xref: /linux/drivers/net/ethernet/intel/e100.c (revision 7ec462100ef9142344ddbf86f2c3008b97acddbe)
1  // SPDX-License-Identifier: GPL-2.0
2  /* Copyright(c) 1999 - 2006 Intel Corporation. */
3  
4  /*
5   *	e100.c: Intel(R) PRO/100 ethernet driver
6   *
7   *	(Re)written 2003 by scott.feldman@intel.com.  Based loosely on
8   *	original e100 driver, but better described as a munging of
9   *	e100, e1000, eepro100, tg3, 8139cp, and other drivers.
10   *
11   *	References:
12   *		Intel 8255x 10/100 Mbps Ethernet Controller Family,
13   *		Open Source Software Developers Manual,
14   *		http://sourceforge.net/projects/e1000
15   *
16   *
17   *	                      Theory of Operation
18   *
19   *	I.   General
20   *
21   *	The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
22   *	controller family, which includes the 82557, 82558, 82559, 82550,
23   *	82551, and 82562 devices.  82558 and greater controllers
24   *	integrate the Intel 82555 PHY.  The controllers are used in
25   *	server and client network interface cards, as well as in
26   *	LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
27   *	configurations.  8255x supports a 32-bit linear addressing
28   *	mode and operates at 33Mhz PCI clock rate.
29   *
30   *	II.  Driver Operation
31   *
32   *	Memory-mapped mode is used exclusively to access the device's
33   *	shared-memory structure, the Control/Status Registers (CSR). All
34   *	setup, configuration, and control of the device, including queuing
35   *	of Tx, Rx, and configuration commands is through the CSR.
36   *	cmd_lock serializes accesses to the CSR command register.  cb_lock
37   *	protects the shared Command Block List (CBL).
38   *
39   *	8255x is highly MII-compliant and all access to the PHY go
40   *	through the Management Data Interface (MDI).  Consequently, the
41   *	driver leverages the mii.c library shared with other MII-compliant
42   *	devices.
43   *
44   *	Big- and Little-Endian byte order as well as 32- and 64-bit
45   *	archs are supported.  Weak-ordered memory and non-cache-coherent
46   *	archs are supported.
47   *
48   *	III. Transmit
49   *
50   *	A Tx skb is mapped and hangs off of a TCB.  TCBs are linked
51   *	together in a fixed-size ring (CBL) thus forming the flexible mode
52   *	memory structure.  A TCB marked with the suspend-bit indicates
53   *	the end of the ring.  The last TCB processed suspends the
54   *	controller, and the controller can be restarted by issue a CU
55   *	resume command to continue from the suspend point, or a CU start
56   *	command to start at a given position in the ring.
57   *
58   *	Non-Tx commands (config, multicast setup, etc) are linked
59   *	into the CBL ring along with Tx commands.  The common structure
60   *	used for both Tx and non-Tx commands is the Command Block (CB).
61   *
62   *	cb_to_use is the next CB to use for queuing a command; cb_to_clean
63   *	is the next CB to check for completion; cb_to_send is the first
64   *	CB to start on in case of a previous failure to resume.  CB clean
65   *	up happens in interrupt context in response to a CU interrupt.
66   *	cbs_avail keeps track of number of free CB resources available.
67   *
68   * 	Hardware padding of short packets to minimum packet size is
69   * 	enabled.  82557 pads with 7Eh, while the later controllers pad
70   * 	with 00h.
71   *
72   *	IV.  Receive
73   *
74   *	The Receive Frame Area (RFA) comprises a ring of Receive Frame
75   *	Descriptors (RFD) + data buffer, thus forming the simplified mode
76   *	memory structure.  Rx skbs are allocated to contain both the RFD
77   *	and the data buffer, but the RFD is pulled off before the skb is
78   *	indicated.  The data buffer is aligned such that encapsulated
79   *	protocol headers are u32-aligned.  Since the RFD is part of the
80   *	mapped shared memory, and completion status is contained within
81   *	the RFD, the RFD must be dma_sync'ed to maintain a consistent
82   *	view from software and hardware.
83   *
84   *	In order to keep updates to the RFD link field from colliding with
85   *	hardware writes to mark packets complete, we use the feature that
86   *	hardware will not write to a size 0 descriptor and mark the previous
87   *	packet as end-of-list (EL).   After updating the link, we remove EL
88   *	and only then restore the size such that hardware may use the
89   *	previous-to-end RFD.
90   *
91   *	Under typical operation, the  receive unit (RU) is start once,
92   *	and the controller happily fills RFDs as frames arrive.  If
93   *	replacement RFDs cannot be allocated, or the RU goes non-active,
94   *	the RU must be restarted.  Frame arrival generates an interrupt,
95   *	and Rx indication and re-allocation happen in the same context,
96   *	therefore no locking is required.  A software-generated interrupt
97   *	is generated from the watchdog to recover from a failed allocation
98   *	scenario where all Rx resources have been indicated and none re-
99   *	placed.
100   *
101   *	V.   Miscellaneous
102   *
103   * 	VLAN offloading of tagging, stripping and filtering is not
104   * 	supported, but driver will accommodate the extra 4-byte VLAN tag
105   * 	for processing by upper layers.  Tx/Rx Checksum offloading is not
106   * 	supported.  Tx Scatter/Gather is not supported.  Jumbo Frames is
107   * 	not supported (hardware limitation).
108   *
109   * 	MagicPacket(tm) WoL support is enabled/disabled via ethtool.
110   *
111   * 	Thanks to JC (jchapman@katalix.com) for helping with
112   * 	testing/troubleshooting the development driver.
113   *
114   * 	TODO:
115   * 	o several entry points race with dev->close
116   * 	o check for tx-no-resources/stop Q races with tx clean/wake Q
117   *
118   *	FIXES:
119   * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
120   *	- Stratus87247: protect MDI control register manipulations
121   * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
122   *      - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
123   */
124  
125  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
126  
127  #include <linux/hardirq.h>
128  #include <linux/interrupt.h>
129  #include <linux/module.h>
130  #include <linux/moduleparam.h>
131  #include <linux/kernel.h>
132  #include <linux/types.h>
133  #include <linux/sched.h>
134  #include <linux/slab.h>
135  #include <linux/delay.h>
136  #include <linux/init.h>
137  #include <linux/pci.h>
138  #include <linux/dma-mapping.h>
139  #include <linux/dmapool.h>
140  #include <linux/netdevice.h>
141  #include <linux/etherdevice.h>
142  #include <linux/mii.h>
143  #include <linux/if_vlan.h>
144  #include <linux/skbuff.h>
145  #include <linux/ethtool.h>
146  #include <linux/string.h>
147  #include <linux/firmware.h>
148  #include <linux/rtnetlink.h>
149  #include <linux/unaligned.h>
150  
151  
152  #define DRV_NAME		"e100"
153  #define DRV_DESCRIPTION		"Intel(R) PRO/100 Network Driver"
154  #define DRV_COPYRIGHT		"Copyright(c) 1999-2006 Intel Corporation"
155  
156  #define E100_WATCHDOG_PERIOD	(2 * HZ)
157  #define E100_NAPI_WEIGHT	16
158  
159  #define FIRMWARE_D101M		"e100/d101m_ucode.bin"
160  #define FIRMWARE_D101S		"e100/d101s_ucode.bin"
161  #define FIRMWARE_D102E		"e100/d102e_ucode.bin"
162  
163  MODULE_DESCRIPTION(DRV_DESCRIPTION);
164  MODULE_LICENSE("GPL v2");
165  MODULE_FIRMWARE(FIRMWARE_D101M);
166  MODULE_FIRMWARE(FIRMWARE_D101S);
167  MODULE_FIRMWARE(FIRMWARE_D102E);
168  
169  static int debug = 3;
170  static int eeprom_bad_csum_allow = 0;
171  static int use_io = 0;
172  module_param(debug, int, 0);
173  module_param(eeprom_bad_csum_allow, int, 0444);
174  module_param(use_io, int, 0444);
175  MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
176  MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
177  MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
178  
179  #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
180  	PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
181  	PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
182  static const struct pci_device_id e100_id_table[] = {
183  	INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
184  	INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
185  	INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
186  	INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
187  	INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
188  	INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
189  	INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
190  	INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
191  	INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
192  	INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
193  	INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
194  	INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
195  	INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
196  	INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
197  	INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
198  	INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
199  	INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
200  	INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
201  	INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
202  	INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
203  	INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
204  	INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
205  	INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
206  	INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
207  	INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
208  	INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
209  	INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
210  	INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
211  	INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
212  	INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
213  	INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
214  	INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
215  	INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
216  	INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
217  	INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
218  	INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
219  	INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
220  	INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
221  	INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
222  	INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
223  	INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
224  	INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
225  	{ 0, }
226  };
227  MODULE_DEVICE_TABLE(pci, e100_id_table);
228  
229  enum mac {
230  	mac_82557_D100_A  = 0,
231  	mac_82557_D100_B  = 1,
232  	mac_82557_D100_C  = 2,
233  	mac_82558_D101_A4 = 4,
234  	mac_82558_D101_B0 = 5,
235  	mac_82559_D101M   = 8,
236  	mac_82559_D101S   = 9,
237  	mac_82550_D102    = 12,
238  	mac_82550_D102_C  = 13,
239  	mac_82551_E       = 14,
240  	mac_82551_F       = 15,
241  	mac_82551_10      = 16,
242  	mac_unknown       = 0xFF,
243  };
244  
245  enum phy {
246  	phy_100a     = 0x000003E0,
247  	phy_100c     = 0x035002A8,
248  	phy_82555_tx = 0x015002A8,
249  	phy_nsc_tx   = 0x5C002000,
250  	phy_82562_et = 0x033002A8,
251  	phy_82562_em = 0x032002A8,
252  	phy_82562_ek = 0x031002A8,
253  	phy_82562_eh = 0x017002A8,
254  	phy_82552_v  = 0xd061004d,
255  	phy_unknown  = 0xFFFFFFFF,
256  };
257  
258  /* CSR (Control/Status Registers) */
259  struct csr {
260  	struct {
261  		u8 status;
262  		u8 stat_ack;
263  		u8 cmd_lo;
264  		u8 cmd_hi;
265  		u32 gen_ptr;
266  	} scb;
267  	u32 port;
268  	u16 flash_ctrl;
269  	u8 eeprom_ctrl_lo;
270  	u8 eeprom_ctrl_hi;
271  	u32 mdi_ctrl;
272  	u32 rx_dma_count;
273  };
274  
275  enum scb_status {
276  	rus_no_res       = 0x08,
277  	rus_ready        = 0x10,
278  	rus_mask         = 0x3C,
279  };
280  
281  enum ru_state  {
282  	RU_SUSPENDED = 0,
283  	RU_RUNNING	 = 1,
284  	RU_UNINITIALIZED = -1,
285  };
286  
287  enum scb_stat_ack {
288  	stat_ack_not_ours    = 0x00,
289  	stat_ack_sw_gen      = 0x04,
290  	stat_ack_rnr         = 0x10,
291  	stat_ack_cu_idle     = 0x20,
292  	stat_ack_frame_rx    = 0x40,
293  	stat_ack_cu_cmd_done = 0x80,
294  	stat_ack_not_present = 0xFF,
295  	stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
296  	stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
297  };
298  
299  enum scb_cmd_hi {
300  	irq_mask_none = 0x00,
301  	irq_mask_all  = 0x01,
302  	irq_sw_gen    = 0x02,
303  };
304  
305  enum scb_cmd_lo {
306  	cuc_nop        = 0x00,
307  	ruc_start      = 0x01,
308  	ruc_load_base  = 0x06,
309  	cuc_start      = 0x10,
310  	cuc_resume     = 0x20,
311  	cuc_dump_addr  = 0x40,
312  	cuc_dump_stats = 0x50,
313  	cuc_load_base  = 0x60,
314  	cuc_dump_reset = 0x70,
315  };
316  
317  enum cuc_dump {
318  	cuc_dump_complete       = 0x0000A005,
319  	cuc_dump_reset_complete = 0x0000A007,
320  };
321  
322  enum port {
323  	software_reset  = 0x0000,
324  	selftest        = 0x0001,
325  	selective_reset = 0x0002,
326  };
327  
328  enum eeprom_ctrl_lo {
329  	eesk = 0x01,
330  	eecs = 0x02,
331  	eedi = 0x04,
332  	eedo = 0x08,
333  };
334  
335  enum mdi_ctrl {
336  	mdi_write = 0x04000000,
337  	mdi_read  = 0x08000000,
338  	mdi_ready = 0x10000000,
339  };
340  
341  enum eeprom_op {
342  	op_write = 0x05,
343  	op_read  = 0x06,
344  	op_ewds  = 0x10,
345  	op_ewen  = 0x13,
346  };
347  
348  enum eeprom_offsets {
349  	eeprom_cnfg_mdix  = 0x03,
350  	eeprom_phy_iface  = 0x06,
351  	eeprom_id         = 0x0A,
352  	eeprom_config_asf = 0x0D,
353  	eeprom_smbus_addr = 0x90,
354  };
355  
356  enum eeprom_cnfg_mdix {
357  	eeprom_mdix_enabled = 0x0080,
358  };
359  
360  enum eeprom_phy_iface {
361  	NoSuchPhy = 0,
362  	I82553AB,
363  	I82553C,
364  	I82503,
365  	DP83840,
366  	S80C240,
367  	S80C24,
368  	I82555,
369  	DP83840A = 10,
370  };
371  
372  enum eeprom_id {
373  	eeprom_id_wol = 0x0020,
374  };
375  
376  enum eeprom_config_asf {
377  	eeprom_asf = 0x8000,
378  	eeprom_gcl = 0x4000,
379  };
380  
381  enum cb_status {
382  	cb_complete = 0x8000,
383  	cb_ok       = 0x2000,
384  };
385  
386  /*
387   * cb_command - Command Block flags
388   * @cb_tx_nc:  0: controller does CRC (normal),  1: CRC from skb memory
389   */
390  enum cb_command {
391  	cb_nop    = 0x0000,
392  	cb_iaaddr = 0x0001,
393  	cb_config = 0x0002,
394  	cb_multi  = 0x0003,
395  	cb_tx     = 0x0004,
396  	cb_ucode  = 0x0005,
397  	cb_dump   = 0x0006,
398  	cb_tx_sf  = 0x0008,
399  	cb_tx_nc  = 0x0010,
400  	cb_cid    = 0x1f00,
401  	cb_i      = 0x2000,
402  	cb_s      = 0x4000,
403  	cb_el     = 0x8000,
404  };
405  
406  struct rfd {
407  	__le16 status;
408  	__le16 command;
409  	__le32 link;
410  	__le32 rbd;
411  	__le16 actual_size;
412  	__le16 size;
413  };
414  
415  struct rx {
416  	struct rx *next, *prev;
417  	struct sk_buff *skb;
418  	dma_addr_t dma_addr;
419  };
420  
421  #if defined(__BIG_ENDIAN_BITFIELD)
422  #define X(a,b)	b,a
423  #else
424  #define X(a,b)	a,b
425  #endif
426  struct config {
427  /*0*/	u8 X(byte_count:6, pad0:2);
428  /*1*/	u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
429  /*2*/	u8 adaptive_ifs;
430  /*3*/	u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
431  	   term_write_cache_line:1), pad3:4);
432  /*4*/	u8 X(rx_dma_max_count:7, pad4:1);
433  /*5*/	u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
434  /*6*/	u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
435  	   tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
436  	   rx_save_overruns : 1), rx_save_bad_frames : 1);
437  /*7*/	u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
438  	   pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
