1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Wireless utility functions 4 * 5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018-2023, 2025 Intel Corporation 9 */ 10 #include <linux/export.h> 11 #include <linux/bitops.h> 12 #include <linux/etherdevice.h> 13 #include <linux/slab.h> 14 #include <linux/ieee80211.h> 15 #include <net/cfg80211.h> 16 #include <net/ip.h> 17 #include <net/dsfield.h> 18 #include <linux/if_vlan.h> 19 #include <linux/mpls.h> 20 #include <linux/gcd.h> 21 #include <linux/bitfield.h> 22 #include <linux/nospec.h> 23 #include "core.h" 24 #include "rdev-ops.h" 25 26 27 const struct ieee80211_rate * 28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 29 u32 basic_rates, int bitrate) 30 { 31 struct ieee80211_rate *result = &sband->bitrates[0]; 32 int i; 33 34 for (i = 0; i < sband->n_bitrates; i++) { 35 if (!(basic_rates & BIT(i))) 36 continue; 37 if (sband->bitrates[i].bitrate > bitrate) 38 continue; 39 result = &sband->bitrates[i]; 40 } 41 42 return result; 43 } 44 EXPORT_SYMBOL(ieee80211_get_response_rate); 45 46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband) 47 { 48 struct ieee80211_rate *bitrates; 49 u32 mandatory_rates = 0; 50 enum ieee80211_rate_flags mandatory_flag; 51 int i; 52 53 if (WARN_ON(!sband)) 54 return 1; 55 56 if (sband->band == NL80211_BAND_2GHZ) 57 mandatory_flag = IEEE80211_RATE_MANDATORY_B; 58 else 59 mandatory_flag = IEEE80211_RATE_MANDATORY_A; 60 61 bitrates = sband->bitrates; 62 for (i = 0; i < sband->n_bitrates; i++) 63 if (bitrates[i].flags & mandatory_flag) 64 mandatory_rates |= BIT(i); 65 return mandatory_rates; 66 } 67 EXPORT_SYMBOL(ieee80211_mandatory_rates); 68 69 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band) 70 { 71 /* see 802.11 17.3.8.3.2 and Annex J 72 * there are overlapping channel numbers in 5GHz and 2GHz bands */ 73 if (chan <= 0) 74 return 0; /* not supported */ 75 switch (band) { 76 case NL80211_BAND_2GHZ: 77 case NL80211_BAND_LC: 78 if (chan == 14) 79 return MHZ_TO_KHZ(2484); 80 else if (chan < 14) 81 return MHZ_TO_KHZ(2407 + chan * 5); 82 break; 83 case NL80211_BAND_5GHZ: 84 if (chan >= 182 && chan <= 196) 85 return MHZ_TO_KHZ(4000 + chan * 5); 86 else 87 return MHZ_TO_KHZ(5000 + chan * 5); 88 break; 89 case NL80211_BAND_6GHZ: 90 /* see 802.11ax D6.1 27.3.23.2 */ 91 if (chan == 2) 92 return MHZ_TO_KHZ(5935); 93 if (chan <= 233) 94 return MHZ_TO_KHZ(5950 + chan * 5); 95 break; 96 case NL80211_BAND_60GHZ: 97 if (chan < 7) 98 return MHZ_TO_KHZ(56160 + chan * 2160); 99 break; 100 case NL80211_BAND_S1GHZ: 101 return 902000 + chan * 500; 102 default: 103 ; 104 } 105 return 0; /* not supported */ 106 } 107 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz); 108 109 int ieee80211_freq_khz_to_channel(u32 freq) 110 { 111 /* TODO: just handle MHz for now */ 112 freq = KHZ_TO_MHZ(freq); 113 114 /* see 802.11 17.3.8.3.2 and Annex J */ 115 if (freq == 2484) 116 return 14; 117 else if (freq < 2484) 118 return (freq - 2407) / 5; 119 else if (freq >= 4910 && freq <= 4980) 120 return (freq - 4000) / 5; 121 else if (freq < 5925) 122 return (freq - 5000) / 5; 123 else if (freq == 5935) 124 return 2; 125 else if (freq <= 45000) /* DMG band lower limit */ 126 /* see 802.11ax D6.1 27.3.22.2 */ 127 return (freq - 5950) / 5; 128 else if (freq >= 58320 && freq <= 70200) 129 return (freq - 56160) / 2160; 130 else 131 return 0; 132 } 133 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel); 134 135 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy, 136 u32 freq) 137 { 138 enum nl80211_band band; 139 struct ieee80211_supported_band *sband; 140 int i; 141 142 for (band = 0; band < NUM_NL80211_BANDS; band++) { 143 sband = wiphy->bands[band]; 144 145 if (!sband) 146 continue; 147 148 for (i = 0; i < sband->n_channels; i++) { 149 struct ieee80211_channel *chan = &sband->channels[i]; 150 151 if (ieee80211_channel_to_khz(chan) == freq) 152 return chan; 153 } 154 } 155 156 return NULL; 157 } 158 EXPORT_SYMBOL(ieee80211_get_channel_khz); 159 160 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband) 161 { 162 int i, want; 163 164 switch (sband->band) { 165 case NL80211_BAND_5GHZ: 166 case NL80211_BAND_6GHZ: 167 want = 3; 168 for (i = 0; i < sband->n_bitrates; i++) { 169 if (sband->bitrates[i].bitrate == 60 || 170 sband->bitrates[i].bitrate == 120 || 171 sband->bitrates[i].bitrate == 240) { 172 sband->bitrates[i].flags |= 173 IEEE80211_RATE_MANDATORY_A; 174 want--; 175 } 176 } 177 WARN_ON(want); 178 break; 179 case NL80211_BAND_2GHZ: 180 case NL80211_BAND_LC: 181 want = 7; 182 for (i = 0; i < sband->n_bitrates; i++) { 183 switch (sband->bitrates[i].bitrate) { 184 case 10: 185 case 20: 186 case 55: 187 case 110: 188 sband->bitrates[i].flags |= 189 IEEE80211_RATE_MANDATORY_B | 190 IEEE80211_RATE_MANDATORY_G; 191 want--; 192 break; 193 case 60: 194 case 120: 195 case 240: 196 sband->bitrates[i].flags |= 197 IEEE80211_RATE_MANDATORY_G; 198 want--; 199 fallthrough; 200 default: 201 sband->bitrates[i].flags |= 202 IEEE80211_RATE_ERP_G; 203 break; 204 } 205 } 206 WARN_ON(want != 0 && want != 3); 207 break; 208 case NL80211_BAND_60GHZ: 209 /* check for mandatory HT MCS 1..4 */ 210 WARN_ON(!sband->ht_cap.ht_supported); 211 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); 212 break; 213 case NL80211_BAND_S1GHZ: 214 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least 215 * mandatory is ok. 216 */ 217 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3); 218 break; 219 case NUM_NL80211_BANDS: 220 default: 221 WARN_ON(1); 222 break; 223 } 224 } 225 226 void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 227 { 228 enum nl80211_band band; 229 230 for (band = 0; band < NUM_NL80211_BANDS; band++) 231 if (wiphy->bands[band]) 232 set_mandatory_flags_band(wiphy->bands[band]); 233 } 234 235 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) 236 { 237 int i; 238 for (i = 0; i < wiphy->n_cipher_suites; i++) 239 if (cipher == wiphy->cipher_suites[i]) 240 return true; 241 return false; 242 } 243 244 static bool 245 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev) 246 { 247 struct wiphy *wiphy = &rdev->wiphy; 248 int i; 249 250 for (i = 0; i < wiphy->n_cipher_suites; i++) { 251 switch (wiphy->cipher_suites[i]) { 252 case WLAN_CIPHER_SUITE_AES_CMAC: 253 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 254 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 255 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 256 return true; 257 } 258 } 259 260 return false; 261 } 262 263 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev, 264 int key_idx, bool pairwise) 265 { 266 int max_key_idx; 267 268 if (pairwise) 269 max_key_idx = 3; 270 else if (wiphy_ext_feature_isset(&rdev->wiphy, 271 NL80211_EXT_FEATURE_BEACON_PROTECTION) || 272 wiphy_ext_feature_isset(&rdev->wiphy, 273 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT)) 274 max_key_idx = 7; 275 else if (cfg80211_igtk_cipher_supported(rdev)) 276 max_key_idx = 5; 277 else 278 max_key_idx = 3; 279 280 if (key_idx < 0 || key_idx > max_key_idx) 281 return false; 282 283 return true; 284 } 285 286 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 287 struct key_params *params, int key_idx, 288 bool pairwise, const u8 *mac_addr) 289 { 290 if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise)) 291 return -EINVAL; 292 293 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) 294 return -EINVAL; 295 296 if (pairwise && !mac_addr) 297 return -EINVAL; 298 299 switch (params->cipher) { 300 case WLAN_CIPHER_SUITE_TKIP: 301 /* Extended Key ID can only be used with CCMP/GCMP ciphers */ 302 if ((pairwise && key_idx) || 303 params->mode != NL80211_KEY_RX_TX) 304 return -EINVAL; 305 break; 306 case WLAN_CIPHER_SUITE_CCMP: 307 case WLAN_CIPHER_SUITE_CCMP_256: 308 case WLAN_CIPHER_SUITE_GCMP: 309 case WLAN_CIPHER_SUITE_GCMP_256: 310 /* IEEE802.11-2016 allows only 0 and - when supporting 311 * Extended Key ID - 1 as index for pairwise keys. 312 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when 313 * the driver supports Extended Key ID. 314 * @NL80211_KEY_SET_TX can't be set when installing and 315 * validating a key. 316 */ 317 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) || 318 params->mode == NL80211_KEY_SET_TX) 319 return -EINVAL; 320 if (wiphy_ext_feature_isset(&rdev->wiphy, 321 NL80211_EXT_FEATURE_EXT_KEY_ID)) { 322 if (pairwise && (key_idx < 0 || key_idx > 1)) 323 return -EINVAL; 324 } else if (pairwise && key_idx) { 325 return -EINVAL; 326 } 327 break; 328 case WLAN_CIPHER_SUITE_AES_CMAC: 329 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 330 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 331 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 332 /* Disallow BIP (group-only) cipher as pairwise cipher */ 333 if (pairwise) 334 return -EINVAL; 335 if (key_idx < 4) 336 return -EINVAL; 337 break; 338 case WLAN_CIPHER_SUITE_WEP40: 339 case WLAN_CIPHER_SUITE_WEP104: 340 if (key_idx > 3) 341 return -EINVAL; 342 break; 343 default: 344 break; 345 } 346 347 switch (params->cipher) { 348 case WLAN_CIPHER_SUITE_WEP40: 349 if (params->key_len != WLAN_KEY_LEN_WEP40) 350 return -EINVAL; 351 break; 352 case WLAN_CIPHER_SUITE_TKIP: 353 if (params->key_len != WLAN_KEY_LEN_TKIP) 354 return -EINVAL; 355 break; 356 case WLAN_CIPHER_SUITE_CCMP: 357 if (params->key_len != WLAN_KEY_LEN_CCMP) 358 return -EINVAL; 359 break; 360 case WLAN_CIPHER_SUITE_CCMP_256: 361 if (params->key_len != WLAN_KEY_LEN_CCMP_256) 362 return -EINVAL; 363 break; 364 case WLAN_CIPHER_SUITE_GCMP: 365 if (params->key_len != WLAN_KEY_LEN_GCMP) 366 return -EINVAL; 367 break; 368 case WLAN_CIPHER_SUITE_GCMP_256: 369 if (params->key_len != WLAN_KEY_LEN_GCMP_256) 370 return -EINVAL; 371 break; 372 case WLAN_CIPHER_SUITE_WEP104: 373 if (params->key_len != WLAN_KEY_LEN_WEP104) 374 return -EINVAL; 375 break; 376 case WLAN_CIPHER_SUITE_AES_CMAC: 377 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 378 return -EINVAL; 379 break; 380 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 381 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256) 382 return -EINVAL; 383 break; 384 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 385 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128) 386 return -EINVAL; 387 break; 388 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 389 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256) 390 return -EINVAL; 391 break; 392 default: 393 /* 394 * We don't know anything about this algorithm, 395 * allow using it -- but the driver must check 396 * all parameters! We still check below whether 397 * or not the driver supports this algorithm, 398 * of course. 