1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file contains helper code to handle channel 4 * settings and keeping track of what is possible at 5 * any point in time. 6 * 7 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net> 8 * Copyright 2013-2014 Intel Mobile Communications GmbH 9 * Copyright 2018-2025 Intel Corporation 10 */ 11 12 #include <linux/export.h> 13 #include <linux/bitfield.h> 14 #include <net/cfg80211.h> 15 #include "core.h" 16 #include "rdev-ops.h" 17 18 static bool cfg80211_valid_60g_freq(u32 freq) 19 { 20 return freq >= 58320 && freq <= 70200; 21 } 22 23 void cfg80211_chandef_create(struct cfg80211_chan_def *chandef, 24 struct ieee80211_channel *chan, 25 enum nl80211_channel_type chan_type) 26 { 27 if (WARN_ON(!chan)) 28 return; 29 30 *chandef = (struct cfg80211_chan_def) { 31 .chan = chan, 32 .freq1_offset = chan->freq_offset, 33 }; 34 35 switch (chan_type) { 36 case NL80211_CHAN_NO_HT: 37 chandef->width = NL80211_CHAN_WIDTH_20_NOHT; 38 chandef->center_freq1 = chan->center_freq; 39 break; 40 case NL80211_CHAN_HT20: 41 chandef->width = NL80211_CHAN_WIDTH_20; 42 chandef->center_freq1 = chan->center_freq; 43 break; 44 case NL80211_CHAN_HT40PLUS: 45 chandef->width = NL80211_CHAN_WIDTH_40; 46 chandef->center_freq1 = chan->center_freq + 10; 47 break; 48 case NL80211_CHAN_HT40MINUS: 49 chandef->width = NL80211_CHAN_WIDTH_40; 50 chandef->center_freq1 = chan->center_freq - 10; 51 break; 52 default: 53 WARN_ON(1); 54 } 55 } 56 EXPORT_SYMBOL(cfg80211_chandef_create); 57 58 static u32 cfg80211_get_start_freq(const struct cfg80211_chan_def *chandef, 59 u32 cf) 60 { 61 u32 start_freq, center_freq, bandwidth; 62 63 center_freq = MHZ_TO_KHZ((cf == 1) ? 64 chandef->center_freq1 : chandef->center_freq2); 65 bandwidth = MHZ_TO_KHZ(cfg80211_chandef_get_width(chandef)); 66 67 if (bandwidth <= MHZ_TO_KHZ(20)) 68 start_freq = center_freq; 69 else 70 start_freq = center_freq - bandwidth / 2 + MHZ_TO_KHZ(10); 71 72 return start_freq; 73 } 74 75 static u32 cfg80211_get_end_freq(const struct cfg80211_chan_def *chandef, 76 u32 cf) 77 { 78 u32 end_freq, center_freq, bandwidth; 79 80 center_freq = MHZ_TO_KHZ((cf == 1) ? 81 chandef->center_freq1 : chandef->center_freq2); 82 bandwidth = MHZ_TO_KHZ(cfg80211_chandef_get_width(chandef)); 83 84 if (bandwidth <= MHZ_TO_KHZ(20)) 85 end_freq = center_freq; 86 else 87 end_freq = center_freq + bandwidth / 2 - MHZ_TO_KHZ(10); 88 89 return end_freq; 90 } 91 92 #define for_each_subchan(chandef, freq, cf) \ 93 for (u32 punctured = chandef->punctured, \ 94 cf = 1, freq = cfg80211_get_start_freq(chandef, cf); \ 95 freq <= cfg80211_get_end_freq(chandef, cf); \ 96 freq += MHZ_TO_KHZ(20), \ 97 ((cf == 1 && chandef->center_freq2 != 0 && \ 98 freq > cfg80211_get_end_freq(chandef, cf)) ? \ 99 (cf++, freq = cfg80211_get_start_freq(chandef, cf), \ 100 punctured = 0) : (punctured >>= 1))) \ 101 if (!(punctured & 1)) 102 103 #define for_each_s1g_subchan(chandef, freq_khz) \ 104 for (freq_khz = cfg80211_s1g_get_start_freq_khz(chandef); \ 105 freq_khz <= cfg80211_s1g_get_end_freq_khz(chandef); \ 106 freq_khz += MHZ_TO_KHZ(1)) 107 108 struct cfg80211_per_bw_puncturing_values { 109 u8 len; 110 const u16 *valid_values; 111 }; 112 113 static const u16 puncturing_values_80mhz[] = { 114 0x8, 0x4, 0x2, 0x1 115 }; 116 117 static const u16 puncturing_values_160mhz[] = { 118 0x80, 0x40, 0x20, 0x10, 0x8, 0x4, 0x2, 0x1, 0xc0, 0x30, 0xc, 0x3 119 }; 120 121 static const u16 puncturing_values_320mhz[] = { 122 0xc000, 0x3000, 0xc00, 0x300, 0xc0, 0x30, 0xc, 0x3, 0xf000, 0xf00, 123 0xf0, 0xf, 0xfc00, 0xf300, 0xf0c0, 0xf030, 0xf00c, 0xf003, 0xc00f, 124 0x300f, 0xc0f, 0x30f, 0xcf, 0x3f 125 }; 126 127 #define CFG80211_PER_BW_VALID_PUNCTURING_VALUES(_bw) \ 128 { \ 129 .len = ARRAY_SIZE(puncturing_values_ ## _bw ## mhz), \ 130 .valid_values = puncturing_values_ ## _bw ## mhz \ 131 } 132 133 static const struct cfg80211_per_bw_puncturing_values per_bw_puncturing[] = { 134 CFG80211_PER_BW_VALID_PUNCTURING_VALUES(80), 135 CFG80211_PER_BW_VALID_PUNCTURING_VALUES(160), 136 CFG80211_PER_BW_VALID_PUNCTURING_VALUES(320) 137 }; 138 139 static bool valid_puncturing_bitmap(const struct cfg80211_chan_def *chandef) 140 { 141 u32 idx, i, start_freq, primary_center = chandef->chan->center_freq; 142 143 switch (chandef->width) { 144 case NL80211_CHAN_WIDTH_80: 145 idx = 0; 146 start_freq = chandef->center_freq1 - 40; 147 break; 148 case NL80211_CHAN_WIDTH_160: 149 idx = 1; 150 start_freq = chandef->center_freq1 - 80; 151 break; 152 case NL80211_CHAN_WIDTH_320: 153 idx = 2; 154 start_freq = chandef->center_freq1 - 160; 155 break; 156 default: 157 return chandef->punctured == 0; 158 } 159 160 if (!chandef->punctured) 161 return true; 162 163 /* check if primary channel is punctured */ 164 if (chandef->punctured & (u16)BIT((primary_center - start_freq) / 20)) 165 return false; 166 167 for (i = 0; i < per_bw_puncturing[idx].len; i++) { 168 if (per_bw_puncturing[idx].valid_values[i] == chandef->punctured) 169 return true; 170 } 171 172 return false; 173 } 174 175 static bool cfg80211_edmg_chandef_valid(const struct cfg80211_chan_def *chandef) 176 { 177 int max_contiguous = 0; 178 int num_of_enabled = 0; 179 int contiguous = 0; 180 int i; 181 182 if (!chandef->edmg.channels || !chandef->edmg.bw_config) 183 return false; 184 185 if (!cfg80211_valid_60g_freq(chandef->chan->center_freq)) 186 return false; 187 188 for (i = 0; i < 6; i++) { 189 if (chandef->edmg.channels & BIT(i)) { 190 contiguous++; 191 num_of_enabled++; 192 } else { 193 contiguous = 0; 194 } 195 196 max_contiguous = max(contiguous, max_contiguous); 197 } 198 /* basic verification of edmg configuration according to 199 * IEEE P802.11ay/D4.0 section 9.4.2.251 200 */ 201 /* check bw_config against contiguous edmg channels */ 202 switch (chandef->edmg.bw_config) { 203 case IEEE80211_EDMG_BW_CONFIG_4: 204 case IEEE80211_EDMG_BW_CONFIG_8: 205 case IEEE80211_EDMG_BW_CONFIG_12: 206 if (max_contiguous < 1) 207 return false; 208 break; 209 case IEEE80211_EDMG_BW_CONFIG_5: 210 case IEEE80211_EDMG_BW_CONFIG_9: 211 case IEEE80211_EDMG_BW_CONFIG_13: 212 if (max_contiguous < 2) 213 return false; 214 break; 215 case IEEE80211_EDMG_BW_CONFIG_6: 216 case IEEE80211_EDMG_BW_CONFIG_10: 217 case IEEE80211_EDMG_BW_CONFIG_14: 218 if (max_contiguous < 3) 219 return false; 220 break; 221 case IEEE80211_EDMG_BW_CONFIG_7: 222 case IEEE80211_EDMG_BW_CONFIG_11: 223 case IEEE80211_EDMG_BW_CONFIG_15: 224 if (max_contiguous < 4) 225 return false; 226 break; 227 228 default: 229 return false; 230 } 231 232 /* check bw_config against aggregated (non contiguous) edmg channels */ 233 switch (chandef->edmg.bw_config) { 234 case IEEE80211_EDMG_BW_CONFIG_4: 235 case IEEE80211_EDMG_BW_CONFIG_5: 236 case IEEE80211_EDMG_BW_CONFIG_6: 237 case IEEE80211_EDMG_BW_CONFIG_7: 238 break; 239 case IEEE80211_EDMG_BW_CONFIG_8: 240 case IEEE80211_EDMG_BW_CONFIG_9: 241 case IEEE80211_EDMG_BW_CONFIG_10: 242 case IEEE80211_EDMG_BW_CONFIG_11: 243 if (num_of_enabled < 2) 244 return false; 245 break; 246 case IEEE80211_EDMG_BW_CONFIG_12: 247 case IEEE80211_EDMG_BW_CONFIG_13: 248 case IEEE80211_EDMG_BW_CONFIG_14: 249 case IEEE80211_EDMG_BW_CONFIG_15: 250 if (num_of_enabled < 4 || max_contiguous < 2) 251 return false; 252 break; 253 default: 254 return false; 255 } 256 257 return true; 258 } 259 260 int nl80211_chan_width_to_mhz(enum nl80211_chan_width chan_width) 261 { 262 int mhz; 263 264 switch (chan_width) { 265 case NL80211_CHAN_WIDTH_1: 266 mhz = 1; 267 break; 268 case NL80211_CHAN_WIDTH_2: 269 mhz = 2; 270 break; 271 case NL80211_CHAN_WIDTH_4: 272 mhz = 4; 273 break; 274 case NL80211_CHAN_WIDTH_8: 275 mhz = 8; 276 break; 277 case NL80211_CHAN_WIDTH_16: 278 mhz = 16; 279 break; 280 case NL80211_CHAN_WIDTH_5: 281 mhz = 5; 282 break; 283 case NL80211_CHAN_WIDTH_10: 284 mhz = 10; 285 break; 286 case NL80211_CHAN_WIDTH_20: 287 case NL80211_CHAN_WIDTH_20_NOHT: 288 mhz = 20; 289 break; 290 case NL80211_CHAN_WIDTH_40: 291 mhz = 40; 292 break; 293 case NL80211_CHAN_WIDTH_80P80: 294 case NL80211_CHAN_WIDTH_80: 295 mhz = 80; 296 break; 297 case NL80211_CHAN_WIDTH_160: 298 mhz = 160; 299 break; 300 case NL80211_CHAN_WIDTH_320: 301 mhz = 320; 302 break; 303 default: 304 WARN_ON_ONCE(1); 305 return -1; 306 } 307 return mhz; 308 } 309 EXPORT_SYMBOL(nl80211_chan_width_to_mhz); 310 311 static bool cfg80211_valid_center_freq(u32 center, 312 enum nl80211_chan_width width) 313 { 314 int bw; 315 int step; 316 317 /* We only do strict verification on 6 GHz */ 318 if (center < 5955 || center > 7115) 319 return true; 320 321 bw = nl80211_chan_width_to_mhz(width); 322 if (bw < 0) 323 return false; 324 325 /* Validate that the channels bw is entirely within the 6 GHz band */ 326 if (center - bw / 2 < 5945 || center + bw / 2 > 7125) 327 return false; 328 329 /* With 320 MHz the permitted channels overlap */ 330 if (bw == 320) 331 step = 160; 332 else 333 step = bw; 334 335 /* 336 * Valid channels are packed from lowest frequency towards higher ones. 337 * So test that the lower frequency aligns with one of these steps. 338 */ 339 return (center - bw / 2 - 5945) % step == 0; 340 } 341 342 bool cfg80211_chandef_valid(const struct cfg80211_chan_def *chandef) 343 { 344 u32 control_freq, control_freq_khz, start_khz, end_khz; 345 346 if (!chandef->chan) 347 return false; 348 349 if (chandef->freq1_offset >= 1000) 350 return false; 351 352 control_freq = chandef->chan->center_freq; 353 354 switch (chandef->width) { 355 case NL80211_CHAN_WIDTH_5: 356 case NL80211_CHAN_WIDTH_10: 357 case NL80211_CHAN_WIDTH_20: 358 case NL80211_CHAN_WIDTH_20_NOHT: 359 if (ieee80211_chandef_to_khz(chandef) != 360 ieee80211_channel_to_khz(chandef->chan)) 361 return false; 362 if (chandef->center_freq2) 363 return false; 364 break; 365 case NL80211_CHAN_WIDTH_1: 366 case NL80211_CHAN_WIDTH_2: 367 case NL80211_CHAN_WIDTH_4: 368 case NL80211_CHAN_WIDTH_8: 369 case NL80211_CHAN_WIDTH_16: 370 if (!cfg80211_chandef_is_s1g(chandef)) 371 return false; 372 if (chandef->center_freq2) 373 return false; 374 375 control_freq_khz = ieee80211_channel_to_khz(chandef->chan); 376 start_khz = cfg80211_s1g_get_start_freq_khz(chandef); 377 end_khz = cfg80211_s1g_get_end_freq_khz(chandef); 378 379 if (control_freq_khz < start_khz || control_freq_khz > end_khz) 380 return false; 381 break; 382 case NL80211_CHAN_WIDTH_80P80: 383 if (!chandef->center_freq2) 384 return false; 385 /* adjacent is not allowed -- that's a 160 MHz channel */ 386 if (chandef->center_freq1 - chandef->center_freq2 == 80 || 387 chandef->center_freq2 - chandef->center_freq1 == 80) 388 return false; 389 break; 390 default: 391 if (chandef->center_freq2) 392 return false; 393 break; 394 } 395 396 switch (chandef->width) { 397 case NL80211_CHAN_WIDTH_5: 398 case NL80211_CHAN_WIDTH_10: 399 case NL80211_CHAN_WIDTH_20: 400 case NL80211_CHAN_WIDTH_20_NOHT: 401 case NL80211_CHAN_WIDTH_1: 402 case NL80211_CHAN_WIDTH_2: 403 case NL80211_CHAN_WIDTH_4: 404 case NL80211_CHAN_WIDTH_8: 405 case NL80211_CHAN_WIDTH_16: 406 /* all checked above */ 407 break; 408 case NL80211_CHAN_WIDTH_320: 409 if (chandef->center_freq1 == control_freq + 150 || 410 chandef->center_freq1 == control_freq + 130 || 411 chandef->center_freq1 == control_freq + 110 || 412 chandef->center_freq1 == control_freq + 90 || 413 chandef->center_freq1 == control_freq - 90 || 414 