439  	   tx_dynamic_tbd:1);
440  /*8*/	u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
441  /*9*/	u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
442  	   link_status_wake:1), arp_wake:1), mcmatch_wake:1);
443  /*10*/	u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
444  	   loopback:2);
445  /*11*/	u8 X(linear_priority:3, pad11:5);
446  /*12*/	u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
447  /*13*/	u8 ip_addr_lo;
448  /*14*/	u8 ip_addr_hi;
449  /*15*/	u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
450  	   wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
451  	   pad15_2:1), crs_or_cdt:1);
452  /*16*/	u8 fc_delay_lo;
453  /*17*/	u8 fc_delay_hi;
454  /*18*/	u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
455  	   rx_long_ok:1), fc_priority_threshold:3), pad18:1);
456  /*19*/	u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
457  	   fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
458  	   full_duplex_force:1), full_duplex_pin:1);
459  /*20*/	u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
460  /*21*/	u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
461  /*22*/	u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
462  	u8 pad_d102[9];
463  };
464  
465  #define E100_MAX_MULTICAST_ADDRS	64
466  struct multi {
467  	__le16 count;
468  	u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
469  };
470  
471  /* Important: keep total struct u32-aligned */
472  #define UCODE_SIZE			134
473  struct cb {
474  	__le16 status;
475  	__le16 command;
476  	__le32 link;
477  	union {
478  		u8 iaaddr[ETH_ALEN];
479  		__le32 ucode[UCODE_SIZE];
480  		struct config config;
481  		struct multi multi;
482  		struct {
483  			u32 tbd_array;
484  			u16 tcb_byte_count;
485  			u8 threshold;
486  			u8 tbd_count;
487  			struct {
488  				__le32 buf_addr;
489  				__le16 size;
490  				u16 eol;
491  			} tbd;
492  		} tcb;
493  		__le32 dump_buffer_addr;
494  	} u;
495  	struct cb *next, *prev;
496  	dma_addr_t dma_addr;
497  	struct sk_buff *skb;
498  };
499  
500  enum loopback {
501  	lb_none = 0, lb_mac = 1, lb_phy = 3,
502  };
503  
504  struct stats {
505  	__le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
506  		tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
507  		tx_multiple_collisions, tx_total_collisions;
508  	__le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
509  		rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
510  		rx_short_frame_errors;
511  	__le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
512  	__le16 xmt_tco_frames, rcv_tco_frames;
513  	__le32 complete;
514  };
515  
516  struct mem {
517  	struct {
518  		u32 signature;
519  		u32 result;
520  	} selftest;
521  	struct stats stats;
522  	u8 dump_buf[596];
523  };
524  
525  struct param_range {
526  	u32 min;
527  	u32 max;
528  	u32 count;
529  };
530  
531  struct params {
532  	struct param_range rfds;
533  	struct param_range cbs;
534  };
535  
536  struct nic {
537  	/* Begin: frequently used values: keep adjacent for cache effect */
538  	u32 msg_enable				____cacheline_aligned;
539  	struct net_device *netdev;
540  	struct pci_dev *pdev;
541  	u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data);
542  
543  	struct rx *rxs				____cacheline_aligned;
544  	struct rx *rx_to_use;
545  	struct rx *rx_to_clean;
546  	struct rfd blank_rfd;
547  	enum ru_state ru_running;
548  
549  	spinlock_t cb_lock			____cacheline_aligned;
550  	spinlock_t cmd_lock;
551  	struct csr __iomem *csr;
552  	enum scb_cmd_lo cuc_cmd;
553  	unsigned int cbs_avail;
554  	struct napi_struct napi;
555  	struct cb *cbs;
556  	struct cb *cb_to_use;
557  	struct cb *cb_to_send;
558  	struct cb *cb_to_clean;
559  	__le16 tx_command;
560  	/* End: frequently used values: keep adjacent for cache effect */
561  
562  	enum {
563  		ich                = (1 << 0),
564  		promiscuous        = (1 << 1),
565  		multicast_all      = (1 << 2),
566  		wol_magic          = (1 << 3),
567  		ich_10h_workaround = (1 << 4),
568  	} flags					____cacheline_aligned;
569  
570  	enum mac mac;
571  	enum phy phy;
572  	struct params params;
573  	struct timer_list watchdog;
574  	struct mii_if_info mii;
575  	struct work_struct tx_timeout_task;
576  	enum loopback loopback;
577  
578  	struct mem *mem;
579  	dma_addr_t dma_addr;
580  
581  	struct dma_pool *cbs_pool;
582  	dma_addr_t cbs_dma_addr;
583  	u8 adaptive_ifs;
584  	u8 tx_threshold;
585  	u32 tx_frames;
586  	u32 tx_collisions;
587  	u32 tx_deferred;
588  	u32 tx_single_collisions;
589  	u32 tx_multiple_collisions;
590  	u32 tx_fc_pause;
591  	u32 tx_tco_frames;
592  
593  	u32 rx_fc_pause;
594  	u32 rx_fc_unsupported;
595  	u32 rx_tco_frames;
596  	u32 rx_short_frame_errors;
597  	u32 rx_over_length_errors;
598  
599  	u16 eeprom_wc;
600  	__le16 eeprom[256];
601  	spinlock_t mdio_lock;
602  	const struct firmware *fw;
603  };
604  
e100_write_flush(struct nic * nic)605  static inline void e100_write_flush(struct nic *nic)
606  {
607  	/* Flush previous PCI writes through intermediate bridges
608  	 * by doing a benign read */
609  	(void)ioread8(&nic->csr->scb.status);
610  }
611  
e100_enable_irq(struct nic * nic)612  static void e100_enable_irq(struct nic *nic)
613  {
614  	unsigned long flags;
615  
616  	spin_lock_irqsave(&nic->cmd_lock, flags);
617  	iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
618  	e100_write_flush(nic);
619  	spin_unlock_irqrestore(&nic->cmd_lock, flags);
620  }
621  
e100_disable_irq(struct nic * nic)622  static void e100_disable_irq(struct nic *nic)
623  {
624  	unsigned long flags;
625  
626  	spin_lock_irqsave(&nic->cmd_lock, flags);
627  	iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
628  	e100_write_flush(nic);
629  	spin_unlock_irqrestore(&nic->cmd_lock, flags);
630  }
631  
e100_hw_reset(struct nic * nic)632  static void e100_hw_reset(struct nic *nic)
633  {
634  	/* Put CU and RU into idle with a selective reset to get
635  	 * device off of PCI bus */
636  	iowrite32(selective_reset, &nic->csr->port);
637  	e100_write_flush(nic); udelay(20);
638  
639  	/* Now fully reset device */
640  	iowrite32(software_reset, &nic->csr->port);
641  	e100_write_flush(nic); udelay(20);
642  
643  	/* Mask off our interrupt line - it's unmasked after reset */
644  	e100_disable_irq(nic);
645  }
646  
e100_self_test(struct nic * nic)647  static int e100_self_test(struct nic *nic)
648  {
649  	u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
650  
651  	/* Passing the self-test is a pretty good indication
652  	 * that the device can DMA to/from host memory */
653  
654  	nic->mem->selftest.signature = 0;
655  	nic->mem->selftest.result = 0xFFFFFFFF;
656  
657  	iowrite32(selftest | dma_addr, &nic->csr->port);
658  	e100_write_flush(nic);
659  	/* Wait 10 msec for self-test to complete */
660  	msleep(10);
661  
662  	/* Interrupts are enabled after self-test */
663  	e100_disable_irq(nic);
664  
665  	/* Check results of self-test */
666  	if (nic->mem->selftest.result != 0) {
667  		netif_err(nic, hw, nic->netdev,
668  			  "Self-test failed: result=0x%08X\n",
669  			  nic->mem->selftest.result);
670  		return -ETIMEDOUT;
671  	}
672  	if (nic->mem->selftest.signature == 0) {
673  		netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n");
674  		return -ETIMEDOUT;
675  	}
676  
677  	return 0;
678  }
679  
e100_eeprom_write(struct nic * nic,u16 addr_len,u16 addr,__le16 data)680  static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
681  {
682  	u32 cmd_addr_data[3];
683  	u8 ctrl;
684  	int i, j;
685  
686  	/* Three cmds: write/erase enable, write data, write/erase disable */
687  	cmd_addr_data[0] = op_ewen << (addr_len - 2);
688  	cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
689  		le16_to_cpu(data);
690  	cmd_addr_data[2] = op_ewds << (addr_len - 2);
691  
692  	/* Bit-bang cmds to write word to eeprom */
693  	for (j = 0; j < 3; j++) {
694  
695  		/* Chip select */
696  		iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
697  		e100_write_flush(nic); udelay(4);
698  
699  		for (i = 31; i >= 0; i--) {
700  			ctrl = (cmd_addr_data[j] & (1 << i)) ?
701  				eecs | eedi : eecs;
702  			iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
703  			e100_write_flush(nic); udelay(4);
704  
705  			iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
706  			e100_write_flush(nic); udelay(4);
707  		}
708  		/* Wait 10 msec for cmd to complete */
709  		msleep(10);
710  
711  		/* Chip deselect */
712  		iowrite8(0, &nic->csr->eeprom_ctrl_lo);
713  		e100_write_flush(nic); udelay(4);
714  	}
715  };
716  
717  /* General technique stolen from the eepro100 driver - very clever */
e100_eeprom_read(struct nic * nic,u16 * addr_len,u16 addr)718  static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
719  {
720  	u32 cmd_addr_data;
721  	u16 data = 0;
722  	u8 ctrl;
723  	int i;
724  
725  	cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
726  
727  	/* Chip select */
728  	iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
729  	e100_write_flush(nic); udelay(4);
730  
731  	/* Bit-bang to read word from eeprom */
732  	for (i = 31; i >= 0; i--) {
733  		ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
734  		iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
735  		e100_write_flush(nic); udelay(4);
736  
737  		iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
738  		e100_write_flush(nic); udelay(4);
739  
740  		/* Eeprom drives a dummy zero to EEDO after receiving
741  		 * complete address.  Use this to adjust addr_len. */
742  		ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
743  		if (!(ctrl & eedo) && i > 16) {
744  			*addr_len -= (i - 16);
745  			i = 17;
746  		}
747  
748  		data = (data << 1) | (ctrl & eedo ? 1 : 0);
749  	}
750  
751  	/* Chip deselect */
752  	iowrite8(0, &nic->csr->eeprom_ctrl_lo);
753  	e100_write_flush(nic); udelay(4);
754  
755  	return cpu_to_le16(data);
756  };
757  
758  /* Load entire EEPROM image into driver cache and validate checksum */
e100_eeprom_load(struct nic * nic)759  static int e100_eeprom_load(struct nic *nic)
760  {
761  	u16 addr, addr_len = 8, checksum = 0;
762  
763  	/* Try reading with an 8-bit addr len to discover actual addr len */
764  	e100_eeprom_read(nic, &addr_len, 0);
765  	nic->eeprom_wc = 1 << addr_len;
766  
767  	for (addr = 0; addr < nic->eeprom_wc; addr++) {
768  		nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
769  		if (addr < nic->eeprom_wc - 1)
770  			checksum += le16_to_cpu(nic->eeprom[addr]);
771  	}
772  
773  	/* The checksum, stored in the last word, is calculated such that
774  	 * the sum of words should be 0xBABA */
775  	if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
776  		netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n");
777  		if (!eeprom_bad_csum_allow)
778  			return -EAGAIN;
779  	}
780  
781  	return 0;
782  }
783  
784  /* Save (portion of) driver EEPROM cache to device and update checksum */
e100_eeprom_save(struct nic * nic,u16 start,u16 count)785  static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
786  {
787  	u16 addr, addr_len = 8, checksum = 0;
788  
789  	/* Try reading with an 8-bit addr len to discover actual addr len */
790  	e100_eeprom_read(nic, &addr_len, 0);
791  	nic->eeprom_wc = 1 << addr_len;
792  
793  	if (start + count >= nic->eeprom_wc)
794  		return -EINVAL;
795  
796  	for (addr = start; addr < start + count; addr++)
797  		e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
798  
799  	/* The checksum, stored in the last word, is calculated such that
800  	 * the sum of words should be 0xBABA */
801  	for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
802  		checksum += le16_to_cpu(nic->eeprom[addr]);
803  	nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
804  	e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
805  		nic->eeprom[nic->eeprom_wc - 1]);
806  
807  	return 0;
808  }
809  
810  #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
811  #define E100_WAIT_SCB_FAST 20       /* delay like the old code */
e100_exec_cmd(struct nic * nic,u8 cmd,dma_addr_t dma_addr)812  static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
813  {
814  	unsigned long flags;
815  	unsigned int i;
816  	int err = 0;
817  
818  	spin_lock_irqsave(&nic->cmd_lock, flags);
819  
820  	/* Previous command is accepted when SCB clears */
821  	for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
822  		if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
823  			break;
824  		cpu_relax();
825  		if (unlikely(i > E100_WAIT_SCB_FAST))
826  			udelay(5);
827  	}
828  	if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
829  		err = -EAGAIN;
830  		goto err_unlock;
831  	}
832  
833  	if (unlikely(cmd != cuc_resume))
834  		iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
835  	iowrite8(cmd, &nic->csr->scb.cmd_lo);
836  
837  err_unlock:
838  	spin_unlock_irqrestore(&nic->cmd_lock, flags);
839  
840  	return err;
841  }
842  
e100_exec_cb(struct nic * nic,struct sk_buff * skb,int (* cb_prepare)(struct nic *,struct cb *,struct sk_buff *))843  static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
844  	int (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
845  {
846  	struct cb *cb;
847  	unsigned long flags;
848  	int err;
849  
850  	spin_lock_irqsave(&nic->cb_lock, flags);
851  
852  	if (unlikely(!nic->cbs_avail)) {
853  		err = -ENOMEM;
854  		goto err_unlock;
855  	}
856  
857  	cb = nic->cb_to_use;
858  	nic->cb_to_use = cb->next;
859  	nic->cbs_avail--;
860  	cb->skb = skb;
861  
862  	err = cb_prepare(nic, cb, skb);
863  	if (err)
864  		goto err_unlock;
865  
866  	if (unlikely(!nic->cbs_avail))
867  		err = -ENOSPC;
868  
869  
870  	/* Order is important otherwise we'll be in a race with h/w:
871  	 * set S-bit in current first, then clear S-bit in previous. */
872  	cb->command |= cpu_to_le16(cb_s);
873  	dma_wmb();
874  	cb->prev->command &= cpu_to_le16(~cb_s);
875  
876  	while (nic->cb_to_send != nic->cb_to_use) {
877  		if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
878  			nic->cb_to_send->dma_addr))) {
879  			/* Ok, here's where things get sticky.  It's
880  			 * possible that we can't schedule the command
881  			 * because the controller is too busy, so
882  			 * let's just queue the command and try again
883  			 * when another command is scheduled. */
884  			if (err == -ENOSPC) {
885  				//request a reset
886  				schedule_work(&nic->tx_timeout_task);
887  			}
888  			break;
889  		} else {
890  			nic->cuc_cmd = cuc_resume;
891  			nic->cb_to_send = nic->cb_to_send->next;
892  		}
893  	}
894  
895  err_unlock:
896  	spin_unlock_irqrestore(&nic->cb_lock, flags);
897  
898  	return err;
899  }
900  
mdio_read(struct net_device * netdev,int addr,int reg)901  static int mdio_read(struct net_device *netdev, int addr, int reg)
902  {
903  	struct nic *nic = netdev_priv(netdev);
904  	return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0);
905  }
906  
mdio_write(struct net_device * netdev,int addr,int reg,int data)907  static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
908  {
909  	struct nic *nic = netdev_priv(netdev);
910  
911  	nic->mdio_ctrl(nic, addr, mdi_write, reg, data);
912  }
913  
914  /* the standard mdio_ctrl() function for usual MII-compliant hardware */
mdio_ctrl_hw(struct nic * nic,u32 addr,u32 dir,u32 reg,u16 data)915  static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
916  {
917  	u32 data_out = 0;
918  	unsigned int i;
919  	unsigned long flags;
920  
921  
922  	/*
923  	 * Stratus87247: we shouldn't be writing the MDI control
924  	 * register until the Ready bit shows True.  Also, since
925  	 * manipulation of the MDI control registers is a multi-step
926  	 * procedure it should be done under lock.
