1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * cfg80211 scan result handling
4 *
5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 * Copyright (C) 2018-2024 Intel Corporation
9 */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
19 #include <net/arp.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
23 #include <kunit/visibility.h>
24 #include "core.h"
25 #include "nl80211.h"
26 #include "wext-compat.h"
27 #include "rdev-ops.h"
28
29 /**
30 * DOC: BSS tree/list structure
31 *
32 * At the top level, the BSS list is kept in both a list in each
33 * registered device (@bss_list) as well as an RB-tree for faster
34 * lookup. In the RB-tree, entries can be looked up using their
35 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
36 * for other BSSes.
37 *
38 * Due to the possibility of hidden SSIDs, there's a second level
39 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
40 * The hidden_list connects all BSSes belonging to a single AP
41 * that has a hidden SSID, and connects beacon and probe response
42 * entries. For a probe response entry for a hidden SSID, the
43 * hidden_beacon_bss pointer points to the BSS struct holding the
44 * beacon's information.
45 *
46 * Reference counting is done for all these references except for
47 * the hidden_list, so that a beacon BSS struct that is otherwise
48 * not referenced has one reference for being on the bss_list and
49 * one for each probe response entry that points to it using the
50 * hidden_beacon_bss pointer. When a BSS struct that has such a
51 * pointer is get/put, the refcount update is also propagated to
52 * the referenced struct, this ensure that it cannot get removed
53 * while somebody is using the probe response version.
54 *
55 * Note that the hidden_beacon_bss pointer never changes, due to
56 * the reference counting. Therefore, no locking is needed for
57 * it.
58 *
59 * Also note that the hidden_beacon_bss pointer is only relevant
60 * if the driver uses something other than the IEs, e.g. private
61 * data stored in the BSS struct, since the beacon IEs are
62 * also linked into the probe response struct.
63 */
64
65 /*
66 * Limit the number of BSS entries stored in mac80211. Each one is
67 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
68 * If somebody wants to really attack this though, they'd likely
69 * use small beacons, and only one type of frame, limiting each of
70 * the entries to a much smaller size (in order to generate more
71 * entries in total, so overhead is bigger.)
72 */
73 static int bss_entries_limit = 1000;
74 module_param(bss_entries_limit, int, 0644);
75 MODULE_PARM_DESC(bss_entries_limit,
76 "limit to number of scan BSS entries (per wiphy, default 1000)");
77
78 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
79
bss_free(struct cfg80211_internal_bss * bss)80 static void bss_free(struct cfg80211_internal_bss *bss)
81 {
82 struct cfg80211_bss_ies *ies;
83
84 if (WARN_ON(atomic_read(&bss->hold)))
85 return;
86
87 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
88 if (ies && !bss->pub.hidden_beacon_bss)
89 kfree_rcu(ies, rcu_head);
90 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
91 if (ies)
92 kfree_rcu(ies, rcu_head);
93
94 /*
95 * This happens when the module is removed, it doesn't
96 * really matter any more save for completeness
97 */
98 if (!list_empty(&bss->hidden_list))
99 list_del(&bss->hidden_list);
100
101 kfree(bss);
102 }
103
bss_ref_get(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)104 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
105 struct cfg80211_internal_bss *bss)
106 {
107 lockdep_assert_held(&rdev->bss_lock);
108
109 bss->refcount++;
110
111 if (bss->pub.hidden_beacon_bss)
112 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
113
114 if (bss->pub.transmitted_bss)
115 bss_from_pub(bss->pub.transmitted_bss)->refcount++;
116 }
117
bss_ref_put(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)118 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
119 struct cfg80211_internal_bss *bss)
120 {
121 lockdep_assert_held(&rdev->bss_lock);
122
123 if (bss->pub.hidden_beacon_bss) {
124 struct cfg80211_internal_bss *hbss;
125
126 hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
127 hbss->refcount--;
128 if (hbss->refcount == 0)
129 bss_free(hbss);
130 }
131
132 if (bss->pub.transmitted_bss) {
133 struct cfg80211_internal_bss *tbss;
134
135 tbss = bss_from_pub(bss->pub.transmitted_bss);
136 tbss->refcount--;
137 if (tbss->refcount == 0)
138 bss_free(tbss);
139 }
140
141 bss->refcount--;
142 if (bss->refcount == 0)
143 bss_free(bss);
144 }
145
__cfg80211_unlink_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)146 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
147 struct cfg80211_internal_bss *bss)
148 {
149 lockdep_assert_held(&rdev->bss_lock);
150
151 if (!list_empty(&bss->hidden_list)) {
152 /*
153 * don't remove the beacon entry if it has
154 * probe responses associated with it
155 */
156 if (!bss->pub.hidden_beacon_bss)
157 return false;
158 /*
159 * if it's a probe response entry break its
160 * link to the other entries in the group
161 */
162 list_del_init(&bss->hidden_list);
163 }
164
165 list_del_init(&bss->list);
166 list_del_init(&bss->pub.nontrans_list);
167 rb_erase(&bss->rbn, &rdev->bss_tree);
168 rdev->bss_entries--;
169 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
170 "rdev bss entries[%d]/list[empty:%d] corruption\n",
171 rdev->bss_entries, list_empty(&rdev->bss_list));
172 bss_ref_put(rdev, bss);
173 return true;
174 }
175
cfg80211_is_element_inherited(const struct element * elem,const struct element * non_inherit_elem)176 bool cfg80211_is_element_inherited(const struct element *elem,
177 const struct element *non_inherit_elem)
178 {
179 u8 id_len, ext_id_len, i, loop_len, id;
180 const u8 *list;
181
182 if (elem->id == WLAN_EID_MULTIPLE_BSSID)
183 return false;
184
185 if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 &&
186 elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK)
187 return false;
188
189 if (!non_inherit_elem || non_inherit_elem->datalen < 2)
190 return true;
191
192 /*
193 * non inheritance element format is:
194 * ext ID (56) | IDs list len | list | extension IDs list len | list
195 * Both lists are optional. Both lengths are mandatory.
196 * This means valid length is:
197 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
198 */
199 id_len = non_inherit_elem->data[1];
200 if (non_inherit_elem->datalen < 3 + id_len)
201 return true;
202
203 ext_id_len = non_inherit_elem->data[2 + id_len];
204 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
205 return true;
206
207 if (elem->id == WLAN_EID_EXTENSION) {
208 if (!ext_id_len)
209 return true;
210 loop_len = ext_id_len;
211 list = &non_inherit_elem->data[3 + id_len];
212 id = elem->data[0];
213 } else {
214 if (!id_len)
215 return true;
216 loop_len = id_len;
217 list = &non_inherit_elem->data[2];
218 id = elem->id;
219 }
220
221 for (i = 0; i < loop_len; i++) {
222 if (list[i] == id)
223 return false;
224 }
225
226 return true;
227 }
228 EXPORT_SYMBOL(cfg80211_is_element_inherited);
229
cfg80211_copy_elem_with_frags(const struct element * elem,const u8 * ie,size_t ie_len,u8 ** pos,u8 * buf,size_t buf_len)230 static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
231 const u8 *ie, size_t ie_len,
232 u8 **pos, u8 *buf, size_t buf_len)
233 {
234 if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
235 elem->data + elem->datalen > ie + ie_len))
236 return 0;
237
238 if (elem->datalen + 2 > buf + buf_len - *pos)
239 return 0;
240
241 memcpy(*pos, elem, elem->datalen + 2);
242 *pos += elem->datalen + 2;
243
244 /* Finish if it is not fragmented */
245 if (elem->datalen != 255)
246 return *pos - buf;
247
248 ie_len = ie + ie_len - elem->data - elem->datalen;
249 ie = (const u8 *)elem->data + elem->datalen;
250
251 for_each_element(elem, ie, ie_len) {
252 if (elem->id != WLAN_EID_FRAGMENT)
253 break;
254
255 if (elem->datalen + 2 > buf + buf_len - *pos)
256 return 0;
257
258 memcpy(*pos, elem, elem->datalen + 2);
259 *pos += elem->datalen + 2;
260
261 if (elem->datalen != 255)
262 break;
263 }
264
265 return *pos - buf;
266 }
267
268 VISIBLE_IF_CFG80211_KUNIT size_t
cfg80211_gen_new_ie(const u8 * ie,size_t ielen,const u8 * subie,size_t subie_len,u8 * new_ie,size_t new_ie_len)269 cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
270 const u8 *subie, size_t subie_len,
271 u8 *new_ie, size_t new_ie_len)
272 {
273 const struct element *non_inherit_elem, *parent, *sub;
274 u8 *pos = new_ie;
275 u8 id, ext_id;
276 unsigned int match_len;
277
278 non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
279 subie, subie_len);
280
281 /* We copy the elements one by one from the parent to the generated
282 * elements.
283 * If they are not inherited (included in subie or in the non
284 * inheritance element), then we copy all occurrences the first time
285 * we see this element type.
286 */
287 for_each_element(parent, ie, ielen) {
288 if (parent->id == WLAN_EID_FRAGMENT)
289 continue;
290
291 if (parent->id == WLAN_EID_EXTENSION) {
292 if (parent->datalen < 1)
293 continue;
294
295 id = WLAN_EID_EXTENSION;
296 ext_id = parent->data[0];
297 match_len = 1;
298 } else {
299 id = parent->id;
300 match_len = 0;
301 }
302
303 /* Find first occurrence in subie */
304 sub = cfg80211_find_elem_match(id, subie, subie_len,
305 &ext_id, match_len, 0);
306
307 /* Copy from parent if not in subie and inherited */
308 if (!sub &&
309 cfg80211_is_element_inherited(parent, non_inherit_elem)) {
310 if (!cfg80211_copy_elem_with_frags(parent,
311 ie, ielen,
312 &pos, new_ie,
313 new_ie_len))
314 return 0;
315
316 continue;
317 }
318
319 /* Already copied if an earlier element had the same type */
320 if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
321 &ext_id, match_len, 0))
322 continue;
323
324 /* Not inheriting, copy all similar elements from subie */
325 while (sub) {
326 if (!cfg80211_copy_elem_with_frags(sub,
327 subie, subie_len,
328 &pos, new_ie,
329 new_ie_len))
330 return 0;
331
332 sub = cfg80211_find_elem_match(id,
333 sub->data + sub->datalen,
334 subie_len + subie -
335 (sub->data +
336 sub->datalen),
337 &ext_id, match_len, 0);
338 }
339 }
340
341 /* The above misses elements that are included in subie but not in the
342 * parent, so do a pass over subie and append those.
343 * Skip the non-tx BSSID caps and non-inheritance element.
344 */
345 for_each_element(sub, subie, subie_len) {
346 if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
347 continue;
348
349 if (sub->id == WLAN_EID_FRAGMENT)
350 continue;
351
352 if (sub->id == WLAN_EID_EXTENSION) {
353 if (sub->datalen < 1)
354 continue;
355
356 id = WLAN_EID_EXTENSION;
357 ext_id = sub->data[0];
358 match_len = 1;
359
360 if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
361 continue;
362 } else {
363 id = sub->id;
364 match_len = 0;
365 }
366
367 /* Processed if one was included in the parent */
368 if (cfg80211_find_elem_match(id, ie, ielen,
369 &ext_id, match_len, 0))
370 continue;
371
372 if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
373 &pos, new_ie, new_ie_len))
374 return 0;
375 }
376
377 return pos - new_ie;
378 }
379 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_gen_new_ie);
380
is_bss(struct cfg80211_bss * a,const u8 * bssid,const u8 * ssid,size_t ssid_len)381 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
382 const u8 *ssid, size_t ssid_len)
383 {
384 const struct cfg80211_bss_ies *ies;
385 const struct element *ssid_elem;
386
387 if (bssid && !ether_addr_equal(a->bssid, bssid))
388 return false;
389
390 if (!ssid)
391 return true;
392
393 ies = rcu_access_pointer(a->ies);
394 if (!ies)
395 return false;
396 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
397 if (!ssid_elem)
398 return false;
399 if (ssid_elem->datalen != ssid_len)
400 return false;
401 return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
402 }
403
404 static int
cfg80211_add_nontrans_list(struct cfg80211_bss * trans_bss,struct cfg80211_bss * nontrans_bss)405 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
406 struct cfg80211_bss *nontrans_bss)
407 {
408 const struct element *ssid_elem;
409 struct cfg80211_bss *bss = NULL;
410
411 rcu_read_lock();
412 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
413 if (!ssid_elem) {
414 rcu_read_unlock();
415 return -EINVAL;
416 }
417
418 /* check if nontrans_bss is in the list */
419 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
420 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
421 ssid_elem->datalen)) {
422 rcu_read_unlock();
423 return 0;
424 }
425 }
426
427 rcu_read_unlock();
428
429 /*
430 * This is a bit weird - it's not on the list, but already on another
431 * one! The only way that could happen is if there's some BSSID/SSID
432 * shared by multiple APs in their multi-BSSID profiles, potentially
433 * with hidden SSID mixed in ... ignore it.
434 */
435 if (!list_empty(&nontrans_bss->nontrans_list))
436 return -EINVAL;
437
438 /* add to the list */
439 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
440 return 0;
441 }
442
__cfg80211_bss_expire(struct cfg80211_registered_device * rdev,unsigned long expire_time)443 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
444 unsigned long expire_time)
445 {
446 struct cfg80211_internal_bss *bss, *tmp;
447 bool expired = false;
448
449 lockdep_assert_held(&rdev->bss_lock);
450
451 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
452 if (atomic_read(&bss->hold))
453 continue;
454 if (!time_after(expire_time, bss->ts))
455 continue;
456
457 if (__cfg80211_unlink_bss(rdev, bss))
458 expired = true;
459 }
460
461 if (expired)
462 rdev->bss_generation++;
463 }
464
cfg80211_bss_expire_oldest(struct cfg80211_registered_device * rdev)465 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
466 {
467 struct cfg80211_internal_bss *bss, *oldest = NULL;
468 bool ret;
469
470 lockdep_assert_held(&rdev->bss_lock);
471
472 list_for_each_entry(bss, &rdev->bss_list, list) {
473 if (atomic_read(&bss->hold))
474 continue;
475
476 if (!list_empty(&bss->hidden_list) &&
477 !bss->pub.hidden_beacon_bss)
478 continue;
479
480 if (oldest && time_before(oldest->ts, bss->ts))
481 continue;
482 oldest = bss;
483 }
484
485 if (WARN_ON(!oldest))
486 return false;
487
488 /*
489 * The callers make sure to increase rdev->bss_generation if anything
490 * gets removed (and a new entry added), so there's no need to also do
491 * it here.
492 */
493
494 ret = __cfg80211_unlink_bss(rdev, oldest);
495 WARN_ON(!ret);
496 return ret;
497 }
498
cfg80211_parse_bss_param(u8 data,struct cfg80211_colocated_ap * coloc_ap)499 static u8 cfg80211_parse_bss_param(u8 data,
500 struct cfg80211_colocated_ap *coloc_ap)
501 {
502 coloc_ap->oct_recommended =
503 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
504 coloc_ap->same_ssid =
505 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
506 coloc_ap->multi_bss =
507 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
508 coloc_ap->transmitted_bssid =
509 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
510 coloc_ap->unsolicited_probe =
511 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
512 coloc_ap->colocated_ess =
513 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
514
515 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
516 }
517
cfg80211_calc_short_ssid(const struct cfg80211_bss_ies * ies,const struct element ** elem,u32 * s_ssid)518 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
519 const struct element **elem, u32 *s_ssid)
520 {
521
522 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
523 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
524 return -EINVAL;
525
526 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
527 return 0;
528 }
529
530 VISIBLE_IF_CFG80211_KUNIT void
cfg80211_free_coloc_ap_list(struct list_head * coloc_ap_list)531 cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
532 {
533 struct cfg80211_colocated_ap *ap, *tmp_ap;
534
535 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
536 list_del(&ap->list);
537 kfree(ap);
538 }
539 }
540 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_free_coloc_ap_list);
541
cfg80211_parse_ap_info(struct cfg80211_colocated_ap * entry,const u8 * pos,u8 length,const struct element * ssid_elem,u32 s_ssid_tmp)542 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
543 const u8 *pos, u8 length,
544 const struct element *ssid_elem,
545 u32 s_ssid_tmp)
546 {
547 u8 bss_params;
548
549 entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
550
551 /* The length is already verified by the caller to contain bss_params */
552 if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) {
553 struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos;
554
555 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
556 entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid);
557 entry->short_ssid_valid = true;
558
559 bss_params = tbtt_info->bss_params;
560
561 /* Ignore disabled links */
562 if (length >= offsetofend(typeof(*tbtt_info), mld_params)) {
563 if (le16_get_bits(tbtt_info->mld_params.params,
564 IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK))
565 return -EINVAL;
566 }
567
568 if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
569 psd_20))
570 entry->psd_20 = tbtt_info->psd_20;
571 } else {
572 struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos;
573
574 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
575
576 bss_params = tbtt_info->bss_params;
577
578 if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
579 psd_20))
580 entry->psd_20 = tbtt_info->psd_20;
581 }
582
583 /* ignore entries with invalid BSSID */
584 if (!is_valid_ether_addr(entry->bssid))
585 return -EINVAL;
586
587 /* skip non colocated APs */
588 if (!cfg80211_parse_bss_param(bss_params, entry))
589 return -EINVAL;
590
591 /* no information about the short ssid. Consider the entry valid
592 * for now. It would later be dropped in case there are explicit
593 * SSIDs that need to be matched
594 */
595 if (!entry->same_ssid && !entry->short_ssid_valid)
596 return 0;
597
598 if (entry->same_ssid) {
599 entry->short_ssid = s_ssid_tmp;
600 entry->short_ssid_valid = true;
601
602 /*
603 * This is safe because we validate datalen in
604 * cfg80211_parse_colocated_ap(), before calling this
605 * function.
