xref: /linux/kernel/cgroup/cgroup-v1.c (revision 755fa5b4fb36627796af19932a432d343220ec63)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include "cgroup-internal.h"
3 
4 #include <linux/ctype.h>
5 #include <linux/kmod.h>
6 #include <linux/sort.h>
7 #include <linux/delay.h>
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/sched/task.h>
11 #include <linux/magic.h>
12 #include <linux/slab.h>
13 #include <linux/string.h>
14 #include <linux/vmalloc.h>
15 #include <linux/delayacct.h>
16 #include <linux/pid_namespace.h>
17 #include <linux/cgroupstats.h>
18 #include <linux/fs_parser.h>
19 
20 #include <trace/events/cgroup.h>
21 
22 /*
23  * pidlists linger the following amount before being destroyed.  The goal
24  * is avoiding frequent destruction in the middle of consecutive read calls
25  * Expiring in the middle is a performance problem not a correctness one.
26  * 1 sec should be enough.
27  */
28 #define CGROUP_PIDLIST_DESTROY_DELAY	HZ
29 
30 /* Controllers blocked by the commandline in v1 */
31 static u16 cgroup_no_v1_mask;
32 
33 /* disable named v1 mounts */
34 static bool cgroup_no_v1_named;
35 
36 /* Show unavailable controllers in /proc/cgroups */
37 static bool proc_show_all;
38 
39 /*
40  * pidlist destructions need to be flushed on cgroup destruction.  Use a
41  * separate workqueue as flush domain.
42  */
43 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
44 
45 /* protects cgroup_subsys->release_agent_path */
46 static DEFINE_SPINLOCK(release_agent_path_lock);
47 
cgroup1_ssid_disabled(int ssid)48 bool cgroup1_ssid_disabled(int ssid)
49 {
50 	return cgroup_no_v1_mask & (1 << ssid);
51 }
52 
cgroup1_subsys_absent(struct cgroup_subsys * ss)53 static bool cgroup1_subsys_absent(struct cgroup_subsys *ss)
54 {
55 	/* Check also dfl_cftypes for file-less controllers, i.e. perf_event */
56 	return ss->legacy_cftypes == NULL && ss->dfl_cftypes;
57 }
58 
59 /**
60  * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
61  * @from: attach to all cgroups of a given task
62  * @tsk: the task to be attached
63  *
64  * Return: %0 on success or a negative errno code on failure
65  */
cgroup_attach_task_all(struct task_struct * from,struct task_struct * tsk)66 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
67 {
68 	struct cgroup_root *root;
69 	int retval = 0;
70 
71 	cgroup_lock();
72 	cgroup_attach_lock(CGRP_ATTACH_LOCK_GLOBAL, NULL);
73 	for_each_root(root) {
74 		struct cgroup *from_cgrp;
75 
76 		spin_lock_irq(&css_set_lock);
77 		from_cgrp = task_cgroup_from_root(from, root);
78 		spin_unlock_irq(&css_set_lock);
79 
80 		retval = cgroup_attach_task(from_cgrp, tsk, false);
81 		if (retval)
82 			break;
83 	}
84 	cgroup_attach_unlock(CGRP_ATTACH_LOCK_GLOBAL, NULL);
85 	cgroup_unlock();
86 
87 	return retval;
88 }
89 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
90 
91 /**
92  * cgroup_transfer_tasks - move tasks from one cgroup to another
93  * @to: cgroup to which the tasks will be moved
94  * @from: cgroup in which the tasks currently reside
95  *
96  * Locking rules between cgroup_post_fork() and the migration path
97  * guarantee that, if a task is forking while being migrated, the new child
98  * is guaranteed to be either visible in the source cgroup after the
99  * parent's migration is complete or put into the target cgroup.  No task
100  * can slip out of migration through forking.
101  *
102  * Return: %0 on success or a negative errno code on failure
103  */
cgroup_transfer_tasks(struct cgroup * to,struct cgroup * from)104 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
105 {
106 	DEFINE_CGROUP_MGCTX(mgctx);
107 	struct cgrp_cset_link *link;
108 	struct css_task_iter it;
109 	struct task_struct *task;
110 	int ret;
111 
112 	if (cgroup_on_dfl(to))
113 		return -EINVAL;
114 
115 	ret = cgroup_migrate_vet_dst(to);
116 	if (ret)
117 		return ret;
118 
119 	cgroup_lock();
120 
121 	cgroup_attach_lock(CGRP_ATTACH_LOCK_GLOBAL, NULL);
122 
123 	/* all tasks in @from are being moved, all csets are source */
124 	spin_lock_irq(&css_set_lock);
125 	list_for_each_entry(link, &from->cset_links, cset_link)
126 		cgroup_migrate_add_src(link->cset, to, &mgctx);
127 	spin_unlock_irq(&css_set_lock);
128 
129 	ret = cgroup_migrate_prepare_dst(&mgctx);
130 	if (ret)
131 		goto out_err;
132 
133 	/*
134 	 * Migrate tasks one-by-one until @from is empty.  This fails iff
135 	 * ->can_attach() fails.
136 	 */
137 	do {
138 		css_task_iter_start(&from->self, 0, &it);
139 
140 		do {
141 			task = css_task_iter_next(&it);
142 		} while (task && (task->flags & PF_EXITING));
143 
144 		if (task)
145 			get_task_struct(task);
146 		css_task_iter_end(&it);
147 
148 		if (task) {
149 			ret = cgroup_migrate(task, false, &mgctx);
150 			if (!ret)
151 				TRACE_CGROUP_PATH(transfer_tasks, to, task, false);
152 			put_task_struct(task);
153 		}
154 	} while (task && !ret);
155 out_err:
156 	cgroup_migrate_finish(&mgctx);
157 	cgroup_attach_unlock(CGRP_ATTACH_LOCK_GLOBAL, NULL);
158 	cgroup_unlock();
159 	return ret;
160 }
161 
162 /*
163  * Stuff for reading the 'tasks'/'procs' files.
164  *
165  * Reading this file can return large amounts of data if a cgroup has
166  * *lots* of attached tasks. So it may need several calls to read(),
167  * but we cannot guarantee that the information we produce is correct
168  * unless we produce it entirely atomically.