927  	 */
928  	spin_lock_irqsave(&nic->mdio_lock, flags);
929  	for (i = 100; i; --i) {
930  		if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
931  			break;
932  		udelay(20);
933  	}
934  	if (unlikely(!i)) {
935  		netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n");
936  		spin_unlock_irqrestore(&nic->mdio_lock, flags);
937  		return 0;		/* No way to indicate timeout error */
938  	}
939  	iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
940  
941  	for (i = 0; i < 100; i++) {
942  		udelay(20);
943  		if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
944  			break;
945  	}
946  	spin_unlock_irqrestore(&nic->mdio_lock, flags);
947  	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
948  		     "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
949  		     dir == mdi_read ? "READ" : "WRITE",
950  		     addr, reg, data, data_out);
951  	return (u16)data_out;
952  }
953  
954  /* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
mdio_ctrl_phy_82552_v(struct nic * nic,u32 addr,u32 dir,u32 reg,u16 data)955  static u16 mdio_ctrl_phy_82552_v(struct nic *nic,
956  				 u32 addr,
957  				 u32 dir,
958  				 u32 reg,
959  				 u16 data)
960  {
961  	if ((reg == MII_BMCR) && (dir == mdi_write)) {
962  		if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) {
963  			u16 advert = mdio_read(nic->netdev, nic->mii.phy_id,
964  							MII_ADVERTISE);
965  
966  			/*
967  			 * Workaround Si issue where sometimes the part will not
968  			 * autoneg to 100Mbps even when advertised.
969  			 */
970  			if (advert & ADVERTISE_100FULL)
971  				data |= BMCR_SPEED100 | BMCR_FULLDPLX;
972  			else if (advert & ADVERTISE_100HALF)
973  				data |= BMCR_SPEED100;
974  		}
975  	}
976  	return mdio_ctrl_hw(nic, addr, dir, reg, data);
977  }
978  
979  /* Fully software-emulated mdio_ctrl() function for cards without
980   * MII-compliant PHYs.
981   * For now, this is mainly geared towards 80c24 support; in case of further
982   * requirements for other types (i82503, ...?) either extend this mechanism
983   * or split it, whichever is cleaner.
984   */
mdio_ctrl_phy_mii_emulated(struct nic * nic,u32 addr,u32 dir,u32 reg,u16 data)985  static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic,
986  				      u32 addr,
987  				      u32 dir,
988  				      u32 reg,
989  				      u16 data)
990  {
991  	/* might need to allocate a netdev_priv'ed register array eventually
992  	 * to be able to record state changes, but for now
993  	 * some fully hardcoded register handling ought to be ok I guess. */
994  
995  	if (dir == mdi_read) {
996  		switch (reg) {
997  		case MII_BMCR:
998  			/* Auto-negotiation, right? */
999  			return  BMCR_ANENABLE |
1000  				BMCR_FULLDPLX;
1001  		case MII_BMSR:
1002  			return	BMSR_LSTATUS /* for mii_link_ok() */ |
1003  				BMSR_ANEGCAPABLE |
1004  				BMSR_10FULL;
1005  		case MII_ADVERTISE:
1006  			/* 80c24 is a "combo card" PHY, right? */
1007  			return	ADVERTISE_10HALF |
1008  				ADVERTISE_10FULL;
1009  		default:
1010  			netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1011  				     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1012  				     dir == mdi_read ? "READ" : "WRITE",
1013  				     addr, reg, data);
1014  			return 0xFFFF;
1015  		}
1016  	} else {
1017  		switch (reg) {
1018  		default:
1019  			netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1020  				     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1021  				     dir == mdi_read ? "READ" : "WRITE",
1022  				     addr, reg, data);
1023  			return 0xFFFF;
1024  		}
1025  	}
1026  }
e100_phy_supports_mii(struct nic * nic)1027  static inline int e100_phy_supports_mii(struct nic *nic)
1028  {
1029  	/* for now, just check it by comparing whether we
1030  	   are using MII software emulation.
1031  	*/
1032  	return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated);
1033  }
1034  
e100_get_defaults(struct nic * nic)1035  static void e100_get_defaults(struct nic *nic)
1036  {
1037  	struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
1038  	struct param_range cbs  = { .min = 64, .max = 256, .count = 128 };
1039  
1040  	/* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
1041  	nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
1042  	if (nic->mac == mac_unknown)
1043  		nic->mac = mac_82557_D100_A;
1044  
1045  	nic->params.rfds = rfds;
1046  	nic->params.cbs = cbs;
1047  
1048  	/* Quadwords to DMA into FIFO before starting frame transmit */
1049  	nic->tx_threshold = 0xE0;
1050  
1051  	/* no interrupt for every tx completion, delay = 256us if not 557 */
1052  	nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
1053  		((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
1054  
1055  	/* Template for a freshly allocated RFD */
1056  	nic->blank_rfd.command = 0;
1057  	nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
1058  	nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1059  
1060  	/* MII setup */
1061  	nic->mii.phy_id_mask = 0x1F;
1062  	nic->mii.reg_num_mask = 0x1F;
1063  	nic->mii.dev = nic->netdev;
1064  	nic->mii.mdio_read = mdio_read;
1065  	nic->mii.mdio_write = mdio_write;
1066  }
1067  
e100_configure(struct nic * nic,struct cb * cb,struct sk_buff * skb)1068  static int e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1069  {
1070  	struct config *config = &cb->u.config;
1071  	u8 *c = (u8 *)config;
1072  	struct net_device *netdev = nic->netdev;
1073  
1074  	cb->command = cpu_to_le16(cb_config);
1075  
1076  	memset(config, 0, sizeof(struct config));
1077  
1078  	config->byte_count = 0x16;		/* bytes in this struct */
1079  	config->rx_fifo_limit = 0x8;		/* bytes in FIFO before DMA */
1080  	config->direct_rx_dma = 0x1;		/* reserved */
1081  	config->standard_tcb = 0x1;		/* 1=standard, 0=extended */
1082  	config->standard_stat_counter = 0x1;	/* 1=standard, 0=extended */
1083  	config->rx_discard_short_frames = 0x1;	/* 1=discard, 0=pass */
1084  	config->tx_underrun_retry = 0x3;	/* # of underrun retries */
1085  	if (e100_phy_supports_mii(nic))
1086  		config->mii_mode = 1;           /* 1=MII mode, 0=i82503 mode */
1087  	config->pad10 = 0x6;
1088  	config->no_source_addr_insertion = 0x1;	/* 1=no, 0=yes */
1089  	config->preamble_length = 0x2;		/* 0=1, 1=3, 2=7, 3=15 bytes */
1090  	config->ifs = 0x6;			/* x16 = inter frame spacing */
1091  	config->ip_addr_hi = 0xF2;		/* ARP IP filter - not used */
1092  	config->pad15_1 = 0x1;
1093  	config->pad15_2 = 0x1;
1094  	config->crs_or_cdt = 0x0;		/* 0=CRS only, 1=CRS or CDT */
1095  	config->fc_delay_hi = 0x40;		/* time delay for fc frame */
1096  	config->tx_padding = 0x1;		/* 1=pad short frames */
1097  	config->fc_priority_threshold = 0x7;	/* 7=priority fc disabled */
1098  	config->pad18 = 0x1;
1099  	config->full_duplex_pin = 0x1;		/* 1=examine FDX# pin */
1100  	config->pad20_1 = 0x1F;
1101  	config->fc_priority_location = 0x1;	/* 1=byte#31, 0=byte#19 */
1102  	config->pad21_1 = 0x5;
1103  
1104  	config->adaptive_ifs = nic->adaptive_ifs;
1105  	config->loopback = nic->loopback;
1106  
1107  	if (nic->mii.force_media && nic->mii.full_duplex)
1108  		config->full_duplex_force = 0x1;	/* 1=force, 0=auto */
1109  
1110  	if (nic->flags & promiscuous || nic->loopback) {
1111  		config->rx_save_bad_frames = 0x1;	/* 1=save, 0=discard */
1112  		config->rx_discard_short_frames = 0x0;	/* 1=discard, 0=save */
1113  		config->promiscuous_mode = 0x1;		/* 1=on, 0=off */
1114  	}
1115  
1116  	if (unlikely(netdev->features & NETIF_F_RXFCS))
1117  		config->rx_crc_transfer = 0x1;	/* 1=save, 0=discard */
1118  
1119  	if (nic->flags & multicast_all)
1120  		config->multicast_all = 0x1;		/* 1=accept, 0=no */
1121  
1122  	/* disable WoL when up */
1123  	if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
1124  		config->magic_packet_disable = 0x1;	/* 1=off, 0=on */
1125  
1126  	if (nic->mac >= mac_82558_D101_A4) {
1127  		config->fc_disable = 0x1;	/* 1=Tx fc off, 0=Tx fc on */
1128  		config->mwi_enable = 0x1;	/* 1=enable, 0=disable */
1129  		config->standard_tcb = 0x0;	/* 1=standard, 0=extended */
1130  		config->rx_long_ok = 0x1;	/* 1=VLANs ok, 0=standard */
1131  		if (nic->mac >= mac_82559_D101M) {
1132  			config->tno_intr = 0x1;		/* TCO stats enable */
1133  			/* Enable TCO in extended config */
1134  			if (nic->mac >= mac_82551_10) {
1135  				config->byte_count = 0x20; /* extended bytes */
1136  				config->rx_d102_mode = 0x1; /* GMRC for TCO */
1137  			}
1138  		} else {
1139  			config->standard_stat_counter = 0x0;
1140  		}
1141  	}
1142  
1143  	if (netdev->features & NETIF_F_RXALL) {
1144  		config->rx_save_overruns = 0x1; /* 1=save, 0=discard */
1145  		config->rx_save_bad_frames = 0x1;       /* 1=save, 0=discard */
1146  		config->rx_discard_short_frames = 0x0;  /* 1=discard, 0=save */
1147  	}
1148  
1149  	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[00-07]=%8ph\n",
1150  		     c + 0);
1151  	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[08-15]=%8ph\n",
1152  		     c + 8);
1153  	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[16-23]=%8ph\n",
1154  		     c + 16);
1155  	return 0;
1156  }
1157  
1158  /*************************************************************************
1159  *  CPUSaver parameters
1160  *
1161  *  All CPUSaver parameters are 16-bit literals that are part of a
1162  *  "move immediate value" instruction.  By changing the value of
1163  *  the literal in the instruction before the code is loaded, the
1164  *  driver can change the algorithm.
1165  *
1166  *  INTDELAY - This loads the dead-man timer with its initial value.
1167  *    When this timer expires the interrupt is asserted, and the
1168  *    timer is reset each time a new packet is received.  (see
1169  *    BUNDLEMAX below to set the limit on number of chained packets)
1170  *    The current default is 0x600 or 1536.  Experiments show that
1171  *    the value should probably stay within the 0x200 - 0x1000.
1172  *
1173  *  BUNDLEMAX -
1174  *    This sets the maximum number of frames that will be bundled.  In
1175  *    some situations, such as the TCP windowing algorithm, it may be
1176  *    better to limit the growth of the bundle size than let it go as
1177  *    high as it can, because that could cause too much added latency.
1178  *    The default is six, because this is the number of packets in the
1179  *    default TCP window size.  A value of 1 would make CPUSaver indicate
1180  *    an interrupt for every frame received.  If you do not want to put
1181  *    a limit on the bundle size, set this value to xFFFF.
1182  *
1183  *  BUNDLESMALL -
1184  *    This contains a bit-mask describing the minimum size frame that
1185  *    will be bundled.  The default masks the lower 7 bits, which means
1186  *    that any frame less than 128 bytes in length will not be bundled,
1187  *    but will instead immediately generate an interrupt.  This does
1188  *    not affect the current bundle in any way.  Any frame that is 128
1189  *    bytes or large will be bundled normally.  This feature is meant
1190  *    to provide immediate indication of ACK frames in a TCP environment.
1191  *    Customers were seeing poor performance when a machine with CPUSaver
1192  *    enabled was sending but not receiving.  The delay introduced when
1193  *    the ACKs were received was enough to reduce total throughput, because
1194  *    the sender would sit idle until the ACK was finally seen.
1195  *
1196  *    The current default is 0xFF80, which masks out the lower 7 bits.
1197  *    This means that any frame which is x7F (127) bytes or smaller
1198  *    will cause an immediate interrupt.  Because this value must be a
1199  *    bit mask, there are only a few valid values that can be used.  To
1200  *    turn this feature off, the driver can write the value xFFFF to the
1201  *    lower word of this instruction (in the same way that the other
1202  *    parameters are used).  Likewise, a value of 0xF800 (2047) would
1203  *    cause an interrupt to be generated for every frame, because all
1204  *    standard Ethernet frames are <= 2047 bytes in length.
1205  *************************************************************************/
1206  
1207  /* if you wish to disable the ucode functionality, while maintaining the
1208   * workarounds it provides, set the following defines to:
1209   * BUNDLESMALL 0
1210   * BUNDLEMAX 1
1211   * INTDELAY 1
1212   */
1213  #define BUNDLESMALL 1
1214  #define BUNDLEMAX (u16)6
1215  #define INTDELAY (u16)1536 /* 0x600 */
1216  
1217  /* Initialize firmware */
e100_request_firmware(struct nic * nic)1218  static const struct firmware *e100_request_firmware(struct nic *nic)
1219  {
1220  	const char *fw_name;
1221  	const struct firmware *fw = nic->fw;
1222  	u8 timer, bundle, min_size;
1223  	int err = 0;
1224  	bool required = false;
1225  
1226  	/* do not load u-code for ICH devices */
1227  	if (nic->flags & ich)
1228  		return NULL;
1229  
1230  	/* Search for ucode match against h/w revision
1231  	 *
1232  	 * Based on comments in the source code for the FreeBSD fxp
1233  	 * driver, the FIRMWARE_D102E ucode includes both CPUSaver and
1234  	 *
1235  	 *    "fixes for bugs in the B-step hardware (specifically, bugs
1236  	 *     with Inline Receive)."
1237  	 *
1238  	 * So we must fail if it cannot be loaded.
1239  	 *
1240  	 * The other microcode files are only required for the optional
1241  	 * CPUSaver feature.  Nice to have, but no reason to fail.