399 */ 400 break; 401 } 402 403 if (params->seq) { 404 switch (params->cipher) { 405 case WLAN_CIPHER_SUITE_WEP40: 406 case WLAN_CIPHER_SUITE_WEP104: 407 /* These ciphers do not use key sequence */ 408 return -EINVAL; 409 case WLAN_CIPHER_SUITE_TKIP: 410 case WLAN_CIPHER_SUITE_CCMP: 411 case WLAN_CIPHER_SUITE_CCMP_256: 412 case WLAN_CIPHER_SUITE_GCMP: 413 case WLAN_CIPHER_SUITE_GCMP_256: 414 case WLAN_CIPHER_SUITE_AES_CMAC: 415 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 416 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 417 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 418 if (params->seq_len != 6) 419 return -EINVAL; 420 break; 421 } 422 } 423 424 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) 425 return -EINVAL; 426 427 return 0; 428 } 429 430 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) 431 { 432 unsigned int hdrlen = 24; 433 434 if (ieee80211_is_ext(fc)) { 435 hdrlen = 4; 436 goto out; 437 } 438 439 if (ieee80211_is_data(fc)) { 440 if (ieee80211_has_a4(fc)) 441 hdrlen = 30; 442 if (ieee80211_is_data_qos(fc)) { 443 hdrlen += IEEE80211_QOS_CTL_LEN; 444 if (ieee80211_has_order(fc)) 445 hdrlen += IEEE80211_HT_CTL_LEN; 446 } 447 goto out; 448 } 449 450 if (ieee80211_is_mgmt(fc)) { 451 if (ieee80211_has_order(fc)) 452 hdrlen += IEEE80211_HT_CTL_LEN; 453 goto out; 454 } 455 456 if (ieee80211_is_ctl(fc)) { 457 /* 458 * ACK and CTS are 10 bytes, all others 16. To see how 459 * to get this condition consider 460 * subtype mask: 0b0000000011110000 (0x00F0) 461 * ACK subtype: 0b0000000011010000 (0x00D0) 462 * CTS subtype: 0b0000000011000000 (0x00C0) 463 * bits that matter: ^^^ (0x00E0) 464 * value of those: 0b0000000011000000 (0x00C0) 465 */ 466 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 467 hdrlen = 10; 468 else 469 hdrlen = 16; 470 } 471 out: 472 return hdrlen; 473 } 474 EXPORT_SYMBOL(ieee80211_hdrlen); 475 476 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 477 { 478 const struct ieee80211_hdr *hdr = 479 (const struct ieee80211_hdr *)skb->data; 480 unsigned int hdrlen; 481 482 if (unlikely(skb->len < 10)) 483 return 0; 484 hdrlen = ieee80211_hdrlen(hdr->frame_control); 485 if (unlikely(hdrlen > skb->len)) 486 return 0; 487 return hdrlen; 488 } 489 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 490 491 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags) 492 { 493 int ae = flags & MESH_FLAGS_AE; 494 /* 802.11-2012, 8.2.4.7.3 */ 495 switch (ae) { 496 default: 497 case 0: 498 return 6; 499 case MESH_FLAGS_AE_A4: 500 return 12; 501 case MESH_FLAGS_AE_A5_A6: 502 return 18; 503 } 504 } 505 506 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 507 { 508 return __ieee80211_get_mesh_hdrlen(meshhdr->flags); 509 } 510 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); 511 512 bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto) 513 { 514 const __be16 *hdr_proto = hdr + ETH_ALEN; 515 516 if (!(ether_addr_equal(hdr, rfc1042_header) && 517 *hdr_proto != htons(ETH_P_AARP) && 518 *hdr_proto != htons(ETH_P_IPX)) && 519 !ether_addr_equal(hdr, bridge_tunnel_header)) 520 return false; 521 522 *proto = *hdr_proto; 523 524 return true; 525 } 526 EXPORT_SYMBOL(ieee80211_get_8023_tunnel_proto); 527 528 int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb) 529 { 530 const void *mesh_addr; 531 struct { 532 struct ethhdr eth; 533 u8 flags; 534 } payload; 535 int hdrlen; 536 int ret; 537 538 ret = skb_copy_bits(skb, 0, &payload, sizeof(payload)); 539 if (ret) 540 return ret; 541 542 hdrlen = sizeof(payload.eth) + __ieee80211_get_mesh_hdrlen(payload.flags); 543 544 if (likely(pskb_may_pull(skb, hdrlen + 8) && 545 ieee80211_get_8023_tunnel_proto(skb->data + hdrlen, 546 &payload.eth.h_proto))) 547 hdrlen += ETH_ALEN + 2; 548 else if (!pskb_may_pull(skb, hdrlen)) 549 return -EINVAL; 550 else 551 payload.eth.h_proto = htons(skb->len - hdrlen); 552 553 mesh_addr = skb->data + sizeof(payload.eth) + ETH_ALEN; 554 switch (payload.flags & MESH_FLAGS_AE) { 555 case MESH_FLAGS_AE_A4: 556 memcpy(&payload.eth.h_source, mesh_addr, ETH_ALEN); 557 break; 558 case MESH_FLAGS_AE_A5_A6: 559 memcpy(&payload.eth, mesh_addr, 2 * ETH_ALEN); 560 break; 561 default: 562 break; 563 } 564 565 pskb_pull(skb, hdrlen - sizeof(payload.eth)); 566 memcpy(skb->data, &payload.eth, sizeof(payload.eth)); 567 568 return 0; 569 } 570 EXPORT_SYMBOL(ieee80211_strip_8023_mesh_hdr); 571 572 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr, 573 const u8 *addr, enum nl80211_iftype iftype, 574 u8 data_offset, bool is_amsdu) 575 { 576 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 577 struct { 578 u8 hdr[ETH_ALEN] __aligned(2); 579 __be16 proto; 580 } payload; 581 struct ethhdr tmp; 582 u16 hdrlen; 583 584 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 585 return -1; 586 587 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset; 588 if (skb->len < hdrlen) 589 return -1; 590 591 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 592 * header 593 * IEEE 802.11 address fields: 594 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 595 * 0 0 DA SA BSSID n/a 596 * 0 1 DA BSSID SA n/a 597 * 1 0 BSSID SA DA n/a 598 * 1 1 RA TA DA SA 599 */ 600 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN); 601 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN); 602 603 switch (hdr->frame_control & 604 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 605 case cpu_to_le16(IEEE80211_FCTL_TODS): 606 if (unlikely(iftype != NL80211_IFTYPE_AP && 607 iftype != NL80211_IFTYPE_AP_VLAN && 608 iftype != NL80211_IFTYPE_P2P_GO)) 609 return -1; 610 break; 611 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 612 if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT && 613 iftype != NL80211_IFTYPE_AP_VLAN && 614 iftype != NL80211_IFTYPE_STATION)) 615 return -1; 616 break; 617 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 618 if ((iftype != NL80211_IFTYPE_STATION && 619 iftype != NL80211_IFTYPE_P2P_CLIENT && 620 iftype != NL80211_IFTYPE_MESH_POINT) || 621 (is_multicast_ether_addr(tmp.h_dest) && 622 ether_addr_equal(tmp.h_source, addr))) 623 return -1; 624 break; 625 case cpu_to_le16(0): 626 if (iftype != NL80211_IFTYPE_ADHOC && 627 iftype != NL80211_IFTYPE_STATION && 628 iftype != NL80211_IFTYPE_OCB) 629 return -1; 630 break; 631 } 632 633 if (likely(!is_amsdu && iftype != NL80211_IFTYPE_MESH_POINT && 634 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)) == 0 && 635 ieee80211_get_8023_tunnel_proto(&payload, &tmp.h_proto))) { 636 /* remove RFC1042 or Bridge-Tunnel encapsulation */ 637 hdrlen += ETH_ALEN + 2; 638 skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2); 639 } else { 640 tmp.h_proto = htons(skb->len - hdrlen); 641 } 642 643 pskb_pull(skb, hdrlen); 644 645 if (!ehdr) 646 ehdr = skb_push(skb, sizeof(struct ethhdr)); 647 memcpy(ehdr, &tmp, sizeof(tmp)); 648 649 return 0; 650 } 651 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr); 652 653 static void 654 __frame_add_frag(struct sk_buff *skb, struct page *page, 655 void *ptr, int len, int size) 656 { 657 struct skb_shared_info *sh = skb_shinfo(skb); 658 int page_offset; 659 660 get_page(page); 661 page_offset = ptr - page_address(page); 662 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size); 663 } 664 665 static void 666 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame, 667 int offset, int len) 668 { 669 struct skb_shared_info *sh = skb_shinfo(skb); 670 const skb_frag_t *frag = &sh->frags[0]; 671 struct page *frag_page; 672 void *frag_ptr; 673 int frag_len, frag_size; 674 int head_size = skb->len - skb->data_len; 675 int cur_len; 676 677 frag_page = virt_to_head_page(skb->head); 678 frag_ptr = skb->data; 679 frag_size = head_size; 680 681 while (offset >= frag_size) { 682 offset -= frag_size; 683 frag_page = skb_frag_page(frag); 684 frag_ptr = skb_frag_address(frag); 685 frag_size = skb_frag_size(frag); 686 frag++; 687 } 688 689 frag_ptr += offset; 690 frag_len = frag_size - offset; 691 692 cur_len = min(len, frag_len); 693 694 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size); 695 len -= cur_len; 696 697 while (len > 0) { 698 frag_len = skb_frag_size(frag); 699 cur_len = min(len, frag_len); 700 __frame_add_frag(frame, skb_frag_page(frag), 701 skb_frag_address(frag), cur_len, frag_len); 702 len -= cur_len; 703 frag++; 704 } 705 } 706 707 static struct sk_buff * 708 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen, 709 int offset, int len, bool reuse_frag, 710 int min_len) 711 { 712 struct sk_buff *frame; 713 int cur_len = len; 714 715 if (skb->len - offset < len) 716 return NULL; 717 718 /* 719 * When reusing fragments, copy some data to the head to simplify 720 * ethernet header handling and speed up protocol header processing 721 * in the stack later. 722 */ 723 if (reuse_frag) 724 cur_len = min_t(int, len, min_len); 725 726 /* 727 * Allocate and reserve two bytes more for payload 728 * alignment since sizeof(struct ethhdr) is 14. 729 */ 730 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len); 731 if (!frame) 732 return NULL; 733 734 frame->priority = skb->priority; 735 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 736 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len); 737 738 len -= cur_len; 739 if (!len) 740 return frame; 741 742 offset += cur_len; 743 __ieee80211_amsdu_copy_frag(skb, frame, offset, len); 744 745 return frame; 746 } 747 748 static u16 749 ieee80211_amsdu_subframe_length(void *field, u8 mesh_flags, u8 hdr_type) 750 { 751 __le16 *field_le = field; 752 __be16 *field_be = field; 753 u16 len; 754 755 if (hdr_type >= 2) 756 len = le16_to_cpu(*field_le); 757 else 758 len = be16_to_cpu(*field_be); 759 if (hdr_type) 760 len += __ieee80211_get_mesh_hdrlen(mesh_flags); 761 762 return len; 763 } 764 765 bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr) 766 { 767 int offset = 0, subframe_len, padding; 768 769 for (offset = 0; offset < skb->len; offset += subframe_len + padding) { 770 int remaining = skb->len - offset; 771 struct { 772 __be16 len; 773 u8 mesh_flags; 774 } hdr; 775 u16 len; 776 777 if (sizeof(hdr) > remaining) 778 return false; 779 780 if (skb_copy_bits(skb, offset + 2 * ETH_ALEN, &hdr, sizeof(hdr)) < 0) 781 return false; 782 783 len = ieee80211_amsdu_subframe_length(&hdr.len, hdr.mesh_flags, 784 mesh_hdr); 785 subframe_len = sizeof(struct ethhdr) + len; 786 padding = (4 - subframe_len) & 0x3; 787 788 if (subframe_len > remaining) 789 return false; 790 } 791 792 return true; 793 } 794 EXPORT_SYMBOL(ieee80211_is_valid_amsdu); 795 796 797 /* 798 * Detects if an MSDU frame was maliciously converted into an A-MSDU 799 * frame by an adversary. This is done by parsing the received frame 800 * as if it were a regular MSDU, even though the A-MSDU flag is set. 801 * 802 * For non-mesh interfaces, detection involves checking whether the 803 * payload, when interpreted as an MSDU, begins with a valid RFC1042 804 * header. This is done by comparing the A-MSDU subheader's destination 805 * address to the start of the RFC1042 header. 