271 return false;
272
273 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
274 }
275
276 /**
277 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
278 * @cgrp: the cgroup of interest
279 *
280 * The default hierarchy is the v2 interface of cgroup and this function
281 * can be used to test whether a cgroup is on the default hierarchy for
282 * cases where a subsystem should behave differently depending on the
283 * interface version.
284 *
285 * List of changed behaviors:
286 *
287 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
288 * and "name" are disallowed.
289 *
290 * - When mounting an existing superblock, mount options should match.
291 *
292 * - rename(2) is disallowed.
293 *
294 * - "tasks" is removed. Everything should be at process granularity. Use
295 * "cgroup.procs" instead.
296 *
297 * - "cgroup.procs" is not sorted. pids will be unique unless they got
298 * recycled in-between reads.
299 *
300 * - "release_agent" and "notify_on_release" are removed. Replacement
301 * notification mechanism will be implemented.
302 *
303 * - "cgroup.clone_children" is removed.
304 *
305 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
306 * and its descendants contain no task; otherwise, 1. The file also
307 * generates kernfs notification which can be monitored through poll and
308 * [di]notify when the value of the file changes.
309 *
310 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
311 * take masks of ancestors with non-empty cpus/mems, instead of being
312 * moved to an ancestor.
313 *
314 * - cpuset: a task can be moved into an empty cpuset, and again it takes
315 * masks of ancestors.
316 *
317 * - blkcg: blk-throttle becomes properly hierarchical.
318 */
cgroup_on_dfl(const struct cgroup * cgrp)319 bool cgroup_on_dfl(const struct cgroup *cgrp)
320 {
321 return cgrp->root == &cgrp_dfl_root;
322 }
323
324 /* IDR wrappers which synchronize using cgroup_idr_lock */
cgroup_idr_alloc(struct idr * idr,void * ptr,int start,int end,gfp_t gfp_mask)325 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
326 gfp_t gfp_mask)
327 {
328 int ret;
329
330 idr_preload(gfp_mask);
331 spin_lock_bh(&cgroup_idr_lock);
332 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
333 spin_unlock_bh(&cgroup_idr_lock);
334 idr_preload_end();
335 return ret;
336 }
337
cgroup_idr_replace(struct idr * idr,void * ptr,int id)338 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
339 {
340 void *ret;
341
342 spin_lock_bh(&cgroup_idr_lock);
343 ret = idr_replace(idr, ptr, id);
344 spin_unlock_bh(&cgroup_idr_lock);
345 return ret;
346 }
347
cgroup_idr_remove(struct idr * idr,int id)348 static void cgroup_idr_remove(struct idr *idr, int id)
349 {
350 spin_lock_bh(&cgroup_idr_lock);
351 idr_remove(idr, id);
352 spin_unlock_bh(&cgroup_idr_lock);
353 }
354
cgroup_has_tasks(struct cgroup * cgrp)355 static bool cgroup_has_tasks(struct cgroup *cgrp)
356 {
357 return cgrp->nr_populated_csets;
358 }
359
cgroup_is_threaded(struct cgroup * cgrp)360 static bool cgroup_is_threaded(struct cgroup *cgrp)
361 {
362 return cgrp->dom_cgrp != cgrp;
363 }
364
365 /* can @cgrp host both domain and threaded children? */
cgroup_is_mixable(struct cgroup * cgrp)366 static bool cgroup_is_mixable(struct cgroup *cgrp)
367 {
368 /*
369 * Root isn't under domain level resource control exempting it from
370 * the no-internal-process constraint, so it can serve as a thread
371 * root and a parent of resource domains at the same time.
372 */
373 return !cgroup_parent(cgrp);
374 }
375
376 /* can @cgrp become a thread root? Should always be true for a thread root */
cgroup_can_be_thread_root(struct cgroup * cgrp)377 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
378 {
379 /* mixables don't care */
380 if (cgroup_is_mixable(cgrp))
381 return true;
382
383 /* domain roots can't be nested under threaded */
384 if (cgroup_is_threaded(cgrp))
385 return false;
386
387 /* can only have either domain or threaded children */
388 if (cgrp->nr_populated_domain_children)
389 return false;
390
391 /* and no domain controllers can be enabled */
392 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
393 return false;
394
395 return true;
396 }
397
398 /* is @cgrp root of a threaded subtree? */
cgroup_is_thread_root(struct cgroup * cgrp)399 static bool cgroup_is_thread_root(struct cgroup *cgrp)
400 {
401 /* thread root should be a domain */
402 if (cgroup_is_threaded(cgrp))
403 return false;
404
405 /* a domain w/ threaded children is a thread root */
406 if (cgrp->nr_threaded_children)
407 return true;
408
409 /*
410 * A domain which has tasks and explicit threaded controllers
411 * enabled is a thread root.
412 */
413 if (cgroup_has_tasks(cgrp) &&
414 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
415 return true;
416
417 return false;
418 }
419
420 /* a domain which isn't connected to the root w/o brekage can't be used */
cgroup_is_valid_domain(struct cgroup * cgrp)421 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
422 {
423 /* the cgroup itself can be a thread root */
424 if (cgroup_is_threaded(cgrp))
425 return false;
426
427 /* but the ancestors can't be unless mixable */
428 while ((cgrp = cgroup_parent(cgrp))) {
429 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
430 return false;
431 if (cgroup_is_threaded(cgrp))
432 return false;
433 }
434
435 return true;
436 }
437
438 /* subsystems visibly enabled on a cgroup */
cgroup_control(struct cgroup * cgrp)439 static u16 cgroup_control(struct cgroup *cgrp)
440 {
441 struct cgroup *parent = cgroup_parent(cgrp);
442 u16 root_ss_mask = cgrp->root->subsys_mask;
443
444 if (parent) {
445 u16 ss_mask = parent->subtree_control;
446
447 /* threaded cgroups can only have threaded controllers */
448 if (cgroup_is_threaded(cgrp))
449 ss_mask &= cgrp_dfl_threaded_ss_mask;
450 return ss_mask;
451 }
452
453 if (cgroup_on_dfl(cgrp))
454 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
455 cgrp_dfl_implicit_ss_mask);
456 return root_ss_mask;
457 }
458
459 /* subsystems enabled on a cgroup */
cgroup_ss_mask(struct cgroup * cgrp)460 static u16 cgroup_ss_mask(struct cgroup *cgrp)
461 {
462 struct cgroup *parent = cgroup_parent(cgrp);
463
464 if (parent) {
465 u16 ss_mask = parent->subtree_ss_mask;
466
467 /* threaded cgroups can only have threaded controllers */
468 if (cgroup_is_threaded(cgrp))
469 ss_mask &= cgrp_dfl_threaded_ss_mask;
470 return ss_mask;
471 }
472
473 return cgrp->root->subsys_mask;
474 }
475
476 /**
477 * cgroup_css - obtain a cgroup's css for the specified subsystem
478 * @cgrp: the cgroup of interest
479 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
480 *
481 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
482 * function must be called either under cgroup_mutex or rcu_read_lock() and
483 * the caller is responsible for pinning the returned css if it wants to
484 * keep accessing it outside the said locks. This function may return
485 * %NULL if @cgrp doesn't have @subsys_id enabled.
486 */
cgroup_css(struct cgroup * cgrp,struct cgroup_subsys * ss)487 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
488 struct cgroup_subsys *ss)
489 {
490 if (CGROUP_HAS_SUBSYS_CONFIG && ss)
491 return rcu_dereference_check(cgrp->subsys[ss->id],
492 lockdep_is_held(&cgroup_mutex));
493 else
494 return &cgrp->self;
495 }
496
497 /**
498 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
499 * @cgrp: the cgroup of interest
500 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
501 *
502 * Similar to cgroup_css() but returns the effective css, which is defined
503 * as the matching css of the nearest ancestor including self which has @ss
504 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
505 * function is guaranteed to return non-NULL css.
506 */
cgroup_e_css_by_mask(struct cgroup * cgrp,struct cgroup_subsys * ss)507 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
508 struct cgroup_subsys *ss)
509 {
510 lockdep_assert_held(&cgroup_mutex);
511
512 if (!ss)
513 return &cgrp->self;
514
515 /*
516 * This function is used while updating css associations and thus
517 * can't test the csses directly. Test ss_mask.
518 */
519 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
520 cgrp = cgroup_parent(cgrp);
521 if (!cgrp)
522 return NULL;
523 }
524
525 return cgroup_css(cgrp, ss);
526 }
527
528 /**
529 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
530 * @cgrp: the cgroup of interest
531 * @ss: the subsystem of interest
532 *
533 * Find and get the effective css of @cgrp for @ss. The effective css is
534 * defined as the matching css of the nearest ancestor including self which
535 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
536 * the root css is returned, so this function always returns a valid css.
537 *
538 * The returned css is not guaranteed to be online, and therefore it is the
539 * callers responsibility to try get a reference for it.
540 */
cgroup_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)541 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
542 struct cgroup_subsys *ss)
543 {
544 struct cgroup_subsys_state *css;
545
546 if (!CGROUP_HAS_SUBSYS_CONFIG)
547 return NULL;
548
549 do {
550 css = cgroup_css(cgrp, ss);
551
552 if (css)
553 return css;
554 cgrp = cgroup_parent(cgrp);
555 } while (cgrp);
556
557 return init_css_set.subsys[ss->id];
558 }
559
560 /**
561 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
562 * @cgrp: the cgroup of interest
563 * @ss: the subsystem of interest
564 *
565 * Find and get the effective css of @cgrp for @ss. The effective css is
566 * defined as the matching css of the nearest ancestor including self which
567 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
568 * the root css is returned, so this function always returns a valid css.
569 * The returned css must be put using css_put().
570 */
cgroup_get_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)571 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
572 struct cgroup_subsys *ss)
573 {
574 struct cgroup_subsys_state *css;
575
576 if (!CGROUP_HAS_SUBSYS_CONFIG)
577 return NULL;
578
579 rcu_read_lock();
580
581 do {
582 css = cgroup_css(cgrp, ss);
583
584 if (css && css_tryget_online(css))
585 goto out_unlock;
586 cgrp = cgroup_parent(cgrp);
587 } while (cgrp);
588
589 css = init_css_set.subsys[ss->id];
590 css_get(css);
591 out_unlock:
592 rcu_read_unlock();
593 return css;
594 }
595 EXPORT_SYMBOL_GPL(cgroup_get_e_css);
596
cgroup_get_live(struct cgroup * cgrp)597 static void cgroup_get_live(struct cgroup *cgrp)
598 {
599 WARN_ON_ONCE(cgroup_is_dead(cgrp));
600 cgroup_get(cgrp);
601 }
602
603 /**
604 * __cgroup_task_count - count the number of tasks in a cgroup. The caller
605 * is responsible for taking the css_set_lock.
606 * @cgrp: the cgroup in question
607 */
__cgroup_task_count(const struct cgroup * cgrp)608 int __cgroup_task_count(const struct cgroup *cgrp)
609 {
610 int count = 0;
611 struct cgrp_cset_link *link;
612
613 lockdep_assert_held(&css_set_lock);
614
615 list_for_each_entry(link, &cgrp->cset_links, cset_link)
616 count += link->cset->nr_tasks;
617
618 return count;
619 }
620
621 /**
622 * cgroup_task_count - count the number of tasks in a cgroup.
623 * @cgrp: the cgroup in question
624 */
cgroup_task_count(const struct cgroup * cgrp)625 int cgroup_task_count(const struct cgroup *cgrp)
626 {
627 int count;
628
629 spin_lock_irq(&css_set_lock);
630 count = __cgroup_task_count(cgrp);
631 spin_unlock_irq(&css_set_lock);
632
633 return count;
634 }
635
kn_priv(struct kernfs_node * kn)636 static struct cgroup *kn_priv(struct kernfs_node *kn)
637 {
638 struct kernfs_node *parent;
639 /*
640 * The parent can not be replaced due to KERNFS_ROOT_INVARIANT_PARENT.
641 * Therefore it is always safe to dereference this pointer outside of a
642 * RCU section.
643 */
644 parent = rcu_dereference_check(kn->__parent,
645 kernfs_root_flags(kn) & KERNFS_ROOT_INVARIANT_PARENT);
646 return parent->priv;
647 }
648
of_css(struct kernfs_open_file * of)649 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
650 {
651 struct cgroup *cgrp = kn_priv(of->kn);
652 struct cftype *cft = of_cft(of);
653
654 /*
655 * This is open and unprotected implementation of cgroup_css().
656 * seq_css() is only called from a kernfs file operation which has
657 * an active reference on the file. Because all the subsystem
658 * files are drained before a css is disassociated with a cgroup,
659 * the matching css from the cgroup's subsys table is guaranteed to
660 * be and stay valid until the enclosing operation is complete.
661 */
662 if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss)
663 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
664 else
665 return &cgrp->self;
666 }
667 EXPORT_SYMBOL_GPL(of_css);
668
669 /**
670 * for_each_css - iterate all css's of a cgroup
671 * @css: the iteration cursor
672 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
673 * @cgrp: the target cgroup to iterate css's of
674 *
675 * Should be called under cgroup_mutex.
676 */
677 #define for_each_css(css, ssid, cgrp) \
678 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
679 if (!((css) = rcu_dereference_check( \
680 (cgrp)->subsys[(ssid)], \
681 lockdep_is_held(&cgroup_mutex)))) { } \
682 else
683
684 /**
685 * do_each_subsys_mask - filter for_each_subsys with a bitmask
686 * @ss: the iteration cursor
687 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
688 * @ss_mask: the bitmask
689 *
690 * The block will only run for cases where the ssid-th bit (1 << ssid) of
691 * @ss_mask is set.
692 */
693 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
694 unsigned long __ss_mask = (ss_mask); \
695 if (!CGROUP_HAS_SUBSYS_CONFIG) { \
696 (ssid) = 0; \
697 break; \
698 } \
699 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
700 (ss) = cgroup_subsys[ssid]; \
701 {
702
703 #define while_each_subsys_mask() \
704 } \
705 } \
706 } while (false)
707
708 /* iterate over child cgrps, lock should be held throughout iteration */
709 #define cgroup_for_each_live_child(child, cgrp) \
710 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
711 if (({ lockdep_assert_held(&cgroup_mutex); \
712 cgroup_is_dead(child); })) \
713 ; \
714 else
715
716 /* walk live descendants in pre order */
717 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
718 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
719 if (({ lockdep_assert_held(&cgroup_mutex); \
720 (dsct) = (d_css)->cgroup; \
721 cgroup_is_dead(dsct); })) \
722 ; \
723 else
724
725 /* walk live descendants in postorder */
726 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
727 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
728 if (({ lockdep_assert_held(&cgroup_mutex); \
729 (dsct) = (d_css)->cgroup; \
730 cgroup_is_dead(dsct); })) \
731 ; \
732 else
733
734 /*
735 * The default css_set - used by init and its children prior to any
736 * hierarchies being mounted. It contains a pointer to the root state
737 * for each subsystem. Also used to anchor the list of css_sets. Not
738 * reference-counted, to improve performance when child cgroups
739 * haven't been created.
740 */
741 struct css_set init_css_set = {
742 .refcount = REFCOUNT_INIT(1),
743 .dom_cset = &init_css_set,
744 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
745 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
746 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks),
747 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
748 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets),
749 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
750 .mg_src_preload_node = LIST_HEAD_INIT(init_css_set.mg_src_preload_node),
751 .mg_dst_preload_node = LIST_HEAD_INIT(init_css_set.mg_dst_preload_node),
752 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
753
754 /*
755 * The following field is re-initialized when this cset gets linked
756 * in cgroup_init(). However, let's initialize the field
757 * statically too so that the default cgroup can be accessed safely
758 * early during boot.
759 */
760 .dfl_cgrp = &cgrp_dfl_root.cgrp,
761 };
762
763 static int css_set_count = 1; /* 1 for init_css_set */
764
css_set_threaded(struct css_set * cset)765 static bool css_set_threaded(struct css_set *cset)
766 {
767 return cset->dom_cset != cset;
768 }
769
770 /**
771 * css_set_populated - does a css_set contain any tasks?
772 * @cset: target css_set
773 *
774 * css_set_populated() should be the same as !!cset->nr_tasks at steady
775 * state. However, css_set_populated() can be called while a task is being
776 * added to or removed from the linked list before the nr_tasks is
777 * properly updated. Hence, we can't just look at ->nr_tasks here.
778 */
css_set_populated(struct css_set * cset)779 static bool css_set_populated(struct css_set *cset)
780 {
781 lockdep_assert_held(&css_set_lock);
782
783 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
784 }
785
786 /**
787 * cgroup_update_populated - update the populated count of a cgroup
788 * @cgrp: the target cgroup
789 * @populated: inc or dec populated count
790 *
791 * One of the css_sets associated with @cgrp is either getting its first
792 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
793 * count is propagated towards root so that a given cgroup's
794 * nr_populated_children is zero iff none of its descendants contain any
795 * tasks.
796 *
797 * @cgrp's interface file "cgroup.populated" is zero if both
798 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
799 * 1 otherwise. When the sum changes from or to zero, userland is notified
800 * that the content of the interface file has changed. This can be used to
801 * detect when @cgrp and its descendants become populated or empty.
802 */
cgroup_update_populated(struct cgroup * cgrp,bool populated)803 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
804 {
805 struct cgroup *child = NULL;
806 int adj = populated ? 1 : -1;
807
808 lockdep_assert_held(&css_set_lock);
809
810 do {
811 bool was_populated = cgroup_is_populated(cgrp);
812
813 if (!child) {
814 cgrp->nr_populated_csets += adj;
815 } else {
816 if (cgroup_is_threaded(child))
817 cgrp->nr_populated_threaded_children += adj;
818 else
819 cgrp->nr_populated_domain_children += adj;
820 }
821
822 if (was_populated == cgroup_is_populated(cgrp))
823 break;
824
825 cgroup1_check_for_release(cgrp);
826 TRACE_CGROUP_PATH(notify_populated, cgrp,
827 cgroup_is_populated(cgrp));
828 cgroup_file_notify(&cgrp->events_file);
829
830 child = cgrp;
831 cgrp = cgroup_parent(cgrp);
832 } while (cgrp);
833 }
834
835 /**
836 * css_set_update_populated - update populated state of a css_set
837 * @cset: target css_set
838 * @populated: whether @cset is populated or depopulated
839 *
840 * @cset is either getting the first task or losing the last. Update the
841 * populated counters of all associated cgroups accordingly.
842 */
css_set_update_populated(struct css_set * cset,bool populated)843 static void css_set_update_populated(struct css_set *cset, bool populated)
844 {
845 struct cgrp_cset_link *link;
846
847 lockdep_assert_held(&css_set_lock);
848
849 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
850 cgroup_update_populated(link->cgrp, populated);
851 }
852
853 /*
854 * @task is leaving, advance task iterators which are pointing to it so
855 * that they can resume at the next position. Advancing an iterator might
856 * remove it from the list, use safe walk. See css_task_iter_skip() for
857 * details.
858 */
css_set_skip_task_iters(struct css_set * cset,struct task_struct * task)859 static void css_set_skip_task_iters(struct css_set *cset,
860 struct task_struct *task)
861 {
862 struct css_task_iter *it, *pos;
863
864 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
865 css_task_iter_skip(it, task);
866 }
867
868 /**
869 * css_set_move_task - move a task from one css_set to another
870 * @task: task being moved
871 * @from_cset: css_set @task currently belongs to (may be NULL)
872 * @to_cset: new css_set @task is being moved to (may be NULL)
873 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
874 *
875 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
876 * css_set, @from_cset can be NULL. If @task is being disassociated
877 * instead of moved, @to_cset can be NULL.
878 *
879 * This function automatically handles populated counter updates and
880 * css_task_iter adjustments but the caller is responsible for managing
881 * @from_cset and @to_cset's reference counts.
882 */
css_set_move_task(struct task_struct * task,struct css_set * from_cset,struct css_set * to_cset,bool use_mg_tasks)883 static void css_set_move_task(struct task_struct *task,
884 struct css_set *from_cset, struct css_set *to_cset,
885 bool use_mg_tasks)
886 {
887 lockdep_assert_held(&css_set_lock);
888
889 if (to_cset && !css_set_populated(to_cset))
890 css_set_update_populated(to_cset, true);
891
892 if (from_cset) {
893 WARN_ON_ONCE(list_empty(&task->cg_list));
894
895 css_set_skip_task_iters(from_cset, task);
896 list_del_init(&task->cg_list);
897 if (!css_set_populated(from_cset))
898 css_set_update_populated(from_cset, false);
899 } else {
900 WARN_ON_ONCE(!list_empty(&task->cg_list));
901 }
902
903 if (to_cset) {
904 /*
905 * We are synchronized through cgroup_threadgroup_rwsem
906 * against PF_EXITING setting such that we can't race
907 * against cgroup_exit()/cgroup_free() dropping the css_set.
908 */
909 WARN_ON_ONCE(task->flags & PF_EXITING);
910
911 cgroup_move_task(task, to_cset);
912 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
913 &to_cset->tasks);
914 }
915 }
916
917 /*
918 * hash table for cgroup groups. This improves the performance to find
919 * an existing css_set. This hash doesn't (currently) take into
920 * account cgroups in empty hierarchies.
921 */
922 #define CSS_SET_HASH_BITS 7
923 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
924
css_set_hash(struct cgroup_subsys_state ** css)925 static unsigned long css_set_hash(struct cgroup_subsys_state **css)
926 {
927 unsigned long key = 0UL;
928 struct cgroup_subsys *ss;
929 int i;
930
931 for_each_subsys(ss, i)
932 key += (unsigned long)css[i];
933 key = (key >> 16) ^ key;
934
935 return key;
936 }
937
put_css_set_locked(struct css_set * cset)938 void put_css_set_locked(struct css_set *cset)
939 {
940 struct cgrp_cset_link *link, *tmp_link;
941 struct cgroup_subsys *ss;
942 int ssid;
943
944 lockdep_assert_held(&css_set_lock);
945
946 if (!refcount_dec_and_test(&cset->refcount))
947 return;
948
949 WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
950
951 /* This css_set is dead. Unlink it and release cgroup and css refs */
952 for_each_subsys(ss, ssid) {
953 list_del(&cset->e_cset_node[ssid]);
954 css_put(cset->subsys[ssid]);
955 }
956 hash_del(&cset->hlist);
957 css_set_count--;
958
959 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
960 list_del(&link->cset_link);
961 list_del(&link->cgrp_link);
962 if (cgroup_parent(link->cgrp))
963 cgroup_put(link->cgrp);
964 kfree(link);
965 }
966
967 if (css_set_threaded(cset)) {
968 list_del(&cset->threaded_csets_node);
969 put_css_set_locked(cset->dom_cset);
970 }
971
972 kfree_rcu(cset, rcu_head);
973 }
974
975 /**
976 * compare_css_sets - helper function for find_existing_css_set().
977 * @cset: candidate css_set being tested
978 * @old_cset: existing css_set for a task
979 * @new_cgrp: cgroup that's being entered by the task
980 * @template: desired set of css pointers in css_set (pre-calculated)
981 *
982 * Returns true if "cset" matches "old_cset" except for the hierarchy
983 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
984 */
compare_css_sets(struct css_set * cset,struct css_set * old_cset,struct cgroup * new_cgrp,struct cgroup_subsys_state * template[])985 static bool compare_css_sets(struct css_set *cset,
986 struct css_set *old_cset,
987 struct cgroup *new_cgrp,
988 struct cgroup_subsys_state *template[])
989 {
990 struct cgroup *new_dfl_cgrp;
991 struct list_head *l1, *l2;
992
993 /*
994 * On the default hierarchy, there can be csets which are
995 * associated with the same set of cgroups but different csses.
996 * Let's first ensure that csses match.
997 */
998 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
999 return false;
1000
1001
1002 /* @cset's domain should match the default cgroup's */
1003 if (cgroup_on_dfl(new_cgrp))
1004 new_dfl_cgrp = new_cgrp;
1005 else
1006 new_dfl_cgrp = old_cset->dfl_cgrp;
1007
1008 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1009 return false;
1010
1011 /*
1012 * Compare cgroup pointers in order to distinguish between
1013 * different cgroups in hierarchies. As different cgroups may
1014 * share the same effective css, this comparison is always
1015 * necessary.
1016 */
1017 l1 = &cset->cgrp_links;
1018 l2 = &old_cset->cgrp_links;
1019 while (1) {
1020 struct cgrp_cset_link *link1, *link2;
1021 struct cgroup *cgrp1, *cgrp2;
1022
1023 l1 = l1->next;
1024 l2 = l2->next;
1025 /* See if we reached the end - both lists are equal length. */
1026 if (l1 == &cset->cgrp_links) {
1027 BUG_ON(l2 != &old_cset->cgrp_links);
1028 break;
1029 } else {
1030 BUG_ON(l2 == &old_cset->cgrp_links);
1031 }
1032 /* Locate the cgroups associated with these links. */
1033 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1034 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1035 cgrp1 = link1->cgrp;
1036 cgrp2 = link2->cgrp;
1037 /* Hierarchies should be linked in the same order. */
1038 BUG_ON(cgrp1->root != cgrp2->root);
1039
1040 /*
1041 * If this hierarchy is the hierarchy of the cgroup
1042 * that's changing, then we need to check that this
1043 * css_set points to the new cgroup; if it's any other
1044 * hierarchy, then this css_set should point to the
1045 * same cgroup as the old css_set.
1046 */
1047 if (cgrp1->root == new_cgrp->root) {
1048 if (cgrp1 != new_cgrp)
1049 return false;
1050 } else {
1051 if (cgrp1 != cgrp2)
1052 return false;
1053 }
1054 }
1055 return true;
1056 }
1057
1058 /**
1059 * find_existing_css_set - init css array and find the matching css_set
1060 * @old_cset: the css_set that we're using before the cgroup transition
1061 * @cgrp: the cgroup that we're moving into
1062 * @template: out param for the new set of csses, should be clear on entry
1063 */
find_existing_css_set(struct css_set * old_cset,struct cgroup * cgrp,struct cgroup_subsys_state ** template)1064 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1065 struct cgroup *cgrp,
1066 struct cgroup_subsys_state **template)
1067 {
1068 struct cgroup_root *root = cgrp->root;
1069 struct cgroup_subsys *ss;
1070 struct css_set *cset;
1071 unsigned long key;
1072 int i;
1073
1074 /*
1075 * Build the set of subsystem state objects that we want to see in the
1076 * new css_set. While subsystems can change globally, the entries here
1077 * won't change, so no need for locking.
1078 */
1079 for_each_subsys(ss, i) {
1080 if (root->subsys_mask & (1UL << i)) {
1081 /*
1082 * @ss is in this hierarchy, so we want the
1083 * effective css from @cgrp.
1084 */
1085 template[i] = cgroup_e_css_by_mask(cgrp, ss);
1086 } else {
1087 /*
1088 * @ss is not in this hierarchy, so we don't want
1089 * to change the css.
1090 */
1091 template[i] = old_cset->subsys[i];
1092 }
1093 }
1094
1095 key = css_set_hash(template);
1096 hash_for_each_possible(css_set_table, cset, hlist, key) {
1097 if (!compare_css_sets(cset, old_cset, cgrp, template))
1098 continue;
1099
1100 /* This css_set matches what we need */
1101 return cset;
1102 }
1103
1104 /* No existing cgroup group matched */
1105 return NULL;
1106 }
1107
free_cgrp_cset_links(struct list_head * links_to_free)1108 static void free_cgrp_cset_links(struct list_head *links_to_free)
1109 {
1110 struct cgrp_cset_link *link, *tmp_link;
1111
1112 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1113 list_del(&link->cset_link);
1114 kfree(link);
1115 }
1116 }
1117
1118 /**
1119 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1120 * @count: the number of links to allocate
1121 * @tmp_links: list_head the allocated links are put on
1122 *
1123 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1124 * through ->cset_link. Returns 0 on success or -errno.
1125 */
allocate_cgrp_cset_links(int count,struct list_head * tmp_links)1126 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1127 {
1128 struct cgrp_cset_link *link;
1129 int i;
1130
1131 INIT_LIST_HEAD(tmp_links);
1132
1133 for (i = 0; i < count; i++) {
1134 link = kzalloc(sizeof(*link), GFP_KERNEL);
1135 if (!link) {
1136 free_cgrp_cset_links(tmp_links);
1137 return -ENOMEM;
1138 }
1139 list_add(&link->cset_link, tmp_links);
1140 }
1141 return 0;
1142 }
1143
1144 /**
1145 * link_css_set - a helper function to link a css_set to a cgroup
1146 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1147 * @cset: the css_set to be linked
1148 * @cgrp: the destination cgroup
1149 */
link_css_set(struct list_head * tmp_links,struct css_set * cset,struct cgroup * cgrp)1150 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1151 struct cgroup *cgrp)
1152 {
1153 struct cgrp_cset_link *link;
1154
1155 BUG_ON(list_empty(tmp_links));
1156
1157 if (cgroup_on_dfl(cgrp))
1158 cset->dfl_cgrp = cgrp;
1159
1160 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1161 link->cset = cset;
1162 link->cgrp = cgrp;
1163
1164 /*
1165 * Always add links to the tail of the lists so that the lists are
1166 * in chronological order.
