1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include "cgroup-internal.h"
32
33 #include <linux/bpf-cgroup.h>
34 #include <linux/cred.h>
35 #include <linux/errno.h>
36 #include <linux/init_task.h>
37 #include <linux/kernel.h>
38 #include <linux/magic.h>
39 #include <linux/mutex.h>
40 #include <linux/mount.h>
41 #include <linux/pagemap.h>
42 #include <linux/proc_fs.h>
43 #include <linux/rcupdate.h>
44 #include <linux/sched.h>
45 #include <linux/sched/task.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/hashtable.h>
51 #include <linux/idr.h>
52 #include <linux/kthread.h>
53 #include <linux/atomic.h>
54 #include <linux/cpuset.h>
55 #include <linux/proc_ns.h>
56 #include <linux/nsproxy.h>
57 #include <linux/file.h>
58 #include <linux/fs_parser.h>
59 #include <linux/sched/cputime.h>
60 #include <linux/sched/deadline.h>
61 #include <linux/psi.h>
62 #include <net/sock.h>
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/cgroup.h>
66
67 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
68 MAX_CFTYPE_NAME + 2)
69 /* let's not notify more than 100 times per second */
70 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100)
71
72 /*
73 * To avoid confusing the compiler (and generating warnings) with code
74 * that attempts to access what would be a 0-element array (i.e. sized
75 * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this
76 * constant expression can be added.
77 */
78 #define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0)
79
80 /*
81 * cgroup_mutex is the master lock. Any modification to cgroup or its
82 * hierarchy must be performed while holding it.
83 *
84 * css_set_lock protects task->cgroups pointer, the list of css_set
85 * objects, and the chain of tasks off each css_set.
86 *
87 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
88 * cgroup.h can use them for lockdep annotations.
89 */
90 DEFINE_MUTEX(cgroup_mutex);
91 DEFINE_SPINLOCK(css_set_lock);
92
93 #ifdef CONFIG_PROVE_RCU
94 EXPORT_SYMBOL_GPL(cgroup_mutex);
95 EXPORT_SYMBOL_GPL(css_set_lock);
96 #endif
97
98 DEFINE_SPINLOCK(trace_cgroup_path_lock);
99 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
100 static bool cgroup_debug __read_mostly;
101
102 /*
103 * Protects cgroup_idr and css_idr so that IDs can be released without
104 * grabbing cgroup_mutex.
105 */
106 static DEFINE_SPINLOCK(cgroup_idr_lock);
107
108 /*
109 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
110 * against file removal/re-creation across css hiding.
111 */
112 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
113
114 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
115
116 #define cgroup_assert_mutex_or_rcu_locked() \
117 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
118 !lockdep_is_held(&cgroup_mutex), \
119 "cgroup_mutex or RCU read lock required");
120
121 /*
122 * cgroup destruction makes heavy use of work items and there can be a lot
123 * of concurrent destructions. Use a separate workqueue so that cgroup
124 * destruction work items don't end up filling up max_active of system_wq
125 * which may lead to deadlock.
126 */
127 static struct workqueue_struct *cgroup_destroy_wq;
128
129 /* generate an array of cgroup subsystem pointers */
130 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
131 struct cgroup_subsys *cgroup_subsys[] = {
132 #include <linux/cgroup_subsys.h>
133 };
134 #undef SUBSYS
135
136 /* array of cgroup subsystem names */
137 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
138 static const char *cgroup_subsys_name[] = {
139 #include <linux/cgroup_subsys.h>
140 };
141 #undef SUBSYS
142
143 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
144 #define SUBSYS(_x) \
145 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
146 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
147 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
148 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
149 #include <linux/cgroup_subsys.h>
150 #undef SUBSYS
151
152 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
153 static struct static_key_true *cgroup_subsys_enabled_key[] = {
154 #include <linux/cgroup_subsys.h>
155 };
156 #undef SUBSYS
157
158 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
159 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
160 #include <linux/cgroup_subsys.h>
161 };
162 #undef SUBSYS
163
164 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
165
166 /* the default hierarchy */
167 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
168 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
169
170 /*
171 * The default hierarchy always exists but is hidden until mounted for the
172 * first time. This is for backward compatibility.
173 */
174 static bool cgrp_dfl_visible;
175
176 /* some controllers are not supported in the default hierarchy */
177 static u16 cgrp_dfl_inhibit_ss_mask;
178
179 /* some controllers are implicitly enabled on the default hierarchy */
180 static u16 cgrp_dfl_implicit_ss_mask;
181
182 /* some controllers can be threaded on the default hierarchy */
183 static u16 cgrp_dfl_threaded_ss_mask;
184
185 /* The list of hierarchy roots */
186 LIST_HEAD(cgroup_roots);
187 static int cgroup_root_count;
188
189 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
190 static DEFINE_IDR(cgroup_hierarchy_idr);
191
192 /*
193 * Assign a monotonically increasing serial number to csses. It guarantees
194 * cgroups with bigger numbers are newer than those with smaller numbers.
195 * Also, as csses are always appended to the parent's ->children list, it
196 * guarantees that sibling csses are always sorted in the ascending serial
197 * number order on the list. Protected by cgroup_mutex.
198 */
199 static u64 css_serial_nr_next = 1;
200
201 /*
202 * These bitmasks identify subsystems with specific features to avoid
203 * having to do iterative checks repeatedly.
204 */
205 static u16 have_fork_callback __read_mostly;
206 static u16 have_exit_callback __read_mostly;
207 static u16 have_release_callback __read_mostly;
208 static u16 have_canfork_callback __read_mostly;
209
210 static bool have_favordynmods __ro_after_init = IS_ENABLED(CONFIG_CGROUP_FAVOR_DYNMODS);
211
212 /* cgroup namespace for init task */
213 struct cgroup_namespace init_cgroup_ns = {
214 .ns.count = REFCOUNT_INIT(2),
215 .user_ns = &init_user_ns,
216 .ns.ops = &cgroupns_operations,
217 .ns.inum = PROC_CGROUP_INIT_INO,
218 .root_cset = &init_css_set,
219 };
220
221 static struct file_system_type cgroup2_fs_type;
222 static struct cftype cgroup_base_files[];
223 static struct cftype cgroup_psi_files[];
224
225 /* cgroup optional features */
226 enum cgroup_opt_features {
227 #ifdef CONFIG_PSI
228 OPT_FEATURE_PRESSURE,
229 #endif
230 OPT_FEATURE_COUNT
231 };
232
233 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
234 #ifdef CONFIG_PSI
235 "pressure",
236 #endif
237 };
238
239 static u16 cgroup_feature_disable_mask __read_mostly;
240
241 static int cgroup_apply_control(struct cgroup *cgrp);
242 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
243 static void css_task_iter_skip(struct css_task_iter *it,
244 struct task_struct *task);
245 static int cgroup_destroy_locked(struct cgroup *cgrp);
246 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
247 struct cgroup_subsys *ss);
248 static void css_release(struct percpu_ref *ref);
249 static void kill_css(struct cgroup_subsys_state *css);
250 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
251 struct cgroup *cgrp, struct cftype cfts[],
252 bool is_add);
253
254 #ifdef CONFIG_DEBUG_CGROUP_REF
255 #define CGROUP_REF_FN_ATTRS noinline
256 #define CGROUP_REF_EXPORT(fn) EXPORT_SYMBOL_GPL(fn);
257 #include <linux/cgroup_refcnt.h>
258 #endif
259
260 /**
261 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
262 * @ssid: subsys ID of interest
263 *
264 * cgroup_subsys_enabled() can only be used with literal subsys names which
265 * is fine for individual subsystems but unsuitable for cgroup core. This
266 * is slower static_key_enabled() based test indexed by @ssid.
267 */
cgroup_ssid_enabled(int ssid)268 bool cgroup_ssid_enabled(int ssid)
269 {
270 if (!CGROUP_HAS_SUBSYS_CONFIG)
271 return false;
272
273 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
274 }
275
276 /**
277 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
278 * @cgrp: the cgroup of interest
279 *
280 * The default hierarchy is the v2 interface of cgroup and this function
281 * can be used to test whether a cgroup is on the default hierarchy for
282 * cases where a subsystem should behave differently depending on the
283 * interface version.
284 *
285 * List of changed behaviors:
286 *
287 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
288 * and "name" are disallowed.
289 *
290 * - When mounting an existing superblock, mount options should match.
291 *
292 * - rename(2) is disallowed.
293 *
294 * - "tasks" is removed. Everything should be at process granularity. Use
295 * "cgroup.procs" instead.
296 *
297 * - "cgroup.procs" is not sorted. pids will be unique unless they got
298 * recycled in-between reads.
299 *
300 * - "release_agent" and "notify_on_release" are removed. Replacement
301 * notification mechanism will be implemented.
302 *
303 * - "cgroup.clone_children" is removed.
304 *
305 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
306 * and its descendants contain no task; otherwise, 1. The file also
307 * generates kernfs notification which can be monitored through poll and
308 * [di]notify when the value of the file changes.
309 *
310 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
311 * take masks of ancestors with non-empty cpus/mems, instead of being
312 * moved to an ancestor.
313 *
314 * - cpuset: a task can be moved into an empty cpuset, and again it takes
315 * masks of ancestors.
316 *
317 * - blkcg: blk-throttle becomes properly hierarchical.
318 */
cgroup_on_dfl(const struct cgroup * cgrp)319 bool cgroup_on_dfl(const struct cgroup *cgrp)
320 {
321 return cgrp->root == &cgrp_dfl_root;
322 }
323
324 /* IDR wrappers which synchronize using cgroup_idr_lock */
cgroup_idr_alloc(struct idr * idr,void * ptr,int start,int end,gfp_t gfp_mask)325 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
326 gfp_t gfp_mask)
327 {
328 int ret;
329
330 idr_preload(gfp_mask);
331 spin_lock_bh(&cgroup_idr_lock);
332 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
333 spin_unlock_bh(&cgroup_idr_lock);
334 idr_preload_end();
335 return ret;
336 }
337
cgroup_idr_replace(struct idr * idr,void * ptr,int id)338 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
339 {
340 void *ret;
341
342 spin_lock_bh(&cgroup_idr_lock);
343 ret = idr_replace(idr, ptr, id);
344 spin_unlock_bh(&cgroup_idr_lock);
345 return ret;
346 }
347
cgroup_idr_remove(struct idr * idr,int id)348 static void cgroup_idr_remove(struct idr *idr, int id)
349 {
350 spin_lock_bh(&cgroup_idr_lock);
351 idr_remove(idr, id);
352 spin_unlock_bh(&cgroup_idr_lock);
353 }
354
cgroup_has_tasks(struct cgroup * cgrp)355 static bool cgroup_has_tasks(struct cgroup *cgrp)
356 {
357 return cgrp->nr_populated_csets;
358 }
359
cgroup_is_threaded(struct cgroup * cgrp)360 static bool cgroup_is_threaded(struct cgroup *cgrp)
361 {
362 return cgrp->dom_cgrp != cgrp;
363 }
364
365 /* can @cgrp host both domain and threaded children? */
cgroup_is_mixable(struct cgroup * cgrp)366 static bool cgroup_is_mixable(struct cgroup *cgrp)
367 {
368 /*
369 * Root isn't under domain level resource control exempting it from
370 * the no-internal-process constraint, so it can serve as a thread
371 * root and a parent of resource domains at the same time.
372 */
373 return !cgroup_parent(cgrp);
374 }
375
376 /* can @cgrp become a thread root? Should always be true for a thread root */
cgroup_can_be_thread_root(struct cgroup * cgrp)377 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
378 {
379 /* mixables don't care */
380 if (cgroup_is_mixable(cgrp))
381 return true;
382
383 /* domain roots can't be nested under threaded */
384 if (cgroup_is_threaded(cgrp))
385 return false;
386
387 /* can only have either domain or threaded children */
388 if (cgrp->nr_populated_domain_children)
389 return false;
390
391 /* and no domain controllers can be enabled */
392 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
393 return false;
394
395 return true;
396 }
397
398 /* is @cgrp root of a threaded subtree? */
cgroup_is_thread_root(struct cgroup * cgrp)399 static bool cgroup_is_thread_root(struct cgroup *cgrp)
400 {
401 /* thread root should be a domain */
402 if (cgroup_is_threaded(cgrp))
403 return false;
404
405 /* a domain w/ threaded children is a thread root */
406 if (cgrp->nr_threaded_children)
407 return true;
408
409 /*
410 * A domain which has tasks and explicit threaded controllers
411 * enabled is a thread root.
412 */
413 if (cgroup_has_tasks(cgrp) &&
414 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
415 return true;
416
417 return false;
418 }
419
420 /* a domain which isn't connected to the root w/o brekage can't be used */
cgroup_is_valid_domain(struct cgroup * cgrp)421 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
422 {
423 /* the cgroup itself can be a thread root */
424 if (cgroup_is_threaded(cgrp))
425 return false;
426
427 /* but the ancestors can't be unless mixable */
428 while ((cgrp = cgroup_parent(cgrp))) {
429 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
430 return false;
431 if (cgroup_is_threaded(cgrp))
432 return false;
433 }
434
435 return true;
436 }
437
438 /* subsystems visibly enabled on a cgroup */
cgroup_control(struct cgroup * cgrp)439 static u16 cgroup_control(struct cgroup *cgrp)
440 {
441 struct cgroup *parent = cgroup_parent(cgrp);
442 u16 root_ss_mask = cgrp->root->subsys_mask;
443
444 if (parent) {
445 u16 ss_mask = parent->subtree_control;
446
447 /* threaded cgroups can only have threaded controllers */
448 if (cgroup_is_threaded(cgrp))
449 ss_mask &= cgrp_dfl_threaded_ss_mask;
450 return ss_mask;
451 }
452
453 if (cgroup_on_dfl(cgrp))
454 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
455 cgrp_dfl_implicit_ss_mask);
456 return root_ss_mask;
457 }
458
459 /* subsystems enabled on a cgroup */
cgroup_ss_mask(struct cgroup * cgrp)460 static u16 cgroup_ss_mask(struct cgroup *cgrp)
461 {
462 struct cgroup *parent = cgroup_parent(cgrp);
463
464 if (parent) {
465 u16 ss_mask = parent->subtree_ss_mask;
466
467 /* threaded cgroups can only have threaded controllers */
468 if (cgroup_is_threaded(cgrp))
469 ss_mask &= cgrp_dfl_threaded_ss_mask;
470 return ss_mask;
471 }
472
473 return cgrp->root->subsys_mask;
474 }
475
476 /**
477 * cgroup_css - obtain a cgroup's css for the specified subsystem
478 * @cgrp: the cgroup of interest
479 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
480 *
481 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
482 * function must be called either under cgroup_mutex or rcu_read_lock() and
483 * the caller is responsible for pinning the returned css if it wants to
484 * keep accessing it outside the said locks. This function may return
485 * %NULL if @cgrp doesn't have @subsys_id enabled.
486 */
cgroup_css(struct cgroup * cgrp,struct cgroup_subsys * ss)487 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
488 struct cgroup_subsys *ss)
489 {
490 if (CGROUP_HAS_SUBSYS_CONFIG && ss)
491 return rcu_dereference_check(cgrp->subsys[ss->id],
492 lockdep_is_held(&cgroup_mutex));
493 else
494 return &cgrp->self;
495 }
496
497 /**
498 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
499 * @cgrp: the cgroup of interest
500 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
501 *
502 * Similar to cgroup_css() but returns the effective css, which is defined
503 * as the matching css of the nearest ancestor including self which has @ss
504 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
505 * function is guaranteed to return non-NULL css.
506 */
cgroup_e_css_by_mask(struct cgroup * cgrp,struct cgroup_subsys * ss)507 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
508 struct cgroup_subsys *ss)
509 {
510 lockdep_assert_held(&cgroup_mutex);
511
512 if (!ss)
513 return &cgrp->self;
514
515 /*
516 * This function is used while updating css associations and thus
517 * can't test the csses directly. Test ss_mask.
518 */
519 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
520 cgrp = cgroup_parent(cgrp);
521 if (!cgrp)
522 return NULL;
523 }
524
525 return cgroup_css(cgrp, ss);
526 }
527
528 /**
529 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
530 * @cgrp: the cgroup of interest
531 * @ss: the subsystem of interest
532 *
533 * Find and get the effective css of @cgrp for @ss. The effective css is
534 * defined as the matching css of the nearest ancestor including self which
535 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
536 * the root css is returned, so this function always returns a valid css.
537 *
538 * The returned css is not guaranteed to be online, and therefore it is the
539 * callers responsibility to try get a reference for it.
540 */
cgroup_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)541 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
542 struct cgroup_subsys *ss)
543 {
544 struct cgroup_subsys_state *css;
545
546 if (!CGROUP_HAS_SUBSYS_CONFIG)
547 return NULL;
548
549 do {
550 css = cgroup_css(cgrp, ss);
551
552 if (css)
553 return css;
554 cgrp = cgroup_parent(cgrp);
555 } while (cgrp);
556
557 return init_css_set.subsys[ss->id];
558 }
559
560 /**
561 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
562 * @cgrp: the cgroup of interest
563 * @ss: the subsystem of interest
564 *
565 * Find and get the effective css of @cgrp for @ss. The effective css is
566 * defined as the matching css of the nearest ancestor including self which
567 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
568 * the root css is returned, so this function always returns a valid css.
569 * The returned css must be put using css_put().
570 */
cgroup_get_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)571 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
572 struct cgroup_subsys *ss)
573 {
574 struct cgroup_subsys_state *css;
575
576 if (!CGROUP_HAS_SUBSYS_CONFIG)
577 return NULL;
578
579 rcu_read_lock();
580
581 do {
582 css = cgroup_css(cgrp, ss);
583
584 if (css && css_tryget_online(css))
585 goto out_unlock;
586 cgrp = cgroup_parent(cgrp);
587 } while (cgrp);
588
589 css = init_css_set.subsys[ss->id];
590 css_get(css);
591 out_unlock:
592 rcu_read_unlock();
593 return css;
594 }
595 EXPORT_SYMBOL_GPL(cgroup_get_e_css);
596
cgroup_get_live(struct cgroup * cgrp)597 static void cgroup_get_live(struct cgroup *cgrp)
598 {
599 WARN_ON_ONCE(cgroup_is_dead(cgrp));
600 cgroup_get(cgrp);
601 }
602
603 /**
604 * __cgroup_task_count - count the number of tasks in a cgroup. The caller
605 * is responsible for taking the css_set_lock.
606 * @cgrp: the cgroup in question
607 */
__cgroup_task_count(const struct cgroup * cgrp)608 int __cgroup_task_count(const struct cgroup *cgrp)
609 {
610 int count = 0;
611 struct cgrp_cset_link *link;
612
613 lockdep_assert_held(&css_set_lock);
614
615 list_for_each_entry(link, &cgrp->cset_links, cset_link)
616 count += link->cset->nr_tasks;
617
618 return count;
619 }
620
621 /**
622 * cgroup_task_count - count the number of tasks in a cgroup.
623 * @cgrp: the cgroup in question
624 */
cgroup_task_count(const struct cgroup * cgrp)625 int cgroup_task_count(const struct cgroup *cgrp)
626 {
627 int count;
628
629 spin_lock_irq(&css_set_lock);
630 count = __cgroup_task_count(cgrp);
631 spin_unlock_irq(&css_set_lock);
632
633 return count;
634 }
635
of_css(struct kernfs_open_file * of)636 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
637 {
638 struct cgroup *cgrp = of->kn->parent->priv;
639 struct cftype *cft = of_cft(of);
640
641 /*
642 * This is open and unprotected implementation of cgroup_css().
643 * seq_css() is only called from a kernfs file operation which has
644 * an active reference on the file. Because all the subsystem
645 * files are drained before a css is disassociated with a cgroup,
646 * the matching css from the cgroup's subsys table is guaranteed to
647 * be and stay valid until the enclosing operation is complete.
648 */
649 if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss)
650 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
651 else
652 return &cgrp->self;
653 }
654 EXPORT_SYMBOL_GPL(of_css);
655
656 /**
657 * for_each_css - iterate all css's of a cgroup
658 * @css: the iteration cursor
659 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
660 * @cgrp: the target cgroup to iterate css's of
661 *
662 * Should be called under cgroup_mutex.
663 */
664 #define for_each_css(css, ssid, cgrp) \
665 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
666 if (!((css) = rcu_dereference_check( \
667 (cgrp)->subsys[(ssid)], \
668 lockdep_is_held(&cgroup_mutex)))) { } \
669 else
670
671 /**
672 * do_each_subsys_mask - filter for_each_subsys with a bitmask
673 * @ss: the iteration cursor
674 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
675 * @ss_mask: the bitmask
676 *
677 * The block will only run for cases where the ssid-th bit (1 << ssid) of
678 * @ss_mask is set.
679 */
680 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
681 unsigned long __ss_mask = (ss_mask); \
682 if (!CGROUP_HAS_SUBSYS_CONFIG) { \
683 (ssid) = 0; \
684 break; \
685 } \
686 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
687 (ss) = cgroup_subsys[ssid]; \
688 {
689
690 #define while_each_subsys_mask() \
691 } \
692 } \
693 } while (false)
694
695 /* iterate over child cgrps, lock should be held throughout iteration */
696 #define cgroup_for_each_live_child(child, cgrp) \
697 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
698 if (({ lockdep_assert_held(&cgroup_mutex); \
699 cgroup_is_dead(child); })) \
700 ; \
701 else
702
703 /* walk live descendants in pre order */
704 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
705 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
706 if (({ lockdep_assert_held(&cgroup_mutex); \
707 (dsct) = (d_css)->cgroup; \
708 cgroup_is_dead(dsct); })) \
709 ; \
710 else
711
712 /* walk live descendants in postorder */
713 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
714 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
715 if (({ lockdep_assert_held(&cgroup_mutex); \
716 (dsct) = (d_css)->cgroup; \
717 cgroup_is_dead(dsct); })) \
718 ; \
719 else
720
721 /*
722 * The default css_set - used by init and its children prior to any
723 * hierarchies being mounted. It contains a pointer to the root state
724 * for each subsystem. Also used to anchor the list of css_sets. Not
725 * reference-counted, to improve performance when child cgroups
726 * haven't been created.
727 */
728 struct css_set init_css_set = {
729 .refcount = REFCOUNT_INIT(1),
730 .dom_cset = &init_css_set,
731 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
732 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
733 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks),
734 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
735 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets),
736 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
737 .mg_src_preload_node = LIST_HEAD_INIT(init_css_set.mg_src_preload_node),
738 .mg_dst_preload_node = LIST_HEAD_INIT(init_css_set.mg_dst_preload_node),
739 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
740
741 /*
742 * The following field is re-initialized when this cset gets linked
743 * in cgroup_init(). However, let's initialize the field
744 * statically too so that the default cgroup can be accessed safely
745 * early during boot.
746 */
747 .dfl_cgrp = &cgrp_dfl_root.cgrp,
748 };
749
750 static int css_set_count = 1; /* 1 for init_css_set */
751
css_set_threaded(struct css_set * cset)752 static bool css_set_threaded(struct css_set *cset)
753 {
754 return cset->dom_cset != cset;
755 }
756
757 /**
758 * css_set_populated - does a css_set contain any tasks?
759 * @cset: target css_set
760 *
761 * css_set_populated() should be the same as !!cset->nr_tasks at steady
762 * state. However, css_set_populated() can be called while a task is being
763 * added to or removed from the linked list before the nr_tasks is
764 * properly updated. Hence, we can't just look at ->nr_tasks here.
765 */
css_set_populated(struct css_set * cset)766 static bool css_set_populated(struct css_set *cset)
767 {
768 lockdep_assert_held(&css_set_lock);
769
770 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
771 }
772
773 /**
774 * cgroup_update_populated - update the populated count of a cgroup
775 * @cgrp: the target cgroup
776 * @populated: inc or dec populated count
777 *
778 * One of the css_sets associated with @cgrp is either getting its first
779 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
780 * count is propagated towards root so that a given cgroup's
781 * nr_populated_children is zero iff none of its descendants contain any
782 * tasks.
783 *
784 * @cgrp's interface file "cgroup.populated" is zero if both
785 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
786 * 1 otherwise. When the sum changes from or to zero, userland is notified
787 * that the content of the interface file has changed. This can be used to
788 * detect when @cgrp and its descendants become populated or empty.
789 */
cgroup_update_populated(struct cgroup * cgrp,bool populated)790 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
791 {
792 struct cgroup *child = NULL;
793 int adj = populated ? 1 : -1;
794
795 lockdep_assert_held(&css_set_lock);
796
797 do {
798 bool was_populated = cgroup_is_populated(cgrp);
799
800 if (!child) {
801 cgrp->nr_populated_csets += adj;
802 } else {
803 if (cgroup_is_threaded(child))
804 cgrp->nr_populated_threaded_children += adj;
805 else
806 cgrp->nr_populated_domain_children += adj;
807 }
808
809 if (was_populated == cgroup_is_populated(cgrp))
810 break;
811
812 cgroup1_check_for_release(cgrp);
813 TRACE_CGROUP_PATH(notify_populated, cgrp,
814 cgroup_is_populated(cgrp));
815 cgroup_file_notify(&cgrp->events_file);
816
817 child = cgrp;
818 cgrp = cgroup_parent(cgrp);
819 } while (cgrp);
820 }
821
822 /**
823 * css_set_update_populated - update populated state of a css_set
824 * @cset: target css_set
825 * @populated: whether @cset is populated or depopulated
826 *
827 * @cset is either getting the first task or losing the last. Update the
828 * populated counters of all associated cgroups accordingly.
829 */
css_set_update_populated(struct css_set * cset,bool populated)830 static void css_set_update_populated(struct css_set *cset, bool populated)
831 {
832 struct cgrp_cset_link *link;
833
834 lockdep_assert_held(&css_set_lock);
835
836 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
837 cgroup_update_populated(link->cgrp, populated);
838 }
839
840 /*
841 * @task is leaving, advance task iterators which are pointing to it so
842 * that they can resume at the next position. Advancing an iterator might
843 * remove it from the list, use safe walk. See css_task_iter_skip() for
844 * details.
845 */
css_set_skip_task_iters(struct css_set * cset,struct task_struct * task)846 static void css_set_skip_task_iters(struct css_set *cset,
847 struct task_struct *task)
848 {
849 struct css_task_iter *it, *pos;
850
851 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
852 css_task_iter_skip(it, task);
853 }
854
855 /**
856 * css_set_move_task - move a task from one css_set to another
857 * @task: task being moved
858 * @from_cset: css_set @task currently belongs to (may be NULL)
859 * @to_cset: new css_set @task is being moved to (may be NULL)
860 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
861 *
862 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
863 * css_set, @from_cset can be NULL. If @task is being disassociated
864 * instead of moved, @to_cset can be NULL.
865 *
866 * This function automatically handles populated counter updates and
867 * css_task_iter adjustments but the caller is responsible for managing
868 * @from_cset and @to_cset's reference counts.
869 */
css_set_move_task(struct task_struct * task,struct css_set * from_cset,struct css_set * to_cset,bool use_mg_tasks)870 static void css_set_move_task(struct task_struct *task,
871 struct css_set *from_cset, struct css_set *to_cset,
872 bool use_mg_tasks)
873 {
874 lockdep_assert_held(&css_set_lock);
875
876 if (to_cset && !css_set_populated(to_cset))
877 css_set_update_populated(to_cset, true);
878
879 if (from_cset) {
880 WARN_ON_ONCE(list_empty(&task->cg_list));
881
882 css_set_skip_task_iters(from_cset, task);
883 list_del_init(&task->cg_list);
884 if (!css_set_populated(from_cset))
885 css_set_update_populated(from_cset, false);
886 } else {
887 WARN_ON_ONCE(!list_empty(&task->cg_list));
888 }
889
890 if (to_cset) {
891 /*
892 * We are synchronized through cgroup_threadgroup_rwsem
893 * against PF_EXITING setting such that we can't race
894 * against cgroup_exit()/cgroup_free() dropping the css_set.
895 */
896 WARN_ON_ONCE(task->flags & PF_EXITING);
897
898 cgroup_move_task(task, to_cset);
899 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
900 &to_cset->tasks);
901 }
902 }
903
904 /*
905 * hash table for cgroup groups. This improves the performance to find
906 * an existing css_set. This hash doesn't (currently) take into
907 * account cgroups in empty hierarchies.
908 */
909 #define CSS_SET_HASH_BITS 7
910 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
911
css_set_hash(struct cgroup_subsys_state ** css)912 static unsigned long css_set_hash(struct cgroup_subsys_state **css)
913 {
914 unsigned long key = 0UL;
915 struct cgroup_subsys *ss;
916 int i;
917
918 for_each_subsys(ss, i)
919 key += (unsigned long)css[i];
920 key = (key >> 16) ^ key;
921
922 return key;
923 }
924
put_css_set_locked(struct css_set * cset)925 void put_css_set_locked(struct css_set *cset)
926 {
927 struct cgrp_cset_link *link, *tmp_link;
928 struct cgroup_subsys *ss;
929 int ssid;
930
931 lockdep_assert_held(&css_set_lock);
932
933 if (!refcount_dec_and_test(&cset->refcount))
934 return;
935
936 WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
937
938 /* This css_set is dead. Unlink it and release cgroup and css refs */
939 for_each_subsys(ss, ssid) {
940 list_del(&cset->e_cset_node[ssid]);
941 css_put(cset->subsys[ssid]);
942 }
943 hash_del(&cset->hlist);
944 css_set_count--;
945
946 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
947 list_del(&link->cset_link);
948 list_del(&link->cgrp_link);
949 if (cgroup_parent(link->cgrp))
950 cgroup_put(link->cgrp);
951 kfree(link);
952 }
953
954 if (css_set_threaded(cset)) {
955 list_del(&cset->threaded_csets_node);
956 put_css_set_locked(cset->dom_cset);
957 }
958
959 kfree_rcu(cset, rcu_head);
960 }
961
962 /**
963 * compare_css_sets - helper function for find_existing_css_set().