169  *
170  */
171 
172 /* which pidlist file are we talking about? */
173 enum cgroup_filetype {
174 	CGROUP_FILE_PROCS,
175 	CGROUP_FILE_TASKS,
176 };
177 
178 /*
179  * A pidlist is a list of pids that virtually represents the contents of one
180  * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
181  * a pair (one each for procs, tasks) for each pid namespace that's relevant
182  * to the cgroup.
183  */
184 struct cgroup_pidlist {
185 	/*
186 	 * used to find which pidlist is wanted. doesn't change as long as
187 	 * this particular list stays in the list.
188 	*/
189 	struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
190 	/* array of xids */
191 	pid_t *list;
192 	/* how many elements the above list has */
193 	int length;
194 	/* each of these stored in a list by its cgroup */
195 	struct list_head links;
196 	/* pointer to the cgroup we belong to, for list removal purposes */
197 	struct cgroup *owner;
198 	/* for delayed destruction */
199 	struct delayed_work destroy_dwork;
200 };
201 
202 /*
203  * Used to destroy all pidlists lingering waiting for destroy timer.  None
204  * should be left afterwards.
205  */
cgroup1_pidlist_destroy_all(struct cgroup * cgrp)206 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
207 {
208 	struct cgroup_pidlist *l, *tmp_l;
209 
210 	mutex_lock(&cgrp->pidlist_mutex);
211 	list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
212 		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
213 	mutex_unlock(&cgrp->pidlist_mutex);
214 
215 	flush_workqueue(cgroup_pidlist_destroy_wq);
216 	BUG_ON(!list_empty(&cgrp->pidlists));
217 }
218 
cgroup_pidlist_destroy_work_fn(struct work_struct * work)219 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
220 {
221 	struct delayed_work *dwork = to_delayed_work(work);
222 	struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
223 						destroy_dwork);
224 	struct cgroup_pidlist *tofree = NULL;
225 
226 	mutex_lock(&l->owner->pidlist_mutex);
227 
228 	/*
229 	 * Destroy iff we didn't get queued again.  The state won't change
230 	 * as destroy_dwork can only be queued while locked.
231 	 */
232 	if (!delayed_work_pending(dwork)) {
233 		list_del(&l->links);
234 		kvfree(l->list);
235 		put_pid_ns(l->key.ns);
236 		tofree = l;
237 	}
238 
239 	mutex_unlock(&l->owner->pidlist_mutex);
240 	kfree(tofree);
241 }
242 
243 /*
244  * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
245  * Returns the number of unique elements.
246  */
pidlist_uniq(pid_t * list,int length)247 static int pidlist_uniq(pid_t *list, int length)
248 {
249 	int src, dest = 1;
250 
251 	/*
252 	 * we presume the 0th element is unique, so i starts at 1. trivial
253 	 * edge cases first; no work needs to be done for either
254 	 */
255 	if (length == 0 || length == 1)
256 		return length;
257 	/* src and dest walk down the list; dest counts unique elements */
258 	for (src = 1; src < length; src++) {
259 		/* find next unique element */
260 		while (list[src] == list[src-1]) {
261 			src++;
262 			if (src == length)
263 				goto after;
264 		}
265 		/* dest always points to where the next unique element goes */
266 		list[dest] = list[src];
267 		dest++;
268 	}
269 after:
270 	return dest;
271 }
272 
273 /*
274  * The two pid files - task and cgroup.procs - guaranteed that the result
275  * is sorted, which forced this whole pidlist fiasco.  As pid order is
276  * different per namespace, each namespace needs differently sorted list,
277  * making it impossible to use, for example, single rbtree of member tasks
278  * sorted by task pointer.  As pidlists can be fairly large, allocating one
279  * per open file is dangerous, so cgroup had to implement shared pool of
280  * pidlists keyed by cgroup and namespace.
281  */
cmppid(const void * a,const void * b)282 static int cmppid(const void *a, const void *b)
283 {
284 	return *(pid_t *)a - *(pid_t *)b;
285 }
286 
cgroup_pidlist_find(struct cgroup * cgrp,enum cgroup_filetype type)287 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
288 						  enum cgroup_filetype type)
289 {
290 	struct cgroup_pidlist *l;
291 	/* don't need task_nsproxy() if we're looking at ourself */
292 	struct pid_namespace *ns = task_active_pid_ns(current);
293 
294 	lockdep_assert_held(&cgrp->pidlist_mutex);
295 
296 	list_for_each_entry(l, &cgrp->pidlists, links)
297 		if (l->key.type == type && l->key.ns == ns)
298 			return l;
299 	return NULL;
300 }
301 
302 /*
303  * find the appropriate pidlist for our purpose (given procs vs tasks)
304  * returns with the lock on that pidlist already held, and takes care
305  * of the use count, or returns NULL with no locks held if we're out of
306  * memory.
307  */
cgroup_pidlist_find_create(struct cgroup * cgrp,enum cgroup_filetype type)308 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
309 						enum cgroup_filetype type)
310 {
311 	struct cgroup_pidlist *l;
312 
313 	lockdep_assert_held(&cgrp->pidlist_mutex);
314 
315 	l = cgroup_pidlist_find(cgrp, type);
316 	if (l)
317 		return l;
318 
319 	/* entry not found; create a new one */
320 	l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
321 	if (!l)
322 		return l;
323 
324 	INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
325 	l->key.type = type;
326 	/* don't need task_nsproxy() if we're looking at ourself */
327 	l->key.ns = get_pid_ns(task_active_pid_ns(current));
328 	l->owner = cgrp;
329 	list_add(&l->links, &cgrp->pidlists);
330 	return l;
331 }
332 
333 /*
334  * Load a cgroup's pidarray with either procs' tgids or tasks' pids
335  */
pidlist_array_load(struct cgroup * cgrp,enum cgroup_filetype type,struct cgroup_pidlist ** lp)336 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
337 			      struct cgroup_pidlist **lp)
338 {
339 	pid_t *array;
340 	int length;
341 	int pid, n = 0; /* used for populating the array */
342 	struct css_task_iter it;
343 	struct task_struct *tsk;
344 	struct cgroup_pidlist *l;
345 
346 	lockdep_assert_held(&cgrp->pidlist_mutex);
347 
348 	/*
349 	 * If cgroup gets more users after we read count, we won't have
350 	 * enough space - tough.  This race is indistinguishable to the
351 	 * caller from the case that the additional cgroup users didn't
352 	 * show up until sometime later on.