1167 */
1168 list_move_tail(&link->cset_link, &cgrp->cset_links);
1169 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1170
1171 if (cgroup_parent(cgrp))
1172 cgroup_get_live(cgrp);
1173 }
1174
1175 /**
1176 * find_css_set - return a new css_set with one cgroup updated
1177 * @old_cset: the baseline css_set
1178 * @cgrp: the cgroup to be updated
1179 *
1180 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1181 * substituted into the appropriate hierarchy.
1182 */
find_css_set(struct css_set * old_cset,struct cgroup * cgrp)1183 static struct css_set *find_css_set(struct css_set *old_cset,
1184 struct cgroup *cgrp)
1185 {
1186 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1187 struct css_set *cset;
1188 struct list_head tmp_links;
1189 struct cgrp_cset_link *link;
1190 struct cgroup_subsys *ss;
1191 unsigned long key;
1192 int ssid;
1193
1194 lockdep_assert_held(&cgroup_mutex);
1195
1196 /* First see if we already have a cgroup group that matches
1197 * the desired set */
1198 spin_lock_irq(&css_set_lock);
1199 cset = find_existing_css_set(old_cset, cgrp, template);
1200 if (cset)
1201 get_css_set(cset);
1202 spin_unlock_irq(&css_set_lock);
1203
1204 if (cset)
1205 return cset;
1206
1207 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1208 if (!cset)
1209 return NULL;
1210
1211 /* Allocate all the cgrp_cset_link objects that we'll need */
1212 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1213 kfree(cset);
1214 return NULL;
1215 }
1216
1217 refcount_set(&cset->refcount, 1);
1218 cset->dom_cset = cset;
1219 INIT_LIST_HEAD(&cset->tasks);
1220 INIT_LIST_HEAD(&cset->mg_tasks);
1221 INIT_LIST_HEAD(&cset->dying_tasks);
1222 INIT_LIST_HEAD(&cset->task_iters);
1223 INIT_LIST_HEAD(&cset->threaded_csets);
1224 INIT_HLIST_NODE(&cset->hlist);
1225 INIT_LIST_HEAD(&cset->cgrp_links);
1226 INIT_LIST_HEAD(&cset->mg_src_preload_node);
1227 INIT_LIST_HEAD(&cset->mg_dst_preload_node);
1228 INIT_LIST_HEAD(&cset->mg_node);
1229
1230 /* Copy the set of subsystem state objects generated in
1231 * find_existing_css_set() */
1232 memcpy(cset->subsys, template, sizeof(cset->subsys));
1233
1234 spin_lock_irq(&css_set_lock);
1235 /* Add reference counts and links from the new css_set. */
1236 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1237 struct cgroup *c = link->cgrp;
1238
1239 if (c->root == cgrp->root)
1240 c = cgrp;
1241 link_css_set(&tmp_links, cset, c);
1242 }
1243
1244 BUG_ON(!list_empty(&tmp_links));
1245
1246 css_set_count++;
1247
1248 /* Add @cset to the hash table */
1249 key = css_set_hash(cset->subsys);
1250 hash_add(css_set_table, &cset->hlist, key);
1251
1252 for_each_subsys(ss, ssid) {
1253 struct cgroup_subsys_state *css = cset->subsys[ssid];
1254
1255 list_add_tail(&cset->e_cset_node[ssid],
1256 &css->cgroup->e_csets[ssid]);
1257 css_get(css);
1258 }
1259
1260 spin_unlock_irq(&css_set_lock);
1261
1262 /*
1263 * If @cset should be threaded, look up the matching dom_cset and
1264 * link them up. We first fully initialize @cset then look for the
1265 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1266 * to stay empty until we return.
1267 */
1268 if (cgroup_is_threaded(cset->dfl_cgrp)) {
1269 struct css_set *dcset;
1270
1271 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1272 if (!dcset) {
1273 put_css_set(cset);
1274 return NULL;
1275 }
1276
1277 spin_lock_irq(&css_set_lock);
1278 cset->dom_cset = dcset;
1279 list_add_tail(&cset->threaded_csets_node,
1280 &dcset->threaded_csets);
1281 spin_unlock_irq(&css_set_lock);
1282 }
1283
1284 return cset;
1285 }
1286
cgroup_root_from_kf(struct kernfs_root * kf_root)1287 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1288 {
1289 struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv;
1290
1291 return root_cgrp->root;
1292 }
1293
cgroup_favor_dynmods(struct cgroup_root * root,bool favor)1294 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor)
1295 {
1296 bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS;
1297
1298 /* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */
1299 if (favor && !favoring) {
1300 rcu_sync_enter(&cgroup_threadgroup_rwsem.rss);
1301 root->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1302 } else if (!favor && favoring) {
1303 rcu_sync_exit(&cgroup_threadgroup_rwsem.rss);
1304 root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS;
1305 }
1306 }
1307
cgroup_init_root_id(struct cgroup_root * root)1308 static int cgroup_init_root_id(struct cgroup_root *root)
1309 {
1310 int id;
1311
1312 lockdep_assert_held(&cgroup_mutex);
1313
1314 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1315 if (id < 0)
1316 return id;
1317
1318 root->hierarchy_id = id;
1319 return 0;
1320 }
1321
cgroup_exit_root_id(struct cgroup_root * root)1322 static void cgroup_exit_root_id(struct cgroup_root *root)
1323 {
1324 lockdep_assert_held(&cgroup_mutex);
1325
1326 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1327 }
1328
cgroup_free_root(struct cgroup_root * root)1329 void cgroup_free_root(struct cgroup_root *root)
1330 {
1331 kfree_rcu(root, rcu);
1332 }
1333
cgroup_destroy_root(struct cgroup_root * root)1334 static void cgroup_destroy_root(struct cgroup_root *root)
1335 {
1336 struct cgroup *cgrp = &root->cgrp;
1337 struct cgrp_cset_link *link, *tmp_link;
1338
1339 trace_cgroup_destroy_root(root);
1340
1341 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1342
1343 BUG_ON(atomic_read(&root->nr_cgrps));
1344 BUG_ON(!list_empty(&cgrp->self.children));
1345
1346 /* Rebind all subsystems back to the default hierarchy */
1347 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1348
1349 /*
1350 * Release all the links from cset_links to this hierarchy's
1351 * root cgroup
1352 */
1353 spin_lock_irq(&css_set_lock);
1354
1355 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1356 list_del(&link->cset_link);
1357 list_del(&link->cgrp_link);
1358 kfree(link);
1359 }
1360
1361 spin_unlock_irq(&css_set_lock);
1362
1363 WARN_ON_ONCE(list_empty(&root->root_list));
1364 list_del_rcu(&root->root_list);
1365 cgroup_root_count--;
1366
1367 if (!have_favordynmods)
1368 cgroup_favor_dynmods(root, false);
1369
1370 cgroup_exit_root_id(root);
1371
1372 cgroup_unlock();
1373
1374 cgroup_rstat_exit(cgrp);
1375 kernfs_destroy_root(root->kf_root);
1376 cgroup_free_root(root);
1377 }
1378
1379 /*
1380 * Returned cgroup is without refcount but it's valid as long as cset pins it.
1381 */
__cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1382 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset,
1383 struct cgroup_root *root)
1384 {
1385 struct cgroup *res_cgroup = NULL;
1386
1387 if (cset == &init_css_set) {
1388 res_cgroup = &root->cgrp;
1389 } else if (root == &cgrp_dfl_root) {
1390 res_cgroup = cset->dfl_cgrp;
1391 } else {
1392 struct cgrp_cset_link *link;
1393 lockdep_assert_held(&css_set_lock);
1394
1395 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1396 struct cgroup *c = link->cgrp;
1397
1398 if (c->root == root) {
1399 res_cgroup = c;
1400 break;
1401 }
1402 }
1403 }
1404
1405 /*
1406 * If cgroup_mutex is not held, the cgrp_cset_link will be freed
1407 * before we remove the cgroup root from the root_list. Consequently,
1408 * when accessing a cgroup root, the cset_link may have already been
1409 * freed, resulting in a NULL res_cgroup. However, by holding the
1410 * cgroup_mutex, we ensure that res_cgroup can't be NULL.
1411 * If we don't hold cgroup_mutex in the caller, we must do the NULL
1412 * check.
1413 */
1414 return res_cgroup;
1415 }
1416
1417 /*
1418 * look up cgroup associated with current task's cgroup namespace on the
1419 * specified hierarchy
1420 */
1421 static struct cgroup *
current_cgns_cgroup_from_root(struct cgroup_root * root)1422 current_cgns_cgroup_from_root(struct cgroup_root *root)
1423 {
1424 struct cgroup *res = NULL;
1425 struct css_set *cset;
1426
1427 lockdep_assert_held(&css_set_lock);
1428
1429 rcu_read_lock();
1430
1431 cset = current->nsproxy->cgroup_ns->root_cset;
1432 res = __cset_cgroup_from_root(cset, root);
1433
1434 rcu_read_unlock();
1435
1436 /*
1437 * The namespace_sem is held by current, so the root cgroup can't
1438 * be umounted. Therefore, we can ensure that the res is non-NULL.
1439 */
1440 WARN_ON_ONCE(!res);
1441 return res;
1442 }
1443
1444 /*
1445 * Look up cgroup associated with current task's cgroup namespace on the default
1446 * hierarchy.
1447 *
1448 * Unlike current_cgns_cgroup_from_root(), this doesn't need locks:
1449 * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu
1450 * pointers.
1451 * - css_set_lock is not needed because we just read cset->dfl_cgrp.
1452 * - As a bonus returned cgrp is pinned with the current because it cannot
1453 * switch cgroup_ns asynchronously.
1454 */
current_cgns_cgroup_dfl(void)1455 static struct cgroup *current_cgns_cgroup_dfl(void)
1456 {
1457 struct css_set *cset;
1458
1459 if (current->nsproxy) {
1460 cset = current->nsproxy->cgroup_ns->root_cset;
1461 return __cset_cgroup_from_root(cset, &cgrp_dfl_root);
1462 } else {
1463 /*
1464 * NOTE: This function may be called from bpf_cgroup_from_id()
1465 * on a task which has already passed exit_task_namespaces() and
1466 * nsproxy == NULL. Fall back to cgrp_dfl_root which will make all
1467 * cgroups visible for lookups.
1468 */
1469 return &cgrp_dfl_root.cgrp;
1470 }
1471 }
1472
1473 /* look up cgroup associated with given css_set on the specified hierarchy */
cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1474 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1475 struct cgroup_root *root)
1476 {
1477 lockdep_assert_held(&css_set_lock);
1478
1479 return __cset_cgroup_from_root(cset, root);
1480 }
1481
1482 /*
1483 * Return the cgroup for "task" from the given hierarchy. Must be
1484 * called with css_set_lock held to prevent task's groups from being modified.
1485 * Must be called with either cgroup_mutex or rcu read lock to prevent the
1486 * cgroup root from being destroyed.
1487 */
task_cgroup_from_root(struct task_struct * task,struct cgroup_root * root)1488 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1489 struct cgroup_root *root)
1490 {
1491 /*
1492 * No need to lock the task - since we hold css_set_lock the
1493 * task can't change groups.
1494 */
1495 return cset_cgroup_from_root(task_css_set(task), root);
1496 }
1497
1498 /*
1499 * A task must hold cgroup_mutex to modify cgroups.
1500 *
1501 * Any task can increment and decrement the count field without lock.
1502 * So in general, code holding cgroup_mutex can't rely on the count
1503 * field not changing. However, if the count goes to zero, then only
1504 * cgroup_attach_task() can increment it again. Because a count of zero
1505 * means that no tasks are currently attached, therefore there is no
1506 * way a task attached to that cgroup can fork (the other way to
1507 * increment the count). So code holding cgroup_mutex can safely
1508 * assume that if the count is zero, it will stay zero. Similarly, if
1509 * a task holds cgroup_mutex on a cgroup with zero count, it
1510 * knows that the cgroup won't be removed, as cgroup_rmdir()
1511 * needs that mutex.
1512 *
1513 * A cgroup can only be deleted if both its 'count' of using tasks
1514 * is zero, and its list of 'children' cgroups is empty. Since all
1515 * tasks in the system use _some_ cgroup, and since there is always at
1516 * least one task in the system (init, pid == 1), therefore, root cgroup
1517 * always has either children cgroups and/or using tasks. So we don't
1518 * need a special hack to ensure that root cgroup cannot be deleted.
1519 *
1520 * P.S. One more locking exception. RCU is used to guard the
1521 * update of a tasks cgroup pointer by cgroup_attach_task()
1522 */
1523
1524 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1525
cgroup_file_name(struct cgroup * cgrp,const struct cftype * cft,char * buf)1526 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1527 char *buf)
1528 {
1529 struct cgroup_subsys *ss = cft->ss;
1530
1531 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1532 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1533 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1534
1535 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1536 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1537 cft->name);
1538 } else {
1539 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1540 }
1541 return buf;
1542 }
1543
1544 /**
1545 * cgroup_file_mode - deduce file mode of a control file
1546 * @cft: the control file in question
1547 *
1548 * S_IRUGO for read, S_IWUSR for write.
1549 */
cgroup_file_mode(const struct cftype * cft)1550 static umode_t cgroup_file_mode(const struct cftype *cft)
1551 {
1552 umode_t mode = 0;
1553
1554 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1555 mode |= S_IRUGO;
1556
1557 if (cft->write_u64 || cft->write_s64 || cft->write) {
1558 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1559 mode |= S_IWUGO;
1560 else
1561 mode |= S_IWUSR;
1562 }
1563
1564 return mode;
1565 }
1566
1567 /**
1568 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1569 * @subtree_control: the new subtree_control mask to consider
1570 * @this_ss_mask: available subsystems
1571 *
1572 * On the default hierarchy, a subsystem may request other subsystems to be
1573 * enabled together through its ->depends_on mask. In such cases, more
1574 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1575 *
1576 * This function calculates which subsystems need to be enabled if
1577 * @subtree_control is to be applied while restricted to @this_ss_mask.
1578 */
cgroup_calc_subtree_ss_mask(u16 subtree_control,u16 this_ss_mask)1579 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1580 {
1581 u16 cur_ss_mask = subtree_control;
1582 struct cgroup_subsys *ss;
1583 int ssid;
1584
1585 lockdep_assert_held(&cgroup_mutex);
1586
1587 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1588
1589 while (true) {
1590 u16 new_ss_mask = cur_ss_mask;
1591
1592 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1593 new_ss_mask |= ss->depends_on;
1594 } while_each_subsys_mask();
1595
1596 /*
1597 * Mask out subsystems which aren't available. This can
1598 * happen only if some depended-upon subsystems were bound
1599 * to non-default hierarchies.
1600 */
1601 new_ss_mask &= this_ss_mask;
1602
1603 if (new_ss_mask == cur_ss_mask)
1604 break;
1605 cur_ss_mask = new_ss_mask;
1606 }
1607
1608 return cur_ss_mask;
1609 }
1610
1611 /**
1612 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1613 * @kn: the kernfs_node being serviced
1614 *
1615 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1616 * the method finishes if locking succeeded. Note that once this function
1617 * returns the cgroup returned by cgroup_kn_lock_live() may become
1618 * inaccessible any time. If the caller intends to continue to access the
1619 * cgroup, it should pin it before invoking this function.
1620 */
cgroup_kn_unlock(struct kernfs_node * kn)1621 void cgroup_kn_unlock(struct kernfs_node *kn)
1622 {
1623 struct cgroup *cgrp;
1624
1625 if (kernfs_type(kn) == KERNFS_DIR)
1626 cgrp = kn->priv;
1627 else
1628 cgrp = kn_priv(kn);
1629
1630 cgroup_unlock();
1631
1632 kernfs_unbreak_active_protection(kn);
1633 cgroup_put(cgrp);
1634 }
1635
1636 /**
1637 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1638 * @kn: the kernfs_node being serviced
1639 * @drain_offline: perform offline draining on the cgroup
1640 *
1641 * This helper is to be used by a cgroup kernfs method currently servicing
1642 * @kn. It breaks the active protection, performs cgroup locking and
1643 * verifies that the associated cgroup is alive. Returns the cgroup if
1644 * alive; otherwise, %NULL. A successful return should be undone by a
1645 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1646 * cgroup is drained of offlining csses before return.
1647 *
1648 * Any cgroup kernfs method implementation which requires locking the
1649 * associated cgroup should use this helper. It avoids nesting cgroup
1650 * locking under kernfs active protection and allows all kernfs operations
1651 * including self-removal.
1652 */
cgroup_kn_lock_live(struct kernfs_node * kn,bool drain_offline)1653 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1654 {
1655 struct cgroup *cgrp;
1656
1657 if (kernfs_type(kn) == KERNFS_DIR)
1658 cgrp = kn->priv;
1659 else
1660 cgrp = kn_priv(kn);
1661
1662 /*
1663 * We're gonna grab cgroup_mutex which nests outside kernfs
1664 * active_ref. cgroup liveliness check alone provides enough
1665 * protection against removal. Ensure @cgrp stays accessible and
1666 * break the active_ref protection.
1667 */
1668 if (!cgroup_tryget(cgrp))
1669 return NULL;
1670 kernfs_break_active_protection(kn);
1671
1672 if (drain_offline)
1673 cgroup_lock_and_drain_offline(cgrp);
1674 else
1675 cgroup_lock();
1676
1677 if (!cgroup_is_dead(cgrp))
1678 return cgrp;
1679
1680 cgroup_kn_unlock(kn);
1681 return NULL;
1682 }
1683
cgroup_rm_file(struct cgroup * cgrp,const struct cftype * cft)1684 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1685 {
1686 char name[CGROUP_FILE_NAME_MAX];
1687
1688 lockdep_assert_held(&cgroup_mutex);
1689
1690 if (cft->file_offset) {
1691 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1692 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1693
1694 spin_lock_irq(&cgroup_file_kn_lock);
1695 cfile->kn = NULL;
1696 spin_unlock_irq(&cgroup_file_kn_lock);
1697
1698 del_timer_sync(&cfile->notify_timer);
1699 }
1700
1701 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1702 }
1703
1704 /**
1705 * css_clear_dir - remove subsys files in a cgroup directory
1706 * @css: target css
1707 */
css_clear_dir(struct cgroup_subsys_state * css)1708 static void css_clear_dir(struct cgroup_subsys_state *css)
1709 {
1710 struct cgroup *cgrp = css->cgroup;
1711 struct cftype *cfts;
1712
1713 if (!(css->flags & CSS_VISIBLE))
1714 return;
1715
1716 css->flags &= ~CSS_VISIBLE;
1717
1718 if (!css->ss) {
1719 if (cgroup_on_dfl(cgrp)) {
1720 cgroup_addrm_files(css, cgrp,
1721 cgroup_base_files, false);
1722 if (cgroup_psi_enabled())
1723 cgroup_addrm_files(css, cgrp,
1724 cgroup_psi_files, false);
1725 } else {
1726 cgroup_addrm_files(css, cgrp,
1727 cgroup1_base_files, false);
1728 }
1729 } else {
1730 list_for_each_entry(cfts, &css->ss->cfts, node)
1731 cgroup_addrm_files(css, cgrp, cfts, false);
1732 }
1733 }
1734
1735 /**
1736 * css_populate_dir - create subsys files in a cgroup directory
1737 * @css: target css
1738 *
1739 * On failure, no file is added.
1740 */
css_populate_dir(struct cgroup_subsys_state * css)1741 static int css_populate_dir(struct cgroup_subsys_state *css)
1742 {
1743 struct cgroup *cgrp = css->cgroup;
1744 struct cftype *cfts, *failed_cfts;
1745 int ret;
1746
1747 if (css->flags & CSS_VISIBLE)
1748 return 0;
1749
1750 if (!css->ss) {
1751 if (cgroup_on_dfl(cgrp)) {
1752 ret = cgroup_addrm_files(css, cgrp,
1753 cgroup_base_files, true);
1754 if (ret < 0)
1755 return ret;
1756
1757 if (cgroup_psi_enabled()) {
1758 ret = cgroup_addrm_files(css, cgrp,
1759 cgroup_psi_files, true);
1760 if (ret < 0) {
1761 cgroup_addrm_files(css, cgrp,
1762 cgroup_base_files, false);
1763 return ret;
1764 }
1765 }
1766 } else {
1767 ret = cgroup_addrm_files(css, cgrp,
1768 cgroup1_base_files, true);
1769 if (ret < 0)
1770 return ret;
1771 }
1772 } else {
1773 list_for_each_entry(cfts, &css->ss->cfts, node) {
1774 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1775 if (ret < 0) {
1776 failed_cfts = cfts;
1777 goto err;
1778 }
1779 }
1780 }
1781
1782 css->flags |= CSS_VISIBLE;
1783
1784 return 0;
1785 err:
1786 list_for_each_entry(cfts, &css->ss->cfts, node) {
1787 if (cfts == failed_cfts)
1788 break;
1789 cgroup_addrm_files(css, cgrp, cfts, false);
1790 }
1791 return ret;
1792 }
1793
rebind_subsystems(struct cgroup_root * dst_root,u16 ss_mask)1794 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1795 {
1796 struct cgroup *dcgrp = &dst_root->cgrp;
1797 struct cgroup_subsys *ss;
1798 int ssid, ret;
1799 u16 dfl_disable_ss_mask = 0;
1800
1801 lockdep_assert_held(&cgroup_mutex);
1802
1803 do_each_subsys_mask(ss, ssid, ss_mask) {
1804 /*
1805 * If @ss has non-root csses attached to it, can't move.
1806 * If @ss is an implicit controller, it is exempt from this
1807 * rule and can be stolen.
1808 */
1809 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1810 !ss->implicit_on_dfl)
1811 return -EBUSY;
1812
1813 /* can't move between two non-dummy roots either */
1814 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1815 return -EBUSY;
1816
1817 /*
1818 * Collect ssid's that need to be disabled from default
1819 * hierarchy.
1820 */
1821 if (ss->root == &cgrp_dfl_root)
1822 dfl_disable_ss_mask |= 1 << ssid;
1823
1824 } while_each_subsys_mask();
1825
1826 if (dfl_disable_ss_mask) {
1827 struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1828
1829 /*
1830 * Controllers from default hierarchy that need to be rebound
1831 * are all disabled together in one go.
1832 */
1833 cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1834 WARN_ON(cgroup_apply_control(scgrp));
1835 cgroup_finalize_control(scgrp, 0);
1836 }
1837
1838 do_each_subsys_mask(ss, ssid, ss_mask) {
1839 struct cgroup_root *src_root = ss->root;
1840 struct cgroup *scgrp = &src_root->cgrp;
1841 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1842 struct css_set *cset, *cset_pos;
1843 struct css_task_iter *it;
1844
1845 WARN_ON(!css || cgroup_css(dcgrp, ss));
1846
1847 if (src_root != &cgrp_dfl_root) {
1848 /* disable from the source */
1849 src_root->subsys_mask &= ~(1 << ssid);
1850 WARN_ON(cgroup_apply_control(scgrp));
1851 cgroup_finalize_control(scgrp, 0);
1852 }
1853
1854 /* rebind */
1855 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1856 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1857 ss->root = dst_root;
1858
1859 spin_lock_irq(&css_set_lock);
1860 css->cgroup = dcgrp;
1861 WARN_ON(!list_empty(&dcgrp->e_csets[ss->id]));
1862 list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id],
1863 e_cset_node[ss->id]) {
1864 list_move_tail(&cset->e_cset_node[ss->id],
1865 &dcgrp->e_csets[ss->id]);
1866 /*
1867 * all css_sets of scgrp together in same order to dcgrp,
1868 * patch in-flight iterators to preserve correct iteration.
1869 * since the iterator is always advanced right away and
1870 * finished when it->cset_pos meets it->cset_head, so only
1871 * update it->cset_head is enough here.
1872 */
1873 list_for_each_entry(it, &cset->task_iters, iters_node)
1874 if (it->cset_head == &scgrp->e_csets[ss->id])
1875 it->cset_head = &dcgrp->e_csets[ss->id];
1876 }
1877 spin_unlock_irq(&css_set_lock);
1878
1879 if (ss->css_rstat_flush) {
1880 list_del_rcu(&css->rstat_css_node);
1881 synchronize_rcu();
1882 list_add_rcu(&css->rstat_css_node,
1883 &dcgrp->rstat_css_list);
1884 }
1885
1886 /* default hierarchy doesn't enable controllers by default */
1887 dst_root->subsys_mask |= 1 << ssid;
1888 if (dst_root == &cgrp_dfl_root) {
1889 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1890 } else {
1891 dcgrp->subtree_control |= 1 << ssid;
1892 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1893 }
1894
1895 ret = cgroup_apply_control(dcgrp);
1896 if (ret)
1897 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1898 ss->name, ret);
1899
1900 if (ss->bind)
1901 ss->bind(css);
1902 } while_each_subsys_mask();
1903
1904 kernfs_activate(dcgrp->kn);
1905 return 0;
1906 }
1907
cgroup_show_path(struct seq_file * sf,struct kernfs_node * kf_node,struct kernfs_root * kf_root)1908 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1909 struct kernfs_root *kf_root)
1910 {
1911 int len = 0;
1912 char *buf = NULL;
1913 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1914 struct cgroup *ns_cgroup;
1915
1916 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1917 if (!buf)
1918 return -ENOMEM;
1919
1920 spin_lock_irq(&css_set_lock);
1921 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1922 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1923 spin_unlock_irq(&css_set_lock);
1924
1925 if (len == -E2BIG)
1926 len = -ERANGE;
1927 else if (len > 0) {
1928 seq_escape(sf, buf, " \t\n\\");
1929 len = 0;
1930 }
1931 kfree(buf);
1932 return len;
1933 }
1934
1935 enum cgroup2_param {
1936 Opt_nsdelegate,
1937 Opt_favordynmods,
1938 Opt_memory_localevents,
1939 Opt_memory_recursiveprot,
1940 Opt_memory_hugetlb_accounting,
1941 Opt_pids_localevents,
1942 nr__cgroup2_params
1943 };
1944
1945 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1946 fsparam_flag("nsdelegate", Opt_nsdelegate),
1947 fsparam_flag("favordynmods", Opt_favordynmods),
1948 fsparam_flag("memory_localevents", Opt_memory_localevents),
1949 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot),
1950 fsparam_flag("memory_hugetlb_accounting", Opt_memory_hugetlb_accounting),
1951 fsparam_flag("pids_localevents", Opt_pids_localevents),
1952 {}
1953 };
1954
cgroup2_parse_param(struct fs_context * fc,struct fs_parameter * param)1955 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1956 {
1957 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1958 struct fs_parse_result result;
1959 int opt;
1960
1961 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1962 if (opt < 0)
1963 return opt;
1964
1965 switch (opt) {
1966 case Opt_nsdelegate:
1967 ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1968 return 0;
1969 case Opt_favordynmods:
1970 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1971 return 0;
1972 case Opt_memory_localevents:
1973 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1974 return 0;
1975 case Opt_memory_recursiveprot:
1976 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1977 return 0;
1978 case Opt_memory_hugetlb_accounting:
1979 ctx->flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
1980 return 0;
1981 case Opt_pids_localevents:
1982 ctx->flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS;
1983 return 0;
1984 }
1985 return -EINVAL;
1986 }
1987
of_peak(struct kernfs_open_file * of)1988 struct cgroup_of_peak *of_peak(struct kernfs_open_file *of)
1989 {
1990 struct cgroup_file_ctx *ctx = of->priv;
1991
1992 return &ctx->peak;
1993 }
1994
apply_cgroup_root_flags(unsigned int root_flags)1995 static void apply_cgroup_root_flags(unsigned int root_flags)
1996 {
1997 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1998 if (root_flags & CGRP_ROOT_NS_DELEGATE)
1999 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
2000 else
2001 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
2002
2003 cgroup_favor_dynmods(&cgrp_dfl_root,
2004 root_flags & CGRP_ROOT_FAVOR_DYNMODS);
2005
2006 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
2007 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
2008 else
2009 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
2010
2011 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
2012 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
2013 else
2014 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
2015
2016 if (root_flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)
2017 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
2018 else
2019 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
2020
2021 if (root_flags & CGRP_ROOT_PIDS_LOCAL_EVENTS)
2022 cgrp_dfl_root.flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS;
2023 else
2024 cgrp_dfl_root.flags &= ~CGRP_ROOT_PIDS_LOCAL_EVENTS;
2025 }
2026 }
2027
cgroup_show_options(struct seq_file * seq,struct kernfs_root * kf_root)2028 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
2029 {
2030 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
2031 seq_puts(seq, ",nsdelegate");
2032 if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS)
2033 seq_puts(seq, ",favordynmods");
2034 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
2035 seq_puts(seq, ",memory_localevents");
2036 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
2037 seq_puts(seq, ",memory_recursiveprot");
2038 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)
2039 seq_puts(seq, ",memory_hugetlb_accounting");
2040 if (cgrp_dfl_root.flags & CGRP_ROOT_PIDS_LOCAL_EVENTS)
2041 seq_puts(seq, ",pids_localevents");
2042 return 0;
2043 }
2044
cgroup_reconfigure(struct fs_context * fc)2045 static int cgroup_reconfigure(struct fs_context *fc)
2046 {
2047 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2048
2049 apply_cgroup_root_flags(ctx->flags);
2050 return 0;
2051 }
2052
init_cgroup_housekeeping(struct cgroup * cgrp)2053 static void init_cgroup_housekeeping(struct cgroup *cgrp)
2054 {
2055 struct cgroup_subsys *ss;
2056 int ssid;
2057
2058 INIT_LIST_HEAD(&cgrp->self.sibling);
2059 INIT_LIST_HEAD(&cgrp->self.children);
2060 INIT_LIST_HEAD(&cgrp->cset_links);
2061 INIT_LIST_HEAD(&cgrp->pidlists);
2062 mutex_init(&cgrp->pidlist_mutex);
2063 cgrp->self.cgroup = cgrp;
2064 cgrp->self.flags |= CSS_ONLINE;
2065 cgrp->dom_cgrp = cgrp;
2066 cgrp->max_descendants = INT_MAX;
2067 cgrp->max_depth = INT_MAX;
2068 INIT_LIST_HEAD(&cgrp->rstat_css_list);
2069 prev_cputime_init(&cgrp->prev_cputime);
2070
2071 for_each_subsys(ss, ssid)
2072 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
2073
2074 init_waitqueue_head(&cgrp->offline_waitq);
2075 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
2076 }
2077
init_cgroup_root(struct cgroup_fs_context * ctx)2078 void init_cgroup_root(struct cgroup_fs_context *ctx)
2079 {
2080 struct cgroup_root *root = ctx->root;
2081 struct cgroup *cgrp = &root->cgrp;
2082
2083 INIT_LIST_HEAD_RCU(&root->root_list);
2084 atomic_set(&root->nr_cgrps, 1);
2085 cgrp->root = root;
2086 init_cgroup_housekeeping(cgrp);
2087
2088 /* DYNMODS must be modified through cgroup_favor_dynmods() */
2089 root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS;
2090 if (ctx->release_agent)
2091 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
2092 if (ctx->name)
2093 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
2094 if (ctx->cpuset_clone_children)
2095 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
2096 }
2097
cgroup_setup_root(struct cgroup_root * root,u16 ss_mask)2098 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2099 {
2100 LIST_HEAD(tmp_links);
2101 struct cgroup *root_cgrp = &root->cgrp;
2102 struct kernfs_syscall_ops *kf_sops;
2103 struct css_set *cset;
2104 int i, ret;
2105
2106 lockdep_assert_held(&cgroup_mutex);
2107
2108 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
2109 0, GFP_KERNEL);
2110 if (ret)
2111 goto out;
2112
2113 /*
2114 * We're accessing css_set_count without locking css_set_lock here,
2115 * but that's OK - it can only be increased by someone holding
2116 * cgroup_lock, and that's us. Later rebinding may disable
2117 * controllers on the default hierarchy and thus create new csets,
2118 * which can't be more than the existing ones. Allocate 2x.