606 */
607 memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen);
608 entry->ssid_len = ssid_elem->datalen;
609 }
610
611 return 0;
612 }
613
cfg80211_iter_rnr(const u8 * elems,size_t elems_len,enum cfg80211_rnr_iter_ret (* iter)(void * data,u8 type,const struct ieee80211_neighbor_ap_info * info,const u8 * tbtt_info,u8 tbtt_info_len),void * iter_data)614 bool cfg80211_iter_rnr(const u8 *elems, size_t elems_len,
615 enum cfg80211_rnr_iter_ret
616 (*iter)(void *data, u8 type,
617 const struct ieee80211_neighbor_ap_info *info,
618 const u8 *tbtt_info, u8 tbtt_info_len),
619 void *iter_data)
620 {
621 const struct element *rnr;
622 const u8 *pos, *end;
623
624 for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT,
625 elems, elems_len) {
626 const struct ieee80211_neighbor_ap_info *info;
627
628 pos = rnr->data;
629 end = rnr->data + rnr->datalen;
630
631 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
632 while (sizeof(*info) <= end - pos) {
633 u8 length, i, count;
634 u8 type;
635
636 info = (void *)pos;
637 count = u8_get_bits(info->tbtt_info_hdr,
638 IEEE80211_AP_INFO_TBTT_HDR_COUNT) +
639 1;
640 length = info->tbtt_info_len;
641
642 pos += sizeof(*info);
643
644 if (count * length > end - pos)
645 return false;
646
647 type = u8_get_bits(info->tbtt_info_hdr,
648 IEEE80211_AP_INFO_TBTT_HDR_TYPE);
649
650 for (i = 0; i < count; i++) {
651 switch (iter(iter_data, type, info,
652 pos, length)) {
653 case RNR_ITER_CONTINUE:
654 break;
655 case RNR_ITER_BREAK:
656 return true;
657 case RNR_ITER_ERROR:
658 return false;
659 }
660
661 pos += length;
662 }
663 }
664
665 if (pos != end)
666 return false;
667 }
668
669 return true;
670 }
671 EXPORT_SYMBOL_GPL(cfg80211_iter_rnr);
672
673 struct colocated_ap_data {
674 const struct element *ssid_elem;
675 struct list_head ap_list;
676 u32 s_ssid_tmp;
677 int n_coloc;
678 };
679
680 static enum cfg80211_rnr_iter_ret
cfg80211_parse_colocated_ap_iter(void * _data,u8 type,const struct ieee80211_neighbor_ap_info * info,const u8 * tbtt_info,u8 tbtt_info_len)681 cfg80211_parse_colocated_ap_iter(void *_data, u8 type,
682 const struct ieee80211_neighbor_ap_info *info,
683 const u8 *tbtt_info, u8 tbtt_info_len)
684 {
685 struct colocated_ap_data *data = _data;
686 struct cfg80211_colocated_ap *entry;
687 enum nl80211_band band;
688
689 if (type != IEEE80211_TBTT_INFO_TYPE_TBTT)
690 return RNR_ITER_CONTINUE;
691
692 if (!ieee80211_operating_class_to_band(info->op_class, &band))
693 return RNR_ITER_CONTINUE;
694
695 /* TBTT info must include bss param + BSSID + (short SSID or
696 * same_ssid bit to be set). Ignore other options, and move to
697 * the next AP info
698 */
699 if (band != NL80211_BAND_6GHZ ||
700 !(tbtt_info_len == offsetofend(struct ieee80211_tbtt_info_7_8_9,
701 bss_params) ||
702 tbtt_info_len == sizeof(struct ieee80211_tbtt_info_7_8_9) ||
703 tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
704 bss_params)))
705 return RNR_ITER_CONTINUE;
706
707 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, GFP_ATOMIC);
708 if (!entry)
709 return RNR_ITER_ERROR;
710
711 entry->center_freq =
712 ieee80211_channel_to_frequency(info->channel, band);
713
714 if (!cfg80211_parse_ap_info(entry, tbtt_info, tbtt_info_len,
715 data->ssid_elem, data->s_ssid_tmp)) {
716 data->n_coloc++;
717 list_add_tail(&entry->list, &data->ap_list);
718 } else {
719 kfree(entry);
720 }
721
722 return RNR_ITER_CONTINUE;
723 }
724
725 VISIBLE_IF_CFG80211_KUNIT int
cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies * ies,struct list_head * list)726 cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
727 struct list_head *list)
728 {
729 struct colocated_ap_data data = {};
730 int ret;
731
732 INIT_LIST_HEAD(&data.ap_list);
733
734 ret = cfg80211_calc_short_ssid(ies, &data.ssid_elem, &data.s_ssid_tmp);
735 if (ret)
736 return 0;
737
738 if (!cfg80211_iter_rnr(ies->data, ies->len,
739 cfg80211_parse_colocated_ap_iter, &data)) {
740 cfg80211_free_coloc_ap_list(&data.ap_list);
741 return 0;
742 }
743
744 list_splice_tail(&data.ap_list, list);
745 return data.n_coloc;
746 }
747 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_parse_colocated_ap);
748
cfg80211_scan_req_add_chan(struct cfg80211_scan_request * request,struct ieee80211_channel * chan,bool add_to_6ghz)749 static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
750 struct ieee80211_channel *chan,
751 bool add_to_6ghz)
752 {
753 int i;
754 u32 n_channels = request->n_channels;
755 struct cfg80211_scan_6ghz_params *params =
756 &request->scan_6ghz_params[request->n_6ghz_params];
757
758 for (i = 0; i < n_channels; i++) {
759 if (request->channels[i] == chan) {
760 if (add_to_6ghz)
761 params->channel_idx = i;
762 return;
763 }
764 }
765
766 request->channels[n_channels] = chan;
767 if (add_to_6ghz)
768 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
769 n_channels;
770
771 request->n_channels++;
772 }
773
cfg80211_find_ssid_match(struct cfg80211_colocated_ap * ap,struct cfg80211_scan_request * request)774 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
775 struct cfg80211_scan_request *request)
776 {
777 int i;
778 u32 s_ssid;
779
780 for (i = 0; i < request->n_ssids; i++) {
781 /* wildcard ssid in the scan request */
782 if (!request->ssids[i].ssid_len) {
783 if (ap->multi_bss && !ap->transmitted_bssid)
784 continue;
785
786 return true;
787 }
788
789 if (ap->ssid_len &&
790 ap->ssid_len == request->ssids[i].ssid_len) {
791 if (!memcmp(request->ssids[i].ssid, ap->ssid,
792 ap->ssid_len))
793 return true;
794 } else if (ap->short_ssid_valid) {
795 s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
796 request->ssids[i].ssid_len);
797
798 if (ap->short_ssid == s_ssid)
799 return true;
800 }
801 }
802
803 return false;
804 }
805
cfg80211_scan_6ghz(struct cfg80211_registered_device * rdev)806 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
807 {
808 u8 i;
809 struct cfg80211_colocated_ap *ap;
810 int n_channels, count = 0, err;
811 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
812 LIST_HEAD(coloc_ap_list);
813 bool need_scan_psc = true;
814 const struct ieee80211_sband_iftype_data *iftd;
815 size_t size, offs_ssids, offs_6ghz_params, offs_ies;
816
817 rdev_req->scan_6ghz = true;
818
819 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
820 return -EOPNOTSUPP;
821
822 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
823 rdev_req->wdev->iftype);
824 if (!iftd || !iftd->he_cap.has_he)
825 return -EOPNOTSUPP;
826
827 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
828
829 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
830 struct cfg80211_internal_bss *intbss;
831
832 spin_lock_bh(&rdev->bss_lock);
833 list_for_each_entry(intbss, &rdev->bss_list, list) {
834 struct cfg80211_bss *res = &intbss->pub;
835 const struct cfg80211_bss_ies *ies;
836 const struct element *ssid_elem;
837 struct cfg80211_colocated_ap *entry;
838 u32 s_ssid_tmp;
839 int ret;
840
841 ies = rcu_access_pointer(res->ies);
842 count += cfg80211_parse_colocated_ap(ies,
843 &coloc_ap_list);
844
845 /* In case the scan request specified a specific BSSID
846 * and the BSS is found and operating on 6GHz band then
847 * add this AP to the collocated APs list.
848 * This is relevant for ML probe requests when the lower
849 * band APs have not been discovered.
850 */
851 if (is_broadcast_ether_addr(rdev_req->bssid) ||
852 !ether_addr_equal(rdev_req->bssid, res->bssid) ||
853 res->channel->band != NL80211_BAND_6GHZ)
854 continue;
855
856 ret = cfg80211_calc_short_ssid(ies, &ssid_elem,
857 &s_ssid_tmp);
858 if (ret)
859 continue;
860
861 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
862 GFP_ATOMIC);
863
864 if (!entry)
865 continue;
866
867 memcpy(entry->bssid, res->bssid, ETH_ALEN);
868 entry->short_ssid = s_ssid_tmp;
869 memcpy(entry->ssid, ssid_elem->data,
870 ssid_elem->datalen);
871 entry->ssid_len = ssid_elem->datalen;
872 entry->short_ssid_valid = true;
873 entry->center_freq = res->channel->center_freq;
874
875 list_add_tail(&entry->list, &coloc_ap_list);
876 count++;
877 }
878 spin_unlock_bh(&rdev->bss_lock);
879 }
880
881 size = struct_size(request, channels, n_channels);
882 offs_ssids = size;
883 size += sizeof(*request->ssids) * rdev_req->n_ssids;
884 offs_6ghz_params = size;
885 size += sizeof(*request->scan_6ghz_params) * count;
886 offs_ies = size;
887 size += rdev_req->ie_len;
888
889 request = kzalloc(size, GFP_KERNEL);
890 if (!request) {
891 cfg80211_free_coloc_ap_list(&coloc_ap_list);
892 return -ENOMEM;
893 }
894
895 *request = *rdev_req;
896 request->n_channels = 0;
897 request->n_6ghz_params = 0;
898 if (rdev_req->n_ssids) {
899 /*
900 * Add the ssids from the parent scan request to the new
901 * scan request, so the driver would be able to use them
902 * in its probe requests to discover hidden APs on PSC
903 * channels.
904 */
905 request->ssids = (void *)request + offs_ssids;
906 memcpy(request->ssids, rdev_req->ssids,
907 sizeof(*request->ssids) * request->n_ssids);
908 }
909 request->scan_6ghz_params = (void *)request + offs_6ghz_params;
910
911 if (rdev_req->ie_len) {
912 void *ie = (void *)request + offs_ies;
913
914 memcpy(ie, rdev_req->ie, rdev_req->ie_len);
915 request->ie = ie;
916 }
917
918 /*
919 * PSC channels should not be scanned in case of direct scan with 1 SSID
920 * and at least one of the reported co-located APs with same SSID
921 * indicating that all APs in the same ESS are co-located
922 */
923 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
924 list_for_each_entry(ap, &coloc_ap_list, list) {
925 if (ap->colocated_ess &&
926 cfg80211_find_ssid_match(ap, request)) {
927 need_scan_psc = false;
928 break;
929 }
930 }
931 }
932
933 /*
934 * add to the scan request the channels that need to be scanned
935 * regardless of the collocated APs (PSC channels or all channels
936 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
937 */
938 for (i = 0; i < rdev_req->n_channels; i++) {
939 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
940 ((need_scan_psc &&
941 cfg80211_channel_is_psc(rdev_req->channels[i])) ||
942 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
943 cfg80211_scan_req_add_chan(request,
944 rdev_req->channels[i],
945 false);
946 }
947 }
948
949 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
950 goto skip;
951
952 list_for_each_entry(ap, &coloc_ap_list, list) {
953 bool found = false;
954 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
955 &request->scan_6ghz_params[request->n_6ghz_params];
956 struct ieee80211_channel *chan =
957 ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
958
959 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
960 continue;
961
962 for (i = 0; i < rdev_req->n_channels; i++) {
963 if (rdev_req->channels[i] == chan)
964 found = true;
965 }
966
967 if (!found)
968 continue;
969
970 if (request->n_ssids > 0 &&
971 !cfg80211_find_ssid_match(ap, request))
972 continue;
973
974 if (!is_broadcast_ether_addr(request->bssid) &&
975 !ether_addr_equal(request->bssid, ap->bssid))
976 continue;
977
978 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
979 continue;
980
981 cfg80211_scan_req_add_chan(request, chan, true);
982 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
983 scan_6ghz_params->short_ssid = ap->short_ssid;
984 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
985 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
986 scan_6ghz_params->psd_20 = ap->psd_20;
987
988 /*
989 * If a PSC channel is added to the scan and 'need_scan_psc' is
990 * set to false, then all the APs that the scan logic is
991 * interested with on the channel are collocated and thus there
992 * is no need to perform the initial PSC channel listen.
993 */
994 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
995 scan_6ghz_params->psc_no_listen = true;
996
997 request->n_6ghz_params++;
998 }
999
1000 skip:
1001 cfg80211_free_coloc_ap_list(&coloc_ap_list);
1002
1003 if (request->n_channels) {
1004 struct cfg80211_scan_request *old = rdev->int_scan_req;
1005
1006 rdev->int_scan_req = request;
1007
1008 /*
1009 * If this scan follows a previous scan, save the scan start
1010 * info from the first part of the scan
1011 */
1012 if (old)
1013 rdev->int_scan_req->info = old->info;
1014
1015 err = rdev_scan(rdev, request);
1016 if (err) {
1017 rdev->int_scan_req = old;
1018 kfree(request);
1019 } else {
1020 kfree(old);
1021 }
1022
1023 return err;
1024 }
1025
1026 kfree(request);
1027 return -EINVAL;
1028 }
1029
cfg80211_scan(struct cfg80211_registered_device * rdev)1030 int cfg80211_scan(struct cfg80211_registered_device *rdev)
1031 {
1032 struct cfg80211_scan_request *request;
1033 struct cfg80211_scan_request *rdev_req = rdev->scan_req;
1034 u32 n_channels = 0, idx, i;
1035
1036 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
1037 return rdev_scan(rdev, rdev_req);
1038
1039 for (i = 0; i < rdev_req->n_channels; i++) {
1040 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1041 n_channels++;
1042 }
1043
1044 if (!n_channels)
1045 return cfg80211_scan_6ghz(rdev);
1046
1047 request = kzalloc(struct_size(request, channels, n_channels),
1048 GFP_KERNEL);
1049 if (!request)
1050 return -ENOMEM;
1051
1052 *request = *rdev_req;
1053 request->n_channels = n_channels;
1054
1055 for (i = idx = 0; i < rdev_req->n_channels; i++) {
1056 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1057 request->channels[idx++] = rdev_req->channels[i];
1058 }
1059
1060 rdev_req->scan_6ghz = false;
1061 rdev->int_scan_req = request;
1062 return rdev_scan(rdev, request);
1063 }
1064
___cfg80211_scan_done(struct cfg80211_registered_device * rdev,bool send_message)1065 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
1066 bool send_message)
1067 {
1068 struct cfg80211_scan_request *request, *rdev_req;
1069 struct wireless_dev *wdev;
1070 struct sk_buff *msg;
1071 #ifdef CONFIG_CFG80211_WEXT
1072 union iwreq_data wrqu;
1073 #endif
1074
1075 lockdep_assert_held(&rdev->wiphy.mtx);
1076
1077 if (rdev->scan_msg) {
1078 nl80211_send_scan_msg(rdev, rdev->scan_msg);
1079 rdev->scan_msg = NULL;
1080 return;
1081 }
1082
1083 rdev_req = rdev->scan_req;
1084 if (!rdev_req)
1085 return;
1086
1087 wdev = rdev_req->wdev;
1088 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
1089
1090 if (wdev_running(wdev) &&
1091 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1092 !rdev_req->scan_6ghz && !request->info.aborted &&
1093 !cfg80211_scan_6ghz(rdev))
1094 return;
1095
1096 /*
1097 * This must be before sending the other events!