1242  	 */
1243  	if (nic->mac == mac_82559_D101M) {
1244  		fw_name = FIRMWARE_D101M;
1245  	} else if (nic->mac == mac_82559_D101S) {
1246  		fw_name = FIRMWARE_D101S;
1247  	} else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) {
1248  		fw_name = FIRMWARE_D102E;
1249  		required = true;
1250  	} else { /* No ucode on other devices */
1251  		return NULL;
1252  	}
1253  
1254  	/* If the firmware has not previously been loaded, request a pointer
1255  	 * to it. If it was previously loaded, we are reinitializing the
1256  	 * adapter, possibly in a resume from hibernate, in which case
1257  	 * request_firmware() cannot be used.
1258  	 */
1259  	if (!fw)
1260  		err = request_firmware(&fw, fw_name, &nic->pdev->dev);
1261  
1262  	if (err) {
1263  		if (required) {
1264  			netif_err(nic, probe, nic->netdev,
1265  				  "Failed to load firmware \"%s\": %d\n",
1266  				  fw_name, err);
1267  			return ERR_PTR(err);
1268  		} else {
1269  			netif_info(nic, probe, nic->netdev,
1270  				   "CPUSaver disabled. Needs \"%s\": %d\n",
1271  				   fw_name, err);
1272  			return NULL;
1273  		}
1274  	}
1275  
1276  	/* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1277  	   indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1278  	if (fw->size != UCODE_SIZE * 4 + 3) {
1279  		netif_err(nic, probe, nic->netdev,
1280  			  "Firmware \"%s\" has wrong size %zu\n",
1281  			  fw_name, fw->size);
1282  		release_firmware(fw);
1283  		return ERR_PTR(-EINVAL);
1284  	}
1285  
1286  	/* Read timer, bundle and min_size from end of firmware blob */
1287  	timer = fw->data[UCODE_SIZE * 4];
1288  	bundle = fw->data[UCODE_SIZE * 4 + 1];
1289  	min_size = fw->data[UCODE_SIZE * 4 + 2];
1290  
1291  	if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
1292  	    min_size >= UCODE_SIZE) {
1293  		netif_err(nic, probe, nic->netdev,
1294  			  "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1295  			  fw_name, timer, bundle, min_size);
1296  		release_firmware(fw);
1297  		return ERR_PTR(-EINVAL);
1298  	}
1299  
1300  	/* OK, firmware is validated and ready to use. Save a pointer
1301  	 * to it in the nic */
1302  	nic->fw = fw;
1303  	return fw;
1304  }
1305  
e100_setup_ucode(struct nic * nic,struct cb * cb,struct sk_buff * skb)1306  static int e100_setup_ucode(struct nic *nic, struct cb *cb,
1307  			     struct sk_buff *skb)
1308  {
1309  	const struct firmware *fw = (void *)skb;
1310  	u8 timer, bundle, min_size;
1311  
1312  	/* It's not a real skb; we just abused the fact that e100_exec_cb
1313  	   will pass it through to here... */
1314  	cb->skb = NULL;
1315  
1316  	/* firmware is stored as little endian already */
1317  	memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
1318  
1319  	/* Read timer, bundle and min_size from end of firmware blob */
1320  	timer = fw->data[UCODE_SIZE * 4];
1321  	bundle = fw->data[UCODE_SIZE * 4 + 1];
1322  	min_size = fw->data[UCODE_SIZE * 4 + 2];
1323  
1324  	/* Insert user-tunable settings in cb->u.ucode */
1325  	cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
1326  	cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
1327  	cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
1328  	cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
1329  	cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
1330  	cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
1331  
1332  	cb->command = cpu_to_le16(cb_ucode | cb_el);
1333  	return 0;
1334  }
1335  
e100_load_ucode_wait(struct nic * nic)1336  static inline int e100_load_ucode_wait(struct nic *nic)
1337  {
1338  	const struct firmware *fw;
1339  	int err = 0, counter = 50;
1340  	struct cb *cb = nic->cb_to_clean;
1341  
1342  	fw = e100_request_firmware(nic);
1343  	/* If it's NULL, then no ucode is required */
1344  	if (IS_ERR_OR_NULL(fw))
1345  		return PTR_ERR_OR_ZERO(fw);
1346  
1347  	if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
1348  		netif_err(nic, probe, nic->netdev,
1349  			  "ucode cmd failed with error %d\n", err);
1350  
1351  	/* must restart cuc */
1352  	nic->cuc_cmd = cuc_start;
1353  
1354  	/* wait for completion */
1355  	e100_write_flush(nic);
1356  	udelay(10);
1357  
1358  	/* wait for possibly (ouch) 500ms */
1359  	while (!(cb->status & cpu_to_le16(cb_complete))) {
1360  		msleep(10);
1361  		if (!--counter) break;
1362  	}
1363  
1364  	/* ack any interrupts, something could have been set */
1365  	iowrite8(~0, &nic->csr->scb.stat_ack);
1366  
1367  	/* if the command failed, or is not OK, notify and return */
1368  	if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1369  		netif_err(nic, probe, nic->netdev, "ucode load failed\n");
1370  		err = -EPERM;
1371  	}
1372  
1373  	return err;
1374  }
1375  
e100_setup_iaaddr(struct nic * nic,struct cb * cb,struct sk_buff * skb)1376  static int e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1377  	struct sk_buff *skb)
1378  {
1379  	cb->command = cpu_to_le16(cb_iaaddr);
1380  	memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1381  	return 0;
1382  }
1383  
e100_dump(struct nic * nic,struct cb * cb,struct sk_buff * skb)1384  static int e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1385  {
1386  	cb->command = cpu_to_le16(cb_dump);
1387  	cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1388  		offsetof(struct mem, dump_buf));
1389  	return 0;
1390  }
1391  
e100_phy_check_without_mii(struct nic * nic)1392  static int e100_phy_check_without_mii(struct nic *nic)
1393  {
1394  	u8 phy_type;
1395  	int without_mii;
1396  
1397  	phy_type = (le16_to_cpu(nic->eeprom[eeprom_phy_iface]) >> 8) & 0x0f;
1398  
1399  	switch (phy_type) {
1400  	case NoSuchPhy: /* Non-MII PHY; UNTESTED! */
1401  	case I82503: /* Non-MII PHY; UNTESTED! */
1402  	case S80C24: /* Non-MII PHY; tested and working */
1403  		/* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
1404  		 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
1405  		 * doesn't have a programming interface of any sort.  The
1406  		 * media is sensed automatically based on how the link partner
1407  		 * is configured.  This is, in essence, manual configuration.
1408  		 */
1409  		netif_info(nic, probe, nic->netdev,
1410  			   "found MII-less i82503 or 80c24 or other PHY\n");
1411  
1412  		nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated;
1413  		nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */
1414  
1415  		/* these might be needed for certain MII-less cards...
1416  		 * nic->flags |= ich;
1417  		 * nic->flags |= ich_10h_workaround; */
1418  
1419  		without_mii = 1;
1420  		break;
1421  	default:
1422  		without_mii = 0;
1423  		break;
1424  	}
1425  	return without_mii;
1426  }
1427  
1428  #define NCONFIG_AUTO_SWITCH	0x0080
1429  #define MII_NSC_CONG		MII_RESV1
1430  #define NSC_CONG_ENABLE		0x0100
1431  #define NSC_CONG_TXREADY	0x0400
e100_phy_init(struct nic * nic)1432  static int e100_phy_init(struct nic *nic)
1433  {
1434  	struct net_device *netdev = nic->netdev;
1435  	u32 addr;
1436  	u16 bmcr, stat, id_lo, id_hi, cong;
1437  
1438  	/* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1439  	for (addr = 0; addr < 32; addr++) {
1440  		nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1441  		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1442  		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1443  		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1444  		if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1445  			break;
1446  	}
1447  	if (addr == 32) {
1448  		/* uhoh, no PHY detected: check whether we seem to be some
1449  		 * weird, rare variant which is *known* to not have any MII.
1450  		 * But do this AFTER MII checking only, since this does
1451  		 * lookup of EEPROM values which may easily be unreliable. */
1452  		if (e100_phy_check_without_mii(nic))
1453  			return 0; /* simply return and hope for the best */
1454  		else {
1455  			/* for unknown cases log a fatal error */
1456  			netif_err(nic, hw, nic->netdev,
1457  				  "Failed to locate any known PHY, aborting\n");
1458  			return -EAGAIN;
1459  		}
1460  	} else
1461  		netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1462  			     "phy_addr = %d\n", nic->mii.phy_id);
1463  
1464  	/* Get phy ID */
1465  	id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1466  	id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1467  	nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1468  	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1469  		     "phy ID = 0x%08X\n", nic->phy);
1470  
1471  	/* Select the phy and isolate the rest */
1472  	for (addr = 0; addr < 32; addr++) {
1473  		if (addr != nic->mii.phy_id) {
1474  			mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1475  		} else if (nic->phy != phy_82552_v) {
1476  			bmcr = mdio_read(netdev, addr, MII_BMCR);
1477  			mdio_write(netdev, addr, MII_BMCR,
1478  				bmcr & ~BMCR_ISOLATE);
1479  		}
1480  	}
1481  	/*
1482  	 * Workaround for 82552:
1483  	 * Clear the ISOLATE bit on selected phy_id last (mirrored on all
1484  	 * other phy_id's) using bmcr value from addr discovery loop above.
1485  	 */
1486  	if (nic->phy == phy_82552_v)
1487  		mdio_write(netdev, nic->mii.phy_id, MII_BMCR,
1488  			bmcr & ~BMCR_ISOLATE);
1489  
1490  	/* Handle National tx phys */
1491  #define NCS_PHY_MODEL_MASK	0xFFF0FFFF
1492  	if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1493  		/* Disable congestion control */
1494  		cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1495  		cong |= NSC_CONG_TXREADY;
1496  		cong &= ~NSC_CONG_ENABLE;
1497  		mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1498  	}
1499  
1500  	if (nic->phy == phy_82552_v) {
1501  		u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
1502  
1503  		/* assign special tweaked mdio_ctrl() function */
1504  		nic->mdio_ctrl = mdio_ctrl_phy_82552_v;
1505  
1506  		/* Workaround Si not advertising flow-control during autoneg */
1507  		advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1508  		mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
1509  
1510  		/* Reset for the above changes to take effect */
1511  		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1512  		bmcr |= BMCR_RESET;
1513  		mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
1514  	} else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1515  	   (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1516  	   (le16_to_cpu(nic->eeprom[eeprom_cnfg_mdix]) & eeprom_mdix_enabled))) {
1517  		/* enable/disable MDI/MDI-X auto-switching. */
1518  		mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1519  				nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1520  	}
1521  
1522  	return 0;
1523  }
1524  
e100_hw_init(struct nic * nic)1525  static int e100_hw_init(struct nic *nic)
1526  {
1527  	int err = 0;
1528  
1529  	e100_hw_reset(nic);
1530  
1531  	netif_err(nic, hw, nic->netdev, "e100_hw_init\n");
1532  	if ((err = e100_self_test(nic)))
1533  		return err;
1534  
1535  	if ((err = e100_phy_init(nic)))
1536  		return err;
1537  	if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1538  		return err;
1539  	if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1540  		return err;
1541  	if ((err = e100_load_ucode_wait(nic)))
1542  		return err;
1543  	if ((err = e100_exec_cb(nic, NULL, e100_configure)))
1544  		return err;
1545  	if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1546  		return err;
1547  	if ((err = e100_exec_cmd(nic, cuc_dump_addr,
1548  		nic->dma_addr + offsetof(struct mem, stats))))
1549  		return err;
1550  	if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1551  		return err;
1552  
1553  	e100_disable_irq(nic);
1554  
1555  	return 0;
1556  }
1557  
e100_multi(struct nic * nic,struct cb * cb,struct sk_buff * skb)1558  static int e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1559  {
1560  	struct net_device *netdev = nic->netdev;
1561  	struct netdev_hw_addr *ha;
1562  	u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS);
1563  
1564  	cb->command = cpu_to_le16(cb_multi);
1565  	cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1566  	i = 0;
1567  	netdev_for_each_mc_addr(ha, netdev) {
1568  		if (i == count)
1569  			break;
1570  		memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr,
1571  			ETH_ALEN);
1572  	}
1573  	return 0;
1574  }
1575  
e100_set_multicast_list(struct net_device * netdev)1576  static void e100_set_multicast_list(struct net_device *netdev)
1577  {
1578  	struct nic *nic = netdev_priv(netdev);
1579  
1580  	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1581  		     "mc_count=%d, flags=0x%04X\n",
1582  		     netdev_mc_count(netdev), netdev->flags);
1583  
1584  	if (netdev->flags & IFF_PROMISC)
1585  		nic->flags |= promiscuous;
1586  	else
1587  		nic->flags &= ~promiscuous;
1588  
1589  	if (netdev->flags & IFF_ALLMULTI ||
1590  		netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS)
1591  		nic->flags |= multicast_all;
1592  	else
1593  		nic->flags &= ~multicast_all;
1594  
1595  	e100_exec_cb(nic, NULL, e100_configure);
1596  	e100_exec_cb(nic, NULL, e100_multi);
1597  }
1598  
e100_update_stats(struct nic * nic)1599  static void e100_update_stats(struct nic *nic)
1600  {
1601  	struct net_device *dev = nic->netdev;
1602  	struct net_device_stats *ns = &dev->stats;
1603  	struct stats *s = &nic->mem->stats;
1604  	__le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1605  		(nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
1606  		&s->complete;
1607  
1608  	/* Device's stats reporting may take several microseconds to
1609  	 * complete, so we're always waiting for results of the
1610  	 * previous command. */
1611  
1612  	if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
1613  		*complete = 0;
1614  		nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1615  		nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1616  		ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1617  		ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1618  		ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1619  		ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1620  		ns->collisions += nic->tx_collisions;
1621  		ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1622  			le32_to_cpu(s->tx_lost_crs);
1623  		nic->rx_short_frame_errors +=
1624  			le32_to_cpu(s->rx_short_frame_errors);
1625  		ns->rx_length_errors = nic->rx_short_frame_errors +
1626  			nic->rx_over_length_errors;
1627  		ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1628  		ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1629  		ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1630  		ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1631  		ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1632  		ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1633  			le32_to_cpu(s->rx_alignment_errors) +
1634  			le32_to_cpu(s->rx_short_frame_errors) +
1635  			le32_to_cpu(s->rx_cdt_errors);
1636  		nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1637  		nic->tx_single_collisions +=
1638  			le32_to_cpu(s->tx_single_collisions);
1639  		nic->tx_multiple_collisions +=
1640  			le32_to_cpu(s->tx_multiple_collisions);
1641  		if (nic->mac >= mac_82558_D101_A4) {
1642  			nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1643  			nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1644  			nic->rx_fc_unsupported +=
1645  				le32_to_cpu(s->fc_rcv_unsupported);
1646  			if (nic->mac >= mac_82559_D101M) {
1647  				nic->tx_tco_frames +=
1648  					le16_to_cpu(s->xmt_tco_frames);
1649  				nic->rx_tco_frames +=
1650  					le16_to_cpu(s->rcv_tco_frames);
1651  			}
1652  		}
1653  	}
1654  
1655  
1656  	if (e100_exec_cmd(nic, cuc_dump_reset, 0))
1657  		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1658  			     "exec cuc_dump_reset failed\n");
1659  }
1660  
e100_adjust_adaptive_ifs(struct nic * nic,int speed,int duplex)1661  static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1662  {
1663  	/* Adjust inter-frame-spacing (IFS) between two transmits if
1664  	 * we're getting collisions on a half-duplex connection. */
1665  
1666  	if (duplex == DUPLEX_HALF) {
1667  		u32 prev = nic->adaptive_ifs;
1668  		u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1669  
1670  		if ((nic->tx_frames / 32 < nic->tx_collisions) &&
1671  		   (nic->tx_frames > min_frames)) {
1672  			if (nic->adaptive_ifs < 60)
1673  				nic->adaptive_ifs += 5;
1674  		} else if (nic->tx_frames < min_frames) {
1675  			if (nic->adaptive_ifs >= 5)
1676  				nic->adaptive_ifs -= 5;
1677  		}
1678  		if (nic->adaptive_ifs != prev)
1679  			e100_exec_cb(nic, NULL, e100_configure);
1680  	}
1681  }
1682  
e100_watchdog(struct timer_list * t)1683  static void e100_watchdog(struct timer_list *t)
1684  {
1685  	struct nic *nic = from_timer(nic, t, watchdog);
1686  	struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET };
1687  	u32 speed;
1688  
1689  	netif_printk(nic, timer, KERN_DEBUG, nic->netdev,
1690  		     "right now = %ld\n", jiffies);
1691  
1692  	/* mii library handles link maintenance tasks */
1693  
1694  	mii_ethtool_gset(&nic->mii, &cmd);
1695  	speed = ethtool_cmd_speed(&cmd);
1696  
1697  	if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1698  		netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n",
1699  			    speed == SPEED_100 ? 100 : 10,
1700  			    cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
1701  	} else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1702  		netdev_info(nic->netdev, "NIC Link is Down\n");
1703  	}
1704  
1705  	mii_check_link(&nic->mii);
1706  
1707  	/* Software generated interrupt to recover from (rare) Rx
1708  	 * allocation failure.