2119 */
2120 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2121 if (ret)
2122 goto cancel_ref;
2123
2124 ret = cgroup_init_root_id(root);
2125 if (ret)
2126 goto cancel_ref;
2127
2128 kf_sops = root == &cgrp_dfl_root ?
2129 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2130
2131 root->kf_root = kernfs_create_root(kf_sops,
2132 KERNFS_ROOT_CREATE_DEACTIVATED |
2133 KERNFS_ROOT_SUPPORT_EXPORTOP |
2134 KERNFS_ROOT_SUPPORT_USER_XATTR |
2135 KERNFS_ROOT_INVARIANT_PARENT,
2136 root_cgrp);
2137 if (IS_ERR(root->kf_root)) {
2138 ret = PTR_ERR(root->kf_root);
2139 goto exit_root_id;
2140 }
2141 root_cgrp->kn = kernfs_root_to_node(root->kf_root);
2142 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
2143 root_cgrp->ancestors[0] = root_cgrp;
2144
2145 ret = css_populate_dir(&root_cgrp->self);
2146 if (ret)
2147 goto destroy_root;
2148
2149 ret = cgroup_rstat_init(root_cgrp);
2150 if (ret)
2151 goto destroy_root;
2152
2153 ret = rebind_subsystems(root, ss_mask);
2154 if (ret)
2155 goto exit_stats;
2156
2157 if (root == &cgrp_dfl_root) {
2158 ret = cgroup_bpf_inherit(root_cgrp);
2159 WARN_ON_ONCE(ret);
2160 }
2161
2162 trace_cgroup_setup_root(root);
2163
2164 /*
2165 * There must be no failure case after here, since rebinding takes
2166 * care of subsystems' refcounts, which are explicitly dropped in
2167 * the failure exit path.
2168 */
2169 list_add_rcu(&root->root_list, &cgroup_roots);
2170 cgroup_root_count++;
2171
2172 /*
2173 * Link the root cgroup in this hierarchy into all the css_set
2174 * objects.
2175 */
2176 spin_lock_irq(&css_set_lock);
2177 hash_for_each(css_set_table, i, cset, hlist) {
2178 link_css_set(&tmp_links, cset, root_cgrp);
2179 if (css_set_populated(cset))
2180 cgroup_update_populated(root_cgrp, true);
2181 }
2182 spin_unlock_irq(&css_set_lock);
2183
2184 BUG_ON(!list_empty(&root_cgrp->self.children));
2185 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2186
2187 ret = 0;
2188 goto out;
2189
2190 exit_stats:
2191 cgroup_rstat_exit(root_cgrp);
2192 destroy_root:
2193 kernfs_destroy_root(root->kf_root);
2194 root->kf_root = NULL;
2195 exit_root_id:
2196 cgroup_exit_root_id(root);
2197 cancel_ref:
2198 percpu_ref_exit(&root_cgrp->self.refcnt);
2199 out:
2200 free_cgrp_cset_links(&tmp_links);
2201 return ret;
2202 }
2203
cgroup_do_get_tree(struct fs_context * fc)2204 int cgroup_do_get_tree(struct fs_context *fc)
2205 {
2206 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2207 int ret;
2208
2209 ctx->kfc.root = ctx->root->kf_root;
2210 if (fc->fs_type == &cgroup2_fs_type)
2211 ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2212 else
2213 ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2214 ret = kernfs_get_tree(fc);
2215
2216 /*
2217 * In non-init cgroup namespace, instead of root cgroup's dentry,
2218 * we return the dentry corresponding to the cgroupns->root_cgrp.
2219 */
2220 if (!ret && ctx->ns != &init_cgroup_ns) {
2221 struct dentry *nsdentry;
2222 struct super_block *sb = fc->root->d_sb;
2223 struct cgroup *cgrp;
2224
2225 cgroup_lock();
2226 spin_lock_irq(&css_set_lock);
2227
2228 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2229
2230 spin_unlock_irq(&css_set_lock);
2231 cgroup_unlock();
2232
2233 nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2234 dput(fc->root);
2235 if (IS_ERR(nsdentry)) {
2236 deactivate_locked_super(sb);
2237 ret = PTR_ERR(nsdentry);
2238 nsdentry = NULL;
2239 }
2240 fc->root = nsdentry;
2241 }
2242
2243 if (!ctx->kfc.new_sb_created)
2244 cgroup_put(&ctx->root->cgrp);
2245
2246 return ret;
2247 }
2248
2249 /*
2250 * Destroy a cgroup filesystem context.
2251 */
cgroup_fs_context_free(struct fs_context * fc)2252 static void cgroup_fs_context_free(struct fs_context *fc)
2253 {
2254 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2255
2256 kfree(ctx->name);
2257 kfree(ctx->release_agent);
2258 put_cgroup_ns(ctx->ns);
2259 kernfs_free_fs_context(fc);
2260 kfree(ctx);
2261 }
2262
cgroup_get_tree(struct fs_context * fc)2263 static int cgroup_get_tree(struct fs_context *fc)
2264 {
2265 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2266 int ret;
2267
2268 WRITE_ONCE(cgrp_dfl_visible, true);
2269 cgroup_get_live(&cgrp_dfl_root.cgrp);
2270 ctx->root = &cgrp_dfl_root;
2271
2272 ret = cgroup_do_get_tree(fc);
2273 if (!ret)
2274 apply_cgroup_root_flags(ctx->flags);
2275 return ret;
2276 }
2277
2278 static const struct fs_context_operations cgroup_fs_context_ops = {
2279 .free = cgroup_fs_context_free,
2280 .parse_param = cgroup2_parse_param,
2281 .get_tree = cgroup_get_tree,
2282 .reconfigure = cgroup_reconfigure,
2283 };
2284
2285 static const struct fs_context_operations cgroup1_fs_context_ops = {
2286 .free = cgroup_fs_context_free,
2287 .parse_param = cgroup1_parse_param,
2288 .get_tree = cgroup1_get_tree,
2289 .reconfigure = cgroup1_reconfigure,
2290 };
2291
2292 /*
2293 * Initialise the cgroup filesystem creation/reconfiguration context. Notably,
2294 * we select the namespace we're going to use.
2295 */
cgroup_init_fs_context(struct fs_context * fc)2296 static int cgroup_init_fs_context(struct fs_context *fc)
2297 {
2298 struct cgroup_fs_context *ctx;
2299
2300 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2301 if (!ctx)
2302 return -ENOMEM;
2303
2304 ctx->ns = current->nsproxy->cgroup_ns;
2305 get_cgroup_ns(ctx->ns);
2306 fc->fs_private = &ctx->kfc;
2307 if (fc->fs_type == &cgroup2_fs_type)
2308 fc->ops = &cgroup_fs_context_ops;
2309 else
2310 fc->ops = &cgroup1_fs_context_ops;
2311 put_user_ns(fc->user_ns);
2312 fc->user_ns = get_user_ns(ctx->ns->user_ns);
2313 fc->global = true;
2314
2315 if (have_favordynmods)
2316 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
2317
2318 return 0;
2319 }
2320
cgroup_kill_sb(struct super_block * sb)2321 static void cgroup_kill_sb(struct super_block *sb)
2322 {
2323 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2324 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2325
2326 /*
2327 * If @root doesn't have any children, start killing it.
2328 * This prevents new mounts by disabling percpu_ref_tryget_live().
2329 *
2330 * And don't kill the default root.
2331 */
2332 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2333 !percpu_ref_is_dying(&root->cgrp.self.refcnt))
2334 percpu_ref_kill(&root->cgrp.self.refcnt);
2335 cgroup_put(&root->cgrp);
2336 kernfs_kill_sb(sb);
2337 }
2338
2339 struct file_system_type cgroup_fs_type = {
2340 .name = "cgroup",
2341 .init_fs_context = cgroup_init_fs_context,
2342 .parameters = cgroup1_fs_parameters,
2343 .kill_sb = cgroup_kill_sb,
2344 .fs_flags = FS_USERNS_MOUNT,
2345 };
2346
2347 static struct file_system_type cgroup2_fs_type = {
2348 .name = "cgroup2",
2349 .init_fs_context = cgroup_init_fs_context,
2350 .parameters = cgroup2_fs_parameters,
2351 .kill_sb = cgroup_kill_sb,
2352 .fs_flags = FS_USERNS_MOUNT,
2353 };
2354
2355 #ifdef CONFIG_CPUSETS_V1
2356 static const struct fs_context_operations cpuset_fs_context_ops = {
2357 .get_tree = cgroup1_get_tree,
2358 .free = cgroup_fs_context_free,
2359 };
2360
2361 /*
2362 * This is ugly, but preserves the userspace API for existing cpuset
2363 * users. If someone tries to mount the "cpuset" filesystem, we
2364 * silently switch it to mount "cgroup" instead
2365 */
cpuset_init_fs_context(struct fs_context * fc)2366 static int cpuset_init_fs_context(struct fs_context *fc)
2367 {
2368 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2369 struct cgroup_fs_context *ctx;
2370 int err;
2371
2372 err = cgroup_init_fs_context(fc);
2373 if (err) {
2374 kfree(agent);
2375 return err;
2376 }
2377
2378 fc->ops = &cpuset_fs_context_ops;
2379
2380 ctx = cgroup_fc2context(fc);
2381 ctx->subsys_mask = 1 << cpuset_cgrp_id;
2382 ctx->flags |= CGRP_ROOT_NOPREFIX;
2383 ctx->release_agent = agent;
2384
2385 get_filesystem(&cgroup_fs_type);
2386 put_filesystem(fc->fs_type);
2387 fc->fs_type = &cgroup_fs_type;
2388
2389 return 0;
2390 }
2391
2392 static struct file_system_type cpuset_fs_type = {
2393 .name = "cpuset",
2394 .init_fs_context = cpuset_init_fs_context,
2395 .fs_flags = FS_USERNS_MOUNT,
2396 };
2397 #endif
2398
cgroup_path_ns_locked(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2399 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2400 struct cgroup_namespace *ns)
2401 {
2402 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2403
2404 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2405 }
2406
cgroup_path_ns(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2407 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2408 struct cgroup_namespace *ns)
2409 {
2410 int ret;
2411
2412 cgroup_lock();
2413 spin_lock_irq(&css_set_lock);
2414
2415 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2416
2417 spin_unlock_irq(&css_set_lock);
2418 cgroup_unlock();
2419
2420 return ret;
2421 }
2422 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2423
2424 /**
2425 * cgroup_attach_lock - Lock for ->attach()
2426 * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem
2427 *
2428 * cgroup migration sometimes needs to stabilize threadgroups against forks and
2429 * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach()
2430 * implementations (e.g. cpuset), also need to disable CPU hotplug.
2431 * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can
2432 * lead to deadlocks.
2433 *
2434 * Bringing up a CPU may involve creating and destroying tasks which requires
2435 * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
2436 * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while
2437 * write-locking threadgroup_rwsem, the locking order is reversed and we end up
2438 * waiting for an on-going CPU hotplug operation which in turn is waiting for
2439 * the threadgroup_rwsem to be released to create new tasks. For more details:
2440 *
2441 * http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu
2442 *
2443 * Resolve the situation by always acquiring cpus_read_lock() before optionally
2444 * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that
2445 * CPU hotplug is disabled on entry.
2446 */
cgroup_attach_lock(bool lock_threadgroup)2447 void cgroup_attach_lock(bool lock_threadgroup)
2448 {
2449 cpus_read_lock();
2450 if (lock_threadgroup)
2451 percpu_down_write(&cgroup_threadgroup_rwsem);
2452 }
2453
2454 /**
2455 * cgroup_attach_unlock - Undo cgroup_attach_lock()
2456 * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem
2457 */
cgroup_attach_unlock(bool lock_threadgroup)2458 void cgroup_attach_unlock(bool lock_threadgroup)
2459 {
2460 if (lock_threadgroup)
2461 percpu_up_write(&cgroup_threadgroup_rwsem);
2462 cpus_read_unlock();
2463 }
2464
2465 /**
2466 * cgroup_migrate_add_task - add a migration target task to a migration context
2467 * @task: target task
2468 * @mgctx: target migration context
2469 *
2470 * Add @task, which is a migration target, to @mgctx->tset. This function
2471 * becomes noop if @task doesn't need to be migrated. @task's css_set
2472 * should have been added as a migration source and @task->cg_list will be
2473 * moved from the css_set's tasks list to mg_tasks one.
2474 */
cgroup_migrate_add_task(struct task_struct * task,struct cgroup_mgctx * mgctx)2475 static void cgroup_migrate_add_task(struct task_struct *task,
2476 struct cgroup_mgctx *mgctx)
2477 {
2478 struct css_set *cset;
2479
2480 lockdep_assert_held(&css_set_lock);
2481
2482 /* @task either already exited or can't exit until the end */
2483 if (task->flags & PF_EXITING)
2484 return;
2485
2486 /* cgroup_threadgroup_rwsem protects racing against forks */
2487 WARN_ON_ONCE(list_empty(&task->cg_list));
2488
2489 cset = task_css_set(task);
2490 if (!cset->mg_src_cgrp)
2491 return;
2492
2493 mgctx->tset.nr_tasks++;
2494
2495 list_move_tail(&task->cg_list, &cset->mg_tasks);
2496 if (list_empty(&cset->mg_node))
2497 list_add_tail(&cset->mg_node,
2498 &mgctx->tset.src_csets);
2499 if (list_empty(&cset->mg_dst_cset->mg_node))
2500 list_add_tail(&cset->mg_dst_cset->mg_node,
2501 &mgctx->tset.dst_csets);
2502 }
2503
2504 /**
2505 * cgroup_taskset_first - reset taskset and return the first task
2506 * @tset: taskset of interest
2507 * @dst_cssp: output variable for the destination css
2508 *
2509 * @tset iteration is initialized and the first task is returned.
2510 */
cgroup_taskset_first(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2511 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2512 struct cgroup_subsys_state **dst_cssp)
2513 {
2514 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2515 tset->cur_task = NULL;
2516
2517 return cgroup_taskset_next(tset, dst_cssp);
2518 }
2519
2520 /**
2521 * cgroup_taskset_next - iterate to the next task in taskset
2522 * @tset: taskset of interest
2523 * @dst_cssp: output variable for the destination css
2524 *
2525 * Return the next task in @tset. Iteration must have been initialized
2526 * with cgroup_taskset_first().
2527 */
cgroup_taskset_next(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2528 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2529 struct cgroup_subsys_state **dst_cssp)
2530 {
2531 struct css_set *cset = tset->cur_cset;
2532 struct task_struct *task = tset->cur_task;
2533
2534 while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) {
2535 if (!task)
2536 task = list_first_entry(&cset->mg_tasks,
2537 struct task_struct, cg_list);
2538 else
2539 task = list_next_entry(task, cg_list);
2540
2541 if (&task->cg_list != &cset->mg_tasks) {
2542 tset->cur_cset = cset;
2543 tset->cur_task = task;
2544
2545 /*
2546 * This function may be called both before and
2547 * after cgroup_migrate_execute(). The two cases
2548 * can be distinguished by looking at whether @cset
2549 * has its ->mg_dst_cset set.
2550 */
2551 if (cset->mg_dst_cset)
2552 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2553 else
2554 *dst_cssp = cset->subsys[tset->ssid];
2555
2556 return task;
2557 }
2558
2559 cset = list_next_entry(cset, mg_node);
2560 task = NULL;
2561 }
2562
2563 return NULL;
2564 }
2565
2566 /**
2567 * cgroup_migrate_execute - migrate a taskset
2568 * @mgctx: migration context
2569 *
2570 * Migrate tasks in @mgctx as setup by migration preparation functions.
2571 * This function fails iff one of the ->can_attach callbacks fails and
2572 * guarantees that either all or none of the tasks in @mgctx are migrated.
2573 * @mgctx is consumed regardless of success.
2574 */
cgroup_migrate_execute(struct cgroup_mgctx * mgctx)2575 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2576 {
2577 struct cgroup_taskset *tset = &mgctx->tset;
2578 struct cgroup_subsys *ss;
2579 struct task_struct *task, *tmp_task;
2580 struct css_set *cset, *tmp_cset;
2581 int ssid, failed_ssid, ret;
2582
2583 /* check that we can legitimately attach to the cgroup */
2584 if (tset->nr_tasks) {
2585 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2586 if (ss->can_attach) {
2587 tset->ssid = ssid;
2588 ret = ss->can_attach(tset);
2589 if (ret) {
2590 failed_ssid = ssid;
2591 goto out_cancel_attach;
2592 }
2593 }
2594 } while_each_subsys_mask();
2595 }
2596
2597 /*
2598 * Now that we're guaranteed success, proceed to move all tasks to
2599 * the new cgroup. There are no failure cases after here, so this
2600 * is the commit point.
2601 */
2602 spin_lock_irq(&css_set_lock);
2603 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2604 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2605 struct css_set *from_cset = task_css_set(task);
2606 struct css_set *to_cset = cset->mg_dst_cset;
2607
2608 get_css_set(to_cset);
2609 to_cset->nr_tasks++;
2610 css_set_move_task(task, from_cset, to_cset, true);
2611 from_cset->nr_tasks--;
2612 /*
2613 * If the source or destination cgroup is frozen,
2614 * the task might require to change its state.
2615 */
2616 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2617 to_cset->dfl_cgrp);
2618 put_css_set_locked(from_cset);
2619
2620 }
2621 }
2622 spin_unlock_irq(&css_set_lock);
2623
2624 /*
2625 * Migration is committed, all target tasks are now on dst_csets.
2626 * Nothing is sensitive to fork() after this point. Notify
2627 * controllers that migration is complete.
2628 */
2629 tset->csets = &tset->dst_csets;
2630
2631 if (tset->nr_tasks) {
2632 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2633 if (ss->attach) {
2634 tset->ssid = ssid;
2635 ss->attach(tset);
2636 }
2637 } while_each_subsys_mask();
2638 }
2639
2640 ret = 0;
2641 goto out_release_tset;
2642
2643 out_cancel_attach:
2644 if (tset->nr_tasks) {
2645 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2646 if (ssid == failed_ssid)
2647 break;
2648 if (ss->cancel_attach) {
2649 tset->ssid = ssid;
2650 ss->cancel_attach(tset);
2651 }
2652 } while_each_subsys_mask();
2653 }
2654 out_release_tset:
2655 spin_lock_irq(&css_set_lock);
2656 list_splice_init(&tset->dst_csets, &tset->src_csets);
2657 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2658 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2659 list_del_init(&cset->mg_node);
2660 }
2661 spin_unlock_irq(&css_set_lock);
2662
2663 /*
2664 * Re-initialize the cgroup_taskset structure in case it is reused
2665 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2666 * iteration.
2667 */
2668 tset->nr_tasks = 0;
2669 tset->csets = &tset->src_csets;
2670 return ret;
2671 }
2672
2673 /**
2674 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2675 * @dst_cgrp: destination cgroup to test
2676 *
2677 * On the default hierarchy, except for the mixable, (possible) thread root
2678 * and threaded cgroups, subtree_control must be zero for migration
2679 * destination cgroups with tasks so that child cgroups don't compete
2680 * against tasks.
2681 */
cgroup_migrate_vet_dst(struct cgroup * dst_cgrp)2682 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2683 {
2684 /* v1 doesn't have any restriction */
2685 if (!cgroup_on_dfl(dst_cgrp))
2686 return 0;
2687
2688 /* verify @dst_cgrp can host resources */
2689 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2690 return -EOPNOTSUPP;
2691
2692 /*
2693 * If @dst_cgrp is already or can become a thread root or is
2694 * threaded, it doesn't matter.
2695 */
2696 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2697 return 0;
2698
2699 /* apply no-internal-process constraint */
2700 if (dst_cgrp->subtree_control)
2701 return -EBUSY;
2702
2703 return 0;
2704 }
2705
2706 /**
2707 * cgroup_migrate_finish - cleanup after attach
2708 * @mgctx: migration context
2709 *
2710 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2711 * those functions for details.
2712 */
cgroup_migrate_finish(struct cgroup_mgctx * mgctx)2713 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2714 {
2715 struct css_set *cset, *tmp_cset;
2716
2717 lockdep_assert_held(&cgroup_mutex);
2718
2719 spin_lock_irq(&css_set_lock);
2720
2721 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets,
2722 mg_src_preload_node) {
2723 cset->mg_src_cgrp = NULL;
2724 cset->mg_dst_cgrp = NULL;
2725 cset->mg_dst_cset = NULL;
2726 list_del_init(&cset->mg_src_preload_node);
2727 put_css_set_locked(cset);
2728 }
2729
2730 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets,
2731 mg_dst_preload_node) {
2732 cset->mg_src_cgrp = NULL;
2733 cset->mg_dst_cgrp = NULL;
2734 cset->mg_dst_cset = NULL;
2735 list_del_init(&cset->mg_dst_preload_node);
2736 put_css_set_locked(cset);
2737 }
2738
2739 spin_unlock_irq(&css_set_lock);
2740 }
2741
2742 /**
2743 * cgroup_migrate_add_src - add a migration source css_set
2744 * @src_cset: the source css_set to add
2745 * @dst_cgrp: the destination cgroup
2746 * @mgctx: migration context
2747 *
2748 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2749 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2750 * up by cgroup_migrate_finish().
2751 *
2752 * This function may be called without holding cgroup_threadgroup_rwsem
2753 * even if the target is a process. Threads may be created and destroyed
2754 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2755 * into play and the preloaded css_sets are guaranteed to cover all
2756 * migrations.
2757 */
cgroup_migrate_add_src(struct css_set * src_cset,struct cgroup * dst_cgrp,struct cgroup_mgctx * mgctx)2758 void cgroup_migrate_add_src(struct css_set *src_cset,
2759 struct cgroup *dst_cgrp,
2760 struct cgroup_mgctx *mgctx)
2761 {
2762 struct cgroup *src_cgrp;
2763
2764 lockdep_assert_held(&cgroup_mutex);
2765 lockdep_assert_held(&css_set_lock);
2766
2767 /*
2768 * If ->dead, @src_set is associated with one or more dead cgroups
2769 * and doesn't contain any migratable tasks. Ignore it early so
2770 * that the rest of migration path doesn't get confused by it.
2771 */
2772 if (src_cset->dead)
2773 return;
2774
2775 if (!list_empty(&src_cset->mg_src_preload_node))
2776 return;
2777
2778 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2779
2780 WARN_ON(src_cset->mg_src_cgrp);
2781 WARN_ON(src_cset->mg_dst_cgrp);
2782 WARN_ON(!list_empty(&src_cset->mg_tasks));
2783 WARN_ON(!list_empty(&src_cset->mg_node));
2784
2785 src_cset->mg_src_cgrp = src_cgrp;
2786 src_cset->mg_dst_cgrp = dst_cgrp;
2787 get_css_set(src_cset);
2788 list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets);
2789 }
2790
2791 /**
2792 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2793 * @mgctx: migration context
2794 *
2795 * Tasks are about to be moved and all the source css_sets have been
2796 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2797 * pins all destination css_sets, links each to its source, and append them
2798 * to @mgctx->preloaded_dst_csets.
2799 *
2800 * This function must be called after cgroup_migrate_add_src() has been
2801 * called on each migration source css_set. After migration is performed
2802 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2803 * @mgctx.
2804 */
cgroup_migrate_prepare_dst(struct cgroup_mgctx * mgctx)2805 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2806 {
2807 struct css_set *src_cset, *tmp_cset;
2808
2809 lockdep_assert_held(&cgroup_mutex);
2810
2811 /* look up the dst cset for each src cset and link it to src */
2812 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2813 mg_src_preload_node) {
2814 struct css_set *dst_cset;
2815 struct cgroup_subsys *ss;
2816 int ssid;
2817
2818 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2819 if (!dst_cset)
2820 return -ENOMEM;
2821
2822 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2823
2824 /*
2825 * If src cset equals dst, it's noop. Drop the src.
2826 * cgroup_migrate() will skip the cset too. Note that we
2827 * can't handle src == dst as some nodes are used by both.
2828 */
2829 if (src_cset == dst_cset) {
2830 src_cset->mg_src_cgrp = NULL;
2831 src_cset->mg_dst_cgrp = NULL;
2832 list_del_init(&src_cset->mg_src_preload_node);
2833 put_css_set(src_cset);
2834 put_css_set(dst_cset);
2835 continue;
2836 }
2837
2838 src_cset->mg_dst_cset = dst_cset;
2839
2840 if (list_empty(&dst_cset->mg_dst_preload_node))
2841 list_add_tail(&dst_cset->mg_dst_preload_node,
2842 &mgctx->preloaded_dst_csets);
2843 else
2844 put_css_set(dst_cset);
2845
2846 for_each_subsys(ss, ssid)
2847 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2848 mgctx->ss_mask |= 1 << ssid;
2849 }
2850
2851 return 0;
2852 }
2853
2854 /**
2855 * cgroup_migrate - migrate a process or task to a cgroup
2856 * @leader: the leader of the process or the task to migrate
2857 * @threadgroup: whether @leader points to the whole process or a single task
2858 * @mgctx: migration context
2859 *
2860 * Migrate a process or task denoted by @leader. If migrating a process,
2861 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2862 * responsible for invoking cgroup_migrate_add_src() and
2863 * cgroup_migrate_prepare_dst() on the targets before invoking this
2864 * function and following up with cgroup_migrate_finish().