1098 * Otherwise, wpa_supplicant gets completely confused with
1099 * wext events.
1100 */
1101 if (wdev->netdev)
1102 cfg80211_sme_scan_done(wdev->netdev);
1103
1104 if (!request->info.aborted &&
1105 request->flags & NL80211_SCAN_FLAG_FLUSH) {
1106 /* flush entries from previous scans */
1107 spin_lock_bh(&rdev->bss_lock);
1108 __cfg80211_bss_expire(rdev, request->scan_start);
1109 spin_unlock_bh(&rdev->bss_lock);
1110 }
1111
1112 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1113
1114 #ifdef CONFIG_CFG80211_WEXT
1115 if (wdev->netdev && !request->info.aborted) {
1116 memset(&wrqu, 0, sizeof(wrqu));
1117
1118 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1119 }
1120 #endif
1121
1122 dev_put(wdev->netdev);
1123
1124 kfree(rdev->int_scan_req);
1125 rdev->int_scan_req = NULL;
1126
1127 kfree(rdev->scan_req);
1128 rdev->scan_req = NULL;
1129
1130 if (!send_message)
1131 rdev->scan_msg = msg;
1132 else
1133 nl80211_send_scan_msg(rdev, msg);
1134 }
1135
__cfg80211_scan_done(struct wiphy * wiphy,struct wiphy_work * wk)1136 void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk)
1137 {
1138 ___cfg80211_scan_done(wiphy_to_rdev(wiphy), true);
1139 }
1140
cfg80211_scan_done(struct cfg80211_scan_request * request,struct cfg80211_scan_info * info)1141 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1142 struct cfg80211_scan_info *info)
1143 {
1144 struct cfg80211_scan_info old_info = request->info;
1145
1146 trace_cfg80211_scan_done(request, info);
1147 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1148 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1149
1150 request->info = *info;
1151
1152 /*
1153 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1154 * be of the first part. In such a case old_info.scan_start_tsf should
1155 * be non zero.
1156 */
1157 if (request->scan_6ghz && old_info.scan_start_tsf) {
1158 request->info.scan_start_tsf = old_info.scan_start_tsf;
1159 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1160 sizeof(request->info.tsf_bssid));
1161 }
1162
1163 request->notified = true;
1164 wiphy_work_queue(request->wiphy,
1165 &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1166 }
1167 EXPORT_SYMBOL(cfg80211_scan_done);
1168
cfg80211_add_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req)1169 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1170 struct cfg80211_sched_scan_request *req)
1171 {
1172 lockdep_assert_held(&rdev->wiphy.mtx);
1173
1174 list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1175 }
1176
cfg80211_del_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req)1177 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1178 struct cfg80211_sched_scan_request *req)
1179 {
1180 lockdep_assert_held(&rdev->wiphy.mtx);
1181
1182 list_del_rcu(&req->list);
1183 kfree_rcu(req, rcu_head);
1184 }
1185
1186 static struct cfg80211_sched_scan_request *
cfg80211_find_sched_scan_req(struct cfg80211_registered_device * rdev,u64 reqid)1187 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1188 {
1189 struct cfg80211_sched_scan_request *pos;
1190
1191 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1192 lockdep_is_held(&rdev->wiphy.mtx)) {
1193 if (pos->reqid == reqid)
1194 return pos;
1195 }
1196 return NULL;
1197 }
1198
1199 /*
1200 * Determines if a scheduled scan request can be handled. When a legacy
1201 * scheduled scan is running no other scheduled scan is allowed regardless
1202 * whether the request is for legacy or multi-support scan. When a multi-support
1203 * scheduled scan is running a request for legacy scan is not allowed. In this
1204 * case a request for multi-support scan can be handled if resources are
1205 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1206 */
cfg80211_sched_scan_req_possible(struct cfg80211_registered_device * rdev,bool want_multi)1207 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1208 bool want_multi)
1209 {
1210 struct cfg80211_sched_scan_request *pos;
1211 int i = 0;
1212
1213 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1214 /* request id zero means legacy in progress */
1215 if (!i && !pos->reqid)
1216 return -EINPROGRESS;
1217 i++;
1218 }
1219
1220 if (i) {
1221 /* no legacy allowed when multi request(s) are active */
1222 if (!want_multi)
1223 return -EINPROGRESS;
1224
1225 /* resource limit reached */
1226 if (i == rdev->wiphy.max_sched_scan_reqs)
1227 return -ENOSPC;
1228 }
1229 return 0;
1230 }
1231
cfg80211_sched_scan_results_wk(struct work_struct * work)1232 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1233 {
1234 struct cfg80211_registered_device *rdev;
1235 struct cfg80211_sched_scan_request *req, *tmp;
1236
1237 rdev = container_of(work, struct cfg80211_registered_device,
1238 sched_scan_res_wk);
1239
1240 wiphy_lock(&rdev->wiphy);
1241 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1242 if (req->report_results) {
1243 req->report_results = false;
1244 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1245 /* flush entries from previous scans */
1246 spin_lock_bh(&rdev->bss_lock);
1247 __cfg80211_bss_expire(rdev, req->scan_start);
1248 spin_unlock_bh(&rdev->bss_lock);
1249 req->scan_start = jiffies;
1250 }
1251 nl80211_send_sched_scan(req,
1252 NL80211_CMD_SCHED_SCAN_RESULTS);
1253 }
1254 }
1255 wiphy_unlock(&rdev->wiphy);
1256 }
1257
cfg80211_sched_scan_results(struct wiphy * wiphy,u64 reqid)1258 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1259 {
1260 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1261 struct cfg80211_sched_scan_request *request;
1262
1263 trace_cfg80211_sched_scan_results(wiphy, reqid);
1264 /* ignore if we're not scanning */
1265
1266 rcu_read_lock();
1267 request = cfg80211_find_sched_scan_req(rdev, reqid);
1268 if (request) {
1269 request->report_results = true;
1270 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1271 }
1272 rcu_read_unlock();
1273 }
1274 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1275
cfg80211_sched_scan_stopped_locked(struct wiphy * wiphy,u64 reqid)1276 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1277 {
1278 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1279
1280 lockdep_assert_held(&wiphy->mtx);
1281
1282 trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1283
1284 __cfg80211_stop_sched_scan(rdev, reqid, true);
1285 }
1286 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1287
cfg80211_sched_scan_stopped(struct wiphy * wiphy,u64 reqid)1288 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1289 {
1290 wiphy_lock(wiphy);
1291 cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1292 wiphy_unlock(wiphy);
1293 }
1294 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1295
cfg80211_stop_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req,bool driver_initiated)1296 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1297 struct cfg80211_sched_scan_request *req,
1298 bool driver_initiated)
1299 {
1300 lockdep_assert_held(&rdev->wiphy.mtx);
1301
1302 if (!driver_initiated) {
1303 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1304 if (err)
1305 return err;
1306 }
1307
1308 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1309
1310 cfg80211_del_sched_scan_req(rdev, req);
1311
1312 return 0;
1313 }
1314
__cfg80211_stop_sched_scan(struct cfg80211_registered_device * rdev,u64 reqid,bool driver_initiated)1315 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1316 u64 reqid, bool driver_initiated)
1317 {
1318 struct cfg80211_sched_scan_request *sched_scan_req;
1319
1320 lockdep_assert_held(&rdev->wiphy.mtx);
1321
1322 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1323 if (!sched_scan_req)
1324 return -ENOENT;
1325
1326 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1327 driver_initiated);
1328 }
1329
cfg80211_bss_age(struct cfg80211_registered_device * rdev,unsigned long age_secs)1330 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1331 unsigned long age_secs)
1332 {
1333 struct cfg80211_internal_bss *bss;
1334 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1335
1336 spin_lock_bh(&rdev->bss_lock);
1337 list_for_each_entry(bss, &rdev->bss_list, list)
1338 bss->ts -= age_jiffies;
1339 spin_unlock_bh(&rdev->bss_lock);
1340 }
1341
cfg80211_bss_expire(struct cfg80211_registered_device * rdev)1342 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1343 {
1344 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1345 }
1346
cfg80211_bss_flush(struct wiphy * wiphy)1347 void cfg80211_bss_flush(struct wiphy *wiphy)
1348 {
1349 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1350
1351 spin_lock_bh(&rdev->bss_lock);
1352 __cfg80211_bss_expire(rdev, jiffies);
1353 spin_unlock_bh(&rdev->bss_lock);
1354 }
1355 EXPORT_SYMBOL(cfg80211_bss_flush);
1356
1357 const struct element *
cfg80211_find_elem_match(u8 eid,const u8 * ies,unsigned int len,const u8 * match,unsigned int match_len,unsigned int match_offset)1358 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1359 const u8 *match, unsigned int match_len,
1360 unsigned int match_offset)
1361 {
1362 const struct element *elem;
1363
1364 for_each_element_id(elem, eid, ies, len) {
1365 if (elem->datalen >= match_offset + match_len &&
1366 !memcmp(elem->data + match_offset, match, match_len))
1367 return elem;
1368 }
1369
1370 return NULL;
1371 }
1372 EXPORT_SYMBOL(cfg80211_find_elem_match);
1373
cfg80211_find_vendor_elem(unsigned int oui,int oui_type,const u8 * ies,unsigned int len)1374 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1375 const u8 *ies,
1376 unsigned int len)
1377 {
1378 const struct element *elem;
1379 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1380 int match_len = (oui_type < 0) ? 3 : sizeof(match);
1381
1382 if (WARN_ON(oui_type > 0xff))
1383 return NULL;
1384
1385 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1386 match, match_len, 0);
1387
1388 if (!elem || elem->datalen < 4)
1389 return NULL;
1390
1391 return elem;
1392 }
1393 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1394
1395 /**
1396 * enum bss_compare_mode - BSS compare mode
1397 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1398 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1399 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1400 */
1401 enum bss_compare_mode {
1402 BSS_CMP_REGULAR,
1403 BSS_CMP_HIDE_ZLEN,
1404 BSS_CMP_HIDE_NUL,
1405 };
1406
cmp_bss(struct cfg80211_bss * a,struct cfg80211_bss * b,enum bss_compare_mode mode)1407 static int cmp_bss(struct cfg80211_bss *a,
1408 struct cfg80211_bss *b,
1409 enum bss_compare_mode mode)
1410 {
1411 const struct cfg80211_bss_ies *a_ies, *b_ies;
1412 const u8 *ie1 = NULL;
1413 const u8 *ie2 = NULL;
1414 int i, r;
1415
1416 if (a->channel != b->channel)
1417 return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1418 (a->channel->center_freq * 1000 + a->channel->freq_offset);
1419
1420 a_ies = rcu_access_pointer(a->ies);
1421 if (!a_ies)
1422 return -1;
1423 b_ies = rcu_access_pointer(b->ies);
1424 if (!b_ies)
1425 return 1;
1426
1427 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1428 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1429 a_ies->data, a_ies->len);
1430 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1431 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1432 b_ies->data, b_ies->len);
1433 if (ie1 && ie2) {
1434 int mesh_id_cmp;
1435
1436 if (ie1[1] == ie2[1])
1437 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1438 else
1439 mesh_id_cmp = ie2[1] - ie1[1];
1440
1441 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1442 a_ies->data, a_ies->len);
1443 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1444 b_ies->data, b_ies->len);
1445 if (ie1 && ie2) {
1446 if (mesh_id_cmp)
1447 return mesh_id_cmp;
1448 if (ie1[1] != ie2[1])
1449 return ie2[1] - ie1[1];
1450 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1451 }
1452 }
1453
1454 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1455 if (r)
1456 return r;
1457
1458 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1459 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1460
1461 if (!ie1 && !ie2)
1462 return 0;
1463
1464 /*
1465 * Note that with "hide_ssid", the function returns a match if
1466 * the already-present BSS ("b") is a hidden SSID beacon for
1467 * the new BSS ("a").
1468 */
1469
1470 /* sort missing IE before (left of) present IE */
1471 if (!ie1)
1472 return -1;
1473 if (!ie2)
1474 return 1;
1475
1476 switch (mode) {
1477 case BSS_CMP_HIDE_ZLEN:
1478 /*
1479 * In ZLEN mode we assume the BSS entry we're
1480 * looking for has a zero-length SSID. So if
1481 * the one we're looking at right now has that,
1482 * return 0. Otherwise, return the difference
1483 * in length, but since we're looking for the
1484 * 0-length it's really equivalent to returning
1485 * the length of the one we're looking at.
1486 *
1487 * No content comparison is needed as we assume
1488 * the content length is zero.
