1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Cadence CDNSP DRD Driver.
4 *
5 * Copyright (C) 2020 Cadence.
6 *
7 * Author: Pawel Laszczak <pawell@cadence.com>
8 *
9 * Code based on Linux XHCI driver.
10 * Origin: Copyright (C) 2008 Intel Corp
11 */
12
13 /*
14 * Ring initialization rules:
15 * 1. Each segment is initialized to zero, except for link TRBs.
16 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
17 * Consumer Cycle State (CCS), depending on ring function.
18 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
19 *
20 * Ring behavior rules:
21 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
22 * least one free TRB in the ring. This is useful if you want to turn that
23 * into a link TRB and expand the ring.
24 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
25 * link TRB, then load the pointer with the address in the link TRB. If the
26 * link TRB had its toggle bit set, you may need to update the ring cycle
27 * state (see cycle bit rules). You may have to do this multiple times
28 * until you reach a non-link TRB.
29 * 3. A ring is full if enqueue++ (for the definition of increment above)
30 * equals the dequeue pointer.
31 *
32 * Cycle bit rules:
33 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
34 * in a link TRB, it must toggle the ring cycle state.
35 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
36 * in a link TRB, it must toggle the ring cycle state.
37 *
38 * Producer rules:
39 * 1. Check if ring is full before you enqueue.
40 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
41 * Update enqueue pointer between each write (which may update the ring
42 * cycle state).
43 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
44 * and endpoint rings. If controller is the producer for the event ring,
45 * and it generates an interrupt according to interrupt modulation rules.
46 *
47 * Consumer rules:
48 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
49 * the TRB is owned by the consumer.
50 * 2. Update dequeue pointer (which may update the ring cycle state) and
51 * continue processing TRBs until you reach a TRB which is not owned by you.
52 * 3. Notify the producer. SW is the consumer for the event ring, and it
53 * updates event ring dequeue pointer. Controller is the consumer for the
54 * command and endpoint rings; it generates events on the event ring
55 * for these.
56 */
57
58 #include <linux/scatterlist.h>
59 #include <linux/dma-mapping.h>
60 #include <linux/delay.h>
61 #include <linux/slab.h>
62 #include <linux/irq.h>
63
64 #include "cdnsp-trace.h"
65 #include "cdnsp-gadget.h"
66
67 /*
68 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
69 * address of the TRB.
70 */
cdnsp_trb_virt_to_dma(struct cdnsp_segment * seg,union cdnsp_trb * trb)71 dma_addr_t cdnsp_trb_virt_to_dma(struct cdnsp_segment *seg,
72 union cdnsp_trb *trb)
73 {
74 unsigned long segment_offset = trb - seg->trbs;
75
76 if (trb < seg->trbs || segment_offset >= TRBS_PER_SEGMENT)
77 return 0;
78
79 return seg->dma + (segment_offset * sizeof(*trb));
80 }
81
cdnsp_trb_is_noop(union cdnsp_trb * trb)82 static bool cdnsp_trb_is_noop(union cdnsp_trb *trb)
83 {
84 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]);
85 }
86
cdnsp_trb_is_link(union cdnsp_trb * trb)87 static bool cdnsp_trb_is_link(union cdnsp_trb *trb)
88 {
89 return TRB_TYPE_LINK_LE32(trb->link.control);
90 }
91
cdnsp_last_trb_on_seg(struct cdnsp_segment * seg,union cdnsp_trb * trb)92 bool cdnsp_last_trb_on_seg(struct cdnsp_segment *seg, union cdnsp_trb *trb)
93 {
94 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1];
95 }
96
cdnsp_last_trb_on_ring(struct cdnsp_ring * ring,struct cdnsp_segment * seg,union cdnsp_trb * trb)97 bool cdnsp_last_trb_on_ring(struct cdnsp_ring *ring,
98 struct cdnsp_segment *seg,
99 union cdnsp_trb *trb)
100 {
101 return cdnsp_last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg);
102 }
103
cdnsp_link_trb_toggles_cycle(union cdnsp_trb * trb)104 static bool cdnsp_link_trb_toggles_cycle(union cdnsp_trb *trb)
105 {
106 return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
107 }
108
cdnsp_trb_to_noop(union cdnsp_trb * trb,u32 noop_type)109 static void cdnsp_trb_to_noop(union cdnsp_trb *trb, u32 noop_type)
110 {
111 if (cdnsp_trb_is_link(trb)) {
112 /* Unchain chained link TRBs. */
113 trb->link.control &= cpu_to_le32(~TRB_CHAIN);
114 } else {
115 trb->generic.field[0] = 0;
116 trb->generic.field[1] = 0;
117 trb->generic.field[2] = 0;
118 /* Preserve only the cycle bit of this TRB. */
119 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
120 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type));
121 }
122 }
123
124 /*
125 * Updates trb to point to the next TRB in the ring, and updates seg if the next
126 * TRB is in a new segment. This does not skip over link TRBs, and it does not
127 * effect the ring dequeue or enqueue pointers.
128 */
cdnsp_next_trb(struct cdnsp_device * pdev,struct cdnsp_ring * ring,struct cdnsp_segment ** seg,union cdnsp_trb ** trb)129 static void cdnsp_next_trb(struct cdnsp_device *pdev,
130 struct cdnsp_ring *ring,
131 struct cdnsp_segment **seg,
132 union cdnsp_trb **trb)
133 {
134 if (cdnsp_trb_is_link(*trb)) {
135 *seg = (*seg)->next;
136 *trb = ((*seg)->trbs);
137 } else {
138 (*trb)++;
139 }
140 }
141
142 /*
143 * See Cycle bit rules. SW is the consumer for the event ring only.
144 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
145 */
cdnsp_inc_deq(struct cdnsp_device * pdev,struct cdnsp_ring * ring)146 void cdnsp_inc_deq(struct cdnsp_device *pdev, struct cdnsp_ring *ring)
147 {
148 /* event ring doesn't have link trbs, check for last trb. */
149 if (ring->type == TYPE_EVENT) {
150 if (!cdnsp_last_trb_on_seg(ring->deq_seg, ring->dequeue)) {
151 ring->dequeue++;
152 goto out;
153 }
154
155 if (cdnsp_last_trb_on_ring(ring, ring->deq_seg, ring->dequeue))
156 ring->cycle_state ^= 1;
157
158 ring->deq_seg = ring->deq_seg->next;
159 ring->dequeue = ring->deq_seg->trbs;
160 goto out;
161 }
162
163 /* All other rings have link trbs. */
164 if (!cdnsp_trb_is_link(ring->dequeue)) {
165 ring->dequeue++;
166 ring->num_trbs_free++;
167 }
168 while (cdnsp_trb_is_link(ring->dequeue)) {
169 ring->deq_seg = ring->deq_seg->next;
170 ring->dequeue = ring->deq_seg->trbs;
171 }
172 out:
173 trace_cdnsp_inc_deq(ring);
174 }
175
176 /*
177 * See Cycle bit rules. SW is the consumer for the event ring only.
178 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
179 *
180 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
181 * chain bit is set), then set the chain bit in all the following link TRBs.
182 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
183 * have their chain bit cleared (so that each Link TRB is a separate TD).
184 *
185 * @more_trbs_coming: Will you enqueue more TRBs before ringing the doorbell.
186 */
cdnsp_inc_enq(struct cdnsp_device * pdev,struct cdnsp_ring * ring,bool more_trbs_coming)187 static void cdnsp_inc_enq(struct cdnsp_device *pdev,
188 struct cdnsp_ring *ring,
189 bool more_trbs_coming)
190 {
191 union cdnsp_trb *next;
192 u32 chain;
193
194 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
195
196 /* If this is not event ring, there is one less usable TRB. */
197 if (!cdnsp_trb_is_link(ring->enqueue))
198 ring->num_trbs_free--;
199 next = ++(ring->enqueue);
200
201 /* Update the dequeue pointer further if that was a link TRB */
202 while (cdnsp_trb_is_link(next)) {
203 /*
204 * If the caller doesn't plan on enqueuing more TDs before
205 * ringing the doorbell, then we don't want to give the link TRB
206 * to the hardware just yet. We'll give the link TRB back in
207 * cdnsp_prepare_ring() just before we enqueue the TD at the
208 * top of the ring.
209 */
210 if (!chain && !more_trbs_coming)
211 break;
212
213 next->link.control &= cpu_to_le32(~TRB_CHAIN);
214 next->link.control |= cpu_to_le32(chain);
215
216 /* Give this link TRB to the hardware */
217 wmb();
218 next->link.control ^= cpu_to_le32(TRB_CYCLE);
219
220 /* Toggle the cycle bit after the last ring segment. */
221 if (cdnsp_link_trb_toggles_cycle(next))
222 ring->cycle_state ^= 1;
223
224 ring->enq_seg = ring->enq_seg->next;
225 ring->enqueue = ring->enq_seg->trbs;
226 next = ring->enqueue;
227 }
228
229 trace_cdnsp_inc_enq(ring);
230 }
231
232 /*
233 * Check to see if there's room to enqueue num_trbs on the ring and make sure
234 * enqueue pointer will not advance into dequeue segment.
235 */
cdnsp_room_on_ring(struct cdnsp_device * pdev,struct cdnsp_ring * ring,unsigned int num_trbs)236 static bool cdnsp_room_on_ring(struct cdnsp_device *pdev,
237 struct cdnsp_ring *ring,
238 unsigned int num_trbs)
239 {
240 int num_trbs_in_deq_seg;
241
242 if (ring->num_trbs_free < num_trbs)
243 return false;
244
245 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
246 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
247
248 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
249 return false;
250 }
251
252 return true;
253 }
254
255 /*
256 * Workaround for L1: controller has issue with resuming from L1 after
257 * setting doorbell for endpoint during L1 state. This function forces
258 * resume signal in such case.
259 */
cdnsp_force_l0_go(struct cdnsp_device * pdev)260 static void cdnsp_force_l0_go(struct cdnsp_device *pdev)
261 {
262 if (pdev->active_port == &pdev->usb2_port && pdev->gadget.lpm_capable)
263 cdnsp_set_link_state(pdev, &pdev->active_port->regs->portsc, XDEV_U0);
264 }
265
266 /* Ring the doorbell after placing a command on the ring. */
cdnsp_ring_cmd_db(struct cdnsp_device * pdev)267 void cdnsp_ring_cmd_db(struct cdnsp_device *pdev)
268 {
269 writel(DB_VALUE_CMD, &pdev->dba->cmd_db);
270 }
271
272 /*
273 * Ring the doorbell after placing a transfer on the ring.
274 * Returns true if doorbell was set, otherwise false.
275 */
cdnsp_ring_ep_doorbell(struct cdnsp_device * pdev,struct cdnsp_ep * pep,unsigned int stream_id)276 static bool cdnsp_ring_ep_doorbell(struct cdnsp_device *pdev,
277 struct cdnsp_ep *pep,
278 unsigned int stream_id)
279 {
280 __le32 __iomem *reg_addr = &pdev->dba->ep_db;
281 unsigned int ep_state = pep->ep_state;
282 unsigned int db_value;
283
284 /*
285 * Don't ring the doorbell for this endpoint if endpoint is halted or
286 * disabled.
287 */
288 if (ep_state & EP_HALTED || !(ep_state & EP_ENABLED))
289 return false;
290
291 /* For stream capable endpoints driver can ring doorbell only twice. */
292 if (pep->ep_state & EP_HAS_STREAMS) {
293 if (pep->stream_info.drbls_count >= 2)
294 return false;
295
296 pep->stream_info.drbls_count++;
297 }
298
299 pep->ep_state &= ~EP_STOPPED;
300
301 if (pep->idx == 0 && pdev->ep0_stage == CDNSP_DATA_STAGE &&
302 !pdev->ep0_expect_in)
303 db_value = DB_VALUE_EP0_OUT(pep->idx, stream_id);
304 else
305 db_value = DB_VALUE(pep->idx, stream_id);
306
307 trace_cdnsp_tr_drbl(pep, stream_id);
308
309 writel(db_value, reg_addr);
310
311 if (pdev->rtl_revision < RTL_REVISION_NEW_LPM)
312 cdnsp_force_l0_go(pdev);
313
314 /* Doorbell was set. */
315 return true;
316 }
317
318 /*
319 * Get the right ring for the given pep and stream_id.
320 * If the endpoint supports streams, boundary check the USB request's stream ID.
321 * If the endpoint doesn't support streams, return the singular endpoint ring.