chandef->center_freq1 == control_freq - 110 || 415 chandef->center_freq1 == control_freq - 130 || 416 chandef->center_freq1 == control_freq - 150) 417 break; 418 fallthrough; 419 case NL80211_CHAN_WIDTH_160: 420 if (chandef->center_freq1 == control_freq + 70 || 421 chandef->center_freq1 == control_freq + 50 || 422 chandef->center_freq1 == control_freq - 50 || 423 chandef->center_freq1 == control_freq - 70) 424 break; 425 fallthrough; 426 case NL80211_CHAN_WIDTH_80P80: 427 case NL80211_CHAN_WIDTH_80: 428 if (chandef->center_freq1 == control_freq + 30 || 429 chandef->center_freq1 == control_freq - 30) 430 break; 431 fallthrough; 432 case NL80211_CHAN_WIDTH_40: 433 if (chandef->center_freq1 == control_freq + 10 || 434 chandef->center_freq1 == control_freq - 10) 435 break; 436 fallthrough; 437 default: 438 return false; 439 } 440 441 if (!cfg80211_valid_center_freq(chandef->center_freq1, chandef->width)) 442 return false; 443 444 if (chandef->width == NL80211_CHAN_WIDTH_80P80 && 445 !cfg80211_valid_center_freq(chandef->center_freq2, chandef->width)) 446 return false; 447 448 /* channel 14 is only for IEEE 802.11b */ 449 if (chandef->center_freq1 == 2484 && 450 chandef->width != NL80211_CHAN_WIDTH_20_NOHT) 451 return false; 452 453 if (cfg80211_chandef_is_edmg(chandef) && 454 !cfg80211_edmg_chandef_valid(chandef)) 455 return false; 456 457 if (!cfg80211_chandef_is_s1g(chandef) && chandef->s1g_primary_2mhz) 458 return false; 459 460 return valid_puncturing_bitmap(chandef); 461 } 462 EXPORT_SYMBOL(cfg80211_chandef_valid); 463 464 int cfg80211_chandef_primary(const struct cfg80211_chan_def *c, 465 enum nl80211_chan_width primary_chan_width, 466 u16 *punctured) 467 { 468 int pri_width = nl80211_chan_width_to_mhz(primary_chan_width); 469 int width = cfg80211_chandef_get_width(c); 470 u32 control = c->chan->center_freq; 471 u32 center = c->center_freq1; 472 u16 _punct = 0; 473 474 if (WARN_ON_ONCE(pri_width < 0 || width < 0)) 475 return -1; 476 477 /* not intended to be called this way, can't determine */ 478 if (WARN_ON_ONCE(pri_width > width)) 479 return -1; 480 481 if (!punctured) 482 punctured = &_punct; 483 484 *punctured = c->punctured; 485 486 while (width > pri_width) { 487 unsigned int bits_to_drop = width / 20 / 2; 488 489 if (control > center) { 490 center += width / 4; 491 *punctured >>= bits_to_drop; 492 } else { 493 center -= width / 4; 494 *punctured &= (1 << bits_to_drop) - 1; 495 } 496 width /= 2; 497 } 498 499 return center; 500 } 501 EXPORT_SYMBOL(cfg80211_chandef_primary); 502 503 static const struct cfg80211_chan_def * 504 check_chandef_primary_compat(const struct cfg80211_chan_def *c1, 505 const struct cfg80211_chan_def *c2, 506 enum nl80211_chan_width primary_chan_width) 507 { 508 u16 punct_c1 = 0, punct_c2 = 0; 509 510 /* check primary is compatible -> error if not */ 511 if (cfg80211_chandef_primary(c1, primary_chan_width, &punct_c1) != 512 cfg80211_chandef_primary(c2, primary_chan_width, &punct_c2)) 513 return ERR_PTR(-EINVAL); 514 515 if (punct_c1 != punct_c2) 516 return ERR_PTR(-EINVAL); 517 518 /* assumes c1 is smaller width, if that was just checked -> done */ 519 if (c1->width == primary_chan_width) 520 return c2; 521 522 /* otherwise continue checking the next width */ 523 return NULL; 524 } 525 526 static const struct cfg80211_chan_def * 527 _cfg80211_chandef_compatible(const struct cfg80211_chan_def *c1, 528 const struct cfg80211_chan_def *c2) 529 { 530 const struct cfg80211_chan_def *ret; 531 532 /* If they are identical, return */ 533 if (cfg80211_chandef_identical(c1, c2)) 534 return c2; 535 536 /* otherwise, must have same control channel */ 537 if (c1->chan != c2->chan) 538 return NULL; 539 540 /* 541 * If they have the same width, but aren't identical, 542 * then they can't be compatible. 543 */ 544 if (c1->width == c2->width) 545 return NULL; 546 547 /* 548 * can't be compatible if one of them is 5/10 MHz or S1G 549 * but they don't have the same width. 550 */ 551 #define NARROW_OR_S1G(width) ((width) == NL80211_CHAN_WIDTH_5 || \ 552 (width) == NL80211_CHAN_WIDTH_10 || \ 553 (width) == NL80211_CHAN_WIDTH_1 || \ 554 (width) == NL80211_CHAN_WIDTH_2 || \ 555 (width) == NL80211_CHAN_WIDTH_4 || \ 556 (width) == NL80211_CHAN_WIDTH_8 || \ 557 (width) == NL80211_CHAN_WIDTH_16) 558 559 if (NARROW_OR_S1G(c1->width) || NARROW_OR_S1G(c2->width)) 560 return NULL; 561 562 /* 563 * Make sure that c1 is always the narrower one, so that later 564 * we either return NULL or c2 and don't have to check both 565 * directions. 566 */ 567 if (c1->width > c2->width) 568 swap(c1, c2); 569 570 /* 571 * No further checks needed if the "narrower" one is only 20 MHz. 572 * Here "narrower" includes being a 20 MHz non-HT channel vs. a 573 * 20 MHz HT (or later) one. 574 */ 575 if (c1->width <= NL80211_CHAN_WIDTH_20) 576 return c2; 577 578 ret = check_chandef_primary_compat(c1, c2, NL80211_CHAN_WIDTH_40); 579 if (ret) 580 return ret; 581 582 ret = check_chandef_primary_compat(c1, c2, NL80211_CHAN_WIDTH_80); 583 if (ret) 584 return ret; 585 586 /* 587 * If c1 is 80+80, then c2 is 160 or higher, but that cannot 588 * match. If c2 was also 80+80 it was already either accepted 589 * or rejected above (identical or not, respectively.) 