1489 */
1490 return ie2[1];
1491 case BSS_CMP_REGULAR:
1492 default:
1493 /* sort by length first, then by contents */
1494 if (ie1[1] != ie2[1])
1495 return ie2[1] - ie1[1];
1496 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1497 case BSS_CMP_HIDE_NUL:
1498 if (ie1[1] != ie2[1])
1499 return ie2[1] - ie1[1];
1500 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1501 for (i = 0; i < ie2[1]; i++)
1502 if (ie2[i + 2])
1503 return -1;
1504 return 0;
1505 }
1506 }
1507
cfg80211_bss_type_match(u16 capability,enum nl80211_band band,enum ieee80211_bss_type bss_type)1508 static bool cfg80211_bss_type_match(u16 capability,
1509 enum nl80211_band band,
1510 enum ieee80211_bss_type bss_type)
1511 {
1512 bool ret = true;
1513 u16 mask, val;
1514
1515 if (bss_type == IEEE80211_BSS_TYPE_ANY)
1516 return ret;
1517
1518 if (band == NL80211_BAND_60GHZ) {
1519 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1520 switch (bss_type) {
1521 case IEEE80211_BSS_TYPE_ESS:
1522 val = WLAN_CAPABILITY_DMG_TYPE_AP;
1523 break;
1524 case IEEE80211_BSS_TYPE_PBSS:
1525 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1526 break;
1527 case IEEE80211_BSS_TYPE_IBSS:
1528 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1529 break;
1530 default:
1531 return false;
1532 }
1533 } else {
1534 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1535 switch (bss_type) {
1536 case IEEE80211_BSS_TYPE_ESS:
1537 val = WLAN_CAPABILITY_ESS;
1538 break;
1539 case IEEE80211_BSS_TYPE_IBSS:
1540 val = WLAN_CAPABILITY_IBSS;
1541 break;
1542 case IEEE80211_BSS_TYPE_MBSS:
1543 val = 0;
1544 break;
1545 default:
1546 return false;
1547 }
1548 }
1549
1550 ret = ((capability & mask) == val);
1551 return ret;
1552 }
1553
1554 /* Returned bss is reference counted and must be cleaned up appropriately. */
__cfg80211_get_bss(struct wiphy * wiphy,struct ieee80211_channel * channel,const u8 * bssid,const u8 * ssid,size_t ssid_len,enum ieee80211_bss_type bss_type,enum ieee80211_privacy privacy,u32 use_for)1555 struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy,
1556 struct ieee80211_channel *channel,
1557 const u8 *bssid,
1558 const u8 *ssid, size_t ssid_len,
1559 enum ieee80211_bss_type bss_type,
1560 enum ieee80211_privacy privacy,
1561 u32 use_for)
1562 {
1563 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1564 struct cfg80211_internal_bss *bss, *res = NULL;
1565 unsigned long now = jiffies;
1566 int bss_privacy;
1567
1568 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1569 privacy);
1570
1571 spin_lock_bh(&rdev->bss_lock);
1572
1573 list_for_each_entry(bss, &rdev->bss_list, list) {
1574 if (!cfg80211_bss_type_match(bss->pub.capability,
1575 bss->pub.channel->band, bss_type))
1576 continue;
1577
1578 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1579 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1580 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1581 continue;
1582 if (channel && bss->pub.channel != channel)
1583 continue;
1584 if (!is_valid_ether_addr(bss->pub.bssid))
1585 continue;
1586 if ((bss->pub.use_for & use_for) != use_for)
1587 continue;
1588 /* Don't get expired BSS structs */
1589 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1590 !atomic_read(&bss->hold))
1591 continue;
1592 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1593 res = bss;
1594 bss_ref_get(rdev, res);
1595 break;
1596 }
1597 }
1598
1599 spin_unlock_bh(&rdev->bss_lock);
1600 if (!res)
1601 return NULL;
1602 trace_cfg80211_return_bss(&res->pub);
1603 return &res->pub;
1604 }
1605 EXPORT_SYMBOL(__cfg80211_get_bss);
1606
rb_insert_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)1607 static bool rb_insert_bss(struct cfg80211_registered_device *rdev,
1608 struct cfg80211_internal_bss *bss)
1609 {
1610 struct rb_node **p = &rdev->bss_tree.rb_node;
1611 struct rb_node *parent = NULL;
1612 struct cfg80211_internal_bss *tbss;
1613 int cmp;
1614
1615 while (*p) {
1616 parent = *p;
1617 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1618
1619 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1620
1621 if (WARN_ON(!cmp)) {
1622 /* will sort of leak this BSS */
1623 return false;
1624 }
1625
1626 if (cmp < 0)
1627 p = &(*p)->rb_left;
1628 else
1629 p = &(*p)->rb_right;
1630 }
1631
1632 rb_link_node(&bss->rbn, parent, p);
1633 rb_insert_color(&bss->rbn, &rdev->bss_tree);
1634 return true;
1635 }
1636
1637 static struct cfg80211_internal_bss *
rb_find_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * res,enum bss_compare_mode mode)1638 rb_find_bss(struct cfg80211_registered_device *rdev,
1639 struct cfg80211_internal_bss *res,
1640 enum bss_compare_mode mode)
1641 {
1642 struct rb_node *n = rdev->bss_tree.rb_node;
1643 struct cfg80211_internal_bss *bss;
1644 int r;
1645
1646 while (n) {
1647 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1648 r = cmp_bss(&res->pub, &bss->pub, mode);
1649
1650 if (r == 0)
1651 return bss;
1652 else if (r < 0)
1653 n = n->rb_left;
1654 else
1655 n = n->rb_right;
1656 }
1657
1658 return NULL;
1659 }
1660
cfg80211_insert_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)1661 static void cfg80211_insert_bss(struct cfg80211_registered_device *rdev,
1662 struct cfg80211_internal_bss *bss)
1663 {
1664 lockdep_assert_held(&rdev->bss_lock);
1665
1666 if (!rb_insert_bss(rdev, bss))
1667 return;
1668 list_add_tail(&bss->list, &rdev->bss_list);
1669 rdev->bss_entries++;
1670 }
1671
cfg80211_rehash_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)1672 static void cfg80211_rehash_bss(struct cfg80211_registered_device *rdev,
1673 struct cfg80211_internal_bss *bss)
1674 {
1675 lockdep_assert_held(&rdev->bss_lock);
1676
1677 rb_erase(&bss->rbn, &rdev->bss_tree);
1678 if (!rb_insert_bss(rdev, bss)) {
1679 list_del(&bss->list);
1680 if (!list_empty(&bss->hidden_list))
1681 list_del_init(&bss->hidden_list);
1682 if (!list_empty(&bss->pub.nontrans_list))
1683 list_del_init(&bss->pub.nontrans_list);
1684 rdev->bss_entries--;
1685 }
1686 rdev->bss_generation++;
1687 }
1688
cfg80211_combine_bsses(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * new)1689 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1690 struct cfg80211_internal_bss *new)
1691 {
1692 const struct cfg80211_bss_ies *ies;
1693 struct cfg80211_internal_bss *bss;
1694 const u8 *ie;
1695 int i, ssidlen;
1696 u8 fold = 0;
1697 u32 n_entries = 0;
1698
1699 ies = rcu_access_pointer(new->pub.beacon_ies);
1700 if (WARN_ON(!ies))
1701 return false;
1702
1703 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1704 if (!ie) {
1705 /* nothing to do */
1706 return true;
1707 }
1708
1709 ssidlen = ie[1];
1710 for (i = 0; i < ssidlen; i++)
1711 fold |= ie[2 + i];
1712
1713 if (fold) {
1714 /* not a hidden SSID */
1715 return true;
1716 }
1717
1718 /* This is the bad part ... */
1719
1720 list_for_each_entry(bss, &rdev->bss_list, list) {
1721 /*
1722 * we're iterating all the entries anyway, so take the
1723 * opportunity to validate the list length accounting
1724 */
1725 n_entries++;
1726
1727 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1728 continue;
1729 if (bss->pub.channel != new->pub.channel)
1730 continue;
1731 if (rcu_access_pointer(bss->pub.beacon_ies))
1732 continue;
1733 ies = rcu_access_pointer(bss->pub.ies);
1734 if (!ies)
1735 continue;
1736 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1737 if (!ie)
1738 continue;
1739 if (ssidlen && ie[1] != ssidlen)
1740 continue;
1741 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1742 continue;
1743 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1744 list_del(&bss->hidden_list);
1745 /* combine them */
1746 list_add(&bss->hidden_list, &new->hidden_list);
1747 bss->pub.hidden_beacon_bss = &new->pub;
1748 new->refcount += bss->refcount;
1749 rcu_assign_pointer(bss->pub.beacon_ies,
1750 new->pub.beacon_ies);
1751 }
1752
1753 WARN_ONCE(n_entries != rdev->bss_entries,
1754 "rdev bss entries[%d]/list[len:%d] corruption\n",
1755 rdev->bss_entries, n_entries);
1756
1757 return true;
1758 }
1759
cfg80211_update_hidden_bsses(struct cfg80211_internal_bss * known,const struct cfg80211_bss_ies * new_ies,const struct cfg80211_bss_ies * old_ies)1760 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1761 const struct cfg80211_bss_ies *new_ies,
1762 const struct cfg80211_bss_ies *old_ies)
1763 {
1764 struct cfg80211_internal_bss *bss;
1765
1766 /* Assign beacon IEs to all sub entries */
1767 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1768 const struct cfg80211_bss_ies *ies;
1769
1770 ies = rcu_access_pointer(bss->pub.beacon_ies);
1771 WARN_ON(ies != old_ies);
1772
1773 rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1774 }
1775 }
1776
cfg80211_check_stuck_ecsa(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * known,const struct cfg80211_bss_ies * old)1777 static void cfg80211_check_stuck_ecsa(struct cfg80211_registered_device *rdev,
1778 struct cfg80211_internal_bss *known,
1779 const struct cfg80211_bss_ies *old)
1780 {
1781 const struct ieee80211_ext_chansw_ie *ecsa;
1782 const struct element *elem_new, *elem_old;
1783 const struct cfg80211_bss_ies *new, *bcn;
1784
1785 if (known->pub.proberesp_ecsa_stuck)
1786 return;
1787
1788 new = rcu_dereference_protected(known->pub.proberesp_ies,
1789 lockdep_is_held(&rdev->bss_lock));
1790 if (WARN_ON(!new))
1791 return;
1792
1793 if (new->tsf - old->tsf < USEC_PER_SEC)
1794 return;
1795
1796 elem_old = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1797 old->data, old->len);
1798 if (!elem_old)
1799 return;
1800
1801 elem_new = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1802 new->data, new->len);
1803 if (!elem_new)
1804 return;
1805
1806 bcn = rcu_dereference_protected(known->pub.beacon_ies,
1807 lockdep_is_held(&rdev->bss_lock));
1808 if (bcn &&
1809 cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1810 bcn->data, bcn->len))
1811 return;
1812
1813 if (elem_new->datalen != elem_old->datalen)
1814 return;
1815 if (elem_new->datalen < sizeof(struct ieee80211_ext_chansw_ie))
1816 return;
1817 if (memcmp(elem_new->data, elem_old->data, elem_new->datalen))
1818 return;
1819
1820 ecsa = (void *)elem_new->data;
1821
1822 if (!ecsa->mode)
1823 return;
1824
1825 if (ecsa->new_ch_num !=
1826 ieee80211_frequency_to_channel(known->pub.channel->center_freq))
1827 return;
1828
1829 known->pub.proberesp_ecsa_stuck = 1;
1830 }
1831
1832 static bool
cfg80211_update_known_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * known,struct cfg80211_internal_bss * new,bool signal_valid)1833 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1834 struct cfg80211_internal_bss *known,
1835 struct cfg80211_internal_bss *new,
1836 bool signal_valid)
1837 {
1838 lockdep_assert_held(&rdev->bss_lock);
1839
1840 /* Update IEs */
1841 if (rcu_access_pointer(new->pub.proberesp_ies)) {
1842 const struct cfg80211_bss_ies *old;
1843
1844 old = rcu_access_pointer(known->pub.proberesp_ies);
1845
1846 rcu_assign_pointer(known->pub.proberesp_ies,
1847 new->pub.proberesp_ies);
1848 /* Override possible earlier Beacon frame IEs */
1849 rcu_assign_pointer(known->pub.ies,
1850 new->pub.proberesp_ies);
1851 if (old) {
1852 cfg80211_check_stuck_ecsa(rdev, known, old);
1853 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1854 }
1855 }
1856
1857 if (rcu_access_pointer(new->pub.beacon_ies)) {
1858 const struct cfg80211_bss_ies *old;
1859
1860 if (known->pub.hidden_beacon_bss &&
1861 !list_empty(&known->hidden_list)) {
1862 const struct cfg80211_bss_ies *f;
1863
1864 /* The known BSS struct is one of the probe
1865 * response members of a group, but we're
1866 * receiving a beacon (beacon_ies in the new
1867 * bss is used). This can only mean that the
1868 * AP changed its beacon from not having an
1869 * SSID to showing it, which is confusing so
1870 * drop this information.
1871 */
1872
1873 f = rcu_access_pointer(new->pub.beacon_ies);
1874 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1875 return false;
1876 }
1877
1878 old = rcu_access_pointer(known->pub.beacon_ies);
1879
1880 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1881
1882 /* Override IEs if they were from a beacon before */
1883 if (old == rcu_access_pointer(known->pub.ies))
1884 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1885
1886 cfg80211_update_hidden_bsses(known,
1887 rcu_access_pointer(new->pub.beacon_ies),
1888 old);
1889
1890 if (old)
1891 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1892 }
1893
1894 known->pub.beacon_interval = new->pub.beacon_interval;
1895
1896 /* don't update the signal if beacon was heard on
1897 * adjacent channel.
1898 */
1899 if (signal_valid)
1900 known->pub.signal = new->pub.signal;
1901 known->pub.capability = new->pub.capability;
1902 known->ts = new->ts;
1903 known->ts_boottime = new->ts_boottime;
1904 known->parent_tsf = new->parent_tsf;
1905 known->pub.chains = new->pub.chains;
1906 memcpy(known->pub.chain_signal, new->pub.chain_signal,
1907 IEEE80211_MAX_CHAINS);
1908 ether_addr_copy(known->parent_bssid, new->parent_bssid);
1909 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1910 known->pub.bssid_index = new->pub.bssid_index;
1911 known->pub.use_for &= new->pub.use_for;
1912 known->pub.cannot_use_reasons = new->pub.cannot_use_reasons;
1913 known->bss_source = new->bss_source;
1914
1915 return true;
1916 }
1917
1918 /* Returned bss is reference counted and must be cleaned up appropriately. */
1919 static struct cfg80211_internal_bss *
__cfg80211_bss_update(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * tmp,bool signal_valid,unsigned long ts)1920 __cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1921 struct cfg80211_internal_bss *tmp,
1922 bool signal_valid, unsigned long ts)
1923 {
1924 struct cfg80211_internal_bss *found = NULL;
1925 struct cfg80211_bss_ies *ies;
1926
1927 if (WARN_ON(!tmp->pub.channel))
1928 goto free_ies;
1929
1930 tmp->ts = ts;
1931
1932 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies)))
1933 goto free_ies;
1934
1935 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1936
1937 if (found) {
1938 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1939 return NULL;
1940 } else {
1941 struct cfg80211_internal_bss *new;
1942 struct cfg80211_internal_bss *hidden;
1943
1944 /*
1945 * create a copy -- the "res" variable that is passed in
1946 * is allocated on the stack since it's not needed in the
1947 * more common case of an update
1948 */
1949 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1950 GFP_ATOMIC);
1951 if (!new)
1952 goto free_ies;
1953 memcpy(new, tmp, sizeof(*new));
1954 new->refcount = 1;
1955 INIT_LIST_HEAD(&new->hidden_list);
1956 INIT_LIST_HEAD(&new->pub.nontrans_list);
1957 /* we'll set this later if it was non-NULL */
1958 new->pub.transmitted_bss = NULL;
1959
1960 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1961 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1962 if (!hidden)
1963 hidden = rb_find_bss(rdev, tmp,
1964 BSS_CMP_HIDE_NUL);
1965 if (hidden) {
1966 new->pub.hidden_beacon_bss = &hidden->pub;
1967 list_add(&new->hidden_list,
1968 &hidden->hidden_list);
1969 hidden->refcount++;
1970
1971 ies = (void *)rcu_access_pointer(new->pub.beacon_ies);
1972 rcu_assign_pointer(new->pub.beacon_ies,
1973 hidden->pub.beacon_ies);
1974 if (ies)
1975 kfree_rcu(ies, rcu_head);
1976 }
1977 } else {
1978 /*
1979 * Ok so we found a beacon, and don't have an entry. If
1980 * it's a beacon with hidden SSID, we might be in for an
1981 * expensive search for any probe responses that should
1982 * be grouped with this beacon for updates ...
1983 */
1984 if (!cfg80211_combine_bsses(rdev, new)) {
1985 bss_ref_put(rdev, new);
1986 return NULL;
1987 }
1988 }
1989
1990 if (rdev->bss_entries >= bss_entries_limit &&
1991 !cfg80211_bss_expire_oldest(rdev)) {
1992 bss_ref_put(rdev, new);
1993 return NULL;
1994 }
1995
1996 /* This must be before the call to bss_ref_get */
1997 if (tmp->pub.transmitted_bss) {
1998 new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1999 bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
2000 }
2001
2002 cfg80211_insert_bss(rdev, new);
2003 found = new;
2004 }
2005
2006 rdev->bss_generation++;
2007 bss_ref_get(rdev, found);
2008
2009 return found;
2010
2011 free_ies:
2012 ies = (void *)rcu_access_pointer(tmp->pub.beacon_ies);
2013 if (ies)
2014 kfree_rcu(ies, rcu_head);
2015 ies = (void *)rcu_access_pointer(tmp->pub.proberesp_ies);
2016 if (ies)
2017 kfree_rcu(ies, rcu_head);
2018
2019 return NULL;
2020 }
2021
2022 struct cfg80211_internal_bss *
cfg80211_bss_update(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * tmp,bool signal_valid,unsigned long ts)2023 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
2024 struct cfg80211_internal_bss *tmp,
2025 bool signal_valid, unsigned long ts)
2026 {
2027 struct cfg80211_internal_bss *res;
2028
2029 spin_lock_bh(&rdev->bss_lock);
2030 res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts);
2031 spin_unlock_bh(&rdev->bss_lock);
2032
2033 return res;
2034 }
2035
cfg80211_get_ies_channel_number(const u8 * ie,size_t ielen,enum nl80211_band band)2036 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
2037 enum nl80211_band band)
2038 {
2039 const struct element *tmp;
2040
2041 if (band == NL80211_BAND_6GHZ) {
2042 struct ieee80211_he_operation *he_oper;
2043
2044 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
2045 ielen);
2046 if (tmp && tmp->datalen >= sizeof(*he_oper) &&
2047 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
2048 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2049
2050 he_oper = (void *)&tmp->data[1];
2051
2052 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2053 if (!he_6ghz_oper)
2054 return -1;
2055
2056 return he_6ghz_oper->primary;
2057 }
2058 } else if (band == NL80211_BAND_S1GHZ) {
2059 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
2060 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
2061 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
2062
2063 return s1gop->oper_ch;
2064 }
2065 } else {
2066 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
2067 if (tmp && tmp->datalen == 1)
2068 return tmp->data[0];
2069
2070 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
2071 if (tmp &&
2072 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
2073 struct ieee80211_ht_operation *htop = (void *)tmp->data;
2074
2075 return htop->primary_chan;
2076 }
2077 }
2078
2079 return -1;
2080 }
2081 EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
2082
2083 /*
2084 * Update RX channel information based on the available frame payload
2085 * information. This is mainly for the 2.4 GHz band where frames can be received
2086 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
2087 * element to indicate the current (transmitting) channel, but this might also
2088 * be needed on other bands if RX frequency does not match with the actual
2089 * operating channel of a BSS, or if the AP reports a different primary channel.