353 	 */
354 	length = cgroup_task_count(cgrp);
355 	array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL);
356 	if (!array)
357 		return -ENOMEM;
358 	/* now, populate the array */
359 	css_task_iter_start(&cgrp->self, 0, &it);
360 	while ((tsk = css_task_iter_next(&it))) {
361 		if (unlikely(n == length))
362 			break;
363 		/* get tgid or pid for procs or tasks file respectively */
364 		if (type == CGROUP_FILE_PROCS)
365 			pid = task_tgid_vnr(tsk);
366 		else
367 			pid = task_pid_vnr(tsk);
368 		if (pid > 0) /* make sure to only use valid results */
369 			array[n++] = pid;
370 	}
371 	css_task_iter_end(&it);
372 	length = n;
373 	/* now sort & strip out duplicates (tgids or recycled thread PIDs) */
374 	sort(array, length, sizeof(pid_t), cmppid, NULL);
375 	length = pidlist_uniq(array, length);
376 
377 	l = cgroup_pidlist_find_create(cgrp, type);
378 	if (!l) {
379 		kvfree(array);
380 		return -ENOMEM;
381 	}
382 
383 	/* store array, freeing old if necessary */
384 	kvfree(l->list);
385 	l->list = array;
386 	l->length = length;
387 	*lp = l;
388 	return 0;
389 }
390 
391 /*
392  * seq_file methods for the tasks/procs files. The seq_file position is the
393  * next pid to display; the seq_file iterator is a pointer to the pid
394  * in the cgroup->l->list array.
395  */
396 
cgroup_pidlist_start(struct seq_file * s,loff_t * pos)397 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
398 {
399 	/*
400 	 * Initially we receive a position value that corresponds to
401 	 * one more than the last pid shown (or 0 on the first call or
402 	 * after a seek to the start). Use a binary-search to find the
403 	 * next pid to display, if any
404 	 */
405 	struct kernfs_open_file *of = s->private;
406 	struct cgroup_file_ctx *ctx = of->priv;
407 	struct cgroup *cgrp = seq_css(s)->cgroup;
408 	struct cgroup_pidlist *l;
409 	enum cgroup_filetype type = seq_cft(s)->private;
410 	int index = 0, pid = *pos;
411 	int *iter, ret;
412 
413 	mutex_lock(&cgrp->pidlist_mutex);
414 
415 	/*
416 	 * !NULL @ctx->procs1.pidlist indicates that this isn't the first
417 	 * start() after open. If the matching pidlist is around, we can use
418 	 * that. Look for it. Note that @ctx->procs1.pidlist can't be used
419 	 * directly. It could already have been destroyed.
420 	 */
421 	if (ctx->procs1.pidlist)
422 		ctx->procs1.pidlist = cgroup_pidlist_find(cgrp, type);
423 
424 	/*
425 	 * Either this is the first start() after open or the matching
426 	 * pidlist has been destroyed inbetween.  Create a new one.
427 	 */
428 	if (!ctx->procs1.pidlist) {
429 		ret = pidlist_array_load(cgrp, type, &ctx->procs1.pidlist);
430 		if (ret)
431 			return ERR_PTR(ret);
432 	}
433 	l = ctx->procs1.pidlist;
434 
435 	if (pid) {
436 		int end = l->length;
437 
438 		while (index < end) {
439 			int mid = (index + end) / 2;
440 			if (l->list[mid] == pid) {
441 				index = mid;
442 				break;
443 			} else if (l->list[mid] < pid)
444 				index = mid + 1;
445 			else
446 				end = mid;
447 		}
448 	}
449 	/* If we're off the end of the array, we're done */
450 	if (index >= l->length)
451 		return NULL;
452 	/* Update the abstract position to be the actual pid that we found */
453 	iter = l->list + index;
454 	*pos = *iter;
455 	return iter;
456 }
457 
cgroup_pidlist_stop(struct seq_file * s,void * v)458 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
459 {
460 	struct kernfs_open_file *of = s->private;
461 	struct cgroup_file_ctx *ctx = of->priv;
462 	struct cgroup_pidlist *l = ctx->procs1.pidlist;
463 
464 	if (l)
465 		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
466 				 CGROUP_PIDLIST_DESTROY_DELAY);
467 	mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
468 }
469 
cgroup_pidlist_next(struct seq_file * s,void * v,loff_t * pos)470 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
471 {
472 	struct kernfs_open_file *of = s->private;
473 	struct cgroup_file_ctx *ctx = of->priv;
474 	struct cgroup_pidlist *l = ctx->procs1.pidlist;
475 	pid_t *p = v;
476 	pid_t *end = l->list + l->length;
477 	/*
478 	 * Advance to the next pid in the array. If this goes off the
479 	 * end, we're done
480 	 */
481 	p++;
482 	if (p >= end) {
483 		(*pos)++;
484 		return NULL;
485 	} else {
486 		*pos = *p;
487 		return p;
488 	}
489 }
490 
cgroup_pidlist_show(struct seq_file * s,void * v)491 static int cgroup_pidlist_show(struct seq_file *s, void *v)
492 {
493 	seq_printf(s, "%d\n", *(int *)v);
494 
495 	return 0;
496 }
497 
__cgroup1_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,bool threadgroup)498 static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
499 				     char *buf, size_t nbytes, loff_t off,
500 				     bool threadgroup)
501 {
502 	struct cgroup *cgrp;
503 	struct task_struct *task;
504 	const struct cred *cred, *tcred;
505 	ssize_t ret;
506 	enum cgroup_attach_lock_mode lock_mode;
507 
508 	cgrp = cgroup_kn_lock_live(of->kn, false);
509 	if (!cgrp)
510 		return -ENODEV;
511 
512 	task = cgroup_procs_write_start(buf, threadgroup, &lock_mode);
513 	ret = PTR_ERR_OR_ZERO(task);
514 	if (ret)
515 		goto out_unlock;
516 
517 	/*
518 	 * Even if we're attaching all tasks in the thread group, we only need
519 	 * to check permissions on one of them. Check permissions using the
520 	 * credentials from file open to protect against inherited fd attacks.