806 * 807 * For mesh interfaces, the MSDU includes a 6-byte Mesh Control field 808 * and an optional variable-length Mesh Address Extension field before 809 * the RFC1042 header. The position of the RFC1042 header must therefore 810 * be calculated based on the mesh header length. 811 * 812 * Since this function intentionally parses an A-MSDU frame as an MSDU, 813 * it only assumes that the A-MSDU subframe header is present, and 814 * beyond this it performs its own bounds checks under the assumption 815 * that the frame is instead parsed as a non-aggregated MSDU. 816 */ 817 static bool 818 is_amsdu_aggregation_attack(struct ethhdr *eth, struct sk_buff *skb, 819 enum nl80211_iftype iftype) 820 { 821 int offset; 822 823 /* Non-mesh case can be directly compared */ 824 if (iftype != NL80211_IFTYPE_MESH_POINT) 825 return ether_addr_equal(eth->h_dest, rfc1042_header); 826 827 offset = __ieee80211_get_mesh_hdrlen(eth->h_dest[0]); 828 if (offset == 6) { 829 /* Mesh case with empty address extension field */ 830 return ether_addr_equal(eth->h_source, rfc1042_header); 831 } else if (offset + ETH_ALEN <= skb->len) { 832 /* Mesh case with non-empty address extension field */ 833 u8 temp[ETH_ALEN]; 834 835 skb_copy_bits(skb, offset, temp, ETH_ALEN); 836 return ether_addr_equal(temp, rfc1042_header); 837 } 838 839 return false; 840 } 841 842 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 843 const u8 *addr, enum nl80211_iftype iftype, 844 const unsigned int extra_headroom, 845 const u8 *check_da, const u8 *check_sa, 846 u8 mesh_control) 847 { 848 unsigned int hlen = ALIGN(extra_headroom, 4); 849 struct sk_buff *frame = NULL; 850 int offset = 0; 851 struct { 852 struct ethhdr eth; 853 uint8_t flags; 854 } hdr; 855 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb); 856 bool reuse_skb = false; 857 bool last = false; 858 int copy_len = sizeof(hdr.eth); 859 860 if (iftype == NL80211_IFTYPE_MESH_POINT) 861 copy_len = sizeof(hdr); 862 863 while (!last) { 864 int remaining = skb->len - offset; 865 unsigned int subframe_len; 866 int len, mesh_len = 0; 867 u8 padding; 868 869 if (copy_len > remaining) 870 goto purge; 871 872 skb_copy_bits(skb, offset, &hdr, copy_len); 873 if (iftype == NL80211_IFTYPE_MESH_POINT) 874 mesh_len = __ieee80211_get_mesh_hdrlen(hdr.flags); 875 len = ieee80211_amsdu_subframe_length(&hdr.eth.h_proto, hdr.flags, 876 mesh_control); 877 subframe_len = sizeof(struct ethhdr) + len; 878 padding = (4 - subframe_len) & 0x3; 879 880 /* the last MSDU has no padding */ 881 if (subframe_len > remaining) 882 goto purge; 883 /* mitigate A-MSDU aggregation injection attacks, to be 884 * checked when processing first subframe (offset == 0). 885 */ 886 if (offset == 0 && is_amsdu_aggregation_attack(&hdr.eth, skb, iftype)) 887 goto purge; 888 889 offset += sizeof(struct ethhdr); 890 last = remaining <= subframe_len + padding; 891 892 /* FIXME: should we really accept multicast DA? */ 893 if ((check_da && !is_multicast_ether_addr(hdr.eth.h_dest) && 894 !ether_addr_equal(check_da, hdr.eth.h_dest)) || 895 (check_sa && !ether_addr_equal(check_sa, hdr.eth.h_source))) { 896 offset += len + padding; 897 continue; 898 } 899 900 /* reuse skb for the last subframe */ 901 if (!skb_is_nonlinear(skb) && !reuse_frag && last) { 902 skb_pull(skb, offset); 903 frame = skb; 904 reuse_skb = true; 905 } else { 906 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len, 907 reuse_frag, 32 + mesh_len); 908 if (!frame) 909 goto purge; 910 911 offset += len + padding; 912 } 913 914 skb_reset_network_header(frame); 915 frame->dev = skb->dev; 916 frame->priority = skb->priority; 917 918 if (likely(iftype != NL80211_IFTYPE_MESH_POINT && 919 ieee80211_get_8023_tunnel_proto(frame->data, &hdr.eth.h_proto))) 920 skb_pull(frame, ETH_ALEN + 2); 921 922 memcpy(skb_push(frame, sizeof(hdr.eth)), &hdr.eth, sizeof(hdr.eth)); 923 __skb_queue_tail(list, frame); 924 } 925 926 if (!reuse_skb) 927 dev_kfree_skb(skb); 928 929 return; 930 931 purge: 932 __skb_queue_purge(list); 933 dev_kfree_skb(skb); 934 } 935 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 936 937 /* Given a data frame determine the 802.1p/1d tag to use. */ 938 unsigned int cfg80211_classify8021d(struct sk_buff *skb, 939 struct cfg80211_qos_map *qos_map) 940 { 941 unsigned int dscp; 942 unsigned char vlan_priority; 943 unsigned int ret; 944 945 /* skb->priority values from 256->263 are magic values to 946 * directly indicate a specific 802.1d priority. This is used 947 * to allow 802.1d priority to be passed directly in from VLAN 948 * tags, etc. 949 */ 950 if (skb->priority >= 256 && skb->priority <= 263) { 951 ret = skb->priority - 256; 952 goto out; 953 } 954 955 if (skb_vlan_tag_present(skb)) { 956 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK) 957 >> VLAN_PRIO_SHIFT; 958 if (vlan_priority > 0) { 959 ret = vlan_priority; 960 goto out; 961 } 962 } 963 964 switch (skb->protocol) { 965 case htons(ETH_P_IP): 966 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; 967 break; 968 case htons(ETH_P_IPV6): 969 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; 970 break; 971 case htons(ETH_P_MPLS_UC): 972 case htons(ETH_P_MPLS_MC): { 973 struct mpls_label mpls_tmp, *mpls; 974 975 mpls = skb_header_pointer(skb, sizeof(struct ethhdr), 976 sizeof(*mpls), &mpls_tmp); 977 if (!mpls) 978 return 0; 979 980 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK) 981 >> MPLS_LS_TC_SHIFT; 982 goto out; 983 } 984 case htons(ETH_P_80221): 985 /* 802.21 is always network control traffic */ 986 return 7; 987 default: 988 return 0; 989 } 990 991 if (qos_map) { 992 unsigned int i, tmp_dscp = dscp >> 2; 993 994 for (i = 0; i < qos_map->num_des; i++) { 995 if (tmp_dscp == qos_map->dscp_exception[i].dscp) { 996 ret = qos_map->dscp_exception[i].up; 997 goto out; 998 } 999 } 1000 1001 for (i = 0; i < 8; i++) { 1002 if (tmp_dscp >= qos_map->up[i].low && 1003 tmp_dscp <= qos_map->up[i].high) { 1004 ret = i; 1005 goto out; 1006 } 1007 } 1008 } 1009 1010 /* The default mapping as defined Section 2.3 in RFC8325: The three 1011 * Most Significant Bits (MSBs) of the DSCP are used as the 1012 * corresponding L2 markings. 1013 */ 1014 ret = dscp >> 5; 1015 1016 /* Handle specific DSCP values for which the default mapping (as 1017 * described above) doesn't adhere to the intended usage of the DSCP 1018 * value. See section 4 in RFC8325. Specifically, for the following 1019 * Diffserv Service Classes no update is needed: 1020 * - Standard: DF 1021 * - Low Priority Data: CS1 1022 * - Multimedia Conferencing: AF41, AF42, AF43 1023 * - Network Control Traffic: CS7 1024 * - Real-Time Interactive: CS4 1025 * - Signaling: CS5 1026 */ 1027 switch (dscp >> 2) { 1028 case 10: 1029 case 12: 1030 case 14: 1031 /* High throughput data: AF11, AF12, AF13 */ 1032 ret = 0; 1033 break; 1034 case 16: 1035 /* Operations, Administration, and Maintenance and Provisioning: 1036 * CS2 1037 */ 1038 ret = 0; 1039 break; 1040 case 18: 1041 case 20: 1042 case 22: 1043 /* Low latency data: AF21, AF22, AF23 */ 1044 ret = 3; 1045 break; 1046 case 24: 1047 /* Broadcasting video: CS3 */ 1048 ret = 4; 1049 break; 1050 case 26: 1051 case 28: 1052 case 30: 1053 /* Multimedia Streaming: AF31, AF32, AF33 */ 1054 ret = 4; 1055 break; 1056 case 44: 1057 /* Voice Admit: VA */ 1058 ret = 6; 1059 break; 1060 case 46: 1061 /* Telephony traffic: EF */ 1062 ret = 6; 1063 break; 1064 case 48: 1065 /* Network Control Traffic: CS6 */ 1066 ret = 7; 1067 break; 1068 } 1069 out: 1070 return array_index_nospec(ret, IEEE80211_NUM_TIDS); 1071 } 1072 EXPORT_SYMBOL(cfg80211_classify8021d); 1073 1074 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id) 1075 { 1076 const struct cfg80211_bss_ies *ies; 1077 1078 ies = rcu_dereference(bss->ies); 1079 if (!ies) 1080 return NULL; 1081 1082 return cfg80211_find_elem(id, ies->data, ies->len); 1083 } 1084 EXPORT_SYMBOL(ieee80211_bss_get_elem); 1085 1086 void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 1087 { 1088 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 1089 struct net_device *dev = wdev->netdev; 1090 int i; 1091 1092 if (!wdev->connect_keys) 1093 return; 1094 1095 for (i = 0; i < 4; i++) { 1096 if (!wdev->connect_keys->params[i].cipher) 1097 continue; 1098 if (rdev_add_key(rdev, dev, -1, i, false, NULL, 1099 &wdev->connect_keys->params[i])) { 1100 netdev_err(dev, "failed to set key %d\n", i); 1101 continue; 1102 } 1103 if (wdev->connect_keys->def == i && 1104 rdev_set_default_key(rdev, dev, -1, i, true, true)) { 1105 netdev_err(dev, "failed to set defkey %d\n", i); 1106 continue; 1107 } 1108 } 1109 1110 kfree_sensitive(wdev->connect_keys); 1111 wdev->connect_keys = NULL; 1112 } 1113 1114 void cfg80211_process_wdev_events(struct wireless_dev *wdev) 1115 { 1116 struct cfg80211_event *ev; 1117 unsigned long flags; 1118 1119 spin_lock_irqsave(&wdev->event_lock, flags); 1120 while (!list_empty(&wdev->event_list)) { 1121 ev = list_first_entry(&wdev->event_list, 1122 struct cfg80211_event, list); 1123 list_del(&ev->list); 1124 spin_unlock_irqrestore(&wdev->event_lock, flags); 1125 1126 switch (ev->type) { 1127 case EVENT_CONNECT_RESULT: 1128 __cfg80211_connect_result( 1129 wdev->netdev, 1130 &ev->cr, 1131 ev->cr.status == WLAN_STATUS_SUCCESS); 1132 break; 1133 case EVENT_ROAMED: 1134 __cfg80211_roamed(wdev, &ev->rm); 