1 // SPDX-License-Identifier: GPL-2.0-only
2 #include "cgroup-internal.h"
3
4 #include <linux/sched/cputime.h>
5
6 #include <linux/bpf.h>
7 #include <linux/btf.h>
8 #include <linux/btf_ids.h>
9
10 #include <trace/events/cgroup.h>
11
12 static DEFINE_SPINLOCK(cgroup_rstat_lock);
13 static DEFINE_PER_CPU(raw_spinlock_t, cgroup_rstat_cpu_lock);
14
15 static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu);
16
cgroup_rstat_cpu(struct cgroup * cgrp,int cpu)17 static struct cgroup_rstat_cpu *cgroup_rstat_cpu(struct cgroup *cgrp, int cpu)
18 {
19 return per_cpu_ptr(cgrp->rstat_cpu, cpu);
20 }
21
22 /*
23 * Helper functions for rstat per CPU lock (cgroup_rstat_cpu_lock).
24 *
25 * This makes it easier to diagnose locking issues and contention in
26 * production environments. The parameter @fast_path determine the
27 * tracepoints being added, allowing us to diagnose "flush" related
28 * operations without handling high-frequency fast-path "update" events.
29 */
30 static __always_inline
_cgroup_rstat_cpu_lock(raw_spinlock_t * cpu_lock,int cpu,struct cgroup * cgrp,const bool fast_path)31 unsigned long _cgroup_rstat_cpu_lock(raw_spinlock_t *cpu_lock, int cpu,
32 struct cgroup *cgrp, const bool fast_path)
33 {
34 unsigned long flags;
35 bool contended;
36
37 /*
38 * The _irqsave() is needed because cgroup_rstat_lock is
39 * spinlock_t which is a sleeping lock on PREEMPT_RT. Acquiring
40 * this lock with the _irq() suffix only disables interrupts on
41 * a non-PREEMPT_RT kernel. The raw_spinlock_t below disables
42 * interrupts on both configurations. The _irqsave() ensures
43 * that interrupts are always disabled and later restored.
44 */
45 contended = !raw_spin_trylock_irqsave(cpu_lock, flags);
46 if (contended) {
47 if (fast_path)
48 trace_cgroup_rstat_cpu_lock_contended_fastpath(cgrp, cpu, contended);
49 else
50 trace_cgroup_rstat_cpu_lock_contended(cgrp, cpu, contended);
51
52 raw_spin_lock_irqsave(cpu_lock, flags);
53 }
54
55 if (fast_path)
56 trace_cgroup_rstat_cpu_locked_fastpath(cgrp, cpu, contended);
57 else
58 trace_cgroup_rstat_cpu_locked(cgrp, cpu, contended);
59
60 return flags;
61 }
62
63 static __always_inline
_cgroup_rstat_cpu_unlock(raw_spinlock_t * cpu_lock,int cpu,struct cgroup * cgrp,unsigned long flags,const bool fast_path)64 void _cgroup_rstat_cpu_unlock(raw_spinlock_t *cpu_lock, int cpu,
65 struct cgroup *cgrp, unsigned long flags,
66 const bool fast_path)
67 {
68 if (fast_path)
69 trace_cgroup_rstat_cpu_unlock_fastpath(cgrp, cpu, false);
70 else
71 trace_cgroup_rstat_cpu_unlock(cgrp, cpu, false);
72
73 raw_spin_unlock_irqrestore(cpu_lock, flags);
74 }
75
76 /**
77 * cgroup_rstat_updated - keep track of updated rstat_cpu
78 * @cgrp: target cgroup
79 * @cpu: cpu on which rstat_cpu was updated
80 *
81 * @cgrp's rstat_cpu on @cpu was updated. Put it on the parent's matching
82 * rstat_cpu->updated_children list. See the comment on top of
83 * cgroup_rstat_cpu definition for details.
84 */
cgroup_rstat_updated(struct cgroup * cgrp,int cpu)85 __bpf_kfunc void cgroup_rstat_updated(struct cgroup *cgrp, int cpu)
86 {
87 raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu);
88 unsigned long flags;
89
90 /*
91 * Speculative already-on-list test. This may race leading to
92 * temporary inaccuracies, which is fine.
93 *
94 * Because @parent's updated_children is terminated with @parent
95 * instead of NULL, we can tell whether @cgrp is on the list by
96 * testing the next pointer for NULL.
