1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * cfg80211 scan result handling
4 *
5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 * Copyright (C) 2018-2024 Intel Corporation
9 */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
19 #include <net/arp.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
23 #include <kunit/visibility.h>
24 #include "core.h"
25 #include "nl80211.h"
26 #include "wext-compat.h"
27 #include "rdev-ops.h"
28
29 /**
30 * DOC: BSS tree/list structure
31 *
32 * At the top level, the BSS list is kept in both a list in each
33 * registered device (@bss_list) as well as an RB-tree for faster
34 * lookup. In the RB-tree, entries can be looked up using their
35 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
36 * for other BSSes.
37 *
38 * Due to the possibility of hidden SSIDs, there's a second level
39 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
40 * The hidden_list connects all BSSes belonging to a single AP
41 * that has a hidden SSID, and connects beacon and probe response
42 * entries. For a probe response entry for a hidden SSID, the
43 * hidden_beacon_bss pointer points to the BSS struct holding the
44 * beacon's information.
45 *
46 * Reference counting is done for all these references except for
47 * the hidden_list, so that a beacon BSS struct that is otherwise
48 * not referenced has one reference for being on the bss_list and
49 * one for each probe response entry that points to it using the
50 * hidden_beacon_bss pointer. When a BSS struct that has such a
51 * pointer is get/put, the refcount update is also propagated to
52 * the referenced struct, this ensure that it cannot get removed
53 * while somebody is using the probe response version.
54 *
55 * Note that the hidden_beacon_bss pointer never changes, due to
56 * the reference counting. Therefore, no locking is needed for
57 * it.
58 *
59 * Also note that the hidden_beacon_bss pointer is only relevant
60 * if the driver uses something other than the IEs, e.g. private
61 * data stored in the BSS struct, since the beacon IEs are
62 * also linked into the probe response struct.
63 */
64
65 /*
66 * Limit the number of BSS entries stored in mac80211. Each one is
67 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
68 * If somebody wants to really attack this though, they'd likely
69 * use small beacons, and only one type of frame, limiting each of
70 * the entries to a much smaller size (in order to generate more
71 * entries in total, so overhead is bigger.)
72 */
73 static int bss_entries_limit = 1000;
74 module_param(bss_entries_limit, int, 0644);
75 MODULE_PARM_DESC(bss_entries_limit,
76 "limit to number of scan BSS entries (per wiphy, default 1000)");
77
78 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
79
bss_free(struct cfg80211_internal_bss * bss)80 static void bss_free(struct cfg80211_internal_bss *bss)
81 {
82 struct cfg80211_bss_ies *ies;
83
84 if (WARN_ON(atomic_read(&bss->hold)))
85 return;
86
87 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
88 if (ies && !bss->pub.hidden_beacon_bss)
89 kfree_rcu(ies, rcu_head);
90 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
91 if (ies)
92 kfree_rcu(ies, rcu_head);
93
94 /*
95 * This happens when the module is removed, it doesn't
96 * really matter any more save for completeness
97 */
98 if (!list_empty(&bss->hidden_list))
99 list_del(&bss->hidden_list);
100
101 kfree(bss);
102 }
103
bss_ref_get(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)104 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
105 struct cfg80211_internal_bss *bss)
106 {
107 lockdep_assert_held(&rdev->bss_lock);
108
109 bss->refcount++;
110
111 if (bss->pub.hidden_beacon_bss)
112 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
113
114 if (bss->pub.transmitted_bss)
115 bss_from_pub(bss->pub.transmitted_bss)->refcount++;
116 }
117
bss_ref_put(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)118 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
119 struct cfg80211_internal_bss *bss)
120 {
121 lockdep_assert_held(&rdev->bss_lock);
122
123 if (bss->pub.hidden_beacon_bss) {
124 struct cfg80211_internal_bss *hbss;
125
126 hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
127 hbss->refcount--;
128 if (hbss->refcount == 0)
129 bss_free(hbss);
130 }
131
132 if (bss->pub.transmitted_bss) {
133 struct cfg80211_internal_bss *tbss;
134
135 tbss = bss_from_pub(bss->pub.transmitted_bss);
136 tbss->refcount--;
137 if (tbss->refcount == 0)
138 bss_free(tbss);
139 }
140
141 bss->refcount--;
142 if (bss->refcount == 0)
143 bss_free(bss);
144 }
145
__cfg80211_unlink_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)146 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
147 struct cfg80211_internal_bss *bss)
148 {
149 lockdep_assert_held(&rdev->bss_lock);
150
151 if (!list_empty(&bss->hidden_list)) {
152 /*
153 * don't remove the beacon entry if it has
154 * probe responses associated with it
155 */
156 if (!bss->pub.hidden_beacon_bss)
157 return false;
158 /*
159 * if it's a probe response entry break its
160 * link to the other entries in the group
161 */
162 list_del_init(&bss->hidden_list);
163 }
164
165 list_del_init(&bss->list);
166 list_del_init(&bss->pub.nontrans_list);
167 rb_erase(&bss->rbn, &rdev->bss_tree);
168 rdev->bss_entries--;
169 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
170 "rdev bss entries[%d]/list[empty:%d] corruption\n",
171 rdev->bss_entries, list_empty(&rdev->bss_list));
172 bss_ref_put(rdev, bss);
173 return true;
174 }
175
cfg80211_is_element_inherited(const struct element * elem,const struct element * non_inherit_elem)176 bool cfg80211_is_element_inherited(const struct element *elem,
177 const struct element *non_inherit_elem)
178 {
179 u8 id_len, ext_id_len, i, loop_len, id;
180 const u8 *list;
181
182 if (elem->id == WLAN_EID_MULTIPLE_BSSID)
183 return false;
184
185 if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 &&
186 elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK)
187 return false;
188
189 if (!non_inherit_elem || non_inherit_elem->datalen < 2)
190 return true;
191
192 /*
193 * non inheritance element format is:
194 * ext ID (56) | IDs list len | list | extension IDs list len | list
195 * Both lists are optional. Both lengths are mandatory.
196 * This means valid length is:
197 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
198 */
199 id_len = non_inherit_elem->data[1];
200 if (non_inherit_elem->datalen < 3 + id_len)
201 return true;
202
203 ext_id_len = non_inherit_elem->data[2 + id_len];
204 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
205 return true;
206
207 if (elem->id == WLAN_EID_EXTENSION) {
208 if (!ext_id_len)
209 return true;
210 loop_len = ext_id_len;
211 list = &non_inherit_elem->data[3 + id_len];
212 id = elem->data[0];
213 } else {
214 if (!id_len)
215 return true;
216 loop_len = id_len;
217 list = &non_inherit_elem->data[2];
218 id = elem->id;
219 }
220
221 for (i = 0; i < loop_len; i++) {
222 if (list[i] == id)
223 return false;
224 }
225
226 return true;
227 }
228 EXPORT_SYMBOL(cfg80211_is_element_inherited);
229
cfg80211_copy_elem_with_frags(const struct element * elem,const u8 * ie,size_t ie_len,u8 ** pos,u8 * buf,size_t buf_len)230 static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
231 const u8 *ie, size_t ie_len,
232 u8 **pos, u8 *buf, size_t buf_len)
233 {
234 if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
235 elem->data + elem->datalen > ie + ie_len))
236 return 0;
237
238 if (elem->datalen + 2 > buf + buf_len - *pos)
239 return 0;
240
241 memcpy(*pos, elem, elem->datalen + 2);
242 *pos += elem->datalen + 2;
243
244 /* Finish if it is not fragmented */
245 if (elem->datalen != 255)
246 return *pos - buf;
247
248 ie_len = ie + ie_len - elem->data - elem->datalen;
249 ie = (const u8 *)elem->data + elem->datalen;
250
251 for_each_element(elem, ie, ie_len) {
252 if (elem->id != WLAN_EID_FRAGMENT)
253 break;
254
255 if (elem->datalen + 2 > buf + buf_len - *pos)
256 return 0;
257
258 memcpy(*pos, elem, elem->datalen + 2);
259 *pos += elem->datalen + 2;
260
261 if (elem->datalen != 255)
262 break;
263 }
264
265 return *pos - buf;
266 }
267
268 VISIBLE_IF_CFG80211_KUNIT size_t
cfg80211_gen_new_ie(const u8 * ie,size_t ielen,const u8 * subie,size_t subie_len,u8 * new_ie,size_t new_ie_len)269 cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
270 const u8 *subie, size_t subie_len,
271 u8 *new_ie, size_t new_ie_len)
272 {
273 const struct element *non_inherit_elem, *parent, *sub;
274 u8 *pos = new_ie;
275 u8 id, ext_id;
276 unsigned int match_len;
277
278 non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
279 subie, subie_len);
280
281 /* We copy the elements one by one from the parent to the generated
282 * elements.
283 * If they are not inherited (included in subie or in the non
284 * inheritance element), then we copy all occurrences the first time
285 * we see this element type.
286 */
287 for_each_element(parent, ie, ielen) {
288 if (parent->id == WLAN_EID_FRAGMENT)
289 continue;
290
291 if (parent->id == WLAN_EID_EXTENSION) {
292 if (parent->datalen < 1)
293 continue;
294
295 id = WLAN_EID_EXTENSION;
296 ext_id = parent->data[0];
297 match_len = 1;
298 } else {
299 id = parent->id;
300 match_len = 0;
301 }
302
303 /* Find first occurrence in subie */
304 sub = cfg80211_find_elem_match(id, subie, subie_len,
305 &ext_id, match_len, 0);
306
307 /* Copy from parent if not in subie and inherited */
308 if (!sub &&
309 cfg80211_is_element_inherited(parent, non_inherit_elem)) {
310 if (!cfg80211_copy_elem_with_frags(parent,
311 ie, ielen,
312 &pos, new_ie,
313 new_ie_len))
314 return 0;
315
316 continue;
317 }
318
319 /* Already copied if an earlier element had the same type */
320 if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
321 &ext_id, match_len, 0))
322 continue;
323
324 /* Not inheriting, copy all similar elements from subie */
325 while (sub) {
326 if (!cfg80211_copy_elem_with_frags(sub,
327 subie, subie_len,
328 &pos, new_ie,
329 new_ie_len))
330 return 0;
331
332 sub = cfg80211_find_elem_match(id,
333 sub->data + sub->datalen,
334 subie_len + subie -
335 (sub->data +
336 sub->datalen),
337 &ext_id, match_len, 0);
338 }
339 }
340
341 /* The above misses elements that are included in subie but not in the
342 * parent, so do a pass over subie and append those.
343 * Skip the non-tx BSSID caps and non-inheritance element.
344 */
345 for_each_element(sub, subie, subie_len) {
346 if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
347 continue;
348
349 if (sub->id == WLAN_EID_FRAGMENT)
350 continue;
351
352 if (sub->id == WLAN_EID_EXTENSION) {
353 if (sub->datalen < 1)
354 continue;
355
356 id = WLAN_EID_EXTENSION;
357 ext_id = sub->data[0];
358 match_len = 1;
359
360 if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
361 continue;
362 } else {
363 id = sub->id;
364 match_len = 0;
365 }
366
367 /* Processed if one was included in the parent */
368 if (cfg80211_find_elem_match(id, ie, ielen,
369 &ext_id, match_len, 0))
370 continue;
371
372 if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
373 &pos, new_ie, new_ie_len))
374 return 0;
375 }
376
377 return pos - new_ie;
378 }
379 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_gen_new_ie);
380
is_bss(struct cfg80211_bss * a,const u8 * bssid,const u8 * ssid,size_t ssid_len)381 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
382 const u8 *ssid, size_t ssid_len)
383 {
384 const struct cfg80211_bss_ies *ies;
385 const struct element *ssid_elem;
386
387 if (bssid && !ether_addr_equal(a->bssid, bssid))
388 return false;
389
390 if (!ssid)
391 return true;
392
393 ies = rcu_access_pointer(a->ies);
394 if (!ies)
395 return false;
396 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
397 if (!ssid_elem)
398 return false;
399 if (ssid_elem->datalen != ssid_len)
400 return false;
401 return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
402 }
403
404 static int
cfg80211_add_nontrans_list(struct cfg80211_bss * trans_bss,struct cfg80211_bss * nontrans_bss)405 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
406 struct cfg80211_bss *nontrans_bss)
407 {
408 const struct element *ssid_elem;
409 struct cfg80211_bss *bss = NULL;
410
411 rcu_read_lock();
412 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
413 if (!ssid_elem) {
414 rcu_read_unlock();
415 return -EINVAL;
416 }
417
418 /* check if nontrans_bss is in the list */
419 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
420 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
421 ssid_elem->datalen)) {
422 rcu_read_unlock();
423 return 0;
424 }
425 }
426
427 rcu_read_unlock();
428
429 /*
430 * This is a bit weird - it's not on the list, but already on another
431 * one! The only way that could happen is if there's some BSSID/SSID
432 * shared by multiple APs in their multi-BSSID profiles, potentially
433 * with hidden SSID mixed in ... ignore it.
434 */
435 if (!list_empty(&nontrans_bss->nontrans_list))
436 return -EINVAL;
437
438 /* add to the list */
439 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
440 return 0;
441 }
442
__cfg80211_bss_expire(struct cfg80211_registered_device * rdev,unsigned long expire_time)443 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
444 unsigned long expire_time)
445 {
446 struct cfg80211_internal_bss *bss, *tmp;
447 bool expired = false;
448
449 lockdep_assert_held(&rdev->bss_lock);
450
451 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
452 if (atomic_read(&bss->hold))
453 continue;
454 if (!time_after(expire_time, bss->ts))
455 continue;
456
457 if (__cfg80211_unlink_bss(rdev, bss))
458 expired = true;
459 }
460
461 if (expired)
462 rdev->bss_generation++;
463 }
464
cfg80211_bss_expire_oldest(struct cfg80211_registered_device * rdev)465 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
466 {
467 struct cfg80211_internal_bss *bss, *oldest = NULL;
468 bool ret;
469
470 lockdep_assert_held(&rdev->bss_lock);
471
472 list_for_each_entry(bss, &rdev->bss_list, list) {
473 if (atomic_read(&bss->hold))
474 continue;
475
476 if (!list_empty(&bss->hidden_list) &&
477 !bss->pub.hidden_beacon_bss)
478 continue;
479
480 if (oldest && time_before(oldest->ts, bss->ts))
481 continue;
482 oldest = bss;
483 }
484
485 if (WARN_ON(!oldest))
486 return false;
487
488 /*
489 * The callers make sure to increase rdev->bss_generation if anything
490 * gets removed (and a new entry added), so there's no need to also do
491 * it here.
492 */
493
494 ret = __cfg80211_unlink_bss(rdev, oldest);
495 WARN_ON(!ret);
496 return ret;
497 }
498
cfg80211_parse_bss_param(u8 data,struct cfg80211_colocated_ap * coloc_ap)499 static u8 cfg80211_parse_bss_param(u8 data,
500 struct cfg80211_colocated_ap *coloc_ap)
501 {
502 coloc_ap->oct_recommended =
503 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
504 coloc_ap->same_ssid =
505 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
506 coloc_ap->multi_bss =
507 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
508 coloc_ap->transmitted_bssid =
509 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
510 coloc_ap->unsolicited_probe =
511 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
512 coloc_ap->colocated_ess =
513 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
514
515 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
516 }
517
cfg80211_calc_short_ssid(const struct cfg80211_bss_ies * ies,const struct element ** elem,u32 * s_ssid)518 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
519 const struct element **elem, u32 *s_ssid)
520 {
521
522 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
523 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
524 return -EINVAL;
525
526 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
527 return 0;
528 }
529
530 VISIBLE_IF_CFG80211_KUNIT void
cfg80211_free_coloc_ap_list(struct list_head * coloc_ap_list)531 cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
532 {
533 struct cfg80211_colocated_ap *ap, *tmp_ap;
534
535 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
536 list_del(&ap->list);
537 kfree(ap);
538 }
539 }
540 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_free_coloc_ap_list);
541
cfg80211_parse_ap_info(struct cfg80211_colocated_ap * entry,const u8 * pos,u8 length,const struct element * ssid_elem,u32 s_ssid_tmp)542 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
543 const u8 *pos, u8 length,
544 const struct element *ssid_elem,
545 u32 s_ssid_tmp)
546 {
547 u8 bss_params;
548
549 entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
550
551 /* The length is already verified by the caller to contain bss_params */
552 if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) {
553 struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos;
554
555 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
556 entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid);
557 entry->short_ssid_valid = true;
558
559 bss_params = tbtt_info->bss_params;
560
561 /* Ignore disabled links */
562 if (length >= offsetofend(typeof(*tbtt_info), mld_params)) {
563 if (le16_get_bits(tbtt_info->mld_params.params,
564 IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK))
565 return -EINVAL;
566 }
567
568 if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
569 psd_20))
570 entry->psd_20 = tbtt_info->psd_20;
571 } else {
572 struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos;
573
574 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
575
576 bss_params = tbtt_info->bss_params;
577
578 if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
579 psd_20))
580 entry->psd_20 = tbtt_info->psd_20;
581 }
582
583 /* ignore entries with invalid BSSID */
584 if (!is_valid_ether_addr(entry->bssid))
585 return -EINVAL;
586
587 /* skip non colocated APs */
588 if (!cfg80211_parse_bss_param(bss_params, entry))
589 return -EINVAL;
590
591 /* no information about the short ssid. Consider the entry valid
592 * for now. It would later be dropped in case there are explicit
593 * SSIDs that need to be matched
594 */
595 if (!entry->same_ssid && !entry->short_ssid_valid)
596 return 0;
597
598 if (entry->same_ssid) {
599 entry->short_ssid = s_ssid_tmp;
600 entry->short_ssid_valid = true;
601
602 /*
603 * This is safe because we validate datalen in
604 * cfg80211_parse_colocated_ap(), before calling this
605 * function.