1135 break; 1136 case EVENT_DISCONNECTED: 1137 __cfg80211_disconnected(wdev->netdev, 1138 ev->dc.ie, ev->dc.ie_len, 1139 ev->dc.reason, 1140 !ev->dc.locally_generated); 1141 break; 1142 case EVENT_IBSS_JOINED: 1143 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid, 1144 ev->ij.channel); 1145 break; 1146 case EVENT_STOPPED: 1147 cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev); 1148 break; 1149 case EVENT_PORT_AUTHORIZED: 1150 __cfg80211_port_authorized(wdev, ev->pa.peer_addr, 1151 ev->pa.td_bitmap, 1152 ev->pa.td_bitmap_len); 1153 break; 1154 } 1155 1156 kfree(ev); 1157 1158 spin_lock_irqsave(&wdev->event_lock, flags); 1159 } 1160 spin_unlock_irqrestore(&wdev->event_lock, flags); 1161 } 1162 1163 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 1164 { 1165 struct wireless_dev *wdev; 1166 1167 lockdep_assert_held(&rdev->wiphy.mtx); 1168 1169 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 1170 cfg80211_process_wdev_events(wdev); 1171 } 1172 1173 int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 1174 struct net_device *dev, enum nl80211_iftype ntype, 1175 struct vif_params *params) 1176 { 1177 int err; 1178 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 1179 1180 lockdep_assert_held(&rdev->wiphy.mtx); 1181 1182 /* don't support changing VLANs, you just re-create them */ 1183 if (otype == NL80211_IFTYPE_AP_VLAN) 1184 return -EOPNOTSUPP; 1185 1186 /* cannot change into P2P device or NAN */ 1187 if (ntype == NL80211_IFTYPE_P2P_DEVICE || 1188 ntype == NL80211_IFTYPE_NAN) 1189 return -EOPNOTSUPP; 1190 1191 if (!rdev->ops->change_virtual_intf || 1192 !(rdev->wiphy.interface_modes & (1 << ntype))) 1193 return -EOPNOTSUPP; 1194 1195 if (ntype != otype) { 1196 /* if it's part of a bridge, reject changing type to station/ibss */ 1197 if (netif_is_bridge_port(dev) && 1198 (ntype == NL80211_IFTYPE_ADHOC || 1199 ntype == NL80211_IFTYPE_STATION || 1200 ntype == NL80211_IFTYPE_P2P_CLIENT)) 1201 return -EBUSY; 1202 1203 dev->ieee80211_ptr->use_4addr = false; 1204 rdev_set_qos_map(rdev, dev, NULL); 1205 1206 switch (otype) { 1207 case NL80211_IFTYPE_AP: 1208 case NL80211_IFTYPE_P2P_GO: 1209 cfg80211_stop_ap(rdev, dev, -1, true); 1210 break; 1211 case NL80211_IFTYPE_ADHOC: 1212 cfg80211_leave_ibss(rdev, dev, false); 1213 break; 1214 case NL80211_IFTYPE_STATION: 1215 case NL80211_IFTYPE_P2P_CLIENT: 1216 cfg80211_disconnect(rdev, dev, 1217 WLAN_REASON_DEAUTH_LEAVING, true); 1218 break; 1219 case NL80211_IFTYPE_MESH_POINT: 1220 /* mesh should be handled? */ 1221 break; 1222 case NL80211_IFTYPE_OCB: 1223 cfg80211_leave_ocb(rdev, dev); 1224 break; 1225 default: 1226 break; 1227 } 1228 1229 cfg80211_process_rdev_events(rdev); 1230 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr); 1231 1232 memset(&dev->ieee80211_ptr->u, 0, 1233 sizeof(dev->ieee80211_ptr->u)); 1234 memset(&dev->ieee80211_ptr->links, 0, 1235 sizeof(dev->ieee80211_ptr->links)); 1236 } 1237 1238 err = rdev_change_virtual_intf(rdev, dev, ntype, params); 1239 1240 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 1241 1242 if (!err && params && params->use_4addr != -1) 1243 dev->ieee80211_ptr->use_4addr = params->use_4addr; 1244 1245 if (!err) { 1246 dev->priv_flags &= ~IFF_DONT_BRIDGE; 1247 switch (ntype) { 1248 case NL80211_IFTYPE_STATION: 1249 if (dev->ieee80211_ptr->use_4addr) 1250 break; 1251 fallthrough; 1252 case NL80211_IFTYPE_OCB: 1253 case NL80211_IFTYPE_P2P_CLIENT: 1254 case NL80211_IFTYPE_ADHOC: 1255 dev->priv_flags |= IFF_DONT_BRIDGE; 1256 break; 1257 case NL80211_IFTYPE_P2P_GO: 1258 case NL80211_IFTYPE_AP: 1259 case NL80211_IFTYPE_AP_VLAN: 1260 case NL80211_IFTYPE_MESH_POINT: 1261 /* bridging OK */ 1262 break; 1263 case NL80211_IFTYPE_MONITOR: 1264 /* monitor can't bridge anyway */ 1265 break; 1266 case NL80211_IFTYPE_UNSPECIFIED: 1267 case NUM_NL80211_IFTYPES: 1268 /* not happening */ 1269 break; 1270 case NL80211_IFTYPE_P2P_DEVICE: 1271 case NL80211_IFTYPE_WDS: 1272 case NL80211_IFTYPE_NAN: 1273 WARN_ON(1); 1274 break; 1275 } 1276 } 1277 1278 if (!err && ntype != otype && netif_running(dev)) { 1279 cfg80211_update_iface_num(rdev, ntype, 1); 1280 cfg80211_update_iface_num(rdev, otype, -1); 1281 } 1282 1283 return err; 1284 } 1285 1286 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate) 1287 { 1288 int modulation, streams, bitrate; 1289 1290 /* the formula below does only work for MCS values smaller than 32 */ 1291 if (WARN_ON_ONCE(rate->mcs >= 32)) 1292 return 0; 1293 1294 modulation = rate->mcs & 7; 1295 streams = (rate->mcs >> 3) + 1; 1296 1297 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000; 1298 1299 if (modulation < 4) 1300 bitrate *= (modulation + 1); 1301 else if (modulation == 4) 1302 bitrate *= (modulation + 2); 1303 else 1304 bitrate *= (modulation + 3); 1305 1306 bitrate *= streams; 1307 1308 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1309 bitrate = (bitrate / 9) * 10; 1310 1311 /* do NOT round down here */ 1312 return (bitrate + 50000) / 100000; 1313 } 1314 1315 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate) 1316 { 1317 static const u32 __mcs2bitrate[] = { 1318 /* control PHY */ 1319 [0] = 275, 1320 /* SC PHY */ 1321 [1] = 3850, 1322 [2] = 7700, 1323 [3] = 9625, 1324 [4] = 11550, 1325 [5] = 12512, /* 1251.25 mbps */ 1326 [6] = 15400, 1327 [7] = 19250, 1328 [8] = 23100, 1329 [9] = 25025, 1330 [10] = 30800, 1331 [11] = 38500, 1332 [12] = 46200, 1333 /* OFDM PHY */ 1334 [13] = 6930, 1335 [14] = 8662, /* 866.25 mbps */ 1336 [15] = 13860, 1337 [16] = 17325, 1338 [17] = 20790, 1339 [18] = 27720, 1340 [19] = 34650, 1341 [20] = 41580, 1342 [21] = 45045, 1343 [22] = 51975, 1344 [23] = 62370, 1345 [24] = 67568, /* 6756.75 mbps */ 1346 /* LP-SC PHY */ 1347 [25] = 6260, 1348 [26] = 8340, 1349 [27] = 11120, 1350 [28] = 12510, 1351 [29] = 16680, 1352 [30] = 22240, 1353 [31] = 25030, 1354 }; 1355 1356 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1357 return 0; 1358 1359 return __mcs2bitrate[rate->mcs]; 1360 } 1361 1362 static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate) 1363 { 1364 static const u32 __mcs2bitrate[] = { 1365 [6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */ 1366 [7 - 6] = 50050, /* MCS 12.1 */ 1367 [8 - 6] = 53900, 1368 [9 - 6] = 57750, 1369 [10 - 6] = 63900, 1370 [11 - 6] = 75075, 1371 [12 - 6] = 80850, 1372 }; 1373 1374 /* Extended SC MCS not defined for base MCS below 6 or above 12 */ 1375 if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12)) 1376 return 0; 1377 1378 return __mcs2bitrate[rate->mcs - 6]; 1379 } 1380 1381 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate) 1382 { 1383 static const u32 __mcs2bitrate[] = { 1384 /* control PHY */ 1385 [0] = 275, 1386 /* SC PHY */ 1387 [1] = 3850, 1388 [2] = 7700, 1389 [3] = 9625, 1390 [4] = 11550, 1391 [5] = 12512, /* 1251.25 mbps */ 1392 [6] = 13475, 1393 [7] = 15400, 1394 [8] = 19250, 1395 [9] = 23100, 1396 [10] = 25025, 1397 [11] = 26950, 1398 [12] = 30800, 1399 [13] = 38500, 1400 [14] = 46200, 1401 [15] = 50050, 1402 [16] = 53900, 1403 [17] = 57750, 1404 [18] = 69300, 1405 [19] = 75075, 1406 [20] = 80850, 1407 }; 1408 1409 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1410 return 0; 1411 1412 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch; 1413 } 1414 1415 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate) 1416 { 1417 static const u32 base[4][12] = { 1418 { 6500000, 1419 13000000, 1420 19500000, 1421 26000000, 1422 39000000, 1423 52000000, 1424 58500000, 1425 65000000, 1426 78000000, 1427 /* not in the spec, but some devices use this: */ 1428 86700000, 1429 97500000, 1430 108300000, 1431 }, 1432 { 13500000, 1433 27000000, 1434 40500000, 1435 54000000, 1436 81000000, 1437 108000000, 1438 121500000, 1439 135000000, 1440 162000000, 1441 180000000, 1442 202500000, 1443 225000000, 1444 }, 1445 { 29300000, 1446 58500000, 1447 87800000, 1448 117000000, 1449 175500000, 1450 234000000, 1451 263300000, 1452 292500000, 1453 351000000, 1454 390000000, 1455 438800000, 1456 487500000, 1457 }, 1458 { 58500000, 1459 117000000, 1460 175500000, 1461 234000000, 1462 351000000, 1463 468000000, 1464 526500000, 1465 585000000, 1466 702000000, 1467 780000000, 1468 877500000, 1469 975000000, 1470 }, 1471 }; 1472 u32 bitrate; 1473 int idx; 1474 1475 if (rate->mcs > 11) 1476 goto warn; 1477 1478 switch (rate->bw) { 1479 case RATE_INFO_BW_160: 1480 idx = 3; 1481 break; 1482 case RATE_INFO_BW_80: 1483 idx = 2; 1484 break; 1485 case RATE_INFO_BW_40: 1486 idx = 1; 1487 break; 1488 case RATE_INFO_BW_5: 1489 case RATE_INFO_BW_10: 1490 default: 1491 goto warn; 1492 case RATE_INFO_BW_20: 1493 idx = 0; 1494 } 1495 1496 bitrate = base[idx][rate->mcs]; 1497 bitrate *= rate->nss; 1498 1499 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1500 bitrate = (bitrate / 9) * 10; 1501 1502 /* do NOT round down here */ 1503 return (bitrate + 50000) / 100000; 1504 warn: 1505 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n", 1506 rate->bw, rate->mcs, rate->nss); 1507 return 0; 1508 } 1509 1510 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate) 1511 { 1512 #define SCALE 6144 1513 u32 mcs_divisors[14] = { 1514 102399, /* 16.666666... */ 1515 51201, /* 8.333333... */ 1516 34134, /* 5.555555... */ 1517 25599, /* 4.166666... */ 1518 17067, /* 2.777777... */ 1519 12801, /* 2.083333... */ 1520 11377, /* 1.851725... */ 1521 10239, /* 1.666666... */ 1522 8532, /* 1.388888... */ 1523 7680, /* 1.250000... */ 1524 6828, /* 1.111111... */ 1525 6144, /* 1.000000... */ 1526 5690, /* 0.926106... */ 1527 5120, /* 0.833333... */ 1528 }; 1529 u32 rates_160M[3] = { 960777777, 907400000, 816666666 }; 1530 u32 rates_996[3] = { 480388888, 453700000, 408333333 }; 1531 u32 rates_484[3] = { 229411111, 216666666, 195000000 }; 1532 u32 rates_242[3] = { 114711111, 108333333, 97500000 }; 1533 u32 rates_106[3] = { 40000000, 37777777, 34000000 }; 1534 u32 rates_52[3] = { 18820000, 17777777, 16000000 }; 1535 u32 rates_26[3] = { 9411111, 8888888, 8000000 }; 1536 u64 tmp; 1537 u32 result; 1538 1539 if (WARN_ON_ONCE(rate->mcs > 13)) 1540 return 0; 1541 1542 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2)) 1543 return 0; 1544 if (WARN_ON_ONCE(rate->he_ru_alloc > 1545 NL80211_RATE_INFO_HE_RU_ALLOC_2x996)) 1546 return 0; 1547 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) 1548 return 0; 1549 1550 if (rate->bw == RATE_INFO_BW_160 || 1551 (rate->bw == RATE_INFO_BW_HE_RU && 1552 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_2x996)) 1553 result = rates_160M[rate->he_gi]; 1554 else if (rate->bw == RATE_INFO_BW_80 || 1555 (rate->bw == RATE_INFO_BW_HE_RU && 1556 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996)) 1557 result = rates_996[rate->he_gi]; 1558 else if (rate->bw == RATE_INFO_BW_40 || 1559 (rate->bw == RATE_INFO_BW_HE_RU && 1560 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484)) 1561 result = rates_484[rate->he_gi]; 1562 else if (rate->bw == RATE_INFO_BW_20 || 1563 (rate->bw == RATE_INFO_BW_HE_RU && 1564 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242)) 1565 result = rates_242[rate->he_gi]; 1566 else if (rate->bw == RATE_INFO_BW_HE_RU && 1567 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106) 1568 result = rates_106[rate->he_gi]; 1569 else if (rate->bw == RATE_INFO_BW_HE_RU && 1570 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52) 1571 result = rates_52[rate->he_gi]; 1572 else if (rate->bw == RATE_INFO_BW_HE_RU && 1573 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26) 1574 result = rates_26[rate->he_gi]; 1575 else { 1576 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n", 1577 rate->bw, rate->he_ru_alloc); 1578 return 0; 1579 } 1580 1581 /* now scale to the appropriate MCS */ 1582 tmp = result; 1583 tmp *= SCALE; 1584 do_div(tmp, mcs_divisors[rate->mcs]); 1585 result = tmp; 1586 1587 /* and take NSS, DCM into account */ 1588 result = (result * rate->nss) / 8; 1589 if (rate->he_dcm) 1590 result /= 2; 1591 1592 return result / 10000; 1593 } 1594 1595 static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate) 1596 { 1597 #define SCALE 6144 1598 static const u32 mcs_divisors[16] = { 1599 102399, /* 16.666666... */ 1600 51201, /* 8.333333... */ 1601 34134, /* 5.555555... */ 1602 25599, /* 4.166666... */ 1603 17067, /* 2.777777... */ 1604 12801, /* 2.083333... */ 1605 11377, /* 1.851725... */ 1606 10239, /* 1.666666... */ 1607 8532, /* 1.388888... */ 1608 7680, /* 1.250000... */ 1609 6828, /* 1.111111... */ 1610 6144, /* 1.000000... */ 1611 5690, /* 0.926106... */ 1612 5120, /* 0.833333... */ 1613 409600, /* 66.666666... */ 1614 204800, /* 33.333333... */ 1615 }; 1616 static const u32 rates_996[3] = { 480388888, 453700000, 408333333 }; 1617 static const u32 rates_484[3] = { 229411111, 216666666, 195000000 }; 1618 static const u32 rates_242[3] = { 114711111, 108333333, 97500000 }; 1619 static const u32 rates_106[3] = { 40000000, 37777777, 34000000 }; 1620 static const u32 rates_52[3] = { 18820000, 17777777, 16000000 }; 1621 static const u32 rates_26[3] = { 9411111, 8888888, 8000000 }; 1622 u64 tmp; 1623 u32 result; 1624 1625 if (WARN_ON_ONCE(rate->mcs > 15)) 1626 return 0; 1627 if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2)) 1628 return 0; 1629 if (WARN_ON_ONCE(rate->eht_ru_alloc > 1630 NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) 1631 return 0; 1632 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) 1633 return 0; 1634 1635 /* Bandwidth checks for MCS 14 */ 1636 if (rate->mcs == 14) { 1637 if ((rate->bw != RATE_INFO_BW_EHT_RU && 1638 rate->bw != RATE_INFO_BW_80 && 1639 rate->bw != RATE_INFO_BW_160 && 1640 rate->bw != RATE_INFO_BW_320) || 1641 (rate->bw == RATE_INFO_BW_EHT_RU && 1642 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 && 1643 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 && 1644 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) { 1645 WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n", 1646 rate->bw, rate->eht_ru_alloc); 1647 return 0; 1648 } 1649 } 1650 1651 if (rate->bw == RATE_INFO_BW_320 || 1652 (rate->bw == RATE_INFO_BW_EHT_RU && 1653 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) 1654 result = 4 * rates_996[rate->eht_gi]; 1655 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1656 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484) 1657 result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi]; 1658 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1659 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996) 1660 result = 3 * rates_996[rate->eht_gi]; 1661 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1662 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484) 1663 result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi]; 1664 else if (rate->bw == RATE_INFO_BW_160 || 1665 (rate->bw == RATE_INFO_BW_EHT_RU && 1666 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996)) 1667 result = 2 * rates_996[rate->eht_gi]; 1668 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1669 rate->eht_ru_alloc == 1670 NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242) 1671 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi] 1672 + rates_242[rate->eht_gi]; 1673 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1674 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484) 1675 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]; 1676 else if (rate->bw == RATE_INFO_BW_80 || 1677 (rate->bw == RATE_INFO_BW_EHT_RU && 1678 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996)) 1679 result = rates_996[rate->eht_gi]; 1680 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1681 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242) 1682 result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi]; 1683 else if (rate->bw == RATE_INFO_BW_40 || 1684 (rate->bw == RATE_INFO_BW_EHT_RU && 1685 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484)) 1686 result = rates_484[rate->eht_gi]; 1687 else if (rate->bw == RATE_INFO_BW_20 || 1688 (rate->bw == RATE_INFO_BW_EHT_RU && 1689 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242)) 1690 result = rates_242[rate->eht_gi]; 1691 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1692 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26) 1693 result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi]; 1694 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1695 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106) 1696 result = rates_106[rate->eht_gi]; 1697 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1698 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26) 1699 result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi]; 1700 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1701 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52) 1702 result = rates_52[rate->eht_gi]; 1703 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1704 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26) 1705 result = rates_26[rate->eht_gi]; 1706 else { 1707 WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n", 1708 rate->bw, rate->eht_ru_alloc); 1709 return 0; 1710 } 1711 1712 /* now scale to the appropriate MCS */ 1713 tmp = result; 1714 tmp *= SCALE; 1715 do_div(tmp, mcs_divisors[rate->mcs]); 1716 1717 /* and take NSS */ 1718 tmp *= rate->nss; 1719 do_div(tmp, 8); 1720 1721 result = tmp; 1722 1723 return result / 10000; 1724 } 1725 1726 static u32 cfg80211_calculate_bitrate_s1g(struct rate_info *rate) 1727 { 1728 /* For 1, 2, 4, 8 and 16 MHz channels */ 1729 static const u32 base[5][11] = { 1730 { 300000, 1731 600000, 1732 900000, 1733 1200000, 1734 1800000, 1735 2400000, 1736 2700000, 1737 3000000, 1738 3600000, 1739 4000000, 1740 /* MCS 10 supported in 1 MHz only */ 1741 150000, 1742 }, 1743 { 650000, 1744 1300000, 1745 1950000, 1746 2600000, 1747 3900000, 1748 5200000, 1749 5850000, 1750 6500000, 1751 7800000, 1752 /* MCS 9 not valid */ 1753 }, 1754 { 1350000, 1755 2700000, 1756 4050000, 1757 5400000, 1758 8100000, 1759 10800000, 1760 12150000, 1761 13500000, 1762 16200000, 1763 18000000, 1764 }, 1765 { 2925000, 1766 5850000, 1767 8775000, 1768 11700000, 1769 17550000, 1770 23400000, 1771 26325000, 1772 29250000, 1773 35100000, 1774 39000000, 1775 }, 1776 { 8580000, 1777 11700000, 1778 17550000, 1779 23400000, 1780 35100000, 1781 46800000, 1782 52650000, 1783 58500000, 1784 70200000, 1785 78000000, 1786 }, 1787 }; 1788 u32 bitrate; 1789 /* default is 1 MHz index */ 1790 int idx = 0; 1791 1792 if (rate->mcs >= 11) 1793 goto warn; 1794 1795 switch (rate->bw) { 1796 case RATE_INFO_BW_16: 1797 idx = 4; 1798 break; 1799 case RATE_INFO_BW_8: 1800 idx = 3; 1801 break; 1802 case RATE_INFO_BW_4: 1803 idx = 2; 1804 break; 1805 case RATE_INFO_BW_2: 1806 idx = 1; 1807 break; 1808 case RATE_INFO_BW_1: 1809 idx = 0; 1810 break; 1811 case RATE_INFO_BW_5: 1812 case RATE_INFO_BW_10: 1813 case RATE_INFO_BW_20: 1814 case RATE_INFO_BW_40: 1815 case RATE_INFO_BW_80: 1816 case RATE_INFO_BW_160: 1817 default: 1818 goto warn; 1819 } 1820 1821 bitrate = base[idx][rate->mcs]; 1822 bitrate *= rate->nss; 1823 1824 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1825 bitrate = (bitrate / 9) * 10; 1826 /* do NOT round down here */ 1827 return (bitrate + 50000) / 100000; 1828 warn: 1829 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n", 1830 rate->bw, rate->mcs, rate->nss); 1831 return 0; 1832 } 1833 1834 u32 cfg80211_calculate_bitrate(struct rate_info *rate) 1835 { 1836 if (rate->flags & RATE_INFO_FLAGS_MCS) 1837 return cfg80211_calculate_bitrate_ht(rate); 1838 if (rate->flags & RATE_INFO_FLAGS_DMG) 1839 return cfg80211_calculate_bitrate_dmg(rate); 1840 if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG) 1841 return cfg80211_calculate_bitrate_extended_sc_dmg(rate); 1842 if (rate->flags & RATE_INFO_FLAGS_EDMG) 1843 return cfg80211_calculate_bitrate_edmg(rate); 1844 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) 1845 return cfg80211_calculate_bitrate_vht(rate); 1846 if (rate->flags & RATE_INFO_FLAGS_HE_MCS) 1847 return cfg80211_calculate_bitrate_he(rate); 1848 if (rate->flags & RATE_INFO_FLAGS_EHT_MCS) 1849 return cfg80211_calculate_bitrate_eht(rate); 1850 if (rate->flags & RATE_INFO_FLAGS_S1G_MCS) 1851 return cfg80211_calculate_bitrate_s1g(rate); 1852 1853 return rate->legacy; 1854 } 1855 EXPORT_SYMBOL(cfg80211_calculate_bitrate); 1856 1857 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, 1858 enum ieee80211_p2p_attr_id attr, 1859 u8 *buf, unsigned int bufsize) 1860 { 1861 u8 *out = buf; 1862 u16 attr_remaining = 0; 1863 bool desired_attr = false; 1864 u16 desired_len = 0; 1865 1866 while (len > 0) { 1867 unsigned int iedatalen; 1868 unsigned int copy; 1869 const u8 *iedata; 1870 1871 