964 * @cset: candidate css_set being tested
965 * @old_cset: existing css_set for a task
966 * @new_cgrp: cgroup that's being entered by the task
967 * @template: desired set of css pointers in css_set (pre-calculated)
968 *
969 * Returns true if "cset" matches "old_cset" except for the hierarchy
970 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
971 */
compare_css_sets(struct css_set * cset,struct css_set * old_cset,struct cgroup * new_cgrp,struct cgroup_subsys_state * template[])972 static bool compare_css_sets(struct css_set *cset,
973 struct css_set *old_cset,
974 struct cgroup *new_cgrp,
975 struct cgroup_subsys_state *template[])
976 {
977 struct cgroup *new_dfl_cgrp;
978 struct list_head *l1, *l2;
979
980 /*
981 * On the default hierarchy, there can be csets which are
982 * associated with the same set of cgroups but different csses.
983 * Let's first ensure that csses match.
984 */
985 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
986 return false;
987
988
989 /* @cset's domain should match the default cgroup's */
990 if (cgroup_on_dfl(new_cgrp))
991 new_dfl_cgrp = new_cgrp;
992 else
993 new_dfl_cgrp = old_cset->dfl_cgrp;
994
995 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
996 return false;
997
998 /*
999 * Compare cgroup pointers in order to distinguish between
1000 * different cgroups in hierarchies. As different cgroups may
1001 * share the same effective css, this comparison is always
1002 * necessary.
1003 */
1004 l1 = &cset->cgrp_links;
1005 l2 = &old_cset->cgrp_links;
1006 while (1) {
1007 struct cgrp_cset_link *link1, *link2;
1008 struct cgroup *cgrp1, *cgrp2;
1009
1010 l1 = l1->next;
1011 l2 = l2->next;
1012 /* See if we reached the end - both lists are equal length. */
1013 if (l1 == &cset->cgrp_links) {
1014 BUG_ON(l2 != &old_cset->cgrp_links);
1015 break;
1016 } else {
1017 BUG_ON(l2 == &old_cset->cgrp_links);
1018 }
1019 /* Locate the cgroups associated with these links. */
1020 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1021 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1022 cgrp1 = link1->cgrp;
1023 cgrp2 = link2->cgrp;
1024 /* Hierarchies should be linked in the same order. */
1025 BUG_ON(cgrp1->root != cgrp2->root);
1026
1027 /*
1028 * If this hierarchy is the hierarchy of the cgroup
1029 * that's changing, then we need to check that this
1030 * css_set points to the new cgroup; if it's any other
1031 * hierarchy, then this css_set should point to the
1032 * same cgroup as the old css_set.
1033 */
1034 if (cgrp1->root == new_cgrp->root) {
1035 if (cgrp1 != new_cgrp)
1036 return false;
1037 } else {
1038 if (cgrp1 != cgrp2)
1039 return false;
1040 }
1041 }
1042 return true;
1043 }
1044
1045 /**
1046 * find_existing_css_set - init css array and find the matching css_set
1047 * @old_cset: the css_set that we're using before the cgroup transition
1048 * @cgrp: the cgroup that we're moving into
1049 * @template: out param for the new set of csses, should be clear on entry
1050 */
find_existing_css_set(struct css_set * old_cset,struct cgroup * cgrp,struct cgroup_subsys_state ** template)1051 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1052 struct cgroup *cgrp,
1053 struct cgroup_subsys_state **template)
1054 {
1055 struct cgroup_root *root = cgrp->root;
1056 struct cgroup_subsys *ss;
1057 struct css_set *cset;
1058 unsigned long key;
1059 int i;
1060
1061 /*
1062 * Build the set of subsystem state objects that we want to see in the
1063 * new css_set. While subsystems can change globally, the entries here
1064 * won't change, so no need for locking.
1065 */
1066 for_each_subsys(ss, i) {
1067 if (root->subsys_mask & (1UL << i)) {
1068 /*
1069 * @ss is in this hierarchy, so we want the
1070 * effective css from @cgrp.
1071 */
1072 template[i] = cgroup_e_css_by_mask(cgrp, ss);
1073 } else {
1074 /*
1075 * @ss is not in this hierarchy, so we don't want
1076 * to change the css.
1077 */
1078 template[i] = old_cset->subsys[i];
1079 }
1080 }
1081
1082 key = css_set_hash(template);
1083 hash_for_each_possible(css_set_table, cset, hlist, key) {
1084 if (!compare_css_sets(cset, old_cset, cgrp, template))
1085 continue;
1086
1087 /* This css_set matches what we need */
1088 return cset;
1089 }
1090
1091 /* No existing cgroup group matched */
1092 return NULL;
1093 }
1094
free_cgrp_cset_links(struct list_head * links_to_free)1095 static void free_cgrp_cset_links(struct list_head *links_to_free)
1096 {
1097 struct cgrp_cset_link *link, *tmp_link;
1098
1099 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1100 list_del(&link->cset_link);
1101 kfree(link);
1102 }
1103 }
1104
1105 /**
1106 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1107 * @count: the number of links to allocate
1108 * @tmp_links: list_head the allocated links are put on
1109 *
1110 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1111 * through ->cset_link. Returns 0 on success or -errno.
1112 */
allocate_cgrp_cset_links(int count,struct list_head * tmp_links)1113 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1114 {
1115 struct cgrp_cset_link *link;
1116 int i;
1117
1118 INIT_LIST_HEAD(tmp_links);
1119
1120 for (i = 0; i < count; i++) {
1121 link = kzalloc(sizeof(*link), GFP_KERNEL);
1122 if (!link) {
1123 free_cgrp_cset_links(tmp_links);
1124 return -ENOMEM;
1125 }
1126 list_add(&link->cset_link, tmp_links);
1127 }
1128 return 0;
1129 }
1130
1131 /**
1132 * link_css_set - a helper function to link a css_set to a cgroup
1133 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1134 * @cset: the css_set to be linked
1135 * @cgrp: the destination cgroup
1136 */
link_css_set(struct list_head * tmp_links,struct css_set * cset,struct cgroup * cgrp)1137 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1138 struct cgroup *cgrp)
1139 {
1140 struct cgrp_cset_link *link;
1141
1142 BUG_ON(list_empty(tmp_links));
1143
1144 if (cgroup_on_dfl(cgrp))
1145 cset->dfl_cgrp = cgrp;
1146
1147 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1148 link->cset = cset;
1149 link->cgrp = cgrp;
1150
1151 /*
1152 * Always add links to the tail of the lists so that the lists are
1153 * in chronological order.
1154 */
1155 list_move_tail(&link->cset_link, &cgrp->cset_links);
1156 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1157
1158 if (cgroup_parent(cgrp))
1159 cgroup_get_live(cgrp);
1160 }
1161
1162 /**
1163 * find_css_set - return a new css_set with one cgroup updated
1164 * @old_cset: the baseline css_set
1165 * @cgrp: the cgroup to be updated
1166 *
1167 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1168 * substituted into the appropriate hierarchy.
1169 */
find_css_set(struct css_set * old_cset,struct cgroup * cgrp)1170 static struct css_set *find_css_set(struct css_set *old_cset,
1171 struct cgroup *cgrp)
1172 {
1173 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1174 struct css_set *cset;
1175 struct list_head tmp_links;
1176 struct cgrp_cset_link *link;
1177 struct cgroup_subsys *ss;
1178 unsigned long key;
1179 int ssid;
1180
1181 lockdep_assert_held(&cgroup_mutex);
1182
1183 /* First see if we already have a cgroup group that matches
1184 * the desired set */
1185 spin_lock_irq(&css_set_lock);
1186 cset = find_existing_css_set(old_cset, cgrp, template);
1187 if (cset)
1188 get_css_set(cset);
1189 spin_unlock_irq(&css_set_lock);
1190
1191 if (cset)
1192 return cset;
1193
1194 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1195 if (!cset)
1196 return NULL;
1197
1198 /* Allocate all the cgrp_cset_link objects that we'll need */
1199 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1200 kfree(cset);
1201 return NULL;
1202 }
1203
1204 refcount_set(&cset->refcount, 1);
1205 cset->dom_cset = cset;
1206 INIT_LIST_HEAD(&cset->tasks);
1207 INIT_LIST_HEAD(&cset->mg_tasks);
1208 INIT_LIST_HEAD(&cset->dying_tasks);
1209 INIT_LIST_HEAD(&cset->task_iters);
1210 INIT_LIST_HEAD(&cset->threaded_csets);
1211 INIT_HLIST_NODE(&cset->hlist);
1212 INIT_LIST_HEAD(&cset->cgrp_links);
1213 INIT_LIST_HEAD(&cset->mg_src_preload_node);
1214 INIT_LIST_HEAD(&cset->mg_dst_preload_node);
1215 INIT_LIST_HEAD(&cset->mg_node);
1216
1217 /* Copy the set of subsystem state objects generated in
1218 * find_existing_css_set() */
1219 memcpy(cset->subsys, template, sizeof(cset->subsys));
1220
1221 spin_lock_irq(&css_set_lock);
1222 /* Add reference counts and links from the new css_set. */
1223 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1224 struct cgroup *c = link->cgrp;
1225
1226 if (c->root == cgrp->root)
1227 c = cgrp;
1228 link_css_set(&tmp_links, cset, c);
1229 }
1230
1231 BUG_ON(!list_empty(&tmp_links));
1232
1233 css_set_count++;
1234
1235 /* Add @cset to the hash table */
1236 key = css_set_hash(cset->subsys);
1237 hash_add(css_set_table, &cset->hlist, key);
1238
1239 for_each_subsys(ss, ssid) {
1240 struct cgroup_subsys_state *css = cset->subsys[ssid];
1241
1242 list_add_tail(&cset->e_cset_node[ssid],
1243 &css->cgroup->e_csets[ssid]);
1244 css_get(css);
1245 }
1246
1247 spin_unlock_irq(&css_set_lock);
1248
1249 /*
1250 * If @cset should be threaded, look up the matching dom_cset and
1251 * link them up. We first fully initialize @cset then look for the
1252 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1253 * to stay empty until we return.
1254 */
1255 if (cgroup_is_threaded(cset->dfl_cgrp)) {
1256 struct css_set *dcset;
1257
1258 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1259 if (!dcset) {
1260 put_css_set(cset);
1261 return NULL;
1262 }
1263
1264 spin_lock_irq(&css_set_lock);
1265 cset->dom_cset = dcset;
1266 list_add_tail(&cset->threaded_csets_node,
1267 &dcset->threaded_csets);
1268 spin_unlock_irq(&css_set_lock);
1269 }
1270
1271 return cset;
1272 }
1273
cgroup_root_from_kf(struct kernfs_root * kf_root)1274 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1275 {
1276 struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv;
1277
1278 return root_cgrp->root;
1279 }
1280
cgroup_favor_dynmods(struct cgroup_root * root,bool favor)1281 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor)
1282 {
1283 bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS;
1284
1285 /* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */
1286 if (favor && !favoring) {
1287 rcu_sync_enter(&cgroup_threadgroup_rwsem.rss);
1288 root->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1289 } else if (!favor && favoring) {
1290 rcu_sync_exit(&cgroup_threadgroup_rwsem.rss);
1291 root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS;
1292 }
1293 }
1294
cgroup_init_root_id(struct cgroup_root * root)1295 static int cgroup_init_root_id(struct cgroup_root *root)
1296 {
1297 int id;
1298
1299 lockdep_assert_held(&cgroup_mutex);
1300
1301 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1302 if (id < 0)
1303 return id;
1304
1305 root->hierarchy_id = id;
1306 return 0;
1307 }
1308
cgroup_exit_root_id(struct cgroup_root * root)1309 static void cgroup_exit_root_id(struct cgroup_root *root)
1310 {
1311 lockdep_assert_held(&cgroup_mutex);
1312
1313 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1314 }
1315
cgroup_free_root(struct cgroup_root * root)1316 void cgroup_free_root(struct cgroup_root *root)
1317 {
1318 kfree_rcu(root, rcu);
1319 }
1320
cgroup_destroy_root(struct cgroup_root * root)1321 static void cgroup_destroy_root(struct cgroup_root *root)
1322 {
1323 struct cgroup *cgrp = &root->cgrp;
1324 struct cgrp_cset_link *link, *tmp_link;
1325
1326 trace_cgroup_destroy_root(root);
1327
1328 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1329
1330 BUG_ON(atomic_read(&root->nr_cgrps));
1331 BUG_ON(!list_empty(&cgrp->self.children));
1332
1333 /* Rebind all subsystems back to the default hierarchy */
1334 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1335
1336 /*
1337 * Release all the links from cset_links to this hierarchy's
1338 * root cgroup
1339 */
1340 spin_lock_irq(&css_set_lock);
1341
1342 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1343 list_del(&link->cset_link);
1344 list_del(&link->cgrp_link);
1345 kfree(link);
1346 }
1347
1348 spin_unlock_irq(&css_set_lock);
1349
1350 WARN_ON_ONCE(list_empty(&root->root_list));
1351 list_del_rcu(&root->root_list);
1352 cgroup_root_count--;
1353
1354 if (!have_favordynmods)
1355 cgroup_favor_dynmods(root, false);
1356
1357 cgroup_exit_root_id(root);
1358
1359 cgroup_unlock();
1360
1361 cgroup_rstat_exit(cgrp);
1362 kernfs_destroy_root(root->kf_root);
1363 cgroup_free_root(root);
1364 }
1365
1366 /*
1367 * Returned cgroup is without refcount but it's valid as long as cset pins it.
1368 */
__cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1369 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset,
1370 struct cgroup_root *root)
1371 {
1372 struct cgroup *res_cgroup = NULL;
1373
1374 if (cset == &init_css_set) {
1375 res_cgroup = &root->cgrp;
1376 } else if (root == &cgrp_dfl_root) {
1377 res_cgroup = cset->dfl_cgrp;
1378 } else {
1379 struct cgrp_cset_link *link;
1380 lockdep_assert_held(&css_set_lock);
1381
1382 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1383 struct cgroup *c = link->cgrp;
1384
1385 if (c->root == root) {
1386 res_cgroup = c;
1387 break;
1388 }
1389 }
1390 }
1391
1392 /*
1393 * If cgroup_mutex is not held, the cgrp_cset_link will be freed
1394 * before we remove the cgroup root from the root_list. Consequently,
1395 * when accessing a cgroup root, the cset_link may have already been
1396 * freed, resulting in a NULL res_cgroup. However, by holding the
1397 * cgroup_mutex, we ensure that res_cgroup can't be NULL.
1398 * If we don't hold cgroup_mutex in the caller, we must do the NULL
1399 * check.
1400 */
1401 return res_cgroup;
1402 }
1403
1404 /*
1405 * look up cgroup associated with current task's cgroup namespace on the
1406 * specified hierarchy
1407 */
1408 static struct cgroup *
current_cgns_cgroup_from_root(struct cgroup_root * root)1409 current_cgns_cgroup_from_root(struct cgroup_root *root)
1410 {
1411 struct cgroup *res = NULL;
1412 struct css_set *cset;
1413
1414 lockdep_assert_held(&css_set_lock);
1415
1416 rcu_read_lock();
1417
1418 cset = current->nsproxy->cgroup_ns->root_cset;
1419 res = __cset_cgroup_from_root(cset, root);
1420
1421 rcu_read_unlock();
1422
1423 /*
1424 * The namespace_sem is held by current, so the root cgroup can't
1425 * be umounted. Therefore, we can ensure that the res is non-NULL.
1426 */
1427 WARN_ON_ONCE(!res);
1428 return res;
1429 }
1430
1431 /*
1432 * Look up cgroup associated with current task's cgroup namespace on the default
1433 * hierarchy.
1434 *
1435 * Unlike current_cgns_cgroup_from_root(), this doesn't need locks:
1436 * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu
1437 * pointers.
1438 * - css_set_lock is not needed because we just read cset->dfl_cgrp.
1439 * - As a bonus returned cgrp is pinned with the current because it cannot
1440 * switch cgroup_ns asynchronously.
1441 */
current_cgns_cgroup_dfl(void)1442 static struct cgroup *current_cgns_cgroup_dfl(void)
1443 {
1444 struct css_set *cset;
1445
1446 if (current->nsproxy) {
1447 cset = current->nsproxy->cgroup_ns->root_cset;
1448 return __cset_cgroup_from_root(cset, &cgrp_dfl_root);
1449 } else {
1450 /*
1451 * NOTE: This function may be called from bpf_cgroup_from_id()
1452 * on a task which has already passed exit_task_namespaces() and
1453 * nsproxy == NULL. Fall back to cgrp_dfl_root which will make all
1454 * cgroups visible for lookups.
1455 */
1456 return &cgrp_dfl_root.cgrp;
1457 }
1458 }
1459
1460 /* look up cgroup associated with given css_set on the specified hierarchy */
cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1461 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1462 struct cgroup_root *root)
1463 {
1464 lockdep_assert_held(&css_set_lock);
1465
1466 return __cset_cgroup_from_root(cset, root);
1467 }
1468
1469 /*
1470 * Return the cgroup for "task" from the given hierarchy. Must be
1471 * called with css_set_lock held to prevent task's groups from being modified.
1472 * Must be called with either cgroup_mutex or rcu read lock to prevent the
1473 * cgroup root from being destroyed.
1474 */
task_cgroup_from_root(struct task_struct * task,struct cgroup_root * root)1475 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1476 struct cgroup_root *root)
1477 {
1478 /*
1479 * No need to lock the task - since we hold css_set_lock the
1480 * task can't change groups.
1481 */
1482 return cset_cgroup_from_root(task_css_set(task), root);
1483 }
1484
1485 /*
1486 * A task must hold cgroup_mutex to modify cgroups.
1487 *
1488 * Any task can increment and decrement the count field without lock.
1489 * So in general, code holding cgroup_mutex can't rely on the count
1490 * field not changing. However, if the count goes to zero, then only
1491 * cgroup_attach_task() can increment it again. Because a count of zero
1492 * means that no tasks are currently attached, therefore there is no
1493 * way a task attached to that cgroup can fork (the other way to
1494 * increment the count). So code holding cgroup_mutex can safely
1495 * assume that if the count is zero, it will stay zero. Similarly, if
1496 * a task holds cgroup_mutex on a cgroup with zero count, it
1497 * knows that the cgroup won't be removed, as cgroup_rmdir()
1498 * needs that mutex.
1499 *
1500 * A cgroup can only be deleted if both its 'count' of using tasks
1501 * is zero, and its list of 'children' cgroups is empty. Since all
1502 * tasks in the system use _some_ cgroup, and since there is always at
1503 * least one task in the system (init, pid == 1), therefore, root cgroup
1504 * always has either children cgroups and/or using tasks. So we don't
1505 * need a special hack to ensure that root cgroup cannot be deleted.
1506 *
1507 * P.S. One more locking exception. RCU is used to guard the
1508 * update of a tasks cgroup pointer by cgroup_attach_task()
1509 */
1510
1511 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1512
cgroup_file_name(struct cgroup * cgrp,const struct cftype * cft,char * buf)1513 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1514 char *buf)
1515 {
1516 struct cgroup_subsys *ss = cft->ss;
1517
1518 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1519 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1520 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1521
1522 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1523 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1524 cft->name);
1525 } else {
1526 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1527 }
1528 return buf;
1529 }
1530
1531 /**
1532 * cgroup_file_mode - deduce file mode of a control file
1533 * @cft: the control file in question
1534 *
1535 * S_IRUGO for read, S_IWUSR for write.
1536 */
cgroup_file_mode(const struct cftype * cft)1537 static umode_t cgroup_file_mode(const struct cftype *cft)
1538 {
1539 umode_t mode = 0;
1540
1541 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1542 mode |= S_IRUGO;
1543
1544 if (cft->write_u64 || cft->write_s64 || cft->write) {
1545 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1546 mode |= S_IWUGO;
1547 else
1548 mode |= S_IWUSR;
1549 }
1550
1551 return mode;
1552 }
1553
1554 /**
1555 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1556 * @subtree_control: the new subtree_control mask to consider
1557 * @this_ss_mask: available subsystems
1558 *
1559 * On the default hierarchy, a subsystem may request other subsystems to be
1560 * enabled together through its ->depends_on mask. In such cases, more
1561 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1562 *
1563 * This function calculates which subsystems need to be enabled if
1564 * @subtree_control is to be applied while restricted to @this_ss_mask.
1565 */
cgroup_calc_subtree_ss_mask(u16 subtree_control,u16 this_ss_mask)1566 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1567 {
1568 u16 cur_ss_mask = subtree_control;
1569 struct cgroup_subsys *ss;
1570 int ssid;
1571
1572 lockdep_assert_held(&cgroup_mutex);
1573
1574 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1575
1576 while (true) {
1577 u16 new_ss_mask = cur_ss_mask;
1578
1579 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1580 new_ss_mask |= ss->depends_on;
1581 } while_each_subsys_mask();
1582
1583 /*
1584 * Mask out subsystems which aren't available. This can
1585 * happen only if some depended-upon subsystems were bound
1586 * to non-default hierarchies.
1587 */
1588 new_ss_mask &= this_ss_mask;
1589
1590 if (new_ss_mask == cur_ss_mask)
1591 break;
1592 cur_ss_mask = new_ss_mask;
1593 }
1594
1595 return cur_ss_mask;
1596 }
1597
1598 /**
1599 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1600 * @kn: the kernfs_node being serviced
1601 *
1602 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1603 * the method finishes if locking succeeded. Note that once this function
1604 * returns the cgroup returned by cgroup_kn_lock_live() may become
1605 * inaccessible any time. If the caller intends to continue to access the
1606 * cgroup, it should pin it before invoking this function.
1607 */
cgroup_kn_unlock(struct kernfs_node * kn)1608 void cgroup_kn_unlock(struct kernfs_node *kn)
1609 {
1610 struct cgroup *cgrp;
1611
1612 if (kernfs_type(kn) == KERNFS_DIR)
1613 cgrp = kn->priv;
1614 else
1615 cgrp = kn->parent->priv;
1616
1617 cgroup_unlock();
1618
1619 kernfs_unbreak_active_protection(kn);
1620 cgroup_put(cgrp);
1621 }
1622
1623 /**
1624 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1625 * @kn: the kernfs_node being serviced
1626 * @drain_offline: perform offline draining on the cgroup
1627 *
1628 * This helper is to be used by a cgroup kernfs method currently servicing
1629 * @kn. It breaks the active protection, performs cgroup locking and
1630 * verifies that the associated cgroup is alive. Returns the cgroup if
1631 * alive; otherwise, %NULL. A successful return should be undone by a
1632 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1633 * cgroup is drained of offlining csses before return.
1634 *
1635 * Any cgroup kernfs method implementation which requires locking the
1636 * associated cgroup should use this helper. It avoids nesting cgroup
1637 * locking under kernfs active protection and allows all kernfs operations
1638 * including self-removal.
1639 */
cgroup_kn_lock_live(struct kernfs_node * kn,bool drain_offline)1640 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1641 {
1642 struct cgroup *cgrp;
1643
1644 if (kernfs_type(kn) == KERNFS_DIR)
1645 cgrp = kn->priv;
1646 else
1647 cgrp = kn->parent->priv;
1648
1649 /*
1650 * We're gonna grab cgroup_mutex which nests outside kernfs
1651 * active_ref. cgroup liveliness check alone provides enough
1652 * protection against removal. Ensure @cgrp stays accessible and
1653 * break the active_ref protection.
1654 */
1655 if (!cgroup_tryget(cgrp))
1656 return NULL;
1657 kernfs_break_active_protection(kn);
1658
1659 if (drain_offline)
1660 cgroup_lock_and_drain_offline(cgrp);
1661 else
1662 cgroup_lock();
1663
1664 if (!cgroup_is_dead(cgrp))
1665 return cgrp;
1666
1667 cgroup_kn_unlock(kn);
1668 return NULL;
1669 }
1670
cgroup_rm_file(struct cgroup * cgrp,const struct cftype * cft)1671 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1672 {
1673 char name[CGROUP_FILE_NAME_MAX];
1674
1675 lockdep_assert_held(&cgroup_mutex);
1676
1677 if (cft->file_offset) {
1678 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1679 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1680
1681 spin_lock_irq(&cgroup_file_kn_lock);
1682 cfile->kn = NULL;
1683 spin_unlock_irq(&cgroup_file_kn_lock);
1684
1685 del_timer_sync(&cfile->notify_timer);
1686 }
1687
1688 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1689 }
1690
1691 /**
1692 * css_clear_dir - remove subsys files in a cgroup directory
1693 * @css: target css
1694 */
css_clear_dir(struct cgroup_subsys_state * css)1695 static void css_clear_dir(struct cgroup_subsys_state *css)
1696 {
1697 struct cgroup *cgrp = css->cgroup;
1698 struct cftype *cfts;
1699
1700 if (!(css->flags & CSS_VISIBLE))
1701 return;
1702
1703 css->flags &= ~CSS_VISIBLE;
1704
1705 if (!css->ss) {
1706 if (cgroup_on_dfl(cgrp)) {
1707 cgroup_addrm_files(css, cgrp,
1708 cgroup_base_files, false);
1709 if (cgroup_psi_enabled())
1710 cgroup_addrm_files(css, cgrp,
1711 cgroup_psi_files, false);
1712 } else {
1713 cgroup_addrm_files(css, cgrp,
1714 cgroup1_base_files, false);
1715 }
1716 } else {
1717 list_for_each_entry(cfts, &css->ss->cfts, node)
1718 cgroup_addrm_files(css, cgrp, cfts, false);
1719 }
1720 }
1721
1722 /**
1723 * css_populate_dir - create subsys files in a cgroup directory
1724 * @css: target css
1725 *
1726 * On failure, no file is added.
1727 */
css_populate_dir(struct cgroup_subsys_state * css)1728 static int css_populate_dir(struct cgroup_subsys_state *css)
1729 {
1730 struct cgroup *cgrp = css->cgroup;
1731 struct cftype *cfts, *failed_cfts;
1732 int ret;
1733
1734 if (css->flags & CSS_VISIBLE)
1735 return 0;
1736
1737 if (!css->ss) {
1738 if (cgroup_on_dfl(cgrp)) {
1739 ret = cgroup_addrm_files(css, cgrp,
1740 cgroup_base_files, true);
1741 if (ret < 0)
1742 return ret;
1743
1744 if (cgroup_psi_enabled()) {
1745 ret = cgroup_addrm_files(css, cgrp,
1746 cgroup_psi_files, true);
1747 if (ret < 0) {
1748 cgroup_addrm_files(css, cgrp,
1749 cgroup_base_files, false);
1750 return ret;
1751 }
1752 }
1753 } else {
1754 ret = cgroup_addrm_files(css, cgrp,
1755 cgroup1_base_files, true);
1756 if (ret < 0)
1757 return ret;
1758 }
1759 } else {
1760 list_for_each_entry(cfts, &css->ss->cfts, node) {
1761 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1762 if (ret < 0) {
1763 failed_cfts = cfts;
1764 goto err;
1765 }
1766 }
1767 }
1768
1769 css->flags |= CSS_VISIBLE;
1770
1771 return 0;
1772 err:
1773 list_for_each_entry(cfts, &css->ss->cfts, node) {
1774 if (cfts == failed_cfts)
1775 break;
1776 cgroup_addrm_files(css, cgrp, cfts, false);
1777 }
1778 return ret;
1779 }
1780
rebind_subsystems(struct cgroup_root * dst_root,u16 ss_mask)1781 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1782 {
1783 struct cgroup *dcgrp = &dst_root->cgrp;
1784 struct cgroup_subsys *ss;
1785 int ssid, ret;
1786 u16 dfl_disable_ss_mask = 0;
1787
1788 lockdep_assert_held(&cgroup_mutex);
1789
1790 do_each_subsys_mask(ss, ssid, ss_mask) {
1791 /*
1792 * If @ss has non-root csses attached to it, can't move.
1793 * If @ss is an implicit controller, it is exempt from this
1794 * rule and can be stolen.
1795 */
1796 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1797 !ss->implicit_on_dfl)
1798 return -EBUSY;
1799
1800 /* can't move between two non-dummy roots either */
1801 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1802 return -EBUSY;
1803
1804 /*
1805 * Collect ssid's that need to be disabled from default
1806 * hierarchy.
1807 */
1808 if (ss->root == &cgrp_dfl_root)
1809 dfl_disable_ss_mask |= 1 << ssid;
1810
1811 } while_each_subsys_mask();
1812
1813 if (dfl_disable_ss_mask) {
1814 struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1815
1816 /*
1817 * Controllers from default hierarchy that need to be rebound
1818 * are all disabled together in one go.
1819 */
1820 cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1821 WARN_ON(cgroup_apply_control(scgrp));
1822 cgroup_finalize_control(scgrp, 0);
1823 }
1824
1825 do_each_subsys_mask(ss, ssid, ss_mask) {
1826 struct cgroup_root *src_root = ss->root;
1827 struct cgroup *scgrp = &src_root->cgrp;
1828 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1829 struct css_set *cset, *cset_pos;
1830 struct css_task_iter *it;
1831
1832 WARN_ON(!css || cgroup_css(dcgrp, ss));
1833
1834 if (src_root != &cgrp_dfl_root) {
1835 /* disable from the source */
1836 src_root->subsys_mask &= ~(1 << ssid);
1837 WARN_ON(cgroup_apply_control(scgrp));
1838 cgroup_finalize_control(scgrp, 0);
1839 }
1840
1841 /* rebind */
1842 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1843 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1844 ss->root = dst_root;
1845
1846 spin_lock_irq(&css_set_lock);
1847 css->cgroup = dcgrp;
1848 WARN_ON(!list_empty(&dcgrp->e_csets[ss->id]));
1849 list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id],
1850 e_cset_node[ss->id]) {
1851 list_move_tail(&cset->e_cset_node[ss->id],
1852 &dcgrp->e_csets[ss->id]);
1853 /*
1854 * all css_sets of scgrp together in same order to dcgrp,
1855 * patch in-flight iterators to preserve correct iteration.