521 	 */
522 	cred = of->file->f_cred;
523 	tcred = get_task_cred(task);
524 	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
525 	    !uid_eq(cred->euid, tcred->uid) &&
526 	    !uid_eq(cred->euid, tcred->suid))
527 		ret = -EACCES;
528 	put_cred(tcred);
529 	if (ret)
530 		goto out_finish;
531 
532 	ret = cgroup_attach_task(cgrp, task, threadgroup);
533 
534 out_finish:
535 	cgroup_procs_write_finish(task, lock_mode);
536 out_unlock:
537 	cgroup_kn_unlock(of->kn);
538 
539 	return ret ?: nbytes;
540 }
541 
cgroup1_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)542 static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
543 				   char *buf, size_t nbytes, loff_t off)
544 {
545 	return __cgroup1_procs_write(of, buf, nbytes, off, true);
546 }
547 
cgroup1_tasks_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)548 static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
549 				   char *buf, size_t nbytes, loff_t off)
550 {
551 	return __cgroup1_procs_write(of, buf, nbytes, off, false);
552 }
553 
cgroup_release_agent_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)554 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
555 					  char *buf, size_t nbytes, loff_t off)
556 {
557 	struct cgroup *cgrp;
558 	struct cgroup_file_ctx *ctx;
559 
560 	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
561 
562 	/*
563 	 * Release agent gets called with all capabilities,
564 	 * require capabilities to set release agent.
565 	 */
566 	ctx = of->priv;
567 	if ((ctx->ns->user_ns != &init_user_ns) ||
568 	    !file_ns_capable(of->file, &init_user_ns, CAP_SYS_ADMIN))
569 		return -EPERM;
570 
571 	cgrp = cgroup_kn_lock_live(of->kn, false);
572 	if (!cgrp)
573 		return -ENODEV;
574 	spin_lock(&release_agent_path_lock);
575 	strscpy(cgrp->root->release_agent_path, strstrip(buf),
576 		sizeof(cgrp->root->release_agent_path));
577 	spin_unlock(&release_agent_path_lock);
578 	cgroup_kn_unlock(of->kn);
579 	return nbytes;
580 }
581 
cgroup_release_agent_show(struct seq_file * seq,void * v)582 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
583 {
584 	struct cgroup *cgrp = seq_css(seq)->cgroup;
585 
586 	spin_lock(&release_agent_path_lock);
587 	seq_puts(seq, cgrp->root->release_agent_path);
588 	spin_unlock(&release_agent_path_lock);
589 	seq_putc(seq, '\n');
590 	return 0;
591 }
592 
cgroup_sane_behavior_show(struct seq_file * seq,void * v)593 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
594 {
595 	seq_puts(seq, "0\n");
596 	return 0;
597 }
598 
cgroup_read_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft)599 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
600 					 struct cftype *cft)
601 {
602 	return notify_on_release(css->cgroup);
603 }
604 
cgroup_write_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)605 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
606 					  struct cftype *cft, u64 val)
607 {
608 	if (val)
609 		set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
610 	else
611 		clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
612 	return 0;
613 }
614 
cgroup_clone_children_read(struct cgroup_subsys_state * css,struct cftype * cft)615 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
616 				      struct cftype *cft)
617 {
618 	return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
619 }
620 
cgroup_clone_children_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)621 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
622 				       struct cftype *cft, u64 val)
623 {
624 	if (val)
625 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
626 	else
627 		clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
628 	return 0;
629 }
630 
631 /* cgroup core interface files for the legacy hierarchies */
632 struct cftype cgroup1_base_files[] = {
633 	{
634 		.name = "cgroup.procs",
635 		.seq_start = cgroup_pidlist_start,
636 		.seq_next = cgroup_pidlist_next,
637 		.seq_stop = cgroup_pidlist_stop,
638 		.seq_show = cgroup_pidlist_show,
639 		.private = CGROUP_FILE_PROCS,
640 		.write = cgroup1_procs_write,
641 	},
642 	{
643 		.name = "cgroup.clone_children",
644 		.read_u64 = cgroup_clone_children_read,
645 		.write_u64 = cgroup_clone_children_write,
646 	},
647 	{
648 		.name = "cgroup.sane_behavior",
649 		.flags = CFTYPE_ONLY_ON_ROOT,
650 		.seq_show = cgroup_sane_behavior_show,
651 	},
652 	{
653 		.name = "tasks",
654 		.seq_start = cgroup_pidlist_start,
655 		.seq_next = cgroup_pidlist_next,
656 		.seq_stop = cgroup_pidlist_stop,
657 		.seq_show = cgroup_pidlist_show,
658 		.private = CGROUP_FILE_TASKS,
659 		.write = cgroup1_tasks_write,
660 	},
661 	{
662 		.name = "notify_on_release",
663 		.read_u64 = cgroup_read_notify_on_release,
664 		.write_u64 = cgroup_write_notify_on_release,
665 	},
666 	{
667 		.name = "release_agent",
668 		.flags = CFTYPE_ONLY_ON_ROOT,
669 		.seq_show = cgroup_release_agent_show,
670 		.write = cgroup_release_agent_write,
671 		.max_write_len = PATH_MAX - 1,
672 	},
673 	{ }	/* terminate */
674 };
675 
676 /* Display information about each subsystem and each hierarchy */
proc_cgroupstats_show(struct seq_file * m,void * v)677 int proc_cgroupstats_show(struct seq_file *m, void *v)
678 {
679 	struct cgroup_subsys *ss;
680 	bool cgrp_v1_visible = false;
681 	int i;
682 
683 	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
684 	/*
685 	 * Grab the subsystems state racily. No need to add avenue to
686 	 * cgroup_mutex contention.