606 */
607 memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen);
608 entry->ssid_len = ssid_elem->datalen;
609 }
610
611 return 0;
612 }
613
cfg80211_iter_rnr(const u8 * elems,size_t elems_len,enum cfg80211_rnr_iter_ret (* iter)(void * data,u8 type,const struct ieee80211_neighbor_ap_info * info,const u8 * tbtt_info,u8 tbtt_info_len),void * iter_data)614 bool cfg80211_iter_rnr(const u8 *elems, size_t elems_len,
615 enum cfg80211_rnr_iter_ret
616 (*iter)(void *data, u8 type,
617 const struct ieee80211_neighbor_ap_info *info,
618 const u8 *tbtt_info, u8 tbtt_info_len),
619 void *iter_data)
620 {
621 const struct element *rnr;
622 const u8 *pos, *end;
623
624 for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT,
625 elems, elems_len) {
626 const struct ieee80211_neighbor_ap_info *info;
627
628 pos = rnr->data;
629 end = rnr->data + rnr->datalen;
630
631 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
632 while (sizeof(*info) <= end - pos) {
633 u8 length, i, count;
634 u8 type;
635
636 info = (void *)pos;
637 count = u8_get_bits(info->tbtt_info_hdr,
638 IEEE80211_AP_INFO_TBTT_HDR_COUNT) +
639 1;
640 length = info->tbtt_info_len;
641
642 pos += sizeof(*info);
643
644 if (count * length > end - pos)
645 return false;
646
647 type = u8_get_bits(info->tbtt_info_hdr,
648 IEEE80211_AP_INFO_TBTT_HDR_TYPE);
649
650 for (i = 0; i < count; i++) {
651 switch (iter(iter_data, type, info,
652 pos, length)) {
653 case RNR_ITER_CONTINUE:
654 break;
655 case RNR_ITER_BREAK:
656 return true;
657 case RNR_ITER_ERROR:
658 return false;
659 }
660
661 pos += length;
662 }
663 }
664
665 if (pos != end)
666 return false;
667 }
668
669 return true;
670 }
671 EXPORT_SYMBOL_GPL(cfg80211_iter_rnr);
672
673 struct colocated_ap_data {
674 const struct element *ssid_elem;
675 struct list_head ap_list;
676 u32 s_ssid_tmp;
677 int n_coloc;
678 };
679
680 static enum cfg80211_rnr_iter_ret
cfg80211_parse_colocated_ap_iter(void * _data,u8 type,const struct ieee80211_neighbor_ap_info * info,const u8 * tbtt_info,u8 tbtt_info_len)681 cfg80211_parse_colocated_ap_iter(void *_data, u8 type,
682 const struct ieee80211_neighbor_ap_info *info,
683 const u8 *tbtt_info, u8 tbtt_info_len)
684 {
685 struct colocated_ap_data *data = _data;
686 struct cfg80211_colocated_ap *entry;
687 enum nl80211_band band;
688
689 if (type != IEEE80211_TBTT_INFO_TYPE_TBTT)
690 return RNR_ITER_CONTINUE;
691
692 if (!ieee80211_operating_class_to_band(info->op_class, &band))
693 return RNR_ITER_CONTINUE;
694
695 /* TBTT info must include bss param + BSSID + (short SSID or
696 * same_ssid bit to be set). Ignore other options, and move to
697 * the next AP info
698 */
699 if (band != NL80211_BAND_6GHZ ||
700 !(tbtt_info_len == offsetofend(struct ieee80211_tbtt_info_7_8_9,
701 bss_params) ||
702 tbtt_info_len == sizeof(struct ieee80211_tbtt_info_7_8_9) ||
703 tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
704 bss_params)))
705 return RNR_ITER_CONTINUE;
706
707 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, GFP_ATOMIC);
708 if (!entry)
709 return RNR_ITER_ERROR;
710
711 entry->center_freq =
712 ieee80211_channel_to_frequency(info->channel, band);
713
714 if (!cfg80211_parse_ap_info(entry, tbtt_info, tbtt_info_len,
715 data->ssid_elem, data->s_ssid_tmp)) {
716 data->n_coloc++;
717 list_add_tail(&entry->list, &data->ap_list);
718 } else {
719 kfree(entry);
720 }
721
722 return RNR_ITER_CONTINUE;
723 }
724
725 VISIBLE_IF_CFG80211_KUNIT int
cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies * ies,struct list_head * list)726 cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
727 struct list_head *list)
728 {
729 struct colocated_ap_data data = {};
730 int ret;
731
732 INIT_LIST_HEAD(&data.ap_list);
733
734 ret = cfg80211_calc_short_ssid(ies, &data.ssid_elem, &data.s_ssid_tmp);
735 if (ret)
736 return 0;
737
738 if (!cfg80211_iter_rnr(ies->data, ies->len,
739 cfg80211_parse_colocated_ap_iter, &data)) {
740 cfg80211_free_coloc_ap_list(&data.ap_list);
741 return 0;
742 }
743
744 list_splice_tail(&data.ap_list, list);
745 return data.n_coloc;
746 }
747 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_parse_colocated_ap);
748
cfg80211_scan_req_add_chan(struct cfg80211_scan_request * request,struct ieee80211_channel * chan,bool add_to_6ghz)749 static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
750 struct ieee80211_channel *chan,
751 bool add_to_6ghz)
752 {
753 int i;
754 u32 n_channels = request->n_channels;
755 struct cfg80211_scan_6ghz_params *params =
756 &request->scan_6ghz_params[request->n_6ghz_params];
757
758 for (i = 0; i < n_channels; i++) {
759 if (request->channels[i] == chan) {
760 if (add_to_6ghz)
761 params->channel_idx = i;
762 return;
763 }
764 }
765
766 request->channels[n_channels] = chan;
767 if (add_to_6ghz)
768 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
769 n_channels;
770
771 request->n_channels++;
772 }
773
cfg80211_find_ssid_match(struct cfg80211_colocated_ap * ap,struct cfg80211_scan_request * request)774 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
775 struct cfg80211_scan_request *request)
776 {
777 int i;
778 u32 s_ssid;
779
780 for (i = 0; i < request->n_ssids; i++) {
781 /* wildcard ssid in the scan request */
782 if (!request->ssids[i].ssid_len) {
783 if (ap->multi_bss && !ap->transmitted_bssid)
784 continue;
785
786 return true;
787 }
788
789 if (ap->ssid_len &&
790 ap->ssid_len == request->ssids[i].ssid_len) {
791 if (!memcmp(request->ssids[i].ssid, ap->ssid,
792 ap->ssid_len))
793 return true;
794 } else if (ap->short_ssid_valid) {
795 s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
796 request->ssids[i].ssid_len);
797
798 if (ap->short_ssid == s_ssid)
799 return true;
800 }
801 }
802
803 return false;
804 }
805
cfg80211_scan_6ghz(struct cfg80211_registered_device * rdev)806 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
807 {
808 u8 i;
809 struct cfg80211_colocated_ap *ap;
810 int n_channels, count = 0, err;
811 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
812 LIST_HEAD(coloc_ap_list);
813 bool need_scan_psc = true;
814 const struct ieee80211_sband_iftype_data *iftd;
815 size_t size, offs_ssids, offs_6ghz_params, offs_ies;
816
817 rdev_req->scan_6ghz = true;
818
819 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
820 return -EOPNOTSUPP;
821
822 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
823 rdev_req->wdev->iftype);
824 if (!iftd || !iftd->he_cap.has_he)
825 return -EOPNOTSUPP;
826
827 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
828
829 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
830 struct cfg80211_internal_bss *intbss;
831
832 spin_lock_bh(&rdev->bss_lock);
833 list_for_each_entry(intbss, &rdev->bss_list, list) {
834 struct cfg80211_bss *res = &intbss->pub;
835 const struct cfg80211_bss_ies *ies;
836 const struct element *ssid_elem;
837 struct cfg80211_colocated_ap *entry;
838 u32 s_ssid_tmp;
839 int ret;
840
841 ies = rcu_access_pointer(res->ies);
842 count += cfg80211_parse_colocated_ap(ies,
843 &coloc_ap_list);
844
845 /* In case the scan request specified a specific BSSID
846 * and the BSS is found and operating on 6GHz band then
847 * add this AP to the collocated APs list.
848 * This is relevant for ML probe requests when the lower
849 * band APs have not been discovered.
850 */
851 if (is_broadcast_ether_addr(rdev_req->bssid) ||
852 !ether_addr_equal(rdev_req->bssid, res->bssid) ||
853 res->channel->band != NL80211_BAND_6GHZ)
854 continue;
855
856 ret = cfg80211_calc_short_ssid(ies, &ssid_elem,
857 &s_ssid_tmp);
858 if (ret)
859 continue;
860
861 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
862 GFP_ATOMIC);
863
864 if (!entry)
865 continue;
866
867 memcpy(entry->bssid, res->bssid, ETH_ALEN);
868 entry->short_ssid = s_ssid_tmp;
869 memcpy(entry->ssid, ssid_elem->data,
870 ssid_elem->datalen);
871 entry->ssid_len = ssid_elem->datalen;
872 entry->short_ssid_valid = true;
873 entry->center_freq = res->channel->center_freq;
874
875 list_add_tail(&entry->list, &coloc_ap_list);
876 count++;
877 }
878 spin_unlock_bh(&rdev->bss_lock);
879 }
880
881 size = struct_size(request, channels, n_channels);
882 offs_ssids = size;
883 size += sizeof(*request->ssids) * rdev_req->n_ssids;
884 offs_6ghz_params = size;
885 size += sizeof(*request->scan_6ghz_params) * count;
886 offs_ies = size;
887 size += rdev_req->ie_len;
888
889 request = kzalloc(size, GFP_KERNEL);
890 if (!request) {
891 cfg80211_free_coloc_ap_list(&coloc_ap_list);
892 return -ENOMEM;
893 }
894
895 *request = *rdev_req;
896 request->n_channels = 0;
897 request->n_6ghz_params = 0;
898 if (rdev_req->n_ssids) {
899 /*
900 * Add the ssids from the parent scan request to the new
901 * scan request, so the driver would be able to use them
902 * in its probe requests to discover hidden APs on PSC
903 * channels.
904 */
905 request->ssids = (void *)request + offs_ssids;
906 memcpy(request->ssids, rdev_req->ssids,
907 sizeof(*request->ssids) * request->n_ssids);
908 }
909 request->scan_6ghz_params = (void *)request + offs_6ghz_params;
910
911 if (rdev_req->ie_len) {
912 void *ie = (void *)request + offs_ies;
913
914 memcpy(ie, rdev_req->ie, rdev_req->ie_len);
915 request->ie = ie;
916 }
917
918 /*
919 * PSC channels should not be scanned in case of direct scan with 1 SSID
920 * and at least one of the reported co-located APs with same SSID
921 * indicating that all APs in the same ESS are co-located
922 */
923 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
924 list_for_each_entry(ap, &coloc_ap_list, list) {
925 if (ap->colocated_ess &&
926 cfg80211_find_ssid_match(ap, request)) {
927 need_scan_psc = false;
928 break;
929 }
930 }
931 }
932
933 /*
934 * add to the scan request the channels that need to be scanned
935 * regardless of the collocated APs (PSC channels or all channels
936 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
937 */
938 for (i = 0; i < rdev_req->n_channels; i++) {
939 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
940 ((need_scan_psc &&
941 cfg80211_channel_is_psc(rdev_req->channels[i])) ||
942 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
943 cfg80211_scan_req_add_chan(request,
944 rdev_req->channels[i],
945 false);
946 }
947 }
948
949 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
950 goto skip;
951
952 list_for_each_entry(ap, &coloc_ap_list, list) {
953 bool found = false;
954 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
955 &request->scan_6ghz_params[request->n_6ghz_params];
956 struct ieee80211_channel *chan =
957 ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
958
959 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED ||
960 !cfg80211_wdev_channel_allowed(rdev_req->wdev, chan))
961 continue;
962
963 for (i = 0; i < rdev_req->n_channels; i++) {
964 if (rdev_req->channels[i] == chan)
965 found = true;
966 }
967
968 if (!found)
969 continue;
970
971 if (request->n_ssids > 0 &&
972 !cfg80211_find_ssid_match(ap, request))
973 continue;
974
975 if (!is_broadcast_ether_addr(request->bssid) &&
976 !ether_addr_equal(request->bssid, ap->bssid))
977 continue;
978
979 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
980 continue;
981
982 cfg80211_scan_req_add_chan(request, chan, true);
983 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
984 scan_6ghz_params->short_ssid = ap->short_ssid;
985 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
986 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
987 scan_6ghz_params->psd_20 = ap->psd_20;
988
989 /*
990 * If a PSC channel is added to the scan and 'need_scan_psc' is
991 * set to false, then all the APs that the scan logic is
992 * interested with on the channel are collocated and thus there
993 * is no need to perform the initial PSC channel listen.
994 */
995 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
996 scan_6ghz_params->psc_no_listen = true;
997
998 request->n_6ghz_params++;
999 }
1000
1001 skip:
1002 cfg80211_free_coloc_ap_list(&coloc_ap_list);
1003
1004 if (request->n_channels) {
1005 struct cfg80211_scan_request *old = rdev->int_scan_req;
1006
1007 rdev->int_scan_req = request;
1008
1009 /*
1010 * If this scan follows a previous scan, save the scan start
1011 * info from the first part of the scan
1012 */
1013 if (old)
1014 rdev->int_scan_req->info = old->info;
1015
1016 err = rdev_scan(rdev, request);
1017 if (err) {
1018 rdev->int_scan_req = old;
1019 kfree(request);
1020 } else {
1021 kfree(old);
1022 }
1023
1024 return err;
1025 }
1026
1027 kfree(request);
1028 return -EINVAL;
1029 }
1030
cfg80211_scan(struct cfg80211_registered_device * rdev)1031 int cfg80211_scan(struct cfg80211_registered_device *rdev)
1032 {
1033 struct cfg80211_scan_request *request;
1034 struct cfg80211_scan_request *rdev_req = rdev->scan_req;
1035 u32 n_channels = 0, idx, i;
1036
1037 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
1038 return rdev_scan(rdev, rdev_req);
1039
1040 for (i = 0; i < rdev_req->n_channels; i++) {
1041 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1042 n_channels++;
1043 }
1044
1045 if (!n_channels)
1046 return cfg80211_scan_6ghz(rdev);
1047
1048 request = kzalloc(struct_size(request, channels, n_channels),
1049 GFP_KERNEL);
1050 if (!request)
1051 return -ENOMEM;
1052
1053 *request = *rdev_req;
1054 request->n_channels = n_channels;
1055
1056 for (i = idx = 0; i < rdev_req->n_channels; i++) {
1057 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1058 request->channels[idx++] = rdev_req->channels[i];
1059 }
1060
1061 rdev_req->scan_6ghz = false;
1062 rdev->int_scan_req = request;
1063 return rdev_scan(rdev, request);
1064 }
1065
___cfg80211_scan_done(struct cfg80211_registered_device * rdev,bool send_message)1066 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
1067 bool send_message)
1068 {
1069 struct cfg80211_scan_request *request, *rdev_req;
1070 struct wireless_dev *wdev;
1071 struct sk_buff *msg;
1072 #ifdef CONFIG_CFG80211_WEXT
1073 union iwreq_data wrqu;
1074 #endif
1075
1076 lockdep_assert_held(&rdev->wiphy.mtx);
1077
1078 if (rdev->scan_msg) {
1079 nl80211_send_scan_msg(rdev, rdev->scan_msg);
1080 rdev->scan_msg = NULL;
1081 return;
1082 }
1083
1084 rdev_req = rdev->scan_req;
1085 if (!rdev_req)
1086 return;
1087
1088 wdev = rdev_req->wdev;
1089 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
1090
1091 if (wdev_running(wdev) &&
1092 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1093 !rdev_req->scan_6ghz && !request->info.aborted &&
1094 !cfg80211_scan_6ghz(rdev))
1095 return;
1096
1097 /*
1098 * This must be before sending the other events!