1856 * since the iterator is always advanced right away and
1857 * finished when it->cset_pos meets it->cset_head, so only
1858 * update it->cset_head is enough here.
1859 */
1860 list_for_each_entry(it, &cset->task_iters, iters_node)
1861 if (it->cset_head == &scgrp->e_csets[ss->id])
1862 it->cset_head = &dcgrp->e_csets[ss->id];
1863 }
1864 spin_unlock_irq(&css_set_lock);
1865
1866 if (ss->css_rstat_flush) {
1867 list_del_rcu(&css->rstat_css_node);
1868 synchronize_rcu();
1869 list_add_rcu(&css->rstat_css_node,
1870 &dcgrp->rstat_css_list);
1871 }
1872
1873 /* default hierarchy doesn't enable controllers by default */
1874 dst_root->subsys_mask |= 1 << ssid;
1875 if (dst_root == &cgrp_dfl_root) {
1876 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1877 } else {
1878 dcgrp->subtree_control |= 1 << ssid;
1879 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1880 }
1881
1882 ret = cgroup_apply_control(dcgrp);
1883 if (ret)
1884 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1885 ss->name, ret);
1886
1887 if (ss->bind)
1888 ss->bind(css);
1889 } while_each_subsys_mask();
1890
1891 kernfs_activate(dcgrp->kn);
1892 return 0;
1893 }
1894
cgroup_show_path(struct seq_file * sf,struct kernfs_node * kf_node,struct kernfs_root * kf_root)1895 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1896 struct kernfs_root *kf_root)
1897 {
1898 int len = 0;
1899 char *buf = NULL;
1900 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1901 struct cgroup *ns_cgroup;
1902
1903 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1904 if (!buf)
1905 return -ENOMEM;
1906
1907 spin_lock_irq(&css_set_lock);
1908 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1909 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1910 spin_unlock_irq(&css_set_lock);
1911
1912 if (len == -E2BIG)
1913 len = -ERANGE;
1914 else if (len > 0) {
1915 seq_escape(sf, buf, " \t\n\\");
1916 len = 0;
1917 }
1918 kfree(buf);
1919 return len;
1920 }
1921
1922 enum cgroup2_param {
1923 Opt_nsdelegate,
1924 Opt_favordynmods,
1925 Opt_memory_localevents,
1926 Opt_memory_recursiveprot,
1927 Opt_memory_hugetlb_accounting,
1928 Opt_pids_localevents,
1929 nr__cgroup2_params
1930 };
1931
1932 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1933 fsparam_flag("nsdelegate", Opt_nsdelegate),
1934 fsparam_flag("favordynmods", Opt_favordynmods),
1935 fsparam_flag("memory_localevents", Opt_memory_localevents),
1936 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot),
1937 fsparam_flag("memory_hugetlb_accounting", Opt_memory_hugetlb_accounting),
1938 fsparam_flag("pids_localevents", Opt_pids_localevents),
1939 {}
1940 };
1941
cgroup2_parse_param(struct fs_context * fc,struct fs_parameter * param)1942 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1943 {
1944 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1945 struct fs_parse_result result;
1946 int opt;
1947
1948 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1949 if (opt < 0)
1950 return opt;
1951
1952 switch (opt) {
1953 case Opt_nsdelegate:
1954 ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1955 return 0;
1956 case Opt_favordynmods:
1957 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1958 return 0;
1959 case Opt_memory_localevents:
1960 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1961 return 0;
1962 case Opt_memory_recursiveprot:
1963 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1964 return 0;
1965 case Opt_memory_hugetlb_accounting:
1966 ctx->flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
1967 return 0;
1968 case Opt_pids_localevents:
1969 ctx->flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS;
1970 return 0;
1971 }
1972 return -EINVAL;
1973 }
1974
of_peak(struct kernfs_open_file * of)1975 struct cgroup_of_peak *of_peak(struct kernfs_open_file *of)
1976 {
1977 struct cgroup_file_ctx *ctx = of->priv;
1978
1979 return &ctx->peak;
1980 }
1981
apply_cgroup_root_flags(unsigned int root_flags)1982 static void apply_cgroup_root_flags(unsigned int root_flags)
1983 {
1984 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1985 if (root_flags & CGRP_ROOT_NS_DELEGATE)
1986 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1987 else
1988 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1989
1990 cgroup_favor_dynmods(&cgrp_dfl_root,
1991 root_flags & CGRP_ROOT_FAVOR_DYNMODS);
1992
1993 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1994 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1995 else
1996 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1997
1998 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1999 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
2000 else
2001 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
2002
2003 if (root_flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)
2004 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
2005 else
2006 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
2007
2008 if (root_flags & CGRP_ROOT_PIDS_LOCAL_EVENTS)
2009 cgrp_dfl_root.flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS;
2010 else
2011 cgrp_dfl_root.flags &= ~CGRP_ROOT_PIDS_LOCAL_EVENTS;
2012 }
2013 }
2014
cgroup_show_options(struct seq_file * seq,struct kernfs_root * kf_root)2015 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
2016 {
2017 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
2018 seq_puts(seq, ",nsdelegate");
2019 if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS)
2020 seq_puts(seq, ",favordynmods");
2021 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
2022 seq_puts(seq, ",memory_localevents");
2023 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
2024 seq_puts(seq, ",memory_recursiveprot");
2025 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)
2026 seq_puts(seq, ",memory_hugetlb_accounting");
2027 if (cgrp_dfl_root.flags & CGRP_ROOT_PIDS_LOCAL_EVENTS)
2028 seq_puts(seq, ",pids_localevents");
2029 return 0;
2030 }
2031
cgroup_reconfigure(struct fs_context * fc)2032 static int cgroup_reconfigure(struct fs_context *fc)
2033 {
2034 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2035
2036 apply_cgroup_root_flags(ctx->flags);
2037 return 0;
2038 }
2039
init_cgroup_housekeeping(struct cgroup * cgrp)2040 static void init_cgroup_housekeeping(struct cgroup *cgrp)
2041 {
2042 struct cgroup_subsys *ss;
2043 int ssid;
2044
2045 INIT_LIST_HEAD(&cgrp->self.sibling);
2046 INIT_LIST_HEAD(&cgrp->self.children);
2047 INIT_LIST_HEAD(&cgrp->cset_links);
2048 INIT_LIST_HEAD(&cgrp->pidlists);
2049 mutex_init(&cgrp->pidlist_mutex);
2050 cgrp->self.cgroup = cgrp;
2051 cgrp->self.flags |= CSS_ONLINE;
2052 cgrp->dom_cgrp = cgrp;
2053 cgrp->max_descendants = INT_MAX;
2054 cgrp->max_depth = INT_MAX;
2055 INIT_LIST_HEAD(&cgrp->rstat_css_list);
2056 prev_cputime_init(&cgrp->prev_cputime);
2057
2058 for_each_subsys(ss, ssid)
2059 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
2060
2061 init_waitqueue_head(&cgrp->offline_waitq);
2062 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
2063 }
2064
init_cgroup_root(struct cgroup_fs_context * ctx)2065 void init_cgroup_root(struct cgroup_fs_context *ctx)
2066 {
2067 struct cgroup_root *root = ctx->root;
2068 struct cgroup *cgrp = &root->cgrp;
2069
2070 INIT_LIST_HEAD_RCU(&root->root_list);
2071 atomic_set(&root->nr_cgrps, 1);
2072 cgrp->root = root;
2073 init_cgroup_housekeeping(cgrp);
2074
2075 /* DYNMODS must be modified through cgroup_favor_dynmods() */
2076 root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS;
2077 if (ctx->release_agent)
2078 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
2079 if (ctx->name)
2080 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
2081 if (ctx->cpuset_clone_children)
2082 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
2083 }
2084
cgroup_setup_root(struct cgroup_root * root,u16 ss_mask)2085 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2086 {
2087 LIST_HEAD(tmp_links);
2088 struct cgroup *root_cgrp = &root->cgrp;
2089 struct kernfs_syscall_ops *kf_sops;
2090 struct css_set *cset;
2091 int i, ret;
2092
2093 lockdep_assert_held(&cgroup_mutex);
2094
2095 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
2096 0, GFP_KERNEL);
2097 if (ret)
2098 goto out;
2099
2100 /*
2101 * We're accessing css_set_count without locking css_set_lock here,
2102 * but that's OK - it can only be increased by someone holding
2103 * cgroup_lock, and that's us. Later rebinding may disable
2104 * controllers on the default hierarchy and thus create new csets,
2105 * which can't be more than the existing ones. Allocate 2x.
2106 */
2107 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2108 if (ret)
2109 goto cancel_ref;
2110
2111 ret = cgroup_init_root_id(root);
2112 if (ret)
2113 goto cancel_ref;
2114
2115 kf_sops = root == &cgrp_dfl_root ?
2116 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2117
2118 root->kf_root = kernfs_create_root(kf_sops,
2119 KERNFS_ROOT_CREATE_DEACTIVATED |
2120 KERNFS_ROOT_SUPPORT_EXPORTOP |
2121 KERNFS_ROOT_SUPPORT_USER_XATTR,
2122 root_cgrp);
2123 if (IS_ERR(root->kf_root)) {
2124 ret = PTR_ERR(root->kf_root);
2125 goto exit_root_id;
2126 }
2127 root_cgrp->kn = kernfs_root_to_node(root->kf_root);
2128 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
2129 root_cgrp->ancestors[0] = root_cgrp;
2130
2131 ret = css_populate_dir(&root_cgrp->self);
2132 if (ret)
2133 goto destroy_root;
2134
2135 ret = cgroup_rstat_init(root_cgrp);
2136 if (ret)
2137 goto destroy_root;
2138
2139 ret = rebind_subsystems(root, ss_mask);
2140 if (ret)
2141 goto exit_stats;
2142
2143 if (root == &cgrp_dfl_root) {
2144 ret = cgroup_bpf_inherit(root_cgrp);
2145 WARN_ON_ONCE(ret);
2146 }
2147
2148 trace_cgroup_setup_root(root);
2149
2150 /*
2151 * There must be no failure case after here, since rebinding takes
2152 * care of subsystems' refcounts, which are explicitly dropped in
2153 * the failure exit path.
2154 */
2155 list_add_rcu(&root->root_list, &cgroup_roots);
2156 cgroup_root_count++;
2157
2158 /*
2159 * Link the root cgroup in this hierarchy into all the css_set
2160 * objects.
2161 */
2162 spin_lock_irq(&css_set_lock);
2163 hash_for_each(css_set_table, i, cset, hlist) {
2164 link_css_set(&tmp_links, cset, root_cgrp);
2165 if (css_set_populated(cset))
2166 cgroup_update_populated(root_cgrp, true);
2167 }
2168 spin_unlock_irq(&css_set_lock);
2169
2170 BUG_ON(!list_empty(&root_cgrp->self.children));
2171 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2172
2173 ret = 0;
2174 goto out;
2175
2176 exit_stats:
2177 cgroup_rstat_exit(root_cgrp);
2178 destroy_root:
2179 kernfs_destroy_root(root->kf_root);
2180 root->kf_root = NULL;
2181 exit_root_id:
2182 cgroup_exit_root_id(root);
2183 cancel_ref:
2184 percpu_ref_exit(&root_cgrp->self.refcnt);
2185 out:
2186 free_cgrp_cset_links(&tmp_links);
2187 return ret;
2188 }
2189
cgroup_do_get_tree(struct fs_context * fc)2190 int cgroup_do_get_tree(struct fs_context *fc)
2191 {
2192 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2193 int ret;
2194
2195 ctx->kfc.root = ctx->root->kf_root;
2196 if (fc->fs_type == &cgroup2_fs_type)
2197 ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2198 else
2199 ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2200 ret = kernfs_get_tree(fc);
2201
2202 /*
2203 * In non-init cgroup namespace, instead of root cgroup's dentry,
2204 * we return the dentry corresponding to the cgroupns->root_cgrp.
2205 */
2206 if (!ret && ctx->ns != &init_cgroup_ns) {
2207 struct dentry *nsdentry;
2208 struct super_block *sb = fc->root->d_sb;
2209 struct cgroup *cgrp;
2210
2211 cgroup_lock();
2212 spin_lock_irq(&css_set_lock);
2213
2214 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2215
2216 spin_unlock_irq(&css_set_lock);
2217 cgroup_unlock();
2218
2219 nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2220 dput(fc->root);
2221 if (IS_ERR(nsdentry)) {
2222 deactivate_locked_super(sb);
2223 ret = PTR_ERR(nsdentry);
2224 nsdentry = NULL;
2225 }
2226 fc->root = nsdentry;
2227 }
2228
2229 if (!ctx->kfc.new_sb_created)
2230 cgroup_put(&ctx->root->cgrp);
2231
2232 return ret;
2233 }
2234
2235 /*
2236 * Destroy a cgroup filesystem context.
2237 */
cgroup_fs_context_free(struct fs_context * fc)2238 static void cgroup_fs_context_free(struct fs_context *fc)
2239 {
2240 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2241
2242 kfree(ctx->name);
2243 kfree(ctx->release_agent);
2244 put_cgroup_ns(ctx->ns);
2245 kernfs_free_fs_context(fc);
2246 kfree(ctx);
2247 }
2248
cgroup_get_tree(struct fs_context * fc)2249 static int cgroup_get_tree(struct fs_context *fc)
2250 {
2251 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2252 int ret;
2253
2254 WRITE_ONCE(cgrp_dfl_visible, true);
2255 cgroup_get_live(&cgrp_dfl_root.cgrp);
2256 ctx->root = &cgrp_dfl_root;
2257
2258 ret = cgroup_do_get_tree(fc);
2259 if (!ret)
2260 apply_cgroup_root_flags(ctx->flags);
2261 return ret;
2262 }
2263
2264 static const struct fs_context_operations cgroup_fs_context_ops = {
2265 .free = cgroup_fs_context_free,
2266 .parse_param = cgroup2_parse_param,
2267 .get_tree = cgroup_get_tree,
2268 .reconfigure = cgroup_reconfigure,
2269 };
2270
2271 static const struct fs_context_operations cgroup1_fs_context_ops = {
2272 .free = cgroup_fs_context_free,
2273 .parse_param = cgroup1_parse_param,
2274 .get_tree = cgroup1_get_tree,
2275 .reconfigure = cgroup1_reconfigure,
2276 };
2277
2278 /*
2279 * Initialise the cgroup filesystem creation/reconfiguration context. Notably,
2280 * we select the namespace we're going to use.
2281 */
cgroup_init_fs_context(struct fs_context * fc)2282 static int cgroup_init_fs_context(struct fs_context *fc)
2283 {
2284 struct cgroup_fs_context *ctx;
2285
2286 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2287 if (!ctx)
2288 return -ENOMEM;
2289
2290 ctx->ns = current->nsproxy->cgroup_ns;
2291 get_cgroup_ns(ctx->ns);
2292 fc->fs_private = &ctx->kfc;
2293 if (fc->fs_type == &cgroup2_fs_type)
2294 fc->ops = &cgroup_fs_context_ops;
2295 else
2296 fc->ops = &cgroup1_fs_context_ops;
2297 put_user_ns(fc->user_ns);
2298 fc->user_ns = get_user_ns(ctx->ns->user_ns);
2299 fc->global = true;
2300
2301 if (have_favordynmods)
2302 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
2303
2304 return 0;
2305 }
2306
cgroup_kill_sb(struct super_block * sb)2307 static void cgroup_kill_sb(struct super_block *sb)
2308 {
2309 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2310 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2311
2312 /*
2313 * If @root doesn't have any children, start killing it.
2314 * This prevents new mounts by disabling percpu_ref_tryget_live().
2315 *
2316 * And don't kill the default root.
2317 */
2318 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2319 !percpu_ref_is_dying(&root->cgrp.self.refcnt))
2320 percpu_ref_kill(&root->cgrp.self.refcnt);
2321 cgroup_put(&root->cgrp);
2322 kernfs_kill_sb(sb);
2323 }
2324
2325 struct file_system_type cgroup_fs_type = {
2326 .name = "cgroup",
2327 .init_fs_context = cgroup_init_fs_context,
2328 .parameters = cgroup1_fs_parameters,
2329 .kill_sb = cgroup_kill_sb,
2330 .fs_flags = FS_USERNS_MOUNT,
2331 };
2332
2333 static struct file_system_type cgroup2_fs_type = {
2334 .name = "cgroup2",
2335 .init_fs_context = cgroup_init_fs_context,
2336 .parameters = cgroup2_fs_parameters,
2337 .kill_sb = cgroup_kill_sb,
2338 .fs_flags = FS_USERNS_MOUNT,
2339 };
2340
2341 #ifdef CONFIG_CPUSETS_V1
2342 static const struct fs_context_operations cpuset_fs_context_ops = {
2343 .get_tree = cgroup1_get_tree,
2344 .free = cgroup_fs_context_free,
2345 };
2346
2347 /*
2348 * This is ugly, but preserves the userspace API for existing cpuset
2349 * users. If someone tries to mount the "cpuset" filesystem, we
2350 * silently switch it to mount "cgroup" instead
2351 */
cpuset_init_fs_context(struct fs_context * fc)2352 static int cpuset_init_fs_context(struct fs_context *fc)
2353 {
2354 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2355 struct cgroup_fs_context *ctx;
2356 int err;
2357
2358 err = cgroup_init_fs_context(fc);
2359 if (err) {
2360 kfree(agent);
2361 return err;
2362 }
2363
2364 fc->ops = &cpuset_fs_context_ops;
2365
2366 ctx = cgroup_fc2context(fc);
2367 ctx->subsys_mask = 1 << cpuset_cgrp_id;
2368 ctx->flags |= CGRP_ROOT_NOPREFIX;
2369 ctx->release_agent = agent;
2370
2371 get_filesystem(&cgroup_fs_type);
2372 put_filesystem(fc->fs_type);
2373 fc->fs_type = &cgroup_fs_type;
2374
2375 return 0;
2376 }
2377
2378 static struct file_system_type cpuset_fs_type = {
2379 .name = "cpuset",
2380 .init_fs_context = cpuset_init_fs_context,
2381 .fs_flags = FS_USERNS_MOUNT,
2382 };
2383 #endif
2384
cgroup_path_ns_locked(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2385 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2386 struct cgroup_namespace *ns)
2387 {
2388 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2389
2390 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2391 }
2392
cgroup_path_ns(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2393 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2394 struct cgroup_namespace *ns)
2395 {
2396 int ret;
2397
2398 cgroup_lock();
2399 spin_lock_irq(&css_set_lock);
2400
2401 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2402
2403 spin_unlock_irq(&css_set_lock);
2404 cgroup_unlock();
2405
2406 return ret;
2407 }
2408 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2409
2410 /**
2411 * cgroup_attach_lock - Lock for ->attach()
2412 * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem
2413 *
2414 * cgroup migration sometimes needs to stabilize threadgroups against forks and
2415 * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach()
2416 * implementations (e.g. cpuset), also need to disable CPU hotplug.
2417 * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can
2418 * lead to deadlocks.
2419 *
2420 * Bringing up a CPU may involve creating and destroying tasks which requires
2421 * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
2422 * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while
2423 * write-locking threadgroup_rwsem, the locking order is reversed and we end up
2424 * waiting for an on-going CPU hotplug operation which in turn is waiting for
2425 * the threadgroup_rwsem to be released to create new tasks. For more details:
2426 *
2427 * http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu
2428 *
2429 * Resolve the situation by always acquiring cpus_read_lock() before optionally
2430 * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that
2431 * CPU hotplug is disabled on entry.
2432 */
cgroup_attach_lock(bool lock_threadgroup)2433 void cgroup_attach_lock(bool lock_threadgroup)
2434 {
2435 cpus_read_lock();
2436 if (lock_threadgroup)
2437 percpu_down_write(&cgroup_threadgroup_rwsem);
2438 }
2439
2440 /**
2441 * cgroup_attach_unlock - Undo cgroup_attach_lock()
2442 * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem
2443 */
cgroup_attach_unlock(bool lock_threadgroup)2444 void cgroup_attach_unlock(bool lock_threadgroup)
2445 {
2446 if (lock_threadgroup)
2447 percpu_up_write(&cgroup_threadgroup_rwsem);
2448 cpus_read_unlock();
2449 }
2450
2451 /**
2452 * cgroup_migrate_add_task - add a migration target task to a migration context
2453 * @task: target task
2454 * @mgctx: target migration context
2455 *
2456 * Add @task, which is a migration target, to @mgctx->tset. This function
2457 * becomes noop if @task doesn't need to be migrated. @task's css_set
2458 * should have been added as a migration source and @task->cg_list will be
2459 * moved from the css_set's tasks list to mg_tasks one.
2460 */
cgroup_migrate_add_task(struct task_struct * task,struct cgroup_mgctx * mgctx)2461 static void cgroup_migrate_add_task(struct task_struct *task,
2462 struct cgroup_mgctx *mgctx)
2463 {
2464 struct css_set *cset;
2465
2466 lockdep_assert_held(&css_set_lock);
2467
2468 /* @task either already exited or can't exit until the end */
2469 if (task->flags & PF_EXITING)
2470 return;
2471
2472 /* cgroup_threadgroup_rwsem protects racing against forks */
2473 WARN_ON_ONCE(list_empty(&task->cg_list));
2474
2475 cset = task_css_set(task);
2476 if (!cset->mg_src_cgrp)
2477 return;
2478
2479 mgctx->tset.nr_tasks++;
2480
2481 list_move_tail(&task->cg_list, &cset->mg_tasks);
2482 if (list_empty(&cset->mg_node))
2483 list_add_tail(&cset->mg_node,
2484 &mgctx->tset.src_csets);
2485 if (list_empty(&cset->mg_dst_cset->mg_node))
2486 list_add_tail(&cset->mg_dst_cset->mg_node,
2487 &mgctx->tset.dst_csets);
2488 }
2489
2490 /**
2491 * cgroup_taskset_first - reset taskset and return the first task
2492 * @tset: taskset of interest
2493 * @dst_cssp: output variable for the destination css
2494 *
2495 * @tset iteration is initialized and the first task is returned.
2496 */
cgroup_taskset_first(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2497 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2498 struct cgroup_subsys_state **dst_cssp)
2499 {
2500 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2501 tset->cur_task = NULL;
2502
2503 return cgroup_taskset_next(tset, dst_cssp);
2504 }
2505
2506 /**
2507 * cgroup_taskset_next - iterate to the next task in taskset
2508 * @tset: taskset of interest
2509 * @dst_cssp: output variable for the destination css
2510 *
2511 * Return the next task in @tset. Iteration must have been initialized
2512 * with cgroup_taskset_first().
2513 */
cgroup_taskset_next(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2514 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2515 struct cgroup_subsys_state **dst_cssp)
2516 {
2517 struct css_set *cset = tset->cur_cset;
2518 struct task_struct *task = tset->cur_task;
2519
2520 while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) {
2521 if (!task)
2522 task = list_first_entry(&cset->mg_tasks,
2523 struct task_struct, cg_list);
2524 else
2525 task = list_next_entry(task, cg_list);
2526
2527 if (&task->cg_list != &cset->mg_tasks) {
2528 tset->cur_cset = cset;
2529 tset->cur_task = task;
2530
2531 /*
2532 * This function may be called both before and
2533 * after cgroup_migrate_execute(). The two cases
2534 * can be distinguished by looking at whether @cset
2535 * has its ->mg_dst_cset set.
2536 */
2537 if (cset->mg_dst_cset)
2538 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2539 else
2540 *dst_cssp = cset->subsys[tset->ssid];
2541
2542 return task;
2543 }
2544
2545 cset = list_next_entry(cset, mg_node);
2546 task = NULL;
2547 }
2548
2549 return NULL;
2550 }
2551
2552 /**
2553 * cgroup_migrate_execute - migrate a taskset
2554 * @mgctx: migration context
2555 *
2556 * Migrate tasks in @mgctx as setup by migration preparation functions.
2557 * This function fails iff one of the ->can_attach callbacks fails and
2558 * guarantees that either all or none of the tasks in @mgctx are migrated.
2559 * @mgctx is consumed regardless of success.
2560 */
cgroup_migrate_execute(struct cgroup_mgctx * mgctx)2561 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2562 {
2563 struct cgroup_taskset *tset = &mgctx->tset;
2564 struct cgroup_subsys *ss;
2565 struct task_struct *task, *tmp_task;
2566 struct css_set *cset, *tmp_cset;
2567 int ssid, failed_ssid, ret;
2568
2569 /* check that we can legitimately attach to the cgroup */
2570 if (tset->nr_tasks) {
2571 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2572 if (ss->can_attach) {
2573 tset->ssid = ssid;
2574 ret = ss->can_attach(tset);
2575 if (ret) {
2576 failed_ssid = ssid;
2577 goto out_cancel_attach;
2578 }
2579 }
2580 } while_each_subsys_mask();
2581 }
2582
2583 /*
2584 * Now that we're guaranteed success, proceed to move all tasks to
2585 * the new cgroup. There are no failure cases after here, so this
2586 * is the commit point.
2587 */
2588 spin_lock_irq(&css_set_lock);
2589 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2590 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2591 struct css_set *from_cset = task_css_set(task);
2592 struct css_set *to_cset = cset->mg_dst_cset;
2593
2594 get_css_set(to_cset);
2595 to_cset->nr_tasks++;
2596 css_set_move_task(task, from_cset, to_cset, true);
2597 from_cset->nr_tasks--;
2598 /*
2599 * If the source or destination cgroup is frozen,
2600 * the task might require to change its state.
2601 */
2602 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2603 to_cset->dfl_cgrp);
2604 put_css_set_locked(from_cset);
2605
2606 }
2607 }
2608 spin_unlock_irq(&css_set_lock);
2609
2610 /*
2611 * Migration is committed, all target tasks are now on dst_csets.
2612 * Nothing is sensitive to fork() after this point. Notify
2613 * controllers that migration is complete.
2614 */
2615 tset->csets = &tset->dst_csets;
2616
2617 if (tset->nr_tasks) {
2618 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2619 if (ss->attach) {
2620 tset->ssid = ssid;
2621 ss->attach(tset);
2622 }
2623 } while_each_subsys_mask();
2624 }
2625
2626 ret = 0;
2627 goto out_release_tset;
2628
2629 out_cancel_attach:
2630 if (tset->nr_tasks) {
2631 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2632 if (ssid == failed_ssid)
2633 break;
2634 if (ss->cancel_attach) {
2635 tset->ssid = ssid;
2636 ss->cancel_attach(tset);
2637 }
2638 } while_each_subsys_mask();
2639 }
2640 out_release_tset:
2641 spin_lock_irq(&css_set_lock);
2642 list_splice_init(&tset->dst_csets, &tset->src_csets);
2643 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2644 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2645 list_del_init(&cset->mg_node);
2646 }
2647 spin_unlock_irq(&css_set_lock);
2648
2649 /*
2650 * Re-initialize the cgroup_taskset structure in case it is reused
2651 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2652 * iteration.
2653 */
2654 tset->nr_tasks = 0;
2655 tset->csets = &tset->src_csets;
2656 return ret;
2657 }
2658
2659 /**
2660 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2661 * @dst_cgrp: destination cgroup to test
2662 *
2663 * On the default hierarchy, except for the mixable, (possible) thread root
2664 * and threaded cgroups, subtree_control must be zero for migration
2665 * destination cgroups with tasks so that child cgroups don't compete
2666 * against tasks.
2667 */
cgroup_migrate_vet_dst(struct cgroup * dst_cgrp)2668 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2669 {
2670 /* v1 doesn't have any restriction */
2671 if (!cgroup_on_dfl(dst_cgrp))
2672 return 0;
2673
2674 /* verify @dst_cgrp can host resources */
2675 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2676 return -EOPNOTSUPP;
2677
2678 /*
2679 * If @dst_cgrp is already or can become a thread root or is
2680 * threaded, it doesn't matter.
2681 */
2682 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2683 return 0;
2684
2685 /* apply no-internal-process constraint */
2686 if (dst_cgrp->subtree_control)
2687 return -EBUSY;
2688
2689 return 0;
2690 }
2691
2692 /**
2693 * cgroup_migrate_finish - cleanup after attach
2694 * @mgctx: migration context
2695 *
2696 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2697 * those functions for details.
2698 */
cgroup_migrate_finish(struct cgroup_mgctx * mgctx)2699 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2700 {
2701 struct css_set *cset, *tmp_cset;
2702
2703 lockdep_assert_held(&cgroup_mutex);
2704
2705 spin_lock_irq(&css_set_lock);
2706
2707 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets,
2708 mg_src_preload_node) {
2709 cset->mg_src_cgrp = NULL;
2710 cset->mg_dst_cgrp = NULL;
2711 cset->mg_dst_cset = NULL;
2712 list_del_init(&cset->mg_src_preload_node);
2713 put_css_set_locked(cset);
2714 }
2715
2716 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets,
2717 mg_dst_preload_node) {
2718 cset->mg_src_cgrp = NULL;
2719 cset->mg_dst_cgrp = NULL;
2720 cset->mg_dst_cset = NULL;
2721 list_del_init(&cset->mg_dst_preload_node);
2722 put_css_set_locked(cset);
2723 }
2724
2725 spin_unlock_irq(&css_set_lock);
2726 }
2727
2728 /**
2729 * cgroup_migrate_add_src - add a migration source css_set
2730 * @src_cset: the source css_set to add
2731 * @dst_cgrp: the destination cgroup
2732 * @mgctx: migration context
2733 *
2734 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2735 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2736 * up by cgroup_migrate_finish().