2865 *
2866 * As long as a controller's ->can_attach() doesn't fail, this function is
2867 * guaranteed to succeed. This means that, excluding ->can_attach()
2868 * failure, when migrating multiple targets, the success or failure can be
2869 * decided for all targets by invoking group_migrate_prepare_dst() before
2870 * actually starting migrating.
2871 */
cgroup_migrate(struct task_struct * leader,bool threadgroup,struct cgroup_mgctx * mgctx)2872 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2873 struct cgroup_mgctx *mgctx)
2874 {
2875 struct task_struct *task;
2876
2877 /*
2878 * The following thread iteration should be inside an RCU critical
2879 * section to prevent tasks from being freed while taking the snapshot.
2880 * spin_lock_irq() implies RCU critical section here.
2881 */
2882 spin_lock_irq(&css_set_lock);
2883 task = leader;
2884 do {
2885 cgroup_migrate_add_task(task, mgctx);
2886 if (!threadgroup)
2887 break;
2888 } while_each_thread(leader, task);
2889 spin_unlock_irq(&css_set_lock);
2890
2891 return cgroup_migrate_execute(mgctx);
2892 }
2893
2894 /**
2895 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2896 * @dst_cgrp: the cgroup to attach to
2897 * @leader: the task or the leader of the threadgroup to be attached
2898 * @threadgroup: attach the whole threadgroup?
2899 *
2900 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2901 */
cgroup_attach_task(struct cgroup * dst_cgrp,struct task_struct * leader,bool threadgroup)2902 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2903 bool threadgroup)
2904 {
2905 DEFINE_CGROUP_MGCTX(mgctx);
2906 struct task_struct *task;
2907 int ret = 0;
2908
2909 /* look up all src csets */
2910 spin_lock_irq(&css_set_lock);
2911 rcu_read_lock();
2912 task = leader;
2913 do {
2914 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2915 if (!threadgroup)
2916 break;
2917 } while_each_thread(leader, task);
2918 rcu_read_unlock();
2919 spin_unlock_irq(&css_set_lock);
2920
2921 /* prepare dst csets and commit */
2922 ret = cgroup_migrate_prepare_dst(&mgctx);
2923 if (!ret)
2924 ret = cgroup_migrate(leader, threadgroup, &mgctx);
2925
2926 cgroup_migrate_finish(&mgctx);
2927
2928 if (!ret)
2929 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2930
2931 return ret;
2932 }
2933
cgroup_procs_write_start(char * buf,bool threadgroup,bool * threadgroup_locked)2934 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2935 bool *threadgroup_locked)
2936 {
2937 struct task_struct *tsk;
2938 pid_t pid;
2939
2940 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2941 return ERR_PTR(-EINVAL);
2942
2943 /*
2944 * If we migrate a single thread, we don't care about threadgroup
2945 * stability. If the thread is `current`, it won't exit(2) under our
2946 * hands or change PID through exec(2). We exclude
2947 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2948 * callers by cgroup_mutex.
2949 * Therefore, we can skip the global lock.
2950 */
2951 lockdep_assert_held(&cgroup_mutex);
2952 *threadgroup_locked = pid || threadgroup;
2953 cgroup_attach_lock(*threadgroup_locked);
2954
2955 rcu_read_lock();
2956 if (pid) {
2957 tsk = find_task_by_vpid(pid);
2958 if (!tsk) {
2959 tsk = ERR_PTR(-ESRCH);
2960 goto out_unlock_threadgroup;
2961 }
2962 } else {
2963 tsk = current;
2964 }
2965
2966 if (threadgroup)
2967 tsk = tsk->group_leader;
2968
2969 /*
2970 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2971 * If userland migrates such a kthread to a non-root cgroup, it can
2972 * become trapped in a cpuset, or RT kthread may be born in a
2973 * cgroup with no rt_runtime allocated. Just say no.
2974 */
2975 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2976 tsk = ERR_PTR(-EINVAL);
2977 goto out_unlock_threadgroup;
2978 }
2979
2980 get_task_struct(tsk);
2981 goto out_unlock_rcu;
2982
2983 out_unlock_threadgroup:
2984 cgroup_attach_unlock(*threadgroup_locked);
2985 *threadgroup_locked = false;
2986 out_unlock_rcu:
2987 rcu_read_unlock();
2988 return tsk;
2989 }
2990
cgroup_procs_write_finish(struct task_struct * task,bool threadgroup_locked)2991 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked)
2992 {
2993 struct cgroup_subsys *ss;
2994 int ssid;
2995
2996 /* release reference from cgroup_procs_write_start() */
2997 put_task_struct(task);
2998
2999 cgroup_attach_unlock(threadgroup_locked);
3000
3001 for_each_subsys(ss, ssid)
3002 if (ss->post_attach)
3003 ss->post_attach();
3004 }
3005
cgroup_print_ss_mask(struct seq_file * seq,u16 ss_mask)3006 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
3007 {
3008 struct cgroup_subsys *ss;
3009 bool printed = false;
3010 int ssid;
3011
3012 do_each_subsys_mask(ss, ssid, ss_mask) {
3013 if (printed)
3014 seq_putc(seq, ' ');
3015 seq_puts(seq, ss->name);
3016 printed = true;
3017 } while_each_subsys_mask();
3018 if (printed)
3019 seq_putc(seq, '\n');
3020 }
3021
3022 /* show controllers which are enabled from the parent */
cgroup_controllers_show(struct seq_file * seq,void * v)3023 static int cgroup_controllers_show(struct seq_file *seq, void *v)
3024 {
3025 struct cgroup *cgrp = seq_css(seq)->cgroup;
3026
3027 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
3028 return 0;
3029 }
3030
3031 /* show controllers which are enabled for a given cgroup's children */
cgroup_subtree_control_show(struct seq_file * seq,void * v)3032 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
3033 {
3034 struct cgroup *cgrp = seq_css(seq)->cgroup;
3035
3036 cgroup_print_ss_mask(seq, cgrp->subtree_control);
3037 return 0;
3038 }
3039
3040 /**
3041 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3042 * @cgrp: root of the subtree to update csses for
3043 *
3044 * @cgrp's control masks have changed and its subtree's css associations
3045 * need to be updated accordingly. This function looks up all css_sets
3046 * which are attached to the subtree, creates the matching updated css_sets
3047 * and migrates the tasks to the new ones.
3048 */
cgroup_update_dfl_csses(struct cgroup * cgrp)3049 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3050 {
3051 DEFINE_CGROUP_MGCTX(mgctx);
3052 struct cgroup_subsys_state *d_css;
3053 struct cgroup *dsct;
3054 struct css_set *src_cset;
3055 bool has_tasks;
3056 int ret;
3057
3058 lockdep_assert_held(&cgroup_mutex);
3059
3060 /* look up all csses currently attached to @cgrp's subtree */
3061 spin_lock_irq(&css_set_lock);
3062 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3063 struct cgrp_cset_link *link;
3064
3065 /*
3066 * As cgroup_update_dfl_csses() is only called by
3067 * cgroup_apply_control(). The csses associated with the
3068 * given cgrp will not be affected by changes made to
3069 * its subtree_control file. We can skip them.
3070 */
3071 if (dsct == cgrp)
3072 continue;
3073
3074 list_for_each_entry(link, &dsct->cset_links, cset_link)
3075 cgroup_migrate_add_src(link->cset, dsct, &mgctx);
3076 }
3077 spin_unlock_irq(&css_set_lock);
3078
3079 /*
3080 * We need to write-lock threadgroup_rwsem while migrating tasks.
3081 * However, if there are no source csets for @cgrp, changing its
3082 * controllers isn't gonna produce any task migrations and the
3083 * write-locking can be skipped safely.
3084 */
3085 has_tasks = !list_empty(&mgctx.preloaded_src_csets);
3086 cgroup_attach_lock(has_tasks);
3087
3088 /* NULL dst indicates self on default hierarchy */
3089 ret = cgroup_migrate_prepare_dst(&mgctx);
3090 if (ret)
3091 goto out_finish;
3092
3093 spin_lock_irq(&css_set_lock);
3094 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets,
3095 mg_src_preload_node) {
3096 struct task_struct *task, *ntask;
3097
3098 /* all tasks in src_csets need to be migrated */
3099 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3100 cgroup_migrate_add_task(task, &mgctx);
3101 }
3102 spin_unlock_irq(&css_set_lock);
3103
3104 ret = cgroup_migrate_execute(&mgctx);
3105 out_finish:
3106 cgroup_migrate_finish(&mgctx);
3107 cgroup_attach_unlock(has_tasks);
3108 return ret;
3109 }
3110
3111 /**
3112 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3113 * @cgrp: root of the target subtree
3114 *
3115 * Because css offlining is asynchronous, userland may try to re-enable a
3116 * controller while the previous css is still around. This function grabs
3117 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3118 */
cgroup_lock_and_drain_offline(struct cgroup * cgrp)3119 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3120 __acquires(&cgroup_mutex)
3121 {
3122 struct cgroup *dsct;
3123 struct cgroup_subsys_state *d_css;
3124 struct cgroup_subsys *ss;
3125 int ssid;
3126
3127 restart:
3128 cgroup_lock();
3129
3130 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3131 for_each_subsys(ss, ssid) {
3132 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3133 DEFINE_WAIT(wait);
3134
3135 if (!css || !percpu_ref_is_dying(&css->refcnt))
3136 continue;
3137
3138 cgroup_get_live(dsct);
3139 prepare_to_wait(&dsct->offline_waitq, &wait,
3140 TASK_UNINTERRUPTIBLE);
3141
3142 cgroup_unlock();
3143 schedule();
3144 finish_wait(&dsct->offline_waitq, &wait);
3145
3146 cgroup_put(dsct);
3147 goto restart;
3148 }
3149 }
3150 }
3151
3152 /**
3153 * cgroup_save_control - save control masks and dom_cgrp of a subtree
3154 * @cgrp: root of the target subtree
3155 *
3156 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3157 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3158 * itself.
3159 */
cgroup_save_control(struct cgroup * cgrp)3160 static void cgroup_save_control(struct cgroup *cgrp)
3161 {
3162 struct cgroup *dsct;
3163 struct cgroup_subsys_state *d_css;
3164
3165 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3166 dsct->old_subtree_control = dsct->subtree_control;
3167 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3168 dsct->old_dom_cgrp = dsct->dom_cgrp;
3169 }
3170 }
3171
3172 /**
3173 * cgroup_propagate_control - refresh control masks of a subtree
3174 * @cgrp: root of the target subtree
3175 *
3176 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3177 * ->subtree_control and propagate controller availability through the
3178 * subtree so that descendants don't have unavailable controllers enabled.
3179 */
cgroup_propagate_control(struct cgroup * cgrp)3180 static void cgroup_propagate_control(struct cgroup *cgrp)
3181 {
3182 struct cgroup *dsct;
3183 struct cgroup_subsys_state *d_css;
3184
3185 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3186 dsct->subtree_control &= cgroup_control(dsct);
3187 dsct->subtree_ss_mask =
3188 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3189 cgroup_ss_mask(dsct));
3190 }
3191 }
3192
3193 /**
3194 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3195 * @cgrp: root of the target subtree
3196 *
3197 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3198 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3199 * itself.
3200 */
cgroup_restore_control(struct cgroup * cgrp)3201 static void cgroup_restore_control(struct cgroup *cgrp)
3202 {
3203 struct cgroup *dsct;
3204 struct cgroup_subsys_state *d_css;
3205
3206 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3207 dsct->subtree_control = dsct->old_subtree_control;
3208 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3209 dsct->dom_cgrp = dsct->old_dom_cgrp;
3210 }
3211 }
3212
css_visible(struct cgroup_subsys_state * css)3213 static bool css_visible(struct cgroup_subsys_state *css)
3214 {
3215 struct cgroup_subsys *ss = css->ss;
3216 struct cgroup *cgrp = css->cgroup;
3217
3218 if (cgroup_control(cgrp) & (1 << ss->id))
3219 return true;
3220 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3221 return false;
3222 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3223 }
3224
3225 /**
3226 * cgroup_apply_control_enable - enable or show csses according to control
3227 * @cgrp: root of the target subtree
3228 *
3229 * Walk @cgrp's subtree and create new csses or make the existing ones
3230 * visible. A css is created invisible if it's being implicitly enabled
3231 * through dependency. An invisible css is made visible when the userland
3232 * explicitly enables it.
3233 *
3234 * Returns 0 on success, -errno on failure. On failure, csses which have
3235 * been processed already aren't cleaned up. The caller is responsible for
3236 * cleaning up with cgroup_apply_control_disable().
3237 */
cgroup_apply_control_enable(struct cgroup * cgrp)3238 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3239 {
3240 struct cgroup *dsct;
3241 struct cgroup_subsys_state *d_css;
3242 struct cgroup_subsys *ss;
3243 int ssid, ret;
3244
3245 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3246 for_each_subsys(ss, ssid) {
3247 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3248
3249 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3250 continue;
3251
3252 if (!css) {
3253 css = css_create(dsct, ss);
3254 if (IS_ERR(css))
3255 return PTR_ERR(css);
3256 }
3257
3258 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3259
3260 if (css_visible(css)) {
3261 ret = css_populate_dir(css);
3262 if (ret)
3263 return ret;
3264 }
3265 }
3266 }
3267
3268 return 0;
3269 }
3270
3271 /**
3272 * cgroup_apply_control_disable - kill or hide csses according to control
3273 * @cgrp: root of the target subtree
3274 *
3275 * Walk @cgrp's subtree and kill and hide csses so that they match
3276 * cgroup_ss_mask() and cgroup_visible_mask().
3277 *
3278 * A css is hidden when the userland requests it to be disabled while other
3279 * subsystems are still depending on it. The css must not actively control
3280 * resources and be in the vanilla state if it's made visible again later.
3281 * Controllers which may be depended upon should provide ->css_reset() for
3282 * this purpose.
3283 */
cgroup_apply_control_disable(struct cgroup * cgrp)3284 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3285 {
3286 struct cgroup *dsct;
3287 struct cgroup_subsys_state *d_css;
3288 struct cgroup_subsys *ss;
3289 int ssid;
3290
3291 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3292 for_each_subsys(ss, ssid) {
3293 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3294
3295 if (!css)
3296 continue;
3297
3298 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3299
3300 if (css->parent &&
3301 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3302 kill_css(css);
3303 } else if (!css_visible(css)) {
3304 css_clear_dir(css);
3305 if (ss->css_reset)
3306 ss->css_reset(css);
3307 }
3308 }
3309 }
3310 }
3311
3312 /**
3313 * cgroup_apply_control - apply control mask updates to the subtree
3314 * @cgrp: root of the target subtree
3315 *
3316 * subsystems can be enabled and disabled in a subtree using the following
3317 * steps.
3318 *
3319 * 1. Call cgroup_save_control() to stash the current state.
3320 * 2. Update ->subtree_control masks in the subtree as desired.
3321 * 3. Call cgroup_apply_control() to apply the changes.
3322 * 4. Optionally perform other related operations.
3323 * 5. Call cgroup_finalize_control() to finish up.
3324 *
3325 * This function implements step 3 and propagates the mask changes
3326 * throughout @cgrp's subtree, updates csses accordingly and perform
3327 * process migrations.
3328 */
cgroup_apply_control(struct cgroup * cgrp)3329 static int cgroup_apply_control(struct cgroup *cgrp)
3330 {
3331 int ret;
3332
3333 cgroup_propagate_control(cgrp);
3334
3335 ret = cgroup_apply_control_enable(cgrp);
3336 if (ret)
3337 return ret;
3338
3339 /*
3340 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3341 * making the following cgroup_update_dfl_csses() properly update
3342 * css associations of all tasks in the subtree.
3343 */
3344 return cgroup_update_dfl_csses(cgrp);
3345 }
3346
3347 /**
3348 * cgroup_finalize_control - finalize control mask update
3349 * @cgrp: root of the target subtree
3350 * @ret: the result of the update
3351 *
3352 * Finalize control mask update. See cgroup_apply_control() for more info.
3353 */
cgroup_finalize_control(struct cgroup * cgrp,int ret)3354 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3355 {
3356 if (ret) {
3357 cgroup_restore_control(cgrp);
3358 cgroup_propagate_control(cgrp);
3359 }
3360
3361 cgroup_apply_control_disable(cgrp);
3362 }
3363
cgroup_vet_subtree_control_enable(struct cgroup * cgrp,u16 enable)3364 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3365 {
3366 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3367
3368 /* if nothing is getting enabled, nothing to worry about */
3369 if (!enable)
3370 return 0;
3371
3372 /* can @cgrp host any resources? */
3373 if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3374 return -EOPNOTSUPP;
3375
3376 /* mixables don't care */
3377 if (cgroup_is_mixable(cgrp))
3378 return 0;
3379
3380 if (domain_enable) {
3381 /* can't enable domain controllers inside a thread subtree */
3382 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3383 return -EOPNOTSUPP;
3384 } else {
3385 /*
3386 * Threaded controllers can handle internal competitions
3387 * and are always allowed inside a (prospective) thread
3388 * subtree.
3389 */
3390 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3391 return 0;
3392 }
3393
3394 /*
3395 * Controllers can't be enabled for a cgroup with tasks to avoid
3396 * child cgroups competing against tasks.
3397 */
3398 if (cgroup_has_tasks(cgrp))
3399 return -EBUSY;
3400
3401 return 0;
3402 }
3403
3404 /* change the enabled child controllers for a cgroup in the default hierarchy */
cgroup_subtree_control_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3405 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3406 char *buf, size_t nbytes,
3407 loff_t off)
3408 {
3409 u16 enable = 0, disable = 0;
3410 struct cgroup *cgrp, *child;
3411 struct cgroup_subsys *ss;
3412 char *tok;
3413 int ssid, ret;
3414
3415 /*
3416 * Parse input - space separated list of subsystem names prefixed
3417 * with either + or -.
3418 */
3419 buf = strstrip(buf);
3420 while ((tok = strsep(&buf, " "))) {
3421 if (tok[0] == '\0')
3422 continue;
3423 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3424 if (!cgroup_ssid_enabled(ssid) ||
3425 strcmp(tok + 1, ss->name))
3426 continue;
3427
3428 if (*tok == '+') {
3429 enable |= 1 << ssid;
3430 disable &= ~(1 << ssid);
3431 } else if (*tok == '-') {
3432 disable |= 1 << ssid;
3433 enable &= ~(1 << ssid);
3434 } else {
3435 return -EINVAL;
3436 }
3437 break;
3438 } while_each_subsys_mask();
3439 if (ssid == CGROUP_SUBSYS_COUNT)
3440 return -EINVAL;
3441 }
3442
3443 cgrp = cgroup_kn_lock_live(of->kn, true);
3444 if (!cgrp)
3445 return -ENODEV;
3446
3447 for_each_subsys(ss, ssid) {
3448 if (enable & (1 << ssid)) {
3449 if (cgrp->subtree_control & (1 << ssid)) {
3450 enable &= ~(1 << ssid);
3451 continue;
3452 }
3453
3454 if (!(cgroup_control(cgrp) & (1 << ssid))) {
3455 ret = -ENOENT;
3456 goto out_unlock;
3457 }
3458 } else if (disable & (1 << ssid)) {
3459 if (!(cgrp->subtree_control & (1 << ssid))) {
3460 disable &= ~(1 << ssid);
3461 continue;
3462 }
3463
3464 /* a child has it enabled? */
3465 cgroup_for_each_live_child(child, cgrp) {
3466 if (child->subtree_control & (1 << ssid)) {
3467 ret = -EBUSY;
3468 goto out_unlock;
3469 }
3470 }
3471 }
3472 }
3473
3474 if (!enable && !disable) {
3475 ret = 0;
3476 goto out_unlock;
3477 }
3478
3479 ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3480 if (ret)
3481 goto out_unlock;
3482
3483 /* save and update control masks and prepare csses */
3484 cgroup_save_control(cgrp);
3485
3486 cgrp->subtree_control |= enable;
3487 cgrp->subtree_control &= ~disable;
3488
3489 ret = cgroup_apply_control(cgrp);
3490 cgroup_finalize_control(cgrp, ret);
3491 if (ret)
3492 goto out_unlock;
3493
3494 kernfs_activate(cgrp->kn);
3495 out_unlock:
3496 cgroup_kn_unlock(of->kn);
3497 return ret ?: nbytes;
3498 }
3499
3500 /**
3501 * cgroup_enable_threaded - make @cgrp threaded
3502 * @cgrp: the target cgroup
3503 *
3504 * Called when "threaded" is written to the cgroup.type interface file and
3505 * tries to make @cgrp threaded and join the parent's resource domain.
3506 * This function is never called on the root cgroup as cgroup.type doesn't
3507 * exist on it.
3508 */
cgroup_enable_threaded(struct cgroup * cgrp)3509 static int cgroup_enable_threaded(struct cgroup *cgrp)
3510 {
3511 struct cgroup *parent = cgroup_parent(cgrp);
3512 struct cgroup *dom_cgrp = parent->dom_cgrp;
3513 struct cgroup *dsct;
3514 struct cgroup_subsys_state *d_css;
3515 int ret;
3516
3517 lockdep_assert_held(&cgroup_mutex);
3518
3519 /* noop if already threaded */
3520 if (cgroup_is_threaded(cgrp))
3521 return 0;
3522
3523 /*
3524 * If @cgroup is populated or has domain controllers enabled, it
3525 * can't be switched. While the below cgroup_can_be_thread_root()
3526 * test can catch the same conditions, that's only when @parent is
3527 * not mixable, so let's check it explicitly.
3528 */
3529 if (cgroup_is_populated(cgrp) ||
3530 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3531 return -EOPNOTSUPP;
3532
3533 /* we're joining the parent's domain, ensure its validity */
3534 if (!cgroup_is_valid_domain(dom_cgrp) ||
3535 !cgroup_can_be_thread_root(dom_cgrp))
3536 return -EOPNOTSUPP;
3537
3538 /*
3539 * The following shouldn't cause actual migrations and should
3540 * always succeed.
3541 */
3542 cgroup_save_control(cgrp);
3543
3544 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3545 if (dsct == cgrp || cgroup_is_threaded(dsct))
3546 dsct->dom_cgrp = dom_cgrp;
3547
3548 ret = cgroup_apply_control(cgrp);
3549 if (!ret)
3550 parent->nr_threaded_children++;
3551
3552 cgroup_finalize_control(cgrp, ret);
3553 return ret;
3554 }
3555
cgroup_type_show(struct seq_file * seq,void * v)3556 static int cgroup_type_show(struct seq_file *seq, void *v)
3557 {
3558 struct cgroup *cgrp = seq_css(seq)->cgroup;
3559
3560 if (cgroup_is_threaded(cgrp))
3561 seq_puts(seq, "threaded\n");
3562 else if (!cgroup_is_valid_domain(cgrp))
3563 seq_puts(seq, "domain invalid\n");
3564 else if (cgroup_is_thread_root(cgrp))
3565 seq_puts(seq, "domain threaded\n");
3566 else
3567 seq_puts(seq, "domain\n");
3568
3569 return 0;
3570 }
3571
cgroup_type_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3572 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3573 size_t nbytes, loff_t off)
3574 {
3575 struct cgroup *cgrp;
3576 int ret;
3577
3578 /* only switching to threaded mode is supported */
3579 if (strcmp(strstrip(buf), "threaded"))
3580 return -EINVAL;
3581
3582 /* drain dying csses before we re-apply (threaded) subtree control */
3583 cgrp = cgroup_kn_lock_live(of->kn, true);
3584 if (!cgrp)
3585 return -ENOENT;
3586
3587 /* threaded can only be enabled */
3588 ret = cgroup_enable_threaded(cgrp);
3589
3590 cgroup_kn_unlock(of->kn);
3591 return ret ?: nbytes;
3592 }
3593
cgroup_max_descendants_show(struct seq_file * seq,void * v)3594 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3595 {
3596 struct cgroup *cgrp = seq_css(seq)->cgroup;
3597 int descendants = READ_ONCE(cgrp->max_descendants);
3598
3599 if (descendants == INT_MAX)
3600 seq_puts(seq, "max\n");
3601 else
3602 seq_printf(seq, "%d\n", descendants);
3603
3604 return 0;
3605 }
3606
cgroup_max_descendants_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3607 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3608 char *buf, size_t nbytes, loff_t off)
3609 {
3610 struct cgroup *cgrp;
3611 int descendants;
3612 ssize_t ret;
3613
3614 buf = strstrip(buf);
3615 if (!strcmp(buf, "max")) {
3616 descendants = INT_MAX;
3617 } else {
3618 ret = kstrtoint(buf, 0, &descendants);
3619 if (ret)
3620 return ret;
3621 }
3622
3623 if (descendants < 0)
3624 return -ERANGE;
3625
3626 cgrp = cgroup_kn_lock_live(of->kn, false);
3627 if (!cgrp)
3628 return -ENOENT;
3629
3630 cgrp->max_descendants = descendants;
3631
3632 cgroup_kn_unlock(of->kn);
3633
3634 return nbytes;
3635 }
3636
cgroup_max_depth_show(struct seq_file * seq,void * v)3637 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3638 {
3639 struct cgroup *cgrp = seq_css(seq)->cgroup;
3640 int depth = READ_ONCE(cgrp->max_depth);
3641
3642 if (depth == INT_MAX)
3643 seq_puts(seq, "max\n");
3644 else
3645 seq_printf(seq, "%d\n", depth);
3646
3647 return 0;
3648 }
3649
cgroup_max_depth_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3650 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3651 char *buf, size_t nbytes, loff_t off)
3652 {
3653 struct cgroup *cgrp;
3654 ssize_t ret;
3655 int depth;
3656
3657 buf = strstrip(buf);
3658 if (!strcmp(buf, "max")) {
3659 depth = INT_MAX;
3660 } else {
3661 ret = kstrtoint(buf, 0, &depth);
3662 if (ret)
3663 return ret;
3664 }
3665
3666 if (depth < 0)
3667 return -ERANGE;
3668
3669 cgrp = cgroup_kn_lock_live(of->kn, false);
3670 if (!cgrp)
3671 return -ENOENT;
3672
3673 cgrp->max_depth = depth;
3674
3675 cgroup_kn_unlock(of->kn);
3676
3677 return nbytes;
3678 }
3679
cgroup_events_show(struct seq_file * seq,void * v)3680 static int cgroup_events_show(struct seq_file *seq, void *v)
3681 {
3682 struct cgroup *cgrp = seq_css(seq)->cgroup;
3683
3684 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3685 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3686
3687 return 0;
3688 }
3689
cgroup_stat_show(struct seq_file * seq,void * v)3690 static int cgroup_stat_show(struct seq_file *seq, void *v)
3691 {
3692 struct cgroup *cgroup = seq_css(seq)->cgroup;
3693 struct cgroup_subsys_state *css;
3694 int dying_cnt[CGROUP_SUBSYS_COUNT];
3695 int ssid;
3696
3697 seq_printf(seq, "nr_descendants %d\n",
3698 cgroup->nr_descendants);
3699
3700 /*
3701 * Show the number of live and dying csses associated with each of
3702 * non-inhibited cgroup subsystems that is bound to cgroup v2.
3703 *
3704 * Without proper lock protection, racing is possible. So the
3705 * numbers may not be consistent when that happens.
3706 */
3707 rcu_read_lock();
3708 for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) {
3709 dying_cnt[ssid] = -1;
3710 if ((BIT(ssid) & cgrp_dfl_inhibit_ss_mask) ||
3711 (cgroup_subsys[ssid]->root != &cgrp_dfl_root))
3712 continue;
3713 css = rcu_dereference_raw(cgroup->subsys[ssid]);
3714 dying_cnt[ssid] = cgroup->nr_dying_subsys[ssid];
3715 seq_printf(seq, "nr_subsys_%s %d\n", cgroup_subsys[ssid]->name,
3716 css ? (css->nr_descendants + 1) : 0);
3717 }
3718
3719 seq_printf(seq, "nr_dying_descendants %d\n",
3720 cgroup->nr_dying_descendants);
3721 for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) {
3722 if (dying_cnt[ssid] >= 0)
3723 seq_printf(seq, "nr_dying_subsys_%s %d\n",
3724 cgroup_subsys[ssid]->name, dying_cnt[ssid]);
3725 }
3726 rcu_read_unlock();
3727 return 0;
3728 }
3729
3730 #ifdef CONFIG_CGROUP_SCHED
3731 /**
3732 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
3733 * @cgrp: the cgroup of interest
3734 * @ss: the subsystem of interest
3735 *
3736 * Find and get @cgrp's css associated with @ss. If the css doesn't exist
3737 * or is offline, %NULL is returned.