1709  	 * Unfortunately have to use a spinlock to not re-enable interrupts
1710  	 * accidentally, due to hardware that shares a register between the
1711  	 * interrupt mask bit and the SW Interrupt generation bit */
1712  	spin_lock_irq(&nic->cmd_lock);
1713  	iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1714  	e100_write_flush(nic);
1715  	spin_unlock_irq(&nic->cmd_lock);
1716  
1717  	e100_update_stats(nic);
1718  	e100_adjust_adaptive_ifs(nic, speed, cmd.duplex);
1719  
1720  	if (nic->mac <= mac_82557_D100_C)
1721  		/* Issue a multicast command to workaround a 557 lock up */
1722  		e100_set_multicast_list(nic->netdev);
1723  
1724  	if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF)
1725  		/* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1726  		nic->flags |= ich_10h_workaround;
1727  	else
1728  		nic->flags &= ~ich_10h_workaround;
1729  
1730  	mod_timer(&nic->watchdog,
1731  		  round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
1732  }
1733  
e100_xmit_prepare(struct nic * nic,struct cb * cb,struct sk_buff * skb)1734  static int e100_xmit_prepare(struct nic *nic, struct cb *cb,
1735  	struct sk_buff *skb)
1736  {
1737  	dma_addr_t dma_addr;
1738  	cb->command = nic->tx_command;
1739  
1740  	dma_addr = dma_map_single(&nic->pdev->dev, skb->data, skb->len,
1741  				  DMA_TO_DEVICE);
1742  	/* If we can't map the skb, have the upper layer try later */
1743  	if (dma_mapping_error(&nic->pdev->dev, dma_addr))
1744  		return -ENOMEM;
1745  
1746  	/*
1747  	 * Use the last 4 bytes of the SKB payload packet as the CRC, used for
1748  	 * testing, ie sending frames with bad CRC.
1749  	 */
1750  	if (unlikely(skb->no_fcs))
1751  		cb->command |= cpu_to_le16(cb_tx_nc);
1752  	else
1753  		cb->command &= ~cpu_to_le16(cb_tx_nc);
1754  
1755  	/* interrupt every 16 packets regardless of delay */
1756  	if ((nic->cbs_avail & ~15) == nic->cbs_avail)
1757  		cb->command |= cpu_to_le16(cb_i);
1758  	cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1759  	cb->u.tcb.tcb_byte_count = 0;
1760  	cb->u.tcb.threshold = nic->tx_threshold;
1761  	cb->u.tcb.tbd_count = 1;
1762  	cb->u.tcb.tbd.buf_addr = cpu_to_le32(dma_addr);
1763  	cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1764  	skb_tx_timestamp(skb);
1765  	return 0;
1766  }
1767  
e100_xmit_frame(struct sk_buff * skb,struct net_device * netdev)1768  static netdev_tx_t e100_xmit_frame(struct sk_buff *skb,
1769  				   struct net_device *netdev)
1770  {
1771  	struct nic *nic = netdev_priv(netdev);
1772  	int err;
1773  
1774  	if (nic->flags & ich_10h_workaround) {
1775  		/* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1776  		   Issue a NOP command followed by a 1us delay before
1777  		   issuing the Tx command. */
1778  		if (e100_exec_cmd(nic, cuc_nop, 0))
1779  			netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1780  				     "exec cuc_nop failed\n");
1781  		udelay(1);
1782  	}
1783  
1784  	err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1785  
1786  	switch (err) {
1787  	case -ENOSPC:
1788  		/* We queued the skb, but now we're out of space. */
1789  		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1790  			     "No space for CB\n");
1791  		netif_stop_queue(netdev);
1792  		break;
1793  	case -ENOMEM:
1794  		/* This is a hard error - log it. */
1795  		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1796  			     "Out of Tx resources, returning skb\n");
1797  		netif_stop_queue(netdev);
1798  		return NETDEV_TX_BUSY;
1799  	}
1800  
1801  	return NETDEV_TX_OK;
1802  }
1803  
e100_tx_clean(struct nic * nic)1804  static int e100_tx_clean(struct nic *nic)
1805  {
1806  	struct net_device *dev = nic->netdev;
1807  	struct cb *cb;
1808  	int tx_cleaned = 0;
1809  
1810  	spin_lock(&nic->cb_lock);
1811  
1812  	/* Clean CBs marked complete */
1813  	for (cb = nic->cb_to_clean;
1814  	    cb->status & cpu_to_le16(cb_complete);
1815  	    cb = nic->cb_to_clean = cb->next) {
1816  		dma_rmb(); /* read skb after status */
1817  		netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev,
1818  			     "cb[%d]->status = 0x%04X\n",
1819  			     (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1820  			     cb->status);
1821  
1822  		if (likely(cb->skb != NULL)) {
1823  			dev->stats.tx_packets++;
1824  			dev->stats.tx_bytes += cb->skb->len;
1825  
1826  			dma_unmap_single(&nic->pdev->dev,
1827  					 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1828  					 le16_to_cpu(cb->u.tcb.tbd.size),
1829  					 DMA_TO_DEVICE);
1830  			dev_kfree_skb_any(cb->skb);
1831  			cb->skb = NULL;
1832  			tx_cleaned = 1;
1833  		}
1834  		cb->status = 0;
1835  		nic->cbs_avail++;
1836  	}
1837  
1838  	spin_unlock(&nic->cb_lock);
1839  
1840  	/* Recover from running out of Tx resources in xmit_frame */
1841  	if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1842  		netif_wake_queue(nic->netdev);
1843  
1844  	return tx_cleaned;
1845  }
1846  
e100_clean_cbs(struct nic * nic)1847  static void e100_clean_cbs(struct nic *nic)
1848  {
1849  	if (nic->cbs) {
1850  		while (nic->cbs_avail != nic->params.cbs.count) {
1851  			struct cb *cb = nic->cb_to_clean;
1852  			if (cb->skb) {
1853  				dma_unmap_single(&nic->pdev->dev,
1854  						 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1855  						 le16_to_cpu(cb->u.tcb.tbd.size),
1856  						 DMA_TO_DEVICE);
1857  				dev_kfree_skb(cb->skb);
1858  			}
1859  			nic->cb_to_clean = nic->cb_to_clean->next;
1860  			nic->cbs_avail++;
1861  		}
1862  		dma_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr);
1863  		nic->cbs = NULL;
1864  		nic->cbs_avail = 0;
1865  	}
1866  	nic->cuc_cmd = cuc_start;
1867  	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1868  		nic->cbs;
1869  }
1870  
e100_alloc_cbs(struct nic * nic)1871  static int e100_alloc_cbs(struct nic *nic)
1872  {
1873  	struct cb *cb;
1874  	unsigned int i, count = nic->params.cbs.count;
1875  
1876  	nic->cuc_cmd = cuc_start;
1877  	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1878  	nic->cbs_avail = 0;
1879  
1880  	nic->cbs = dma_pool_zalloc(nic->cbs_pool, GFP_KERNEL,
1881  				   &nic->cbs_dma_addr);
1882  	if (!nic->cbs)
1883  		return -ENOMEM;
1884  
1885  	for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
1886  		cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1887  		cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1888  
1889  		cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1890  		cb->link = cpu_to_le32(nic->cbs_dma_addr +
1891  			((i+1) % count) * sizeof(struct cb));
1892  	}
1893  
1894  	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1895  	nic->cbs_avail = count;
1896  
1897  	return 0;
1898  }
1899  
e100_start_receiver(struct nic * nic,struct rx * rx)1900  static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1901  {
1902  	if (!nic->rxs) return;
1903  	if (RU_SUSPENDED != nic->ru_running) return;
1904  
1905  	/* handle init time starts */
1906  	if (!rx) rx = nic->rxs;
1907  
1908  	/* (Re)start RU if suspended or idle and RFA is non-NULL */
1909  	if (rx->skb) {
1910  		e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1911  		nic->ru_running = RU_RUNNING;
1912  	}
1913  }
1914  
1915  #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
e100_rx_alloc_skb(struct nic * nic,struct rx * rx)1916  static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1917  {
1918  	if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN)))
1919  		return -ENOMEM;
1920  
1921  	/* Init, and map the RFD. */
1922  	skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1923  	rx->dma_addr = dma_map_single(&nic->pdev->dev, rx->skb->data,
1924  				      RFD_BUF_LEN, DMA_BIDIRECTIONAL);
1925  
1926  	if (dma_mapping_error(&nic->pdev->dev, rx->dma_addr)) {
1927  		dev_kfree_skb_any(rx->skb);
1928  		rx->skb = NULL;
1929  		rx->dma_addr = 0;
1930  		return -ENOMEM;
1931  	}
1932  
1933  	/* Link the RFD to end of RFA by linking previous RFD to
1934  	 * this one.  We are safe to touch the previous RFD because
1935  	 * it is protected by the before last buffer's el bit being set */
1936  	if (rx->prev->skb) {
1937  		struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1938  		put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
1939  		dma_sync_single_for_device(&nic->pdev->dev,
1940  					   rx->prev->dma_addr,
1941  					   sizeof(struct rfd),
1942  					   DMA_BIDIRECTIONAL);
1943  	}
1944  
1945  	return 0;
1946  }
1947  
e100_rx_indicate(struct nic * nic,struct rx * rx,unsigned int * work_done,unsigned int work_to_do)1948  static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1949  	unsigned int *work_done, unsigned int work_to_do)
1950  {
1951  	struct net_device *dev = nic->netdev;
1952  	struct sk_buff *skb = rx->skb;
1953  	struct rfd *rfd = (struct rfd *)skb->data;
1954  	u16 rfd_status, actual_size;
1955  	u16 fcs_pad = 0;
1956  
1957  	if (unlikely(work_done && *work_done >= work_to_do))
1958  		return -EAGAIN;
1959  
1960  	/* Need to sync before taking a peek at cb_complete bit */
1961  	dma_sync_single_for_cpu(&nic->pdev->dev, rx->dma_addr,
1962  				sizeof(struct rfd), DMA_BIDIRECTIONAL);
1963  	rfd_status = le16_to_cpu(rfd->status);
1964  
1965  	netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev,
1966  		     "status=0x%04X\n", rfd_status);
1967  	dma_rmb(); /* read size after status bit */
1968  
1969  	/* If data isn't ready, nothing to indicate */
1970  	if (unlikely(!(rfd_status & cb_complete))) {
1971  		/* If the next buffer has the el bit, but we think the receiver
1972  		 * is still running, check to see if it really stopped while
1973  		 * we had interrupts off.
1974  		 * This allows for a fast restart without re-enabling
1975  		 * interrupts */
1976  		if ((le16_to_cpu(rfd->command) & cb_el) &&
1977  		    (RU_RUNNING == nic->ru_running))
1978  
1979  			if (ioread8(&nic->csr->scb.status) & rus_no_res)
1980  				nic->ru_running = RU_SUSPENDED;
1981  		dma_sync_single_for_device(&nic->pdev->dev, rx->dma_addr,
1982  					   sizeof(struct rfd),
1983  					   DMA_FROM_DEVICE);
1984  		return -ENODATA;
1985  	}
1986  
1987  	/* Get actual data size */
1988  	if (unlikely(dev->features & NETIF_F_RXFCS))
1989  		fcs_pad = 4;
1990  	actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1991  	if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1992  		actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1993  
1994  	/* Get data */
1995  	dma_unmap_single(&nic->pdev->dev, rx->dma_addr, RFD_BUF_LEN,
1996  			 DMA_BIDIRECTIONAL);
1997  
1998  	/* If this buffer has the el bit, but we think the receiver
1999  	 * is still running, check to see if it really stopped while
2000  	 * we had interrupts off.
2001  	 * This allows for a fast restart without re-enabling interrupts.
2002  	 * This can happen when the RU sees the size change but also sees
2003  	 * the el bit set. */
2004  	if ((le16_to_cpu(rfd->command) & cb_el) &&
2005  	    (RU_RUNNING == nic->ru_running)) {
2006  
2007  	    if (ioread8(&nic->csr->scb.status) & rus_no_res)
2008  		nic->ru_running = RU_SUSPENDED;
2009  	}
2010  
2011  	/* Pull off the RFD and put the actual data (minus eth hdr) */
2012  	skb_reserve(skb, sizeof(struct rfd));
2013  	skb_put(skb, actual_size);
2014  	skb->protocol = eth_type_trans(skb, nic->netdev);
2015  
2016  	/* If we are receiving all frames, then don't bother
2017  	 * checking for errors.
2018  	 */
2019  	if (unlikely(dev->features & NETIF_F_RXALL)) {
2020  		if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad)
2021  			/* Received oversized frame, but keep it. */
2022  			nic->rx_over_length_errors++;
2023  		goto process_skb;
2024  	}
2025  
2026  	if (unlikely(!(rfd_status & cb_ok))) {
2027  		/* Don't indicate if hardware indicates errors */
2028  		dev_kfree_skb_any(skb);
2029  	} else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) {
2030  		/* Don't indicate oversized frames */
2031  		nic->rx_over_length_errors++;
2032  		dev_kfree_skb_any(skb);
2033  	} else {
2034  process_skb:
2035  		dev->stats.rx_packets++;
2036  		dev->stats.rx_bytes += (actual_size - fcs_pad);
2037  		netif_receive_skb(skb);
2038  		if (work_done)
2039  			(*work_done)++;
2040  	}
2041  
2042  	rx->skb = NULL;
2043  
2044  	return 0;
2045  }
2046  
e100_rx_clean(struct nic * nic,unsigned int * work_done,unsigned int work_to_do)2047  static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
2048  	unsigned int work_to_do)
2049  {
2050  	struct rx *rx;
2051  	int restart_required = 0, err = 0;
2052  	struct rx *old_before_last_rx, *new_before_last_rx;
2053  	struct rfd *old_before_last_rfd, *new_before_last_rfd;
2054  
2055  	/* Indicate newly arrived packets */
2056  	for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
2057  		err = e100_rx_indicate(nic, rx, work_done, work_to_do);
2058  		/* Hit quota or no more to clean */
2059  		if (-EAGAIN == err || -ENODATA == err)
2060  			break;
2061  	}
2062  
2063  
2064  	/* On EAGAIN, hit quota so have more work to do, restart once
2065  	 * cleanup is complete.