322 */
cdnsp_get_transfer_ring(struct cdnsp_device * pdev,struct cdnsp_ep * pep,unsigned int stream_id)323 static struct cdnsp_ring *cdnsp_get_transfer_ring(struct cdnsp_device *pdev,
324 struct cdnsp_ep *pep,
325 unsigned int stream_id)
326 {
327 if (!(pep->ep_state & EP_HAS_STREAMS))
328 return pep->ring;
329
330 if (stream_id == 0 || stream_id >= pep->stream_info.num_streams) {
331 dev_err(pdev->dev, "ERR: %s ring doesn't exist for SID: %d.\n",
332 pep->name, stream_id);
333 return NULL;
334 }
335
336 return pep->stream_info.stream_rings[stream_id];
337 }
338
339 static struct cdnsp_ring *
cdnsp_request_to_transfer_ring(struct cdnsp_device * pdev,struct cdnsp_request * preq)340 cdnsp_request_to_transfer_ring(struct cdnsp_device *pdev,
341 struct cdnsp_request *preq)
342 {
343 return cdnsp_get_transfer_ring(pdev, preq->pep,
344 preq->request.stream_id);
345 }
346
347 /* Ring the doorbell for any rings with pending requests. */
cdnsp_ring_doorbell_for_active_rings(struct cdnsp_device * pdev,struct cdnsp_ep * pep)348 void cdnsp_ring_doorbell_for_active_rings(struct cdnsp_device *pdev,
349 struct cdnsp_ep *pep)
350 {
351 struct cdnsp_stream_info *stream_info;
352 unsigned int stream_id;
353 int ret;
354
355 if (pep->ep_state & EP_DIS_IN_RROGRESS)
356 return;
357
358 /* A ring has pending Request if its TD list is not empty. */
359 if (!(pep->ep_state & EP_HAS_STREAMS) && pep->number) {
360 if (pep->ring && !list_empty(&pep->ring->td_list))
361 cdnsp_ring_ep_doorbell(pdev, pep, 0);
362 return;
363 }
364
365 stream_info = &pep->stream_info;
366
367 for (stream_id = 1; stream_id < stream_info->num_streams; stream_id++) {
368 struct cdnsp_td *td, *td_temp;
369 struct cdnsp_ring *ep_ring;
370
371 if (stream_info->drbls_count >= 2)
372 return;
373
374 ep_ring = cdnsp_get_transfer_ring(pdev, pep, stream_id);
375 if (!ep_ring)
376 continue;
377
378 if (!ep_ring->stream_active || ep_ring->stream_rejected)
379 continue;
380
381 list_for_each_entry_safe(td, td_temp, &ep_ring->td_list,
382 td_list) {
383 if (td->drbl)
384 continue;
385
386 ret = cdnsp_ring_ep_doorbell(pdev, pep, stream_id);
387 if (ret)
388 td->drbl = 1;
389 }
390 }
391 }
392
393 /*
394 * Get the hw dequeue pointer controller stopped on, either directly from the
395 * endpoint context, or if streams are in use from the stream context.
396 * The returned hw_dequeue contains the lowest four bits with cycle state
397 * and possible stream context type.
398 */
cdnsp_get_hw_deq(struct cdnsp_device * pdev,unsigned int ep_index,unsigned int stream_id)399 static u64 cdnsp_get_hw_deq(struct cdnsp_device *pdev,
400 unsigned int ep_index,
401 unsigned int stream_id)
402 {
403 struct cdnsp_stream_ctx *st_ctx;
404 struct cdnsp_ep *pep;
405
406 pep = &pdev->eps[ep_index];
407
408 if (pep->ep_state & EP_HAS_STREAMS) {
409 st_ctx = &pep->stream_info.stream_ctx_array[stream_id];
410 return le64_to_cpu(st_ctx->stream_ring);
411 }
412
413 return le64_to_cpu(pep->out_ctx->deq);
414 }
415
416 /*
417 * Move the controller endpoint ring dequeue pointer past cur_td.
418 * Record the new state of the controller endpoint ring dequeue segment,
419 * dequeue pointer, and new consumer cycle state in state.
420 * Update internal representation of the ring's dequeue pointer.
421 *
422 * We do this in three jumps:
423 * - First we update our new ring state to be the same as when the
424 * controller stopped.
425 * - Then we traverse the ring to find the segment that contains
426 * the last TRB in the TD. We toggle the controller new cycle state
427 * when we pass any link TRBs with the toggle cycle bit set.
428 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
429 * if we've moved it past a link TRB with the toggle cycle bit set.
430 */
cdnsp_find_new_dequeue_state(struct cdnsp_device * pdev,struct cdnsp_ep * pep,unsigned int stream_id,struct cdnsp_td * cur_td,struct cdnsp_dequeue_state * state)431 static void cdnsp_find_new_dequeue_state(struct cdnsp_device *pdev,
432 struct cdnsp_ep *pep,
433 unsigned int stream_id,
434 struct cdnsp_td *cur_td,
435 struct cdnsp_dequeue_state *state)
436 {
437 bool td_last_trb_found = false;
438 struct cdnsp_segment *new_seg;
439 struct cdnsp_ring *ep_ring;
440 union cdnsp_trb *new_deq;
441 bool cycle_found = false;
442 u64 hw_dequeue;
443
444 ep_ring = cdnsp_get_transfer_ring(pdev, pep, stream_id);
445 if (!ep_ring)
446 return;
447
448 /*
449 * Dig out the cycle state saved by the controller during the
450 * stop endpoint command.
451 */
452 hw_dequeue = cdnsp_get_hw_deq(pdev, pep->idx, stream_id);
453 new_seg = ep_ring->deq_seg;
454 new_deq = ep_ring->dequeue;
455 state->new_cycle_state = hw_dequeue & 0x1;
456 state->stream_id = stream_id;
457
458 /*
459 * We want to find the pointer, segment and cycle state of the new trb
460 * (the one after current TD's last_trb). We know the cycle state at
461 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
462 * found.
463 */
464 do {
465 if (!cycle_found && cdnsp_trb_virt_to_dma(new_seg, new_deq)
466 == (dma_addr_t)(hw_dequeue & ~0xf)) {
467 cycle_found = true;
468
469 if (td_last_trb_found)
470 break;
471 }
472
473 if (new_deq == cur_td->last_trb)
474 td_last_trb_found = true;
475
476 if (cycle_found && cdnsp_trb_is_link(new_deq) &&
477 cdnsp_link_trb_toggles_cycle(new_deq))
478 state->new_cycle_state ^= 0x1;
479
480 cdnsp_next_trb(pdev, ep_ring, &new_seg, &new_deq);
481
482 /* Search wrapped around, bail out. */
483 if (new_deq == pep->ring->dequeue) {
484 dev_err(pdev->dev,
485 "Error: Failed finding new dequeue state\n");
486 state->new_deq_seg = NULL;
487 state->new_deq_ptr = NULL;
488 return;
489 }
490
491 } while (!cycle_found || !td_last_trb_found);
492
493 state->new_deq_seg = new_seg;
494 state->new_deq_ptr = new_deq;
495
496 trace_cdnsp_new_deq_state(state);
497 }
498
499 /*
500 * flip_cycle means flip the cycle bit of all but the first and last TRB.
501 * (The last TRB actually points to the ring enqueue pointer, which is not part
502 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
503 */
cdnsp_td_to_noop(struct cdnsp_device * pdev,struct cdnsp_ring * ep_ring,struct cdnsp_td * td,bool flip_cycle)504 static void cdnsp_td_to_noop(struct cdnsp_device *pdev,
505 struct cdnsp_ring *ep_ring,
506 struct cdnsp_td *td,
507 bool flip_cycle)
508 {
509 struct cdnsp_segment *seg = td->start_seg;
510 union cdnsp_trb *trb = td->first_trb;
511
512 while (1) {
513 cdnsp_trb_to_noop(trb, TRB_TR_NOOP);
514
515 /* flip cycle if asked to */
516 if (flip_cycle && trb != td->first_trb && trb != td->last_trb)
517 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE);
518
519 if (trb == td->last_trb)
520 break;
521
522 cdnsp_next_trb(pdev, ep_ring, &seg, &trb);
523 }
524 }
525
526 /*
527 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
528 * at end_trb, which may be in another segment. If the suspect DMA address is a
529 * TRB in this TD, this function returns that TRB's segment. Otherwise it
530 * returns 0.
531 */
cdnsp_trb_in_td(struct cdnsp_device * pdev,struct cdnsp_segment * start_seg,union cdnsp_trb * start_trb,union cdnsp_trb * end_trb,dma_addr_t suspect_dma)532 static struct cdnsp_segment *cdnsp_trb_in_td(struct cdnsp_device *pdev,
533 struct cdnsp_segment *start_seg,
534 union cdnsp_trb *start_trb,
535 union cdnsp_trb *end_trb,
536 dma_addr_t suspect_dma)
537 {
538 struct cdnsp_segment *cur_seg;
539 union cdnsp_trb *temp_trb;
540 dma_addr_t end_seg_dma;
541 dma_addr_t end_trb_dma;
542 dma_addr_t start_dma;
543
544 start_dma = cdnsp_trb_virt_to_dma(start_seg, start_trb);
545 cur_seg = start_seg;
546
547 do {
548 if (start_dma == 0)
549 return NULL;
550
551 temp_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1];
552 /* We may get an event for a Link TRB in the middle of a TD */
553 end_seg_dma = cdnsp_trb_virt_to_dma(cur_seg, temp_trb);
554 /* If the end TRB isn't in this segment, this is set to 0 */
555 end_trb_dma = cdnsp_trb_virt_to_dma(cur_seg, end_trb);
556
557 trace_cdnsp_looking_trb_in_td(suspect_dma, start_dma,
558 end_trb_dma, cur_seg->dma,
559 end_seg_dma);
560
561 if (end_trb_dma > 0) {
562 /*
563 * The end TRB is in this segment, so suspect should
564 * be here
565 */
566 if (start_dma <= end_trb_dma) {
567 if (suspect_dma >= start_dma &&
568 suspect_dma <= end_trb_dma) {
569 return cur_seg;
570 }
571 } else {
572 /*
573 * Case for one segment with a
574 * TD wrapped around to the top
575 */
576 if ((suspect_dma >= start_dma &&
577 suspect_dma <= end_seg_dma) ||
578 (suspect_dma >= cur_seg->dma &&
579 suspect_dma <= end_trb_dma)) {
580 return cur_seg;
581 }
582 }
583
584 return NULL;
585 }
586
587 /* Might still be somewhere in this segment */
588 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
589 return cur_seg;
590
591 cur_seg = cur_seg->next;
592 start_dma = cdnsp_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
593 } while (cur_seg != start_seg);
594
595 return NULL;
596 }
597
cdnsp_unmap_td_bounce_buffer(struct cdnsp_device * pdev,struct cdnsp_ring * ring,struct cdnsp_td * td)598 static void cdnsp_unmap_td_bounce_buffer(struct cdnsp_device *pdev,
599 struct cdnsp_ring *ring,
600 struct cdnsp_td *td)
601 {
602 struct cdnsp_segment *seg = td->bounce_seg;
603 struct cdnsp_request *preq;
604 size_t len;
605
606 if (!seg)
607 return;
608
609 preq = td->preq;
610
611 trace_cdnsp_bounce_unmap(td->preq, seg->bounce_len, seg->bounce_offs,
612 seg->bounce_dma, 0);
613
614 if (!preq->direction) {
615 dma_unmap_single(pdev->dev, seg->bounce_dma,
616 ring->bounce_buf_len, DMA_TO_DEVICE);
617 return;
618 }
619
620 dma_unmap_single(pdev->dev, seg->bounce_dma, ring->bounce_buf_len,
621 DMA_FROM_DEVICE);
622
623 /* For in transfers we need to copy the data from bounce to sg */
624 len = sg_pcopy_from_buffer(preq->request.sg, preq->request.num_sgs,
625 seg->bounce_buf, seg->bounce_len,
626 seg->bounce_offs);
627 if (len != seg->bounce_len)
628 dev_warn(pdev->dev, "WARN Wrong bounce buffer read length: %zu != %d\n",
629 len, seg->bounce_len);
630
631 seg->bounce_len = 0;
632 seg->bounce_offs = 0;
633 }
634
cdnsp_cmd_set_deq(struct cdnsp_device * pdev,struct cdnsp_ep * pep,struct cdnsp_dequeue_state * deq_state)635 static int cdnsp_cmd_set_deq(struct cdnsp_device *pdev,
636 struct cdnsp_ep *pep,
637 struct cdnsp_dequeue_state *deq_state)
638 {
639 struct cdnsp_ring *ep_ring;
640 int ret;
641
642 if (!deq_state->new_deq_ptr || !deq_state->new_deq_seg) {
643 cdnsp_ring_doorbell_for_active_rings(pdev, pep);
644 return 0;
645 }
646
647 cdnsp_queue_new_dequeue_state(pdev, pep, deq_state);
648 cdnsp_ring_cmd_db(pdev);
649 ret = cdnsp_wait_for_cmd_compl(pdev);
650
651 trace_cdnsp_handle_cmd_set_deq(cdnsp_get_slot_ctx(&pdev->out_ctx));
652 trace_cdnsp_handle_cmd_set_deq_ep(pep->out_ctx);
653
654 /*
655 * Update the ring's dequeue segment and dequeue pointer
656 * to reflect the new position.