3738 */
cgroup_tryget_css(struct cgroup * cgrp,struct cgroup_subsys * ss)3739 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
3740 struct cgroup_subsys *ss)
3741 {
3742 struct cgroup_subsys_state *css;
3743
3744 rcu_read_lock();
3745 css = cgroup_css(cgrp, ss);
3746 if (css && !css_tryget_online(css))
3747 css = NULL;
3748 rcu_read_unlock();
3749
3750 return css;
3751 }
3752
cgroup_extra_stat_show(struct seq_file * seq,int ssid)3753 static int cgroup_extra_stat_show(struct seq_file *seq, int ssid)
3754 {
3755 struct cgroup *cgrp = seq_css(seq)->cgroup;
3756 struct cgroup_subsys *ss = cgroup_subsys[ssid];
3757 struct cgroup_subsys_state *css;
3758 int ret;
3759
3760 if (!ss->css_extra_stat_show)
3761 return 0;
3762
3763 css = cgroup_tryget_css(cgrp, ss);
3764 if (!css)
3765 return 0;
3766
3767 ret = ss->css_extra_stat_show(seq, css);
3768 css_put(css);
3769 return ret;
3770 }
3771
cgroup_local_stat_show(struct seq_file * seq,struct cgroup * cgrp,int ssid)3772 static int cgroup_local_stat_show(struct seq_file *seq,
3773 struct cgroup *cgrp, int ssid)
3774 {
3775 struct cgroup_subsys *ss = cgroup_subsys[ssid];
3776 struct cgroup_subsys_state *css;
3777 int ret;
3778
3779 if (!ss->css_local_stat_show)
3780 return 0;
3781
3782 css = cgroup_tryget_css(cgrp, ss);
3783 if (!css)
3784 return 0;
3785
3786 ret = ss->css_local_stat_show(seq, css);
3787 css_put(css);
3788 return ret;
3789 }
3790 #endif
3791
cpu_stat_show(struct seq_file * seq,void * v)3792 static int cpu_stat_show(struct seq_file *seq, void *v)
3793 {
3794 int ret = 0;
3795
3796 cgroup_base_stat_cputime_show(seq);
3797 #ifdef CONFIG_CGROUP_SCHED
3798 ret = cgroup_extra_stat_show(seq, cpu_cgrp_id);
3799 #endif
3800 return ret;
3801 }
3802
cpu_local_stat_show(struct seq_file * seq,void * v)3803 static int cpu_local_stat_show(struct seq_file *seq, void *v)
3804 {
3805 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3806 int ret = 0;
3807
3808 #ifdef CONFIG_CGROUP_SCHED
3809 ret = cgroup_local_stat_show(seq, cgrp, cpu_cgrp_id);
3810 #endif
3811 return ret;
3812 }
3813
3814 #ifdef CONFIG_PSI
cgroup_io_pressure_show(struct seq_file * seq,void * v)3815 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3816 {
3817 struct cgroup *cgrp = seq_css(seq)->cgroup;
3818 struct psi_group *psi = cgroup_psi(cgrp);
3819
3820 return psi_show(seq, psi, PSI_IO);
3821 }
cgroup_memory_pressure_show(struct seq_file * seq,void * v)3822 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3823 {
3824 struct cgroup *cgrp = seq_css(seq)->cgroup;
3825 struct psi_group *psi = cgroup_psi(cgrp);
3826
3827 return psi_show(seq, psi, PSI_MEM);
3828 }
cgroup_cpu_pressure_show(struct seq_file * seq,void * v)3829 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3830 {
3831 struct cgroup *cgrp = seq_css(seq)->cgroup;
3832 struct psi_group *psi = cgroup_psi(cgrp);
3833
3834 return psi_show(seq, psi, PSI_CPU);
3835 }
3836
pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,enum psi_res res)3837 static ssize_t pressure_write(struct kernfs_open_file *of, char *buf,
3838 size_t nbytes, enum psi_res res)
3839 {
3840 struct cgroup_file_ctx *ctx = of->priv;
3841 struct psi_trigger *new;
3842 struct cgroup *cgrp;
3843 struct psi_group *psi;
3844
3845 cgrp = cgroup_kn_lock_live(of->kn, false);
3846 if (!cgrp)
3847 return -ENODEV;
3848
3849 cgroup_get(cgrp);
3850 cgroup_kn_unlock(of->kn);
3851
3852 /* Allow only one trigger per file descriptor */
3853 if (ctx->psi.trigger) {
3854 cgroup_put(cgrp);
3855 return -EBUSY;
3856 }
3857
3858 psi = cgroup_psi(cgrp);
3859 new = psi_trigger_create(psi, buf, res, of->file, of);
3860 if (IS_ERR(new)) {
3861 cgroup_put(cgrp);
3862 return PTR_ERR(new);
3863 }
3864
3865 smp_store_release(&ctx->psi.trigger, new);
3866 cgroup_put(cgrp);
3867
3868 return nbytes;
3869 }
3870
cgroup_io_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3871 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3872 char *buf, size_t nbytes,
3873 loff_t off)
3874 {
3875 return pressure_write(of, buf, nbytes, PSI_IO);
3876 }
3877
cgroup_memory_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3878 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3879 char *buf, size_t nbytes,
3880 loff_t off)
3881 {
3882 return pressure_write(of, buf, nbytes, PSI_MEM);
3883 }
3884
cgroup_cpu_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3885 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3886 char *buf, size_t nbytes,
3887 loff_t off)
3888 {
3889 return pressure_write(of, buf, nbytes, PSI_CPU);
3890 }
3891
3892 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
cgroup_irq_pressure_show(struct seq_file * seq,void * v)3893 static int cgroup_irq_pressure_show(struct seq_file *seq, void *v)
3894 {
3895 struct cgroup *cgrp = seq_css(seq)->cgroup;
3896 struct psi_group *psi = cgroup_psi(cgrp);
3897
3898 return psi_show(seq, psi, PSI_IRQ);
3899 }
3900
cgroup_irq_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3901 static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of,
3902 char *buf, size_t nbytes,
3903 loff_t off)
3904 {
3905 return pressure_write(of, buf, nbytes, PSI_IRQ);
3906 }
3907 #endif
3908
cgroup_pressure_show(struct seq_file * seq,void * v)3909 static int cgroup_pressure_show(struct seq_file *seq, void *v)
3910 {
3911 struct cgroup *cgrp = seq_css(seq)->cgroup;
3912 struct psi_group *psi = cgroup_psi(cgrp);
3913
3914 seq_printf(seq, "%d\n", psi->enabled);
3915
3916 return 0;
3917 }
3918
cgroup_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3919 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of,
3920 char *buf, size_t nbytes,
3921 loff_t off)
3922 {
3923 ssize_t ret;
3924 int enable;
3925 struct cgroup *cgrp;
3926 struct psi_group *psi;
3927
3928 ret = kstrtoint(strstrip(buf), 0, &enable);
3929 if (ret)
3930 return ret;
3931
3932 if (enable < 0 || enable > 1)
3933 return -ERANGE;
3934
3935 cgrp = cgroup_kn_lock_live(of->kn, false);
3936 if (!cgrp)
3937 return -ENOENT;
3938
3939 psi = cgroup_psi(cgrp);
3940 if (psi->enabled != enable) {
3941 int i;
3942
3943 /* show or hide {cpu,memory,io,irq}.pressure files */
3944 for (i = 0; i < NR_PSI_RESOURCES; i++)
3945 cgroup_file_show(&cgrp->psi_files[i], enable);
3946
3947 psi->enabled = enable;
3948 if (enable)
3949 psi_cgroup_restart(psi);
3950 }
3951
3952 cgroup_kn_unlock(of->kn);
3953
3954 return nbytes;
3955 }
3956
cgroup_pressure_poll(struct kernfs_open_file * of,poll_table * pt)3957 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3958 poll_table *pt)
3959 {
3960 struct cgroup_file_ctx *ctx = of->priv;
3961
3962 return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
3963 }
3964
cgroup_pressure_release(struct kernfs_open_file * of)3965 static void cgroup_pressure_release(struct kernfs_open_file *of)
3966 {
3967 struct cgroup_file_ctx *ctx = of->priv;
3968
3969 psi_trigger_destroy(ctx->psi.trigger);
3970 }
3971
cgroup_psi_enabled(void)3972 bool cgroup_psi_enabled(void)
3973 {
3974 if (static_branch_likely(&psi_disabled))
3975 return false;
3976
3977 return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
3978 }
3979
3980 #else /* CONFIG_PSI */
cgroup_psi_enabled(void)3981 bool cgroup_psi_enabled(void)
3982 {
3983 return false;
3984 }
3985
3986 #endif /* CONFIG_PSI */
3987
cgroup_freeze_show(struct seq_file * seq,void * v)3988 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3989 {
3990 struct cgroup *cgrp = seq_css(seq)->cgroup;
3991
3992 seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3993
3994 return 0;
3995 }
3996
cgroup_freeze_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3997 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3998 char *buf, size_t nbytes, loff_t off)
3999 {
4000 struct cgroup *cgrp;
4001 ssize_t ret;
4002 int freeze;
4003
4004 ret = kstrtoint(strstrip(buf), 0, &freeze);
4005 if (ret)
4006 return ret;
4007
4008 if (freeze < 0 || freeze > 1)
4009 return -ERANGE;
4010
4011 cgrp = cgroup_kn_lock_live(of->kn, false);
4012 if (!cgrp)
4013 return -ENOENT;
4014
4015 cgroup_freeze(cgrp, freeze);
4016
4017 cgroup_kn_unlock(of->kn);
4018
4019 return nbytes;
4020 }
4021
__cgroup_kill(struct cgroup * cgrp)4022 static void __cgroup_kill(struct cgroup *cgrp)
4023 {
4024 struct css_task_iter it;
4025 struct task_struct *task;
4026
4027 lockdep_assert_held(&cgroup_mutex);
4028
4029 spin_lock_irq(&css_set_lock);
4030 cgrp->kill_seq++;
4031 spin_unlock_irq(&css_set_lock);
4032
4033 css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it);
4034 while ((task = css_task_iter_next(&it))) {
4035 /* Ignore kernel threads here. */
4036 if (task->flags & PF_KTHREAD)
4037 continue;
4038
4039 /* Skip tasks that are already dying. */
4040 if (__fatal_signal_pending(task))
4041 continue;
4042
4043 send_sig(SIGKILL, task, 0);
4044 }
4045 css_task_iter_end(&it);
4046 }
4047
cgroup_kill(struct cgroup * cgrp)4048 static void cgroup_kill(struct cgroup *cgrp)
4049 {
4050 struct cgroup_subsys_state *css;
4051 struct cgroup *dsct;
4052
4053 lockdep_assert_held(&cgroup_mutex);
4054
4055 cgroup_for_each_live_descendant_pre(dsct, css, cgrp)
4056 __cgroup_kill(dsct);
4057 }
4058
cgroup_kill_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4059 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf,
4060 size_t nbytes, loff_t off)
4061 {
4062 ssize_t ret = 0;
4063 int kill;
4064 struct cgroup *cgrp;
4065
4066 ret = kstrtoint(strstrip(buf), 0, &kill);
4067 if (ret)
4068 return ret;
4069
4070 if (kill != 1)
4071 return -ERANGE;
4072
4073 cgrp = cgroup_kn_lock_live(of->kn, false);
4074 if (!cgrp)
4075 return -ENOENT;
4076
4077 /*
4078 * Killing is a process directed operation, i.e. the whole thread-group
4079 * is taken down so act like we do for cgroup.procs and only make this
4080 * writable in non-threaded cgroups.
4081 */
4082 if (cgroup_is_threaded(cgrp))
4083 ret = -EOPNOTSUPP;
4084 else
4085 cgroup_kill(cgrp);
4086
4087 cgroup_kn_unlock(of->kn);
4088
4089 return ret ?: nbytes;
4090 }
4091
cgroup_file_open(struct kernfs_open_file * of)4092 static int cgroup_file_open(struct kernfs_open_file *of)
4093 {
4094 struct cftype *cft = of_cft(of);
4095 struct cgroup_file_ctx *ctx;
4096 int ret;
4097
4098 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
4099 if (!ctx)
4100 return -ENOMEM;
4101
4102 ctx->ns = current->nsproxy->cgroup_ns;
4103 get_cgroup_ns(ctx->ns);
4104 of->priv = ctx;
4105
4106 if (!cft->open)
4107 return 0;
4108
4109 ret = cft->open(of);
4110 if (ret) {
4111 put_cgroup_ns(ctx->ns);
4112 kfree(ctx);
4113 }
4114 return ret;
4115 }
4116
cgroup_file_release(struct kernfs_open_file * of)4117 static void cgroup_file_release(struct kernfs_open_file *of)
4118 {
4119 struct cftype *cft = of_cft(of);
4120 struct cgroup_file_ctx *ctx = of->priv;
4121
4122 if (cft->release)
4123 cft->release(of);
4124 put_cgroup_ns(ctx->ns);
4125 kfree(ctx);
4126 }
4127
cgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4128 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
4129 size_t nbytes, loff_t off)
4130 {
4131 struct cgroup_file_ctx *ctx = of->priv;
4132 struct cgroup *cgrp = kn_priv(of->kn);
4133 struct cftype *cft = of_cft(of);
4134 struct cgroup_subsys_state *css;
4135 int ret;
4136
4137 if (!nbytes)
4138 return 0;
4139
4140 /*
4141 * If namespaces are delegation boundaries, disallow writes to
4142 * files in an non-init namespace root from inside the namespace
4143 * except for the files explicitly marked delegatable -
4144 * eg. cgroup.procs, cgroup.threads and cgroup.subtree_control.
4145 */
4146 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
4147 !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
4148 ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
4149 return -EPERM;
4150
4151 if (cft->write)
4152 return cft->write(of, buf, nbytes, off);
4153
4154 /*
4155 * kernfs guarantees that a file isn't deleted with operations in
4156 * flight, which means that the matching css is and stays alive and
4157 * doesn't need to be pinned. The RCU locking is not necessary
4158 * either. It's just for the convenience of using cgroup_css().
4159 */
4160 rcu_read_lock();
4161 css = cgroup_css(cgrp, cft->ss);
4162 rcu_read_unlock();
4163
4164 if (cft->write_u64) {
4165 unsigned long long v;
4166 ret = kstrtoull(buf, 0, &v);
4167 if (!ret)
4168 ret = cft->write_u64(css, cft, v);
4169 } else if (cft->write_s64) {
4170 long long v;
4171 ret = kstrtoll(buf, 0, &v);
4172 if (!ret)
4173 ret = cft->write_s64(css, cft, v);
4174 } else {
4175 ret = -EINVAL;
4176 }
4177
4178 return ret ?: nbytes;
4179 }
4180
cgroup_file_poll(struct kernfs_open_file * of,poll_table * pt)4181 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
4182 {
4183 struct cftype *cft = of_cft(of);
4184
4185 if (cft->poll)
4186 return cft->poll(of, pt);
4187
4188 return kernfs_generic_poll(of, pt);
4189 }
4190
cgroup_seqfile_start(struct seq_file * seq,loff_t * ppos)4191 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
4192 {
4193 return seq_cft(seq)->seq_start(seq, ppos);
4194 }
4195
cgroup_seqfile_next(struct seq_file * seq,void * v,loff_t * ppos)4196 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
4197 {
4198 return seq_cft(seq)->seq_next(seq, v, ppos);
4199 }
4200
cgroup_seqfile_stop(struct seq_file * seq,void * v)4201 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
4202 {
4203 if (seq_cft(seq)->seq_stop)
4204 seq_cft(seq)->seq_stop(seq, v);
4205 }
4206
cgroup_seqfile_show(struct seq_file * m,void * arg)4207 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
4208 {
4209 struct cftype *cft = seq_cft(m);
4210 struct cgroup_subsys_state *css = seq_css(m);
4211
4212 if (cft->seq_show)
4213 return cft->seq_show(m, arg);
4214
4215 if (cft->read_u64)
4216 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
4217 else if (cft->read_s64)
4218 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
4219 else
4220 return -EINVAL;
4221 return 0;
4222 }
4223
4224 static struct kernfs_ops cgroup_kf_single_ops = {
4225 .atomic_write_len = PAGE_SIZE,
4226 .open = cgroup_file_open,
4227 .release = cgroup_file_release,
4228 .write = cgroup_file_write,
4229 .poll = cgroup_file_poll,
4230 .seq_show = cgroup_seqfile_show,
4231 };
4232
4233 static struct kernfs_ops cgroup_kf_ops = {
4234 .atomic_write_len = PAGE_SIZE,
4235 .open = cgroup_file_open,
4236 .release = cgroup_file_release,
4237 .write = cgroup_file_write,
4238 .poll = cgroup_file_poll,
4239 .seq_start = cgroup_seqfile_start,
4240 .seq_next = cgroup_seqfile_next,
4241 .seq_stop = cgroup_seqfile_stop,
4242 .seq_show = cgroup_seqfile_show,
4243 };
4244
cgroup_file_notify_timer(struct timer_list * timer)4245 static void cgroup_file_notify_timer(struct timer_list *timer)
4246 {
4247 cgroup_file_notify(container_of(timer, struct cgroup_file,
4248 notify_timer));
4249 }
4250
cgroup_add_file(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype * cft)4251 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
4252 struct cftype *cft)
4253 {
4254 char name[CGROUP_FILE_NAME_MAX];
4255 struct kernfs_node *kn;
4256 struct lock_class_key *key = NULL;
4257
4258 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4259 key = &cft->lockdep_key;
4260 #endif
4261 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
4262 cgroup_file_mode(cft),
4263 current_fsuid(), current_fsgid(),
4264 0, cft->kf_ops, cft,
4265 NULL, key);
4266 if (IS_ERR(kn))
4267 return PTR_ERR(kn);
4268
4269 if (cft->file_offset) {
4270 struct cgroup_file *cfile = (void *)css + cft->file_offset;
4271
4272 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
4273
4274 spin_lock_irq(&cgroup_file_kn_lock);
4275 cfile->kn = kn;
4276 spin_unlock_irq(&cgroup_file_kn_lock);
4277 }
4278
4279 return 0;
4280 }
4281
4282 /**
4283 * cgroup_addrm_files - add or remove files to a cgroup directory
4284 * @css: the target css
4285 * @cgrp: the target cgroup (usually css->cgroup)
4286 * @cfts: array of cftypes to be added
4287 * @is_add: whether to add or remove
4288 *
4289 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
4290 * For removals, this function never fails.
4291 */
cgroup_addrm_files(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype cfts[],bool is_add)4292 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
4293 struct cgroup *cgrp, struct cftype cfts[],
4294 bool is_add)
4295 {
4296 struct cftype *cft, *cft_end = NULL;
4297 int ret = 0;
4298
4299 lockdep_assert_held(&cgroup_mutex);
4300
4301 restart:
4302 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
4303 /* does cft->flags tell us to skip this file on @cgrp? */
4304 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
4305 continue;
4306 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
4307 continue;
4308 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
4309 continue;
4310 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
4311 continue;
4312 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4313 continue;
4314 if (is_add) {
4315 ret = cgroup_add_file(css, cgrp, cft);
4316 if (ret) {
4317 pr_warn("%s: failed to add %s, err=%d\n",
4318 __func__, cft->name, ret);
4319 cft_end = cft;
4320 is_add = false;
4321 goto restart;
4322 }
4323 } else {
4324 cgroup_rm_file(cgrp, cft);
4325 }
4326 }
4327 return ret;
4328 }
4329
cgroup_apply_cftypes(struct cftype * cfts,bool is_add)4330 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4331 {
4332 struct cgroup_subsys *ss = cfts[0].ss;
4333 struct cgroup *root = &ss->root->cgrp;
4334 struct cgroup_subsys_state *css;
4335 int ret = 0;
4336
4337 lockdep_assert_held(&cgroup_mutex);
4338
4339 /* add/rm files for all cgroups created before */
4340 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4341 struct cgroup *cgrp = css->cgroup;
4342
4343 if (!(css->flags & CSS_VISIBLE))
4344 continue;
4345
4346 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4347 if (ret)
4348 break;
4349 }
4350
4351 if (is_add && !ret)
4352 kernfs_activate(root->kn);
4353 return ret;
4354 }
4355
cgroup_exit_cftypes(struct cftype * cfts)4356 static void cgroup_exit_cftypes(struct cftype *cfts)
4357 {
4358 struct cftype *cft;
4359
4360 for (cft = cfts; cft->name[0] != '\0'; cft++) {
4361 /* free copy for custom atomic_write_len, see init_cftypes() */
4362 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4363 kfree(cft->kf_ops);
4364 cft->kf_ops = NULL;
4365 cft->ss = NULL;
4366
4367 /* revert flags set by cgroup core while adding @cfts */
4368 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL |
4369 __CFTYPE_ADDED);
4370 }
4371 }
4372
cgroup_init_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4373 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4374 {
4375 struct cftype *cft;
4376 int ret = 0;
4377
4378 for (cft = cfts; cft->name[0] != '\0'; cft++) {
4379 struct kernfs_ops *kf_ops;
4380
4381 WARN_ON(cft->ss || cft->kf_ops);
4382
4383 if (cft->flags & __CFTYPE_ADDED) {
4384 ret = -EBUSY;
4385 break;
4386 }
4387
4388 if (cft->seq_start)
4389 kf_ops = &cgroup_kf_ops;
4390 else
4391 kf_ops = &cgroup_kf_single_ops;
4392
4393 /*
4394 * Ugh... if @cft wants a custom max_write_len, we need to
4395 * make a copy of kf_ops to set its atomic_write_len.
4396 */
4397 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4398 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4399 if (!kf_ops) {
4400 ret = -ENOMEM;
4401 break;
4402 }
4403 kf_ops->atomic_write_len = cft->max_write_len;
4404 }
4405
4406 cft->kf_ops = kf_ops;
4407 cft->ss = ss;
4408 cft->flags |= __CFTYPE_ADDED;
4409 }
4410
4411 if (ret)
4412 cgroup_exit_cftypes(cfts);
4413 return ret;
4414 }
4415
cgroup_rm_cftypes_locked(struct cftype * cfts)4416 static void cgroup_rm_cftypes_locked(struct cftype *cfts)
4417 {
4418 lockdep_assert_held(&cgroup_mutex);
4419
4420 list_del(&cfts->node);
4421 cgroup_apply_cftypes(cfts, false);
4422 cgroup_exit_cftypes(cfts);
4423 }
4424
4425 /**
4426 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4427 * @cfts: zero-length name terminated array of cftypes
4428 *
4429 * Unregister @cfts. Files described by @cfts are removed from all
4430 * existing cgroups and all future cgroups won't have them either. This
4431 * function can be called anytime whether @cfts' subsys is attached or not.
4432 *
4433 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4434 * registered.
4435 */
cgroup_rm_cftypes(struct cftype * cfts)4436 int cgroup_rm_cftypes(struct cftype *cfts)
4437 {
4438 if (!cfts || cfts[0].name[0] == '\0')
4439 return 0;
4440
4441 if (!(cfts[0].flags & __CFTYPE_ADDED))
4442 return -ENOENT;
4443
4444 cgroup_lock();
4445 cgroup_rm_cftypes_locked(cfts);
4446 cgroup_unlock();
4447 return 0;
4448 }
4449
4450 /**
4451 * cgroup_add_cftypes - add an array of cftypes to a subsystem
4452 * @ss: target cgroup subsystem
4453 * @cfts: zero-length name terminated array of cftypes
4454 *
4455 * Register @cfts to @ss. Files described by @cfts are created for all
4456 * existing cgroups to which @ss is attached and all future cgroups will
4457 * have them too. This function can be called anytime whether @ss is
4458 * attached or not.
4459 *
4460 * Returns 0 on successful registration, -errno on failure. Note that this
4461 * function currently returns 0 as long as @cfts registration is successful
4462 * even if some file creation attempts on existing cgroups fail.
4463 */
cgroup_add_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4464 int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4465 {
4466 int ret;
4467
4468 if (!cgroup_ssid_enabled(ss->id))
4469 return 0;
4470
4471 if (!cfts || cfts[0].name[0] == '\0')
4472 return 0;
4473
4474 ret = cgroup_init_cftypes(ss, cfts);
4475 if (ret)
4476 return ret;
4477
4478 cgroup_lock();
4479
4480 list_add_tail(&cfts->node, &ss->cfts);
4481 ret = cgroup_apply_cftypes(cfts, true);
4482 if (ret)
4483 cgroup_rm_cftypes_locked(cfts);
4484
4485 cgroup_unlock();
4486 return ret;
4487 }
4488
4489 /**
4490 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4491 * @ss: target cgroup subsystem
4492 * @cfts: zero-length name terminated array of cftypes
4493 *
4494 * Similar to cgroup_add_cftypes() but the added files are only used for
4495 * the default hierarchy.
4496 */
cgroup_add_dfl_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4497 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4498 {
4499 struct cftype *cft;
4500
4501 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4502 cft->flags |= __CFTYPE_ONLY_ON_DFL;
4503 return cgroup_add_cftypes(ss, cfts);
4504 }
4505
4506 /**
4507 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4508 * @ss: target cgroup subsystem
4509 * @cfts: zero-length name terminated array of cftypes
4510 *
4511 * Similar to cgroup_add_cftypes() but the added files are only used for
4512 * the legacy hierarchies.
4513 */
cgroup_add_legacy_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4514 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4515 {
4516 struct cftype *cft;
4517
4518 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4519 cft->flags |= __CFTYPE_NOT_ON_DFL;
4520 return cgroup_add_cftypes(ss, cfts);
4521 }
4522
4523 /**
4524 * cgroup_file_notify - generate a file modified event for a cgroup_file
4525 * @cfile: target cgroup_file
4526 *
4527 * @cfile must have been obtained by setting cftype->file_offset.
4528 */
cgroup_file_notify(struct cgroup_file * cfile)4529 void cgroup_file_notify(struct cgroup_file *cfile)
4530 {
4531 unsigned long flags;
4532
4533 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4534 if (cfile->kn) {
4535 unsigned long last = cfile->notified_at;
4536 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4537
4538 if (time_in_range(jiffies, last, next)) {
4539 timer_reduce(&cfile->notify_timer, next);
4540 } else {
4541 kernfs_notify(cfile->kn);
4542 cfile->notified_at = jiffies;
4543 }
4544 }
4545 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4546 }
4547
4548 /**
4549 * cgroup_file_show - show or hide a hidden cgroup file
4550 * @cfile: target cgroup_file obtained by setting cftype->file_offset
4551 * @show: whether to show or hide
4552 */
cgroup_file_show(struct cgroup_file * cfile,bool show)4553 void cgroup_file_show(struct cgroup_file *cfile, bool show)
4554 {
4555 struct kernfs_node *kn;
4556
4557 spin_lock_irq(&cgroup_file_kn_lock);
4558 kn = cfile->kn;
4559 kernfs_get(kn);
4560 spin_unlock_irq(&cgroup_file_kn_lock);
4561
4562 if (kn)
4563 kernfs_show(kn, show);
4564
4565 kernfs_put(kn);
4566 }
4567
4568 /**
4569 * css_next_child - find the next child of a given css
4570 * @pos: the current position (%NULL to initiate traversal)
4571 * @parent: css whose children to walk
4572 *
4573 * This function returns the next child of @parent and should be called
4574 * under either cgroup_mutex or RCU read lock. The only requirement is
4575 * that @parent and @pos are accessible. The next sibling is guaranteed to
4576 * be returned regardless of their states.
4577 *
4578 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4579 * css which finished ->css_online() is guaranteed to be visible in the
4580 * future iterations and will stay visible until the last reference is put.
4581 * A css which hasn't finished ->css_online() or already finished
4582 * ->css_offline() may show up during traversal. It's each subsystem's
4583 * responsibility to synchronize against on/offlining.
4584 */
css_next_child(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * parent)4585 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4586 struct cgroup_subsys_state *parent)
4587 {
4588 struct cgroup_subsys_state *next;
4589
4590 cgroup_assert_mutex_or_rcu_locked();
4591
4592 /*
4593 * @pos could already have been unlinked from the sibling list.
4594 * Once a cgroup is removed, its ->sibling.next is no longer
4595 * updated when its next sibling changes. CSS_RELEASED is set when
4596 * @pos is taken off list, at which time its next pointer is valid,
4597 * and, as releases are serialized, the one pointed to by the next
4598 * pointer is guaranteed to not have started release yet. This
4599 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4600 * critical section, the one pointed to by its next pointer is
4601 * guaranteed to not have finished its RCU grace period even if we
4602 * have dropped rcu_read_lock() in-between iterations.
4603 *
4604 * If @pos has CSS_RELEASED set, its next pointer can't be
4605 * dereferenced; however, as each css is given a monotonically
4606 * increasing unique serial number and always appended to the
4607 * sibling list, the next one can be found by walking the parent's
4608 * children until the first css with higher serial number than
4609 * @pos's. While this path can be slower, it happens iff iteration
4610 * races against release and the race window is very small.