590 */ 591 if (c1->width == NL80211_CHAN_WIDTH_80P80) 592 return NULL; 593 594 ret = check_chandef_primary_compat(c1, c2, NL80211_CHAN_WIDTH_160); 595 if (ret) 596 return ret; 597 598 /* 599 * Getting here would mean they're both wider than 160, have the 600 * same primary 160, but are not identical - this cannot happen 601 * since they must be 320 (no wider chandefs exist, at least yet.) 602 */ 603 WARN_ON_ONCE(1); 604 605 return NULL; 606 } 607 608 const struct cfg80211_chan_def * 609 cfg80211_chandef_compatible(const struct cfg80211_chan_def *c1, 610 const struct cfg80211_chan_def *c2) 611 { 612 const struct cfg80211_chan_def *ret; 613 614 ret = _cfg80211_chandef_compatible(c1, c2); 615 if (IS_ERR(ret)) 616 return NULL; 617 return ret; 618 } 619 EXPORT_SYMBOL(cfg80211_chandef_compatible); 620 621 void cfg80211_set_dfs_state(struct wiphy *wiphy, 622 const struct cfg80211_chan_def *chandef, 623 enum nl80211_dfs_state dfs_state) 624 { 625 struct ieee80211_channel *c; 626 int width; 627 628 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 629 return; 630 631 width = cfg80211_chandef_get_width(chandef); 632 if (width < 0) 633 return; 634 635 for_each_subchan(chandef, freq, cf) { 636 c = ieee80211_get_channel_khz(wiphy, freq); 637 if (!c || !(c->flags & IEEE80211_CHAN_RADAR)) 638 continue; 639 640 c->dfs_state = dfs_state; 641 c->dfs_state_entered = jiffies; 642 } 643 } 644 645 static bool 646 cfg80211_dfs_permissive_check_wdev(struct cfg80211_registered_device *rdev, 647 enum nl80211_iftype iftype, 648 struct wireless_dev *wdev, 649 struct ieee80211_channel *chan) 650 { 651 unsigned int link_id; 652 653 for_each_valid_link(wdev, link_id) { 654 struct ieee80211_channel *other_chan = NULL; 655 struct cfg80211_chan_def chandef = {}; 656 int ret; 657 658 /* In order to avoid daisy chaining only allow BSS STA */ 659 if (wdev->iftype != NL80211_IFTYPE_STATION || 660 !wdev->links[link_id].client.current_bss) 661 continue; 662 663 other_chan = 664 wdev->links[link_id].client.current_bss->pub.channel; 665 666 if (!other_chan) 667 continue; 668 669 if (chan == other_chan) 670 return true; 671 672 /* continue if we can't get the channel */ 673 ret = rdev_get_channel(rdev, wdev, link_id, &chandef); 674 if (ret) 675 continue; 676 677 if (cfg80211_is_sub_chan(&chandef, chan, false)) 678 return true; 679 } 680 681 return false; 682 } 683 684 /* 685 * Check if P2P GO is allowed to operate on a DFS channel 686 */ 687 static bool cfg80211_dfs_permissive_chan(struct wiphy *wiphy, 688 enum nl80211_iftype iftype, 689 struct ieee80211_channel *chan) 690 { 691 struct wireless_dev *wdev; 692 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 693 694 lockdep_assert_held(&rdev->wiphy.mtx); 695 696 if (!wiphy_ext_feature_isset(&rdev->wiphy, 697 NL80211_EXT_FEATURE_DFS_CONCURRENT) || 698 !(chan->flags & IEEE80211_CHAN_DFS_CONCURRENT)) 699 return false; 700 701 /* only valid for P2P GO */ 702 if (iftype != NL80211_IFTYPE_P2P_GO) 703 return false; 704 705 /* 706 * Allow only if there's a concurrent BSS 707 */ 708 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 709 bool ret = cfg80211_dfs_permissive_check_wdev(rdev, iftype, 710 wdev, chan); 711 if (ret) 712 return ret; 713 } 714 715 return false; 716 } 717 718 static int cfg80211_get_chans_dfs_required(struct wiphy *wiphy, 719 const struct cfg80211_chan_def *chandef, 720 enum nl80211_iftype iftype) 721 { 722 struct ieee80211_channel *c; 723 724 /* DFS is not required for S1G */ 725 if (cfg80211_chandef_is_s1g(chandef)) 726 return 0; 727 728 for_each_subchan(chandef, freq, cf) { 729 c = ieee80211_get_channel_khz(wiphy, freq); 730 if (!c) 731 return -EINVAL; 732 733 if (c->flags & IEEE80211_CHAN_RADAR && 734 !cfg80211_dfs_permissive_chan(wiphy, iftype, c)) 735 return 1; 736 } 737 738 return 0; 739 } 740 741 742 int cfg80211_chandef_dfs_required(struct wiphy *wiphy, 743 const struct cfg80211_chan_def *chandef, 744 enum nl80211_iftype iftype) 745 { 746 int width; 747 int ret; 748 749 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 750 return -EINVAL; 751 752 switch (iftype) { 753 case NL80211_IFTYPE_ADHOC: 754 case NL80211_IFTYPE_AP: 755 case NL80211_IFTYPE_P2P_GO: 756 case NL80211_IFTYPE_MESH_POINT: 757 width = cfg80211_chandef_get_width(chandef); 758 if (width < 0) 759 return -EINVAL; 760 761 ret = cfg80211_get_chans_dfs_required(wiphy, chandef, iftype); 762 763 return (ret > 0) ? BIT(chandef->width) : ret; 764 break; 765 case NL80211_IFTYPE_STATION: 766 case NL80211_IFTYPE_OCB: 767 case NL80211_IFTYPE_P2P_CLIENT: 768 case NL80211_IFTYPE_MONITOR: 769 case NL80211_IFTYPE_AP_VLAN: 770 case NL80211_IFTYPE_P2P_DEVICE: 771 case NL80211_IFTYPE_NAN: 772 break; 773 case NL80211_IFTYPE_WDS: 774 case NL80211_IFTYPE_UNSPECIFIED: 775 case NUM_NL80211_IFTYPES: 776 WARN_ON(1); 777 } 778 779 return 0; 780 } 781 EXPORT_SYMBOL(cfg80211_chandef_dfs_required); 782 783 bool cfg80211_chandef_dfs_usable(struct wiphy *wiphy, 784 const struct cfg80211_chan_def *chandef) 785 { 786 struct ieee80211_channel *c; 787 int width, count = 0; 788 789 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 790 return false; 791 792 width = cfg80211_chandef_get_width(chandef); 793 if (width < 0) 794 return false; 795 796 /* 797 * Check entire range of channels for the bandwidth. 798 * Check all channels are DFS channels (DFS_USABLE or 799 * DFS_AVAILABLE). Return number of usable channels 800 * (require CAC). Allow DFS and non-DFS channel mix. 801 */ 802 for_each_subchan(chandef, freq, cf) { 803 c = ieee80211_get_channel_khz(wiphy, freq); 804 if (!c) 805 return false; 806 807 if (c->flags & IEEE80211_CHAN_DISABLED) 808 return false; 809 810 if (c->flags & IEEE80211_CHAN_RADAR) { 811 if (c->dfs_state == NL80211_DFS_UNAVAILABLE) 812 return false; 813 814 if (c->dfs_state == NL80211_DFS_USABLE) 815 count++; 816 } 817 } 818 819 return count > 0; 820 } 821 EXPORT_SYMBOL(cfg80211_chandef_dfs_usable); 822 823 /* 824 * Checks if center frequency of chan falls with in the bandwidth 825 * range of chandef. 