687 	 */
688 
689 	for_each_subsys(ss, i) {
690 		cgrp_v1_visible |= ss->root != &cgrp_dfl_root;
691 
692 		if (!proc_show_all && cgroup1_subsys_absent(ss))
693 			continue;
694 
695 		seq_printf(m, "%s\t%d\t%d\t%d\n",
696 			   ss->legacy_name, ss->root->hierarchy_id,
697 			   atomic_read(&ss->root->nr_cgrps),
698 			   cgroup_ssid_enabled(i));
699 	}
700 
701 	if (cgrp_dfl_visible && !cgrp_v1_visible)
702 		pr_info_once("/proc/cgroups lists only v1 controllers, use cgroup.controllers of root cgroup for v2 info\n");
703 
704 
705 	return 0;
706 }
707 
708 /**
709  * cgroupstats_build - build and fill cgroupstats
710  * @stats: cgroupstats to fill information into
711  * @dentry: A dentry entry belonging to the cgroup for which stats have
712  * been requested.
713  *
714  * Build and fill cgroupstats so that taskstats can export it to user
715  * space.
716  *
717  * Return: %0 on success or a negative errno code on failure
718  */
cgroupstats_build(struct cgroupstats * stats,struct dentry * dentry)719 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
720 {
721 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
722 	struct cgroup *cgrp;
723 	struct css_task_iter it;
724 	struct task_struct *tsk;
725 
726 	/* it should be kernfs_node belonging to cgroupfs and is a directory */
727 	if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
728 	    kernfs_type(kn) != KERNFS_DIR)
729 		return -EINVAL;
730 
731 	/*
732 	 * We aren't being called from kernfs and there's no guarantee on
733 	 * @kn->priv's validity.  For this and css_tryget_online_from_dir(),
734 	 * @kn->priv is RCU safe.  Let's do the RCU dancing.
735 	 */
736 	rcu_read_lock();
737 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
738 	if (!cgrp || !cgroup_tryget(cgrp)) {
739 		rcu_read_unlock();
740 		return -ENOENT;
741 	}
742 	rcu_read_unlock();
743 
744 	css_task_iter_start(&cgrp->self, 0, &it);
745 	while ((tsk = css_task_iter_next(&it))) {
746 		switch (READ_ONCE(tsk->__state)) {
747 		case TASK_RUNNING:
748 			stats->nr_running++;
749 			break;
750 		case TASK_INTERRUPTIBLE:
751 			stats->nr_sleeping++;
752 			break;
753 		case TASK_UNINTERRUPTIBLE:
754 			stats->nr_uninterruptible++;
755 			break;
756 		case TASK_STOPPED:
757 			stats->nr_stopped++;
758 			break;
759 		default:
760 			if (tsk->in_iowait)
761 				stats->nr_io_wait++;
762 			break;
763 		}
764 	}
765 	css_task_iter_end(&it);
766 
767 	cgroup_put(cgrp);
768 	return 0;
769 }
770 
cgroup1_check_for_release(struct cgroup * cgrp)771 void cgroup1_check_for_release(struct cgroup *cgrp)
772 {
773 	if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
774 	    !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
775 		schedule_work(&cgrp->release_agent_work);
776 }
777 
778 /*
779  * Notify userspace when a cgroup is released, by running the
780  * configured release agent with the name of the cgroup (path
781  * relative to the root of cgroup file system) as the argument.
782  *
783  * Most likely, this user command will try to rmdir this cgroup.
784  *
785  * This races with the possibility that some other task will be
786  * attached to this cgroup before it is removed, or that some other
787  * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
788  * The presumed 'rmdir' will fail quietly if this cgroup is no longer
789  * unused, and this cgroup will be reprieved from its death sentence,
790  * to continue to serve a useful existence.  Next time it's released,
791  * we will get notified again, if it still has 'notify_on_release' set.
792  *
793  * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
794  * means only wait until the task is successfully execve()'d.  The
795  * separate release agent task is forked by call_usermodehelper(),
796  * then control in this thread returns here, without waiting for the
797  * release agent task.  We don't bother to wait because the caller of
798  * this routine has no use for the exit status of the release agent
799  * task, so no sense holding our caller up for that.
800  */
cgroup1_release_agent(struct work_struct * work)801 void cgroup1_release_agent(struct work_struct *work)
802 {
803 	struct cgroup *cgrp =
804 		container_of(work, struct cgroup, release_agent_work);
805 	char *pathbuf, *agentbuf;
806 	char *argv[3], *envp[3];
807 	int ret;
808 
809 	/* snoop agent path and exit early if empty */
810 	if (!cgrp->root->release_agent_path[0])
811 		return;
812 
813 	/* prepare argument buffers */
814 	pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
815 	agentbuf = kmalloc(PATH_MAX, GFP_KERNEL);
816 	if (!pathbuf || !agentbuf)
817 		goto out_free;
818 
819 	spin_lock(&release_agent_path_lock);
820 	strscpy(agentbuf, cgrp->root->release_agent_path, PATH_MAX);
821 	spin_unlock(&release_agent_path_lock);
822 	if (!agentbuf[0])
823 		goto out_free;
824 
825 	ret = cgroup_path_ns(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
826 	if (ret < 0)
827 		goto out_free;
828 
829 	argv[0] = agentbuf;
830 	argv[1] = pathbuf;
831 	argv[2] = NULL;
832 
833 	/* minimal command environment */
834 	envp[0] = "HOME=/";
835 	envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
836 	envp[2] = NULL;
837 
838 	call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
839 out_free:
840 	kfree(agentbuf);
841 	kfree(pathbuf);
842 }
843 
844 /*
845  * cgroup_rename - Only allow simple rename of directories in place.
846  */
cgroup1_rename(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name_str)847 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
848 			  const char *new_name_str)
849 {
850 	struct cgroup *cgrp = kn->priv;
851 	int ret;
852 
853 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
854 	if (strchr(new_name_str, '\n'))
855 		return -EINVAL;
856 
857 	if (kernfs_type(kn) != KERNFS_DIR)
858 		return -ENOTDIR;
859 	if (rcu_access_pointer(kn->__parent) != new_parent)
860 		return -EIO;
861 
862 	/*
863 	 * We're gonna grab cgroup_mutex which nests outside kernfs
864 	 * active_ref.  kernfs_rename() doesn't require active_ref
865 	 * protection.  Break them before grabbing cgroup_mutex.