4611 */
4612 if (!pos) {
4613 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4614 } else if (likely(!(pos->flags & CSS_RELEASED))) {
4615 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4616 } else {
4617 list_for_each_entry_rcu(next, &parent->children, sibling,
4618 lockdep_is_held(&cgroup_mutex))
4619 if (next->serial_nr > pos->serial_nr)
4620 break;
4621 }
4622
4623 /*
4624 * @next, if not pointing to the head, can be dereferenced and is
4625 * the next sibling.
4626 */
4627 if (&next->sibling != &parent->children)
4628 return next;
4629 return NULL;
4630 }
4631
4632 /**
4633 * css_next_descendant_pre - find the next descendant for pre-order walk
4634 * @pos: the current position (%NULL to initiate traversal)
4635 * @root: css whose descendants to walk
4636 *
4637 * To be used by css_for_each_descendant_pre(). Find the next descendant
4638 * to visit for pre-order traversal of @root's descendants. @root is
4639 * included in the iteration and the first node to be visited.
4640 *
4641 * While this function requires cgroup_mutex or RCU read locking, it
4642 * doesn't require the whole traversal to be contained in a single critical
4643 * section. Additionally, it isn't necessary to hold onto a reference to @pos.
4644 * This function will return the correct next descendant as long as both @pos
4645 * and @root are accessible and @pos is a descendant of @root.
4646 *
4647 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4648 * css which finished ->css_online() is guaranteed to be visible in the
4649 * future iterations and will stay visible until the last reference is put.
4650 * A css which hasn't finished ->css_online() or already finished
4651 * ->css_offline() may show up during traversal. It's each subsystem's
4652 * responsibility to synchronize against on/offlining.
4653 */
4654 struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4655 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4656 struct cgroup_subsys_state *root)
4657 {
4658 struct cgroup_subsys_state *next;
4659
4660 cgroup_assert_mutex_or_rcu_locked();
4661
4662 /* if first iteration, visit @root */
4663 if (!pos)
4664 return root;
4665
4666 /* visit the first child if exists */
4667 next = css_next_child(NULL, pos);
4668 if (next)
4669 return next;
4670
4671 /* no child, visit my or the closest ancestor's next sibling */
4672 while (pos != root) {
4673 next = css_next_child(pos, pos->parent);
4674 if (next)
4675 return next;
4676 pos = pos->parent;
4677 }
4678
4679 return NULL;
4680 }
4681 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4682
4683 /**
4684 * css_rightmost_descendant - return the rightmost descendant of a css
4685 * @pos: css of interest
4686 *
4687 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4688 * is returned. This can be used during pre-order traversal to skip
4689 * subtree of @pos.
4690 *
4691 * While this function requires cgroup_mutex or RCU read locking, it
4692 * doesn't require the whole traversal to be contained in a single critical
4693 * section. Additionally, it isn't necessary to hold onto a reference to @pos.
4694 * This function will return the correct rightmost descendant as long as @pos
4695 * is accessible.
4696 */
4697 struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state * pos)4698 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4699 {
4700 struct cgroup_subsys_state *last, *tmp;
4701
4702 cgroup_assert_mutex_or_rcu_locked();
4703
4704 do {
4705 last = pos;
4706 /* ->prev isn't RCU safe, walk ->next till the end */
4707 pos = NULL;
4708 css_for_each_child(tmp, last)
4709 pos = tmp;
4710 } while (pos);
4711
4712 return last;
4713 }
4714
4715 static struct cgroup_subsys_state *
css_leftmost_descendant(struct cgroup_subsys_state * pos)4716 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4717 {
4718 struct cgroup_subsys_state *last;
4719
4720 do {
4721 last = pos;
4722 pos = css_next_child(NULL, pos);
4723 } while (pos);
4724
4725 return last;
4726 }
4727
4728 /**
4729 * css_next_descendant_post - find the next descendant for post-order walk
4730 * @pos: the current position (%NULL to initiate traversal)
4731 * @root: css whose descendants to walk
4732 *
4733 * To be used by css_for_each_descendant_post(). Find the next descendant
4734 * to visit for post-order traversal of @root's descendants. @root is
4735 * included in the iteration and the last node to be visited.
4736 *
4737 * While this function requires cgroup_mutex or RCU read locking, it
4738 * doesn't require the whole traversal to be contained in a single critical
4739 * section. Additionally, it isn't necessary to hold onto a reference to @pos.
4740 * This function will return the correct next descendant as long as both @pos
4741 * and @cgroup are accessible and @pos is a descendant of @cgroup.
4742 *
4743 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4744 * css which finished ->css_online() is guaranteed to be visible in the
4745 * future iterations and will stay visible until the last reference is put.
4746 * A css which hasn't finished ->css_online() or already finished
4747 * ->css_offline() may show up during traversal. It's each subsystem's
4748 * responsibility to synchronize against on/offlining.
4749 */
4750 struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4751 css_next_descendant_post(struct cgroup_subsys_state *pos,
4752 struct cgroup_subsys_state *root)
4753 {
4754 struct cgroup_subsys_state *next;
4755
4756 cgroup_assert_mutex_or_rcu_locked();
4757
4758 /* if first iteration, visit leftmost descendant which may be @root */
4759 if (!pos)
4760 return css_leftmost_descendant(root);
4761
4762 /* if we visited @root, we're done */
4763 if (pos == root)
4764 return NULL;
4765
4766 /* if there's an unvisited sibling, visit its leftmost descendant */
4767 next = css_next_child(pos, pos->parent);
4768 if (next)
4769 return css_leftmost_descendant(next);
4770
4771 /* no sibling left, visit parent */
4772 return pos->parent;
4773 }
4774
4775 /**
4776 * css_has_online_children - does a css have online children
4777 * @css: the target css
4778 *
4779 * Returns %true if @css has any online children; otherwise, %false. This
4780 * function can be called from any context but the caller is responsible
4781 * for synchronizing against on/offlining as necessary.
4782 */
css_has_online_children(struct cgroup_subsys_state * css)4783 bool css_has_online_children(struct cgroup_subsys_state *css)
4784 {
4785 struct cgroup_subsys_state *child;
4786 bool ret = false;
4787
4788 rcu_read_lock();
4789 css_for_each_child(child, css) {
4790 if (child->flags & CSS_ONLINE) {
4791 ret = true;
4792 break;
4793 }
4794 }
4795 rcu_read_unlock();
4796 return ret;
4797 }
4798
css_task_iter_next_css_set(struct css_task_iter * it)4799 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4800 {
4801 struct list_head *l;
4802 struct cgrp_cset_link *link;
4803 struct css_set *cset;
4804
4805 lockdep_assert_held(&css_set_lock);
4806
4807 /* find the next threaded cset */
4808 if (it->tcset_pos) {
4809 l = it->tcset_pos->next;
4810
4811 if (l != it->tcset_head) {
4812 it->tcset_pos = l;
4813 return container_of(l, struct css_set,
4814 threaded_csets_node);
4815 }
4816
4817 it->tcset_pos = NULL;
4818 }
4819
4820 /* find the next cset */
4821 l = it->cset_pos;
4822 l = l->next;
4823 if (l == it->cset_head) {
4824 it->cset_pos = NULL;
4825 return NULL;
4826 }
4827
4828 if (it->ss) {
4829 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4830 } else {
4831 link = list_entry(l, struct cgrp_cset_link, cset_link);
4832 cset = link->cset;
4833 }
4834
4835 it->cset_pos = l;
4836
4837 /* initialize threaded css_set walking */
4838 if (it->flags & CSS_TASK_ITER_THREADED) {
4839 if (it->cur_dcset)
4840 put_css_set_locked(it->cur_dcset);
4841 it->cur_dcset = cset;
4842 get_css_set(cset);
4843
4844 it->tcset_head = &cset->threaded_csets;
4845 it->tcset_pos = &cset->threaded_csets;
4846 }
4847
4848 return cset;
4849 }
4850
4851 /**
4852 * css_task_iter_advance_css_set - advance a task iterator to the next css_set
4853 * @it: the iterator to advance
4854 *
4855 * Advance @it to the next css_set to walk.
4856 */
css_task_iter_advance_css_set(struct css_task_iter * it)4857 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4858 {
4859 struct css_set *cset;
4860
4861 lockdep_assert_held(&css_set_lock);
4862
4863 /* Advance to the next non-empty css_set and find first non-empty tasks list*/
4864 while ((cset = css_task_iter_next_css_set(it))) {
4865 if (!list_empty(&cset->tasks)) {
4866 it->cur_tasks_head = &cset->tasks;
4867 break;
4868 } else if (!list_empty(&cset->mg_tasks)) {
4869 it->cur_tasks_head = &cset->mg_tasks;
4870 break;
4871 } else if (!list_empty(&cset->dying_tasks)) {
4872 it->cur_tasks_head = &cset->dying_tasks;
4873 break;
4874 }
4875 }
4876 if (!cset) {
4877 it->task_pos = NULL;
4878 return;
4879 }
4880 it->task_pos = it->cur_tasks_head->next;
4881
4882 /*
4883 * We don't keep css_sets locked across iteration steps and thus
4884 * need to take steps to ensure that iteration can be resumed after
4885 * the lock is re-acquired. Iteration is performed at two levels -
4886 * css_sets and tasks in them.
4887 *
4888 * Once created, a css_set never leaves its cgroup lists, so a
4889 * pinned css_set is guaranteed to stay put and we can resume
4890 * iteration afterwards.
4891 *
4892 * Tasks may leave @cset across iteration steps. This is resolved
4893 * by registering each iterator with the css_set currently being
4894 * walked and making css_set_move_task() advance iterators whose
4895 * next task is leaving.
4896 */
4897 if (it->cur_cset) {
4898 list_del(&it->iters_node);
4899 put_css_set_locked(it->cur_cset);
4900 }
4901 get_css_set(cset);
4902 it->cur_cset = cset;
4903 list_add(&it->iters_node, &cset->task_iters);
4904 }
4905
css_task_iter_skip(struct css_task_iter * it,struct task_struct * task)4906 static void css_task_iter_skip(struct css_task_iter *it,
4907 struct task_struct *task)
4908 {
4909 lockdep_assert_held(&css_set_lock);
4910
4911 if (it->task_pos == &task->cg_list) {
4912 it->task_pos = it->task_pos->next;
4913 it->flags |= CSS_TASK_ITER_SKIPPED;
4914 }
4915 }
4916
css_task_iter_advance(struct css_task_iter * it)4917 static void css_task_iter_advance(struct css_task_iter *it)
4918 {
4919 struct task_struct *task;
4920
4921 lockdep_assert_held(&css_set_lock);
4922 repeat:
4923 if (it->task_pos) {
4924 /*
4925 * Advance iterator to find next entry. We go through cset
4926 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4927 * the next cset.
4928 */
4929 if (it->flags & CSS_TASK_ITER_SKIPPED)
4930 it->flags &= ~CSS_TASK_ITER_SKIPPED;
4931 else
4932 it->task_pos = it->task_pos->next;
4933
4934 if (it->task_pos == &it->cur_cset->tasks) {
4935 it->cur_tasks_head = &it->cur_cset->mg_tasks;
4936 it->task_pos = it->cur_tasks_head->next;
4937 }
4938 if (it->task_pos == &it->cur_cset->mg_tasks) {
4939 it->cur_tasks_head = &it->cur_cset->dying_tasks;
4940 it->task_pos = it->cur_tasks_head->next;
4941 }
4942 if (it->task_pos == &it->cur_cset->dying_tasks)
4943 css_task_iter_advance_css_set(it);
4944 } else {
4945 /* called from start, proceed to the first cset */
4946 css_task_iter_advance_css_set(it);
4947 }
4948
4949 if (!it->task_pos)
4950 return;
4951
4952 task = list_entry(it->task_pos, struct task_struct, cg_list);
4953
4954 if (it->flags & CSS_TASK_ITER_PROCS) {
4955 /* if PROCS, skip over tasks which aren't group leaders */
4956 if (!thread_group_leader(task))
4957 goto repeat;
4958
4959 /* and dying leaders w/o live member threads */
4960 if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4961 !atomic_read(&task->signal->live))
4962 goto repeat;
4963 } else {
4964 /* skip all dying ones */
4965 if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4966 goto repeat;
4967 }
4968 }
4969
4970 /**
4971 * css_task_iter_start - initiate task iteration
4972 * @css: the css to walk tasks of
4973 * @flags: CSS_TASK_ITER_* flags
4974 * @it: the task iterator to use
4975 *
4976 * Initiate iteration through the tasks of @css. The caller can call
4977 * css_task_iter_next() to walk through the tasks until the function
4978 * returns NULL. On completion of iteration, css_task_iter_end() must be
4979 * called.
4980 */
css_task_iter_start(struct cgroup_subsys_state * css,unsigned int flags,struct css_task_iter * it)4981 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4982 struct css_task_iter *it)
4983 {
4984 unsigned long irqflags;
4985
4986 memset(it, 0, sizeof(*it));
4987
4988 spin_lock_irqsave(&css_set_lock, irqflags);
4989
4990 it->ss = css->ss;
4991 it->flags = flags;
4992
4993 if (CGROUP_HAS_SUBSYS_CONFIG && it->ss)
4994 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4995 else
4996 it->cset_pos = &css->cgroup->cset_links;
4997
4998 it->cset_head = it->cset_pos;
4999
5000 css_task_iter_advance(it);
5001
5002 spin_unlock_irqrestore(&css_set_lock, irqflags);
5003 }
5004
5005 /**
5006 * css_task_iter_next - return the next task for the iterator
5007 * @it: the task iterator being iterated
5008 *
5009 * The "next" function for task iteration. @it should have been
5010 * initialized via css_task_iter_start(). Returns NULL when the iteration
5011 * reaches the end.
5012 */
css_task_iter_next(struct css_task_iter * it)5013 struct task_struct *css_task_iter_next(struct css_task_iter *it)
5014 {
5015 unsigned long irqflags;
5016
5017 if (it->cur_task) {
5018 put_task_struct(it->cur_task);
5019 it->cur_task = NULL;
5020 }
5021
5022 spin_lock_irqsave(&css_set_lock, irqflags);
5023
5024 /* @it may be half-advanced by skips, finish advancing */
5025 if (it->flags & CSS_TASK_ITER_SKIPPED)
5026 css_task_iter_advance(it);
5027
5028 if (it->task_pos) {
5029 it->cur_task = list_entry(it->task_pos, struct task_struct,
5030 cg_list);
5031 get_task_struct(it->cur_task);
5032 css_task_iter_advance(it);
5033 }
5034
5035 spin_unlock_irqrestore(&css_set_lock, irqflags);
5036
5037 return it->cur_task;
5038 }
5039
5040 /**
5041 * css_task_iter_end - finish task iteration
5042 * @it: the task iterator to finish
5043 *
5044 * Finish task iteration started by css_task_iter_start().
5045 */
css_task_iter_end(struct css_task_iter * it)5046 void css_task_iter_end(struct css_task_iter *it)
5047 {
5048 unsigned long irqflags;
5049
5050 if (it->cur_cset) {
5051 spin_lock_irqsave(&css_set_lock, irqflags);
5052 list_del(&it->iters_node);
5053 put_css_set_locked(it->cur_cset);
5054 spin_unlock_irqrestore(&css_set_lock, irqflags);
5055 }
5056
5057 if (it->cur_dcset)
5058 put_css_set(it->cur_dcset);
5059
5060 if (it->cur_task)
5061 put_task_struct(it->cur_task);
5062 }
5063
cgroup_procs_release(struct kernfs_open_file * of)5064 static void cgroup_procs_release(struct kernfs_open_file *of)
5065 {
5066 struct cgroup_file_ctx *ctx = of->priv;
5067
5068 if (ctx->procs.started)
5069 css_task_iter_end(&ctx->procs.iter);
5070 }
5071
cgroup_procs_next(struct seq_file * s,void * v,loff_t * pos)5072 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
5073 {
5074 struct kernfs_open_file *of = s->private;
5075 struct cgroup_file_ctx *ctx = of->priv;
5076
5077 if (pos)
5078 (*pos)++;
5079
5080 return css_task_iter_next(&ctx->procs.iter);
5081 }
5082
__cgroup_procs_start(struct seq_file * s,loff_t * pos,unsigned int iter_flags)5083 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
5084 unsigned int iter_flags)
5085 {
5086 struct kernfs_open_file *of = s->private;
5087 struct cgroup *cgrp = seq_css(s)->cgroup;
5088 struct cgroup_file_ctx *ctx = of->priv;
5089 struct css_task_iter *it = &ctx->procs.iter;
5090
5091 /*
5092 * When a seq_file is seeked, it's always traversed sequentially
5093 * from position 0, so we can simply keep iterating on !0 *pos.
5094 */
5095 if (!ctx->procs.started) {
5096 if (WARN_ON_ONCE((*pos)))
5097 return ERR_PTR(-EINVAL);
5098 css_task_iter_start(&cgrp->self, iter_flags, it);
5099 ctx->procs.started = true;
5100 } else if (!(*pos)) {
5101 css_task_iter_end(it);
5102 css_task_iter_start(&cgrp->self, iter_flags, it);
5103 } else
5104 return it->cur_task;
5105
5106 return cgroup_procs_next(s, NULL, NULL);
5107 }
5108
cgroup_procs_start(struct seq_file * s,loff_t * pos)5109 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
5110 {
5111 struct cgroup *cgrp = seq_css(s)->cgroup;
5112
5113 /*
5114 * All processes of a threaded subtree belong to the domain cgroup
5115 * of the subtree. Only threads can be distributed across the
5116 * subtree. Reject reads on cgroup.procs in the subtree proper.
5117 * They're always empty anyway.
5118 */
5119 if (cgroup_is_threaded(cgrp))
5120 return ERR_PTR(-EOPNOTSUPP);
5121
5122 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
5123 CSS_TASK_ITER_THREADED);
5124 }
5125
cgroup_procs_show(struct seq_file * s,void * v)5126 static int cgroup_procs_show(struct seq_file *s, void *v)
5127 {
5128 seq_printf(s, "%d\n", task_pid_vnr(v));
5129 return 0;
5130 }
5131
cgroup_may_write(const struct cgroup * cgrp,struct super_block * sb)5132 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
5133 {
5134 int ret;
5135 struct inode *inode;
5136
5137 lockdep_assert_held(&cgroup_mutex);
5138
5139 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
5140 if (!inode)
5141 return -ENOMEM;
5142
5143 ret = inode_permission(&nop_mnt_idmap, inode, MAY_WRITE);
5144 iput(inode);
5145 return ret;
5146 }
5147
cgroup_procs_write_permission(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,struct cgroup_namespace * ns)5148 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
5149 struct cgroup *dst_cgrp,
5150 struct super_block *sb,
5151 struct cgroup_namespace *ns)
5152 {
5153 struct cgroup *com_cgrp = src_cgrp;
5154 int ret;
5155
5156 lockdep_assert_held(&cgroup_mutex);
5157
5158 /* find the common ancestor */
5159 while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
5160 com_cgrp = cgroup_parent(com_cgrp);
5161
5162 /* %current should be authorized to migrate to the common ancestor */
5163 ret = cgroup_may_write(com_cgrp, sb);
5164 if (ret)
5165 return ret;
5166
5167 /*
5168 * If namespaces are delegation boundaries, %current must be able
5169 * to see both source and destination cgroups from its namespace.
5170 */
5171 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
5172 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
5173 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
5174 return -ENOENT;
5175
5176 return 0;
5177 }
5178
cgroup_attach_permissions(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,bool threadgroup,struct cgroup_namespace * ns)5179 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
5180 struct cgroup *dst_cgrp,
5181 struct super_block *sb, bool threadgroup,
5182 struct cgroup_namespace *ns)
5183 {
5184 int ret = 0;
5185
5186 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
5187 if (ret)
5188 return ret;
5189
5190 ret = cgroup_migrate_vet_dst(dst_cgrp);
5191 if (ret)
5192 return ret;
5193
5194 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
5195 ret = -EOPNOTSUPP;
5196
5197 return ret;
5198 }
5199
__cgroup_procs_write(struct kernfs_open_file * of,char * buf,bool threadgroup)5200 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
5201 bool threadgroup)
5202 {
5203 struct cgroup_file_ctx *ctx = of->priv;
5204 struct cgroup *src_cgrp, *dst_cgrp;
5205 struct task_struct *task;
5206 const struct cred *saved_cred;
5207 ssize_t ret;
5208 bool threadgroup_locked;
5209
5210 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
5211 if (!dst_cgrp)
5212 return -ENODEV;
5213
5214 task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked);
5215 ret = PTR_ERR_OR_ZERO(task);
5216 if (ret)
5217 goto out_unlock;
5218
5219 /* find the source cgroup */
5220 spin_lock_irq(&css_set_lock);
5221 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
5222 spin_unlock_irq(&css_set_lock);
5223
5224 /*
5225 * Process and thread migrations follow same delegation rule. Check
5226 * permissions using the credentials from file open to protect against
5227 * inherited fd attacks.
5228 */
5229 saved_cred = override_creds(of->file->f_cred);
5230 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
5231 of->file->f_path.dentry->d_sb,
5232 threadgroup, ctx->ns);
5233 revert_creds(saved_cred);
5234 if (ret)
5235 goto out_finish;
5236
5237 ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
5238
5239 out_finish:
5240 cgroup_procs_write_finish(task, threadgroup_locked);
5241 out_unlock:
5242 cgroup_kn_unlock(of->kn);
5243
5244 return ret;
5245 }
5246
cgroup_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5247 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
5248 char *buf, size_t nbytes, loff_t off)
5249 {
5250 return __cgroup_procs_write(of, buf, true) ?: nbytes;
5251 }
5252
cgroup_threads_start(struct seq_file * s,loff_t * pos)5253 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
5254 {
5255 return __cgroup_procs_start(s, pos, 0);
5256 }
5257
cgroup_threads_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5258 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
5259 char *buf, size_t nbytes, loff_t off)
5260 {
5261 return __cgroup_procs_write(of, buf, false) ?: nbytes;
5262 }
5263
5264 /* cgroup core interface files for the default hierarchy */
5265 static struct cftype cgroup_base_files[] = {
5266 {
5267 .name = "cgroup.type",
5268 .flags = CFTYPE_NOT_ON_ROOT,
5269 .seq_show = cgroup_type_show,
5270 .write = cgroup_type_write,
5271 },
5272 {
5273 .name = "cgroup.procs",
5274 .flags = CFTYPE_NS_DELEGATABLE,
5275 .file_offset = offsetof(struct cgroup, procs_file),
5276 .release = cgroup_procs_release,
5277 .seq_start = cgroup_procs_start,
5278 .seq_next = cgroup_procs_next,
5279 .seq_show = cgroup_procs_show,
5280 .write = cgroup_procs_write,
5281 },
5282 {
5283 .name = "cgroup.threads",
5284 .flags = CFTYPE_NS_DELEGATABLE,
5285 .release = cgroup_procs_release,
5286 .seq_start = cgroup_threads_start,
5287 .seq_next = cgroup_procs_next,
5288 .seq_show = cgroup_procs_show,
5289 .write = cgroup_threads_write,
5290 },
5291 {
5292 .name = "cgroup.controllers",
5293 .seq_show = cgroup_controllers_show,
5294 },
5295 {
5296 .name = "cgroup.subtree_control",
5297 .flags = CFTYPE_NS_DELEGATABLE,
5298 .seq_show = cgroup_subtree_control_show,
5299 .write = cgroup_subtree_control_write,
5300 },
5301 {
5302 .name = "cgroup.events",
5303 .flags = CFTYPE_NOT_ON_ROOT,
5304 .file_offset = offsetof(struct cgroup, events_file),
5305 .seq_show = cgroup_events_show,
5306 },
5307 {
5308 .name = "cgroup.max.descendants",
5309 .seq_show = cgroup_max_descendants_show,
5310 .write = cgroup_max_descendants_write,
5311 },
5312 {
5313 .name = "cgroup.max.depth",
5314 .seq_show = cgroup_max_depth_show,
5315 .write = cgroup_max_depth_write,
5316 },
5317 {
5318 .name = "cgroup.stat",
5319 .seq_show = cgroup_stat_show,
5320 },
5321 {
5322 .name = "cgroup.freeze",
5323 .flags = CFTYPE_NOT_ON_ROOT,
5324 .seq_show = cgroup_freeze_show,
5325 .write = cgroup_freeze_write,
5326 },
5327 {
5328 .name = "cgroup.kill",
5329 .flags = CFTYPE_NOT_ON_ROOT,
5330 .write = cgroup_kill_write,
5331 },
5332 {
5333 .name = "cpu.stat",
5334 .seq_show = cpu_stat_show,
5335 },
5336 {
5337 .name = "cpu.stat.local",
5338 .seq_show = cpu_local_stat_show,
5339 },
5340 { } /* terminate */
5341 };
5342
5343 static struct cftype cgroup_psi_files[] = {
5344 #ifdef CONFIG_PSI
5345 {
5346 .name = "io.pressure",
5347 .file_offset = offsetof(struct cgroup, psi_files[PSI_IO]),
5348 .seq_show = cgroup_io_pressure_show,
5349 .write = cgroup_io_pressure_write,
5350 .poll = cgroup_pressure_poll,
5351 .release = cgroup_pressure_release,
5352 },
5353 {
5354 .name = "memory.pressure",
5355 .file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]),
5356 .seq_show = cgroup_memory_pressure_show,
5357 .write = cgroup_memory_pressure_write,
5358 .poll = cgroup_pressure_poll,
5359 .release = cgroup_pressure_release,
5360 },
5361 {
5362 .name = "cpu.pressure",
5363 .file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]),
5364 .seq_show = cgroup_cpu_pressure_show,
5365 .write = cgroup_cpu_pressure_write,
5366 .poll = cgroup_pressure_poll,
5367 .release = cgroup_pressure_release,
5368 },
5369 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
5370 {
5371 .name = "irq.pressure",
5372 .file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]),
5373 .seq_show = cgroup_irq_pressure_show,
5374 .write = cgroup_irq_pressure_write,
5375 .poll = cgroup_pressure_poll,
5376 .release = cgroup_pressure_release,
5377 },
5378 #endif
5379 {
5380 .name = "cgroup.pressure",
5381 .seq_show = cgroup_pressure_show,
5382 .write = cgroup_pressure_write,
5383 },
5384 #endif /* CONFIG_PSI */
5385 { } /* terminate */
5386 };
5387
5388 /*
5389 * css destruction is four-stage process.
5390 *
5391 * 1. Destruction starts. Killing of the percpu_ref is initiated.
5392 * Implemented in kill_css().
5393 *
5394 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5395 * and thus css_tryget_online() is guaranteed to fail, the css can be
5396 * offlined by invoking offline_css(). After offlining, the base ref is
5397 * put. Implemented in css_killed_work_fn().
5398 *
5399 * 3. When the percpu_ref reaches zero, the only possible remaining
5400 * accessors are inside RCU read sections. css_release() schedules the
5401 * RCU callback.
5402 *
5403 * 4. After the grace period, the css can be freed. Implemented in
5404 * css_free_rwork_fn().
5405 *
5406 * It is actually hairier because both step 2 and 4 require process context
5407 * and thus involve punting to css->destroy_work adding two additional
5408 * steps to the already complex sequence.
5409 */
css_free_rwork_fn(struct work_struct * work)5410 static void css_free_rwork_fn(struct work_struct *work)
5411 {
5412 struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5413 struct cgroup_subsys_state, destroy_rwork);
5414 struct cgroup_subsys *ss = css->ss;
5415 struct cgroup *cgrp = css->cgroup;
5416
5417 percpu_ref_exit(&css->refcnt);
5418
5419 if (ss) {
5420 /* css free path */
5421 struct cgroup_subsys_state *parent = css->parent;
5422 int id = css->id;
5423
5424 ss->css_free(css);
5425 cgroup_idr_remove(&ss->css_idr, id);
5426 cgroup_put(cgrp);
5427
5428 if (parent)
5429 css_put(parent);
5430 } else {
5431 /* cgroup free path */
5432 atomic_dec(&cgrp->root->nr_cgrps);
5433 if (!cgroup_on_dfl(cgrp))
5434 cgroup1_pidlist_destroy_all(cgrp);
5435 cancel_work_sync(&cgrp->release_agent_work);
5436 bpf_cgrp_storage_free(cgrp);
5437
5438 if (cgroup_parent(cgrp)) {
5439 /*
5440 * We get a ref to the parent, and put the ref when
5441 * this cgroup is being freed, so it's guaranteed
5442 * that the parent won't be destroyed before its
5443 * children.