2090 */
2091 static struct ieee80211_channel *
cfg80211_get_bss_channel(struct wiphy * wiphy,const u8 * ie,size_t ielen,struct ieee80211_channel * channel)2092 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
2093 struct ieee80211_channel *channel)
2094 {
2095 u32 freq;
2096 int channel_number;
2097 struct ieee80211_channel *alt_channel;
2098
2099 channel_number = cfg80211_get_ies_channel_number(ie, ielen,
2100 channel->band);
2101
2102 if (channel_number < 0) {
2103 /* No channel information in frame payload */
2104 return channel;
2105 }
2106
2107 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
2108
2109 /*
2110 * Frame info (beacon/prob res) is the same as received channel,
2111 * no need for further processing.
2112 */
2113 if (freq == ieee80211_channel_to_khz(channel))
2114 return channel;
2115
2116 alt_channel = ieee80211_get_channel_khz(wiphy, freq);
2117 if (!alt_channel) {
2118 if (channel->band == NL80211_BAND_2GHZ ||
2119 channel->band == NL80211_BAND_6GHZ) {
2120 /*
2121 * Better not allow unexpected channels when that could
2122 * be going beyond the 1-11 range (e.g., discovering
2123 * BSS on channel 12 when radio is configured for
2124 * channel 11) or beyond the 6 GHz channel range.
2125 */
2126 return NULL;
2127 }
2128
2129 /* No match for the payload channel number - ignore it */
2130 return channel;
2131 }
2132
2133 /*
2134 * Use the channel determined through the payload channel number
2135 * instead of the RX channel reported by the driver.
2136 */
2137 if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
2138 return NULL;
2139 return alt_channel;
2140 }
2141
2142 struct cfg80211_inform_single_bss_data {
2143 struct cfg80211_inform_bss *drv_data;
2144 enum cfg80211_bss_frame_type ftype;
2145 struct ieee80211_channel *channel;
2146 u8 bssid[ETH_ALEN];
2147 u64 tsf;
2148 u16 capability;
2149 u16 beacon_interval;
2150 const u8 *ie;
2151 size_t ielen;
2152
2153 enum bss_source_type bss_source;
2154 /* Set if reporting bss_source != BSS_SOURCE_DIRECT */
2155 struct cfg80211_bss *source_bss;
2156 u8 max_bssid_indicator;
2157 u8 bssid_index;
2158
2159 u8 use_for;
2160 u64 cannot_use_reasons;
2161 };
2162
2163 enum ieee80211_ap_reg_power
cfg80211_get_6ghz_power_type(const u8 * elems,size_t elems_len)2164 cfg80211_get_6ghz_power_type(const u8 *elems, size_t elems_len)
2165 {
2166 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2167 struct ieee80211_he_operation *he_oper;
2168 const struct element *tmp;
2169
2170 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION,
2171 elems, elems_len);
2172 if (!tmp || tmp->datalen < sizeof(*he_oper) + 1 ||
2173 tmp->datalen < ieee80211_he_oper_size(tmp->data + 1))
2174 return IEEE80211_REG_UNSET_AP;
2175
2176 he_oper = (void *)&tmp->data[1];
2177 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2178
2179 if (!he_6ghz_oper)
2180 return IEEE80211_REG_UNSET_AP;
2181
2182 switch (u8_get_bits(he_6ghz_oper->control,
2183 IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) {
2184 case IEEE80211_6GHZ_CTRL_REG_LPI_AP:
2185 case IEEE80211_6GHZ_CTRL_REG_INDOOR_LPI_AP:
2186 return IEEE80211_REG_LPI_AP;
2187 case IEEE80211_6GHZ_CTRL_REG_SP_AP:
2188 case IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP:
2189 return IEEE80211_REG_SP_AP;
2190 case IEEE80211_6GHZ_CTRL_REG_VLP_AP:
2191 return IEEE80211_REG_VLP_AP;
2192 default:
2193 return IEEE80211_REG_UNSET_AP;
2194 }
2195 }
2196
cfg80211_6ghz_power_type_valid(const u8 * elems,size_t elems_len,const u32 flags)2197 static bool cfg80211_6ghz_power_type_valid(const u8 *elems, size_t elems_len,
2198 const u32 flags)
2199 {
2200 switch (cfg80211_get_6ghz_power_type(elems, elems_len)) {
2201 case IEEE80211_REG_LPI_AP:
2202 return true;
2203 case IEEE80211_REG_SP_AP:
2204 return !(flags & IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT);
2205 case IEEE80211_REG_VLP_AP:
2206 return !(flags & IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT);
2207 default:
2208 return false;
2209 }
2210 }
2211
2212 /* Returned bss is reference counted and must be cleaned up appropriately. */
2213 static struct cfg80211_bss *
cfg80211_inform_single_bss_data(struct wiphy * wiphy,struct cfg80211_inform_single_bss_data * data,gfp_t gfp)2214 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
2215 struct cfg80211_inform_single_bss_data *data,
2216 gfp_t gfp)
2217 {
2218 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2219 struct cfg80211_inform_bss *drv_data = data->drv_data;
2220 struct cfg80211_bss_ies *ies;
2221 struct ieee80211_channel *channel;
2222 struct cfg80211_internal_bss tmp = {}, *res;
2223 int bss_type;
2224 bool signal_valid;
2225 unsigned long ts;
2226
2227 if (WARN_ON(!wiphy))
2228 return NULL;
2229
2230 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2231 (drv_data->signal < 0 || drv_data->signal > 100)))
2232 return NULL;
2233
2234 if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss))
2235 return NULL;
2236
2237 channel = data->channel;
2238 if (!channel)
2239 channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen,
2240 drv_data->chan);
2241 if (!channel)
2242 return NULL;
2243
2244 if (channel->band == NL80211_BAND_6GHZ &&
2245 !cfg80211_6ghz_power_type_valid(data->ie, data->ielen,
2246 channel->flags)) {
2247 data->use_for = 0;
2248 data->cannot_use_reasons =
2249 NL80211_BSS_CANNOT_USE_6GHZ_PWR_MISMATCH;
2250 }
2251
2252 memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN);
2253 tmp.pub.channel = channel;
2254 if (data->bss_source != BSS_SOURCE_STA_PROFILE)
2255 tmp.pub.signal = drv_data->signal;
2256 else
2257 tmp.pub.signal = 0;
2258 tmp.pub.beacon_interval = data->beacon_interval;
2259 tmp.pub.capability = data->capability;
2260 tmp.ts_boottime = drv_data->boottime_ns;
2261 tmp.parent_tsf = drv_data->parent_tsf;
2262 ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid);
2263 tmp.pub.chains = drv_data->chains;
2264 memcpy(tmp.pub.chain_signal, drv_data->chain_signal,
2265 IEEE80211_MAX_CHAINS);
2266 tmp.pub.use_for = data->use_for;
2267 tmp.pub.cannot_use_reasons = data->cannot_use_reasons;
2268 tmp.bss_source = data->bss_source;
2269
2270 switch (data->bss_source) {
2271 case BSS_SOURCE_MBSSID:
2272 tmp.pub.transmitted_bss = data->source_bss;
2273 fallthrough;
2274 case BSS_SOURCE_STA_PROFILE:
2275 ts = bss_from_pub(data->source_bss)->ts;
2276 tmp.pub.bssid_index = data->bssid_index;
2277 tmp.pub.max_bssid_indicator = data->max_bssid_indicator;
2278 break;
2279 case BSS_SOURCE_DIRECT:
2280 ts = jiffies;
2281
2282 if (channel->band == NL80211_BAND_60GHZ) {
2283 bss_type = data->capability &
2284 WLAN_CAPABILITY_DMG_TYPE_MASK;
2285 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2286 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2287 regulatory_hint_found_beacon(wiphy, channel,
2288 gfp);
2289 } else {
2290 if (data->capability & WLAN_CAPABILITY_ESS)
2291 regulatory_hint_found_beacon(wiphy, channel,
2292 gfp);
2293 }
2294 break;
2295 }
2296
2297 /*
2298 * If we do not know here whether the IEs are from a Beacon or Probe
2299 * Response frame, we need to pick one of the options and only use it
2300 * with the driver that does not provide the full Beacon/Probe Response
2301 * frame. Use Beacon frame pointer to avoid indicating that this should
2302 * override the IEs pointer should we have received an earlier
2303 * indication of Probe Response data.
2304 */
2305 ies = kzalloc(sizeof(*ies) + data->ielen, gfp);
2306 if (!ies)
2307 return NULL;
2308 ies->len = data->ielen;
2309 ies->tsf = data->tsf;
2310 ies->from_beacon = false;
2311 memcpy(ies->data, data->ie, data->ielen);
2312
2313 switch (data->ftype) {
2314 case CFG80211_BSS_FTYPE_BEACON:
2315 case CFG80211_BSS_FTYPE_S1G_BEACON:
2316 ies->from_beacon = true;
2317 fallthrough;
2318 case CFG80211_BSS_FTYPE_UNKNOWN:
2319 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2320 break;
2321 case CFG80211_BSS_FTYPE_PRESP:
2322 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2323 break;
2324 }
2325 rcu_assign_pointer(tmp.pub.ies, ies);
2326
2327 signal_valid = drv_data->chan == channel;
2328 spin_lock_bh(&rdev->bss_lock);
2329 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts);
2330 if (!res)
2331 goto drop;
2332
2333 rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data);
2334
2335 if (data->bss_source == BSS_SOURCE_MBSSID) {
2336 /* this is a nontransmitting bss, we need to add it to
2337 * transmitting bss' list if it is not there
2338 */
2339 if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) {
2340 if (__cfg80211_unlink_bss(rdev, res)) {
2341 rdev->bss_generation++;
2342 res = NULL;
2343 }
2344 }
2345
2346 if (!res)
2347 goto drop;
2348 }
2349 spin_unlock_bh(&rdev->bss_lock);
2350
2351 trace_cfg80211_return_bss(&res->pub);
2352 /* __cfg80211_bss_update gives us a referenced result */
2353 return &res->pub;
2354
2355 drop:
2356 spin_unlock_bh(&rdev->bss_lock);
2357 return NULL;
2358 }
2359
2360 static const struct element
cfg80211_get_profile_continuation(const u8 * ie,size_t ielen,const struct element * mbssid_elem,const struct element * sub_elem)2361 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2362 const struct element *mbssid_elem,
2363 const struct element *sub_elem)
2364 {
2365 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2366 const struct element *next_mbssid;
2367 const struct element *next_sub;
2368
2369 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2370 mbssid_end,
2371 ielen - (mbssid_end - ie));
2372
2373 /*
2374 * If it is not the last subelement in current MBSSID IE or there isn't
2375 * a next MBSSID IE - profile is complete.
2376 */
2377 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2378 !next_mbssid)
2379 return NULL;
2380
2381 /* For any length error, just return NULL */
2382
2383 if (next_mbssid->datalen < 4)
2384 return NULL;
2385
2386 next_sub = (void *)&next_mbssid->data[1];
2387
2388 if (next_mbssid->data + next_mbssid->datalen <
2389 next_sub->data + next_sub->datalen)
2390 return NULL;
2391
2392 if (next_sub->id != 0 || next_sub->datalen < 2)
2393 return NULL;
2394
2395 /*
2396 * Check if the first element in the next sub element is a start
2397 * of a new profile
2398 */
2399 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2400 NULL : next_mbssid;
2401 }
2402
cfg80211_merge_profile(const u8 * ie,size_t ielen,const struct element * mbssid_elem,const struct element * sub_elem,u8 * merged_ie,size_t max_copy_len)2403 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2404 const struct element *mbssid_elem,
2405 const struct element *sub_elem,
2406 u8 *merged_ie, size_t max_copy_len)
2407 {
2408 size_t copied_len = sub_elem->datalen;
2409 const struct element *next_mbssid;
2410
2411 if (sub_elem->datalen > max_copy_len)
2412 return 0;
2413
2414 memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2415
2416 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2417 mbssid_elem,
2418 sub_elem))) {
2419 const struct element *next_sub = (void *)&next_mbssid->data[1];
2420
2421 if (copied_len + next_sub->datalen > max_copy_len)
2422 break;
2423 memcpy(merged_ie + copied_len, next_sub->data,
2424 next_sub->datalen);
2425 copied_len += next_sub->datalen;
2426 }
2427
2428 return copied_len;
2429 }
2430 EXPORT_SYMBOL(cfg80211_merge_profile);
2431
2432 static void
cfg80211_parse_mbssid_data(struct wiphy * wiphy,struct cfg80211_inform_single_bss_data * tx_data,struct cfg80211_bss * source_bss,gfp_t gfp)2433 cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2434 struct cfg80211_inform_single_bss_data *tx_data,
2435 struct cfg80211_bss *source_bss,
2436 gfp_t gfp)
2437 {
2438 struct cfg80211_inform_single_bss_data data = {
2439 .drv_data = tx_data->drv_data,
2440 .ftype = tx_data->ftype,
2441 .tsf = tx_data->tsf,
2442 .beacon_interval = tx_data->beacon_interval,
2443 .source_bss = source_bss,
2444 .bss_source = BSS_SOURCE_MBSSID,
2445 .use_for = tx_data->use_for,
2446 .cannot_use_reasons = tx_data->cannot_use_reasons,
2447 };
2448 const u8 *mbssid_index_ie;
2449 const struct element *elem, *sub;
2450 u8 *new_ie, *profile;
2451 u64 seen_indices = 0;
2452 struct cfg80211_bss *bss;
2453
2454 if (!source_bss)
2455 return;
2456 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2457 tx_data->ie, tx_data->ielen))
2458 return;
2459 if (!wiphy->support_mbssid)
2460 return;
2461 if (wiphy->support_only_he_mbssid &&
2462 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY,
2463 tx_data->ie, tx_data->ielen))
2464 return;
2465
2466 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2467 if (!new_ie)
2468 return;
2469
2470 profile = kmalloc(tx_data->ielen, gfp);
2471 if (!profile)
2472 goto out;
2473
2474 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID,
2475 tx_data->ie, tx_data->ielen) {
2476 if (elem->datalen < 4)
2477 continue;
2478 if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2479 continue;
2480 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2481 u8 profile_len;
2482
2483 if (sub->id != 0 || sub->datalen < 4) {
2484 /* not a valid BSS profile */
2485 continue;
2486 }
2487
2488 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2489 sub->data[1] != 2) {
2490 /* The first element within the Nontransmitted
2491 * BSSID Profile is not the Nontransmitted
2492 * BSSID Capability element.