2066  	 * Else, are we already rnr? then pay attention!!! this ensures that
2067  	 * the state machine progression never allows a start with a
2068  	 * partially cleaned list, avoiding a race between hardware
2069  	 * and rx_to_clean when in NAPI mode */
2070  	if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
2071  		restart_required = 1;
2072  
2073  	old_before_last_rx = nic->rx_to_use->prev->prev;
2074  	old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
2075  
2076  	/* Alloc new skbs to refill list */
2077  	for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
2078  		if (unlikely(e100_rx_alloc_skb(nic, rx)))
2079  			break; /* Better luck next time (see watchdog) */
2080  	}
2081  
2082  	new_before_last_rx = nic->rx_to_use->prev->prev;
2083  	if (new_before_last_rx != old_before_last_rx) {
2084  		/* Set the el-bit on the buffer that is before the last buffer.
2085  		 * This lets us update the next pointer on the last buffer
2086  		 * without worrying about hardware touching it.
2087  		 * We set the size to 0 to prevent hardware from touching this
2088  		 * buffer.
2089  		 * When the hardware hits the before last buffer with el-bit
2090  		 * and size of 0, it will RNR interrupt, the RUS will go into
2091  		 * the No Resources state.  It will not complete nor write to
2092  		 * this buffer. */
2093  		new_before_last_rfd =
2094  			(struct rfd *)new_before_last_rx->skb->data;
2095  		new_before_last_rfd->size = 0;
2096  		new_before_last_rfd->command |= cpu_to_le16(cb_el);
2097  		dma_sync_single_for_device(&nic->pdev->dev,
2098  					   new_before_last_rx->dma_addr,
2099  					   sizeof(struct rfd),
2100  					   DMA_BIDIRECTIONAL);
2101  
2102  		/* Now that we have a new stopping point, we can clear the old
2103  		 * stopping point.  We must sync twice to get the proper
2104  		 * ordering on the hardware side of things. */
2105  		old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
2106  		dma_sync_single_for_device(&nic->pdev->dev,
2107  					   old_before_last_rx->dma_addr,
2108  					   sizeof(struct rfd),
2109  					   DMA_BIDIRECTIONAL);
2110  		old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN
2111  							+ ETH_FCS_LEN);
2112  		dma_sync_single_for_device(&nic->pdev->dev,
2113  					   old_before_last_rx->dma_addr,
2114  					   sizeof(struct rfd),
2115  					   DMA_BIDIRECTIONAL);
2116  	}
2117  
2118  	if (restart_required) {
2119  		// ack the rnr?
2120  		iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
2121  		e100_start_receiver(nic, nic->rx_to_clean);
2122  		if (work_done)
2123  			(*work_done)++;
2124  	}
2125  }
2126  
e100_rx_clean_list(struct nic * nic)2127  static void e100_rx_clean_list(struct nic *nic)
2128  {
2129  	struct rx *rx;
2130  	unsigned int i, count = nic->params.rfds.count;
2131  
2132  	nic->ru_running = RU_UNINITIALIZED;
2133  
2134  	if (nic->rxs) {
2135  		for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2136  			if (rx->skb) {
2137  				dma_unmap_single(&nic->pdev->dev,
2138  						 rx->dma_addr, RFD_BUF_LEN,
2139  						 DMA_BIDIRECTIONAL);
2140  				dev_kfree_skb(rx->skb);
2141  			}
2142  		}
2143  		kfree(nic->rxs);
2144  		nic->rxs = NULL;
2145  	}
2146  
2147  	nic->rx_to_use = nic->rx_to_clean = NULL;
2148  }
2149  
e100_rx_alloc_list(struct nic * nic)2150  static int e100_rx_alloc_list(struct nic *nic)
2151  {
2152  	struct rx *rx;
2153  	unsigned int i, count = nic->params.rfds.count;
2154  	struct rfd *before_last;
2155  
2156  	nic->rx_to_use = nic->rx_to_clean = NULL;
2157  	nic->ru_running = RU_UNINITIALIZED;
2158  
2159  	if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_KERNEL)))
2160  		return -ENOMEM;
2161  
2162  	for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2163  		rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
2164  		rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
2165  		if (e100_rx_alloc_skb(nic, rx)) {
2166  			e100_rx_clean_list(nic);
2167  			return -ENOMEM;
2168  		}
2169  	}
2170  	/* Set the el-bit on the buffer that is before the last buffer.
2171  	 * This lets us update the next pointer on the last buffer without
2172  	 * worrying about hardware touching it.
2173  	 * We set the size to 0 to prevent hardware from touching this buffer.
2174  	 * When the hardware hits the before last buffer with el-bit and size
2175  	 * of 0, it will RNR interrupt, the RU will go into the No Resources
2176  	 * state.  It will not complete nor write to this buffer. */
2177  	rx = nic->rxs->prev->prev;
2178  	before_last = (struct rfd *)rx->skb->data;
2179  	before_last->command |= cpu_to_le16(cb_el);
2180  	before_last->size = 0;
2181  	dma_sync_single_for_device(&nic->pdev->dev, rx->dma_addr,
2182  				   sizeof(struct rfd), DMA_BIDIRECTIONAL);
2183  
2184  	nic->rx_to_use = nic->rx_to_clean = nic->rxs;
2185  	nic->ru_running = RU_SUSPENDED;
2186  
2187  	return 0;
2188  }
2189  
e100_intr(int irq,void * dev_id)2190  static irqreturn_t e100_intr(int irq, void *dev_id)
2191  {
2192  	struct net_device *netdev = dev_id;
2193  	struct nic *nic = netdev_priv(netdev);
2194  	u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
2195  
2196  	netif_printk(nic, intr, KERN_DEBUG, nic->netdev,
2197  		     "stat_ack = 0x%02X\n", stat_ack);
2198  
2199  	if (stat_ack == stat_ack_not_ours ||	/* Not our interrupt */
2200  	   stat_ack == stat_ack_not_present)	/* Hardware is ejected */
2201  		return IRQ_NONE;
2202  
2203  	/* Ack interrupt(s) */
2204  	iowrite8(stat_ack, &nic->csr->scb.stat_ack);
2205  
2206  	/* We hit Receive No Resource (RNR); restart RU after cleaning */
2207  	if (stat_ack & stat_ack_rnr)
2208  		nic->ru_running = RU_SUSPENDED;
2209  
2210  	if (likely(napi_schedule_prep(&nic->napi))) {
2211  		e100_disable_irq(nic);
2212  		__napi_schedule(&nic->napi);
2213  	}
2214  
2215  	return IRQ_HANDLED;
2216  }
2217  
e100_poll(struct napi_struct * napi,int budget)2218  static int e100_poll(struct napi_struct *napi, int budget)
2219  {
2220  	struct nic *nic = container_of(napi, struct nic, napi);
2221  	unsigned int work_done = 0;
2222  
2223  	e100_rx_clean(nic, &work_done, budget);
2224  	e100_tx_clean(nic);
2225  
2226  	/* If budget fully consumed, continue polling */
2227  	if (work_done == budget)
2228  		return budget;
2229  
2230  	/* only re-enable interrupt if stack agrees polling is really done */
2231  	if (likely(napi_complete_done(napi, work_done)))
2232  		e100_enable_irq(nic);
2233  
2234  	return work_done;
2235  }
2236  
2237  #ifdef CONFIG_NET_POLL_CONTROLLER
e100_netpoll(struct net_device * netdev)2238  static void e100_netpoll(struct net_device *netdev)
2239  {
2240  	struct nic *nic = netdev_priv(netdev);
2241  
2242  	e100_disable_irq(nic);
2243  	e100_intr(nic->pdev->irq, netdev);
2244  	e100_tx_clean(nic);
2245  	e100_enable_irq(nic);
2246  }
2247  #endif
2248  
e100_set_mac_address(struct net_device * netdev,void * p)2249  static int e100_set_mac_address(struct net_device *netdev, void *p)
2250  {
2251  	struct nic *nic = netdev_priv(netdev);
2252  	struct sockaddr *addr = p;
2253  
2254  	if (!is_valid_ether_addr(addr->sa_data))
2255  		return -EADDRNOTAVAIL;
2256  
2257  	eth_hw_addr_set(netdev, addr->sa_data);
2258  	e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2259  
2260  	return 0;
2261  }
2262  
e100_asf(struct nic * nic)2263  static int e100_asf(struct nic *nic)
2264  {
2265  	/* ASF can be enabled from eeprom */
2266  	return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2267  	   (le16_to_cpu(nic->eeprom[eeprom_config_asf]) & eeprom_asf) &&
2268  	   !(le16_to_cpu(nic->eeprom[eeprom_config_asf]) & eeprom_gcl) &&
2269  	   ((le16_to_cpu(nic->eeprom[eeprom_smbus_addr]) & 0xFF) != 0xFE);
2270  }
2271  
e100_up(struct nic * nic)2272  static int e100_up(struct nic *nic)
2273  {
2274  	int err;
2275  
2276  	if ((err = e100_rx_alloc_list(nic)))
2277  		return err;
2278  	if ((err = e100_alloc_cbs(nic)))
2279  		goto err_rx_clean_list;
2280  	if ((err = e100_hw_init(nic)))
2281  		goto err_clean_cbs;
2282  	e100_set_multicast_list(nic->netdev);
2283  	e100_start_receiver(nic, NULL);
2284  	mod_timer(&nic->watchdog, jiffies);
2285  	if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
2286  		nic->netdev->name, nic->netdev)))
2287  		goto err_no_irq;
2288  	netif_wake_queue(nic->netdev);
2289  	napi_enable(&nic->napi);
2290  	/* enable ints _after_ enabling poll, preventing a race between
2291  	 * disable ints+schedule */
2292  	e100_enable_irq(nic);
2293  	return 0;
2294  
2295  err_no_irq:
2296  	del_timer_sync(&nic->watchdog);
2297  err_clean_cbs:
2298  	e100_clean_cbs(nic);
2299  err_rx_clean_list:
2300  	e100_rx_clean_list(nic);
2301  	return err;
2302  }
2303  
e100_down(struct nic * nic)2304  static void e100_down(struct nic *nic)
2305  {
2306  	/* wait here for poll to complete */
2307  	napi_disable(&nic->napi);
2308  	netif_stop_queue(nic->netdev);
2309  	e100_hw_reset(nic);
2310  	free_irq(nic->pdev->irq, nic->netdev);
2311  	del_timer_sync(&nic->watchdog);
2312  	netif_carrier_off(nic->netdev);
2313  	e100_clean_cbs(nic);
2314  	e100_rx_clean_list(nic);
2315  }
2316  
e100_tx_timeout(struct net_device * netdev,unsigned int txqueue)2317  static void e100_tx_timeout(struct net_device *netdev, unsigned int txqueue)
2318  {
2319  	struct nic *nic = netdev_priv(netdev);
2320  
2321  	/* Reset outside of interrupt context, to avoid request_irq
2322  	 * in interrupt context */
2323  	schedule_work(&nic->tx_timeout_task);
2324  }
2325  
e100_tx_timeout_task(struct work_struct * work)2326  static void e100_tx_timeout_task(struct work_struct *work)
2327  {
2328  	struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2329  	struct net_device *netdev = nic->netdev;
2330  
2331  	netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
2332  		     "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status));
2333  
2334  	rtnl_lock();
2335  	if (netif_running(netdev)) {
2336  		e100_down(netdev_priv(netdev));
2337  		e100_up(netdev_priv(netdev));
2338  	}
2339  	rtnl_unlock();
2340  }
2341  
e100_loopback_test(struct nic * nic,enum loopback loopback_mode)2342  static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2343  {
2344  	int err;
2345  	struct sk_buff *skb;
2346  
2347  	/* Use driver resources to perform internal MAC or PHY
2348  	 * loopback test.  A single packet is prepared and transmitted
2349  	 * in loopback mode, and the test passes if the received
2350  	 * packet compares byte-for-byte to the transmitted packet. */
2351  
2352  	if ((err = e100_rx_alloc_list(nic)))
2353  		return err;
2354  	if ((err = e100_alloc_cbs(nic)))
2355  		goto err_clean_rx;
2356  
2357  	/* ICH PHY loopback is broken so do MAC loopback instead */
2358  	if (nic->flags & ich && loopback_mode == lb_phy)
2359  		loopback_mode = lb_mac;
2360  
2361  	nic->loopback = loopback_mode;
2362  	if ((err = e100_hw_init(nic)))
2363  		goto err_loopback_none;
2364  
2365  	if (loopback_mode == lb_phy)
2366  		mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2367  			BMCR_LOOPBACK);
2368  
2369  	e100_start_receiver(nic, NULL);
2370  
2371  	if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
2372  		err = -ENOMEM;
2373  		goto err_loopback_none;
2374  	}
2375  	skb_put(skb, ETH_DATA_LEN);
2376  	memset(skb->data, 0xFF, ETH_DATA_LEN);
2377  	e100_xmit_frame(skb, nic->netdev);
2378  
2379  	msleep(10);
2380  
2381  	dma_sync_single_for_cpu(&nic->pdev->dev, nic->rx_to_clean->dma_addr,
2382  				RFD_BUF_LEN, DMA_BIDIRECTIONAL);
2383  
2384  	if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2385  	   skb->data, ETH_DATA_LEN))
2386  		err = -EAGAIN;
2387  
2388  err_loopback_none:
2389  	mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2390  	nic->loopback = lb_none;
2391  	e100_clean_cbs(nic);
2392  	e100_hw_reset(nic);
2393  err_clean_rx:
2394  	e100_rx_clean_list(nic);
2395  	return err;
2396  }
2397  
2398  #define MII_LED_CONTROL	0x1B
2399  #define E100_82552_LED_OVERRIDE 0x19
2400  #define E100_82552_LED_ON       0x000F /* LEDTX and LED_RX both on */
2401  #define E100_82552_LED_OFF      0x000A /* LEDTX and LED_RX both off */
2402  
e100_get_link_ksettings(struct net_device * netdev,struct ethtool_link_ksettings * cmd)2403  static int e100_get_link_ksettings(struct net_device *netdev,
2404  				   struct ethtool_link_ksettings *cmd)
2405  {
2406  	struct nic *nic = netdev_priv(netdev);
2407  
2408  	mii_ethtool_get_link_ksettings(&nic->mii, cmd);
2409  
2410  	return 0;
2411  }
2412  
e100_set_link_ksettings(struct net_device * netdev,const struct ethtool_link_ksettings * cmd)2413  static int e100_set_link_ksettings(struct net_device *netdev,
2414  				   const struct ethtool_link_ksettings *cmd)
2415  {
2416  	struct nic *nic = netdev_priv(netdev);
2417  	int err;
2418  
2419  	mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2420  	err = mii_ethtool_set_link_ksettings(&nic->mii, cmd);
2421  	e100_exec_cb(nic, NULL, e100_configure);
2422  
2423  	return err;
2424  }
2425  
e100_get_drvinfo(struct net_device * netdev,struct ethtool_drvinfo * info)2426  static void e100_get_drvinfo(struct net_device *netdev,
2427  	struct ethtool_drvinfo *info)
2428  {
2429  	struct nic *nic = netdev_priv(netdev);
2430  	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
2431  	strscpy(info->bus_info, pci_name(nic->pdev),
2432  		sizeof(info->bus_info));
2433  }
2434  
2435  #define E100_PHY_REGS 0x1D
e100_get_regs_len(struct net_device * netdev)2436  static int e100_get_regs_len(struct net_device *netdev)
2437  {
2438  	struct nic *nic = netdev_priv(netdev);
2439  
2440  	/* We know the number of registers, and the size of the dump buffer.