657 */
658 ep_ring = cdnsp_get_transfer_ring(pdev, pep, deq_state->stream_id);
659
660 if (cdnsp_trb_is_link(ep_ring->dequeue)) {
661 ep_ring->deq_seg = ep_ring->deq_seg->next;
662 ep_ring->dequeue = ep_ring->deq_seg->trbs;
663 }
664
665 while (ep_ring->dequeue != deq_state->new_deq_ptr) {
666 ep_ring->num_trbs_free++;
667 ep_ring->dequeue++;
668
669 if (cdnsp_trb_is_link(ep_ring->dequeue)) {
670 if (ep_ring->dequeue == deq_state->new_deq_ptr)
671 break;
672
673 ep_ring->deq_seg = ep_ring->deq_seg->next;
674 ep_ring->dequeue = ep_ring->deq_seg->trbs;
675 }
676 }
677
678 /*
679 * Probably there was TIMEOUT during handling Set Dequeue Pointer
680 * command. It's critical error and controller will be stopped.
681 */
682 if (ret)
683 return -ESHUTDOWN;
684
685 /* Restart any rings with pending requests */
686 cdnsp_ring_doorbell_for_active_rings(pdev, pep);
687
688 return 0;
689 }
690
cdnsp_remove_request(struct cdnsp_device * pdev,struct cdnsp_request * preq,struct cdnsp_ep * pep)691 int cdnsp_remove_request(struct cdnsp_device *pdev,
692 struct cdnsp_request *preq,
693 struct cdnsp_ep *pep)
694 {
695 struct cdnsp_dequeue_state deq_state;
696 struct cdnsp_td *cur_td = NULL;
697 struct cdnsp_ring *ep_ring;
698 struct cdnsp_segment *seg;
699 int status = -ECONNRESET;
700 int ret = 0;
701 u64 hw_deq;
702
703 memset(&deq_state, 0, sizeof(deq_state));
704
705 trace_cdnsp_remove_request(pep->out_ctx);
706 trace_cdnsp_remove_request_td(preq);
707
708 cur_td = &preq->td;
709 ep_ring = cdnsp_request_to_transfer_ring(pdev, preq);
710
711 /*
712 * If we stopped on the TD we need to cancel, then we have to
713 * move the controller endpoint ring dequeue pointer past
714 * this TD.
715 */
716 hw_deq = cdnsp_get_hw_deq(pdev, pep->idx, preq->request.stream_id);
717 hw_deq &= ~0xf;
718
719 seg = cdnsp_trb_in_td(pdev, cur_td->start_seg, cur_td->first_trb,
720 cur_td->last_trb, hw_deq);
721
722 if (seg && (pep->ep_state & EP_ENABLED) &&
723 !(pep->ep_state & EP_DIS_IN_RROGRESS))
724 cdnsp_find_new_dequeue_state(pdev, pep, preq->request.stream_id,
725 cur_td, &deq_state);
726 else
727 cdnsp_td_to_noop(pdev, ep_ring, cur_td, false);
728
729 /*
730 * The event handler won't see a completion for this TD anymore,
731 * so remove it from the endpoint ring's TD list.
732 */
733 list_del_init(&cur_td->td_list);
734 ep_ring->num_tds--;
735 pep->stream_info.td_count--;
736
737 /*
738 * During disconnecting all endpoint will be disabled so we don't
739 * have to worry about updating dequeue pointer.
740 */
741 if (pdev->cdnsp_state & CDNSP_STATE_DISCONNECT_PENDING ||
742 pep->ep_state & EP_DIS_IN_RROGRESS) {
743 status = -ESHUTDOWN;
744 ret = cdnsp_cmd_set_deq(pdev, pep, &deq_state);
745 }
746
747 cdnsp_unmap_td_bounce_buffer(pdev, ep_ring, cur_td);
748 cdnsp_gadget_giveback(pep, cur_td->preq, status);
749
750 return ret;
751 }
752
cdnsp_update_port_id(struct cdnsp_device * pdev,u32 port_id)753 static int cdnsp_update_port_id(struct cdnsp_device *pdev, u32 port_id)
754 {
755 struct cdnsp_port *port = pdev->active_port;
756 u8 old_port = 0;
757
758 if (port && port->port_num == port_id)
759 return 0;
760
761 if (port)
762 old_port = port->port_num;
763
764 if (port_id == pdev->usb2_port.port_num) {
765 port = &pdev->usb2_port;
766 } else if (port_id == pdev->usb3_port.port_num) {
767 port = &pdev->usb3_port;
768 } else {
769 dev_err(pdev->dev, "Port event with invalid port ID %d\n",
770 port_id);
771 return -EINVAL;
772 }
773
774 if (port_id != old_port) {
775 if (pdev->slot_id)
776 cdnsp_disable_slot(pdev);
777
778 pdev->active_port = port;
779 cdnsp_enable_slot(pdev);
780 }
781
782 if (port_id == pdev->usb2_port.port_num)
783 cdnsp_set_usb2_hardware_lpm(pdev, NULL, 1);
784 else
785 writel(PORT_U1_TIMEOUT(1) | PORT_U2_TIMEOUT(1),
786 &pdev->usb3_port.regs->portpmsc);
787
788 return 0;
789 }
790
cdnsp_handle_port_status(struct cdnsp_device * pdev,union cdnsp_trb * event)791 static void cdnsp_handle_port_status(struct cdnsp_device *pdev,
792 union cdnsp_trb *event)
793 {
794 struct cdnsp_port_regs __iomem *port_regs;
795 u32 portsc, cmd_regs;
796 bool port2 = false;
797 u32 link_state;
798 u32 port_id;
799
800 /* Port status change events always have a successful completion code */
801 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS)
802 dev_err(pdev->dev, "ERR: incorrect PSC event\n");
803
804 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
805
806 if (cdnsp_update_port_id(pdev, port_id))
807 goto cleanup;
808
809 port_regs = pdev->active_port->regs;
810
811 if (port_id == pdev->usb2_port.port_num)
812 port2 = true;
813
814 new_event:
815 portsc = readl(&port_regs->portsc);
816 writel(cdnsp_port_state_to_neutral(portsc) |
817 (portsc & PORT_CHANGE_BITS), &port_regs->portsc);
818
819 trace_cdnsp_handle_port_status(pdev->active_port->port_num, portsc);
820
821 pdev->gadget.speed = cdnsp_port_speed(portsc);
822 link_state = portsc & PORT_PLS_MASK;
823
824 /* Port Link State change detected. */
825 if ((portsc & PORT_PLC)) {
826 if (!(pdev->cdnsp_state & CDNSP_WAKEUP_PENDING) &&
827 link_state == XDEV_RESUME) {
828 cmd_regs = readl(&pdev->op_regs->command);
829 if (!(cmd_regs & CMD_R_S))
830 goto cleanup;
831
832 if (DEV_SUPERSPEED_ANY(portsc)) {
833 cdnsp_set_link_state(pdev, &port_regs->portsc,
834 XDEV_U0);
835
836 cdnsp_resume_gadget(pdev);
837 }
838 }
839
840 if ((pdev->cdnsp_state & CDNSP_WAKEUP_PENDING) &&
841 link_state == XDEV_U0) {
842 pdev->cdnsp_state &= ~CDNSP_WAKEUP_PENDING;
843
844 cdnsp_force_header_wakeup(pdev, 1);
845 cdnsp_ring_cmd_db(pdev);
846 cdnsp_wait_for_cmd_compl(pdev);
847 }
848
849 if (link_state == XDEV_U0 && pdev->link_state == XDEV_U3 &&
850 !DEV_SUPERSPEED_ANY(portsc))
851 cdnsp_resume_gadget(pdev);
852
853 if (link_state == XDEV_U3 && pdev->link_state != XDEV_U3)
854 cdnsp_suspend_gadget(pdev);
855
856 pdev->link_state = link_state;
857 }
858
859 if (portsc & PORT_CSC) {
860 /* Detach device. */
861 if (pdev->gadget.connected && !(portsc & PORT_CONNECT))
862 cdnsp_disconnect_gadget(pdev);
863
864 /* Attach device. */
865 if (portsc & PORT_CONNECT) {
866 if (!port2)
867 cdnsp_irq_reset(pdev);
868
869 usb_gadget_set_state(&pdev->gadget, USB_STATE_ATTACHED);
870 }
871 }
872
873 /* Port reset. */
874 if ((portsc & (PORT_RC | PORT_WRC)) && (portsc & PORT_CONNECT)) {
875 cdnsp_irq_reset(pdev);
876 pdev->u1_allowed = 0;
877 pdev->u2_allowed = 0;
878 pdev->may_wakeup = 0;
879 }
880
881 if (portsc & PORT_CEC)
882 dev_err(pdev->dev, "Port Over Current detected\n");
883
884 if (portsc & PORT_CEC)
885 dev_err(pdev->dev, "Port Configure Error detected\n");
886
887 if (readl(&port_regs->portsc) & PORT_CHANGE_BITS)
888 goto new_event;
889
890 cleanup:
891 cdnsp_inc_deq(pdev, pdev->event_ring);
892 }
893
cdnsp_td_cleanup(struct cdnsp_device * pdev,struct cdnsp_td * td,struct cdnsp_ring * ep_ring,int * status)894 static void cdnsp_td_cleanup(struct cdnsp_device *pdev,
895 struct cdnsp_td *td,
896 struct cdnsp_ring *ep_ring,
897 int *status)
898 {
899 struct cdnsp_request *preq = td->preq;
900
901 /* if a bounce buffer was used to align this td then unmap it */
902 cdnsp_unmap_td_bounce_buffer(pdev, ep_ring, td);
903
904 /*
905 * If the controller said we transferred more data than the buffer
906 * length, Play it safe and say we didn't transfer anything.
907 */
908 if (preq->request.actual > preq->request.length) {
909 preq->request.actual = 0;
910 *status = 0;
911 }
912
913 list_del_init(&td->td_list);
914 ep_ring->num_tds--;
915 preq->pep->stream_info.td_count--;
916
917 cdnsp_gadget_giveback(preq->pep, preq, *status);
918 }
919
cdnsp_finish_td(struct cdnsp_device * pdev,struct cdnsp_td * td,struct cdnsp_transfer_event * event,struct cdnsp_ep * ep,int * status)920 static void cdnsp_finish_td(struct cdnsp_device *pdev,
921 struct cdnsp_td *td,
922 struct cdnsp_transfer_event *event,
923 struct cdnsp_ep *ep,
924 int *status)
925 {
926 struct cdnsp_ring *ep_ring;
927 u32 trb_comp_code;
928
929 ep_ring = cdnsp_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
930 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
931
932 if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
933 trb_comp_code == COMP_STOPPED ||
934 trb_comp_code == COMP_STOPPED_SHORT_PACKET) {
935 /*
936 * The Endpoint Stop Command completion will take care of any
937 * stopped TDs. A stopped TD may be restarted, so don't update
938 * the ring dequeue pointer or take this TD off any lists yet.
939 */
940 return;
941 }
942
943 /* Update ring dequeue pointer */
944 while (ep_ring->dequeue != td->last_trb)
945 cdnsp_inc_deq(pdev, ep_ring);
946
947 cdnsp_inc_deq(pdev, ep_ring);
948
949 cdnsp_td_cleanup(pdev, td, ep_ring, status);
950 }
951
952 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */
cdnsp_sum_trb_lengths(struct cdnsp_device * pdev,struct cdnsp_ring * ring,union cdnsp_trb * stop_trb)953 static int cdnsp_sum_trb_lengths(struct cdnsp_device *pdev,
954 struct cdnsp_ring *ring,
955 union cdnsp_trb *stop_trb)
956 {
957 struct cdnsp_segment *seg = ring->deq_seg;
958 union cdnsp_trb *trb = ring->dequeue;
959 u32 sum;
960
961 for (sum = 0; trb != stop_trb; cdnsp_next_trb(pdev, ring, &seg, &trb)) {
962 if (!cdnsp_trb_is_noop(trb) && !cdnsp_trb_is_link(trb))
963 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2]));
964 }
965 return sum;
966 }
967
cdnsp_giveback_first_trb(struct cdnsp_device * pdev,struct cdnsp_ep * pep,unsigned int stream_id,int start_cycle,struct cdnsp_generic_trb * start_trb)968 static int cdnsp_giveback_first_trb(struct cdnsp_device *pdev,
969 struct cdnsp_ep *pep,
970 unsigned int stream_id,
971 int start_cycle,
972 struct cdnsp_generic_trb *start_trb)
973 {
974 /*
975 * Pass all the TRBs to the hardware at once and make sure this write
976 * isn't reordered.