826 */ 827 bool cfg80211_is_sub_chan(struct cfg80211_chan_def *chandef, 828 struct ieee80211_channel *chan, 829 bool primary_only) 830 { 831 int width; 832 u32 freq; 833 834 if (!chandef->chan) 835 return false; 836 837 if (chandef->chan->center_freq == chan->center_freq) 838 return true; 839 840 if (primary_only) 841 return false; 842 843 width = cfg80211_chandef_get_width(chandef); 844 if (width <= 20) 845 return false; 846 847 for (freq = chandef->center_freq1 - width / 2 + 10; 848 freq <= chandef->center_freq1 + width / 2 - 10; freq += 20) { 849 if (chan->center_freq == freq) 850 return true; 851 } 852 853 if (!chandef->center_freq2) 854 return false; 855 856 for (freq = chandef->center_freq2 - width / 2 + 10; 857 freq <= chandef->center_freq2 + width / 2 - 10; freq += 20) { 858 if (chan->center_freq == freq) 859 return true; 860 } 861 862 return false; 863 } 864 865 bool cfg80211_beaconing_iface_active(struct wireless_dev *wdev) 866 { 867 unsigned int link; 868 869 lockdep_assert_wiphy(wdev->wiphy); 870 871 switch (wdev->iftype) { 872 case NL80211_IFTYPE_AP: 873 case NL80211_IFTYPE_P2P_GO: 874 for_each_valid_link(wdev, link) { 875 if (wdev->links[link].ap.beacon_interval) 876 return true; 877 } 878 break; 879 case NL80211_IFTYPE_ADHOC: 880 if (wdev->u.ibss.ssid_len) 881 return true; 882 break; 883 case NL80211_IFTYPE_MESH_POINT: 884 if (wdev->u.mesh.id_len) 885 return true; 886 break; 887 case NL80211_IFTYPE_STATION: 888 case NL80211_IFTYPE_OCB: 889 case NL80211_IFTYPE_P2P_CLIENT: 890 case NL80211_IFTYPE_MONITOR: 891 case NL80211_IFTYPE_AP_VLAN: 892 case NL80211_IFTYPE_P2P_DEVICE: 893 /* Can NAN type be considered as beaconing interface? */ 894 case NL80211_IFTYPE_NAN: 895 break; 896 case NL80211_IFTYPE_UNSPECIFIED: 897 case NL80211_IFTYPE_WDS: 898 case NUM_NL80211_IFTYPES: 899 WARN_ON(1); 900 } 901 902 return false; 903 } 904 905 bool cfg80211_wdev_on_sub_chan(struct wireless_dev *wdev, 906 struct ieee80211_channel *chan, 907 bool primary_only) 908 { 909 unsigned int link; 910 911 switch (wdev->iftype) { 912 case NL80211_IFTYPE_AP: 913 case NL80211_IFTYPE_P2P_GO: 914 for_each_valid_link(wdev, link) { 915 if (cfg80211_is_sub_chan(&wdev->links[link].ap.chandef, 916 chan, primary_only)) 917 return true; 918 } 919 break; 920 case NL80211_IFTYPE_ADHOC: 921 return cfg80211_is_sub_chan(&wdev->u.ibss.chandef, chan, 922 primary_only); 923 case NL80211_IFTYPE_MESH_POINT: 924 return cfg80211_is_sub_chan(&wdev->u.mesh.chandef, chan, 925 primary_only); 926 default: 927 break; 928 } 929 930 return false; 931 } 932 933 static bool cfg80211_is_wiphy_oper_chan(struct wiphy *wiphy, 934 struct ieee80211_channel *chan) 935 { 936 struct wireless_dev *wdev; 937 938 lockdep_assert_wiphy(wiphy); 939 940 list_for_each_entry(wdev, &wiphy->wdev_list, list) { 941 if (!cfg80211_beaconing_iface_active(wdev)) 942 continue; 943 944 if (cfg80211_wdev_on_sub_chan(wdev, chan, false)) 945 return true; 946 } 947 948 return false; 949 } 950 951 static bool 952 cfg80211_offchan_chain_is_active(struct cfg80211_registered_device *rdev, 953 struct ieee80211_channel *channel) 954 { 955 if (!rdev->background_radar_wdev) 956 return false; 957 958 if (!cfg80211_chandef_valid(&rdev->background_radar_chandef)) 959 return false; 960 961 return cfg80211_is_sub_chan(&rdev->background_radar_chandef, channel, 962 false); 963 } 964 965 bool cfg80211_any_wiphy_oper_chan(struct wiphy *wiphy, 966 struct ieee80211_channel *chan) 967 { 968 struct cfg80211_registered_device *rdev; 969 970 ASSERT_RTNL(); 971 972 if (!(chan->flags & IEEE80211_CHAN_RADAR)) 973 return false; 974 975 for_each_rdev(rdev) { 976 bool found; 977 978 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) 979 continue; 980 981 guard(wiphy)(&rdev->wiphy); 982 983 found = cfg80211_is_wiphy_oper_chan(&rdev->wiphy, chan) || 984 cfg80211_offchan_chain_is_active(rdev, chan); 985 986 if (found) 987 return true; 988 } 989 990 return false; 991 } 992 993 static bool cfg80211_chandef_dfs_available(struct wiphy *wiphy, 994 const struct cfg80211_chan_def *chandef) 995 { 996 struct ieee80211_channel *c; 997 int width; 998 bool dfs_offload; 999 1000 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 1001 return false; 1002 1003 width = cfg80211_chandef_get_width(chandef); 1004 if (width < 0) 1005 return false; 1006 1007 dfs_offload = wiphy_ext_feature_isset(wiphy, 1008 NL80211_EXT_FEATURE_DFS_OFFLOAD); 1009 1010 /* 1011 * Check entire range of channels for the bandwidth. 1012 * If any channel in between is disabled or has not 1013 * had gone through CAC return false 1014 */ 1015 for_each_subchan(chandef, freq, cf) { 1016 c = ieee80211_get_channel_khz(wiphy, freq); 1017 if (!c) 1018 return false; 1019 1020 if (c->flags & IEEE80211_CHAN_DISABLED) 1021 return false; 1022 1023 if ((c->flags & IEEE80211_CHAN_RADAR) && 1024 (c->dfs_state != NL80211_DFS_AVAILABLE) && 1025 !(c->dfs_state == NL80211_DFS_USABLE && dfs_offload)) 1026 return false; 1027 } 1028 1029 return true; 1030 } 1031 1032 unsigned int 1033 cfg80211_chandef_dfs_cac_time(struct wiphy *wiphy, 1034 const struct cfg80211_chan_def *chandef) 1035 { 1036 struct ieee80211_channel *c; 1037 int width; 1038 unsigned int t1 = 0, t2 = 0; 1039 1040 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 1041 return 0; 1042 1043 width = cfg80211_chandef_get_width(chandef); 1044 if (width < 0) 1045 return 0; 1046 1047 for_each_subchan(chandef, freq, cf) { 1048 c = ieee80211_get_channel_khz(wiphy, freq); 1049 if (!c || (c->flags & IEEE80211_CHAN_DISABLED)) { 1050 if (cf == 1) 1051 t1 = INT_MAX; 1052 else 1053 t2 = INT_MAX; 1054 continue; 1055 } 1056 1057 if (!