97 */
98 if (data_race(cgroup_rstat_cpu(cgrp, cpu)->updated_next))
99 return;
100
101 flags = _cgroup_rstat_cpu_lock(cpu_lock, cpu, cgrp, true);
102
103 /* put @cgrp and all ancestors on the corresponding updated lists */
104 while (true) {
105 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu);
106 struct cgroup *parent = cgroup_parent(cgrp);
107 struct cgroup_rstat_cpu *prstatc;
108
109 /*
110 * Both additions and removals are bottom-up. If a cgroup
111 * is already in the tree, all ancestors are.
112 */
113 if (rstatc->updated_next)
114 break;
115
116 /* Root has no parent to link it to, but mark it busy */
117 if (!parent) {
118 rstatc->updated_next = cgrp;
119 break;
120 }
121
122 prstatc = cgroup_rstat_cpu(parent, cpu);
123 rstatc->updated_next = prstatc->updated_children;
124 prstatc->updated_children = cgrp;
125
126 cgrp = parent;
127 }
128
129 _cgroup_rstat_cpu_unlock(cpu_lock, cpu, cgrp, flags, true);
130 }
131
132 /**
133 * cgroup_rstat_push_children - push children cgroups into the given list
134 * @head: current head of the list (= subtree root)
135 * @child: first child of the root
136 * @cpu: target cpu
137 * Return: A new singly linked list of cgroups to be flush
138 *
139 * Iteratively traverse down the cgroup_rstat_cpu updated tree level by
140 * level and push all the parents first before their next level children
141 * into a singly linked list built from the tail backward like "pushing"
142 * cgroups into a stack. The root is pushed by the caller.
143 */
cgroup_rstat_push_children(struct cgroup * head,struct cgroup * child,int cpu)144 static struct cgroup *cgroup_rstat_push_children(struct cgroup *head,
145 struct cgroup *child, int cpu)
146 {
147 struct cgroup *chead = child; /* Head of child cgroup level */
148 struct cgroup *ghead = NULL; /* Head of grandchild cgroup level */
149 struct cgroup *parent, *grandchild;
150 struct cgroup_rstat_cpu *crstatc;
151
152 child->rstat_flush_next = NULL;
153
154 next_level:
155 while (chead) {
156 child = chead;
157 chead = child->rstat_flush_next;
158 parent = cgroup_parent(child);
159
160 /* updated_next is parent cgroup terminated */
161 while (child != parent) {
162 child->rstat_flush_next = head;
163 head = child;
164 crstatc = cgroup_rstat_cpu(child, cpu);
165 grandchild = crstatc->updated_children;
166 if (grandchild != child) {
167 /* Push the grand child to the next level */
168 crstatc->updated_children = child;
169 grandchild->rstat_flush_next = ghead;
170 ghead = grandchild;
171 }
172 child = crstatc->updated_next;
173 crstatc->updated_next = NULL;
174 }
175 }
176
177 if (ghead) {
178 chead = ghead;
179 ghead = NULL;
180 goto next_level;
181 }
182 return head;
183 }
184
185 /**
186 * cgroup_rstat_updated_list - return a list of updated cgroups to be flushed
187 * @root: root of the cgroup subtree to traverse
188 * @cpu: target cpu
189 * Return: A singly linked list of cgroups to be flushed
190 *
191 * Walks the updated rstat_cpu tree on @cpu from @root. During traversal,
192 * each returned cgroup is unlinked from the updated tree.
193 *
194 * The only ordering guarantee is that, for a parent and a child pair
195 * covered by a given traversal, the child is before its parent in
196 * the list.
197 *
198 * Note that updated_children is self terminated and points to a list of
199 * child cgroups if not empty. Whereas updated_next is like a sibling link
200 * within the children list and terminated by the parent cgroup. An exception
201 * here is the cgroup root whose updated_next can be self terminated.
202 */
cgroup_rstat_updated_list(struct cgroup * root,int cpu)203 static struct cgroup *cgroup_rstat_updated_list(struct cgroup *root, int cpu)
204 {
205 raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu);
206 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(root, cpu);
207 struct cgroup *head = NULL, *parent, *child;
208 unsigned long flags;
209
210 flags = _cgroup_rstat_cpu_lock(cpu_lock, cpu, root, false);
211
212 /* Return NULL if this subtree is not on-list */
213 if (!rstatc->updated_next)
214 goto unlock_ret;
215
216 /*
217 * Unlink @root from its parent. As the updated_children list is
218 * singly linked, we have to walk it to find the removal point.