2737 *
2738 * This function may be called without holding cgroup_threadgroup_rwsem
2739 * even if the target is a process. Threads may be created and destroyed
2740 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2741 * into play and the preloaded css_sets are guaranteed to cover all
2742 * migrations.
2743 */
cgroup_migrate_add_src(struct css_set * src_cset,struct cgroup * dst_cgrp,struct cgroup_mgctx * mgctx)2744 void cgroup_migrate_add_src(struct css_set *src_cset,
2745 struct cgroup *dst_cgrp,
2746 struct cgroup_mgctx *mgctx)
2747 {
2748 struct cgroup *src_cgrp;
2749
2750 lockdep_assert_held(&cgroup_mutex);
2751 lockdep_assert_held(&css_set_lock);
2752
2753 /*
2754 * If ->dead, @src_set is associated with one or more dead cgroups
2755 * and doesn't contain any migratable tasks. Ignore it early so
2756 * that the rest of migration path doesn't get confused by it.
2757 */
2758 if (src_cset->dead)
2759 return;
2760
2761 if (!list_empty(&src_cset->mg_src_preload_node))
2762 return;
2763
2764 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2765
2766 WARN_ON(src_cset->mg_src_cgrp);
2767 WARN_ON(src_cset->mg_dst_cgrp);
2768 WARN_ON(!list_empty(&src_cset->mg_tasks));
2769 WARN_ON(!list_empty(&src_cset->mg_node));
2770
2771 src_cset->mg_src_cgrp = src_cgrp;
2772 src_cset->mg_dst_cgrp = dst_cgrp;
2773 get_css_set(src_cset);
2774 list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets);
2775 }
2776
2777 /**
2778 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2779 * @mgctx: migration context
2780 *
2781 * Tasks are about to be moved and all the source css_sets have been
2782 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2783 * pins all destination css_sets, links each to its source, and append them
2784 * to @mgctx->preloaded_dst_csets.
2785 *
2786 * This function must be called after cgroup_migrate_add_src() has been
2787 * called on each migration source css_set. After migration is performed
2788 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2789 * @mgctx.
2790 */
cgroup_migrate_prepare_dst(struct cgroup_mgctx * mgctx)2791 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2792 {
2793 struct css_set *src_cset, *tmp_cset;
2794
2795 lockdep_assert_held(&cgroup_mutex);
2796
2797 /* look up the dst cset for each src cset and link it to src */
2798 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2799 mg_src_preload_node) {
2800 struct css_set *dst_cset;
2801 struct cgroup_subsys *ss;
2802 int ssid;
2803
2804 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2805 if (!dst_cset)
2806 return -ENOMEM;
2807
2808 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2809
2810 /*
2811 * If src cset equals dst, it's noop. Drop the src.
2812 * cgroup_migrate() will skip the cset too. Note that we
2813 * can't handle src == dst as some nodes are used by both.
2814 */
2815 if (src_cset == dst_cset) {
2816 src_cset->mg_src_cgrp = NULL;
2817 src_cset->mg_dst_cgrp = NULL;
2818 list_del_init(&src_cset->mg_src_preload_node);
2819 put_css_set(src_cset);
2820 put_css_set(dst_cset);
2821 continue;
2822 }
2823
2824 src_cset->mg_dst_cset = dst_cset;
2825
2826 if (list_empty(&dst_cset->mg_dst_preload_node))
2827 list_add_tail(&dst_cset->mg_dst_preload_node,
2828 &mgctx->preloaded_dst_csets);
2829 else
2830 put_css_set(dst_cset);
2831
2832 for_each_subsys(ss, ssid)
2833 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2834 mgctx->ss_mask |= 1 << ssid;
2835 }
2836
2837 return 0;
2838 }
2839
2840 /**
2841 * cgroup_migrate - migrate a process or task to a cgroup
2842 * @leader: the leader of the process or the task to migrate
2843 * @threadgroup: whether @leader points to the whole process or a single task
2844 * @mgctx: migration context
2845 *
2846 * Migrate a process or task denoted by @leader. If migrating a process,
2847 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2848 * responsible for invoking cgroup_migrate_add_src() and
2849 * cgroup_migrate_prepare_dst() on the targets before invoking this
2850 * function and following up with cgroup_migrate_finish().
2851 *
2852 * As long as a controller's ->can_attach() doesn't fail, this function is
2853 * guaranteed to succeed. This means that, excluding ->can_attach()
2854 * failure, when migrating multiple targets, the success or failure can be
2855 * decided for all targets by invoking group_migrate_prepare_dst() before
2856 * actually starting migrating.
2857 */
cgroup_migrate(struct task_struct * leader,bool threadgroup,struct cgroup_mgctx * mgctx)2858 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2859 struct cgroup_mgctx *mgctx)
2860 {
2861 struct task_struct *task;
2862
2863 /*
2864 * The following thread iteration should be inside an RCU critical
2865 * section to prevent tasks from being freed while taking the snapshot.
2866 * spin_lock_irq() implies RCU critical section here.
2867 */
2868 spin_lock_irq(&css_set_lock);
2869 task = leader;
2870 do {
2871 cgroup_migrate_add_task(task, mgctx);
2872 if (!threadgroup)
2873 break;
2874 } while_each_thread(leader, task);
2875 spin_unlock_irq(&css_set_lock);
2876
2877 return cgroup_migrate_execute(mgctx);
2878 }
2879
2880 /**
2881 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2882 * @dst_cgrp: the cgroup to attach to
2883 * @leader: the task or the leader of the threadgroup to be attached
2884 * @threadgroup: attach the whole threadgroup?
2885 *
2886 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2887 */
cgroup_attach_task(struct cgroup * dst_cgrp,struct task_struct * leader,bool threadgroup)2888 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2889 bool threadgroup)
2890 {
2891 DEFINE_CGROUP_MGCTX(mgctx);
2892 struct task_struct *task;
2893 int ret = 0;
2894
2895 /* look up all src csets */
2896 spin_lock_irq(&css_set_lock);
2897 rcu_read_lock();
2898 task = leader;
2899 do {
2900 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2901 if (!threadgroup)
2902 break;
2903 } while_each_thread(leader, task);
2904 rcu_read_unlock();
2905 spin_unlock_irq(&css_set_lock);
2906
2907 /* prepare dst csets and commit */
2908 ret = cgroup_migrate_prepare_dst(&mgctx);
2909 if (!ret)
2910 ret = cgroup_migrate(leader, threadgroup, &mgctx);
2911
2912 cgroup_migrate_finish(&mgctx);
2913
2914 if (!ret)
2915 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2916
2917 return ret;
2918 }
2919
cgroup_procs_write_start(char * buf,bool threadgroup,bool * threadgroup_locked)2920 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2921 bool *threadgroup_locked)
2922 {
2923 struct task_struct *tsk;
2924 pid_t pid;
2925
2926 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2927 return ERR_PTR(-EINVAL);
2928
2929 /*
2930 * If we migrate a single thread, we don't care about threadgroup
2931 * stability. If the thread is `current`, it won't exit(2) under our
2932 * hands or change PID through exec(2). We exclude
2933 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2934 * callers by cgroup_mutex.
2935 * Therefore, we can skip the global lock.
2936 */
2937 lockdep_assert_held(&cgroup_mutex);
2938 *threadgroup_locked = pid || threadgroup;
2939 cgroup_attach_lock(*threadgroup_locked);
2940
2941 rcu_read_lock();
2942 if (pid) {
2943 tsk = find_task_by_vpid(pid);
2944 if (!tsk) {
2945 tsk = ERR_PTR(-ESRCH);
2946 goto out_unlock_threadgroup;
2947 }
2948 } else {
2949 tsk = current;
2950 }
2951
2952 if (threadgroup)
2953 tsk = tsk->group_leader;
2954
2955 /*
2956 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2957 * If userland migrates such a kthread to a non-root cgroup, it can
2958 * become trapped in a cpuset, or RT kthread may be born in a
2959 * cgroup with no rt_runtime allocated. Just say no.
2960 */
2961 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2962 tsk = ERR_PTR(-EINVAL);
2963 goto out_unlock_threadgroup;
2964 }
2965
2966 get_task_struct(tsk);
2967 goto out_unlock_rcu;
2968
2969 out_unlock_threadgroup:
2970 cgroup_attach_unlock(*threadgroup_locked);
2971 *threadgroup_locked = false;
2972 out_unlock_rcu:
2973 rcu_read_unlock();
2974 return tsk;
2975 }
2976
cgroup_procs_write_finish(struct task_struct * task,bool threadgroup_locked)2977 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked)
2978 {
2979 struct cgroup_subsys *ss;
2980 int ssid;
2981
2982 /* release reference from cgroup_procs_write_start() */
2983 put_task_struct(task);
2984
2985 cgroup_attach_unlock(threadgroup_locked);
2986
2987 for_each_subsys(ss, ssid)
2988 if (ss->post_attach)
2989 ss->post_attach();
2990 }
2991
cgroup_print_ss_mask(struct seq_file * seq,u16 ss_mask)2992 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2993 {
2994 struct cgroup_subsys *ss;
2995 bool printed = false;
2996 int ssid;
2997
2998 do_each_subsys_mask(ss, ssid, ss_mask) {
2999 if (printed)
3000 seq_putc(seq, ' ');
3001 seq_puts(seq, ss->name);
3002 printed = true;
3003 } while_each_subsys_mask();
3004 if (printed)
3005 seq_putc(seq, '\n');
3006 }
3007
3008 /* show controllers which are enabled from the parent */
cgroup_controllers_show(struct seq_file * seq,void * v)3009 static int cgroup_controllers_show(struct seq_file *seq, void *v)
3010 {
3011 struct cgroup *cgrp = seq_css(seq)->cgroup;
3012
3013 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
3014 return 0;
3015 }
3016
3017 /* show controllers which are enabled for a given cgroup's children */
cgroup_subtree_control_show(struct seq_file * seq,void * v)3018 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
3019 {
3020 struct cgroup *cgrp = seq_css(seq)->cgroup;
3021
3022 cgroup_print_ss_mask(seq, cgrp->subtree_control);
3023 return 0;
3024 }
3025
3026 /**
3027 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3028 * @cgrp: root of the subtree to update csses for
3029 *
3030 * @cgrp's control masks have changed and its subtree's css associations
3031 * need to be updated accordingly. This function looks up all css_sets
3032 * which are attached to the subtree, creates the matching updated css_sets
3033 * and migrates the tasks to the new ones.
3034 */
cgroup_update_dfl_csses(struct cgroup * cgrp)3035 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3036 {
3037 DEFINE_CGROUP_MGCTX(mgctx);
3038 struct cgroup_subsys_state *d_css;
3039 struct cgroup *dsct;
3040 struct css_set *src_cset;
3041 bool has_tasks;
3042 int ret;
3043
3044 lockdep_assert_held(&cgroup_mutex);
3045
3046 /* look up all csses currently attached to @cgrp's subtree */
3047 spin_lock_irq(&css_set_lock);
3048 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3049 struct cgrp_cset_link *link;
3050
3051 /*
3052 * As cgroup_update_dfl_csses() is only called by
3053 * cgroup_apply_control(). The csses associated with the
3054 * given cgrp will not be affected by changes made to
3055 * its subtree_control file. We can skip them.
3056 */
3057 if (dsct == cgrp)
3058 continue;
3059
3060 list_for_each_entry(link, &dsct->cset_links, cset_link)
3061 cgroup_migrate_add_src(link->cset, dsct, &mgctx);
3062 }
3063 spin_unlock_irq(&css_set_lock);
3064
3065 /*
3066 * We need to write-lock threadgroup_rwsem while migrating tasks.
3067 * However, if there are no source csets for @cgrp, changing its
3068 * controllers isn't gonna produce any task migrations and the
3069 * write-locking can be skipped safely.
3070 */
3071 has_tasks = !list_empty(&mgctx.preloaded_src_csets);
3072 cgroup_attach_lock(has_tasks);
3073
3074 /* NULL dst indicates self on default hierarchy */
3075 ret = cgroup_migrate_prepare_dst(&mgctx);
3076 if (ret)
3077 goto out_finish;
3078
3079 spin_lock_irq(&css_set_lock);
3080 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets,
3081 mg_src_preload_node) {
3082 struct task_struct *task, *ntask;
3083
3084 /* all tasks in src_csets need to be migrated */
3085 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3086 cgroup_migrate_add_task(task, &mgctx);
3087 }
3088 spin_unlock_irq(&css_set_lock);
3089
3090 ret = cgroup_migrate_execute(&mgctx);
3091 out_finish:
3092 cgroup_migrate_finish(&mgctx);
3093 cgroup_attach_unlock(has_tasks);
3094 return ret;
3095 }
3096
3097 /**
3098 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3099 * @cgrp: root of the target subtree
3100 *
3101 * Because css offlining is asynchronous, userland may try to re-enable a
3102 * controller while the previous css is still around. This function grabs
3103 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3104 */
cgroup_lock_and_drain_offline(struct cgroup * cgrp)3105 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3106 __acquires(&cgroup_mutex)
3107 {
3108 struct cgroup *dsct;
3109 struct cgroup_subsys_state *d_css;
3110 struct cgroup_subsys *ss;
3111 int ssid;
3112
3113 restart:
3114 cgroup_lock();
3115
3116 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3117 for_each_subsys(ss, ssid) {
3118 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3119 DEFINE_WAIT(wait);
3120
3121 if (!css || !percpu_ref_is_dying(&css->refcnt))
3122 continue;
3123
3124 cgroup_get_live(dsct);
3125 prepare_to_wait(&dsct->offline_waitq, &wait,
3126 TASK_UNINTERRUPTIBLE);
3127
3128 cgroup_unlock();
3129 schedule();
3130 finish_wait(&dsct->offline_waitq, &wait);
3131
3132 cgroup_put(dsct);
3133 goto restart;
3134 }
3135 }
3136 }
3137
3138 /**
3139 * cgroup_save_control - save control masks and dom_cgrp of a subtree
3140 * @cgrp: root of the target subtree
3141 *
3142 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3143 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3144 * itself.
3145 */
cgroup_save_control(struct cgroup * cgrp)3146 static void cgroup_save_control(struct cgroup *cgrp)
3147 {
3148 struct cgroup *dsct;
3149 struct cgroup_subsys_state *d_css;
3150
3151 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3152 dsct->old_subtree_control = dsct->subtree_control;
3153 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3154 dsct->old_dom_cgrp = dsct->dom_cgrp;
3155 }
3156 }
3157
3158 /**
3159 * cgroup_propagate_control - refresh control masks of a subtree
3160 * @cgrp: root of the target subtree
3161 *
3162 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3163 * ->subtree_control and propagate controller availability through the
3164 * subtree so that descendants don't have unavailable controllers enabled.
3165 */
cgroup_propagate_control(struct cgroup * cgrp)3166 static void cgroup_propagate_control(struct cgroup *cgrp)
3167 {
3168 struct cgroup *dsct;
3169 struct cgroup_subsys_state *d_css;
3170
3171 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3172 dsct->subtree_control &= cgroup_control(dsct);
3173 dsct->subtree_ss_mask =
3174 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3175 cgroup_ss_mask(dsct));
3176 }
3177 }
3178
3179 /**
3180 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3181 * @cgrp: root of the target subtree
3182 *
3183 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3184 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3185 * itself.
3186 */
cgroup_restore_control(struct cgroup * cgrp)3187 static void cgroup_restore_control(struct cgroup *cgrp)
3188 {
3189 struct cgroup *dsct;
3190 struct cgroup_subsys_state *d_css;
3191
3192 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3193 dsct->subtree_control = dsct->old_subtree_control;
3194 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3195 dsct->dom_cgrp = dsct->old_dom_cgrp;
3196 }
3197 }
3198
css_visible(struct cgroup_subsys_state * css)3199 static bool css_visible(struct cgroup_subsys_state *css)
3200 {
3201 struct cgroup_subsys *ss = css->ss;
3202 struct cgroup *cgrp = css->cgroup;
3203
3204 if (cgroup_control(cgrp) & (1 << ss->id))
3205 return true;
3206 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3207 return false;
3208 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3209 }
3210
3211 /**
3212 * cgroup_apply_control_enable - enable or show csses according to control
3213 * @cgrp: root of the target subtree
3214 *
3215 * Walk @cgrp's subtree and create new csses or make the existing ones
3216 * visible. A css is created invisible if it's being implicitly enabled
3217 * through dependency. An invisible css is made visible when the userland
3218 * explicitly enables it.
3219 *
3220 * Returns 0 on success, -errno on failure. On failure, csses which have
3221 * been processed already aren't cleaned up. The caller is responsible for
3222 * cleaning up with cgroup_apply_control_disable().
3223 */
cgroup_apply_control_enable(struct cgroup * cgrp)3224 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3225 {
3226 struct cgroup *dsct;
3227 struct cgroup_subsys_state *d_css;
3228 struct cgroup_subsys *ss;
3229 int ssid, ret;
3230
3231 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3232 for_each_subsys(ss, ssid) {
3233 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3234
3235 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3236 continue;
3237
3238 if (!css) {
3239 css = css_create(dsct, ss);
3240 if (IS_ERR(css))
3241 return PTR_ERR(css);
3242 }
3243
3244 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3245
3246 if (css_visible(css)) {
3247 ret = css_populate_dir(css);
3248 if (ret)
3249 return ret;
3250 }
3251 }
3252 }
3253
3254 return 0;
3255 }
3256
3257 /**
3258 * cgroup_apply_control_disable - kill or hide csses according to control
3259 * @cgrp: root of the target subtree
3260 *
3261 * Walk @cgrp's subtree and kill and hide csses so that they match
3262 * cgroup_ss_mask() and cgroup_visible_mask().
3263 *
3264 * A css is hidden when the userland requests it to be disabled while other
3265 * subsystems are still depending on it. The css must not actively control
3266 * resources and be in the vanilla state if it's made visible again later.
3267 * Controllers which may be depended upon should provide ->css_reset() for
3268 * this purpose.
3269 */
cgroup_apply_control_disable(struct cgroup * cgrp)3270 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3271 {
3272 struct cgroup *dsct;
3273 struct cgroup_subsys_state *d_css;
3274 struct cgroup_subsys *ss;
3275 int ssid;
3276
3277 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3278 for_each_subsys(ss, ssid) {
3279 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3280
3281 if (!css)
3282 continue;
3283
3284 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3285
3286 if (css->parent &&
3287 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3288 kill_css(css);
3289 } else if (!css_visible(css)) {
3290 css_clear_dir(css);
3291 if (ss->css_reset)
3292 ss->css_reset(css);
3293 }
3294 }
3295 }
3296 }
3297
3298 /**
3299 * cgroup_apply_control - apply control mask updates to the subtree
3300 * @cgrp: root of the target subtree
3301 *
3302 * subsystems can be enabled and disabled in a subtree using the following
3303 * steps.
3304 *
3305 * 1. Call cgroup_save_control() to stash the current state.
3306 * 2. Update ->subtree_control masks in the subtree as desired.
3307 * 3. Call cgroup_apply_control() to apply the changes.
3308 * 4. Optionally perform other related operations.
3309 * 5. Call cgroup_finalize_control() to finish up.
3310 *
3311 * This function implements step 3 and propagates the mask changes
3312 * throughout @cgrp's subtree, updates csses accordingly and perform
3313 * process migrations.
3314 */
cgroup_apply_control(struct cgroup * cgrp)3315 static int cgroup_apply_control(struct cgroup *cgrp)
3316 {
3317 int ret;
3318
3319 cgroup_propagate_control(cgrp);
3320
3321 ret = cgroup_apply_control_enable(cgrp);
3322 if (ret)
3323 return ret;
3324
3325 /*
3326 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3327 * making the following cgroup_update_dfl_csses() properly update
3328 * css associations of all tasks in the subtree.
3329 */
3330 return cgroup_update_dfl_csses(cgrp);
3331 }
3332
3333 /**
3334 * cgroup_finalize_control - finalize control mask update
3335 * @cgrp: root of the target subtree
3336 * @ret: the result of the update
3337 *
3338 * Finalize control mask update. See cgroup_apply_control() for more info.
3339 */
cgroup_finalize_control(struct cgroup * cgrp,int ret)3340 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3341 {
3342 if (ret) {
3343 cgroup_restore_control(cgrp);
3344 cgroup_propagate_control(cgrp);
3345 }
3346
3347 cgroup_apply_control_disable(cgrp);
3348 }
3349
cgroup_vet_subtree_control_enable(struct cgroup * cgrp,u16 enable)3350 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3351 {
3352 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3353
3354 /* if nothing is getting enabled, nothing to worry about */
3355 if (!enable)
3356 return 0;
3357
3358 /* can @cgrp host any resources? */
3359 if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3360 return -EOPNOTSUPP;
3361
3362 /* mixables don't care */
3363 if (cgroup_is_mixable(cgrp))
3364 return 0;
3365
3366 if (domain_enable) {
3367 /* can't enable domain controllers inside a thread subtree */
3368 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3369 return -EOPNOTSUPP;
3370 } else {
3371 /*
3372 * Threaded controllers can handle internal competitions
3373 * and are always allowed inside a (prospective) thread
3374 * subtree.
3375 */
3376 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3377 return 0;
3378 }
3379
3380 /*
3381 * Controllers can't be enabled for a cgroup with tasks to avoid
3382 * child cgroups competing against tasks.
3383 */
3384 if (cgroup_has_tasks(cgrp))
3385 return -EBUSY;
3386
3387 return 0;
3388 }
3389
3390 /* change the enabled child controllers for a cgroup in the default hierarchy */
cgroup_subtree_control_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3391 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3392 char *buf, size_t nbytes,
3393 loff_t off)
3394 {
3395 u16 enable = 0, disable = 0;
3396 struct cgroup *cgrp, *child;
3397 struct cgroup_subsys *ss;
3398 char *tok;
3399 int ssid, ret;
3400
3401 /*
3402 * Parse input - space separated list of subsystem names prefixed
3403 * with either + or -.
3404 */
3405 buf = strstrip(buf);
3406 while ((tok = strsep(&buf, " "))) {
3407 if (tok[0] == '\0')
3408 continue;
3409 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3410 if (!cgroup_ssid_enabled(ssid) ||
3411 strcmp(tok + 1, ss->name))
3412 continue;
3413
3414 if (*tok == '+') {
3415 enable |= 1 << ssid;
3416 disable &= ~(1 << ssid);
3417 } else if (*tok == '-') {
3418 disable |= 1 << ssid;
3419 enable &= ~(1 << ssid);
3420 } else {
3421 return -EINVAL;
3422 }
3423 break;
3424 } while_each_subsys_mask();
3425 if (ssid == CGROUP_SUBSYS_COUNT)
3426 return -EINVAL;
3427 }
3428
3429 cgrp = cgroup_kn_lock_live(of->kn, true);
3430 if (!cgrp)
3431 return -ENODEV;
3432
3433 for_each_subsys(ss, ssid) {
3434 if (enable & (1 << ssid)) {
3435 if (cgrp->subtree_control & (1 << ssid)) {
3436 enable &= ~(1 << ssid);
3437 continue;
3438 }
3439
3440 if (!(cgroup_control(cgrp) & (1 << ssid))) {
3441 ret = -ENOENT;
3442 goto out_unlock;
3443 }
3444 } else if (disable & (1 << ssid)) {
3445 if (!(cgrp->subtree_control & (1 << ssid))) {
3446 disable &= ~(1 << ssid);
3447 continue;
3448 }
3449
3450 /* a child has it enabled? */
3451 cgroup_for_each_live_child(child, cgrp) {
3452 if (child->subtree_control & (1 << ssid)) {
3453 ret = -EBUSY;
3454 goto out_unlock;
3455 }
3456 }
3457 }
3458 }
3459
3460 if (!enable && !disable) {
3461 ret = 0;
3462 goto out_unlock;
3463 }
3464
3465 ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3466 if (ret)
3467 goto out_unlock;
3468
3469 /* save and update control masks and prepare csses */
3470 cgroup_save_control(cgrp);
3471
3472 cgrp->subtree_control |= enable;
3473 cgrp->subtree_control &= ~disable;
3474
3475 ret = cgroup_apply_control(cgrp);
3476 cgroup_finalize_control(cgrp, ret);
3477 if (ret)
3478 goto out_unlock;
3479
3480 kernfs_activate(cgrp->kn);
3481 out_unlock:
3482 cgroup_kn_unlock(of->kn);
3483 return ret ?: nbytes;
3484 }
3485
3486 /**
3487 * cgroup_enable_threaded - make @cgrp threaded
3488 * @cgrp: the target cgroup
3489 *
3490 * Called when "threaded" is written to the cgroup.type interface file and
3491 * tries to make @cgrp threaded and join the parent's resource domain.
3492 * This function is never called on the root cgroup as cgroup.type doesn't
3493 * exist on it.
3494 */
cgroup_enable_threaded(struct cgroup * cgrp)3495 static int cgroup_enable_threaded(struct cgroup *cgrp)
3496 {
3497 struct cgroup *parent = cgroup_parent(cgrp);
3498 struct cgroup *dom_cgrp = parent->dom_cgrp;
3499 struct cgroup *dsct;
3500 struct cgroup_subsys_state *d_css;
3501 int ret;
3502
3503 lockdep_assert_held(&cgroup_mutex);
3504
3505 /* noop if already threaded */
3506 if (cgroup_is_threaded(cgrp))
3507 return 0;
3508
3509 /*
3510 * If @cgroup is populated or has domain controllers enabled, it
3511 * can't be switched. While the below cgroup_can_be_thread_root()
3512 * test can catch the same conditions, that's only when @parent is
3513 * not mixable, so let's check it explicitly.
3514 */
3515 if (cgroup_is_populated(cgrp) ||
3516 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3517 return -EOPNOTSUPP;
3518
3519 /* we're joining the parent's domain, ensure its validity */
3520 if (!cgroup_is_valid_domain(dom_cgrp) ||
3521 !cgroup_can_be_thread_root(dom_cgrp))
3522 return -EOPNOTSUPP;
3523
3524 /*
3525 * The following shouldn't cause actual migrations and should
3526 * always succeed.
3527 */
3528 cgroup_save_control(cgrp);
3529
3530 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3531 if (dsct == cgrp || cgroup_is_threaded(dsct))
3532 dsct->dom_cgrp = dom_cgrp;
3533
3534 ret = cgroup_apply_control(cgrp);
3535 if (!ret)
3536 parent->nr_threaded_children++;
3537
3538 cgroup_finalize_control(cgrp, ret);
3539 return ret;
3540 }
3541
cgroup_type_show(struct seq_file * seq,void * v)3542 static int cgroup_type_show(struct seq_file *seq, void *v)
3543 {
3544 struct cgroup *cgrp = seq_css(seq)->cgroup;
3545
3546 if (cgroup_is_threaded(cgrp))
3547 seq_puts(seq, "threaded\n");
3548 else if (!cgroup_is_valid_domain(cgrp))
3549 seq_puts(seq, "domain invalid\n");
3550 else if (cgroup_is_thread_root(cgrp))
3551 seq_puts(seq, "domain threaded\n");
3552 else
3553 seq_puts(seq, "domain\n");
3554
3555 return 0;
3556 }
3557
cgroup_type_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3558 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3559 size_t nbytes, loff_t off)
3560 {
3561 struct cgroup *cgrp;
3562 int ret;
3563
3564 /* only switching to threaded mode is supported */
3565 if (strcmp(strstrip(buf), "threaded"))
3566 return -EINVAL;
3567
3568 /* drain dying csses before we re-apply (threaded) subtree control */
3569 cgrp = cgroup_kn_lock_live(of->kn, true);
3570 if (!cgrp)
3571 return -ENOENT;
3572
3573 /* threaded can only be enabled */
3574 ret = cgroup_enable_threaded(cgrp);
3575
3576 cgroup_kn_unlock(of->kn);
3577 return ret ?: nbytes;
3578 }
3579
cgroup_max_descendants_show(struct seq_file * seq,void * v)3580 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3581 {
3582 struct cgroup *cgrp = seq_css(seq)->cgroup;
3583 int descendants = READ_ONCE(cgrp->max_descendants);
3584
3585 if (descendants == INT_MAX)
3586 seq_puts(seq, "max\n");
3587 else
3588 seq_printf(seq, "%d\n", descendants);
3589
3590 return 0;
3591 }
3592
cgroup_max_descendants_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3593 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3594 char *buf, size_t nbytes, loff_t off)
3595 {
3596 struct cgroup *cgrp;
3597 int descendants;
3598 ssize_t ret;
3599
3600 buf = strstrip(buf);
3601 if (!strcmp(buf, "max")) {
3602 descendants = INT_MAX;
3603 } else {
3604 ret = kstrtoint(buf, 0, &descendants);
3605 if (ret)
3606 return ret;
3607 }
3608
3609 if (descendants < 0)
3610 return -ERANGE;
3611
3612 cgrp = cgroup_kn_lock_live(of->kn, false);
3613 if (!cgrp)
3614 return -ENOENT;
3615
3616 cgrp->max_descendants = descendants;
3617
3618 cgroup_kn_unlock(of->kn);
3619
3620 return nbytes;
3621 }
3622
cgroup_max_depth_show(struct seq_file * seq,void * v)3623 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3624 {
3625 struct cgroup *cgrp = seq_css(seq)->cgroup;
3626 int depth = READ_ONCE(cgrp->max_depth);
3627
3628 if (depth == INT_MAX)
3629 seq_puts(seq, "max\n");
3630 else
3631 seq_printf(seq, "%d\n", depth);
3632
3633 return 0;
3634 }
3635
cgroup_max_depth_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3636 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3637 char *buf, size_t nbytes, loff_t off)
3638 {
3639 struct cgroup *cgrp;
3640 ssize_t ret;
3641 int depth;
3642
3643 buf = strstrip(buf);
3644 if (!strcmp(buf, "max")) {
3645 depth = INT_MAX;
3646 } else {
3647 ret = kstrtoint(buf, 0, &depth);
3648 if (ret)
3649 return ret;
3650 }
3651
3652 if (depth < 0)
3653 return -ERANGE;
3654
3655 cgrp = cgroup_kn_lock_live(of->kn, false);
3656 if (!cgrp)
3657 return -ENOENT;
3658
3659 cgrp->max_depth = depth;
3660
3661 cgroup_kn_unlock(of->kn);
3662
3663 return nbytes;
3664 }
3665
cgroup_events_show(struct seq_file * seq,void * v)3666 static int cgroup_events_show(struct seq_file *seq, void *v)
3667 {
3668 struct cgroup *cgrp = seq_css(seq)->cgroup;
3669
3670 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3671 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3672
3673 return 0;
3674 }
3675
cgroup_stat_show(struct seq_file * seq,void * v)3676 static int cgroup_stat_show(struct seq_file *seq, void *v)
3677 {
3678 struct cgroup *cgroup = seq_css(seq)->cgroup;
3679 struct cgroup_subsys_state *css;
3680 int dying_cnt[CGROUP_SUBSYS_COUNT];
3681 int ssid;
3682
3683 seq_printf(seq, "nr_descendants %d\n",
3684 cgroup->nr_descendants);
3685
3686 /*
3687 * Show the number of live and dying csses associated with each of
3688 * non-inhibited cgroup subsystems that is bound to cgroup v2.