1099 * Otherwise, wpa_supplicant gets completely confused with
1100 * wext events.
1101 */
1102 if (wdev->netdev)
1103 cfg80211_sme_scan_done(wdev->netdev);
1104
1105 if (!request->info.aborted &&
1106 request->flags & NL80211_SCAN_FLAG_FLUSH) {
1107 /* flush entries from previous scans */
1108 spin_lock_bh(&rdev->bss_lock);
1109 __cfg80211_bss_expire(rdev, request->scan_start);
1110 spin_unlock_bh(&rdev->bss_lock);
1111 }
1112
1113 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1114
1115 #ifdef CONFIG_CFG80211_WEXT
1116 if (wdev->netdev && !request->info.aborted) {
1117 memset(&wrqu, 0, sizeof(wrqu));
1118
1119 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1120 }
1121 #endif
1122
1123 dev_put(wdev->netdev);
1124
1125 kfree(rdev->int_scan_req);
1126 rdev->int_scan_req = NULL;
1127
1128 kfree(rdev->scan_req);
1129 rdev->scan_req = NULL;
1130
1131 if (!send_message)
1132 rdev->scan_msg = msg;
1133 else
1134 nl80211_send_scan_msg(rdev, msg);
1135 }
1136
__cfg80211_scan_done(struct wiphy * wiphy,struct wiphy_work * wk)1137 void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk)
1138 {
1139 ___cfg80211_scan_done(wiphy_to_rdev(wiphy), true);
1140 }
1141
cfg80211_scan_done(struct cfg80211_scan_request * request,struct cfg80211_scan_info * info)1142 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1143 struct cfg80211_scan_info *info)
1144 {
1145 struct cfg80211_scan_info old_info = request->info;
1146
1147 trace_cfg80211_scan_done(request, info);
1148 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1149 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1150
1151 request->info = *info;
1152
1153 /*
1154 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1155 * be of the first part. In such a case old_info.scan_start_tsf should
1156 * be non zero.
1157 */
1158 if (request->scan_6ghz && old_info.scan_start_tsf) {
1159 request->info.scan_start_tsf = old_info.scan_start_tsf;
1160 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1161 sizeof(request->info.tsf_bssid));
1162 }
1163
1164 request->notified = true;
1165 wiphy_work_queue(request->wiphy,
1166 &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1167 }
1168 EXPORT_SYMBOL(cfg80211_scan_done);
1169
cfg80211_add_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req)1170 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1171 struct cfg80211_sched_scan_request *req)
1172 {
1173 lockdep_assert_held(&rdev->wiphy.mtx);
1174
1175 list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1176 }
1177
cfg80211_del_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req)1178 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1179 struct cfg80211_sched_scan_request *req)
1180 {
1181 lockdep_assert_held(&rdev->wiphy.mtx);
1182
1183 list_del_rcu(&req->list);
1184 kfree_rcu(req, rcu_head);
1185 }
1186
1187 static struct cfg80211_sched_scan_request *
cfg80211_find_sched_scan_req(struct cfg80211_registered_device * rdev,u64 reqid)1188 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1189 {
1190 struct cfg80211_sched_scan_request *pos;
1191
1192 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1193 lockdep_is_held(&rdev->wiphy.mtx)) {
1194 if (pos->reqid == reqid)
1195 return pos;
1196 }
1197 return NULL;
1198 }
1199
1200 /*
1201 * Determines if a scheduled scan request can be handled. When a legacy
1202 * scheduled scan is running no other scheduled scan is allowed regardless
1203 * whether the request is for legacy or multi-support scan. When a multi-support
1204 * scheduled scan is running a request for legacy scan is not allowed. In this
1205 * case a request for multi-support scan can be handled if resources are
1206 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1207 */
cfg80211_sched_scan_req_possible(struct cfg80211_registered_device * rdev,bool want_multi)1208 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1209 bool want_multi)
1210 {
1211 struct cfg80211_sched_scan_request *pos;
1212 int i = 0;
1213
1214 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1215 /* request id zero means legacy in progress */
1216 if (!i && !pos->reqid)
1217 return -EINPROGRESS;
1218 i++;
1219 }
1220
1221 if (i) {
1222 /* no legacy allowed when multi request(s) are active */
1223 if (!want_multi)
1224 return -EINPROGRESS;
1225
1226 /* resource limit reached */
1227 if (i == rdev->wiphy.max_sched_scan_reqs)
1228 return -ENOSPC;
1229 }
1230 return 0;
1231 }
1232
cfg80211_sched_scan_results_wk(struct work_struct * work)1233 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1234 {
1235 struct cfg80211_registered_device *rdev;
1236 struct cfg80211_sched_scan_request *req, *tmp;
1237
1238 rdev = container_of(work, struct cfg80211_registered_device,
1239 sched_scan_res_wk);
1240
1241 wiphy_lock(&rdev->wiphy);
1242 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1243 if (req->report_results) {
1244 req->report_results = false;
1245 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1246 /* flush entries from previous scans */
1247 spin_lock_bh(&rdev->bss_lock);
1248 __cfg80211_bss_expire(rdev, req->scan_start);
1249 spin_unlock_bh(&rdev->bss_lock);
1250 req->scan_start = jiffies;
1251 }
1252 nl80211_send_sched_scan(req,
1253 NL80211_CMD_SCHED_SCAN_RESULTS);
1254 }
1255 }
1256 wiphy_unlock(&rdev->wiphy);
1257 }
1258
cfg80211_sched_scan_results(struct wiphy * wiphy,u64 reqid)1259 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1260 {
1261 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1262 struct cfg80211_sched_scan_request *request;
1263
1264 trace_cfg80211_sched_scan_results(wiphy, reqid);
1265 /* ignore if we're not scanning */
1266
1267 rcu_read_lock();
1268 request = cfg80211_find_sched_scan_req(rdev, reqid);
1269 if (request) {
1270 request->report_results = true;
1271 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1272 }
1273 rcu_read_unlock();
1274 }
1275 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1276
cfg80211_sched_scan_stopped_locked(struct wiphy * wiphy,u64 reqid)1277 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1278 {
1279 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1280
1281 lockdep_assert_held(&wiphy->mtx);
1282
1283 trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1284
1285 __cfg80211_stop_sched_scan(rdev, reqid, true);
1286 }
1287 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1288
cfg80211_sched_scan_stopped(struct wiphy * wiphy,u64 reqid)1289 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1290 {
1291 wiphy_lock(wiphy);
1292 cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1293 wiphy_unlock(wiphy);
1294 }
1295 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1296
cfg80211_stop_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req,bool driver_initiated)1297 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1298 struct cfg80211_sched_scan_request *req,
1299 bool driver_initiated)
1300 {
1301 lockdep_assert_held(&rdev->wiphy.mtx);
1302
1303 if (!driver_initiated) {
1304 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1305 if (err)
1306 return err;
1307 }
1308
1309 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1310
1311 cfg80211_del_sched_scan_req(rdev, req);
1312
1313 return 0;
1314 }
1315
__cfg80211_stop_sched_scan(struct cfg80211_registered_device * rdev,u64 reqid,bool driver_initiated)1316 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1317 u64 reqid, bool driver_initiated)
1318 {
1319 struct cfg80211_sched_scan_request *sched_scan_req;
1320
1321 lockdep_assert_held(&rdev->wiphy.mtx);
1322
1323 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1324 if (!sched_scan_req)
1325 return -ENOENT;
1326
1327 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1328 driver_initiated);
1329 }
1330
cfg80211_bss_age(struct cfg80211_registered_device * rdev,unsigned long age_secs)1331 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1332 unsigned long age_secs)
1333 {
1334 struct cfg80211_internal_bss *bss;
1335 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1336
1337 spin_lock_bh(&rdev->bss_lock);
1338 list_for_each_entry(bss, &rdev->bss_list, list)
1339 bss->ts -= age_jiffies;
1340 spin_unlock_bh(&rdev->bss_lock);
1341 }
1342
cfg80211_bss_expire(struct cfg80211_registered_device * rdev)1343 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1344 {
1345 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1346 }
1347
cfg80211_bss_flush(struct wiphy * wiphy)1348 void cfg80211_bss_flush(struct wiphy *wiphy)
1349 {
1350 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1351
1352 spin_lock_bh(&rdev->bss_lock);
1353 __cfg80211_bss_expire(rdev, jiffies);
1354 spin_unlock_bh(&rdev->bss_lock);
1355 }
1356 EXPORT_SYMBOL(cfg80211_bss_flush);
1357
1358 const struct element *
cfg80211_find_elem_match(u8 eid,const u8 * ies,unsigned int len,const u8 * match,unsigned int match_len,unsigned int match_offset)1359 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1360 const u8 *match, unsigned int match_len,
1361 unsigned int match_offset)
1362 {
1363 const struct element *elem;
1364
1365 for_each_element_id(elem, eid, ies, len) {
1366 if (elem->datalen >= match_offset + match_len &&
1367 !memcmp(elem->data + match_offset, match, match_len))
1368 return elem;
1369 }
1370
1371 return NULL;
1372 }
1373 EXPORT_SYMBOL(cfg80211_find_elem_match);
1374
cfg80211_find_vendor_elem(unsigned int oui,int oui_type,const u8 * ies,unsigned int len)1375 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1376 const u8 *ies,
1377 unsigned int len)
1378 {
1379 const struct element *elem;
1380 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1381 int match_len = (oui_type < 0) ? 3 : sizeof(match);
1382
1383 if (WARN_ON(oui_type > 0xff))
1384 return NULL;
1385
1386 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1387 match, match_len, 0);
1388
1389 if (!elem || elem->datalen < 4)
1390 return NULL;
1391
1392 return elem;
1393 }
1394 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1395
1396 /**
1397 * enum bss_compare_mode - BSS compare mode
1398 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1399 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1400 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1401 */
1402 enum bss_compare_mode {
1403 BSS_CMP_REGULAR,
1404 BSS_CMP_HIDE_ZLEN,
1405 BSS_CMP_HIDE_NUL,
1406 };
1407
cmp_bss(struct cfg80211_bss * a,struct cfg80211_bss * b,enum bss_compare_mode mode)1408 static int cmp_bss(struct cfg80211_bss *a,
1409 struct cfg80211_bss *b,
1410 enum bss_compare_mode mode)
1411 {
1412 const struct cfg80211_bss_ies *a_ies, *b_ies;
1413 const u8 *ie1 = NULL;
1414 const u8 *ie2 = NULL;
1415 int i, r;
1416
1417 if (a->channel != b->channel)
1418 return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1419 (a->channel->center_freq * 1000 + a->channel->freq_offset);
1420
1421 a_ies = rcu_access_pointer(a->ies);
1422 if (!a_ies)
1423 return -1;
1424 b_ies = rcu_access_pointer(b->ies);
1425 if (!b_ies)
1426 return 1;
1427
1428 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1429 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1430 a_ies->data, a_ies->len);
1431 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1432 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1433 b_ies->data, b_ies->len);
1434 if (ie1 && ie2) {
1435 int mesh_id_cmp;
1436
1437 if (ie1[1] == ie2[1])
1438 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1439 else
1440 mesh_id_cmp = ie2[1] - ie1[1];
1441
1442 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1443 a_ies->data, a_ies->len);
1444 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1445 b_ies->data, b_ies->len);
1446 if (ie1 && ie2) {
1447 if (mesh_id_cmp)
1448 return mesh_id_cmp;
1449 if (ie1[1] != ie2[1])
1450 return ie2[1] - ie1[1];
1451 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1452 }
1453 }
1454
1455 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1456 if (r)
1457 return r;
1458
1459 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1460 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1461
1462 if (!ie1 && !ie2)
1463 return 0;
1464
1465 /*
1466 * Note that with "hide_ssid", the function returns a match if
1467 * the already-present BSS ("b") is a hidden SSID beacon for
1468 * the new BSS ("a").
1469 */
1470
1471 /* sort missing IE before (left of) present IE */
1472 if (!ie1)
1473 return -1;
1474 if (!ie2)
1475 return 1;
1476
1477 switch (mode) {
1478 case BSS_CMP_HIDE_ZLEN:
1479 /*
1480 * In ZLEN mode we assume the BSS entry we're
1481 * looking for has a zero-length SSID. So if
1482 * the one we're looking at right now has that,
1483 * return 0. Otherwise, return the difference
1484 * in length, but since we're looking for the
1485 * 0-length it's really equivalent to returning
1486 * the length of the one we're looking at.
1487 *
1488 * No content comparison is needed as we assume
1489 * the content length is zero.