219 */
220 parent = cgroup_parent(root);
221 if (parent) {
222 struct cgroup_rstat_cpu *prstatc;
223 struct cgroup **nextp;
224
225 prstatc = cgroup_rstat_cpu(parent, cpu);
226 nextp = &prstatc->updated_children;
227 while (*nextp != root) {
228 struct cgroup_rstat_cpu *nrstatc;
229
230 nrstatc = cgroup_rstat_cpu(*nextp, cpu);
231 WARN_ON_ONCE(*nextp == parent);
232 nextp = &nrstatc->updated_next;
233 }
234 *nextp = rstatc->updated_next;
235 }
236
237 rstatc->updated_next = NULL;
238
239 /* Push @root to the list first before pushing the children */
240 head = root;
241 root->rstat_flush_next = NULL;
242 child = rstatc->updated_children;
243 rstatc->updated_children = root;
244 if (child != root)
245 head = cgroup_rstat_push_children(head, child, cpu);
246 unlock_ret:
247 _cgroup_rstat_cpu_unlock(cpu_lock, cpu, root, flags, false);
248 return head;
249 }
250
251 /*
252 * A hook for bpf stat collectors to attach to and flush their stats.
253 * Together with providing bpf kfuncs for cgroup_rstat_updated() and
254 * cgroup_rstat_flush(), this enables a complete workflow where bpf progs that
255 * collect cgroup stats can integrate with rstat for efficient flushing.
256 *
257 * A static noinline declaration here could cause the compiler to optimize away
258 * the function. A global noinline declaration will keep the definition, but may
259 * optimize away the callsite. Therefore, __weak is needed to ensure that the
260 * call is still emitted, by telling the compiler that we don't know what the
261 * function might eventually be.
262 */
263
264 __bpf_hook_start();
265
bpf_rstat_flush(struct cgroup * cgrp,struct cgroup * parent,int cpu)266 __weak noinline void bpf_rstat_flush(struct cgroup *cgrp,
267 struct cgroup *parent, int cpu)
268 {
269 }
270
271 __bpf_hook_end();
272
273 /*
274 * Helper functions for locking cgroup_rstat_lock.
275 *
276 * This makes it easier to diagnose locking issues and contention in
277 * production environments. The parameter @cpu_in_loop indicate lock
278 * was released and re-taken when collection data from the CPUs. The
279 * value -1 is used when obtaining the main lock else this is the CPU
280 * number processed last.
281 */
__cgroup_rstat_lock(struct cgroup * cgrp,int cpu_in_loop)282 static inline void __cgroup_rstat_lock(struct cgroup *cgrp, int cpu_in_loop)
283 __acquires(&cgroup_rstat_lock)
284 {
285 bool contended;
286
287 contended = !spin_trylock_irq(&cgroup_rstat_lock);
288 if (contended) {
289 trace_cgroup_rstat_lock_contended(cgrp, cpu_in_loop, contended);
290 spin_lock_irq(&cgroup_rstat_lock);
291 }
292 trace_cgroup_rstat_locked(cgrp, cpu_in_loop, contended);
293 }
294
__cgroup_rstat_unlock(struct cgroup * cgrp,int cpu_in_loop)295 static inline void __cgroup_rstat_unlock(struct cgroup *cgrp, int cpu_in_loop)
296 __releases(&cgroup_rstat_lock)
297 {
298 trace_cgroup_rstat_unlock(cgrp, cpu_in_loop, false);
299 spin_unlock_irq(&cgroup_rstat_lock);
300 }
301
302 /**
303 * cgroup_rstat_flush - flush stats in @cgrp's subtree
304 * @cgrp: target cgroup
305 *
306 * Collect all per-cpu stats in @cgrp's subtree into the global counters
307 * and propagate them upwards. After this function returns, all cgroups in
308 * the subtree have up-to-date ->stat.
309 *
310 * This also gets all cgroups in the subtree including @cgrp off the
311 * ->updated_children lists.
312 *
313 * This function may block.