2441  	 * Calculate the total size in bytes.
2442  	 */
2443  	return (1 + E100_PHY_REGS) * sizeof(u32) + sizeof(nic->mem->dump_buf);
2444  }
2445  
e100_get_regs(struct net_device * netdev,struct ethtool_regs * regs,void * p)2446  static void e100_get_regs(struct net_device *netdev,
2447  	struct ethtool_regs *regs, void *p)
2448  {
2449  	struct nic *nic = netdev_priv(netdev);
2450  	u32 *buff = p;
2451  	int i;
2452  
2453  	regs->version = (1 << 24) | nic->pdev->revision;
2454  	buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2455  		ioread8(&nic->csr->scb.cmd_lo) << 16 |
2456  		ioread16(&nic->csr->scb.status);
2457  	for (i = 0; i < E100_PHY_REGS; i++)
2458  		/* Note that we read the registers in reverse order. This
2459  		 * ordering is the ABI apparently used by ethtool and other
2460  		 * applications.
2461  		 */
2462  		buff[1 + i] = mdio_read(netdev, nic->mii.phy_id,
2463  					E100_PHY_REGS - 1 - i);
2464  	memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2465  	e100_exec_cb(nic, NULL, e100_dump);
2466  	msleep(10);
2467  	memcpy(&buff[1 + E100_PHY_REGS], nic->mem->dump_buf,
2468  	       sizeof(nic->mem->dump_buf));
2469  }
2470  
e100_get_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)2471  static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2472  {
2473  	struct nic *nic = netdev_priv(netdev);
2474  	wol->supported = (nic->mac >= mac_82558_D101_A4) ?  WAKE_MAGIC : 0;
2475  	wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2476  }
2477  
e100_set_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)2478  static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2479  {
2480  	struct nic *nic = netdev_priv(netdev);
2481  
2482  	if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
2483  	    !device_can_wakeup(&nic->pdev->dev))
2484  		return -EOPNOTSUPP;
2485  
2486  	if (wol->wolopts)
2487  		nic->flags |= wol_magic;
2488  	else
2489  		nic->flags &= ~wol_magic;
2490  
2491  	device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
2492  
2493  	e100_exec_cb(nic, NULL, e100_configure);
2494  
2495  	return 0;
2496  }
2497  
e100_get_msglevel(struct net_device * netdev)2498  static u32 e100_get_msglevel(struct net_device *netdev)
2499  {
2500  	struct nic *nic = netdev_priv(netdev);
2501  	return nic->msg_enable;
2502  }
2503  
e100_set_msglevel(struct net_device * netdev,u32 value)2504  static void e100_set_msglevel(struct net_device *netdev, u32 value)
2505  {
2506  	struct nic *nic = netdev_priv(netdev);
2507  	nic->msg_enable = value;
2508  }
2509  
e100_nway_reset(struct net_device * netdev)2510  static int e100_nway_reset(struct net_device *netdev)
2511  {
2512  	struct nic *nic = netdev_priv(netdev);
2513  	return mii_nway_restart(&nic->mii);
2514  }
2515  
e100_get_link(struct net_device * netdev)2516  static u32 e100_get_link(struct net_device *netdev)
2517  {
2518  	struct nic *nic = netdev_priv(netdev);
2519  	return mii_link_ok(&nic->mii);
2520  }
2521  
e100_get_eeprom_len(struct net_device * netdev)2522  static int e100_get_eeprom_len(struct net_device *netdev)
2523  {
2524  	struct nic *nic = netdev_priv(netdev);
2525  	return nic->eeprom_wc << 1;
2526  }
2527  
2528  #define E100_EEPROM_MAGIC	0x1234
e100_get_eeprom(struct net_device * netdev,struct ethtool_eeprom * eeprom,u8 * bytes)2529  static int e100_get_eeprom(struct net_device *netdev,
2530  	struct ethtool_eeprom *eeprom, u8 *bytes)
2531  {
2532  	struct nic *nic = netdev_priv(netdev);
2533  
2534  	eeprom->magic = E100_EEPROM_MAGIC;
2535  	memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2536  
2537  	return 0;
2538  }
2539  
e100_set_eeprom(struct net_device * netdev,struct ethtool_eeprom * eeprom,u8 * bytes)2540  static int e100_set_eeprom(struct net_device *netdev,
2541  	struct ethtool_eeprom *eeprom, u8 *bytes)
2542  {
2543  	struct nic *nic = netdev_priv(netdev);
2544  
2545  	if (eeprom->magic != E100_EEPROM_MAGIC)
2546  		return -EINVAL;
2547  
2548  	memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2549  
2550  	return e100_eeprom_save(nic, eeprom->offset >> 1,
2551  		(eeprom->len >> 1) + 1);
2552  }
2553  
e100_get_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)2554  static void e100_get_ringparam(struct net_device *netdev,
2555  			       struct ethtool_ringparam *ring,
2556  			       struct kernel_ethtool_ringparam *kernel_ring,
2557  			       struct netlink_ext_ack *extack)
2558  {
2559  	struct nic *nic = netdev_priv(netdev);
2560  	struct param_range *rfds = &nic->params.rfds;
2561  	struct param_range *cbs = &nic->params.cbs;
2562  
2563  	ring->rx_max_pending = rfds->max;
2564  	ring->tx_max_pending = cbs->max;
2565  	ring->rx_pending = rfds->count;
2566  	ring->tx_pending = cbs->count;
2567  }
2568  
e100_set_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)2569  static int e100_set_ringparam(struct net_device *netdev,
2570  			      struct ethtool_ringparam *ring,
2571  			      struct kernel_ethtool_ringparam *kernel_ring,
2572  			      struct netlink_ext_ack *extack)
2573  {
2574  	struct nic *nic = netdev_priv(netdev);
2575  	struct param_range *rfds = &nic->params.rfds;
2576  	struct param_range *cbs = &nic->params.cbs;
2577  
2578  	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2579  		return -EINVAL;
2580  
2581  	if (netif_running(netdev))
2582  		e100_down(nic);
2583  	rfds->count = max(ring->rx_pending, rfds->min);
2584  	rfds->count = min(rfds->count, rfds->max);
2585  	cbs->count = max(ring->tx_pending, cbs->min);
2586  	cbs->count = min(cbs->count, cbs->max);
2587  	netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n",
2588  		   rfds->count, cbs->count);
2589  	if (netif_running(netdev))
2590  		e100_up(nic);
2591  
2592  	return 0;
2593  }
2594  
2595  static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2596  	"Link test     (on/offline)",
2597  	"Eeprom test   (on/offline)",
2598  	"Self test        (offline)",
2599  	"Mac loopback     (offline)",
2600  	"Phy loopback     (offline)",
2601  };
2602  #define E100_TEST_LEN	ARRAY_SIZE(e100_gstrings_test)
2603  
e100_diag_test(struct net_device * netdev,struct ethtool_test * test,u64 * data)2604  static void e100_diag_test(struct net_device *netdev,
2605  	struct ethtool_test *test, u64 *data)
2606  {
2607  	struct ethtool_cmd cmd;
2608  	struct nic *nic = netdev_priv(netdev);
2609  	int i;
2610  
2611  	memset(data, 0, E100_TEST_LEN * sizeof(u64));
2612  	data[0] = !mii_link_ok(&nic->mii);
2613  	data[1] = e100_eeprom_load(nic);
2614  	if (test->flags & ETH_TEST_FL_OFFLINE) {
2615  
2616  		/* save speed, duplex & autoneg settings */
2617  		mii_ethtool_gset(&nic->mii, &cmd);
2618  
2619  		if (netif_running(netdev))
2620  			e100_down(nic);
2621  		data[2] = e100_self_test(nic);
2622  		data[3] = e100_loopback_test(nic, lb_mac);
2623  		data[4] = e100_loopback_test(nic, lb_phy);
2624  
2625  		/* restore speed, duplex & autoneg settings */
2626  		mii_ethtool_sset(&nic->mii, &cmd);
2627  
2628  		if (netif_running(netdev))
2629  			e100_up(nic);
2630  	}
2631  	for (i = 0; i < E100_TEST_LEN; i++)
2632  		test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2633  
2634  	msleep_interruptible(4 * 1000);
2635  }
2636  
e100_set_phys_id(struct net_device * netdev,enum ethtool_phys_id_state state)2637  static int e100_set_phys_id(struct net_device *netdev,
2638  			    enum ethtool_phys_id_state state)
2639  {
2640  	struct nic *nic = netdev_priv(netdev);
2641  	enum led_state {
2642  		led_on     = 0x01,
2643  		led_off    = 0x04,
2644  		led_on_559 = 0x05,
2645  		led_on_557 = 0x07,
2646  	};
2647  	u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
2648  		MII_LED_CONTROL;
2649  	u16 leds = 0;
2650  
2651  	switch (state) {
2652  	case ETHTOOL_ID_ACTIVE:
2653  		return 2;
2654  
2655  	case ETHTOOL_ID_ON:
2656  		leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON :
2657  		       (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
2658  		break;
2659  
2660  	case ETHTOOL_ID_OFF:
2661  		leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off;
2662  		break;
2663  
2664  	case ETHTOOL_ID_INACTIVE:
2665  		break;
2666  	}
2667  
2668  	mdio_write(netdev, nic->mii.phy_id, led_reg, leds);
2669  	return 0;
2670  }
2671  
2672  static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2673  	"rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2674  	"tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2675  	"rx_length_errors", "rx_over_errors", "rx_crc_errors",
2676  	"rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2677  	"tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2678  	"tx_heartbeat_errors", "tx_window_errors",
2679  	/* device-specific stats */
2680  	"tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2681  	"tx_flow_control_pause", "rx_flow_control_pause",
2682  	"rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2683  	"rx_short_frame_errors", "rx_over_length_errors",
2684  };
2685  #define E100_NET_STATS_LEN	21
2686  #define E100_STATS_LEN	ARRAY_SIZE(e100_gstrings_stats)
2687  
e100_get_sset_count(struct net_device * netdev,int sset)2688  static int e100_get_sset_count(struct net_device *netdev, int sset)
2689  {
2690  	switch (sset) {
2691  	case ETH_SS_TEST:
2692  		return E100_TEST_LEN;
2693  	case ETH_SS_STATS:
2694  		return E100_STATS_LEN;
2695  	default:
2696  		return -EOPNOTSUPP;
2697  	}
2698  }
2699  
e100_get_ethtool_stats(struct net_device * netdev,struct ethtool_stats * stats,u64 * data)2700  static void e100_get_ethtool_stats(struct net_device *netdev,
2701  	struct ethtool_stats *stats, u64 *data)
2702  {
2703  	struct nic *nic = netdev_priv(netdev);
2704  	int i;
2705  
2706  	for (i = 0; i < E100_NET_STATS_LEN; i++)
2707  		data[i] = ((unsigned long *)&netdev->stats)[i];
2708  
2709  	data[i++] = nic->tx_deferred;
2710  	data[i++] = nic->tx_single_collisions;
2711  	data[i++] = nic->tx_multiple_collisions;
2712  	data[i++] = nic->tx_fc_pause;
2713  	data[i++] = nic->rx_fc_pause;
2714  	data[i++] = nic->rx_fc_unsupported;
2715  	data[i++] = nic->tx_tco_frames;
2716  	data[i++] = nic->rx_tco_frames;
2717  	data[i++] = nic->rx_short_frame_errors;
2718  	data[i++] = nic->rx_over_length_errors;
2719  }
2720  
e100_get_strings(struct net_device * netdev,u32 stringset,u8 * data)2721  static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2722  {
2723  	switch (stringset) {
2724  	case ETH_SS_TEST:
2725  		memcpy(data, e100_gstrings_test, sizeof(e100_gstrings_test));
2726  		break;
2727  	case ETH_SS_STATS:
2728  		memcpy(data, e100_gstrings_stats, sizeof(e100_gstrings_stats));
2729  		break;
2730  	}
2731  }
2732  
2733  static const struct ethtool_ops e100_ethtool_ops = {
2734  	.get_drvinfo		= e100_get_drvinfo,
2735  	.get_regs_len		= e100_get_regs_len,
2736  	.get_regs		= e100_get_regs,
2737  	.get_wol		= e100_get_wol,
2738  	.set_wol		= e100_set_wol,
2739  	.get_msglevel		= e100_get_msglevel,
2740  	.set_msglevel		= e100_set_msglevel,
2741  	.nway_reset		= e100_nway_reset,
2742  	.get_link		= e100_get_link,
2743  	.get_eeprom_len		= e100_get_eeprom_len,
2744  	.get_eeprom		= e100_get_eeprom,
2745  	.set_eeprom		= e100_set_eeprom,
2746  	.get_ringparam		= e100_get_ringparam,
2747  	.set_ringparam		= e100_set_ringparam,
2748  	.self_test		= e100_diag_test,
2749  	.get_strings		= e100_get_strings,
2750  	.set_phys_id		= e100_set_phys_id,
2751  	.get_ethtool_stats	= e100_get_ethtool_stats,
2752  	.get_sset_count		= e100_get_sset_count,
2753  	.get_ts_info		= ethtool_op_get_ts_info,
2754  	.get_link_ksettings	= e100_get_link_ksettings,
2755  	.set_link_ksettings	= e100_set_link_ksettings,
2756  };
2757  
e100_do_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)2758  static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2759  {
2760  	struct nic *nic = netdev_priv(netdev);
2761  
2762  	return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2763  }
2764  
e100_alloc(struct nic * nic)2765  static int e100_alloc(struct nic *nic)
2766  {
2767  	nic->mem = dma_alloc_coherent(&nic->pdev->dev, sizeof(struct mem),
2768  				      &nic->dma_addr, GFP_KERNEL);
2769  	return nic->mem ? 0 : -ENOMEM;
2770  }
2771  
e100_free(struct nic * nic)2772  static void e100_free(struct nic *nic)
2773  {
2774  	if (nic->mem) {
2775  		dma_free_coherent(&nic->pdev->dev, sizeof(struct mem),
2776  				  nic->mem, nic->dma_addr);
2777  		nic->mem = NULL;
2778  	}
2779  }
2780  
e100_open(struct net_device * netdev)2781  static int e100_open(struct net_device *netdev)
2782  {
2783  	struct nic *nic = netdev_priv(netdev);
2784  	int err = 0;
2785  
2786  	netif_carrier_off(netdev);
2787  	if ((err = e100_up(nic)))
2788  		netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n");
2789  	return err;
2790  }
2791  
e100_close(struct net_device * netdev)2792  static int e100_close(struct net_device *netdev)
2793  {
2794  	e100_down(netdev_priv(netdev));
2795  	return 0;
2796  }
2797  
e100_set_features(struct net_device * netdev,netdev_features_t features)2798  static int e100_set_features(struct net_device *netdev,