977 */
978 wmb();
979
980 if (start_cycle)
981 start_trb->field[3] |= cpu_to_le32(start_cycle);
982 else
983 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
984
985 if ((pep->ep_state & EP_HAS_STREAMS) &&
986 !pep->stream_info.first_prime_det) {
987 trace_cdnsp_wait_for_prime(pep, stream_id);
988 return 0;
989 }
990
991 return cdnsp_ring_ep_doorbell(pdev, pep, stream_id);
992 }
993
994 /*
995 * Process control tds, update USB request status and actual_length.
996 */
cdnsp_process_ctrl_td(struct cdnsp_device * pdev,struct cdnsp_td * td,union cdnsp_trb * event_trb,struct cdnsp_transfer_event * event,struct cdnsp_ep * pep,int * status)997 static void cdnsp_process_ctrl_td(struct cdnsp_device *pdev,
998 struct cdnsp_td *td,
999 union cdnsp_trb *event_trb,
1000 struct cdnsp_transfer_event *event,
1001 struct cdnsp_ep *pep,
1002 int *status)
1003 {
1004 struct cdnsp_ring *ep_ring;
1005 u32 remaining;
1006 u32 trb_type;
1007
1008 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event_trb->generic.field[3]));
1009 ep_ring = cdnsp_dma_to_transfer_ring(pep, le64_to_cpu(event->buffer));
1010 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1011
1012 /*
1013 * if on data stage then update the actual_length of the USB
1014 * request and flag it as set, so it won't be overwritten in the event
1015 * for the last TRB.
1016 */
1017 if (trb_type == TRB_DATA) {
1018 td->request_length_set = true;
1019 td->preq->request.actual = td->preq->request.length - remaining;
1020 }
1021
1022 /* at status stage */
1023 if (!td->request_length_set)
1024 td->preq->request.actual = td->preq->request.length;
1025
1026 if (pdev->ep0_stage == CDNSP_DATA_STAGE && pep->number == 0 &&
1027 pdev->three_stage_setup) {
1028 td = list_entry(ep_ring->td_list.next, struct cdnsp_td,
1029 td_list);
1030 pdev->ep0_stage = CDNSP_STATUS_STAGE;
1031
1032 cdnsp_giveback_first_trb(pdev, pep, 0, ep_ring->cycle_state,
1033 &td->last_trb->generic);
1034 return;
1035 }
1036
1037 *status = 0;
1038
1039 cdnsp_finish_td(pdev, td, event, pep, status);
1040 }
1041
1042 /*
1043 * Process isochronous tds, update usb request status and actual_length.
1044 */
cdnsp_process_isoc_td(struct cdnsp_device * pdev,struct cdnsp_td * td,union cdnsp_trb * ep_trb,struct cdnsp_transfer_event * event,struct cdnsp_ep * pep,int status)1045 static void cdnsp_process_isoc_td(struct cdnsp_device *pdev,
1046 struct cdnsp_td *td,
1047 union cdnsp_trb *ep_trb,
1048 struct cdnsp_transfer_event *event,
1049 struct cdnsp_ep *pep,
1050 int status)
1051 {
1052 struct cdnsp_request *preq = td->preq;
1053 u32 remaining, requested, ep_trb_len;
1054 bool sum_trbs_for_length = false;
1055 struct cdnsp_ring *ep_ring;
1056 u32 trb_comp_code;
1057 u32 td_length;
1058
1059 ep_ring = cdnsp_dma_to_transfer_ring(pep, le64_to_cpu(event->buffer));
1060 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1061 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1062 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
1063
1064 requested = preq->request.length;
1065
1066 /* handle completion code */
1067 switch (trb_comp_code) {
1068 case COMP_SUCCESS:
1069 preq->request.status = 0;
1070 break;
1071 case COMP_SHORT_PACKET:
1072 preq->request.status = 0;
1073 sum_trbs_for_length = true;
1074 break;
1075 case COMP_ISOCH_BUFFER_OVERRUN:
1076 case COMP_BABBLE_DETECTED_ERROR:
1077 preq->request.status = -EOVERFLOW;
1078 break;
1079 case COMP_STOPPED:
1080 sum_trbs_for_length = true;
1081 break;
1082 case COMP_STOPPED_SHORT_PACKET:
1083 /* field normally containing residue now contains transferred */
1084 preq->request.status = 0;
1085 requested = remaining;
1086 break;
1087 case COMP_STOPPED_LENGTH_INVALID:
1088 requested = 0;
1089 remaining = 0;
1090 break;
1091 default:
1092 sum_trbs_for_length = true;
1093 preq->request.status = -1;
1094 break;
1095 }
1096
1097 if (sum_trbs_for_length) {
1098 td_length = cdnsp_sum_trb_lengths(pdev, ep_ring, ep_trb);
1099 td_length += ep_trb_len - remaining;
1100 } else {
1101 td_length = requested;
1102 }
1103
1104 td->preq->request.actual += td_length;
1105
1106 cdnsp_finish_td(pdev, td, event, pep, &status);
1107 }
1108
cdnsp_skip_isoc_td(struct cdnsp_device * pdev,struct cdnsp_td * td,struct cdnsp_transfer_event * event,struct cdnsp_ep * pep,int status)1109 static void cdnsp_skip_isoc_td(struct cdnsp_device *pdev,
1110 struct cdnsp_td *td,
1111 struct cdnsp_transfer_event *event,
1112 struct cdnsp_ep *pep,
1113 int status)
1114 {
1115 struct cdnsp_ring *ep_ring;
1116
1117 ep_ring = cdnsp_dma_to_transfer_ring(pep, le64_to_cpu(event->buffer));
1118 td->preq->request.status = -EXDEV;
1119 td->preq->request.actual = 0;
1120
1121 /* Update ring dequeue pointer */
1122 while (ep_ring->dequeue != td->last_trb)
1123 cdnsp_inc_deq(pdev, ep_ring);
1124
1125 cdnsp_inc_deq(pdev, ep_ring);
1126
1127 cdnsp_td_cleanup(pdev, td, ep_ring, &status);
1128 }
1129
1130 /*
1131 * Process bulk and interrupt tds, update usb request status and actual_length.
1132 */
cdnsp_process_bulk_intr_td(struct cdnsp_device * pdev,struct cdnsp_td * td,union cdnsp_trb * ep_trb,struct cdnsp_transfer_event * event,struct cdnsp_ep * ep,int * status)1133 static void cdnsp_process_bulk_intr_td(struct cdnsp_device *pdev,
1134 struct cdnsp_td *td,
1135 union cdnsp_trb *ep_trb,
1136 struct cdnsp_transfer_event *event,
1137 struct cdnsp_ep *ep,
1138 int *status)
1139 {
1140 u32 remaining, requested, ep_trb_len;
1141 struct cdnsp_ring *ep_ring;
1142 u32 trb_comp_code;
1143
1144 ep_ring = cdnsp_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1145 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1146 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1147 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
1148 requested = td->preq->request.length;
1149
1150 switch (trb_comp_code) {
1151 case COMP_SUCCESS:
1152 case COMP_SHORT_PACKET:
1153 *status = 0;
1154 break;
1155 case COMP_STOPPED_SHORT_PACKET:
1156 td->preq->request.actual = remaining;
1157 goto finish_td;
1158 case COMP_STOPPED_LENGTH_INVALID:
1159 /* Stopped on ep trb with invalid length, exclude it. */
1160 ep_trb_len = 0;
1161 remaining = 0;
1162 break;
1163 }
1164
1165 if (ep_trb == td->last_trb)
1166 ep_trb_len = requested - remaining;
1167 else
1168 ep_trb_len = cdnsp_sum_trb_lengths(pdev, ep_ring, ep_trb) +
1169 ep_trb_len - remaining;
1170 td->preq->request.actual = ep_trb_len;
1171
1172 finish_td:
1173 ep->stream_info.drbls_count--;
1174
1175 cdnsp_finish_td(pdev, td, event, ep, status);
1176 }
1177
cdnsp_handle_tx_nrdy(struct cdnsp_device * pdev,struct cdnsp_transfer_event * event)1178 static void cdnsp_handle_tx_nrdy(struct cdnsp_device *pdev,
1179 struct cdnsp_transfer_event *event)
1180 {
1181 struct cdnsp_generic_trb *generic;
1182 struct cdnsp_ring *ep_ring;
1183 struct cdnsp_ep *pep;
1184 int cur_stream;
1185 int ep_index;
1186 int host_sid;
1187 int dev_sid;
1188
1189 generic = (struct cdnsp_generic_trb *)event;
1190 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1191 dev_sid = TRB_TO_DEV_STREAM(le32_to_cpu(generic->field[0]));
1192 host_sid = TRB_TO_HOST_STREAM(le32_to_cpu(generic->field[2]));
1193
1194 pep = &pdev->eps[ep_index];
1195
1196 if (!(pep->ep_state & EP_HAS_STREAMS))
1197 return;
1198
1199 if (host_sid == STREAM_PRIME_ACK) {
1200 pep->stream_info.first_prime_det = 1;
1201 for (cur_stream = 1; cur_stream < pep->stream_info.num_streams;
1202 cur_stream++) {
1203 ep_ring = pep->stream_info.stream_rings[cur_stream];
1204 ep_ring->stream_active = 1;
1205 ep_ring->stream_rejected = 0;
1206 }
1207 }
1208
1209 if (host_sid == STREAM_REJECTED) {
1210 struct cdnsp_td *td, *td_temp;
1211
1212 pep->stream_info.drbls_count--;
1213 ep_ring = pep->stream_info.stream_rings[dev_sid];
1214 ep_ring->stream_active = 0;
1215 ep_ring->stream_rejected = 1;
1216
1217 list_for_each_entry_safe(td, td_temp, &ep_ring->td_list,
1218 td_list) {
1219 td->drbl = 0;
1220 }
1221 }
1222
1223 cdnsp_ring_doorbell_for_active_rings(pdev, pep);
1224 }
1225
1226 /*
1227 * If this function returns an error condition, it means it got a Transfer
1228 * event with a corrupted TRB DMA address or endpoint is disabled.
1229 */
cdnsp_handle_tx_event(struct cdnsp_device * pdev,struct cdnsp_transfer_event * event)1230 static int cdnsp_handle_tx_event(struct cdnsp_device *pdev,
1231 struct cdnsp_transfer_event *event)
1232 {
1233 const struct usb_endpoint_descriptor *desc;
1234 bool handling_skipped_tds = false;
1235 struct cdnsp_segment *ep_seg;
1236 struct cdnsp_ring *ep_ring;
1237 int status = -EINPROGRESS;
1238 union cdnsp_trb *ep_trb;
1239 dma_addr_t ep_trb_dma;
1240 struct cdnsp_ep *pep;
1241 struct cdnsp_td *td;
1242 u32 trb_comp_code;
1243 int invalidate;
1244 int ep_index;
1245
1246 invalidate = le32_to_cpu(event->flags) & TRB_EVENT_INVALIDATE;
1247 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1248 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1249 ep_trb_dma = le64_to_cpu(event->buffer);
1250
1251 pep = &pdev->eps[ep_index];
1252 ep_ring = cdnsp_dma_to_transfer_ring(pep, le64_to_cpu(event->buffer));
1253
1254 /*
1255 * If device is disconnect then all requests will be dequeued
1256 * by upper layers as part of disconnect sequence.
1257 * We don't want handle such event to avoid racing.
1258 */
1259 if (invalidate || !pdev->gadget.connected)
1260 goto cleanup;
1261
1262 if (GET_EP_CTX_STATE(pep->out_ctx) == EP_STATE_DISABLED) {
1263 trace_cdnsp_ep_disabled(pep->out_ctx);
1264 goto err_out;
1265 }
1266
1267 /* Some transfer events don't always point to a trb*/
1268 if (!ep_ring) {
1269 switch (trb_comp_code) {
1270 case COMP_INVALID_STREAM_TYPE_ERROR:
1271 case COMP_INVALID_STREAM_ID_ERROR:
1272 case COMP_RING_UNDERRUN:
1273 case COMP_RING_OVERRUN:
1274 goto cleanup;
1275 default:
1276 dev_err(pdev->dev, "ERROR: %s event for unknown ring\n",
1277 pep->name);
1278 goto err_out;
1279 }
1280 }
1281
1282 /* Look for some error cases that need special treatment. */
1283 switch (trb_comp_code) {
1284 case COMP_BABBLE_DETECTED_ERROR:
1285 status = -EOVERFLOW;
1286 break;
1287 case COMP_RING_UNDERRUN:
1288 case COMP_RING_OVERRUN:
1289 /*
1290 * When the Isoch ring is empty, the controller will generate
1291 * a Ring Overrun Event for IN Isoch endpoint or Ring
1292 * Underrun Event for OUT Isoch endpoint.