314 */
cgroup_rstat_flush(struct cgroup * cgrp)315 __bpf_kfunc void cgroup_rstat_flush(struct cgroup *cgrp)
316 {
317 int cpu;
318
319 might_sleep();
320 for_each_possible_cpu(cpu) {
321 struct cgroup *pos = cgroup_rstat_updated_list(cgrp, cpu);
322
323 /* Reacquire for each CPU to avoid disabling IRQs too long */
324 __cgroup_rstat_lock(cgrp, cpu);
325 for (; pos; pos = pos->rstat_flush_next) {
326 struct cgroup_subsys_state *css;
327
328 cgroup_base_stat_flush(pos, cpu);
329 bpf_rstat_flush(pos, cgroup_parent(pos), cpu);
330
331 rcu_read_lock();
332 list_for_each_entry_rcu(css, &pos->rstat_css_list,
333 rstat_css_node)
334 css->ss->css_rstat_flush(css, cpu);
335 rcu_read_unlock();
336 }
337 __cgroup_rstat_unlock(cgrp, cpu);
338 if (!cond_resched())
339 cpu_relax();
340 }
341 }
342
cgroup_rstat_init(struct cgroup * cgrp)343 int cgroup_rstat_init(struct cgroup *cgrp)
344 {
345 int cpu;
346
347 /* the root cgrp has rstat_cpu preallocated */
348 if (!cgrp->rstat_cpu) {
349 cgrp->rstat_cpu = alloc_percpu(struct cgroup_rstat_cpu);
350 if (!cgrp->rstat_cpu)
351 return -ENOMEM;
352 }
353
354 /* ->updated_children list is self terminated */
355 for_each_possible_cpu(cpu) {
356 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu);
357
358 rstatc->updated_children = cgrp;
359 u64_stats_init(&rstatc->bsync);
360 }
361
362 return 0;
363 }
364
cgroup_rstat_exit(struct cgroup * cgrp)365 void cgroup_rstat_exit(struct cgroup *cgrp)
366 {
367 int cpu;
368
369 cgroup_rstat_flush(cgrp);
370
371 /* sanity check */
372 for_each_possible_cpu(cpu) {
373 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu);
374
375 if (WARN_ON_ONCE(rstatc->updated_children != cgrp) ||
376 WARN_ON_ONCE(rstatc->updated_next))
377 return;
378 }
379
380 free_percpu(cgrp->rstat_cpu);
381 cgrp->rstat_cpu = NULL;
382 }
383
cgroup_rstat_boot(void)384 void __init cgroup_rstat_boot(void)
385 {
386 int cpu;
387
388 for_each_possible_cpu(cpu)
389 raw_spin_lock_init(per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu));
390 }
391
392 /*
393 * Functions for cgroup basic resource statistics implemented on top of
394 * rstat.
395 */
cgroup_base_stat_add(struct cgroup_base_stat * dst_bstat,struct cgroup_base_stat * src_bstat)396 static void cgroup_base_stat_add(struct cgroup_base_stat *dst_bstat,
397 struct cgroup_base_stat *src_bstat)
398 {
399 dst_bstat->cputime.utime += src_bstat->cputime.utime;
400 dst_bstat->cputime.stime += src_bstat->cputime.stime;
401 dst_bstat->cputime.sum_exec_runtime += src_bstat->cputime.sum_exec_runtime;
402 #ifdef CONFIG_SCHED_CORE
403 dst_bstat->forceidle_sum += src_bstat->forceidle_sum;
404 #endif
405 dst_bstat->ntime += src_bstat->ntime;
406 }
407
cgroup_base_stat_sub(struct cgroup_base_stat * dst_bstat,struct cgroup_base_stat * src_bstat)408 static void cgroup_base_stat_sub(struct cgroup_base_stat *dst_bstat,
409 struct cgroup_base_stat *src_bstat)
410 {
411 dst_bstat->cputime.utime -= src_bstat->cputime.utime;
412 dst_bstat->cputime.stime -= src_bstat->cputime.stime;
413 dst_bstat->cputime.sum_exec_runtime -= src_bstat->cputime.sum_exec_runtime;
414 #ifdef CONFIG_SCHED_CORE
415 dst_bstat->forceidle_sum -= src_bstat->forceidle_sum;
416 #endif
417 dst_bstat->ntime -= src_bstat->ntime;
418 }
419
cgroup_base_stat_flush(struct cgroup * cgrp,int cpu)420 static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu)
421 {
422 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu);
423 struct cgroup *parent = cgroup_parent(cgrp);
424 struct cgroup_rstat_cpu *prstatc;
425 struct cgroup_base_stat delta;