1490 */
1491 return ie2[1];
1492 case BSS_CMP_REGULAR:
1493 default:
1494 /* sort by length first, then by contents */
1495 if (ie1[1] != ie2[1])
1496 return ie2[1] - ie1[1];
1497 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1498 case BSS_CMP_HIDE_NUL:
1499 if (ie1[1] != ie2[1])
1500 return ie2[1] - ie1[1];
1501 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1502 for (i = 0; i < ie2[1]; i++)
1503 if (ie2[i + 2])
1504 return -1;
1505 return 0;
1506 }
1507 }
1508
cfg80211_bss_type_match(u16 capability,enum nl80211_band band,enum ieee80211_bss_type bss_type)1509 static bool cfg80211_bss_type_match(u16 capability,
1510 enum nl80211_band band,
1511 enum ieee80211_bss_type bss_type)
1512 {
1513 bool ret = true;
1514 u16 mask, val;
1515
1516 if (bss_type == IEEE80211_BSS_TYPE_ANY)
1517 return ret;
1518
1519 if (band == NL80211_BAND_60GHZ) {
1520 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1521 switch (bss_type) {
1522 case IEEE80211_BSS_TYPE_ESS:
1523 val = WLAN_CAPABILITY_DMG_TYPE_AP;
1524 break;
1525 case IEEE80211_BSS_TYPE_PBSS:
1526 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1527 break;
1528 case IEEE80211_BSS_TYPE_IBSS:
1529 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1530 break;
1531 default:
1532 return false;
1533 }
1534 } else {
1535 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1536 switch (bss_type) {
1537 case IEEE80211_BSS_TYPE_ESS:
1538 val = WLAN_CAPABILITY_ESS;
1539 break;
1540 case IEEE80211_BSS_TYPE_IBSS:
1541 val = WLAN_CAPABILITY_IBSS;
1542 break;
1543 case IEEE80211_BSS_TYPE_MBSS:
1544 val = 0;
1545 break;
1546 default:
1547 return false;
1548 }
1549 }
1550
1551 ret = ((capability & mask) == val);
1552 return ret;
1553 }
1554
1555 /* Returned bss is reference counted and must be cleaned up appropriately. */
__cfg80211_get_bss(struct wiphy * wiphy,struct ieee80211_channel * channel,const u8 * bssid,const u8 * ssid,size_t ssid_len,enum ieee80211_bss_type bss_type,enum ieee80211_privacy privacy,u32 use_for)1556 struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy,
1557 struct ieee80211_channel *channel,
1558 const u8 *bssid,
1559 const u8 *ssid, size_t ssid_len,
1560 enum ieee80211_bss_type bss_type,
1561 enum ieee80211_privacy privacy,
1562 u32 use_for)
1563 {
1564 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1565 struct cfg80211_internal_bss *bss, *res = NULL;
1566 unsigned long now = jiffies;
1567 int bss_privacy;
1568
1569 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1570 privacy);
1571
1572 spin_lock_bh(&rdev->bss_lock);
1573
1574 list_for_each_entry(bss, &rdev->bss_list, list) {
1575 if (!cfg80211_bss_type_match(bss->pub.capability,
1576 bss->pub.channel->band, bss_type))
1577 continue;
1578
1579 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1580 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1581 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1582 continue;
1583 if (channel && bss->pub.channel != channel)
1584 continue;
1585 if (!is_valid_ether_addr(bss->pub.bssid))
1586 continue;
1587 if ((bss->pub.use_for & use_for) != use_for)
1588 continue;
1589 /* Don't get expired BSS structs */
1590 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1591 !atomic_read(&bss->hold))
1592 continue;
1593 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1594 res = bss;
1595 bss_ref_get(rdev, res);
1596 break;
1597 }
1598 }
1599
1600 spin_unlock_bh(&rdev->bss_lock);
1601 if (!res)
1602 return NULL;
1603 trace_cfg80211_return_bss(&res->pub);
1604 return &res->pub;
1605 }
1606 EXPORT_SYMBOL(__cfg80211_get_bss);
1607
rb_insert_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)1608 static bool rb_insert_bss(struct cfg80211_registered_device *rdev,
1609 struct cfg80211_internal_bss *bss)
1610 {
1611 struct rb_node **p = &rdev->bss_tree.rb_node;
1612 struct rb_node *parent = NULL;
1613 struct cfg80211_internal_bss *tbss;
1614 int cmp;
1615
1616 while (*p) {
1617 parent = *p;
1618 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1619
1620 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1621
1622 if (WARN_ON(!cmp)) {
1623 /* will sort of leak this BSS */
1624 return false;
1625 }
1626
1627 if (cmp < 0)
1628 p = &(*p)->rb_left;
1629 else
1630 p = &(*p)->rb_right;
1631 }
1632
1633 rb_link_node(&bss->rbn, parent, p);
1634 rb_insert_color(&bss->rbn, &rdev->bss_tree);
1635 return true;
1636 }
1637
1638 static struct cfg80211_internal_bss *
rb_find_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * res,enum bss_compare_mode mode)1639 rb_find_bss(struct cfg80211_registered_device *rdev,
1640 struct cfg80211_internal_bss *res,
1641 enum bss_compare_mode mode)
1642 {
1643 struct rb_node *n = rdev->bss_tree.rb_node;
1644 struct cfg80211_internal_bss *bss;
1645 int r;
1646
1647 while (n) {
1648 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1649 r = cmp_bss(&res->pub, &bss->pub, mode);
1650
1651 if (r == 0)
1652 return bss;
1653 else if (r < 0)
1654 n = n->rb_left;
1655 else
1656 n = n->rb_right;
1657 }
1658
1659 return NULL;
1660 }
1661
cfg80211_insert_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)1662 static void cfg80211_insert_bss(struct cfg80211_registered_device *rdev,
1663 struct cfg80211_internal_bss *bss)
1664 {
1665 lockdep_assert_held(&rdev->bss_lock);
1666
1667 if (!rb_insert_bss(rdev, bss))
1668 return;
1669 list_add_tail(&bss->list, &rdev->bss_list);
1670 rdev->bss_entries++;
1671 }
1672
cfg80211_rehash_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)1673 static void cfg80211_rehash_bss(struct cfg80211_registered_device *rdev,
1674 struct cfg80211_internal_bss *bss)
1675 {
1676 lockdep_assert_held(&rdev->bss_lock);
1677
1678 rb_erase(&bss->rbn, &rdev->bss_tree);
1679 if (!rb_insert_bss(rdev, bss)) {
1680 list_del(&bss->list);
1681 if (!list_empty(&bss->hidden_list))
1682 list_del_init(&bss->hidden_list);
1683 if (!list_empty(&bss->pub.nontrans_list))
1684 list_del_init(&bss->pub.nontrans_list);
1685 rdev->bss_entries--;
1686 }
1687 rdev->bss_generation++;
1688 }
1689
cfg80211_combine_bsses(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * new)1690 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1691 struct cfg80211_internal_bss *new)
1692 {
1693 const struct cfg80211_bss_ies *ies;
1694 struct cfg80211_internal_bss *bss;
1695 const u8 *ie;
1696 int i, ssidlen;
1697 u8 fold = 0;
1698 u32 n_entries = 0;
1699
1700 ies = rcu_access_pointer(new->pub.beacon_ies);
1701 if (WARN_ON(!ies))
1702 return false;
1703
1704 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1705 if (!ie) {
1706 /* nothing to do */
1707 return true;
1708 }
1709
1710 ssidlen = ie[1];
1711 for (i = 0; i < ssidlen; i++)
1712 fold |= ie[2 + i];
1713
1714 if (fold) {
1715 /* not a hidden SSID */
1716 return true;
1717 }
1718
1719 /* This is the bad part ... */
1720
1721 list_for_each_entry(bss, &rdev->bss_list, list) {
1722 /*
1723 * we're iterating all the entries anyway, so take the
1724 * opportunity to validate the list length accounting
1725 */
1726 n_entries++;
1727
1728 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1729 continue;
1730 if (bss->pub.channel != new->pub.channel)
1731 continue;
1732 if (rcu_access_pointer(bss->pub.beacon_ies))
1733 continue;
1734 ies = rcu_access_pointer(bss->pub.ies);
1735 if (!ies)
1736 continue;
1737 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1738 if (!ie)
1739 continue;
1740 if (ssidlen && ie[1] != ssidlen)
1741 continue;
1742 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1743 continue;
1744 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1745 list_del(&bss->hidden_list);
1746 /* combine them */
1747 list_add(&bss->hidden_list, &new->hidden_list);
1748 bss->pub.hidden_beacon_bss = &new->pub;
1749 new->refcount += bss->refcount;
1750 rcu_assign_pointer(bss->pub.beacon_ies,
1751 new->pub.beacon_ies);
1752 }
1753
1754 WARN_ONCE(n_entries != rdev->bss_entries,
1755 "rdev bss entries[%d]/list[len:%d] corruption\n",
1756 rdev->bss_entries, n_entries);
1757
1758 return true;
1759 }
1760
cfg80211_update_hidden_bsses(struct cfg80211_internal_bss * known,const struct cfg80211_bss_ies * new_ies,const struct cfg80211_bss_ies * old_ies)1761 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1762 const struct cfg80211_bss_ies *new_ies,
1763 const struct cfg80211_bss_ies *old_ies)
1764 {
1765 struct cfg80211_internal_bss *bss;
1766
1767 /* Assign beacon IEs to all sub entries */
1768 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1769 const struct cfg80211_bss_ies *ies;
1770
1771 ies = rcu_access_pointer(bss->pub.beacon_ies);
1772 WARN_ON(ies != old_ies);
1773
1774 rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1775 }
1776 }
1777
cfg80211_check_stuck_ecsa(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * known,const struct cfg80211_bss_ies * old)1778 static void cfg80211_check_stuck_ecsa(struct cfg80211_registered_device *rdev,
1779 struct cfg80211_internal_bss *known,
1780 const struct cfg80211_bss_ies *old)
1781 {
1782 const struct ieee80211_ext_chansw_ie *ecsa;
1783 const struct element *elem_new, *elem_old;
1784 const struct cfg80211_bss_ies *new, *bcn;
1785
1786 if (known->pub.proberesp_ecsa_stuck)
1787 return;
1788
1789 new = rcu_dereference_protected(known->pub.proberesp_ies,
1790 lockdep_is_held(&rdev->bss_lock));
1791 if (WARN_ON(!new))
1792 return;
1793
1794 if (new->tsf - old->tsf < USEC_PER_SEC)
1795 return;
1796
1797 elem_old = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1798 old->data, old->len);
1799 if (!elem_old)
1800 return;
1801
1802 elem_new = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1803 new->data, new->len);
1804 if (!elem_new)
1805 return;
1806
1807 bcn = rcu_dereference_protected(known->pub.beacon_ies,
1808 lockdep_is_held(&rdev->bss_lock));
1809 if (bcn &&
1810 cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1811 bcn->data, bcn->len))
1812 return;
1813
1814 if (elem_new->datalen != elem_old->datalen)
1815 return;
1816 if (elem_new->datalen < sizeof(struct ieee80211_ext_chansw_ie))
1817 return;
1818 if (memcmp(elem_new->data, elem_old->data, elem_new->datalen))
1819 return;
1820
1821 ecsa = (void *)elem_new->data;
1822
1823 if (!ecsa->mode)
1824 return;
1825
1826 if (ecsa->new_ch_num !=
1827 ieee80211_frequency_to_channel(known->pub.channel->center_freq))
1828 return;
1829
1830 known->pub.proberesp_ecsa_stuck = 1;
1831 }
1832
1833 static bool
cfg80211_update_known_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * known,struct cfg80211_internal_bss * new,bool signal_valid)1834 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1835 struct cfg80211_internal_bss *known,
1836 struct cfg80211_internal_bss *new,
1837 bool signal_valid)
1838 {
1839 lockdep_assert_held(&rdev->bss_lock);
1840
1841 /* Update IEs */
1842 if (rcu_access_pointer(new->pub.proberesp_ies)) {
1843 const struct cfg80211_bss_ies *old;
1844
1845 old = rcu_access_pointer(known->pub.proberesp_ies);
1846
1847 rcu_assign_pointer(known->pub.proberesp_ies,
1848 new->pub.proberesp_ies);
1849 /* Override possible earlier Beacon frame IEs */
1850 rcu_assign_pointer(known->pub.ies,
1851 new->pub.proberesp_ies);
1852 if (old) {
1853 cfg80211_check_stuck_ecsa(rdev, known, old);
1854 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1855 }
1856 }
1857
1858 if (rcu_access_pointer(new->pub.beacon_ies)) {
1859 const struct cfg80211_bss_ies *old;
1860
1861 if (known->pub.hidden_beacon_bss &&
1862 !list_empty(&known->hidden_list)) {
1863 const struct cfg80211_bss_ies *f;
1864
1865 /* The known BSS struct is one of the probe
1866 * response members of a group, but we're
1867 * receiving a beacon (beacon_ies in the new
1868 * bss is used). This can only mean that the
1869 * AP changed its beacon from not having an
1870 * SSID to showing it, which is confusing so
1871 * drop this information.
1872 */
1873
1874 f = rcu_access_pointer(new->pub.beacon_ies);
1875 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1876 return false;
1877 }
1878
1879 old = rcu_access_pointer(known->pub.beacon_ies);
1880
1881 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1882
1883 /* Override IEs if they were from a beacon before */
1884 if (old == rcu_access_pointer(known->pub.ies))
1885 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1886
1887 cfg80211_update_hidden_bsses(known,
1888 rcu_access_pointer(new->pub.beacon_ies),
1889 old);
1890
1891 if (old)
1892 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1893 }
1894
1895 known->pub.beacon_interval = new->pub.beacon_interval;
1896
1897 /* don't update the signal if beacon was heard on
1898 * adjacent channel.
1899 */
1900 if (signal_valid)
1901 known->pub.signal = new->pub.signal;
1902 known->pub.capability = new->pub.capability;
1903 known->ts = new->ts;
1904 known->ts_boottime = new->ts_boottime;
1905 known->parent_tsf = new->parent_tsf;
1906 known->pub.chains = new->pub.chains;
1907 memcpy(known->pub.chain_signal, new->pub.chain_signal,
1908 IEEE80211_MAX_CHAINS);
1909 ether_addr_copy(known->parent_bssid, new->parent_bssid);
1910 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1911 known->pub.bssid_index = new->pub.bssid_index;
1912 known->pub.use_for &= new->pub.use_for;
1913 known->pub.cannot_use_reasons = new->pub.cannot_use_reasons;
1914 known->bss_source = new->bss_source;
1915
1916 return true;
1917 }
1918
1919 /* Returned bss is reference counted and must be cleaned up appropriately. */
1920 static struct cfg80211_internal_bss *
__cfg80211_bss_update(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * tmp,bool signal_valid,unsigned long ts)1921 __cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1922 struct cfg80211_internal_bss *tmp,
1923 bool signal_valid, unsigned long ts)
1924 {
1925 struct cfg80211_internal_bss *found = NULL;
1926 struct cfg80211_bss_ies *ies;
1927
1928 if (WARN_ON(!tmp->pub.channel))
1929 goto free_ies;
1930
1931 tmp->ts = ts;
1932
1933 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies)))
1934 goto free_ies;
1935
1936 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1937
1938 if (found) {
1939 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1940 return NULL;
1941 } else {
1942 struct cfg80211_internal_bss *new;
1943 struct cfg80211_internal_bss *hidden;
1944
1945 /*
1946 * create a copy -- the "res" variable that is passed in
1947 * is allocated on the stack since it's not needed in the
1948 * more common case of an update
1949 */
1950 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1951 GFP_ATOMIC);
1952 if (!new)
1953 goto free_ies;
1954 memcpy(new, tmp, sizeof(*new));
1955 new->refcount = 1;
1956 INIT_LIST_HEAD(&new->hidden_list);
1957 INIT_LIST_HEAD(&new->pub.nontrans_list);
1958 /* we'll set this later if it was non-NULL */
1959 new->pub.transmitted_bss = NULL;
1960
1961 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1962 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1963 if (!hidden)
1964 hidden = rb_find_bss(rdev, tmp,
1965 BSS_CMP_HIDE_NUL);
1966 if (hidden) {
1967 new->pub.hidden_beacon_bss = &hidden->pub;
1968 list_add(&new->hidden_list,
1969 &hidden->hidden_list);
1970 hidden->refcount++;
1971
1972 ies = (void *)rcu_access_pointer(new->pub.beacon_ies);
1973 rcu_assign_pointer(new->pub.beacon_ies,
1974 hidden->pub.beacon_ies);
1975 if (ies)
1976 kfree_rcu(ies, rcu_head);
1977 }
1978 } else {
1979 /*
1980 * Ok so we found a beacon, and don't have an entry. If
1981 * it's a beacon with hidden SSID, we might be in for an
1982 * expensive search for any probe responses that should
1983 * be grouped with this beacon for updates ...
1984 */
1985 if (!cfg80211_combine_bsses(rdev, new)) {
1986 bss_ref_put(rdev, new);
1987 return NULL;
1988 }
1989 }
1990
1991 if (rdev->bss_entries >= bss_entries_limit &&
1992 !cfg80211_bss_expire_oldest(rdev)) {
1993 bss_ref_put(rdev, new);
1994 return NULL;
1995 }
1996
1997 /* This must be before the call to bss_ref_get */
1998 if (tmp->pub.transmitted_bss) {
1999 new->pub.transmitted_bss = tmp->pub.transmitted_bss;
2000 bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
2001 }
2002
2003 cfg80211_insert_bss(rdev, new);
2004 found = new;
2005 }
2006
2007 rdev->bss_generation++;
2008 bss_ref_get(rdev, found);
2009
2010 return found;
2011
2012 free_ies:
2013 ies = (void *)rcu_access_pointer(tmp->pub.beacon_ies);
2014 if (ies)
2015 kfree_rcu(ies, rcu_head);
2016 ies = (void *)rcu_access_pointer(tmp->pub.proberesp_ies);
2017 if (ies)
2018 kfree_rcu(ies, rcu_head);
2019
2020 return NULL;
2021 }
2022
2023 struct cfg80211_internal_bss *
cfg80211_bss_update(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * tmp,bool signal_valid,unsigned long ts)2024 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
2025 struct cfg80211_internal_bss *tmp,
2026 bool signal_valid, unsigned long ts)
2027 {
2028 struct cfg80211_internal_bss *res;
2029
2030 spin_lock_bh(&rdev->bss_lock);
2031 res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts);
2032 spin_unlock_bh(&rdev->bss_lock);
2033
2034 return res;
2035 }
2036
cfg80211_get_ies_channel_number(const u8 * ie,size_t ielen,enum nl80211_band band)2037 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
2038 enum nl80211_band band)
2039 {
2040 const struct element *tmp;
2041
2042 if (band == NL80211_BAND_6GHZ) {
2043 struct ieee80211_he_operation *he_oper;
2044
2045 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
2046 ielen);
2047 if (tmp && tmp->datalen >= sizeof(*he_oper) &&
2048 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
2049 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2050
2051 he_oper = (void *)&tmp->data[1];
2052
2053 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2054 if (!he_6ghz_oper)
2055 return -1;
2056
2057 return he_6ghz_oper->primary;
2058 }
2059 } else if (band == NL80211_BAND_S1GHZ) {
2060 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
2061 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
2062 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
2063
2064 return s1gop->oper_ch;
2065 }
2066 } else {
2067 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
2068 if (tmp && tmp->datalen == 1)
2069 return tmp->data[0];
2070
2071 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
2072 if (tmp &&
2073 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
2074 struct ieee80211_ht_operation *htop = (void *)tmp->data;
2075
2076 return htop->primary_chan;
2077 }
2078 }
2079
2080 return -1;
2081 }
2082 EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
2083
2084 /*
2085 * Update RX channel information based on the available frame payload
2086 * information. This is mainly for the 2.4 GHz band where frames can be received
2087 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
2088 * element to indicate the current (transmitting) channel, but this might also
2089 * be needed on other bands if RX frequency does not match with the actual
2090 * operating channel of a BSS, or if the AP reports a different primary channel.