866 	 */
867 	kernfs_break_active_protection(new_parent);
868 	kernfs_break_active_protection(kn);
869 
870 	cgroup_lock();
871 
872 	ret = kernfs_rename(kn, new_parent, new_name_str);
873 	if (!ret)
874 		TRACE_CGROUP_PATH(rename, cgrp);
875 
876 	cgroup_unlock();
877 
878 	kernfs_unbreak_active_protection(kn);
879 	kernfs_unbreak_active_protection(new_parent);
880 	return ret;
881 }
882 
cgroup1_show_options(struct seq_file * seq,struct kernfs_root * kf_root)883 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
884 {
885 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
886 	struct cgroup_subsys *ss;
887 	int ssid;
888 
889 	for_each_subsys(ss, ssid)
890 		if (root->subsys_mask & (1 << ssid))
891 			seq_show_option(seq, ss->legacy_name, NULL);
892 	if (root->flags & CGRP_ROOT_NOPREFIX)
893 		seq_puts(seq, ",noprefix");
894 	if (root->flags & CGRP_ROOT_XATTR)
895 		seq_puts(seq, ",xattr");
896 	if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
897 		seq_puts(seq, ",cpuset_v2_mode");
898 	if (root->flags & CGRP_ROOT_FAVOR_DYNMODS)
899 		seq_puts(seq, ",favordynmods");
900 
901 	spin_lock(&release_agent_path_lock);
902 	if (strlen(root->release_agent_path))
903 		seq_show_option(seq, "release_agent",
904 				root->release_agent_path);
905 	spin_unlock(&release_agent_path_lock);
906 
907 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
908 		seq_puts(seq, ",clone_children");
909 	if (strlen(root->name))
910 		seq_show_option(seq, "name", root->name);
911 	return 0;
912 }
913 
914 enum cgroup1_param {
915 	Opt_all,
916 	Opt_clone_children,
917 	Opt_cpuset_v2_mode,
918 	Opt_name,
919 	Opt_none,
920 	Opt_noprefix,
921 	Opt_release_agent,
922 	Opt_xattr,
923 	Opt_favordynmods,
924 	Opt_nofavordynmods,
925 };
926 
927 const struct fs_parameter_spec cgroup1_fs_parameters[] = {
928 	fsparam_flag  ("all",		Opt_all),
929 	fsparam_flag  ("clone_children", Opt_clone_children),
930 	fsparam_flag  ("cpuset_v2_mode", Opt_cpuset_v2_mode),
931 	fsparam_string("name",		Opt_name),
932 	fsparam_flag  ("none",		Opt_none),
933 	fsparam_flag  ("noprefix",	Opt_noprefix),
934 	fsparam_string("release_agent",	Opt_release_agent),
935 	fsparam_flag  ("xattr",		Opt_xattr),
936 	fsparam_flag  ("favordynmods",	Opt_favordynmods),
937 	fsparam_flag  ("nofavordynmods", Opt_nofavordynmods),
938 	{}
939 };
940 
cgroup1_parse_param(struct fs_context * fc,struct fs_parameter * param)941 int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param)
942 {
943 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
944 	struct cgroup_subsys *ss;
945 	struct fs_parse_result result;
946 	int opt, i;
947 
948 	opt = fs_parse(fc, cgroup1_fs_parameters, param, &result);
949 	if (opt == -ENOPARAM) {
950 		int ret;
951 
952 		ret = vfs_parse_fs_param_source(fc, param);
953 		if (ret != -ENOPARAM)
954 			return ret;
955 		for_each_subsys(ss, i) {
956 			if (strcmp(param->key, ss->legacy_name) ||
957 			    cgroup1_subsys_absent(ss))
958 				continue;
959 			if (!cgroup_ssid_enabled(i) || cgroup1_ssid_disabled(i))
960 				return invalfc(fc, "Disabled controller '%s'",
961 					       param->key);
962 			ctx->subsys_mask |= (1 << i);
963 			return 0;
964 		}
965 		return invalfc(fc, "Unknown subsys name '%s'", param->key);
966 	}
967 	if (opt < 0)
968 		return opt;
969 
970 	switch (opt) {
971 	case Opt_none:
972 		/* Explicitly have no subsystems */
973 		ctx->none = true;
974 		break;
975 	case Opt_all:
976 		ctx->all_ss = true;
977 		break;
978 	case Opt_noprefix:
979 		ctx->flags |= CGRP_ROOT_NOPREFIX;
980 		break;
981 	case Opt_clone_children:
982 		ctx->cpuset_clone_children = true;
983 		break;
984 	case Opt_cpuset_v2_mode:
985 		ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
986 		break;
987 	case Opt_xattr:
988 		ctx->flags |= CGRP_ROOT_XATTR;
989 		break;
990 	case Opt_favordynmods:
991 		ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
992 		break;
993 	case Opt_nofavordynmods:
994 		ctx->flags &= ~CGRP_ROOT_FAVOR_DYNMODS;
995 		break;
996 	case Opt_release_agent:
997 		/* Specifying two release agents is forbidden */
998 		if (ctx->release_agent)
999 			return invalfc(fc, "release_agent respecified");
1000 		/*
1001 		 * Release agent gets called with all capabilities,
1002 		 * require capabilities to set release agent.
1003 		 */
1004 		if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN))
1005 			return invalfc(fc, "Setting release_agent not allowed");
1006 		ctx->release_agent = param->string;
1007 		param->string = NULL;
1008 		break;
1009 	case Opt_name:
1010 		/* blocked by boot param? */
1011 		if (cgroup_no_v1_named)
1012 			return -ENOENT;
1013 		/* Can't specify an empty name */
1014 		if (!param->size)
1015 			return invalfc(fc, "Empty name");
1016 		if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1)
1017 			return invalfc(fc, "Name too long");
1018 		/* Must match [\w.-]+ */
1019 		for (i = 0; i < param->size; i++) {
1020 			char c = param->string[i];
1021 			if (isalnum(c))
1022 				continue;
1023 			if ((c == '.') || (c == '-') || (c == '_'))
1024 				continue;
1025 			return invalfc(fc, "Invalid name");
1026 		}
1027 		/* Specifying two names is forbidden */
1028 		if (ctx->name)
1029 			return invalfc(fc, "name respecified");
1030 		ctx->name = param->string;
1031 		param->string = NULL;
1032 		break;
1033 	}
1034 	return 0;
1035 }
1036 
check_cgroupfs_options(struct fs_context * fc)1037 static int check_cgroupfs_options(struct fs_context *fc)
1038 {
1039 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1040 	u16 mask = U16_MAX;
1041 	u16 enabled = 0;
1042 	struct cgroup_subsys *ss;
1043 	int i;
1044 
1045 #ifdef CONFIG_CPUSETS
1046 	mask = ~((u16)1 << cpuset_cgrp_id);
1047 #endif
1048 	for_each_subsys(ss, i)
1049 		if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i) &&
1050 		    !cgroup1_subsys_absent(ss))
1051 			enabled |= 1 << i;
1052 
1053 	ctx->subsys_mask &= enabled;
1054 
1055 	/*
1056 	 * In absence of 'none', 'name=' and subsystem name options,
1057 	 * let's default to 'all'.