if (len < 2) 1872 return -EILSEQ; 1873 iedatalen = ies[1]; 1874 if (iedatalen + 2 > len) 1875 return -EILSEQ; 1876 1877 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC) 1878 goto cont; 1879 1880 if (iedatalen < 4) 1881 goto cont; 1882 1883 iedata = ies + 2; 1884 1885 /* check WFA OUI, P2P subtype */ 1886 if (iedata[0] != 0x50 || iedata[1] != 0x6f || 1887 iedata[2] != 0x9a || iedata[3] != 0x09) 1888 goto cont; 1889 1890 iedatalen -= 4; 1891 iedata += 4; 1892 1893 /* check attribute continuation into this IE */ 1894 copy = min_t(unsigned int, attr_remaining, iedatalen); 1895 if (copy && desired_attr) { 1896 desired_len += copy; 1897 if (out) { 1898 memcpy(out, iedata, min(bufsize, copy)); 1899 out += min(bufsize, copy); 1900 bufsize -= min(bufsize, copy); 1901 } 1902 1903 1904 if (copy == attr_remaining) 1905 return desired_len; 1906 } 1907 1908 attr_remaining -= copy; 1909 if (attr_remaining) 1910 goto cont; 1911 1912 iedatalen -= copy; 1913 iedata += copy; 1914 1915 while (iedatalen > 0) { 1916 u16 attr_len; 1917 1918 /* P2P attribute ID & size must fit */ 1919 if (iedatalen < 3) 1920 return -EILSEQ; 1921 desired_attr = iedata[0] == attr; 1922 attr_len = get_unaligned_le16(iedata + 1); 1923 iedatalen -= 3; 1924 iedata += 3; 1925 1926 copy = min_t(unsigned int, attr_len, iedatalen); 1927 1928 if (desired_attr) { 1929 desired_len += copy; 1930 if (out) { 1931 memcpy(out, iedata, min(bufsize, copy)); 1932 out += min(bufsize, copy); 1933 bufsize -= min(bufsize, copy); 1934 } 1935 1936 if (copy == attr_len) 1937 return desired_len; 1938 } 1939 1940 iedata += copy; 1941 iedatalen -= copy; 1942 attr_remaining = attr_len - copy; 1943 } 1944 1945 cont: 1946 len -= ies[1] + 2; 1947 ies += ies[1] + 2; 1948 } 1949 1950 if (attr_remaining && desired_attr) 1951 return -EILSEQ; 1952 1953 return -ENOENT; 1954 } 1955 EXPORT_SYMBOL(cfg80211_get_p2p_attr); 1956 1957 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext) 1958 { 1959 int i; 1960 1961 /* Make sure array values are legal */ 1962 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION)) 1963 return false; 1964 1965 i = 0; 1966 while (i < n_ids) { 1967 if (ids[i] == WLAN_EID_EXTENSION) { 1968 if (id_ext && (ids[i + 1] == id)) 1969 return true; 1970 1971 i += 2; 1972 continue; 1973 } 1974 1975 if (ids[i] == id && !id_ext) 1976 return true; 1977 1978 i++; 1979 } 1980 return false; 1981 } 1982 1983 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos) 1984 { 1985 /* we assume a validly formed IEs buffer */ 1986 u8 len = ies[pos + 1]; 1987 1988 pos += 2 + len; 1989 1990 /* the IE itself must have 255 bytes for fragments to follow */ 1991 if (len < 255) 1992 return pos; 1993 1994 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) { 1995 len = ies[pos + 1]; 1996 pos += 2 + len; 1997 } 1998 1999 return pos; 2000 } 2001 2002 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen, 2003 const u8 *ids, int n_ids, 2004 const u8 *after_ric, int n_after_ric, 2005 size_t offset) 2006 { 2007 size_t pos = offset; 2008 2009 while (pos < ielen) { 2010 u8 ext = 0; 2011 2012 if (ies[pos] == WLAN_EID_EXTENSION) 2013 ext = 2; 2014 if ((pos + ext) >= ielen) 2015 break; 2016 2017 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext], 2018 ies[pos] == WLAN_EID_EXTENSION)) 2019 break; 2020 2021 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) { 2022 pos = skip_ie(ies, ielen, pos); 2023 2024 while (pos < ielen) { 2025 if (ies[pos] == WLAN_EID_EXTENSION) 2026 ext = 2; 2027 else 2028 ext = 0; 2029 2030 if ((pos + ext) >= ielen) 2031 break; 2032 2033 if (!ieee80211_id_in_list(after_ric, 2034 n_after_ric, 2035 ies[pos + ext], 2036 ext == 2)) 2037 pos = skip_ie(ies, ielen, pos); 2038 else 2039 break; 2040 } 2041 } else { 2042 pos = skip_ie(ies, ielen, pos); 2043 } 2044 } 2045 2046 return pos; 2047 } 2048 EXPORT_SYMBOL(ieee80211_ie_split_ric); 2049 2050 void ieee80211_fragment_element(struct sk_buff *skb, u8 *len_pos, u8 frag_id) 2051 { 2052 unsigned int elem_len; 2053 2054 if (!len_pos) 2055 return; 2056 2057 elem_len = skb->data + skb->len - len_pos - 1; 2058 2059 while (elem_len > 255) { 2060 /* this one is 255 */ 2061 *len_pos = 255; 2062 /* remaining data gets smaller */ 2063 elem_len -= 255; 2064 /* make space for the fragment ID/len in SKB */ 2065 skb_put(skb, 2); 2066 /* shift back the remaining data to place fragment ID/len */ 2067 memmove(len_pos + 255 + 3, len_pos + 255 + 1, elem_len); 2068 /* place the fragment ID */ 2069 len_pos += 255 + 1; 2070 *len_pos = frag_id; 2071 /* and point to fragment length to update later */ 2072 len_pos++; 2073 } 2074 2075 *len_pos = elem_len; 2076 } 2077 EXPORT_SYMBOL(ieee80211_fragment_element); 2078 2079 bool ieee80211_operating_class_to_band(u8 operating_class, 2080 enum nl80211_band *band) 2081 { 2082 switch (operating_class) { 2083 case 112: 2084 case 115 ... 127: 2085 case 128 ... 130: 2086 *band = NL80211_BAND_5GHZ; 2087 return true; 2088 case 131 ... 135: 2089 case 137: 2090 *band = NL80211_BAND_6GHZ; 2091 return true; 2092 case 81: 2093 case 82: 2094 case 83: 2095 case 84: 2096 *band = NL80211_BAND_2GHZ; 2097 return true; 2098 case 180: 2099 *band = NL80211_BAND_60GHZ; 2100 return true; 2101 } 2102 2103 return false; 2104 } 2105 EXPORT_SYMBOL(ieee80211_operating_class_to_band); 2106 2107 bool ieee80211_operating_class_to_chandef(u8 operating_class, 2108 struct ieee80211_channel *chan, 2109 struct cfg80211_chan_def *chandef) 2110 { 2111 u32 control_freq, offset = 0; 2112 enum nl80211_band band; 2113 2114 if (!ieee80211_operating_class_to_band(operating_class, &band) || 2115 !chan || band != chan->band) 2116 return false; 2117 2118 control_freq = chan->center_freq; 2119 chandef->chan = chan; 2120 2121 if (control_freq >= 5955) 2122 offset = control_freq - 5955; 2123 else if (control_freq >= 5745) 2124 offset = control_freq - 5745; 2125 else if (control_freq >= 5180) 2126 offset = control_freq - 5180; 2127 offset /= 20; 2128 2129 switch (operating_class) { 2130 case 81: /* 2 GHz band; 20 MHz; channels 1..13 */ 2131 case 82: /* 2 GHz band; 20 MHz; channel 14 */ 2132 case 115: /* 5 GHz band; 20 MHz; channels 36,40,44,48 */ 2133 case 118: /* 5 GHz band; 20 MHz; channels 52,56,60,64 */ 2134 case 121: /* 5 GHz band; 20 MHz; channels 100..144 */ 2135 case 124: /* 5 GHz band; 20 MHz; channels 149,153,157,161 */ 2136 case 125: /* 5 GHz band; 20 MHz; channels 149..177 */ 2137 case 131: /* 6 GHz band; 20 MHz; channels 1..233*/ 2138 case 136: /* 6 GHz band; 20 MHz; channel 2 */ 2139 chandef->center_freq1 = control_freq; 2140 chandef->width = NL80211_CHAN_WIDTH_20; 2141 return true; 2142 case 83: /* 2 GHz band; 40 MHz; channels 1..9 */ 2143 case 116: /* 5 GHz band; 40 MHz; channels 36,44 */ 2144 case 119: /* 5 GHz band; 40 MHz; channels 52,60 */ 2145 case 122: /* 5 GHz band; 40 MHz; channels 100,108,116,124,132,140 */ 2146 case 126: /* 5 GHz band; 40 MHz; channels 149,157,165,173 */ 2147 chandef->center_freq1 = control_freq + 10; 2148 chandef->width = NL80211_CHAN_WIDTH_40; 2149 return true; 2150 case 84: /* 2 GHz band; 40 MHz; channels 5..13 */ 2151 case 117: /* 5 GHz band; 40 MHz; channels 40,48 */ 2152 case 120: /* 5 GHz band; 40 MHz; channels 56,64 */ 2153 case 123: /* 5 GHz band; 40 MHz; channels 104,112,120,128,136,144 */ 2154 case 127: /* 5 GHz band; 40 MHz; channels 153,161,169,177 */ 2155 chandef->center_freq1 = control_freq - 10; 2156 chandef->width = NL80211_CHAN_WIDTH_40; 2157 return true; 2158 case 132: /* 6 GHz band; 40 MHz; channels 1,5,..,229*/ 2159 chandef->center_freq1 = control_freq + 10 - (offset & 1) * 20; 2160 chandef->width = NL80211_CHAN_WIDTH_40; 2161 return true; 2162 case 128: /* 5 GHz band; 80 MHz; channels 36..64,100..144,149..177 */ 2163 case 133: /* 6 GHz band; 80 MHz; channels 1,5,..,229 */ 2164 chandef->center_freq1 = control_freq + 30 - (offset & 3) * 20; 2165 chandef->width = NL80211_CHAN_WIDTH_80; 2166 return true; 2167 case 129: /* 5 GHz band; 160 MHz; channels 36..64,100..144,149..177 */ 2168 case 134: /* 6 GHz band; 160 MHz; channels 1,5,..,229 */ 2169 chandef->center_freq1 = control_freq + 70 - (offset & 7) * 20; 2170 chandef->width = NL80211_CHAN_WIDTH_160; 2171 return true; 2172 case 130: /* 5 GHz band; 80+80 MHz; channels 36..64,100..144,149..177 */ 2173 case 135: /* 6 GHz band; 80+80 MHz; channels 1,5,..,229 */ 2174 /* The center_freq2 of 80+80 MHz is unknown */ 2175 case 137: /* 6 GHz band; 320 MHz; channels 1,5,..,229 */ 2176 /* 320-1 or 320-2 channelization is unknown */ 2177 default: 2178 return false; 2179 } 2180 } 2181 EXPORT_SYMBOL(ieee80211_operating_class_to_chandef); 2182 2183 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef, 2184 u8 *op_class) 2185 { 2186 u8 vht_opclass; 2187 u32 freq = chandef->center_freq1; 2188 2189 if (freq >= 2412 && freq <= 2472) { 2190 if (chandef->width > NL80211_CHAN_WIDTH_40) 2191 return false; 2192 2193 /* 2.407 GHz, channels 1..13 */ 2194 if (chandef->width == NL80211_CHAN_WIDTH_40) { 2195 if (freq > chandef->chan->center_freq) 2196 *op_class = 83; /* HT40+ */ 2197 else 2198 *op_class = 84; /* HT40- */ 2199 } else { 2200 *op_class = 81; 2201 } 2202 2203 return true; 2204 } 2205 2206 if (freq == 2484) { 2207 /* channel 14 is only for IEEE 802.11b */ 2208 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT) 2209 return false; 2210 2211 *op_class = 82; /* channel 14 */ 2212 return true; 2213 } 2214 2215 switch (chandef->width) { 2216 case NL80211_CHAN_WIDTH_80: 2217 vht_opclass = 128; 2218 break; 2219 case NL80211_CHAN_WIDTH_160: 2220 vht_opclass = 129; 2221 break; 2222 case NL80211_CHAN_WIDTH_80P80: 2223 vht_opclass = 130; 2224 break; 2225 case NL80211_CHAN_WIDTH_10: 2226 case NL80211_CHAN_WIDTH_5: 2227 return false; /* unsupported for now */ 2228 default: 2229 vht_opclass = 0; 2230 break; 2231 } 2232 2233 /* 5 GHz, channels 36..48 */ 2234 if (freq >= 5180 && freq <= 5240) { 2235 if (vht_opclass) { 2236 *op_class = vht_opclass; 2237 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 2238 if (freq > chandef->chan->center_freq) 2239 *op_class = 116; 2240 else 2241 *op_class = 117; 2242 } else { 2243 *op_class = 115; 2244 } 2245 2246 return true; 2247 } 2248 2249 /* 5 GHz, channels 52..64 */ 2250 if (freq >= 5260 && freq <= 5320) { 2251 if (vht_opclass) { 2252 *op_class = vht_opclass; 2253 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 2254 if (freq > chandef->chan->center_freq) 2255 *op_class = 119; 2256 else 2257 *op_class = 120; 2258 } else { 2259 *op_class = 118; 2260 } 2261 2262 return true; 2263 } 2264 2265 /* 5 GHz, channels 100..144 */ 2266 if (freq >= 5500 && freq <= 5720) { 2267 if (vht_opclass) { 2268 *op_class = vht_opclass; 2269 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 2270 if (freq > chandef->chan->center_freq) 2271 *op_class = 122; 2272 else 2273 *op_class = 123; 2274 } else { 2275 *op_class = 121; 2276 } 2277 2278 return true; 2279 } 2280 2281 /* 5 GHz, channels 149..169 */ 2282 if (freq >= 5745 && freq <= 5845) { 2283 if (vht_opclass) { 2284 *op_class = vht_opclass; 2285 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 2286 if (freq > chandef->chan->center_freq) 2287 *op_class = 126; 2288 else 2289 *op_class = 127; 2290 } else if (freq <= 5805) { 2291 *op_class = 124; 2292 } else { 2293 *op_class = 125; 2294 } 2295 2296 return true; 2297 } 2298 2299 /* 56.16 GHz, channel 1..4 */ 2300 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) { 2301 if (chandef->width >= NL80211_CHAN_WIDTH_40) 2302 return false; 2303 2304 *op_class = 180; 2305 return true; 2306 } 2307 2308 /* not supported yet */ 2309 return false; 2310 } 2311 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class); 2312 2313 static int cfg80211_wdev_bi(struct wireless_dev *wdev) 2314 { 2315 switch (wdev->iftype) { 2316 case NL80211_IFTYPE_AP: 2317 case NL80211_IFTYPE_P2P_GO: 2318 WARN_ON(wdev->valid_links); 2319 return wdev->links[0].ap.beacon_interval; 2320 case NL80211_IFTYPE_MESH_POINT: 2321 return wdev->u.mesh.beacon_interval; 2322 case NL80211_IFTYPE_ADHOC: 2323 return wdev->u.ibss.beacon_interval; 2324 default: 2325 break; 2326 } 2327 2328 return 0; 2329 } 2330 2331 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int, 2332 u32 *beacon_int_gcd, 2333 bool *beacon_int_different, 2334 int radio_idx) 2335 { 2336 struct cfg80211_registered_device *rdev; 2337 struct wireless_dev *wdev; 2338 2339 *beacon_int_gcd = 0; 2340 *beacon_int_different = false; 2341 2342 rdev = wiphy_to_rdev(wiphy); 2343 list_for_each_entry(wdev, &wiphy->wdev_list, list) { 2344 int wdev_bi; 2345 2346 /* this feature isn't supported with MLO */ 2347 if (wdev->valid_links) 2348 continue; 2349 2350 /* skip wdevs not active on the given wiphy radio */ 2351 if (radio_idx >= 0 && 2352 !(rdev_get_radio_mask(rdev, wdev->netdev) & BIT(radio_idx))) 2353 continue; 2354 2355 wdev_bi = cfg80211_wdev_bi(wdev); 2356 2357 if (!wdev_bi) 2358 continue; 2359 2360 if (!*beacon_int_gcd) { 2361 *beacon_int_gcd = wdev_bi; 2362 continue; 2363 } 2364 2365 if (wdev_bi == *beacon_int_gcd) 2366 continue; 2367 2368 *beacon_int_different = true; 2369 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi); 2370 } 2371 2372 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) { 2373 if (*beacon_int_gcd) 2374 *beacon_int_different = true; 2375 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int); 2376 } 2377 } 2378 2379 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, 2380 enum nl80211_iftype iftype, u32 beacon_int) 2381 { 2382 /* 2383 * This is just a basic pre-condition check; if interface combinations 2384 * are possible the driver must already be checking those with a call 2385 * to cfg80211_check_combinations(), in which case we'll validate more 2386 * through the cfg80211_calculate_bi_data() call and code in 2387 * cfg80211_iter_combinations(). 2388 */ 2389 2390 if (beacon_int < 10 || beacon_int > 10000) 2391 return -EINVAL; 2392 2393 return 0; 2394 } 2395 2396 int cfg80211_iter_combinations(struct wiphy *wiphy, 2397 struct iface_combination_params *params, 2398 void (*iter)(const struct ieee80211_iface_combination *c, 2399 void *data), 2400 void *data) 2401 { 2402 const struct wiphy_radio *radio = NULL; 2403 const struct ieee80211_iface_combination *c, *cs; 2404 const struct ieee80211_regdomain *regdom; 2405 enum nl80211_dfs_regions region = 0; 2406 int i, j, n, iftype; 2407 int num_interfaces = 0; 2408 u32 used_iftypes = 0; 2409 u32 beacon_int_gcd; 2410 bool beacon_int_different; 2411 2412 if (params->radio_idx >= 0) 2413 radio = &wiphy->radio[params->radio_idx]; 2414 2415 /* 2416 * This is a bit strange, since the iteration used to rely only on 2417 * the data given by the driver, but here it now relies on context, 2418 * in form of the currently operating interfaces. 2419 * This is OK for all current users, and saves us from having to 2420 * push the GCD calculations into all the drivers. 2421 * In the future, this should probably rely more on data that's in 2422 * cfg80211 already - the only thing not would appear to be any new 2423 * interfaces (while being brought up) and channel/radar data. 2424 */ 2425 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int, 2426 &beacon_int_gcd, &beacon_int_different, 2427 params->radio_idx); 2428 2429 if (params->radar_detect) { 2430 rcu_read_lock(); 2431 regdom = rcu_dereference(cfg80211_regdomain); 2432 if (regdom) 2433 region = regdom->dfs_region; 2434 rcu_read_unlock(); 2435 } 2436 2437 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 2438 num_interfaces += params->iftype_num[iftype]; 2439 if (params->iftype_num[iftype] > 0 && 2440 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 2441 used_iftypes |= BIT(iftype); 2442 } 2443 2444 if (radio) { 2445 cs = radio->iface_combinations; 2446 n = radio->n_iface_combinations; 2447 } else { 2448 cs = wiphy->iface_combinations; 2449 n = wiphy->n_iface_combinations; 2450 } 2451 for (i = 0; i < n; i++) { 2452 struct ieee80211_iface_limit *limits; 2453 u32 all_iftypes = 0; 2454 2455 c = &cs[i]; 2456 if (num_interfaces > c->max_interfaces) 2457 continue; 2458 if (params->num_different_channels > c->num_different_channels) 2459 continue; 2460 2461 limits = kmemdup_array(c->limits, c->n_limits, sizeof(*limits), 2462 GFP_KERNEL); 2463 if (!limits) 2464 return -ENOMEM; 2465 2466 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 2467 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 2468 continue; 2469 for (j = 0; j < c->n_limits; j++) { 2470 all_iftypes |= limits[j].types; 2471 if (!(limits[j].types & BIT(iftype))) 2472 continue; 2473 if (limits[j].max < params->iftype_num[iftype]) 2474 goto cont; 2475 limits[j].max -= params->iftype_num[iftype]; 2476 } 2477 } 2478 2479 if (params->radar_detect != 2480 (c->radar_detect_widths & params->radar_detect)) 2481 goto cont; 2482 2483 if (params->radar_detect && c->radar_detect_regions && 2484 !(c->radar_detect_regions & BIT(region))) 2485 goto cont; 2486 2487 /* Finally check that all iftypes that we're currently 2488 * using are actually part of this combination. If they 2489 * aren't then we can't use this combination and have 2490 * to continue to the next. 2491 */ 2492 if ((all_iftypes & used_iftypes) != used_iftypes) 2493 goto cont; 2494 2495 if (beacon_int_gcd) { 2496 if (c->beacon_int_min_gcd && 2497 beacon_int_gcd < c->beacon_int_min_gcd) 2498 goto cont; 2499 if (!c->beacon_int_min_gcd && beacon_int_different) 2500 goto cont; 2501 } 2502 2503 /* This combination covered all interface types and 2504 * supported the requested numbers, so we're good. 2505 */ 2506 2507 (*iter)(c, data); 2508 cont: 2509 kfree(limits); 2510 } 2511 2512 return 0; 2513 } 2514 EXPORT_SYMBOL(cfg80211_iter_combinations); 2515 2516 static void 2517 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c, 2518 void *data) 2519 { 2520 int *num = data; 2521 (*num)++; 2522 } 2523 2524 int cfg80211_check_combinations(struct wiphy *wiphy, 2525 struct iface_combination_params *params) 2526 { 2527 int err, num = 0; 2528 2529 err = cfg80211_iter_combinations(wiphy, params, 2530 cfg80211_iter_sum_ifcombs, &num); 2531 if (err) 2532 return err; 2533 if (num == 0) 2534 return -EBUSY; 2535 2536 return 0; 2537 } 2538 EXPORT_SYMBOL(cfg80211_check_combinations); 2539 2540 int cfg80211_get_radio_idx_by_chan(struct wiphy *wiphy, 2541 const struct ieee80211_channel *chan) 2542 { 2543 const struct wiphy_radio *radio; 2544 int i, j; 2545 u32 freq; 2546 2547 if (!chan) 2548 return -EINVAL; 2549 2550 freq = ieee80211_channel_to_khz(chan); 2551 for (i = 0; i < wiphy->n_radio; i++) { 2552 radio = &wiphy->radio[i]; 2553 for (j = 0; j < radio->n_freq_range; j++) { 2554 if (freq >= radio->freq_range[j].start_freq && 2555 freq < radio->freq_range[j].end_freq) 2556 return i; 2557 } 2558 } 2559 2560 return -EINVAL; 2561 } 2562 EXPORT_SYMBOL(cfg80211_get_radio_idx_by_chan); 2563 2564 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, 2565 const u8 *rates, unsigned int n_rates, 2566 u32 *mask) 2567 { 2568 int i, j; 2569 2570 if (!sband) 2571 return -EINVAL; 2572 2573 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) 2574 return -EINVAL; 2575 2576 *mask = 0; 2577 2578 for (i = 0; i < n_rates; i++) { 2579 int rate = (rates[i] & 0x7f) * 5; 2580 bool found = false; 2581 2582 for (j = 0; j < sband->n_bitrates; j++) { 2583 if (sband->bitrates[j].bitrate == rate) { 2584 found = true; 2585 *mask |= BIT(j); 2586 break; 2587 } 2588 } 2589 if (!found) 2590 return -EINVAL; 2591 } 2592 2593 /* 2594 * mask must have at least one bit set here since we 2595 * didn't accept a 0-length rates array nor allowed 2596 * entries in the array that didn't exist 2597 */ 2598 2599 return 0; 2600 } 2601 2602 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy) 2603 { 2604 enum nl80211_band band; 2605 unsigned int n_channels = 0; 2606 2607 for (band = 0; band < NUM_NL80211_BANDS; band++) 2608 if (wiphy->bands[band]) 2609 n_channels += wiphy->bands[band]->n_channels; 2610 2611 return n_channels; 2612 } 2613 EXPORT_SYMBOL(ieee80211_get_num_supported_channels); 2614 2615 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, 2616 struct station_info *sinfo) 2617 { 2618 struct cfg80211_registered_device *rdev; 2619 struct wireless_dev *wdev; 2620 2621 wdev = dev->ieee80211_ptr; 2622 if (!wdev) 2623 return -EOPNOTSUPP; 2624 2625 rdev = wiphy_to_rdev(wdev->wiphy); 2626 if (!rdev->ops->get_station) 2627 return -EOPNOTSUPP; 2628 2629 memset(sinfo, 0, sizeof(*sinfo)); 2630 2631 guard(wiphy)(&rdev->wiphy); 2632 2633 return rdev_get_station(rdev, dev, mac_addr, sinfo); 2634 } 2635 EXPORT_SYMBOL(cfg80211_get_station); 2636 2637 void cfg80211_free_nan_func(struct cfg80211_nan_func *f) 2638 { 2639 int i; 2640 2641 if (!f) 2642 return; 2643 2644 