3689 *
3690 * Without proper lock protection, racing is possible. So the
3691 * numbers may not be consistent when that happens.
3692 */
3693 rcu_read_lock();
3694 for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) {
3695 dying_cnt[ssid] = -1;
3696 if ((BIT(ssid) & cgrp_dfl_inhibit_ss_mask) ||
3697 (cgroup_subsys[ssid]->root != &cgrp_dfl_root))
3698 continue;
3699 css = rcu_dereference_raw(cgroup->subsys[ssid]);
3700 dying_cnt[ssid] = cgroup->nr_dying_subsys[ssid];
3701 seq_printf(seq, "nr_subsys_%s %d\n", cgroup_subsys[ssid]->name,
3702 css ? (css->nr_descendants + 1) : 0);
3703 }
3704
3705 seq_printf(seq, "nr_dying_descendants %d\n",
3706 cgroup->nr_dying_descendants);
3707 for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) {
3708 if (dying_cnt[ssid] >= 0)
3709 seq_printf(seq, "nr_dying_subsys_%s %d\n",
3710 cgroup_subsys[ssid]->name, dying_cnt[ssid]);
3711 }
3712 rcu_read_unlock();
3713 return 0;
3714 }
3715
3716 #ifdef CONFIG_CGROUP_SCHED
3717 /**
3718 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
3719 * @cgrp: the cgroup of interest
3720 * @ss: the subsystem of interest
3721 *
3722 * Find and get @cgrp's css associated with @ss. If the css doesn't exist
3723 * or is offline, %NULL is returned.
3724 */
cgroup_tryget_css(struct cgroup * cgrp,struct cgroup_subsys * ss)3725 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
3726 struct cgroup_subsys *ss)
3727 {
3728 struct cgroup_subsys_state *css;
3729
3730 rcu_read_lock();
3731 css = cgroup_css(cgrp, ss);
3732 if (css && !css_tryget_online(css))
3733 css = NULL;
3734 rcu_read_unlock();
3735
3736 return css;
3737 }
3738
cgroup_extra_stat_show(struct seq_file * seq,int ssid)3739 static int cgroup_extra_stat_show(struct seq_file *seq, int ssid)
3740 {
3741 struct cgroup *cgrp = seq_css(seq)->cgroup;
3742 struct cgroup_subsys *ss = cgroup_subsys[ssid];
3743 struct cgroup_subsys_state *css;
3744 int ret;
3745
3746 if (!ss->css_extra_stat_show)
3747 return 0;
3748
3749 css = cgroup_tryget_css(cgrp, ss);
3750 if (!css)
3751 return 0;
3752
3753 ret = ss->css_extra_stat_show(seq, css);
3754 css_put(css);
3755 return ret;
3756 }
3757
cgroup_local_stat_show(struct seq_file * seq,struct cgroup * cgrp,int ssid)3758 static int cgroup_local_stat_show(struct seq_file *seq,
3759 struct cgroup *cgrp, int ssid)
3760 {
3761 struct cgroup_subsys *ss = cgroup_subsys[ssid];
3762 struct cgroup_subsys_state *css;
3763 int ret;
3764
3765 if (!ss->css_local_stat_show)
3766 return 0;
3767
3768 css = cgroup_tryget_css(cgrp, ss);
3769 if (!css)
3770 return 0;
3771
3772 ret = ss->css_local_stat_show(seq, css);
3773 css_put(css);
3774 return ret;
3775 }
3776 #endif
3777
cpu_stat_show(struct seq_file * seq,void * v)3778 static int cpu_stat_show(struct seq_file *seq, void *v)
3779 {
3780 int ret = 0;
3781
3782 cgroup_base_stat_cputime_show(seq);
3783 #ifdef CONFIG_CGROUP_SCHED
3784 ret = cgroup_extra_stat_show(seq, cpu_cgrp_id);
3785 #endif
3786 return ret;
3787 }
3788
cpu_local_stat_show(struct seq_file * seq,void * v)3789 static int cpu_local_stat_show(struct seq_file *seq, void *v)
3790 {
3791 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3792 int ret = 0;
3793
3794 #ifdef CONFIG_CGROUP_SCHED
3795 ret = cgroup_local_stat_show(seq, cgrp, cpu_cgrp_id);
3796 #endif
3797 return ret;
3798 }
3799
3800 #ifdef CONFIG_PSI
cgroup_io_pressure_show(struct seq_file * seq,void * v)3801 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3802 {
3803 struct cgroup *cgrp = seq_css(seq)->cgroup;
3804 struct psi_group *psi = cgroup_psi(cgrp);
3805
3806 return psi_show(seq, psi, PSI_IO);
3807 }
cgroup_memory_pressure_show(struct seq_file * seq,void * v)3808 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3809 {
3810 struct cgroup *cgrp = seq_css(seq)->cgroup;
3811 struct psi_group *psi = cgroup_psi(cgrp);
3812
3813 return psi_show(seq, psi, PSI_MEM);
3814 }
cgroup_cpu_pressure_show(struct seq_file * seq,void * v)3815 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3816 {
3817 struct cgroup *cgrp = seq_css(seq)->cgroup;
3818 struct psi_group *psi = cgroup_psi(cgrp);
3819
3820 return psi_show(seq, psi, PSI_CPU);
3821 }
3822
pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,enum psi_res res)3823 static ssize_t pressure_write(struct kernfs_open_file *of, char *buf,
3824 size_t nbytes, enum psi_res res)
3825 {
3826 struct cgroup_file_ctx *ctx = of->priv;
3827 struct psi_trigger *new;
3828 struct cgroup *cgrp;
3829 struct psi_group *psi;
3830
3831 cgrp = cgroup_kn_lock_live(of->kn, false);
3832 if (!cgrp)
3833 return -ENODEV;
3834
3835 cgroup_get(cgrp);
3836 cgroup_kn_unlock(of->kn);
3837
3838 /* Allow only one trigger per file descriptor */
3839 if (ctx->psi.trigger) {
3840 cgroup_put(cgrp);
3841 return -EBUSY;
3842 }
3843
3844 psi = cgroup_psi(cgrp);
3845 new = psi_trigger_create(psi, buf, res, of->file, of);
3846 if (IS_ERR(new)) {
3847 cgroup_put(cgrp);
3848 return PTR_ERR(new);
3849 }
3850
3851 smp_store_release(&ctx->psi.trigger, new);
3852 cgroup_put(cgrp);
3853
3854 return nbytes;
3855 }
3856
cgroup_io_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3857 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3858 char *buf, size_t nbytes,
3859 loff_t off)
3860 {
3861 return pressure_write(of, buf, nbytes, PSI_IO);
3862 }
3863
cgroup_memory_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3864 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3865 char *buf, size_t nbytes,
3866 loff_t off)
3867 {
3868 return pressure_write(of, buf, nbytes, PSI_MEM);
3869 }
3870
cgroup_cpu_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3871 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3872 char *buf, size_t nbytes,
3873 loff_t off)
3874 {
3875 return pressure_write(of, buf, nbytes, PSI_CPU);
3876 }
3877
3878 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
cgroup_irq_pressure_show(struct seq_file * seq,void * v)3879 static int cgroup_irq_pressure_show(struct seq_file *seq, void *v)
3880 {
3881 struct cgroup *cgrp = seq_css(seq)->cgroup;
3882 struct psi_group *psi = cgroup_psi(cgrp);
3883
3884 return psi_show(seq, psi, PSI_IRQ);
3885 }
3886
cgroup_irq_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3887 static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of,
3888 char *buf, size_t nbytes,
3889 loff_t off)
3890 {
3891 return pressure_write(of, buf, nbytes, PSI_IRQ);
3892 }
3893 #endif
3894
cgroup_pressure_show(struct seq_file * seq,void * v)3895 static int cgroup_pressure_show(struct seq_file *seq, void *v)
3896 {
3897 struct cgroup *cgrp = seq_css(seq)->cgroup;
3898 struct psi_group *psi = cgroup_psi(cgrp);
3899
3900 seq_printf(seq, "%d\n", psi->enabled);
3901
3902 return 0;
3903 }
3904
cgroup_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3905 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of,
3906 char *buf, size_t nbytes,
3907 loff_t off)
3908 {
3909 ssize_t ret;
3910 int enable;
3911 struct cgroup *cgrp;
3912 struct psi_group *psi;
3913
3914 ret = kstrtoint(strstrip(buf), 0, &enable);
3915 if (ret)
3916 return ret;
3917
3918 if (enable < 0 || enable > 1)
3919 return -ERANGE;
3920
3921 cgrp = cgroup_kn_lock_live(of->kn, false);
3922 if (!cgrp)
3923 return -ENOENT;
3924
3925 psi = cgroup_psi(cgrp);
3926 if (psi->enabled != enable) {
3927 int i;
3928
3929 /* show or hide {cpu,memory,io,irq}.pressure files */
3930 for (i = 0; i < NR_PSI_RESOURCES; i++)
3931 cgroup_file_show(&cgrp->psi_files[i], enable);
3932
3933 psi->enabled = enable;
3934 if (enable)
3935 psi_cgroup_restart(psi);
3936 }
3937
3938 cgroup_kn_unlock(of->kn);
3939
3940 return nbytes;
3941 }
3942
cgroup_pressure_poll(struct kernfs_open_file * of,poll_table * pt)3943 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3944 poll_table *pt)
3945 {
3946 struct cgroup_file_ctx *ctx = of->priv;
3947
3948 return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
3949 }
3950
cgroup_pressure_release(struct kernfs_open_file * of)3951 static void cgroup_pressure_release(struct kernfs_open_file *of)
3952 {
3953 struct cgroup_file_ctx *ctx = of->priv;
3954
3955 psi_trigger_destroy(ctx->psi.trigger);
3956 }
3957
cgroup_psi_enabled(void)3958 bool cgroup_psi_enabled(void)
3959 {
3960 if (static_branch_likely(&psi_disabled))
3961 return false;
3962
3963 return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
3964 }
3965
3966 #else /* CONFIG_PSI */
cgroup_psi_enabled(void)3967 bool cgroup_psi_enabled(void)
3968 {
3969 return false;
3970 }
3971
3972 #endif /* CONFIG_PSI */
3973
cgroup_freeze_show(struct seq_file * seq,void * v)3974 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3975 {
3976 struct cgroup *cgrp = seq_css(seq)->cgroup;
3977
3978 seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3979
3980 return 0;
3981 }
3982
cgroup_freeze_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3983 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3984 char *buf, size_t nbytes, loff_t off)
3985 {
3986 struct cgroup *cgrp;
3987 ssize_t ret;
3988 int freeze;
3989
3990 ret = kstrtoint(strstrip(buf), 0, &freeze);
3991 if (ret)
3992 return ret;
3993
3994 if (freeze < 0 || freeze > 1)
3995 return -ERANGE;
3996
3997 cgrp = cgroup_kn_lock_live(of->kn, false);
3998 if (!cgrp)
3999 return -ENOENT;
4000
4001 cgroup_freeze(cgrp, freeze);
4002
4003 cgroup_kn_unlock(of->kn);
4004
4005 return nbytes;
4006 }
4007
__cgroup_kill(struct cgroup * cgrp)4008 static void __cgroup_kill(struct cgroup *cgrp)
4009 {
4010 struct css_task_iter it;
4011 struct task_struct *task;
4012
4013 lockdep_assert_held(&cgroup_mutex);
4014
4015 spin_lock_irq(&css_set_lock);
4016 set_bit(CGRP_KILL, &cgrp->flags);
4017 spin_unlock_irq(&css_set_lock);
4018
4019 css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it);
4020 while ((task = css_task_iter_next(&it))) {
4021 /* Ignore kernel threads here. */
4022 if (task->flags & PF_KTHREAD)
4023 continue;
4024
4025 /* Skip tasks that are already dying. */
4026 if (__fatal_signal_pending(task))
4027 continue;
4028
4029 send_sig(SIGKILL, task, 0);
4030 }
4031 css_task_iter_end(&it);
4032
4033 spin_lock_irq(&css_set_lock);
4034 clear_bit(CGRP_KILL, &cgrp->flags);
4035 spin_unlock_irq(&css_set_lock);
4036 }
4037
cgroup_kill(struct cgroup * cgrp)4038 static void cgroup_kill(struct cgroup *cgrp)
4039 {
4040 struct cgroup_subsys_state *css;
4041 struct cgroup *dsct;
4042
4043 lockdep_assert_held(&cgroup_mutex);
4044
4045 cgroup_for_each_live_descendant_pre(dsct, css, cgrp)
4046 __cgroup_kill(dsct);
4047 }
4048
cgroup_kill_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4049 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf,
4050 size_t nbytes, loff_t off)
4051 {
4052 ssize_t ret = 0;
4053 int kill;
4054 struct cgroup *cgrp;
4055
4056 ret = kstrtoint(strstrip(buf), 0, &kill);
4057 if (ret)
4058 return ret;
4059
4060 if (kill != 1)
4061 return -ERANGE;
4062
4063 cgrp = cgroup_kn_lock_live(of->kn, false);
4064 if (!cgrp)
4065 return -ENOENT;
4066
4067 /*
4068 * Killing is a process directed operation, i.e. the whole thread-group
4069 * is taken down so act like we do for cgroup.procs and only make this
4070 * writable in non-threaded cgroups.
4071 */
4072 if (cgroup_is_threaded(cgrp))
4073 ret = -EOPNOTSUPP;
4074 else
4075 cgroup_kill(cgrp);
4076
4077 cgroup_kn_unlock(of->kn);
4078
4079 return ret ?: nbytes;
4080 }
4081
cgroup_file_open(struct kernfs_open_file * of)4082 static int cgroup_file_open(struct kernfs_open_file *of)
4083 {
4084 struct cftype *cft = of_cft(of);
4085 struct cgroup_file_ctx *ctx;
4086 int ret;
4087
4088 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
4089 if (!ctx)
4090 return -ENOMEM;
4091
4092 ctx->ns = current->nsproxy->cgroup_ns;
4093 get_cgroup_ns(ctx->ns);
4094 of->priv = ctx;
4095
4096 if (!cft->open)
4097 return 0;
4098
4099 ret = cft->open(of);
4100 if (ret) {
4101 put_cgroup_ns(ctx->ns);
4102 kfree(ctx);
4103 }
4104 return ret;
4105 }
4106
cgroup_file_release(struct kernfs_open_file * of)4107 static void cgroup_file_release(struct kernfs_open_file *of)
4108 {
4109 struct cftype *cft = of_cft(of);
4110 struct cgroup_file_ctx *ctx = of->priv;
4111
4112 if (cft->release)
4113 cft->release(of);
4114 put_cgroup_ns(ctx->ns);
4115 kfree(ctx);
4116 }
4117
cgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4118 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
4119 size_t nbytes, loff_t off)
4120 {
4121 struct cgroup_file_ctx *ctx = of->priv;
4122 struct cgroup *cgrp = of->kn->parent->priv;
4123 struct cftype *cft = of_cft(of);
4124 struct cgroup_subsys_state *css;
4125 int ret;
4126
4127 if (!nbytes)
4128 return 0;
4129
4130 /*
4131 * If namespaces are delegation boundaries, disallow writes to
4132 * files in an non-init namespace root from inside the namespace
4133 * except for the files explicitly marked delegatable -
4134 * eg. cgroup.procs, cgroup.threads and cgroup.subtree_control.
4135 */
4136 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
4137 !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
4138 ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
4139 return -EPERM;
4140
4141 if (cft->write)
4142 return cft->write(of, buf, nbytes, off);
4143
4144 /*
4145 * kernfs guarantees that a file isn't deleted with operations in
4146 * flight, which means that the matching css is and stays alive and
4147 * doesn't need to be pinned. The RCU locking is not necessary
4148 * either. It's just for the convenience of using cgroup_css().
4149 */
4150 rcu_read_lock();
4151 css = cgroup_css(cgrp, cft->ss);
4152 rcu_read_unlock();
4153
4154 if (cft->write_u64) {
4155 unsigned long long v;
4156 ret = kstrtoull(buf, 0, &v);
4157 if (!ret)
4158 ret = cft->write_u64(css, cft, v);
4159 } else if (cft->write_s64) {
4160 long long v;
4161 ret = kstrtoll(buf, 0, &v);
4162 if (!ret)
4163 ret = cft->write_s64(css, cft, v);
4164 } else {
4165 ret = -EINVAL;
4166 }
4167
4168 return ret ?: nbytes;
4169 }
4170
cgroup_file_poll(struct kernfs_open_file * of,poll_table * pt)4171 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
4172 {
4173 struct cftype *cft = of_cft(of);
4174
4175 if (cft->poll)
4176 return cft->poll(of, pt);
4177
4178 return kernfs_generic_poll(of, pt);
4179 }
4180
cgroup_seqfile_start(struct seq_file * seq,loff_t * ppos)4181 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
4182 {
4183 return seq_cft(seq)->seq_start(seq, ppos);
4184 }
4185
cgroup_seqfile_next(struct seq_file * seq,void * v,loff_t * ppos)4186 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
4187 {
4188 return seq_cft(seq)->seq_next(seq, v, ppos);
4189 }
4190
cgroup_seqfile_stop(struct seq_file * seq,void * v)4191 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
4192 {
4193 if (seq_cft(seq)->seq_stop)
4194 seq_cft(seq)->seq_stop(seq, v);
4195 }
4196
cgroup_seqfile_show(struct seq_file * m,void * arg)4197 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
4198 {
4199 struct cftype *cft = seq_cft(m);
4200 struct cgroup_subsys_state *css = seq_css(m);
4201
4202 if (cft->seq_show)
4203 return cft->seq_show(m, arg);
4204
4205 if (cft->read_u64)
4206 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
4207 else if (cft->read_s64)
4208 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
4209 else
4210 return -EINVAL;
4211 return 0;
4212 }
4213
4214 static struct kernfs_ops cgroup_kf_single_ops = {
4215 .atomic_write_len = PAGE_SIZE,
4216 .open = cgroup_file_open,
4217 .release = cgroup_file_release,
4218 .write = cgroup_file_write,
4219 .poll = cgroup_file_poll,
4220 .seq_show = cgroup_seqfile_show,
4221 };
4222
4223 static struct kernfs_ops cgroup_kf_ops = {
4224 .atomic_write_len = PAGE_SIZE,
4225 .open = cgroup_file_open,
4226 .release = cgroup_file_release,
4227 .write = cgroup_file_write,
4228 .poll = cgroup_file_poll,
4229 .seq_start = cgroup_seqfile_start,
4230 .seq_next = cgroup_seqfile_next,
4231 .seq_stop = cgroup_seqfile_stop,
4232 .seq_show = cgroup_seqfile_show,
4233 };
4234
cgroup_file_notify_timer(struct timer_list * timer)4235 static void cgroup_file_notify_timer(struct timer_list *timer)
4236 {
4237 cgroup_file_notify(container_of(timer, struct cgroup_file,
4238 notify_timer));
4239 }
4240
cgroup_add_file(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype * cft)4241 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
4242 struct cftype *cft)
4243 {
4244 char name[CGROUP_FILE_NAME_MAX];
4245 struct kernfs_node *kn;
4246 struct lock_class_key *key = NULL;
4247
4248 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4249 key = &cft->lockdep_key;
4250 #endif
4251 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
4252 cgroup_file_mode(cft),
4253 current_fsuid(), current_fsgid(),
4254 0, cft->kf_ops, cft,
4255 NULL, key);
4256 if (IS_ERR(kn))
4257 return PTR_ERR(kn);
4258
4259 if (cft->file_offset) {
4260 struct cgroup_file *cfile = (void *)css + cft->file_offset;
4261
4262 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
4263
4264 spin_lock_irq(&cgroup_file_kn_lock);
4265 cfile->kn = kn;
4266 spin_unlock_irq(&cgroup_file_kn_lock);
4267 }
4268
4269 return 0;
4270 }
4271
4272 /**
4273 * cgroup_addrm_files - add or remove files to a cgroup directory
4274 * @css: the target css
4275 * @cgrp: the target cgroup (usually css->cgroup)
4276 * @cfts: array of cftypes to be added
4277 * @is_add: whether to add or remove
4278 *
4279 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
4280 * For removals, this function never fails.
4281 */
cgroup_addrm_files(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype cfts[],bool is_add)4282 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
4283 struct cgroup *cgrp, struct cftype cfts[],
4284 bool is_add)
4285 {
4286 struct cftype *cft, *cft_end = NULL;
4287 int ret = 0;
4288
4289 lockdep_assert_held(&cgroup_mutex);
4290
4291 restart:
4292 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
4293 /* does cft->flags tell us to skip this file on @cgrp? */
4294 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
4295 continue;
4296 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
4297 continue;
4298 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
4299 continue;
4300 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
4301 continue;
4302 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4303 continue;
4304 if (is_add) {
4305 ret = cgroup_add_file(css, cgrp, cft);
4306 if (ret) {
4307 pr_warn("%s: failed to add %s, err=%d\n",
4308 __func__, cft->name, ret);
4309 cft_end = cft;
4310 is_add = false;
4311 goto restart;
4312 }
4313 } else {
4314 cgroup_rm_file(cgrp, cft);
4315 }
4316 }
4317 return ret;
4318 }
4319
cgroup_apply_cftypes(struct cftype * cfts,bool is_add)4320 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4321 {
4322 struct cgroup_subsys *ss = cfts[0].ss;
4323 struct cgroup *root = &ss->root->cgrp;
4324 struct cgroup_subsys_state *css;
4325 int ret = 0;
4326
4327 lockdep_assert_held(&cgroup_mutex);
4328
4329 /* add/rm files for all cgroups created before */
4330 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4331 struct cgroup *cgrp = css->cgroup;
4332
4333 if (!(css->flags & CSS_VISIBLE))
4334 continue;
4335
4336 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4337 if (ret)
4338 break;
4339 }
4340
4341 if (is_add && !ret)
4342 kernfs_activate(root->kn);
4343 return ret;
4344 }
4345
cgroup_exit_cftypes(struct cftype * cfts)4346 static void cgroup_exit_cftypes(struct cftype *cfts)
4347 {
4348 struct cftype *cft;
4349
4350 for (cft = cfts; cft->name[0] != '\0'; cft++) {
4351 /* free copy for custom atomic_write_len, see init_cftypes() */
4352 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4353 kfree(cft->kf_ops);
4354 cft->kf_ops = NULL;
4355 cft->ss = NULL;
4356
4357 /* revert flags set by cgroup core while adding @cfts */
4358 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL |
4359 __CFTYPE_ADDED);
4360 }
4361 }
4362
cgroup_init_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4363 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4364 {
4365 struct cftype *cft;
4366 int ret = 0;
4367
4368 for (cft = cfts; cft->name[0] != '\0'; cft++) {
4369 struct kernfs_ops *kf_ops;
4370
4371 WARN_ON(cft->ss || cft->kf_ops);
4372
4373 if (cft->flags & __CFTYPE_ADDED) {
4374 ret = -EBUSY;
4375 break;
4376 }
4377
4378 if (cft->seq_start)
4379 kf_ops = &cgroup_kf_ops;
4380 else
4381 kf_ops = &cgroup_kf_single_ops;
4382
4383 /*
4384 * Ugh... if @cft wants a custom max_write_len, we need to
4385 * make a copy of kf_ops to set its atomic_write_len.
4386 */
4387 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4388 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4389 if (!kf_ops) {
4390 ret = -ENOMEM;
4391 break;
4392 }
4393 kf_ops->atomic_write_len = cft->max_write_len;
4394 }
4395
4396 cft->kf_ops = kf_ops;
4397 cft->ss = ss;
4398 cft->flags |= __CFTYPE_ADDED;
4399 }
4400
4401 if (ret)
4402 cgroup_exit_cftypes(cfts);
4403 return ret;
4404 }
4405
cgroup_rm_cftypes_locked(struct cftype * cfts)4406 static void cgroup_rm_cftypes_locked(struct cftype *cfts)
4407 {
4408 lockdep_assert_held(&cgroup_mutex);
4409
4410 list_del(&cfts->node);
4411 cgroup_apply_cftypes(cfts, false);
4412 cgroup_exit_cftypes(cfts);
4413 }
4414
4415 /**
4416 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4417 * @cfts: zero-length name terminated array of cftypes
4418 *
4419 * Unregister @cfts. Files described by @cfts are removed from all
4420 * existing cgroups and all future cgroups won't have them either. This
4421 * function can be called anytime whether @cfts' subsys is attached or not.
4422 *
4423 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4424 * registered.
4425 */
cgroup_rm_cftypes(struct cftype * cfts)4426 int cgroup_rm_cftypes(struct cftype *cfts)
4427 {
4428 if (!cfts || cfts[0].name[0] == '\0')
4429 return 0;
4430
4431 if (!(cfts[0].flags & __CFTYPE_ADDED))
4432 return -ENOENT;
4433
4434 cgroup_lock();
4435 cgroup_rm_cftypes_locked(cfts);
4436 cgroup_unlock();
4437 return 0;
4438 }
4439
4440 /**
4441 * cgroup_add_cftypes - add an array of cftypes to a subsystem
4442 * @ss: target cgroup subsystem
4443 * @cfts: zero-length name terminated array of cftypes
4444 *
4445 * Register @cfts to @ss. Files described by @cfts are created for all
4446 * existing cgroups to which @ss is attached and all future cgroups will
4447 * have them too. This function can be called anytime whether @ss is
4448 * attached or not.
4449 *
4450 * Returns 0 on successful registration, -errno on failure. Note that this
4451 * function currently returns 0 as long as @cfts registration is successful
4452 * even if some file creation attempts on existing cgroups fail.
4453 */
cgroup_add_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4454 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4455 {
4456 int ret;
4457
4458 if (!cgroup_ssid_enabled(ss->id))
4459 return 0;
4460
4461 if (!cfts || cfts[0].name[0] == '\0')
4462 return 0;
4463
4464 ret = cgroup_init_cftypes(ss, cfts);
4465 if (ret)
4466 return ret;
4467
4468 cgroup_lock();
4469
4470 list_add_tail(&cfts->node, &ss->cfts);
4471 ret = cgroup_apply_cftypes(cfts, true);
4472 if (ret)
4473 cgroup_rm_cftypes_locked(cfts);
4474
4475 cgroup_unlock();
4476 return ret;
4477 }
4478
4479 /**
4480 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4481 * @ss: target cgroup subsystem
4482 * @cfts: zero-length name terminated array of cftypes
4483 *
4484 * Similar to cgroup_add_cftypes() but the added files are only used for
4485 * the default hierarchy.
4486 */
cgroup_add_dfl_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4487 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4488 {
4489 struct cftype *cft;
4490
4491 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4492 cft->flags |= __CFTYPE_ONLY_ON_DFL;
4493 return cgroup_add_cftypes(ss, cfts);
4494 }
4495
4496 /**
4497 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4498 * @ss: target cgroup subsystem
4499 * @cfts: zero-length name terminated array of cftypes
4500 *
4501 * Similar to cgroup_add_cftypes() but the added files are only used for
4502 * the legacy hierarchies.
4503 */
cgroup_add_legacy_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4504 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4505 {
4506 struct cftype *cft;
4507
4508 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4509 cft->flags |= __CFTYPE_NOT_ON_DFL;
4510 return cgroup_add_cftypes(ss, cfts);
4511 }
4512
4513 /**
4514 * cgroup_file_notify - generate a file modified event for a cgroup_file
4515 * @cfile: target cgroup_file
4516 *
4517 * @cfile must have been obtained by setting cftype->file_offset.