1293 */
1294 goto cleanup;
1295 case COMP_MISSED_SERVICE_ERROR:
1296 /*
1297 * When encounter missed service error, one or more isoc tds
1298 * may be missed by controller.
1299 * Set skip flag of the ep_ring; Complete the missed tds as
1300 * short transfer when process the ep_ring next time.
1301 */
1302 pep->skip = true;
1303 break;
1304 }
1305
1306 do {
1307 /*
1308 * This TRB should be in the TD at the head of this ring's TD
1309 * list.
1310 */
1311 if (list_empty(&ep_ring->td_list)) {
1312 /*
1313 * Don't print warnings if it's due to a stopped
1314 * endpoint generating an extra completion event, or
1315 * a event for the last TRB of a short TD we already
1316 * got a short event for.
1317 * The short TD is already removed from the TD list.
1318 */
1319 if (!(trb_comp_code == COMP_STOPPED ||
1320 trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
1321 ep_ring->last_td_was_short))
1322 trace_cdnsp_trb_without_td(ep_ring,
1323 (struct cdnsp_generic_trb *)event);
1324
1325 if (pep->skip) {
1326 pep->skip = false;
1327 trace_cdnsp_ep_list_empty_with_skip(pep, 0);
1328 }
1329
1330 goto cleanup;
1331 }
1332
1333 td = list_entry(ep_ring->td_list.next, struct cdnsp_td,
1334 td_list);
1335
1336 /* Is this a TRB in the currently executing TD? */
1337 ep_seg = cdnsp_trb_in_td(pdev, ep_ring->deq_seg,
1338 ep_ring->dequeue, td->last_trb,
1339 ep_trb_dma);
1340
1341 desc = td->preq->pep->endpoint.desc;
1342
1343 if (ep_seg) {
1344 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma)
1345 / sizeof(*ep_trb)];
1346
1347 trace_cdnsp_handle_transfer(ep_ring,
1348 (struct cdnsp_generic_trb *)ep_trb);
1349
1350 if (pep->skip && usb_endpoint_xfer_isoc(desc) &&
1351 td->last_trb != ep_trb)
1352 return -EAGAIN;
1353 }
1354
1355 /*
1356 * Skip the Force Stopped Event. The event_trb(ep_trb_dma)
1357 * of FSE is not in the current TD pointed by ep_ring->dequeue
1358 * because that the hardware dequeue pointer still at the
1359 * previous TRB of the current TD. The previous TRB maybe a
1360 * Link TD or the last TRB of the previous TD. The command
1361 * completion handle will take care the rest.
1362 */
1363 if (!ep_seg && (trb_comp_code == COMP_STOPPED ||
1364 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) {
1365 pep->skip = false;
1366 goto cleanup;
1367 }
1368
1369 if (!ep_seg) {
1370 if (!pep->skip || !usb_endpoint_xfer_isoc(desc)) {
1371 /* Something is busted, give up! */
1372 dev_err(pdev->dev,
1373 "ERROR Transfer event TRB DMA ptr not "
1374 "part of current TD ep_index %d "
1375 "comp_code %u\n", ep_index,
1376 trb_comp_code);
1377 return -EINVAL;
1378 }
1379
1380 cdnsp_skip_isoc_td(pdev, td, event, pep, status);
1381 goto cleanup;
1382 }
1383
1384 if (trb_comp_code == COMP_SHORT_PACKET)
1385 ep_ring->last_td_was_short = true;
1386 else
1387 ep_ring->last_td_was_short = false;
1388
1389 if (pep->skip) {
1390 pep->skip = false;
1391 cdnsp_skip_isoc_td(pdev, td, event, pep, status);
1392 goto cleanup;
1393 }
1394
1395 if (cdnsp_trb_is_noop(ep_trb))
1396 goto cleanup;
1397
1398 if (usb_endpoint_xfer_control(desc))
1399 cdnsp_process_ctrl_td(pdev, td, ep_trb, event, pep,
1400 &status);
1401 else if (usb_endpoint_xfer_isoc(desc))
1402 cdnsp_process_isoc_td(pdev, td, ep_trb, event, pep,
1403 status);
1404 else
1405 cdnsp_process_bulk_intr_td(pdev, td, ep_trb, event, pep,
1406 &status);
1407 cleanup:
1408 handling_skipped_tds = pep->skip;
1409
1410 /*
1411 * Do not update event ring dequeue pointer if we're in a loop
1412 * processing missed tds.
1413 */
1414 if (!handling_skipped_tds)
1415 cdnsp_inc_deq(pdev, pdev->event_ring);
1416
1417 /*
1418 * If ep->skip is set, it means there are missed tds on the
1419 * endpoint ring need to take care of.
1420 * Process them as short transfer until reach the td pointed by
1421 * the event.
1422 */
1423 } while (handling_skipped_tds);
1424 return 0;
1425
1426 err_out:
1427 dev_err(pdev->dev, "@%016llx %08x %08x %08x %08x\n",
1428 (unsigned long long)
1429 cdnsp_trb_virt_to_dma(pdev->event_ring->deq_seg,
1430 pdev->event_ring->dequeue),
1431 lower_32_bits(le64_to_cpu(event->buffer)),
1432 upper_32_bits(le64_to_cpu(event->buffer)),
1433 le32_to_cpu(event->transfer_len),
1434 le32_to_cpu(event->flags));
1435 return -EINVAL;
1436 }
1437
1438 /*
1439 * This function handles all events on the event ring.
1440 * Returns true for "possibly more events to process" (caller should call
1441 * again), otherwise false if done.
1442 */
cdnsp_handle_event(struct cdnsp_device * pdev)1443 static bool cdnsp_handle_event(struct cdnsp_device *pdev)
1444 {
1445 unsigned int comp_code;
1446 union cdnsp_trb *event;
1447 bool update_ptrs = true;
1448 u32 cycle_bit;
1449 int ret = 0;
1450 u32 flags;
1451
1452 event = pdev->event_ring->dequeue;
1453 flags = le32_to_cpu(event->event_cmd.flags);
1454 cycle_bit = (flags & TRB_CYCLE);
1455
1456 /* Does the controller or driver own the TRB? */
1457 if (cycle_bit != pdev->event_ring->cycle_state)
1458 return false;
1459
1460 trace_cdnsp_handle_event(pdev->event_ring, &event->generic);
1461
1462 /*
1463 * Barrier between reading the TRB_CYCLE (valid) flag above and any
1464 * reads of the event's flags/data below.
1465 */
1466 rmb();
1467
1468 switch (flags & TRB_TYPE_BITMASK) {
1469 case TRB_TYPE(TRB_COMPLETION):
1470 /*
1471 * Command can't be handled in interrupt context so just
1472 * increment command ring dequeue pointer.
1473 */
1474 cdnsp_inc_deq(pdev, pdev->cmd_ring);
1475 break;
1476 case TRB_TYPE(TRB_PORT_STATUS):
1477 cdnsp_handle_port_status(pdev, event);
1478 update_ptrs = false;
1479 break;
1480 case TRB_TYPE(TRB_TRANSFER):
1481 ret = cdnsp_handle_tx_event(pdev, &event->trans_event);
1482 if (ret >= 0)
1483 update_ptrs = false;
1484 break;
1485 case TRB_TYPE(TRB_SETUP):
1486 pdev->ep0_stage = CDNSP_SETUP_STAGE;
1487 pdev->setup_id = TRB_SETUPID_TO_TYPE(flags);
1488 pdev->setup_speed = TRB_SETUP_SPEEDID(flags);
1489 pdev->setup = *((struct usb_ctrlrequest *)
1490 &event->trans_event.buffer);
1491
1492 cdnsp_setup_analyze(pdev);
1493 break;
1494 case TRB_TYPE(TRB_ENDPOINT_NRDY):
1495 cdnsp_handle_tx_nrdy(pdev, &event->trans_event);
1496 break;
1497 case TRB_TYPE(TRB_HC_EVENT): {
1498 comp_code = GET_COMP_CODE(le32_to_cpu(event->generic.field[2]));
1499
1500 switch (comp_code) {
1501 case COMP_EVENT_RING_FULL_ERROR:
1502 dev_err(pdev->dev, "Event Ring Full\n");
1503 break;
1504 default:
1505 dev_err(pdev->dev, "Controller error code 0x%02x\n",
1506 comp_code);
1507 }
1508
1509 break;
1510 }
1511 case TRB_TYPE(TRB_MFINDEX_WRAP):
1512 case TRB_TYPE(TRB_DRB_OVERFLOW):
1513 break;
1514 default:
1515 dev_warn(pdev->dev, "ERROR unknown event type %ld\n",
1516 TRB_FIELD_TO_TYPE(flags));
1517 }
1518
1519 if (update_ptrs)
1520 /* Update SW event ring dequeue pointer. */
1521 cdnsp_inc_deq(pdev, pdev->event_ring);
1522
1523 /*
1524 * Caller will call us again to check if there are more items
1525 * on the event ring.
1526 */
1527 return true;
1528 }
1529
cdnsp_thread_irq_handler(int irq,void * data)1530 irqreturn_t cdnsp_thread_irq_handler(int irq, void *data)
1531 {
1532 struct cdnsp_device *pdev = (struct cdnsp_device *)data;
1533 union cdnsp_trb *event_ring_deq;
1534 unsigned long flags;
1535 int counter = 0;
1536
1537 local_bh_disable();
1538 spin_lock_irqsave(&pdev->lock, flags);
1539
1540 if (pdev->cdnsp_state & (CDNSP_STATE_HALTED | CDNSP_STATE_DYING)) {
1541 /*
1542 * While removing or stopping driver there may still be deferred
1543 * not handled interrupt which should not be treated as error.
1544 * Driver should simply ignore it.
1545 */
1546 if (pdev->gadget_driver)
1547 cdnsp_died(pdev);
1548
1549 spin_unlock_irqrestore(&pdev->lock, flags);
1550 local_bh_enable();
1551 return IRQ_HANDLED;
1552 }
1553
1554 event_ring_deq = pdev->event_ring->dequeue;
1555
1556 while (cdnsp_handle_event(pdev)) {
1557 if (++counter >= TRBS_PER_EV_DEQ_UPDATE) {
1558 cdnsp_update_erst_dequeue(pdev, event_ring_deq, 0);
1559 event_ring_deq = pdev->event_ring->dequeue;
1560 counter = 0;
1561 }
1562 }
1563
1564 cdnsp_update_erst_dequeue(pdev, event_ring_deq, 1);
1565
1566 spin_unlock_irqrestore(&pdev->lock, flags);
1567 local_bh_enable();
1568
1569 return IRQ_HANDLED;
1570 }
1571
cdnsp_irq_handler(int irq,void * priv)1572 irqreturn_t cdnsp_irq_handler(int irq, void *priv)
1573 {
1574 struct cdnsp_device *pdev = (struct cdnsp_device *)priv;
1575 u32 irq_pending;
1576 u32 status;
1577
1578 status = readl(&pdev->op_regs->status);
1579
1580 if (status == ~(u32)0) {
1581 cdnsp_died(pdev);
1582 return IRQ_HANDLED;
1583 }
1584
1585 if (!(status & STS_EINT))
1586 return IRQ_NONE;
1587
1588 writel(status | STS_EINT, &pdev->op_regs->status);
1589 irq_pending = readl(&pdev->ir_set->irq_pending);
1590 irq_pending |= IMAN_IP;
1591 writel(irq_pending, &pdev->ir_set->irq_pending);
1592
1593 if (status & STS_FATAL) {
1594 cdnsp_died(pdev);
1595 return IRQ_HANDLED;
1596 }
1597
1598 return IRQ_WAKE_THREAD;
1599 }
1600
1601 /*
1602 * Generic function for queuing a TRB on a ring.
1603 * The caller must have checked to make sure there's room on the ring.
1604 *
1605 * @more_trbs_coming: Will you enqueue more TRBs before setting doorbell?
1606 */
cdnsp_queue_trb(struct cdnsp_device * pdev,struct cdnsp_ring * ring,bool more_trbs_coming,u32 field1,u32 field2,u32 field3,u32 field4)1607 static void cdnsp_queue_trb(struct cdnsp_device *pdev, struct cdnsp_ring *ring,
1608 bool more_trbs_coming, u32 field1, u32 field2,
1609 u32 field3, u32 field4)
1610 {
1611 struct cdnsp_generic_trb *trb;
1612
1613 trb = &ring->enqueue->generic;
1614
1615 trb->field[0] = cpu_to_le32(field1);
1616 trb->field[1] = cpu_to_le32(field2);
1617 trb->field[2] = cpu_to_le32(field3);
1618 trb->field[3] = cpu_to_le32(field4);
1619
1620 trace_cdnsp_queue_trb(ring, trb);
1621 cdnsp_inc_enq(pdev, ring, more_trbs_coming);
1622 }
1623
1624 /*
1625 * Does various checks on the endpoint ring, and makes it ready to
1626 * queue num_trbs.
