xref: /linux/net/ceph/crypto.c (revision 9d0ad045533ee37a208991ac5baaf6641e60a9ed)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/ceph/ceph_debug.h>
4 
5 #include <linux/err.h>
6 #include <linux/scatterlist.h>
7 #include <linux/sched.h>
8 #include <linux/slab.h>
9 #include <crypto/aes.h>
10 #include <crypto/skcipher.h>
11 #include <linux/key-type.h>
12 #include <linux/sched/mm.h>
13 
14 #include <keys/ceph-type.h>
15 #include <keys/user-type.h>
16 #include <linux/ceph/decode.h>
17 #include "crypto.h"
18 
19 /*
20  * Set ->key and ->tfm.  The rest of the key should be filled in before
21  * this function is called.
22  */
set_secret(struct ceph_crypto_key * key,void * buf)23 static int set_secret(struct ceph_crypto_key *key, void *buf)
24 {
25 	unsigned int noio_flag;
26 	int ret;
27 
28 	key->key = NULL;
29 	key->tfm = NULL;
30 
31 	switch (key->type) {
32 	case CEPH_CRYPTO_NONE:
33 		return 0; /* nothing to do */
34 	case CEPH_CRYPTO_AES:
35 		break;
36 	default:
37 		return -ENOTSUPP;
38 	}
39 
40 	if (!key->len)
41 		return -EINVAL;
42 
43 	key->key = kmemdup(buf, key->len, GFP_NOIO);
44 	if (!key->key) {
45 		ret = -ENOMEM;
46 		goto fail;
47 	}
48 
49 	/* crypto_alloc_sync_skcipher() allocates with GFP_KERNEL */
50 	noio_flag = memalloc_noio_save();
51 	key->tfm = crypto_alloc_sync_skcipher("cbc(aes)", 0, 0);
52 	memalloc_noio_restore(noio_flag);
53 	if (IS_ERR(key->tfm)) {
54 		ret = PTR_ERR(key->tfm);
55 		key->tfm = NULL;
56 		goto fail;
57 	}
58 
59 	ret = crypto_sync_skcipher_setkey(key->tfm, key->key, key->len);
60 	if (ret)
61 		goto fail;
62 
63 	return 0;
64 
65 fail:
66 	ceph_crypto_key_destroy(key);
67 	return ret;
68 }
69 
ceph_crypto_key_clone(struct ceph_crypto_key * dst,const struct ceph_crypto_key * src)70 int ceph_crypto_key_clone(struct ceph_crypto_key *dst,
71 			  const struct ceph_crypto_key *src)
72 {
73 	memcpy(dst, src, sizeof(struct ceph_crypto_key));
74 	return set_secret(dst, src->key);
75 }
76 
ceph_crypto_key_decode(struct ceph_crypto_key * key,void ** p,void * end)77 int ceph_crypto_key_decode(struct ceph_crypto_key *key, void **p, void *end)
78 {
79 	int ret;
80 
81 	ceph_decode_need(p, end, 2*sizeof(u16) + sizeof(key->created), bad);
82 	key->type = ceph_decode_16(p);
83 	ceph_decode_copy(p, &key->created, sizeof(key->created));
84 	key->len = ceph_decode_16(p);
85 	ceph_decode_need(p, end, key->len, bad);
86 	ret = set_secret(key, *p);
87 	memzero_explicit(*p, key->len);
88 	*p += key->len;
89 	return ret;
90 
91 bad:
92 	dout("failed to decode crypto key\n");
93 	return -EINVAL;
94 }
95 
ceph_crypto_key_unarmor(struct ceph_crypto_key * key,const char * inkey)96 int ceph_crypto_key_unarmor(struct ceph_crypto_key *key, const char *inkey)
97 {
98 	int inlen = strlen(inkey);
99 	int blen = inlen * 3 / 4;
100 	void *buf, *p;
101 	int ret;
102 
103 	dout("crypto_key_unarmor %s\n", inkey);
104 	buf = kmalloc(blen, GFP_NOFS);
105 	if (!buf)
106 		return -ENOMEM;
107 	blen = ceph_unarmor(buf, inkey, inkey+inlen);
108 	if (blen < 0) {
109 		kfree(buf);
110 		return blen;
111 	}
112 
113 	p = buf;
114 	ret = ceph_crypto_key_decode(key, &p, p + blen);
115 	kfree(buf);
116 	if (ret)
117 		return ret;
118 	dout("crypto_key_unarmor key %p type %d len %d\n", key,
119 	     key->type, key->len);
120 	return 0;
121 }
122 
ceph_crypto_key_destroy(struct ceph_crypto_key * key)123 void ceph_crypto_key_destroy(struct ceph_crypto_key *key)
124 {
125 	if (key) {
126 		kfree_sensitive(key->key);
127 		key->key = NULL;
128 		if (key->tfm) {
129 			crypto_free_sync_skcipher(key->tfm);
130 			key->tfm = NULL;
131 		}
132 	}
133 }
134 
135 static const u8 *aes_iv = (u8 *)CEPH_AES_IV;
136 
137 /*
138  * Should be used for buffers allocated with kvmalloc().