kfree(f->serv_spec_info); 2645 kfree(f->srf_bf); 2646 kfree(f->srf_macs); 2647 for (i = 0; i < f->num_rx_filters; i++) 2648 kfree(f->rx_filters[i].filter); 2649 2650 for (i = 0; i < f->num_tx_filters; i++) 2651 kfree(f->tx_filters[i].filter); 2652 2653 kfree(f->rx_filters); 2654 kfree(f->tx_filters); 2655 kfree(f); 2656 } 2657 EXPORT_SYMBOL(cfg80211_free_nan_func); 2658 2659 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range, 2660 u32 center_freq_khz, u32 bw_khz) 2661 { 2662 u32 start_freq_khz, end_freq_khz; 2663 2664 start_freq_khz = center_freq_khz - (bw_khz / 2); 2665 end_freq_khz = center_freq_khz + (bw_khz / 2); 2666 2667 if (start_freq_khz >= freq_range->start_freq_khz && 2668 end_freq_khz <= freq_range->end_freq_khz) 2669 return true; 2670 2671 return false; 2672 } 2673 2674 int cfg80211_link_sinfo_alloc_tid_stats(struct link_station_info *link_sinfo, 2675 gfp_t gfp) 2676 { 2677 link_sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1, 2678 sizeof(*link_sinfo->pertid), gfp); 2679 if (!link_sinfo->pertid) 2680 return -ENOMEM; 2681 2682 return 0; 2683 } 2684 EXPORT_SYMBOL(cfg80211_link_sinfo_alloc_tid_stats); 2685 2686 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp) 2687 { 2688 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1, 2689 sizeof(*(sinfo->pertid)), 2690 gfp); 2691 if (!sinfo->pertid) 2692 return -ENOMEM; 2693 2694 return 0; 2695 } 2696 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats); 2697 2698 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 2699 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 2700 const unsigned char rfc1042_header[] __aligned(2) = 2701 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 2702 EXPORT_SYMBOL(rfc1042_header); 2703 2704 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 2705 const unsigned char bridge_tunnel_header[] __aligned(2) = 2706 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 2707 EXPORT_SYMBOL(bridge_tunnel_header); 2708 2709 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */ 2710 struct iapp_layer2_update { 2711 u8 da[ETH_ALEN]; /* broadcast */ 2712 u8 sa[ETH_ALEN]; /* STA addr */ 2713 __be16 len; /* 6 */ 2714 u8 dsap; /* 0 */ 2715 u8 ssap; /* 0 */ 2716 u8 control; 2717 u8 xid_info[3]; 2718 } __packed; 2719 2720 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr) 2721 { 2722 struct iapp_layer2_update *msg; 2723 struct sk_buff *skb; 2724 2725 /* Send Level 2 Update Frame to update forwarding tables in layer 2 2726 * bridge devices */ 2727 2728 skb = dev_alloc_skb(sizeof(*msg)); 2729 if (!skb) 2730 return; 2731 msg = skb_put(skb, sizeof(*msg)); 2732 2733 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID) 2734 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */ 2735 2736 eth_broadcast_addr(msg->da); 2737 ether_addr_copy(msg->sa, addr); 2738 msg->len = htons(6); 2739 msg->dsap = 0; 2740 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */ 2741 msg->control = 0xaf; /* XID response lsb.1111F101. 2742 * F=0 (no poll command; unsolicited frame) */ 2743 msg->xid_info[0] = 0x81; /* XID format identifier */ 2744 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */ 2745 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */ 2746 2747 skb->dev = dev; 2748 skb->protocol = eth_type_trans(skb, dev); 2749 memset(skb->cb, 0, sizeof(skb->cb)); 2750 netif_rx(skb); 2751 } 2752 EXPORT_SYMBOL(cfg80211_send_layer2_update); 2753 2754 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap, 2755 enum ieee80211_vht_chanwidth bw, 2756 int mcs, bool ext_nss_bw_capable, 2757 unsigned int max_vht_nss) 2758 { 2759 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map); 2760 int ext_nss_bw; 2761 int supp_width; 2762 int i, mcs_encoding; 2763 2764 if (map == 0xffff) 2765 return 0; 2766 2767 if (WARN_ON(mcs > 9 || max_vht_nss > 8)) 2768 return 0; 2769 if (mcs <= 7) 2770 mcs_encoding = 0; 2771 else if (mcs == 8) 2772 mcs_encoding = 1; 2773 else 2774 mcs_encoding = 2; 2775 2776 if (!max_vht_nss) { 2777 /* find max_vht_nss for the given MCS */ 2778 for (i = 7; i >= 0; i--) { 2779 int supp = (map >> (2 * i)) & 3; 2780 2781 if (supp == 3) 2782 continue; 2783 2784 if (supp >= mcs_encoding) { 2785 max_vht_nss = i + 1; 2786 break; 2787 } 2788 } 2789 } 2790 2791 if (!(cap->supp_mcs.tx_mcs_map & 2792 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE))) 2793 return max_vht_nss; 2794 2795 ext_nss_bw = le32_get_bits(cap->vht_cap_info, 2796 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 2797 supp_width = le32_get_bits(cap->vht_cap_info, 2798 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 2799 2800 /* if not capable, treat ext_nss_bw as 0 */ 2801 if (!ext_nss_bw_capable) 2802 ext_nss_bw = 0; 2803 2804 /* This is invalid */ 2805 if (supp_width == 3) 2806 return 0; 2807 2808 /* This is an invalid combination so pretend nothing is supported */ 2809 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2)) 2810 return 0; 2811 2812 /* 2813 * Cover all the special cases according to IEEE 802.11-2016 2814 * Table 9-250. All other cases are either factor of 1 or not 2815 * valid/supported. 2816 */ 2817 switch (bw) { 2818 case IEEE80211_VHT_CHANWIDTH_USE_HT: 2819 case IEEE80211_VHT_CHANWIDTH_80MHZ: 2820 if ((supp_width == 1 || supp_width == 2) && 2821 ext_nss_bw == 3) 2822 return 2 * max_vht_nss; 2823 break; 2824 case IEEE80211_VHT_CHANWIDTH_160MHZ: 2825 if (supp_width == 0 && 2826 (ext_nss_bw == 1 || ext_nss_bw == 2)) 2827 return max_vht_nss / 2; 2828 if (supp_width == 0 && 2829 ext_nss_bw == 3) 2830 return (3 * max_vht_nss) / 4; 2831 if (supp_width == 1 && 2832 ext_nss_bw == 3) 2833 return 2 * max_vht_nss; 2834 break; 2835 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 2836 if (supp_width == 0 && ext_nss_bw == 1) 2837 return 0; /* not possible */ 2838 if (supp_width == 0 && 2839 ext_nss_bw == 2) 2840 return max_vht_nss / 2; 2841 if (supp_width == 0 && 2842 ext_nss_bw == 3) 2843 return (3 * max_vht_nss) / 4; 2844 if (supp_width == 1 && 2845 ext_nss_bw == 0) 2846 return 0; /* not possible */ 2847 if (supp_width == 1 && 2848 ext_nss_bw == 1) 2849 return max_vht_nss / 2; 2850 if (supp_width == 1 && 2851 ext_nss_bw == 2) 2852 return (3 * max_vht_nss) / 4; 2853 break; 2854 } 2855 2856 /* not covered or invalid combination received */ 2857 return max_vht_nss; 2858 } 2859 EXPORT_SYMBOL(ieee80211_get_vht_max_nss); 2860 2861 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype, 2862 bool is_4addr, u8 check_swif) 2863 2864 { 2865 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN; 2866 2867 switch (check_swif) { 2868 case 0: 2869 if (is_vlan && is_4addr) 2870 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2871 return wiphy->interface_modes & BIT(iftype); 2872 case 1: 2873 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan) 2874 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2875 return wiphy->software_iftypes & BIT(iftype); 2876 default: 2877 break; 2878 } 2879 2880 return false; 2881 } 2882 EXPORT_SYMBOL(cfg80211_iftype_allowed); 2883 2884 void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id) 2885 { 2886 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 2887 2888 lockdep_assert_wiphy(wdev->wiphy); 2889 2890 switch (wdev->iftype) { 2891 case NL80211_IFTYPE_AP: 2892 case NL80211_IFTYPE_P2P_GO: 2893 cfg80211_stop_ap(rdev, wdev->netdev, link_id, true); 2894 break; 2895 default: 2896 /* per-link not relevant */ 2897 break; 2898 } 2899 2900 rdev_del_intf_link(rdev, wdev, link_id); 2901 2902 wdev->valid_links &= ~BIT(link_id); 2903 eth_zero_addr(wdev->links[link_id].addr); 2904 } 2905 2906 void cfg80211_remove_links(struct wireless_dev *wdev) 2907 { 2908 unsigned int link_id; 2909 2910 /* 2911 * links are controlled by upper layers (userspace/cfg) 2912 * only for AP mode, so only remove them here for AP 2913 */ 2914 if (wdev->iftype != NL80211_IFTYPE_AP) 2915 return; 2916 2917 if (wdev->valid_links) { 2918 for_each_valid_link(wdev, link_id) 2919 cfg80211_remove_link(wdev, link_id); 2920 } 2921 } 2922 2923 int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev, 2924 struct wireless_dev *wdev) 2925 { 2926 cfg80211_remove_links(wdev); 2927 2928 return rdev_del_virtual_intf(rdev, wdev); 2929 } 2930 2931 const struct wiphy_iftype_ext_capab * 2932 cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type) 2933 { 2934 int i; 2935 2936 for (i = 0; i < wiphy->num_iftype_ext_capab; i++) { 2937 if (wiphy->iftype_ext_capab[i].iftype == type) 2938 return &wiphy->iftype_ext_capab[i]; 2939 } 2940 2941 return NULL; 2942 } 2943 EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa); 2944 2945 static bool 2946 ieee80211_radio_freq_range_valid(const struct wiphy_radio *radio, 2947 u32 freq, u32 width) 2948 { 2949 const struct wiphy_radio_freq_range *r; 2950 int i; 2951 2952 for (i = 0; i < radio->n_freq_range; i++) { 2953 r = &radio->freq_range[i]; 2954 if (freq - width / 2 >= r->start_freq && 2955 freq + width / 2 <= r->end_freq) 2956 return true; 2957 } 2958 2959 return false; 2960 } 2961 2962 bool cfg80211_radio_chandef_valid(const struct wiphy_radio *radio, 2963 const struct cfg80211_chan_def *chandef) 2964 { 2965 u32 freq, width; 2966 2967 freq = ieee80211_chandef_to_khz(chandef); 2968 width = MHZ_TO_KHZ(cfg80211_chandef_get_width(chandef)); 2969 if (!ieee80211_radio_freq_range_valid(radio, freq, width)) 2970 return false; 2971 2972 freq = MHZ_TO_KHZ(chandef->center_freq2); 2973 if (freq && !ieee80211_radio_freq_range_valid(radio, freq, width)) 2974 return false; 2975 2976 return true; 2977 } 2978 EXPORT_SYMBOL(cfg80211_radio_chandef_valid); 2979 2980 bool cfg80211_wdev_channel_allowed(struct wireless_dev *wdev, 2981 struct ieee80211_channel *chan) 2982 { 2983 struct wiphy *wiphy = wdev->wiphy; 2984 const struct wiphy_radio *radio; 2985 struct cfg80211_chan_def chandef; 2986 u32 radio_mask; 2987 int i; 2988 2989 radio_mask = wdev->radio_mask; 2990 if (!wiphy->n_radio || radio_mask == BIT(wiphy->n_radio) - 1) 2991 return true; 2992 2993 cfg80211_chandef_create(&chandef, chan, NL80211_CHAN_HT20); 2994 for (i = 0; i < wiphy->n_radio; i++) { 2995 if (!(radio_mask & BIT(i))) 2996 continue; 2997 2998 radio = &wiphy->radio[i]; 2999 if (!cfg80211_radio_chandef_valid(radio, &chandef)) 3000 continue; 3001 3002 return true; 3003 } 3004 3005 return false; 3006 } 3007 EXPORT_SYMBOL(cfg80211_wdev_channel_allowed); 3008