1058 	 */
1059 	if (!ctx->subsys_mask && !ctx->none && !ctx->name)
1060 		ctx->all_ss = true;
1061 
1062 	if (ctx->all_ss) {
1063 		/* Mutually exclusive option 'all' + subsystem name */
1064 		if (ctx->subsys_mask)
1065 			return invalfc(fc, "subsys name conflicts with all");
1066 		/* 'all' => select all the subsystems */
1067 		ctx->subsys_mask = enabled;
1068 	}
1069 
1070 	/*
1071 	 * We either have to specify by name or by subsystems. (So all
1072 	 * empty hierarchies must have a name).
1073 	 */
1074 	if (!ctx->subsys_mask && !ctx->name)
1075 		return invalfc(fc, "Need name or subsystem set");
1076 
1077 	/*
1078 	 * Option noprefix was introduced just for backward compatibility
1079 	 * with the old cpuset, so we allow noprefix only if mounting just
1080 	 * the cpuset subsystem.
1081 	 */
1082 	if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask))
1083 		return invalfc(fc, "noprefix used incorrectly");
1084 
1085 	/* Can't specify "none" and some subsystems */
1086 	if (ctx->subsys_mask && ctx->none)
1087 		return invalfc(fc, "none used incorrectly");
1088 
1089 	return 0;
1090 }
1091 
cgroup1_reconfigure(struct fs_context * fc)1092 int cgroup1_reconfigure(struct fs_context *fc)
1093 {
1094 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1095 	struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb);
1096 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1097 	int ret = 0;
1098 	u16 added_mask, removed_mask;
1099 
1100 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1101 
1102 	/* See what subsystems are wanted */
1103 	ret = check_cgroupfs_options(fc);
1104 	if (ret)
1105 		goto out_unlock;
1106 
1107 	if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent)
1108 		pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1109 			task_tgid_nr(current), current->comm);
1110 
1111 	added_mask = ctx->subsys_mask & ~root->subsys_mask;
1112 	removed_mask = root->subsys_mask & ~ctx->subsys_mask;
1113 
1114 	/* Don't allow flags or name to change at remount */
1115 	if ((ctx->flags ^ root->flags) ||
1116 	    (ctx->name && strcmp(ctx->name, root->name))) {
1117 		errorfc(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"",
1118 		       ctx->flags, ctx->name ?: "", root->flags, root->name);
1119 		ret = -EINVAL;
1120 		goto out_unlock;
1121 	}
1122 
1123 	/* remounting is not allowed for populated hierarchies */
1124 	if (!list_empty(&root->cgrp.self.children)) {
1125 		ret = -EBUSY;
1126 		goto out_unlock;
1127 	}
1128 
1129 	ret = rebind_subsystems(root, added_mask);
1130 	if (ret)
1131 		goto out_unlock;
1132 
1133 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1134 
1135 	if (ctx->release_agent) {
1136 		spin_lock(&release_agent_path_lock);
1137 		strscpy(root->release_agent_path, ctx->release_agent);
1138 		spin_unlock(&release_agent_path_lock);
1139 	}
1140 
1141 	trace_cgroup_remount(root);
1142 
1143  out_unlock:
1144 	cgroup_unlock();
1145 	return ret;
1146 }
1147 
1148 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1149 	.rename			= cgroup1_rename,
1150 	.show_options		= cgroup1_show_options,
1151 	.mkdir			= cgroup_mkdir,
1152 	.rmdir			= cgroup_rmdir,
1153 	.show_path		= cgroup_show_path,
1154 };
1155 
1156 /*
1157  * The guts of cgroup1 mount - find or create cgroup_root to use.
1158  * Called with cgroup_mutex held; returns 0 on success, -E... on
1159  * error and positive - in case when the candidate is busy dying.
1160  * On success it stashes a reference to cgroup_root into given
1161  * cgroup_fs_context; that reference is *NOT* counting towards the
1162  * cgroup_root refcount.
1163  */
cgroup1_root_to_use(struct fs_context * fc)1164 static int cgroup1_root_to_use(struct fs_context *fc)
1165 {
1166 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1167 	struct cgroup_root *root;
1168 	struct cgroup_subsys *ss;
1169 	int i, ret;
1170 
1171 	/* First find the desired set of subsystems */
1172 	ret = check_cgroupfs_options(fc);
1173 	if (ret)
1174 		return ret;
1175 
1176 	/*
1177 	 * Destruction of cgroup root is asynchronous, so subsystems may
1178 	 * still be dying after the previous unmount.  Let's drain the
1179 	 * dying subsystems.  We just need to ensure that the ones
1180 	 * unmounted previously finish dying and don't care about new ones
1181 	 * starting.  Testing ref liveliness is good enough.
1182 	 */
1183 	for_each_subsys(ss, i) {
1184 		if (!(ctx->subsys_mask & (1 << i)) ||
1185 		    ss->root == &cgrp_dfl_root)
1186 			continue;
1187 
1188 		if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt))
1189 			return 1;	/* restart */
1190 		cgroup_put(&ss->root->cgrp);
1191 	}
1192 
1193 	for_each_root(root) {
1194 		bool name_match = false;
1195 
1196 		if (root == &cgrp_dfl_root)
1197 			continue;
1198 
1199 		/*
1200 		 * If we asked for a name then it must match.  Also, if
1201 		 * name matches but sybsys_mask doesn't, we should fail.