426 unsigned seq;
427
428 /* Root-level stats are sourced from system-wide CPU stats */
429 if (!parent)
430 return;
431
432 /* fetch the current per-cpu values */
433 do {
434 seq = __u64_stats_fetch_begin(&rstatc->bsync);
435 delta = rstatc->bstat;
436 } while (__u64_stats_fetch_retry(&rstatc->bsync, seq));
437
438 /* propagate per-cpu delta to cgroup and per-cpu global statistics */
439 cgroup_base_stat_sub(&delta, &rstatc->last_bstat);
440 cgroup_base_stat_add(&cgrp->bstat, &delta);
441 cgroup_base_stat_add(&rstatc->last_bstat, &delta);
442 cgroup_base_stat_add(&rstatc->subtree_bstat, &delta);
443
444 /* propagate cgroup and per-cpu global delta to parent (unless that's root) */
445 if (cgroup_parent(parent)) {
446 delta = cgrp->bstat;
447 cgroup_base_stat_sub(&delta, &cgrp->last_bstat);
448 cgroup_base_stat_add(&parent->bstat, &delta);
449 cgroup_base_stat_add(&cgrp->last_bstat, &delta);
450
451 delta = rstatc->subtree_bstat;
452 prstatc = cgroup_rstat_cpu(parent, cpu);
453 cgroup_base_stat_sub(&delta, &rstatc->last_subtree_bstat);
454 cgroup_base_stat_add(&prstatc->subtree_bstat, &delta);
455 cgroup_base_stat_add(&rstatc->last_subtree_bstat, &delta);
456 }
457 }
458
459 static struct cgroup_rstat_cpu *
cgroup_base_stat_cputime_account_begin(struct cgroup * cgrp,unsigned long * flags)460 cgroup_base_stat_cputime_account_begin(struct cgroup *cgrp, unsigned long *flags)
461 {
462 struct cgroup_rstat_cpu *rstatc;
463
464 rstatc = get_cpu_ptr(cgrp->rstat_cpu);
465 *flags = u64_stats_update_begin_irqsave(&rstatc->bsync);
466 return rstatc;
467 }
468
cgroup_base_stat_cputime_account_end(struct cgroup * cgrp,struct cgroup_rstat_cpu * rstatc,unsigned long flags)469 static void cgroup_base_stat_cputime_account_end(struct cgroup *cgrp,
470 struct cgroup_rstat_cpu *rstatc,
471 unsigned long flags)
472 {
473 u64_stats_update_end_irqrestore(&rstatc->bsync, flags);
474 cgroup_rstat_updated(cgrp, smp_processor_id());
475 put_cpu_ptr(rstatc);
476 }
477
__cgroup_account_cputime(struct cgroup * cgrp,u64 delta_exec)478 void __cgroup_account_cputime(struct cgroup *cgrp, u64 delta_exec)
479 {
480 struct cgroup_rstat_cpu *rstatc;
481 unsigned long flags;
482
483 rstatc = cgroup_base_stat_cputime_account_begin(cgrp, &flags);
484 rstatc->bstat.cputime.sum_exec_runtime += delta_exec;
485 cgroup_base_stat_cputime_account_end(cgrp, rstatc, flags);
486 }
487
__cgroup_account_cputime_field(struct cgroup * cgrp,enum cpu_usage_stat index,u64 delta_exec)488 void __cgroup_account_cputime_field(struct cgroup *cgrp,
489 enum cpu_usage_stat index, u64 delta_exec)
490 {
491 struct cgroup_rstat_cpu *rstatc;
492 unsigned long flags;
493
494 rstatc = cgroup_base_stat_cputime_account_begin(cgrp, &flags);
495
496 switch (index) {
497 case CPUTIME_NICE:
498 rstatc->bstat.ntime += delta_exec;
499 fallthrough;
500 case CPUTIME_USER:
501 rstatc->bstat.cputime.utime += delta_exec;
502 break;
503 case CPUTIME_SYSTEM:
504 case CPUTIME_IRQ:
505 case CPUTIME_SOFTIRQ:
506 rstatc->bstat.cputime.stime += delta_exec;
507 break;
508 #ifdef CONFIG_SCHED_CORE
509 case CPUTIME_FORCEIDLE:
510 rstatc->bstat.forceidle_sum += delta_exec;
511 break;
512 #endif
513 default:
514 break;
515 }
516
517 cgroup_base_stat_cputime_account_end(cgrp, rstatc, flags);
518 }
519
520 /*
521 * compute the cputime for the root cgroup by getting the per cpu data
522 * at a global level, then categorizing the fields in a manner consistent
523 * with how it is done by __cgroup_account_cputime_field for each bit of
524 * cpu time attributed to a cgroup.