2493 */
2494 continue;
2495 }
2496
2497 memset(profile, 0, tx_data->ielen);
2498 profile_len = cfg80211_merge_profile(tx_data->ie,
2499 tx_data->ielen,
2500 elem,
2501 sub,
2502 profile,
2503 tx_data->ielen);
2504
2505 /* found a Nontransmitted BSSID Profile */
2506 mbssid_index_ie = cfg80211_find_ie
2507 (WLAN_EID_MULTI_BSSID_IDX,
2508 profile, profile_len);
2509 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2510 mbssid_index_ie[2] == 0 ||
2511 mbssid_index_ie[2] > 46 ||
2512 mbssid_index_ie[2] >= (1 << elem->data[0])) {
2513 /* No valid Multiple BSSID-Index element */
2514 continue;
2515 }
2516
2517 if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2518 /* We don't support legacy split of a profile */
2519 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2520 mbssid_index_ie[2]);
2521
2522 seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2523
2524 data.bssid_index = mbssid_index_ie[2];
2525 data.max_bssid_indicator = elem->data[0];
2526
2527 cfg80211_gen_new_bssid(tx_data->bssid,
2528 data.max_bssid_indicator,
2529 data.bssid_index,
2530 data.bssid);
2531
2532 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2533 data.ie = new_ie;
2534 data.ielen = cfg80211_gen_new_ie(tx_data->ie,
2535 tx_data->ielen,
2536 profile,
2537 profile_len,
2538 new_ie,
2539 IEEE80211_MAX_DATA_LEN);
2540 if (!data.ielen)
2541 continue;
2542
2543 data.capability = get_unaligned_le16(profile + 2);
2544 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2545 if (!bss)
2546 break;
2547 cfg80211_put_bss(wiphy, bss);
2548 }
2549 }
2550
2551 out:
2552 kfree(new_ie);
2553 kfree(profile);
2554 }
2555
cfg80211_defragment_element(const struct element * elem,const u8 * ies,size_t ieslen,u8 * data,size_t data_len,u8 frag_id)2556 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
2557 size_t ieslen, u8 *data, size_t data_len,
2558 u8 frag_id)
2559 {
2560 const struct element *next;
2561 ssize_t copied;
2562 u8 elem_datalen;
2563
2564 if (!elem)
2565 return -EINVAL;
2566
2567 /* elem might be invalid after the memmove */
2568 next = (void *)(elem->data + elem->datalen);
2569 elem_datalen = elem->datalen;
2570
2571 if (elem->id == WLAN_EID_EXTENSION) {
2572 copied = elem->datalen - 1;
2573
2574 if (data) {
2575 if (copied > data_len)
2576 return -ENOSPC;
2577
2578 memmove(data, elem->data + 1, copied);
2579 }
2580 } else {
2581 copied = elem->datalen;
2582
2583 if (data) {
2584 if (copied > data_len)
2585 return -ENOSPC;
2586
2587 memmove(data, elem->data, copied);
2588 }
2589 }
2590
2591 /* Fragmented elements must have 255 bytes */
2592 if (elem_datalen < 255)
2593 return copied;
2594
2595 for (elem = next;
2596 elem->data < ies + ieslen &&
2597 elem->data + elem->datalen <= ies + ieslen;
2598 elem = next) {
2599 /* elem might be invalid after the memmove */
2600 next = (void *)(elem->data + elem->datalen);
2601
2602 if (elem->id != frag_id)
2603 break;
2604
2605 elem_datalen = elem->datalen;
2606
2607 if (data) {
2608 if (copied + elem_datalen > data_len)
2609 return -ENOSPC;
2610
2611 memmove(data + copied, elem->data, elem_datalen);
2612 }
2613
2614 copied += elem_datalen;
2615
2616 /* Only the last fragment may be short */
2617 if (elem_datalen != 255)
2618 break;
2619 }
2620
2621 return copied;
2622 }
2623 EXPORT_SYMBOL(cfg80211_defragment_element);
2624
2625 struct cfg80211_mle {
2626 struct ieee80211_multi_link_elem *mle;
2627 struct ieee80211_mle_per_sta_profile
2628 *sta_prof[IEEE80211_MLD_MAX_NUM_LINKS];
2629 ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS];
2630
2631 u8 data[];
2632 };
2633
2634 static struct cfg80211_mle *
cfg80211_defrag_mle(const struct element * mle,const u8 * ie,size_t ielen,gfp_t gfp)2635 cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen,
2636 gfp_t gfp)
2637 {
2638 const struct element *elem;
2639 struct cfg80211_mle *res;
2640 size_t buf_len;
2641 ssize_t mle_len;
2642 u8 common_size, idx;
2643
2644 if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1))
2645 return NULL;
2646
2647 /* Required length for first defragmentation */
2648 buf_len = mle->datalen - 1;
2649 for_each_element(elem, mle->data + mle->datalen,
2650 ielen - sizeof(*mle) + mle->datalen) {
2651 if (elem->id != WLAN_EID_FRAGMENT)
2652 break;
2653
2654 buf_len += elem->datalen;
2655 }
2656
2657 res = kzalloc(struct_size(res, data, buf_len), gfp);
2658 if (!res)
2659 return NULL;
2660
2661 mle_len = cfg80211_defragment_element(mle, ie, ielen,
2662 res->data, buf_len,
2663 WLAN_EID_FRAGMENT);
2664 if (mle_len < 0)
2665 goto error;
2666
2667 res->mle = (void *)res->data;
2668
2669 /* Find the sub-element area in the buffer */
2670 common_size = ieee80211_mle_common_size((u8 *)res->mle);
2671 ie = res->data + common_size;
2672 ielen = mle_len - common_size;
2673
2674 idx = 0;
2675 for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE,
2676 ie, ielen) {
2677 res->sta_prof[idx] = (void *)elem->data;
2678 res->sta_prof_len[idx] = elem->datalen;
2679
2680 idx++;
2681 if (idx >= IEEE80211_MLD_MAX_NUM_LINKS)
2682 break;
2683 }
2684 if (!for_each_element_completed(elem, ie, ielen))
2685 goto error;
2686
2687 /* Defragment sta_info in-place */
2688 for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx];
2689 idx++) {
2690 if (res->sta_prof_len[idx] < 255)
2691 continue;
2692
2693 elem = (void *)res->sta_prof[idx] - 2;
2694
2695 if (idx + 1 < ARRAY_SIZE(res->sta_prof) &&
2696 res->sta_prof[idx + 1])
2697 buf_len = (u8 *)res->sta_prof[idx + 1] -
2698 (u8 *)res->sta_prof[idx];
2699 else
2700 buf_len = ielen + ie - (u8 *)elem;
2701
2702 res->sta_prof_len[idx] =
2703 cfg80211_defragment_element(elem,
2704 (u8 *)elem, buf_len,
2705 (u8 *)res->sta_prof[idx],
2706 buf_len,
2707 IEEE80211_MLE_SUBELEM_FRAGMENT);
2708 if (res->sta_prof_len[idx] < 0)
2709 goto error;
2710 }
2711
2712 return res;
2713
2714 error:
2715 kfree(res);
2716 return NULL;
2717 }
2718
2719 struct tbtt_info_iter_data {
2720 const struct ieee80211_neighbor_ap_info *ap_info;
2721 u8 param_ch_count;
2722 u32 use_for;
2723 u8 mld_id, link_id;
2724 bool non_tx;
2725 };
2726
2727 static enum cfg80211_rnr_iter_ret
cfg802121_mld_ap_rnr_iter(void * _data,u8 type,const struct ieee80211_neighbor_ap_info * info,const u8 * tbtt_info,u8 tbtt_info_len)2728 cfg802121_mld_ap_rnr_iter(void *_data, u8 type,
2729 const struct ieee80211_neighbor_ap_info *info,
2730 const u8 *tbtt_info, u8 tbtt_info_len)
2731 {
2732 const struct ieee80211_rnr_mld_params *mld_params;
2733 struct tbtt_info_iter_data *data = _data;
2734 u8 link_id;
2735 bool non_tx = false;
2736
2737 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT &&
2738 tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
2739 mld_params)) {
2740 const struct ieee80211_tbtt_info_ge_11 *tbtt_info_ge_11 =
2741 (void *)tbtt_info;
2742
2743 non_tx = (tbtt_info_ge_11->bss_params &
2744 (IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID |
2745 IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID)) ==
2746 IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
2747 mld_params = &tbtt_info_ge_11->mld_params;
2748 } else if (type == IEEE80211_TBTT_INFO_TYPE_MLD &&
2749 tbtt_info_len >= sizeof(struct ieee80211_rnr_mld_params))
2750 mld_params = (void *)tbtt_info;
2751 else
2752 return RNR_ITER_CONTINUE;
2753
2754 link_id = le16_get_bits(mld_params->params,
2755 IEEE80211_RNR_MLD_PARAMS_LINK_ID);
2756
2757 if (data->mld_id != mld_params->mld_id)
2758 return RNR_ITER_CONTINUE;
2759
2760 if (data->link_id != link_id)
2761 return RNR_ITER_CONTINUE;
2762
2763 data->ap_info = info;
2764 data->param_ch_count =
2765 le16_get_bits(mld_params->params,
2766 IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2767 data->non_tx = non_tx;
2768
2769 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT)
2770 data->use_for = NL80211_BSS_USE_FOR_ALL;
2771 else
2772 data->use_for = NL80211_BSS_USE_FOR_MLD_LINK;
2773 return RNR_ITER_BREAK;
2774 }
2775
2776 static u8
cfg80211_rnr_info_for_mld_ap(const u8 * ie,size_t ielen,u8 mld_id,u8 link_id,const struct ieee80211_neighbor_ap_info ** ap_info,u8 * param_ch_count,bool * non_tx)2777 cfg80211_rnr_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id,
2778 const struct ieee80211_neighbor_ap_info **ap_info,
2779 u8 *param_ch_count, bool *non_tx)
2780 {
2781 struct tbtt_info_iter_data data = {
2782 .mld_id = mld_id,
2783 .link_id = link_id,
2784 };
2785
2786 cfg80211_iter_rnr(ie, ielen, cfg802121_mld_ap_rnr_iter, &data);
2787
2788 *ap_info = data.ap_info;
2789 *param_ch_count = data.param_ch_count;
2790 *non_tx = data.non_tx;
2791
2792 return data.use_for;
2793 }
2794
2795 static struct element *
cfg80211_gen_reporter_rnr(struct cfg80211_bss * source_bss,bool is_mbssid,bool same_mld,u8 link_id,u8 bss_change_count,gfp_t gfp)2796 cfg80211_gen_reporter_rnr(struct cfg80211_bss *source_bss, bool is_mbssid,
2797 bool same_mld, u8 link_id, u8 bss_change_count,
2798 gfp_t gfp)
2799 {
2800 const struct cfg80211_bss_ies *ies;
2801 struct ieee80211_neighbor_ap_info ap_info;
2802 struct ieee80211_tbtt_info_ge_11 tbtt_info;
2803 u32 short_ssid;
2804 const struct element *elem;
2805 struct element *res;
2806
2807 /*
2808 * We only generate the RNR to permit ML lookups. For that we do not
2809 * need an entry for the corresponding transmitting BSS, lets just skip
2810 * it even though it would be easy to add.
2811 */
2812 if (!same_mld)
2813 return NULL;
2814
2815 /* We could use tx_data->ies if we change cfg80211_calc_short_ssid */
2816 rcu_read_lock();
2817 ies = rcu_dereference(source_bss->ies);
2818
2819 ap_info.tbtt_info_len = offsetofend(typeof(tbtt_info), mld_params);
2820 ap_info.tbtt_info_hdr =
2821 u8_encode_bits(IEEE80211_TBTT_INFO_TYPE_TBTT,
2822 IEEE80211_AP_INFO_TBTT_HDR_TYPE) |
2823 u8_encode_bits(0, IEEE80211_AP_INFO_TBTT_HDR_COUNT);
2824
2825 ap_info.channel = ieee80211_frequency_to_channel(source_bss->channel->center_freq);
2826
2827 /* operating class */
2828 elem = cfg80211_find_elem(WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
2829 ies->data, ies->len);
2830 if (elem && elem->datalen >= 1) {
2831 ap_info.op_class = elem->data[0];
2832 } else {
2833 struct cfg80211_chan_def chandef;
2834
2835 /* The AP is not providing us with anything to work with. So
2836 * make up a somewhat reasonable operating class, but don't
2837 * bother with it too much as no one will ever use the
2838 * information.
2839 */
2840 cfg80211_chandef_create(&chandef, source_bss->channel,
2841 NL80211_CHAN_NO_HT);
2842
2843 if (!ieee80211_chandef_to_operating_class(&chandef,
2844 &ap_info.op_class))
2845 goto out_unlock;
2846 }
2847
2848 /* Just set TBTT offset and PSD 20 to invalid/unknown */
2849 tbtt_info.tbtt_offset = 255;
2850 tbtt_info.psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
2851
2852 memcpy(tbtt_info.bssid, source_bss->bssid, ETH_ALEN);
2853 if (cfg80211_calc_short_ssid(ies, &elem, &short_ssid))
2854 goto out_unlock;
2855
2856 rcu_read_unlock();
2857
2858 tbtt_info.short_ssid = cpu_to_le32(short_ssid);
2859
2860 tbtt_info.bss_params = IEEE80211_RNR_TBTT_PARAMS_SAME_SSID;
2861
2862 if (is_mbssid) {
2863 tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
2864 tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID;
2865 }
2866
2867 tbtt_info.mld_params.mld_id = 0;
2868 tbtt_info.mld_params.params =
2869 le16_encode_bits(link_id, IEEE80211_RNR_MLD_PARAMS_LINK_ID) |
2870 le16_encode_bits(bss_change_count,
2871 IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2872
2873 res = kzalloc(struct_size(res, data,
2874 sizeof(ap_info) + ap_info.tbtt_info_len),
2875 gfp);
2876 if (!res)
2877 return NULL;
2878
2879 /* Copy the data */
2880 res->id = WLAN_EID_REDUCED_NEIGHBOR_REPORT;
2881 res->datalen = sizeof(ap_info) + ap_info.tbtt_info_len;
2882 memcpy(res->data, &ap_info, sizeof(ap_info));
2883 memcpy(res->data + sizeof(ap_info), &tbtt_info, ap_info.tbtt_info_len);
2884
2885 return res;
2886
2887 out_unlock:
2888 rcu_read_unlock();
2889 return NULL;
2890 }
2891
2892 static void
cfg80211_parse_ml_elem_sta_data(struct wiphy * wiphy,struct cfg80211_inform_single_bss_data * tx_data,struct cfg80211_bss * source_bss,const struct element * elem,gfp_t gfp)2893 cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy,
2894 struct cfg80211_inform_single_bss_data *tx_data,
2895 struct cfg80211_bss *source_bss,
2896 const struct element *elem,
2897 gfp_t gfp)
2898 {
2899 struct cfg80211_inform_single_bss_data data = {
2900 .drv_data = tx_data->drv_data,
2901 .ftype = tx_data->ftype,
2902 .source_bss = source_bss,
2903 .bss_source = BSS_SOURCE_STA_PROFILE,
2904 };
2905 struct element *reporter_rnr = NULL;
2906 struct ieee80211_multi_link_elem *ml_elem;
2907 struct cfg80211_mle *mle;
2908 const struct element *ssid_elem;
2909 const u8 *ssid = NULL;
2910 size_t ssid_len = 0;
2911 u16 control;
2912 u8 ml_common_len;
2913 u8 *new_ie = NULL;
2914 struct cfg80211_bss *bss;
2915 u8 mld_id, reporter_link_id, bss_change_count;
2916 u16 seen_links = 0;
2917 u8 i;
2918
2919 if (!ieee80211_mle_type_ok(elem->data + 1,
2920 IEEE80211_ML_CONTROL_TYPE_BASIC,
2921 elem->datalen - 1))
2922 return;
2923
2924 ml_elem = (void *)(elem->data + 1);
2925 control = le16_to_cpu(ml_elem->control);
2926 ml_common_len = ml_elem->variable[0];
2927
2928 /* Must be present when transmitted by an AP (in a probe response) */
2929 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) ||
2930 !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) ||
2931 !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
2932 return;
2933
2934 reporter_link_id = ieee80211_mle_get_link_id(elem->data + 1);
2935 bss_change_count = ieee80211_mle_get_bss_param_ch_cnt(elem->data + 1);
2936
2937 /*
2938 * The MLD ID of the reporting AP is always zero. It is set if the AP
2939 * is part of an MBSSID set and will be non-zero for ML Elements
2940 * relating to a nontransmitted BSS (matching the Multi-BSSID Index,
2941 * Draft P802.11be_D3.2, 35.3.4.2)
2942 */
2943 mld_id = ieee80211_mle_get_mld_id(elem->data + 1);
2944
2945 /* Fully defrag the ML element for sta information/profile iteration */
2946 mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp);
2947 if (!mle)
2948 return;
2949
2950 /* No point in doing anything if there is no per-STA profile */
2951 if (!mle->sta_prof[0])
2952 goto out;
2953
2954 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2955 if (!new_ie)
2956 goto out;
2957
2958 reporter_rnr = cfg80211_gen_reporter_rnr(source_bss,
2959 u16_get_bits(control,
2960 IEEE80211_MLC_BASIC_PRES_MLD_ID),
2961 mld_id == 0, reporter_link_id,
2962 bss_change_count,
2963 gfp);
2964
2965 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, tx_data->ie,
2966 tx_data->ielen);
2967 if (ssid_elem) {
2968 ssid = ssid_elem->data;
2969 ssid_len = ssid_elem->datalen;
2970 }
2971
2972 for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) {
2973 const struct ieee80211_neighbor_ap_info *ap_info;
2974 enum nl80211_band band;
2975 u32 freq;
2976 const u8 *profile;
2977 ssize_t profile_len;
2978 u8 param_ch_count;
2979 u8 link_id, use_for;
2980 bool non_tx;
2981
2982 if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i],
2983 mle->sta_prof_len[i]))
2984 continue;
2985
2986 control = le16_to_cpu(mle->sta_prof[i]->control);
2987
2988 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
2989 continue;
2990
2991 link_id = u16_get_bits(control,
2992 IEEE80211_MLE_STA_CONTROL_LINK_ID);
2993 if (seen_links & BIT(link_id))
2994 break;
2995 seen_links |= BIT(link_id);
2996
2997 if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) ||
2998 !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) ||
2999 !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT))
3000 continue;
3001
3002 memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN);
3003 data.beacon_interval =
3004 get_unaligned_le16(mle->sta_prof[i]->variable + 6);
3005 data.tsf = tx_data->tsf +
3006 get_unaligned_le64(mle->sta_prof[i]->variable + 8);
3007
3008 /* sta_info_len counts itself */
3009 profile = mle->sta_prof[i]->variable +
3010 mle->sta_prof[i]->sta_info_len - 1;
3011 profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] -
3012 profile;
3013
3014 if (profile_len < 2)
3015 continue;
3016
3017 data.capability = get_unaligned_le16(profile);
3018 profile += 2;
3019 profile_len -= 2;
3020
3021 /* Find in RNR to look up channel information */
3022 use_for = cfg80211_rnr_info_for_mld_ap(tx_data->ie,
3023 tx_data->ielen,
3024 mld_id, link_id,
3025 &ap_info,
3026 ¶m_ch_count,
3027 &non_tx);
3028 if (!use_for)
3029 continue;
3030
3031 /*
3032 * As of 802.11be_D5.0, the specification does not give us any
3033 * way of discovering both the MaxBSSID and the Multiple-BSSID
3034 * Index. It does seem like the Multiple-BSSID Index element
3035 * may be provided, but section 9.4.2.45 explicitly forbids
3036 * including a Multiple-BSSID Element (in this case without any
3037 * subelements).