5444 */
5445 cgroup_put(cgroup_parent(cgrp));
5446 kernfs_put(cgrp->kn);
5447 psi_cgroup_free(cgrp);
5448 cgroup_rstat_exit(cgrp);
5449 kfree(cgrp);
5450 } else {
5451 /*
5452 * This is root cgroup's refcnt reaching zero,
5453 * which indicates that the root should be
5454 * released.
5455 */
5456 cgroup_destroy_root(cgrp->root);
5457 }
5458 }
5459 }
5460
css_release_work_fn(struct work_struct * work)5461 static void css_release_work_fn(struct work_struct *work)
5462 {
5463 struct cgroup_subsys_state *css =
5464 container_of(work, struct cgroup_subsys_state, destroy_work);
5465 struct cgroup_subsys *ss = css->ss;
5466 struct cgroup *cgrp = css->cgroup;
5467
5468 cgroup_lock();
5469
5470 css->flags |= CSS_RELEASED;
5471 list_del_rcu(&css->sibling);
5472
5473 if (ss) {
5474 struct cgroup *parent_cgrp;
5475
5476 /* css release path */
5477 if (!list_empty(&css->rstat_css_node)) {
5478 cgroup_rstat_flush(cgrp);
5479 list_del_rcu(&css->rstat_css_node);
5480 }
5481
5482 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5483 if (ss->css_released)
5484 ss->css_released(css);
5485
5486 cgrp->nr_dying_subsys[ss->id]--;
5487 /*
5488 * When a css is released and ready to be freed, its
5489 * nr_descendants must be zero. However, the corresponding
5490 * cgrp->nr_dying_subsys[ss->id] may not be 0 if a subsystem
5491 * is activated and deactivated multiple times with one or
5492 * more of its previous activation leaving behind dying csses.
5493 */
5494 WARN_ON_ONCE(css->nr_descendants);
5495 parent_cgrp = cgroup_parent(cgrp);
5496 while (parent_cgrp) {
5497 parent_cgrp->nr_dying_subsys[ss->id]--;
5498 parent_cgrp = cgroup_parent(parent_cgrp);
5499 }
5500 } else {
5501 struct cgroup *tcgrp;
5502
5503 /* cgroup release path */
5504 TRACE_CGROUP_PATH(release, cgrp);
5505
5506 cgroup_rstat_flush(cgrp);
5507
5508 spin_lock_irq(&css_set_lock);
5509 for (tcgrp = cgroup_parent(cgrp); tcgrp;
5510 tcgrp = cgroup_parent(tcgrp))
5511 tcgrp->nr_dying_descendants--;
5512 spin_unlock_irq(&css_set_lock);
5513
5514 /*
5515 * There are two control paths which try to determine
5516 * cgroup from dentry without going through kernfs -
5517 * cgroupstats_build() and css_tryget_online_from_dir().
5518 * Those are supported by RCU protecting clearing of
5519 * cgrp->kn->priv backpointer.
5520 */
5521 if (cgrp->kn)
5522 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5523 NULL);
5524 }
5525
5526 cgroup_unlock();
5527
5528 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5529 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5530 }
5531
css_release(struct percpu_ref * ref)5532 static void css_release(struct percpu_ref *ref)
5533 {
5534 struct cgroup_subsys_state *css =
5535 container_of(ref, struct cgroup_subsys_state, refcnt);
5536
5537 INIT_WORK(&css->destroy_work, css_release_work_fn);
5538 queue_work(cgroup_destroy_wq, &css->destroy_work);
5539 }
5540
init_and_link_css(struct cgroup_subsys_state * css,struct cgroup_subsys * ss,struct cgroup * cgrp)5541 static void init_and_link_css(struct cgroup_subsys_state *css,
5542 struct cgroup_subsys *ss, struct cgroup *cgrp)
5543 {
5544 lockdep_assert_held(&cgroup_mutex);
5545
5546 cgroup_get_live(cgrp);
5547
5548 memset(css, 0, sizeof(*css));
5549 css->cgroup = cgrp;
5550 css->ss = ss;
5551 css->id = -1;
5552 INIT_LIST_HEAD(&css->sibling);
5553 INIT_LIST_HEAD(&css->children);
5554 INIT_LIST_HEAD(&css->rstat_css_node);
5555 css->serial_nr = css_serial_nr_next++;
5556 atomic_set(&css->online_cnt, 0);
5557
5558 if (cgroup_parent(cgrp)) {
5559 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5560 css_get(css->parent);
5561 }
5562
5563 if (ss->css_rstat_flush)
5564 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5565
5566 BUG_ON(cgroup_css(cgrp, ss));
5567 }
5568
5569 /* invoke ->css_online() on a new CSS and mark it online if successful */
online_css(struct cgroup_subsys_state * css)5570 static int online_css(struct cgroup_subsys_state *css)
5571 {
5572 struct cgroup_subsys *ss = css->ss;
5573 int ret = 0;
5574
5575 lockdep_assert_held(&cgroup_mutex);
5576
5577 if (ss->css_online)
5578 ret = ss->css_online(css);
5579 if (!ret) {
5580 css->flags |= CSS_ONLINE;
5581 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5582
5583 atomic_inc(&css->online_cnt);
5584 if (css->parent) {
5585 atomic_inc(&css->parent->online_cnt);
5586 while ((css = css->parent))
5587 css->nr_descendants++;
5588 }
5589 }
5590 return ret;
5591 }
5592
5593 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
offline_css(struct cgroup_subsys_state * css)5594 static void offline_css(struct cgroup_subsys_state *css)
5595 {
5596 struct cgroup_subsys *ss = css->ss;
5597
5598 lockdep_assert_held(&cgroup_mutex);
5599
5600 if (!(css->flags & CSS_ONLINE))
5601 return;
5602
5603 if (ss->css_offline)
5604 ss->css_offline(css);
5605
5606 css->flags &= ~CSS_ONLINE;
5607 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5608
5609 wake_up_all(&css->cgroup->offline_waitq);
5610
5611 css->cgroup->nr_dying_subsys[ss->id]++;
5612 /*
5613 * Parent css and cgroup cannot be freed until after the freeing
5614 * of child css, see css_free_rwork_fn().
5615 */
5616 while ((css = css->parent)) {
5617 css->nr_descendants--;
5618 css->cgroup->nr_dying_subsys[ss->id]++;
5619 }
5620 }
5621
5622 /**
5623 * css_create - create a cgroup_subsys_state
5624 * @cgrp: the cgroup new css will be associated with
5625 * @ss: the subsys of new css
5626 *
5627 * Create a new css associated with @cgrp - @ss pair. On success, the new
5628 * css is online and installed in @cgrp. This function doesn't create the
5629 * interface files. Returns 0 on success, -errno on failure.
5630 */
css_create(struct cgroup * cgrp,struct cgroup_subsys * ss)5631 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5632 struct cgroup_subsys *ss)
5633 {
5634 struct cgroup *parent = cgroup_parent(cgrp);
5635 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5636 struct cgroup_subsys_state *css;
5637 int err;
5638
5639 lockdep_assert_held(&cgroup_mutex);
5640
5641 css = ss->css_alloc(parent_css);
5642 if (!css)
5643 css = ERR_PTR(-ENOMEM);
5644 if (IS_ERR(css))
5645 return css;
5646
5647 init_and_link_css(css, ss, cgrp);
5648
5649 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5650 if (err)
5651 goto err_free_css;
5652
5653 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5654 if (err < 0)
5655 goto err_free_css;
5656 css->id = err;
5657
5658 /* @css is ready to be brought online now, make it visible */
5659 list_add_tail_rcu(&css->sibling, &parent_css->children);
5660 cgroup_idr_replace(&ss->css_idr, css, css->id);
5661
5662 err = online_css(css);
5663 if (err)
5664 goto err_list_del;
5665
5666 return css;
5667
5668 err_list_del:
5669 list_del_rcu(&css->sibling);
5670 err_free_css:
5671 list_del_rcu(&css->rstat_css_node);
5672 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5673 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5674 return ERR_PTR(err);
5675 }
5676
5677 /*
5678 * The returned cgroup is fully initialized including its control mask, but
5679 * it doesn't have the control mask applied.
5680 */
cgroup_create(struct cgroup * parent,const char * name,umode_t mode)5681 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5682 umode_t mode)
5683 {
5684 struct cgroup_root *root = parent->root;
5685 struct cgroup *cgrp, *tcgrp;
5686 struct kernfs_node *kn;
5687 int level = parent->level + 1;
5688 int ret;
5689
5690 /* allocate the cgroup and its ID, 0 is reserved for the root */
5691 cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL);
5692 if (!cgrp)
5693 return ERR_PTR(-ENOMEM);
5694
5695 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5696 if (ret)
5697 goto out_free_cgrp;
5698
5699 ret = cgroup_rstat_init(cgrp);
5700 if (ret)
5701 goto out_cancel_ref;
5702
5703 /* create the directory */
5704 kn = kernfs_create_dir_ns(parent->kn, name, mode,
5705 current_fsuid(), current_fsgid(),
5706 cgrp, NULL);
5707 if (IS_ERR(kn)) {
5708 ret = PTR_ERR(kn);
5709 goto out_stat_exit;
5710 }
5711 cgrp->kn = kn;
5712
5713 init_cgroup_housekeeping(cgrp);
5714
5715 cgrp->self.parent = &parent->self;
5716 cgrp->root = root;
5717 cgrp->level = level;
5718
5719 ret = psi_cgroup_alloc(cgrp);
5720 if (ret)
5721 goto out_kernfs_remove;
5722
5723 if (cgrp->root == &cgrp_dfl_root) {
5724 ret = cgroup_bpf_inherit(cgrp);
5725 if (ret)
5726 goto out_psi_free;
5727 }
5728
5729 /*
5730 * New cgroup inherits effective freeze counter, and
5731 * if the parent has to be frozen, the child has too.
5732 */
5733 cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5734 if (cgrp->freezer.e_freeze) {
5735 /*
5736 * Set the CGRP_FREEZE flag, so when a process will be
5737 * attached to the child cgroup, it will become frozen.
5738 * At this point the new cgroup is unpopulated, so we can
5739 * consider it frozen immediately.
5740 */
5741 set_bit(CGRP_FREEZE, &cgrp->flags);
5742 set_bit(CGRP_FROZEN, &cgrp->flags);
5743 }
5744
5745 spin_lock_irq(&css_set_lock);
5746 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5747 cgrp->ancestors[tcgrp->level] = tcgrp;
5748
5749 if (tcgrp != cgrp) {
5750 tcgrp->nr_descendants++;
5751
5752 /*
5753 * If the new cgroup is frozen, all ancestor cgroups
5754 * get a new frozen descendant, but their state can't
5755 * change because of this.
5756 */
5757 if (cgrp->freezer.e_freeze)
5758 tcgrp->freezer.nr_frozen_descendants++;
5759 }
5760 }
5761 spin_unlock_irq(&css_set_lock);
5762
5763 if (notify_on_release(parent))
5764 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5765
5766 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5767 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5768
5769 cgrp->self.serial_nr = css_serial_nr_next++;
5770
5771 /* allocation complete, commit to creation */
5772 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5773 atomic_inc(&root->nr_cgrps);
5774 cgroup_get_live(parent);
5775
5776 /*
5777 * On the default hierarchy, a child doesn't automatically inherit
5778 * subtree_control from the parent. Each is configured manually.
5779 */
5780 if (!cgroup_on_dfl(cgrp))
5781 cgrp->subtree_control = cgroup_control(cgrp);
5782
5783 cgroup_propagate_control(cgrp);
5784
5785 return cgrp;
5786
5787 out_psi_free:
5788 psi_cgroup_free(cgrp);
5789 out_kernfs_remove:
5790 kernfs_remove(cgrp->kn);
5791 out_stat_exit:
5792 cgroup_rstat_exit(cgrp);
5793 out_cancel_ref:
5794 percpu_ref_exit(&cgrp->self.refcnt);
5795 out_free_cgrp:
5796 kfree(cgrp);
5797 return ERR_PTR(ret);
5798 }
5799
cgroup_check_hierarchy_limits(struct cgroup * parent)5800 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5801 {
5802 struct cgroup *cgroup;
5803 int ret = false;
5804 int level = 0;
5805
5806 lockdep_assert_held(&cgroup_mutex);
5807
5808 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5809 if (cgroup->nr_descendants >= cgroup->max_descendants)
5810 goto fail;
5811
5812 if (level >= cgroup->max_depth)
5813 goto fail;
5814
5815 level++;
5816 }
5817
5818 ret = true;
5819 fail:
5820 return ret;
5821 }
5822
cgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)5823 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5824 {
5825 struct cgroup *parent, *cgrp;
5826 int ret;
5827
5828 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5829 if (strchr(name, '\n'))
5830 return -EINVAL;
5831
5832 parent = cgroup_kn_lock_live(parent_kn, false);
5833 if (!parent)
5834 return -ENODEV;
5835
5836 if (!cgroup_check_hierarchy_limits(parent)) {
5837 ret = -EAGAIN;
5838 goto out_unlock;
5839 }
5840
5841 cgrp = cgroup_create(parent, name, mode);
5842 if (IS_ERR(cgrp)) {
5843 ret = PTR_ERR(cgrp);
5844 goto out_unlock;
5845 }
5846
5847 /*
5848 * This extra ref will be put in css_free_rwork_fn() and guarantees
5849 * that @cgrp->kn is always accessible.
5850 */
5851 kernfs_get(cgrp->kn);
5852
5853 ret = css_populate_dir(&cgrp->self);
5854 if (ret)
5855 goto out_destroy;
5856
5857 ret = cgroup_apply_control_enable(cgrp);
5858 if (ret)
5859 goto out_destroy;
5860
5861 TRACE_CGROUP_PATH(mkdir, cgrp);
5862
5863 /* let's create and online css's */
5864 kernfs_activate(cgrp->kn);
5865
5866 ret = 0;
5867 goto out_unlock;
5868
5869 out_destroy:
5870 cgroup_destroy_locked(cgrp);
5871 out_unlock:
5872 cgroup_kn_unlock(parent_kn);
5873 return ret;
5874 }
5875
5876 /*
5877 * This is called when the refcnt of a css is confirmed to be killed.
5878 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5879 * initiate destruction and put the css ref from kill_css().
5880 */
css_killed_work_fn(struct work_struct * work)5881 static void css_killed_work_fn(struct work_struct *work)
5882 {
5883 struct cgroup_subsys_state *css =
5884 container_of(work, struct cgroup_subsys_state, destroy_work);
5885
5886 cgroup_lock();
5887
5888 do {
5889 offline_css(css);
5890 css_put(css);
5891 /* @css can't go away while we're holding cgroup_mutex */
5892 css = css->parent;
5893 } while (css && atomic_dec_and_test(&css->online_cnt));
5894
5895 cgroup_unlock();
5896 }
5897
5898 /* css kill confirmation processing requires process context, bounce */
css_killed_ref_fn(struct percpu_ref * ref)5899 static void css_killed_ref_fn(struct percpu_ref *ref)
5900 {
5901 struct cgroup_subsys_state *css =
5902 container_of(ref, struct cgroup_subsys_state, refcnt);
5903
5904 if (atomic_dec_and_test(&css->online_cnt)) {
5905 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5906 queue_work(cgroup_destroy_wq, &css->destroy_work);
5907 }
5908 }
5909
5910 /**
5911 * kill_css - destroy a css
5912 * @css: css to destroy
5913 *
5914 * This function initiates destruction of @css by removing cgroup interface
5915 * files and putting its base reference. ->css_offline() will be invoked
5916 * asynchronously once css_tryget_online() is guaranteed to fail and when
5917 * the reference count reaches zero, @css will be released.
5918 */
kill_css(struct cgroup_subsys_state * css)5919 static void kill_css(struct cgroup_subsys_state *css)
5920 {
5921 lockdep_assert_held(&cgroup_mutex);
5922
5923 if (css->flags & CSS_DYING)
5924 return;
5925
5926 css->flags |= CSS_DYING;
5927
5928 /*
5929 * This must happen before css is disassociated with its cgroup.
5930 * See seq_css() for details.
5931 */
5932 css_clear_dir(css);
5933
5934 /*
5935 * Killing would put the base ref, but we need to keep it alive
5936 * until after ->css_offline().
5937 */
5938 css_get(css);
5939
5940 /*
5941 * cgroup core guarantees that, by the time ->css_offline() is
5942 * invoked, no new css reference will be given out via
5943 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5944 * proceed to offlining css's because percpu_ref_kill() doesn't
5945 * guarantee that the ref is seen as killed on all CPUs on return.
5946 *
5947 * Use percpu_ref_kill_and_confirm() to get notifications as each
5948 * css is confirmed to be seen as killed on all CPUs.
5949 */
5950 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5951 }
5952
5953 /**
5954 * cgroup_destroy_locked - the first stage of cgroup destruction
5955 * @cgrp: cgroup to be destroyed
5956 *
5957 * css's make use of percpu refcnts whose killing latency shouldn't be
5958 * exposed to userland and are RCU protected. Also, cgroup core needs to
5959 * guarantee that css_tryget_online() won't succeed by the time
5960 * ->css_offline() is invoked. To satisfy all the requirements,
5961 * destruction is implemented in the following two steps.
5962 *
5963 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5964 * userland visible parts and start killing the percpu refcnts of
5965 * css's. Set up so that the next stage will be kicked off once all
5966 * the percpu refcnts are confirmed to be killed.
5967 *
5968 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5969 * rest of destruction. Once all cgroup references are gone, the
5970 * cgroup is RCU-freed.
5971 *
5972 * This function implements s1. After this step, @cgrp is gone as far as
5973 * the userland is concerned and a new cgroup with the same name may be
5974 * created. As cgroup doesn't care about the names internally, this
5975 * doesn't cause any problem.
5976 */
cgroup_destroy_locked(struct cgroup * cgrp)5977 static int cgroup_destroy_locked(struct cgroup *cgrp)
5978 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5979 {
5980 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5981 struct cgroup_subsys_state *css;
5982 struct cgrp_cset_link *link;
5983 int ssid;
5984
5985 lockdep_assert_held(&cgroup_mutex);
5986
5987 /*
5988 * Only migration can raise populated from zero and we're already
5989 * holding cgroup_mutex.
5990 */
5991 if (cgroup_is_populated(cgrp))
5992 return -EBUSY;
5993
5994 /*
5995 * Make sure there's no live children. We can't test emptiness of
5996 * ->self.children as dead children linger on it while being
5997 * drained; otherwise, "rmdir parent/child parent" may fail.
5998 */
5999 if (css_has_online_children(&cgrp->self))
6000 return -EBUSY;
6001
6002 /*
6003 * Mark @cgrp and the associated csets dead. The former prevents
6004 * further task migration and child creation by disabling
6005 * cgroup_kn_lock_live(). The latter makes the csets ignored by
6006 * the migration path.
6007 */
6008 cgrp->self.flags &= ~CSS_ONLINE;
6009
6010 spin_lock_irq(&css_set_lock);
6011 list_for_each_entry(link, &cgrp->cset_links, cset_link)
6012 link->cset->dead = true;
6013 spin_unlock_irq(&css_set_lock);
6014
6015 /* initiate massacre of all css's */
6016 for_each_css(css, ssid, cgrp)
6017 kill_css(css);
6018
6019 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
6020 css_clear_dir(&cgrp->self);
6021 kernfs_remove(cgrp->kn);
6022
6023 if (cgroup_is_threaded(cgrp))
6024 parent->nr_threaded_children--;
6025
6026 spin_lock_irq(&css_set_lock);
6027 for (tcgrp = parent; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
6028 tcgrp->nr_descendants--;
6029 tcgrp->nr_dying_descendants++;
6030 /*
6031 * If the dying cgroup is frozen, decrease frozen descendants
6032 * counters of ancestor cgroups.
6033 */
6034 if (test_bit(CGRP_FROZEN, &cgrp->flags))
6035 tcgrp->freezer.nr_frozen_descendants--;
6036 }
6037 spin_unlock_irq(&css_set_lock);
6038
6039 cgroup1_check_for_release(parent);
6040
6041 if (cgrp->root == &cgrp_dfl_root)
6042 cgroup_bpf_offline(cgrp);
6043
6044 /* put the base reference */
6045 percpu_ref_kill(&cgrp->self.refcnt);
6046
6047 return 0;
6048 };
6049
cgroup_rmdir(struct kernfs_node * kn)6050 int cgroup_rmdir(struct kernfs_node *kn)
6051 {
6052 struct cgroup *cgrp;
6053 int ret = 0;
6054
6055 cgrp = cgroup_kn_lock_live(kn, false);
6056 if (!cgrp)
6057 return 0;
6058
6059 ret = cgroup_destroy_locked(cgrp);
6060 if (!ret)
6061 TRACE_CGROUP_PATH(rmdir, cgrp);
6062
6063 cgroup_kn_unlock(kn);
6064 return ret;
6065 }
6066
6067 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
6068 .show_options = cgroup_show_options,
6069 .mkdir = cgroup_mkdir,
6070 .rmdir = cgroup_rmdir,
6071 .show_path = cgroup_show_path,
6072 };
6073
cgroup_init_subsys(struct cgroup_subsys * ss,bool early)6074 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
6075 {
6076 struct cgroup_subsys_state *css;
6077
6078 pr_debug("Initializing cgroup subsys %s\n", ss->name);
6079
6080 cgroup_lock();
6081
6082 idr_init(&ss->css_idr);
6083 INIT_LIST_HEAD(&ss->cfts);
6084
6085 /* Create the root cgroup state for this subsystem */
6086 ss->root = &cgrp_dfl_root;
6087 css = ss->css_alloc(NULL);
6088 /* We don't handle early failures gracefully */
6089 BUG_ON(IS_ERR(css));
6090 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
6091
6092 /*
6093 * Root csses are never destroyed and we can't initialize
6094 * percpu_ref during early init. Disable refcnting.
6095 */
6096 css->flags |= CSS_NO_REF;
6097
6098 if (early) {
6099 /* allocation can't be done safely during early init */
6100 css->id = 1;
6101 } else {
6102 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
6103 BUG_ON(css->id < 0);
6104 }
6105
6106 /* Update the init_css_set to contain a subsys
6107 * pointer to this state - since the subsystem is
6108 * newly registered, all tasks and hence the
6109 * init_css_set is in the subsystem's root cgroup. */
6110 init_css_set.subsys[ss->id] = css;
6111
6112 have_fork_callback |= (bool)ss->fork << ss->id;
6113 have_exit_callback |= (bool)ss->exit << ss->id;
6114 have_release_callback |= (bool)ss->release << ss->id;
6115 have_canfork_callback |= (bool)ss->can_fork << ss->id;
6116
6117 /* At system boot, before all subsystems have been
6118 * registered, no tasks have been forked, so we don't
6119 * need to invoke fork callbacks here. */
6120 BUG_ON(!list_empty(&init_task.tasks));
6121
6122 BUG_ON(online_css(css));
6123
6124 cgroup_unlock();
6125 }
6126
6127 /**
6128 * cgroup_init_early - cgroup initialization at system boot
6129 *
6130 * Initialize cgroups at system boot, and initialize any
6131 * subsystems that request early init.
6132 */
cgroup_init_early(void)6133 int __init cgroup_init_early(void)
6134 {
6135 static struct cgroup_fs_context __initdata ctx;
6136 struct cgroup_subsys *ss;
6137 int i;
6138
6139 ctx.root = &cgrp_dfl_root;
6140 init_cgroup_root(&ctx);
6141 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
6142
6143 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
6144
6145 for_each_subsys(ss, i) {
6146 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
6147 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
6148 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
6149 ss->id, ss->name);
6150 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
6151 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
6152
6153 ss->id = i;
6154 ss->name = cgroup_subsys_name[i];
6155 if (!ss->legacy_name)
6156 ss->legacy_name = cgroup_subsys_name[i];
6157
6158 if (ss->early_init)
6159 cgroup_init_subsys(ss, true);
6160 }
6161 return 0;
6162 }
6163
6164 /**
6165 * cgroup_init - cgroup initialization
6166 *
6167 * Register cgroup filesystem and /proc file, and initialize
6168 * any subsystems that didn't request early init.
6169 */
cgroup_init(void)6170 int __init cgroup_init(void)
6171 {
6172 struct cgroup_subsys *ss;
6173 int ssid;
6174
6175 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
6176 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
6177 BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files));
6178 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
6179
6180 cgroup_rstat_boot();
6181
6182 get_user_ns(init_cgroup_ns.user_ns);
6183
6184 cgroup_lock();
6185
6186 /*
6187 * Add init_css_set to the hash table so that dfl_root can link to
6188 * it during init.
6189 */
6190 hash_add(css_set_table, &init_css_set.hlist,
6191 css_set_hash(init_css_set.subsys));
6192
6193 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
6194
6195 cgroup_unlock();
6196
6197 for_each_subsys(ss, ssid) {
6198 if (ss->early_init) {
6199 struct cgroup_subsys_state *css =
6200 init_css_set.subsys[ss->id];
6201
6202 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
6203 GFP_KERNEL);
6204 BUG_ON(css->id < 0);
6205 } else {
6206 cgroup_init_subsys(ss, false);
6207 }
6208
6209 list_add_tail(&init_css_set.e_cset_node[ssid],
6210 &cgrp_dfl_root.cgrp.e_csets[ssid]);
6211
6212 /*
6213 * Setting dfl_root subsys_mask needs to consider the
6214 * disabled flag and cftype registration needs kmalloc,
6215 * both of which aren't available during early_init.
6216 */
6217 if (!cgroup_ssid_enabled(ssid))
6218 continue;
6219
6220 if (cgroup1_ssid_disabled(ssid))
6221 pr_info("Disabling %s control group subsystem in v1 mounts\n",
6222 ss->legacy_name);
6223
6224 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
6225
6226 /* implicit controllers must be threaded too */
6227 WARN_ON(ss->implicit_on_dfl && !ss->threaded);
6228
6229 if (ss->implicit_on_dfl)
6230 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
6231 else if (!ss->dfl_cftypes)
6232 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
6233
6234 if (ss->threaded)
6235 cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
6236
6237 if (ss->dfl_cftypes == ss->legacy_cftypes) {
6238 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
6239 } else {
6240 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
6241 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
6242 }
6243
6244 if (ss->bind)
6245 ss->bind(init_css_set.subsys[ssid]);
6246
6247 cgroup_lock();
6248 css_populate_dir(init_css_set.subsys[ssid]);
6249 cgroup_unlock();
6250 }
6251
6252 /* init_css_set.subsys[] has been updated, re-hash */
6253 hash_del(&init_css_set.hlist);
6254 hash_add(css_set_table, &init_css_set.hlist,
6255 css_set_hash(init_css_set.subsys));
6256
6257 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
6258 WARN_ON(register_filesystem(&cgroup_fs_type));
6259 WARN_ON(register_filesystem(&cgroup2_fs_type));
6260 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
6261 #ifdef CONFIG_CPUSETS_V1
6262 WARN_ON(register_filesystem(&cpuset_fs_type));
6263 #endif
6264
6265 return 0;
6266 }
6267
cgroup_wq_init(void)6268 static int __init cgroup_wq_init(void)
6269 {
6270 /*
6271 * There isn't much point in executing destruction path in
6272 * parallel. Good chunk is serialized with cgroup_mutex anyway.
6273 * Use 1 for @max_active.
6274 *
6275 * We would prefer to do this in cgroup_init() above, but that
6276 * is called before init_workqueues(): so leave this until after.
6277 */
6278 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
6279 BUG_ON(!cgroup_destroy_wq);
6280 return 0;
6281 }
6282 core_initcall(cgroup_wq_init);
6283
cgroup_path_from_kernfs_id(u64 id,char * buf,size_t buflen)6284 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
6285 {
6286 struct kernfs_node *kn;
6287
6288 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6289 if (!kn)
6290 return;
6291 kernfs_path(kn, buf, buflen);
6292 kernfs_put(kn);
6293 }
6294
6295 /*
6296 * cgroup_get_from_id : get the cgroup associated with cgroup id
6297 * @id: cgroup id
6298 * On success return the cgrp or ERR_PTR on failure
6299 * Only cgroups within current task's cgroup NS are valid.
6300 */
cgroup_get_from_id(u64 id)6301 struct cgroup *cgroup_get_from_id(u64 id)
6302 {
6303 struct kernfs_node *kn;
6304 struct cgroup *cgrp, *root_cgrp;
6305
6306 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6307 if (!kn)
6308 return ERR_PTR(-ENOENT);
6309
6310 if (kernfs_type(kn) != KERNFS_DIR) {
6311 kernfs_put(kn);
6312 return ERR_PTR(-ENOENT);
6313 }
6314
6315 rcu_read_lock();
6316
6317 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6318 if (cgrp && !cgroup_tryget(cgrp))
6319 cgrp = NULL;
6320
6321 rcu_read_unlock();
6322 kernfs_put(kn);
6323
6324 if (!cgrp)
6325 return ERR_PTR(-ENOENT);
6326
6327 root_cgrp = current_cgns_cgroup_dfl();
6328 if (!cgroup_is_descendant(cgrp, root_cgrp)) {
6329 cgroup_put(cgrp);
6330 return ERR_PTR(-ENOENT);
6331 }
6332
6333 return cgrp;
6334 }
6335 EXPORT_SYMBOL_GPL(cgroup_get_from_id);
6336
6337 /*
6338 * proc_cgroup_show()
6339 * - Print task's cgroup paths into seq_file, one line for each hierarchy
6340 * - Used for /proc/<pid>/cgroup.