1627 */
cdnsp_prepare_ring(struct cdnsp_device * pdev,struct cdnsp_ring * ep_ring,u32 ep_state,unsigned int num_trbs,gfp_t mem_flags)1628 static int cdnsp_prepare_ring(struct cdnsp_device *pdev,
1629 struct cdnsp_ring *ep_ring,
1630 u32 ep_state, unsigned
1631 int num_trbs,
1632 gfp_t mem_flags)
1633 {
1634 unsigned int num_trbs_needed;
1635
1636 /* Make sure the endpoint has been added to controller schedule. */
1637 switch (ep_state) {
1638 case EP_STATE_STOPPED:
1639 case EP_STATE_RUNNING:
1640 case EP_STATE_HALTED:
1641 break;
1642 default:
1643 dev_err(pdev->dev, "ERROR: incorrect endpoint state\n");
1644 return -EINVAL;
1645 }
1646
1647 while (1) {
1648 if (cdnsp_room_on_ring(pdev, ep_ring, num_trbs))
1649 break;
1650
1651 trace_cdnsp_no_room_on_ring("try ring expansion");
1652
1653 num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
1654 if (cdnsp_ring_expansion(pdev, ep_ring, num_trbs_needed,
1655 mem_flags)) {
1656 dev_err(pdev->dev, "Ring expansion failed\n");
1657 return -ENOMEM;
1658 }
1659 }
1660
1661 while (cdnsp_trb_is_link(ep_ring->enqueue)) {
1662 ep_ring->enqueue->link.control |= cpu_to_le32(TRB_CHAIN);
1663 /* The cycle bit must be set as the last operation. */
1664 wmb();
1665 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE);
1666
1667 /* Toggle the cycle bit after the last ring segment. */
1668 if (cdnsp_link_trb_toggles_cycle(ep_ring->enqueue))
1669 ep_ring->cycle_state ^= 1;
1670 ep_ring->enq_seg = ep_ring->enq_seg->next;
1671 ep_ring->enqueue = ep_ring->enq_seg->trbs;
1672 }
1673 return 0;
1674 }
1675
cdnsp_prepare_transfer(struct cdnsp_device * pdev,struct cdnsp_request * preq,unsigned int num_trbs)1676 static int cdnsp_prepare_transfer(struct cdnsp_device *pdev,
1677 struct cdnsp_request *preq,
1678 unsigned int num_trbs)
1679 {
1680 struct cdnsp_ring *ep_ring;
1681 int ret;
1682
1683 ep_ring = cdnsp_get_transfer_ring(pdev, preq->pep,
1684 preq->request.stream_id);
1685 if (!ep_ring)
1686 return -EINVAL;
1687
1688 ret = cdnsp_prepare_ring(pdev, ep_ring,
1689 GET_EP_CTX_STATE(preq->pep->out_ctx),
1690 num_trbs, GFP_ATOMIC);
1691 if (ret)
1692 return ret;
1693
1694 INIT_LIST_HEAD(&preq->td.td_list);
1695 preq->td.preq = preq;
1696
1697 /* Add this TD to the tail of the endpoint ring's TD list. */
1698 list_add_tail(&preq->td.td_list, &ep_ring->td_list);
1699 ep_ring->num_tds++;
1700 preq->pep->stream_info.td_count++;
1701
1702 preq->td.start_seg = ep_ring->enq_seg;
1703 preq->td.first_trb = ep_ring->enqueue;
1704
1705 return 0;
1706 }
1707
cdnsp_count_trbs(u64 addr,u64 len)1708 static unsigned int cdnsp_count_trbs(u64 addr, u64 len)
1709 {
1710 unsigned int num_trbs;
1711
1712 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
1713 TRB_MAX_BUFF_SIZE);
1714 if (num_trbs == 0)
1715 num_trbs++;
1716
1717 return num_trbs;
1718 }
1719
count_trbs_needed(struct cdnsp_request * preq)1720 static unsigned int count_trbs_needed(struct cdnsp_request *preq)
1721 {
1722 return cdnsp_count_trbs(preq->request.dma, preq->request.length);
1723 }
1724
count_sg_trbs_needed(struct cdnsp_request * preq)1725 static unsigned int count_sg_trbs_needed(struct cdnsp_request *preq)
1726 {
1727 unsigned int i, len, full_len, num_trbs = 0;
1728 struct scatterlist *sg;
1729
1730 full_len = preq->request.length;
1731
1732 for_each_sg(preq->request.sg, sg, preq->request.num_sgs, i) {
1733 len = sg_dma_len(sg);
1734 num_trbs += cdnsp_count_trbs(sg_dma_address(sg), len);
1735 len = min(len, full_len);
1736 full_len -= len;
1737 if (full_len == 0)
1738 break;
1739 }
1740
1741 return num_trbs;
1742 }
1743
cdnsp_check_trb_math(struct cdnsp_request * preq,int running_total)1744 static void cdnsp_check_trb_math(struct cdnsp_request *preq, int running_total)
1745 {
1746 if (running_total != preq->request.length)
1747 dev_err(preq->pep->pdev->dev,
1748 "%s - Miscalculated tx length, "
1749 "queued %#x, asked for %#x (%d)\n",
1750 preq->pep->name, running_total,
1751 preq->request.length, preq->request.actual);
1752 }
1753
1754 /*
1755 * TD size is the number of max packet sized packets remaining in the TD
1756 * (*not* including this TRB).
1757 *
1758 * Total TD packet count = total_packet_count =
1759 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
1760 *
1761 * Packets transferred up to and including this TRB = packets_transferred =
1762 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
1763 *
1764 * TD size = total_packet_count - packets_transferred
1765 *
1766 * It must fit in bits 21:17, so it can't be bigger than 31.
1767 * This is taken care of in the TRB_TD_SIZE() macro
1768 *
1769 * The last TRB in a TD must have the TD size set to zero.
1770 */
cdnsp_td_remainder(struct cdnsp_device * pdev,int transferred,int trb_buff_len,unsigned int td_total_len,struct cdnsp_request * preq,bool more_trbs_coming,bool zlp)1771 static u32 cdnsp_td_remainder(struct cdnsp_device *pdev,
1772 int transferred,
1773 int trb_buff_len,
1774 unsigned int td_total_len,
1775 struct cdnsp_request *preq,
1776 bool more_trbs_coming,
1777 bool zlp)
1778 {
1779 u32 maxp, total_packet_count;
1780
1781 /* Before ZLP driver needs set TD_SIZE = 1. */
1782 if (zlp)
1783 return 1;
1784
1785 /* One TRB with a zero-length data packet. */
1786 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) ||
1787 trb_buff_len == td_total_len)
1788 return 0;
1789
1790 maxp = usb_endpoint_maxp(preq->pep->endpoint.desc);
1791 total_packet_count = DIV_ROUND_UP(td_total_len, maxp);
1792
1793 /* Queuing functions don't count the current TRB into transferred. */
1794 return (total_packet_count - ((transferred + trb_buff_len) / maxp));
1795 }
1796
cdnsp_align_td(struct cdnsp_device * pdev,struct cdnsp_request * preq,u32 enqd_len,u32 * trb_buff_len,struct cdnsp_segment * seg)1797 static int cdnsp_align_td(struct cdnsp_device *pdev,
1798 struct cdnsp_request *preq, u32 enqd_len,
1799 u32 *trb_buff_len, struct cdnsp_segment *seg)
1800 {
1801 struct device *dev = pdev->dev;
1802 unsigned int unalign;
1803 unsigned int max_pkt;
1804 u32 new_buff_len;
1805
1806 max_pkt = usb_endpoint_maxp(preq->pep->endpoint.desc);
1807 unalign = (enqd_len + *trb_buff_len) % max_pkt;
1808
1809 /* We got lucky, last normal TRB data on segment is packet aligned. */
1810 if (unalign == 0)
1811 return 0;
1812
1813 /* Is the last nornal TRB alignable by splitting it. */
1814 if (*trb_buff_len > unalign) {
1815 *trb_buff_len -= unalign;
1816 trace_cdnsp_bounce_align_td_split(preq, *trb_buff_len,
1817 enqd_len, 0, unalign);
1818 return 0;
1819 }
1820
1821 /*
1822 * We want enqd_len + trb_buff_len to sum up to a number aligned to
1823 * number which is divisible by the endpoint's wMaxPacketSize. IOW:
1824 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0.
1825 */
1826 new_buff_len = max_pkt - (enqd_len % max_pkt);
1827
1828 if (new_buff_len > (preq->request.length - enqd_len))
1829 new_buff_len = (preq->request.length - enqd_len);
1830
1831 /* Create a max max_pkt sized bounce buffer pointed to by last trb. */
1832 if (preq->direction) {
1833 sg_pcopy_to_buffer(preq->request.sg,
1834 preq->request.num_mapped_sgs,
1835 seg->bounce_buf, new_buff_len, enqd_len);
1836 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
1837 max_pkt, DMA_TO_DEVICE);
1838 } else {
1839 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
1840 max_pkt, DMA_FROM_DEVICE);
1841 }
1842
1843 if (dma_mapping_error(dev, seg->bounce_dma)) {
1844 /* Try without aligning.*/
1845 dev_warn(pdev->dev,
1846 "Failed mapping bounce buffer, not aligning\n");
1847 return 0;
1848 }
1849
1850 *trb_buff_len = new_buff_len;
1851 seg->bounce_len = new_buff_len;
1852 seg->bounce_offs = enqd_len;
1853
1854 trace_cdnsp_bounce_map(preq, new_buff_len, enqd_len, seg->bounce_dma,
1855 unalign);
1856
1857 /*
1858 * Bounce buffer successful aligned and seg->bounce_dma will be used
1859 * in transfer TRB as new transfer buffer address.
1860 */
1861 return 1;
1862 }
1863
cdnsp_queue_bulk_tx(struct cdnsp_device * pdev,struct cdnsp_request * preq)1864 int cdnsp_queue_bulk_tx(struct cdnsp_device *pdev, struct cdnsp_request *preq)
1865 {
1866 unsigned int enqd_len, block_len, trb_buff_len, full_len;
1867 unsigned int start_cycle, num_sgs = 0;
1868 struct cdnsp_generic_trb *start_trb;
1869 u32 field, length_field, remainder;
1870 struct scatterlist *sg = NULL;
1871 bool more_trbs_coming = true;
1872 bool need_zero_pkt = false;
1873 bool zero_len_trb = false;
1874 struct cdnsp_ring *ring;
1875 bool first_trb = true;
1876 unsigned int num_trbs;
1877 struct cdnsp_ep *pep;
1878 u64 addr, send_addr;
1879 int sent_len, ret;
1880
1881 ring = cdnsp_request_to_transfer_ring(pdev, preq);
1882 if (!ring)
1883 return -EINVAL;
1884
1885 full_len = preq->request.length;
1886
1887 if (preq->request.num_sgs) {
1888 num_sgs = preq->request.num_sgs;
1889 sg = preq->request.sg;
1890 addr = (u64)sg_dma_address(sg);
1891 block_len = sg_dma_len(sg);
1892 num_trbs = count_sg_trbs_needed(preq);
1893 } else {
1894 num_trbs = count_trbs_needed(preq);
1895 addr = (u64)preq->request.dma;
1896 block_len = full_len;
1897 }
1898
1899 pep = preq->pep;
1900
1901 /* Deal with request.zero - need one more td/trb. */
1902 if (preq->request.zero && preq->request.length &&
1903 IS_ALIGNED(full_len, usb_endpoint_maxp(pep->endpoint.desc))) {
1904 need_zero_pkt = true;
1905 num_trbs++;
1906 }
1907
1908 ret = cdnsp_prepare_transfer(pdev, preq, num_trbs);
1909 if (ret)
1910 return ret;
1911
1912 /*
1913 * workaround 1: STOP EP command on LINK TRB with TC bit set to 1
1914 * causes that internal cycle bit can have incorrect state after
1915 * command complete. In consequence empty transfer ring can be
1916 * incorrectly detected when EP is resumed.
1917 * NOP TRB before LINK TRB avoid such scenario. STOP EP command is
1918 * then on NOP TRB and internal cycle bit is not changed and have
1919 * correct value.
1920 */
1921 if (pep->wa1_nop_trb) {
1922 field = le32_to_cpu(pep->wa1_nop_trb->trans_event.flags);
1923 field ^= TRB_CYCLE;
1924
1925 pep->wa1_nop_trb->trans_event.flags = cpu_to_le32(field);
1926 pep->wa1_nop_trb = NULL;
1927 }
1928
1929 /*
1930 * Don't give the first TRB to the hardware (by toggling the cycle bit)
1931 * until we've finished creating all the other TRBs. The ring's cycle
1932 * state may change as we enqueue the other TRBs, so save it too.