(c->flags & IEEE80211_CHAN_RADAR)) 1058 continue; 1059 1060 if (cf == 1 && c->dfs_cac_ms > t1) 1061 t1 = c->dfs_cac_ms; 1062 1063 if (cf == 2 && c->dfs_cac_ms > t2) 1064 t2 = c->dfs_cac_ms; 1065 } 1066 1067 if (t1 == INT_MAX && t2 == INT_MAX) 1068 return 0; 1069 1070 if (t1 == INT_MAX) 1071 return t2; 1072 1073 if (t2 == INT_MAX) 1074 return t1; 1075 1076 return max(t1, t2); 1077 } 1078 EXPORT_SYMBOL(cfg80211_chandef_dfs_cac_time); 1079 1080 /* check if the operating channels are valid and supported */ 1081 static bool cfg80211_edmg_usable(struct wiphy *wiphy, u8 edmg_channels, 1082 enum ieee80211_edmg_bw_config edmg_bw_config, 1083 int primary_channel, 1084 struct ieee80211_edmg *edmg_cap) 1085 { 1086 struct ieee80211_channel *chan; 1087 int i, freq; 1088 int channels_counter = 0; 1089 1090 if (!edmg_channels && !edmg_bw_config) 1091 return true; 1092 1093 if ((!edmg_channels && edmg_bw_config) || 1094 (edmg_channels && !edmg_bw_config)) 1095 return false; 1096 1097 if (!(edmg_channels & BIT(primary_channel - 1))) 1098 return false; 1099 1100 /* 60GHz channels 1..6 */ 1101 for (i = 0; i < 6; i++) { 1102 if (!(edmg_channels & BIT(i))) 1103 continue; 1104 1105 if (!(edmg_cap->channels & BIT(i))) 1106 return false; 1107 1108 channels_counter++; 1109 1110 freq = ieee80211_channel_to_frequency(i + 1, 1111 NL80211_BAND_60GHZ); 1112 chan = ieee80211_get_channel(wiphy, freq); 1113 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED) 1114 return false; 1115 } 1116 1117 /* IEEE802.11 allows max 4 channels */ 1118 if (channels_counter > 4) 1119 return false; 1120 1121 /* check bw_config is a subset of what driver supports 1122 * (see IEEE P802.11ay/D4.0 section 9.4.2.251, Table 13) 1123 */ 1124 if ((edmg_bw_config % 4) > (edmg_cap->bw_config % 4)) 1125 return false; 1126 1127 if (edmg_bw_config > edmg_cap->bw_config) 1128 return false; 1129 1130 return true; 1131 } 1132 1133 static bool cfg80211_s1g_usable(struct wiphy *wiphy, 1134 const struct cfg80211_chan_def *chandef) 1135 { 1136 u32 freq_khz; 1137 const struct ieee80211_channel *chan; 1138 u32 pri_khz = ieee80211_channel_to_khz(chandef->chan); 1139 u32 end_khz = cfg80211_s1g_get_end_freq_khz(chandef); 1140 u32 start_khz = cfg80211_s1g_get_start_freq_khz(chandef); 1141 int width_mhz = cfg80211_chandef_get_width(chandef); 1142 u32 prohibited_flags = IEEE80211_CHAN_DISABLED; 1143 1144 if (width_mhz >= 16) 1145 prohibited_flags |= IEEE80211_CHAN_NO_16MHZ; 1146 if (width_mhz >= 8) 1147 prohibited_flags |= IEEE80211_CHAN_NO_8MHZ; 1148 if (width_mhz >= 4) 1149 prohibited_flags |= IEEE80211_CHAN_NO_4MHZ; 1150 1151 if (chandef->chan->flags & IEEE80211_CHAN_S1G_NO_PRIMARY) 1152 return false; 1153 1154 if (pri_khz < start_khz || pri_khz > end_khz) 1155 return false; 1156 1157 for_each_s1g_subchan(chandef, freq_khz) { 1158 chan = ieee80211_get_channel_khz(wiphy, freq_khz); 1159 if (!chan || (chan->flags & prohibited_flags)) 1160 return false; 1161 } 1162 1163 if (chandef->s1g_primary_2mhz) { 1164 u32 sib_khz; 1165 const struct ieee80211_channel *sibling; 1166 1167 sibling = cfg80211_s1g_get_primary_sibling(wiphy, chandef); 1168 if (!sibling) 1169 return false; 1170 1171 if (sibling->flags & IEEE80211_CHAN_S1G_NO_PRIMARY) 1172 return false; 1173 1174 sib_khz = ieee80211_channel_to_khz(sibling); 1175 if (sib_khz < start_khz || sib_khz > end_khz) 1176 return false; 1177 } 1178 1179 return true; 1180 } 1181 1182 bool _cfg80211_chandef_usable(struct wiphy *wiphy, 1183 const struct cfg80211_chan_def *chandef, 1184 u32 prohibited_flags, 1185 u32 permitting_flags) 1186 { 1187 struct ieee80211_sta_ht_cap *ht_cap; 1188 struct ieee80211_sta_vht_cap *vht_cap; 1189 struct ieee80211_edmg *edmg_cap; 1190 u32 width, control_freq, cap; 1191 bool ext_nss_cap, support_80_80 = false, support_320 = false; 1192 const struct ieee80211_sband_iftype_data *iftd; 1193 struct ieee80211_supported_band *sband; 1194 struct ieee80211_channel *c; 1195 int i; 1196 1197 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 1198 return false; 1199 1200 ht_cap = &wiphy->bands[chandef->chan->band]->ht_cap; 1201 vht_cap = &wiphy->bands[chandef->chan->band]->vht_cap; 1202 edmg_cap = &wiphy->bands[chandef->chan->band]->edmg_cap; 1203 ext_nss_cap = __le16_to_cpu(vht_cap->vht_mcs.tx_highest) & 1204 IEEE80211_VHT_EXT_NSS_BW_CAPABLE; 1205 1206 if (cfg80211_chandef_is_s1g(chandef)) 1207 return cfg80211_s1g_usable(wiphy, chandef); 1208 1209 if (edmg_cap->channels && 1210 !cfg80211_edmg_usable(wiphy, 1211 chandef->edmg.channels, 1212 chandef->edmg.bw_config, 1213 chandef->chan->hw_value, 1214 edmg_cap)) 1215 return false; 1216 1217 control_freq = chandef->chan->center_freq; 1218 1219 switch (chandef->width) { 1220 case NL80211_CHAN_WIDTH_5: 1221 width = 5; 1222 break; 1223 case NL80211_CHAN_WIDTH_10: 1224 prohibited_flags |= IEEE80211_CHAN_NO_10MHZ; 1225 width = 10; 1226 break; 1227 case NL80211_CHAN_WIDTH_20: 1228 if (!ht_cap->ht_supported && 1229 chandef->chan->band != NL80211_BAND_6GHZ) 1230 return false; 1231 fallthrough; 1232 case NL80211_CHAN_WIDTH_20_NOHT: 1233 prohibited_flags |= IEEE80211_CHAN_NO_20MHZ; 1234 width = 20; 1235 break; 1236 case NL80211_CHAN_WIDTH_40: 1237 width = 40; 1238 if (chandef->chan->band == NL80211_BAND_6GHZ) 1239 break; 1240 if (!ht_cap->ht_supported) 1241 return false; 1242 if (!(ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40) || 1243 ht_cap->cap & IEEE80211_HT_CAP_40MHZ_INTOLERANT) 1244 return false; 1245 if (chandef->center_freq1 < control_freq && 1246 chandef->chan->flags & IEEE80211_CHAN_NO_HT40MINUS) 1247 return false; 1248 if (chandef->center_freq1 > control_freq && 1249 chandef->chan->flags & IEEE80211_CHAN_NO_HT40PLUS) 1250 return false; 1251 break; 1252 case NL80211_CHAN_WIDTH_80P80: 1253 cap = vht_cap->cap; 1254 support_80_80 = 1255 (cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) || 1256 (cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ && 1257 cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) || 1258 (ext_nss_cap && 1259 u32_get_bits(cap, IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) > 1); 1260 if (chandef->chan->band != NL80211_BAND_6GHZ && !support_80_80) 1261 return false; 1262 fallthrough; 1263 case NL80211_CHAN_WIDTH_80: 1264 prohibited_flags |= IEEE80211_CHAN_NO_80MHZ; 1265 width = 80; 1266 if (chandef->chan->band == NL80211_BAND_6GHZ) 1267 break; 1268 if (!vht_cap->vht_supported) 1269 return false; 1270 break; 1271 case NL80211_CHAN_WIDTH_160: 1272 prohibited_flags |= IEEE80211_CHAN_NO_160MHZ; 1273 width = 160; 1274 if (chandef->chan->band == NL80211_BAND_6GHZ) 1275 break; 1276 if (!vht_cap->vht_supported) 1277 return false; 1278 cap = vht_cap->cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK; 1279 if (cap != IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ && 1280 cap != IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ && 1281 !(ext_nss_cap && 1282 (vht_cap->cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK))) 1283 return false; 1284 break; 1285 case NL80211_CHAN_WIDTH_320: 1286 prohibited_flags |= IEEE80211_CHAN_NO_320MHZ; 1287 width = 320; 1288 1289 if (chandef->chan->band != NL80211_BAND_6GHZ) 1290 return false; 1291 1292 sband = wiphy->bands[NL80211_BAND_6GHZ]; 1293 if (!sband) 1294 return false; 1295 1296 for_each_sband_iftype_data(sband, i, iftd) { 1297 if (!iftd->eht_cap.has_eht) 1298 continue; 1299 1300 if (iftd->eht_cap.eht_cap_elem.phy_cap_info[0] & 1301 IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ) { 1302 support_320 = true; 1303 break; 1304 } 1305 } 1306 1307 if (!support_320) 1308 return false; 1309 break; 1310 default: 1311 WARN_ON_ONCE(1); 1312 return false; 1313 } 1314 1315 /* 1316 * TODO: What if there are only certain 80/160/80+80 MHz channels 1317 * allowed by the driver, or only certain combinations? 1318 * For 40 MHz the driver can set the NO_HT40 flags, but for 1319 * 80/160 MHz and in particular 80+80 MHz this isn't really 1320 * feasible and we only have NO_80MHZ/NO_160MHZ so far but 1321 * no way to cover 80+80 MHz or more complex restrictions. 1322 * Note that such restrictions also need to be advertised to 1323 * userspace, for example for P2P channel selection. 1324 */ 1325 1326 if (width > 20) 1327 prohibited_flags |= IEEE80211_CHAN_NO_OFDM; 1328 1329 /* 5 and 10 MHz are only defined for the OFDM PHY */ 1330 if (width < 20) 1331 prohibited_flags |= IEEE80211_CHAN_NO_OFDM; 1332 1333 for_each_subchan(chandef, freq, cf) { 1334 c = ieee80211_get_channel_khz(wiphy, freq); 1335 if (!c) 1336 return false; 1337 if (c->flags & permitting_flags) 1338 continue; 1339 if (c->flags & prohibited_flags) 1340 return false; 1341 } 1342 1343 return true; 1344 } 1345 1346 bool cfg80211_chandef_usable(struct wiphy *wiphy, 1347 const struct cfg80211_chan_def *chandef, 1348 u32 prohibited_flags) 1349 { 1350 return _cfg80211_chandef_usable(wiphy, chandef, prohibited_flags, 0); 1351 } 1352 EXPORT_SYMBOL(cfg80211_chandef_usable); 1353 1354 static bool cfg80211_ir_permissive_check_wdev(enum nl80211_iftype iftype, 1355 struct wireless_dev *wdev, 1356 struct ieee80211_channel *chan) 1357 { 1358 struct ieee80211_channel *other_chan = NULL; 1359 unsigned int link_id; 1360 int r1, r2; 1361 1362 for_each_valid_link(wdev, link_id) { 1363 if (wdev->iftype == NL80211_IFTYPE_STATION && 1364 wdev->links[link_id].client.current_bss) 1365 other_chan = wdev->links[link_id].client.current_bss->pub.channel; 1366 1367 /* 1368 * If a GO already operates on the same GO_CONCURRENT channel, 1369 * this one (maybe the same one) can beacon as well. We allow 1370 * the operation even if the station we relied on with 1371 * GO_CONCURRENT is disconnected now. But then we must make sure 1372 * we're not outdoor on an indoor-only channel. 1373 */ 1374 if (iftype == NL80211_IFTYPE_P2P_GO && 1375 wdev->iftype == NL80211_IFTYPE_P2P_GO && 1376 wdev->links[link_id].ap.beacon_interval && 1377 !(chan->flags & IEEE80211_CHAN_INDOOR_ONLY)) 1378 other_chan = wdev->links[link_id].ap.chandef.chan; 1379 1380 if (!other_chan) 1381 continue; 1382 1383 if (chan == other_chan) 1384 return true; 1385 1386 if (chan->band != NL80211_BAND_5GHZ && 1387 chan->band != NL80211_BAND_6GHZ) 1388 continue; 1389 1390 r1 = cfg80211_get_unii(chan->center_freq); 1391 r2 = cfg80211_get_unii(other_chan->center_freq); 1392 1393 if (r1 != -EINVAL && r1 == r2) { 1394 /* 1395 * At some locations channels 149-165 are considered a 1396 * bundle, but at other locations, e.g., Indonesia, 1397 * channels 149-161 are considered a bundle while 1398 * channel 165 is left out and considered to be in a 1399 * different bundle. Thus, in case that there is a 1400 * station interface connected to an AP on channel 165, 1401 * it is assumed that channels 149-161 are allowed for 1402 * GO operations. However, having a station interface 1403 * connected to an AP on channels 149-161, does not 1404 * allow GO operation on channel 165. 1405 */ 1406 if (chan->center_freq == 5825 && 1407 other_chan->center_freq != 5825) 1408 continue; 1409 return true; 1410 } 1411 } 1412 1413 return false; 1414 } 1415 1416 /* 1417 * Check if the channel can be used under permissive conditions mandated by 1418 * some regulatory bodies, i.e., the channel is marked with 1419 * IEEE80211_CHAN_IR_CONCURRENT and there is an additional station interface 1420 * associated to an AP on the same channel or on the same UNII band 1421 * (assuming that the AP is an authorized master). 1422 * In addition allow operation on a channel on which indoor operation is 1423 * allowed, iff we are currently operating in an indoor environment. 