2091 */
2092 static struct ieee80211_channel *
cfg80211_get_bss_channel(struct wiphy * wiphy,const u8 * ie,size_t ielen,struct ieee80211_channel * channel)2093 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
2094 struct ieee80211_channel *channel)
2095 {
2096 u32 freq;
2097 int channel_number;
2098 struct ieee80211_channel *alt_channel;
2099
2100 channel_number = cfg80211_get_ies_channel_number(ie, ielen,
2101 channel->band);
2102
2103 if (channel_number < 0) {
2104 /* No channel information in frame payload */
2105 return channel;
2106 }
2107
2108 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
2109
2110 /*
2111 * Frame info (beacon/prob res) is the same as received channel,
2112 * no need for further processing.
2113 */
2114 if (freq == ieee80211_channel_to_khz(channel))
2115 return channel;
2116
2117 alt_channel = ieee80211_get_channel_khz(wiphy, freq);
2118 if (!alt_channel) {
2119 if (channel->band == NL80211_BAND_2GHZ ||
2120 channel->band == NL80211_BAND_6GHZ) {
2121 /*
2122 * Better not allow unexpected channels when that could
2123 * be going beyond the 1-11 range (e.g., discovering
2124 * BSS on channel 12 when radio is configured for
2125 * channel 11) or beyond the 6 GHz channel range.
2126 */
2127 return NULL;
2128 }
2129
2130 /* No match for the payload channel number - ignore it */
2131 return channel;
2132 }
2133
2134 /*
2135 * Use the channel determined through the payload channel number
2136 * instead of the RX channel reported by the driver.
2137 */
2138 if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
2139 return NULL;
2140 return alt_channel;
2141 }
2142
2143 struct cfg80211_inform_single_bss_data {
2144 struct cfg80211_inform_bss *drv_data;
2145 enum cfg80211_bss_frame_type ftype;
2146 struct ieee80211_channel *channel;
2147 u8 bssid[ETH_ALEN];
2148 u64 tsf;
2149 u16 capability;
2150 u16 beacon_interval;
2151 const u8 *ie;
2152 size_t ielen;
2153
2154 enum bss_source_type bss_source;
2155 /* Set if reporting bss_source != BSS_SOURCE_DIRECT */
2156 struct cfg80211_bss *source_bss;
2157 u8 max_bssid_indicator;
2158 u8 bssid_index;
2159
2160 u8 use_for;
2161 u64 cannot_use_reasons;
2162 };
2163
2164 enum ieee80211_ap_reg_power
cfg80211_get_6ghz_power_type(const u8 * elems,size_t elems_len)2165 cfg80211_get_6ghz_power_type(const u8 *elems, size_t elems_len)
2166 {
2167 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2168 struct ieee80211_he_operation *he_oper;
2169 const struct element *tmp;
2170
2171 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION,
2172 elems, elems_len);
2173 if (!tmp || tmp->datalen < sizeof(*he_oper) + 1 ||
2174 tmp->datalen < ieee80211_he_oper_size(tmp->data + 1))
2175 return IEEE80211_REG_UNSET_AP;
2176
2177 he_oper = (void *)&tmp->data[1];
2178 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2179
2180 if (!he_6ghz_oper)
2181 return IEEE80211_REG_UNSET_AP;
2182
2183 switch (u8_get_bits(he_6ghz_oper->control,
2184 IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) {
2185 case IEEE80211_6GHZ_CTRL_REG_LPI_AP:
2186 case IEEE80211_6GHZ_CTRL_REG_INDOOR_LPI_AP:
2187 return IEEE80211_REG_LPI_AP;
2188 case IEEE80211_6GHZ_CTRL_REG_SP_AP:
2189 case IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP:
2190 return IEEE80211_REG_SP_AP;
2191 case IEEE80211_6GHZ_CTRL_REG_VLP_AP:
2192 return IEEE80211_REG_VLP_AP;
2193 default:
2194 return IEEE80211_REG_UNSET_AP;
2195 }
2196 }
2197
cfg80211_6ghz_power_type_valid(const u8 * elems,size_t elems_len,const u32 flags)2198 static bool cfg80211_6ghz_power_type_valid(const u8 *elems, size_t elems_len,
2199 const u32 flags)
2200 {
2201 switch (cfg80211_get_6ghz_power_type(elems, elems_len)) {
2202 case IEEE80211_REG_LPI_AP:
2203 return true;
2204 case IEEE80211_REG_SP_AP:
2205 return !(flags & IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT);
2206 case IEEE80211_REG_VLP_AP:
2207 return !(flags & IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT);
2208 default:
2209 return false;
2210 }
2211 }
2212
2213 /* Returned bss is reference counted and must be cleaned up appropriately. */
2214 static struct cfg80211_bss *
cfg80211_inform_single_bss_data(struct wiphy * wiphy,struct cfg80211_inform_single_bss_data * data,gfp_t gfp)2215 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
2216 struct cfg80211_inform_single_bss_data *data,
2217 gfp_t gfp)
2218 {
2219 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2220 struct cfg80211_inform_bss *drv_data = data->drv_data;
2221 struct cfg80211_bss_ies *ies;
2222 struct ieee80211_channel *channel;
2223 struct cfg80211_internal_bss tmp = {}, *res;
2224 int bss_type;
2225 bool signal_valid;
2226 unsigned long ts;
2227
2228 if (WARN_ON(!wiphy))
2229 return NULL;
2230
2231 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2232 (drv_data->signal < 0 || drv_data->signal > 100)))
2233 return NULL;
2234
2235 if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss))
2236 return NULL;
2237
2238 channel = data->channel;
2239 if (!channel)
2240 channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen,
2241 drv_data->chan);
2242 if (!channel)
2243 return NULL;
2244
2245 if (channel->band == NL80211_BAND_6GHZ &&
2246 !cfg80211_6ghz_power_type_valid(data->ie, data->ielen,
2247 channel->flags)) {
2248 data->use_for = 0;
2249 data->cannot_use_reasons =
2250 NL80211_BSS_CANNOT_USE_6GHZ_PWR_MISMATCH;
2251 }
2252
2253 memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN);
2254 tmp.pub.channel = channel;
2255 if (data->bss_source != BSS_SOURCE_STA_PROFILE)
2256 tmp.pub.signal = drv_data->signal;
2257 else
2258 tmp.pub.signal = 0;
2259 tmp.pub.beacon_interval = data->beacon_interval;
2260 tmp.pub.capability = data->capability;
2261 tmp.ts_boottime = drv_data->boottime_ns;
2262 tmp.parent_tsf = drv_data->parent_tsf;
2263 ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid);
2264 tmp.pub.chains = drv_data->chains;
2265 memcpy(tmp.pub.chain_signal, drv_data->chain_signal,
2266 IEEE80211_MAX_CHAINS);
2267 tmp.pub.use_for = data->use_for;
2268 tmp.pub.cannot_use_reasons = data->cannot_use_reasons;
2269 tmp.bss_source = data->bss_source;
2270
2271 switch (data->bss_source) {
2272 case BSS_SOURCE_MBSSID:
2273 tmp.pub.transmitted_bss = data->source_bss;
2274 fallthrough;
2275 case BSS_SOURCE_STA_PROFILE:
2276 ts = bss_from_pub(data->source_bss)->ts;
2277 tmp.pub.bssid_index = data->bssid_index;
2278 tmp.pub.max_bssid_indicator = data->max_bssid_indicator;
2279 break;
2280 case BSS_SOURCE_DIRECT:
2281 ts = jiffies;
2282
2283 if (channel->band == NL80211_BAND_60GHZ) {
2284 bss_type = data->capability &
2285 WLAN_CAPABILITY_DMG_TYPE_MASK;
2286 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2287 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2288 regulatory_hint_found_beacon(wiphy, channel,
2289 gfp);
2290 } else {
2291 if (data->capability & WLAN_CAPABILITY_ESS)
2292 regulatory_hint_found_beacon(wiphy, channel,
2293 gfp);
2294 }
2295 break;
2296 }
2297
2298 /*
2299 * If we do not know here whether the IEs are from a Beacon or Probe
2300 * Response frame, we need to pick one of the options and only use it
2301 * with the driver that does not provide the full Beacon/Probe Response
2302 * frame. Use Beacon frame pointer to avoid indicating that this should
2303 * override the IEs pointer should we have received an earlier
2304 * indication of Probe Response data.
2305 */
2306 ies = kzalloc(sizeof(*ies) + data->ielen, gfp);
2307 if (!ies)
2308 return NULL;
2309 ies->len = data->ielen;
2310 ies->tsf = data->tsf;
2311 ies->from_beacon = false;
2312 memcpy(ies->data, data->ie, data->ielen);
2313
2314 switch (data->ftype) {
2315 case CFG80211_BSS_FTYPE_BEACON:
2316 case CFG80211_BSS_FTYPE_S1G_BEACON:
2317 ies->from_beacon = true;
2318 fallthrough;
2319 case CFG80211_BSS_FTYPE_UNKNOWN:
2320 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2321 break;
2322 case CFG80211_BSS_FTYPE_PRESP:
2323 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2324 break;
2325 }
2326 rcu_assign_pointer(tmp.pub.ies, ies);
2327
2328 signal_valid = drv_data->chan == channel;
2329 spin_lock_bh(&rdev->bss_lock);
2330 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts);
2331 if (!res)
2332 goto drop;
2333
2334 rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data);
2335
2336 if (data->bss_source == BSS_SOURCE_MBSSID) {
2337 /* this is a nontransmitting bss, we need to add it to
2338 * transmitting bss' list if it is not there
2339 */
2340 if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) {
2341 if (__cfg80211_unlink_bss(rdev, res)) {
2342 rdev->bss_generation++;
2343 res = NULL;
2344 }
2345 }
2346
2347 if (!res)
2348 goto drop;
2349 }
2350 spin_unlock_bh(&rdev->bss_lock);
2351
2352 trace_cfg80211_return_bss(&res->pub);
2353 /* __cfg80211_bss_update gives us a referenced result */
2354 return &res->pub;
2355
2356 drop:
2357 spin_unlock_bh(&rdev->bss_lock);
2358 return NULL;
2359 }
2360
2361 static const struct element
cfg80211_get_profile_continuation(const u8 * ie,size_t ielen,const struct element * mbssid_elem,const struct element * sub_elem)2362 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2363 const struct element *mbssid_elem,
2364 const struct element *sub_elem)
2365 {
2366 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2367 const struct element *next_mbssid;
2368 const struct element *next_sub;
2369
2370 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2371 mbssid_end,
2372 ielen - (mbssid_end - ie));
2373
2374 /*
2375 * If it is not the last subelement in current MBSSID IE or there isn't
2376 * a next MBSSID IE - profile is complete.
2377 */
2378 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2379 !next_mbssid)
2380 return NULL;
2381
2382 /* For any length error, just return NULL */
2383
2384 if (next_mbssid->datalen < 4)
2385 return NULL;
2386
2387 next_sub = (void *)&next_mbssid->data[1];
2388
2389 if (next_mbssid->data + next_mbssid->datalen <
2390 next_sub->data + next_sub->datalen)
2391 return NULL;
2392
2393 if (next_sub->id != 0 || next_sub->datalen < 2)
2394 return NULL;
2395
2396 /*
2397 * Check if the first element in the next sub element is a start
2398 * of a new profile
2399 */
2400 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2401 NULL : next_mbssid;
2402 }
2403
cfg80211_merge_profile(const u8 * ie,size_t ielen,const struct element * mbssid_elem,const struct element * sub_elem,u8 * merged_ie,size_t max_copy_len)2404 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2405 const struct element *mbssid_elem,
2406 const struct element *sub_elem,
2407 u8 *merged_ie, size_t max_copy_len)
2408 {
2409 size_t copied_len = sub_elem->datalen;
2410 const struct element *next_mbssid;
2411
2412 if (sub_elem->datalen > max_copy_len)
2413 return 0;
2414
2415 memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2416
2417 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2418 mbssid_elem,
2419 sub_elem))) {
2420 const struct element *next_sub = (void *)&next_mbssid->data[1];
2421
2422 if (copied_len + next_sub->datalen > max_copy_len)
2423 break;
2424 memcpy(merged_ie + copied_len, next_sub->data,
2425 next_sub->datalen);
2426 copied_len += next_sub->datalen;
2427 }
2428
2429 return copied_len;
2430 }
2431 EXPORT_SYMBOL(cfg80211_merge_profile);
2432
2433 static void
cfg80211_parse_mbssid_data(struct wiphy * wiphy,struct cfg80211_inform_single_bss_data * tx_data,struct cfg80211_bss * source_bss,gfp_t gfp)2434 cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2435 struct cfg80211_inform_single_bss_data *tx_data,
2436 struct cfg80211_bss *source_bss,
2437 gfp_t gfp)
2438 {
2439 struct cfg80211_inform_single_bss_data data = {
2440 .drv_data = tx_data->drv_data,
2441 .ftype = tx_data->ftype,
2442 .tsf = tx_data->tsf,
2443 .beacon_interval = tx_data->beacon_interval,
2444 .source_bss = source_bss,
2445 .bss_source = BSS_SOURCE_MBSSID,
2446 .use_for = tx_data->use_for,
2447 .cannot_use_reasons = tx_data->cannot_use_reasons,
2448 };
2449 const u8 *mbssid_index_ie;
2450 const struct element *elem, *sub;
2451 u8 *new_ie, *profile;
2452 u64 seen_indices = 0;
2453 struct cfg80211_bss *bss;
2454
2455 if (!source_bss)
2456 return;
2457 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2458 tx_data->ie, tx_data->ielen))
2459 return;
2460 if (!wiphy->support_mbssid)
2461 return;
2462 if (wiphy->support_only_he_mbssid &&
2463 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY,
2464 tx_data->ie, tx_data->ielen))
2465 return;
2466
2467 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2468 if (!new_ie)
2469 return;
2470
2471 profile = kmalloc(tx_data->ielen, gfp);
2472 if (!profile)
2473 goto out;
2474
2475 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID,
2476 tx_data->ie, tx_data->ielen) {
2477 if (elem->datalen < 4)
2478 continue;
2479 if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2480 continue;
2481 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2482 u8 profile_len;
2483
2484 if (sub->id != 0 || sub->datalen < 4) {
2485 /* not a valid BSS profile */
2486 continue;
2487 }
2488
2489 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2490 sub->data[1] != 2) {
2491 /* The first element within the Nontransmitted
2492 * BSSID Profile is not the Nontransmitted
2493 * BSSID Capability element.