1933 */
1934 start_trb = &ring->enqueue->generic;
1935 start_cycle = ring->cycle_state;
1936 send_addr = addr;
1937
1938 /* Queue the TRBs, even if they are zero-length */
1939 for (enqd_len = 0; zero_len_trb || first_trb || enqd_len < full_len;
1940 enqd_len += trb_buff_len) {
1941 field = TRB_TYPE(TRB_NORMAL);
1942
1943 /* TRB buffer should not cross 64KB boundaries */
1944 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
1945 trb_buff_len = min(trb_buff_len, block_len);
1946 if (enqd_len + trb_buff_len > full_len)
1947 trb_buff_len = full_len - enqd_len;
1948
1949 /* Don't change the cycle bit of the first TRB until later */
1950 if (first_trb) {
1951 first_trb = false;
1952 if (start_cycle == 0)
1953 field |= TRB_CYCLE;
1954 } else {
1955 field |= ring->cycle_state;
1956 }
1957
1958 /*
1959 * Chain all the TRBs together; clear the chain bit in the last
1960 * TRB to indicate it's the last TRB in the chain.
1961 */
1962 if (enqd_len + trb_buff_len < full_len || need_zero_pkt) {
1963 field |= TRB_CHAIN;
1964 if (cdnsp_trb_is_link(ring->enqueue + 1)) {
1965 if (cdnsp_align_td(pdev, preq, enqd_len,
1966 &trb_buff_len,
1967 ring->enq_seg)) {
1968 send_addr = ring->enq_seg->bounce_dma;
1969 /* Assuming TD won't span 2 segs */
1970 preq->td.bounce_seg = ring->enq_seg;
1971 }
1972 }
1973 }
1974
1975 if (enqd_len + trb_buff_len >= full_len) {
1976 if (need_zero_pkt && !zero_len_trb) {
1977 zero_len_trb = true;
1978 } else {
1979 zero_len_trb = false;
1980 field &= ~TRB_CHAIN;
1981 field |= TRB_IOC;
1982 more_trbs_coming = false;
1983 need_zero_pkt = false;
1984 preq->td.last_trb = ring->enqueue;
1985 }
1986 }
1987
1988 /* Only set interrupt on short packet for OUT endpoints. */
1989 if (!preq->direction)
1990 field |= TRB_ISP;
1991
1992 /* Set the TRB length, TD size, and interrupter fields. */
1993 remainder = cdnsp_td_remainder(pdev, enqd_len, trb_buff_len,
1994 full_len, preq,
1995 more_trbs_coming,
1996 zero_len_trb);
1997
1998 length_field = TRB_LEN(trb_buff_len) | TRB_TD_SIZE(remainder) |
1999 TRB_INTR_TARGET(0);
2000
2001 cdnsp_queue_trb(pdev, ring, more_trbs_coming,
2002 lower_32_bits(send_addr),
2003 upper_32_bits(send_addr),
2004 length_field,
2005 field);
2006
2007 addr += trb_buff_len;
2008 sent_len = trb_buff_len;
2009 while (sg && sent_len >= block_len) {
2010 /* New sg entry */
2011 --num_sgs;
2012 sent_len -= block_len;
2013 if (num_sgs != 0) {
2014 sg = sg_next(sg);
2015 block_len = sg_dma_len(sg);
2016 addr = (u64)sg_dma_address(sg);
2017 addr += sent_len;
2018 }
2019 }
2020 block_len -= sent_len;
2021 send_addr = addr;
2022 }
2023
2024 if (cdnsp_trb_is_link(ring->enqueue + 1)) {
2025 field = TRB_TYPE(TRB_TR_NOOP) | TRB_IOC;
2026 if (!ring->cycle_state)
2027 field |= TRB_CYCLE;
2028
2029 pep->wa1_nop_trb = ring->enqueue;
2030
2031 cdnsp_queue_trb(pdev, ring, 0, 0x0, 0x0,
2032 TRB_INTR_TARGET(0), field);
2033 }
2034
2035 cdnsp_check_trb_math(preq, enqd_len);
2036 ret = cdnsp_giveback_first_trb(pdev, pep, preq->request.stream_id,
2037 start_cycle, start_trb);
2038
2039 if (ret)
2040 preq->td.drbl = 1;
2041
2042 return 0;
2043 }
2044
cdnsp_queue_ctrl_tx(struct cdnsp_device * pdev,struct cdnsp_request * preq)2045 int cdnsp_queue_ctrl_tx(struct cdnsp_device *pdev, struct cdnsp_request *preq)
2046 {
2047 u32 field, length_field, zlp = 0;
2048 struct cdnsp_ep *pep = preq->pep;
2049 struct cdnsp_ring *ep_ring;
2050 int num_trbs;
2051 u32 maxp;
2052 int ret;
2053
2054 ep_ring = cdnsp_request_to_transfer_ring(pdev, preq);
2055 if (!ep_ring)
2056 return -EINVAL;
2057
2058 /* 1 TRB for data, 1 for status */
2059 num_trbs = (pdev->three_stage_setup) ? 2 : 1;
2060
2061 maxp = usb_endpoint_maxp(pep->endpoint.desc);
2062
2063 if (preq->request.zero && preq->request.length &&
2064 (preq->request.length % maxp == 0)) {
2065 num_trbs++;
2066 zlp = 1;
2067 }
2068
2069 ret = cdnsp_prepare_transfer(pdev, preq, num_trbs);
2070 if (ret)
2071 return ret;
2072
2073 /* If there's data, queue data TRBs */
2074 if (preq->request.length > 0) {
2075 field = TRB_TYPE(TRB_DATA);
2076
2077 if (zlp)
2078 field |= TRB_CHAIN;
2079 else
2080 field |= TRB_IOC | (pdev->ep0_expect_in ? 0 : TRB_ISP);
2081
2082 if (pdev->ep0_expect_in)
2083 field |= TRB_DIR_IN;
2084
2085 length_field = TRB_LEN(preq->request.length) |
2086 TRB_TD_SIZE(zlp) | TRB_INTR_TARGET(0);
2087
2088 cdnsp_queue_trb(pdev, ep_ring, true,
2089 lower_32_bits(preq->request.dma),
2090 upper_32_bits(preq->request.dma), length_field,
2091 field | ep_ring->cycle_state |
2092 TRB_SETUPID(pdev->setup_id) |
2093 pdev->setup_speed);
2094
2095 if (zlp) {
2096 field = TRB_TYPE(TRB_NORMAL) | TRB_IOC;
2097
2098 if (!pdev->ep0_expect_in)
2099 field = TRB_ISP;
2100
2101 cdnsp_queue_trb(pdev, ep_ring, true,
2102 lower_32_bits(preq->request.dma),
2103 upper_32_bits(preq->request.dma), 0,
2104 field | ep_ring->cycle_state |
2105 TRB_SETUPID(pdev->setup_id) |
2106 pdev->setup_speed);
2107 }
2108
2109 pdev->ep0_stage = CDNSP_DATA_STAGE;
2110 }
2111
2112 /* Save the DMA address of the last TRB in the TD. */
2113 preq->td.last_trb = ep_ring->enqueue;
2114
2115 /* Queue status TRB. */
2116 if (preq->request.length == 0)
2117 field = ep_ring->cycle_state;
2118 else
2119 field = (ep_ring->cycle_state ^ 1);
2120
2121 if (preq->request.length > 0 && pdev->ep0_expect_in)
2122 field |= TRB_DIR_IN;
2123
2124 if (pep->ep_state & EP0_HALTED_STATUS) {
2125 pep->ep_state &= ~EP0_HALTED_STATUS;
2126 field |= TRB_SETUPSTAT(TRB_SETUPSTAT_STALL);
2127 } else {
2128 field |= TRB_SETUPSTAT(TRB_SETUPSTAT_ACK);
2129 }
2130
2131 cdnsp_queue_trb(pdev, ep_ring, false, 0, 0, TRB_INTR_TARGET(0),
2132 field | TRB_IOC | TRB_SETUPID(pdev->setup_id) |
2133 TRB_TYPE(TRB_STATUS) | pdev->setup_speed);
2134
2135 cdnsp_ring_ep_doorbell(pdev, pep, preq->request.stream_id);
2136
2137 return 0;
2138 }
2139
cdnsp_cmd_stop_ep(struct cdnsp_device * pdev,struct cdnsp_ep * pep)2140 int cdnsp_cmd_stop_ep(struct cdnsp_device *pdev, struct cdnsp_ep *pep)
2141 {
2142 u32 ep_state = GET_EP_CTX_STATE(pep->out_ctx);
2143 int ret = 0;
2144
2145 if (ep_state == EP_STATE_STOPPED || ep_state == EP_STATE_DISABLED ||
2146 ep_state == EP_STATE_HALTED) {
2147 trace_cdnsp_ep_stopped_or_disabled(pep->out_ctx);
2148 goto ep_stopped;
2149 }
2150
2151 cdnsp_queue_stop_endpoint(pdev, pep->idx);
2152 cdnsp_ring_cmd_db(pdev);
2153 ret = cdnsp_wait_for_cmd_compl(pdev);
2154
2155 trace_cdnsp_handle_cmd_stop_ep(pep->out_ctx);
2156
2157 ep_stopped:
2158 pep->ep_state |= EP_STOPPED;
2159 return ret;
2160 }
2161
2162 /*
2163 * The transfer burst count field of the isochronous TRB defines the number of
2164 * bursts that are required to move all packets in this TD. Only SuperSpeed
2165 * devices can burst up to bMaxBurst number of packets per service interval.
2166 * This field is zero based, meaning a value of zero in the field means one
2167 * burst. Basically, for everything but SuperSpeed devices, this field will be
2168 * zero.
2169 */
cdnsp_get_burst_count(struct cdnsp_device * pdev,struct cdnsp_request * preq,unsigned int total_packet_count)2170 static unsigned int cdnsp_get_burst_count(struct cdnsp_device *pdev,
2171 struct cdnsp_request *preq,
2172 unsigned int total_packet_count)
2173 {
2174 unsigned int max_burst;
2175
2176 if (pdev->gadget.speed < USB_SPEED_SUPER)
2177 return 0;
2178
2179 max_burst = preq->pep->endpoint.comp_desc->bMaxBurst;
2180 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
2181 }
2182
2183 /*
2184 * Returns the number of packets in the last "burst" of packets. This field is
2185 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
2186 * the last burst packet count is equal to the total number of packets in the
2187 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
2188 * must contain (bMaxBurst + 1) number of packets, but the last burst can
2189 * contain 1 to (bMaxBurst + 1) packets.
2190 */
2191 static unsigned int
cdnsp_get_last_burst_packet_count(struct cdnsp_device * pdev,struct cdnsp_request * preq,unsigned int total_packet_count)2192 cdnsp_get_last_burst_packet_count(struct cdnsp_device *pdev,
2193 struct cdnsp_request *preq,
2194 unsigned int total_packet_count)
2195 {
2196 unsigned int max_burst;
2197 unsigned int residue;
2198
2199 if (pdev->gadget.speed >= USB_SPEED_SUPER) {
2200 /* bMaxBurst is zero based: 0 means 1 packet per burst. */
2201 max_burst = preq->pep->endpoint.comp_desc->bMaxBurst;
2202 residue = total_packet_count % (max_burst + 1);
2203
2204 /*
2205 * If residue is zero, the last burst contains (max_burst + 1)
2206 * number of packets, but the TLBPC field is zero-based.