2799  			     netdev_features_t features)
2800  {
2801  	struct nic *nic = netdev_priv(netdev);
2802  	netdev_features_t changed = features ^ netdev->features;
2803  
2804  	if (!(changed & (NETIF_F_RXFCS | NETIF_F_RXALL)))
2805  		return 0;
2806  
2807  	netdev->features = features;
2808  	e100_exec_cb(nic, NULL, e100_configure);
2809  	return 1;
2810  }
2811  
2812  static const struct net_device_ops e100_netdev_ops = {
2813  	.ndo_open		= e100_open,
2814  	.ndo_stop		= e100_close,
2815  	.ndo_start_xmit		= e100_xmit_frame,
2816  	.ndo_validate_addr	= eth_validate_addr,
2817  	.ndo_set_rx_mode	= e100_set_multicast_list,
2818  	.ndo_set_mac_address	= e100_set_mac_address,
2819  	.ndo_eth_ioctl		= e100_do_ioctl,
2820  	.ndo_tx_timeout		= e100_tx_timeout,
2821  #ifdef CONFIG_NET_POLL_CONTROLLER
2822  	.ndo_poll_controller	= e100_netpoll,
2823  #endif
2824  	.ndo_set_features	= e100_set_features,
2825  };
2826  
e100_probe(struct pci_dev * pdev,const struct pci_device_id * ent)2827  static int e100_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2828  {
2829  	struct net_device *netdev;
2830  	struct nic *nic;
2831  	int err;
2832  
2833  	if (!(netdev = alloc_etherdev(sizeof(struct nic))))
2834  		return -ENOMEM;
2835  
2836  	netdev->hw_features |= NETIF_F_RXFCS;
2837  	netdev->priv_flags |= IFF_SUPP_NOFCS;
2838  	netdev->hw_features |= NETIF_F_RXALL;
2839  
2840  	netdev->netdev_ops = &e100_netdev_ops;
2841  	netdev->ethtool_ops = &e100_ethtool_ops;
2842  	netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2843  	strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
2844  
2845  	nic = netdev_priv(netdev);
2846  	netif_napi_add_weight(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
2847  	nic->netdev = netdev;
2848  	nic->pdev = pdev;
2849  	nic->msg_enable = (1 << debug) - 1;
2850  	nic->mdio_ctrl = mdio_ctrl_hw;
2851  	pci_set_drvdata(pdev, netdev);
2852  
2853  	if ((err = pci_enable_device(pdev))) {
2854  		netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n");
2855  		goto err_out_free_dev;
2856  	}
2857  
2858  	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2859  		netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n");
2860  		err = -ENODEV;
2861  		goto err_out_disable_pdev;
2862  	}
2863  
2864  	if ((err = pci_request_regions(pdev, DRV_NAME))) {
2865  		netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n");
2866  		goto err_out_disable_pdev;
2867  	}
2868  
2869  	if ((err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))) {
2870  		netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n");
2871  		goto err_out_free_res;
2872  	}
2873  
2874  	SET_NETDEV_DEV(netdev, &pdev->dev);
2875  
2876  	if (use_io)
2877  		netif_info(nic, probe, nic->netdev, "using i/o access mode\n");
2878  
2879  	nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
2880  	if (!nic->csr) {
2881  		netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n");
2882  		err = -ENOMEM;
2883  		goto err_out_free_res;
2884  	}
2885  
2886  	if (ent->driver_data)
2887  		nic->flags |= ich;
2888  	else
2889  		nic->flags &= ~ich;
2890  
2891  	e100_get_defaults(nic);
2892  
2893  	/* D100 MAC doesn't allow rx of vlan packets with normal MTU */
2894  	if (nic->mac < mac_82558_D101_A4)
2895  		netdev->features |= NETIF_F_VLAN_CHALLENGED;
2896  
2897  	/* locks must be initialized before calling hw_reset */
2898  	spin_lock_init(&nic->cb_lock);
2899  	spin_lock_init(&nic->cmd_lock);
2900  	spin_lock_init(&nic->mdio_lock);
2901  
2902  	/* Reset the device before pci_set_master() in case device is in some
2903  	 * funky state and has an interrupt pending - hint: we don't have the
2904  	 * interrupt handler registered yet. */
2905  	e100_hw_reset(nic);
2906  
2907  	pci_set_master(pdev);
2908  
2909  	timer_setup(&nic->watchdog, e100_watchdog, 0);
2910  
2911  	INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2912  
2913  	if ((err = e100_alloc(nic))) {
2914  		netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n");
2915  		goto err_out_iounmap;
2916  	}
2917  
2918  	if ((err = e100_eeprom_load(nic)))
2919  		goto err_out_free;
2920  
2921  	e100_phy_init(nic);
2922  
2923  	eth_hw_addr_set(netdev, (u8 *)nic->eeprom);
2924  	if (!is_valid_ether_addr(netdev->dev_addr)) {
2925  		if (!eeprom_bad_csum_allow) {
2926  			netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n");
2927  			err = -EAGAIN;
2928  			goto err_out_free;
2929  		} else {
2930  			netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n");
2931  		}
2932  	}
2933  
2934  	/* Wol magic packet can be enabled from eeprom */
2935  	if ((nic->mac >= mac_82558_D101_A4) &&
2936  	   (le16_to_cpu(nic->eeprom[eeprom_id]) & eeprom_id_wol)) {
2937  		nic->flags |= wol_magic;
2938  		device_set_wakeup_enable(&pdev->dev, true);
2939  	}
2940  
2941  	/* ack any pending wake events, disable PME */
2942  	pci_pme_active(pdev, false);
2943  
2944  	strcpy(netdev->name, "eth%d");
2945  	if ((err = register_netdev(netdev))) {
2946  		netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n");
2947  		goto err_out_free;
2948  	}
2949  	nic->cbs_pool = dma_pool_create(netdev->name,
2950  			   &nic->pdev->dev,
2951  			   nic->params.cbs.max * sizeof(struct cb),
2952  			   sizeof(u32),
2953  			   0);
2954  	if (!nic->cbs_pool) {
2955  		netif_err(nic, probe, nic->netdev, "Cannot create DMA pool, aborting\n");
2956  		err = -ENOMEM;
2957  		goto err_out_pool;
2958  	}
2959  	netif_info(nic, probe, nic->netdev,
2960  		   "addr 0x%llx, irq %d, MAC addr %pM\n",
2961  		   (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
2962  		   pdev->irq, netdev->dev_addr);
2963  
2964  	return 0;
2965  
2966  err_out_pool:
2967  	unregister_netdev(netdev);
2968  err_out_free:
2969  	e100_free(nic);
2970  err_out_iounmap:
2971  	pci_iounmap(pdev, nic->csr);
2972  err_out_free_res:
2973  	pci_release_regions(pdev);
2974  err_out_disable_pdev:
2975  	pci_disable_device(pdev);
2976  err_out_free_dev:
2977  	free_netdev(netdev);
2978  	return err;
2979  }
2980  
e100_remove(struct pci_dev * pdev)2981  static void e100_remove(struct pci_dev *pdev)
2982  {
2983  	struct net_device *netdev = pci_get_drvdata(pdev);
2984  
2985  	if (netdev) {
2986  		struct nic *nic = netdev_priv(netdev);
2987  		unregister_netdev(netdev);
2988  		e100_free(nic);
2989  		pci_iounmap(pdev, nic->csr);
2990  		dma_pool_destroy(nic->cbs_pool);
2991  		free_netdev(netdev);
2992  		pci_release_regions(pdev);
2993  		pci_disable_device(pdev);
2994  	}
2995  }
2996  
2997  #define E100_82552_SMARTSPEED   0x14   /* SmartSpeed Ctrl register */
2998  #define E100_82552_REV_ANEG     0x0200 /* Reverse auto-negotiation */
2999  #define E100_82552_ANEG_NOW     0x0400 /* Auto-negotiate now */
__e100_shutdown(struct pci_dev * pdev,bool * enable_wake)3000  static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake)
3001  {
3002  	struct net_device *netdev = pci_get_drvdata(pdev);
3003  	struct nic *nic = netdev_priv(netdev);
3004  
3005  	netif_device_detach(netdev);
3006  
3007  	if (netif_running(netdev))
3008  		e100_down(nic);
3009  
3010  	if ((nic->flags & wol_magic) | e100_asf(nic)) {
3011  		/* enable reverse auto-negotiation */
3012  		if (nic->phy == phy_82552_v) {
3013  			u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3014  			                           E100_82552_SMARTSPEED);
3015  
3016  			mdio_write(netdev, nic->mii.phy_id,
3017  			           E100_82552_SMARTSPEED, smartspeed |
3018  			           E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
3019  		}
3020  		*enable_wake = true;
3021  	} else {
3022  		*enable_wake = false;
3023  	}
3024  
3025  	pci_disable_device(pdev);
3026  }
3027  
__e100_power_off(struct pci_dev * pdev,bool wake)3028  static int __e100_power_off(struct pci_dev *pdev, bool wake)
3029  {
3030  	if (wake)
3031  		return pci_prepare_to_sleep(pdev);
3032  
3033  	pci_wake_from_d3(pdev, false);
3034  	pci_set_power_state(pdev, PCI_D3hot);
3035  
3036  	return 0;
3037  }
3038  
e100_suspend(struct device * dev_d)3039  static int e100_suspend(struct device *dev_d)
3040  {
3041  	bool wake;
3042  
3043  	__e100_shutdown(to_pci_dev(dev_d), &wake);
3044  
3045  	return 0;
3046  }
3047  
e100_resume(struct device * dev_d)3048  static int e100_resume(struct device *dev_d)
3049  {
3050  	struct net_device *netdev = dev_get_drvdata(dev_d);
3051  	struct nic *nic = netdev_priv(netdev);
3052  	int err;
3053  
3054  	err = pci_enable_device(to_pci_dev(dev_d));
3055  	if (err) {
3056  		netdev_err(netdev, "Resume cannot enable PCI device, aborting\n");
3057  		return err;
3058  	}
3059  	pci_set_master(to_pci_dev(dev_d));
3060  
3061  	/* disable reverse auto-negotiation */
3062  	if (nic->phy == phy_82552_v) {
3063  		u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3064  		                           E100_82552_SMARTSPEED);
3065  
3066  		mdio_write(netdev, nic->mii.phy_id,
3067  		           E100_82552_SMARTSPEED,
3068  		           smartspeed & ~(E100_82552_REV_ANEG));
3069  	}
3070  
3071  	if (netif_running(netdev))
3072  		e100_up(nic);
3073  
3074  	netif_device_attach(netdev);
3075  
3076  	return 0;
3077  }
3078  
e100_shutdown(struct pci_dev * pdev)3079  static void e100_shutdown(struct pci_dev *pdev)
3080  {
3081  	bool wake;
3082  	__e100_shutdown(pdev, &wake);
3083  	if (system_state == SYSTEM_POWER_OFF)
3084  		__e100_power_off(pdev, wake);
3085  }
3086  
3087  /* ------------------ PCI Error Recovery infrastructure  -------------- */
3088  /**
3089   * e100_io_error_detected - called when PCI error is detected.
3090   * @pdev: Pointer to PCI device
3091   * @state: The current pci connection state
3092   */
e100_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3093  static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
3094  {
3095  	struct net_device *netdev = pci_get_drvdata(pdev);
3096  	struct nic *nic = netdev_priv(netdev);
3097  
3098  	netif_device_detach(netdev);
3099  
3100  	if (state == pci_channel_io_perm_failure)
3101  		return PCI_ERS_RESULT_DISCONNECT;
3102  
3103  	if (netif_running(netdev))
3104  		e100_down(nic);
3105  	pci_disable_device(pdev);
3106  
3107  	/* Request a slot reset. */
3108  	return PCI_ERS_RESULT_NEED_RESET;
3109  }
3110  
3111  /**
3112   * e100_io_slot_reset - called after the pci bus has been reset.
3113   * @pdev: Pointer to PCI device
3114   *
3115   * Restart the card from scratch.
3116   */
e100_io_slot_reset(struct pci_dev * pdev)3117  static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
3118  {
3119  	struct net_device *netdev = pci_get_drvdata(pdev);
3120  	struct nic *nic = netdev_priv(netdev);
3121  
3122  	if (pci_enable_device(pdev)) {
3123  		pr_err("Cannot re-enable PCI device after reset\n");
3124  		return PCI_ERS_RESULT_DISCONNECT;
3125  	}
3126  	pci_set_master(pdev);
3127  
3128  	/* Only one device per card can do a reset */
3129  	if (0 != PCI_FUNC(pdev->devfn))
3130  		return PCI_ERS_RESULT_RECOVERED;
3131  	e100_hw_reset(nic);
3132  	e100_phy_init(nic);
3133  
3134  	return PCI_ERS_RESULT_RECOVERED;
3135  }
3136  
3137  /**
3138   * e100_io_resume - resume normal operations
3139   * @pdev: Pointer to PCI device
3140   *
3141   * Resume normal operations after an error recovery
3142   * sequence has been completed.
3143   */
e100_io_resume(struct pci_dev * pdev)3144  static void e100_io_resume(struct pci_dev *pdev)
3145  {
3146  	struct net_device *netdev = pci_get_drvdata(pdev);
3147  	struct nic *nic = netdev_priv(netdev);
3148  
3149  	/* ack any pending wake events, disable PME */
3150  	pci_enable_wake(pdev, PCI_D0, 0);
3151  
3152  	netif_device_attach(netdev);
3153  	if (netif_running(netdev)) {
3154  		e100_open(netdev);
3155  		mod_timer(&nic->watchdog, jiffies);
3156  	}
3157  }
3158  
3159  static const struct pci_error_handlers e100_err_handler = {
3160  	.error_detected = e100_io_error_detected,
3161  	.slot_reset = e100_io_slot_reset,
3162  	.resume = e100_io_resume,
3163  };
3164  
3165  static DEFINE_SIMPLE_DEV_PM_OPS(e100_pm_ops, e100_suspend, e100_resume);
3166  
3167  static struct pci_driver e100_driver = {
3168  	.name =         DRV_NAME,
3169  	.id_table =     e100_id_table,
3170  	.probe =        e100_probe,
3171  	.remove =       e100_remove,
3172  
3173  	/* Power Management hooks */
3174  	.driver.pm =	pm_sleep_ptr(&e100_pm_ops),
3175  
3176  	.shutdown =     e100_shutdown,
3177  	.err_handler = &e100_err_handler,
3178  };
3179  
e100_init_module(void)3180  static int __init e100_init_module(void)
3181  {
3182  	if (((1 << debug) - 1) & NETIF_MSG_DRV) {
3183  		pr_info("%s\n", DRV_DESCRIPTION);
3184  		pr_info("%s\n", DRV_COPYRIGHT);
3185  	}
3186  	return pci_register_driver(&e100_driver);
3187  }
3188  
e100_cleanup_module(void)3189  static void __exit e100_cleanup_module(void)
3190  {
3191  	pci_unregister_driver(&e100_driver);
3192  }
3193  
3194  module_init(e100_init_module);
3195  module_exit(e100_cleanup_module);
3196