4518 */
cgroup_file_notify(struct cgroup_file * cfile)4519 void cgroup_file_notify(struct cgroup_file *cfile)
4520 {
4521 unsigned long flags;
4522
4523 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4524 if (cfile->kn) {
4525 unsigned long last = cfile->notified_at;
4526 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4527
4528 if (time_in_range(jiffies, last, next)) {
4529 timer_reduce(&cfile->notify_timer, next);
4530 } else {
4531 kernfs_notify(cfile->kn);
4532 cfile->notified_at = jiffies;
4533 }
4534 }
4535 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4536 }
4537
4538 /**
4539 * cgroup_file_show - show or hide a hidden cgroup file
4540 * @cfile: target cgroup_file obtained by setting cftype->file_offset
4541 * @show: whether to show or hide
4542 */
cgroup_file_show(struct cgroup_file * cfile,bool show)4543 void cgroup_file_show(struct cgroup_file *cfile, bool show)
4544 {
4545 struct kernfs_node *kn;
4546
4547 spin_lock_irq(&cgroup_file_kn_lock);
4548 kn = cfile->kn;
4549 kernfs_get(kn);
4550 spin_unlock_irq(&cgroup_file_kn_lock);
4551
4552 if (kn)
4553 kernfs_show(kn, show);
4554
4555 kernfs_put(kn);
4556 }
4557
4558 /**
4559 * css_next_child - find the next child of a given css
4560 * @pos: the current position (%NULL to initiate traversal)
4561 * @parent: css whose children to walk
4562 *
4563 * This function returns the next child of @parent and should be called
4564 * under either cgroup_mutex or RCU read lock. The only requirement is
4565 * that @parent and @pos are accessible. The next sibling is guaranteed to
4566 * be returned regardless of their states.
4567 *
4568 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4569 * css which finished ->css_online() is guaranteed to be visible in the
4570 * future iterations and will stay visible until the last reference is put.
4571 * A css which hasn't finished ->css_online() or already finished
4572 * ->css_offline() may show up during traversal. It's each subsystem's
4573 * responsibility to synchronize against on/offlining.
4574 */
css_next_child(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * parent)4575 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4576 struct cgroup_subsys_state *parent)
4577 {
4578 struct cgroup_subsys_state *next;
4579
4580 cgroup_assert_mutex_or_rcu_locked();
4581
4582 /*
4583 * @pos could already have been unlinked from the sibling list.
4584 * Once a cgroup is removed, its ->sibling.next is no longer
4585 * updated when its next sibling changes. CSS_RELEASED is set when
4586 * @pos is taken off list, at which time its next pointer is valid,
4587 * and, as releases are serialized, the one pointed to by the next
4588 * pointer is guaranteed to not have started release yet. This
4589 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4590 * critical section, the one pointed to by its next pointer is
4591 * guaranteed to not have finished its RCU grace period even if we
4592 * have dropped rcu_read_lock() in-between iterations.
4593 *
4594 * If @pos has CSS_RELEASED set, its next pointer can't be
4595 * dereferenced; however, as each css is given a monotonically
4596 * increasing unique serial number and always appended to the
4597 * sibling list, the next one can be found by walking the parent's
4598 * children until the first css with higher serial number than
4599 * @pos's. While this path can be slower, it happens iff iteration
4600 * races against release and the race window is very small.
4601 */
4602 if (!pos) {
4603 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4604 } else if (likely(!(pos->flags & CSS_RELEASED))) {
4605 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4606 } else {
4607 list_for_each_entry_rcu(next, &parent->children, sibling,
4608 lockdep_is_held(&cgroup_mutex))
4609 if (next->serial_nr > pos->serial_nr)
4610 break;
4611 }
4612
4613 /*
4614 * @next, if not pointing to the head, can be dereferenced and is
4615 * the next sibling.
4616 */
4617 if (&next->sibling != &parent->children)
4618 return next;
4619 return NULL;
4620 }
4621
4622 /**
4623 * css_next_descendant_pre - find the next descendant for pre-order walk
4624 * @pos: the current position (%NULL to initiate traversal)
4625 * @root: css whose descendants to walk
4626 *
4627 * To be used by css_for_each_descendant_pre(). Find the next descendant
4628 * to visit for pre-order traversal of @root's descendants. @root is
4629 * included in the iteration and the first node to be visited.
4630 *
4631 * While this function requires cgroup_mutex or RCU read locking, it
4632 * doesn't require the whole traversal to be contained in a single critical
4633 * section. Additionally, it isn't necessary to hold onto a reference to @pos.
4634 * This function will return the correct next descendant as long as both @pos
4635 * and @root are accessible and @pos is a descendant of @root.
4636 *
4637 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4638 * css which finished ->css_online() is guaranteed to be visible in the
4639 * future iterations and will stay visible until the last reference is put.
4640 * A css which hasn't finished ->css_online() or already finished
4641 * ->css_offline() may show up during traversal. It's each subsystem's
4642 * responsibility to synchronize against on/offlining.
4643 */
4644 struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4645 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4646 struct cgroup_subsys_state *root)
4647 {
4648 struct cgroup_subsys_state *next;
4649
4650 cgroup_assert_mutex_or_rcu_locked();
4651
4652 /* if first iteration, visit @root */
4653 if (!pos)
4654 return root;
4655
4656 /* visit the first child if exists */
4657 next = css_next_child(NULL, pos);
4658 if (next)
4659 return next;
4660
4661 /* no child, visit my or the closest ancestor's next sibling */
4662 while (pos != root) {
4663 next = css_next_child(pos, pos->parent);
4664 if (next)
4665 return next;
4666 pos = pos->parent;
4667 }
4668
4669 return NULL;
4670 }
4671 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4672
4673 /**
4674 * css_rightmost_descendant - return the rightmost descendant of a css
4675 * @pos: css of interest
4676 *
4677 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4678 * is returned. This can be used during pre-order traversal to skip
4679 * subtree of @pos.
4680 *
4681 * While this function requires cgroup_mutex or RCU read locking, it
4682 * doesn't require the whole traversal to be contained in a single critical
4683 * section. Additionally, it isn't necessary to hold onto a reference to @pos.
4684 * This function will return the correct rightmost descendant as long as @pos
4685 * is accessible.
4686 */
4687 struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state * pos)4688 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4689 {
4690 struct cgroup_subsys_state *last, *tmp;
4691
4692 cgroup_assert_mutex_or_rcu_locked();
4693
4694 do {
4695 last = pos;
4696 /* ->prev isn't RCU safe, walk ->next till the end */
4697 pos = NULL;
4698 css_for_each_child(tmp, last)
4699 pos = tmp;
4700 } while (pos);
4701
4702 return last;
4703 }
4704
4705 static struct cgroup_subsys_state *
css_leftmost_descendant(struct cgroup_subsys_state * pos)4706 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4707 {
4708 struct cgroup_subsys_state *last;
4709
4710 do {
4711 last = pos;
4712 pos = css_next_child(NULL, pos);
4713 } while (pos);
4714
4715 return last;
4716 }
4717
4718 /**
4719 * css_next_descendant_post - find the next descendant for post-order walk
4720 * @pos: the current position (%NULL to initiate traversal)
4721 * @root: css whose descendants to walk
4722 *
4723 * To be used by css_for_each_descendant_post(). Find the next descendant
4724 * to visit for post-order traversal of @root's descendants. @root is
4725 * included in the iteration and the last node to be visited.
4726 *
4727 * While this function requires cgroup_mutex or RCU read locking, it
4728 * doesn't require the whole traversal to be contained in a single critical
4729 * section. Additionally, it isn't necessary to hold onto a reference to @pos.
4730 * This function will return the correct next descendant as long as both @pos
4731 * and @cgroup are accessible and @pos is a descendant of @cgroup.
4732 *
4733 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4734 * css which finished ->css_online() is guaranteed to be visible in the
4735 * future iterations and will stay visible until the last reference is put.
4736 * A css which hasn't finished ->css_online() or already finished
4737 * ->css_offline() may show up during traversal. It's each subsystem's
4738 * responsibility to synchronize against on/offlining.
4739 */
4740 struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4741 css_next_descendant_post(struct cgroup_subsys_state *pos,
4742 struct cgroup_subsys_state *root)
4743 {
4744 struct cgroup_subsys_state *next;
4745
4746 cgroup_assert_mutex_or_rcu_locked();
4747
4748 /* if first iteration, visit leftmost descendant which may be @root */
4749 if (!pos)
4750 return css_leftmost_descendant(root);
4751
4752 /* if we visited @root, we're done */
4753 if (pos == root)
4754 return NULL;
4755
4756 /* if there's an unvisited sibling, visit its leftmost descendant */
4757 next = css_next_child(pos, pos->parent);
4758 if (next)
4759 return css_leftmost_descendant(next);
4760
4761 /* no sibling left, visit parent */
4762 return pos->parent;
4763 }
4764
4765 /**
4766 * css_has_online_children - does a css have online children
4767 * @css: the target css
4768 *
4769 * Returns %true if @css has any online children; otherwise, %false. This
4770 * function can be called from any context but the caller is responsible
4771 * for synchronizing against on/offlining as necessary.
4772 */
css_has_online_children(struct cgroup_subsys_state * css)4773 bool css_has_online_children(struct cgroup_subsys_state *css)
4774 {
4775 struct cgroup_subsys_state *child;
4776 bool ret = false;
4777
4778 rcu_read_lock();
4779 css_for_each_child(child, css) {
4780 if (child->flags & CSS_ONLINE) {
4781 ret = true;
4782 break;
4783 }
4784 }
4785 rcu_read_unlock();
4786 return ret;
4787 }
4788
css_task_iter_next_css_set(struct css_task_iter * it)4789 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4790 {
4791 struct list_head *l;
4792 struct cgrp_cset_link *link;
4793 struct css_set *cset;
4794
4795 lockdep_assert_held(&css_set_lock);
4796
4797 /* find the next threaded cset */
4798 if (it->tcset_pos) {
4799 l = it->tcset_pos->next;
4800
4801 if (l != it->tcset_head) {
4802 it->tcset_pos = l;
4803 return container_of(l, struct css_set,
4804 threaded_csets_node);
4805 }
4806
4807 it->tcset_pos = NULL;
4808 }
4809
4810 /* find the next cset */
4811 l = it->cset_pos;
4812 l = l->next;
4813 if (l == it->cset_head) {
4814 it->cset_pos = NULL;
4815 return NULL;
4816 }
4817
4818 if (it->ss) {
4819 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4820 } else {
4821 link = list_entry(l, struct cgrp_cset_link, cset_link);
4822 cset = link->cset;
4823 }
4824
4825 it->cset_pos = l;
4826
4827 /* initialize threaded css_set walking */
4828 if (it->flags & CSS_TASK_ITER_THREADED) {
4829 if (it->cur_dcset)
4830 put_css_set_locked(it->cur_dcset);
4831 it->cur_dcset = cset;
4832 get_css_set(cset);
4833
4834 it->tcset_head = &cset->threaded_csets;
4835 it->tcset_pos = &cset->threaded_csets;
4836 }
4837
4838 return cset;
4839 }
4840
4841 /**
4842 * css_task_iter_advance_css_set - advance a task iterator to the next css_set
4843 * @it: the iterator to advance
4844 *
4845 * Advance @it to the next css_set to walk.
4846 */
css_task_iter_advance_css_set(struct css_task_iter * it)4847 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4848 {
4849 struct css_set *cset;
4850
4851 lockdep_assert_held(&css_set_lock);
4852
4853 /* Advance to the next non-empty css_set and find first non-empty tasks list*/
4854 while ((cset = css_task_iter_next_css_set(it))) {
4855 if (!list_empty(&cset->tasks)) {
4856 it->cur_tasks_head = &cset->tasks;
4857 break;
4858 } else if (!list_empty(&cset->mg_tasks)) {
4859 it->cur_tasks_head = &cset->mg_tasks;
4860 break;
4861 } else if (!list_empty(&cset->dying_tasks)) {
4862 it->cur_tasks_head = &cset->dying_tasks;
4863 break;
4864 }
4865 }
4866 if (!cset) {
4867 it->task_pos = NULL;
4868 return;
4869 }
4870 it->task_pos = it->cur_tasks_head->next;
4871
4872 /*
4873 * We don't keep css_sets locked across iteration steps and thus
4874 * need to take steps to ensure that iteration can be resumed after
4875 * the lock is re-acquired. Iteration is performed at two levels -
4876 * css_sets and tasks in them.
4877 *
4878 * Once created, a css_set never leaves its cgroup lists, so a
4879 * pinned css_set is guaranteed to stay put and we can resume
4880 * iteration afterwards.
4881 *
4882 * Tasks may leave @cset across iteration steps. This is resolved
4883 * by registering each iterator with the css_set currently being
4884 * walked and making css_set_move_task() advance iterators whose
4885 * next task is leaving.
4886 */
4887 if (it->cur_cset) {
4888 list_del(&it->iters_node);
4889 put_css_set_locked(it->cur_cset);
4890 }
4891 get_css_set(cset);
4892 it->cur_cset = cset;
4893 list_add(&it->iters_node, &cset->task_iters);
4894 }
4895
css_task_iter_skip(struct css_task_iter * it,struct task_struct * task)4896 static void css_task_iter_skip(struct css_task_iter *it,
4897 struct task_struct *task)
4898 {
4899 lockdep_assert_held(&css_set_lock);
4900
4901 if (it->task_pos == &task->cg_list) {
4902 it->task_pos = it->task_pos->next;
4903 it->flags |= CSS_TASK_ITER_SKIPPED;
4904 }
4905 }
4906
css_task_iter_advance(struct css_task_iter * it)4907 static void css_task_iter_advance(struct css_task_iter *it)
4908 {
4909 struct task_struct *task;
4910
4911 lockdep_assert_held(&css_set_lock);
4912 repeat:
4913 if (it->task_pos) {
4914 /*
4915 * Advance iterator to find next entry. We go through cset
4916 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4917 * the next cset.
4918 */
4919 if (it->flags & CSS_TASK_ITER_SKIPPED)
4920 it->flags &= ~CSS_TASK_ITER_SKIPPED;
4921 else
4922 it->task_pos = it->task_pos->next;
4923
4924 if (it->task_pos == &it->cur_cset->tasks) {
4925 it->cur_tasks_head = &it->cur_cset->mg_tasks;
4926 it->task_pos = it->cur_tasks_head->next;
4927 }
4928 if (it->task_pos == &it->cur_cset->mg_tasks) {
4929 it->cur_tasks_head = &it->cur_cset->dying_tasks;
4930 it->task_pos = it->cur_tasks_head->next;
4931 }
4932 if (it->task_pos == &it->cur_cset->dying_tasks)
4933 css_task_iter_advance_css_set(it);
4934 } else {
4935 /* called from start, proceed to the first cset */
4936 css_task_iter_advance_css_set(it);
4937 }
4938
4939 if (!it->task_pos)
4940 return;
4941
4942 task = list_entry(it->task_pos, struct task_struct, cg_list);
4943
4944 if (it->flags & CSS_TASK_ITER_PROCS) {
4945 /* if PROCS, skip over tasks which aren't group leaders */
4946 if (!thread_group_leader(task))
4947 goto repeat;
4948
4949 /* and dying leaders w/o live member threads */
4950 if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4951 !atomic_read(&task->signal->live))
4952 goto repeat;
4953 } else {
4954 /* skip all dying ones */
4955 if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4956 goto repeat;
4957 }
4958 }
4959
4960 /**
4961 * css_task_iter_start - initiate task iteration
4962 * @css: the css to walk tasks of
4963 * @flags: CSS_TASK_ITER_* flags
4964 * @it: the task iterator to use
4965 *
4966 * Initiate iteration through the tasks of @css. The caller can call
4967 * css_task_iter_next() to walk through the tasks until the function
4968 * returns NULL. On completion of iteration, css_task_iter_end() must be
4969 * called.
4970 */
css_task_iter_start(struct cgroup_subsys_state * css,unsigned int flags,struct css_task_iter * it)4971 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4972 struct css_task_iter *it)
4973 {
4974 unsigned long irqflags;
4975
4976 memset(it, 0, sizeof(*it));
4977
4978 spin_lock_irqsave(&css_set_lock, irqflags);
4979
4980 it->ss = css->ss;
4981 it->flags = flags;
4982
4983 if (CGROUP_HAS_SUBSYS_CONFIG && it->ss)
4984 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4985 else
4986 it->cset_pos = &css->cgroup->cset_links;
4987
4988 it->cset_head = it->cset_pos;
4989
4990 css_task_iter_advance(it);
4991
4992 spin_unlock_irqrestore(&css_set_lock, irqflags);
4993 }
4994
4995 /**
4996 * css_task_iter_next - return the next task for the iterator
4997 * @it: the task iterator being iterated
4998 *
4999 * The "next" function for task iteration. @it should have been
5000 * initialized via css_task_iter_start(). Returns NULL when the iteration
5001 * reaches the end.
5002 */
css_task_iter_next(struct css_task_iter * it)5003 struct task_struct *css_task_iter_next(struct css_task_iter *it)
5004 {
5005 unsigned long irqflags;
5006
5007 if (it->cur_task) {
5008 put_task_struct(it->cur_task);
5009 it->cur_task = NULL;
5010 }
5011
5012 spin_lock_irqsave(&css_set_lock, irqflags);
5013
5014 /* @it may be half-advanced by skips, finish advancing */
5015 if (it->flags & CSS_TASK_ITER_SKIPPED)
5016 css_task_iter_advance(it);
5017
5018 if (it->task_pos) {
5019 it->cur_task = list_entry(it->task_pos, struct task_struct,
5020 cg_list);
5021 get_task_struct(it->cur_task);
5022 css_task_iter_advance(it);
5023 }
5024
5025 spin_unlock_irqrestore(&css_set_lock, irqflags);
5026
5027 return it->cur_task;
5028 }
5029
5030 /**
5031 * css_task_iter_end - finish task iteration
5032 * @it: the task iterator to finish
5033 *
5034 * Finish task iteration started by css_task_iter_start().
5035 */
css_task_iter_end(struct css_task_iter * it)5036 void css_task_iter_end(struct css_task_iter *it)
5037 {
5038 unsigned long irqflags;
5039
5040 if (it->cur_cset) {
5041 spin_lock_irqsave(&css_set_lock, irqflags);
5042 list_del(&it->iters_node);
5043 put_css_set_locked(it->cur_cset);
5044 spin_unlock_irqrestore(&css_set_lock, irqflags);
5045 }
5046
5047 if (it->cur_dcset)
5048 put_css_set(it->cur_dcset);
5049
5050 if (it->cur_task)
5051 put_task_struct(it->cur_task);
5052 }
5053
cgroup_procs_release(struct kernfs_open_file * of)5054 static void cgroup_procs_release(struct kernfs_open_file *of)
5055 {
5056 struct cgroup_file_ctx *ctx = of->priv;
5057
5058 if (ctx->procs.started)
5059 css_task_iter_end(&ctx->procs.iter);
5060 }
5061
cgroup_procs_next(struct seq_file * s,void * v,loff_t * pos)5062 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
5063 {
5064 struct kernfs_open_file *of = s->private;
5065 struct cgroup_file_ctx *ctx = of->priv;
5066
5067 if (pos)
5068 (*pos)++;
5069
5070 return css_task_iter_next(&ctx->procs.iter);
5071 }
5072
__cgroup_procs_start(struct seq_file * s,loff_t * pos,unsigned int iter_flags)5073 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
5074 unsigned int iter_flags)
5075 {
5076 struct kernfs_open_file *of = s->private;
5077 struct cgroup *cgrp = seq_css(s)->cgroup;
5078 struct cgroup_file_ctx *ctx = of->priv;
5079 struct css_task_iter *it = &ctx->procs.iter;
5080
5081 /*
5082 * When a seq_file is seeked, it's always traversed sequentially
5083 * from position 0, so we can simply keep iterating on !0 *pos.
5084 */
5085 if (!ctx->procs.started) {
5086 if (WARN_ON_ONCE((*pos)))
5087 return ERR_PTR(-EINVAL);
5088 css_task_iter_start(&cgrp->self, iter_flags, it);
5089 ctx->procs.started = true;
5090 } else if (!(*pos)) {
5091 css_task_iter_end(it);
5092 css_task_iter_start(&cgrp->self, iter_flags, it);
5093 } else
5094 return it->cur_task;
5095
5096 return cgroup_procs_next(s, NULL, NULL);
5097 }
5098
cgroup_procs_start(struct seq_file * s,loff_t * pos)5099 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
5100 {
5101 struct cgroup *cgrp = seq_css(s)->cgroup;
5102
5103 /*
5104 * All processes of a threaded subtree belong to the domain cgroup
5105 * of the subtree. Only threads can be distributed across the
5106 * subtree. Reject reads on cgroup.procs in the subtree proper.
5107 * They're always empty anyway.
5108 */
5109 if (cgroup_is_threaded(cgrp))
5110 return ERR_PTR(-EOPNOTSUPP);
5111
5112 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
5113 CSS_TASK_ITER_THREADED);
5114 }
5115
cgroup_procs_show(struct seq_file * s,void * v)5116 static int cgroup_procs_show(struct seq_file *s, void *v)
5117 {
5118 seq_printf(s, "%d\n", task_pid_vnr(v));
5119 return 0;
5120 }
5121
cgroup_may_write(const struct cgroup * cgrp,struct super_block * sb)5122 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
5123 {
5124 int ret;
5125 struct inode *inode;
5126
5127 lockdep_assert_held(&cgroup_mutex);
5128
5129 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
5130 if (!inode)
5131 return -ENOMEM;
5132
5133 ret = inode_permission(&nop_mnt_idmap, inode, MAY_WRITE);
5134 iput(inode);
5135 return ret;
5136 }
5137
cgroup_procs_write_permission(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,struct cgroup_namespace * ns)5138 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
5139 struct cgroup *dst_cgrp,
5140 struct super_block *sb,
5141 struct cgroup_namespace *ns)
5142 {
5143 struct cgroup *com_cgrp = src_cgrp;
5144 int ret;
5145
5146 lockdep_assert_held(&cgroup_mutex);
5147
5148 /* find the common ancestor */
5149 while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
5150 com_cgrp = cgroup_parent(com_cgrp);
5151
5152 /* %current should be authorized to migrate to the common ancestor */
5153 ret = cgroup_may_write(com_cgrp, sb);
5154 if (ret)
5155 return ret;
5156
5157 /*
5158 * If namespaces are delegation boundaries, %current must be able
5159 * to see both source and destination cgroups from its namespace.
5160 */
5161 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
5162 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
5163 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
5164 return -ENOENT;
5165
5166 return 0;
5167 }
5168
cgroup_attach_permissions(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,bool threadgroup,struct cgroup_namespace * ns)5169 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
5170 struct cgroup *dst_cgrp,
5171 struct super_block *sb, bool threadgroup,
5172 struct cgroup_namespace *ns)
5173 {
5174 int ret = 0;
5175
5176 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
5177 if (ret)
5178 return ret;
5179
5180 ret = cgroup_migrate_vet_dst(dst_cgrp);
5181 if (ret)
5182 return ret;
5183
5184 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
5185 ret = -EOPNOTSUPP;
5186
5187 return ret;
5188 }
5189
__cgroup_procs_write(struct kernfs_open_file * of,char * buf,bool threadgroup)5190 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
5191 bool threadgroup)
5192 {
5193 struct cgroup_file_ctx *ctx = of->priv;
5194 struct cgroup *src_cgrp, *dst_cgrp;
5195 struct task_struct *task;
5196 const struct cred *saved_cred;
5197 ssize_t ret;
5198 bool threadgroup_locked;
5199
5200 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
5201 if (!dst_cgrp)
5202 return -ENODEV;
5203
5204 task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked);
5205 ret = PTR_ERR_OR_ZERO(task);
5206 if (ret)
5207 goto out_unlock;
5208
5209 /* find the source cgroup */
5210 spin_lock_irq(&css_set_lock);
5211 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
5212 spin_unlock_irq(&css_set_lock);
5213
5214 /*
5215 * Process and thread migrations follow same delegation rule. Check
5216 * permissions using the credentials from file open to protect against
5217 * inherited fd attacks.
5218 */
5219 saved_cred = override_creds(of->file->f_cred);
5220 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
5221 of->file->f_path.dentry->d_sb,
5222 threadgroup, ctx->ns);
5223 revert_creds(saved_cred);
5224 if (ret)
5225 goto out_finish;
5226
5227 ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
5228
5229 out_finish:
5230 cgroup_procs_write_finish(task, threadgroup_locked);
5231 out_unlock:
5232 cgroup_kn_unlock(of->kn);
5233
5234 return ret;
5235 }
5236
cgroup_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5237 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
5238 char *buf, size_t nbytes, loff_t off)
5239 {
5240 return __cgroup_procs_write(of, buf, true) ?: nbytes;
5241 }
5242
cgroup_threads_start(struct seq_file * s,loff_t * pos)5243 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
5244 {
5245 return __cgroup_procs_start(s, pos, 0);
5246 }
5247
cgroup_threads_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5248 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
5249 char *buf, size_t nbytes, loff_t off)
5250 {
5251 return __cgroup_procs_write(of, buf, false) ?: nbytes;
5252 }
5253
5254 /* cgroup core interface files for the default hierarchy */
5255 static struct cftype cgroup_base_files[] = {
5256 {
5257 .name = "cgroup.type",
5258 .flags = CFTYPE_NOT_ON_ROOT,
5259 .seq_show = cgroup_type_show,
5260 .write = cgroup_type_write,
5261 },
5262 {
5263 .name = "cgroup.procs",
5264 .flags = CFTYPE_NS_DELEGATABLE,
5265 .file_offset = offsetof(struct cgroup, procs_file),
5266 .release = cgroup_procs_release,
5267 .seq_start = cgroup_procs_start,
5268 .seq_next = cgroup_procs_next,
5269 .seq_show = cgroup_procs_show,
5270 .write = cgroup_procs_write,
5271 },
5272 {
5273 .name = "cgroup.threads",
5274 .flags = CFTYPE_NS_DELEGATABLE,
5275 .release = cgroup_procs_release,
5276 .seq_start = cgroup_threads_start,
5277 .seq_next = cgroup_procs_next,
5278 .seq_show = cgroup_procs_show,
5279 .write = cgroup_threads_write,
5280 },
5281 {
5282 .name = "cgroup.controllers",
5283 .seq_show = cgroup_controllers_show,
5284 },
5285 {
5286 .name = "cgroup.subtree_control",
5287 .flags = CFTYPE_NS_DELEGATABLE,
5288 .seq_show = cgroup_subtree_control_show,
5289 .write = cgroup_subtree_control_write,
5290 },
5291 {
5292 .name = "cgroup.events",
5293 .flags = CFTYPE_NOT_ON_ROOT,
5294 .file_offset = offsetof(struct cgroup, events_file),
5295 .seq_show = cgroup_events_show,
5296 },
5297 {
5298 .name = "cgroup.max.descendants",
5299 .seq_show = cgroup_max_descendants_show,
5300 .write = cgroup_max_descendants_write,
5301 },
5302 {
5303 .name = "cgroup.max.depth",
5304 .seq_show = cgroup_max_depth_show,
5305 .write = cgroup_max_depth_write,
5306 },
5307 {
5308 .name = "cgroup.stat",
5309 .seq_show = cgroup_stat_show,
5310 },
5311 {
5312 .name = "cgroup.freeze",
5313 .flags = CFTYPE_NOT_ON_ROOT,
5314 .seq_show = cgroup_freeze_show,
5315 .write = cgroup_freeze_write,
5316 },
5317 {
5318 .name = "cgroup.kill",
5319 .flags = CFTYPE_NOT_ON_ROOT,
5320 .write = cgroup_kill_write,
5321 },
5322 {
5323 .name = "cpu.stat",
5324 .seq_show = cpu_stat_show,
5325 },
5326 {
5327 .name = "cpu.stat.local",
5328 .seq_show = cpu_local_stat_show,
5329 },
5330 { } /* terminate */
5331 };
5332
5333 static struct cftype cgroup_psi_files[] = {
5334 #ifdef CONFIG_PSI
5335 {
5336 .name = "io.pressure",
5337 .file_offset = offsetof(struct cgroup, psi_files[PSI_IO]),
5338 .seq_show = cgroup_io_pressure_show,
5339 .write = cgroup_io_pressure_write,
5340 .poll = cgroup_pressure_poll,
5341 .release = cgroup_pressure_release,
5342 },
5343 {
5344 .name = "memory.pressure",
5345 .file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]),
5346 .seq_show = cgroup_memory_pressure_show,
5347 .write = cgroup_memory_pressure_write,
5348 .poll = cgroup_pressure_poll,
5349 .release = cgroup_pressure_release,
5350 },
5351 {
5352 .name = "cpu.pressure",
5353 .file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]),
5354 .seq_show = cgroup_cpu_pressure_show,
5355 .write = cgroup_cpu_pressure_write,
5356 .poll = cgroup_pressure_poll,
5357 .release = cgroup_pressure_release,
5358 },
5359 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
5360 {
5361 .name = "irq.pressure",
5362 .file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]),
5363 .seq_show = cgroup_irq_pressure_show,
5364 .write = cgroup_irq_pressure_write,
5365 .poll = cgroup_pressure_poll,
5366 .release = cgroup_pressure_release,
5367 },
5368 #endif
5369 {
5370 .name = "cgroup.pressure",
5371 .seq_show = cgroup_pressure_show,
5372 .write = cgroup_pressure_write,
5373 },
5374 #endif /* CONFIG_PSI */
5375 { } /* terminate */
5376 };
5377
5378 /*
5379 * css destruction is four-stage process.
5380 *
5381 * 1. Destruction starts. Killing of the percpu_ref is initiated.
5382 * Implemented in kill_css().