3038 * Without both pieces of information we cannot calculate the
3039 * reference BSSID, so simply ignore the BSS.
3040 */
3041 if (non_tx)
3042 continue;
3043
3044 /* We could sanity check the BSSID is included */
3045
3046 if (!ieee80211_operating_class_to_band(ap_info->op_class,
3047 &band))
3048 continue;
3049
3050 freq = ieee80211_channel_to_freq_khz(ap_info->channel, band);
3051 data.channel = ieee80211_get_channel_khz(wiphy, freq);
3052
3053 /* Skip if RNR element specifies an unsupported channel */
3054 if (!data.channel)
3055 continue;
3056
3057 /* Skip if BSS entry generated from MBSSID or DIRECT source
3058 * frame data available already.
3059 */
3060 bss = cfg80211_get_bss(wiphy, data.channel, data.bssid, ssid,
3061 ssid_len, IEEE80211_BSS_TYPE_ANY,
3062 IEEE80211_PRIVACY_ANY);
3063 if (bss) {
3064 struct cfg80211_internal_bss *ibss = bss_from_pub(bss);
3065
3066 if (data.capability == bss->capability &&
3067 ibss->bss_source != BSS_SOURCE_STA_PROFILE) {
3068 cfg80211_put_bss(wiphy, bss);
3069 continue;
3070 }
3071 cfg80211_put_bss(wiphy, bss);
3072 }
3073
3074 if (use_for == NL80211_BSS_USE_FOR_MLD_LINK &&
3075 !(wiphy->flags & WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY)) {
3076 use_for = 0;
3077 data.cannot_use_reasons =
3078 NL80211_BSS_CANNOT_USE_NSTR_NONPRIMARY;
3079 }
3080 data.use_for = use_for;
3081
3082 /* Generate new elements */
3083 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
3084 data.ie = new_ie;
3085 data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen,
3086 profile, profile_len,
3087 new_ie,
3088 IEEE80211_MAX_DATA_LEN);
3089 if (!data.ielen)
3090 continue;
3091
3092 /* The generated elements do not contain:
3093 * - Basic ML element
3094 * - A TBTT entry in the RNR for the transmitting AP
3095 *
3096 * This information is needed both internally and in userspace
3097 * as such, we should append it here.
3098 */
3099 if (data.ielen + 3 + sizeof(*ml_elem) + ml_common_len >
3100 IEEE80211_MAX_DATA_LEN)
3101 continue;
3102
3103 /* Copy the Basic Multi-Link element including the common
3104 * information, and then fix up the link ID and BSS param
3105 * change count.
3106 * Note that the ML element length has been verified and we
3107 * also checked that it contains the link ID.
3108 */
3109 new_ie[data.ielen++] = WLAN_EID_EXTENSION;
3110 new_ie[data.ielen++] = 1 + sizeof(*ml_elem) + ml_common_len;
3111 new_ie[data.ielen++] = WLAN_EID_EXT_EHT_MULTI_LINK;
3112 memcpy(new_ie + data.ielen, ml_elem,
3113 sizeof(*ml_elem) + ml_common_len);
3114
3115 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN] = link_id;
3116 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN + 1] =
3117 param_ch_count;
3118
3119 data.ielen += sizeof(*ml_elem) + ml_common_len;
3120
3121 if (reporter_rnr && (use_for & NL80211_BSS_USE_FOR_NORMAL)) {
3122 if (data.ielen + sizeof(struct element) +
3123 reporter_rnr->datalen > IEEE80211_MAX_DATA_LEN)
3124 continue;
3125
3126 memcpy(new_ie + data.ielen, reporter_rnr,
3127 sizeof(struct element) + reporter_rnr->datalen);
3128 data.ielen += sizeof(struct element) +
3129 reporter_rnr->datalen;
3130 }
3131
3132 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
3133 if (!bss)
3134 break;
3135 cfg80211_put_bss(wiphy, bss);
3136 }
3137
3138 out:
3139 kfree(reporter_rnr);
3140 kfree(new_ie);
3141 kfree(mle);
3142 }
3143
cfg80211_parse_ml_sta_data(struct wiphy * wiphy,struct cfg80211_inform_single_bss_data * tx_data,struct cfg80211_bss * source_bss,gfp_t gfp)3144 static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy,
3145 struct cfg80211_inform_single_bss_data *tx_data,
3146 struct cfg80211_bss *source_bss,
3147 gfp_t gfp)
3148 {
3149 const struct element *elem;
3150
3151 if (!source_bss)
3152 return;
3153
3154 if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP)
3155 return;
3156
3157 for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK,
3158 tx_data->ie, tx_data->ielen)
3159 cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss,
3160 elem, gfp);
3161 }
3162
3163 struct cfg80211_bss *
cfg80211_inform_bss_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 capability,u16 beacon_interval,const u8 * ie,size_t ielen,gfp_t gfp)3164 cfg80211_inform_bss_data(struct wiphy *wiphy,
3165 struct cfg80211_inform_bss *data,
3166 enum cfg80211_bss_frame_type ftype,
3167 const u8 *bssid, u64 tsf, u16 capability,
3168 u16 beacon_interval, const u8 *ie, size_t ielen,
3169 gfp_t gfp)
3170 {
3171 struct cfg80211_inform_single_bss_data inform_data = {
3172 .drv_data = data,
3173 .ftype = ftype,
3174 .tsf = tsf,
3175 .capability = capability,
3176 .beacon_interval = beacon_interval,
3177 .ie = ie,
3178 .ielen = ielen,
3179 .use_for = data->restrict_use ?
3180 data->use_for :
3181 NL80211_BSS_USE_FOR_ALL,
3182 .cannot_use_reasons = data->cannot_use_reasons,
3183 };
3184 struct cfg80211_bss *res;
3185
3186 memcpy(inform_data.bssid, bssid, ETH_ALEN);
3187
3188 res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp);
3189 if (!res)
3190 return NULL;
3191
3192 /* don't do any further MBSSID/ML handling for S1G */
3193 if (ftype == CFG80211_BSS_FTYPE_S1G_BEACON)
3194 return res;
3195
3196 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
3197
3198 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
3199
3200 return res;
3201 }
3202 EXPORT_SYMBOL(cfg80211_inform_bss_data);
3203
3204 struct cfg80211_bss *
cfg80211_inform_bss_frame_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,struct ieee80211_mgmt * mgmt,size_t len,gfp_t gfp)3205 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
3206 struct cfg80211_inform_bss *data,
3207 struct ieee80211_mgmt *mgmt, size_t len,
3208 gfp_t gfp)
3209 {
3210 size_t min_hdr_len;
3211 struct ieee80211_ext *ext = NULL;
3212 enum cfg80211_bss_frame_type ftype;
3213 u16 beacon_interval;
3214 const u8 *bssid;
3215 u16 capability;
3216 const u8 *ie;
3217 size_t ielen;
3218 u64 tsf;
3219
3220 if (WARN_ON(!mgmt))
3221 return NULL;
3222
3223 if (WARN_ON(!wiphy))
3224 return NULL;
3225
3226 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
3227 offsetof(struct ieee80211_mgmt, u.beacon.variable));
3228
3229 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
3230
3231 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
3232 ext = (void *) mgmt;
3233 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
3234 min_hdr_len = offsetof(struct ieee80211_ext,
3235 u.s1g_short_beacon.variable);
3236 else
3237 min_hdr_len = offsetof(struct ieee80211_ext,
3238 u.s1g_beacon.variable);
3239 } else {
3240 /* same for beacons */
3241 min_hdr_len = offsetof(struct ieee80211_mgmt,
3242 u.probe_resp.variable);
3243 }
3244
3245 if (WARN_ON(len < min_hdr_len))
3246 return NULL;
3247
3248 ielen = len - min_hdr_len;
3249 ie = mgmt->u.probe_resp.variable;
3250 if (ext) {
3251 const struct ieee80211_s1g_bcn_compat_ie *compat;
3252 const struct element *elem;
3253
3254 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
3255 ie = ext->u.s1g_short_beacon.variable;
3256 else
3257 ie = ext->u.s1g_beacon.variable;
3258
3259 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, ie, ielen);
3260 if (!elem)
3261 return NULL;
3262 if (elem->datalen < sizeof(*compat))
3263 return NULL;
3264 compat = (void *)elem->data;
3265 bssid = ext->u.s1g_beacon.sa;
3266 capability = le16_to_cpu(compat->compat_info);
3267 beacon_interval = le16_to_cpu(compat->beacon_int);
3268 } else {
3269 bssid = mgmt->bssid;
3270 beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
3271 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
3272 }
3273
3274 tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
3275
3276 if (ieee80211_is_probe_resp(mgmt->frame_control))
3277 ftype = CFG80211_BSS_FTYPE_PRESP;
3278 else if (ext)
3279 ftype = CFG80211_BSS_FTYPE_S1G_BEACON;
3280 else
3281 ftype = CFG80211_BSS_FTYPE_BEACON;
3282
3283 return cfg80211_inform_bss_data(wiphy, data, ftype,
3284 bssid, tsf, capability,
3285 beacon_interval, ie, ielen,
3286 gfp);
3287 }
3288 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
3289
cfg80211_ref_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)3290 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3291 {
3292 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3293
3294 if (!pub)
3295 return;
3296
3297 spin_lock_bh(&rdev->bss_lock);
3298 bss_ref_get(rdev, bss_from_pub(pub));
3299 spin_unlock_bh(&rdev->bss_lock);
3300 }
3301 EXPORT_SYMBOL(cfg80211_ref_bss);
3302
cfg80211_put_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)3303 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3304 {
3305 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3306
3307 if (!pub)
3308 return;
3309
3310 spin_lock_bh(&rdev->bss_lock);
3311 bss_ref_put(rdev, bss_from_pub(pub));
3312 spin_unlock_bh(&rdev->bss_lock);
3313 }
3314 EXPORT_SYMBOL(cfg80211_put_bss);
3315
cfg80211_unlink_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)3316 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3317 {
3318 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3319 struct cfg80211_internal_bss *bss, *tmp1;
3320 struct cfg80211_bss *nontrans_bss, *tmp;
3321
3322 if (WARN_ON(!pub))
3323 return;
3324
3325 bss = bss_from_pub(pub);
3326
3327 spin_lock_bh(&rdev->bss_lock);
3328 if (list_empty(&bss->list))
3329 goto out;
3330
3331 list_for_each_entry_safe(nontrans_bss, tmp,
3332 &pub->nontrans_list,
3333 nontrans_list) {
3334 tmp1 = bss_from_pub(nontrans_bss);
3335 if (__cfg80211_unlink_bss(rdev, tmp1))
3336 rdev->bss_generation++;
3337 }
3338
3339 if (__cfg80211_unlink_bss(rdev, bss))
3340 rdev->bss_generation++;
3341 out:
3342 spin_unlock_bh(&rdev->bss_lock);
3343 }
3344 EXPORT_SYMBOL(cfg80211_unlink_bss);
3345
cfg80211_bss_iter(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,void (* iter)(struct wiphy * wiphy,struct cfg80211_bss * bss,void * data),void * iter_data)3346 void cfg80211_bss_iter(struct wiphy *wiphy,
3347 struct cfg80211_chan_def *chandef,
3348 void (*iter)(struct wiphy *wiphy,
3349 struct cfg80211_bss *bss,
3350 void *data),
3351 void *iter_data)
3352 {
3353 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3354 struct cfg80211_internal_bss *bss;
3355
3356 spin_lock_bh(&rdev->bss_lock);
3357
3358 list_for_each_entry(bss, &rdev->bss_list, list) {
3359 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
3360 false))
3361 iter(wiphy, &bss->pub, iter_data);
3362 }
3363
3364 spin_unlock_bh(&rdev->bss_lock);
3365 }
3366 EXPORT_SYMBOL(cfg80211_bss_iter);
3367
cfg80211_update_assoc_bss_entry(struct wireless_dev * wdev,unsigned int link_id,struct ieee80211_channel * chan)3368 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
3369 unsigned int link_id,
3370 struct ieee80211_channel *chan)
3371 {
3372 struct wiphy *wiphy = wdev->wiphy;
3373 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3374 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
3375 struct cfg80211_internal_bss *new = NULL;
3376 struct cfg80211_internal_bss *bss;
3377 struct cfg80211_bss *nontrans_bss;
3378 struct cfg80211_bss *tmp;
3379
3380 spin_lock_bh(&rdev->bss_lock);
3381
3382 /*
3383 * Some APs use CSA also for bandwidth changes, i.e., without actually
3384 * changing the control channel, so no need to update in such a case.
3385 */
3386 if (cbss->pub.channel == chan)
3387 goto done;
3388
3389 /* use transmitting bss */
3390 if (cbss->pub.transmitted_bss)
3391 cbss = bss_from_pub(cbss->pub.transmitted_bss);
3392
3393 cbss->pub.channel = chan;
3394
3395 list_for_each_entry(bss, &rdev->bss_list, list) {
3396 if (!cfg80211_bss_type_match(bss->pub.capability,
3397 bss->pub.channel->band,
3398 wdev->conn_bss_type))
3399 continue;
3400
3401 if (bss == cbss)
3402 continue;
3403
3404 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
3405 new = bss;
3406 break;
3407 }
3408 }
3409
3410 if (new) {
3411 /* to save time, update IEs for transmitting bss only */
3412 cfg80211_update_known_bss(rdev, cbss, new, false);
3413 new->pub.proberesp_ies = NULL;
3414 new->pub.beacon_ies = NULL;
3415
3416 list_for_each_entry_safe(nontrans_bss, tmp,
3417 &new->pub.nontrans_list,
3418 nontrans_list) {
3419 bss = bss_from_pub(nontrans_bss);
3420 if (__cfg80211_unlink_bss(rdev, bss))
3421 rdev->bss_generation++;
3422 }
3423
3424 WARN_ON(atomic_read(&new->hold));
3425 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
3426 rdev->bss_generation++;
3427 }
3428 cfg80211_rehash_bss(rdev, cbss);
3429
3430 list_for_each_entry_safe(nontrans_bss, tmp,
3431 &cbss->pub.nontrans_list,
3432 nontrans_list) {
3433 bss = bss_from_pub(nontrans_bss);
3434 bss->pub.channel = chan;
3435 cfg80211_rehash_bss(rdev, bss);
3436 }
3437
3438 done:
3439 spin_unlock_bh(&rdev->bss_lock);
3440 }
3441
3442 #ifdef CONFIG_CFG80211_WEXT
3443 static struct cfg80211_registered_device *
cfg80211_get_dev_from_ifindex(struct net * net,int ifindex)3444 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
3445 {
3446 struct cfg80211_registered_device *rdev;
3447 struct net_device *dev;
3448
3449 ASSERT_RTNL();
3450
3451 dev = dev_get_by_index(net, ifindex);
3452 if (!dev)
3453 return ERR_PTR(-ENODEV);
3454 if (dev->ieee80211_ptr)
3455 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
3456 else
3457 rdev = ERR_PTR(-ENODEV);
3458 dev_put(dev);
3459 return rdev;
3460 }
3461
cfg80211_wext_siwscan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)3462 int cfg80211_wext_siwscan(struct net_device *dev,
3463 struct iw_request_info *info,
3464 union iwreq_data *wrqu, char *extra)
3465 {
3466 struct cfg80211_registered_device *rdev;
3467 struct wiphy *wiphy;
3468 struct iw_scan_req *wreq = NULL;
3469 struct cfg80211_scan_request *creq;
3470 int i, err, n_channels = 0;
3471 enum nl80211_band band;
3472
3473 if (!netif_running(dev))
3474 return -ENETDOWN;
3475
3476 if (wrqu->data.length == sizeof(struct iw_scan_req))
3477 wreq = (struct iw_scan_req *)extra;
3478
3479 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3480
3481 if (IS_ERR(rdev))
3482 return PTR_ERR(rdev);
3483
3484 if (rdev->scan_req || rdev->scan_msg)
3485 return -EBUSY;
3486
3487 wiphy = &rdev->wiphy;
3488
3489 /* Determine number of channels, needed to allocate creq */
3490 if (wreq && wreq->num_channels) {
3491 /* Passed from userspace so should be checked */
3492 if (unlikely(wreq->num_channels > IW_MAX_FREQUENCIES))
3493 return -EINVAL;
3494 n_channels = wreq->num_channels;
3495 } else {
3496 n_channels = ieee80211_get_num_supported_channels(wiphy);
3497 }
3498
3499 creq = kzalloc(struct_size(creq, channels, n_channels) +
3500 sizeof(struct cfg80211_ssid),
3501 GFP_ATOMIC);
3502 if (!creq)
3503 return -ENOMEM;
3504
3505 creq->wiphy = wiphy;
3506 creq->wdev = dev->ieee80211_ptr;
3507 /* SSIDs come after channels */
3508 creq->ssids = (void *)creq + struct_size(creq, channels, n_channels);
3509 creq->n_channels = n_channels;
3510 creq->n_ssids = 1;
3511 creq->scan_start = jiffies;
3512
3513 /* translate "Scan on frequencies" request */
3514 i = 0;
3515 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3516 int j;
3517
3518 if (!wiphy->bands[band])
3519 continue;
3520
3521 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
3522 /* ignore disabled channels */
3523 if (wiphy->bands[band]->channels[j].flags &
3524 IEEE80211_CHAN_DISABLED)
3525 continue;
3526
3527 /* If we have a wireless request structure and the
3528 * wireless request specifies frequencies, then search
3529 * for the matching hardware channel.