2494 */
2495 continue;
2496 }
2497
2498 memset(profile, 0, tx_data->ielen);
2499 profile_len = cfg80211_merge_profile(tx_data->ie,
2500 tx_data->ielen,
2501 elem,
2502 sub,
2503 profile,
2504 tx_data->ielen);
2505
2506 /* found a Nontransmitted BSSID Profile */
2507 mbssid_index_ie = cfg80211_find_ie
2508 (WLAN_EID_MULTI_BSSID_IDX,
2509 profile, profile_len);
2510 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2511 mbssid_index_ie[2] == 0 ||
2512 mbssid_index_ie[2] > 46 ||
2513 mbssid_index_ie[2] >= (1 << elem->data[0])) {
2514 /* No valid Multiple BSSID-Index element */
2515 continue;
2516 }
2517
2518 if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2519 /* We don't support legacy split of a profile */
2520 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2521 mbssid_index_ie[2]);
2522
2523 seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2524
2525 data.bssid_index = mbssid_index_ie[2];
2526 data.max_bssid_indicator = elem->data[0];
2527
2528 cfg80211_gen_new_bssid(tx_data->bssid,
2529 data.max_bssid_indicator,
2530 data.bssid_index,
2531 data.bssid);
2532
2533 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2534 data.ie = new_ie;
2535 data.ielen = cfg80211_gen_new_ie(tx_data->ie,
2536 tx_data->ielen,
2537 profile,
2538 profile_len,
2539 new_ie,
2540 IEEE80211_MAX_DATA_LEN);
2541 if (!data.ielen)
2542 continue;
2543
2544 data.capability = get_unaligned_le16(profile + 2);
2545 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2546 if (!bss)
2547 break;
2548 cfg80211_put_bss(wiphy, bss);
2549 }
2550 }
2551
2552 out:
2553 kfree(new_ie);
2554 kfree(profile);
2555 }
2556
cfg80211_defragment_element(const struct element * elem,const u8 * ies,size_t ieslen,u8 * data,size_t data_len,u8 frag_id)2557 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
2558 size_t ieslen, u8 *data, size_t data_len,
2559 u8 frag_id)
2560 {
2561 const struct element *next;
2562 ssize_t copied;
2563 u8 elem_datalen;
2564
2565 if (!elem)
2566 return -EINVAL;
2567
2568 /* elem might be invalid after the memmove */
2569 next = (void *)(elem->data + elem->datalen);
2570 elem_datalen = elem->datalen;
2571
2572 if (elem->id == WLAN_EID_EXTENSION) {
2573 copied = elem->datalen - 1;
2574
2575 if (data) {
2576 if (copied > data_len)
2577 return -ENOSPC;
2578
2579 memmove(data, elem->data + 1, copied);
2580 }
2581 } else {
2582 copied = elem->datalen;
2583
2584 if (data) {
2585 if (copied > data_len)
2586 return -ENOSPC;
2587
2588 memmove(data, elem->data, copied);
2589 }
2590 }
2591
2592 /* Fragmented elements must have 255 bytes */
2593 if (elem_datalen < 255)
2594 return copied;
2595
2596 for (elem = next;
2597 elem->data < ies + ieslen &&
2598 elem->data + elem->datalen <= ies + ieslen;
2599 elem = next) {
2600 /* elem might be invalid after the memmove */
2601 next = (void *)(elem->data + elem->datalen);
2602
2603 if (elem->id != frag_id)
2604 break;
2605
2606 elem_datalen = elem->datalen;
2607
2608 if (data) {
2609 if (copied + elem_datalen > data_len)
2610 return -ENOSPC;
2611
2612 memmove(data + copied, elem->data, elem_datalen);
2613 }
2614
2615 copied += elem_datalen;
2616
2617 /* Only the last fragment may be short */
2618 if (elem_datalen != 255)
2619 break;
2620 }
2621
2622 return copied;
2623 }
2624 EXPORT_SYMBOL(cfg80211_defragment_element);
2625
2626 struct cfg80211_mle {
2627 struct ieee80211_multi_link_elem *mle;
2628 struct ieee80211_mle_per_sta_profile
2629 *sta_prof[IEEE80211_MLD_MAX_NUM_LINKS];
2630 ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS];
2631
2632 u8 data[];
2633 };
2634
2635 static struct cfg80211_mle *
cfg80211_defrag_mle(const struct element * mle,const u8 * ie,size_t ielen,gfp_t gfp)2636 cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen,
2637 gfp_t gfp)
2638 {
2639 const struct element *elem;
2640 struct cfg80211_mle *res;
2641 size_t buf_len;
2642 ssize_t mle_len;
2643 u8 common_size, idx;
2644
2645 if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1))
2646 return NULL;
2647
2648 /* Required length for first defragmentation */
2649 buf_len = mle->datalen - 1;
2650 for_each_element(elem, mle->data + mle->datalen,
2651 ielen - sizeof(*mle) + mle->datalen) {
2652 if (elem->id != WLAN_EID_FRAGMENT)
2653 break;
2654
2655 buf_len += elem->datalen;
2656 }
2657
2658 res = kzalloc(struct_size(res, data, buf_len), gfp);
2659 if (!res)
2660 return NULL;
2661
2662 mle_len = cfg80211_defragment_element(mle, ie, ielen,
2663 res->data, buf_len,
2664 WLAN_EID_FRAGMENT);
2665 if (mle_len < 0)
2666 goto error;
2667
2668 res->mle = (void *)res->data;
2669
2670 /* Find the sub-element area in the buffer */
2671 common_size = ieee80211_mle_common_size((u8 *)res->mle);
2672 ie = res->data + common_size;
2673 ielen = mle_len - common_size;
2674
2675 idx = 0;
2676 for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE,
2677 ie, ielen) {
2678 res->sta_prof[idx] = (void *)elem->data;
2679 res->sta_prof_len[idx] = elem->datalen;
2680
2681 idx++;
2682 if (idx >= IEEE80211_MLD_MAX_NUM_LINKS)
2683 break;
2684 }
2685 if (!for_each_element_completed(elem, ie, ielen))
2686 goto error;
2687
2688 /* Defragment sta_info in-place */
2689 for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx];
2690 idx++) {
2691 if (res->sta_prof_len[idx] < 255)
2692 continue;
2693
2694 elem = (void *)res->sta_prof[idx] - 2;
2695
2696 if (idx + 1 < ARRAY_SIZE(res->sta_prof) &&
2697 res->sta_prof[idx + 1])
2698 buf_len = (u8 *)res->sta_prof[idx + 1] -
2699 (u8 *)res->sta_prof[idx];
2700 else
2701 buf_len = ielen + ie - (u8 *)elem;
2702
2703 res->sta_prof_len[idx] =
2704 cfg80211_defragment_element(elem,
2705 (u8 *)elem, buf_len,
2706 (u8 *)res->sta_prof[idx],
2707 buf_len,
2708 IEEE80211_MLE_SUBELEM_FRAGMENT);
2709 if (res->sta_prof_len[idx] < 0)
2710 goto error;
2711 }
2712
2713 return res;
2714
2715 error:
2716 kfree(res);
2717 return NULL;
2718 }
2719
2720 struct tbtt_info_iter_data {
2721 const struct ieee80211_neighbor_ap_info *ap_info;
2722 u8 param_ch_count;
2723 u32 use_for;
2724 u8 mld_id, link_id;
2725 bool non_tx;
2726 };
2727
2728 static enum cfg80211_rnr_iter_ret
cfg802121_mld_ap_rnr_iter(void * _data,u8 type,const struct ieee80211_neighbor_ap_info * info,const u8 * tbtt_info,u8 tbtt_info_len)2729 cfg802121_mld_ap_rnr_iter(void *_data, u8 type,
2730 const struct ieee80211_neighbor_ap_info *info,
2731 const u8 *tbtt_info, u8 tbtt_info_len)
2732 {
2733 const struct ieee80211_rnr_mld_params *mld_params;
2734 struct tbtt_info_iter_data *data = _data;
2735 u8 link_id;
2736 bool non_tx = false;
2737
2738 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT &&
2739 tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
2740 mld_params)) {
2741 const struct ieee80211_tbtt_info_ge_11 *tbtt_info_ge_11 =
2742 (void *)tbtt_info;
2743
2744 non_tx = (tbtt_info_ge_11->bss_params &
2745 (IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID |
2746 IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID)) ==
2747 IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
2748 mld_params = &tbtt_info_ge_11->mld_params;
2749 } else if (type == IEEE80211_TBTT_INFO_TYPE_MLD &&
2750 tbtt_info_len >= sizeof(struct ieee80211_rnr_mld_params))
2751 mld_params = (void *)tbtt_info;
2752 else
2753 return RNR_ITER_CONTINUE;
2754
2755 link_id = le16_get_bits(mld_params->params,
2756 IEEE80211_RNR_MLD_PARAMS_LINK_ID);
2757
2758 if (data->mld_id != mld_params->mld_id)
2759 return RNR_ITER_CONTINUE;
2760
2761 if (data->link_id != link_id)
2762 return RNR_ITER_CONTINUE;
2763
2764 data->ap_info = info;
2765 data->param_ch_count =
2766 le16_get_bits(mld_params->params,
2767 IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2768 data->non_tx = non_tx;
2769
2770 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT)
2771 data->use_for = NL80211_BSS_USE_FOR_ALL;
2772 else
2773 data->use_for = NL80211_BSS_USE_FOR_MLD_LINK;
2774 return RNR_ITER_BREAK;
2775 }
2776
2777 static u8
cfg80211_rnr_info_for_mld_ap(const u8 * ie,size_t ielen,u8 mld_id,u8 link_id,const struct ieee80211_neighbor_ap_info ** ap_info,u8 * param_ch_count,bool * non_tx)2778 cfg80211_rnr_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id,
2779 const struct ieee80211_neighbor_ap_info **ap_info,
2780 u8 *param_ch_count, bool *non_tx)
2781 {
2782 struct tbtt_info_iter_data data = {
2783 .mld_id = mld_id,
2784 .link_id = link_id,
2785 };
2786
2787 cfg80211_iter_rnr(ie, ielen, cfg802121_mld_ap_rnr_iter, &data);
2788
2789 *ap_info = data.ap_info;
2790 *param_ch_count = data.param_ch_count;
2791 *non_tx = data.non_tx;
2792
2793 return data.use_for;
2794 }
2795
2796 static struct element *
cfg80211_gen_reporter_rnr(struct cfg80211_bss * source_bss,bool is_mbssid,bool same_mld,u8 link_id,u8 bss_change_count,gfp_t gfp)2797 cfg80211_gen_reporter_rnr(struct cfg80211_bss *source_bss, bool is_mbssid,
2798 bool same_mld, u8 link_id, u8 bss_change_count,
2799 gfp_t gfp)
2800 {
2801 const struct cfg80211_bss_ies *ies;
2802 struct ieee80211_neighbor_ap_info ap_info;
2803 struct ieee80211_tbtt_info_ge_11 tbtt_info;
2804 u32 short_ssid;
2805 const struct element *elem;
2806 struct element *res;
2807
2808 /*
2809 * We only generate the RNR to permit ML lookups. For that we do not
2810 * need an entry for the corresponding transmitting BSS, lets just skip
2811 * it even though it would be easy to add.
2812 */
2813 if (!same_mld)
2814 return NULL;
2815
2816 /* We could use tx_data->ies if we change cfg80211_calc_short_ssid */
2817 rcu_read_lock();
2818 ies = rcu_dereference(source_bss->ies);
2819
2820 ap_info.tbtt_info_len = offsetofend(typeof(tbtt_info), mld_params);
2821 ap_info.tbtt_info_hdr =
2822 u8_encode_bits(IEEE80211_TBTT_INFO_TYPE_TBTT,
2823 IEEE80211_AP_INFO_TBTT_HDR_TYPE) |
2824 u8_encode_bits(0, IEEE80211_AP_INFO_TBTT_HDR_COUNT);
2825
2826 ap_info.channel = ieee80211_frequency_to_channel(source_bss->channel->center_freq);
2827
2828 /* operating class */
2829 elem = cfg80211_find_elem(WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
2830 ies->data, ies->len);
2831 if (elem && elem->datalen >= 1) {
2832 ap_info.op_class = elem->data[0];
2833 } else {
2834 struct cfg80211_chan_def chandef;
2835
2836 /* The AP is not providing us with anything to work with. So
2837 * make up a somewhat reasonable operating class, but don't
2838 * bother with it too much as no one will ever use the
2839 * information.
2840 */
2841 cfg80211_chandef_create(&chandef, source_bss->channel,
2842 NL80211_CHAN_NO_HT);
2843
2844 if (!ieee80211_chandef_to_operating_class(&chandef,
2845 &ap_info.op_class))
2846 goto out_unlock;
2847 }
2848
2849 /* Just set TBTT offset and PSD 20 to invalid/unknown */
2850 tbtt_info.tbtt_offset = 255;
2851 tbtt_info.psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
2852
2853 memcpy(tbtt_info.bssid, source_bss->bssid, ETH_ALEN);
2854 if (cfg80211_calc_short_ssid(ies, &elem, &short_ssid))
2855 goto out_unlock;
2856
2857 rcu_read_unlock();
2858
2859 tbtt_info.short_ssid = cpu_to_le32(short_ssid);
2860
2861 tbtt_info.bss_params = IEEE80211_RNR_TBTT_PARAMS_SAME_SSID;
2862
2863 if (is_mbssid) {
2864 tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
2865 tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID;
2866 }
2867
2868 tbtt_info.mld_params.mld_id = 0;
2869 tbtt_info.mld_params.params =
2870 le16_encode_bits(link_id, IEEE80211_RNR_MLD_PARAMS_LINK_ID) |
2871 le16_encode_bits(bss_change_count,
2872 IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2873
2874 res = kzalloc(struct_size(res, data,
2875 sizeof(ap_info) + ap_info.tbtt_info_len),
2876 gfp);
2877 if (!res)
2878 return NULL;
2879
2880 /* Copy the data */
2881 res->id = WLAN_EID_REDUCED_NEIGHBOR_REPORT;
2882 res->datalen = sizeof(ap_info) + ap_info.tbtt_info_len;
2883 memcpy(res->data, &ap_info, sizeof(ap_info));
2884 memcpy(res->data + sizeof(ap_info), &tbtt_info, ap_info.tbtt_info_len);
2885
2886 return res;
2887
2888 out_unlock:
2889 rcu_read_unlock();
2890 return NULL;
2891 }
2892
2893 static void
cfg80211_parse_ml_elem_sta_data(struct wiphy * wiphy,struct cfg80211_inform_single_bss_data * tx_data,struct cfg80211_bss * source_bss,const struct element * elem,gfp_t gfp)2894 cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy,
2895 struct cfg80211_inform_single_bss_data *tx_data,
2896 struct cfg80211_bss *source_bss,
2897 const struct element *elem,
2898 gfp_t gfp)
2899 {
2900 struct cfg80211_inform_single_bss_data data = {
2901 .drv_data = tx_data->drv_data,
2902 .ftype = tx_data->ftype,
2903 .source_bss = source_bss,
2904 .bss_source = BSS_SOURCE_STA_PROFILE,
2905 };
2906 struct element *reporter_rnr = NULL;
2907 struct ieee80211_multi_link_elem *ml_elem;
2908 struct cfg80211_mle *mle;
2909 const struct element *ssid_elem;
2910 const u8 *ssid = NULL;
2911 size_t ssid_len = 0;
2912 u16 control;
2913 u8 ml_common_len;
2914 u8 *new_ie = NULL;
2915 struct cfg80211_bss *bss;
2916 u8 mld_id, reporter_link_id, bss_change_count;
2917 u16 seen_links = 0;
2918 u8 i;
2919
2920 if (!ieee80211_mle_type_ok(elem->data + 1,
2921 IEEE80211_ML_CONTROL_TYPE_BASIC,
2922 elem->datalen - 1))
2923 return;
2924
2925 ml_elem = (void *)(elem->data + 1);
2926 control = le16_to_cpu(ml_elem->control);
2927 ml_common_len = ml_elem->variable[0];
2928
2929 /* Must be present when transmitted by an AP (in a probe response) */
2930 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) ||
2931 !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) ||
2932 !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
2933 return;
2934
2935 reporter_link_id = ieee80211_mle_get_link_id(elem->data + 1);
2936 bss_change_count = ieee80211_mle_get_bss_param_ch_cnt(elem->data + 1);
2937
2938 /*
2939 * The MLD ID of the reporting AP is always zero. It is set if the AP
2940 * is part of an MBSSID set and will be non-zero for ML Elements
2941 * relating to a nontransmitted BSS (matching the Multi-BSSID Index,
2942 * Draft P802.11be_D3.2, 35.3.4.2)
2943 */
2944 mld_id = ieee80211_mle_get_mld_id(elem->data + 1);
2945
2946 /* Fully defrag the ML element for sta information/profile iteration */
2947 mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp);
2948 if (!mle)
2949 return;
2950
2951 /* No point in doing anything if there is no per-STA profile */
2952 if (!mle->sta_prof[0])
2953 goto out;
2954
2955 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2956 if (!new_ie)
2957 goto out;
2958
2959 reporter_rnr = cfg80211_gen_reporter_rnr(source_bss,
2960 u16_get_bits(control,
2961 IEEE80211_MLC_BASIC_PRES_MLD_ID),
2962 mld_id == 0, reporter_link_id,
2963 bss_change_count,
2964 gfp);
2965
2966 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, tx_data->ie,
2967 tx_data->ielen);
2968 if (ssid_elem) {
2969 ssid = ssid_elem->data;
2970 ssid_len = ssid_elem->datalen;
2971 }
2972
2973 for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) {
2974 const struct ieee80211_neighbor_ap_info *ap_info;
2975 enum nl80211_band band;
2976 u32 freq;
2977 const u8 *profile;
2978 ssize_t profile_len;
2979 u8 param_ch_count;
2980 u8 link_id, use_for;
2981 bool non_tx;
2982
2983 if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i],
2984 mle->sta_prof_len[i]))
2985 continue;
2986
2987 control = le16_to_cpu(mle->sta_prof[i]->control);
2988
2989 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
2990 continue;
2991
2992 link_id = u16_get_bits(control,
2993 IEEE80211_MLE_STA_CONTROL_LINK_ID);
2994 if (seen_links & BIT(link_id))
2995 break;
2996 seen_links |= BIT(link_id);
2997
2998 if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) ||
2999 !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) ||
3000 !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT))
3001 continue;
3002
3003 memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN);
3004 data.beacon_interval =
3005 get_unaligned_le16(mle->sta_prof[i]->variable + 6);
3006 data.tsf = tx_data->tsf +
3007 get_unaligned_le64(mle->sta_prof[i]->variable + 8);
3008
3009 /* sta_info_len counts itself */
3010 profile = mle->sta_prof[i]->variable +
3011 mle->sta_prof[i]->sta_info_len - 1;
3012 profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] -
3013 profile;
3014
3015 if (profile_len < 2)
3016 continue;
3017
3018 data.capability = get_unaligned_le16(profile);
3019 profile += 2;
3020 profile_len -= 2;
3021
3022 /* Find in RNR to look up channel information */
3023 use_for = cfg80211_rnr_info_for_mld_ap(tx_data->ie,
3024 tx_data->ielen,
3025 mld_id, link_id,
3026 &ap_info,
3027 ¶m_ch_count,
3028 &non_tx);
3029 if (!use_for)
3030 continue;
3031
3032 /*
3033 * As of 802.11be_D5.0, the specification does not give us any
3034 * way of discovering both the MaxBSSID and the Multiple-BSSID
3035 * Index. It does seem like the Multiple-BSSID Index element
3036 * may be provided, but section 9.4.2.45 explicitly forbids
3037 * including a Multiple-BSSID Element (in this case without any
3038 * subelements).