525 */
root_cgroup_cputime(struct cgroup_base_stat * bstat)526 static void root_cgroup_cputime(struct cgroup_base_stat *bstat)
527 {
528 struct task_cputime *cputime = &bstat->cputime;
529 int i;
530
531 memset(bstat, 0, sizeof(*bstat));
532 for_each_possible_cpu(i) {
533 struct kernel_cpustat kcpustat;
534 u64 *cpustat = kcpustat.cpustat;
535 u64 user = 0;
536 u64 sys = 0;
537
538 kcpustat_cpu_fetch(&kcpustat, i);
539
540 user += cpustat[CPUTIME_USER];
541 user += cpustat[CPUTIME_NICE];
542 cputime->utime += user;
543
544 sys += cpustat[CPUTIME_SYSTEM];
545 sys += cpustat[CPUTIME_IRQ];
546 sys += cpustat[CPUTIME_SOFTIRQ];
547 cputime->stime += sys;
548
549 cputime->sum_exec_runtime += user;
550 cputime->sum_exec_runtime += sys;
551
552 #ifdef CONFIG_SCHED_CORE
553 bstat->forceidle_sum += cpustat[CPUTIME_FORCEIDLE];
554 #endif
555 bstat->ntime += cpustat[CPUTIME_NICE];
556 }
557 }
558
559
cgroup_force_idle_show(struct seq_file * seq,struct cgroup_base_stat * bstat)560 static void cgroup_force_idle_show(struct seq_file *seq, struct cgroup_base_stat *bstat)
561 {
562 #ifdef CONFIG_SCHED_CORE
563 u64 forceidle_time = bstat->forceidle_sum;
564
565 do_div(forceidle_time, NSEC_PER_USEC);
566 seq_printf(seq, "core_sched.force_idle_usec %llu\n", forceidle_time);
567 #endif
568 }
569
cgroup_base_stat_cputime_show(struct seq_file * seq)570 void cgroup_base_stat_cputime_show(struct seq_file *seq)
571 {
572 struct cgroup *cgrp = seq_css(seq)->cgroup;
573 struct cgroup_base_stat bstat;
574
575 if (cgroup_parent(cgrp)) {
576 cgroup_rstat_flush(cgrp);
577 __cgroup_rstat_lock(cgrp, -1);
578 bstat = cgrp->bstat;
579 cputime_adjust(&cgrp->bstat.cputime, &cgrp->prev_cputime,
580 &bstat.cputime.utime, &bstat.cputime.stime);
581 __cgroup_rstat_unlock(cgrp, -1);
582 } else {
583 root_cgroup_cputime(&bstat);
584 }
585
586 do_div(bstat.cputime.sum_exec_runtime, NSEC_PER_USEC);
587 do_div(bstat.cputime.utime, NSEC_PER_USEC);
588 do_div(bstat.cputime.stime, NSEC_PER_USEC);
589 do_div(bstat.ntime, NSEC_PER_USEC);
590
591 seq_printf(seq, "usage_usec %llu\n"
592 "user_usec %llu\n"
593 "system_usec %llu\n"
594 "nice_usec %llu\n",
595 bstat.cputime.sum_exec_runtime,
596 bstat.cputime.utime,
597 bstat.cputime.stime,
598 bstat.ntime);
599
600 cgroup_force_idle_show(seq, &bstat);
601 }
602
603 /* Add bpf kfuncs for cgroup_rstat_updated() and cgroup_rstat_flush() */
604 BTF_KFUNCS_START(bpf_rstat_kfunc_ids)
605 BTF_ID_FLAGS(func, cgroup_rstat_updated)
606 BTF_ID_FLAGS(func, cgroup_rstat_flush, KF_SLEEPABLE)
607 BTF_KFUNCS_END(bpf_rstat_kfunc_ids)
608
609 static const struct btf_kfunc_id_set bpf_rstat_kfunc_set = {
610 .owner = THIS_MODULE,
611 .set = &bpf_rstat_kfunc_ids,
612 };
613
bpf_rstat_kfunc_init(void)614 static int __init bpf_rstat_kfunc_init(void)
615 {
616 return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
617 &bpf_rstat_kfunc_set);
618 }
619 late_initcall(bpf_rstat_kfunc_init);
620