6341 */
proc_cgroup_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)6342 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
6343 struct pid *pid, struct task_struct *tsk)
6344 {
6345 char *buf;
6346 int retval;
6347 struct cgroup_root *root;
6348
6349 retval = -ENOMEM;
6350 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6351 if (!buf)
6352 goto out;
6353
6354 rcu_read_lock();
6355 spin_lock_irq(&css_set_lock);
6356
6357 for_each_root(root) {
6358 struct cgroup_subsys *ss;
6359 struct cgroup *cgrp;
6360 int ssid, count = 0;
6361
6362 if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible))
6363 continue;
6364
6365 cgrp = task_cgroup_from_root(tsk, root);
6366 /* The root has already been unmounted. */
6367 if (!cgrp)
6368 continue;
6369
6370 seq_printf(m, "%d:", root->hierarchy_id);
6371 if (root != &cgrp_dfl_root)
6372 for_each_subsys(ss, ssid)
6373 if (root->subsys_mask & (1 << ssid))
6374 seq_printf(m, "%s%s", count++ ? "," : "",
6375 ss->legacy_name);
6376 if (strlen(root->name))
6377 seq_printf(m, "%sname=%s", count ? "," : "",
6378 root->name);
6379 seq_putc(m, ':');
6380 /*
6381 * On traditional hierarchies, all zombie tasks show up as
6382 * belonging to the root cgroup. On the default hierarchy,
6383 * while a zombie doesn't show up in "cgroup.procs" and
6384 * thus can't be migrated, its /proc/PID/cgroup keeps
6385 * reporting the cgroup it belonged to before exiting. If
6386 * the cgroup is removed before the zombie is reaped,
6387 * " (deleted)" is appended to the cgroup path.
6388 */
6389 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
6390 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
6391 current->nsproxy->cgroup_ns);
6392 if (retval == -E2BIG)
6393 retval = -ENAMETOOLONG;
6394 if (retval < 0)
6395 goto out_unlock;
6396
6397 seq_puts(m, buf);
6398 } else {
6399 seq_puts(m, "/");
6400 }
6401
6402 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
6403 seq_puts(m, " (deleted)\n");
6404 else
6405 seq_putc(m, '\n');
6406 }
6407
6408 retval = 0;
6409 out_unlock:
6410 spin_unlock_irq(&css_set_lock);
6411 rcu_read_unlock();
6412 kfree(buf);
6413 out:
6414 return retval;
6415 }
6416
6417 /**
6418 * cgroup_fork - initialize cgroup related fields during copy_process()
6419 * @child: pointer to task_struct of forking parent process.
6420 *
6421 * A task is associated with the init_css_set until cgroup_post_fork()
6422 * attaches it to the target css_set.
6423 */
cgroup_fork(struct task_struct * child)6424 void cgroup_fork(struct task_struct *child)
6425 {
6426 RCU_INIT_POINTER(child->cgroups, &init_css_set);
6427 INIT_LIST_HEAD(&child->cg_list);
6428 }
6429
6430 /**
6431 * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer
6432 * @f: file corresponding to cgroup_dir
6433 *
6434 * Find the cgroup from a file pointer associated with a cgroup directory.
6435 * Returns a pointer to the cgroup on success. ERR_PTR is returned if the
6436 * cgroup cannot be found.
6437 */
cgroup_v1v2_get_from_file(struct file * f)6438 static struct cgroup *cgroup_v1v2_get_from_file(struct file *f)
6439 {
6440 struct cgroup_subsys_state *css;
6441
6442 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6443 if (IS_ERR(css))
6444 return ERR_CAST(css);
6445
6446 return css->cgroup;
6447 }
6448
6449 /**
6450 * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports
6451 * cgroup2.
6452 * @f: file corresponding to cgroup2_dir
6453 */
cgroup_get_from_file(struct file * f)6454 static struct cgroup *cgroup_get_from_file(struct file *f)
6455 {
6456 struct cgroup *cgrp = cgroup_v1v2_get_from_file(f);
6457
6458 if (IS_ERR(cgrp))
6459 return ERR_CAST(cgrp);
6460
6461 if (!cgroup_on_dfl(cgrp)) {
6462 cgroup_put(cgrp);
6463 return ERR_PTR(-EBADF);
6464 }
6465
6466 return cgrp;
6467 }
6468
6469 /**
6470 * cgroup_css_set_fork - find or create a css_set for a child process
6471 * @kargs: the arguments passed to create the child process
6472 *
6473 * This functions finds or creates a new css_set which the child
6474 * process will be attached to in cgroup_post_fork(). By default,
6475 * the child process will be given the same css_set as its parent.
6476 *
6477 * If CLONE_INTO_CGROUP is specified this function will try to find an
6478 * existing css_set which includes the requested cgroup and if not create
6479 * a new css_set that the child will be attached to later. If this function
6480 * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6481 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6482 * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6483 * to the target cgroup.
6484 */
cgroup_css_set_fork(struct kernel_clone_args * kargs)6485 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6486 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6487 {
6488 int ret;
6489 struct cgroup *dst_cgrp = NULL;
6490 struct css_set *cset;
6491 struct super_block *sb;
6492
6493 if (kargs->flags & CLONE_INTO_CGROUP)
6494 cgroup_lock();
6495
6496 cgroup_threadgroup_change_begin(current);
6497
6498 spin_lock_irq(&css_set_lock);
6499 cset = task_css_set(current);
6500 get_css_set(cset);
6501 if (kargs->cgrp)
6502 kargs->kill_seq = kargs->cgrp->kill_seq;
6503 else
6504 kargs->kill_seq = cset->dfl_cgrp->kill_seq;
6505 spin_unlock_irq(&css_set_lock);
6506
6507 if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6508 kargs->cset = cset;
6509 return 0;
6510 }
6511
6512 CLASS(fd_raw, f)(kargs->cgroup);
6513 if (fd_empty(f)) {
6514 ret = -EBADF;
6515 goto err;
6516 }
6517 sb = fd_file(f)->f_path.dentry->d_sb;
6518
6519 dst_cgrp = cgroup_get_from_file(fd_file(f));
6520 if (IS_ERR(dst_cgrp)) {
6521 ret = PTR_ERR(dst_cgrp);
6522 dst_cgrp = NULL;
6523 goto err;
6524 }
6525
6526 if (cgroup_is_dead(dst_cgrp)) {
6527 ret = -ENODEV;
6528 goto err;
6529 }
6530
6531 /*
6532 * Verify that we the target cgroup is writable for us. This is
6533 * usually done by the vfs layer but since we're not going through
6534 * the vfs layer here we need to do it "manually".
6535 */
6536 ret = cgroup_may_write(dst_cgrp, sb);
6537 if (ret)
6538 goto err;
6539
6540 /*
6541 * Spawning a task directly into a cgroup works by passing a file
6542 * descriptor to the target cgroup directory. This can even be an O_PATH
6543 * file descriptor. But it can never be a cgroup.procs file descriptor.
6544 * This was done on purpose so spawning into a cgroup could be
6545 * conceptualized as an atomic
6546 *
6547 * fd = openat(dfd_cgroup, "cgroup.procs", ...);
6548 * write(fd, <child-pid>, ...);
6549 *
6550 * sequence, i.e. it's a shorthand for the caller opening and writing
6551 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us
6552 * to always use the caller's credentials.
6553 */
6554 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6555 !(kargs->flags & CLONE_THREAD),
6556 current->nsproxy->cgroup_ns);
6557 if (ret)
6558 goto err;
6559
6560 kargs->cset = find_css_set(cset, dst_cgrp);
6561 if (!kargs->cset) {
6562 ret = -ENOMEM;
6563 goto err;
6564 }
6565
6566 put_css_set(cset);
6567 kargs->cgrp = dst_cgrp;
6568 return ret;
6569
6570 err:
6571 cgroup_threadgroup_change_end(current);
6572 cgroup_unlock();
6573 if (dst_cgrp)
6574 cgroup_put(dst_cgrp);
6575 put_css_set(cset);
6576 if (kargs->cset)
6577 put_css_set(kargs->cset);
6578 return ret;
6579 }
6580
6581 /**
6582 * cgroup_css_set_put_fork - drop references we took during fork
6583 * @kargs: the arguments passed to create the child process
6584 *
6585 * Drop references to the prepared css_set and target cgroup if
6586 * CLONE_INTO_CGROUP was requested.
6587 */
cgroup_css_set_put_fork(struct kernel_clone_args * kargs)6588 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6589 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6590 {
6591 struct cgroup *cgrp = kargs->cgrp;
6592 struct css_set *cset = kargs->cset;
6593
6594 cgroup_threadgroup_change_end(current);
6595
6596 if (cset) {
6597 put_css_set(cset);
6598 kargs->cset = NULL;
6599 }
6600
6601 if (kargs->flags & CLONE_INTO_CGROUP) {
6602 cgroup_unlock();
6603 if (cgrp) {
6604 cgroup_put(cgrp);
6605 kargs->cgrp = NULL;
6606 }
6607 }
6608 }
6609
6610 /**
6611 * cgroup_can_fork - called on a new task before the process is exposed
6612 * @child: the child process
6613 * @kargs: the arguments passed to create the child process
6614 *
6615 * This prepares a new css_set for the child process which the child will
6616 * be attached to in cgroup_post_fork().
6617 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6618 * callback returns an error, the fork aborts with that error code. This
6619 * allows for a cgroup subsystem to conditionally allow or deny new forks.
6620 */
cgroup_can_fork(struct task_struct * child,struct kernel_clone_args * kargs)6621 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6622 {
6623 struct cgroup_subsys *ss;
6624 int i, j, ret;
6625
6626 ret = cgroup_css_set_fork(kargs);
6627 if (ret)
6628 return ret;
6629
6630 do_each_subsys_mask(ss, i, have_canfork_callback) {
6631 ret = ss->can_fork(child, kargs->cset);
6632 if (ret)
6633 goto out_revert;
6634 } while_each_subsys_mask();
6635
6636 return 0;
6637
6638 out_revert:
6639 for_each_subsys(ss, j) {
6640 if (j >= i)
6641 break;
6642 if (ss->cancel_fork)
6643 ss->cancel_fork(child, kargs->cset);
6644 }
6645
6646 cgroup_css_set_put_fork(kargs);
6647
6648 return ret;
6649 }
6650
6651 /**
6652 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6653 * @child: the child process
6654 * @kargs: the arguments passed to create the child process
6655 *
6656 * This calls the cancel_fork() callbacks if a fork failed *after*
6657 * cgroup_can_fork() succeeded and cleans up references we took to
6658 * prepare a new css_set for the child process in cgroup_can_fork().
6659 */
cgroup_cancel_fork(struct task_struct * child,struct kernel_clone_args * kargs)6660 void cgroup_cancel_fork(struct task_struct *child,
6661 struct kernel_clone_args *kargs)
6662 {
6663 struct cgroup_subsys *ss;
6664 int i;
6665
6666 for_each_subsys(ss, i)
6667 if (ss->cancel_fork)
6668 ss->cancel_fork(child, kargs->cset);
6669
6670 cgroup_css_set_put_fork(kargs);
6671 }
6672
6673 /**
6674 * cgroup_post_fork - finalize cgroup setup for the child process
6675 * @child: the child process
6676 * @kargs: the arguments passed to create the child process
6677 *
6678 * Attach the child process to its css_set calling the subsystem fork()
6679 * callbacks.
6680 */
cgroup_post_fork(struct task_struct * child,struct kernel_clone_args * kargs)6681 void cgroup_post_fork(struct task_struct *child,
6682 struct kernel_clone_args *kargs)
6683 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6684 {
6685 unsigned int cgrp_kill_seq = 0;
6686 unsigned long cgrp_flags = 0;
6687 bool kill = false;
6688 struct cgroup_subsys *ss;
6689 struct css_set *cset;
6690 int i;
6691
6692 cset = kargs->cset;
6693 kargs->cset = NULL;
6694
6695 spin_lock_irq(&css_set_lock);
6696
6697 /* init tasks are special, only link regular threads */
6698 if (likely(child->pid)) {
6699 if (kargs->cgrp) {
6700 cgrp_flags = kargs->cgrp->flags;
6701 cgrp_kill_seq = kargs->cgrp->kill_seq;
6702 } else {
6703 cgrp_flags = cset->dfl_cgrp->flags;
6704 cgrp_kill_seq = cset->dfl_cgrp->kill_seq;
6705 }
6706
6707 WARN_ON_ONCE(!list_empty(&child->cg_list));
6708 cset->nr_tasks++;
6709 css_set_move_task(child, NULL, cset, false);
6710 } else {
6711 put_css_set(cset);
6712 cset = NULL;
6713 }
6714
6715 if (!(child->flags & PF_KTHREAD)) {
6716 if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) {
6717 /*
6718 * If the cgroup has to be frozen, the new task has
6719 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to
6720 * get the task into the frozen state.
6721 */
6722 spin_lock(&child->sighand->siglock);
6723 WARN_ON_ONCE(child->frozen);
6724 child->jobctl |= JOBCTL_TRAP_FREEZE;
6725 spin_unlock(&child->sighand->siglock);
6726
6727 /*
6728 * Calling cgroup_update_frozen() isn't required here,
6729 * because it will be called anyway a bit later from
6730 * do_freezer_trap(). So we avoid cgroup's transient
6731 * switch from the frozen state and back.
6732 */
6733 }
6734
6735 /*
6736 * If the cgroup is to be killed notice it now and take the
6737 * child down right after we finished preparing it for
6738 * userspace.
6739 */
6740 kill = kargs->kill_seq != cgrp_kill_seq;
6741 }
6742
6743 spin_unlock_irq(&css_set_lock);
6744
6745 /*
6746 * Call ss->fork(). This must happen after @child is linked on
6747 * css_set; otherwise, @child might change state between ->fork()
6748 * and addition to css_set.
6749 */
6750 do_each_subsys_mask(ss, i, have_fork_callback) {
6751 ss->fork(child);
6752 } while_each_subsys_mask();
6753
6754 /* Make the new cset the root_cset of the new cgroup namespace. */
6755 if (kargs->flags & CLONE_NEWCGROUP) {
6756 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6757
6758 get_css_set(cset);
6759 child->nsproxy->cgroup_ns->root_cset = cset;
6760 put_css_set(rcset);
6761 }
6762
6763 /* Cgroup has to be killed so take down child immediately. */
6764 if (unlikely(kill))
6765 do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID);
6766
6767 cgroup_css_set_put_fork(kargs);
6768 }
6769
6770 /**
6771 * cgroup_exit - detach cgroup from exiting task
6772 * @tsk: pointer to task_struct of exiting process
6773 *
6774 * Description: Detach cgroup from @tsk.
6775 *
6776 */
cgroup_exit(struct task_struct * tsk)6777 void cgroup_exit(struct task_struct *tsk)
6778 {
6779 struct cgroup_subsys *ss;
6780 struct css_set *cset;
6781 int i;
6782
6783 spin_lock_irq(&css_set_lock);
6784
6785 WARN_ON_ONCE(list_empty(&tsk->cg_list));
6786 cset = task_css_set(tsk);
6787 css_set_move_task(tsk, cset, NULL, false);
6788 cset->nr_tasks--;
6789 /* matches the signal->live check in css_task_iter_advance() */
6790 if (thread_group_leader(tsk) && atomic_read(&tsk->signal->live))
6791 list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6792
6793 if (dl_task(tsk))
6794 dec_dl_tasks_cs(tsk);
6795
6796 WARN_ON_ONCE(cgroup_task_frozen(tsk));
6797 if (unlikely(!(tsk->flags & PF_KTHREAD) &&
6798 test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags)))
6799 cgroup_update_frozen(task_dfl_cgroup(tsk));
6800
6801 spin_unlock_irq(&css_set_lock);
6802
6803 /* see cgroup_post_fork() for details */
6804 do_each_subsys_mask(ss, i, have_exit_callback) {
6805 ss->exit(tsk);
6806 } while_each_subsys_mask();
6807 }
6808
cgroup_release(struct task_struct * task)6809 void cgroup_release(struct task_struct *task)
6810 {
6811 struct cgroup_subsys *ss;
6812 int ssid;
6813
6814 do_each_subsys_mask(ss, ssid, have_release_callback) {
6815 ss->release(task);
6816 } while_each_subsys_mask();
6817
6818 if (!list_empty(&task->cg_list)) {
6819 spin_lock_irq(&css_set_lock);
6820 css_set_skip_task_iters(task_css_set(task), task);
6821 list_del_init(&task->cg_list);
6822 spin_unlock_irq(&css_set_lock);
6823 }
6824 }
6825
cgroup_free(struct task_struct * task)6826 void cgroup_free(struct task_struct *task)
6827 {
6828 struct css_set *cset = task_css_set(task);
6829 put_css_set(cset);
6830 }
6831
cgroup_disable(char * str)6832 static int __init cgroup_disable(char *str)
6833 {
6834 struct cgroup_subsys *ss;
6835 char *token;
6836 int i;
6837
6838 while ((token = strsep(&str, ",")) != NULL) {
6839 if (!*token)
6840 continue;
6841
6842 for_each_subsys(ss, i) {
6843 if (strcmp(token, ss->name) &&
6844 strcmp(token, ss->legacy_name))
6845 continue;
6846
6847 static_branch_disable(cgroup_subsys_enabled_key[i]);
6848 pr_info("Disabling %s control group subsystem\n",
6849 ss->name);
6850 }
6851
6852 for (i = 0; i < OPT_FEATURE_COUNT; i++) {
6853 if (strcmp(token, cgroup_opt_feature_names[i]))
6854 continue;
6855 cgroup_feature_disable_mask |= 1 << i;
6856 pr_info("Disabling %s control group feature\n",
6857 cgroup_opt_feature_names[i]);
6858 break;
6859 }
6860 }
6861 return 1;
6862 }
6863 __setup("cgroup_disable=", cgroup_disable);
6864
enable_debug_cgroup(void)6865 void __init __weak enable_debug_cgroup(void) { }
6866
enable_cgroup_debug(char * str)6867 static int __init enable_cgroup_debug(char *str)
6868 {
6869 cgroup_debug = true;
6870 enable_debug_cgroup();
6871 return 1;
6872 }
6873 __setup("cgroup_debug", enable_cgroup_debug);
6874
cgroup_favordynmods_setup(char * str)6875 static int __init cgroup_favordynmods_setup(char *str)
6876 {
6877 return (kstrtobool(str, &have_favordynmods) == 0);
6878 }
6879 __setup("cgroup_favordynmods=", cgroup_favordynmods_setup);
6880
6881 /**
6882 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6883 * @dentry: directory dentry of interest
6884 * @ss: subsystem of interest
6885 *
6886 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6887 * to get the corresponding css and return it. If such css doesn't exist
6888 * or can't be pinned, an ERR_PTR value is returned.
6889 */
css_tryget_online_from_dir(struct dentry * dentry,struct cgroup_subsys * ss)6890 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6891 struct cgroup_subsys *ss)
6892 {
6893 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6894 struct file_system_type *s_type = dentry->d_sb->s_type;
6895 struct cgroup_subsys_state *css = NULL;
6896 struct cgroup *cgrp;
6897
6898 /* is @dentry a cgroup dir? */
6899 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6900 !kn || kernfs_type(kn) != KERNFS_DIR)
6901 return ERR_PTR(-EBADF);
6902
6903 rcu_read_lock();
6904
6905 /*
6906 * This path doesn't originate from kernfs and @kn could already
6907 * have been or be removed at any point. @kn->priv is RCU
6908 * protected for this access. See css_release_work_fn() for details.
6909 */
6910 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6911 if (cgrp)
6912 css = cgroup_css(cgrp, ss);
6913
6914 if (!css || !css_tryget_online(css))
6915 css = ERR_PTR(-ENOENT);
6916
6917 rcu_read_unlock();
6918 return css;
6919 }
6920
6921 /**
6922 * css_from_id - lookup css by id
6923 * @id: the cgroup id
6924 * @ss: cgroup subsys to be looked into
6925 *
6926 * Returns the css if there's valid one with @id, otherwise returns NULL.
6927 * Should be called under rcu_read_lock().
6928 */
css_from_id(int id,struct cgroup_subsys * ss)6929 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6930 {
6931 WARN_ON_ONCE(!rcu_read_lock_held());
6932 return idr_find(&ss->css_idr, id);
6933 }
6934
6935 /**
6936 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6937 * @path: path on the default hierarchy
6938 *
6939 * Find the cgroup at @path on the default hierarchy, increment its
6940 * reference count and return it. Returns pointer to the found cgroup on
6941 * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already
6942 * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory.
6943 */
cgroup_get_from_path(const char * path)6944 struct cgroup *cgroup_get_from_path(const char *path)
6945 {
6946 struct kernfs_node *kn;
6947 struct cgroup *cgrp = ERR_PTR(-ENOENT);
6948 struct cgroup *root_cgrp;
6949
6950 root_cgrp = current_cgns_cgroup_dfl();
6951 kn = kernfs_walk_and_get(root_cgrp->kn, path);
6952 if (!kn)
6953 goto out;
6954
6955 if (kernfs_type(kn) != KERNFS_DIR) {
6956 cgrp = ERR_PTR(-ENOTDIR);
6957 goto out_kernfs;
6958 }
6959
6960 rcu_read_lock();
6961
6962 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6963 if (!cgrp || !cgroup_tryget(cgrp))
6964 cgrp = ERR_PTR(-ENOENT);
6965
6966 rcu_read_unlock();
6967
6968 out_kernfs:
6969 kernfs_put(kn);
6970 out:
6971 return cgrp;
6972 }
6973 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6974
6975 /**
6976 * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd
6977 * @fd: fd obtained by open(cgroup_dir)
6978 *
6979 * Find the cgroup from a fd which should be obtained
6980 * by opening a cgroup directory. Returns a pointer to the
6981 * cgroup on success. ERR_PTR is returned if the cgroup
6982 * cannot be found.
6983 */
cgroup_v1v2_get_from_fd(int fd)6984 struct cgroup *cgroup_v1v2_get_from_fd(int fd)
6985 {
6986 CLASS(fd_raw, f)(fd);
6987 if (fd_empty(f))
6988 return ERR_PTR(-EBADF);
6989
6990 return cgroup_v1v2_get_from_file(fd_file(f));
6991 }
6992
6993 /**
6994 * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports
6995 * cgroup2.
6996 * @fd: fd obtained by open(cgroup2_dir)
6997 */
cgroup_get_from_fd(int fd)6998 struct cgroup *cgroup_get_from_fd(int fd)
6999 {
7000 struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd);
7001
7002 if (IS_ERR(cgrp))
7003 return ERR_CAST(cgrp);
7004
7005 if (!cgroup_on_dfl(cgrp)) {
7006 cgroup_put(cgrp);
7007 return ERR_PTR(-EBADF);
7008 }
7009 return cgrp;
7010 }
7011 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
7012
power_of_ten(int power)7013 static u64 power_of_ten(int power)
7014 {
7015 u64 v = 1;
7016 while (power--)
7017 v *= 10;
7018 return v;
7019 }
7020
7021 /**
7022 * cgroup_parse_float - parse a floating number
7023 * @input: input string
7024 * @dec_shift: number of decimal digits to shift
7025 * @v: output
7026 *
7027 * Parse a decimal floating point number in @input and store the result in
7028 * @v with decimal point right shifted @dec_shift times. For example, if
7029 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
7030 * Returns 0 on success, -errno otherwise.
7031 *
7032 * There's nothing cgroup specific about this function except that it's
7033 * currently the only user.
7034 */
cgroup_parse_float(const char * input,unsigned dec_shift,s64 * v)7035 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
7036 {
7037 s64 whole, frac = 0;
7038 int fstart = 0, fend = 0, flen;
7039
7040 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
7041 return -EINVAL;
7042 if (frac < 0)
7043 return -EINVAL;
7044
7045 flen = fend > fstart ? fend - fstart : 0;
7046 if (flen < dec_shift)
7047 frac *= power_of_ten(dec_shift - flen);
7048 else
7049 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
7050
7051 *v = whole * power_of_ten(dec_shift) + frac;
7052 return 0;
7053 }
7054
7055 /*
7056 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
7057 * definition in cgroup-defs.h.
7058 */
7059 #ifdef CONFIG_SOCK_CGROUP_DATA
7060
cgroup_sk_alloc(struct sock_cgroup_data * skcd)7061 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
7062 {
7063 struct cgroup *cgroup;
7064
7065 rcu_read_lock();
7066 /* Don't associate the sock with unrelated interrupted task's cgroup. */
7067 if (in_interrupt()) {
7068 cgroup = &cgrp_dfl_root.cgrp;
7069 cgroup_get(cgroup);
7070 goto out;
7071 }
7072
7073 while (true) {
7074 struct css_set *cset;
7075
7076 cset = task_css_set(current);
7077 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
7078 cgroup = cset->dfl_cgrp;
7079 break;
7080 }
7081 cpu_relax();
7082 }
7083 out:
7084 skcd->cgroup = cgroup;
7085 cgroup_bpf_get(cgroup);
7086 rcu_read_unlock();
7087 }
7088
cgroup_sk_clone(struct sock_cgroup_data * skcd)7089 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
7090 {
7091 struct cgroup *cgrp = sock_cgroup_ptr(skcd);
7092
7093 /*
7094 * We might be cloning a socket which is left in an empty
7095 * cgroup and the cgroup might have already been rmdir'd.
7096 * Don't use cgroup_get_live().
7097 */
7098 cgroup_get(cgrp);
7099 cgroup_bpf_get(cgrp);
7100 }
7101
cgroup_sk_free(struct sock_cgroup_data * skcd)7102 void cgroup_sk_free(struct sock_cgroup_data *skcd)
7103 {
7104 struct cgroup *cgrp = sock_cgroup_ptr(skcd);
7105
7106 cgroup_bpf_put(cgrp);
7107 cgroup_put(cgrp);
7108 }
7109
7110 #endif /* CONFIG_SOCK_CGROUP_DATA */
7111
7112 #ifdef CONFIG_SYSFS
show_delegatable_files(struct cftype * files,char * buf,ssize_t size,const char * prefix)7113 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
7114 ssize_t size, const char *prefix)
7115 {
7116 struct cftype *cft;
7117 ssize_t ret = 0;
7118
7119 for (cft = files; cft && cft->name[0] != '\0'; cft++) {
7120 if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
7121 continue;
7122
7123 if (prefix)
7124 ret += snprintf(buf + ret, size - ret, "%s.", prefix);
7125
7126 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
7127
7128 if (WARN_ON(ret >= size))
7129 break;
7130 }
7131
7132 return ret;
7133 }
7134
delegate_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)7135 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
7136 char *buf)
7137 {
7138 struct cgroup_subsys *ss;
7139 int ssid;
7140 ssize_t ret = 0;
7141
7142 ret = show_delegatable_files(cgroup_base_files, buf + ret,
7143 PAGE_SIZE - ret, NULL);
7144 if (cgroup_psi_enabled())
7145 ret += show_delegatable_files(cgroup_psi_files, buf + ret,
7146 PAGE_SIZE - ret, NULL);
7147
7148 for_each_subsys(ss, ssid)
7149 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
7150 PAGE_SIZE - ret,
7151 cgroup_subsys_name[ssid]);
7152
7153 return ret;
7154 }
7155 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
7156
features_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)7157 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
7158 char *buf)
7159 {
7160 return snprintf(buf, PAGE_SIZE,
7161 "nsdelegate\n"
7162 "favordynmods\n"
7163 "memory_localevents\n"
7164 "memory_recursiveprot\n"
7165 "memory_hugetlb_accounting\n"
7166 "pids_localevents\n");
7167 }
7168 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
7169
7170 static struct attribute *cgroup_sysfs_attrs[] = {
7171 &cgroup_delegate_attr.attr,
7172 &cgroup_features_attr.attr,
7173 NULL,
7174 };
7175
7176 static const struct attribute_group cgroup_sysfs_attr_group = {
7177 .attrs = cgroup_sysfs_attrs,
7178 .name = "cgroup",
7179 };
7180
cgroup_sysfs_init(void)7181 static int __init cgroup_sysfs_init(void)
7182 {
7183 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
7184 }
7185 subsys_initcall(cgroup_sysfs_init);
7186
7187 #endif /* CONFIG_SYSFS */
7188