3039 * Without both pieces of information we cannot calculate the
3040 * reference BSSID, so simply ignore the BSS.
3041 */
3042 if (non_tx)
3043 continue;
3044
3045 /* We could sanity check the BSSID is included */
3046
3047 if (!ieee80211_operating_class_to_band(ap_info->op_class,
3048 &band))
3049 continue;
3050
3051 freq = ieee80211_channel_to_freq_khz(ap_info->channel, band);
3052 data.channel = ieee80211_get_channel_khz(wiphy, freq);
3053
3054 /* Skip if RNR element specifies an unsupported channel */
3055 if (!data.channel)
3056 continue;
3057
3058 /* Skip if BSS entry generated from MBSSID or DIRECT source
3059 * frame data available already.
3060 */
3061 bss = cfg80211_get_bss(wiphy, data.channel, data.bssid, ssid,
3062 ssid_len, IEEE80211_BSS_TYPE_ANY,
3063 IEEE80211_PRIVACY_ANY);
3064 if (bss) {
3065 struct cfg80211_internal_bss *ibss = bss_from_pub(bss);
3066
3067 if (data.capability == bss->capability &&
3068 ibss->bss_source != BSS_SOURCE_STA_PROFILE) {
3069 cfg80211_put_bss(wiphy, bss);
3070 continue;
3071 }
3072 cfg80211_put_bss(wiphy, bss);
3073 }
3074
3075 if (use_for == NL80211_BSS_USE_FOR_MLD_LINK &&
3076 !(wiphy->flags & WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY)) {
3077 use_for = 0;
3078 data.cannot_use_reasons =
3079 NL80211_BSS_CANNOT_USE_NSTR_NONPRIMARY;
3080 }
3081 data.use_for = use_for;
3082
3083 /* Generate new elements */
3084 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
3085 data.ie = new_ie;
3086 data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen,
3087 profile, profile_len,
3088 new_ie,
3089 IEEE80211_MAX_DATA_LEN);
3090 if (!data.ielen)
3091 continue;
3092
3093 /* The generated elements do not contain:
3094 * - Basic ML element
3095 * - A TBTT entry in the RNR for the transmitting AP
3096 *
3097 * This information is needed both internally and in userspace
3098 * as such, we should append it here.
3099 */
3100 if (data.ielen + 3 + sizeof(*ml_elem) + ml_common_len >
3101 IEEE80211_MAX_DATA_LEN)
3102 continue;
3103
3104 /* Copy the Basic Multi-Link element including the common
3105 * information, and then fix up the link ID and BSS param
3106 * change count.
3107 * Note that the ML element length has been verified and we
3108 * also checked that it contains the link ID.
3109 */
3110 new_ie[data.ielen++] = WLAN_EID_EXTENSION;
3111 new_ie[data.ielen++] = 1 + sizeof(*ml_elem) + ml_common_len;
3112 new_ie[data.ielen++] = WLAN_EID_EXT_EHT_MULTI_LINK;
3113 memcpy(new_ie + data.ielen, ml_elem,
3114 sizeof(*ml_elem) + ml_common_len);
3115
3116 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN] = link_id;
3117 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN + 1] =
3118 param_ch_count;
3119
3120 data.ielen += sizeof(*ml_elem) + ml_common_len;
3121
3122 if (reporter_rnr && (use_for & NL80211_BSS_USE_FOR_NORMAL)) {
3123 if (data.ielen + sizeof(struct element) +
3124 reporter_rnr->datalen > IEEE80211_MAX_DATA_LEN)
3125 continue;
3126
3127 memcpy(new_ie + data.ielen, reporter_rnr,
3128 sizeof(struct element) + reporter_rnr->datalen);
3129 data.ielen += sizeof(struct element) +
3130 reporter_rnr->datalen;
3131 }
3132
3133 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
3134 if (!bss)
3135 break;
3136 cfg80211_put_bss(wiphy, bss);
3137 }
3138
3139 out:
3140 kfree(reporter_rnr);
3141 kfree(new_ie);
3142 kfree(mle);
3143 }
3144
cfg80211_parse_ml_sta_data(struct wiphy * wiphy,struct cfg80211_inform_single_bss_data * tx_data,struct cfg80211_bss * source_bss,gfp_t gfp)3145 static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy,
3146 struct cfg80211_inform_single_bss_data *tx_data,
3147 struct cfg80211_bss *source_bss,
3148 gfp_t gfp)
3149 {
3150 const struct element *elem;
3151
3152 if (!source_bss)
3153 return;
3154
3155 if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP)
3156 return;
3157
3158 for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK,
3159 tx_data->ie, tx_data->ielen)
3160 cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss,
3161 elem, gfp);
3162 }
3163
3164 struct cfg80211_bss *
cfg80211_inform_bss_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 capability,u16 beacon_interval,const u8 * ie,size_t ielen,gfp_t gfp)3165 cfg80211_inform_bss_data(struct wiphy *wiphy,
3166 struct cfg80211_inform_bss *data,
3167 enum cfg80211_bss_frame_type ftype,
3168 const u8 *bssid, u64 tsf, u16 capability,
3169 u16 beacon_interval, const u8 *ie, size_t ielen,
3170 gfp_t gfp)
3171 {
3172 struct cfg80211_inform_single_bss_data inform_data = {
3173 .drv_data = data,
3174 .ftype = ftype,
3175 .tsf = tsf,
3176 .capability = capability,
3177 .beacon_interval = beacon_interval,
3178 .ie = ie,
3179 .ielen = ielen,
3180 .use_for = data->restrict_use ?
3181 data->use_for :
3182 NL80211_BSS_USE_FOR_ALL,
3183 .cannot_use_reasons = data->cannot_use_reasons,
3184 };
3185 struct cfg80211_bss *res;
3186
3187 memcpy(inform_data.bssid, bssid, ETH_ALEN);
3188
3189 res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp);
3190 if (!res)
3191 return NULL;
3192
3193 /* don't do any further MBSSID/ML handling for S1G */
3194 if (ftype == CFG80211_BSS_FTYPE_S1G_BEACON)
3195 return res;
3196
3197 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
3198
3199 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
3200
3201 return res;
3202 }
3203 EXPORT_SYMBOL(cfg80211_inform_bss_data);
3204
3205 struct cfg80211_bss *
cfg80211_inform_bss_frame_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,struct ieee80211_mgmt * mgmt,size_t len,gfp_t gfp)3206 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
3207 struct cfg80211_inform_bss *data,
3208 struct ieee80211_mgmt *mgmt, size_t len,
3209 gfp_t gfp)
3210 {
3211 size_t min_hdr_len;
3212 struct ieee80211_ext *ext = NULL;
3213 enum cfg80211_bss_frame_type ftype;
3214 u16 beacon_interval;
3215 const u8 *bssid;
3216 u16 capability;
3217 const u8 *ie;
3218 size_t ielen;
3219 u64 tsf;
3220
3221 if (WARN_ON(!mgmt))
3222 return NULL;
3223
3224 if (WARN_ON(!wiphy))
3225 return NULL;
3226
3227 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
3228 offsetof(struct ieee80211_mgmt, u.beacon.variable));
3229
3230 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
3231
3232 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
3233 ext = (void *) mgmt;
3234 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
3235 min_hdr_len = offsetof(struct ieee80211_ext,
3236 u.s1g_short_beacon.variable);
3237 else
3238 min_hdr_len = offsetof(struct ieee80211_ext,
3239 u.s1g_beacon.variable);
3240 } else {
3241 /* same for beacons */
3242 min_hdr_len = offsetof(struct ieee80211_mgmt,
3243 u.probe_resp.variable);
3244 }
3245
3246 if (WARN_ON(len < min_hdr_len))
3247 return NULL;
3248
3249 ielen = len - min_hdr_len;
3250 ie = mgmt->u.probe_resp.variable;
3251 if (ext) {
3252 const struct ieee80211_s1g_bcn_compat_ie *compat;
3253 const struct element *elem;
3254
3255 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
3256 ie = ext->u.s1g_short_beacon.variable;
3257 else
3258 ie = ext->u.s1g_beacon.variable;
3259
3260 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, ie, ielen);
3261 if (!elem)
3262 return NULL;
3263 if (elem->datalen < sizeof(*compat))
3264 return NULL;
3265 compat = (void *)elem->data;
3266 bssid = ext->u.s1g_beacon.sa;
3267 capability = le16_to_cpu(compat->compat_info);
3268 beacon_interval = le16_to_cpu(compat->beacon_int);
3269 } else {
3270 bssid = mgmt->bssid;
3271 beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
3272 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
3273 }
3274
3275 tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
3276
3277 if (ieee80211_is_probe_resp(mgmt->frame_control))
3278 ftype = CFG80211_BSS_FTYPE_PRESP;
3279 else if (ext)
3280 ftype = CFG80211_BSS_FTYPE_S1G_BEACON;
3281 else
3282 ftype = CFG80211_BSS_FTYPE_BEACON;
3283
3284 return cfg80211_inform_bss_data(wiphy, data, ftype,
3285 bssid, tsf, capability,
3286 beacon_interval, ie, ielen,
3287 gfp);
3288 }
3289 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
3290
cfg80211_ref_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)3291 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3292 {
3293 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3294
3295 if (!pub)
3296 return;
3297
3298 spin_lock_bh(&rdev->bss_lock);
3299 bss_ref_get(rdev, bss_from_pub(pub));
3300 spin_unlock_bh(&rdev->bss_lock);
3301 }
3302 EXPORT_SYMBOL(cfg80211_ref_bss);
3303
cfg80211_put_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)3304 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3305 {
3306 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3307
3308 if (!pub)
3309 return;
3310
3311 spin_lock_bh(&rdev->bss_lock);
3312 bss_ref_put(rdev, bss_from_pub(pub));
3313 spin_unlock_bh(&rdev->bss_lock);
3314 }
3315 EXPORT_SYMBOL(cfg80211_put_bss);
3316
cfg80211_unlink_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)3317 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3318 {
3319 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3320 struct cfg80211_internal_bss *bss, *tmp1;
3321 struct cfg80211_bss *nontrans_bss, *tmp;
3322
3323 if (WARN_ON(!pub))
3324 return;
3325
3326 bss = bss_from_pub(pub);
3327
3328 spin_lock_bh(&rdev->bss_lock);
3329 if (list_empty(&bss->list))
3330 goto out;
3331
3332 list_for_each_entry_safe(nontrans_bss, tmp,
3333 &pub->nontrans_list,
3334 nontrans_list) {
3335 tmp1 = bss_from_pub(nontrans_bss);
3336 if (__cfg80211_unlink_bss(rdev, tmp1))
3337 rdev->bss_generation++;
3338 }
3339
3340 if (__cfg80211_unlink_bss(rdev, bss))
3341 rdev->bss_generation++;
3342 out:
3343 spin_unlock_bh(&rdev->bss_lock);
3344 }
3345 EXPORT_SYMBOL(cfg80211_unlink_bss);
3346
cfg80211_bss_iter(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,void (* iter)(struct wiphy * wiphy,struct cfg80211_bss * bss,void * data),void * iter_data)3347 void cfg80211_bss_iter(struct wiphy *wiphy,
3348 struct cfg80211_chan_def *chandef,
3349 void (*iter)(struct wiphy *wiphy,
3350 struct cfg80211_bss *bss,
3351 void *data),
3352 void *iter_data)
3353 {
3354 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3355 struct cfg80211_internal_bss *bss;
3356
3357 spin_lock_bh(&rdev->bss_lock);
3358
3359 list_for_each_entry(bss, &rdev->bss_list, list) {
3360 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
3361 false))
3362 iter(wiphy, &bss->pub, iter_data);
3363 }
3364
3365 spin_unlock_bh(&rdev->bss_lock);
3366 }
3367 EXPORT_SYMBOL(cfg80211_bss_iter);
3368
cfg80211_update_assoc_bss_entry(struct wireless_dev * wdev,unsigned int link_id,struct ieee80211_channel * chan)3369 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
3370 unsigned int link_id,
3371 struct ieee80211_channel *chan)
3372 {
3373 struct wiphy *wiphy = wdev->wiphy;
3374 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3375 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
3376 struct cfg80211_internal_bss *new = NULL;
3377 struct cfg80211_internal_bss *bss;
3378 struct cfg80211_bss *nontrans_bss;
3379 struct cfg80211_bss *tmp;
3380
3381 spin_lock_bh(&rdev->bss_lock);
3382
3383 /*
3384 * Some APs use CSA also for bandwidth changes, i.e., without actually
3385 * changing the control channel, so no need to update in such a case.
3386 */
3387 if (cbss->pub.channel == chan)
3388 goto done;
3389
3390 /* use transmitting bss */
3391 if (cbss->pub.transmitted_bss)
3392 cbss = bss_from_pub(cbss->pub.transmitted_bss);
3393
3394 cbss->pub.channel = chan;
3395
3396 list_for_each_entry(bss, &rdev->bss_list, list) {
3397 if (!cfg80211_bss_type_match(bss->pub.capability,
3398 bss->pub.channel->band,
3399 wdev->conn_bss_type))
3400 continue;
3401
3402 if (bss == cbss)
3403 continue;
3404
3405 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
3406 new = bss;
3407 break;
3408 }
3409 }
3410
3411 if (new) {
3412 /* to save time, update IEs for transmitting bss only */
3413 cfg80211_update_known_bss(rdev, cbss, new, false);
3414 new->pub.proberesp_ies = NULL;
3415 new->pub.beacon_ies = NULL;
3416
3417 list_for_each_entry_safe(nontrans_bss, tmp,
3418 &new->pub.nontrans_list,
3419 nontrans_list) {
3420 bss = bss_from_pub(nontrans_bss);
3421 if (__cfg80211_unlink_bss(rdev, bss))
3422 rdev->bss_generation++;
3423 }
3424
3425 WARN_ON(atomic_read(&new->hold));
3426 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
3427 rdev->bss_generation++;
3428 }
3429 cfg80211_rehash_bss(rdev, cbss);
3430
3431 list_for_each_entry_safe(nontrans_bss, tmp,
3432 &cbss->pub.nontrans_list,
3433 nontrans_list) {
3434 bss = bss_from_pub(nontrans_bss);
3435 bss->pub.channel = chan;
3436 cfg80211_rehash_bss(rdev, bss);
3437 }
3438
3439 done:
3440 spin_unlock_bh(&rdev->bss_lock);
3441 }
3442
3443 #ifdef CONFIG_CFG80211_WEXT
3444 static struct cfg80211_registered_device *
cfg80211_get_dev_from_ifindex(struct net * net,int ifindex)3445 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
3446 {
3447 struct cfg80211_registered_device *rdev;
3448 struct net_device *dev;
3449
3450 ASSERT_RTNL();
3451
3452 dev = dev_get_by_index(net, ifindex);
3453 if (!dev)
3454 return ERR_PTR(-ENODEV);
3455 if (dev->ieee80211_ptr)
3456 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
3457 else
3458 rdev = ERR_PTR(-ENODEV);
3459 dev_put(dev);
3460 return rdev;
3461 }
3462
cfg80211_wext_siwscan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)3463 int cfg80211_wext_siwscan(struct net_device *dev,
3464 struct iw_request_info *info,
3465 union iwreq_data *wrqu, char *extra)
3466 {
3467 struct cfg80211_registered_device *rdev;
3468 struct wiphy *wiphy;
3469 struct iw_scan_req *wreq = NULL;
3470 struct cfg80211_scan_request *creq;
3471 int i, err, n_channels = 0;
3472 enum nl80211_band band;
3473
3474 if (!netif_running(dev))
3475 return -ENETDOWN;
3476
3477 if (wrqu->data.length == sizeof(struct iw_scan_req))
3478 wreq = (struct iw_scan_req *)extra;
3479
3480 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3481
3482 if (IS_ERR(rdev))
3483 return PTR_ERR(rdev);
3484
3485 if (rdev->scan_req || rdev->scan_msg)
3486 return -EBUSY;
3487
3488 wiphy = &rdev->wiphy;
3489
3490 /* Determine number of channels, needed to allocate creq */
3491 if (wreq && wreq->num_channels) {
3492 /* Passed from userspace so should be checked */
3493 if (unlikely(wreq->num_channels > IW_MAX_FREQUENCIES))
3494 return -EINVAL;
3495 n_channels = wreq->num_channels;
3496 } else {
3497 n_channels = ieee80211_get_num_supported_channels(wiphy);
3498 }
3499
3500 creq = kzalloc(struct_size(creq, channels, n_channels) +
3501 sizeof(struct cfg80211_ssid),
3502 GFP_ATOMIC);
3503 if (!creq)
3504 return -ENOMEM;
3505
3506 creq->wiphy = wiphy;
3507 creq->wdev = dev->ieee80211_ptr;
3508 /* SSIDs come after channels */
3509 creq->ssids = (void *)creq + struct_size(creq, channels, n_channels);
3510 creq->n_channels = n_channels;
3511 creq->n_ssids = 1;
3512 creq->scan_start = jiffies;
3513
3514 /* translate "Scan on frequencies" request */
3515 i = 0;
3516 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3517 int j;
3518
3519 if (!wiphy->bands[band])
3520 continue;
3521
3522 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
3523 struct ieee80211_channel *chan;
3524
3525 /* ignore disabled channels */
3526 chan = &wiphy->bands[band]->channels[j];
3527 if (chan->flags & IEEE80211_CHAN_DISABLED ||
3528 !cfg80211_wdev_channel_allowed(creq->wdev, chan))
3529 continue;
3530
3531 /* If we have a wireless request structure and the
3532 * wireless request specifies frequencies, then search
3533 * for the matching hardware channel.