5383 *
5384 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5385 * and thus css_tryget_online() is guaranteed to fail, the css can be
5386 * offlined by invoking offline_css(). After offlining, the base ref is
5387 * put. Implemented in css_killed_work_fn().
5388 *
5389 * 3. When the percpu_ref reaches zero, the only possible remaining
5390 * accessors are inside RCU read sections. css_release() schedules the
5391 * RCU callback.
5392 *
5393 * 4. After the grace period, the css can be freed. Implemented in
5394 * css_free_rwork_fn().
5395 *
5396 * It is actually hairier because both step 2 and 4 require process context
5397 * and thus involve punting to css->destroy_work adding two additional
5398 * steps to the already complex sequence.
5399 */
css_free_rwork_fn(struct work_struct * work)5400 static void css_free_rwork_fn(struct work_struct *work)
5401 {
5402 struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5403 struct cgroup_subsys_state, destroy_rwork);
5404 struct cgroup_subsys *ss = css->ss;
5405 struct cgroup *cgrp = css->cgroup;
5406
5407 percpu_ref_exit(&css->refcnt);
5408
5409 if (ss) {
5410 /* css free path */
5411 struct cgroup_subsys_state *parent = css->parent;
5412 int id = css->id;
5413
5414 ss->css_free(css);
5415 cgroup_idr_remove(&ss->css_idr, id);
5416 cgroup_put(cgrp);
5417
5418 if (parent)
5419 css_put(parent);
5420 } else {
5421 /* cgroup free path */
5422 atomic_dec(&cgrp->root->nr_cgrps);
5423 if (!cgroup_on_dfl(cgrp))
5424 cgroup1_pidlist_destroy_all(cgrp);
5425 cancel_work_sync(&cgrp->release_agent_work);
5426 bpf_cgrp_storage_free(cgrp);
5427
5428 if (cgroup_parent(cgrp)) {
5429 /*
5430 * We get a ref to the parent, and put the ref when
5431 * this cgroup is being freed, so it's guaranteed
5432 * that the parent won't be destroyed before its
5433 * children.
5434 */
5435 cgroup_put(cgroup_parent(cgrp));
5436 kernfs_put(cgrp->kn);
5437 psi_cgroup_free(cgrp);
5438 cgroup_rstat_exit(cgrp);
5439 kfree(cgrp);
5440 } else {
5441 /*
5442 * This is root cgroup's refcnt reaching zero,
5443 * which indicates that the root should be
5444 * released.
5445 */
5446 cgroup_destroy_root(cgrp->root);
5447 }
5448 }
5449 }
5450
css_release_work_fn(struct work_struct * work)5451 static void css_release_work_fn(struct work_struct *work)
5452 {
5453 struct cgroup_subsys_state *css =
5454 container_of(work, struct cgroup_subsys_state, destroy_work);
5455 struct cgroup_subsys *ss = css->ss;
5456 struct cgroup *cgrp = css->cgroup;
5457
5458 cgroup_lock();
5459
5460 css->flags |= CSS_RELEASED;
5461 list_del_rcu(&css->sibling);
5462
5463 if (ss) {
5464 struct cgroup *parent_cgrp;
5465
5466 /* css release path */
5467 if (!list_empty(&css->rstat_css_node)) {
5468 cgroup_rstat_flush(cgrp);
5469 list_del_rcu(&css->rstat_css_node);
5470 }
5471
5472 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5473 if (ss->css_released)
5474 ss->css_released(css);
5475
5476 cgrp->nr_dying_subsys[ss->id]--;
5477 /*
5478 * When a css is released and ready to be freed, its
5479 * nr_descendants must be zero. However, the corresponding
5480 * cgrp->nr_dying_subsys[ss->id] may not be 0 if a subsystem
5481 * is activated and deactivated multiple times with one or
5482 * more of its previous activation leaving behind dying csses.
5483 */
5484 WARN_ON_ONCE(css->nr_descendants);
5485 parent_cgrp = cgroup_parent(cgrp);
5486 while (parent_cgrp) {
5487 parent_cgrp->nr_dying_subsys[ss->id]--;
5488 parent_cgrp = cgroup_parent(parent_cgrp);
5489 }
5490 } else {
5491 struct cgroup *tcgrp;
5492
5493 /* cgroup release path */
5494 TRACE_CGROUP_PATH(release, cgrp);
5495
5496 cgroup_rstat_flush(cgrp);
5497
5498 spin_lock_irq(&css_set_lock);
5499 for (tcgrp = cgroup_parent(cgrp); tcgrp;
5500 tcgrp = cgroup_parent(tcgrp))
5501 tcgrp->nr_dying_descendants--;
5502 spin_unlock_irq(&css_set_lock);
5503
5504 /*
5505 * There are two control paths which try to determine
5506 * cgroup from dentry without going through kernfs -
5507 * cgroupstats_build() and css_tryget_online_from_dir().
5508 * Those are supported by RCU protecting clearing of
5509 * cgrp->kn->priv backpointer.
5510 */
5511 if (cgrp->kn)
5512 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5513 NULL);
5514 }
5515
5516 cgroup_unlock();
5517
5518 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5519 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5520 }
5521
css_release(struct percpu_ref * ref)5522 static void css_release(struct percpu_ref *ref)
5523 {
5524 struct cgroup_subsys_state *css =
5525 container_of(ref, struct cgroup_subsys_state, refcnt);
5526
5527 INIT_WORK(&css->destroy_work, css_release_work_fn);
5528 queue_work(cgroup_destroy_wq, &css->destroy_work);
5529 }
5530
init_and_link_css(struct cgroup_subsys_state * css,struct cgroup_subsys * ss,struct cgroup * cgrp)5531 static void init_and_link_css(struct cgroup_subsys_state *css,
5532 struct cgroup_subsys *ss, struct cgroup *cgrp)
5533 {
5534 lockdep_assert_held(&cgroup_mutex);
5535
5536 cgroup_get_live(cgrp);
5537
5538 memset(css, 0, sizeof(*css));
5539 css->cgroup = cgrp;
5540 css->ss = ss;
5541 css->id = -1;
5542 INIT_LIST_HEAD(&css->sibling);
5543 INIT_LIST_HEAD(&css->children);
5544 INIT_LIST_HEAD(&css->rstat_css_node);
5545 css->serial_nr = css_serial_nr_next++;
5546 atomic_set(&css->online_cnt, 0);
5547
5548 if (cgroup_parent(cgrp)) {
5549 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5550 css_get(css->parent);
5551 }
5552
5553 if (ss->css_rstat_flush)
5554 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5555
5556 BUG_ON(cgroup_css(cgrp, ss));
5557 }
5558
5559 /* invoke ->css_online() on a new CSS and mark it online if successful */
online_css(struct cgroup_subsys_state * css)5560 static int online_css(struct cgroup_subsys_state *css)
5561 {
5562 struct cgroup_subsys *ss = css->ss;
5563 int ret = 0;
5564
5565 lockdep_assert_held(&cgroup_mutex);
5566
5567 if (ss->css_online)
5568 ret = ss->css_online(css);
5569 if (!ret) {
5570 css->flags |= CSS_ONLINE;
5571 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5572
5573 atomic_inc(&css->online_cnt);
5574 if (css->parent) {
5575 atomic_inc(&css->parent->online_cnt);
5576 while ((css = css->parent))
5577 css->nr_descendants++;
5578 }
5579 }
5580 return ret;
5581 }
5582
5583 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
offline_css(struct cgroup_subsys_state * css)5584 static void offline_css(struct cgroup_subsys_state *css)
5585 {
5586 struct cgroup_subsys *ss = css->ss;
5587
5588 lockdep_assert_held(&cgroup_mutex);
5589
5590 if (!(css->flags & CSS_ONLINE))
5591 return;
5592
5593 if (ss->css_offline)
5594 ss->css_offline(css);
5595
5596 css->flags &= ~CSS_ONLINE;
5597 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5598
5599 wake_up_all(&css->cgroup->offline_waitq);
5600
5601 css->cgroup->nr_dying_subsys[ss->id]++;
5602 /*
5603 * Parent css and cgroup cannot be freed until after the freeing
5604 * of child css, see css_free_rwork_fn().
5605 */
5606 while ((css = css->parent)) {
5607 css->nr_descendants--;
5608 css->cgroup->nr_dying_subsys[ss->id]++;
5609 }
5610 }
5611
5612 /**
5613 * css_create - create a cgroup_subsys_state
5614 * @cgrp: the cgroup new css will be associated with
5615 * @ss: the subsys of new css
5616 *
5617 * Create a new css associated with @cgrp - @ss pair. On success, the new
5618 * css is online and installed in @cgrp. This function doesn't create the
5619 * interface files. Returns 0 on success, -errno on failure.
5620 */
css_create(struct cgroup * cgrp,struct cgroup_subsys * ss)5621 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5622 struct cgroup_subsys *ss)
5623 {
5624 struct cgroup *parent = cgroup_parent(cgrp);
5625 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5626 struct cgroup_subsys_state *css;
5627 int err;
5628
5629 lockdep_assert_held(&cgroup_mutex);
5630
5631 css = ss->css_alloc(parent_css);
5632 if (!css)
5633 css = ERR_PTR(-ENOMEM);
5634 if (IS_ERR(css))
5635 return css;
5636
5637 init_and_link_css(css, ss, cgrp);
5638
5639 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5640 if (err)
5641 goto err_free_css;
5642
5643 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5644 if (err < 0)
5645 goto err_free_css;
5646 css->id = err;
5647
5648 /* @css is ready to be brought online now, make it visible */
5649 list_add_tail_rcu(&css->sibling, &parent_css->children);
5650 cgroup_idr_replace(&ss->css_idr, css, css->id);
5651
5652 err = online_css(css);
5653 if (err)
5654 goto err_list_del;
5655
5656 return css;
5657
5658 err_list_del:
5659 list_del_rcu(&css->sibling);
5660 err_free_css:
5661 list_del_rcu(&css->rstat_css_node);
5662 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5663 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5664 return ERR_PTR(err);
5665 }
5666
5667 /*
5668 * The returned cgroup is fully initialized including its control mask, but
5669 * it doesn't have the control mask applied.
5670 */
cgroup_create(struct cgroup * parent,const char * name,umode_t mode)5671 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5672 umode_t mode)
5673 {
5674 struct cgroup_root *root = parent->root;
5675 struct cgroup *cgrp, *tcgrp;
5676 struct kernfs_node *kn;
5677 int level = parent->level + 1;
5678 int ret;
5679
5680 /* allocate the cgroup and its ID, 0 is reserved for the root */
5681 cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL);
5682 if (!cgrp)
5683 return ERR_PTR(-ENOMEM);
5684
5685 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5686 if (ret)
5687 goto out_free_cgrp;
5688
5689 ret = cgroup_rstat_init(cgrp);
5690 if (ret)
5691 goto out_cancel_ref;
5692
5693 /* create the directory */
5694 kn = kernfs_create_dir_ns(parent->kn, name, mode,
5695 current_fsuid(), current_fsgid(),
5696 cgrp, NULL);
5697 if (IS_ERR(kn)) {
5698 ret = PTR_ERR(kn);
5699 goto out_stat_exit;
5700 }
5701 cgrp->kn = kn;
5702
5703 init_cgroup_housekeeping(cgrp);
5704
5705 cgrp->self.parent = &parent->self;
5706 cgrp->root = root;
5707 cgrp->level = level;
5708
5709 ret = psi_cgroup_alloc(cgrp);
5710 if (ret)
5711 goto out_kernfs_remove;
5712
5713 if (cgrp->root == &cgrp_dfl_root) {
5714 ret = cgroup_bpf_inherit(cgrp);
5715 if (ret)
5716 goto out_psi_free;
5717 }
5718
5719 /*
5720 * New cgroup inherits effective freeze counter, and
5721 * if the parent has to be frozen, the child has too.
5722 */
5723 cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5724 if (cgrp->freezer.e_freeze) {
5725 /*
5726 * Set the CGRP_FREEZE flag, so when a process will be
5727 * attached to the child cgroup, it will become frozen.
5728 * At this point the new cgroup is unpopulated, so we can
5729 * consider it frozen immediately.
5730 */
5731 set_bit(CGRP_FREEZE, &cgrp->flags);
5732 set_bit(CGRP_FROZEN, &cgrp->flags);
5733 }
5734
5735 spin_lock_irq(&css_set_lock);
5736 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5737 cgrp->ancestors[tcgrp->level] = tcgrp;
5738
5739 if (tcgrp != cgrp) {
5740 tcgrp->nr_descendants++;
5741
5742 /*
5743 * If the new cgroup is frozen, all ancestor cgroups
5744 * get a new frozen descendant, but their state can't
5745 * change because of this.
5746 */
5747 if (cgrp->freezer.e_freeze)
5748 tcgrp->freezer.nr_frozen_descendants++;
5749 }
5750 }
5751 spin_unlock_irq(&css_set_lock);
5752
5753 if (notify_on_release(parent))
5754 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5755
5756 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5757 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5758
5759 cgrp->self.serial_nr = css_serial_nr_next++;
5760
5761 /* allocation complete, commit to creation */
5762 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5763 atomic_inc(&root->nr_cgrps);
5764 cgroup_get_live(parent);
5765
5766 /*
5767 * On the default hierarchy, a child doesn't automatically inherit
5768 * subtree_control from the parent. Each is configured manually.
5769 */
5770 if (!cgroup_on_dfl(cgrp))
5771 cgrp->subtree_control = cgroup_control(cgrp);
5772
5773 cgroup_propagate_control(cgrp);
5774
5775 return cgrp;
5776
5777 out_psi_free:
5778 psi_cgroup_free(cgrp);
5779 out_kernfs_remove:
5780 kernfs_remove(cgrp->kn);
5781 out_stat_exit:
5782 cgroup_rstat_exit(cgrp);
5783 out_cancel_ref:
5784 percpu_ref_exit(&cgrp->self.refcnt);
5785 out_free_cgrp:
5786 kfree(cgrp);
5787 return ERR_PTR(ret);
5788 }
5789
cgroup_check_hierarchy_limits(struct cgroup * parent)5790 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5791 {
5792 struct cgroup *cgroup;
5793 int ret = false;
5794 int level = 0;
5795
5796 lockdep_assert_held(&cgroup_mutex);
5797
5798 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5799 if (cgroup->nr_descendants >= cgroup->max_descendants)
5800 goto fail;
5801
5802 if (level >= cgroup->max_depth)
5803 goto fail;
5804
5805 level++;
5806 }
5807
5808 ret = true;
5809 fail:
5810 return ret;
5811 }
5812
cgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)5813 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5814 {
5815 struct cgroup *parent, *cgrp;
5816 int ret;
5817
5818 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5819 if (strchr(name, '\n'))
5820 return -EINVAL;
5821
5822 parent = cgroup_kn_lock_live(parent_kn, false);
5823 if (!parent)
5824 return -ENODEV;
5825
5826 if (!cgroup_check_hierarchy_limits(parent)) {
5827 ret = -EAGAIN;
5828 goto out_unlock;
5829 }
5830
5831 cgrp = cgroup_create(parent, name, mode);
5832 if (IS_ERR(cgrp)) {
5833 ret = PTR_ERR(cgrp);
5834 goto out_unlock;
5835 }
5836
5837 /*
5838 * This extra ref will be put in cgroup_free_fn() and guarantees
5839 * that @cgrp->kn is always accessible.
5840 */
5841 kernfs_get(cgrp->kn);
5842
5843 ret = css_populate_dir(&cgrp->self);
5844 if (ret)
5845 goto out_destroy;
5846
5847 ret = cgroup_apply_control_enable(cgrp);
5848 if (ret)
5849 goto out_destroy;
5850
5851 TRACE_CGROUP_PATH(mkdir, cgrp);
5852
5853 /* let's create and online css's */
5854 kernfs_activate(cgrp->kn);
5855
5856 ret = 0;
5857 goto out_unlock;
5858
5859 out_destroy:
5860 cgroup_destroy_locked(cgrp);
5861 out_unlock:
5862 cgroup_kn_unlock(parent_kn);
5863 return ret;
5864 }
5865
5866 /*
5867 * This is called when the refcnt of a css is confirmed to be killed.
5868 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5869 * initiate destruction and put the css ref from kill_css().
5870 */
css_killed_work_fn(struct work_struct * work)5871 static void css_killed_work_fn(struct work_struct *work)
5872 {
5873 struct cgroup_subsys_state *css =
5874 container_of(work, struct cgroup_subsys_state, destroy_work);
5875
5876 cgroup_lock();
5877
5878 do {
5879 offline_css(css);
5880 css_put(css);
5881 /* @css can't go away while we're holding cgroup_mutex */
5882 css = css->parent;
5883 } while (css && atomic_dec_and_test(&css->online_cnt));
5884
5885 cgroup_unlock();
5886 }
5887
5888 /* css kill confirmation processing requires process context, bounce */
css_killed_ref_fn(struct percpu_ref * ref)5889 static void css_killed_ref_fn(struct percpu_ref *ref)
5890 {
5891 struct cgroup_subsys_state *css =
5892 container_of(ref, struct cgroup_subsys_state, refcnt);
5893
5894 if (atomic_dec_and_test(&css->online_cnt)) {
5895 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5896 queue_work(cgroup_destroy_wq, &css->destroy_work);
5897 }
5898 }
5899
5900 /**
5901 * kill_css - destroy a css
5902 * @css: css to destroy
5903 *
5904 * This function initiates destruction of @css by removing cgroup interface
5905 * files and putting its base reference. ->css_offline() will be invoked
5906 * asynchronously once css_tryget_online() is guaranteed to fail and when
5907 * the reference count reaches zero, @css will be released.
5908 */
kill_css(struct cgroup_subsys_state * css)5909 static void kill_css(struct cgroup_subsys_state *css)
5910 {
5911 lockdep_assert_held(&cgroup_mutex);
5912
5913 if (css->flags & CSS_DYING)
5914 return;
5915
5916 css->flags |= CSS_DYING;
5917
5918 /*
5919 * This must happen before css is disassociated with its cgroup.
5920 * See seq_css() for details.
5921 */
5922 css_clear_dir(css);
5923
5924 /*
5925 * Killing would put the base ref, but we need to keep it alive
5926 * until after ->css_offline().
5927 */
5928 css_get(css);
5929
5930 /*
5931 * cgroup core guarantees that, by the time ->css_offline() is
5932 * invoked, no new css reference will be given out via
5933 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5934 * proceed to offlining css's because percpu_ref_kill() doesn't
5935 * guarantee that the ref is seen as killed on all CPUs on return.
5936 *
5937 * Use percpu_ref_kill_and_confirm() to get notifications as each
5938 * css is confirmed to be seen as killed on all CPUs.
5939 */
5940 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5941 }
5942
5943 /**
5944 * cgroup_destroy_locked - the first stage of cgroup destruction
5945 * @cgrp: cgroup to be destroyed
5946 *
5947 * css's make use of percpu refcnts whose killing latency shouldn't be
5948 * exposed to userland and are RCU protected. Also, cgroup core needs to
5949 * guarantee that css_tryget_online() won't succeed by the time
5950 * ->css_offline() is invoked. To satisfy all the requirements,
5951 * destruction is implemented in the following two steps.
5952 *
5953 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5954 * userland visible parts and start killing the percpu refcnts of
5955 * css's. Set up so that the next stage will be kicked off once all
5956 * the percpu refcnts are confirmed to be killed.
5957 *
5958 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5959 * rest of destruction. Once all cgroup references are gone, the
5960 * cgroup is RCU-freed.
5961 *
5962 * This function implements s1. After this step, @cgrp is gone as far as
5963 * the userland is concerned and a new cgroup with the same name may be
5964 * created. As cgroup doesn't care about the names internally, this
5965 * doesn't cause any problem.
5966 */
cgroup_destroy_locked(struct cgroup * cgrp)5967 static int cgroup_destroy_locked(struct cgroup *cgrp)
5968 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5969 {
5970 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5971 struct cgroup_subsys_state *css;
5972 struct cgrp_cset_link *link;
5973 int ssid;
5974
5975 lockdep_assert_held(&cgroup_mutex);
5976
5977 /*
5978 * Only migration can raise populated from zero and we're already
5979 * holding cgroup_mutex.
5980 */
5981 if (cgroup_is_populated(cgrp))
5982 return -EBUSY;
5983
5984 /*
5985 * Make sure there's no live children. We can't test emptiness of
5986 * ->self.children as dead children linger on it while being
5987 * drained; otherwise, "rmdir parent/child parent" may fail.
5988 */
5989 if (css_has_online_children(&cgrp->self))
5990 return -EBUSY;
5991
5992 /*
5993 * Mark @cgrp and the associated csets dead. The former prevents
5994 * further task migration and child creation by disabling
5995 * cgroup_kn_lock_live(). The latter makes the csets ignored by
5996 * the migration path.
5997 */
5998 cgrp->self.flags &= ~CSS_ONLINE;
5999
6000 spin_lock_irq(&css_set_lock);
6001 list_for_each_entry(link, &cgrp->cset_links, cset_link)
6002 link->cset->dead = true;
6003 spin_unlock_irq(&css_set_lock);
6004
6005 /* initiate massacre of all css's */
6006 for_each_css(css, ssid, cgrp)
6007 kill_css(css);
6008
6009 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
6010 css_clear_dir(&cgrp->self);
6011 kernfs_remove(cgrp->kn);
6012
6013 if (cgroup_is_threaded(cgrp))
6014 parent->nr_threaded_children--;
6015
6016 spin_lock_irq(&css_set_lock);
6017 for (tcgrp = parent; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
6018 tcgrp->nr_descendants--;
6019 tcgrp->nr_dying_descendants++;
6020 /*
6021 * If the dying cgroup is frozen, decrease frozen descendants
6022 * counters of ancestor cgroups.
6023 */
6024 if (test_bit(CGRP_FROZEN, &cgrp->flags))
6025 tcgrp->freezer.nr_frozen_descendants--;
6026 }
6027 spin_unlock_irq(&css_set_lock);
6028
6029 cgroup1_check_for_release(parent);
6030
6031 if (cgrp->root == &cgrp_dfl_root)
6032 cgroup_bpf_offline(cgrp);
6033
6034 /* put the base reference */
6035 percpu_ref_kill(&cgrp->self.refcnt);
6036
6037 return 0;
6038 };
6039
cgroup_rmdir(struct kernfs_node * kn)6040 int cgroup_rmdir(struct kernfs_node *kn)
6041 {
6042 struct cgroup *cgrp;
6043 int ret = 0;
6044
6045 cgrp = cgroup_kn_lock_live(kn, false);
6046 if (!cgrp)
6047 return 0;
6048
6049 ret = cgroup_destroy_locked(cgrp);
6050 if (!ret)
6051 TRACE_CGROUP_PATH(rmdir, cgrp);
6052
6053 cgroup_kn_unlock(kn);
6054 return ret;
6055 }
6056
6057 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
6058 .show_options = cgroup_show_options,
6059 .mkdir = cgroup_mkdir,
6060 .rmdir = cgroup_rmdir,
6061 .show_path = cgroup_show_path,
6062 };
6063
cgroup_init_subsys(struct cgroup_subsys * ss,bool early)6064 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
6065 {
6066 struct cgroup_subsys_state *css;
6067
6068 pr_debug("Initializing cgroup subsys %s\n", ss->name);
6069
6070 cgroup_lock();
6071
6072 idr_init(&ss->css_idr);
6073 INIT_LIST_HEAD(&ss->cfts);
6074
6075 /* Create the root cgroup state for this subsystem */
6076 ss->root = &cgrp_dfl_root;
6077 css = ss->css_alloc(NULL);
6078 /* We don't handle early failures gracefully */
6079 BUG_ON(IS_ERR(css));
6080 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
6081
6082 /*
6083 * Root csses are never destroyed and we can't initialize
6084 * percpu_ref during early init. Disable refcnting.
6085 */
6086 css->flags |= CSS_NO_REF;
6087
6088 if (early) {
6089 /* allocation can't be done safely during early init */
6090 css->id = 1;
6091 } else {
6092 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
6093 BUG_ON(css->id < 0);
6094 }
6095
6096 /* Update the init_css_set to contain a subsys
6097 * pointer to this state - since the subsystem is
6098 * newly registered, all tasks and hence the
6099 * init_css_set is in the subsystem's root cgroup. */
6100 init_css_set.subsys[ss->id] = css;
6101
6102 have_fork_callback |= (bool)ss->fork << ss->id;
6103 have_exit_callback |= (bool)ss->exit << ss->id;
6104 have_release_callback |= (bool)ss->release << ss->id;
6105 have_canfork_callback |= (bool)ss->can_fork << ss->id;
6106
6107 /* At system boot, before all subsystems have been
6108 * registered, no tasks have been forked, so we don't
6109 * need to invoke fork callbacks here. */
6110 BUG_ON(!list_empty(&init_task.tasks));
6111
6112 BUG_ON(online_css(css));
6113
6114 cgroup_unlock();
6115 }
6116
6117 /**
6118 * cgroup_init_early - cgroup initialization at system boot
6119 *
6120 * Initialize cgroups at system boot, and initialize any
6121 * subsystems that request early init.
6122 */
cgroup_init_early(void)6123 int __init cgroup_init_early(void)
6124 {
6125 static struct cgroup_fs_context __initdata ctx;
6126 struct cgroup_subsys *ss;
6127 int i;
6128
6129 ctx.root = &cgrp_dfl_root;
6130 init_cgroup_root(&ctx);
6131 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
6132
6133 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
6134
6135 for_each_subsys(ss, i) {
6136 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
6137 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
6138 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
6139 ss->id, ss->name);
6140 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
6141 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
6142
6143 ss->id = i;
6144 ss->name = cgroup_subsys_name[i];
6145 if (!ss->legacy_name)
6146 ss->legacy_name = cgroup_subsys_name[i];
6147
6148 if (ss->early_init)
6149 cgroup_init_subsys(ss, true);
6150 }
6151 return 0;
6152 }
6153
6154 /**
6155 * cgroup_init - cgroup initialization
6156 *
6157 * Register cgroup filesystem and /proc file, and initialize
6158 * any subsystems that didn't request early init.
6159 */
cgroup_init(void)6160 int __init cgroup_init(void)
6161 {
6162 struct cgroup_subsys *ss;
6163 int ssid;
6164
6165 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
6166 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
6167 BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files));
6168 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
6169
6170 cgroup_rstat_boot();
6171
6172 get_user_ns(init_cgroup_ns.user_ns);
6173
6174 cgroup_lock();
6175
6176 /*
6177 * Add init_css_set to the hash table so that dfl_root can link to
6178 * it during init.
6179 */
6180 hash_add(css_set_table, &init_css_set.hlist,
6181 css_set_hash(init_css_set.subsys));
6182
6183 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
6184
6185 cgroup_unlock();
6186
6187 for_each_subsys(ss, ssid) {
6188 if (ss->early_init) {
6189 struct cgroup_subsys_state *css =
6190 init_css_set.subsys[ss->id];
6191
6192 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
6193 GFP_KERNEL);
6194 BUG_ON(css->id < 0);
6195 } else {
6196 cgroup_init_subsys(ss, false);
6197 }
6198
6199 list_add_tail(&init_css_set.e_cset_node[ssid],
6200 &cgrp_dfl_root.cgrp.e_csets[ssid]);
6201
6202 /*
6203 * Setting dfl_root subsys_mask needs to consider the
6204 * disabled flag and cftype registration needs kmalloc,
6205 * both of which aren't available during early_init.
6206 */
6207 if (!cgroup_ssid_enabled(ssid))
6208 continue;
6209
6210 if (cgroup1_ssid_disabled(ssid))
6211 pr_info("Disabling %s control group subsystem in v1 mounts\n",
6212 ss->legacy_name);
6213
6214 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
6215
6216 /* implicit controllers must be threaded too */
6217 WARN_ON(ss->implicit_on_dfl && !ss->threaded);
6218
6219 if (ss->implicit_on_dfl)
6220 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
6221 else if (!ss->dfl_cftypes)
6222 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
6223
6224 if (ss->threaded)
6225 cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
6226
6227 if (ss->dfl_cftypes == ss->legacy_cftypes) {
6228 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
6229 } else {
6230 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
6231 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
6232 }
6233
6234 if (ss->bind)
6235 ss->bind(init_css_set.subsys[ssid]);
6236
6237 cgroup_lock();
6238 css_populate_dir(init_css_set.subsys[ssid]);
6239 cgroup_unlock();
6240 }
6241
6242 /* init_css_set.subsys[] has been updated, re-hash */
6243 hash_del(&init_css_set.hlist);
6244 hash_add(css_set_table, &init_css_set.hlist,
6245 css_set_hash(init_css_set.subsys));
6246
6247 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
6248 WARN_ON(register_filesystem(&cgroup_fs_type));
6249 WARN_ON(register_filesystem(&cgroup2_fs_type));
6250 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
6251 #ifdef CONFIG_CPUSETS_V1
6252 WARN_ON(register_filesystem(&cpuset_fs_type));
6253 #endif
6254
6255 return 0;
6256 }
6257
cgroup_wq_init(void)6258 static int __init cgroup_wq_init(void)
6259 {
6260 /*
6261 * There isn't much point in executing destruction path in
6262 * parallel. Good chunk is serialized with cgroup_mutex anyway.
6263 * Use 1 for @max_active.
6264 *
6265 * We would prefer to do this in cgroup_init() above, but that
6266 * is called before init_workqueues(): so leave this until after.