139  * Currently these are encrypt out-buffer (ceph_buffer) and decrypt
140  * in-buffer (msg front).
141  *
142  * Dispose of @sgt with teardown_sgtable().
143  *
144  * @prealloc_sg is to avoid memory allocation inside sg_alloc_table()
145  * in cases where a single sg is sufficient.  No attempt to reduce the
146  * number of sgs by squeezing physically contiguous pages together is
147  * made though, for simplicity.
148  */
setup_sgtable(struct sg_table * sgt,struct scatterlist * prealloc_sg,const void * buf,unsigned int buf_len)149 static int setup_sgtable(struct sg_table *sgt, struct scatterlist *prealloc_sg,
150 			 const void *buf, unsigned int buf_len)
151 {
152 	struct scatterlist *sg;
153 	const bool is_vmalloc = is_vmalloc_addr(buf);
154 	unsigned int off = offset_in_page(buf);
155 	unsigned int chunk_cnt = 1;
156 	unsigned int chunk_len = PAGE_ALIGN(off + buf_len);
157 	int i;
158 	int ret;
159 
160 	if (buf_len == 0) {
161 		memset(sgt, 0, sizeof(*sgt));
162 		return -EINVAL;
163 	}
164 
165 	if (is_vmalloc) {
166 		chunk_cnt = chunk_len >> PAGE_SHIFT;
167 		chunk_len = PAGE_SIZE;
168 	}
169 
170 	if (chunk_cnt > 1) {
171 		ret = sg_alloc_table(sgt, chunk_cnt, GFP_NOFS);
172 		if (ret)
173 			return ret;
174 	} else {
175 		WARN_ON(chunk_cnt != 1);
176 		sg_init_table(prealloc_sg, 1);
177 		sgt->sgl = prealloc_sg;
178 		sgt->nents = sgt->orig_nents = 1;
179 	}
180 
181 	for_each_sg(sgt->sgl, sg, sgt->orig_nents, i) {
182 		struct page *page;
183 		unsigned int len = min(chunk_len - off, buf_len);
184 
185 		if (is_vmalloc)
186 			page = vmalloc_to_page(buf);
187 		else
188 			page = virt_to_page(buf);
189 
190 		sg_set_page(sg, page, len, off);
191 
192 		off = 0;
193 		buf += len;
194 		buf_len -= len;
195 	}
196 	WARN_ON(buf_len != 0);
197 
198 	return 0;
199 }
200 
teardown_sgtable(struct sg_table * sgt)201 static void teardown_sgtable(struct sg_table *sgt)
202 {
203 	if (sgt->orig_nents > 1)
204 		sg_free_table(sgt);
205 }
206 
ceph_aes_crypt(const struct ceph_crypto_key * key,bool encrypt,void * buf,int buf_len,int in_len,int * pout_len)207 static int ceph_aes_crypt(const struct ceph_crypto_key *key, bool encrypt,
208 			  void *buf, int buf_len, int in_len, int *pout_len)
209 {
210 	SYNC_SKCIPHER_REQUEST_ON_STACK(req, key->tfm);
211 	struct sg_table sgt;
212 	struct scatterlist prealloc_sg;
213 	char iv[AES_BLOCK_SIZE] __aligned(8);
214 	int pad_byte = AES_BLOCK_SIZE - (in_len & (AES_BLOCK_SIZE - 1));
215 	int crypt_len = encrypt ? in_len + pad_byte : in_len;
216 	int ret;
217 
218 	WARN_ON(crypt_len > buf_len);
219 	if (encrypt)
220 		memset(buf + in_len, pad_byte, pad_byte);
221 	ret = setup_sgtable(&sgt, &prealloc_sg, buf, crypt_len);
222 	if (ret)
223 		return ret;
224 
225 	memcpy(iv, aes_iv, AES_BLOCK_SIZE);
226 	skcipher_request_set_sync_tfm(req, key->tfm);
227 	skcipher_request_set_callback(req, 0, NULL, NULL);
228 	skcipher_request_set_crypt(req, sgt.sgl, sgt.sgl, crypt_len, iv);
229 
230 	/*
231 	print_hex_dump(KERN_ERR, "key: ", DUMP_PREFIX_NONE, 16, 1,
232 		       key->key, key->len, 1);
233 	print_hex_dump(KERN_ERR, " in: ", DUMP_PREFIX_NONE, 16, 1,
234 		       buf, crypt_len, 1);