3534 */
3535 if (wreq && wreq->num_channels) {
3536 int k;
3537 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
3538 for (k = 0; k < wreq->num_channels; k++) {
3539 struct iw_freq *freq =
3540 &wreq->channel_list[k];
3541 int wext_freq =
3542 cfg80211_wext_freq(freq);
3543
3544 if (wext_freq == wiphy_freq)
3545 goto wext_freq_found;
3546 }
3547 goto wext_freq_not_found;
3548 }
3549
3550 wext_freq_found:
3551 creq->channels[i] = &wiphy->bands[band]->channels[j];
3552 i++;
3553 wext_freq_not_found: ;
3554 }
3555 }
3556 /* No channels found? */
3557 if (!i) {
3558 err = -EINVAL;
3559 goto out;
3560 }
3561
3562 /* Set real number of channels specified in creq->channels[] */
3563 creq->n_channels = i;
3564
3565 /* translate "Scan for SSID" request */
3566 if (wreq) {
3567 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
3568 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
3569 err = -EINVAL;
3570 goto out;
3571 }
3572 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
3573 creq->ssids[0].ssid_len = wreq->essid_len;
3574 }
3575 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) {
3576 creq->ssids = NULL;
3577 creq->n_ssids = 0;
3578 }
3579 }
3580
3581 for (i = 0; i < NUM_NL80211_BANDS; i++)
3582 if (wiphy->bands[i])
3583 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
3584
3585 eth_broadcast_addr(creq->bssid);
3586
3587 wiphy_lock(&rdev->wiphy);
3588
3589 rdev->scan_req = creq;
3590 err = rdev_scan(rdev, creq);
3591 if (err) {
3592 rdev->scan_req = NULL;
3593 /* creq will be freed below */
3594 } else {
3595 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
3596 /* creq now owned by driver */
3597 creq = NULL;
3598 dev_hold(dev);
3599 }
3600 wiphy_unlock(&rdev->wiphy);
3601 out:
3602 kfree(creq);
3603 return err;
3604 }
3605
ieee80211_scan_add_ies(struct iw_request_info * info,const struct cfg80211_bss_ies * ies,char * current_ev,char * end_buf)3606 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
3607 const struct cfg80211_bss_ies *ies,
3608 char *current_ev, char *end_buf)
3609 {
3610 const u8 *pos, *end, *next;
3611 struct iw_event iwe;
3612
3613 if (!ies)
3614 return current_ev;
3615
3616 /*
3617 * If needed, fragment the IEs buffer (at IE boundaries) into short
3618 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
3619 */
3620 pos = ies->data;
3621 end = pos + ies->len;
3622
3623 while (end - pos > IW_GENERIC_IE_MAX) {
3624 next = pos + 2 + pos[1];
3625 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
3626 next = next + 2 + next[1];
3627
3628 memset(&iwe, 0, sizeof(iwe));
3629 iwe.cmd = IWEVGENIE;
3630 iwe.u.data.length = next - pos;
3631 current_ev = iwe_stream_add_point_check(info, current_ev,
3632 end_buf, &iwe,
3633 (void *)pos);
3634 if (IS_ERR(current_ev))
3635 return current_ev;
3636 pos = next;
3637 }
3638
3639 if (end > pos) {
3640 memset(&iwe, 0, sizeof(iwe));
3641 iwe.cmd = IWEVGENIE;
3642 iwe.u.data.length = end - pos;
3643 current_ev = iwe_stream_add_point_check(info, current_ev,
3644 end_buf, &iwe,
3645 (void *)pos);
3646 if (IS_ERR(current_ev))
3647 return current_ev;
3648 }
3649
3650 return current_ev;
3651 }
3652
3653 static char *
ieee80211_bss(struct wiphy * wiphy,struct iw_request_info * info,struct cfg80211_internal_bss * bss,char * current_ev,char * end_buf)3654 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
3655 struct cfg80211_internal_bss *bss, char *current_ev,
3656 char *end_buf)
3657 {
3658 const struct cfg80211_bss_ies *ies;
3659 struct iw_event iwe;
3660 const u8 *ie;
3661 u8 buf[50];
3662 u8 *cfg, *p, *tmp;
3663 int rem, i, sig;
3664 bool ismesh = false;
3665
3666 memset(&iwe, 0, sizeof(iwe));
3667 iwe.cmd = SIOCGIWAP;
3668 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
3669 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
3670 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3671 IW_EV_ADDR_LEN);
3672 if (IS_ERR(current_ev))
3673 return current_ev;
3674
3675 memset(&iwe, 0, sizeof(iwe));
3676 iwe.cmd = SIOCGIWFREQ;
3677 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
3678 iwe.u.freq.e = 0;
3679 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3680 IW_EV_FREQ_LEN);
3681 if (IS_ERR(current_ev))
3682 return current_ev;
3683
3684 memset(&iwe, 0, sizeof(iwe));
3685 iwe.cmd = SIOCGIWFREQ;
3686 iwe.u.freq.m = bss->pub.channel->center_freq;
3687 iwe.u.freq.e = 6;
3688 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3689 IW_EV_FREQ_LEN);
3690 if (IS_ERR(current_ev))
3691 return current_ev;
3692
3693 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
3694 memset(&iwe, 0, sizeof(iwe));
3695 iwe.cmd = IWEVQUAL;
3696 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
3697 IW_QUAL_NOISE_INVALID |
3698 IW_QUAL_QUAL_UPDATED;
3699 switch (wiphy->signal_type) {
3700 case CFG80211_SIGNAL_TYPE_MBM:
3701 sig = bss->pub.signal / 100;
3702 iwe.u.qual.level = sig;
3703 iwe.u.qual.updated |= IW_QUAL_DBM;
3704 if (sig < -110) /* rather bad */
3705 sig = -110;
3706 else if (sig > -40) /* perfect */
3707 sig = -40;
3708 /* will give a range of 0 .. 70 */
3709 iwe.u.qual.qual = sig + 110;
3710 break;
3711 case CFG80211_SIGNAL_TYPE_UNSPEC:
3712 iwe.u.qual.level = bss->pub.signal;
3713 /* will give range 0 .. 100 */
3714 iwe.u.qual.qual = bss->pub.signal;
3715 break;
3716 default:
3717 /* not reached */
3718 break;
3719 }
3720 current_ev = iwe_stream_add_event_check(info, current_ev,
3721 end_buf, &iwe,
3722 IW_EV_QUAL_LEN);
3723 if (IS_ERR(current_ev))
3724 return current_ev;
3725 }
3726
3727 memset(&iwe, 0, sizeof(iwe));
3728 iwe.cmd = SIOCGIWENCODE;
3729 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3730 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3731 else
3732 iwe.u.data.flags = IW_ENCODE_DISABLED;
3733 iwe.u.data.length = 0;
3734 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3735 &iwe, "");
3736 if (IS_ERR(current_ev))
3737 return current_ev;
3738
3739 rcu_read_lock();
3740 ies = rcu_dereference(bss->pub.ies);
3741 rem = ies->len;
3742 ie = ies->data;
3743
3744 while (rem >= 2) {
3745 /* invalid data */
3746 if (ie[1] > rem - 2)
3747 break;
3748
3749 switch (ie[0]) {
3750 case WLAN_EID_SSID:
3751 memset(&iwe, 0, sizeof(iwe));
3752 iwe.cmd = SIOCGIWESSID;
3753 iwe.u.data.length = ie[1];
3754 iwe.u.data.flags = 1;
3755 current_ev = iwe_stream_add_point_check(info,
3756 current_ev,
3757 end_buf, &iwe,
3758 (u8 *)ie + 2);
3759 if (IS_ERR(current_ev))
3760 goto unlock;
3761 break;
3762 case WLAN_EID_MESH_ID:
3763 memset(&iwe, 0, sizeof(iwe));
3764 iwe.cmd = SIOCGIWESSID;
3765 iwe.u.data.length = ie[1];
3766 iwe.u.data.flags = 1;
3767 current_ev = iwe_stream_add_point_check(info,
3768 current_ev,
3769 end_buf, &iwe,
3770 (u8 *)ie + 2);
3771 if (IS_ERR(current_ev))
3772 goto unlock;
3773 break;
3774 case WLAN_EID_MESH_CONFIG:
3775 ismesh = true;
3776 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3777 break;
3778 cfg = (u8 *)ie + 2;
3779 memset(&iwe, 0, sizeof(iwe));
3780 iwe.cmd = IWEVCUSTOM;
3781 iwe.u.data.length = sprintf(buf,
3782 "Mesh Network Path Selection Protocol ID: 0x%02X",
3783 cfg[0]);
3784 current_ev = iwe_stream_add_point_check(info,
3785 current_ev,
3786 end_buf,
3787 &iwe, buf);
3788 if (IS_ERR(current_ev))
3789 goto unlock;
3790 iwe.u.data.length = sprintf(buf,
3791 "Path Selection Metric ID: 0x%02X",
3792 cfg[1]);
3793 current_ev = iwe_stream_add_point_check(info,
3794 current_ev,
3795 end_buf,
3796 &iwe, buf);
3797 if (IS_ERR(current_ev))
3798 goto unlock;
3799 iwe.u.data.length = sprintf(buf,
3800 "Congestion Control Mode ID: 0x%02X",
3801 cfg[2]);
3802 current_ev = iwe_stream_add_point_check(info,
3803 current_ev,
3804 end_buf,
3805 &iwe, buf);
3806 if (IS_ERR(current_ev))
3807 goto unlock;
3808 iwe.u.data.length = sprintf(buf,
3809 "Synchronization ID: 0x%02X",
3810 cfg[3]);
3811 current_ev = iwe_stream_add_point_check(info,
3812 current_ev,
3813 end_buf,
3814 &iwe, buf);
3815 if (IS_ERR(current_ev))
3816 goto unlock;
3817 iwe.u.data.length = sprintf(buf,
3818 "Authentication ID: 0x%02X",
3819 cfg[4]);
3820 current_ev = iwe_stream_add_point_check(info,
3821 current_ev,
3822 end_buf,
3823 &iwe, buf);
3824 if (IS_ERR(current_ev))
3825 goto unlock;
3826 iwe.u.data.length = sprintf(buf,
3827 "Formation Info: 0x%02X",
3828 cfg[5]);
3829 current_ev = iwe_stream_add_point_check(info,
3830 current_ev,
3831 end_buf,
3832 &iwe, buf);
3833 if (IS_ERR(current_ev))
3834 goto unlock;
3835 iwe.u.data.length = sprintf(buf,
3836 "Capabilities: 0x%02X",
3837 cfg[6]);
3838 current_ev = iwe_stream_add_point_check(info,
3839 current_ev,
3840 end_buf,
3841 &iwe, buf);
3842 if (IS_ERR(current_ev))
3843 goto unlock;
3844 break;
3845 case WLAN_EID_SUPP_RATES:
3846 case WLAN_EID_EXT_SUPP_RATES:
3847 /* display all supported rates in readable format */
3848 p = current_ev + iwe_stream_lcp_len(info);
3849
3850 memset(&iwe, 0, sizeof(iwe));
3851 iwe.cmd = SIOCGIWRATE;
3852 /* Those two flags are ignored... */
3853 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3854
3855 for (i = 0; i < ie[1]; i++) {
3856 iwe.u.bitrate.value =
3857 ((ie[i + 2] & 0x7f) * 500000);
3858 tmp = p;
3859 p = iwe_stream_add_value(info, current_ev, p,
3860 end_buf, &iwe,
3861 IW_EV_PARAM_LEN);
3862 if (p == tmp) {
3863 current_ev = ERR_PTR(-E2BIG);
3864 goto unlock;
3865 }
3866 }
3867 current_ev = p;
3868 break;
3869 }
3870 rem -= ie[1] + 2;
3871 ie += ie[1] + 2;
3872 }
3873
3874 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3875 ismesh) {
3876 memset(&iwe, 0, sizeof(iwe));
3877 iwe.cmd = SIOCGIWMODE;
3878 if (ismesh)
3879 iwe.u.mode = IW_MODE_MESH;
3880 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3881 iwe.u.mode = IW_MODE_MASTER;
3882 else
3883 iwe.u.mode = IW_MODE_ADHOC;
3884 current_ev = iwe_stream_add_event_check(info, current_ev,
3885 end_buf, &iwe,
3886 IW_EV_UINT_LEN);
3887 if (IS_ERR(current_ev))
3888 goto unlock;
3889 }
3890
3891 memset(&iwe, 0, sizeof(iwe));
3892 iwe.cmd = IWEVCUSTOM;
3893 iwe.u.data.length = sprintf(buf, "tsf=%016llx",
3894 (unsigned long long)(ies->tsf));
3895 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3896 &iwe, buf);
3897 if (IS_ERR(current_ev))
3898 goto unlock;
3899 memset(&iwe, 0, sizeof(iwe));
3900 iwe.cmd = IWEVCUSTOM;
3901 iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago",
3902 elapsed_jiffies_msecs(bss->ts));
3903 current_ev = iwe_stream_add_point_check(info, current_ev,
3904 end_buf, &iwe, buf);
3905 if (IS_ERR(current_ev))
3906 goto unlock;
3907
3908 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3909
3910 unlock:
3911 rcu_read_unlock();
3912 return current_ev;
3913 }
3914
3915
ieee80211_scan_results(struct cfg80211_registered_device * rdev,struct iw_request_info * info,char * buf,size_t len)3916 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3917 struct iw_request_info *info,
3918 char *buf, size_t len)
3919 {
3920 char *current_ev = buf;
3921 char *end_buf = buf + len;
3922 struct cfg80211_internal_bss *bss;
3923 int err = 0;
3924
3925 spin_lock_bh(&rdev->bss_lock);
3926 cfg80211_bss_expire(rdev);
3927
3928 list_for_each_entry(bss, &rdev->bss_list, list) {
3929 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3930 err = -E2BIG;
3931 break;
3932 }
3933 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3934 current_ev, end_buf);
3935 if (IS_ERR(current_ev)) {
3936 err = PTR_ERR(current_ev);
3937 break;
3938 }
3939 }
3940 spin_unlock_bh(&rdev->bss_lock);
3941
3942 if (err)
3943 return err;
3944 return current_ev - buf;
3945 }
3946
3947
cfg80211_wext_giwscan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)3948 int cfg80211_wext_giwscan(struct net_device *dev,
3949 struct iw_request_info *info,
3950 union iwreq_data *wrqu, char *extra)
3951 {
3952 struct iw_point *data = &wrqu->data;
3953 struct cfg80211_registered_device *rdev;
3954 int res;
3955
3956 if (!netif_running(dev))
3957 return -ENETDOWN;
3958
3959 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3960
3961 if (IS_ERR(rdev))
3962 return PTR_ERR(rdev);
3963
3964 if (rdev->scan_req || rdev->scan_msg)
3965 return -EAGAIN;
3966
3967 res = ieee80211_scan_results(rdev, info, extra, data->length);
3968 data->length = 0;
3969 if (res >= 0) {
3970 data->length = res;
3971 res = 0;
3972 }
3973
3974 return res;
3975 }
3976 #endif
3977