6267 */
6268 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
6269 BUG_ON(!cgroup_destroy_wq);
6270 return 0;
6271 }
6272 core_initcall(cgroup_wq_init);
6273
cgroup_path_from_kernfs_id(u64 id,char * buf,size_t buflen)6274 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
6275 {
6276 struct kernfs_node *kn;
6277
6278 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6279 if (!kn)
6280 return;
6281 kernfs_path(kn, buf, buflen);
6282 kernfs_put(kn);
6283 }
6284
6285 /*
6286 * cgroup_get_from_id : get the cgroup associated with cgroup id
6287 * @id: cgroup id
6288 * On success return the cgrp or ERR_PTR on failure
6289 * Only cgroups within current task's cgroup NS are valid.
6290 */
cgroup_get_from_id(u64 id)6291 struct cgroup *cgroup_get_from_id(u64 id)
6292 {
6293 struct kernfs_node *kn;
6294 struct cgroup *cgrp, *root_cgrp;
6295
6296 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6297 if (!kn)
6298 return ERR_PTR(-ENOENT);
6299
6300 if (kernfs_type(kn) != KERNFS_DIR) {
6301 kernfs_put(kn);
6302 return ERR_PTR(-ENOENT);
6303 }
6304
6305 rcu_read_lock();
6306
6307 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6308 if (cgrp && !cgroup_tryget(cgrp))
6309 cgrp = NULL;
6310
6311 rcu_read_unlock();
6312 kernfs_put(kn);
6313
6314 if (!cgrp)
6315 return ERR_PTR(-ENOENT);
6316
6317 root_cgrp = current_cgns_cgroup_dfl();
6318 if (!cgroup_is_descendant(cgrp, root_cgrp)) {
6319 cgroup_put(cgrp);
6320 return ERR_PTR(-ENOENT);
6321 }
6322
6323 return cgrp;
6324 }
6325 EXPORT_SYMBOL_GPL(cgroup_get_from_id);
6326
6327 /*
6328 * proc_cgroup_show()
6329 * - Print task's cgroup paths into seq_file, one line for each hierarchy
6330 * - Used for /proc/<pid>/cgroup.
6331 */
proc_cgroup_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)6332 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
6333 struct pid *pid, struct task_struct *tsk)
6334 {
6335 char *buf;
6336 int retval;
6337 struct cgroup_root *root;
6338
6339 retval = -ENOMEM;
6340 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6341 if (!buf)
6342 goto out;
6343
6344 rcu_read_lock();
6345 spin_lock_irq(&css_set_lock);
6346
6347 for_each_root(root) {
6348 struct cgroup_subsys *ss;
6349 struct cgroup *cgrp;
6350 int ssid, count = 0;
6351
6352 if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible))
6353 continue;
6354
6355 cgrp = task_cgroup_from_root(tsk, root);
6356 /* The root has already been unmounted. */
6357 if (!cgrp)
6358 continue;
6359
6360 seq_printf(m, "%d:", root->hierarchy_id);
6361 if (root != &cgrp_dfl_root)
6362 for_each_subsys(ss, ssid)
6363 if (root->subsys_mask & (1 << ssid))
6364 seq_printf(m, "%s%s", count++ ? "," : "",
6365 ss->legacy_name);
6366 if (strlen(root->name))
6367 seq_printf(m, "%sname=%s", count ? "," : "",
6368 root->name);
6369 seq_putc(m, ':');
6370 /*
6371 * On traditional hierarchies, all zombie tasks show up as
6372 * belonging to the root cgroup. On the default hierarchy,
6373 * while a zombie doesn't show up in "cgroup.procs" and
6374 * thus can't be migrated, its /proc/PID/cgroup keeps
6375 * reporting the cgroup it belonged to before exiting. If
6376 * the cgroup is removed before the zombie is reaped,
6377 * " (deleted)" is appended to the cgroup path.
6378 */
6379 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
6380 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
6381 current->nsproxy->cgroup_ns);
6382 if (retval == -E2BIG)
6383 retval = -ENAMETOOLONG;
6384 if (retval < 0)
6385 goto out_unlock;
6386
6387 seq_puts(m, buf);
6388 } else {
6389 seq_puts(m, "/");
6390 }
6391
6392 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
6393 seq_puts(m, " (deleted)\n");
6394 else
6395 seq_putc(m, '\n');
6396 }
6397
6398 retval = 0;
6399 out_unlock:
6400 spin_unlock_irq(&css_set_lock);
6401 rcu_read_unlock();
6402 kfree(buf);
6403 out:
6404 return retval;
6405 }
6406
6407 /**
6408 * cgroup_fork - initialize cgroup related fields during copy_process()
6409 * @child: pointer to task_struct of forking parent process.
6410 *
6411 * A task is associated with the init_css_set until cgroup_post_fork()
6412 * attaches it to the target css_set.
6413 */
cgroup_fork(struct task_struct * child)6414 void cgroup_fork(struct task_struct *child)
6415 {
6416 RCU_INIT_POINTER(child->cgroups, &init_css_set);
6417 INIT_LIST_HEAD(&child->cg_list);
6418 }
6419
6420 /**
6421 * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer
6422 * @f: file corresponding to cgroup_dir
6423 *
6424 * Find the cgroup from a file pointer associated with a cgroup directory.
6425 * Returns a pointer to the cgroup on success. ERR_PTR is returned if the
6426 * cgroup cannot be found.
6427 */
cgroup_v1v2_get_from_file(struct file * f)6428 static struct cgroup *cgroup_v1v2_get_from_file(struct file *f)
6429 {
6430 struct cgroup_subsys_state *css;
6431
6432 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6433 if (IS_ERR(css))
6434 return ERR_CAST(css);
6435
6436 return css->cgroup;
6437 }
6438
6439 /**
6440 * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports
6441 * cgroup2.
6442 * @f: file corresponding to cgroup2_dir
6443 */
cgroup_get_from_file(struct file * f)6444 static struct cgroup *cgroup_get_from_file(struct file *f)
6445 {
6446 struct cgroup *cgrp = cgroup_v1v2_get_from_file(f);
6447
6448 if (IS_ERR(cgrp))
6449 return ERR_CAST(cgrp);
6450
6451 if (!cgroup_on_dfl(cgrp)) {
6452 cgroup_put(cgrp);
6453 return ERR_PTR(-EBADF);
6454 }
6455
6456 return cgrp;
6457 }
6458
6459 /**
6460 * cgroup_css_set_fork - find or create a css_set for a child process
6461 * @kargs: the arguments passed to create the child process
6462 *
6463 * This functions finds or creates a new css_set which the child
6464 * process will be attached to in cgroup_post_fork(). By default,
6465 * the child process will be given the same css_set as its parent.
6466 *
6467 * If CLONE_INTO_CGROUP is specified this function will try to find an
6468 * existing css_set which includes the requested cgroup and if not create
6469 * a new css_set that the child will be attached to later. If this function
6470 * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6471 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6472 * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6473 * to the target cgroup.
6474 */
cgroup_css_set_fork(struct kernel_clone_args * kargs)6475 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6476 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6477 {
6478 int ret;
6479 struct cgroup *dst_cgrp = NULL;
6480 struct css_set *cset;
6481 struct super_block *sb;
6482
6483 if (kargs->flags & CLONE_INTO_CGROUP)
6484 cgroup_lock();
6485
6486 cgroup_threadgroup_change_begin(current);
6487
6488 spin_lock_irq(&css_set_lock);
6489 cset = task_css_set(current);
6490 get_css_set(cset);
6491 spin_unlock_irq(&css_set_lock);
6492
6493 if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6494 kargs->cset = cset;
6495 return 0;
6496 }
6497
6498 CLASS(fd_raw, f)(kargs->cgroup);
6499 if (fd_empty(f)) {
6500 ret = -EBADF;
6501 goto err;
6502 }
6503 sb = fd_file(f)->f_path.dentry->d_sb;
6504
6505 dst_cgrp = cgroup_get_from_file(fd_file(f));
6506 if (IS_ERR(dst_cgrp)) {
6507 ret = PTR_ERR(dst_cgrp);
6508 dst_cgrp = NULL;
6509 goto err;
6510 }
6511
6512 if (cgroup_is_dead(dst_cgrp)) {
6513 ret = -ENODEV;
6514 goto err;
6515 }
6516
6517 /*
6518 * Verify that we the target cgroup is writable for us. This is
6519 * usually done by the vfs layer but since we're not going through
6520 * the vfs layer here we need to do it "manually".
6521 */
6522 ret = cgroup_may_write(dst_cgrp, sb);
6523 if (ret)
6524 goto err;
6525
6526 /*
6527 * Spawning a task directly into a cgroup works by passing a file
6528 * descriptor to the target cgroup directory. This can even be an O_PATH
6529 * file descriptor. But it can never be a cgroup.procs file descriptor.
6530 * This was done on purpose so spawning into a cgroup could be
6531 * conceptualized as an atomic
6532 *
6533 * fd = openat(dfd_cgroup, "cgroup.procs", ...);
6534 * write(fd, <child-pid>, ...);
6535 *
6536 * sequence, i.e. it's a shorthand for the caller opening and writing
6537 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us
6538 * to always use the caller's credentials.
6539 */
6540 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6541 !(kargs->flags & CLONE_THREAD),
6542 current->nsproxy->cgroup_ns);
6543 if (ret)
6544 goto err;
6545
6546 kargs->cset = find_css_set(cset, dst_cgrp);
6547 if (!kargs->cset) {
6548 ret = -ENOMEM;
6549 goto err;
6550 }
6551
6552 put_css_set(cset);
6553 kargs->cgrp = dst_cgrp;
6554 return ret;
6555
6556 err:
6557 cgroup_threadgroup_change_end(current);
6558 cgroup_unlock();
6559 if (dst_cgrp)
6560 cgroup_put(dst_cgrp);
6561 put_css_set(cset);
6562 if (kargs->cset)
6563 put_css_set(kargs->cset);
6564 return ret;
6565 }
6566
6567 /**
6568 * cgroup_css_set_put_fork - drop references we took during fork
6569 * @kargs: the arguments passed to create the child process
6570 *
6571 * Drop references to the prepared css_set and target cgroup if
6572 * CLONE_INTO_CGROUP was requested.
6573 */
cgroup_css_set_put_fork(struct kernel_clone_args * kargs)6574 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6575 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6576 {
6577 struct cgroup *cgrp = kargs->cgrp;
6578 struct css_set *cset = kargs->cset;
6579
6580 cgroup_threadgroup_change_end(current);
6581
6582 if (cset) {
6583 put_css_set(cset);
6584 kargs->cset = NULL;
6585 }
6586
6587 if (kargs->flags & CLONE_INTO_CGROUP) {
6588 cgroup_unlock();
6589 if (cgrp) {
6590 cgroup_put(cgrp);
6591 kargs->cgrp = NULL;
6592 }
6593 }
6594 }
6595
6596 /**
6597 * cgroup_can_fork - called on a new task before the process is exposed
6598 * @child: the child process
6599 * @kargs: the arguments passed to create the child process
6600 *
6601 * This prepares a new css_set for the child process which the child will
6602 * be attached to in cgroup_post_fork().
6603 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6604 * callback returns an error, the fork aborts with that error code. This
6605 * allows for a cgroup subsystem to conditionally allow or deny new forks.
6606 */
cgroup_can_fork(struct task_struct * child,struct kernel_clone_args * kargs)6607 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6608 {
6609 struct cgroup_subsys *ss;
6610 int i, j, ret;
6611
6612 ret = cgroup_css_set_fork(kargs);
6613 if (ret)
6614 return ret;
6615
6616 do_each_subsys_mask(ss, i, have_canfork_callback) {
6617 ret = ss->can_fork(child, kargs->cset);
6618 if (ret)
6619 goto out_revert;
6620 } while_each_subsys_mask();
6621
6622 return 0;
6623
6624 out_revert:
6625 for_each_subsys(ss, j) {
6626 if (j >= i)
6627 break;
6628 if (ss->cancel_fork)
6629 ss->cancel_fork(child, kargs->cset);
6630 }
6631
6632 cgroup_css_set_put_fork(kargs);
6633
6634 return ret;
6635 }
6636
6637 /**
6638 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6639 * @child: the child process
6640 * @kargs: the arguments passed to create the child process
6641 *
6642 * This calls the cancel_fork() callbacks if a fork failed *after*
6643 * cgroup_can_fork() succeeded and cleans up references we took to
6644 * prepare a new css_set for the child process in cgroup_can_fork().
6645 */
cgroup_cancel_fork(struct task_struct * child,struct kernel_clone_args * kargs)6646 void cgroup_cancel_fork(struct task_struct *child,
6647 struct kernel_clone_args *kargs)
6648 {
6649 struct cgroup_subsys *ss;
6650 int i;
6651
6652 for_each_subsys(ss, i)
6653 if (ss->cancel_fork)
6654 ss->cancel_fork(child, kargs->cset);
6655
6656 cgroup_css_set_put_fork(kargs);
6657 }
6658
6659 /**
6660 * cgroup_post_fork - finalize cgroup setup for the child process
6661 * @child: the child process
6662 * @kargs: the arguments passed to create the child process
6663 *
6664 * Attach the child process to its css_set calling the subsystem fork()
6665 * callbacks.
6666 */
cgroup_post_fork(struct task_struct * child,struct kernel_clone_args * kargs)6667 void cgroup_post_fork(struct task_struct *child,
6668 struct kernel_clone_args *kargs)
6669 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6670 {
6671 unsigned long cgrp_flags = 0;
6672 bool kill = false;
6673 struct cgroup_subsys *ss;
6674 struct css_set *cset;
6675 int i;
6676
6677 cset = kargs->cset;
6678 kargs->cset = NULL;
6679
6680 spin_lock_irq(&css_set_lock);
6681
6682 /* init tasks are special, only link regular threads */
6683 if (likely(child->pid)) {
6684 if (kargs->cgrp)
6685 cgrp_flags = kargs->cgrp->flags;
6686 else
6687 cgrp_flags = cset->dfl_cgrp->flags;
6688
6689 WARN_ON_ONCE(!list_empty(&child->cg_list));
6690 cset->nr_tasks++;
6691 css_set_move_task(child, NULL, cset, false);
6692 } else {
6693 put_css_set(cset);
6694 cset = NULL;
6695 }
6696
6697 if (!(child->flags & PF_KTHREAD)) {
6698 if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) {
6699 /*
6700 * If the cgroup has to be frozen, the new task has
6701 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to
6702 * get the task into the frozen state.
6703 */
6704 spin_lock(&child->sighand->siglock);
6705 WARN_ON_ONCE(child->frozen);
6706 child->jobctl |= JOBCTL_TRAP_FREEZE;
6707 spin_unlock(&child->sighand->siglock);
6708
6709 /*
6710 * Calling cgroup_update_frozen() isn't required here,
6711 * because it will be called anyway a bit later from
6712 * do_freezer_trap(). So we avoid cgroup's transient
6713 * switch from the frozen state and back.
6714 */
6715 }
6716
6717 /*
6718 * If the cgroup is to be killed notice it now and take the
6719 * child down right after we finished preparing it for
6720 * userspace.
6721 */
6722 kill = test_bit(CGRP_KILL, &cgrp_flags);
6723 }
6724
6725 spin_unlock_irq(&css_set_lock);
6726
6727 /*
6728 * Call ss->fork(). This must happen after @child is linked on
6729 * css_set; otherwise, @child might change state between ->fork()
6730 * and addition to css_set.
6731 */
6732 do_each_subsys_mask(ss, i, have_fork_callback) {
6733 ss->fork(child);
6734 } while_each_subsys_mask();
6735
6736 /* Make the new cset the root_cset of the new cgroup namespace. */
6737 if (kargs->flags & CLONE_NEWCGROUP) {
6738 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6739
6740 get_css_set(cset);
6741 child->nsproxy->cgroup_ns->root_cset = cset;
6742 put_css_set(rcset);
6743 }
6744
6745 /* Cgroup has to be killed so take down child immediately. */
6746 if (unlikely(kill))
6747 do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID);
6748
6749 cgroup_css_set_put_fork(kargs);
6750 }
6751
6752 /**
6753 * cgroup_exit - detach cgroup from exiting task
6754 * @tsk: pointer to task_struct of exiting process
6755 *
6756 * Description: Detach cgroup from @tsk.
6757 *
6758 */
cgroup_exit(struct task_struct * tsk)6759 void cgroup_exit(struct task_struct *tsk)
6760 {
6761 struct cgroup_subsys *ss;
6762 struct css_set *cset;
6763 int i;
6764
6765 spin_lock_irq(&css_set_lock);
6766
6767 WARN_ON_ONCE(list_empty(&tsk->cg_list));
6768 cset = task_css_set(tsk);
6769 css_set_move_task(tsk, cset, NULL, false);
6770 cset->nr_tasks--;
6771 /* matches the signal->live check in css_task_iter_advance() */
6772 if (thread_group_leader(tsk) && atomic_read(&tsk->signal->live))
6773 list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6774
6775 if (dl_task(tsk))
6776 dec_dl_tasks_cs(tsk);
6777
6778 WARN_ON_ONCE(cgroup_task_frozen(tsk));
6779 if (unlikely(!(tsk->flags & PF_KTHREAD) &&
6780 test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags)))
6781 cgroup_update_frozen(task_dfl_cgroup(tsk));
6782
6783 spin_unlock_irq(&css_set_lock);
6784
6785 /* see cgroup_post_fork() for details */
6786 do_each_subsys_mask(ss, i, have_exit_callback) {
6787 ss->exit(tsk);
6788 } while_each_subsys_mask();
6789 }
6790
cgroup_release(struct task_struct * task)6791 void cgroup_release(struct task_struct *task)
6792 {
6793 struct cgroup_subsys *ss;
6794 int ssid;
6795
6796 do_each_subsys_mask(ss, ssid, have_release_callback) {
6797 ss->release(task);
6798 } while_each_subsys_mask();
6799
6800 if (!list_empty(&task->cg_list)) {
6801 spin_lock_irq(&css_set_lock);
6802 css_set_skip_task_iters(task_css_set(task), task);
6803 list_del_init(&task->cg_list);
6804 spin_unlock_irq(&css_set_lock);
6805 }
6806 }
6807
cgroup_free(struct task_struct * task)6808 void cgroup_free(struct task_struct *task)
6809 {
6810 struct css_set *cset = task_css_set(task);
6811 put_css_set(cset);
6812 }
6813
cgroup_disable(char * str)6814 static int __init cgroup_disable(char *str)
6815 {
6816 struct cgroup_subsys *ss;
6817 char *token;
6818 int i;
6819
6820 while ((token = strsep(&str, ",")) != NULL) {
6821 if (!*token)
6822 continue;
6823
6824 for_each_subsys(ss, i) {
6825 if (strcmp(token, ss->name) &&
6826 strcmp(token, ss->legacy_name))
6827 continue;
6828
6829 static_branch_disable(cgroup_subsys_enabled_key[i]);
6830 pr_info("Disabling %s control group subsystem\n",
6831 ss->name);
6832 }
6833
6834 for (i = 0; i < OPT_FEATURE_COUNT; i++) {
6835 if (strcmp(token, cgroup_opt_feature_names[i]))
6836 continue;
6837 cgroup_feature_disable_mask |= 1 << i;
6838 pr_info("Disabling %s control group feature\n",
6839 cgroup_opt_feature_names[i]);
6840 break;
6841 }
6842 }
6843 return 1;
6844 }
6845 __setup("cgroup_disable=", cgroup_disable);
6846
enable_debug_cgroup(void)6847 void __init __weak enable_debug_cgroup(void) { }
6848
enable_cgroup_debug(char * str)6849 static int __init enable_cgroup_debug(char *str)
6850 {
6851 cgroup_debug = true;
6852 enable_debug_cgroup();
6853 return 1;
6854 }
6855 __setup("cgroup_debug", enable_cgroup_debug);
6856
cgroup_favordynmods_setup(char * str)6857 static int __init cgroup_favordynmods_setup(char *str)
6858 {
6859 return (kstrtobool(str, &have_favordynmods) == 0);
6860 }
6861 __setup("cgroup_favordynmods=", cgroup_favordynmods_setup);
6862
6863 /**
6864 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6865 * @dentry: directory dentry of interest
6866 * @ss: subsystem of interest
6867 *
6868 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6869 * to get the corresponding css and return it. If such css doesn't exist
6870 * or can't be pinned, an ERR_PTR value is returned.
6871 */
css_tryget_online_from_dir(struct dentry * dentry,struct cgroup_subsys * ss)6872 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6873 struct cgroup_subsys *ss)
6874 {
6875 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6876 struct file_system_type *s_type = dentry->d_sb->s_type;
6877 struct cgroup_subsys_state *css = NULL;
6878 struct cgroup *cgrp;
6879
6880 /* is @dentry a cgroup dir? */
6881 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6882 !kn || kernfs_type(kn) != KERNFS_DIR)
6883 return ERR_PTR(-EBADF);
6884
6885 rcu_read_lock();
6886
6887 /*
6888 * This path doesn't originate from kernfs and @kn could already
6889 * have been or be removed at any point. @kn->priv is RCU
6890 * protected for this access. See css_release_work_fn() for details.
6891 */
6892 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6893 if (cgrp)
6894 css = cgroup_css(cgrp, ss);
6895
6896 if (!css || !css_tryget_online(css))
6897 css = ERR_PTR(-ENOENT);
6898
6899 rcu_read_unlock();
6900 return css;
6901 }
6902
6903 /**
6904 * css_from_id - lookup css by id
6905 * @id: the cgroup id
6906 * @ss: cgroup subsys to be looked into
6907 *
6908 * Returns the css if there's valid one with @id, otherwise returns NULL.
6909 * Should be called under rcu_read_lock().
6910 */
css_from_id(int id,struct cgroup_subsys * ss)6911 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6912 {
6913 WARN_ON_ONCE(!rcu_read_lock_held());
6914 return idr_find(&ss->css_idr, id);
6915 }
6916
6917 /**
6918 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6919 * @path: path on the default hierarchy
6920 *
6921 * Find the cgroup at @path on the default hierarchy, increment its
6922 * reference count and return it. Returns pointer to the found cgroup on
6923 * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already
6924 * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory.
6925 */
cgroup_get_from_path(const char * path)6926 struct cgroup *cgroup_get_from_path(const char *path)
6927 {
6928 struct kernfs_node *kn;
6929 struct cgroup *cgrp = ERR_PTR(-ENOENT);
6930 struct cgroup *root_cgrp;
6931
6932 root_cgrp = current_cgns_cgroup_dfl();
6933 kn = kernfs_walk_and_get(root_cgrp->kn, path);
6934 if (!kn)
6935 goto out;
6936
6937 if (kernfs_type(kn) != KERNFS_DIR) {
6938 cgrp = ERR_PTR(-ENOTDIR);
6939 goto out_kernfs;
6940 }
6941
6942 rcu_read_lock();
6943
6944 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6945 if (!cgrp || !cgroup_tryget(cgrp))
6946 cgrp = ERR_PTR(-ENOENT);
6947
6948 rcu_read_unlock();
6949
6950 out_kernfs:
6951 kernfs_put(kn);
6952 out:
6953 return cgrp;
6954 }
6955 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6956
6957 /**
6958 * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd
6959 * @fd: fd obtained by open(cgroup_dir)
6960 *
6961 * Find the cgroup from a fd which should be obtained
6962 * by opening a cgroup directory. Returns a pointer to the
6963 * cgroup on success. ERR_PTR is returned if the cgroup
6964 * cannot be found.
6965 */
cgroup_v1v2_get_from_fd(int fd)6966 struct cgroup *cgroup_v1v2_get_from_fd(int fd)
6967 {
6968 CLASS(fd_raw, f)(fd);
6969 if (fd_empty(f))
6970 return ERR_PTR(-EBADF);
6971
6972 return cgroup_v1v2_get_from_file(fd_file(f));
6973 }
6974
6975 /**
6976 * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports
6977 * cgroup2.
6978 * @fd: fd obtained by open(cgroup2_dir)
6979 */
cgroup_get_from_fd(int fd)6980 struct cgroup *cgroup_get_from_fd(int fd)
6981 {
6982 struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd);
6983
6984 if (IS_ERR(cgrp))
6985 return ERR_CAST(cgrp);
6986
6987 if (!cgroup_on_dfl(cgrp)) {
6988 cgroup_put(cgrp);
6989 return ERR_PTR(-EBADF);
6990 }
6991 return cgrp;
6992 }
6993 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6994
power_of_ten(int power)6995 static u64 power_of_ten(int power)
6996 {
6997 u64 v = 1;
6998 while (power--)
6999 v *= 10;
7000 return v;
7001 }
7002
7003 /**
7004 * cgroup_parse_float - parse a floating number
7005 * @input: input string
7006 * @dec_shift: number of decimal digits to shift
7007 * @v: output
7008 *
7009 * Parse a decimal floating point number in @input and store the result in
7010 * @v with decimal point right shifted @dec_shift times. For example, if
7011 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
7012 * Returns 0 on success, -errno otherwise.
7013 *
7014 * There's nothing cgroup specific about this function except that it's
7015 * currently the only user.
7016 */
cgroup_parse_float(const char * input,unsigned dec_shift,s64 * v)7017 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
7018 {
7019 s64 whole, frac = 0;
7020 int fstart = 0, fend = 0, flen;
7021
7022 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
7023 return -EINVAL;
7024 if (frac < 0)
7025 return -EINVAL;
7026
7027 flen = fend > fstart ? fend - fstart : 0;
7028 if (flen < dec_shift)
7029 frac *= power_of_ten(dec_shift - flen);
7030 else
7031 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
7032
7033 *v = whole * power_of_ten(dec_shift) + frac;
7034 return 0;
7035 }
7036
7037 /*
7038 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
7039 * definition in cgroup-defs.h.
7040 */
7041 #ifdef CONFIG_SOCK_CGROUP_DATA
7042
cgroup_sk_alloc(struct sock_cgroup_data * skcd)7043 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
7044 {
7045 struct cgroup *cgroup;
7046
7047 rcu_read_lock();
7048 /* Don't associate the sock with unrelated interrupted task's cgroup. */
7049 if (in_interrupt()) {
7050 cgroup = &cgrp_dfl_root.cgrp;
7051 cgroup_get(cgroup);
7052 goto out;
7053 }
7054
7055 while (true) {
7056 struct css_set *cset;
7057
7058 cset = task_css_set(current);
7059 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
7060 cgroup = cset->dfl_cgrp;
7061 break;
7062 }
7063 cpu_relax();
7064 }
7065 out:
7066 skcd->cgroup = cgroup;
7067 cgroup_bpf_get(cgroup);
7068 rcu_read_unlock();
7069 }
7070
cgroup_sk_clone(struct sock_cgroup_data * skcd)7071 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
7072 {
7073 struct cgroup *cgrp = sock_cgroup_ptr(skcd);
7074
7075 /*
7076 * We might be cloning a socket which is left in an empty
7077 * cgroup and the cgroup might have already been rmdir'd.
7078 * Don't use cgroup_get_live().
7079 */
7080 cgroup_get(cgrp);
7081 cgroup_bpf_get(cgrp);
7082 }
7083
cgroup_sk_free(struct sock_cgroup_data * skcd)7084 void cgroup_sk_free(struct sock_cgroup_data *skcd)
7085 {
7086 struct cgroup *cgrp = sock_cgroup_ptr(skcd);
7087
7088 cgroup_bpf_put(cgrp);
7089 cgroup_put(cgrp);
7090 }
7091
7092 #endif /* CONFIG_SOCK_CGROUP_DATA */
7093
7094 #ifdef CONFIG_SYSFS
show_delegatable_files(struct cftype * files,char * buf,ssize_t size,const char * prefix)7095 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
7096 ssize_t size, const char *prefix)
7097 {
7098 struct cftype *cft;
7099 ssize_t ret = 0;
7100
7101 for (cft = files; cft && cft->name[0] != '\0'; cft++) {
7102 if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
7103 continue;
7104
7105 if (prefix)
7106 ret += snprintf(buf + ret, size - ret, "%s.", prefix);
7107
7108 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
7109
7110 if (WARN_ON(ret >= size))
7111 break;
7112 }
7113
7114 return ret;
7115 }
7116
delegate_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)7117 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
7118 char *buf)
7119 {
7120 struct cgroup_subsys *ss;
7121 int ssid;
7122 ssize_t ret = 0;
7123
7124 ret = show_delegatable_files(cgroup_base_files, buf + ret,
7125 PAGE_SIZE - ret, NULL);
7126 if (cgroup_psi_enabled())
7127 ret += show_delegatable_files(cgroup_psi_files, buf + ret,
7128 PAGE_SIZE - ret, NULL);
7129
7130 for_each_subsys(ss, ssid)
7131 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
7132 PAGE_SIZE - ret,
7133 cgroup_subsys_name[ssid]);
7134
7135 return ret;
7136 }
7137 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
7138
features_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)7139 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
7140 char *buf)
7141 {
7142 return snprintf(buf, PAGE_SIZE,
7143 "nsdelegate\n"
7144 "favordynmods\n"
7145 "memory_localevents\n"
7146 "memory_recursiveprot\n"
7147 "memory_hugetlb_accounting\n"
7148 "pids_localevents\n");
7149 }
7150 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
7151
7152 static struct attribute *cgroup_sysfs_attrs[] = {
7153 &cgroup_delegate_attr.attr,
7154 &cgroup_features_attr.attr,
7155 NULL,
7156 };
7157
7158 static const struct attribute_group cgroup_sysfs_attr_group = {
7159 .attrs = cgroup_sysfs_attrs,
7160 .name = "cgroup",
7161 };
7162
cgroup_sysfs_init(void)7163 static int __init cgroup_sysfs_init(void)
7164 {
7165 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
7166 }
7167 subsys_initcall(cgroup_sysfs_init);
7168
7169 #endif /* CONFIG_SYSFS */
7170