1424 */ 1425 static bool cfg80211_ir_permissive_chan(struct wiphy *wiphy, 1426 enum nl80211_iftype iftype, 1427 struct ieee80211_channel *chan) 1428 { 1429 struct wireless_dev *wdev; 1430 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1431 1432 lockdep_assert_held(&rdev->wiphy.mtx); 1433 1434 if (!IS_ENABLED(CONFIG_CFG80211_REG_RELAX_NO_IR) || 1435 !(wiphy->regulatory_flags & REGULATORY_ENABLE_RELAX_NO_IR)) 1436 return false; 1437 1438 /* only valid for GO and TDLS off-channel (station/p2p-CL) */ 1439 if (iftype != NL80211_IFTYPE_P2P_GO && 1440 iftype != NL80211_IFTYPE_STATION && 1441 iftype != NL80211_IFTYPE_P2P_CLIENT) 1442 return false; 1443 1444 if (regulatory_indoor_allowed() && 1445 (chan->flags & IEEE80211_CHAN_INDOOR_ONLY)) 1446 return true; 1447 1448 if (!(chan->flags & IEEE80211_CHAN_IR_CONCURRENT)) 1449 return false; 1450 1451 /* 1452 * Generally, it is possible to rely on another device/driver to allow 1453 * the IR concurrent relaxation, however, since the device can further 1454 * enforce the relaxation (by doing a similar verifications as this), 1455 * and thus fail the GO instantiation, consider only the interfaces of 1456 * the current registered device. 1457 */ 1458 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 1459 bool ret; 1460 1461 ret = cfg80211_ir_permissive_check_wdev(iftype, wdev, chan); 1462 if (ret) 1463 return ret; 1464 } 1465 1466 return false; 1467 } 1468 1469 static bool _cfg80211_reg_can_beacon(struct wiphy *wiphy, 1470 struct cfg80211_chan_def *chandef, 1471 enum nl80211_iftype iftype, 1472 u32 prohibited_flags, 1473 u32 permitting_flags) 1474 { 1475 bool res, check_radar; 1476 int dfs_required; 1477 1478 trace_cfg80211_reg_can_beacon(wiphy, chandef, iftype, 1479 prohibited_flags, 1480 permitting_flags); 1481 1482 if (!_cfg80211_chandef_usable(wiphy, chandef, 1483 IEEE80211_CHAN_DISABLED, 0)) 1484 return false; 1485 1486 dfs_required = cfg80211_chandef_dfs_required(wiphy, chandef, iftype); 1487 check_radar = dfs_required != 0; 1488 1489 if (dfs_required > 0 && 1490 cfg80211_chandef_dfs_available(wiphy, chandef)) { 1491 /* We can skip IEEE80211_CHAN_NO_IR if chandef dfs available */ 1492 prohibited_flags &= ~IEEE80211_CHAN_NO_IR; 1493 check_radar = false; 1494 } 1495 1496 if (check_radar && 1497 !_cfg80211_chandef_usable(wiphy, chandef, 1498 IEEE80211_CHAN_RADAR, 0)) 1499 return false; 1500 1501 res = _cfg80211_chandef_usable(wiphy, chandef, 1502 prohibited_flags, 1503 permitting_flags); 1504 1505 trace_cfg80211_return_bool(res); 1506 return res; 1507 } 1508 1509 bool cfg80211_reg_check_beaconing(struct wiphy *wiphy, 1510 struct cfg80211_chan_def *chandef, 1511 struct cfg80211_beaconing_check_config *cfg) 1512 { 1513 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1514 u32 permitting_flags = 0; 1515 bool check_no_ir = true; 1516 1517 /* 1518 * Under certain conditions suggested by some regulatory bodies a 1519 * GO/STA can IR on channels marked with IEEE80211_NO_IR. Set this flag 1520 * only if such relaxations are not enabled and the conditions are not 1521 * met. 1522 */ 1523 if (cfg->relax) { 1524 lockdep_assert_held(&rdev->wiphy.mtx); 1525 check_no_ir = !cfg80211_ir_permissive_chan(wiphy, cfg->iftype, 1526 chandef->chan); 1527 } 1528 1529 if (cfg->reg_power == IEEE80211_REG_VLP_AP) 1530 permitting_flags |= IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP; 1531 1532 if ((cfg->iftype == NL80211_IFTYPE_P2P_GO || 1533 cfg->iftype == NL80211_IFTYPE_AP) && 1534 (chandef->width == NL80211_CHAN_WIDTH_20_NOHT || 1535 chandef->width == NL80211_CHAN_WIDTH_20)) 1536 permitting_flags |= IEEE80211_CHAN_ALLOW_20MHZ_ACTIVITY; 1537 1538 return _cfg80211_reg_can_beacon(wiphy, chandef, cfg->iftype, 1539 check_no_ir ? IEEE80211_CHAN_NO_IR : 0, 1540 permitting_flags); 1541 } 1542 EXPORT_SYMBOL(cfg80211_reg_check_beaconing); 1543 1544 int cfg80211_set_monitor_channel(struct cfg80211_registered_device *rdev, 1545 struct net_device *dev, 1546 struct cfg80211_chan_def *chandef) 1547 { 1548 if (!rdev->ops->set_monitor_channel) 1549 return -EOPNOTSUPP; 1550 if (!cfg80211_has_monitors_only(rdev)) 1551 return -EBUSY; 1552 1553 return rdev_set_monitor_channel(rdev, dev, chandef); 1554 } 1555 1556 bool cfg80211_any_usable_channels(struct wiphy *wiphy, 1557 unsigned long sband_mask, 1558 u32 prohibited_flags) 1559 { 1560 int idx; 1561 1562 prohibited_flags |= IEEE80211_CHAN_DISABLED; 1563 1564 for_each_set_bit(idx, &sband_mask, NUM_NL80211_BANDS) { 1565 struct ieee80211_supported_band *sband = wiphy->bands[idx]; 1566 int chanidx; 1567 1568 if (!sband) 1569 continue; 1570 1571 for (chanidx = 0; chanidx < sband->n_channels; chanidx++) { 1572 struct ieee80211_channel *chan; 1573 1574 chan = &sband->channels[chanidx]; 1575 1576 if (chan->flags & prohibited_flags) 1577 continue; 1578 1579 return true; 1580 } 1581 } 1582 1583 return false; 1584 } 1585 EXPORT_SYMBOL(cfg80211_any_usable_channels); 1586 1587 struct cfg80211_chan_def *wdev_chandef(struct wireless_dev *wdev, 1588 unsigned int link_id) 1589 { 1590 lockdep_assert_wiphy(wdev->wiphy); 1591 1592 WARN_ON(wdev->valid_links && !(wdev->valid_links & BIT(link_id))); 1593 WARN_ON(!wdev->valid_links && link_id > 0); 1594 1595 switch (wdev->iftype) { 1596 case NL80211_IFTYPE_MESH_POINT: 1597 return &wdev->u.mesh.chandef; 1598 case NL80211_IFTYPE_ADHOC: 1599 return &wdev->u.ibss.chandef; 1600 case NL80211_IFTYPE_OCB: 1601 return &wdev->u.ocb.chandef; 1602 case NL80211_IFTYPE_AP: 1603 case NL80211_IFTYPE_P2P_GO: 1604 return &wdev->links[link_id].ap.chandef; 1605 default: 1606 return NULL; 1607 } 1608 } 1609 EXPORT_SYMBOL(wdev_chandef); 1610