235 	*/
236 	if (encrypt)
237 		ret = crypto_skcipher_encrypt(req);
238 	else
239 		ret = crypto_skcipher_decrypt(req);
240 	skcipher_request_zero(req);
241 	if (ret) {
242 		pr_err("%s %scrypt failed: %d\n", __func__,
243 		       encrypt ? "en" : "de", ret);
244 		goto out_sgt;
245 	}
246 	/*
247 	print_hex_dump(KERN_ERR, "out: ", DUMP_PREFIX_NONE, 16, 1,
248 		       buf, crypt_len, 1);
249 	*/
250 
251 	if (encrypt) {
252 		*pout_len = crypt_len;
253 	} else {
254 		pad_byte = *(char *)(buf + in_len - 1);
255 		if (pad_byte > 0 && pad_byte <= AES_BLOCK_SIZE &&
256 		    in_len >= pad_byte) {
257 			*pout_len = in_len - pad_byte;
258 		} else {
259 			pr_err("%s got bad padding %d on in_len %d\n",
260 			       __func__, pad_byte, in_len);
261 			ret = -EPERM;
262 			goto out_sgt;
263 		}
264 	}
265 
266 out_sgt:
267 	teardown_sgtable(&sgt);
268 	return ret;
269 }
270 
ceph_crypt(const struct ceph_crypto_key * key,bool encrypt,void * buf,int buf_len,int in_len,int * pout_len)271 int ceph_crypt(const struct ceph_crypto_key *key, bool encrypt,
272 	       void *buf, int buf_len, int in_len, int *pout_len)
273 {
274 	switch (key->type) {
275 	case CEPH_CRYPTO_NONE:
276 		*pout_len = in_len;
277 		return 0;
278 	case CEPH_CRYPTO_AES:
279 		return ceph_aes_crypt(key, encrypt, buf, buf_len, in_len,
280 				      pout_len);
281 	default:
282 		return -ENOTSUPP;
283 	}
284 }
285 
ceph_key_preparse(struct key_preparsed_payload * prep)286 static int ceph_key_preparse(struct key_preparsed_payload *prep)
287 {
288 	struct ceph_crypto_key *ckey;
289 	size_t datalen = prep->datalen;
290 	int ret;
291 	void *p;
292 
293 	ret = -EINVAL;
294 	if (datalen <= 0 || datalen > 32767 || !prep->data)
295 		goto err;
296 
297 	ret = -ENOMEM;
298 	ckey = kmalloc(sizeof(*ckey), GFP_KERNEL);
299 	if (!ckey)
300 		goto err;
301 
302 	/* TODO ceph_crypto_key_decode should really take const input */
303 	p = (void *)prep->data;
304 	ret = ceph_crypto_key_decode(ckey, &p, (char*)prep->data+datalen);
305 	if (ret < 0)
306 		goto err_ckey;
307 
308 	prep->payload.data[0] = ckey;
309 	prep->quotalen = datalen;
310 	return 0;
311 
312 err_ckey:
313 	kfree(ckey);
314 err:
315 	return ret;
316 }
317 
ceph_key_free_preparse(struct key_preparsed_payload * prep)318 static void ceph_key_free_preparse(struct key_preparsed_payload *prep)
319 {
320 	struct ceph_crypto_key *ckey = prep->payload.data[0];
321 	ceph_crypto_key_destroy(ckey);
322 	kfree(ckey);
323 }
324 
ceph_key_destroy(struct key * key)325 static void ceph_key_destroy(struct key *key)
326 {
327 	struct ceph_crypto_key *ckey = key->payload.data[0];
328 
329 	ceph_crypto_key_destroy(ckey);
330 	kfree(ckey);
331 }
332 
333 struct key_type key_type_ceph = {
334 	.name		= "ceph",
335 	.preparse	= ceph_key_preparse,
336 	.free_preparse	= ceph_key_free_preparse,
337 	.instantiate	= generic_key_instantiate,
338 	.destroy	= ceph_key_destroy,
339 };
340 
ceph_crypto_init(void)341 int __init ceph_crypto_init(void)
342 {
343 	return register_key_type(&key_type_ceph);
344 }
345 
ceph_crypto_shutdown(void)346 void ceph_crypto_shutdown(void)
347 {
348 	unregister_key_type(&key_type_ceph);
349 }
350