3530 */
3531 if (wreq && wreq->num_channels) {
3532 int k;
3533 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
3534 for (k = 0; k < wreq->num_channels; k++) {
3535 struct iw_freq *freq =
3536 &wreq->channel_list[k];
3537 int wext_freq =
3538 cfg80211_wext_freq(freq);
3539
3540 if (wext_freq == wiphy_freq)
3541 goto wext_freq_found;
3542 }
3543 goto wext_freq_not_found;
3544 }
3545
3546 wext_freq_found:
3547 creq->channels[i] = &wiphy->bands[band]->channels[j];
3548 i++;
3549 wext_freq_not_found: ;
3550 }
3551 }
3552 /* No channels found? */
3553 if (!i) {
3554 err = -EINVAL;
3555 goto out;
3556 }
3557
3558 /* Set real number of channels specified in creq->channels[] */
3559 creq->n_channels = i;
3560
3561 /* translate "Scan for SSID" request */
3562 if (wreq) {
3563 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
3564 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
3565 err = -EINVAL;
3566 goto out;
3567 }
3568 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
3569 creq->ssids[0].ssid_len = wreq->essid_len;
3570 }
3571 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) {
3572 creq->ssids = NULL;
3573 creq->n_ssids = 0;
3574 }
3575 }
3576
3577 for (i = 0; i < NUM_NL80211_BANDS; i++)
3578 if (wiphy->bands[i])
3579 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
3580
3581 eth_broadcast_addr(creq->bssid);
3582
3583 wiphy_lock(&rdev->wiphy);
3584
3585 rdev->scan_req = creq;
3586 err = rdev_scan(rdev, creq);
3587 if (err) {
3588 rdev->scan_req = NULL;
3589 /* creq will be freed below */
3590 } else {
3591 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
3592 /* creq now owned by driver */
3593 creq = NULL;
3594 dev_hold(dev);
3595 }
3596 wiphy_unlock(&rdev->wiphy);
3597 out:
3598 kfree(creq);
3599 return err;
3600 }
3601 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
3602
ieee80211_scan_add_ies(struct iw_request_info * info,const struct cfg80211_bss_ies * ies,char * current_ev,char * end_buf)3603 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
3604 const struct cfg80211_bss_ies *ies,
3605 char *current_ev, char *end_buf)
3606 {
3607 const u8 *pos, *end, *next;
3608 struct iw_event iwe;
3609
3610 if (!ies)
3611 return current_ev;
3612
3613 /*
3614 * If needed, fragment the IEs buffer (at IE boundaries) into short
3615 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
3616 */
3617 pos = ies->data;
3618 end = pos + ies->len;
3619
3620 while (end - pos > IW_GENERIC_IE_MAX) {
3621 next = pos + 2 + pos[1];
3622 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
3623 next = next + 2 + next[1];
3624
3625 memset(&iwe, 0, sizeof(iwe));
3626 iwe.cmd = IWEVGENIE;
3627 iwe.u.data.length = next - pos;
3628 current_ev = iwe_stream_add_point_check(info, current_ev,
3629 end_buf, &iwe,
3630 (void *)pos);
3631 if (IS_ERR(current_ev))
3632 return current_ev;
3633 pos = next;
3634 }
3635
3636 if (end > pos) {
3637 memset(&iwe, 0, sizeof(iwe));
3638 iwe.cmd = IWEVGENIE;
3639 iwe.u.data.length = end - pos;
3640 current_ev = iwe_stream_add_point_check(info, current_ev,
3641 end_buf, &iwe,
3642 (void *)pos);
3643 if (IS_ERR(current_ev))
3644 return current_ev;
3645 }
3646
3647 return current_ev;
3648 }
3649
3650 static char *
ieee80211_bss(struct wiphy * wiphy,struct iw_request_info * info,struct cfg80211_internal_bss * bss,char * current_ev,char * end_buf)3651 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
3652 struct cfg80211_internal_bss *bss, char *current_ev,
3653 char *end_buf)
3654 {
3655 const struct cfg80211_bss_ies *ies;
3656 struct iw_event iwe;
3657 const u8 *ie;
3658 u8 buf[50];
3659 u8 *cfg, *p, *tmp;
3660 int rem, i, sig;
3661 bool ismesh = false;
3662
3663 memset(&iwe, 0, sizeof(iwe));
3664 iwe.cmd = SIOCGIWAP;
3665 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
3666 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
3667 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3668 IW_EV_ADDR_LEN);
3669 if (IS_ERR(current_ev))
3670 return current_ev;
3671
3672 memset(&iwe, 0, sizeof(iwe));
3673 iwe.cmd = SIOCGIWFREQ;
3674 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
3675 iwe.u.freq.e = 0;
3676 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3677 IW_EV_FREQ_LEN);
3678 if (IS_ERR(current_ev))
3679 return current_ev;
3680
3681 memset(&iwe, 0, sizeof(iwe));
3682 iwe.cmd = SIOCGIWFREQ;
3683 iwe.u.freq.m = bss->pub.channel->center_freq;
3684 iwe.u.freq.e = 6;
3685 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3686 IW_EV_FREQ_LEN);
3687 if (IS_ERR(current_ev))
3688 return current_ev;
3689
3690 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
3691 memset(&iwe, 0, sizeof(iwe));
3692 iwe.cmd = IWEVQUAL;
3693 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
3694 IW_QUAL_NOISE_INVALID |
3695 IW_QUAL_QUAL_UPDATED;
3696 switch (wiphy->signal_type) {
3697 case CFG80211_SIGNAL_TYPE_MBM:
3698 sig = bss->pub.signal / 100;
3699 iwe.u.qual.level = sig;
3700 iwe.u.qual.updated |= IW_QUAL_DBM;
3701 if (sig < -110) /* rather bad */
3702 sig = -110;
3703 else if (sig > -40) /* perfect */
3704 sig = -40;
3705 /* will give a range of 0 .. 70 */
3706 iwe.u.qual.qual = sig + 110;
3707 break;
3708 case CFG80211_SIGNAL_TYPE_UNSPEC:
3709 iwe.u.qual.level = bss->pub.signal;
3710 /* will give range 0 .. 100 */
3711 iwe.u.qual.qual = bss->pub.signal;
3712 break;
3713 default:
3714 /* not reached */
3715 break;
3716 }
3717 current_ev = iwe_stream_add_event_check(info, current_ev,
3718 end_buf, &iwe,
3719 IW_EV_QUAL_LEN);
3720 if (IS_ERR(current_ev))
3721 return current_ev;
3722 }
3723
3724 memset(&iwe, 0, sizeof(iwe));
3725 iwe.cmd = SIOCGIWENCODE;
3726 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3727 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3728 else
3729 iwe.u.data.flags = IW_ENCODE_DISABLED;
3730 iwe.u.data.length = 0;
3731 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3732 &iwe, "");
3733 if (IS_ERR(current_ev))
3734 return current_ev;
3735
3736 rcu_read_lock();
3737 ies = rcu_dereference(bss->pub.ies);
3738 rem = ies->len;
3739 ie = ies->data;
3740
3741 while (rem >= 2) {
3742 /* invalid data */
3743 if (ie[1] > rem - 2)
3744 break;
3745
3746 switch (ie[0]) {
3747 case WLAN_EID_SSID:
3748 memset(&iwe, 0, sizeof(iwe));
3749 iwe.cmd = SIOCGIWESSID;
3750 iwe.u.data.length = ie[1];
3751 iwe.u.data.flags = 1;
3752 current_ev = iwe_stream_add_point_check(info,
3753 current_ev,
3754 end_buf, &iwe,
3755 (u8 *)ie + 2);
3756 if (IS_ERR(current_ev))
3757 goto unlock;
3758 break;
3759 case WLAN_EID_MESH_ID:
3760 memset(&iwe, 0, sizeof(iwe));
3761 iwe.cmd = SIOCGIWESSID;
3762 iwe.u.data.length = ie[1];
3763 iwe.u.data.flags = 1;
3764 current_ev = iwe_stream_add_point_check(info,
3765 current_ev,
3766 end_buf, &iwe,
3767 (u8 *)ie + 2);
3768 if (IS_ERR(current_ev))
3769 goto unlock;
3770 break;
3771 case WLAN_EID_MESH_CONFIG:
3772 ismesh = true;
3773 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3774 break;
3775 cfg = (u8 *)ie + 2;
3776 memset(&iwe, 0, sizeof(iwe));
3777 iwe.cmd = IWEVCUSTOM;
3778 iwe.u.data.length = sprintf(buf,
3779 "Mesh Network Path Selection Protocol ID: 0x%02X",
3780 cfg[0]);
3781 current_ev = iwe_stream_add_point_check(info,
3782 current_ev,
3783 end_buf,
3784 &iwe, buf);
3785 if (IS_ERR(current_ev))
3786 goto unlock;
3787 iwe.u.data.length = sprintf(buf,
3788 "Path Selection Metric ID: 0x%02X",
3789 cfg[1]);
3790 current_ev = iwe_stream_add_point_check(info,
3791 current_ev,
3792 end_buf,
3793 &iwe, buf);
3794 if (IS_ERR(current_ev))
3795 goto unlock;
3796 iwe.u.data.length = sprintf(buf,
3797 "Congestion Control Mode ID: 0x%02X",
3798 cfg[2]);
3799 current_ev = iwe_stream_add_point_check(info,
3800 current_ev,
3801 end_buf,
3802 &iwe, buf);
3803 if (IS_ERR(current_ev))
3804 goto unlock;
3805 iwe.u.data.length = sprintf(buf,
3806 "Synchronization ID: 0x%02X",
3807 cfg[3]);
3808 current_ev = iwe_stream_add_point_check(info,
3809 current_ev,
3810 end_buf,
3811 &iwe, buf);
3812 if (IS_ERR(current_ev))
3813 goto unlock;
3814 iwe.u.data.length = sprintf(buf,
3815 "Authentication ID: 0x%02X",
3816 cfg[4]);
3817 current_ev = iwe_stream_add_point_check(info,
3818 current_ev,
3819 end_buf,
3820 &iwe, buf);
3821 if (IS_ERR(current_ev))
3822 goto unlock;
3823 iwe.u.data.length = sprintf(buf,
3824 "Formation Info: 0x%02X",
3825 cfg[5]);
3826 current_ev = iwe_stream_add_point_check(info,
3827 current_ev,
3828 end_buf,
3829 &iwe, buf);
3830 if (IS_ERR(current_ev))
3831 goto unlock;
3832 iwe.u.data.length = sprintf(buf,
3833 "Capabilities: 0x%02X",
3834 cfg[6]);
3835 current_ev = iwe_stream_add_point_check(info,
3836 current_ev,
3837 end_buf,
3838 &iwe, buf);
3839 if (IS_ERR(current_ev))
3840 goto unlock;
3841 break;
3842 case WLAN_EID_SUPP_RATES:
3843 case WLAN_EID_EXT_SUPP_RATES:
3844 /* display all supported rates in readable format */
3845 p = current_ev + iwe_stream_lcp_len(info);
3846
3847 memset(&iwe, 0, sizeof(iwe));
3848 iwe.cmd = SIOCGIWRATE;
3849 /* Those two flags are ignored... */
3850 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3851
3852 for (i = 0; i < ie[1]; i++) {
3853 iwe.u.bitrate.value =
3854 ((ie[i + 2] & 0x7f) * 500000);
3855 tmp = p;
3856 p = iwe_stream_add_value(info, current_ev, p,
3857 end_buf, &iwe,
3858 IW_EV_PARAM_LEN);
3859 if (p == tmp) {
3860 current_ev = ERR_PTR(-E2BIG);
3861 goto unlock;
3862 }
3863 }
3864 current_ev = p;
3865 break;
3866 }
3867 rem -= ie[1] + 2;
3868 ie += ie[1] + 2;
3869 }
3870
3871 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3872 ismesh) {
3873 memset(&iwe, 0, sizeof(iwe));
3874 iwe.cmd = SIOCGIWMODE;
3875 if (ismesh)
3876 iwe.u.mode = IW_MODE_MESH;
3877 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3878 iwe.u.mode = IW_MODE_MASTER;
3879 else
3880 iwe.u.mode = IW_MODE_ADHOC;
3881 current_ev = iwe_stream_add_event_check(info, current_ev,
3882 end_buf, &iwe,
3883 IW_EV_UINT_LEN);
3884 if (IS_ERR(current_ev))
3885 goto unlock;
3886 }
3887
3888 memset(&iwe, 0, sizeof(iwe));
3889 iwe.cmd = IWEVCUSTOM;
3890 iwe.u.data.length = sprintf(buf, "tsf=%016llx",
3891 (unsigned long long)(ies->tsf));
3892 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3893 &iwe, buf);
3894 if (IS_ERR(current_ev))
3895 goto unlock;
3896 memset(&iwe, 0, sizeof(iwe));
3897 iwe.cmd = IWEVCUSTOM;
3898 iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago",
3899 elapsed_jiffies_msecs(bss->ts));
3900 current_ev = iwe_stream_add_point_check(info, current_ev,
3901 end_buf, &iwe, buf);
3902 if (IS_ERR(current_ev))
3903 goto unlock;
3904
3905 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3906
3907 unlock:
3908 rcu_read_unlock();
3909 return current_ev;
3910 }
3911
3912
ieee80211_scan_results(struct cfg80211_registered_device * rdev,struct iw_request_info * info,char * buf,size_t len)3913 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3914 struct iw_request_info *info,
3915 char *buf, size_t len)
3916 {
3917 char *current_ev = buf;
3918 char *end_buf = buf + len;
3919 struct cfg80211_internal_bss *bss;
3920 int err = 0;
3921
3922 spin_lock_bh(&rdev->bss_lock);
3923 cfg80211_bss_expire(rdev);
3924
3925 list_for_each_entry(bss, &rdev->bss_list, list) {
3926 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3927 err = -E2BIG;
3928 break;
3929 }
3930 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3931 current_ev, end_buf);
3932 if (IS_ERR(current_ev)) {
3933 err = PTR_ERR(current_ev);
3934 break;
3935 }
3936 }
3937 spin_unlock_bh(&rdev->bss_lock);
3938
3939 if (err)
3940 return err;
3941 return current_ev - buf;
3942 }
3943
3944
cfg80211_wext_giwscan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)3945 int cfg80211_wext_giwscan(struct net_device *dev,
3946 struct iw_request_info *info,
3947 union iwreq_data *wrqu, char *extra)
3948 {
3949 struct iw_point *data = &wrqu->data;
3950 struct cfg80211_registered_device *rdev;
3951 int res;
3952
3953 if (!netif_running(dev))
3954 return -ENETDOWN;
3955
3956 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3957
3958 if (IS_ERR(rdev))
3959 return PTR_ERR(rdev);
3960
3961 if (rdev->scan_req || rdev->scan_msg)
3962 return -EAGAIN;
3963
3964 res = ieee80211_scan_results(rdev, info, extra, data->length);
3965 data->length = 0;
3966 if (res >= 0) {
3967 data->length = res;
3968 res = 0;
3969 }
3970
3971 return res;
3972 }
3973 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3974 #endif
3975