2207 */
2208 if (residue == 0)
2209 return max_burst;
2210
2211 return residue - 1;
2212 }
2213 if (total_packet_count == 0)
2214 return 0;
2215
2216 return total_packet_count - 1;
2217 }
2218
2219 /* Queue function isoc transfer */
cdnsp_queue_isoc_tx(struct cdnsp_device * pdev,struct cdnsp_request * preq)2220 int cdnsp_queue_isoc_tx(struct cdnsp_device *pdev,
2221 struct cdnsp_request *preq)
2222 {
2223 unsigned int trb_buff_len, td_len, td_remain_len, block_len;
2224 unsigned int burst_count, last_burst_pkt;
2225 unsigned int total_pkt_count, max_pkt;
2226 struct cdnsp_generic_trb *start_trb;
2227 struct scatterlist *sg = NULL;
2228 bool more_trbs_coming = true;
2229 struct cdnsp_ring *ep_ring;
2230 unsigned int num_sgs = 0;
2231 int running_total = 0;
2232 u32 field, length_field;
2233 u64 addr, send_addr;
2234 int start_cycle;
2235 int trbs_per_td;
2236 int i, sent_len, ret;
2237
2238 ep_ring = preq->pep->ring;
2239
2240 td_len = preq->request.length;
2241
2242 if (preq->request.num_sgs) {
2243 num_sgs = preq->request.num_sgs;
2244 sg = preq->request.sg;
2245 addr = (u64)sg_dma_address(sg);
2246 block_len = sg_dma_len(sg);
2247 trbs_per_td = count_sg_trbs_needed(preq);
2248 } else {
2249 addr = (u64)preq->request.dma;
2250 block_len = td_len;
2251 trbs_per_td = count_trbs_needed(preq);
2252 }
2253
2254 ret = cdnsp_prepare_transfer(pdev, preq, trbs_per_td);
2255 if (ret)
2256 return ret;
2257
2258 start_trb = &ep_ring->enqueue->generic;
2259 start_cycle = ep_ring->cycle_state;
2260 td_remain_len = td_len;
2261 send_addr = addr;
2262
2263 max_pkt = usb_endpoint_maxp(preq->pep->endpoint.desc);
2264 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt);
2265
2266 /* A zero-length transfer still involves at least one packet. */
2267 if (total_pkt_count == 0)
2268 total_pkt_count++;
2269
2270 burst_count = cdnsp_get_burst_count(pdev, preq, total_pkt_count);
2271 last_burst_pkt = cdnsp_get_last_burst_packet_count(pdev, preq,
2272 total_pkt_count);
2273
2274 /*
2275 * Set isoc specific data for the first TRB in a TD.
2276 * Prevent HW from getting the TRBs by keeping the cycle state
2277 * inverted in the first TDs isoc TRB.
2278 */
2279 field = TRB_TYPE(TRB_ISOC) | TRB_TLBPC(last_burst_pkt) |
2280 TRB_SIA | TRB_TBC(burst_count);
2281
2282 if (!start_cycle)
2283 field |= TRB_CYCLE;
2284
2285 /* Fill the rest of the TRB fields, and remaining normal TRBs. */
2286 for (i = 0; i < trbs_per_td; i++) {
2287 u32 remainder;
2288
2289 /* Calculate TRB length. */
2290 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
2291 trb_buff_len = min(trb_buff_len, block_len);
2292 if (trb_buff_len > td_remain_len)
2293 trb_buff_len = td_remain_len;
2294
2295 /* Set the TRB length, TD size, & interrupter fields. */
2296 remainder = cdnsp_td_remainder(pdev, running_total,
2297 trb_buff_len, td_len, preq,
2298 more_trbs_coming, 0);
2299
2300 length_field = TRB_LEN(trb_buff_len) | TRB_TD_SIZE(remainder) |
2301 TRB_INTR_TARGET(0);
2302
2303 /* Only first TRB is isoc, overwrite otherwise. */
2304 if (i) {
2305 field = TRB_TYPE(TRB_NORMAL) | ep_ring->cycle_state;
2306 length_field |= TRB_TD_SIZE(remainder);
2307 } else {
2308 length_field |= TRB_TD_SIZE_TBC(burst_count);
2309 }
2310
2311 /* Only set interrupt on short packet for OUT EPs. */
2312 if (usb_endpoint_dir_out(preq->pep->endpoint.desc))
2313 field |= TRB_ISP;
2314
2315 /* Set the chain bit for all except the last TRB. */
2316 if (i < trbs_per_td - 1) {
2317 more_trbs_coming = true;
2318 field |= TRB_CHAIN;
2319 } else {
2320 more_trbs_coming = false;
2321 preq->td.last_trb = ep_ring->enqueue;
2322 field |= TRB_IOC;
2323 }
2324
2325 cdnsp_queue_trb(pdev, ep_ring, more_trbs_coming,
2326 lower_32_bits(send_addr), upper_32_bits(send_addr),
2327 length_field, field);
2328
2329 running_total += trb_buff_len;
2330 addr += trb_buff_len;
2331 td_remain_len -= trb_buff_len;
2332
2333 sent_len = trb_buff_len;
2334 while (sg && sent_len >= block_len) {
2335 /* New sg entry */
2336 --num_sgs;
2337 sent_len -= block_len;
2338 if (num_sgs != 0) {
2339 sg = sg_next(sg);
2340 block_len = sg_dma_len(sg);
2341 addr = (u64)sg_dma_address(sg);
2342 addr += sent_len;
2343 }
2344 }
2345 block_len -= sent_len;
2346 send_addr = addr;
2347 }
2348
2349 /* Check TD length */
2350 if (running_total != td_len) {
2351 dev_err(pdev->dev, "ISOC TD length unmatch\n");
2352 ret = -EINVAL;
2353 goto cleanup;
2354 }
2355
2356 cdnsp_giveback_first_trb(pdev, preq->pep, preq->request.stream_id,
2357 start_cycle, start_trb);
2358
2359 return 0;
2360
2361 cleanup:
2362 /* Clean up a partially enqueued isoc transfer. */
2363 list_del_init(&preq->td.td_list);
2364 ep_ring->num_tds--;
2365
2366 /*
2367 * Use the first TD as a temporary variable to turn the TDs we've
2368 * queued into No-ops with a software-owned cycle bit.
2369 * That way the hardware won't accidentally start executing bogus TDs
2370 * when we partially overwrite them.
2371 * td->first_trb and td->start_seg are already set.
2372 */
2373 preq->td.last_trb = ep_ring->enqueue;
2374 /* Every TRB except the first & last will have its cycle bit flipped. */
2375 cdnsp_td_to_noop(pdev, ep_ring, &preq->td, true);
2376
2377 /* Reset the ring enqueue back to the first TRB and its cycle bit. */
2378 ep_ring->enqueue = preq->td.first_trb;
2379 ep_ring->enq_seg = preq->td.start_seg;
2380 ep_ring->cycle_state = start_cycle;
2381 return ret;
2382 }
2383
2384 /**** Command Ring Operations ****/
2385 /*
2386 * Generic function for queuing a command TRB on the command ring.
2387 * Driver queue only one command to ring in the moment.
2388 */
cdnsp_queue_command(struct cdnsp_device * pdev,u32 field1,u32 field2,u32 field3,u32 field4)2389 static void cdnsp_queue_command(struct cdnsp_device *pdev,
2390 u32 field1,
2391 u32 field2,
2392 u32 field3,
2393 u32 field4)
2394 {
2395 cdnsp_prepare_ring(pdev, pdev->cmd_ring, EP_STATE_RUNNING, 1,
2396 GFP_ATOMIC);
2397
2398 pdev->cmd.command_trb = pdev->cmd_ring->enqueue;
2399
2400 cdnsp_queue_trb(pdev, pdev->cmd_ring, false, field1, field2,
2401 field3, field4 | pdev->cmd_ring->cycle_state);
2402 }
2403
2404 /* Queue a slot enable or disable request on the command ring */
cdnsp_queue_slot_control(struct cdnsp_device * pdev,u32 trb_type)2405 void cdnsp_queue_slot_control(struct cdnsp_device *pdev, u32 trb_type)
2406 {
2407 cdnsp_queue_command(pdev, 0, 0, 0, TRB_TYPE(trb_type) |
2408 SLOT_ID_FOR_TRB(pdev->slot_id));
2409 }
2410
2411 /* Queue an address device command TRB */
cdnsp_queue_address_device(struct cdnsp_device * pdev,dma_addr_t in_ctx_ptr,enum cdnsp_setup_dev setup)2412 void cdnsp_queue_address_device(struct cdnsp_device *pdev,
2413 dma_addr_t in_ctx_ptr,
2414 enum cdnsp_setup_dev setup)
2415 {
2416 cdnsp_queue_command(pdev, lower_32_bits(in_ctx_ptr),
2417 upper_32_bits(in_ctx_ptr), 0,
2418 TRB_TYPE(TRB_ADDR_DEV) |
2419 SLOT_ID_FOR_TRB(pdev->slot_id) |
2420 (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0));
2421 }
2422
2423 /* Queue a reset device command TRB */
cdnsp_queue_reset_device(struct cdnsp_device * pdev)2424 void cdnsp_queue_reset_device(struct cdnsp_device *pdev)
2425 {
2426 cdnsp_queue_command(pdev, 0, 0, 0, TRB_TYPE(TRB_RESET_DEV) |
2427 SLOT_ID_FOR_TRB(pdev->slot_id));
2428 }
2429
2430 /* Queue a configure endpoint command TRB */
cdnsp_queue_configure_endpoint(struct cdnsp_device * pdev,dma_addr_t in_ctx_ptr)2431 void cdnsp_queue_configure_endpoint(struct cdnsp_device *pdev,
2432 dma_addr_t in_ctx_ptr)
2433 {
2434 cdnsp_queue_command(pdev, lower_32_bits(in_ctx_ptr),
2435 upper_32_bits(in_ctx_ptr), 0,
2436 TRB_TYPE(TRB_CONFIG_EP) |
2437 SLOT_ID_FOR_TRB(pdev->slot_id));
2438 }
2439
2440 /*
2441 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
2442 * activity on an endpoint that is about to be suspended.
2443 */
cdnsp_queue_stop_endpoint(struct cdnsp_device * pdev,unsigned int ep_index)2444 void cdnsp_queue_stop_endpoint(struct cdnsp_device *pdev, unsigned int ep_index)
2445 {
2446 cdnsp_queue_command(pdev, 0, 0, 0, SLOT_ID_FOR_TRB(pdev->slot_id) |
2447 EP_ID_FOR_TRB(ep_index) | TRB_TYPE(TRB_STOP_RING));
2448 }
2449
2450 /* Set Transfer Ring Dequeue Pointer command. */
cdnsp_queue_new_dequeue_state(struct cdnsp_device * pdev,struct cdnsp_ep * pep,struct cdnsp_dequeue_state * deq_state)2451 void cdnsp_queue_new_dequeue_state(struct cdnsp_device *pdev,
2452 struct cdnsp_ep *pep,
2453 struct cdnsp_dequeue_state *deq_state)
2454 {
2455 u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id);
2456 u32 trb_slot_id = SLOT_ID_FOR_TRB(pdev->slot_id);
2457 u32 type = TRB_TYPE(TRB_SET_DEQ);
2458 u32 trb_sct = 0;
2459 dma_addr_t addr;
2460
2461 addr = cdnsp_trb_virt_to_dma(deq_state->new_deq_seg,
2462 deq_state->new_deq_ptr);
2463
2464 if (deq_state->stream_id)
2465 trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
2466
2467 cdnsp_queue_command(pdev, lower_32_bits(addr) | trb_sct |
2468 deq_state->new_cycle_state, upper_32_bits(addr),
2469 trb_stream_id, trb_slot_id |
2470 EP_ID_FOR_TRB(pep->idx) | type);
2471 }
2472
cdnsp_queue_reset_ep(struct cdnsp_device * pdev,unsigned int ep_index)2473 void cdnsp_queue_reset_ep(struct cdnsp_device *pdev, unsigned int ep_index)
2474 {
2475 return cdnsp_queue_command(pdev, 0, 0, 0,
2476 SLOT_ID_FOR_TRB(pdev->slot_id) |
2477 EP_ID_FOR_TRB(ep_index) |
2478 TRB_TYPE(TRB_RESET_EP));
2479 }
2480
2481 /*
2482 * Queue a halt endpoint request on the command ring.
2483 */
cdnsp_queue_halt_endpoint(struct cdnsp_device * pdev,unsigned int ep_index)2484 void cdnsp_queue_halt_endpoint(struct cdnsp_device *pdev, unsigned int ep_index)
2485 {
2486 cdnsp_queue_command(pdev, 0, 0, 0, TRB_TYPE(TRB_HALT_ENDPOINT) |
2487 SLOT_ID_FOR_TRB(pdev->slot_id) |
2488 EP_ID_FOR_TRB(ep_index) |
2489 (!ep_index ? TRB_ESP : 0));
2490 }
2491
cdnsp_force_header_wakeup(struct cdnsp_device * pdev,int intf_num)2492 void cdnsp_force_header_wakeup(struct cdnsp_device *pdev, int intf_num)
2493 {
2494 u32 lo, mid;
2495
2496 lo = TRB_FH_TO_PACKET_TYPE(TRB_FH_TR_PACKET) |
2497 TRB_FH_TO_DEVICE_ADDRESS(pdev->device_address);
2498 mid = TRB_FH_TR_PACKET_DEV_NOT |
2499 TRB_FH_TO_NOT_TYPE(TRB_FH_TR_PACKET_FUNCTION_WAKE) |
2500 TRB_FH_TO_INTERFACE(intf_num);
2501
2502 cdnsp_queue_command(pdev, lo, mid, 0,
2503 TRB_TYPE(TRB_FORCE_HEADER) | SET_PORT_ID(2));
2504 }
2505