1202 		 * Remember whether name matched.
1203 		 */
1204 		if (ctx->name) {
1205 			if (strcmp(ctx->name, root->name))
1206 				continue;
1207 			name_match = true;
1208 		}
1209 
1210 		/*
1211 		 * If we asked for subsystems (or explicitly for no
1212 		 * subsystems) then they must match.
1213 		 */
1214 		if ((ctx->subsys_mask || ctx->none) &&
1215 		    (ctx->subsys_mask != root->subsys_mask)) {
1216 			if (!name_match)
1217 				continue;
1218 			return -EBUSY;
1219 		}
1220 
1221 		if (root->flags ^ ctx->flags)
1222 			pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1223 
1224 		ctx->root = root;
1225 		return 0;
1226 	}
1227 
1228 	/*
1229 	 * No such thing, create a new one.  name= matching without subsys
1230 	 * specification is allowed for already existing hierarchies but we
1231 	 * can't create new one without subsys specification.
1232 	 */
1233 	if (!ctx->subsys_mask && !ctx->none)
1234 		return invalfc(fc, "No subsys list or none specified");
1235 
1236 	/* Hierarchies may only be created in the initial cgroup namespace. */
1237 	if (ctx->ns != &init_cgroup_ns)
1238 		return -EPERM;
1239 
1240 	root = kzalloc(sizeof(*root), GFP_KERNEL);
1241 	if (!root)
1242 		return -ENOMEM;
1243 
1244 	ctx->root = root;
1245 	init_cgroup_root(ctx);
1246 
1247 	ret = cgroup_setup_root(root, ctx->subsys_mask);
1248 	if (!ret)
1249 		cgroup_favor_dynmods(root, ctx->flags & CGRP_ROOT_FAVOR_DYNMODS);
1250 	else
1251 		cgroup_free_root(root);
1252 
1253 	return ret;
1254 }
1255 
cgroup1_get_tree(struct fs_context * fc)1256 int cgroup1_get_tree(struct fs_context *fc)
1257 {
1258 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1259 	int ret;
1260 
1261 	/* Check if the caller has permission to mount. */
1262 	if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN))
1263 		return -EPERM;
1264 
1265 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1266 
1267 	ret = cgroup1_root_to_use(fc);
1268 	if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt))
1269 		ret = 1;	/* restart */
1270 
1271 	cgroup_unlock();
1272 
1273 	if (!ret)
1274 		ret = cgroup_do_get_tree(fc);
1275 
1276 	if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) {
1277 		fc_drop_locked(fc);
1278 		ret = 1;
1279 	}
1280 
1281 	if (unlikely(ret > 0)) {
1282 		msleep(10);
1283 		return restart_syscall();
1284 	}
1285 	return ret;
1286 }
1287 
1288 /**
1289  * task_get_cgroup1 - Acquires the associated cgroup of a task within a
1290  * specific cgroup1 hierarchy. The cgroup1 hierarchy is identified by its
1291  * hierarchy ID.
1292  * @tsk: The target task
1293  * @hierarchy_id: The ID of a cgroup1 hierarchy
1294  *
1295  * On success, the cgroup is returned. On failure, ERR_PTR is returned.
1296  * We limit it to cgroup1 only.
1297  */
task_get_cgroup1(struct task_struct * tsk,int hierarchy_id)1298 struct cgroup *task_get_cgroup1(struct task_struct *tsk, int hierarchy_id)
1299 {
1300 	struct cgroup *cgrp = ERR_PTR(-ENOENT);
1301 	struct cgroup_root *root;
1302 	unsigned long flags;
1303 
1304 	rcu_read_lock();
1305 	for_each_root(root) {
1306 		/* cgroup1 only*/
1307 		if (root == &cgrp_dfl_root)
1308 			continue;
1309 		if (root->hierarchy_id != hierarchy_id)
1310 			continue;
1311 		spin_lock_irqsave(&css_set_lock, flags);
1312 		cgrp = task_cgroup_from_root(tsk, root);
1313 		if (!cgrp || !cgroup_tryget(cgrp))
1314 			cgrp = ERR_PTR(-ENOENT);
1315 		spin_unlock_irqrestore(&css_set_lock, flags);
1316 		break;
1317 	}
1318 	rcu_read_unlock();
1319 	return cgrp;
1320 }
1321 
cgroup1_wq_init(void)1322 static int __init cgroup1_wq_init(void)
1323 {
1324 	/*
1325 	 * Used to destroy pidlists and separate to serve as flush domain.
1326 	 * Cap @max_active to 1 too.
1327 	 */
1328 	cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1329 						    WQ_PERCPU, 1);
1330 	BUG_ON(!cgroup_pidlist_destroy_wq);
1331 	return 0;
1332 }
1333 core_initcall(cgroup1_wq_init);
1334 
cgroup_no_v1(char * str)1335 static int __init cgroup_no_v1(char *str)
1336 {
1337 	struct cgroup_subsys *ss;
1338 	char *token;
1339 	int i;
1340 
1341 	while ((token = strsep(&str, ",")) != NULL) {
1342 		if (!*token)
1343 			continue;
1344 
1345 		if (!strcmp(token, "all")) {
1346 			cgroup_no_v1_mask = U16_MAX;
1347 			continue;
1348 		}
1349 
1350 		if (!strcmp(token, "named")) {
1351 			cgroup_no_v1_named = true;
1352 			continue;
1353 		}
1354 
1355 		for_each_subsys(ss, i) {
1356 			if (strcmp(token, ss->name) &&
1357 			    strcmp(token, ss->legacy_name))
1358 				continue;
1359 
1360 			cgroup_no_v1_mask |= 1 << i;
1361 			break;
1362 		}
1363 	}
1364 	return 1;
1365 }
1366 __setup("cgroup_no_v1=", cgroup_no_v1);
1367 
cgroup_v1_proc(char * str)1368 static int __init cgroup_v1_proc(char *str)
1369 {
1370 	return (kstrtobool(str, &proc_show_all) == 0);
1371 }
1372 __setup("cgroup_v1_proc=", cgroup_v1_proc);
1373